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INTRODUCTION 

I) INCIDENCE OF DIABETIC CARDIOVASCULAR AND RENAL DISEASE 

Diabetic nephropathy (defined as proteinuria, hypertension, and a decrease in glomerular 
filtration rate) develops in about 35% of patients with insulin-dependent diabetes mellitus (Type 
I, IDDM). The natural history of the renal disease is well established in IDDM and renal failure 
develops after 20 to 25 years after onset of the disease. 
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Non-insulin dependent diabetes mellitus (Type IT, NIDDM) is also a major cause of renal 
disease; in fact, in the USA NIDDM accounts for more than 90% of subjects with chronic renal 
disease secondary to diabetes. Until recently although the course and determinants of renal 
failure in NIDDM were not clearly defined it was apparent that the time from apparent diagnosis 
to end stage renal disease (ESRD) was shorter than that for IDDM for two major reasons: 1) The 
diagnosis of diabetes may not be made until 5 to 7 years after the true onset of disease; and 2) 
Preexisting hypertension may accelerate the slope of progression to ESRD. 
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Incidence of Renal Failure 20 Years After 
Diagnosis of Type II Diabetes in Oklahoma Indians 
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A recent study in Pima Indians with NIDDM has determined that the natural history of 
the renal disease in NIDDM is quite similar to that in IDDM. The study showed that the 
glomerular filtration rate is elevated at the onset of NIDDM and remains so while normal 
albumin excretion or microalbuminmia persists. However, it declines progressively after the 
development of macroalbuminuria (Nelson et al 1996). 

RENAL DISEASE IN PIMA INDIANS WITH NON-INSULIN-DEPENDENT DIABETES MELLITUS 
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Changes in the Mean Glomerular Filtration Rate and Median Urinary Albumin-to-Creatinine Ratio from Base Line to the 
End of Follow-up in Subjects with Impaired Glucose Tolerance (IGT), Newly Diagnosed Non-Insulin-Dependent Diabetes Mellitus 
!New NIDDM), NIDDM and Normal Urinary Albumin Excretion (Normoalbuminuria), NIDDM and Microalbuminuria, and NIDDM 
and Macroalbuminuria. 
Each arrow connects the value at the base-line examination and the value at the end of follow-up. The dashed line indicates the 
time of diagnosis, and -the shaded area the 25th through 75th percentiles of values in subjects with normal glucose tolerance. Al­
bumin was measured in milligrams per liter and creatinine in grams per liter. 
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Diabetes mellitus (both IDDM and NIDDM) has become the leading and fastest growing 
cause of ESRD in the United States, requiring dialysis or transplantation for the maintenance of 
life. 

Adjusted End-Stage Renal 
Disease Incidence Per Million by Primary 

Diagnosis, Adjusted for Age, Race, and Sex 
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Diabetes and End-Stage Renal 
Disease In the US* 

Number of new cases of ESRD 
with diabetes 
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, The data in Figure 6 reflect cases reported to the Health Care Finance Administration 
(HCFA) in the United States between 1985 and 1995. The data are for all types of diabetes. 
However, data from smaller studies indicated that type II diabetes (NIDDM) accounts for a 
majority of the disease-related increase in new cases of ESRD. The data in the left panel shows 
that the number of new cases of ESRD in diabetic patients tripled in one decade, reaching more 
than 23,000 per year in 1994. The data in the right panel shows that the percent of all ESRD 
cases that were accounted for by patients with diabetes rose from approximately 26% in 1985 to 
approximately 38% in 1994. 

The United States Renal Data System (USRDS) indicates that ESRD is also more 
common in ethnic groups with high prevalence rates of NIDDM. 

End-Stage Renal Disease and Diabetes: 

300 

New 200 
cases of ESRD 

per million 
population 

1 00 

0 

,.... 

-

-
I 

Five Ethnic Groups 

US national data 

I I 

White Asian African- Mex1can- Native-
American American American 

USRDS1994. 

6 



The data in Figure 7 shows the number of new cases of ESRD in the population that were 
attributed to diabetes in five ethnic groups. Numbers are highest in-groups with the highest 
diabetes prevalence rates; however, a relative increase in diabetes-related ESRD in Mexican­
Americans and African-Americans (3-5-fold the rate of whites) is greater than the relative 
increase in diabetes prevalence in these two groups (1.5-2-fold the prevalence in whites). This 
fact suggests that, in addition to higher prevalence rates of diabetes, other factors (for example, 
hypertension) contribute to the excess ESRD in these ethnic groups. 

The importance of diabetes-induced renal disease is further amplified by the fact that 
USRDS data indicates that the survival of diabetic patients treated with any form of dialysis is 
greatly reduced compared with that of non-diabetic patients. Two-year survival rates are 51.4% 
for non-diabetics, and it is further reduced to 43.9% for diabetics. 
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The major cause of death in-patients with ESRD is cardiovascular disease, and the 
increased rate of mortality in diabetic patients may well be due to the fact that the relative risk of 
cardiovascular disease is markedly increased in diabetic compared with nondiabetic subjects. 

Relative Risk of CVD in 
Diabetic vs Nondiabetic Persons: 
Framingham Heart Study 

Age-adjusted risk ratio 

Manifestation of CVD Men Women 

Any CVD event 2.31* 2.47* 

Stroke 1.51 1.82 

Intermittent claudication 5.27* 2.60t 

Cardiac failure 2.55t 4.92* 

Coronary heart disease 1.73t 2.50* 
myocardial infarction 2.16* 4.37* 
angina pectoris 1.23 1.59 
sudden death 2.511 
coronary mortality 2.38t 3.60t 7 

"Pc0.001, 'P<O.OS, •Pc0.01, tP<0.1. Kannel WB et al. Am Heart J. 1990;120:672-674. 



The Nature of Vascular Disease in Diabetes 

• Microvascular disease {proven relationship to duration 
and severity of hyperglycemia) 
- nephropathy 

- retinopathy 
-neuropathy {related to altered metabolism in nerve) 
- peripheral microvascular disease and its contributions 

to limb loss 

• Macrovascular disease {multifactorial determinants) 

- coronary artery disease 

- cerebrovascular disease · 
- peripheral vascular disease 

Age and Sex-Adjusted Incidence of Cerebral Infarction and 
Coronary Heart Disease per 1,000 Person-Years by Glucose 

Tolerance During the 5-Year Follow-up 
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II) PATHOGENESIS OF DIABETIC CARDIOVASCULAR AND RENAL DISEASE 

Extensive work in recent years, including in animal models of type I and type II diabetes 
mellitus, have shown that the pathogenesis of diabetic renal disease is multifactorial, as depicted 
in the following table. 

MEDIATORS OF DIABETIC RENAL DISEASE 

•Genetic/Familial Predisposition 

•Altered Intrarenal Hemodynamics 

• Humoral Imbalance 
Metabolic consequences of insulin deficiency 
Activation of Intrarenal cytokines or growth factors 

Angiotensin II 
Thromboxane 
Nitric oxide 
Insulin-like growth factor 1 
Platelet-derived growth factor 
Transforming growth factor-~ 

•Activation of Pathways for Glucose Metabolism 
Aldose reductase-dependent polyol pathway 
(Increased sorbitol) 
Pentose phosphate shunt (increased UDP glucose) 
De novo synthesis of diacylglycerol and stimulation of 

Protein kinase C 
Disordered cellular myo-inositol metabolism 
Altered cellular redox state (Increased NADPHINADP+, 
NADHINAD+) 
Altered glycosphingolipid metabolism 
Renal tubular hypermetabolism and oxidant injury 

•Nonenzymatic Glycation of Circulating or Matrix Proteins 
Amadori-modified glucose adducts 
Advanced glycosylation end-products (AGE) 
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In past Medicine Grand Rounds other members of the Nephrology Division and I have 
discussed the role of Lipids, Angiotensin II, and Growth Factors in the pathogenesis of diabetic 
renal disease. In this grand rounds I will discuss the role of Nonenzymatic Glycation of 
Circulating or Matrix Proteins, including Amadori-modified glucose adducts and advanced 
glycosylation end products (AGEs), in the pathogenesis of diabetic nephropathy and 
cardiovascular disease, as well as the role of AGEs in cardiovascular disease in diabetic and non­
diabetic subjects with end stage renal disease ESRD. First though, I would like to include three 
cases, which will help illustrate the discussion, which will follow. 

II) CASE PRESENTATIONS 

Patient 1. M.R. is a 68-year-old Hispanic-American who has had Type II diabetes for 10 years. 
She has always been about 15%-20% above desirable body weight and has been unable to lose 
the extra pounds. She has been fairly well controlled on a sulfonylurea at gradually increasing 
doses. Hypertension was diagnosed about 3 years ago, and she was started on a generic thiazide 
(25 mg hydrochlorothiazide) that was covered by her health plan. Her control has deteriorated, 
and she is becoming symptomatic, with blurred vision, polyuria, nocturia, and fatigue despite 
weight loss of 5 lbs. over the last 6 weeks. 

Physical Examination 

Height: 
Weight: 
BP: 

5'3" 
130 lbs. 
126/82mmHg 

On funduscopic examination, she has nonproliferative retinopathy. Cardiovascular 
examination reveals decreased pedal pulses and a right femoral bruit. On neurologic 
examination, she has absent ankle reflexes and decreased vibration sense. Touch sensation is 
normal. 

Laboratory Tests 

Urinalysis: 
Microalbuminuria: 

Random plasma glucose 
HbA1c 
Total cholesterol 
LDL-C 
HDL-C 

Triglycerides 

Normal 
120 mg Protein/ g Cr 
(normal< 30 mg/g) 
320 mg/dL 
10.8% (previously 7.8%) 
240mg/dL 
160 mg/dL 
30mg/dL 
290 mg/dL 
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Patient 2. A 35-year old woman with a history of type-I diabetes mellitus since age 8 and 
diabetic nephropathy was evaluated for participation in a study of the relationship between levels 
of advanced glycation and renal-vascular complications of diabetes. Five years ago, 
uncontrolled diabetes (hemoglobin A 1e 11%) had been accompanied by mild hypertension, 
background retinopathy, proteinuria (1.5 g/24 hr), creatinine clearance 90 ml/minl.73 m2

, and an 
elevated serum cholesterol. 

At the time of current evaluation, the patient had a blood pressure of 160/114 mm Hg and 
a regular heart rate of 72 beats/min. The rest of the physical examination was normal, as was her 
electrocardiogram. Laboratory evaluation revealed normal electrolytes with borderline 
hyperkalemia (5.1 mEg/liter); serum creatinine, 2.0 mg/dl; creatinine clearance, 70 ml/min; 
urinary albumin excretion (UAE) rate, 24f..Lg/min (normal< 15 f..Lg/min or 22 mg/24 hr). 
Hemoglobin A1e was 12.5%; serum LDL cholesterol, 208 mg/dl; HDL cholesterol, 49 mg/dl. 

Laboratory Tests 

• SK = 5.1 mEg/liter 

•Scr = 2.0 mg/dl 

•CrCl =70 ml/min 

• Urinary Albumin= 24f..Lg/min (< 15 f..Lg/min) 

As part of the study, the level of hemoglobin-AGE was determined and was 9.7 U/mg 
hemoglobin (normal range: 3-5 U/mg). The patient agreed to participate in a 28-day double­
blind placebo-controlled trial of an advanced glycation end product (AGE) inhibitor, 
aminoguanidine. After 28 days of treatment with aminoguanidine (400 mg orally twice daily), 
during which no adverse effects were noted, Hb A1e was stil112%. Hb-AGE, however, had 
fallen to 5 U/mg and serum LDL cholesterol to 168 mg/dl (HDL cholesterol 52 mg/dl). (From 
Vlassara, Kidney International Nephrology Forum, 1996). 

Baseline 

HbAte = 12.5% 

Hb-AGE = 9.7 U/mg 

LDL = 

HDL = 

208 mg/dl 

48 mg/dl 

Laboratory Tests 

After Aminoguanidine 

12.0% 

5.0U/mg 

168 mg/dl 

52 mg/dl 
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Patient 3. A 52-year-old non-diabetic woman with a history of chronic renal failure secondary 
to chronic pyelonephritis and hypertension had been treated with hemodialysis for one year. She 
was admitted to a study of the long-term effects of intensive hemodialysis on circulating levels 
of AGE-modified proteins and lipoproteins, known to be elevated in non-diabetic patients with 
end-stage renal disease (ESRD). At that time, the patient had a blood pressure of 165/100 mm 
Hg; pulse, 68 and regular; serum creatinine, 3.2 mg/dl; Hb A1, 4.1 %; Hb-AGE, 5.5 U/mg; and 
serum AGE.88 U/rnl (normal range 3-20 U/ml). Her serum LDL apolipoprotein B was elevated 
at 96 mg/dl, as was AGE-ApoB at 288 U/mg ApoB. Following a two-month period of therapy 
on a high-flux hemodialyzer (AN69), her Hb A1 and Hb-AGE were still within normal limits 
(3.6% and 4.0 U/mg, respectively). Total serum AGE was 60 U/ml and AGE-ApoB 210 U/mg 
ApoB. Interesting, serum LDL ApoB had fallen to within the normal range (50 mg/dl). (From 
Vlassara, Kidney International Nephrology Forum, 1996.) 

Til) ADVANCED GLYCOSYLATION END-PROUDUCTS 

Much of the basis of advanced glycosylation chemistry has originated from the studies of 
the Maillard reaction (Maillard 1912). Even though the Maillard reactions have been of 
considerable interest to the food chemists since the tum of the century (also known as the 
Browning Reaction), an appreciation of Maillard-type reactions in living systems has occurred 
only over the last 15 years, and led directly from the realization that the products of advanced 
glycosylation form from the early products of nonenzymatic glycosylation. These early products 
are the Schiff bases and Amadori adducts that result from the covalent addition of reducing 
sugars to protein and phospholipid amino groups. 

Outline of Nonenzymatic Glycation Reactions 
and How They lead to Formation of AGEs 

A. R1CHO + H2N Protein ~R1CH=NProtein 
(Glucose) (Protein) (Schiff base) 

B. 1. Proteins with short half-life 
Glucose + Protein~ Schiff Base~ Amadori Product ' ~ 2. Long-lived proteins (structural) (reversible) 

Glucose+ Protein~ Schiff Bte ~A~dori Product 

Advanced glycosylation t 
endproducts ""' ' 

AGE 
(Irreversible) 
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The hemoglobin Amadori product, HbA1c, was the first protein identified to be modified 
by Amadori products in vivo, and its persistent elevation in diabetics has been utilized as an 
effective means to accurately monitor long-term glucose control (Bunn et al 1976; Bunn et al 
1978; Higgins and Bunn 1981; Koenig et al 1982; Cohen 1986). Increasing HbA1c values, 
indicating poor long-term glucose control have been associated with increased incidence of 
diabetic complications, including nephropathy, retinopathy, and neuropathy. 

© 
DCCT: Association of Sustained Progression 

of Retinopathy With Mean HbA1c 

Rate of 
progreaslon of 

6 retinopathy (per 
100 

patienl·yeanl) 

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 

Glycosytated hemoglobin (%) 

Di1bn1 Control and Compllca1lons Trill RIHarcll Group. N EfV/ J M«J. 11193;329:9n-986. 

Overtime the Amadori product can undergo further rearrangement reactions. This leads 
to late products, AGEs, that have the capacity to covalently crosslink the proximate amino 
groups of proteins (Brownlee et al 1986, Brownlee et all 1988, Vlassara et al 1988, Kirstein et al 
1990, Makita et al 1991, Monnier 1990, Monnier et al 1992, and Vlassara 1994) AGEs have 
been recently described also to form on aminophospholipids as well as on DNA bases (Bucala et 
al 1993, Papoulis et al 1995). 
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Although the precise identity of the major, reactive AGEs that form in vivo remains 
unsettled, increasing evidence has implicated a-diketone structures such as 1- and 3-
deoxyglucosones and protein-bound dideoxyosones in the covalent crosslinks produced by the 
advanced glycosylation reaction (Bucala and Cerami 1992, Chen and Cerami 1993, Wells­
Knecht et al 1994, Vasan et al, 1996). 

General Scheme of Glycation Reaction 

HC=NR 

I 
HCOH 

Protein I 
___.. HOCH 

+ ,._ I 
HCOH 

Glucose I 
HCOH 

I 

Schiff Base 

CH2 -NHR 
I 
C = O 

I 
HOCH ---. 

I 
HCOH 

I 
HCOH 

I 
CH20H 

Amadori Product 

HC=O 

I 
(R: Protein) 

C=O 

I 
CHz ___.. AGEs 
I 

HCOH 

I 
HCOH Advanced 

I Glycation 
CHzOH End Products 

3-Deoxyglucosone 

In vivo, the Amadori adduct appears to be the more significant precursor of AGE (Wells­
Knecht et al, 1995), whereas in vitro it appears that about 50% of the AGE carboxymethyllysine 
originates from Amadori product oxidation, and 50% originates from other pathways, including 
from metal-catalyzed auto-oxidation of sugar, with glyoxal and arabinose as intermediates 
(Glomb and Monnier 1995). Interestingly, glucose has the slowest rate of glycosylation product 
formation of any naturally occurring sugar. The rate of AGE formation by such intracellular 
sugars as fructose, glucose-6-phosphate, and glyceraldehyde-3-phosphate is considerably faster 
than the rat for glucose (Monnier 1989). For this reason, the rate of intracellular AGE formation 
is muchmore rapid than the rate of AGE formation in the extracellular compartment. 

3-deoxyglucosone (3-DG) may be formed in vivo from fructose, fructose 3-phosphate, or 
Amadori adducts to protein, such as N-fructolysine (FL), all of which are known to be elevated 
in body fluids or tissues in diabetes. Modification of proteins by 3-DG formed in vivo is thought 
to be limited by enzymatic reduction of 3-DG to less reactive species, such as 3-deoxyfructose 
(3-DF). In a recent study Wells-Knecht and coworkers measured 3-DF, as a metabolic 
fingerprint of 3-DG in plasma and urine from a group of diabetic patients and control subjects. 
(Wells-Knecht et all994). Plasma and urinary 3-DF concentrations were significantly increased 
in the diabetic compared with the control population (0.835 ± 0.189 vs. 0.494 ± 0.072 J!M, P < 
0.001, and 69.9 ± 44.2 vs. 38.7 ± 16.1 nmol/mg creatinine, P < 0.001, respectively). Plasma and 
urinary 3-DF concentrations correlated strongly with one another, with HbA1c (P < 0.005 in call 
cases), and with urinary FL (P < 0.02 and P = 0.005, respectively). The overall increase in 3-DF 
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concentrations in plasma and urine in diabetes and their correlation with other indexes of 
glycemic control suggest that increased amounts of 3-DG are formed in the body during 
hyperglycemia in diabetes and then metabolized to 3-DF. These observations are consistent with 
a role for increased formation of the dicarbonyl sugar 3-DG in the accelerated browning of 
tissue proteins in diabetes. 
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0.001 ). 
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As indicated above, increased levels of both 3-deoxyglucasone and methylglyoxal have 
been reported in diabetes (Thornally and Atkins 1989, Wells-Knecht et al1994, Yamada et al 
1994). Recently a 2-oxoaldehyde reductase has been isolated and cloned that reduces 3-
deoxyglucasone to 3-deoxy fructose. This enzyme appears to be identical to aldehyde reductase 
(Takahashi et al 1993). Another enzyme, glyoxylose I, specifically converts methylglyoxal to D­
lactate via the intermediate S-D-lactoylglulathione (Thornalley 1990). 

Formation of AGEs from Glucose 

R 
HC=O HC=N 

I I 
HCOH HCOH 

I I 
RNHz + HOCH ~ HOCH 

I I 
HCOH HC 

I I 
CH20H CH20H 

Amine Glucose N-glucosyl- 1-Amino 
amine 1-Deoxyketose 

3-Deoxy­
glucasone 

Inactive 
Metabolites 

The activity of these enzymes could be important determinants of the amount of AGEs 
that form at any given level of blood glucose in both diabetic and nondiabetic patients. It needs 
to be determined whether inherited differences in the ability to enzymatically detoxify AGE 
intermediates such as 3-deoxyglucosone may be an important genetic factor responsible for 
determining the impact of a given level of glycemia on diabetic complications. 
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IV) MECHANISMS BY WHICH AGE FORMATION MAY CAUSE PATHOLOGIC 
CHANGES 

There are at lease 3 general mechanisms by which AGE formation may cause pathologic 
changes (Brownlee 1996). 

a) First, rapid intracellular AGE formation by glucose, fructose, and more highly reactive 
metabolic pathway-derived intermediates can directly alter protein function in target tissues. 

b) Second, extracellular AGEs alter matrix-matrix and matrix-cell interactions. 

c) Third, AGEs alter the level of gene expression for a variety of molecules involved in the 
genesis of vascular pathology. 

Three General Mechanisms by which 
Advanced Glycation End Products (AGEs) 

May Cause Pathologic Changes 
Glucose 

Glycolytic 
intermediates 

Reactive d'carbonyls 

~ 
Proteins AGE-Proteins 

A. B. ECM c. Cell 
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A) DIRECT ALTERATION IN PROTEIN FUNCTION BY INTRACELLULAR AGEs 

The development of highly sensitive AGE-specific monoclonal and polyclonal antibodies 
and their use in immunohistochemistry and enzyme-linked immunosorbent assays have been 
highly instrumental in demonstrating that AGEs do form on proteins in vivo. In erythrocytes, 
AGE hemoglobin accounts for 0.42% of circulating hemoglobin in normal subjects and 0.75% in 
diabetics (Makita et al 1992). 

Hemoglobin-AGE Levels Correlation Between Amounts 
of Hb-AGE and HbAtc 
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In endothelial cells, increase in AGE formation is even more pronounced. AGE content 
markedly increases in endothelial cells cultured in high glucose containing media. This 
extremely rapid rate of AGE formation most likely reflects hyperglycemia-induced increases in 
intracellular sugars, which are much more reactive than glucose, such as fructose, glucose-6-
phosphate, and glyceraldehyde-3-phosphate. Interestingly, both antioxidants and/or the 
peroxidation-suppressing protoncogene bcl-2 profoundly inhibit hyperglycemia-induced 
intracellular AGE formation, demonstration that a reactive oxygen species-dependent process 
plays a central role in the generation of intracellular AGEs (Giardino et al 1996). 
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Intracellular AGE formation also effects DNA function. AGEs form on prokaryotic DNA in 
vitro and cause mutations and DNA transposition in bacteria and mammalian cells (Bucala et al 
1984, Bucala et al 1985, Lee and Cerami 1987, and Bucala et al 1993). 
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B) INTERFERENCE WITH NORMAL MATRIX-MATRIX AND MATRIX-CELL 
INTERACTIONS 

AGE formation alters the functional properties of several important matrix molecules 
including type I collagen, type IV collagen, and laminin. The functional and structural 
consequences of these alterations include a) increase in the permeability of the glomerular 
basement membrane, and b) the luminal narrowing of the blood vessels. 

Formation of AGEs on extracellular matrix also interferes with matrix-cell interactions. 
AGE modification of type IV collagen's cell-binding domain decreases endothelial cell adhesion, 
and AGE modification of retinal basement membrane causes increased proliferation of retinal 
endothelial cells, the same pathology encountered in diabetic patients (Haitoglu et al 1992, 
Federoff et al 1993, Kalfa et al 1995, Brownlee 1996). 

Effects of AGEs on matrix function 

Collagen 
Type IV ultrastructural assembly ( J.) 
Type I intermolecular spacing (i) 
Type I immobilization of soluble proteins (i) 
Type IV endothelial cell adhesion ( J.) 

Vitronectin 
Binding of heparin ( J.) 
Binding of type IV collagen ( J.) 

Laminin 
Polymerization/self-assembly ( J.) 
Binding of type IV collagen ( J.) 
Binding of heparin sulfate ( J.) 
Stimulation of neurite outgrowth ( J.) 

Matrix 
Quenching of nitric oxide (i) 
Arterial wall elasticity ( J.) 
Arterial wall fluid filtration (i) 
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C) MEDIATION OF PATHOLOGIC CHANGES IN GENE EXPRESSION BY 
ADVANCED GLYCATION END PRODUCT RECEPTORS 

Cellular Responses 
Elicited by AGE Receptor 

Cytokines (TNF, IL-l) 

~Cell Growth 

Mesangial cells ~ Fibronectin 
~._,___. Type IV collagen 

Endothelial cells 
.........._Angiogenesis _______ , 

PDGF 

Specific receptors for AGEs were first identified on monocytes and macrophages. Two 
AGE binding proteins (60-kD and 90-kD) isolated from rat liver are present on monocytes and 
macrophages. AGE protein binding to this receptor stimulates macrophage production of 
interleukin-1, insulin like growth factor I, tumor necrosis factor a, and granulocyte-macrophage 
colony-stimulating factor at levels that have been shown to increase glomerular synthesis of type 
IV collagen and to stimulate proliferation of both arterial smooth muscle cells and macrophages 
(Vlassara et all985; Yang et al 1991, Vlassara et al1988, Kirstein et all992, and Yui et al 
1994). 
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AGE RECEPTOR EXPRESSION AND FUNCTION 

Cell type 

Monocyte/macrophage 

Species/AGE receptor components 

Mouse, rat, human/p60/0ST, p90/80K-H 
galectin-3, RAGE 

Function 
•AGE-ligand binding, endocytosis, degradation 
•Cytokine production (TNFo:, IL-lo:) 
•Growth factor induction (PDGF, IGF-1) 
•Chemotaxis 
•Upregulation by TNFo: 
•Downregulation by insulin 

Vascular endothelial cells also express AGE-specific receptors. A 35-KD and a 46-KD 
AGE binding protein have been isolated from endothelial cells (Schmidtetal 1992, Neeper et al 
1992, and Schmidt et al 1996). In endothelial cells, AGE binding to its receptor induces changes 
in gene expression that include alterations in thrombomodulin, tissue factor, and vascular cell 
adhesion molecule 1 (VCAM-1). These changes induce procoagulatory changes in the 
endothelial surface and increase the adhesion of inflammatory cells to the vessel wall (Exposito 
et al1992, Vlassara et al1995, Schmidt et al1995, and Nautler et al 1996). 
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AGE RECEPTOR EXPRESSION AND FUNCTION 

Cell type 

Endothelial cell 

Species/AGE receptor components 

Rat, human, bovine/p60/0ST 
P90/87K-H, galectin-3, RAGE 

Function 

•Ligand binding, transcytosis, degradation 
• iPermeability 
• iTissue factor, J, thrombomodulin 
•iVCAM-1, iiCAM-1 

AGE receptors have also been identified on glomerular mesangial cells. AGE protein 
binding to its receptor on mesangial cells stimulates platelet-derived growth factor secretion, 
which in turn mediates production of type IV collagen, laminin, and heparin sulfate proteoglycan 
(Skolnik et al 1991 and Doi et al1992). Long-term administration of AGEs to normal rats 
causes focal glomerulosclerosis, mesangial cell expansion, and alberminuria (Vlassara et al 
1994). In addition AGEs cause an increase in glomerular type a.l (IV) collagen, laminin B 1, 
and transforming growth factor ~ 1 mRNA levels (Yang et al 1994). 

AGE RECEPTOR EXPRESSION AND FUNCTION 

Cell type 

Mesangial cells 

Species/AGE receptor components 

Mouse, rat, human/p60/0ST, p90/87K-H 
Galectin-3, RAGE 

Function 

•Binding, endocytosis, degradation 
• iFibronectin, i collagen IV, ilaminin 
•Growth factor induction (PDGF, TGF~1) 

23 



The AGE receptor appears to mediate signal transduction through the generation of 
oxygen free radicals. In cell culture reactive oxygen specific (ROS) are generated by AGE 
binding to endothelial cells (Giardino et al 1996). In vivo administration of AGE-modified BSA 
causes reactive oxygen species generation in all main target organs (Yan et al 1994 ). 
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These reactive oxygen species (ROS) activate the free radical-sensitive transcription 
factor NF-KB, a pleiotropic regulation of many "response-to-injury" genes. The signal 
transduction cascade can be blocked by a) antioxidants, b) antibodies to the AGE receptor 
components, and c) antibodies to AGEs (Yan et al 1994, Schmidt et al 1994). 
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NF-KB may be activated in asthma by a variety of inflammatory signals. resulting in the coordinated expression of multiple inflammatory genes. 
including cytokines. chemokines. enzymes and adhesion molecules. Additional transcription factors (TF2) interact with NF-KB to amplify the expression of 
particular genes. The cytokines interleukin-1 f3 (IL-113) and tumour necrosis factor-a (TN F-a) both activate and are regulated by NF-KB and may there act 
as an amplifying feedforward loop. COX-2. cyclooxygenase-2: ET-1. cPI.Az. cytosolic phospholipase A2: endothelin-1; GM-cSF, granulocyte-macrophage 
colony stimulating factor: ICAM-1. intencellular adhesion molecule·1: iNOS. inducible nitric oxide synthase; 5-LO. 5-lipoxygenase: MCP-3. monocyte chemo­
tactic protein-3; MIP-1a. macrophage·inflammatory protein-1 ; PAF. platelet activating factor; RANTES. regulated on activation normal T-cell expressed and 
secreted; VCAM-1 . vascular cell adhesion molecule-1. 
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IV. ROLE OF AGEs IN THE PATHOGENESIS OF RENAL DISEASE 
~ 

Three lines of evidence suggest an important role for AGEs in mediating diabetic renal 
disease: 

A) Immunohistochemical Detection of Advanced Glycosylation End Products Within the 
-Vascular Lesions and Glomeruli in Diabetic Nephropathy: 

Immunohistochemical staining using anti-AGE antibody has showed a high level of AGE 
accumulation in diabetic vascular intima, particularly along the inner elastic layer of arteries. 
Positive staining has also been observed within nodular and severe diffuse lesions of glomeruli 
as well as in hyaline deposits of arterioles (Nishino et al 1995). 

(A) Renal biopsy specimen obtained from a 69-year-old diabetic patient. Laminated staining of AGEs can be seen 
in the intima. particularly along the intemal e lastic lamina of the arcuate artery. Vascular endothelial cells and smooth muscle 
cells show almost no immunoreactivity (Indirect immunostalnlng; original magnification x 130.) (B) No Immunoreactivity is observed 
In a consecutive section by using control serum (normal rabbit serum). (Indirect immunostalning; original magnification ~130.) 

- · · Renal biopsy specimen obtained from a 60-year-
old diabetic patient. Hyaline deposits within an arteriole show 
homogenous intense anti-AGE staining. (Indirect lmmunostaln­
ing; original magnification x340.) 



t 
( 

' 
Immunohistochemical localization of advanced glyaJtion end products (AGEs) by immunoperaddase. A. No glomerular, t_ubular, or .. .• 

staining for AGEs in a specimen from a 62-ye~-old patients with memb;-mo~ nel?hropathy without dia~tes mellitus._f!· ~GEs unmunor~actiVity C11 
be seen in the mesangial area of a kidney specimen from a 62-year-old dtabetic patient. C. Intense AGEs unmunoreactivlty m_a n~ular ~eston (arrow~ 
AGEs immunoreactivity also can be observed in the tubulus and interstitium in a kidney specimen from a 85-year-old dtabettc pa~ent. _D. A~& 
immunoreactivity in the fibrous crescent of the Bowman's capsule of a sclerosed glomerulus in a kidney specimen from a 85-year-old diabetic P~~ 

Similarly, in streptozotocin-induced diabetes mellitus in the rat AGE accumulation has 
been detected in expanded mesangial area and glomerular basement membrane in the kidneys of 
diabetic rats (Shikata et al 1995). 

A recent study used an AGE-specific enzyme-linked immunosorbent assay (ELISA) to 
measure skin AGEs to determine whether elevated levels can be detected before the onset of 
overt renal disease. Subjects with type I diabetes were graded for the degree of nephropathy: a) 
normal, b) microalbuminuria, and c) macroalbuminuria. Immunoreactive AGEs increased as 
subjects with no proteinuria advanced to have microalbuminuria and macroalbuminuria. This 
study suggests that levels of collagen-linked AGEs reveal a correlation with preclinical stages of 
diabetic nephropathy and may prove useful as early markers of microangiopathy in type I 
diabetes. This study also found that compared to subjects with good glycemic control (HbAlc < 
8.5%), skin AGEs were progressively increased in subjects with fair(> 8.5%, ~ 10.0%) and poor 
(> 10.0%) glycemic control (Beisswenger et al 1.995). 
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Relationship between glycemic control and AGEs 

Glycemic control 
(mean HbAtc) 

Good (:5 8.5%) 
Fair(> 8.5, :5 10.0%) 
Poor (>10.0%) 
P value 

Data are means ± SE. 

Levels of AGEs by ELISA 
(skin U/mg collagen) 

3 years 1 year Current 

26.0± 2.7 
34.3 ± 2.2 
49.0± 6.5 

0.0006 

27.2±2.5 
34.1 ± 2.4 
50.5 ± 5.3 

0.0001 

30.6 ± 2.8 
33.5 ± 3.3 
44.2 ± 5.5 

0.055 
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B) Advanced Glycation end products induce Glomerular Sclerosis and Albuminuria in 
normal rats: 

Administration of AGE-modified rat albumin to normal rats, sufficient to elevate circulating 
AGE levels to the range of diabetic serum, results in a) more than 50% increase in glomerular 
volume compared to controls, b) significant periodic acid/Schiff reagent-positive deposits, c) 
basement membrane widening, d) mesangial extracellular matrix increase, and e) significant 
glomerulosclerosis when compared to untreated or albumin-treated controls. These damages are 
also associated with significant proteinuria and albuminuria. Importantly, cotreatment with a 
pharmacological AGE inhibitor, aminoguanidine, markedly limits the AGE-induced structural 
and functional defects (Vlassara et al 1994). 
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Rat kidney tissue (A) and serum (B) AGE levels and total 
urinary protein (C) and albumin excretion (D) after treatment with 
AGE-modified RSA {AGE), unmodified RSA (ALB), or AGE-RSA/ 
aminoguanidine (AGE/ Ag) for 5 months. CL, control. (A) Kidney 
AGE levels (mean ± SEM, n = 6-12 per group). SignificantP values: 
AGE vs. CL, <0.05; AGE vs. ALB, <0.025; AGE vs. AGE/Ag, 
<0.025. (B) Serum AGE levels (mean ± SEM). P values: AGE vs. 
CL, <0.05; AGE vs. ALB, <0.025. Total urinary protein (C) and 
albumin (D) concentrations are expressed as the mean± SEM. (C) 
P values: AGE vs. AGE/Ag, <0.025; AGE vs. ALB, <0.01; AGE 
vs. CL, <0.001; AGE/Ag vs. CL, <0.05. (D) P values: AGE vs. 
AGE/ Ag, <0.005; AGE vs. ALB, <0.01; AGE vs. CL, <0.001. 
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FIG. 2. Light microscopy of rat glomeruli from AGE·RSA·treated (A), untreated control (B), unmodified-RSA-treated control (C), and 
AGE·RSA/aminoguanidine·treated (D) rats. (PAS stain; x7S.) . . 
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Further studies attempted to determine how AGEs induced glomerulosclerosis and if the 
molecular events are similar to those found in diabetic kidneys. Administration of AGE­
modified mouse serum albumin to normal mice resulted in development of glomerular 
hypertrophy and upregulation of glomerular a1 (N) collagen, laminin B 1, and TGF-~ 1 mRNA, 
similar to what has been observed in experimental models of diabetes. Cotreatment with 
aminoguanidine attenuated the effects of AGE-albumin on glomerular hypertrophy and collagen, 
laminin, and TGF-~ 1 expression (Yang et al 1994). 
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Glomerular Gene Induction by AGEs 
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B) AMINOGUANIDINE AN INHIBITOR OF AGE FORMATION, PREVENTS OR 
AMELIORATES NEPHROPATHY IN EXPERIMENTAL DIABETES: 

Pharmacological agents which inhibit AGE formation have made it possible to investigate 
the role of AGEs in the pathogenesis of diabetic complications in animal models. In addition, 
there are currently studies ongoing in type I and type II diabetic patients to determine the effect 
of inhibition of AGE formation on diabetic nephropathy and retinopathy. 

Structure of Aminoguanidine, an Inhibitor of 
AGE Formation 

Aminoguanidine 

H2N -NH-C-NH2 
II 

NH+2 
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The hydrazine compound aminoguanidine was the first AGE inhibitor to be identified 
(Brownlee et al 1986). Aminoguanidine reacts mainly with non-protein bound dicarbonyl 
intermediates such us 3-deoxyglucasone to form 3-amino-5- and 3-amino-6-substituted triazines, 
and with methylglyoxal to form 3-amino-5-methyl-1, 2,4, - and 3-amino-6-methyl-1, 2,4-
triazines (Hirsch et al 1992, Lo et al 1994. 

Administration of arninoguanidine to the streptozotocin-induced diabetes in the rat has 
been shown by several studies to decrease the AGE accumulation, the albuminuria, and the 
mesangial expansion (Soulis-Liparota et al 1991, Edelstein and Brownlee 1992, Soulis-Liparota 
et al 1005, Soulis et al 1996). 

Serial Data for Albuminuria (y-axis, logarithmic Scale) 
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The beneficial effects of aminoguanidine on albuminuria and mesangial volume are seen 
even when amino guanidine treatment is initiated after the establishment of diabetic nephropathy 
(Soulis et al 1996). This study provides promise for ongoing trials studying the efficacy of 
aminoguanidine in slowing progression of established diabetic nephropathy. 
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The Effect of Early vs Late 
Aminoguanidine Treatment on Proteinuria 
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While some studies have shown that aminoguanidine also prevents glomerular basement 
membrane thickening (Ellis and Good 1991 ), others have not been able to reproduce this finding 
(Soulis et al 1996, Oturai et al 1996). · 
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In addition to inhibiting AGE formation, aminoguanidine has been shown to inhibit the 
inducible form of nitric oxide sythase (Corbett et al 1992). This effect of aminoguanidine could 
also account for its beneficial effects in diabetic nephropathy. The early phase of diabetic renal 
disease is characterized by glomerular hyperfiltration, a process which eventually has delitirious 
effects in the kidney. Studies streptozocin-induced diabetes in the rat revealed increased levels 
of N02-/N03- in diabetic rats and increased excretion of these amions in the urine. Furthermore, 
NO was shown to mediate the early hyperfiltration (Bank and Aynedjian 1993). Interestingly, 
infusion of glycated serum proteins (Amadori protein adducts) to normal rats produces 
hyperfiltration typical of early diabetes (Sabbatini et al 1992). 

In endothelial cells glycated albumin enhances nitric oxide and TNF-a synthase activity 
and gene expression (Amore et al1997). 
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Fig. I. NOS actil•ity of murine endothelial cells 
after incubation with Glycated afbumin and 
normal albumin. Results are expressed as the 
fold of basal values (mean ::+:: so of 5 
experiments). P values refer to the ANOVA 
test. Abbreviations are: Basal, EC cultured in 
unsupplemented medium; Alb, native human 
serum albumin; Glyc Alb, glycated human 
serum albumin; AMG, aminoguanidine 0.05 M; 
LPS, lipopolysaccharide 10 11-g/ml; L-NAME, N 
w nitro-L-arginine methyl ester 0.01 M; anti· 
TNF-a, antibodies to tumor necrosis factor 
alpha 10 pg/ml. 

mglml 35 35 35 17 17 17 

Fig. 7. TNF-u release after incubation with 
g~rcated albumin and lllltil'e albumin at different 
concentratiom. Results are expressed as the fold 
of basal values. Abbreviations are in the legend 
to Figure I. +AMG +AMG 
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Therefore in early diabetes enhanced NO production could, in part, mediate the 
hyperfiltration, and aminoguanidine, in addition to its effect to prevent formation of AGEs, could 
also have a favorable outcome in diabetic nephropathy by inhibiting iN OS and preventing the 
early hyperfiltration in diabetes. 

Interestingly, although Amadori products (early glycosylation products or glycated 
albumin) enhance NO synthesis, advanced glycosylation end products (AGEs) can react with and 
inactivate NO via a direct chemical reaction (Bucala et al 1991). As will be discussed in more 
detail later, the inactivation of NO by AGEs may play a role in the defective vasodilatory 
responses that occur in established diabetes mellitus. Furthermore, in the vascular smooth 
muscle cell and the renal mesangial cell, NO has an antiproliferative effect. The quenching of 
NO by subendothelial cells interferes with the antiproliferative acitivity of NO, resulting in 
myointimal and mesangial proliferation, which is linked to accelerated vasculopathy and 
glomerulopathy in long-standing diabetes mellitis (Hogan et al 1992). 

Model Relating the Inactivation of 
Nitric Oxide (NO) by Subendothelial Advanced 

Glycosylation Endproducts (AGEs) 

Vasodilation 
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VII) AGEs IN END STAGE RENAL DISEASE (ESRD) 

The kidney plays an important role in the clearance of circulating AGE from the 
bloodstream. A recent study has shown that AGE peptides are easily filtered and actively 
reabsorbed by the proximal convoluted tubule. The AGE peptides are then sequentially taken up 
by the early endosomes, late endosomes, and eventually in the lysosomes. The clearance of 
AGE peptides are impaired in subjects with renal failure, resulting in high plasma AGE levels in 
subjects with ESRD, even of non-diabetic origin. AGE levels are, however, further increased in 
diabetic subjects with ESRD (Makita et al 1991, Makita et al 1994, Papanastasiov et al 1994, 
Vlassara 1996). 

lncreosed AGE levels in diobetic potients with renol diseuse 
Plasma levels of low and high molecular weight (LMW and HMWO 
advanced glycosylation end products in four groups of patients: A= 
normal individuals; B =diabetic patients with normal renal function; c = 
nondiabetic patients with end-stage renal disease; and D =diabetic 
patients with end-stage renal disease. There was a marked increase in 
plasma levels of LMW AGEs in the last group; in addition, diabetics with 
normal rent~l function ht~d a 60 percent increase above normal controls 
(group B versus group A). (Adapted from Vlassara, H, Blood Purif 1 994; 
12:54.) 
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Fig. 2. Semm AGE-ApoB (A) and AGE-lipid (B) levels in normal patients (NL), diabetic patients with normal renal function (DM) , nondiabetic patients 
with end-stage renal disease (ESRD), and diabetics with renal failure (DM-ESRD). P < 0.001 (Student's t test) for each patient group with ESRD versus 
control group with and without diabetes (12]. 

Dialysis has been shown to partially lower AGE levels and ongoing studies are now 
evaluating the role of high-flux hemodialyzers on long-term regulation of AGE levels, as 
illustrated by the third patient presented in the Case Presentations. 

Diolysis portiolly lowers AGE levels Plasma levels of advanced 
glycosylation end products in nondiebetics (left) end diabetics (right) with 
end-stage renal disease studied before and after hemodialysis. AGE levels 
were markedly increased in the diabetic patients end only partially reduced 
by hemodialysis. (Data from Vlassara, H, Blood Purif 1 994; 12:54) 

37 



The increased AGE levels in patients with diabetic and nondiabetic ESRD play an 
important role in a number of processes including: 

a) Vascular dysfunction and enhanced atherosclerosis, as will be discussed in more 
detail in the next section; 

b) Dialysis-related amyloidosis, which is a serious complication in patients maintained 
on long-term dialysis. Carpal tunnel syndrome, cystic lesions of long bones, particularly in the 
femoral and humeral heads, destructive spondyloarthropathy, and diffuse arthritis and 
periarthritis of the scapulohumeral region are seen with increasing frequency as a consequence of 
amyloid deposit in these patients. 

The major component of amyloid has been demonstrated to be ~z-microglobulin (~2m) 
(Miyata and Maeda 1995). ~2m isolated from the amyloid deposits in patients with DRA has 
been demonstrated to be modified with AGEs (Miyazaki et al1995, Miyata 1996, Miyala et al 
1996, Dolhofer-Bliesenger et al 1996, Miyata et al1995, Niwa et al 1997). AGE-~zm may be 
involved in the pathogenesis of DRA by stimulating the chemotaxis of monocytes, the secretion 
of IL-l~ and TNF-a from macrophages, and the subsequent synthesis of collagenase in synovial 
cells. In addition AGE-~2m also interact with osteoclasts and osteoblasts and induces bone 
reabsorption. Altogether these processes may result in bone and joint destruction as clinically 
encountered in dialysis-related amyloidosis. 

Fig. 1. Serial sections of the synovial amyloid tissue from long-term hemodialysis patients 
with carpal tunnel syndrome were stained with Congo red (a), anti-~z-M antibody (b) and 
anti-AGE (AG-10) antibody (c). Note the similarity in distribution of AGE antigen and ~2-M 
amyloid. Arrowheads indicate AGE-antigen-positive cells around AGE-positive amyloid (c). 

x80. 
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Fig .•. 2. .Pathological involvement of AGE.·modified p 2-microglobu/in . 
m b?ne and joint destruction of dialysis-related amyloidosis (hypo­
thesiS) . AGE-modified 132M is present in long-lived amyloid fibrils 
110: 12, 15]. AGE-modified 132M might stimulate monocyte chemo­
taxis [16, 26, ~]. macroph~ge secretion of cytokines leading 
to bone r~sorpuon and matnx destruction (16, 26, 27, 34], and 
osteoclast-mduced bone resorption (35] . Thus, AGE-mediated tis­
sue destruction might be the combined result of excessive accumu­
lation of AGEs in long-lived amyloid deposits linked to a heightened 
cellular response to these deposits. · 

c) AGE accumulation in the peritoneum, dominantly in the vascular wall, especially in 
patients who have been on CAPD for more than 3 years (Nakayama et al1997). By using the 
peritoneal equilibration test (PET), the accumulations of AGEs are functionally associated with 
increased permeability of the peritoneal membrane for glucose, creatinine, ~2-microglobulin, and 
albumin. These functional abnormalities result in impaired ultrafiltration and increased protein 
loss in the dialysate fluid. 
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Fig. 8. The D/D11-g/ucose and DIP ratios in the respectil·e groups (4-lzour 
PET). Data are presented as mean ~ sE. Symbols are: !IJ!I) D/P-Cr; (~) 
D/D11-glucose: <•) DP-(32m ( X 10); (~) D/P-Aib ( X 10- ). The D/D.,­
glucose: Groups II vs. I. •p = 0.0078; Group III vs. I, .. p < 0.0001. The 
D/P-Cr: Groups I vs . III. - P = 0.007!1. The D/P-(3~m : Groups III and I. 
"P = 0.005o. The DIP-Alb: Groups lli and I §p = 0.()(l45 . 

VIII) ROLE OF AGEs IN VASCULAR DYSFUNCTION AND ATHEROSCLEROSIS 

There is increasing evidence that AGEs play an important-role in the vascular dysfunction in 
diabetic subjects and in the pathogenesis of atherosclerosis, and may thus play a major role in the 
increased cardiovascular disease in patients with diabetes, and diabetic and non-diabetic patients. 
withESRD. 

a) Vascular Dysfunction in diabetes: 

In a study in 29 patients with type 2 diabetes (NIDDM) and in 21 control subjects, forearm 
blood flow responses to increases doses of acetylcholine and glyceryl trinitrate were significantly 
impaired in diabetic subjects, which indicates the presence of impaired endothelium-dependent 
and independent vasodilatation (Me Veigh et al 1992). 
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A similar defect is also seen in the streptozotocin-induced diabetes (IDDM) in the rat 
(Bucala et all991). The same defects can be induced by administration of AGE-BSA to normal 
rabbits and rats. In these animals AGE administration was associated with a significant increase 
in vascular permeability. This alteration was absent in animals that received aminoguanidine in 
addition to AGE (Vlassara et al 1992, Corbett et a1 1992). Blood pressure studies of AGE­
treated rats and rabbits revealed markedly defective vasodilatory responses to acetylcholine and 
nitroglycerin compared to controls, and aminoguanidine treatment significantly prevented this 
defect. 
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F1a. 4. Vasodilatory impairment in healthy rats (A) and rabbits 
(B) following administration of AGE-modified albumin. After a 
period of daily injections with species-matched AGE-albumin (cir­
cles), AGE-albumin plus aminoguanidine (squares), or unmodified 
albumin (triangles), vasodilatory responses to increasing doses of 
ACh or NTG were compared to untreated controls (inverted trian­
gles). MAP, mean arterial pressure. Data represent the means :t 
SEM obtained from eight rats (A) and four rabbits (B). Significant P 
values: AGE-treated vs. untreated control animals, <0.()()1; AGE vs. 
AGE plus aminoguanidine, <0.001 for either A orB and for either 
drug, AChor NTG. 

These studies therefore indicate an important role for AGEs in the vascular functional 
abnormalities seen in diabetes. Further studies have shown that vascular endothelial cells have 
specific receptors for AGE (RAGE) (Schmidt et al1994) and incubation of cultured endothelial 
cells with AGEs or administration of AGEs to normal animals induce expression of vascular cell 
adhesion molecular-1 (VCAM-1) (Schmidt et al 1995, Vlassara et al 1995). The increase in 
VCAM-1 expression is a result of AGE binding to the AGE receptor (RAGE), and is mediated 
by increased cellular oxidant stress and activation of the transcription factor NF-lCB. 
Antibodies against RAGE or the anti-oxidant N-acetylcysteine each blocked the increase in 
endothelial cell VCAM-1 expression and their adhesivity (Schmidt et al1995). In vivo increased 
expression of VCAM -1 has been thought to enhance targeting of mononuclear phagocytes to 
the vascular cells. 

42 



A 
8 

'5 7 •• ., 
c~ 6 
§>~ 
~~ 
'7::! 4 :::~: ... 
tHl 

3 >.E 

~ 2 !:!;. 

D E 
1 2 3 

Human VCAM-1 ~~~ 

HumanGAPDH 

P-Actin 

VCAM-1 

B 

CI 2.0 

·~j 1.5 
~ ... 

ii 
!.?ll .5 
l 

c 

.:- 6 
0 • 

• ~ 
cU 

5 

Fj 
~ ... 
'7::! 
:::I!C'O 
<"' 
~i 

'0 

~ 

TNF-<x 

Figure 2. Effect of AGE Albumin and AGEs from dia­
betic plasma on EC expression of VCAM-1. (A) ECs 
(human umbilical vein) were incubated for 6 h with 
AGE albumin (100 ,ug/ml) , native, nonglycated albu­
min (100 ,ug/ml) , patient-derived AGEs (10 ,ug/ml) or 
patient AGE-depleted serum (this material represented 
the pass-through from the anti-AGE IgG Affigel 10 
resin, thus equivalent volumes to that of patient-derived 
AGEs were added to each culture well) at 37"C, and 
then cell-associated ELISA for VCAM-1 antigen was 
performed. Where indicated, cycloheximide ( CHX; 50 
,ug/ml for 1 h) was added prior to EC treatment with 
AGE albumin. The mean::!:SEM of at least triplicate 
determinations is shown. • * above AGE albumin and 
patient AGEs denotes P < 0.001 compared to native 

albumin using the student's unpaired t test, and •• above CHX-AGE albumin denotes P < 0.001 compared with treatment with AGE albumin 
alone using the student's unpaired t test. (B) ECs (human umbilical vein) were incubated for 6 hat 37"C with AGE albumin ( 100 ,ug/ml) or native 
albumin (100 ,ug /ml) and cellular ELISA for ICAM-1 antigen was performed. As indicated, TNF (10 nM) was incubated for 6 hat 37"C with 
ECs as a positive control. The mean::!:SEM of at least triplicate determinations is shown. • denotes P < 0.01 compared with native albumin alone 
using the student's unpaired t test. (C) Human aortic endothelial cells were incubated for 6 h with AGE albumin ( 100 ,ug/ml) or native, nonglycated 
albumin at 37"C, and then cell-associated ELISA for VCAM-1 antigen was performed. The mean::!:SEM of at least triplicate determinations is 
shown. • * above AGE albumin indicates P < 0.001 compared to native albumin using the student's unpaired t test. (D) Northern analysis of EC 
RNA for VCAM-1 transcripts: effect of AGE albumin. ECs were incubated with TNF-a (10 nM) (lane 1) or native nonglycated albumin (100 
,ug/ml) (lane 2) or AGE albumin ( 100 ,ug/ml) (lane 3) as indicated for 6 h at 37"C, RNA was harvested, subjected to electrophoresis, blotted 
onto nitrocellulose and hybridization with 32P-labeled eDNA probes for VCAM-1 or GAPDH performed as indicated. (E) Nuclear run-on transcription 
assay: ECs were treated with AGE albumin ( 100 ,ug/ml) or native albumin ( 100 ,ug /ml) for 6 h at 37"C, nuclei isolated and 32P-1abeled nuclear 
run on products hybridized to denatured human VCAM-1 gene DNA or .8-actin gene DNA slot-blotted on nylon filters, as described above. 

AGEs have also been implicated to play a role in the vascular hypertrophy. In the 
streptozotocin-induced diabetic rats, diabetes was associated with a) an increase in mesenteric 
vascular weight and an increase in media wall/lumen area, b) an increase in TGF-~ 1 gene 
expression, and c) an increase in a.1 (IV) collagen gene expression (Rumble et al 1997). AGEs 
and extracellular matrix were present in abundance in diabetic but not in control vessels. 
Treatment of diabetic rats with amino guanidine resulted in significant amelioration of the 
pathological changes, including a decrease in the vascular hypertrophy and over expression of 
TGF-~ 1 and a.1 (IV) collagen. 
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Figure 2. Mesenteric media wall!lumen area at 3 wk, expressed as 
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Figure 3. Quantitation of mesenteric TGF-IH (A) and a1 (IV) col­
lagen (B) mRNA. Data are shown as mean±SE of the ratio of optical 
density (OD) of specific mRNA to that of 18S rRNA, relative to con­
trol animals (designated an arbitrary value of 1) at 7 d, 3 wk. and 8 
mo. *P < 0.05, *P < 0.01, tp < 0.001 vs. C; lp < 0.05, ,p < 0.01, **P < 
0.001 vs. D. C, control; D, diabetic; A, aminoguanidine. 

Advanced glycosylation end products (AGEs) and the receptors for AGEs (RAGE) have 
been noted in a) atherosclerotic lesions of human aorta and coronary arteries (Kumet et al 1995), 
b) in arteriosclerotic lesions of euglycemic LDL receptor-deficient rabbits, but not in normal 
aortic tissues (Palinski et al 1995), and c) in arterial endothelium and endothelium of vasa 
vasorum of non-diabetic patients with ESRD (Greten et a1 1996). 
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fig . . 1. Immunohistochemistry (magnification , J40 ). 
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Fig. 2. Evaluation of staining intensity. Each dot represents a patient 
and the intensity of staining as blindly scored by three independent 
investigators. 
M icrovessels. 
A. Control microvessels (vasa vasorum). indica tin!! that microvessels 
were largely negative ( 8 of II ). ~ · 
B. Microvessels in uraemic patients. indicating that there were no 
immunonegative sections with regards to microvessels. Half of the 
sections were strongly positive ( + + ). the other half positive ( + ). 
large vessels. 
C. Macrovascular endothelium of normal vessels. which were largely 
negative ( 8 of II ). 
D. This however. indicates that all macrovascular endothelium 
evaluable in uraemic vessels was positive for RAGE. five of six even 
strongly positive. 
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Recent studies have provided important insights into the mechanisms by which AGEs 
may promote atherosclerosis. Phospholipids with primary amino groups, such as 
phosphatidylethanolarnine or phosphatidylcholine, react directly with glucose to form AGEs that 
then initiate lipid oxidation. Arninoguanidine inhibit both the lipid advanced glycosylation and 
oxidative modification (Bucala et al 1993). The AGE modification of LDL interferes 
significantly with its normal, receptor-mediated uptake, as shown by fractional clearance studies 
performed in transgenic mice expressing the human LDL receptor (Bucala et al 1994). LDL­
AGE also shows diminished recognition and uptake by human fibroblast LDL receptors (Bucala 
et al 1995). 
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Fro. 3. ftasma clearance of native and AGE-LDL in control 
. nontransgenic mice and transgenic mice expressing the human {,.DL 
· receptor. (A) Control (nontransgenic) mice iqjected with native LDL 

(o) or AGE-LDL (e). (B) Mice transgenic for the human LDL 
receptor iqjected with native LDL (o) or AGE-LDL (e). The ratio of 
AGE-LDL to native·LDL was calculated and averqed for all mice 
at each time point. The mean clearance ratio of AGE·LDL to native 
LDL in the transgenic mice was deterinined to be 1.3S :t 0.03 (P < 
0.001 compared with a ratio of 1 by one-way ANOV A). (C) Rela­
tionship between the extent o( ApoB-AGEs and the AGE-LDL/ 
native-LDL clearance ratio. ApoB-AGEs were measured by EUSA 
in four different preparations of LDL that were subjected to plasma 
clearance studies. o, Control (native) LDL (1.2 U of AGE per mg of 
ApoB); A, LDL modified with synthetic AGE-peptides in the pres­
ence of 800 mM aminoguanidine, yielding 2.0 U of AGE per mg of 
ApoB; "'· LDL modified with synthetic AGE-peptide in the presence 
of 400 mM aminoguanidine, yielding 8.0 U of AGE per mg of ApoB; 
•· LDL modified with AGE-peptide alone (80 U of AGE per mg of 
ApoB). · 
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FIG. 1. Inhibition of LDL receptor binding of 12111-LDL by con­
trol native LDL and AGE-LDL. Upper panel, control LDL <•), AGE­
LDL (80 units of AGE/mg of apoB) (e), and AGE-LDL prepared in the 
presence of aminoguanidine (20 units of AGE/mg of apoB) (0). Lower 
panel, control LDL <•l. AGE-LDL (9 units of ~GE/mg_o~ apoBl (e), and 
AGE-LDL prepared in the presence of ammoguarudme (5 uruts of 
AGE/mg of apoB) (0). Advanced glycosylation reactions were performed 
by incubating control LDL (2.5 mglml, - 2 units of AGE/mg of apoBl 
with glucose (200 mM for 14 (upper panel) or 4 days (lower panel)) in 
aminoguanidine (300 mM, where indicated) in 0.2 M NaP04 buffer 
containing 1 mM EDTA and 20 /J.M BHT. Human foreskin fibroblasts 
were incubated at 4 °C with 1251-labeled control LDL together With 
increasing amounts of unlabeled competitor LDL preparations, and the 
1251-LDL binding was measured as described under "Materials. and 
Methods." The data points were calculated from the means of duphcate 
wells and displayed a variation of <10%. 

Scheme Showing the Relative Positions of the Advanced 
Glycosylation Endproduct (AGE)-Reactive and Low-Density 

Lipoprotein (LDL )-Receptor Binding Domains in ApoB 

00-

LDL Particle 

AGE ELISA analysis of LDL specimens isolated from diabetic individuals have revealed 
increased levels of both apoprotein-and lipid-linked AGEs when compared to specimens 
obtained from normal, nor diabetic controls. In addition, circulating levels of oxidized LDL 
were elevated in diabetic patients and correlated significantly with lipid AGE levels (Bucala et al 
1993, Bucala 1997). 
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Importantly, treatment of diabetic patients with aminoguanidine results in significant 
decreases in LDL (Bucala et al 1994). Thus, aminoguanidine may be of dual benefit in 
inhibiting atherosclerosis, both by inhibiting the formation of AGEs and by inhibiting the 
modification of LDL apo B that result in its impaired clearance. 

Biochemical Analysis of Blood Specimens from Diabetic Patients Who Received 
Aminoguanidine (n=18) or placebo control (n=8) for 28 days 

Treatment 

Aminoguanidine Placebo 

Cholesterol 81.3 ± 7.2* 97.4 ± 5.4 

Triglyceride 81.0 ± 6.2* 89.8 ± 5.8 

VLDL 68.5 ± 28.7 96.4 ± 7.1 

LDL 71.9 ± 9.9* 100.7 ± 11.2 

HDL 104.7 ± 10.9 96.7 ± 16.4 

Hb-AGE 72.7 ± 7.5* 90.8 ±6.7 

HbA1c 89.7 ±4.2 100.0 ± 4.5 

Values are expressed as percent (mean± SEM) of baseline value for each patient group [(day 28 
value/day 0 value) X 100]. *, p < 0.05. 

From: Bucala et al, Proc. Natl. Acad. Sci. USA, 91: 9444, 1994 
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IX) TREATMENT STRATEGIES FOR THE PREVENTION OF DIABETIC 
CARDIOVASCULAR AND RENAL DISEASE, INCLUDING AGE-INDUCED 
COMPLICATIONS 

There is solid evidence to indicate that our overall treatment strategies to prevent or at 
least slow the progression of diabetic cardiovascular and renal disease need to include 1) 
glycemic control, 2) blood pressure control (the present data favors the use of angiotensin 
converting enzyme inhibitors and perhaps angiotensin II receptor antagonists), 3) normalization 
of abnormal cholesterol and triglyceride levels, and 4) normalization of abnormal AGE levels. 

Long -term complications of non-insulin-dependent 
Diabetes mellitus (NIDDM) 

Complication 

Retinopathy 
All cases 
Macular edema 
Proliferative retinopathy 
Blindness 

Nephropathy 
All cases 
Microalbuminuria 
Clinical grade Albuminuria 
End-stage renal disease 

Neuropathy 

Macrovascular 

From: Nathan Clin Invest Med 48:332-339, 1995. 

Cumulative life-time 
Prevalence 

(%) 

50-80 
20 
20 
3-8 

15-35 
20-35 
15-25 
6-20 

(50 

Relative risk 
2-7 fold 
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Major risk factors for diabetic nephropathy 

• Genetic susceptibility as evidenced by diabetic 
nephropathy in a sibling 

• Hypertension or high-normal blood pressure 

• Microalbuminuria 

• Worse glycemic control 

• Being African-American, Mexican-American, or Pima Indian 

Major innovations in diabetic management 

1. Capillary blood (finger stick) glucose testing using portable meter. 

2. Repetitive measurements of glycosylated hemoglobin. 

3. Normalization of hypertensive blood pressure 

4. Recognition of the predictive value of screening for microalbuminuria. 

5. Reduction of proteinuria with angiotensin converting enzyme (ACE) inhibitors. 

6. Aggressive ophthalmologic preventive medicine: panretinal photocoagulation, vitrectomy, 
lens replacement, retinal reattachment. 

7. Lower limb preservation by podiatric collaboration plus vascular surgical revascularization. · 

8. Recognition and treatment of autonomic neuropathic complications: gastroparesis, 
obstipation, diarrhea, and orthostatic hypotension. 

At least until recently the importance of glycemic control has been a somewhat 
controversial issue. However, recent data, especially the DCCT (Diabetes Control and 
Complications Trial Research Group) study in type I diabetics IDDM has convincingly shown 
the positive outcomes related to intensive glycemic control with insulin on nephropathy, 
retinopathy, and neuropathy. Glycemic control however, has been a more challenging issue in 
type II diabetic (NIDDM), especially because the presence of insulin resistance and the 
controversy about using very high doses of insulin, as these patients typically require. 
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Progression to Type II Diabetes 
~~Ge-n~et~i~--~~ ~~--u-i~------~ 
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+ Hepatic glucose output 
+ Insulin secretion 
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Kruazynska Y, Olefaky JM. J Invest l.fed. 1996;44:4 13-428. 
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Causes of Hyperglycemia in Type II Diabetes 
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Recent advances in the better understanding of the pathophysiology of type IT diabetes 
and the introduction of new classes of pharmacological agents now brings at least some level of 
optimism that it may well indeed be possible to achieve excellent glycemic control in type IT 
diabetics. Now, in addition to insulin, we also have several oral hypoglycemic agents, which if 
need be, can be used in combination to achieve the desired level of blood glucose control and of 
course hemoglobin A1C. These include 1) Sulfonylureas, which act by increasing insulin 
secretion, 2) Metformin, which mainly acts by decreasing hepatic glucose output and also to 
some extent increasing glucose utilization, 3) a-Glucosidase Inhibitor, which acts by 
decreasing glucose absorption secondary to decreasing digestion of carbohydrates, and 4) 
Thiazolidinediones, which act mainly by decreasing insulin resistance and increasing glucose 
uptake, and also to some extent by decreasing hepatic glucose output. 

51 



Effects of Sulfonylureas on Type II Diabetes 
1 Intestine: glucose absorption 2 Muscle ar.d adipose tissue: 

r\ ..-.. glucose uptake 

~! Insulin resistance 

4 Uver: hepatic 
glucose output 

Insulin <1. 

~ ~~~ 3 Pancreas: Insulin secretion 
Sulfonylureas 
t Insulin secretion 

DeFronzo RA Diabetes. 1988;37:667-687. 
Lebovitz HE. In: Joslin's Diabetes Mellitus. 1994;508-529. 

Metformin: Mechanism of Action 

Intestine: glucose absorption 2 Muscle and adipose tissue: 
glucose uptake 
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DeFronzo RA et al, J Clin Endocrlnol Metsb. 1991 ;73:1294-1301. 
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a-Glucosidase Inhibitor (Acarbose): 
Mechanism of Action 

1 Intestine: glucose absorption 
Acarbose l glucose absorption secondary 
to ' digestion of carbohydrate 

2. Muscle and adipose 
tissue: glucose uptake 

'- Insulin resistance .... ..,_ 

--....__..Blood glucose !!:l._ ·-.·:~ 

4 Uver: hepatic 
glucose output 

-., 
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1

~~n 
Amatruda JM. In: Diabetes Mellitus. 1996. 

Thiazolidinediones: Mechanism of Action 
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In spite of excellent glycemic control, however, if there is still evidence of increased 
levels of advanced glycosylation end products, including AGE-modified proteins, such as AGE­
Hgb, and AGE-modified lipids, such as AGE-LDL, then it will be necessary to use 
Amino guanidine to prevent further crosslinking of proteins and lipids. There is convincing data 
in experimental animals and some preliminary data in humans to indicate that aminoguanidine is 
very effective in preventing the formation of AGEs. Ongoing studies in type I and type IT 
diabetes are now examining the long term effects of this drug in preventing or ameliorating 
target organ damage in diabetics. 

Aminoguanidine Treatment Lowers the 
Levels of Hb-AGE in Diabetic Patients 

20 20 
.0 p<0.001 

= 15 rl 15 ~ u 
e NS < ..._ 

rl .0 
~ = "" 10 10 < ~ Q 

~ 

5 5 

0 0 
Hb-AGE HbAtc 
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Biochemical Analysis of Blood Specimens from Diabetic Patients Who Received 
Aminoguanidine (n=18) or placebo control (n=8) for 28 days 

Treatment 

Aminoguanidine Placebo 

Cholesterol 81.3 ± 7.2* 97.4 ± 5.4 

Triglyceride 81.0 ± 6.2* 89.8 ± 5.8 

VLDL 68.5 ± 28.7 96.4 ± 7.1 

LDL 71.9 ± 9.9* 100.7 ± 11.2 

HDL 104.7 ± 10.9 96.7 ± 16.4 

Hb-AGE 72.7 ± 7.5* 90.8 ± 6.7 

HbA1c 89.7 ±4.2 100.0 ± 4.5 

Values are expressed as percent (mean± SEM) of baseline value for each patient group [(day 28 
value/day 0 value) X 100]. *, p < 0.05. 

From: Bucala et al, Proc. Natl. Acad. Sci. USA, 91: 9444, 1994 

Biochemical Parameters 
After 28 Days of Aminoguanidine 

Treatment in Diabetics 
(%of Baseline Value) 
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DM DM DM DM 

+ + + + 
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Aminoguanidien can prevent the formation crosslinks, however cannot undo the 
crosslinks once they are formed. Recently, a new agent has been found, a prototypic AGE 
crosslinks "breaker", N-phenacythiazolium bromide (PTB), which reacts with and cleaves 
covalent, AGE-derived protein crosslinks (Vasan et al 1996). 

af.H~lysJ _;ttflysJ !t{LysJ H t:f1lys] 
OH ~ ·. o O ~ ~ """"' .. O]re§O 

'•OH f'o 
OH 6H OH OH X-{ProteinJ 

II Ill IV 

-
! 

.. 
( 
H 0 

IL>"I~ 

RG. 1 Scheme for the formation of glucose-derived protein crosslinks from Amadon products and 
cleavage by a thiazolium-based AGE breaker. a, Successive dehydration by jl-elrmrna!IOn of 
protein-bound (lys~ne) Amadori products (I) toAP-dione (II), AP-ene-drone !liD. and reactro11 wrth a 
protein nucleophile (X-[Protein]) to form a stable protein-protein crosslrnk (IV). Molecule I exrsts 
predominantly in a pyranose form, and II, IV and the cis form of 111 may also prefer pyranose- or 
furanose-like cyclic hemiacetal structures17• b, Proposed reaction scheme for the cleavage of an 
AP-ene-dlone-denved, protein-protein crosslink by N-phenacylthiazolrum bromrde IPTB1. 
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Chemical steps that may result in protein-protein crosslinking following 
glycation. One pathway (b) is postulated to follow directly from reaction 
of the diketone intermediate with amino groups of other proteinsL5

• For 
simplicity, e-amino groups of lysine side chains are shown in the first 
and second steps, although a-amino groups might participate in the 
first step and a variety of protein side chains could be involved in the 

C=O bromide 

I 
CH2 

I 
CH 

/' 
HOCH2 N' 

CH2 

' E"l 
AilE fonnatlon 

final addition reaction. Alternative mechanisms of r ~o sslink formation 
(a), involving condensation with arginine side cimr n~.· ;;nn oxidation (gly­
coxidation) to form pentosidine, have been proposed"· 7

• In both cases, 
much of the chemistry underlying the formation of crosslinks remains 
hypothetical. Points at which the formation of AGEs (advanced-glycation 
end-products) can be disrupted are indicated in grey. 
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AG. 3 PTB cleaves AGE crosslinks that form in vivo. a, PTB treatment in 
vitro decreases AGE crosslinking in diabetic, rat tail-tendon collagen. Data 
are representative of collagen from two diabetic animals (Db1, Db2) and 
one non-diabetic control (non-Db). Lane M, relative molecular mass 
markers. b, PTB treatment decreases JgG crosslinked to the red-blood-cell 
(RBC) surface. 

a Db 1 Db 2 Non-Db 
M ,....---,,..------,,.....-----, . 

METHODS. a, Diabetes was induced in male Lewis rats (150-175 g) by i.p. 
injection of steptozotocin (65 mg~1 ) and confirmed after one week by 
plasma glucose measurement (~250 mgdl- 1

). Thirty-two weeks later, the 
rats were killed and collagen isolated from their tail-tendon fibres using a 
standard protocoJ25

• The insoluble collagen then was treated with cyanogen 
bromide26 and the hydroxyproline content measured27

• Aliquots containing 
1 J..Lg equivalent of hydroxyproline were run on SDS-PAGE under reducing 
conditions and stained with Coomassie blue. b, JgC crosslinked to the RBC 
surface was determined in an anti-lgG EUSA adapted for use with cellulose­
ester-membrane-sealed 96-well microtitre plates (Multiscreen-HA, 
Millipore). Heparinized blood was washed three times with PBS; the 
packed RBC were diluted 1:250-1:500 in PBS. Membrane-containing 
wells were first blocked with 0.3 ml Superblock (Pierce), then washed with 
0.3 ml PBS/0.05% Tween, followed by 0.1 ml PBS. RBCs were gently 
vortexed and 50-J..LI aliquots pipetted into wells. Cells were then washed 
and 50 J..LI of a polyclonal rabbit anti-rat lgG (Sigma, diluted 1:25,000) was 
added. After incubation at room temperature for 2 h, the cells were washed 
3 times with PBS, once with Tris-buffered saline, and 0.1 ml p-nitrophenyl 
phosphate substrate was added (1 mgmJ-1 in 0.1 M diethanolamine buffer, 
pH 9.5). By this technique, the A410 of non-diabetic red cells was 
0.10 ± 0 .02 and the A410 of diabetic red cells was 0 .57 ± 0.06 (n = 4; 
P < 0.0002) . The ability of PTB to reduce RBC-surface lgG in vitro 
was evaluated as follows. RBCs from diabetic rats were washed and 
0.1-ml aliquots incubated overnight at 37 oc with 1 ml PTB in PBS. 
Control incubations contained RBCs and PBS alone. At the end of the 
reaction, RBCs were assayed for RBC-IgG; per cent decrease was calculated 
as 100 x ((A410 , PBS control)- (A410 , PTB}}/(A410 , PBS control). Diabetic 
rats were tre(!ted for up to 4 weeks with PTB (10 mg kg-1 q.d. by oral gavage) 
or saline as control (n = 4-6 rats per group). At intervals, blood was 
collected from tail veins into heparinized tubes, washed 3 times with 
10vol PBS, and assayed for surface lgG. Values are means ±s.d. of the 
per cent decrease with respect to day 0 . P values were calculated by the 
Student's t-test, independent variable. 
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The ability of PTB to break AGE crosslinks in vivo now offers a potential therapeutic approach 
for the removal of established AGE crosslinks as well as the prevention of the formation of 
crosslinks, which is accomplished by initially achieving intensive glycemic control and then 
using aminoguanidine. 
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SUMMARY 

I hope that I have been able to provide convincing evidence that AGEs play an important role in 
diabetic cardiovascular and renal disease. Although I have not discussed it in these Grand . 
Rounds, AGEs are also implicated in the pathology of the ageing process and Alzheimer's 
disease. Hopefully, if progress continues in understanding the mechanisms in AGE crosslinks 
formation and hence removal of established crosslinks, then perhaps one day the facts presented 
in the cartoon below occur in a more favorable setting! 
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