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ABSTRACT 

 

Spermatogenesis is a complex, multistep process that maintains male fertility and is 

sustained by rare germline stem cells. Spermatogenic progression begins with 

spermatogonia, populations of which express distinct markers. The identity of the 

spermatogonial stem cell population in the undisturbed testis is controversial due to 

a lack of reliable and specific markers and a full understanding of spermatogonial 

stem cell biology. Here we identified the transcription factor Pax7 as a specific 

marker of a rare subpopulation of Asingle spermatogonia in mice. Pax7+ cells were 

present in the testis at birth. Compared with the adult testis, Pax7+ cells constituted 

a much higher percentage of neonatal germ cells. Lineage tracing in healthy adult 

mice revealed that Pax7+ spermatogonia self-maintained and produced expanding 



 viii 

clones that gave rise to mature spermatozoa. Interestingly, in mice subjected to 

chemotherapy and radiotherapy, treatments which damage the vast majority of 

germ cells and can result in sterility, Pax7+ spermatogonia selectively survived, and 

their subsequent expansion contributed to the recovery of spermatogenesis. Finally, 

Pax7+ spermatogonia were present in the testes of a diverse set of mammals. Our 

data indicate that the Pax7+ subset of Asingle spermatogonia functions as robust testis 

stem cells that maintain fertility in normal spermatogenesis in healthy mice and 

mediate recovery after severe germline injury, such as occurs after cancer therapy. 
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Introduction 

 The ultimate drivers of tissue regeneration—adult stem cells—lie are the crux of 

both normal tissue maintenance and disease. As cells are lost during normal growth and 

development, stem cells must both differentiate to replace the lost cell types, and divide 

to self-maintain, creating a precarious balance. If stem cells favor differentiation over 

self-maintenance, they will eventually become exhausted and disease will ensue due to 

loss of normal tissue. On the other hand, tipping the balance of stem cells towards self-

maintenance could be harmful as well, in that insufficient numbers of differentiated cells 

would not allow for normal tissue function. In this vein, some cancers are thought to 

result from an exaggeration of stem cell self-renewal, resulting in a pileup of non-

committed cells which can subsequently accumulate genetic mutations. Finally, after 

injury to an organ system, it is the adult stem cells which must expand to restore the 

tissue, and the extent to which resident stem cells of distinct tissues can divide and 

differentiate helps to determine how much regeneration can occur. Thus, adult stem cells 

play a significant role in tissue homeostasis as well as recovery from injury or disease.  

Although the existence of adult stem cells is inferred in most tissues, the precise 

identity of these cells in many organs is not yet known. As such, though a testicular stem 

cell has long been implicated in the maintenance of male fertility, the identity of this cell 

has remained somewhat controversial. This thesis will describe to the identification of  

the testis stem cell by the protein marker Pax7, and then to describe the contribution of 

these cells to normal spermatogenesis as well as during injury to the germline.  

 
1 



	 2

CHAPTER 1: MALE REPRODUCTION 

 

Organization of the testis 

 Spermatogenesis is necessary for the passage of genetic information from one 

generation to the next, and thus is essential to the evolution and survival of a species. The 

overall importance and complexity of this process is reflected in the organization of the 

testis, which can be divided into two parts: germ cells, and the somatic compartment 

consisting of Sertoli cells, and the interstitium, which consists of the Leydig cells, 

vasculature, and lymphatics (Figure 1.1, (1)). All of these parts must function together to 

maintain spermatogenesis, the process by which mature spermatozoa is formed. 

The blood supply of the testis passes through the interstitium via many small 

coursing blood vessels, which do not penetrate the seminiferous tubules, but rather run 

alongside them amid interstitial Leydig cells. These vessels can be readily seen in cross 

sections through the testis. The interstitium also contains lymphatics, run alongside these 

testicular arteries and veins and eventually drain to the inguinal lymph nodes (1). Thus, 

the germline receives its oxygen supply via diffusion of molecules across the basement 

membrane. In fact, tight junctions between the cells inside the seminiferous tubules create 

the blood-testis-barrier (BTB), which prevents the passage of large molecules into the 

lumen of the tubules. Early in development, the immune system must learn how to 

recognize “self” from “not-self” to avoid an autoimmune reaction. However, since sperm 

are not made until after puberty, this immune tolerance, or learning to recognize “self”, 

has already occurred, leaving the possibility that circulating antibodies might react to 

normal spermatozoa. Thus, the BTB is essential to preserving the germline. 



	 3

Also located in the interstitium are the Leydig cells, which are essential for male 

reproduction as they the source of local testosterone. Testosterone is both necessary for 

spermatogenesis as well as for the development of secondary sex characteristics. Leydig 

cells are located in the periphery of the seminiferous tubules, and can be identified in 

H&E stains by their eosinophilic cytoplasm (1). However, many of the fixation processes 

used to prepare tissue samples give rise to an artifact known as Leydig cell retraction, in 

which the cells seem to pull away from the tubules, whereas in vivo they are in direct 

contact. During testicular development, there are two distinct sets of Leydig cells, termed 

fetal and adult. Fetal Leydig cells are proliferative during embryonic development, but do 

not make testosterone and are eventually lost during adulthood. At the onset of puberty, 

adult Leydig cells under the influence of luteinizing hormone from the pituitary gland 

begin to make testosterone and other androgens, which serve as a major source of 

testosterone for the body (1).  

The functional unit of the mammalian testis is the seminiferous tubule, which 

serves as the “home base” for the male germline, with the majority of cells in the testis 

being located here. These tubules are tightly wound; although one cross section through 

the testis may contain what appears to be hundreds of seminiferous tubules, estimates of 

the total number of tubules are 8-10 (2).  All the tubules connect at the rete testis, an 

anastomosis between the epididymis and the testis, which serves as an emptying duct 

before mature sperm enter into the epididymis. Aiding mature sperm in their path to the 

epididymis are extratubular myoid cells, muscle-like cells which squeeze the tubules to 

force sperm along to the rete testis and also serve as trophic support, contributing to the 

overall levels of intratubular GDNF and other factors (Figure 1.1). 
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Though the seminiferous tubules are composed of mostly germline cells, the 

Sertoli cells are of upmost importance in maintaining male fertility. These cells are often 

called the “nurse cells” as they provide essential nutrients and growth factors for the 

germline, and dysfunction of these cells can completely ablate the germline. Sertoli cells 

also are interconnected via tight junctions to form the blood testis barrier discussed 

previously, which separates the germline into a basal (progenitor testis cells) and 

adluminal (more differentiated cells) compartment. Sertoli cells can then control the 

microenvironment of the most immature germline cells, located on the basement 

membrane. They also serve important roles in elimination of cellular debris 

(phagocytosis). 

 

Prepubertal germline 

Three distinct cell lineages are formed very early in embryonic development: the 

epiblast, from which the fetus will be derived, the trophoectoderm and the 

extraembryonic endoderm. Even at this early stage, formation of the germline is set in 

motion. A very small number, approximately 40-50, of the precursors to primordial germ 

cells, or PGCs, can first identified by their location in the early embryo at E6.0 (3, 4), 

even prior to gastrulation, or the formation of the gut tube. At E7.5, PGCs can be reliably 

identified by their expression of alkaline phosphatase and other factors, such as Fragilis 

and Stella (3, 5). At this time, PGCs, which express the cell surface tyrosine kinase Kit, 

begin their long and complicated migration under the influence of Kit ligand through first 

the primitive streak and then the hindgut to reach their final destination in the genital 

ridges at E11.0 (3, 4, 6). Once the cell has become resident in the genital ridges, 
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expression of the pan-germ cell marker GCNA begins (3). At this point, the PGCs begin 

to acquire sex-specific differences (7), and undergo extensive epigenetic reprogramming 

to lock in their fate as the precursors to sperm or oocytes (8). At e13.5 male PGCs begin 

to proliferate. At this time, they cease expression of alkaline phosphatase, and are termed 

gonocytes, or prospermatogonia (3, 9, 10). 

As noted above, at e13.5 prospermatogonia divide to expand the germline. These 

cells that go from PGCs directly to mitosis are termed “M prospermatogonia” for 

multiplying prospermatogonia (10, 11). After mitosis, prospermatogonia enter two 

transitional stages, termed “T1 prospermatagonia” and “T2 prospermatagonia,” to demark 

how close a cell is to transitioning into mature spermatogonia (10, 11). M spermatogonia 

are mitotic and are located in the center of cords until about e16.5 (12), when they 

become T1 spermatogonia. They then enter G0 arrest, until soon after birth, upon which 

mitosis is resumed. The  germ cells migrate to the basement membrane and are termed T2 

prospermatagonia (3, 9, 12, 13). However, this summary belies the complexity of this 

process as these phases can overlap and exist concurrently, and histologic identification 

of the subtypes is difficult at best (9, 11). Many questions still remain as to the 

mechanisms which determine the on and off of how these cells divide. During neonatal 

development, germ cells migrate to the basement membrane so that by PD6, all germ 

cells are basal. At this point, prospermatogonia have completed the transition into 

spermatogonia.  

Important differences have been noted in expression of prospermatogonial 

markers during neonatal development. For instance, Foxo1 is localized in the cytoplasm 

at birth, but relocates to being predominately nuclear during adulthood (14). Furthermore, 
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Oct4 is located only in a subset of prospermatogonia (15). Collectively, these differences 

point to distinct subsets of prospermatogonia, although these cells have historically been 

treated as a homogenous population. Additionally, since the very first wave of 

spermatogenesis is a separate program than subsequent rounds of spermatogenesis, it has 

been postulated that a certain subset of prospermatogonia are responsible for the first 

wave and do not self-renew. A second set of cells then consists of transit-amplifying 

cells, while a third set are the cells which are responsible for establishing the stem cell 

pool in the testis.  

 

Spermatogenesis 

Spermatogenesis is a dynamic process that serves to maintain male fertility 

throughout the life of the organism, producing mature spermatozoa from immature 

precursor cells, through a process of mitosis and meiosis. Classically, Asingle 

spermatogonia have been identified as the earliest morphological precursor cells through 

careful histologic analyses (16, 17). Type A spermatogonia refers to small, oval cells 

located on the basement membrane with little to no visible heterochromatin. Asingle 

spermatogonia divide, and through incomplete dissolution of  cytokinetic bridges, form a 

pair of cells (Apaired) which are interconnected (Figure 1.2). Apaired cells divide to form 

chains of 4, 8 16, and sometimes 32 interconnected (Aaligned) cells. These bridges between 

cells serve as a primitive developmental history of an individual cell. Together, Asingle 

through Aaligned are termed undifferentiated spermatogonia.  

There are few markers that are expressed in distinct subsets of undifferentiated 

spermatogonia. Id4, Erbb3, and Pax7 have been reported to be expressed in a subset of 
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Asingle spermatogonia (18-20). To date, there are no proteins expressed specifically in 

Apaired or only Aaligned. Markers that span multiple types of undifferentiated spermatogonia 

include Ret and Gfr1, which form a heterodimer on the cell surface that acts as the 

receptor for the growth factor GDNF, and are expressed predominately in Asingle and 

Apaired cells, with a few Aaligned.4 retaining expression. GDNF is essential for the survival 

of spermatogonia, and mutations in Ret cause infertility in the mouse (21). The forkhead 

transcription factor Foxo1 and the zinc finger transcription factor Plzf both mark all 

undifferentiated spermatogonia, and are required for normal SSC homeostasis (14, 22). 

Upon expression of kit, the cells are committed to differentiation, and are therefore called 

differentiating spermatogonia (A1-4). These cells mature and without dividing, become 

Intermediate spermatogonia, with a moderate amount of visible heterochromatin, and 

then become Type B spermatogonia, which are easily identified by their condensed 

chromatin.  

Type B spermatogonia divide to form primary spermatocytes, larger, round cells 

committed to meiosis. Primary spermatocyte staging refers to the five stages of prophase 

in which homologous recombination occurs. Preleptotene cells are the two daughter cells 

of Type B spermatogonia, and are the last stage in which cells reside on the basement 

membrane. Leptotene cells have condensed chromatin, but are unpaired. Pairing of 

chromosomes first occurs in the zygotene stage, and pairing is complete in the pachytene 

phase. Chromatin chiasmata appear in the diplotene phase, and the nuclear membrane 

breaks down in diakinesis. Primary spermatocytes progress through meiosis I, including 

metaphase, anaphase, and telophase to produce secondary spermatocytes, which proceed 

through meiosis II to form haploid spermatids. Spermatids undergo a huge structural 
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remodeling process to change from small round cells to mature spermatozoa, which are 

released in the tubular lumen. 

 

Spermatogonial stem cells 

Clearly	 the	 continued	 production	 of	 mature	 spermatozoa	 requires	 a	 testis	

stem	 cell	 to	 maintain	 cell	 numbers.	 However,	 the	 identity	 of	 this	 cell	 has	 been	

somewhat	 controversial.	 Using	 intracellular	 bridges	 between	 undifferentiated	

spermatogonia	 as	 a	 primitive	 lineage	 trace,	 some	had	 postulated	 early	 on	 that	 all	

Asingle	 spermatogonia	 could	 function	 as	 stem	 cells.	 The	 advent	 of	 spermatogonial	

stem	 cell	 transplantation	 allowed	 for	 more	 precise	 testing	 of	 the	 idea	 that	

spermatogonia	were	able	to	reconstitute	spermatogenesis	in	an	infertile	recipient.		

Transplantation	is	achieved	by	creating	a	single	cell	suspension	of	testicular	

cells	 and	 injecting	 them	 directly	 into	 the	 rete	 testis	 of	 a	 mouse	 which	 has	 been	

treated	to	eliminate	endogenous	spermatogenesis.	Using	this	method,	Nagano	(23)	

et	al	demonstrated	that	only	a	fraction	of	Asingle	spermatogonia	can	function	as	stem	

cells	 via	 transplantation	 studies.	 SSC	 transplantation	 quickly	 became	 a	 method	

commonly	 employed	 to	 determine	whether	or	 not	 a	 cell	 could	 function	 as	 a	 stem	

cell,	but	this	methodology	still	has	not	pinpointed	the	exact	identity	of	stem	cells	in	

the	testis.	While	new	sorting	strategies	to	enrich	the	portion	of	stem	cells	 injected	

have	 demonstrated	 which	 cell	 fractions	 are	 likely	 to	 contain	 stem	 cells,	 the	

interpretation	 of	 such	 analyses	 is	 not	 usually	 straightforward.	 For	 example,	

although	 sorting	 spermatogonia	 by	Kit	 cell	 surface	 expression	 has	 confirmed	 that	

Kit+	 spermatogonia	are	not	 stem	cells,	 and	are	committed	 to	differentiation,	a	 few	
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Kit+	spermatogonia	can	in	fact	form	function	colonies	in	transplantation	(24),	calling	

into	question	whether	transplantation	tests	stemness	itself,	or	merely	the	potential	

for	stemness.	Furthermore,	the	markers	used	to	sort	cells	for	transplantation	do	not	

always	carry	over	to	the	in	vivo	setting.	Using	Thy1+	sorted	cells,	one	can	achieve	a	

30%	 enrichment	 of	 SSCs	 (18).	 However,	 locating	 Thy1+	 cells	 in	 sections	 and	

therefore	 identifying	which	cells	can	 function	as	stem	cells	via	 transplantation	has	

proven	 difficult.	 	 Moreover,	 it	 is	 unclear	 whether	 the	 harsh	 treatments	 used	 to	

create	 single	 cell	 suspension	 can	 affect	 the	 behavior	 of	 the	 cells	 themselves.	Does	

breaking	 up	 an	 intercellular	 bridge	 between	 two	 Apaired	 cells	 create	 two	 new	

functional	Asingles?	Furthermore,	elimination	of	endogenous	spermatogenesis	 in	the	

recipient	mouse	 could	 increase	 the	 number	 of	 available	 “niches”.	 The	 treatments	

used	to	sterilize	recipient	mice	for	transplantation	are	highly	toxic	to	the	germline,	

but	 also	 injure	 somatic	 cells	 (25).	 Therefore,	 the	 environment	 in	which	 potential	

SSCs	 begin	 to	 engraft	 may	 not	 accurately	 reflect	 the	 environment	 in	 which	 they	

function	as	stem	cells	in	the	undisturbed	testis.		

Another	 assay	 to	 study	 SSCs	 is	 in	 vitro	 culture,	 as	 SSCs	 can	 be	 passaged	

continuously	in	the	presence	of	GDNF	and	other	growth	factors.	SSCs	are	grown	in	a	

mix	 of	 stem	 and	 non‐stem	 cells	 on	 top	 of	 a	 feeder	 layer	 of	 mouse	 embryonic	

fibroblasts	(MEFs).	SSCs	in	culture	have	many	of	the	same	characteristics	as	they	do	

in	 vivo.	 Cells	 uniformly	 express	 Gfrα1,	 Foxo1,	 and	 Plzf,	 which	 are	 exclusively	

expressed	 in	 undifferentiated	 spermatogonia,	 although	 some	 Kit	 expression	 has	

been	 detected	 via	western	 blot	 (unpublished	 data,	 Castrillon	 lab).	 SSCs	 in	 culture	

form	clusters	which	have	intercellular	bridges	akin	to	the	chains	seen	 in	vitro.	 It	 is	
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also	known	via	transplantation	that	only	a	fraction	of	these	cultured	cells	function	as	

stem	cells.	Therefore,	SSC	cultures	are	thought	to	be	a	mix	of	stem,	undifferentiated,	

and	differentiating	cells,	 although	 the	media	 is	not	 sufficient	 for	 spermatogonia	 to	

complete	 differentiation	 and	 these	 cells	 eventually	 die	 (26,	 27).	 It	 is	 known	 that	

even	 in	 these	 cultures,	 RA	 can	 induce	differentiation.	 Cells	 can	 also	 be	 genetically	

manipulated	through	 lentivrial	and	shRNA	knockdown	as	well	as	CRISPR	(28,	29),	

and	SSC	lines	can	be	derived	from	mice	with	distinct	genetic	backgrounds.	Thus,	SSC	

cultures	can	serve	a	good	means	to	answer	basic	questions	of	stem	cell	maintenance	

and	differentiation	that	may	not	be	possible	in	vivo.		

Although	transplantation	and	SSC	cultures	are	useful	experimental	tools,	the	

precise	identification	of	the	SSC	(i.e.	in	vivo)	has	been	limited	by	the	lack	of	reliable	

and	specific	markers.	Many	genes	have	been	discovered	to	be	essential	 for	normal	

spermatogenesis,	and	some	have	even	been	 implicated	 in	 the	maintenance	and/or	

differentiation	of	 the	SSC,	but	are	expressed	 in	all	undifferentiated	 spermatogonia	

and	thus	are	not	restricted	to	the	stem	cell	itself.	At	the	start	of	this	project,	the	most	

restricted	marker	known	was	Id4,	expressed	in	Asingle	spermatogonia.	Subsequently,	

Id4	 was	 reported	 to	 be	 expressed	 in	 only	 a	 subset	 of	 Asingle	 spermatogonia,	

demonstrating	 heterogeneity	 in	 this	 cell	 population.	 Knockout	 of	 Id4	 moderately	

effected	 spermatogenesis,	 with	 more	 males	 becoming	 infertile	 over	 time	 than	

control	 animals	 (18).	 Using	 an	 Id4‐GFP	mouse,	 Id4+	 vs.	 Id4‐	 cell	 were	 sorted	 and	

transplanted	 into	 recipient	 mice,	 and	 stem	 cell	 activity	 was	 almost	 exclusively	

contained	in	the	Id4+	fraction	(26).	While	this	remains	a	major	advancement	in	the	
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field,	many	questions	still	exist	as	to	the	behavior	of	 these	cells.	How	do	Id4+	SSCs	

contribute	to	normal	spermatogenesis?	What	is	the	role	of	these	cells	during	injury?	

	

Infertility	during	cancer	treatment	

Cancer	 therapy	works	 by	 targeting	 highly	 proliferative	 cells,	 which	 clearly	

include	cancer	cells,	but	also	organs	with	a	high	rate	of	turnover:	skin,	hair,	gut,	and	

the	male	germline.	Male	 infertility	after	cancer	therapy	 is	a	detrimental	side	effect	

that	can	affect	a	patient’s	life	long	after	their	cancer	has	been	treated.	For	males,	the	

current	clinical	practice	is	to	use	semen	cryopreservation	for	assisted	reproductive	

techniques,	but	this	 is	not	an	option	for	young	boys	with	cancer	due	to	the	 lack	of	

motile	 spermatozoa	 before	 the	 onset	 of	 puberty	 (30).	 After	 cessation	 of	 cancer	

treatment,	fertility	sometimes	recovers—but	not	always—and	infertility	represents	

a	potentially	lifelong	side	effect	(30,	31).	Although	most	germ	cells	are	ablated	after	

cancer	therapy,	a	 few	stem	cells	must	survive	 in	order	to	restore	 fertility.	 It	 is	not	

known	which	cells	survive	through	these	toxic	insults,	nor	the	mechanisms	by	which	

they	expand	to	repopulate	the	testis.		

The	 recovery	 of	 spermatogenesis	 after	 cancer	 therapy	has	 been	 previously	

studied	in	mouse	models	using	busulfan,	cyclophosphamide	and	radiation	(32‐34).	

Thus,	good	tools	and	model	systems	are	available	to	answer	these	clinical	questions.		

Busulfan,	 a.k.a.	 myleran,	 is	 an	 alkylating	 agent	 which	 is	 exquisitely	 toxic	 to	 the	

mouse	germline	(34).	In	fact,	a	single	high	dose	of	busulfan	is	sufficient	to	sterilize	

mice	to	prepare	them	as	recipients	for	transplantation	(35).	Zohni	et.	al	2011	have	

demonstrated	 the	 extent	 of	 damage	 by	 three	 different	 single	 doses	 of	 busulfan	 of	
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15mg/kg,	 30mg/kg	 or	 45mg/kg	 and	 found	 that	 all	 three	 doses	were	 sufficient	 to	

cause	 infertility,	 but	 the	 higher	 doses	 required	 a	 longer	 recovery	 period	 (36).	

Interestingly,	most	SSCs	were	 lost	within	three	days	after	 treatment,	underscoring	

how	sensitive	spermatogonia	are	to	chemotherapeutics	(36).	

	Although	busulfan	is	well‐suited	for	mouse	models	of	 infertility,	 it	 is	not	as	

commonly	used	in	the	clinic	as	cyclophosphamide.	Cyclophosphamide	is	not	as	toxic	

to	the	germline	in	a	single	dose,	and	necessitates	a	multidose	treatment	to	achieve	a	

significant	 degree	 of	 germ	 cell	 toxicity.	 A	 6	 dose	 regimen	 of	 cyclophosphamide	

injections	of	150mg/kg	every	5	days	eliminated	nearly	all	differentiating	cells,	and	

the	majority	 of	 tubules	 contained	mainly	 Sertoli	 cells	 (32).	 	However,	most	 of	 the	

tubules	 recovered	 spermatogenesis	 after	 a	 long	 period	 (81	 days),	 although	 some	

tubules	still	only	contained	Sertoli	cells	(32).		

As	 in	 mouse	 models	 of	 infertility	 during	 chemotherapy,	 spermatogenesis	

usually	 recovers	 in	male	 cancer	 patients.	 This	 poses	 a	 paradox:	 on	 the	 one	 hand,	

nearly	all	germ	cells	are	ablated,	but	on	 the	other,	 the	recovery	of	 fertility	 implies	

the	existence	of	rare	stem	cells	which	serve	to	repopulate	the	testis.	However,	 the	

identity	of	these	cells	is	currently	not	known.	
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which	 may	 contribute	 to	 the	 pool	 of	 Asingle	 spermatogonia,	 but	 this	 has	 not	 been	

formally	established.	Asingle	 to	Aaligned	 cells	 are	 collectively	 called	 “undifferentiated”	

spermatogonia	 and	 express	 Foxo1	 and	 Plzf.	 Kit+	 spermatogonia	 (A1‐4	 to	 B)	 are	

termed	 “differentiating”	 spermatogonia.	 B	 spermatogonia	 become	 spermatocytes	

that	 initiate	meiosis	 to	 produce	 round	 spermatids,	which	 elongate	 and	 eventually	

are	released	as	spermatozoa.		
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CHAPTER	2:	Pax7	AND	ITS	ROLE	IN	SKELTAL	MUSCLE	SATELLITE	CELLS	

	

Introduction	

Regeneration	of	skeletal	muscle	not	only	repairs	damaged	muscle	fibers	due	

to	injury,	but	also	helps	remodel	skeletal	muscle	after	normal	exercise,	thus	creating	

newer	 and	 stronger	 muscles.	 The	 resident	 adult	 stem	 cell	 of	 the	 muscle	 is	 the	

satellite	 cell,	 for	 its	 position	 alongside	 normal	 skeletal	 muscle	 nuclei	 at	 the	

periphery	 of	 myofibers.	 These	 cells,	 which	 represent	 a	 very	 small	 percentage,	 of	

adult	 skeletal	 muscle	 nuclei	 (approximately	 5%)	 (37),	 lay	 dormant	 until	 muscle	

damage,	 when	 they	 become	 activated	 and	 divide	 to	 replenish	 lost	 muscle	 fibers.	

Markers	of	satellite	cells	include	the	transcription	factors	Pax7,	which	is	expressed	

in	all	 satellite	cells,	and	Pax3,	which	 is	expressed	only	 in	a	subset	of	 these	cells	 in	

certain	muscle	groups	(38).	

	

Organization	of	skeletal	muscle	

An	 individual	muscle	 is	made	up	of	multiple,	 far‐reaching	muscle	 fibers,	 or	

myofibers,	which	can	span	long	distances	in	the	body.	Myofibers	are	ensheathed	in	

connective	 tissue	 called	 the	 epimysium.	 	Within	 the	 epimysium	are	myofibers	 are	

grouped	 into	 fascicles,	 which	 are	 also	 ensheathed	 by	 the	 perimysium	 (1).	 The	

muscular	 blood	 supply,	 as	 well	 as	 nerve	 endings	 are	 also	 found	 within	 the	

perimysium	 (1).	 Myofibers	 are	 multinucleate	 cells	 which	 are	 formed	 early	 in	

development.	 	 In	 a	 cross‐section	 of	 skeletal	 muscle,	 there	 are	 multiple	 myocyte	

nuclei,	 and	 the	 myofibers	 are	 ensheathed	 by	 the	 endomysium,	 also	 made	 of	
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connective	 tissue.	 The	 cytoplasm	 of	 myocytes	 is	 called	 the	 sarcoplasm,	 and	 the	

plasma	membrane	is	the	sarcolemma.	The	satellite	cells	are	named	such	because	of	

their	position	between	the	sarcolemma	of	muscle	cells	and	the	basal	lamina.	In	H&E‐

stained	sections,	the	nuclei	of	myofibers	and	satellite	cells	cannot	be	distinguished,	

but	 they	 can	 be	 identified	 by	 electron	 microscopy	 (39).	 Other	 cells	 that	 can	 be	

readily	visualized	in	H&E	sections	include	those	that	form	the	vasculature,	by	which	

Pax7+	 satellite	 cells	 tend	 to	 be	 located,	 and	 interstitial	 cells,	 which	 include	

connective	tissue	fibroblasts,	which	help	support	the	basal	lamina,	nerve	fibers,	and	

cells	with	 adipogenic	potential.	All	 in	 all,	 the	 interstitium	 is	 a	 source	of	 important	

growth	factors,	which	aid	the	muscle	in	regeneration	after	injury.		

	

Pax7	during	myogenesis	

The	 Pax	 proteins	 are	 a	 family	 of	 nine	 transcription	 factors	 that	 function	

during	 early	 embryogenesis	 and	 play	 roles	 in	 development.	 Pax7	 and	 Pax3	 play	

roles	in	skeletal	muscle	development.	One	of	the	earliest	steps	in	making	muscle	is	

the	 specification	 of	 somites,	 or	 segments	 of	 the	 embryo,	 which	 go	 on	 to	 become	

sclerotomes	 (bone),	 dermomyotomes	 (dermatomes	 and	muscle),	 and	 sclerotomes	

(cartilage).	The	dermomytome	expresses	both	Pax3	and	Pax7	(40),	and	gives	rise	to	

mulipotent	 muscle	 progenitor	 cells,	 (MPCs),	 which	 are	 restricted	 to	 the	 muscle	

lineage,	which	give	rise	to	myoblasts,	which	are	highly	proliferative	and	will	go	on	to	

form	the	basis	of	skeletal	muscle.	

	The	formation	of	muscles	in	the	trunk	depends	on	both	Pax3	and	Pax7	(40).	

Without	these	two	proteins,	myogenic	progression	halts	in	embryonic	development,	
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with	practically	a	complete	loss	of	muscle	fibers	observed	by	e11.5	(41).	In	late	fetal	

development,	Pax7	 is	 expressed	 in	most	all	 of	 the	myoblasts,	but	Pax3	expression	

starts	 to	become	more	restricted.	Pax3	and	Pax7	expression	 levels	 fall	 throughout	

birth	 to	 adulthood	 such	 that	 by	 6wks	 of	 age,	 Pax3	 is	 very	 rarely	 expressed	 in	

satellite	cells	in	the	hindlimb	muscles,	expressed	in	approximately	50%	of	forelimb	

muscles,	and	is	abundant	in	satellite	cells	in	the	diaphragm	(42,	43).	There	are	many	

different	 engineered	mouse	 Pax3	mutants,	 all	 of	which	 exhibit	 various	 degrees	 of	

skeletal	 muscle	 hypoplasia,	 and	 demonstrate	 a	 requirement	 for	 Pax3	 in	 the	

development	of	the	diaphragm	(44).	One	of	these	mutants	is	a	Pax3‐Cre	line,	which	

does	 not	 encode	 a	 functional	 copy	 of	 the	 Pax3	 gene.	 Homozygosing	 these	 mice	

results	 in	 defects	 early	 in	 embryogenesis,	 including	 neural	 tube	 deformities	 and	

cardiac	 abnormalities	 (45).	 Crossing	 these	Pax3‐Cre	mice	with	 a	Cre	 reporter	 line	

showed	that	Pax3	derivatives	contribute	to	skeletal	muscle,	 the	aorta,	 the	kidneys,	

and	 some	of	 the	 colonic	 epithelium.	However,	 there	were	no	Pax3	descendants	 in	

the	testis,	although	the	entire	epididymis	seemed	to	be	labeled.		

In	 a	 similar	 vein,	 the	 loss	of	Pax7	 causes	neonatal	 lethality	 in	90%	of	Pax7	

null	mice.	Pax7	null	mice	are	smaller	than	their	littermates,	and	this	size	difference	

persists	 into	adulthood	in	the	surviving	fraction	(46,	47).	 It	was	originally	thought	

that	 these	 mice	 have	 a	 complete	 loss	 of	 satellite	 cells	 suggesting	 a	 role	 of	 Pax7	

during	satellite	cell	specification	(37),	but	further	analysis	demonstrated	that	in	fact	

satellite	 cells	 are	 present	 at	 reduced	 numbers,	 and	 further	 decline	 during	

development,	leading	to	hypothesis	that	Pax7	is	involved	in	maintenance	of	satellite	
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cells	 (47).	 Using	 a	 Pax7	 Cre	 line,	 Pax7‐derived	 cells	were	 detected	 in	 the	 skeletal	

muscle,	eye,	pancreas,	gut,	skin,	olfactory	system,	and	neural	crest	cells	(48,	49).			

In	 summary,	 Pax3	 is	 required	 for	 embryonic	myogenesis	 and	 is	 expressed	

mainly	 during	 embryogenesis	 but	 is	 down‐regulated	 after	 birth	 in	 many	 satellite	

cells.	On	the	other	hand,	Pax7	is	not	necessary	during	embryonic	myogenesis	but	is	

indispensable	 in	 neonatal	 myogenesis.	 Thus	 these	 transcription	 factors	 play	

overlapping,	but	separate,	roles	in	myogenesis	(38).	

	

The	role	of	Pax7	in	adult	satellite	cells	

Adult	 satellite	 cells	 lie	 dormant	 until	 muscle	 injury,	 whereupon	 they	 are	

activated	 and	 begin	 to	 divide	 to	 replace	 lost	 muscle.	 In	 fact,	 satellite	 cells	 are	

indispensable	 for	 muscle	 regeneration.	 Using	 a	 tamoxifen‐inducible	 Pax7‐Cre	

crossed	with	a	lox‐stop‐lox	diphtheria	toxin	mouse,	satellite	cells	can	be	completely	

ablated	temporally.	In	the	adult,	loss	of	these	cells	in	conjunction	with	injury	with	a	

myotoxin	 leads	 to	 complete	 absence	 of	muscle	 repair.	 Furthermore,	 satellite	 cells	

from	these	mice	can	no	longer	engraft	by	transplantation	(50).	These	findings	were	

confirmed	independently	by	the	use	of	a	diphtheria	toxin	receptor	under	the	control	

of	the	Pax7	promoter.	No	muscle	regeneration	occurred	over	a	period	of	7wks,	and	

the	injured	muscle	was	instead	infiltrated	by	adipocytes.	Even	more	striking	was	the	

finding	that	with	strenuous	exercise,	the	muscles	fail	to	repair	themselves,	and	get	

progressively	 smaller	 over	 time	 (51).	 Both	 sets	 of	 experiments	 concluded	 that	

Pax7+	satellite	cells	are	absolutely	required	for	muscle	generation,	and	challenged	

other	hypotheses	that	non‐satellite	cells	could	contribute	to	muscle	repair	(50,	51).	
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The	role	of	Pax7	itself	in	muscle	repair	has	been	controversial.	Initially	it	was	

reported	 that	 Pax7	 was	 dispensable	 for	 muscle	 regeneration	 (52).	 Using	 a	 short	

pulse	 of	 tamoxifen,	Pax7	homozygous	 floxed	 (f/f);	Pax7	Cre	ERT2	mice	 challenged	

with	 a	myotoxin	 and	muscle	 repair	 seemed	 to	 proceed	 as	 normally.	 In	 fact,	 using	

this	 same	 scheme,	 Pax3	 and	Pax7	were	 eliminated	 concurrently,	 again	with	 no	 ill	

effects	 on	 muscle	 regeneration.	 	 However,	 when	 these	 same	 experiments	 were	

repeated	with	very	young	mice,	loss	of	Pax7	resulted	in	a	severe	decrease	in	muscle	

regeneration.	It	was	concluded	from	these	results	that	Pax7	must	only	be	important	

in	juvenile	muscle	development	and	repair	(52).		

More	 recently,	 however,	 these	 same	 mice	 in	 the	 experiments	 above	 have	

yielded	different	results	when	exposed	to	a	continuous	source	of	tamoxifen.	When	

examining	histologic	sections	through	Pax7	f/f;	Pax7‐Cre	ERT2	skeletal	muscle	treated	

with	a	 short	 course	of	 tamoxifen,	an	 increase	 in	 infiltrating	adipocytes	was	noted,	

suggesting	 that	 there	 was	 a	 partial	 phenotype	 in	 these	 mice.	 To	 explore	 this	

possibility,	 tamoxifen	 chow	 was	 used	 instead	 of	 the	 three	 dose	 intraperitoneal	

injection	 regimen.	After	myotoxic	 injury,	 there	 is	 significantly	 less	 regeneration	of	

muscle	 when	 compared	 to	 control	 mice.	 This	 longer	 dose	 regimen	 is	 thought	 to	

prevent	 cells	 that	 do	 not	 have	 efficient	 Cre	 recombination	 (“escaper	 cells”)	 from	

dividing	and	essential	repopulating	the	tissue	with	normal	satellite	cells	(53).	These	

results	have	taken	Pax7	from	its	previous	status	as	merely	a	maker	of	satellite	cells	

to	a	protein	whose	targets	are	essential	to	normal	muscle	function.	 	
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CHAPTER	3:	MOUSE	MODELS	AND	RELATED	METHODS	

	

	A	brief	history	of	mouse	models	

The	use	of	animals	for	medical	research	dates	back	even	as	far	as	the	ancient	

Greeks	(54).	Breeding	of	Mus	musculus	for	specific	traits	most	likely	had	its	origins	

in	 China,	 where	 selection	 for	 different	 color	 of	 fur	 or	 traits	 such	 as	 “waltzing”	

(spinning	 in	 circles)	 was	 popular	 with	 mouse	 enthusiasts	 (55).	 To	 ensure	 the	

heritability	of	the	trait	of	interest,	mice	would	be	crossed	to	siblings	multiple	times,	

which	caused	the	mice	to	be	homozygous	on	nearly	every	loci	on	each	chromosome	

(56).	This	 trend	of	color	and	trait	 selection	caught	on	 in	Victorian	England,	where	

“fancy”	mice	were	bred	as	pets,	and	these	mice	can	be	traced	back	as	the	ancestors	

to	inbred	strains	used	in	the	laboratory	today	(55).		

Even	in	the	early	1900s,	mice	were	being	used	as	model	organisms,	a	species	

which	is	increasingly	being	studied	to	gain	biologic	insights	into	human	disease.	The	

choice	 of	 mice	 seemed	 easy:	 they	 were	 small,	 easy	 to	 care	 for	 and	 house,	 were	

relatively	 short‐lived	 and	 bred	 prolifically.	 Compared	 to	 other	 model	 organisms	

such	as	zebrafish	or	fruit	flies,	the	mouse	was	more	closely	related	to	humans.	In	the	

beginning,	 scientists	 were	 limited	 by	 discovering	 a	 phenotype,	 and	 then	 working	

backward	from	there	to	understand	the	disease	process.	However,	in	the	1980s	and	

1990s,	 the	 transgenic	 mouse	 was	 born;	 a	 gene	 of	 interest	 could	 be	 inserted	 or	

deleted	from	a	mouse,	and	the	phenotype	could	be	monitored	over	time	(57).	Thus,	

the	fates	of	mice	and	men	became	intertwined	in	the	world	of	biomedical	research.	
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Mouse	genetics	and	development		

It	takes	approximately	19‐21	days	from	fertilization	to	birth.	At	conception,	a	

vaginal	plug	 is	 formed,	made	of	 coagulated	 secretions	 from	 the	male.	The	day	 the	

plug	 is	 discovered	 is	 termed	 embryonic	 day	 0.5	 (e0.5),	 and	 each	 day	 following	 is	

labeled	accordingly.	Thus,	most	mice	(in	our	lab)	give	birth	at	e19.5.	Once	the	pup	is	

born,	 the	nomenclature	of	 the	age	changes	 from	embryonic	 to	postnatal,	 so	 that	a	

three‐day‐old	mouse	pup	is	termed	PD3	for	postnatal	day	3.	For	the	purpose	of	this	

paper,	a	PD0.5	mouse	is	one	that	had	just	been	delivered	and	had	not	yet	nursed	(no	

milk	spot)	and	a	PD1	mouse	has	a	visible	milk	spot.	For	most	experiments,	mice	are	

said	 to	be	 sexually	mature	around	3‐4	wks	of	 age.	However,	 spermatogenesis	has	

two	waves,	the	first	having	different	properties	than	steady‐state	spermatogenesis.	

Therefore,	 for	 this	 thesis,	mice	 are	 considered	 to	 be	mature	 at	 6	wks	 of	 age.	 The	

lifespan	of	a	mouse	in	captivity	is	1.5‐3yrs,	depending	on	the	strain.	

Mouse	genetics	has	progressed	a	great	deal	from	simple	phenotypic	analyses	

of	 inbred	 strains.	 Genetic	 manipulations	 can	 now	 create	 a	 dizzying	 array	 of	 new	

mice.	 Some	 terminology	 is	 described	 here.	 One	 of	 the	 first	 of	 these	 new	

manipulations	 was	 the	 transgenic	 mouse,	 in	 which	 a	 viral	 or	 bacterial	 vector	

expressing	the	gene	of	 interest	and	a	gene	promoter	and	enhancer	 is	 injected	into	

the	 developing	 fertilized	 mouse	 egg.	 The	 gene	 integrates	 into	 the	 DNA	 of	 the	

fertilized	 oocyte	 at	 a	 random	 chromosomal	 location	 typically	 in	 multiple	 tandem	

repeats.	One	disadvantage	to	this	strategy	is	that	any	phenotype	observed	must	be	

shown	to	be	from	the	new	gene,	and	not	due	to	disruption	of	an	existing	gene	during	

integration.	A	knockin	mouse	 is	a	mouse	 in	which	DNA	has	been	 inserted	 into	 the	
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genome	 in	 a	 targeted	 fashion.	 A	 vector	 is	made	 that	 contains	 the	 gene	 of	 interest	

with	a	promoter,	 flanked	by	DNA	from	the	site	of	 interest,	which	will	 integrate	via	

homologous	recombination.	A	knockout	mouse	is	similar	to	a	knockin,	only	instead	

of	inserted	a	gene,	an	existing	gene	is	deleted	by	removing	essential	exons.		

Another	 development	 in	 mouse	 genetics	 is	 the	 advent	 of	 conditional	 gene	

modification.	 It	 was	 found	 that	 the	 bacteriophage	 recombinase,	 Cre,	 recombines	

DNA	 between	 two	 recognition	 sites,	 called	 LoxP	 sites.	 These	 are	 34bp	 sequences,	

made	 of	 13bp	 palindromes	 which	 flank	 an	 8bp	 sequence	 that	 determines	 which	

direction	the	LoxP	faces	(58).	If	the	LoxP	are	placed	in	a	trans	orientation	on	either	

side	of	a	gene,	the	gene	will	be	excised	with	Cre	recombination.	If	they	are	placed	in	

a	 cis	orientation,	 the	gene	will	be	 inverted.	Mice	expressing	Cre	 in	 specific	 tissues	

can	be	engineered	via	knockin.	The	Cre	mice	can	be	crossed	to	mice	expressing	LoxP	

sites	flanking	the	gene	of	interest	(or	floxed),	the	gene	will	be	deleted	only	in	those	

specific	 tissues.	 Furthermore,	 Cre	 expression	 can	 be	 controlled	 temporally	 by	 the	

fusion	 of	 an	 estrogen	 receptor,	 or	 CreERT2	 (59).	 The	 CreERT2	 is	 sequestered	 to	 the	

cytoplasm	and	 cannot	 recombine	DNA	until	 addition	of	 tamoxifen,	which	binds	 to	

the	 estrogen	 receptor	 and	 allows	 translocation	 to	 the	 nucleus	 and	 Cre‐mediated	

excision.		

In	addition	to	temporal	and	tissue‐specific	deletion	of	genes,	Cre	and	CreERT2	

can	be	combined	with	Cre	reporter	lines,	which	express	a	“STOP”	codon	flanked	by	

LoxP	sites	in	front	of	an	indelible	marker	protein.	When	a	cell	that	has	been	through	

recombination	 divides,	 it	 will	 pass	 on	 the	 recombined	 allele	 to	 its	 daughter	 cell,	

creating	 a	 temporal	 history	 of	 the	 cell’s	 divisions.	 This	 process,	 called	 lineage	
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tracing,	 can	 determine	 how	 cells	 contribute	 to	 the	 overall	 tissue	 over	 time.	 For	

example,	Pax7	is	expressed	in	muscle	precursor	cells.	Using	a	Pax7‐Cre	crossed	with	

a	 GFP	 reporter,	 it	 was	 found	 that	 all	muscle	 cells	were	 labeled,	 showing	 that	 the	

muscle	derived	from	these	Pax7+	precursors	(48).		

A	 final	 mouse	 line	 using	 this	 lox‐stop‐lox	 technology	 is	 Dtx,	 in	 which	 the	

diphtheria	 toxin	 is	 knocked	 in	 to	 the	 mouse	 Rosa	 locus,	 a	 nearly	 ubiquitously	

expressed	 locus	 in	 the	mouse	 that	 seems	 to	 have	 no	 real	 function.	 If	 this	 locus	 is	

interrupted	 by	 a	 reporter	 line	 or,	 in	 this	 case	 diphtheria	 toxin,	 mice	 develop	

normally,	even	if	the	line	is	homozygosed	(60).	Since	mice	do	not	have	a	functional	

diphtheria	receptor,	expression	of	the	toxin	results	 in	the	death	only	of	 those	cells	

expressing	Cre.		

	

Different	Cre	lines	used	in	this	thesis	

Germline	 specific	 Cre	 lines	 have	 been	 generated	 by	 the	 Castrillon	 lab	 to	

examine	 the	 function	 of	 proteins	 specifically	 in	 the	 testis	 and	 ovaries.	 Vasa	 is	

expressed	 specifically	 in	 the	 germline	 beginning	 at	 e12.5	 in	 both	 the	 male	 and	

female	 germline	 (61).	 Although	 the	 expression	 of	 Vasa	 is	 specific,	 Vasa‐Cre	 is	

sometimes	 ectopically	 expressed	 in	 the	 kidney	 and	 ear	 ((61).	 Since	 Vasa	 is	

expressed	 in	 the	oocyte,	when	Vasa‐Cre	female	mice	 are	used	 for	breeding,	 global	

recombination	will	occur	in	the	embryo	(maternal‐effect	recombination).	Thus,	male	

mice	should	be	employed	as	the	carriers	of	the	Cre	allele.	A	counterpart	to	Vasa‐Cre	

is	Vasa‐CreERT2,	a	tamoxifen	inducible	Cre	line	that	is	again	expressed	specifically	in	

the	germline	 (62).	 In	 the	original	paper,	 tamoxifen	was	delivered	via	 I.P.	 injection	
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for	 three	days,	 and	 this	 resulted	 in	efficient	 induction	of	Cre	 (62).	 I	 also	 tested	an	

alternative	method	of	delivering	tamoxifen	to	mice:	in	their	food	(tamoxifen	chow)	

so	 that	 mice	 could	 be	 continuously	 fed	 tamoxifen	 over	 long	 periods.	 However,	 I	

found	that	while	tamoxifen	chow	did	in	fact	induce	Cre	via	Rosa26R	ß	gal	staining	

(discussed	below),	it	was	not	as	efficient	as	injecting	tamoxifen	(Figure	3.1).		

A	 counterpart	 to	 Vasa‐Cre	 is	 Amh‐Cre,	 useful	 for	 conditional	 knockouts	 in	

Sertoli	 cells,	where	Amh	 is	expressed.	Anti‐müllerian	hormone	 is	expressed	 in	 the	

Sertoli	 cells	 in	male	mice,	 and	 in	 the	 granulosa	 cells	 in	 females.	 Thus,	Amh‐Cre	 is	

specific	for	the	cells	which	directly	support	the	germline.	Expression	of	Amh	begins	

at	 e12.5,	 and	 persists	 into	 adulthood	 (63).	 Although	 initial	 reports	 showed	 high	

rates	 of	 recombination	 via	 Rosa26R	 ß	 gal	 staining	 (63),	 attempting	 to	 eliminate	

these	 cells	 with	 a	 Dt	 allele	 led	 to	 inefficient	 cell	 death,	 perhaps	 pointing	 to	

inefficiency	in	the	Dt	allele	rather	than	the	Amh‐Cre	(Figure	3.2).	

Multiple	 Pax7‐Cre	 lines	 have	 been	 generated,	 and	 all	 are	 freely	 available	

through	 Jackson	Labs.	These	 include	Pax7tm1(cre)Mrc/J	 (B6;129‐Pax7tm1(cre)Mrc/J,	 stock	

#010530)	 made	 by	 Mario	 Capecchi	 (64),	 and	 two	 tamoxifen	 inducible	 lines,	

Pax7tm2.1(cre/ERT2)Fan/J	 (B6;129‐Pax7tm2.1(cre/ERT2)Fan/J,	 stock	#012476)	made	by	Chen‐

Ming	 Fan	 (52),	 and	 Pax7tm1(cre/ERT2)Gaka/J	 (B6.Cg‐Pax7tm1(cre/ERT2)Gaka/J,	 stock	

#017763)	made	by	Gabrielle	Kardon	(65).	In	all	three	lines	Cre	expression	faithfully	

mirror	Pax7	expression	in	both	the	testis	and	skeletal	muscle,	with	varying	degrees	

of	 recombination	 efficiency	 as	 determined	 with	 diverse	 Cre	 tester	 lines	 ((20),	

unpublished).	Pax7tm1(cre)Mrc/J	was	made	by	inserting	an	IRES‐Cre	cassette	into	the	3’	

UTR	after	exon	10.	This	does	not	interfere	with	normal	function	of	Pax7,	as	mice	can	
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be	maintained	as	a	homozygous	stock	(64).	Pax7tm1(cre)Mrc/J	is	about	70%	efficient	in	

Pax7+	 spermatogonia	 at	 postnatal	 day	 7	 (unpublished	 data),	 with	 the	 tamoxifen‐

inducible	 lines	 being	 less	 efficient	 (Figure	 3.3).	 The	 structure	 of	 the	

Pax7tm2.1(cre/ERT2)Fan/J	 allele	 is	 a	 knockin	 of	 CreERT2	 followed	 by	 an	 IRES‐DsREd	

inserted	into	exon	1,	creating	a	hypomorphic		allele.	Therefore,	these	mice	must	be	

maintained	 as	 a	 heterozygous	 stock	 as	 Pax7	 is	 an	 essential	 locus	 (90%	 of	

homozygous	 offspring	 die	 before	 puberty)	 (52).	 	 Although	 the	 Pax7tm2.1(cre/ERT2)Fan	

allele	was	designed	for	DSred	expression	in	Pax7+	cells,	the	signal	is	not	detectable	

via	 immunostaining	 nor	 by	 FACs,	 likely	 due	 to	 inefficient	 ribosomal	 entry	 at	 the	

IRES	((52),	and	personal	observations).		Pax7tm1(cre/ERT2)Gaka/J,	was	made	by	inserting	

an	 IRES‐CreERT2	 cassette	 8	 bp	 downstream	 of	 the	 endogenous	 stop	 codon.	 The	

IRES	 in	 this	 line	 appears	 to	 function	 with	 much	 greater	 efficiency,	 and	 gives	

expression	of	functional	Pax7	protein.	Thus,	the	allele	can	be	homozygosed.				

	

Cre	reporter	strains	

Several	Cre	reporter	strains	are	attractive	options	for	lineage	tracing	studies	

of	 SSCs.	We	 have	 tested	 Rosa26	 LacZ	 (FVB.129S4(B6)‐Gt(ROSA)26Sortm1Sor/J,	 stock	

#003309,(66)),	TdTomato	(B6.Cg‐Gt(ROSA)26Sortm9(CAG‐tdTomato)Hze/J,		stock	#007909,	

(67)),	 and	 a	 membrane‐bound	 Tomato,	 membrane‐bound	 eGFP	 line	 (mT/mG,	

Gt(ROSA)26Sortm4(ACTB‐tdTomato‐EGFP)Luo/J,	stock	#007576,	(68)).	These	three	lines	have	

each	proven	useful	in	distinct	ways.	For	unknown	reasons,	β‐galactosidase	localizes	

to	 the	 chromatoid	 body	 within	 germ	 cells.	 Thus,	 when	 a	 β‐galactosidase	 Cre	

reporter	is	used,	care	must	be	taken	to	interpret	staining	patterns	within	germ	cells	
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(see	 (61)	 for	 description).	 When	 tubules	 are	 to	 be	 visualized	 following	 formalin	

fixation	 and	 embedding	 in	 paraffin,	 steps	 should	 be	 taken	 to	 minimize	 time	 in	

xylene,	which	dissolves	the	blue	product	(22,	61,	66);	otherwise,	 the	blue	signal	 is	

stable	and	permanent,	 facilitating	histologic	analyses.	Since	 the	detection	of	 the	β‐

galactosidase	 requires	 a	 special	 staining	 process,	 it	 is	 not	 ideal	 for	 colocalization	

with	other	antibodies.		

The	second	reporter,	TdTomato,	yields	a	very	bright	nuclear	signal	that	lends	

itself	 well	 to	 FACS,	 and	 is	 preferred	 when	 IF	 will	 be	 performed	 simultaneously.	

Although	 the	 endogenous	 TdTomato	 signal	 is	 strong,	 it	 is	 subject	 to	 significant	

photobleaching	during	lengthy	microscopy	sessions.	Therefore,	we	sometimes	use	a	

dsRed	 antibody	 (Living	 Colors,	 #632496,	 1:100)	 to	 detect	 TdTomato	when	 doing	

colocalizations.	This	dsRed	antibody	does	not	cross‐react	with	GFP.		

Finally,	 the	mT/mG	reporter	clearly	delineates	cell	borders,	 as	 the	signal	 is	

localized	to	the	cell	membrane.	The	reporter	is	bright	enough	to	detect	endogenous	

fluorescence	in	wholemount	preparation	of	tubules,	as	well	as	in	OCT	sections.	Many	

investigators	 have	 reported	 difficulty	 in	 the	 localization	 of	 fluorescent	 reporter	

signals	 in	 frozen	 sections	 of	 diverse	mouse	 tissues	 (69‐71).	On	 one	hand,	 fixation	

and	processing	clearly	can	abolish	reporter	protein	fluorescence.	A	wide	variety	of	

conditions	have	been	blamed	for	this	quenching	of	signal,	from	the	fixation	method	

to	 the	 mounting	 media	 (69‐74).	 On	 the	 other	 hand,	 when	 unfixed	 tissues	 are	

cryosectioned,	the	fluorescent	proteins	readily	diffuse	from	one	labeled	cell	to	non‐

labeled	cells,	obscuring	specific	 signals	and	making	visualization	difficult	 if	 special	

steps	are	not	taken	(69).	To	detect	endogenous	fluorescence,	we	recommend	(based	



	 28

on	(70))	cryosectioning	unfixed	tissues,	allowing	tissues	to	dry,	then	fixing	30	min	in	

4%	 formalin,	 7%	 picric	 acid	 and	 20%	 sucrose	 at	 4o.	 For	 the	 best	 resolution	 of	

labeled	clones	in	tissue	sections,	we	fix	testes	in	10%	neutral‐buffered	formalin,	and	

perform	 IF	 as	 above	 using	 a	 GFP	 antibody	 (Aves,	 #GFP‐1020,	 1:500)	 or	 a	 dsRed	

antibody	 that	 detects	 the	 TdTomato	 protein	 (Living	 Colors,	 #632496,	 1:100).	

Whereas	 some	 antibodies	 can	 cross‐react	 with	 diverse	 fluorescent	 protein	

derivatives,	these	antibodies	are	especially	useful	because	of	their	specificity	to	GFP	

and	DsRed,	respectively	(68).	

	

Floxed	alleles	

With	the	addition	of	Cre,	floxed	alleles	allow	for	the	spatial	(and	sometimes	

temporal)	deletion	of	a	gene.	Most	important	to	this	thesis	are	the	Pax7f/f	alleles,	of	

which	 there	 are	 two.	Pax7tm1.1Fan/J	(called	 Pax7f/f)	 has	 loxP	 sites	 on	 either	 side	 of	

exon	 2,	 which	 could	 contribute	 to	 the	 formation	 of	 a	 truncated	 Pax7	 protein,	

although	we	did	not	detect	this	protein	by	IF	or	IHC	(See	Chapters	5	and	6).	Pax7loxP‐

Gu	,	on	the	other	hand,	has	loxP	sites	flanking	the	start	transcriptional	start	site	and	

the	first	three	exons	(75);	thus,	no	Pax7	protein	is	formed.	Glis3f/f		mice	were	created	

by	flanking	exon	4	with	loxP	sites	(76).	

	

Mouse	models	of	male	infertility	

While	chemotherapeutics	such	as	busulfan	or	irradiation	can	be	highly	toxic	

to	the	germline	(See	Chapter	1),	certain	genetic	and	surgical	manipulations	can	also	

lead	 to	 the	 complete	 elimination	 of	 spermatogenesis.	 The	 pituitary	 gland,	 an	
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important	 source	 of	 hormones	 for	 the	 body,	 can	 be	 surgically	 removed,	 which	

eventually	 renders	 the	 mouse	 sterile	 as	 luteinizing	 hormone	 (LH)	 and	 follicle	

stimulating	hormone	(FSH)	are	no	longer	produced.	In	males,	LH	causes	the	Leydig	

cells	to	produce	testosterone	which	is	essential	for	spermatogenesis,	and	FSH	which	

causes	spermatocytes	to	under	the	first	round	of	meiosis.	Hypophysectomized	mice	

(Hpa,	Charles	River)	have	a	gradual	 loss	of	 the	germline,	such	that	by	12wks	after	

surgery,	 the	 testis	 is	 much	 smaller	 than	 before,	 as	 nearly	 the	 entire	 germline	 is	

ablated	(See	Chapter	6).		

Another	mouse	model	of	male	infertility	used	in	this	thesis	is	the	KitW/KitW–v	

in	which,	 in	addition	to	a	range	of	other	abnormalities	 in	other	organ	systems,	the	

germline	 from	 differentiating	 spermatogonia	 onwards	 has	 been	 eliminated.	

Importantly,	 this	 allows	 access	 of	 transplanted	 spermatogonia	 to	 niches.	 Finally,	

there	are	three	additional	models	of	infertility	used	in	this	thesis	that	bear	a	quick	

review.	Pten	f,	Pdk1	f	and	Foxo1f/3	f/4f	alleles	were	previously	generated	as	described	

(62,	77,	78).	Foxo1f/f	;Vasa‐Cre	mice	have	complete	 loss	of	sperm	in	the	epididymis	

by	25wks	of	age	(14).	Even	with	this	extreme	phenotype,	the	appearance	of	tubules	

in	 cross	 section	 is	 somewhat	 variable,	 with	 the	 appearance	 of	 both	 seemingly	

normal	 and	 Sertoli	 cell	 only	 tubules	 at	 PD21	 (14).	 With	 the	 triple	 conditional	

knockout	 of	 Foxo1f/f/3	f/f/4f/f	;Vasa‐Cre	 mice,	 the	 phenotype	 become	 more	 severe,	

with	no	normal	tubules	at	PD21,	with	a	few	tubules	having	a	small	number	of	germ	

cells	on	 the	basement	membrane	 (14).	 	With	 the	 cKO	of	Pten,	80%	of	 tubules	 are	

empty	by	4wk,	and	with	the	cKO	of	Pdk1,	nearly	all	germ	cells	are	lost	by	PD14	(14).		
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Figure	3.1:	Delivery	of	tamoxifen	in	chow	vs.	intraperitoneal	injection.	a)	Vasa‐

Cre	ERT2	Dt+	testis,	with	and	without	tamoxifen	injection.	After	delivery	of	tamoxifen	

via	chow,	some,	but	not	all,	germ	cells	are	ablated.	b)	Histology	of	Vasa‐Cre	ERT2	Dt+	

testes	 and	 ovaries	 with	 and	 without	 tamoxifen	 chow.	While	 some	 germ	 cells	 are	

ablated,	 many	 still	 remain.	 c)	 Tamoxifen	 chow	 is	 sufficient	 to	 induce	 Cre	

recombination	 in	Vasa‐Cre	ERT2	Rosa26R+	testes,	 suggesting	 that	 the	 fact	 that	 germ	

cells	still	remain	in	the	Dt	experiment	could	be	a	compound	issue	between	chow	and	

the	Dt	allele	itself.	d)	Comparison	of	Vasa‐Cre	ERT2	Dt+	testes	delivered	tamoxifen	via	

chow	 or	 via	 intraperitoneal	 (IP)	 injection.	 IP	 injection	 causes	 the	 ablation	 of	 far	

more	 germ	 cells	 than	 tamoxifen	 chow,	 though	 this	 ablation	 is	 still	 not	 100%,	

suggesting	that	the	Dt	allele	is	could	not	be	functioning	properly.	e)	A	seminiferous	
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tubule	from	Vasa‐Cre	ERT2	mT/mG+	testes,	demonstrating	that	IP	tamoxifen	is	highly	

efficient	 at	 inducing	 Vasa‐Cre	ERT2	and	 further	 arguing	 that	 the	Dt	allele	 does	 not	

function	properly	 in	 the	 testis.	 It	 is	 important	 to	note	 that	even	 IP	 injection	 is	not	

100%	efficient,	indicated	by	the	lack	of	recombination	(arrow).		Scale	bar	=	50µm.	
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Figure	 3.2:	 Activation	 of	 a	 diphtheria	 toxin	 conditional	 allele	 does	 not	

effectively	eliminate	Sertoli	and	granulosa	cells.	Using	Amh‐Cre	Dt+	mice,	gonads	

were	examined	to	determine	the	effect	of	 loss	of	 the	Sertoli	and	granulosa	cells	 in	

the	testis	and	ovaries,	respectively.		(A)	There	was	no	significant	difference	between	

the	 sizes	 of	 the	 testes,	 ovaries,	 or	 uteri	 of	Amh‐Cre	Dt+	and	Amh‐Cre	Dt‐	animals	 at	

3wks.	 (B)	 Histologic	 examination	 of	Amh‐Cre	Dt+	and	Amh‐Cre	Dt‐	ovaries	 by	 H&E	

demonstrated	what	appeared	to	be	granulosa	cells	still	present.	This	was	confirmed	

by	 staining	with	Amh.	Although	 there	appeared	 to	be	 fewer	granulosa	 cells	 in	 the	

Amh‐Cre	Dt+	animals,	 granulosa	 cells	 still	 remained,	 again	 suggesting	 that	 the	 Dt	

allele	does	not	function	properly	in	the	gonads.	(C)	Histologic	examination	of	Amh‐

Cre	Dt+	and	Amh‐Cre	Dt‐	testes	 demonstrated	 relatively	normal	 spermatogenesis	 at	
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3wks.	Furthermore,	GCNA	staining	confirmed	the	presence	of	numerous	germ	cells,	

which	need	functional	Sertoli	cells	to	survive.	Scale	bar	=	50µm.	
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Figure	3.3:	 Comparison	 of	Pax7‐Cre	 lines.	 (A)	 Number	 of	 labeled	 clones	 6wks	

after	 tamoxifen	 administration	 in	 the	 two	CreERT2	 lines.	Mice	were	 administered	

2mg	tamoxifen	daily	for	3	days	at	6wks	of	age	and	aged	for	an	additional	6wks.The	

Pax7tm2.1(cre/ERT2)Fan/J	 allele	had	 fewer	 labeled	clones	 than	the	Pax7tm2.1(cre/ERT2)Gaka/J,	

demonstrating	 that	 the	 latter	 has	 a	 higher	 efficiency	 in	 the	 germline.	 (B)	 Whole	

testis	of	a	Pax7tm2.1(cre/ERT2)Fan/J;	mT/mG	mouse,	showing	large	labeled	clones	on	the	

green	channel,	and	broader	(but	mutually	exclusive)	expression	on	the	red	channel.	

(C)	Seminiferous	tubule	from	a	Pax7tm2.1(cre/ERT2)Fan/J;	Rosa26R	mouse,	showing	dot‐

like	 localization	 of	 ‐galactosidase.	 Note	 that	 at	 this	 magnification,	 chromatoid	

bodies	cannot	be	clearly	resolved,	but	almost	all	of	 the	signal	within	the	germ	cell	
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cytoplasm	 localizes	 to	 this	 structure.	 (D)	 Single	 seminiferous	 tubule	 from	

Pax7tm2.1(cre/ERT2)Fan/J;	mT/mG	mouse,	as	viewed	on	a	confocal	microscope.	Signal	 is	

endogenous	 fluorescence.	 (E)	 Testis	 of	 a	 Pax7tm2.1(cre/ERT2)Fan/J;	mT/mG	 mouse	 in	

cross‐section.	Individual	labeled	cells	can	be	readily	identified	as	to	cell	type	based	

on	cellular	morphology	and	location.	Endogenous	reporter	protein	fluorescence	can	

be	quenched	upon	fixation;	indirect	immunofluorescence	is	a	viable	alternative.	(F)	

Seminiferous	 tubule	 from	 Pax7tm2.1(cre/ERT2)Fan/J;	TdTomato	 mouse,	 showing	 strong	

endogenous	 nuclear	 signal.	 Tubules	 were	 isolated	 6wks	 after	 tamoxifen	

administration	except	(F)	3wks	after	tamoxifen.	Scale	bars	=	500µm	(B)	and	100µm	

(C)	(D)	(E)	(F).		
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CHAPTER	4:	METHODS	

	

mRNA	analysis	and	Pax7	discovery	

RNA	 preparation,	 microarray	 hybridization,	 normalization,	 quality	 control,	

and	 digital	 Northern	 analysis	 was	 performed	 as	 described	 previously	 (24).	

Additional	 data	 sets	 included	 in	 this	 analysis	were	 intact	 PD2	 testes	 and	 cultured	

SSCs	 established	 as	 previously	 described	 (61),	 both	 from	 FVB/n	 mice.	 The	

embryonic	 stem	 cell,	 embryonic	 gonad,	 and	 spermatogenic	 cell	 data	 sets	 were	

downloaded	from	GEO	(accession	nos.	GSE4193,	GSE4308,	and	GSE6916)	(62–64).	

Probe	sets	were	ranked	based	on	signal	strength	in	SSCs	as	a	proportion	of	that	in	

the	intact	adult	testis.	

	

Mouse	strains	and	procedures	

Mice	 harboring	 the	 Pax7‐CreERT2	 [B6;129‐Pax7tm2.1(cre/ERT2)Fan/J],	

Pax7tm1(cre)Mrc/J	 B6;129‐Pax7tm1(cre)Mrc/J	 	 	 ,	 and	 Pax7fl	 [B6;129‐Pax7tm1.1Fan/J]	 and	

Pax7loxP‐Gu	alleles	as	well	as	the	R26R	 [FVB.129S4(B6)‐Gt(ROSA)26Sortm1Sor/J],	mT/mG	

(tdTomato/eGFP)	 reporter	 [Gt(ROSA)26Sortm4(ACTB–tdTomato,–EGFP)Luo/J],	 diphtheria	

toxin	 receptor	 B6;129‐Gt(ROSA)26Sortm1(DTA)Mrc/J,	 Amh‐Cre,	 129S.FVB‐Tg(Amh‐

cre)8815Reb/J	 and	 nuclear	 tdTomato	 reporter	 [B6.Cg‐Gt(ROSA)26Sortm9(CAG–

tdTomato)Hze/J]	alleles	were	purchased	from	Jackson	Laboratories	(31–33,	35).	Glis3f/f		

mice	were	obtained	from	L.	Chan	(76).		

Busulfan	 (CAS	 no.	 55‐98‐1,	 TCI	 America)	 was	 dissolved	 in	 DMSO	 and	

administered	 as	 a	 single	 IP	 dose.	 EdU	 (catalog	 no.	 C10338,	 Invitrogen)	 was	
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dissolved	in	water	and	injected	IP	(50	mg/kg).	Cyclophosphamide	was	dissolved	in	

PBS	and	administered	at	150	mg/kg	IP	every	5	days	for	25	days.	Tamoxifen	(catalog	

no.	 T5648,	 Sigma‐Aldrich)	 was	 dissolved	 at	 100	 mg/ml	 in	 100%	 ethanol,	 then	

resuspended	at	20	mg/ml	in	corn	oil.	2	mg	tamoxifen	was	delivered	IP	to	each	adult	

mouse	daily	for	3	days.	Neonatal	mice	(PD5	or	earlier)	were	injected	IP	with	0.2	mg	

tamoxifen	daily	for	3	days.	Whole‐body	irradiation	was	administered	(single	dose)	

while	 the	mice	were	restrained	 in	acrylic	boxes	at	a	dose	 rate	of	1.44	Gy/min.	No	

specific	method	for	randomization	for	animal	studies	was	used;	investigators	were	

not	blinded.	

	

Transplantation	procedure	

2	 testes	 from	 1	 Pax7‐CreERT2;	 tdTomato	 (PD14)	 donor	 (mixed	 genetic	

background)	were	enzymatically	digested	with	dispase	(catalog	no.	354235,	BD)	to	

obtain	 single	 cells	 that	 were	 resuspended	 in	 DMEM	 with	 10%	 FBS	 plus	 0.02%	

Trypan	Blue	(25).	5–10	μl	of	9	×	103	cells/μl	were	transplanted	by	the	efferent	duct	

method	 into	 testes	 of	 3	 KitW/KitW–v	 mice	 (4–6	 weeks	 old,	 mixed	 genetic	

background;	stock	no.	100410,	Jackson	Laboratories).	Testis	filling	per	blue	dye	was	

50%–90%	 in	 each	 testis.	To	deplete	T	 cells	 and	promote	engraftment,	 50	μg	anti‐

CD4	antigen	(catalog	no.	MAB554,	R&D	Systems)	was	injected	IP	3	times	every	other	

day	 starting	 on	 the	 day	 of	 transplantation.	 Testes	 were	 analyzed	 4	 weeks	 after	

transplantation.	

	

Tissue	processing,	immunohistochemistry,	and	immunofluorescence		
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	For	IHC,	tissues	were	fixed	in	10%	buffered	formalin	overnight,	embedded	in	

paraffin,	and	cut	into	5‐μm	sections	(except	for	the	serial	analysis	of	an	entire	testis	

and	 Pax7	 cluster	 analyses,	 where	 20‐μm	 sections	 were	 used),	 with	 indirect	

detection	 performed	 as	 described	 previously	 (27).	 For	 whole‐mount	 IF,	

seminiferous	 tubules	 were	 mechanically	 dissociated	 in	 PBS	 on	 ice	 and	 fixed	

overnight	 in	4%	paraformaldehyde	 (PFA).	Tubules	were	dehydrated	 in	a	 series	of	

methanol	washes	and	stored	at	–20°C.	To	rehydrate	and	permeabilize,	tubules	were	

put	 through	 a	 series	 of	 washes	 with	 methanol	 and	 PBS	 plus	 0.1%	 Tween‐20,	

followed	by	 incubation	with	 0.2%	NP‐40	 for	 IF	 of	 nuclear	 proteins.	 Tubules	were	

blocked	 in	 2%	BSA	 and	 PBS	 (catalog	 no.	 37525,	 Thermo	 Scientific	 Blocker)	 for	 2	

hours,	 then	 in	 MOM	 block	 (catalog	 no.	 MKB‐2213,	 Vector	 Labs),	 and	 primary	

antibody	was	 added	 in	 0.5%	BSA	 and	PBS	with	 0.02%	 sodium	 azide,	 followed	 by	

incubation	at	4°C	overnight.	Tubules	were	washed	3	 times	 for	10	minutes	each	 in	

PBS	at	RT.	Secondary	antibody	(Alexa	Fluor	555	anti‐rabbit,	Alexa	Fluor	488	anti‐

mouse,	 Alexa	 Fluor	 555	 anti‐goat;	 catalog	 nos.	 A‐21428,	 A‐21121,	 and	 A‐21432,	

respectively,	Invitrogen)	was	added	at	1:1,000	in	0.5%	BSA	and	PBS	for	2	hours	at	

RT	followed	by	DAPI	staining	(1:10,000	in	PBS;	catalog	no.	46290,	Pierce).	Tubules	

were	placed	on	glass	slides	and	mounted	in	Vectashield	(Vector	Laboratories).	For	

visualization	 of	mT/mG	 clones	 in	 tissue	 sections,	 testes	 were	 embedded	 in	 OCT;	

sectioned;	fixed	for	30	minutes	in	4%	formalin,	7%	picric	acid,	20%	and	sucrose	at	

4°C;	 and	 then	 cryosectioned.	 Microscopy	 was	 performed	 with	 a	 Leica	 TCS	 SP5	

confocal	microscope.	
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Antibodies	for	IF	and	IHC	

	Antibodies	and	titers	used	were	as	follows:	Pax7	(1:200	for	IHC,	1:25	for	IF;	

Developmental	Studies	Hybridoma	Bank),	Foxo1	(1:200	for	IHC,	1:50	for	IF;	catalog	

no.	 2880,	 Cell	 Signaling	 Technology),	 Kit	 (1:200	 for	 IHC,	 1:50	 for	 IF;	 catalog	 no.	

3074,	Cell	 Signaling	Technology),	Plzf	 (1:10,000	 for	 IHC;	 catalog	no.	AF2944,	R&D	

Systems),	 caspase‐3	 (1:250	 for	 IF;	 catalog	 no.	 559565,	 BD	 Biosciences	 —	

Pharmingen),	DSred	(detects	tdTomato;	1:100	for	IF;	catalog	no.	632496,	Clontech),	

GCNA	 (1:200	 for	 IHC;	 provided	 by	 G.C.	 Enders,	 University	 of	 Kansas,	 Kansas	 City,	

Kansas,	 USA;	 ref.	 39),	 Ret	 (1:20	 for	 IHC;	 catalog	 no.	 18121,	 IBL	 America),	 Gfrα1	

(1:100	 for	 IF;	 catalog	 no.	 AF560,	 R&D	 Systems),	 LDB1	 (1:10,000	 IHC,	 1:1000	 IF,	

Epitomics,	#S2318),	ERG	(1:100	IHC,	1:100	IF,	Epitomics	#2849‐1),	MATR3	(1:100	

IHC,	 Abcam,	 ab53748).	 IGF2BP1	 (1:100	 IHC,	 1:100	 IF,	 MBL	 #RN001M),	 CRABP1	

(IHC	1:100,	Genetex	#85869),	CCND3	(1:800	IHC,	1:100	IF,	Cell	Signaling,	#DCS22)	

NMT2	 (1:10,000	 IHC,	 1:1000	 IF	 Santa	 Cruz,	 H‐45)	 VASA	 (1:10,000	 IHC,	 Abcam,	

ab13840	 )	PHOSPHO‐H3	 (Cell	 Signaling	#9706S;	 1:100	 IF),	 CLEAVED	CASPASE	 ‐3	

(1:1000	IHC,	1:200	IF,	Cell	Signaling	#9664),	ID4	(1:100	IHC	3	hr	RT,	1:50	IF,	Santa	

Cruz,	L‐20).	For	an	example	of	Pax7	staining,	see	Figure	4.1.		

	

X‐gal	staining	

	Whole‐mount	 X‐gal	 staining	 was	 performed	 by	 manually	 dissociating	

tubules,	fixing	in	4%	PFA	and	PBS	for	30	minutes	at	RT,	and	staining	as	previously	

described	 (43)	 for	 6	 hours	 to	 overnight,	 followed	 by	 refixing	 in	 4%	PFA	 and	PBS	

overnight.	



	 40

	

Epitope	mapping	and	phylogenetic	analyses	

An	arrayed	microchip	was	designed	by	LC	Sciences	as	described	previously	

(65).	 The	 chip	 included	 12‐mer	 tiling	 peptides	 sequences	 with	 1‐aa	 resolution	

corresponding	to	the	entire	chicken	polypeptide	immunogen	(aa	300–523;	Genbank	

NP_990396.1).	The	corresponding	mouse	aa	sequence	was	also	arrayed	on	the	same	

microchip,	 also	 at	1‐aa	 resolution.	Peptide	 sequences	were	acetyl‐capped	at	 the	N	

terminus.	Pax7	antibody	(1	μg/ml)	was	hybridized	to	the	microarray	in	1×	PBS	7.4	

for	2	hours	at	4°C,	then	washed	in	1×	PBS	with	0.05%	Tween‐20	and	0.05%	TritonX‐

100,	 pH	 7.0.	 Detection	 was	 performed	 with	 an	 anti‐mouse	 IgG/Alexa	 Fluor	 647	

conjugate	(10	ng/ml)	in	binding	buffer	for	1	hour	at	4°C.	The	array	was	scanned	at	

635	nm	on	an	Axon	GenePix	4000B	Microarray	Scanner.	Sequences	were	obtained	

from	 NCBI	 (HomoloGene	 55665	 and	 accession	 nos.	 XP_003989659.1,	

XP_003891265.1,	 and	 XP_003428482.1)	 and	 manually	 aligned.	 Gonadal	 samples	

were	described	previously	(45).	

	

Western	blotting	

	For	 the	 blocking	 experiment,	 a	 22‐residue	 blocking	 peptide	

PSAVPPQPQADFSISPLHGGLD,	 spanning	 the	 10‐aa	 epitope,	 was	 synthesized.	 The	

peptide	(0.1	μg/μl)	and	antibody	(20	ng/μl)	were	incubated	at	4°C	for	24	hours	in	

500	 μl	 PBS,	 then	 centrifuged	 at	 4°C	 for	 15	minutes	 (11,525	g).	 The	 supernatants	

with	and	without	blocking	peptide	(500	μl)	were	added	to	2.5	ml	5%	milk	1×	TBST	

and	applied	to	the	Western	blots.	
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	 Spermatogonial	stem	cell	cultures	

SSC	 cultures	 from	 neonatal	 mouse	 testes	 were	 derived	 as	 previously	

described	(79).	Testes	were	dissected	from	DBA2	and	mixed	strain	mice	at	PD7‐14	

and	digested	with	dispase	(BD	Biosciences,	354235)	at	37°	C	for	28min	until	visibly	

disassociated.	 After	 centrifugation,	 the	 tissue	 was	 washed	 with	 DMEM/F12	 and	

resuspended	 in	 SF	 medium	 (recipe	 outlined	 in	 Table	 4.1),	 and	 plated	 onto	

irradiated	 MEF	 feeder	 cells.	 Established	 SSC	 cultures	 were	 fed	 with	 SF	 medium	

every	two	days,	and	continually	passaged	onto	fresh	feeder	cells.	

To	prepare	gelatin‐coated	plates,	a	0.2%	gelatin	solution	was	made	with	type	

A	 gelatin	 from	 porcine	 skin	 (Sigma,	 G‐1890)	 and	water,	 and	 then	 autoclaved	 and	

stored	 at	 4°C.	 To	 coat	 tissue	 culture	 plates,	 solution	 was	 added	 and	 plates	 were	

incubated	at	32°C	 for	at	 least	30min.	 Solution	was	 then	 removed	and	plates	were	

washed	with	D‐PBS	before	use.	

	

Statistics	

	Statistics	were	calculated	using	GraphPad	software.	Error	bars	in	all	figures	

indicate	SEM	for	at	least	3	animals/replicates	unless	otherwise	indicated.	For	Fisher	

exact	 tests,	 2‐tailed	 comparisons	were	 performed	 to	 calculate	P	 values.	 A	P	 value	

less	than	0.05	was	considered	significant.	

	

Study	approval	

	This	study	was	approved	by	the	UT	Southwestern	Institutional	Animal	Care	

and	Use	Committee.	
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tubules	in	the	ensuing	sections	(asterisk);	however,	this	does	not	affect	

interpretation	of	immunostaining.	(D)	Pax7	IF	on	formalin‐fixed	paraffin	embedded	

tissues	of	PD7	testis.	Some	background	staining	is	apparent	with	Pax7	IF.	Again,	the	

tubule	interiors	are	free	of	background	staining.	(E)	Wholemount	

immunofluorescence	of	Pax7	and	Foxo1	in	the	PD3	testis.	Pax7	stains	only	a	fraction	

of	germ	cells	at	this	timepoint.	In	wholemount	immunofluorescence,	the	non‐

specific	staining	of	the	basement	membrane	is	again	apparent.	A	second	cell	stains	

positive	for	Pax7	in	the	adjacent	tubule,	slightly	out	of	focus.	Scale	bars	=	25µm	for	

all	figures	except	100µm	for	(B)	adult	testis.	
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Table	4.1	Base	media:	StemPro34	SFM	Base		

Additional	components	 	 	 Concentration	

Bovine	Serum	Albumin	 5mg/mL

d‐	(+)	glucose	 6mg/mL

L‐glutamine	 2mM

100X	Antibiotic‐antimycotic	 1X

100X	MEM	vitamins	 1X

100X	Non‐essential	amino	acids	 1X

d‐Biotin	 10µg/mL

Insulin	 25µg/mL

Pyruvic	acid,	sodium	salt		 30µg/mL

dl‐Lactic	acid	(60%	solution)	 0.06%

Ascorbic	acid	 100µM

Sodium	selenite	 30nM

Putrescine	 60µM

Bovine	Apo‐transferin	 100µg/mL

Progesterone	 60ng/mL

β‐estradiol	17‐cypionate	 30ng/mL

2‐Mercaptoethanol	 10µM

ESGRO	 103	U/mL

Recombinant	mouse	EGF	 20ng/mL

Recombinant	human	basic	FGF	 10ng/mL

Recombinant	rat	GDNF		 15ng/mL

40x	StemPro34	nutrient	supplement 1X

Fetal	bovine	serum	 1%
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CHAPTER	5:	DISCOVERING	MARKERS	OF	SPERMATOGONIAL	STEM	CELLS	

	

Introduction	

To	 discover	 novel	 markers	 of	 spermatogonial	 stem	 cells,	 we	 employed	 an	

mRNA	based	screen	that	had	been	previous	utilized	to	discover	proteins	specific	to	

oogonia	 (80).	 This	 previous	 strategy	 compared	 the	 differential	 expression	 of	

proteins	 in	 oocyte	 populations	 separated	 by	 laser	 capture	 micro‐dissection.	 In	

addition	to	these	samples,	we	prepared	adult	testis,	neonatal,	and	embryonic	testis	

isolates.	 To	 examine	 proteins	 differentially	 expressed	 in	 distinct	 spermatogenic	

subsets,	we	utilized	datasets	available	through	the	Gene	Expression	Omnibus	(GEO).	

Several	 useful	 profiles	 consisted	 of	 distinct	 subtypes	 of	 cells	 were	 isolated	 using	

gravity	 sedimentation	methods	 and	 have	 been	 previously	 validated	 by	 examining	

proteins	 expressed	 in	 these	 specific	 spermatogenic	 subtypes	 (81).	 In	 addition	 to	

these	datasets,	we	isolated	RNA	from	intact	postnatal	day	2	mouse	testis,	as	well	as	

cultured	 SSCs,	 and	 as	 a	 further	 control,	 RNA	 from	 a	 broad	 array	 of	 normal	 adult	

mouse	tissue.	

	We	 reasoned	 that	 a	 marker	 of	 SSCs	 would	 be	 highly	 expressed	 in	

spermatogonial	stem	cell	cultures,	which	are	enriched	in	the	stem	cell	fraction,	and	

at	low,	perhaps	undetectable	levels	in	the	adult	testis.	However,	we	did	not	want	to	

exclude	 the	 possibility	 that	 spermatogonial	 stem	 cell	 cultures	 did	 not	 faithfully	

mimic	 the	 adult	 testis	 and	 therefore	 would	 not	 express	 similar	 protein	 markers.	

Therefore,	 we	 devised	 two	 schemes	 for	 identifying	 potential	 candidates	 for	 SSC	

markers.	 In	 one	 arm,	 probe	 sets	 were	 ranked	 on	 signal	 strength	 in	 SSCs	 as	 a	
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proportion	of	the	adult	testis.	 In	the	other,	the	sets	were	ranked	by	comparing	the	

expression	in	Type	A	spermatogonia	to	 the	 intact	adult	 testis.	One	strength	of	 this	

methodology	was	that	there	was	no	preset	cutoff	point	at	which	a	probe	set	would	

not	 be	 considered	 as	 a	 potential	 SSC	 candidate.	 Thus,	 all	 genes	 in	 the	microarray	

were	listed	from	the	most	differentially	expressed	to	the	least.	Another	advantage	to	

only	sorting	based	on	these	criteria	was	that	high	expression	in	other	tissues	did	not	

exclude	a	probe	set	from	being	an	SSC	candidate.		

I	 examined	 the	 expression	 profiles	 of	 500	 probe	 sets	 in	 each	 arm	 of	 the	

analysis.	While	ultimately	comparing	SSC	cultures	to	the	adult	testis	yielded	the	best	

results	 in	 terms	 of	 new	 candidates	 for	 SSC	 markers,	 both	 arms	 of	 the	 analysis	

yielded	interesting	results,	and	were	validated	both	by	examining	known	markers	of	

distinct	 spermatogenic	 subtypes,	 as	well	 as	 by	 pulling	 out	 known	markers	 in	 our	

ranked	lists.		

	

Known	markers	of	spermatogenic	subtypes	

One	 of	 the	 first	 germline	markers	 I	wanted	 to	 examine	was	Vasa,	which	 is	

expressed	 in	 all	 spermatogenic	 subtypes,	 from	 early	 embryonic	 development	

(e12.5)	to	adulthood	(61).	While	Vasa	was	not	on	our	ranked	list	of	SSCs	vs.	 testis	

because	of	 its	high	expression	 throughout	 the	germline,	 it	 served	as	an	 important	

control.	 In	 our	 probe	 set,	 Vasa	was	 expressed	 highly	 in	 the	 developing	 and	 adult	

testis,	 as	 well	 as	 in	 the	 developing	 ovary	 and	 oocytes.	 Expression	 of	 Vasa	 in	

spermatogenic	subtypes	was	at	near	equivalent	levels	in	Type	A,	B,	pachytene,	and	

round	spermatids,	akin	to	what	is	seen	in	vivo	(Figure	6.1).	This	gave	of	confidence	
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both	in	the	array	as	well	as	in	datasets	acquired	from	GEO	and	allowed	us	to	move	

on	to	the	ranked	list	of	probe	sets.	

		Plzf,	 expressed	 in	 Asingle‐	 Aal16	 spermatogonia	 (22),	 and	 Ret,	 expressed	 in	

mostly	Asingle‐	Apr		(82)	were	near	the	top	of	the	SSC	vs.	testis	list	(Figure	5.1).	Other	

known	markers	 of	 spermatogonia	 that	were	highly	 ranked	 included	 Lin28,	 Gfrα1,	

and	Foxo1.	A	common	pattern	to	these	known	markers	of	spermatogonia	included	

high	 expression	 in	 SSCs	 and	 type	 A	 spermatogonia,	 low	 expression	 in	 the	 more	

differentiated	 subtypes	 (Type	 B,	 pachytene,	 round	 spermatids).	 In	 the	 embryonic	

testis,	 expression	 was	 variable.	 However,	 there	 was	 a	 significant	 peak	 in	 the	

postnatal	 day	 2	 testis	 isolates.	 At	 this	 timepoint,	 the	 germline	 consists	 of	

prospermatogonia,	which	make	 up	 a	 significant	 part	 of	 the	whole	 neonatal	 testis,	

and	 many	 known	 prospermatogonia	 markers	 are	 expressed	 in	 undifferentiated	

spermatogonia.	 Because	 of	 this	 commonality,	 I	 decided	 to	 use	 a	 peak	 at	 postnatal	

day	two	to	prioritize	my	gene	list.		

	

Prioritizing	30	probe	sets	

In	order	to	reduce	the	approximately	1000	gene	list	to	a	manageable	number,	

I	 first	started	eliminating	genes	based	on	the	overall	strength	of	the	probe	set.	 If	a	

probe	set	had	an	expression	value	of	less	than	200,	it	was	assumed	that	the	protein	

would	be	difficult	 to	detect	 in	sections	and	 the	probe	set	was	eliminated	 from	the	

gene	 list.	 I	 then	 looked	 at	 the	RNA	expression	 in	 other	 tissues.	 If	 a	probe	 set	was	

universally	highly	expressed	across	all	adult	tissues,	I	eliminated	the	probe	from	the	

list	as	well.	The	ranking	of	the	probe	set	did	not	depend	on	whether	the	gene	was	
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part	 of	 a	 common	pathway	 in	 all	 tissues,	 such	 as	homeostatic	mechanisms.	These	

criteria	reduced	the	gene	list	to	a	more	manageable	number.	

I	then	turned	to	the	literature.	Any	gene	that	had	been	previously	implicated	

in	spermatogenesis	was	eliminated	from	the	list,	as	we	were	trying	to	discover	novel	

markers.	 Next,	 I	 began	 to	 look	 at	 patterns	 of	 expression	 in	 the	 known	 markers	

mentioned	above.	Genes	of	interest	include	those	that	have	a	peak	in	expression	at	

postnatal	day	2,	high	expression	in	the	SSC	cultures,	as	well	as	expression	in	Type	A	

spermatogonia.	At	this	point,	the	list	had	been	reduced	to	approximately	200	genes.	

I	 then	went	 back	 to	 the	 literature	 to	 see	 if	 any	 of	 the	 genes	 had	 been	 previously	

described	to	be	involved	in	stem	cell	maintenance	in	other	organ	systems,	as	some	

of	 these	 mechanisms	may	 be	 conserved	 in	 spermatogenesis.	 I	 also	 turned	 to	 the	

Mouse	Geonome	 Informatics	database	 to	 see	which	of	 these	genes	had	previously	

been	 knocked	 out	 in	 mouse	 models.	 I	 eliminated	 any	 gene	 to	 which	 a	 knockout	

mouse	 was	 available	 but	 no	 phenotype	 was	 described.	 If	 a	 knockout	 mouse	 had	

been	made	 and	 the	phenotype	described	would	preclude	 seeing	 any	 reproductive	

phenotype	(i.e.	neonatal	lethality,	mobility	issues,	tumors	before	puberty),	the	gene	

remained	 on	 the	 list.	 Finally,	 if	 floxed	 alleles	 were	 available,	 the	 gene	 was	

prioritized.		

From	these,	I	chose	20	genes	with	expression	patterns	similar	to	Plzf	and	Ret,	

and	5	genes	with	 expression	patterns	dissimilar	 to	 these	known	markers,	with	or	

without	 high	 expression	 in	 the	 SSC	 cultures,	 the	 logic	 being	 that	 since	 a	 marker	

specific	 to	 the	 stem	cell	had	not	been	discovered,	 the	expression	pattern	 could	be	

vastly	 different	 from	 previously	 described	 markers	 of	 undifferentiated	
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spermatogonia.	The	 list	 of	25	 genes	 contained	proteins	known	 to	be	 expressed	 in	

other	 stem	 cell	 populations,	 like	 Pax7	 in	 muscle	 satellite	 cells,	 proteins	 whose	

function	were	 still	 unknown	but	whose	 expression	pattern	had	been	described	 in	

other	tissues,	and	proteins	which	had	been	completely	uncharacterized.		

		

Candidate	genes	and	their	expression	in	the	adult	testis	

To	 examine	 the	 expression	 of	 these	 proteins	 in	 vivo,	 antibodies	 were	

purchased	 for	 the	 30	 candidate	 gene	 products.	 The	 gene	 list	 was	 screened	 by	

performing	IHC	on	adult	testis	sections	with	1:100,	1:1000,	and	1:10,000	dilutions.	

Antibody	detection	was	 chosen	over	RNA	 in	 situ	 because	 the	 vast	majority	 of	 the	

candidate	genes	already	had	antibodies	available	and	furthermore	the	availability	of	

antibodies	would	greatly	 increase	 the	speed	at	which	potential	SSC	markers	could	

be	 pursued.	 Immunohistochemistry	 was	 chosen	 over	 other	 protein	 detection	

methods	 such	 as	 western	 blot	 because	 SSCs	 are	 a	 small	 subset	 of	 the	 testis,	 and	

identification	 of	 these	 stem	 cells	 is	 first	 based	 on	 their	 location	 on	 the	 basement	

membrane.	 IHC	 was	 chosen	 over	 IF	 as	 a	 preliminary	 screen	 due	 to	 the	 ease	 of	

scaling	up	experiments	and	to	the	stability	of	the	signal.		

Out	of	 the	25	genes,	18	had	antibodies	available.	 	Of	 these	18	genes,	9	had	

working	 antibodies	 that	 had	 a	 specific	 staining	 pattern	 in	 the	 testis.	 The	 other	 9	

genes	failed	to	give	a	specific	IHC	signal	in	the	testis.	Of	the	9	genes	that	had	staining	

patterns	 in	 the	 testis,	 Pax7	was	 chosen	 as	 the	 final	 gene	 to	 pursue	 because	 of	 its	

restricted	 staining	 pattern	 in	 spermatogonia	 in	 the	 testis.	 Pax7	 and	 the	 resulting	

data	will	be	discussed	in	the	following	chapter.	The	remaining	8	genes	from	the	list	
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of	 working	 IHC	 staining	will	 be	 discussed	 below.	 It	 is	 important	 to	 note	 that	 the	

genes	that	were	not	pursued	due	to	 lack	of	specific	staining	patterns	could	merely	

reflect	 nonspecific	 antibodies	 (i.e.	 a	 gene	 could	 be	 expressed	 in	 SSCs	 but	 the	

purchased	antibody	could	fail	to	detect	the	protein).	Thus,	the	genes	that	were	not	

detected	 in	 the	 testis	 should	 not	 necessarily	 be	 considered	 a	 failure	 of	 the	

methodology.		

	

Ccnd3	

As	a	cyclin,	Ccnd3	associates	with	cyclin	dependent	kinases	CDK4	and	CDK6	

to	proceed	through	the	G1/S	transition	of	the	cell	cycle.	Mutations	in	this	gene	have	

been	described	in	a	variety	of	cancer	types,	 including	breast	cancer,	myeloma,	and	

bladder	cancer	(83‐85).	Ccnd3	had	been	reported	previously	to	be	expressed	in	the	

testis,	 but	 the	 precise	 localization	 of	 spermatogenic	 cell	 types	 had	 not	 been	

performed	(86).	Furthermore,	some	of	these	previous	findings	had	found	Ccnd3	in	

the	cytoplasm	 instead	of	 the	nucleus	as	expected	 for	a	 cyclin	 (87,	88).	Performing	

IHC,	 I	 found	 that	Ccnd3	was	expressed	 in	 the	nucleus	of	 type	A	spermatogonia,	as	

well	 as	 in	 the	 Leydig	 cells	 (Figure	 5.3).	 Comparison	 to	 other	 subsets	 of	 known	

markers	 suggested	 that	 Ccnd3	 would	 be	 expressed	 in	 undifferentiated	

spermatogonia,	 as	 cell	 counts	were	 at	 similar	 levels	 as	 Plzf	 and	 Foxo1,	which	 are	

also	expressed	in	undifferentiated	spermatogonia	(Figure	5.2).	A	knockout	of	Ccnd3	

has	been	described	with	no	effects	on	reproduction.	However,	 it	was	found	that	 in	

many	tissues,	Ccnd2	can	compensate	for	the	loss	of	Ccnd3	(89).	In	fact,	it	has	been	

reported	that	Ccnd2	is	also	expressed	in	the	testis	(86).	Thus,	the	lack	of	phenotype	
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could	 be	 due	 to	 compensation	 of	 Ccnd2.	 Ccnd3	 remains	 as	 a	 potential	marker	 of	

undifferentiated	spermatogonia	and	the	precise	function	of	Ccnd3	in	spermatogonia	

is	still	unknown.	

	

Crabp1	

Cellular	 retinoic	 acid	 binding	 protein	 was	 high	 on	 the	 gene	 list	 for	 being	

expressed	 in	 SSC	 cultures	 relative	 to	 the	 adult	 testis.	 Crabp1	 plays	 a	 role	 in	

proliferation	and	differentiation	of	cells,	and	is	an	 interesting	candidate	for	an	SSC	

marker,	 as	 retinoic	 acid	 is	 essential	 for	 the	 differentiation	 of	 spermatogonia.	

However,	knockout	of	Crabp1,	its	family	member	Crabp2,	and	double	knockouts	are	

essentially	 normal	 (90,	 91).	 By	 IHC,	 I	 found	 that	 Crabp1	 was	 expressed	 in	

spermatogonia	 on	 the	 basement	 membrane	 (Figure	 5.4).	 Cell	 count	 per	 tubule	

suggested	 that	 Crabp1	 was	 expressed	 in	 undifferentiated	 spermatogonia,	 as	 the	

number	of	cells	per	tubule	was	again	akin	to	Foxo1	(Figure	5.2).	

	

Erg	

Erg	is	a	member	of	the	erythroblastosis	transformation	specific	(ETS)	family	

of	transcription	factors,	which	play	diverse	roles	in	embryonic	development	and	cell	

proliferation,	 differentiation,	 and	death.	 Erg	has	been	 implicated	 in	many	 cancers,	

the	 most	 well‐known	 of	 which	 being	 prostate	 and	 Ewing’s	 sarcoma.	 In	 these	

cancers,	 Erg	 can	 form	a	 fusion	protein	with	 another	 gene	 to	make	 a	 transcription	

factor	which	causes	unchecked	growth.	 In	prostate	cancer,	 the	fusion	between	Erg	

and	TMPRSS2,	a	gene	which	is	responsive	to	androgen,	is	present	in	more	than	50%	
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of	all	prostate	cancers	(92).	Current	treatment	options	for	prostate	cancer	work	by	

eliminating	 androgen	 and	 thus	 reducing	 the	 unchecked	 growth	 due	 to	 the	 fusion	

protein	(92).	However,	prostate	cancers	eventually	develop	resistance	to	androgen‐

related	 therapies,	 and	 there	 is	 much	 interest	 in	 developing	 treatments	 that	

specifically	 target	 Erg	 (93).	 Since	 Erg	 has	 been	 well‐studied,	 it	 was	 an	 attractive	

candidate	for	an	SSC	marker.	

In	 adult	 testis	 sections,	 Erg	 specifically	 stained	 only	 the	 nuclei	 of	

spermatogonia,	 as	 well	 as	 some	 Leydig	 cells	 (Figure	 5.4).	 The	 number	 of	 Erg+	

spermatogonia	per	tubule	was	similar	 to	that	of	Foxo1	and	Plzf	counts,	suggesting	

that	Erg	stained	all	undifferentiated	spermatogonia	(Figure	5.2).		

	

Glis3	

Glis3	is	zinc	finger	Kruppel‐like	transcription	factor	that	functions	as	both	an	

activator	and	a	repressor.	Glis3	is	involved	on	the	development	of	the	pancreas	and	

thyroid,	and	mutations	in	Glis3	in	mice	and	in	humans	cause	neonatal	lethality	from	

diabetes,	as	well	as	hypothyroidism	and	polycystic	kidneys	(94‐96).	However,	there	

were	 no	 reports	 of	 Glis3	 being	 expressed	 in	 the	 developing	 or	 adult	 testis,	 but	 a	

reproductive	phenotype	could	be	masked	by	early	neonatal	death.	

As	 Glis3	 knockout	 mice	 were	 lethal,	 we	 pursued	 conditional	 knockout	 of	

Glis3,	 as	mice	were	 available	 as	 live	 animals	 from	 Jackson	 Labs.	Glis3f/f	mice	were	

crossed	to	Vasa‐Cre	and,	 in	a	separate	arm	of	the	experiment,	 to	Vasa‐Cre	ERT2	mice	

to	 generate	 Glis3f/t	 ;	Vasa‐Cre+	 male	 mice.	 These	 mice	 were	 then	 backcrossed	 to	

Glis3f/f	female	 mice,	 since	 Vasa	 is	 expressed	 in	 the	 early	 embryo	 and	 thus	 using	
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female	Glis3f/t	;	Vasa‐Cre+	mice	would	result	in	global	recombination	(61).	Such	care	

with	the	preliminary	crosses	is	not	needed	for	Vasa‐Cre	ERT2,	as	the	Cre	recombinase	

is	only	active	with	the	addition	of	tamoxifen.	Glis3f/‐	;	Vasa‐Cre+	male	mice	were	aged	

to	 3mos	 before	 analysis.	 Glis3f/‐	 ;	Vasa‐CreERT2+	male	 mice	 were	 injected	 with	 I.P.	

tamoxifen	for	three	days	at	6wks	of	age,	and	were	analyzed	at	3mos	of	age.		

	Conditional	 knockout	 of	 Glis3	 in	 the	 testis	 resulted	 in	 paradoxical	 results.	

When	 Glis3	 was	 deleted	 from	 early	 in	 embryonic	 development	 (Vasa‐Cre),	 testes	

were	highly	abnormal,	with	many	tubules	showing	a	reduction	in	germ	cell	number.	

However,	when	Glis3	was	deleted	after	puberty	(Vasa‐Cre	ERT2),	the	testes	appeared	

vastly	normal,	and	no	loss	of	germ	cells	was	observed,	suggesting	that	role	of	Glis3	

was	 in	establishment	of	 the	germline,	and	not	 in	 the	maintenance	of	SSCs	 (Figure	

5.6).	No	phenotype	was	observed	in	female	ovaries	in	either	arm	of	the	experiment.	

Furthermore,	 in	 Glis3f/‐	 ;	 Vasa‐Cre+	 	mice	 of	 both	 genders,	 occasional	 polycystic	

kidneys	 would	 be	 observed	 (Figure	 5.6),	 suggesting	 that	 Vasa‐Cre	 might	 be	

expressed	at	 low	levels	 in	the	kidney.	This	 leakiness	with	Vasa‐Cre	has	been	noted	

previously	 in	 the	 cerebellum	 (unpublished	 results,	 Castrillon	 lab),	 but	 not	 in	 the	

kidney.		

Overall,	 these	 results	 suggested	a	 role	 for	Glis3	 in	 the	 establishment	of	 the	

male	 germline,	 but	 not	 in	 the	 maintenance	 of	 the	 germline	 after	 puberty.	 This	

hypothesis	 was	 intriguing,	 but	 ultimately	 difficult	 to	 test	 as	 the	 purchased	

antibodies	 stained	 a	 few	 spermatogonia	 on	 the	 basement	 membrane,	 but	 also	

stained	 those	 same	 cells	 in	 the	 conditional	 knockout.	 Thus,	 the	 antibodies	 were	

thought	to	be	cross‐reacting	with	an	unknown	epitope,	and	were	discarded.	Later,	it	
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was	discovered	 independently	 that	Glis3	 is	 expressed	 in	 prospermatogonia	 in	 the	

early	embryonic	testis,	but	not	during	late	embryonic	development.	Glis3	is	thought	

to	be	involved	in	the	extensive	chromatin	remodeling	of	the	male	germline.	If	these	

initial	 observations	 hold	 up,	 this	 data	 suggest	 some	 important	 differences	 in	 SSC	

culture	vs.	the	adult	testis.	Glis3	was	highly	expressed	in	SSC	cultures,	even	though	

these	 cultures	 were	 derived	 after	 Glis3	 is	 thought	 to	 be	 down‐regulated	 in	vivo.		

Thus,	SSC	cultures	may	not	faithfully	recapitulate	the	behavior	of	SSCs	in	the	adult	

testis.		Further	study	of	Glis3	past	the	pilot	experiment	stage	was	not	performed,	as	

another	 candidate	 gene,	 Pax7,	 was	 a	 higher	 priority	 as	 a	 marker	 of	 SSCs	 (see	

Chapter	6).	

	

Igf2bp1	

Igf2bp1,	also	called	Imp1,	is	a	member	of	the	family	of	the	insulin‐like	growth	

factor	mRNA	binding	proteins.	These	proteins	can	control	 the	mRNA	transcription	

of	Igf2	as	well	as	c‐myc	and	ß‐	actin	(97).	Global	knockout	using	gene	trapping	led	to	

mice	 that	 were	 grossly	 smaller,	 and	 had	 high	 rates	 of	 neonatal	 lethality	 (97).	

Although	 the	mice	which	 survived	 to	adulthood	were	 fertile	 and	no	abnormalities	

were	observed	 in	 the	 testis,	 Igf2bp1	could	 still	 serves	as	a	marker	 for	SSCs,	 if	not	

having	a	functional	role.	Furthermore,	it	is	not	known	why	the	majority	of	mice	die	

in	 the	 neonatal	 period,	 and	 some	 survive.	 Perhaps	 some	 of	 other	 Imps	 can	

compensate	 for	 the	 loss	 of	 Igf2bp1.	 Igf2bp1	 made	 an	 attractive	 candidate	 for	 a	

marker	of	SSCs,	as	it	had	been	described	in	both	mouse	and	human	spermatogonia,	

and	also	seemed	to	be	associated	with	human	testicular	cancers	(98).	However,	the	
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precise	 subsets	 of	 spermatogonia	 in	 which	 Igf2bp1	 is	 expressed	 had	 not	 been	

described.		

Using	 an	 antibody	 to	 Igf2bp1,	 I	 detected	 3‐4	 positively	 staining	

spermatogonia	 on	 the	 basement	 membrane	 via	 IHC	 (Figure	 5.7).	 This	 was	 in	

accordance	 with	 previously	 published	 data	 (98),	 once	 again	 confirming	 our	

methodology.	Igf2bp1	was	also	found	to	be	expressed	in	SSC	cultures	via	IF.		

	

Nmt2	

Myristoltransferase	 genes	 add	 a	 myristol	 group	 to	 proteins	 either	 during	

synthesis	or	post‐translationally,	which	can	change	or	 regulate	 the	 function	of	 the	

protein.	 Nmt2	 has	 not	 been	 very	 well‐studied,	 but	 has	 been	 implicated	 in	 brain	

tumors	 as	 a	 cancer	 marker	 (99).	 Nmt2	 was	 an	 attractive	 candidate	 for	 an	 SSC	

marker	 for	 various	 reasons.	 First,	 inhibitors	 of	 Nmt2	 and	 its	 paralog	 Nmt1	 had	

already	 been	 developed	 (100).	 Second,	 mutations	 in	 Nmt2	 were	 associated	 with	

hypoplastic	 testes	 in	humans,	 suggesting	 that	 if	Nmt2	played	an	 important	 role	 in	

maintenance	 of	 the	 germline	 in	 mice,	 this	 function	 would	 carry	 over	 to	 humans	

(101).	 However,	 the	 expression	 of	 Nmt2	 had	 not	 been	 described	 in	 the	 testis	

previously.	Finally,	just	recently	and	after	the	gene	list	was	prioritized,	methodology	

to	visualize	myristolation	has	become	available	(102).		

By	 IHC,	 I	 found	 that	 Nmt2	 was	 expressed	 in	 spermatogonia	 lying	 on	 the	

basement	membrane	(Figure	5.8).	Nmt2	seemed	to	be	expressed	in	the	cytoplasm	

of	these	cells,	which	could	make	it	an	attractive	candidate	for	cell	sorting.	Still,	Nmt2	

was	expressed	in	a	large	number	of	cells,	and	was	therefore	unlikely	to	be	expressed	
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only	 in	 a	 restricted	 subset	 of	 spermatogonia.	 Foxo1,	 expressed	 in	 all	

undifferentiated	 spermatogonia,	 labels	 approximately	 3	 cells	 per	 tubule	 in	 adult	

testis	cross	sections.	Kit,	in	all	differentiating	spermatogonia,	is	more	abundant	and	

labels	 approximately	 11	 cells	 per	 tubule.	 More	 abundant	 still	 are	 Nmt2+	

spermatogonia,	 at	 approximately	17	 cells	 per	 tubule.	 This	 suggested	 that	 perhaps	

Nmt2	was	expressed	in	both	undifferentiated	and	differentiating	spermatogonia.	In	

fact,	 by	 wholemout	 IF,	 I	 found	 that	 Nmt2	 was	 expressed	 similarly	 to	 Kit,	 in	

differentiating	spermatogonia.	

	

Lbd1	

Ldb1	 is	 a	 LIM	 binding	 domain	 protein,	 LIM	 domains	 being	 important	 in	

organogenesis	as	well	as	oncogenesis.	Global	knockout	of	Ldb1	 is	early	embryonic	

lethal,	with	embryos	displaying	a	wide	range	of	abnormalities	from	lack	of	the	heart	

precursor	 organ	 to	 truncation	 of	 the	 head	 (103).	 Ldb1	 is	 also	 essential	 to	 normal	

erythroid	differentiation	(104).	I	found	via	IHC	that	Ldb1	is	specifically	expressed	in	

the	nuclei	of	a	 subset	of	 spermatogonia	on	 the	basement	membrane	 (Figure	5.9).	

There	are	approximately	5	Ldb1+	spermatogonia	per	tubule,	which	is	very	similar	to	

the	number	of	Foxo1+/Plzf+	undifferentiated	spermatogonia.	In	fact,	via	wholemout	

IF,	 I	 found	 that	Ldb1	was	expressed	highly	 in	undifferentiated	spermatogonia,	but	

was	also	expressed	at	low	levels	in	other	more	differentiated	cells.	

	

Matr3	
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Matrin	3	is	a	nuclear	membrane	protein	thought	to	stabilize	mRNAs.		Human	

mutations	in	Matr3	cause	amyotrophic	lateral	sclerosis	and	myopathies	(105‐107).	

After	 the	 development	 of	 this	 gene	 list,	 a	 gene	 trap	 of	 Matrin	 3	 was	 described,	

causing	early	embryonic	lethality	prior	to	e8.5.	In	the	adult	testis,	I	detected	Matr3	

in	more	differentiated	spermatocytes	and	round	spermatids,	with	a	distinct	lack	of	

staining	in	spermatogonia	(Figure	5.10).	Thus,	Matr3	was	abandoned	as	a	potential	

marker	of	SSCs.	Interestingly,	the	pattern	of	expression	on	the	digital	northern	did	

not	show	expression	of	Matr3	in	the	SSC	cultures.	In	fact,	this	gene	was	chosen	for	

having	a	dissimilar	pattern	to	Plzf	and	the	other	candidate	genes	(the	5	dissimilar	

patterns),	 to	 cover	 the	 possibility	 that	 a	 marker	 of	 SSCs,	 which	 had	 yet	 to	 be	

discovered,	 would	 have	 an	 expression	 pattern	 distinct	 from	 any	 of	 the	 previous	

markers	of	spermatogonia.		

	

Conclusions		

As	a	method	for	discovering	new	markers	of	spermatogonia,	comparing	the	

expression	of	markers	in	SSC	cultures	vs.	whole	testis	seemed	to	be	a	viable	method.	

Out	 of	 18	 genes	 to	 which	 antibodies	 were	 purchased,	 9	 showed	 specific	 staining	

patterns	 in	 the	 testis,	 and	 8	 of	 these	 specifically	 stained	 spermatogonia.	 Of	 the	 9	

genes	which	did	not	exhibit	staining	within	the	testis,	none	of	these	antibodies	had	

been	reported	 in	 the	 literature	 to	give	specific	patterns	 in	other	 tissues.	Thus,	 the	

failure	to	detect	a	signal	in	the	testis	may	be	due	to	inability	of	these	antibodies	to	

detect	 their	 cognate	 antigens	 in	 paraffin‐embedded,	 formalin‐fixed	 tissues.	

Furthermore,	one	of	 these	9	genes	was	Tert,	which	once	deleted,	causes	 infertility	
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and	 loss	 of	 the	 male	 germline,	 and	 thus	 must	 be	 expressed	 in	 the	 testis	 (108).	

However,	 the	 protein	 is	 expressed	 at	 extremely	 low	 levels,	 making	 it	 difficult	 to	

detect.	

On	the	other	hand,	of	the	25	genes	examined,	only	one,	Pax7,	was	expressed	

in	a	more	restricted	subset	of	SSCs;	of	the	genes	that	had	antibodies	that	were	useful	

for	 immunohistochemistry,	 the	 majority	 were	 expressed	 in	 all	 undifferentiated	

spermatogonia.	 Therefore,	 if	 the	 goal	 is	 to	 discover	 new	 and	 more	 restricted	

markers	 of	 stem	 cells	 and	 not	 merely	 markers	 of	 spermatogonia,	 some	 changes	

should	be	made	to	increase	the	probability	of	finding	an	SSC	marker.	This	could	be	

accomplished	 by	 a	 number	 of	 ways.	 First,	 Pax7+	 SSCs	 could	 be	 flow	 sorted	 and	

profiled,	and	this	data	could	be	used	to	discover	novel	genes	expressed	in	the	Pax7+	

subset	 of	 SSCs.	 Alternatively,	 genes	 could	 be	 selected	 that	 are	 not	 in	 the	 Pax7+	

subset,	and	new	subsets	of	spermatogonia	could	be	defined.	Secondly,	testes	could	

be	 treated	 with	 genotoxic	 reagents,	 and	 profiling	 could	 be	 performed	 while	 the	

testis	is	recovering,	as	at	this	time	there	is	an	increase	in	the	number	of	stem	cells	to	

repopulate	the	testis	(see	Chapter	6).		

Finally,	 since	no	 cut‐off	was	applied	 to	 the	 sorting	of	 the	original	 gene	 list,	

more	 candidate	 genes	 could	 be	 ranked	 based	 on	 the	 availability	 of	 verified	

antibodies,	thus	eliminating	the	possibility	that	failure	to	detect	a	specific	signal	in	

the	testis	was	due	to	failure	of	the	antibody.	This	strategy	was	not	chosen	previously	

because	we	wanted	to	prioritize	new	and	understudied	genes.	More	genes	could	be	

screened	than	only	the	25	that	were	chosen	previously.	In	fact,	 it	seems	that	brute	

force	 screening	 is	 the	 best	 predictor	 for	 success	 using	 the	 data	 sets	 available.	
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However,	there	are	many	unanswered	questions	to	the	nature	of	different	subsets	of	

Asingle	spermatogonia	and	stem	cells	that	cannot	be	answered	without	new	markers	

of	these	subsets.	Thus,	although	the	screening	of	different	genes	may	be	somewhat	

inefficient,	 the	 potential	 scientific	 payout	 is	 great.	 It	 is	 worth	 mentioning	 that	

without	such	screening,	Pax7	would	have	not	been	found,	and	previously,	the	lack	of	

SSC	markers	in	the	murine	testis	had	been	a	hindrance	to	the	field.		
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higher	levels	in	the	adult	testis	than	in	the	PD2	testis,	and	was	not	highly	expressed	

in	SSC	cultures.	Thus,	expression	profiles	akin	to	Kit’s	were	generally	avoided.		
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CHAPTER	6:	PAX7	EXPRESSION	DEFINES	GERMLINE	STEM	CELLS	 IN	THE	ADULT	

TESTIS	

	

Pax7	specifically	marks	a	small	subset	of	Asingle	spermatogonia	in	vivo	

We	 reasoned	 that	 a	 bona	 fide	 testis	 stem	 cell	 marker	 should	 be	 highly	

expressed	 in	 SSC	 cultures	 but	 at	 low	 (perhaps	 undetectable)	 levels	 in	 the	 adult	

testis,	 where	 true	 stem	 cells	 are	 a	 rare	 subpopulation.	 An	 RNA‐based	 approach	

previously	utilized	for	marker	discovery	in	ovarian	cell	subpopulations	(80)	led	us	

to	 the	 identification	 of	Pax7	 (Figure	6.1,	A).	 At	 the	mRNA	 level,	Pax7	 was	 highly	

expressed	 in	 SSC	 cultures	 but	 undetectable	 in	 adult	 testis	 (a	 relative	 difference	

>180x)	 (Figure	 6.1,	 B).	 In	 vivo,	 Pax7	 transcripts	 were	 detectable	 in	 A	 (early)	

spermatogonia	but	not	in	differentiated	B	spermatogonia,	spermatocytes,	or	round	

spermatids.	 Pax7	 transcripts	 were	 absent	 in	 embryonic	 testes	 (e11.5‐e18.5)	 and	

first	detected	at	postnatal	day	(PD)	2.	Among	adult	tissues,	Pax7	was	expressed	only	

in	skeletal	muscle,	consistent	with	Pax7’s	eminence	as	a	marker	of	satellite	cells,	the	

dormant	 tissue	 stem	 cell	 population	 that	 regenerates	 skeletal	 muscle	 following	

injury	 (109,	 110).	 In	 comparison,	 the	 pan‐germ	 cell	 marker	 Ddx4	 (Vasa)	 was	

expressed	 in	 adult	 testis	 (111)	 and	 all	 germ	 cell	 subpopulations	 but	 not	 in	 any	

somatic	 tissues,	 and	 	 transcripts	 were	 markedly	 decreased	 in	 germ‐cell	 deficient	

(KitlSl/KitlSl‐d)	testes,	as	expected	(Figure	6.1,	C).	Thus,	in	contrast	to	Pax7,	Ddx4	did	

not	exhibit	a	stem	cell	signature.	

We	sought	to	visualize	Pax7+	cells	 in	sections	of	adult	testis	with	an	α‐Pax7	

monoclonal	 antibody.	 Pax7+	 cells	were	 rare:	 a	 single	Pax7+	 cell	might	be	detected	
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within	 seminiferous	 tubules	 in	 one	 complete	 testis	 cross‐section	 (Figure	 6.2,	 A).	

Despite	 this	 rarity,	 several	 observations	 confirmed	 that	 the	 detection	 of	 Pax7+	

spermatogonia	was	specific,	defining	a	novel	population	of	spermatogonia.	First,	the	

Pax7+	cells	always	rested	on	the	basement	membrane	and	were	isolated,	single	cells	

(i.e.,	consistent	with	Asingle	spermatogonia;	see	also	below).	Secondly,	Pax7	protein	in	

spermatogonia	was	always	nuclear,	 as	expected	based	on	 its	 function	and	nuclear	

localization	within	satellite	cells	(109,	110).		

To	further	define	these	Pax7+	spermatogonia,	we	compared	their	abundance	

to	 other	 subsets	 of	 spermatogonia	 defined	 by	 well‐characterized	 markers	 (see	

schematic	 in	 Figure	 1.2).	 Kit+	 “differentiating”	 spermatogonia	 were	 the	 most	

abundant	 (10.9	 Kit+	 cells/tubule)	 with	 Foxo1+/Plzf+	 spermatogonia	 being	 more	

restricted	 as	 expected,	 given	 that	 Foxo1	 and	 Plzf	 are	 both	 markers	 of		

“undifferentiated”	 (AsingleAal16)	 spermatogonia,	 a	 less	 abundant	 population	 (14,	

22).	 Ret+	 spermatogonia	 were	 rarer	 still,	 consistent	 with	 Ret’s	 more	 restricted	

expression	 in	 Asingle	 and	 Apair	 spermatogonia	 (82).	 However,	 Pax7+	 spermatogonia	

were	 approximately	 two	 orders	 of	 magnitude	 rarer	 than	 Ret+	 spermatogonia	

(Figure	6.2,	B).	Pax7+	spermatogonia	were	Foxo1+	and	Gfr�1+,	while	most	Foxo1+	

or	Gfr�1+	cells	were	Pax7‐,	demonstrating	that	Pax7+	spermatogonia	are	a	subset	of	

undifferentiated,	Gfr�1+	spermatogonia	(Figure	6.2,	C).			

Confocal	 microscopy	 of	 intact	 seminiferous	 tubules	 further	 showed	 that	

Pax7+	 spermatogonia	were	a	 subset	of	Asingle	 spermatogonia.	Pax7+	 spermatogonia	

were	singular,	and	larger	chains	of	undifferentiated	spermatogonia	(i.e.	Aal4	to	Aal16)	

never	 contained	 Pax7+	 spermatogonia	 (Figure	 6.2,	 D,	 and	 Movie	 S1).	 Additional	
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confocal	microscopy	studies	confirmed	that	Pax7+	spermatogonia	were	always	Kit‐;	

no	 Kit+	 Pax7+	 spermatogonia	 were	 ever	 observed	 (Figure	 6.2,	 E).	 	 Thus,	 Pax7	

defines	 a	 rare	 but	 specific	 subset	 of	 Asingle	 spermatogonia,	 revealing	 striking	

heterogeneity	within	Asingle	spermatogonia	in	vivo.		

	

Pax7+	spermatogonia	are	rare	in	the	adult	testis,	but	constitute	a	much	higher	

fraction	of	germ	cells	in	the	neonatal	testis		

Interestingly,	 a	much	 higher	 percentage	 of	 germ	 cells	 (defined	 by	 the	 pan‐

germ	 cell	 marker	 GCNA)	 were	 Pax7+	 at	 birth	 (28%	 in	 neonates);	 however	 this	

fraction	steadily	decreased	postnatally,	stabilizing	at	6	weeks	of	age	(Figure	6.3,	A).	

The	 much	 higher	 fraction	 of	 Pax7+	 germ	 cells	 at	 birth	 further	 underscores	 their	

rarity	 in	 adults,	 and	 also	 demonstrates	 that	 Pax7+	 spermatogonia	 can	 be	 reliably	

identified	 in	 tissue	 sections	 (analyses	 of	 conditional	 knockout	 testes	 described	

below	confirmed	antibody	specificity).		

This	age‐dependent	decrease	 in	 the	Pax7+/GCNA+	cell	number	could	 reflect	

decreased	 absolute	 numbers	 of	 Pax7+	 spermatogonia,	 versus	 their	 dilution	 due	 to	

the	massive	expansion	of	spermatogenic	cells	that	normally	occurs	during	postnatal	

life	 (e.g.	 testes	 weights	 increase	 from	~1	mg	 at	 birth	 to	 ~60	mg	 in	 adult	 males)	

(112).	 To	 distinguish	 between	 these	 possibilities,	 we	 serially‐sectioned	 and	

immunostained	 entire	 PD1	 and	 adult	 testes	 and	 documented	 similar	 numbers	 of	

Pax7+	 spermatogonia	 per	 testis	 (504	 +/‐29	 and	 402	 +/‐	 33	 S.E.M.	 respectively)	

(Figure	6.3,	B).	Thus,	the	dramatic	age‐dependent	decrease	in	the	fraction	of	Pax7+	

germ	cells	reflects	mainly	the	rapid	expansion	of	spermatogenesis,	and	not	a	 large	
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decrease	in	absolute	numbers	of	Pax7+	cells.	These	results	also	strongly	suggest	that	

the	 postnatal	 Pax7+	 spermatogonia	 represent	 the	 initial	 founder	 population	 for	

Pax7+	spermatogonia	in	adult	testes.		

	

Pax7+	spermatogonia	are	rapidly	cycling	during	normal	spermatogenesis	and	

function	as	robust	stem	cells	that	give	rise	to	all	stages	of	spermatogenesis	

We	 considered	 the	 possibility	 that	 (by	 analogy	 with	 satellite	 cells)	 adult	

Pax7+	 spermatogonia	might	 represent	 a	 quiescent	 subset	 of	 Asingle	 spermatogonia.	

To	our	surprise,	however,	EdU	labeling	showed	that	Pax7+	cells,	like	other	subsets	of	

spermatogonia,	were	rapidly	cycling	(Figure	6.3,	C).	

We	then	sought	to	explore	the	contribution	of	Pax7+	spermatogonia	and	their	

descendants	to	normal,	steady‐state	spermatogenesis	in	the	undisturbed	adult	testis	

through	 lineage	 tracing.	 We	 employed	 a	 Pax7tm2.1(cre/ERT2)Fan/J	 allele	 where	 the	

tamoxifen‐inducible	 recombinase	CreERT2	was	knocked	 into	 the	Pax7	 locus,	driving	

CreERT2	 expression	 in	cells	 that	express	Pax7,	 such	as	satellite	cells	 (Figure	6.4,	A)	

(52,	 113).	 We	 generated	 mice	 harboring	 Pax7tm2.1(cre/ERT2)Fan/J	 and	 the	 Rosa26	 β‐

galactosidase	 lox‐stop‐lox	 reporter,	 R26R	 (66).	 Six	 week‐old	 adult	 males	 were	

treated	with	tamoxifen	to	activate	Cre	in	Pax7+	cells.	Untreated	Pax7tm2.1(cre/ERT2)Fan/J;	

R26R	males	 exhibited	no	Cre‐mediated	 recombination	 in	 testis	 or	 skeletal	muscle,	

demonstrating	tight	control	of	Cre.	Expression	of	Pax7	in	labeled	clones	confirmed	

faithful	Pax7tm2.1(cre/ERT2)Fan/J	expression	 in	Pax7+	 spermatogonia	 (Figure	6.4,	B‐D).	

To	characterize	Pax7+	descendants	within	 the	 testis,	 labeled	clones	were	analyzed	

after	 defined	 time	 intervals.	 By	 “clone”	we	 refer	 not	 to	 individual	 spermatogonial	
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chains	but	rather	to	completely	isolated	groups	of	labeled	cells	that	could	comprise	

multiple	 chains	 but	 were	 clearly	 descendants	 of	 a	 common	 progenitor—despite	

their	sometimes	complex	arrangements—because	of	their	close	proximity.	Of	note,	

clones	were	very	distant	 to	 their	nearest	neighbors	and	were	much	more	 isolated	

than	 apparent	 in	 the	 figures	 shown,	 with	 no	 labeled	 clones	 evident	 in	 either	

direction	 along	 the	 tubule.	 Thus,	 there	 is	 no	 question	 that	 these	 clones	 were	

separate	tracing	events	at	every	time	point	analyzed.		

Four	days	after	tamoxifen	treatment,	clones	were	very	small,	most	consisting	

of	single,	isolated	cells,	similar	to	the	Pax7	immunostaining	pattern	(Figure	6.5,	A).	

The	 presence	 of	 slightly	 larger	 clones	 after	 3	 weeks	 and	 their	 subsequent	 rapid	

expansion	 is	 consistent	with	 rapid	 cycling.	 There	was	 striking	 clone	 expansion	 at	

successive	timepoints,	 such	 that	by	6	weeks	of	age,	very	 large	clones	were	readily	

visualized.	 Interestingly,	 larger	 clones	were	 sometimes	 associated	with	distinctive	

“trails”	 of	 cells,	 some	 of	 which	 were	 clearly	 Asingle	 spermatogonia	 based	 on	 their	

distance	(multiple	cell	diameters)	to	other	labeled	descendants	(Figure	6.5,	A,	#1‐4,	

Movie	 S1).	 This	 implies	 complex	 patterns	 of	 migration	 of	 Pax7+	 cells	 and	 their	

descendants,	but	could	also	reflect	chain	fragmentation.	Labeled	elongate	spermatid	

tails	were	 first	 identified	6	weeks	after	 induction	(Figure	6.5,	B‐C).	Average	clone	

sizes	(i.e.	 cells	per	clone)	 increased	over	 time,	but	clone	numbers	remained	stable	

over	 this	 prolonged	 interval.	 This	 argues	 that	 Pax7+	 spermatogonia	 are	 bona	 fide	

stem	 cells.	 If	 Pax7+	 spermatogonia	were	 instead	 transit‐amplifying	 intermediates,	

labeled	cells	would	become	diluted	out	with	time	and	eventually	disappear	because	
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the	 total	 duration	 of	 spermatogenesis	 (i.e.	 from	 Asingle	 spermatogonium	 to	 sperm	

release)	is	only	39	days	in	the	mouse	(114).	

Lineage	 tracing	 experiments	 with	 Pax7tm2.1(cre/ERT2)Fan/J	 and	 a	 double‐

fluorescent	mT/mG	 reporter	 (68)	 gave	 nearly	 identical	 results.	 Clones	 began	 as	

single	cells.	One	week	after	Cre	induction,	labeled	Asingle,	Apair,	and	Aal4‐8	chains	were	

identified.	At	six	weeks,	 larger	clones	were	visualized	and	elongate	spermatid	tails	

were	 first	 identified	 in	 tubular	 lumina.	 By	 16	 weeks,	 clones	 were	 even	 larger	

(Figure	6.6,	A),	and	motile,	labeled	sperm	were	present	in	epididymides	(Movie	S2).	

Labeled	Asingle	spermatogonia	were	observed	at	all	timepoints	(Figure	6.6,	A,	Movie	

S3	and	S4).	To	more	clearly	delineate	clonal	architecture,	we	also	analyzed	 frozen	

tissue	 sections	 of	 intact	 testes,	 which	 permitted	 better	 visualization	 of	

spermatogenic	 layers	 and	 cell	 types.	 In	 some	 clones,	 all	 of	 the	 germ	 cells	 in	 the	

entire	tubular	cross‐section	were	clearly	labeled	(green),	demonstrating	that	all	the	

germ	 cells	 (spermatogonia,	 spermatids,	 and	 spermatocytes)	 were	 derived	 from	 a	

Pax7+	 progenitor	 (Figure	 6.6,	 B).	 These	 results	 demonstrate	 that	 Pax7+	

spermatogonia	 give	 rise	 to	 full‐lineage	 maturation	 (see	 also	 labeled	 sperm	 from	

epididymis,	Figure	6.6,	C),	 thereby	 fulfilling	a	key	criterion	of	an	adult	 testis	stem	

cell.	 As	 with	 R26R‐based	 lineage	 tracing,	 clone	 numbers	 did	 not	 decrease,	 even	

when	 the	 analyses	were	extended	 to	16	weeks	 after	 tamoxifen	 treatment	 (Figure	

6.6,	D‐E).	We	conclude	 from	these	analyses	with	 two	distinct	reporters	 that	Pax7+	

spermatogonia	are	 rare	but	 robust	 tissue	 stem	cells.	They	give	 rise	 to	other	Asingle	

spermatogonia	that	persist	even	after	very	long	intervals	of	16	weeks,	and	also	give	

rise	to	all	stages	of	spermatogenesis—including	motile	sperm.		
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Lineage	 tracing	 studies	 of	 neonatal	 animals	 shows	 that	 neonatal	 Pax7+	

spermatogonia	 have	 long	 term	 stem	 cell	 potential	 in	 vivo	 and	 also	 have	 stem	 cell	

activity	in	transplantation	assays	

Lineage	 tracing	 studies	 initiated	 with	 neonatal	 animals	 (PD1‐3)	 confirmed	

that	Pax7+	spermatogonia	were	rapidly	expanding	by	PD3	and	were	progenitors	of	

subsequent	 Asingle	 spermatogonia	 and	 spermatogenesis;	 clones	 grew	 in	 size	 over	

time	 and	 persisted	 into	 adulthood	 (Figure	 6.7,	 A,	 B).	 Concordantly,	 Pax7+	

spermatogonia	 were	 rapidly	 proliferating	 by	 PD3	 per	 EdU	 incorporation	 rates,	

without	significant	cell	death	 (Figure	6.7,	C).	Finally,	although	 flow	sorting	of	 live	

Pax7+	 spermatogonia	 was	 not	 possible	 with	 available	 reagents,	 transplantations	

were	 conducted	 with	 unsorted	 cells	 from	 tamoxifen‐treated	 Pax7tm2.1(cre/ERT2)Fan/J;	

nuclear	 tdTomato	 reporter	 mice	 (67).	 Labeled,	 lineage‐traced	 germ	 cells	 were	

observed	 in	 every	 host	 (n=3),	 demonstrating	 that	 Pax7+	 spermatogonia	 and	 their	

descendants	have	stem	cell	activity	in	transplantation	assays	(Figure	6.7,	D).	

	

Pax7+	 spermatogonia	persist	 in	mouse	models	of	 infertility	while	other	germ	

cells	are	ablated	

To	 first	 examine	 the	 behavior	 of	 Pax7+	 spermatogonia	during	 injury	 to	 the	

testis,	 I	examined	four	mouse	models	of	 infertility,	Foxo1f/f	;	Vasa‐Cre,	Foxo1/3/4	f/f	;	

Vasa‐Cre,	and	Ptenf/f	;	Vasa‐Cre.	All	 three	of	 these	mouse	models	begin	with	normal	

prospermatogonia,	 and	 eventually	 progress	 to	 seminiferous	 tubules	 which	 only	

contain	Sertoli	cells	because	all	germ	cells	have	undergone	apoptosis	(14).		I	found	
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that	 in	 all	 three	 models,	 Pax7+	 prospermatogonia	 seemed	 to	 increase	 in	 number	

when	other	germ	cells	were	dying	(Figure	6.8).	One	caveat	to	this	finding	was	that	

in	the	Pten	cKO,	in	which	the	reduction	of	germ	cell	number	comes	on	more	quickly	

than	in	the	other	two	models,	no	Pax7+	spermatogonia	were	seen	at	late	timepoints.	

In	 these	models	 of	 infertility,	 Pax7+	 prospermatogonia	 seemed	 to	 be	 in	 clumps	 of	

cells,	which	had	not	been	seen	previously,	suggesting	that	maybe	these	cells	could	

divide	 to	 try	 and	 replace	 lost	 germ	 cells.	 By	 adulthood,	 these	 clumps	 of	 Pax7+	

spermatogonia	were	no	longer	observed,	but	a	few	Pax7+cells	still	remained	in	the	

tubules,	although	at	this	point	the	germline	was	nearly	completely	ablated.		

	

Pax7+	spermatogonia	persist	after	hypophysectomy,	and	increase	in	number	

Removal	 of	 the	 pituitary	 eliminates	 the	 source	 of	 LH	 and	 FSH	 essential	 to	

maintain	Leydig	and	Sertoli	cells,	and	thus	also	to	maintain	the	germline.	Ablation	of	

germ	cells	in	these	mice	occurs	gradually;	while	infertility	occurs	within	2wks	after	

surgery	(115),	germ	cells	can	persist	even	12wks	later,	although	the	size	of	testis	at	

this	timepoint	is	greatly	reduced.		

To	determine	the	behavior	of	Pax7+	spermatogonia	after	loss	of	the	pituitary,	

adult	mice	underwent	hypophysectomy.	As	expected,	germ	cell	number	was	greatly	

reduced,	 as	 determined	 by	 IHC	 of	 the	 pan‐germ	 cell	 marker,	 GCNA	 (Figure	6.9).	

However,	 even	 12wks	 after	 hypophysectomy,	 when	 the	 ablation	 of	 germ	 cells	 is	

nearly	 90%,	 Pax7+	 spermatogonia	 could	 be	 seen	 via	 IHC.	 Furthermore,	 when	

counting	 the	 number	 of	 Pax7+	 spermatogonia	 per	 tubule	 and	 per	 germ	 cell,	 there	

was	a	modest	increase	in	cell	number.	This	argues	that	while	other	cell	populations	
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undergo	apoptosis,	Pax7+	spermatogonia	can	persist,	and	perhaps	divide	to	try	and	

reestablish	 the	 germline.	 Furthermore,	 it	 seems	 that	 Pax7+	 spermatogonia	 are	

insensitive	 to	 loss	 of	 LH	 and	 FSH.	 This	 is	 especially	 interesting	 in	 the	 light	 of	 the	

finding	 that	 suppression	 of	 testosterone	 after	 chemotherapy,	 which	 is	 highly	

damaging	 to	 the	 germline,	 can	 actually	 aid	 in	 spermatogenic	 recovery	 (116).	 The	

fact	 that	 Pax7+	 spermatogonia	 do	 not	 necessarily	 depend	 on	 testosterone	 for	 cell	

survival	suggests	that,	if	these	cells	are	indeed	stem	cells,	they	could	be	those	cells	

which	help	to	reestablish	the	germline	after	chemotherapy.		

	

Pax7+	 spermatogonia	 are	 1)	 selectively	 resistant	 to	 anti‐cancer	 therapies	

(radiotherapy	and	chemotherapy)	that	kill	other	germ	cells	in	the	adult	testis	and	2)	

contribute	to	spermatogenic	recovery	following	ablation	of	most	germ	cells	

Spermatogenesis	 is	 highly	 sensitive	 to	 systemic	 genotoxic	 stresses	 such	 as	

cytotoxic	 chemotherapy.	 Chemotherapy‐induced	 ablation	 of	 germ	 cells	 has	 been	

studied	 in	 rodent	models.	 Following	 treatment	with	 the	 alkylating	 agent	 busulfan	

(a.k.a.	 Myleran,	 used	 to	 treat	 hematopoietic	 malignancies)	 germ	 cells	 undergo	

massive	cell	death	in	a	dose‐dependent	manner—with	higher	doses	leading	to	near	

total	germ	cell	depletion.	This	results	 in	an	 interval	of	azoospermia	and	 infertility,	

followed	by	a	gradual	recovery	of	spermatogenesis,	and	in	most	animals,	restoration	

of	 fertility	 even	 after	 high	 doses	 (34).	 Such	 spermatogenic	 recovery	 poses	 a	

paradox:	 the	 germline	 is	 almost	 entirely	 ablated,	 and	 yet	 the	 restoration	 of	

spermatogenesis	 implies	 the	existence	of	 rare	stem	cells	 that	not	only	 survive	but	

replenish	spermatogenesis	during	the	recovery	period	(117).	
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To	 study	 the	 contribution	 of	 Pax7+	 spermatogonia	 to	 spermatogenic	

recovery,	 adult	 mice	 (6	 weeks	 of	 age)	 were	 treated	 with	 busulfan.	 As	 expected,	

testes	underwent	massive	germ	cell	death	with	dose‐	and	time‐dependent	germ	cell	

loss	 as	 visualized	by	 immunohistochemistry	with	 the	pan‐germ	cell	marker	GCNA	

(118).	 In	 striking	 contrast,	 both	 relative	 and	 absolute	 numbers	 of	 Pax7+	

spermatogonia	 increased	several‐fold,	also	 in	a	 time‐	and	dose‐dependent	manner	

(Figure	6.10,	A).	Absolute	numbers	of	Pax7+	cells	peaked	(>5x	higher	compared	to	

untreated	 mice)	 16	 days	 after	 treatment	 with	 the	 highest	 dose	 of	 busulfan	 (40	

mg/kg).	 Pax7+	 cell	 counts	 then	 decreased	 between	 16	 and	 32	 days,	most	 likely	 a	

consequence	 of	 differentiation	 (see	 below).	 This	 association	 remained	 even	when	

normalizing	 to	 Sertoli	 cells	numbers	 (Figure	6.11),	 and	 therefore	 it	 is	not	merely	

the	 testis	 shrinking	 overall	 that	 leads	 to	 this	 increase	 in	 cell	 number.	 Thus,	while	

germ	cells	as	a	whole	were	largely	ablated	by	busulfan,	Pax7+	cells	not	only	survived	

but	expanded.	

Histology	 and	 immunostaining	 confirmed	 massive	 loss	 of	 germ	 cells.	

Whereas	 in	 untreated	 animals	 virtually	 all	 Pax7+	 cells	 were	 single,	 isolated	 cells	

(with	 only	 extremely	 rare	 cells	 being	 present	 as	 pairs,	 and	 never	 in	 clusters	 ≥3),	

larger	Pax7+	clusters	of	2‐4	or	more	cells	were	observed	following	busulfan	(Figure	

6.10,	 B‐C).	 This	difference	 in	 cluster	 sizes	 (one	 versus	≥2)	was	highly	 statistically	

significant	 (p=2x10‐9)	 in	 untreated	 animals	 versus	 those	 treated	 with	 40	 mg/kg	

busulfan	 after	 32	 days.	 The	 Pax7+	 fraction	 undergoing	 DNA	 replication	 based	 on	

EdU	incorporation	was	increased	four	days	after	busulfan	treatment,	demonstrating	

that	 busulfan	 treatment	 stimulated	 Pax7+	 cell	 division	 acutely,	 arguing	 that	 cell	
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division	 is	one	mechanism	underlying	 the	 formation	of	Pax7+	cell	clusters	(Figure	

6.10,	 D).	 In	 contrast	 to	 Pax7+	 spermatogonia,	 Foxo1+	 undifferentiated	

spermatogonia	 counts	 fell	 by	 >15x	 eight	 days	 after	 40	 mg/kg	 busulfan	

administration,	 but	 then	 recovered	 coincident	 with	 the	 peak	 of	 Pax7+	 expansion	

(Figure	6.12,	A).	These	data	indicate	that	spermatogonia	are	sensitive	to	genotoxic	

stress	as	previously	reported	(119),	emphasizing	the	unique	properties	and	survival	

of	Pax7+	 spermatogonia	after	 treatments	 that	ablate	 the	vast	majority	of	 germline	

cells.	 That	 the	 increase	 in	 Foxo1+	 spermatogonia	 coincides	 with	 the	 decrease	 of	

Pax7+	 spermatogonia	 is	 further	 evidence	 that	 Pax7+	 spermatogonia	 eventually	

differentiate	(Figure	6.12,	B‐C).	 In	control	experiments,	neither	tamoxifen	nor	the	

DMSO	 solvent	 had	 a	 significant	 impact	 on	 testis	weights	 or	morphology	 or	 Pax7+	

spermatogonia	(Figure	6.13,	A	‐D).		

We	then	analyzed	the	response	of	Pax7+	spermatogonia	to	ionizing	radiation	

and	 a	 second	 chemotherapeutic	 agent	 commonly	 used	 in	 the	 clinic,	

cyclophosphamide.	Cyclophosphamide	 is	 less	 toxic	 to	 the	germline,	necessitating	a	

longer	treatment	protocol	(150	mg/kg	I.P.	every	5	days	for	25	days)	than	busulfan,	

which	was	 administered	 as	 a	 single	 dose.	 Radiation	was	 administered	 in	 a	 single	

(non‐fractionated)	 dose	 of	 5	 Gray.	 Selective	 survival	 and	 clustering	 of	 Pax7+	

spermatogonia	 (p<10‐5)	 similar	 to	 that	 observed	 following	 busulfan	 were	 also	

observed	after	either	external	irradiation	or	cyclophosphamide	(Figure	6.14,	6.15).	

Following	 the	 cessation	 of	 each	 treatment,	 the	 number	 of	 Pax7+	 spermatogonia	

increased,	and	subsequently	declined,	as	was	observed	with	busulfan.	These	results	

are	 significant	 in	 that	 they	 demonstrate	 that	 in	 the	 mouse,	 Pax7+	 spermatogonia	
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selectively	 survive	 first‐line	 cancer	 therapies	 that	 often	 result	 in	 reversible	 or	

permanent	 sterility	 in	 men	 and	 boys	 (120).	 These	 findings	 make	 Pax7+	

spermatogonia	strong	candidates	as	 the	“spermatogenic	recovery”	cells	postulated	

to	 be	 responsible	 for	 spermatogenic	 recovery	 following	 cytotoxic/genotoxic	

treatments	in	rodent	models	(121).		

To	 further	 explore	 this	 possibility,	 lineage	 tracing	 studies	were	 performed	

with	adult	mice	treated	with	20	mg/kg	busulfan.	In	one	experiment,	lineage	tracing	

was	 initiated	 by	 tamoxifen	 (usual	 three‐day	 regimen)	 followed	 by	 busulfan	

(tambu).	 In	 a	 second	 experiment,	 the	 order	 of	 treatments	 was	 reversed,	 and	

tamoxifen	 was	 administered	 15‐17	 days	 after	 busulfan	 administration	 (the	

timepoint	 coinciding	 with	 the	 peak	 of	 Pax7+	 cells)	 (butam)	 (Fig.	 9A).	 In	 each	

experiment,	 Pax7+	 spermatogonia	 contributed	 to	 spermatogenic	 recovery,	 as	

evidenced	 by	 the	 presence	 of	 labeled	 clones	 eight	weeks	 after	 the	 last	 treatment.	

With	 the	 tambu	 protocol,	 the	 number	 of	 clones	 was	 fewer	 than	 in	 untreated	

control	mice	(p=0.002),	whereas	the	number	of	clones	was	greater	than	controls	in	

the	butam	protocol	(p=0.021).	These	results	are	consistent	with	the	expansion	of	

Pax7+	 cells	 observed	 at	 16	 days	 after	 busulfan	 (Figure	 6.10,	 A,	 6.16,	 B‐C).	 The	

somewhat	smaller	mean	clone	sizes	in	the	butam	vs.	tam	bu	experiments	(161	

vs.	 378)	 could	 be	 explained	 by	 the	 administration	 of	 tamoxifen	 15‐17	 days	 after	

busulfan	 (butam),	whereas	 in	 the	 tambu	 protocol	 busulfan	was	 administered	

only	 8	 days	 after	 tamoxifen.	 This	 7‐9	 day	 difference	 might	 permit	 one	 or	 more	

additional	cell	doublings	to	occur	 in	the	tambu	protocol,	 thus	accounting	for	the	

modestly	 (~2x	 difference)	 increased	 clone	 size.	 Clone	morphology	was	 similar	 to	
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that	observed	in	the	prior	lineage	tracing	experiments;	an	example	of	a	large	clone	is	

shown	 (Figure	 6.16,	 D).	 In	 tissue	 sections	 of	 the	 larger	 clones,	 the	 labeled	 cells	

made	up	all	 of	 the	germ	cells	 in	 a	 tubular	 cross	 section,	demonstrating	 that,	 as	 in	

normal	 spermatogenesis	 in	 untreated	 mice,	 Pax7+	 spermatogonia	 contributed	 to	

full‐lineage	 maturation	 following	 busulfan	 (Figure	 6.16,	 E).	 Together,	 these	 data	

show	that	Pax7+	spermatogonia	not	only	selectively	survive	but	also	contribute	 to	

the	 reestablishment	 of	 spermatogenesis	 following	diverse	 genotoxic	 insults	 to	 the	

germline	including	radiotherapy	and	chemotherapy	(117).	

	

Elimination	of	Pax7+	spermatogonia	is	not	feasible	using	a	specific	conditional		

allele	of	DT	

I	 attempted	 to	 eliminate	 all	 Pax7+	 SSCs	 with	 a	 well‐known	 lox‐stop‐lox	

diphtheria	toxin	(DT)	allele	crossed	with	the	Pax7tm2.1(cre/ERT2)Fan/J	line.	Since	mice	do	

not	have	a	receptor	for	diphtheria	toxin,	expression	of	the	toxin	under	the	influence	

of	Cre	recombinase	should	result	in	the	immediate	and	specific	death	of	Pax7+	cells.	

Unfortunately,	 these	 cell‐deleting	 tools	 often	 suffer	 from	 significant	 technical	

limitations.	Ideally,	Cre‐mediated	recombination	would	lead	to	immediate	death	of	

all	Cre‐expressing	cells;	 in	practice,	 cell	killing	 is	often	 inefficient	 in	particular	cell	

types,	and	in	the	experience	of	many	investigators	working	with	diverse	cell	types,	

cell	 death	 is	 not	 achieved,	 or	 is	 inefficient.	 This	 is	 particularly	 a	 problem	because	

then	 all	 of	 the	 descendants	 of	 the	 progenitor	 cells	 will	 express	 DT,	 which	 will	

continue	to	have	a	toxic,	sublethal	effect	throughout	the	lineage	(Figure	6.17).	We	

believe	 this	 is	 what	 occurred	 in	 our	 Pax7tm2.1(cre/ERT2)Fan/J;	 DT	mice,	 because	 we	
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observed	 abnormal	 spermatogenesis	 including	 decreases	 in	 all	 stages	 of	

spermatogenesis	 with	 ensuing	 abnormal	 tubules	 ‐	 but	 spermatogenesis	 was	 not	

completely	 ablated.	 These	 results	 are	 consistent	 with	 the	 role	 of	 Pax7	

spermatogonia	as	progenitor	stem	cells.	

	

Preliminary	 observations	 demonstrate	 that	 Pax7	 is	 dispensable	 for	

spermatogenesis	

To	 study	 the	 genetic	 requirements	 for	 Pax7	 in	 spermatogenesis,	 we	

performed	conditional	genetic	knockout	(cKO)	with	 the	germline‐specific	Vasa‐Cre	

(VC),	which	we	had	previously	generated	and	characterized	(61)	and	a	conditional	

(floxed)	Pax7f	allele	 (52).	Pax7	 germline	 cKO	 testes	were	morphologically	 normal,	

and	 harbored	 normal	 spermatogenesis	 as	 evidenced	 by	 normal	 weights	 and	

histological	 analyses.	Furthermore,	 all	males	 (n=3)	were	 fertile,	with	normal	 litter	

sizes,	 demonstrating	 that	 Pax7	 is	 dispensable	 for	 male	 fertility	 in	 mice	 (Figure	

6.18A‐D).	VC;	Pax7‐/f	 female	ovaries	were	also	histologically	normal	and	contained	

all	stages	of	follicles	from	primordial	to	secondary	(Figure	6.19).	VC;	Pax7‐/f	males	

treated	with	busulfan	 (n=3)	 showed	a	 significant	 lag	 in	 spermatogenic	 recovery	8	

weeks	after	 treatment	 (Figure	6.20),	 although	 this	 lag	was	 somewhat	variable.	 In	

VC;	Pax7‐/f	males,	 testes	 showed	 a	 trend	 towards	 smaller	 size	 (p=0.25)	 but	many	

tubules	 lacked	 complete	 spermatogenesis,	while	 in	 control	 animals,	 practically	 all	

tubules	had	recovered	(p=0.016).		

The	 availability	 of	 Pax7	 germline	 cKO	 testes	 permitted	 us	 to	 confirm	 the	

specificity	of	Pax7	immunodetection.	Whereas	intratubular	germ	cells	were	readily	
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detectable	by	GCNA	immunostaining	of	control	and	cKO	testes,	Pax7	expression	was	

abolished	 in	 cKO	 testes	 (Figure	 6.18E),	 confirming	 the	 specificity	 of	 Pax7	

immunodetection.	 Thus,	 Pax7	 appears	 to	 be	 dispensable	 for	 spermatogenesis,	 at	

least	 in	 the	 laboratory	 setting,	 but	 may	 make	 a	 functional	 contribution	 to	 the	

recovery	of	spermatogenesis	under	conditions	of	germline	stress	(see	discussion).	

	

Pax7+	spermatogonia	are	present	across	mammalian	species	

We	 sought	 to	 determine	 if	 Pax7+	 spermatogonia	 are	 phylogenetically	

conserved	 in	 spermatogenesis,	 as	many	aspects	of	 spermatogenesis	are	 shared	by	

diverse	 species	 (122‐125).	 The	monoclonal	 antibody	 that	 we	 employed	 to	 detect	

Pax7+	 spermatogonia	 was	 generated	 against	 chicken	 Pax7	 (Gallus	gallus,	aa	 300‐

523),	suggesting	that	the	epitope	might	be	broadly	conserved	(126).	However,	there	

was	no	a	priori	 guarantee	 that	 this	would	be	 the	 case.	We	epitope‐mapped	 the	�‐

Pax7	 monoclonal	 antibody	 with	 a	 tiled	 peptide	 array	 of	 both	 the	 chicken	 and	

corresponding	mouse	 amino	 acid	 sequences	 at	 single	 amino	 acid	 resolution.	 This	

identified	 a	 distinct	 10	 aa	 peak	 at	 identical	 positions	 in	 the	 chicken	 and	 mouse	

polypeptides	 (Figure	 6.21,	 A).	 Western	 blotting	 with	 a	 22	 aa	 blocking	 peptide	

spanning	 this	 epitope	effectively	eliminated	 the	Pax7	 signals	 (but	not	non‐specific	

background	 bands)	 confirming	 that	 this	 was	 the	 epitope	 detected	 by	 the	 Pax7	

monoclonal	 antibody	 (Figure	 6.22,	 B).	 Alignment	 of	 corresponding	 amino	 acid	

sequences	 from	diverse	species	revealed	 that	 the	10	aa	Pax7	epitope	 is	conserved	

across	all	mammalian	Pax7	homologs	evaluated	(n=11),	but	not	the	zebrafish	(Danio	

rerio)	 or	 the	 fruit	 fly	 (Drosophila	melanogaster)	 (Table	6.1).	 We	 then	 performed	
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immunolocalization	of	Pax7	in	tissue	sections	of	paraffin‐embedded,	formalin‐fixed	

testes	 from	 diverse	 mammalian	 species.	 Rare	 basal	 Pax7+	 spermatogonia	 were	

present	 in	 mammalian	 species	 including	 companion	 and	 domestic	 animals,	 non‐

human	primates,	and	humans	(Figure	6.21,	C).	Interestingly,	Pax7+	cells	were	more	

abundant	 in	 juvenile	 testes	 (available	 for	 cat	 and	 baboon)	 with	 multiple	 cells	 in	

some	tubules,	similar	to	our	observations	in	mice.	These	results	suggest	that	Pax7+	

spermatogonia	 serve	 important	 roles	 as	 adult	 testis	 stem	 cells	 and	 contribute	 to	

spermatogenesis	in	a	wide	range	of	species.		

	

Discussion	

Our	 data	 reveal	 surprising	 heterogeneity	 in	 cells	 previously	 identified	

through	 morphologic	 criteria	 as	 Asingle	 spermatogonia.	 This	 also	 suggests	 the	

existence	of	further	Asingle	subtypes,	which	may	be	characterized	by	the	expression	

of	 other	 distinct	 markers,	 such	 as	 Id4	 or	 Erbb3	 (18,	 19,	 26)	 Pax7	 defines	 an	

unexpectedly	small	subset	of	Asingle	spermatogonia.	Pax7+	spermatogonia	are	highly	

proliferative	in	steady‐state	spermatogenesis	and	fulfill	criteria	of	self‐renewal	and	

complete	 lineage	 differentiation	 in	 the	 adult	 testis.	 That	 Pax7	 is	 a	 marker	 of	

germline	stem	cells	in	the	testis	is	notable	in	light	of	extensive	studies	of	Pax7	as	a	

marker	of	satellite	cells	(109,	110).	Our	work	shows	some	commonalities	between	

Pax7+	 stem	 cells	 in	 the	 testis	 and	 skeletal	 muscle	 but	 also	 some	 important	

differences.	 Pax7+	 cells	 are	 rarer	 in	 the	 testis,	 making	 them	 difficult	 to	 detect.	 In	

skeletal	muscle,	a	tissue	characterized	by	little	cellular	proliferation,	Pax7+	cells	are	

normally	quiescent,	only	to	become	reactivated	after	injury.	In	contrast,	in	the	testis,	
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Pax7+	 spermatogonia	 are	 highly	 proliferative	 and	 continually	 replenish	

spermatogenesis.	

	

Pax7	as	a	testis	stem	cell	marker	

Our	 data	 are	 consistent	 with	 a	 model	 where	 Pax7+	 Asingle	 spermatogonia	

function	 as	 stem	 cells	 in	 the	 adult	 testis.	 The	 fact	 that	 only	 a	 minority	 of	 Asingle	

spermatogonia	 are	 Pax7+	 demonstrates	 that	 the	 Asingle	 population	 is	 more	

heterogeneous	 that	 some	 models	 propose,	 although	 elegant	 studies	 previously	

suggested	that	only	a	subset	of	Asingle	spermatogonia	function	as	true	stem	cells	(23,	

127).	Our	studies	indicate	that	the	fraction	of	Asingle	spermatogonia	that	are	Pax7+	is	

in	the	range	of	1‐10%	(16).	We	speculate	that	Pax7+	spermatogonia	sit	at	the	top	of	

the	 differentiation	 hierarchy,	 further	 suggesting	 that	 there	 are	 other	 subsets	 of	

Asingle	 spermatogonia—perhaps	 defined	 by	 currently	 unknown	 markers—that	

function	 as	 transit‐amplifying	 intermediates	 prior	 to	 differentiating	 to	 Apair	

spermatogonia	 (Figure	 6.21).	 However,	 other	 models	 are	 possible	 (128,	 129),	

necessitating	future	investigations	to	gain	a	complete	understanding	of	the	cellular	

hierarchies	underlying	stem	cell	maintenance	and	differentiation	in	the	mammalian	

testis.	

Some	have	argued	that	spermatogonial	stem	cell	transplantation	represents	

a	gold	standard	and	 is	 the	only	reliable	assay	 for	studying	testis	stem	cell	activity.	

Reconstitution	 of	 a	 self‐maintaining	 cellular	 clone	 in	 a	 host	 organ	 is	 indisputable	

evidence	that	the	cell	of	origin	functioned	as	a	stem	cell	in	the	assay.	However,	other	

investigators	 in	 the	 stem	 cell	 field	 have	 challenged	 the	 assumption	 that	
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transplantation	assays	recapitulate	stem	cell	function	in	native,	undisturbed	organs,	

and	 have	 pointed	 out	 limitations	 inherent	 in	 transplantation	 assays	 (130).	 These	

concerns	 are	 valid	 for	 spermatogonial	 stem	 cell	 transplantations	 (127‐129,	 131)	

particularly	 since	 transplantation	 requires	 treatments	 (cell	 dissociation	 in	 the	

donor,	nearly	complete	germ	cell	ablation	in	the	host)	that	may	strongly	stimulate	

regenerative	potential	in	ways	that	are	not	fully	understood.	There	is	an	important	

distinction	 to	 be	 made	 between	 actual	 stemness	 and	 the	 potential	 for	 stemness.	

Transplantation	 assays	 are	 clearly	 useful	 for	 studying	 the	 latter,	 but	 do	 not	

necessarily	accurately	reflect	the	former	(130).	Future	investigations	are	needed	to	

define	plasticity	with	respect	to	actual	stemness	versus	stemness	potential	(132)	in	

the	adult	testis.		

Here,	we	took	advantage	of	lineage	tracing	as	a	method	to	explore	the	stem	

behavior	of	a	novel	population	of	spermatogonia	defined	by	Pax7+	expression.	We	

propose	 some	 criteria	 by	 which	 stem	 cell	 lineage	 tracing	 studies	 should	 be	

evaluated	 in	 the	 context	of	 the	adult	 testis,	 in	 the	 addition	 to	 the	 requirement	 for	

full‐lineage	maturation.	First,	we	believe	one	important	criterion	is	that	the	labeled	

germ	cell	 clones	begin	as	single	cells.	For	example,	 lineage	 tracing	 initiated	with	a	

Cre	 driver	 expressed	 in	 broad	 subsets	 of	 spermatogonia	 (e.g.	 Foxo1+	 or	 Plzf+	

spermatogonia)	 would	 initiate	 labeling	 in	 AsingleAal16	 spermatogonia	 including	

larger	 chains	 of	 spermatogonia,	 only	 a	 few	 of	 which	 represent	 actual	 stem	 cells.	

Extending	 this	 logic	 to	 our	 study,	 it	 is	 possible	 that	 only	 a	 subset	 of	 Pax7+	

spermatogonia	 function	 as	 stem	 cells,	 although	 the	 remarkable	 rarity	 of	 Pax7+	

spermatogonia	is	one	argument	against	this	possibility.	Another	criterion	we	believe	
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should	 be	 considered	 is	 the	 long‐term	 perdurance	 of	 labeled	 clones.	 Such	

perdurance	 excludes	 the	 possibility	 that	 the	 labeled	 cells	 represent	 transit‐

amplifying	intermediates,	which	would	be	diluted	out	and	thus	disappear	with	time.	

In	the	lineage	tracing	studies	with	the	mT/mG	reporter,	we	studied	clones	for	up	to	

16	 weeks	 (112	 days),	 and	 observed	 no	 decrease	 in	 clone	 numbers,	 while	 the	

duration	of	spermatogenesis	in	mice	is	approximately	40	days	(114).		

	

Lack	of	genetic	requirement	for	Pax7	in	normal	spermatogenesis	in	the	mouse	

In	 preliminary	 genetic	 studies,	 we	 did	 not	 find	 evidence	 for	 a	 functional	

requirement	 for	 Pax7	 in	 spermatogenesis.	 	 Germ‐cell	 specific	 Pax7	 inactivation	

(confirmed	by	lack	of	Pax7	protein	in	germ	cells)	did	not	result	in	male	infertility	or	

have	 a	 discernable	 impact	 on	 spermatogenesis.	 It	will	 be	 interesting	 to	 study	 the	

impact	of	Pax7	inactivation	in	spermatogonial	stem	cell	cultures,	which	may	exhibit	

phenotypes	not	apparent	in	vivo.	Challenging	these	conditional	knockout	mice	with	

busulfan,	however,	demonstrated	that	lack	of	Pax7	caused	a	delayed	spermatogenic	

recovery,	 a	 finding	 that	 should	 be	 further	 explored,	 particularly	 as	 the	number	 of	

animals	 analyzed	 was	 relatively	 small	 and	 busulfan	 was	 tested	 at	 only	 one	

concentration.	

The	lack	of	a	functional	requirement	for	fertility	in	the	undisturbed	testis—at	

least	 under	 laboratory	 conditions—may	 be	 surprising	 given	 the	 phylogenetic	

conservation	of	Pax7+	 spermatogonia.	On	 the	other	hand,	 several	 other	 conserved	

and	canonical	stem	cell	markers	like	Lgr5	(gut)	and	CD150	(hematopoiesis)	are	also	

dispensable	 for	 stem	 cell	 function	 in	 the	 respective	 organs	 where	 they	 serve	 as	



	 90

useful	 markers	 (133‐136).	 Although	 Lgr5	 conditional	 inactivation	 in	 intestinal	

epithelium	yielded	 no	 apparent	 phenotype,	 simultaneous	 inactivation	 of	Lgr5	 and	

Lgr4	(which	is	expressed	more	broadly	than	Lgr5)	enhanced	an	intestinal	crypt	loss	

phenotype	 observed	with	 Lgr4	 (135).	 It	 is	 similarly	 possible	 that	 other	 factors—

perhaps	other	Pax	genes—are	functionally	redundant	with	Pax7	and	compensate	for	

its	loss,	although	we	did	not	identify	any	Pax	genes	that	were	specifically	expressed	

in	 SSCs	 in	 gene	 expression	 analyses.	 Furthermore,	 the	 floxed	 allele	 (Pax7	 tm1.1Fan)	

used	for	this	study	was	recently	found	to	give	rise	to	a	hypomorphic	mutation	that	

expresses	low	levels	of	a	truncated	Pax7	protein	from	an	alternative	ATG	start	site,	

and	thus	does	not	appear	to	be	a	true	biological	or	phenotypic	null	(52).	In	the	more	

recently	 described	 floxed	 allele	Pax7	 tm1.1Thbr,	 the	 transcriptional	 start	 site	 and	 the	

first	three	exons	are	floxed,	preventing	the	generation	of	any	mRNA	from	the	Pax7	

locus	following	Cre‐mediated	recombination		(75).	Thus,	even	though	Pax7	protein	

is	clearly	greatly	reduced	 in	 the	conditional	knockout	analysis	we	performed	with	

Pax7	tm1.1Fan	 (Figure	6.19,	E),	 it	will	be	of	 interest	 to	conduct	 future	 investigations	

with	the	Pax7	tm1.1Thbr	allele.	

	

Implications	for	iatrogenic	male	infertility	

Infertility	 is	 a	 common	 and	 well‐known	 complication	 of	 cancer	 treatment	

that	 profoundly	 affects	men	 and	 boys	 (120).	 Virtually	 all	 standard	 therapies	 (e.g.	

cytotoxic	 chemotherapies,	 as	 well	 as	 radiotherapy)	 are	 highly	 toxic	 to	 the	 male	

germline.	The	likelihood	of	infertility	with	chemotherapy	is	drug‐specific	and	dose‐

related.	Alkylating	agents	pose	the	highest	risk	of	infertility,	with	platinum	analogs,	
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anthracyclines,	 and	 nitrosoureas	 posing	 an	 intermediate	 level	 of	 risk	 (31).	 The	

germline	is	also	very	sensitive	to	radiation‐induced	damage.	Doses	of	1.2	Gray	and	

higher	are	associated	with	an	increased	risk	of	infertility	(31).		

Remarkably,	 murine	 Pax7+	 spermatogonia	 proved	 resistant	 to	 both	

radiotherapy	and	chemotherapy.	They	not	only	survived	the	immediate	aftermath	of	

these	 genotoxic	 insults	 but	 rapidly	 expanded,	 forming	 clusters	 of	 Pax7+	

spermatogonia	never	observed	 in	normal,	 untreated	mice.	 Lineage	 tracing	 studies	

confirmed	 that	 Pax7+	 spermatogonia	 contribute	 to	 the	 restoration	 of	

spermatogenesis.	 Future	 studies	will	 be	needed	 to	more	 fully	define	 the	 extent	 of	

the	role	of	Pax7+	spermatogonia	as	spermatogenic	recovery	cells,	and	determine	the	

relative	contributions	of	Pax7+	vs.	other	spermatogonial	subtypes	to	spermatogenic	

recovery.	It	is	also	interesting	to	consider	the	possibility	that	Pax7+	spermatogonia	

might	contribute	to	the	recovery	of	fertility	in	cancer	patients,	or	that	their	failure	to	

recover	 might	 account	 for	 permanent	 sterilization	 following	 chemotherapy	 or	

radiotherapy.	 If	 so,	 an	 improved	 understanding	 of	 the	 biological	 pathways	

regulating	the	behavior	of	Pax7+	spermatogonia	might	someday	lead	to	strategies	to	

protect	the	male	germline	in	cancer	patients.	It	will	also	be	interesting	to	explore	the	

biological	 mechanisms	 that	 render	 Pax7+	 spermatogonia	 resistant	 to	 genotoxic	

stresses.	

The	resistance	of	Pax7+	spermatogonia	to	both	radiation	and	chemotherapy	

argues	against	models	where	resistance	is	mediated	by	active	drug	efflux	(MDR1	or	

other	 transporters),	 as	 is	 the	 case	with	 several	 types	 of	 stem	 cells	 (e.g.	 the	 “side	

population”	effect	due	to	the	efflux	of	fluorescent	dyes)	(137,	138).	In	closing,	Pax7+	



	 92

spermatogonia	 are	 a	 rare	 but	 functionally‐important	 stem	 cell	 population	 in	 the	

healthy	 adult	 testis,	 and	 also	 serve	 an	 important	 role	 in	 spermatogenic	 recovery	

following	 injury	 to	 the	 germline,	 such	 as	 occurs	 following	 chemotherapy	 or	

radiotherapy.	 That	 Pax7+	 spermatogonia	 are	 rapidly	 cycling	 and	 yet	 resistant	 to	

such	stress	are	notable	aspect	of	their	biology.	
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Figure	6.1:	Digital	Northern	analysis	identifying	Pax7	as	potential	adult	testis	

germline	stem	cell	marker.	 (A)	General	RNA‐based	approach	to	identify	markers	

that	 were	 highly	 expressed	 in	 cultured	 SSCs	 relative	 to	 adult	 testis.	 (B	 and	 C)	

Relative	expression	levels	of	(B)	Pax7	and	(C)	Ddx4	across	multiple	samples.	Error	

bars	 denote	 SEM.	 Pax7	 mRNA	 levels	 were	 >180‐fold	 higher	 in	 established	

spermatogonial	 cultures	 relative	 to	 adult	 testis.	 SSC,	 cultured	 SSCs;	 Sl/Sl(d),	

KitlSl/KitlSl–d	germ	cell–deficient	adult	testes;	ES,	embryonic	stem;	HS,	hematopoietic	

stem.	
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isolated	(i.e.,	Asingle)	and	Kit–.	No	Kit+Pax7+	spermatogonia	were	observed.	Pax7	was	

nuclear,	whereas	Kit	was	membrane‐associated,	as	expected.	Image	shows	3	tubules	

optically	sectioned	close	 to	 the	 level	of	 the	basement	membrane	 to	visualize	 large	

numbers	of	spermatogonia.	Scale	bars:	10	μm	(A);	25	μm	(C	and	D);	50	μm	(E).	

	 	



	 96

Figure	6.3:	Pax7+	spermatogonia	make	up	a	higher	percentage	of	germ	cells	in	

the	 neonatal	 versus	 adult	 testis.	 	 (A)	 Pax7+	 cell	 frequency,	 expressed	 as	 a	

percentage	 of	 total	 GCNA+	 cells.	 Inset:	 Pax7	 IHC	 at	 PD7,	 showing	 several	 Pax7+	

spermatogonia	 (asterisks).	Magnification,	 ×250.	 (B)	 Counts	 of	 total	 Pax7+	 cells	 by	

IHC	of	serially	sectioned	PD1	and	adult	testes	(n	=	3).	Each	bar	represents	a	single	

testis.	 Total	 numbers	 were	 similar	 in	 neonatal	 and	 adult	 testes.	 (C)	 6‐week‐old	

animals	were	injected	with	EdU,	and	testes	were	harvested	after	the	indicated	times.	

The	experiment	was	repeated	twice	with	similar	results.		
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Figure	6.4:	Validation	of	reagents	employed	in	this	study.	(A)	‐Pax7	antibody	

shows	expected	pattern	in	adult	skeletal	muscle,	with	single	labeled	cell	consistent	

with	satellite	cell	in	field	shown	(note	nuclear	localization).	Immunohistochemistry	

was	 conducted	by	 identical	protocol	used	 for	 testis.	 For	B‐C,	 seminiferous	 tubules	

were	 separated	 from	 the	 capsule	 and	 gently	 disaggregated	 with	 forceps.	 (B)	 Co‐	

localization	 of	 endogenous	 Pax7	 and	 reporter	 by	 immunofluorescence	 in	 mice	

harboring	 Pax7‐Cre	ERT2	 and	 nuclear	 tdTomato	 reporter.	 Mice	 were	 treated	 with	

tamoxifen	 at	 PD14	 and	 testes	 harvested	 at	 PD17.	 All	 (25/25)	 labeled	 clones	

analyzed	 by	 confocal	 microscopy	 showed	 Pax7	 expression	 demonstrating	 faithful	

expression	of	Pax7‐CreERT2	in	Pax7+	 spermatogonia.	 (C)	Comparison	of	 adult	Pax7‐	

Cre	 ERT2;	 R26R	mice	 (6	 weeks	 of	 age)	 treated	 with	 tamoxifen	 versus	 untreated	
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controls.	 Testes	 were	 harvested	 after	 6	 weeks.	 Note	 absence	 of	 labeled	 cells	 in	

untreated	 animals,	 confirming	 induction	 of	 Cre	 by	 tamoxifen.	 Asterisks	 denote	

labeled	clones,	while	arrows	point	to	muscle	satellite	cells.	(D)	Comparison	of	Pax7‐

CreERT2;	R26R	mice	vs.	R26R	controls	treated	with	tamoxifen	at	PD2	and	harvested	at	

PD21.	 Asterisks	 denote	 labeled	 clones.	Note	 absence	 of	‐galactosidase	 activity	 in	

control	 samples.	 More	 diffuse	 pattern	 in	 skeletal	 muscle	 is	 consistent	 with	 early	

activation	of	the	reporter.		
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visualizing	 single‐cell	 clones,	 or	 marker	 expression	 lag.	 Clone	 numbers	 were	

consistent	with	 the	presence	of	approximately	400	Pax7+	cells	per	 testis	and	10%	

recombination	 efficiency	 for	Pax7‐CreERT2	 after	 tamoxifen	 administration	 (31).	 (C)	

Clone	 size.	Red	bars	denote	means.	Larger	 clones	were	composed	of	 large	 labeled	

zones	and	peripheral	smaller	chains	including	Asingle	spermatogonia.	
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Figure	 6.6:	 Lineage	 tracing	 of	 Pax7+	 descendants	 in	 Pax7‐CreERT2;mT/mG	

testes.	Adult	males	were	treated	with	tamoxifen	at	6	weeks	of	age,	then	aged	for	the	

indicated	 intervals.	 (A)	 Clone	 morphology	 by	 confocal	 microscopy	 of	 isolated	

tubules.	 Representative	 Asingle,	 Apair,	 Aal4,	 and	 Aal8	 clones	 1	 week	 after	 tamoxifen	

administration	 are	 shown.	 Other	 panels	 show	 larger	 clones	 at	 6	 weeks;	 arrows	

indicate	 detached	 Asingle	 spermatogonia	 that	 were	 part	 of	 larger	 clones.	 Inset:	

elongated	spermatid	tails	in	tubular	lumen.	Clones	>500	cells	could	not	be	reliably	

counted.	 Larger	 clones	 were	 associated	 with	 smaller	 separate	 chains	 at	 their	

periphery,	 including	 Asingle	 spermatogonia.	 The	 few	 1‐cell	 clones	 at	 6–16	 weeks	

represent	Asingle	spermatogonia	too	distant	from	the	nearest	clone	to	be	confidently	

identified	as	part	of	it,	but	may	reflect	long‐distance	migration.	Green	motile	sperm	

were	observed	in	the	epididymis.	(B)	Clone	morphology	in	tissue	sections	(16	weeks	
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after	 tamoxifen).	 Pax7+	 descendants	 gave	 rise	 to	 all	 spermatogenic	 stages,	 as	

evidenced	 by	 circumferential	 full‐thickness	 labeling	 of	 all	 spermatogenic	 stages	

throughout	the	tubule.	Tissue	sections	were	counterstained	with	DAPI.	(C)	Labeled	

sperm	from	epididymis	showing	bright	green	fluorescence	and	characteristic	hook	

morphology.	 The	 majority	 of	 sperm	 did	 not	 exhibit	 fluorescence,	 and	 control	

epididymides	did	not	 contain	 spermatozoa	with	 comparable	 fluorescence	 (i.e.,	 the	

signal	 shown	 is	 not	 background	 autofluorescence	 of	 sperm).	 (D)	 Average	 clone	

number	 in	n	=	4	 testes.	Clone	numbers	did	not	decrease	over	 time.	 (E)	Clone	size.	

Red	bars	denote	means.	Larger	clones	 included	detached	smaller	chains	and	Asingle	

spermatogonia.	Scale	bars:	25μm.	
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Asingle	status.	(C)	Mitotic	and	apoptotic	indices	of	Pax7+	cells	at	PD3	(n	=	3	animals)	

demonstrated	that	early	Pax7+	cells	were	highly	proliferative	and	not	characterized	

by	significant	apoptosis.	Error	bars	denote	SEM.	(D)	Transplantation	assay.	A	Pax7‐

CreERT2;tdTomato	 donor	 was	 treated	 with	 tamoxifen	 at	 PD3.	 Testes	 were	

disaggregated	at	PD14	and	 transplanted	 into	germ	cell–deficient	KitW/KitW–v	hosts,	

which	 were	 sacrificed	 after	 4	 weeks	 (n	 =	 3).	 All	 hosts	 (but	 no	 controls)	 showed	

multiple	labeled	clones	(i.e.,	15–20);	representative	examples	are	shown.	Scale	bars:	

25μm	(B);	100μm	(D).		 	
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Figure	6.8:	Pax7+	spermatogonia	persist	in	genetic	models	of	infertility.	(A)	In	

three	 distinct	 genetic	 mouse	 models	 of	 infertility,	 Pax7+	 spermatogonia	 perdure	

even	 when	 the	 majority	 of	 germ	 cells	 are	 ablated.	 (B)	 Histology	 of	 Pax7+	

spermatogonia.	Large	clumps	of	Pax7+	spermatogonia	could	be	observed,	that	had	

never	before	been	seen	in	WT	testis.	Scale	=	25µm.	
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Figure	 6.9:	 Pax7+	 spermatogonia	 persist	 after	 hypophysectomy.	 (A)	 After	

surgical	 loss	 of	 the	 pituitary,	 nearly	 all	 germ	 cells	 are	 ablated.	However,	 both	 the	

number	of	Pax7+	spermatogonia	per	tubule	and	the	number	of	Pax7+	spermatogonia	

per	 remaining	 germ	 cell	 increases,	 suggesting	 that	 Pax7+	 could	 be	 increasing	 to	

replenish	the	germline.	(B)	Histologic	analyses	showing	that	even	while	most	germ	

cells	are	ablated	after	hypophysectomy,	Pax7+	spermatogonia	persist.	Scale	=	10µm.	
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Figure	6.10:	Germline	ablation	with	busulfan	has	dose‐dependent	effects	on	

Pax7+	 spermatogonia.	 (A)	 Number	 of	 cells	 expressing	 GCNA	 (pan‐germ	 cell	

marker)	and	Pax7.	Error	bars	denote	SEM	for	n	=	3	animals	at	6	weeks	of	age.	(B)	

H&E	and	immunostained	sections	16	days	after	a	single	dose	of	40	mg/kg	busulfan.	

GCNA	 stains	 all	 germ	 cells	 to	 the	 round	 spermatid	 stage.	 Busulfan	 resulted	 in	

expansion	of	Pax7+	clusters	never	observed	in	untreated	testes;	an	example	of	a	4‐

cell	group	is	shown	(insets;	enlarged	×4).	(C)	Fractions	of	Pax7+	clusters	of	different	

sizes.	For	each	 time	point,	 fractions	add	up	 to	1.	The	difference	 in	cluster	 sizes	 (1	

versus	 ≥2)	 was	 highly	 statistically	 significant	 in	 untreated	 animals	 versus	 those	

treated	 with	 40	 mg/kg	 busulfan	 after	 32	 days	 (P	 =	 2	 ×	 10–9).	 (D)	 Percent	 EdU	

incorporation	 in	 Pax7+	 spermatogonia	 4	 days	 after	 busulfan	 administration.	 Scale	

bar:	10μm.	
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	Figure	6.11:	Number	of	Sertoli	cells	after	busulfan	treatment	does	not	change.	

(A)	Number	of	Sertoli	cells	per	tubule	after	treatment	with	busulfan.	Busulfan	does	

not	affect	Sertoli	cell	number.	(B)	Pax7+	spermatogonia	per	Sertoli	cell.	The	increase	

in	the	number	of	Pax7+	spermatogonia	is	not	due	to	testis	shrinking,	as	the	increase	

is	still	observed	when	normalizing	to	Sertoli	cell	number.		
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Figure	6.12:	Counts	of	Foxo1+	spermatogonia	after	busulfan	administration	at	

6	weeks	of	age.	For	each	time	point,	n	=	3	animals	were	analyzed;	error	bars	denote	

SEM.	(A)	Foxo1+	spermatogonia	per	tubule.	(B)	Foxo1+	counts	per	tubule	compared	

with	Pax7+	counts.	(C)	IHC	showing	Foxo1+	spermatogonia	(arrows).	Unlike	Pax7+	

spermatogonia,	Foxo1+	(undifferentiated)	spermatogonia	were	not	resistant	to	

busulfan.	Scale	bar:	25μm.	

	 	

a 

0

2

4

6

8

d a y s  a f t e r  b u s u l f a n  t r e a t m e n t

F
o

x
o

1
+

 c
e

ll
s

 /
 t

u
b

u
le

1 0  m g / k g

2 0  m g / k g

4 0  m g / k g

0 4 8 1 6 3 2

b 

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0

2

4

6

d a y s  a f t e r  b u s u l f a n  t r e a t m e n t

P
a

x
7

+
 c

e
ll

s
 /

 t
u

b
u

le

F
o

x
o

1
+

 c
e

lls
 / tu

b
u

le

P a x 7

F o x o 1

0 4 8 1 6 3 2   

c 

    day 0 (control)                                                   day 8                                                          day 32 

a
b
: F
o
xo
1
 



	 110

Figure	 6.13:	 Neither	 tamoxifen	 nor	 DMSO	 have	 demonstrable	 impact	 on	

spermatogenesis	or	Pax7+	spermatogonia.	 Animals	were	 treated	 at	 6	weeks	 of	

age	 and	 euthanized	 1	 or	 16	 weeks	 later	 (n=3	 animals	 per	 observation;	 error	

bars=SEM).	 (A)	Testis	weight	 expressed	as	percent	of	 total	body	weight.	 (B)	Pax7	

counts	in	testes	from	control	and	treated	mice.	(C)	Pax7	cluster	sizes	in	control	and	

treated	animals.(D)	Testis	morphology	and	spermatogenesis	are	unaltered	by	DMSO	

or	tamoxifen.	Bar=10m;	all	panels	at	same	magnification.		
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Figure	 6.14:	 Pax7+	 spermatogonia	 are	 selectively	 resistant	 to	 radiation	

treatment.	Mice	were	subjected	 to	a	nonfractionated	dose	 (5	Gray)	of	X‐rays	at	6	

weeks	of	age.	Testes	were	harvested	at	timepoints	shown.	For	A‐C,	error	bars=SEM	

for	n=3	animals	per	timepoint.	(A)	GCNA+	cells	per	tubule.	(B)	Pax7+	spermatogonia	

per	tubule.	(C)	Pax7	spermatogonia	normalized	to	GCNA	counts;	P	value	calculated	

by	 unpaired	 t‐test.	 (D)	 H&E	 or	 immunostained	 slides	 16	 days	 after	 irradiation.	

Bar=10m;	 all	 panels	 at	 same	 magnification.	 (E)	 Fractions	 of	 Pax7+	 clusters	 of	

different	sizes	(0	to	4);	p<10‐5	by	Fisher	Exact	Test	for	clusters	of	1	vs.	2	or	more	at	

16	days.		
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	Figure	 6.15:	 Pax7+	 spermatogonia	 are	 selectively	 resistant	 to	

cyclophosphamide.	Mice	were	 treated	with	cyclophosphamide	at	6	weeks	of	age.	

Cyclophosphamide	 is	 a	 relatively	 mild	 germ	 cell	 toxicant	 compared	 to	 busulfan,	

necessitating	a	multi‐dose	regimen	(150	mg/kg	every	5	days	for	25	days).	Animals	

were	euthanized	and	testes	harvested	after	the	 last	dose.	For	A‐C,	error	bars=SEM	

for	n=3	animals	per	timepoint.	(A)	GCNA+	cells	per	tubule.	(B)	Pax7+	spermatogonia	

per	tubule.	(C)	Pax7+	spermatogonia	normalized	to	GCNA	counts.	P	value	calculated	

by	unpaired	t‐test.	(D)	Fractions	of	Pax7+	clusters	of	different	sizes	(0	to	4);	p<10‐5	

by	Fisher	Exact	Test	for	clusters	of	1	vs.	2	or	more	at	32	days.		
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Figure	6.16:	Lineage	 tracing	of	Pax7+	 spermatogonia	 following	busulfan	 (20	

mg/kg)	 treatment	 of	 Pax7‐CreERT2	 ;mT/mG	 males	 at	 6	 weeks	 of	 age.	 (A)	

Schematic	 showing	 both	 busulfan	 lineage‐tracing	 experiments.	 Testes	 were	

harvested	 8	 weeks	 after	 the	 last	 drug	 dose	 for	 each	 experiment.	 (B)	 Number	 of	

clones	8	weeks	after	busulfan	administration.	Each	point	represents	1	testis	from	1	

animal;	 red	bars	 denote	means;	P	 values	were	determined	by	unpaired	 t	 test.	 (C)	

Clone	size	8	weeks	after	tamoxifen	administration.	Red	bars	denote	means;	P	values	

were	determined	 by	 unpaired	 t	 test.	 (D)	 Composite	 image	 of	 representative	 large	

clone	from	tam→bu	experiment.	Tubule	borders	are	highlighted	with	dashed	lines.	
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a	“trail”	of	cells).	(E)	Cryosection	of	testis	from	tam→bu	experiment	showing	germ	

cell	clone	spanning	the	entire	tubule.	ST,	seminiferous	tubule;	LC,	Leydig	cells.	Scale	

bar:	200	μm	(D);	25	μm	(E).	 	
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Figure	6.17:	Pax7+	spermatogonia	are	not	eliminated	by	DT.	 (A)	Pax7‐Cre	ERT2	

Dt+	testis	are	not	any	smaller	when	visually	compared	to	controls,	nor	do	they	weigh	

less	 (B).	 (C)	 Histologic	 analysis	 of	 Pax7‐Cre	 ERT2	Dt+	testis,	 demonstrating	 tubules	

where	spermatogenesis	has	been	disregulated,	but	not	eliminated	by	 loss	of	Pax7+	

spermatogonia.	Scale	bar	=	50µm.		
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spermatogonia	were	 abundant	 and	 present	 in	most	 tubules	 in	wild‐type	 controls	

(arrow),	 but	 absent	 in	 Pax7	 cKO	 tubules	 (multiple	 sections	 were	 stained	 and	

examined	for	each),	confirming	the	specificity	of	the	Pax7	antibody	in	testis	sections.	

GCNA	shows	the	presence	of	germ	cells.	Scale	bars:	50μm.	
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(D)	 Immunohistochemical	 analyses	 8	 weeks	 after	 busulfan	 treatment.	 GCNA	

highlights	 complete	 or	 nearly	 complete	 recovery	 in	 control	 testes	 following	

busulfan.	 In	 contrast,	 in	 VC;	 Pax7‐/f	 testes,	 germ	 cells	 were	 less	 abundant,	 with	

many	 tubules	 showing	 a	 much	 more	 limited	 recovery	 of	 spermatogenesis.	

Bars=50m.		
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Figure	 6.22:	Models	 of	 stemness	 in	mouse	 spermatogenesis.	 Spermatogonial	

subsets	proposed	as	the	bona	fide	stem	cells	are	shown	above	each	of	the	3	models.	

In	the	classic	Asingle	model	(As),	Asingle	spermatogonia	are	homogeneous	and	share	

stem	cell	identity	(green),	having	the	capacity	for	self‐maintenance	(circular	arrows;	

refs.	 3,	 4,	 66).	 More	 recently,	 models	 have	 been	 proposed	 arguing	 for	 greater	

plasticity	 among	 undifferentiated	 (Asingle→Aal16)	 spermatogonia,	 with	 chain	

fragmentation	 representing	 one	 possible	 mechanism	 by	 which	 stemness	 is	

maintained	or	regenerated	(5).	Although	fragmentation	has	been	shown	to	occur	in	

vivo,	 its	 contributions	 to	 stem	 cell	maintenance	 under	 normal	 conditions	 or	 after	

chemotherapy/radiation	have	not	been	formally	established.	Our	findings	that	only	

a	 subset	 of	 Asingle	 spermatogonia	 expressed	 Pax7	 and	 that	 these	 spermatogonia	

functioned	 as	 stem	 cells	 suggests	 a	 new	 Asingle	 subset	 model,	 whereby	 Pax7+	
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spermatogonia	 are	 self‐maintaining	 and	 may	 sit	 atop	 the	 hierarchy	 of	

spermatogenic	differentiation.	That	Asingle	 spermatogonia	were	heterogeneous	 and	

that	only	a	subset	 functioned	as	stem	cells	was	also	suggested	by	previous	studies	

(10,	 67).	 If	 so,	 then	 this	 would	 suggest	 that	 some	 subset	 of	 Asingle	 spermatogonia	

represent	 transit‐amplifying	 (TA)	 intermediates.	 The	 number	 of	 such	 transit‐

amplifying	steps	between	Pax7+	Asingle	and	Apair	spermatogonia	is	unknown.	It	will	be	

interesting	 to	 determine	 whether	 ID4	 and	 ERBB3,	 expressed	 in	 Asingle	

spermatogonia,	 are	 expressed	 in	 overlapping	 or	 non‐overlapping	 subsets	 of	

spermatogonia	relative	to	Pax7	(9,	49,	50).	Other	models	are	possible,	such	as	ones	

combining	different	aspects	of	these	models	(i.e.,	fragmentation	with	the	presence	of	

Pax7+	 spermatogonia,	 if	 fragmentation	 is	 confirmed	 as	 a	 functionally	 significant	

biological	process).		
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CHAPTER	7:	PAX7	IS	EXPRESSED	IN	A	RARE	SUBSET	OF	PROSPERMATOGONIA	

	

Pax7	is	expressed	in	a	small	fraction	of	embryonic	germ	cells	

The	pre‐spermatogonia	residing	 in	 the	embryonic	 testis	are	 the	cells	which	

will	 eventually	 establish	 the	 SSC	 pool.	 However,	 it	 is	 currently	 unknown	whether	

these	 precursor	 cells	 have	 predetermined	 cell	 fates,	 or	 if	 all	 cells	 have	 equal	

potential	to	become	stem	cells.	Up	until	this	point,	all	markers	that	are	expressed	in	

embryonic	 germ	 cells	 seemed	 to	 be	 expressed	 ubiquitously.	 For	 example,	 Foxo1,	

which	marks	only	undifferentiated	spermatogonia	in	the	adult,	is	expressed	in	every	

prospermatogonia	 (Figure	 7.1).	 In	 the	 neonatal	 period	 before	 PD3,	 Foxo1	 is	

expressed	in	every	or	nearly	every	prospermatogonium,	though	there	is	difference	

between	 nuclear	 and	 cytoplasmic	 localization	 (14).	 However,	 even	 at	 this	 early	

timepoint,	Pax7	is	expressed	in	a	fraction	of	germ	cells,	which	led	to	the	hypothesis	

that	this	heterogeneity	in	pre‐spermatogonia	could	be	observed	even	prior	to	birth,	

and	 that	 this	 heterogeneity	 could	 be	 related	 to	 their	 eventual	 cell	 fates,	 and	 that	

stemness	could	be	determined	earlier	than	previously	thought.		

To	examine	if	this	heterogeneity	was	evident	even	in	the	embryonic	testis,	I	

wanted	 to	 visualize	 Pax7	 expression	 in	 testis	 cross‐sections	 from	 e15.5‐e19.5	

Surprisingly,	 I	 found	 that	 even	 embryonically,	 Pax7	 is	 expressed	 in	 rare	 subset	 of	

prospermatogonia	(Figure	7.2).	At	e15.5,	no	expression	of	Pax7	was	observed	in	at	

least	 three	cross‐sections	of	 three	mice	each.	By	e16.5,	Pax7	could	be	observed	 in	

approximately	 one	 cell	 per	 cross‐section.	 Pax7	 was	 predominantly	 nuclear,	 but	

some	cytoplasmic	staining	of	Pax7	could	be	observed.	This	could	be	due	to	the	first	
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transcription	 of	 Pax7,	 where	 is	 it	 is	 located	 in	 the	 cytoplasm,	 before	 Pax7	 can	

translocated	to	the	nucleus	to	perform	its	 function	as	a	 transcription	 factor.	There	

was	a	moderate	increase	in	the	number	of	Pax7+	pre‐spermatogonia	from	e16.5	to	

e19.5.	 This	 increase	 in	 cell	 number	 cannot	 be	 due	 to	 divisions	 of	 Pax7+	 pre‐

spermatogonia,	 as	at	 this	point	 in	development,	 the	germline	 is	quiescent	 (Figure	

7.2).	 Thus,	 currently	 unknown	 factors	 may	 play	 a	 role	 in	 inducing	 Pax7	 in	 pre‐

spermatogonia.	 Importantly,	 this	 demonstrates	 for	 the	 first	 time	 heterogeneity	 in	

marker	 expression	 in	 these	 germ	 cells.	 	 All	 other	 markers	 examined,	 including	

Foxo1,	Sall4,	Oct4,	Ret,	Stra8,	and	Kit	appeared	 to	be	expressed	 in	either	all	or	no	

germ	cells	prenatally	(Figure	7.1‐7.6).	

From	 historical	 data,	 the	 number	 of	 Pax7+	 prospermatogonia	 sharply	

increases	 in	 the	 neonatal	 period	 around	 PD1‐PD3.	 However,	 it	 was	 unknown	

whether	 this	 spike	 occurred	 prior	 to	 this	 timepoint	 at	 birth,	 or	 if	 the	 spike	 was	

specific	 to	 these	 timepoints.	 I	 found	 that	 while	 there	 are	 more	 Pax7+	 pre‐

spermatogonia	at	PD0	than	 in	embryonic	 timepoints,	but	are	still	not	at	 the	 levels	

seen	 during	 PD1‐PD3.	 This	 increase	 could	 be	 due	 to	 either	 induction	 of	 Pax7	 or	

division	of	Pax7.		

I	 sought	 to	 identify	differences	between	Pax7+	 and	Pax7‐	prospermatogonia	

from	e18.5	to	PD7.	At	e18.5,	Pax7+	prospermatogonia	are	easy	to	identify	compared	

to	 earlier	 timepoints,	 and	by	PD7,	 prospermatogonia	 are	 thought	 to	 have	become	

spermatogonia	 (3).	 I	hypothesized	 that	 if	Pax7+	prospermatogonia	are	 responsible	

for	 establishing	 the	 stem	 cell	 pool	 by	 PD7,	 they	might	 be	more	 proliferative	 than	

other	 germ	 cells.	 However,	 this	 was	 not	 the	 case,	 and	 the	 percentages	 of	
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Pax7+/Ki67+	 and	Vasa+/Ki67+	 prospermatogonia	 are	nearly	 identical	 (Figure	7.2).	

Furthermore,	 there	 is	 no	 difference	 in	 pHH3	 positivity	 (data	 not	 shown).	 Thus,	

Pax7+	prospermatogonia	do	not	progress	 through	 the	cell	 cycle	more	quickly	 than	

other	types	of	spermatogonia.		

	

Pax7+	prospermatogonia	are	more	likely	to	be	basal	than	other	germ	cells	

While	 examining	 multiple	 embryonic	 sections	 containing	 Pax7+	 pre‐

spermatogonia,	 it	 seemed	 that	 these	 cells	 were	 more	 likely	 to	 be	 located	 basally	

than	 other	 germ	 cells,	 which	 are	 predominately	 located	 in	 the	 lumen	 of	 the	

seminiferous	 cords.	 I	 quantified	 this	 by	 counting	 the	 location	 of	 Pax7+	 and	 Vasa+	

pre‐spermatogonia,	and	found	that	indeed,	Pax7+	pre‐spermatogonia	are	much	more	

likely	 to	 be	 basal	 from	 e16.5	 to	 e19.5	 (Figure	7.7,	p	 value).	 However,	 there	 are	

clearly	basal	germ	cells	which	do	not	express	Pax7.	At	birth,	the	percentage	of	Pax7+	

pre‐spermatogonia	 decreases	 at	 PD0	 and	 PD1,	 but	 by	 PD3	 nearly	 all	 Pax7+	 pre‐

spermatogonia	are	basal,	as	are	all	germ	cells.	This	change	in	preference	of	location	

coincides	with	 the	 spike	 of	 Pax7+	 pre‐spermatogonia.	One	 possible	 explanation	 to	

unify	these	two	finding	would	be	that	Pax7	is	induced	in	prospermatogonia,	which	

causes	these	cells	to	dive	to	their	position	on	the	basement	membrane.	

In	fact,	Notch	signaling	has	been	implicated	in	the	luminal	to	basal	transition	

of	germ	cells.	Constitutive	activation	of	Notch	in	Sertoli	cells	causes	embryonic	germ	

cells	 to	 be	 located	 more	 basally	 (139,	 140).	 This	 change	 in	 location	 was	 not	

accompanied	by	an	 immediate	change	 in	proliferation,	 suggesting	 that	position	on	

the	basement	membrane	and	exit	 from	quiescence	are	linked,	although	we	did	not	
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see	any	difference	in	Ki67	staining	between	basal	and	luminal	germ	cells	(139,	140).	

This	 study	 also	detected	Notch	 signaling	 in	 embryonic,	 fetal,	 and	adult	 testis	with	

the	use	of	a	Notch	GFP	reporter	allele.	However,	the	GFP	used	was	a	stabilized	form	

of	the	protein	and	thus	may	persist	in	cells	longer	than	the	actual	Notch	signal	(140).	

I	 sought	 to	 visualize	 Notch	 signaling	 components	 in	 sections	 of	 embryonic	 and	

neonatal	 testis	 via	 IHC.	 I	 found	 that	 Notch1,	 the	 Notch	 protein	 examined	 in	 the	

aforementioned	 study	 was	 not	 expressed	 in	 the	 neonatal	 testis,	 but	 was	 highly	

expressed	 in	 the	 epididymis	 (data	 not	 shown).	 It	 may	 be	 that	 the	 reporter	 allele	

detects	lower	levels	of	Notch	activation	than	does	the	Notch1	antibody.	Therefore,	it	

would	be	interesting	to	repeat	these	experiments	with	the	Notch‐GFP	allele,	as	well	

as	to	examine	other	members	of	the	Notch	family	and	pathway.	

	

Pax3	is	not	expressed	in	the	testis	

Because	 of	 the	 co‐expression	 of	 Pax3	 and	Pax7	 in	 the	 developing	muscle,	 I	

wanted	 to	 determine	 if	 Pax3	 was	 expressed	 in	 the	 embryonic	 testis.	 By	 digital	

Northern,	Pax3	was	not	expressed	in	the	testis,	nor	in	SSC	cultures,	but	was	highly	

expressed	 in	 the	 e11	 embryo,	 and	 had	 a	 moderate	 expression	 in	 the	 brain	 and	

skeletal	 muscle	 (Figure	 7.8,	 A).	 As	 Pax3	 expression	 becomes	 more	 and	 more	

restricted	as	the	muscle	develops,	the	digital	Northern	was	in	accordance	with	the	

literature.	 I	 acquired	 a	 monoclonal	 antibody	 to	 Pax3	 and	 found	 strong	 nuclear	

expression	 in	 the	 developing	 muscle	 and	 nasal	 cavity	 (Figure	 7.8,	 B).	 Thus,	 the	

antibody	was	functional	and	specific.	Under	the	same	conditions	and	with	a	control	

slide,	 I	 examined	 expression	 of	 Pax3	 in	 the	 testis.	 Interestingly,	 Pax3	 was	 not	
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expressed	in	the	testis	at	any	timepoint	(Figure	7.8,	C).	This	is	in	agreement	with	a	

study	 using	 a	 Pax3‐Cre	 line	 that	 found	 no	 contribution	 of	 Pax3	 to	male	 germline	

(45).	This	suggests	that	Pax7	functions	by	distinct	mechanisms	in	the	testis	than	it	

does	in	the	skeletal	muscle.	

	

Pax7+	prospermatogonia	are	not	differentiating	

Although	 heterogeneity	 in	 the	 embryonic	 testis	 had	 not	 been	 previously	

described,	 heterogeneity	 in	 the	neonatal	 pre‐spermatogonia	 has	 been	 appreciated	

for	many	years.	In	fact,	the	expression	of	certain	markers	is	indicative	of	cell	fate.	To	

begin	to	determine	the	ultimate	fate	of	Pax7+	prospermatogonia,	colocalization	with	

Kit	and	Stra8.	In	the	adult	mouse,	Kit+	spermatogonia	have	a	90%	reduction	in	the	

transplantation	 as	 compared	 to	Kit‐	 fractions	 of	 spermatogonia	 (141).	 Via	 studies	

from	 neonatal	 mice	 comparing	 the	 transplantation	 efficiency	 of	 undifferentiated	

spermatogonia	with	or	without	Kit	expression,	 it	has	been	demonstrated	 that	Kit+	

prospermatogonia	 do	 not	 transplant	 as	 well	 as	 Kit‐,	 and	 are	 again	 thought	 to	 be	

committed	 to	 differentiation	 even	 at	 this	 early	 stage	 (15).	 Stimulated	 by	 retinoic	

acid	8	(Stra8),	serves	as	a	marker	of	the	presence	of	retinoic	acid,	which	is	necessary	

for	entry	into	meiosis.	Thus,	Stra8+	pre‐spermatogonia	are	thought	to	be	committed	

to	differentiation	as	well	(142,	143).	

	First,	I	documented	the	appearance	of	Kit+	and	Stra8+	cells	from	embryonic	

development	 to	 PD7.	 I	 found	 that	 Kit+	 cells	 are	 visible	 even	 at	 PD1	 (Figure	7.6),	

which	 is	 earlier	 than	 what	 has	 been	 previously	 described	 (14,	 143).	 Stra8	 was	
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evident	by	PD3	(Figure	7.5),	and	the	expression	pattern	was	similar	to	that	found	in	

the	literature	(142,	143).	

Upon	colocalization	of	these	markers,	Kit	and	Stra8	were	rarely	expressed	in	

Pax7+	 prospermatogonia	 (Figure	7.9,	 A).	 Thus,	 these	 cells	 are	 not	 differentiating.	

Pax7+	prospermatogonia	 seemed	 to	prefer	 tubules	 that	did	not	have	Kit	or	Stra8+	

cells	 (Figure	7.9,	D),	which	may	 indicate	 that	 differentiation	 during	 the	 neonatal	

period	occurs	in	certain	areas	of	tubules	more	so	than	others.	On	the	other	hand,	it	

could	indicate	that	specific	niches	protect	pre‐spermatogonia	from	differentiation.		

	

Lineage	tracing	with	Pax7‐Cre	demonstrates	that	a	substantial	fraction	of	the	

germline	derives	from	Pax7+	germ	cells	

Although	 lineage	 tracing	 with	 tamoxifen	 inducible	 Pax7‐Cre	 alleles	 had	

previously	 shown	 that	 1)	 adult	 Pax7+	 SSCs	 can	 perdure	 for	 long	 periods	 and	 give	

rise	to	full	 lineage	maturation	clones	and	2)	neonatal	Pax7+	prospermatogonia	can	

perdure	 for	 12wks,	 the	 contribution	 of	 these	 cells	 to	 the	 overall	 germline	 was	

unknown.	To	further	examine	this,	I	crossed	Pax7‐Cre	mice	to	mT/mG	reporter	mice.	

Using	 this	 strategy,	 Pax7+	 prospermatogonia	 would	 be	 labeled	 during	 embryonic	

development,	 and	 this	 Cre	 allele	 seemed	 to	 be	more	 efficient	 than	 the	 tamoxifen‐

inducible	lines.			

At	 the	 earliest	 timepoint,	 e15.5,	 no	 labeled	 cells	 were	 observed,	 in	

accordance	with	the	IHC	data.	At	e18.5,	very	rare,	at	most	one	per	section,	 labeled	

cells	 could	be	observed	 (Figure	7.10,	D).	The	mGFP	signal	was	 relatively	weak	 in	

these	 cells,	 which	 could	 indicate	 that	 these	 cells	 have	 just	 begun	 to	 undergo	 Cre	
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mediated	recombination.	By	PD3,	labeled	cells	were	easier	to	locate,	and	most	often	

existed	as	single	cells,	but	were	sometimes	seen	in	pairs	or	clusters.	By	PD7,	labeled	

cells	were	abundant,	existing	as	singles,	pairs,	and	clusters,	and	seemed	to	be	spaced	

throughout	the	tubule	in	a	deliberate	manner	(Figure	7.10,	C).	From	PD7	to	PD14,	

there	 is	 a	 drop	 in	 the	 percentage	 of	 labeled	 germ	 cells,	 most	 likely	 due	 to	 an	

expansion	 of	 differentiating	 (Kit+)	 spermatogonia,	 which	 dilutes	 overall	 cell	

numbers	 (Figure	 7.10,	 A).	 By	 6wks,	 approximately	 30%	 of	 the	 germline	 was	

labeled,	and	green	motile	sperm	could	be	observed	in	the	epididymis.	At	12	wks,	the	

percentage	 of	 germ	 cells	 increased	 to	 50%.	 At	 6mos,	 the	 final	 timepoint,	

approximately	 60%	 of	 the	 germline	 was	 labeled	 demonstrating	 that	 Pax7+	

spermatogonia	make	a	major	contribution	to	the	germline	(Figure	7.10,	A).	

	

Pax7‐Cre	faithfully	replicates	Pax7	expression	patterns	in	the	muscle	and	testis	

To	 ensure	 that	 Pax7‐Cre	 was	 expressed	 in	 the	 appropriate	 cell	 types,	 I	

examined	whole	 body	 fluorescence	 at	 PD7.	 Skeletal	 trunk	muscles	 as	 well	 as	 the	

nasal	cavity	were	clearly	 labeled	with	GFP,	while	 the	rest	of	 the	body	was	 labeled	

with	the	TdTomato	(Figure	7.11,	A).	While	Pax7‐Cre	mT/mG	testes	contained	large	

GFP+	 clones,	mT/mG+	 testes	 without	 Cre	 showed	 no	 recombination	 and	 no	 GFP+	

labeled	clones	(Figure	7.11,	B)	In	skeletal	muscle,	approximately	90%	of	myocytes	

were	 labeled	by	6wks.	 (Figure	7.11,	 C)	Labeled	 cells	were	not	observed	 in	either	

the	gross	ovary	nor	in	sections	through	the	ovary,	which	is	in	agreement	with	both	

the	 digital	 Northern	 and	 IHC,	 which	 did	 not	 show	 Pax7	 expression	 in	 the	 ovary	

(Figure	7.11,	 E,	 see	 also	Chapter	6).	 The	 spleen,	 kidney,	 and	 liver	 also	were	 not	
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labeled	by	Pax7‐Cre	(Figure	7.11,	E,	G,	and	H).	Thus,	Pax7‐Cre	mirrors	expression	of	

Pax7	in	the	skeletal	muscle	and	gonads.		
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single	cells	can	be	seen,	indicated	by	the	arrow.	Green	labeled	sperm	were	observed	

in	the	epididymis.	By	12wks,	all	spermatogenic	subtypes	are	labeled.	Scale	=	500	µm	

(B);	25µm	(C)	and	(D).	
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CHAPTER	8:	BEHAVIOR	OF	PAX7+	SPERMATOGONIA	IN	SSC	CULTURES	

	 	

Pax7	is	expressed	heterogeneously	in	SSC	cultures	

Spermatogonial	 stem	 cell	 culture	 has	 been	 likened	 to	 culturing	 only	

undifferentiated	 spermatogonia.	 Cells	 are	 supported	 by	 a	 mix	 of	 growth	 factors,	

including	GNDF,	FGF,	and	EGF.	Markers	of	undifferentiated	spermatogonia	such	as	

Gfrα,	 Foxo1,	 and	 Plzf	 are	 expressed	 in	 SSC	 cultures,	 but	 uniformly	 in	 every	 cell.	

However,	it	is	known	that	only	a	fraction	of	these	cells	can	function	as	stem	cells	via	

transplantation	studies.	Furthermore,	although	expression	of	Kit	in	SSC	cultures	has	

not	been	visualized	by	IF,	a	variable	percent	of	SSCs	in	culture	express	Kit	by	FACs	

(144).	Thus,	SSC	cultures	are	a	heterogeneous	mix	of	stem	cells	and	differentiating	

cells.		

A	very	few	number	of	markers	are	expressed	in	selected	cells	in	the	cultures,	

including	 Sohlh1,	 which	 is	 thought	 to	 be	 upstream	 of	 Kit	 (144),	 Oct4,	 which	 is	

important	 in	 maintaining	 stemness	 in	 a	 variety	 of	 cell	 types	 (144),	 and	 Id4,	 a	

recently	 described	 marker	 of	 SSCs	 (18).	 Sohlh1	 and	 Oct4	 are	 nearly	 mutually	

exclusive	 (144).	 Id4	 is	 expressed	 in	 approximately	 10%	 of	 unsorted	 SSC	 cultures	

(18),	 which	 is	 much	 higher	 than	 the	 estimate	 1.33%	 of	 cultures	 SSCs	 which	 are	

capable	 of	 transplantation	 (145).	 On	 the	 other	 hand,	 taking	 into	 account	 that	 the	

homing	 efficiency	 of	 12%	 (23),	 or	 how	 likely	 a	 stem	 cell	 is	 to	 find	 and	 colonize	 a	

niche,	 the	 10%	 of	 SSC	 cultures	 which	 are	 positive	 for	 Id4	 are	 very	 close	 to	 the	

estimated	number	of	stem	cells	in	the	culture	(1.33x	12	=15.96%)	
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I	sought	to	visualize	the	expression	pattern	of	Pax7	in	SSC	cultures.	Do	to	the	

rarity	of	these	cells	in	vitro,	SSC	cultures	could	serve	as	an	easier	means	by	which	to	

understand	the	behavior	of	these	cells.	Expression	of	Pax7	was	not	seen	in	all	cells,	

but	only	in	a	small	number,	approximately	10%	(Figure	8.1).	Pax7+	spermatogonia	

co‐localized	with	Foxo1,	but	surprisingly	did	not	co‐localize	with	Oct4,	and	these	cell	

markers	 seemed	mutually	 exclusive	 (Figure	8.1).	 Since	 Id4	 and	 Pax7	 seem	 to	 be	

expressed	in	similar	subsets	of	cells	in	vivo,	I	co‐labeled	SSC	cultures	with	these	two	

markers,	 and	 found	 that	 indeed,	 Id4	and	Pax7	seemed	 to	 label	 the	same	subset	of	

cells	in	vitro.	

To	 begin	 to	 understand	 how	 Pax7+	 and	 Pax7‐	 spermatogonia	 behave,	 I	

labeled	 cells	 with	 EdU	 and	 determined	 the	 incorporation	 rates	 of	 Foxo1+	 (all	

spermatogonia	in	culture)	and	Pax7+	and	Pax7‐	spermatogonia	(Figure	8.1).	I	found	

no	difference	in	the	EdU	incorporation	rate	of	any	of	these	cell	populations,	similar	

to	different	subsets	of	spermatogonia	in	vivo.		

	

Busulfan	treatment	of	SSC	cultures	

To	examine	how	SSCs	respond	to	genotoxic	stress,	I	treated	SSC	cultures	with	

0.01uM	to	10mM	busulfan	to	determine	the	LD50.	SSCs	were	surprisingly	resistant	

to	busulfan,	compared	to	their	sensitivity	in	vivo	(Figure	8.2,	A).	I	then	treated	SSC	

cultures	with	these	same	doses	of	busulfan	and	counted	Pax7+	SSCs	in	the	surviving	

fraction	of	spermatogonia	to	determine	if	Pax7+	spermatogonia	were	more	resistant	

to	 busulfan	 than	 other	 fractions.	 I	 found	 that	 only	 at	 the	 highest	 dose	were	 Pax7	



  147

protein	and	Pax7+	SSC	 increased	(Figure	8.2,	B,	C).	Thus,	SSCs	appear	to	be	more	

resistant	to	busulfan	in	vitro	than	in	vivo.	

	

Effect	of	Gdnf	withdrawal	on	Pax7	expression	

Gdnf	is	an	essential	growth	factor	for	the	survival	of	SSC	cultures.	It	had	been	

thought	that	SSCs	have	an	absolute	requirement	for	Gdnf.	However,	a	recent	study	

has	demonstrated	that	a	very	small	number	of	SSCs	can	be	propagated	even	without	

Gdnf	 (146).	 Using	 a	Ret	mutant	mouse	 incapable	 of	 responding	 to	Gdnf	 signaling,	

Takashima	et.	al	demonstrated	that	not	only	can	SSC	cultures	be	derived	from	these	

mice,	 but	 moreover	 these	 cells	 can	 form	 functional	 spermatogenic	 colonies	 via	

transplantation	 studies.	 Moreover,	 when	 Gdnf	 is	 withdrawn	 for	 18hrs	 from	 SSC	

culture	media,	the	number	of	colonies	formed	via	transplantation	actually	increases	

(28),	 although	 the	 reason	 for	 this	 increase	 is	 not	 understood.	 Thus,	 while	

responsiveness	to	Gdnf	has	been	historically	viewed	as	a	necessary	characteristic	of	

a	spermatogonial	stem	cell,	this	criterion	may	have	little	to	do	with	actual	stemness.	

I	 sought	 to	 determine	how	Pax7+	 SSCs	 in	 culture	 responded	 to	Gdnf.	 I	 first	

turned	 the	 literature,	 where	 a	 microarray	 of	 genes	 affected	 by	 Gdnf	 withdrawal	

showed	no	change	in	expression	of	Pax7	(28).	Therefore,	I	wanted	to	determine	the	

effect	of	Gdnf	withdrawal	on	 the	survival	of	Pax7+	SSCs.	The	normal	media	 (SFM)	

contains	 20µg/mL	 Gdnf.	 Therefore,	 I	 chose	 1,	 5,	 and	 10	 µg/mL,	 and	 counted	 the	

number	of	Pax7+	SSCs	after	18	and	72hrs.	As	overnight	withdrawal	of	Gdnf	does	not	

affect	SSC	numbers	(28),	I	wanted	to	choose	a	longer	timepoint	that	would	challenge	

the	SSCs	to	the	extreme.	I	found	that	overnight	withdrawal	of	Gdnf	did	not	have	any	
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impact	of	expression	of	Pax7	at	any	dose	(data	not	shown).	Furthermore,	even	at	72	

hours	of	extremely	reduced	 levels	of	Gdnf	(10%	of	normal	SFM	conditions),	Pax7+	

SSCs	 persisted	 at	 normal	 numbers.	 At	 the	 lowest	 dose	 of	 Gdnf	 (1mg/mL)	 SSC	

cultures	begin	to	die	after	72hrs.		

	

Live	cell	imaging	of	descendants	of	Pax7+	SSCs	

I	 derived	 SSC	 cell	 lines	 from	 Pax7tm1(cre/ERT2)Gaka/J;	mT/mG	 PD7	 male	 mice.	

Once	the	 lines	were	established,	 I	 treated	cells	with	2	mg/mL	tamoxifen	to	 induce	

Cre	recombinase.	Approximately	1%	of	cells	in	culture	were	labeled	after	4	days	of	

tamoxifen	 treatment,	 giving	 an	 efficiency	 of	 approximately	 10%	 (Figure	 8.3,	 A).	

These	 labeled	 cells	were	 stable	 in	 culture	 up	 to	 3mos	 after	 three	 days	 tamoxifen	

treatment	(Figure	8.3,	A).		

To	 observe	 the	 behavior	 of	 Pax7	descendants	 in	 real	 time,	 I	 employed	 live	

cell	imaging	on	a	LSM510	confocal	microscope	for	up	to	72h.	While	cell	divisions	of	

Pax7	derived	cells	were	not	observed,	SSC	cultures	were	quite	motile.	Furthermore,	

I	 observed	 the	 splitting	 and	 joining	 of	 cells	 from	 different	 clusters,	 meaning	 that	

each	 cluster	 is	 not	 necessarily	 clonal,	 and	 fragmentation	 does	 occur	 in	 vitro.	

However,	 the	 length	of	 time	and	area	observed	 (one	 section	per	 imaging	 session)	

was	not	 sufficient	 to	draw	 conclusions	 as	 to	how	Pax7+	 SSCs	divide.	On	 the	other	

hand,	 live	cell	 imaging	 is	very	 feasible	with	Pax7tm1(cre/ERT2)Gaka/J;	mT/mG	 lines;	 the	

endogenous	fluorescence	is	easily	visible	and	SSC	cultures	can	be	maintained	at	the	

microscope.	With	a	confocal	capable	of	imaging	multiple	areas	per	time	frame	and	a	
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live	 reporter	 of	 Pax7	 expression,	 this	 methodology	 could	 serve	 as	 an	 attractive	

means	to	understand	symmetric	vs.	asymmetric	divisions	of	Pax7+	SSCs.		

I	 then	 derived	 cell	 lines	 from	 3	 Pax7tm1cre	 Mrc/J;	mT/mG	 PD7	 mouse	 testis,	

where	labeled	cells	only	represent	approximately	10%	of	germ	cells	(see	Chapter	7),	

and	counted	the	percentage	of	green	labeled	cells	over	time.	After	70	days	in	culture,	

nearly	 70%	 of	 the	 germ	 cells	were	 labeled	with	 GFP,	 suggesting	 that	 Pax7+	 SSCs	

function	 as	 the	 stem	 cells	 in	 SSC	 culture	 (Figure	 8.3,	 B).	 However,	 longer	

experiments	were	not	possible	as	both	the	mG	and	mT	signal	failed	to	be	detected	in	

cultures,	which	could	be	due	to	modification	of	the	Rosa	locus.	

	

Overexpression	of	Pax7	

Pax7	was	cloned	into	a	Plvx	lenti	expression	plasmid,	and	SSCs	were	infected.	

As	 a	 control,	 cells	 were	 also	 infected	 with	 Plvx	 mCherry.	 Overexpression	 was	

confirmed	via	western	blot,	and	also	by	IF	(data	not	shown).	Whereas	11%	of	cells	

in	mCherry	cultures	expressed	Pax7	via	IF	(equivalent	to	wild	type),	70%	of	Pax7‐

overexpressing	 SSC	 cultures	 expressed	 Pax7.	 To	 determine	 how	 Pax7	

overexpression	effects	cell	growth,	I	examined	EdU	incorporation	at	30min,	1h,	4h,	

and	 24h.	 I	 found	 a	 trend	 in	 Pax7	 overexpressing	 cell	 lines	 to	 have	 a	 higher	

incorporation	rate	than	mCherry	cell	lines	at	all	timepoints,	and	this	was	statistically	

significant	 at	 1	 and	 4h	 (Figure	 8.4,	 B).	 Furthermore,	 I	 found	 that	 Pax7	

overexpressing	 cell	 lines	 have	 a	 higher	 cleaved	 caspase	 3	 positivity,	 indicated	

apoptosis.	In	accordance	with	this,	short	term	growth	analysis	of	mCherry	vs.	Pax7	

overexpression	revealed	no	difference	(Figure	8.4,	E).	Long‐term	growth	analysis	of	
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5	wks	demonstrated	no	significant	difference	between	the	overexpressing	cells	and	

the	mCherry	controls	(Figure	8.4,	C).	

	

Knockout	of	Pax7	

To	determine	how	loss	of	Pax7	impacts	SSC	culture,	Pax7	f/f	Vasa‐Cre	ERT2	SSC	

cultures	were	derived	and	then	treated	with	tamoxifen	to	induce	Cre.	Loss	of	Pax7	

was	confirmed	via	western	blot	and	also	by	IF.	Whereas	11%	of	cells	in	cultures	not	

treated	with	 tamoxifen	 expressed	 Pax7	 via	 IF	 (equivalent	 to	wild	 type),	 0.01%	of	

Pax7‐overexpressing	 SSC	 cultures	 expressed	 Pax7	 (data	 not	 shown).	 I	 found	 that	

Pax7	cKO	cell	 lines	have	a	higher	cleaved	caspase	3	positivity,	 indicated	apoptosis	

(Figure	8.5,	D).	Short	 term	growth	analysis	of	 tamoxifen	vs.	non	treated	cell	 lines	

revealed	no	significant	difference	between	these	two	conditions.	 In	 fact,	 tamoxifen	

treated	 lines	 seemed	 to	 grow	 slightly	more	 than	 the	 non‐treated,	 arguing	 against	

tamoxifen	itself	having	any	harmful	effect	on	the	cultures	(Figure	8.5,	A).	Long‐term	

growth	 analysis	 of	 5	wks	 demonstrated	no	 significant	 growth	 differences	 (Figure	

8.5,	B).	

	

Pax7	and	Id4	

During	 the	 course	 of	 this	 project,	 Id4	was	 found	 to	mark	 a	 small	 subset	 of	

Asingle	spermatogonia,	akin	to	Pax7.	To	investigate	the	hypothesis	that	Pax7	and	Id4	

marked	 the	 same	 subset	 of	 cells,	 I	 first	 counted	 the	 number	 of	 Pax7	 and	 Id4+	

spermatogonia	 in	SSC	cultures.	Localization	of	 Id4	has	been	reportedly	difficult,	as	

antibodies	to	Id4	have	deteriorated	in	specificity	as	new	lots	were	produced.	Using	a	
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polyclonal	 antibody	 to	 Id4specify	 antibody,	 I	 ,	 	 found	 that	 both	 markers	 were	

expressed	 in	 approximately	 10%	 of	 cells.	 Co‐localization	 of	 Pax7	 and	 Id4	 was	

observed	within	the	same	cells	(Figure	8.6,	A).		

In	vivo	studies	of	these	markers	was	aided	by	the	development	of	an	Id4‐GFP	

mouse,	developed	by	 the	Oatley	 lab	 (26).	 In	 this	system,	 it	was	reported	 that	only	

the	brightest	GFP+	spermatogonia	truly	replicate	Id4	transcription,	as	the	GFP	is	a	

stabilized	 protein	 and	 may	 last	 longer	 that	 Id4	 itself	 (Jon	 Oatley,	 personal	

correspondence,	 (143)).	 	Neonatal	 testis	blocks	were	obtained	 from	PD0	and	PD6	

mice	and	generously	provided	by	the	Oatley	lab.	Id4‐GFP	was	found	to	be	expressed	

in	a	subset	of	germ	cells	(Figure	8.6,	C).	Colocalization	of	GFP	and	Pax7	found	that	

Pax7	 is	 expressed	 in	 a	 subset	 of	 Id4+	 SSCs	 at	 both	 timepoints	 (Figure	 8.6,	 D).	

Furthermore,	 colocalization	 of	 Id4	 and	 GFP	 demonstrated	 that	 all	 GFP+	

spermatogonia	 were	 also	 dually	 positive	 for	 Id4.	 Thus,	 it	 may	 be	 that	 the	 GFP	

faithfully	replicates	expression	of	Id4,	or	that	the	antibody	used	to	detect	Id4	is	not	

specific	to	these	pre‐spermatogonia.		

	

Conclusion	

Here	 we	 demonstrate	 that	 Pax7	 marks	 a	 subset	 of	 spermatogonia	 that	

function	as	stem	cells	 in	both	normal	spermatogenesis	as	well	as	during	genotoxic	

injury.	 Pax7+	 spermatogonia	 are	 selectively	 resistant	 to	 chemotherapeutics,	 and	

directly	contribute	to	the	recovery	of	spermatogenesis	after	such	treatments.	While	

these	cells	make	a	significant	contribution	to	the	germline,	it	is	possible	that	not	all	

germ	cells	pass	through	Pax7	lineage,	suggesting	the	existence	of	other	populations	



  152

of	germline	stem	cells	in	the	testis.	these	stressors.	Pax7	delineates	a	subset	of	germ	

cells	 even	 late	 in	embryonic	development,	 calling	 into	question	whether	 stemness	

can	 be	 determined	 prior	 to	 birth.	 Finally,	 Pax7	 marks	 a	 subset	 of	 Id4+	

spermatogonia,	which	could	suggest	a	hierarchy	of	differentiation	even	in	the	Asingle	

population.	This	research	may	lead	to	new	approaches	to	preserve	the	germline	in	

male	cancer	patients	or	perhaps	even	pave	 the	way	 for	 future	research	 that	could	

reverse	male	infertility.	
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