

Predicting severe hematologic toxicity from extended-field **UTSouthwestern** chemoradiation of para-aortic nodal metastases from cervical cancer Medical Center

Introduction

Cervical cancer is the fourth most common cancer in women with the number of cases increasing each year [1]. For cervical cancer, lymph node metastasis, especially para-aortic lymph node metastasis (PALN), is associated with higher treatment failure and distant failures [2]. For these patients, extended-field radiation therapy with concurrent chemotherapy has been shown to give good local control and survival rates; however, hematologic toxicity (HT) was significant due to extensive radiation of the bone marrow in the pelvis and spinal column, leading to prolonged treatment days and missed chemotherapy [3,4]. Bone marrow sparing radiation techniques to prevent HT have been extensively studied for pelvic radiation, but information is lacking for extended-field radiation therapy [5]. The purpose of this study is to determine significant factors predictive for severe in cervical cancer patients with PALN HT metastasis treated with concurrent chemoradiation with a specific focus on radiation parameters.

	Methods
1. Patient selection	 38 patients from 2008-2015 Extended-field radiation therapy with concurrent chemotherapy
2. Bone Marrow Contouring	 Total bone marrow includes pelvis, femoral head, lumbar and sacral spine. Active bone marrow determined by ¹⁸F-FDG-PET / CT scan.
3. Data collection	 Retrieved weekly blood counts collected during treatment. Determined doses to bone marrow from the treatment plan.

Kevin Yan, Ezequiel Ramirez, Xuejun Gu Ph.D., Kevin Albuquerque M.D. Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX

Results

Patient and Cancer Char	acteristics	Treatment Characteristics			
Patients	38	Method of External Radiation			
Mean age, years (SD)	49.8 (11.4)				
Race, number of people (%)		IMRT (%)	27 (71.1)		
White	15 (39.5)	3D-CRT 4 Field Technique (%)	11 (28.9)		
Hispanic	15 (39.5)		11 (20:0)		
Other	8 (21.1)	Mean Dose to BM _{TOT} in Gy (SD)	29.8 (2.9)		
Mean body mass index, kg/m² (SD)	26.8 (6.1)				
Diabetes (%)	7 (18.4)	Mean Dose to BM _{ACT} in Gy (SD)	33.4 (3.4)		
Hypertension (%)	12 (31.6)	Mean Treatment Days (SD)	57 4 (7 5)		
FIGO Clinical Stage, number of people (%)		mean meannent Days (OD)	57.4 (7.5)		
1B1	1 (2.6)	Received Packed Red Blood Cell Transfusion During	40 (47 4)		
1B2	4 (10.5)	Treatment (%)	18 (47.4)		
2A2	2 (5.3)				
2B	21 (55.3)	Received Platelet Transfusion During Treatment (%)	1 (2.6)		
3B	8 (21.1)	Received Granulocyte Colony Stimulating Factor	11 (28 0)		
4A	2 (5.3)	During Treatment (%)	11 (20.9)		

Acute Hematologic Toxicity					
Toxicity	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4
Neutropenia (%)	11 (28.9)	6 (15.8)	11 (28.9)	9 (23.7)	1 (2.6)
Anemia (%)	0 (0)	9 (23.7)	17 (44.7)	12 (31.6)	0 (0)
Thrombocytopenia (%)	4 (10.5)	26 (68.4)	5 (13.2)	2 (5.3)	1 (2.6)

	Blood Counts		HT3+ Dosimetric Parameter	Cutoff Values	
Baseline count, mean (SI	0)		Total Dana Marrau		
WBC k/µL (SD)		11.3 (6.5)	Total Bone Marrow		
ANC k/µL		8.4 (6.0)	Mean Dose (p-value)	30.28 (0.04)	
Hemoglobin g/dL		11.1 (1.9)	V10 % (p-value)	94.58 (0.11)	
Platelet k/µL		367.8 (161.4)			
Nadir count, mean (SD)			V20 % (p-value)	78.56 (0.01)	
WBC k/µL		2.4 (1.1)	V30 % (p-value)	47.14 (<0.01)	
ANC k/μL		1.6 (1.0)	V45 % (p-value)	20.36 (0.01)	
Hemoglobin g/dL		8.9 (1.4)		20.00 (0.01)	
Platelet k/µL		113.3 (58.7)	Active Bone Marrow		
			Mean Dose (p-value)	32.36 (0.02)	
	HT Grade 0-2	HT Grade 3-4	V10 % (p-value)	95.50 (0.03)	
Not Obese	4 (10.5%)	14 (36.8%)	V20 % (p-value)	80.52 (0.05)	
			V30 % (p-value)	59.64 (0.03)	
Obese	15 (39.5%)	5 (13.2%)	V45 % (p-value)	31.74 (0.01)	

	Blood Counts		HT3+ Dosimetric Parameter	Cutoff Values
Baseline count, mean (SI	D)		Total Bone Marrow	
WBC k/µL (SD)		11.3 (6.5)		
ANC k/µL		8.4 (6.0)	Mean Dose (p-value)	30.28 (0.04)
Hemoglobin g/dL		11.1 (1.9)	V10 % (p-value)	94.58 (0.11)
Platelet k/µL		367.8 (161.4)		
Nadir count, mean (SD)			V20 % (p-value)	78.56 (0.01)
WBC k/µL		2.4 (1.1)	V30 % (p-value)	47.14 (<0.01)
ANC k/µL		1.6 (1.0)	V45 % (n-value)	20.36 (0.01)
Hemoglobin g/dL		8.9 (1.4)		20.00 (0.01)
Platelet k/µL		113.3 (58.7)	Active Bone Marrow	
			Mean Dose (p-value)	32.36 (0.02)
	HT Grade 0-2	HT Grade 3-4	V10 % (p-value)	95.50 (0.03)
Not Obese	4 (10.5%)	14 (36.8%)	V20 % (p-value)	80.52 (0.05)
			V30 % (p-value)	59.64 (0.03)
Obese	15 (39.5%)	5 (13.2%)	V45 % (p-value)	31.74 (0.01)

Patients who were obese were less likely to have severe hematologic toxicity compared with patients who were not obese (p < 0.01).

Abbreviations: HT3+ = Hematologic Toxicity Grade 3 and Higher; V10, 20, 30, 45 = percent of bone marrow receiving \geq 10, 20, 30, 45 Gy.

Mean Treatment Days vs. HT Grade

	Toxicity Grade
+ U 0) 1 2 3 4
0	
o -	
o -	
0 -	
0	y = 4.8078x + 46.219 $R^2 = 0.96288$
o -	
°]	

patients.

- radiation therapy.
- population.

Points

BMI

Mean Dose to Total BM

Total Points

Risk of HT3+

Abbreviations: HT3+ = Hematologic Toxicity Grade 3 and Higher; BMI = Body Mass Index; BM = Bone Marrow

toxicity rates.

We would like to thank Dr. Yin Xi, Dr. Xian-Jin Xie, and the UT Southwestern Department of Radiation Oncology for providing guidance. We would also like to thank UT Summer Research Program for funding the research.

. Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86 . Stehman, F.B., et al., Carcinoma of the cervix treated with radiation therapy. I. A multi-variate analysis of prognostic variables in the Gynecologic Oncology Group. Cancer, 3. Kim, Y.S., et al., High-dose extended-field irradiation and high-dose-rate brachytherapy with concurrent chemotherapy for cervical cancer with positive para-aortic lymph nodes. Int J Radiat Oncol Biol Phys, 2009. 74(5): p. 1522-8 . Jensen, L.G., et al., Outcomes for patients with cervical cancer treated with extended-field intensity-modulated radiation therapy and c Cancer, 2013. 23(1): p. 119-25. 5. Liang, Y., et al., Prospective study of functional bone marrow-sparing intensity modulated radiation therapy with concurrent chemotherapy for pelvic malignancies. Int

Conclusions

1. The greater volume irradiated due to extendedfield radiation therapy is associated with severe hematologic toxicity in a high proportion of

2. Patients with higher BMI were less likely to get severe hematologic toxicity.

3. Dosimetric parameters have been identified for cervical cancer patients receiving extended-field

4. A simplified nomogram has been created to predict the risk of developing HT3+ in this patient

4 42	40 38	36 34	32 30	28 26	24 22	20 18	16 14			
0	22	24	26	28	30	32	34	36	38	40
5	20	40	60)	80	100	120		140	160

Future Work

1. Perform planning studies using simulated particle therapies (proton, carbon ion) to reduce bone marrow dose in patients from this sample.

2.Perform phase 1/2 studies exploring bone marrow sparing radiation therapy techniques in patients and compare with previous hematologic

Acknowledgements

References