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Introduction 

Diabetes mellitus has become the leading 
cause of cardiovascular and renal disease in 
this country. This is especially worrisome 
since the prevalence of diabetes is 
increasing in this country mainly due to 
increasing incidence of obesity and the 
closely associated metabolic syndrome. 

According to recent USRDS data diabetes 
accounts for over 50% of the 80,000 new 
patients who develop end stage renal 
disease each year (National Institute of 
Diabetes and Digestive and Kidney 
Diseases, USRDS Annual Data Report 
1998). Hypertension, which is quite common 
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in diabetic patients, is the primary cause of renal disease in the other 25% of the patients who develop end 
stage renal disease. Diabetes and hypertension, therefore, account for more than 75% of the patients with 
ESRDS who require dialysis or transplantation for the maintenance of life. 

Diabetic patients do poorly on dialysis, 
with high rates of morbidity and 
mortality (greater than 25% annual 
mortality rate) due to cardiovascular 
disease (in excess of 50%), infection, 
and vascular access failure. Of all the 
long-term complications of diabetes, 
renal disease (diabetic nephropathy) 
imposes the highest costs, both in 
dollars and in terms of human suffering. 
Measures to identify the pathogenesis 
of diabetic renal and cardiovascular 
disease and interventions to prevent or 
at least slow down the progression of 
renal and cardiovascular disease are 
greatly needed. 

Incidence of End-Stage Renal Disease 
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Mediators of diabetic renal disease 

Studies in recent years have identified a number of factors that play a role in the pathogenesis of diabetic 
renal disease or nephropathy: a) Enhanced intrarenal angiotensin II activity, resulting in glomerular 
hypertension, hyperfiltration, hypertrophy as well as regulation of plasminogen activator inhibitor-1 (PAI-1) 
and matrix proteins [1-5]. b) Activation of intrarenal pro-inflammatory cytokines, including tumor necrosis 
factor alpha {TNFa) and interleukins (IL-1 and IL-6), that regulate cell growth, matrix proteins and possibly 
lipid metabolism [6-12]. c) Increased activity of growth factors, including transforming growth factor-p (TGF
p), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF), that regulates cell 

3 



growth and matrix proteins [13-29]. d) Increased diacylglycerol (DAG) and protein kinase C (PKC) activity 
[30-35], as well as increased MAP kinase activity [36-39]. e) Activation of pathways for glucose metabolism, 
including the aldose reductase-dependent polyol pathway (increased sorbitol), pentose phosphate shunt 
(increased UDP-glucose), and altered glycosphingolipid metabolism (increased ceramide and 
glucosylceramide) [40-44]. f) Non-
enzymatic glycation of circulating or 
matrix proteins, including Amadori
modified glucose adducts and advanced 
glycosylation end products (AGEs) [45-
57]. g) Increased levels of reactive 
oxygen species, resulting in oxidative 
stress and in oxidation of proteins and 
lipids [58-61]. h) Increased deposition 
and/or accumulation of lipids. 

Historically, the association between 
lipids and renal disease was first 
suggested by Virchow in his lecture in 
1858 titled "a more precise account of 
fatty metamorphosis" when he described 
successive stages of fatty metamorphosis 
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and fatty detritus in the renal epithelium in Bright's disease (62). In 1916 Munk observed similar lipid 
deposits in the kidneys of young patients with nephritic syndrome and used the term lipoid nephrosis to 
indicate the association between systemic lipid abnormalities and the pathogenesis of renal disease in 
patients with nephrotic syndrome (63). 

In their classical paper in 1936 describing the pathological sign of nodular sclerosis Kimmelstiel and Wilson 
also demonstrated the presence of lipid deposits in the kidneys of diabetic patients and they suggested that 
these lipids play an important role in the pathogenesis of renal disease (64 ). Newburger and Peters also 
demonstrated the presence of lipid deposits in 1939 (65) and Wilens and Elans in 1951 suggested that the 
hyperlipidemia and elevated glomerular pressure were the major mediators of diabetic nephropathy (66). 

The two clinical cases that I will present today also illustrate the presence of lipid deposits in the kidneys of 
patients with type I diabetes and type II diabetes. 

The first patient is a 46 year old white male with 17 year history of type I diabetes mellitus, hypertension, 
increased alcohol and tobacco use, who first experienced gross painless hematuria 8 months prior to 
presentation. Urology evaluation, including cyctoscopy, IVP and bladder washings, was normal. Renal 
ultrasound showed 12.7 em right kidney, 13 em left kidney, with normal echogenicity and no masses. 24 hr 
urine showed total protein of 902 mg per 24 hr and creatinine clearance of 60 ml/min. Serologies were 
negative. Patient had poor glycemic control with hemoglobin A 1 C of 9.5%. Serum lipids including 
Triglyceride 103, Cholesterol 190, LDL Cholesterol 82 were normal. HDL Cholesterol was 87. 

Renal biopsy showed evidence of diabetic glomerulosclerosis with presence of lipids in the glomerulus as 
determined by positive oil-red-o staining. 
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The second patient is a 67 -year old Hispanic male with 25 year hx of type II diabetes treated with a 
sulfonylurea, 1 year hx of hyperlipidemia treated with simvastatin and 1 year hx of hypertension treated with 
diltiazem, who presented with severe lower extremity edema, dyspnea and was admitted for treatment of 
new onset volume overload/CHF. 

On admission glucose 130, BUN 28, Cr 1.3, Hgb A 1 C 5.2 %, cholesterol 168, triglyceride 254, HDL 35, LDL 
82, VLDL 51, U/A protein greater than 1000. 

Further evaluation revealed normal renal ultrasound, urine protein I creatinine ratio of 7.8 and essentially 
negative serologies. 

Renal biopsy showed the classical lesion of diabetic nephropathy with nodular sclerosis and oil-red-o stain 
showed marked presence of lipid accumulation in the glomeruli and tubulointerstitial cells. 

Renal Involvement in Primary Disorders of Lipid and 
Carbohydrate Metabolism 

Before I further discuss the role of lipids in diabetic renal disease I will briefly discuss the role of lipids in the 
pathogenesis of renal disease in inherited disorders of lipid and carbohydrate metabolism, including Lecithin 
Cholesterol Acyltransferase (LCAT) Deficiency, a-galactosidase deficiency (Fabry's Disease) and type I 
glycogen storage disease (von Gierke's disease). These diseases will illustrate the potential role of 
cholesterol, glycosphingolipids and triglycerides in mediating renal disease, as their potential role will also 
become apparent when I further discuss the role of lipids in diabetic renal disease. 
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Primary Lipodoses Associated with Glomerulopathy 

• Familial Lecithin cholesterol acyltransferase deficiency 

• Sphingolipidoses: 
Fabry disease 
Gaucher disease 
Neiman-Pick disease 
Farber disease 

• Glycogen storage disease type I (von Gierke disease) 

• Refsum disease 

• 1-cell disease 

• Wolman disease 

• Lipoprotein Glomerulopathy 

• Type Ill hyperlipoproteinemia 

Lecithin Cholesterol Acyltransferase (LCAT) Deficiency 

LCAT mediates the esterification of plasma cholesterol by a mechanism that involves the transfer of fatty 
acids from phosphatidylcholine to free cholesterol, generating cholesteryl esters and 
lysophosphatidylcholine. 

LECITHIN 

CHzO - aaturatlld fatty acid 

!Ho- unaaturatlld fatty acid + 
I ~ 
CHaO-~- chollna 

OH 

CHaO- saturated fatty acid 

Lo + 
I ~ 
CHaO'-~- choline unuturatlld 

OH tatty acid 

CHOLESTEROL 

The plasma lecithin cholesterol 
acyltransferase reaction. 

Reprinted from: 
S. Santamarina-Fojo, et a/, 
Lecithin cholesterol 
acyltransferase deficiency and 
Fish eye disease. In: The 
Metabolic & Molecular Bases of 
Inherited Disease, Vol//, rJh ed., 
Eds: Scriver, Beaudet, Valle, 
Sly, pp 2817-2833, 2001 

LCAT plays an important role in reverse cholesterol transport, a process by which cholesterol from 
peripheral cells is transferred to the liver for catabolism. Cellular free cholesterol is taken up by high-density 
lipoprotein where it is esterified by LCA T. The newly generated cholesteryl esters are packaged in the core 
of the lipoprotein, resulting in the maturation of discoidal pre-p-HDL to spherical a-HDL. The cholesteryl 
ester may then be exchanged for VLDL-triglycerides by the cholesteryl ester transfer protein (CETP) for 
transport to the liver. Alternatively, the cholesteryl ester may be taken up directly by the liver or 
steriodogenic tissues. 
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The pathway of triglyceride-rich chylomicrons secreted from the intestine with the formation of remnants after triglyceride hydrolysis 
by LDL, is illustrated. Chylomicron remnants are taken up by the liver primarily by the LDL receptor related protein receptor. 
Triglyceride-rich VLDL are secreted from the liver and are converted initially to IDL, and finally to LDL. LDL removed from the 
plasma by the LDL receptor or under-oxidation are taken up by the scavenger receptors scavenger receptor class A or CD36 on the 
macrophages. Nascent HDL removes excess cholesterol from cells after interaction with ATP-binding cassette transporter-1 
(ABC 1 ). The pivotal role of lecithin-cholesterol acyltransferase (LCAT} in the esterification of cholesterol and the maturation of disc
shaped nascent pre-p HDL into spherical cx.-HDL particle is illustrated. Cholesterol is transported back to the liver directly by HDL or 
following transfer to the apoB containing lipoproteins by cholesteryl ester transfer protein (CETP}. The cholesteryl ester (CE) in 
HDL is selectively removed by the hepatic scavenger receptor class B type I (SR-BI) receptor. Reprinted from: S Santamarina-Fojo 
eta/, Curr Op Lipid 11:267-275, 2000. 
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The deficiency in lecithin-cholesterol acyltransferase (LCAT} results in failure of the formation of cholesteryl esters and the 
maturation of the nascent HDL particles. The poorly lapidated HDL particles undergo rapid catabolism resulting in low plasma HDL 
levels. The apoB containing lipoproteins, which are increased in concentration, also undergo rapid catabolism. In addition, there is 
decreased conversion of IDL to LDL resulting in low plasma LDL levels in LCAT deficiency. Abnormal multilaminar lipoprotein 
particles resembling lipoprotein X (LpX) may also be present in VLDL, IDL, and LDL in LCAT deficiency. Reprinted from: S 
Santamarina-Fojo eta/, Curr Op Lipid 11:267-275, 2000. 

Familial LCAT deficiency is inherited as an autosomal recessive trait and is associated with increases in 
plasma free cholesterol, triglyceride and phospholipid levels, decreases in cholesteryl esters and 
lysophosphatidylcholine and undetectable HDL level. An abnormal lipoprotein, lipoprotein-Xis also present. 

7 



Plasma Lipid Profile, LCAT Activity, and LCAT Concentration in Patients with FLO and FED 

TC (mg/dl) 
TG (mg/dl) 
HDL-C (mg/dl 
Apo A-1 (mg/dl) 
Apo A-ll (mg/dl) 
CE/TC 

LCAT activity (nmol/ml/h) 
CER (nmol/ml/h) 
LCAT concentration (~g/ml) 

FLO FED Controls 
172 (89-185) 215 (185-253) 163 ± 24 

723(110-723) 149(60-408) 65±18 
8(0-12) 8(0-7) 65±17 

39 (36-48) 42 (29-45) 145 ± 24 
6 (4-8) 12 (10-15) 34 ± 6 

6 (6-49) 46 (57-65) 69 ± 2 

1.5 (0) 
0 (0-16) 

0.2 (0-0.3) 

0.9 (0-14) 
51 (25-74) 
4.0 (0-4) 

99± 5 
59± 11 

5.2 ± 0.7 

Reference (173, 168) (185, 188) (188) 
TC =total cholesterol; TG- triglycerides; CE/TC - cholesteryl ester/total cholesterol; LCAT = lecithin cholesteryl 
acyltransferase; CER = cholesteryl esterification rate. FLO and FED data for individual patients are shown (range in 
parenthesis). Control data (n = 7) are expressed as mean± SEM. Reprinted from SS Fojo eta/, Lecithin Cholesterol 
Acyltransferase Deficiency and Fish Eye Disease, In: The Metabolic & Molecular Bases of Inherited Disease, fJh ed, Volume 
II, eds: CR Scriver, AL Beaudet, WS Sly, D Valle, The McGraw Hill Co Inc, pp 2817-2833, 2001. 

These patients usually develop corneal opacities, anemia and proteinuria with renal dysfunction. Renal 
disease is the major cause of morbidity and mortality in these patients. Renal symptoms begin as 
proteinuria and microscopic hematuria and sometimes progress to end stage renal disease after a 
prolonged cause. Histologically there is accumulation of foam cells in the glomeruli, as well as collections of 
dark irregular particles that may be abnormal lipids in the subendothelial spaces and mesangium. There is 
progressive expansion of the mesangium with accumulation of matrix and eventual sclerosis of glomeruli 
(67-77). 

Lecithin-cholesterol acyltransferase 
deficiency. a: Electron micrograph 
illustrating an additional feature of 
the glomerular deposits of complex 
lipids. Note the serpiginous pattern 
of the lamellar structures. (Original 
magnification, X38,000.) 
b: Histologic aspect of a glomerulus 
in late-stage disease. Note the 

expanded mesangial areas and 
thickened capillary walls, due to 
accumulation of lipids in the sub
endothelial areas. 
(Original magnification, X 640.) 
Reprinted from: T Faraggiana et a/, 
Hum Pathol 18:662-679, 1987. 

Lipid analysis of isolated glomeruli shows marked increases in free cholesterol and phospholipid levels. A recent 
study also showed marked elevation in oxidized phosphatidylcholine (oxPC)-modified LDL in the plasma and 
glomeruli of these patients, which may play an important role in the mediation of the renal disease (78). 
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Characteristics of accumulated materials 
in glomeruli in a patient with LCAT deficiency. 
Acid-hematin-positive materials (phospholipids, 
C) and DLH3-positive materials (oxPC, D) are 
diffusely deposited in the mesangium with a fluffy 
appearance and show a similar distribution 
pattern. Apo B(E) and E (F) are greatly 
accumulated in expanded loops and along the 
subendothelium in the glomerulus; however, 
the expanded mesangium is only weakly 
positive for both. (Magnification X 140). 
Reprinted from: S Jimi eta/, Arterioscler 
Thromb Vase Bio/19:794-801, 1999. 

a-Galactosidase A Deficiency {Fabry Disease) 

Fabry disease is an X-I inked recessive inborn error of glycosphingolipid catabolism resulting from deficient 
activity of the lysosomal hydrolase a-galactosidase A in tissues and fluids of affected hemizygous males. Most 
heterozygous females carriers of the gene have an intermediate level of enzymatic activity. 

The enzymatic defect leads to the systemic deposition of predominantly globotriaosylceramide and to a lesser 
extent galabiosylceramide and the blood group 8 glycosphingolipids. 

Palmitoyl CoA + Serine 
t 
t 

Sphingomyelin~ Ceramide 

t 
Glucosylceramide 

t 
Lactosylceramide 

~ ! t 
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Complex Glycosphingolipids 

Globotetraosylceramide 

t 
Globotriaosylceramide 

~ a-Galactosidase (Fabry's disease) 

Lactosylceramide 

Glucos~eramide 
~ ~-Glucosidase (Gaucher disease) 

Sphingomyelin+ Ceramide 

Smase 
(Neimann-Pick disease) 

Almost every tissue is involved in Fabry's disease with predominant involvement of kidneys, eyes, nervous 
tissue, and endothelial cells throughout the body. Clinically most patients present with parasthesias, pain 
the extremities and angiokeratomas. 

The kidney is the major target organ in Fabry disease. Progressive accumulation of glycosphingolipids in 
the kidney is associated with proteinuria and a progressive decline in renal function, resulting in end stage 
renal disease usually in the third to fifth decades of life. Glomeruli show severe ballooning of the podocytes 
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and the glycosphingolipid accumulates in the podocytes, mesangial cells and endothelial cells. The tubules 
are also affected, the distal tubules usually more severely affected than the proximal tubules. Lipid-laden 
distal tubular epithelial cells desquamate and may be seen in the urinary sediment. There is also marked 
involvement of the renal vasculature with severe vacuolization of the endothelial and vascular smooth 
muscle cells and severe luminal narrowing (79-94 ). 

Fabry disease, a: The glomerulus shows 
considerable vacuolization of podocytes. 
The appearance is common to several 
lipidoses and therefore is not pathog
nomonic. The stored lipids have been 
extracted during processing, leaving 
clear, empty vacuoles. (Formalin fixation, 
paraffin embedding, periodic acid-Shiff 
stain. Original magnification, X640.) 
b: Histologic appearance of the kidney 
after osmium fixation. A glomerulus 
similar to the one seen in figure 1 a shows 
strongly stained vacuoles in podocytes. 
Note periodic acid-Schiff-positive droplets 
also in arterioles, tubules, and interstitial 
cells. With this type of fixation, paraffin 
embedding would give similar results due 
to the insolubility of lipids after osmium fix 

ation. (Formal in fixation, osmium post
fixation, methacrylate embedding, 
periodic acid-Schiff stain . Original 
magnification, X400.) Reprinted from: 
T Faraggiana et a/, Hum Pathol 18:662-
679, 1987. 

Type Ia glycogen storage disease: von Gierke disease 

Type Ia glycogen storage disease is an autosomal recessive disorder caused by a deficiency of glucose-6-
phosphatase activity in the liver, kidney and intestinal mucosa with extensive accumulation of glycogen in 
these organs. The clinical manifestations are growth retardation, hepatomegaly, hypoglycemia, lactic 
acidosis, hyperuricemia and hyperlipidemia. 

Glycogen Synthase LACTATE 4 PYRUVATE 
Branching Enzyme GLYCOGEN :. 

,,~,~ 1 -~=:· .,.00_ .. ! L.~,· 
UDPG~GLUCOSE - 1 • P ll 

Pyrophosphorylase t Phosphoglucose Isomerase Phosphofructoklnaseir l 
Pentose GLUCOSE- 6 • .,_.FRUCTOSE- 6 • P 4 FRUCTOSE -1, 6.P 

Phosphate l Fructose-1,6· 
Pathway Blsphosphatase 

Glucokinase 
(Hexokinase) 

GLUCOSE 

Endoplasmic Rellculum 
Plasma Membrane 

GLUCOSE 

Major pathways of synthesis and breakdown of 
glycogen in liver. The broken line indicates that 
severalenzymes have been omitted between 
pyruvate and fructose-1,6-P2. 

GLUT = glucose transport protein; 
UDP = uridine diphosphate; 
UDPG = uridine diphosphate-glucose. 

Reprinted from Glycogen Storage Diseases, 
YT Chen, In: The Metabolic & Molecular Bases of 
Inherited Disease. Eds: Scriver, Beaudet, Valle, Sly, 
8th Ed., Vol/., pp 1521-1551, 2001 
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Acetyi-CoA = acetyl coenzyme A; 
IMP = inosine-5'-monophosphate; 
TCA = tricarboxylic acid. 

Reprinted from Glycogen Storage Diseases, YT Chen, 
In: The Metabolic & Molecular Bases of Inherited 
Disease. Eds: Scriver, Beaudet, Valle, Sly, 8th Ed., 
Vol/., pp 1521-1551, 2001 

The kidney is one of the main targets in this disease. The characteristic renal lesions include focal glomerular 
sclerosis, interstitial fibrosis, tubular atrophy or vacuolization and prominent arteriosclerosis. In addition, there is 
marked glomerular hypertrophy with numerous lipid deposits in the glomerular mesangium, tubular epithelial 
cells and interstitium. The lipid deposits may be caused by hypertriglyceridemia, which results from suppression 
of glyconeogenesis based on the deficiency of glucose 6-phosphatase (95-99). 

Clinical Data at Renal Biopsy 

Age (years) 
Body height (em) 
Body weight (kg) 
Blood pressure (mmHg) 
Urin.alysis 

Patient 1 
37 

156.0 
53.5 

230/100 

Patient 2 
28 

158.0 
53.5 

132/60 

Protein (g/day) 3.0 3.1 
Glucose negative negative 
Red cell (/HPF) 0-1 0-1 
White ce ll (/HPF) 0-1 0-1 
Hyaline cast (/LPF) 1-2 2-3 

Blood urea nitrogen (mg/dl) 55 19 
Serum uric acid (mg/dl) 9.3 8.0 
Serum creatinine (mg/dl) 2.5 0.8 
Creatinine clearance (ml/min) 18 78 
Serum total cholesterol (mg/dl) 339 321 
Serum triglyceride (mg/dl) 814 1269 
Reprinted from K. Obara, eta/, Renal histology in two adult patients with type I glycogen storage disease. 
Clinical Nephrology 39 (2) :59-64, 1993. 
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Light micrograph of the kidney from patient 2, 
showing segmental sclerosis and hyalinosis with 
mesangial matrix expansion in the glomeruli 
(a: PAS, original magnification X 220). The 
tubular epithelial cells are degenerated with 
clear cytoplasm (b: PAS, X220). 

a) 

b) 

Oil Red 0 staining of the kidney from patient 1 , 
showing numerous lipid deposits in the 
glomerular mesangium and sclerotic area 
(a: original magnification X200), in the tubular 
epithelial cells, and in the interestitium (b: X200). 

Reprinted from: K Obara et a/, Renal histology In two adult patients with type I glycogen 
storage disease. Clinical Nephrology 39:59-64, 1993. 

Role of lipids in diabetic renal disease 

Several studies in human subjects and in experimental animals with diabetes have shown a correlation 
between serum lipids, renal lipids and proteinuria and progressive decline in renal function (100-113). Cell 
culture studies have shown direct effects of LDL and VLDL in regulation of mesangial cell expression of 
growth factors, pro-inflammatory cytokines and matrix protein deposition (114-122). In addition, several but 
not all studies in diabetic patients or animals have shown beneficial effects of low fat diets or diets enriched 
in unsaturated fats (123-128) as well as pharmacological inhibition of cholesterol and/or triglyceride 
synthesis (129-137) in decreasing proteinuria and slowing the decline in renal function. 
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Potential role of SREBPs in regulation of renal lipid 
metabolism in diabetes 

Sterol regulatory element binding proteins (SREBPs) belong to the basic-helix-loop-helix-leucine zipper 
family of transcription factors (138-139). SREBPs regulate the transcription of the LDL receptor and multiple 
enzymes required for the biosynthesis of cholesterol and fatty acids. 

Triglycerides 
and Ceramide 

Pathway selective gene activation by SREBI 
and -2. Thick lines and dotted lines identify 
proposed major (thick lines) and minor (dast 
lines) sites of action for SREBP-1 and SREE 
respectively. ACC, acetyl-GoA carboxylase. 
Reprinted from: TF Osborne, J Bioi Chem, 
276(42):32379-32382, 2001. 

To date three SREBP isoforms have been identified and characterized, SREBP-1 a, SREBP-1 b, and 
SREBP-2. Studies in transgenic mice overexpressing each of the three SREBP isoforms in the liver have 
indicated that SREP-1 a and -1 c isoforms play a greater role in fatty acid synthesis compared to cholesterol 
synthesis, whereas SREBP-2 plays a greater role in cholesterol synthesis compared to fatty acid synthesis 
(140-142). Indeed in the SREBP-1 knockout mice there is a significant decrease in fatty acid synthesis 
(143). SREBP-1, or ADD-1 /SREBP-1, and SREBP-2 has also been shown to regulate PPAR-y expression 
in adipocytes and hepatic cells, indicating multiple mechanisms for SREBPs in regulating lipid metabolism 
(144 ). 

Recent studies indicate that insulin and glucose are important regulators of SREBP-1 activation in the liver. 
Both insulin and glucose cause increases in SREBP-1 expression in the liver cells by MAPK and protein 
kinase B/ cAkt dependent signaling pathways (145). In ob/ob mouse and in Zucker Diabetic Fatty rat 
models of type II diabetes, SREBP-1 and SREBP-2 are upregulated in the liver and the adipocytes (151-
152). In contrast, in rats with STZ-induced diabetes, there is an acute and rapid decrease in SREBP-1c 
mRNA in the liver and administration of insulin normalizes SREBP-1c mRNA level (153). 

In contrast to the liver, the regulation of SREBPs in the diabetic kidney has not been studied. Preliminary 
studies in our laboratory indicate that SREBP-1a, SREBP-1c and SREBP-2 are expressed in the kidney. 

In studies in our laboratory using animal models of type I diabetes, streptozotocin-induced diabetes in the 
rat and/or mice and in the NOD mice we have found that the glomerulosclerosis and the proteinuria 
(diabetic nephropathy) are associated with increased lipid accumulation as determined by presence of oil
red-o deposits and increased triglyceride content. 

The increase in triglyceride content is associated with increased expression of the transcriptional factor 
SREBP-1 and increased mRNA of FAS, the enzyme that mediates increased fatty acid synthesis, resulting 
in increased triglyceride and ceramide accumulation. 
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SREBP-1 Protein is Increased in STZ Rats 
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The increase in SREBP-1 seems to be mediated by a direct stimulatory effect of glucose as in proximal 
tubular cells incubated in the presence of a high glucose medium there is direct stimulation of SREBP-1a 
and SREBP-1c resulting in increased mRNA for FAS and increased accumulation of triglyceride. 

Glucose Induces SREBP-1 Upregulation in MCT Cells 
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To determine whether increased renal expression of SREBP-1 per se mediate the diabetic nephropathy we 
have used SREBP-1a transgenic mice and we have found that induction of SREBP-1 gene in the kidney 
results in increased mRNA of two enzymes that mediate fatty acid synthesis, resulting in increase 
triglyceride accumulation. 

The increased renal expression of SREBP-1a and accumulation of triglycerides also results in 
glomerulosclerosis and increased expression of the fibrosis inducing growth factor TGF-~ and extracellular 
matrix proteins, well-established cellular markers of diabetic nephropathy. 

PAS Staining is Increased in SREBP-la 
Transgenic mice 

TGF-~1 Expression is Increased in 
SREBP-la Transgenic Mice 

WT TgBP-la 

Our preliminary data therefore indicates that alterations in the renal expression of SREBP-1 plays an 
important role in regulation of renal lipid metabolism and suggest that SREBP-1 plays an important role in 
diabetic nephropathy. 
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Summary 
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DIABETIC NEPHROPATHY 

Potential role of PPARs in regulation of renal lipid 
metabolism in diabetes 

Peroxisome proliferator-activated receptors (PPARs) are ligand-inducible transcription factors that belong to 
the nuclear hormone receptor superfamily, together with the receptors for thyroid hormone, retinoids, steroid 
hormones, and vitamin D. They occur in 3 different isotypes, a, ~/8, andy that have been described in 
various species including human and rodents. Each of them has a specific pattern of expression (154-158). 

PPAR-a is mostly expressed in brown adipose tissue, liver, kidney, duodenum, heart and skeletal muscle. 
PPAR-y expression is mainly found in brown and white adipose tissues, and also the retina, kidney and 
vascular cells. PPAR-8 is the most ubiquitously expressed isotype and is found in higher amounts than a 
andy in almost all tissues examined, except for adipose tissue. 

PPARs play a key role in lipid, glucose and energy homeostasis (159-166). PPAR-a mediates the 
hypolipidemic action of fibrates by transcriptional modulation of genes involved in lipid and lipoprotein 
metabolism. PPAR-a activators also improve glucose homeostasis and influence body weight and energy 
homeostasis (167-172). These actions of PPAR-a activators on lipid, glucose and energy metabolism are, 
at least in part, mediated by increased hepatic fatty acid ~-oxidation, resulting in enhanced fatty acid flux 
and degradation in the liver (173-177). 
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In contrast, PPAR-y triggers cellular differentiation and regulates adipogenesis and insulin action (144-147, 
175-176, 178-182). PPAR-y is the functional receptor for the thiazolidinedione class of insulin-sensitizing 
drugs (183-184). 
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Obesity causes certain tissues in the body (such as muscle and liver) to be less sensitive to insulin. Such insulin 
resistance is one of the main features of type II diabetes. From left, as fat cells (adipocytes) store more fat molecules and 
enlarge, they release several products that can modify the body's sensitivity to insulin . Free fatty acids and tumour 
necrosis factor-a (TNF-a) cause insulin resistance, and leptin, which regulates energy balance, probably causes insulin 
sensitivity. Steppan et al have identified a new protein, resistin, that is secreted by adipocytes. Resistin causes insulin 
resistance through its effects on adipocytes and perhaps other tissues. Thiazoladinedione drugs reduce insulin resistance 
and are used to treat type II diabetes. These drugs suppress the expression of resistin by adipocytes, and their 
antidiabetes effects may, at least in part, be achieved through this mechanism. Reprinted from: JS Flier, Nature 409:292-
293, 2001. 

Recent studies indicate that PPARs also plays an important role in regulation of cell growth, 
angiogenesis, inflammation and atherosclerosis. PPAR-a and PPAR-y agonists have been shown to 
reduce inflammatory cytokine {TN Fa, IL-1 and IL-6) production by inhibiting the activity of pro
inflammatory transcription factors such as AP-1, STAT and NF-KB (185-194). 

Both PPAR-a and PPAR-y are expressed in the kidney (195-199). In preliminary studies we have 
found that PPAR-a and PPAR-y expression are decreased in a model of type II diabetes in the rat, 
the Zucker Diabetic Fatty (ZDF) rats, and it correlates with decreased expression of enzymes that 
mediate fatty acid oxidation and increased expression of enzymes that mediate fatty acid synthesis, 
resulting in increased triglyceride content in the kidney. Treatment of these animals with a PPAR-y 
agonist reverses most of the lipid defects and prevents the development of glomerulosclerosis. 
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treated with Troglitazone. In ZDF rats 
there is increased PAS staining and 
evidence of glomerulosclerosis and 
treatment with Troglitazone prevents 
the development of glomerulosclerosis. 

Effects of treatment with 
Troglitazone on a) 24-hr 
urinary protein excretion 
and b) Urine protein/Urine 
creatinine ratio. ZDF rats 
have significantly higher 
urinary protein excretion 
and treatment with Troglit
azone markedly reduces 
the proteinuria. 
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Renal i) cholesterol, li) triglyceride, 
iii) ceramide and iv) glucosylceramide 
content in a) control(+/+) rats, b) ZDF 
(fa/fa) rats and c) ZDF (fa/fa) rats 
treated with Troglitazone. Renal 
cholesterol, trig lyceride, ceramide 
and glucosylceramide content are 
significantly increased in ZDF rats 
and treatment with Troglitazone 
causes a marked decrease in the 
renal content of these lipids. 
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Potential mechanisms of lipid-induced renal disease: 

In vivo studies in hypercholesterolemic or hypertriglyceridemic animals and cell culture studies using 
mesangial cells grown in the presence of LDL or VLDL indicate that lipids have multiple effects in the kidney 
including a) stimulation ofTGF-P and PDGF (114-122), b) increased transcriptional activation of 
plasminogen activator inhibitor-1 (PAI-1) (200-206), c) increased synthesis and secretion of extracellular 
matrix proteins including collagen, fibronectin and laminin ( 114-122), d) enhanced secretion of pro
inflammatory cytokines IL-6 and TNF-a (207-218), e) increased expression of monocyte chemoattractant 
protein-1 (MCP-1 ), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 
(VCAM-1) (207-218), and f) enhanced lipid peroxidation and glycoxidation (219-233). 
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Strategies to treat and prevent diabetic renal disease: 
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