MEDICAL GRAND ROUNDS

March 28, 1963

"ANTERIOR PITUITARY FUNCTION AND DISEASE"

Fig. I: The control of adrenal cortical function

Control steroid		Water-I	Metopirone	
Excretion	j	Control	After ACTH	=
Low	i	Decreased	Normal	No
Low-normal	İ	Decreased Normal	Normal	No Yes
Normal	i	N	Yes	

Fig. 2: Assessment of Pituitary ACTH Secretion

ANTERIOR PITUITARY HORMONES

		1		l N			
7. Melanocyte-stimulat- ing (MSH)	6. Adrenocorticotrophic (ACTH)	5. Thyroid stimulating (TSH)	4. Prolactin or luteotropnic (LTH)	3. Luteinizing (LH) or interstitial cell stimulating (LCSH)	2. Follicle Stimulat- ing (FSH)	1. Growth (GH)	Hormone
Scattering of pigment granules within melanocytes	 a. Maintenance of anatomical integrity of adrenal b. Stimulation of cortisol and androgen synthesis c. Melanocyte stimulating effect d. Fat mobilizing effect 	 a. Immediate stimulation of oxygen and glucose utilization by thyroid b. Release of thyroid hormone from colloid c. Stimulation of I uptake and incorporation 	 a. "Growth hormone" effects b. Stimulation of progesterone production from corpus luteum c. Stimulation of growth of and milk secretion from the breast 	a. Male: Stimulation of androgen production from Leydig cellsb. Female: Release of ova, and formation of corpus luteum	 a. Male: Maturation of germ cells and stimulation of sperm production b. Female: Maturation of follicle for ovulation tion and estrogen production 	 a. Stimulation of cell growth and division b. Stimulation of protein synthesis with positive nitrogen balance c. Stimulation of cartilaginous bone with positive calcium balance d. Resistance to effects of insulin e. mobilization of fat (?) 	Physiologic actions
Bioassay	Bioassay	Bioassay	Bioassay	Bioassay	Bioassay	a. Immunochemicalb. Bioassayc. Hydroxyprolineexcretion (?)	Assay
(ACTH)	ACTH, aqueous or gel	Thyrotropin	1	Chorionic gonadotropin	Pregnan† mares serum	Human G.H.	Available form

Hypopituitarism (Simmond's Disease)

1. Etiology

- A. Hypophysectomy and stalk section (3)
 - 1) Carcinoma of breast or prostate.
 - 2) Diabetic retinopathy.
 - 3) Pituitary tumors.
- B. Necrosis, usually Post-partum (Sheehan's) or Diabetic (4)
- C. Traumatic infarction.
- D. Pituitary tumors and cysts (22).
 - 1) Chromophobe adenoma (15).
 - 2) Eosinophilic adenoma (5)("burnt-out" acromegaly).
 - 3) Craniopharyngioma (1).
- E. Hypothalamic (Suprasellar) tumors.
- F. Infiltrative diseases: granulomas, infections, metastases (1).
- G. Pituitary dwarfism (2).
- H. "Functional"
 - 1) Severe malnutrition.
 - 2) Intestinal malabsorption.
 - 3) Prolonged exogenous corticosteroid therapy.

II. Clinical Features

- A. May be variable, instead of usual progression of gonadal, then thyroidal, then adrenocortical depression.
- B. Combination of myxedema, amenorrhea and a loss of libido strongly suggestive
- C. Etiology Should be Apparent by History or Skull Films For Sellar Size.
- D. Course After Hypophysectomy
 - 1) Adrenal insufficiency apparent within a day.
 - 2) Thyroid insufficiency.
 - a) PBI below 3.5 μg% often by I week.
 - b) Clinical evidence usual after I month.
 - c) 10 of 350 patients remained euthyroid
 - 3) Gonadal Insufficiency
 - a) Few "menopausal" symptoms.
 - b) Gonadotropin excretion zero by 3 weeks.
- E. Post-partum necrosis: Failure of lactation and menstruation.

Laboratory Evaluation of Pituitary Function

1. Gonadotropin

111.

- A. Presence of menses best proof of normal function.
- B. Pap smear of vaginal epithelium for estrogen effect (cornification).
- C. Urinary gonadotropin assay (24 hour urine).
 - 1) Normal: > 6 mouse units before menopause; >50 after.
 - 2) Crude and expensive; may be 0 in normal, menstruating women.

2. Thyroid Stimulating Hormone

- A. No direct assay
- B. Indirect
 - I) BMR
 - 2) PBI: normal 4.0 to 8.0 μg%
 - 3) RAI uptake (24 hour): normal 15 40%
 - a) Control value usually 7 15% with pituitary insufficiency
 - b) Repeat on day after 3 days of exogenous TSH 10 units I.M. daily.
 - (I) Uptake should at least double
 - (2) May not increase with long-standing thyroid atrophy.

3. Adrenocorticotropin

- A. Clinical criteria of little value
- B. Control urinary steroid excretion
 - 1) 17-ketosteroid (17-KS)
 - a) May be depressed more than 17-HOCS with pituitary hypofunction.
 - b) Normal range
 - (1) Male: 8 22 mg/24 hr.
 - (2) Female: 5 15 mg/24 hr.
 - 2) 17-hydroxycorticoid (17-HOCS or, preferably, Porter-Silber chromogen).
 - a) More meaningful than 17-ketogenic assay (17-KGS).
 - b) Normal range
 - (1) Male: 3 12 mg/24 hr.
 - (2) Female: 2 10 mg/24 hr.
 - 3) Affected by factors other than pituitary or adrenal dysfunction.
 - a) Decreased steroid excretion
 - (I) Liver disease
 - (2) Renal insufficiency.
 - (3) Primary hypothyroidism.

- b) Interference with assay techniques
 - (I) 17-KS meprobamate.
 - (2) 17-HOCS ASA, chloral hydrate, chloromycetin.
- C. Steroid Excretion After Exogenous ACTH
 - 1) Normal response is at least a tripling of 17-HOCS excretion.
 - 2) With prolonged depression of adrenal function, prolonged stimulation needed.
 - a) 40 units ACTH gel tid for 3 days, or
 - b) 50 units aqueous ACTH in 500 ml D/W over 8 hours for 2 or 3 days.
- D. Water-loading Test (after Oleesky)
 - 1) Probably dependent upon direct effect of cortisol on renal tubular cell
 - 2) Technique
 - a) Patient fasted overnight, remains in bed except to void.
 - b) Give up to 1,000 ml water orally in 20 minutes.
 - c) Have patient void every 20 minutes for next 2 hours.
 - d) Normal response: urine flow >4 ml/min
 - e) If response subnormal, repeat test after 3 days of ACTH; if response now normal, ACTH deficiency almost certainly exists.
- E. Metopirone (SU-4885) Test:
 - 1) Indications given in Fig. 2, Page I
 - 2) Mechanism
 - a) Adrenal cortex must be responsive.
 - b) Inhibition of II-beta-hydroxylase enzyme activity, causing decrease in cortisol synthesis
 - c) Fall in circulating cortisol causes release of ACTH from pituitary via feedback system.
 - d) Increased ACTH stimulates adrenal cortex to synthesize II-deoxycortisol (II-DO-CS) which is measured in urine
 - 3) Technique: Oral test preferred to I.V.
 - a) Collect control 24 hour urine.
 - b) Give 750 mg (3 tablets) Metopirone every 4 hours for 6 doses, starting at 8:00 A.M.
 - c) Collect 24 hour urine on day of and day after Metopirone.
 - 4) Interpretation
 - a) Preferable to measure II-DO-CS alone, instead of all I7-HOCS. This can be done by simple modification of routine I7-HOCS technique.
 - b) Normal response: Increase of II-DO-CS excretion of 7 mg or more above control excretion.
 - c) Abnormal test reflects deficiency of pituitary ACTH secretion after stimulation of feedback mechanism. This may not, however, mean that ACTH secretion will be deficient in response to stress.

E. Stress Tests (Insulin tolerance or Pyrogen)

- 1) Potentially harmful and unnecessary.
- 2) Not as sensitive as Metopirone.

IV. Therapy

A. Adrenal Corticoids

- 1) Hydrocortisone 20 to 40 mg in divided dosage.
- 2) Salt-retaining hormones not needed.
- B. Thyroid I to 3 grains, after institution of adrenal corticoid replacement therapy

c. Sex Hormones

I) Androgens

- a) Male 10 to 30 mg methyltestosterone sublingually daily.
- b) Female 10 mg orally every other day.

2) Estrogens in younger women

- a) 0.1 mg diethylstilbesterol .
- b) May prefer cyclic therapy.

Factors Which Affect the 24-Hour RAI Uptake

A. Depress.

- 1. Excess iodine or iodide
 - a. Medications:
 - 1) Vitamins
 - 2) Expectorants
 - 3) Topical Agents: Vioforin, Iodex, Floraquin
 - 4) Miscellaneous: Pathilon, Diodoguin
 - b. X-ray Contrast Media: interfere for at least one month
 - c. Foods: excess intake of fish, cauliflower, cherries
- 2. Goitrogenic Foods: Brassica family (cabbage, turnips, etc.)
- 3. Antithyroid Drugs
 - a. Thiourea derivatives
 - b. Aromatic compounds
 - 1) Sulfonylureas (mild depression)
 - 2) Para amino salicylic acid (PAS)
 - 3) Resorcinol
- 4. Sedatives: Meprobamate (mild), Thiopental
- 5. Exogenous Hormones:
 - a. ACTH and cortisone
 - b. Epinephrine (perhaps a factor with extreme agitation)
 - c. Thyroid: may occur with as little as 1 grain of desiccated thyroid for 8 days, and may take 2 - 3 months to disappear
 - d. Sex hormones: oral progestational agents (?)
- Miscellaneous Drugs: heavy metals (?), monovalent anions (chlorate, nitrate, thiocyanate), cobalt, phenylbutazone, Vitamin A, salicylates (large doses)
- 7. Diseases
 - a. Congestive heart failure
 - b. Renal insufficiency (rarely)
 - c. Subacute thyroiditis (active)
 - d. Klinefelter's Syndrome
 - e. Old age (slight)

B. Elevate

- 1. Iodine deficiency
- 2. Rebound after withdrawal of antithyroid drugs
- 3. Nephrotic syndrome
- 4. Subacute thyroiditis (recovery phase), Hashimoto's Disease, non-toxic goiter (very rarely)
- C. No Effect
 - 1. Malabsorption syndrome
 - 2. Mercurial diuresis
 - 3. Changes in glomerular filtration
 - 4. Sedatives: reserpine, pentobarbital.

References

A General.

- 1. Tepperman, J. Metabolic and Endocrine Physiology, Year Book Publishers, 1962.
- 2. Escamilla, R. F. Laboratory Tests in Diagnosis and Investigation of Endocrine Functions, F. A. Davis Co., 1962.
- Regulation of Corticotropin Secretion.
 - 3. Liddle, G. W. et. al. Recent Progress in Hormone Research, 18:125, 1962.
 - 4. Shuster, S. The Control of Corticotrophin Secretion in Man. Proc. Roy. Soc. Med. 55: 131, 1962.
- c. Hypopituitarism.
 - 5. Sheehan, H. L. and Summers, V. K. The Syndrome of Hypopituitarism. Quart. J. Med. 18: 319, 1949.
 - 6. Sheehan, H. L. Simmond's Disease Due to Post-partum Necrosis of the Anterior Pituitary. Quart. J. Med. 8:277, 1939.
 - 7. Sheehan, H. L. Atypical Hypopituitarism. Proc. Roy. Soc. Med. 54:43, 1961.
 - 8. Lyle, T. K. and Clover, P. Ocular Symptoms and Signs in Pituitary Tumors. Proc. Roy. Soc. Med. 54: 611, 1961.
 - 9. Dowling, J. T. et. al. Nonpuerperal Galactorrhea. Arch. Int. Med. 107:885, 1961.
 - Pazianos, A. G., et. al. Persistent Thyroid Function Following Hypophysectomy.
 J. Clin. Endo. 20: 1051, 1960.
 - II. Jessiman, A. G., et. al. Hypophysectomy in the Treatment of Breast Cancer. New England J. Med. 261:1199, 1959.
 - Contreras, J. S., et. al. Diabetic Retinopathy: Hypophysial stalk Section. Arch. Ophthal. 67:428, 1962.
 - VanWyk, J. J., et. al. The Effect of Pituitary Stalk Section on Adrenal Function. J. Clin. Endo. 20:157, 1960.
 - Smith, C. W. and Howard, R. P. Variations in Endocrine Gland Function in Postpartum Pituitary Necrosis. J. Clin. Endo. 19:1420, 1959.
 - 15. Daniel, P. M. Traumatic Infarction of the Anterior Lobe of the Pituitary. Lancet 2: 927, 1959.
 - 16. Mickerson, J. N. Anterior Pituitary Deficiency in Disorders Associated with Steatorrhea. Brit. M. J. I: 529, 1960.
 - 17. Treadwell, B. L. J. Pituitary-adrenal Function during Corticosteroid Therapy. Lancet 1:355, 1963.

n. Therapy of Pituitary Tumors

- 18. Gurdjian, E.S., et al. Recent Advances in Surgical Management of Chromophobe Tumors. J.A.M.A. 158:23, 1955.
- 19. Colby, M.Y., and Kearns, T.P. Radiation Therapy of Pituitary Adenomas. Proc. Staff Meet. Mayo Clinic 37:15, 1962.

E. Tests of Pituitary Function

- 20. Van Arsdel, P.P., Jr. and Williams, R.H. Simmond's Disease. Evaluation of Certain Laboratory Tests Used in Diagnosis. Am. J. Med. 20:4, 1956.
- 21. Lestina, F.A. Anterior pituitary disorders. Med. Clin. N. Amer. 43:511, 1959.
- 22. Liddle, et al. Clinical application of a new test of pituitary reserve. J. Clin. Endo. 19:875, 1959.
- 23. Kaplan, N.M. The assessment of pituitary ACTH secretory capacity with Metopirone. I. Interpretation, and II. Comparison with other tests. J. Clin. Endo. (In Press)
- 24. Grayson, R.R. Factors which influence the RAI test. Am. J. Med. 28:397, 1960.
- 25. Oppenheimer, J.H., et al. Disturbance of the pituitary-adrenal interrelationships. J. Clin. Endo. 21:1023, 1961.
- 26. Oleesky, S. Specific water diuresis test for adrenocortical insufficiency. Lancet 1:769, 1953.
- 27. Thomson, A.B., et al. Water diuresis in adrenal cortical insufficiency. Ann. Int. Med. 52:949, 1960.
- 28. Bleifer, K.H., et al. The diuretic response to water in patients with primary myxedema. J. Clin. Endo. 20:409, 1960.