COMPLEMENT PROTEINS AND RECEPTORS IN HUMAN DISEASE

Timothy J. Sullivan, M.D.

Internal Medicine Grand Rounds June 19, 1986

OUTLINE and INDEX

				Page
Ι.	Intr	oduct	ion	. 4
	Α.	Medio	cal view of human complement	
	в.	Area	s of emphasis	
			Diseases associated with factor deficiencies or	
			defects in regulation of activation pathways	
			Diseases associated with defects in C3b receptors	
			Diseases linked to specific C' allotypes	
			Diseases associated with anaphylatoxins	
			New methods for detecting complement activation	
			and complement mediated inflammation.	
II.	Over	view		
				-
	A. A		tion pathways	. 6
		1.	Classical pathway	
		2.	Alternative pathway	
				1.1.2
	B. B.	-	ical effector systems	13
		1.	Early classical pathway (virus neutralization)	
		2.	C3b	
		3.	Anaphylatoxins C3a, C4a, and C5a	
		4.	Membrane Attack Complex (MAC)	
	0 5			22
	C. R			22
		1.	Soluble: C1-INH, H, I	
		2.	Membrane: CR1, DAF, others	
	DB	iolog	ical activities	23
		1.	Defense against infections	
		2.	Defense against tumors	
		3.	Proper handling of antigen-antibody complexes	
		4.	Immunoregulation	
ттт	Comp	lonon	- Deficiency States	
• د.ا.د	comp.	remen	t Deficiency States	
	Δ.	Info	ctious complications	27
		1.	Classical pathway deficiencies	
		2.	Alternative pathway deficiencies	
		3.	C3 and C3b receptor deficiencies	
		4.	MAC deficiencies	
		4.	MAC deficiencies	
	в.	Auto	immune complications	31
		1.	Activation pathway deficiencies	
		2.	C3 and C3b receptor deficiencies	
	с.	Role	of complement in Immune Complex metabolism	34
		1.	Classical pathway	

2. Alternative pathway

- D. Diseases associated with defects in regulation of C'... 37 activation
 - 1. C1 esterase deficiency: Hereditary angioedema
 - 2. DAF deficiency: Paroxysmal nocturnal hemoglobinuria
 - 3. C5a inhibitor deficiency: Familial Mediterranian Fever

IV. Genetic Polymorphisms in C' Proteins and Disease...... 42

- Α. Known C' factor polymorphisms
- в.
- Functional differences among allelic forms C' protein genes in the MHC: C2, C4, B с.
- D. Disease associations of Complotypes

v.

- C3a (C4a) actions Α.
- B. C5a actions
- Clinical conditions linked to anaphylatoxin generation C.

VI. Clinically Useful Assays...... 48

- Classical pathway activation Α.
- в. Alternative pathway activation
- c. C3 activation
- D. MAC assembly and deposition

- Pharmacologic modulation of C' activation Α.
- Pharmacologic modulation of C' actions в.

- New insights into the roles of C' in protective Α. immunity, and immunopathology
- New approaches to monitoring and characterizing C' в. activation
- c. The Physician and Complement

INTRODUCTION

The principal functions of the immune system are to recognize, destroy, and protect against reappearance of pathogenic agents and altered cells. Recent studies have unequivocally demonstrated that the complement system plays critical roles in humoral immunity, some forms of inflammation, immunoregulation, and in certain forms of disease susceptibility (1-10). Complement is now regarded as, "... the essential effector mechanism in humoral immunity to infection" (R.R. Porter, 1).

Complement has not always been held in such high esteem by immunologists and clinicians. As recently as 30 years ago the Nobel laureate immunologist Burnet spoke for a majority of scientists when he commented that complement probably was an in vitro hemolytic artifact with an importance no greater than serum albumin allotypes. Continued studies have proven him wrong.

Knowledge of complement has come in three major phases (11, Table 1). Recognized because of the lytic property of the C5b-9 membrane attack complex, complement came to be seen as synonymous with in vitro hemolysis. Investigators were slow to recognize the biologic importance of complement 1.) because of this emphasis on the method of assay, 2.) because many stimuli can activate either or both of the two separate activation pathways, and 3.) because the first genetic deficiencies were detected in apparently healthy subjects.

Clinicians have been largely blind to the full importance of complement in host defense, disease susceptibility, tumor immunology, and some forms of inflammation. This has been the case largely because available methods for detecting complement activation and complement mediated tissue damage have been insensitive and because sophisticated clinical application of basic knowledge of complement often has had a glacial pace.

Serum complement and human disease has been the topic of these Grand Rounds three times over the past 18 years (7-9). Drs. Stastny (1968), Smiley (1973), and Jasin (1979) thoroughly updated advances in complement investigation and placed them in a clinical context. Two years ago at these rounds Dr. Jasin (10) reviewed immune complex diseases and the role of complement as they were understood at that time.

I have chosen to present a new vision of complement in a medical context. Clinically important insights have emerged recently that demand recognition and incorporation into clinical practice. This protocol is intended to illustrate the principal concepts involved and to act as a guide to the scattered literature on recent breakthroughs in concepts and technology. Clearly we have markedly improved our understanding of complement and our ability to monitor complement activation in vivo.

4

HISTORICAL PHASES OF COMPLEMENT INVESTIGATION

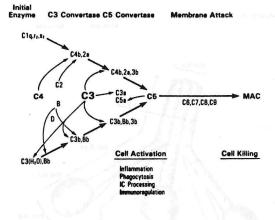
- 1838-1900 Initial recognition
 - 1888 Nuttall Discovery of a heat labile serum activity that kills anthrax organisms
 - 1889 Buchner Heat labile serum activity that kills typhoid organisms and lyses RBC
 - 1898 Bordet Recognition of heat stable and heat labile serum factors that lyse cholera vibrios and RBC
 - 1899 Ehrlich Recognition of the sequence of binding:

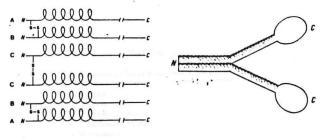
Ligand bound by Heat stable specific serum factor then able to bind Heat labile nonspecific lytic factor

- 1900-1940 Gradual recognition and characterization of properites of C1, C2, C3, C4 using hemolytic assays
- 1950-1970 Improved methods in protein chemistry permit isolation of principal complement proteins and initial quantitative estimates of reactions involved in sequential activation
- 1970-Present Increasingly diverse and sophisticated studies of the chemical, immunologic, phenotypic and molecular genetic, biologic and medical dimensions of the complement system.

An appreciation of the roles of complement, diseases related to complement activation, diseases related to complement deficiencies, and the usefulness of new diagnostic methods can only follow a basic understanding of the complement system. After a brief review of the anatomy of the system, complement deficiency states will be reviewed. The surprisingly high incidence of autoimmune disease among patients with C' deficiencies will be reviewed from the perspective of the role of C' in nonpathogenic metabolism of immune complexes. The linkage of normal levels of specific complement allotypes to disease will discussed in a similar context. Newer assays for clinical monitoring of C' activation will be reviewed. My intent is to provide a path to understanding and effective use of new knowledge of the medical aspects of complement.

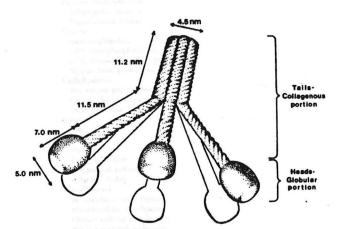
Complement Activation (References 11-24)

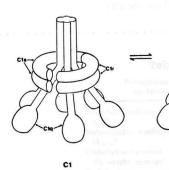



Figure 1

(From reference 6)

This depiction of the classical and alternative pathways visually stratifies the system in a useful manner. The system can be approached in blocks consisting of activation mechanisms, convertases, and membrane attack complex.


Classical Pathway Activation (references 11-17)


Activation of the classical pathway is accomplished by the binding of diverse activating molecules or surfaces to C1 (Figure 2). In addition to the well known ability of antibodies to activate the classical pathway, numerous microorganisms, parasites, membranes, proteins, lipids, and carbohydrates are now known to be able to activate this pathway (Table 2). Regulation of the pathway is exerted by the C1 esterase inhibitor (Table 3), intrinsic decay of the convertase (Figure 3), and by the actions of regulatory proteins I and the C4-binding protein. C1-INH binds to activated C1r (the basis for a new assay described below).

Collagen-like Non-collagen-like sequence sequence

Collagenous portion Globular portion

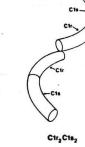


Figure 2

C1q

Structure and Organization of C1 (from reference 11)

7

SUBSTANCES THAT BIND AND ACTIVATE CI

Bacteria E. coli strains Klebsiella strains Salmonella strains Mycoplasma Mycoplasma pneumoniae Viruses Retroviruses Parasite structures from Schistosoma mansoni Trypanosoma brucei Proteins Immunoglobulins CRP (phosphorylcholine) complexes p15E retroviral surface protein Myelin basic protein Carbohydrates Ant venom polysaccharide Certain di- and trisaccharides Dextran sulfate Lipids Lipid A Polyions Heparin Polyvinyl sulfate Polyanethol sulfonate Polynucleotides Miscellaneous Monosodium urate crystals Mitochondrial membranes Certain cellular membranes Nitrophenylated molecules

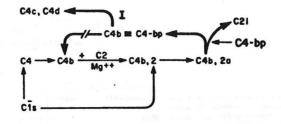

(From reference 11)

Table 3

PHYSICOCHEMICAL	PROPERTIES
OF HUMAN CI I	NHIBITOR

Construction of the owner of the state of th	and the second data was a second data w	
Extinction coefficient $(E_{1cm}^{1\alpha})$	4.50	
Sedimentation coefficient	3.7	
(S _{20,w})		
Carbohydrate content	34%	
(by weight, average)		
Carbohydrate types and	17% sialic acid	
amounts	12% hexose	
Molecular composition and subunits	Single polypeptide chain	
Relative charge	α	
Concentration in serum	137 µg/ml	

REGULATION

From reference 16

Alternative Pathway Activation (References 18-24)

Table 4

Proteins of the alternative pathway

Symbol	Name	Functions	Molecular weight	Serum concentration µg/ml
C3 .	C3	Initiation as $C3(H_2O)$; after enzymatic activation covalent attachment via thioester as C3b, which is nonenzymatic	185 000	1300 (1050-1650)
В	Factor B	subunit of C3/C5 convertase Zymogen of Bb (M_r =60000) which is a serine protease that forms C3/C5 convertase with C3(H_2 O) or C3b; activated by Factor D	93 000	210 (170–260)
D	Factor D	Serine protease which activates Factor B when in complex with C3b or C3(H_2O)	24 000	1
н	Factor H	Negative regulator which accelerates decay- dissociation of C3/C5 convertase; cofactor of Factor I	150 000	475 (360–550)
I	Factor I	Serine protease regulating C3b by conversion to C3bi and C3bi by fragmentation to C3c and C3dg; requires Factor H or CR1 as cofactor	88 000	35 (30–40)
Р	Properdin	Positive regulator stabilizing C3/C5 convertase by binding to the complex	220 000	26 (20–30)

(From reference 19)

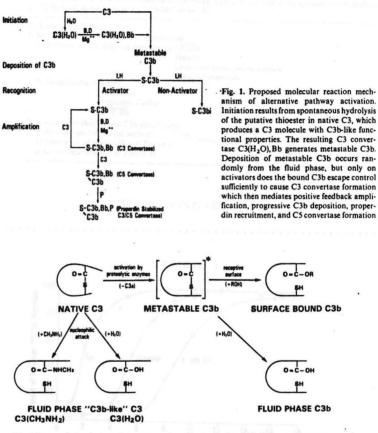
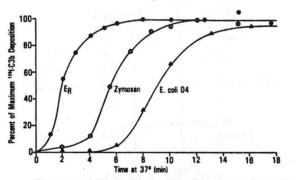


Fig. 2. Proposed chemical reactions at the activated carbonyl site of C3. Current evidence suggests that an intramolecular thioester bond in the α -chain of C3 becomes the reactive group of the metastable binding site of proteolytically produced C3b. C3 altered by nucleophilic attack or hydrolysis of the thioester becomes functionally C3b-like without proteolytic release of C3:

Mechanisms of Alternative Pathway Activation


(From reference 19)

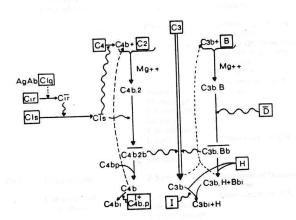
Initiation of alternative complement pathway. Tick-over maintained by spontaneous hydrolysis of C3 internal thioester bond to 'C3b-like' molecule Tick-over "fired" by 1. Mechanisms that increase C3b production a) 'Exogenous' C3 splitting enzymes eg C4b,2b Plasmin Leucocyte proteases eg elastase Bacterial proteases b) Stabilisation of C3,Bb Properdin Nephritic Factor CVF,Bb 2. Mechanisms that reduce C3b destruction a) Fixation on "protected surface" b) Deficiency of Factor H and Factor 1 c) Local sequestration of Factor H

(From reference 19)

Figure 5

.

Time course of C3b deposition on alternative pathway activators. Deposition on rabbit erythrocytes (*E_R*) was measured by incubating a mixture of 300 µl C7 depleted human serum containing 2 µg ¹²⁵1-labeled C3, 100 µl GVB, 25 µl 0.1 M MgEGTA, and 125 µl E_R (4 × 10⁹/ml in GVB). Samples were removed at the indicated times and layered on 300 µl of 20% sucrose in a Beckman microfuge tube. The cells were sedimented by centrifugation at 8000 *xg* for 30 s. The pellet and supernatant were separated by cutting the tube just above the pellet and the percent bound radioactivity was determined. Zymosan and *E. coli* 04 (5 × 10⁹ particles/ml) were treated similarly. The C3 bound by E_R, zymosan, and *E. coli* at the plateau were 7.0%, 4.1%, and 2.3% of input, respectively


(From reference 19)

Summary	of Ini	itial Mechanisms of Complement Activation
	I.	Zymogen Cleavage (Classical)
	II.	"Tickover" (Alternative)
	III.	Exogenous Proteases
		Coagulation, Kinin, Fibrinolytic Systems Microorganisms

Microorganisms Neutrophils

.

Figure 6

A Summary of Complement Activation and Regulation of Activation (From reference 19)

Biological Effector Systems (References 25-57)

Receptors for Complement Proteins:

Table 7

Summary of specificity, cellular distribution, and biological activities of the complement receptors

Receptor	Ligand	Cell type	Biologic response
Clq	Collagen-like region on C1q exposed after dissociation of C1	PMN	Increases oxidative metabolism
	complex	Monocytes	
		Lymphocytes Lymphoblastoid cells	Enhancement of ADCC Induction of cytolytic activity toward chicken E
C3a	C3a, C4a requires C-terminal	Mast cells	Secretion of vasoactive amines
	arginine	Macrophages	Secretion of 1L-1, stimulation of prostaglandin and thromboxane production
		T Lymphocytes	Inhibition of antibody response
CR1	СЗЪ	Erythrocytes	Acts as Factor I cofactor to produce C3d,g from C3bi Clearance of immune
	C3bi and C3c bind with		complexes
	lower affinity		complexes
		PMN	Enhances IgG dependent phagocytosis Induces IgG independent
			ingestion under certain conditions Secretion reactions Induction of respiratory burst
		Monocyte/ Macrophage	As PMN
		B Lymphocytes	
		Subsets of	
		T lymphocytes	
		K Cells	Enhancement of ADCC
		Glomerular podocytes	
			Devulation of lumphosute
CR2	C3d,g or C3bi	B Lymphocyte	Regulation of lymphocyte activation
	C3d binds with	K Cells with	Enhancement of ADCC
	lower affinity	T cell markers Lymphoblastoid cells	
		01	
CR3	C3bi	Like CR1	Enhancement or induction
		. except not on	of phagocytosis Induction of respiratory
		erythrocytes	burst
		to relates totale of	Secretion reactions
			Enhancement of ADCC
			Genetic deficiency of CR3
			linked to severe,
			recurrent bacterial infections

13

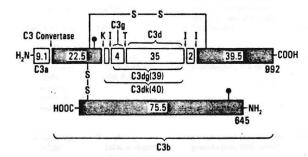

or C3d-K	Neutrophils	Mobilization of leukocytes from bone marrow Secretion of granule-
		associated enzymes
imeric forms of or H	B Lymphocytes	Factor I secretion, blastogenesis
	Monocytes	Induction of respiratory burst
	PMN	Factor I secretion
	Mast cells	Secretion of vasoactive amines Leukotriene production including SRS-A
	PMN	Chemotaxis, enzyme secretion, aggregation
	Monocytes	Chemotaxis, leukotriene production including SRS-A, enhancement of immune
	or H desArg binds lower affinity	or H Monocytes PMN desArg binds lower affinity PMN

Table 7 (continued)

From reference 27

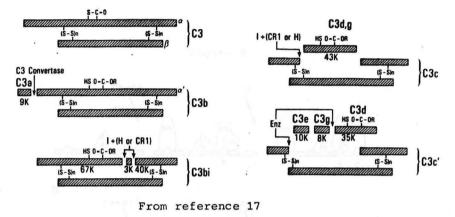

C3 and C3 cleavage products:

Figure 7

Schematic representation of the human C3 molecule. The *numbers* indicate molecular weights in kilodaltons (except 992 at the C-terminus of the α -chain and 645 at the N-terminus of the β -chain, which indicate the number of amino acid residues in each chain). The information is derived from cDNA sequence analysis [4]. The shaded areas together represent C3c. I, Factor I cleavages; K, kallikrein cleavage point

(From reference 6)

. .

.....

. . .

Figure 8

Table 8

	MEMBRANE RECEPTORS FOR BOUND FRAGMENTS OF C3: CR1, CR2, CR3, AND CR4	
•	STHUCTURE, SPECIFICITY, CELL TYPE DISTRIBUTION,	
	AND DISTINGUISHING MONOCLONAL ANTIBODIES	

Receptor type	Specificity	Structure	Cell type distribution	Monoclonal antibodies
CR1	C3b>C4b >iC3b C3i, C3c	Four allotypes: 160K, 190K, 220K, 250K	Erythrocytes, granulocytes, monocytes, B and some T cells, kidney podocytes, dendritic reticulum cells	44D°, 57F°, 57H, 31D, C3RT ₀ 5, E11
CR ₂	iC3b=C3dg >C3d ≥C3b	140K	B lymphocytes	Anti-B2 ⁴ , HB-5"
CR3	iC3b, S. ceriviseae, rabbit erythro- cytes, S. epidermidis	Two chains: 165K α-chain 95K β-chain	Monocytes and macrophages, granulocytes, NK cells	Anti-Mac-Ic, OKM1 ^d , OKM9 ^d , OKM10 ^d , MN-41, anti-Mol, anti- Leu-15 ^o
CR₄	iC3b=C3dg >C3d	Two chains: 150K α-chain 95K β-chain	Monocytes and macrophages, granulocytes, (NK cells?)	Anti-Leu- M5 ^{e.c}

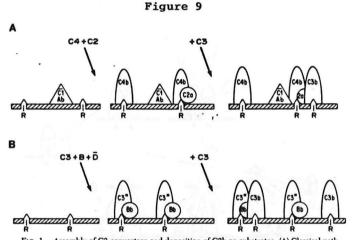


FIG. 1. Assembly of C3-convertase and deposition of C3b on substrates. (A) Classical pathway: Interaction of C4 with activated C1-antibody complexes (C1-Ab) generates nascent C4b. The nascent C4b fragments form hydroxylester and amidoester bonds with nucleophilic acceptor groups (R) in the antibody or on the substrate surface in close proximity to their site of generation. The bound C4b provide the required binding sites for C2. The same C1-esterase that cleaves C4 also cleaves C2. Cleavage of C2 to C2a and formation of the classical pathway C3-convertase C4b2a complex can only occur on bound C4b fragments that are positioned such that C2 is in close proximity to Ab-C1 complexes. The C2a portion of the C4b2a complex is a serine esterase, but it is only active when complexed with C4b. The C4b2a complex spontaneously and irreversibly dissociates with a half-life of 5 minutes at 37°C, and this dissociation is accelerated by C4bp and DAF. Interaction of C3 with the substrate-bound C3-convertase complex (C4b2a) generates nascent C3b. The nascent C3b fragments, in turn, form covalent bonds with substrate acceptor groups (R) in the immediate vicinity of their site of formation adjacent to C4b2a, but do not bind to C4b2a. R groups for C3 (or C4) may be carboxyl groups of carbohydrates or amino groups of proteins, and are not specific C3 receptors. (B) Alternative pathway: The inherent instability of the internal thiolester in the native C3 molecule spontaneously and continously generates small amounts of fluid-phase and bound C3* (C3i). This C3* forms a magnesium-dependent complex with factor B (B), such that the B in the complex becomes labile to cleavage by the serine protease factor D (D). Cleavage of B in the complex generates bound C3*Bb complexes that form the initial C3-convertase of the alternative pathway. Interaction of additional C3 with C3*Bb leads to cleavage of C3 into C3a fragments and nascent C3b, followed by covalent attachment of a proportion of the nascent C3b to substrate acceptor groups (R) in the immediate vicinity of the C3-convertase. These bound C3b then form C3bBb C3-convertase sites that cleave more C3. As with the C4b2a complex, spontaneous decay dissociation of C3bBb (half-life 2 minutes at 37°C) is accelerated by a control protein, in this case H rather than C4bp. However, properdin (not shown) associates with C3bBb bound to activating surfaces, generating a C3bBbP complex with extended half-life of 20 minutes at 37°C. This action of properdin that stabilizes bound C3-convertase, as well as the action of H that rapidly dissociates both fluid-phase C3bBb and C3bBb bound to host membranes (see text), works to focus the C3-convertase on the substrate surface rather than in the fluid phase. Further interaction of B and more C3 with these complexes extends C3b deposition outward to acceptor sites progressively more distant from the site of the initial C3-convertase formation.

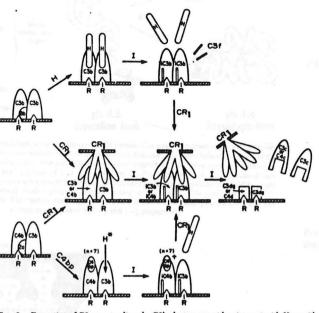


FIG. 3. Formation of C3 receptor ligands. C3b clusters can either interact with H or with CR₁, displacing Bb. Interaction of C3b3b with H results in I-mediated conversion to iC3b3b (releasing 3K M, C3f fragments), but does not permit further iC3b breakdown, probably because of the low affinity of H for fixed iC3b (for State 1, 1963a). Interaction of C3b3b with CR₁ also results in conversion of the C3b3b to iC3b3b, but can additionally lead to further I-mediated breakdown of the iC3b3b to iC3b3dg. This latter cleavage releases C3c fragments into the fluid phase. The subsequent interaction of I and H-generated iC3b13b with CR₁ can similarly result in production of C3dg3dg and C3c. The ability of CR₁ to support iC3b fragmentation may be a consequence of its capacity to cluster in the membrane and form multipoint bonds with the iC3b. C4b3b clusters can interact with C4bp and H, or with CR₁, releasing C2a, and permiting I-mediated cleavage to iC4bi3b.

•C4bp alone may be able to support this reaction, because C4bp may serve as an 1-cofactor with both C3b and C4b to iC3b and iC4b, both in the fluid-phase (Fugita and Nussenzweig, 1979) and bound (Gottlieb and Medof, unpublished observation). Interaction with CR₁ results in 1-mediated conversion of iC4bi3b to C4d3dg. At high C4b densities, C4bp can also support cleavage of iC4b to C4d, perhaps because it exists as a multimer of 7 covalently bonded subunits (Dahlback *et al.*, 1983), that may be able to mediate multipoint binding.

Structure and Function of the Anaphylatoxins

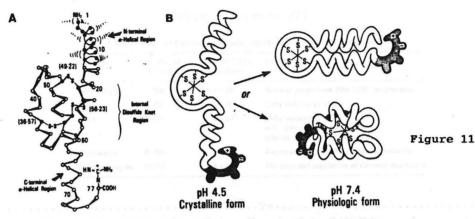
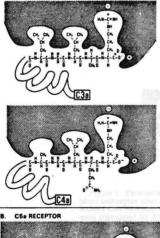
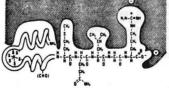



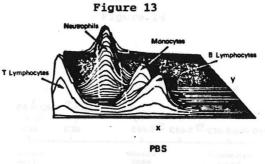
Fig. 3. A The peptide backbone structure for crystalline human C3a was determined at pH 4.5 by Huber et al. [28]. The main features include an N-terminal portion that suggests alpha helical structure and a long C-terminal helical segment. The disulfide-linked "core" region contains three intra-chain disulfide bridges. The "active site" portion of C3a (e.g., residues 73–77) is folded back in a pseudo-*β*-turn conformation. B A representative model is given of the extended or "open" crystalline form of C3a at pH 4.5 with two hypothetical models proposed for the folded or "compact" C3a conformation under physiologic conditions. The "active site" region (LGLAR) is shaded for easy identification and the guanidino and carboxy groups are indicated by (+) and (-), respectively

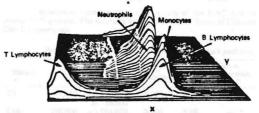
> Both from Ref #46

.

C3a/C4a RECEPTOR




Fig. 4. A Features of the molecular interactions between the C3a "active site" and the C3a/C4a receptor are illustrated. Binding subsites are indicated for the leucyl side chains at positions 73 and 75, and for the charged guanidino- and carboxy-groups of arginine 77. Similar interactions are proposed for human C4a except that substitution of alanine at position 73 and glutamine at position 75 causes the proteins to bind less effectively to the receptor. B The molecular interactions between C5a and C5a receptor are more complex than those proposed for C3a. Binding subsites for the methionyl side chain at position 70, the leucine at position 72, and the guanidino and carboxy groups of arginine 74 are believed quite similar to those in the C3a receptor. However, a separate and essential interaction with a site somewhere in the Nterminal portion of C5a molecule is presumed to also occur based on the experimental results


Figure 12

(From reference 27)

CR1 expression and affinity for dimeric, soluble ligand on various human cells

Cell type	Number of CR1/cell	Ka (M ⁻¹) for C3b dimer	Comments
Erythrocyte	500	6.5 × 10 ⁷	Normal range from 200-1 000 receptors/cell
PMN	5 000	2 × 107	Cells isolated at 4°C
PMN	30 000	4 × 10 ⁷	Cells isolated at 23 °C. 4 °C cells warmed to 37 °C or treated with chemoattractants
Monocytes	30 000	4 × 107	Expression regulated by chemoattractants
B Lymphocytes	20 000	6 × 107	No apparent regulation of receptor expression

C5a 2 x 10-M

Cba 2 x 10^{-M} Figure 1. Cytometric analysis of CR1 expression on human peripheral blood leukocytes after stimulation with PBS control (top) or 2 x 10⁻⁵ M human C5a (bottom). Unprocessed leukocytes in citrated venous blood were stimulated for 30 min at 37°C, were placed on ice, and were then stained with unconjugated 3D9 followed by FITC-goat F(ab')s anti-mouse IgC. The x axis in these figures represents CR1 expression with data collected with the use of logarithmic amplification: the y axis presents side scatter with data collected by using linear amplification. The right-hand shift in the distribution of monocytes and neutrophils after stimu-lation with human C5a signifies increased CR1 expression on these cells.

(From reference 37)

(From reference 37)

CR3 expression on human peripheral blood monocytes stimulated with human C5a, FMLP, or PBS control (N = 2)

Stimulant	MCF	Mean % Increase Above Control®
PBS control	28.65 ± 1.75	
C5a 2 × 10" M	63.25 ± 6.55	123 ± 36
C5a 5 × 10" M	57.00 ± 6.20	101 ± 34
C5a 2 × 10 ⁻⁰ M	50.85 ± 0.35	78 ± 10
FMLP 2 × 10-6 M	58.50 ± 0.50	105 ± 14
FMLP 2 × 10- M	49.15 ± 5.45	71 ± 9
FMLP 2 × 10- M	43.45 ± 5.85	54 ± 30

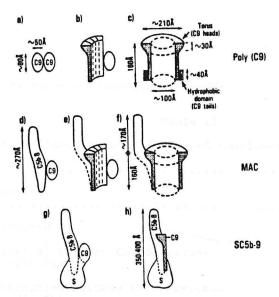
The mean percent increase above control was calculated for each experiment as follows: [(MCF of monocytes treated with test reagent/MCF of monocytes treated with PBS) -1; x 100. The results of replicate experiments were then averaged to determine the mean percent increase in CR3 expression at various concentrations of test reagents.

Figure 14

Fluid Phase

....

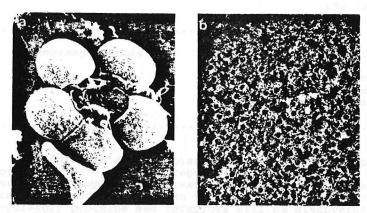
-


Enzymatic		Membrans	Transmembrane
СЗЬ	СЗЬ	C5b-7 ⁴ C5b	-8 -2 C5b-8(poly C9)
\backslash	1		
C5 - C58	* - C5b,6	C5b-7*	
		to there sugar at black	
		S → SC5b-7 → SC5	b-8 → SC5b-9

Schematic representation of assembly of the MAC and its control by S-protein. The asterisks denote metastable forms of C5b and C5b-7, respectively.

Protein	М,	Subunits	M, Carbohydrate	S-rate	Serum concentration (µg/ml)	
C5	191,000	α: 115,000 β: 75,000	5,200	8.7S	70	
C5b	180,000	α': 104,000 β: 75,000	3,000	7.55	1.77	
C6	120,000	Single chain	4.000	6.0S	64	
C7	110,000	Single chain	6.000	5.6S	56	
C8	151,000	α: 64,000 β: 64,000 γ: 22,000	N.A.*	8.0S	55	
C9	71,000	Single chain	5,500	4.75	59	
S-protein	83,000	Single chain	N.A.	4.05	505	

"N.A.: Information not available.


(From reference 48)

From Ref #49

Figure 16 From ref #71

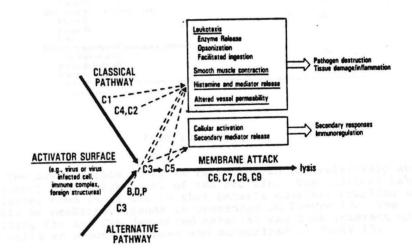
Schematic models of poly C9. MAC and SC5b-9. a-c: Hypothetical model for C9 polymerization. Monomeric C9 (a) interacts with another C9 molecule causing restricted unfolding to activated C9 (b) which interacts with further C9 molecules until the tubule is complete (c). d-f: C9 polymerization in the MAC. C5b-8 interacts with the first C9 molecule (d) causing C9 unfolding and activation (e) and tubular C9 polymerization as in a-c. Part of C5b-8 (C6. C7. $C8z_{-7}$ -see text) becomes integrated into the tubule whereas C5b and C8 β form the 170-Å-long attachment. g-h: Lack of C9 polymerization in SC5b-9. Binding of S-protein(s) blocks C9 polymerization either by preventing unfolding of C9 (g) or by interfering with the polymerization of unfolded activated C9 (h).

Role of complement in removal of target blood cells. a Adherence of a human erythrocyte bearing C3 fragment to a complement receptor-bearing mononuclear cell. b Holes in an erythrocyte membrane resulting from complement-mediated damage

21

Regulatory Proteins (References 52-57)

Table 11

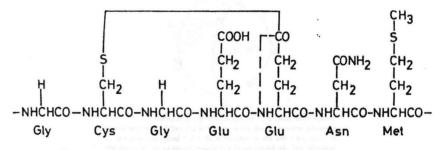

Known Inhibitors of Activated Complement Components Inhibitors Reactants Activated C1 C1-INH Classical pathway C3 convertase C4b-bp, DAF, CR1 (C4b, C2a)Alternative pathway C3 convertase H, DAF, CR1 (C3b,Bb) C3b H, I, CR1 Membrane Attack Complex C8-bp (C5b-9) C3a Carboxypeptidase N C5a Carboxypeptidase N C5a Inhibitor Membrane associated DAF, CR1, C8-bp Soluble C1-INH, C4-bp, H, I Carboxypeptidase N, C5a Inhibitor

As noted in several places above these regulatory proteins work in diverse roles in regulating fliud phase and membrane associated complement activation. Recent studies and the precedents set by the known factors predict that several more regulatory proteins and receptors will be discovered in the near future. In turn we are likely to discover the causes of disparate clinical syndromes. Deficiencies in these proteins, discussed below, result in or contribute susceptibility to infections, autoimmune diseases, hemolytic anemia (PNH), chronic urticaria, anaphylaxis, angioedema, and Familial Mediterranean Fever.

Biological Activities of Complement (References 58 - 71)

The principal physiologic activities of complement are well known. Viruses are neutralized by application of a coat of protein consisting of antibody and complement components, by aggregation, by lysis, by inducing an inflammatory reaction, by activating infiltrating cells, by facilitating the binding of effector cells to organisms and infected cells, and by lysing virus infected cells (58). The diversity of the roles of complement is illustrated in the results with different classes of viruses presented below. Similar mechanisms are mobilized to deal with various bacterial organisms with the addition of C3 facilitated immune adherence and phagocytosis. These concepts are illustrated in the next illustrations.

Components of the Human Complement System


COMPONENT	SERUM CONCENTRATIONS
Classical pathway components	
Clq	70
Clr	34
Cls	31
C2	25
C3	1600
C4	600
C5	55
C6	75
C7	53
C8	55
C9	60
Regulatory proteins of classical pathway	
C1 inhibitor	150
C4 binding protein	
C3b inactivator (I)	34
B-1-H globulin (H)	500
S protein	7300
Alternative pathway components	
Factor B	200
Factor D	1
C3b	ō
Regulatory proteins of alternative pathway	and the second second second
C3b inactivator (I)	34
B-1-H globulin (H)	500
Properdin	25

*Concentration is given in µg per ml.

From reference 72

The pivotal role of C3 is reflected in the relatively and absolutely high serum level of the protein. The critical labile thiolester bond in C3 and C4 that permits covalent coupling to soluble or membrane ligands is presented in Figure 18. The resulting C3b and C4b decorated material can then interact with many cells as discussed above and summarized in Table 13.

The specific impact of complement activation is as diverse as the agents that provoke the process. Figure 19 illustrates, while the Pneumococcus activates complement via the alternative pathway, the C3b binding occurs at the cell wall, below the capsule and functionally buried. Antibody to the capsule leads to the deposition of C3b at a functionally useful site. Tables 14-16 demonstrate the varying roles of complement in responses to viruses and virus infected cells.

The postulated thiolester structure of C3 and $\alpha_2 M$. In C4, the sequence is identical except that asparagine is replaced by threonine. The dashed line shows the probable formation of an N-terminal pyrollidone carboxylic acid residue with the breaking of the Glu-Glu peptide bond on denaturation of the native protein.

30 + 60 70 00 C4 DP[DT[GSEGALSPGGVAS[]]R[]PRGCCEEE]TM]YLAPT[AASR[]DK]EOWSTLPP AOMTEPAVDAERLKHLIVTPSGCGEENMTGMTPTVIAVSTLDETEQWEK C 3 «2-Mocro-ASVSVLGDILGSAMONTONLLOMPY GOOGEENMY IN VI DYLNETOOLTPEIK CHO

The amion acid sequences around the postulated thiolester bond in C4, C3 and α,M. Boxed residues are homologous and spots show identity. Asterisks denote the cysteine and glutamic residues forming the intrachain thiolester bond.

From reference 101

Table 13

PE	COMPLEMENT RECEPTOR*
1	Clq, C3b, C3d, C4b, C3a, Ba
and the second statement of th	C3a, C5a
1	C3b, C3d, C4b
ge	C3a, C3b, C4b, C5a, Bb
	C3a, C5a
	C3a, C3b
uscle	C3a, C5a
te	C1q, C3b, C3d, C5b
1	il () il () ige () iuscle ()

*Complement receptors identified in vitro on human or animal leukocytes, or both.

Schematic representation of C3b fixed to pneumococcal surfaces. When C3 is activated via the alternative pathway by the pneumococcal cell wall, C3b fixes to the cell wall, deep to the capsule. In contrast, when C3 is activated via the classical pathway by anticapsular antibody, C3b fixes to the capsule.

From reference 63

Table 14

. . . .

Neutralization of EBV by cross-reacting IgG antibody and purified C components

Reactants added to purified EBV	Percent neutralization
Cross-reacting IgG antibody Serum containing cross-reacting IgG antibody Purified C1, C4, C2, C3	-2 85 4
Cross-reacting IgG antibody + purified C1, C4, C2 Cross-reacting IgG antibody	2
+ purified C1, C4, C2, C3	69

From reference 58

....

Table 15

Complement requirements for neutralization of polyoma virus

Reagents added to polyoma virus-antibody	Percent neutralization
None	0
Human serum	80
Human Clq	60
Human Cl	0
Human C1, C4	0
Human C1, C4, C2	0
Human C1, C4, C2, C3	84

Requirements for the alternative complement pathway for the lysis of measles virus infected human cells^a

Treatment of human serum containing specific antibody	Percent lysis				
None	95				
Factor B depleted	5				
Factor B depleted + purified factor B	95				
Factor D depleted	7				
Factor D depleted + purified factor D	95				
C4 depleted	95				
C2 deficient	95				

From reference 58

Complement Factor Deficiencies (references 72-98)

As presented below, deficiencies in specific C' factors or regulatory proteins can be compatible with apparent good health, but characteristic syndromes are recognized. Not surprisingly, patients with homozygous C3 deficiency have frequent, severe infections, since this protein is pivotal for classical or alternative pathway activation of most effector systems. Patients with early classical pathway deficiencies may have recurrent infections, but most do not. Patients with MAC defects are unusually prone to Nisserial infections.

Surprisingly, these patients are remarkably prone to illnesses thought to be the result of autoimmune inflammation, particularly SLE. Recent studies indicate that marked reduction in C' as a result of consumption, as in hereditary angioedema, also is a risk factor for autoimmune disease. The specific illnesses acquired appear to be dictated by other factors such as disease associated HLA genes.

This paradox, increased complement mediated disease in early classical pathway complement deficient patients, may be the result of faulty clearance of immune complexes, infection with low virulence organisms that induce immune complexes, or faulty immunoregulation.

While C' deficiencies are rare in the general population, the prevalence of such defects is significant in specific patient groups. Approximately 6% of patients with SLE have genetic C' deficiencies. Some 10% to 25% of adults with sporadic meningococcal disease have a C' deficiency. Patients with late component deficiencies have a 40% chance of acquiring disseminated N. meningitidis or N. gonorrhoeae infections. Relapses occur 10 times more frequently in these patients and recurrences are seen in 45%.

Clearly physicians must be aware of the association of C' deficiencies with these syndromes.

Table 17

Complement components and deficiency

		Activation/	Known		
Component	Synonym	Breakdown Product(s)	Deficiency Syndrome yes		
C1q	-	-			
Clr	-		yes		
Cls	Cl esterase	-	yes (with Clr)		
C4	B1E	C4a, C4b	yes		
C2		C2a, C2b	yes		
B	C3 Proactivator C3 PA; GBG; Glycine-rich β glycoprotein	Ba, Bb	no		
D	C3 proactivator convertase	_	no		
P	properdin		yes		
C3	β1C	C3a, C3b (\$1A), C3c, C3d, C3e	yes		
C5	β1F	C5a, C5b	yes		
C6		-	yes		
C7			yes		
C8	-	-	yes		
C9	-	-	yes		
C4 binding protein	C4bp	-	no		
Protein S	Fraction V protein	-	no		
C1 esterase inhibitor	C1 Inh	-	yes		
н	B1H	-	yes .		
I	C3b Inactivator; KAF	а. — П Ва	yes Ø		

The Made And Article

INCIDENCE OF COMPLEMENT DEFICIENCY IN NORMAL POPULATIONS

source	population	number studied	complement deficiency encountered	nature of deficiency
Hassig et al. (1964)	Swiss army recruits	40 000	14	largely low C4 + C2 (no genetic data)
Torisu et al. (1970)	Japanese mass medical examinatio	42000 on	3	C4 low (sera inactivate C4) no genetic data
F. Stratton (personal	Manchester blood transfusion panel	15000	1	C2-deficient (no family data)
communication) Lachmann et al.	Cambridge hospital outpatients	2000	1	C6+C7 deficient (inherited)
(1978)	outpatients		1	low C1, C4, C2, C1 inhib and C3, hereditary
				angio-oedema with systemic lupus erythematosus
			2	low C1, C4, C2, C1 inhib I/C++.
				Caldwell's syndrome

From reference 73

Table 19

	Imn	nunologic I	Disease		Bacterial Infe	ction		- Mycobacterial or			Total #
Deficiency State	Alone	+ Neisserial Infection		Neisserial	Streptococcal or H. influenzae	GNR ²	S. aureus	Intracellular Bacteria		Normal	
C1, C2, C4	72 (64)	1 (.9)	21 (19)	3 (2.7)	11 (9.8)	5 (4.5)	3 (2.7)	6 (5.4)	2 (1.8	18 (16)	112
Properdin	0	0	0	1 (25)	0	0	0	0	0	1 (25)	4
C3, I, H	9 (41)	1 (4.5)	5 (22.7)	5 (22.7)	8 (36.4)	2 (9)	0	0	0	1 (4.5)	22
C5, C6, C7, C8, C9	11 (11)	0	2 (2)	52 (50)	1 (1)	1 (1)	• 0	3 (2.9)	0	24 (23)	104

¹ Numbers in parenthesis represents % of total number of homozygotes. ² GNR—gram negative rods.

Comparisons of disease frequencies (%) in propositus (P) and non-propositus (NP) homozygous complement-deficient individuals

	1	N¹	Menin- gitis	Bacter- emia	Pneu- monia	SLE ²	DLE ³	Vasculitis	Glomerulo- nephritis
C1	P	14	21	7	7	71	14	0	14
	NP	8	13	0	13	25	0	25	25
C4	P	9	0	11	0	78	0	0	11
	NP	4	25	25	0	25	0	0	25
C2	P	56	13	16	16	38	13	7	21
	NP	21	10	0	5	0	5	0	14
C3	P	9	33	22	44	11	0	11	11
	NP	5	20	0	0	20	0	40	40
1	P	5	60	20	40	0	0	0	0
	NP	1	0	0	100	0	0	0	0
P	P	2	50	0	50	0	0	0	0
	NP	2	50	0	0	0	0	0	0
н	P	1	0	0	0	0	0	0	0
	NP	1	0	0	0	0	0	0	0
C5	P	7	71	29	0	14	0	0	14
	NP	6	50	33	0	0	0	0	0
C6	P	24	63	29	8	4	4	0	4
	NP	9	11	0	0	0	0	0	0
C7	P	16	50	19	0	6	0	0	0
	NP	6	17	0	0	0	0	0	0
C8	P	22	50	18	0	9	0	0	5
	NP	9	0	0	0	0	0	0	0
C9	P	5	20	0	0	0	0	0	0
	NP	0	-	_	-	_	-	-	-

¹ number of individuals. ² systemic lupus erythematosus. ³ discoid lupus erythematosus.

From reference 76

Table 21

Comparison of the frequency of Neisseria sp., S. pneumoniae and H. influenzae infection and age at first

Infec					
Deficiency No. of homozygotes Neisseria sp.	C1, C4, C2 112	C3, I, H 22	P 4	C5-9 104	Total 242
No. of patients (%) Median age at 1st episode (yrs) S. pneumoniae	3 (3) 21	5 (23) 11	1 (25) 15	52 (50) 17	61 (25) 17
No. of patients Median age at 1st episode (yrs) H. influenzae	12 (11) 4	8 (36) 2	0	1 (1) 49	21 (9) 2.5
No. of patients Median age at 1st episode (yrs)	3 (3) 6.5	2 (9) 18.5	0	_0	5 (2) 6.5

Clinical Manifestations of Hereditary Deficiencies of the Complement System

COMPLEMENT COMPONENT DEFICIENCY	CLINICAL MANIFESTATION				
Clq	SLE, infections, glomerulonephritis, normal*				
Clr	SLE, infections, renal failure, normal				
Cls	SLE, normal				
C4	SLE, glomerulonephritis, Schönlein-Henoch purpura, normal				
C2	SLE, DLE, glomerulonephritis, vasculitis, dermatomyositis, common variable immunodeficiency, Hodgkin's disease, in- flammatory blood disease, atrophoderma, cold urticaria, in- fections, normal				
C3	Infections, SLE				
C5	Neisseria infections, SLE, normal				
C6	Neisseria infections, SLE, normal				
C7	Neisseria infections, SLE, ankylosing spondylitis, Raynaud's disease, normal				
C8	Neisseria infections, SLE, normal				
C9	Normal				
Properdin	Neisseria infections				
Regulatory Proteins					
Clinh	Hereditary angioedema, SLE, DLE				
C3bina	Infections, aquagenic urticaria				
Carboxypeptidase	Angioedema				

*normal = a person with no clinical manifestations of a disease

From reference 72

Table 23

Associated diseases Number with homozygous deficiency IC disease Infections Component Classical pathway: Clq Clr or Cls C4 C2* C1 inhibitor C1 and alternative pathway: C3 15 8 16 66 >500 14 6 14 38 2% Many 1 pyogenic 11 8 10 pyogenic (+ Neisseria) B/D :: 34 2 (+3 died of fulminant infections); Neuseria Properdin C3b inact (I) fIH (H) Membrane attacc complex: C5 C6 C7 C8 C9 5 2‡ 1 1 (HUS) 4 pyogenic 12 17 14 14 Many 9 10 6 8 Neisseria

REPORTED CASES OF COMPLEMENT DEFICIENCIES AND ASSOCIATED DISEASES

Immunoregulatory	diseases	in	HAE
Immunoregulatory	diseases	IN	HAE

Patient No.	Phenotype	Autoimmune disease	Relevant HLA type	Serology	Race	Sex	Autoimmune disease age onset (yr)
6	I	SLE	DR2,DR3	Pos ANA, extractable nuclear antibodies, SS-B	w	F	29
7	i i	Drug-induced lupus	DR4	Pos ANA, syphilis screen	w	F	62
8	1	Thyroiditis	DR3	(1:6400) Antithyroid microsomal anti- bodies	w	F	31
9		Thyroiditis		(1:6400) Antithyroid microsomal anti- bodies	B	F	43
10	1	Primary Sjögren's syndrome	B8 DR3,DR4	Neg	w	F	67
п	1	Secondary Sjögren's syndrome, rheu- matoid arthritis	DR2,DR4	Rheumatoid factor, 1600 IU	w	F	19
12	1	Secondary Sjögren's syndrome	DR4		w	F	51
13	1	Sicca syndrome	B8 DR2,DR3	Neg	w	м	25
14	1	Juvenile rheumatoid arthritis, IgA deficiency	-	-	w	м	22
15	Ш	Incipient pernicious anemia	DR2	Antiparietal cell anti- bodies	w	F	37
16	I	Ulcerative colitis	_	The second se	W	M	36
17	In the second second	Crohn's disease	- (DR4)		w	M	23
18	11	Crohn's disease	- (DR4)		w	M	32
10	ango Leo.	Partial lipodys- trophy	-	Normal C3	w	M	No. DATTORS
20	11	Raynaud's disease	_	in the second	w	F	36
21	ting I maps	Raynaud's disease			w	F	51
22	in Long Child	Alopecia universalis			w	M	5

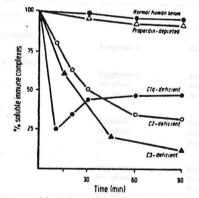
- = No information; pos = positive; neg = negative; W = white; B = black.

Hereditary Angioedema

Clinicopathologic features of patients with renal involvement

	Patient No.				
-	1	2	3	4	5
Sex	F	F	F	м	F
HAE phenotype	I	1	I	1	I
At renal biopsy					
Age (yr)	18	47	44	32	10
Duration HAE symptoms (yr)	17	37	40	22	0
Creatinine (mg/dl)	0.8	1.3	1.2	1.2	0.9
Clearance (ml/min)	103	76	70	95	116
Proteinuria (gm/day)	0.2	2.6	0	0.2	10.9
Urinalysis					
Hemoglobin	3+	2+	2+	0	Trace
RBC	10	5 to 10	5 to 10	0 to 3	3 to 6
Cellular casts	RBC/WBC	RBC/WBC	RBC/WBC	RBC/WBC	Not known*
Biopsy					
Date	11/77	2/79	3/79	3/81	5/76
Class	MPGN	MES	MES	MES	MPGN
Follow-up:					
Date	10/82	7/83	6/79	6/83	2/84
Duration (months)	72	53	3	26	93
Creatinine (mg/dl)	1.1	1.0	1.1	1.5	t
Sediment					
Protein	1+	0	0	Trace	•
Hemoglobin	1+	Trace	1+	0	
RBC	5 to 10	5 to 10	1 to 5	0	
Casts	Hyaline, granular	Hyaline, granular	Hyaline	Hyaline. granular	
Significant lab results	President	Pranoral		Brananan	
HLA/DR phenotype	DR6	DR3,DR4	Not known	DR6	B8,DR3,DR6
Immune complexes	Pos	Pos	Neg	Pos	Pos
ANA	Neg	Neg‡	Neg	Neg	Neg

Pos = positive; Neg = negative. *Performed at St. Louis Children's Hospital of Washington University. †Patient on hemodialysis. ‡Titers range from negative to 1:40 with negative anti-DNA, SS-A and SS-B, and extractable nuclear antigen antibodies.


HLA type in patients with HAE HLA/DR-associated immunoregulatory diseases

HLA-associated disease	Patient's relevant HLA
Apresoline-induced SLE	HLA-DR4
Idiopathic SLE	HLA-DR2, DR3
Thyroiditis	HLA-B8, DR3
Primary Sjögren's syndrome	HLA-DR3, DR4
Secondary Sjögren's syndrome, rheumatoid arthritis	HLA-DR4
Secondary Sjögren's syndrome	HLA-DR4
Sicca syndrome*	HLA-DR2, DR3
Pernicious anemia, incipient	HLA-DR2

All eight patients with HAE who developed an autoimmune disease with a known HLA/DR association developed the disease associated with their HLA/DR haplotype (p = 0.014). One additional patient has sicca symptoms and chronic conjunctivitis but normal rose bengal and slit lamp examinations, normal Schirmer's test, and no objective findings of xerostomia except for an abnormal parotid scan. Her DR phenotype included DR3. *Sicca symptoms: keratoconjunctivitis, positive Schirmer's and parotid scan, nondiagnostic minor salivary gland biopsy specimen.

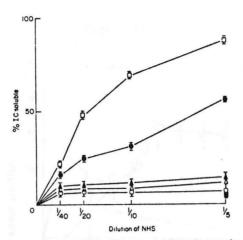
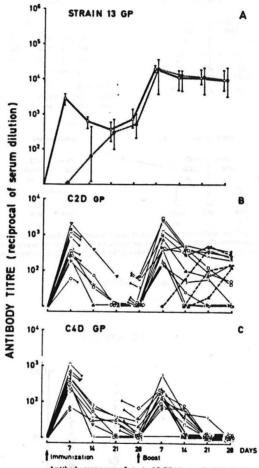
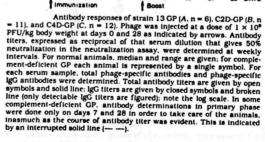

From reference 85

Figure 20

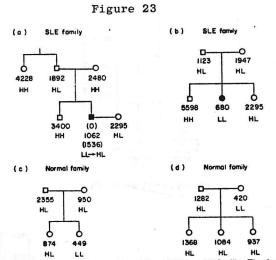
Immune precipitation in complement-deficient and complementdepleted serum samples.

Immune precipitation is blocked in normal and properdin-depleted strum. Slow aggregation takes place in C2-deficient and C3-deficient strum, going to completion in the absence of C3, whereas some complexes remain soluble and the C2-deficient strum. The fast initial precipitation in C1-deficient strum maidentical to the coatrol precipitation done in the absence of any complement function. However, it is followed by partial solubilisation of the precipium

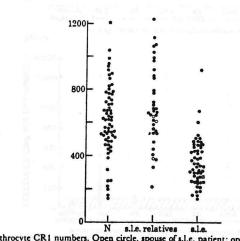

Dose-response curves for the inhibition of immune precipitation by normal serum $(\Box - - \Box)$ and reaction mixtures containing C3. B. P and D (o - - O). C3. B. P. D and H $(a - \Delta)$. C3. B. P. D. and I $(a - \Delta)$ and C3. B. P. D. H and I $(e - - \bullet)$. The concentration of the alternative pathway components were adjusted so that they were the same as those which were present in the serum dilutions. A 1:5 dilution of serum contained 300 µg C3. 50 µg B. 6 µg P. 50 µg H and 10 µg I. D was added to the highest concentration at 100 µ ml. Each point represents the mean (\pm s.e.) of three determinations.

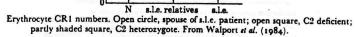

From reference 90

Ta	ble	27


Summary of immunoregulatory effects

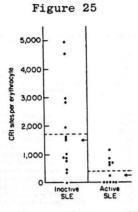
Immune response	C3a	C5a	
Specific antibody production			
SRBC	Suppression	Enhancement	
Polyclonal antibody production			
Fc fragment	Suppression	Enhancement	
PWM	No effect	No effect	
LPS	No effect	No effect	
B cell proliferation			
Fc fragment	No effect	No effect	
LPS	No effect	No effect	
PWM	No effect	No effect	
T cell proliferation			
Tetanus toxoid	Suppression	Enhancement	
Concanavalin A	No effect	No effect	
РНА	No effect	No effect	
PWM	No effect	No effect	
Mixed lymphocyte reaction	No effect	Enhancement	
T cell-mediated cytotoxicity	Suppression	Enhancement	
Natural killer cell activity	No effect	No effect	

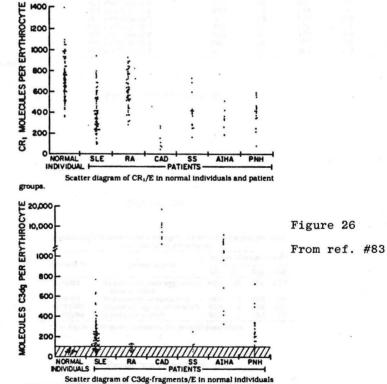



Regulatory Protein Deficiencies

TL LL HL HL HL HL Family studies of CR1 numbers in normal (c and d) and SLE (a and b) families. The phenotypes shown below the CR1 numbers have been designated tentatively on the possibility that the inflections in the cumulative frequency curve for normal individuals (18°, and 64°,) distinguish the phenotypes LL. HL and HH (Wilson *et al.*, 1982).

From reference 81




From reference 73

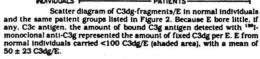


Figure 24

From reference 81

Table 28

			Surface M	olecules Per E	
		CR1	C3c	C3d	C3g
Mean Ve	lue for Normal Subjects	707	21	52	48
	discase status				
AIHA Patients	LENGTHER L	10 A 1	C.,		24
BH	active hemolysis	328	75	6145	5691
DA 11/14/83	active hemolysis	413	96	4112	3357
1/25/84	post-splenectomy; remission	894	38	645	324
MC	active hemolysis	182	n.d."	487	413
EB	active hemolysis	278	8	964	572
LW 2/16/84	active hemolysis	591	50	1780	260
2/20/84	active hemolysis	417	105	2318	1187
2/27/84	reduced hemolysis	416	111	1232	171
JA 1/3/85	SLE and active hemolysis	51	n.d.	2488	510
1/10/85	SLE and active hemolysia	64	n.d.	2440	599
1/31/85	SLE and active hemolysis	122	n.d.	1859	974
3/14/85	SLE, hemolysis improving	175	n.d.	1136	423
PNH Patients					
МК	23% PNH type II E	273	20	303	91
DL	36% PNH type II E	401	35	207	160
BS	98% PNH type II E	70	5	718	104
FK	20% PNH type III E	407	56	371	358
FZ	28% PNH type III E	150	26	281	154
MB	35% PNH type III E	283	9	145	49
AV	39% PNH type III E	287	45	614	566
SM	55% PNH type III E	265	21	231	201
FY	56% PNH type III E	325	81	478	404
KG	90% PNH type III E	621	29	107	56
FN	95% PNH type III E	651	18	102	113

" n.d. = Not done.

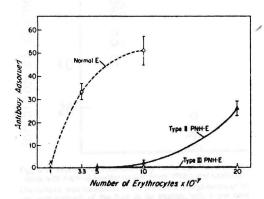
From reference 83

Table 29

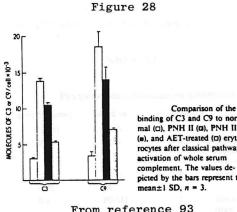
Analysis of CR, and fixed C3 fragments on E from a patient with mycoplasma pneumonia

Patient W.R.	Disease Activity		Surface Molecules			
Faucin W.R.	Disease Activity	CRI	C3c	C3g	C3d	
11/3/83	Pneumonia: cold agglutinin titer of 1024	634	82	254	312	
11/4/83	Pneumonia, hospitalized	585	90	310	357	
11/29/83	Improved, returned to work	653	4	139	192	
4/30/84	Totally recovered	982	1	23	72	

* See Table II for mean values of the normal population.


Table 30

	Complement P	Profile in Angioe	edema	
	Clinh FUNCTION	Clinh LEVEL	C4	Cı
Classical HAE	1	L	↓ or nl	nl
Variant HAE	i	nl	4 or nl	nl
Acquired deficiency of Clinh	1	1	1	ţ
Idiopathic angioedema	nl	nl	nl	nl


nl = normal

From reference 72

Capacity of intact normal E and PNH-E to adsorb neutralizing anti-DAF-IgG. After interaction with the dose of E indicated, the nonbound anti-DAF-IgG was quantitated by its capacity to neutralize 2 units of functional DAF activity; 100% of IgG added neutralized 96% of the DAF activity. Type II PNH-E were from patient K; type ill PNH-E were from patient L.

binding of C3 and C9 to normal (D), PNH II (D), PNH III (s), and AET-treated (D) erythrocytes after classical pathway activation of whole serum complement. The values depicted by the bars represent the mean ± 1 SD, n = 3.

From reference 93

Figure 29

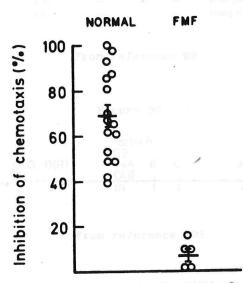


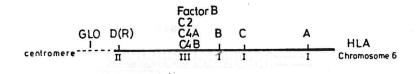
Figure 1. Inhibition of Chemotaxis by Peritoneal Fluid from Pa-tients with Familial Mediterranean Fever (FMF) and Controls. tents with Familial Mediterranean Fever (FMF) and Controls. Chemotaxis was measured in the presence and absence of 10 per cent (vol/vol) of the fluid to be studied, with 1 per cent zymosan-activated serum as a chemoattractant. In the absence of fluid, random migration was 44.1±2.6 µm and chemotaxis 46.5±2.8 µm for controls; random migration was 35.1±3.8 µm and chemotaxis 53.3±6.0 µm for patients.

Each data point represents the mean of replicate determinations of chemotactic activity in each sample — i.e., 28 experiments with 16 specimens from controls, and 12 experiments with 5 speci-mens from patients. The bars indicate the means ± 1 S.E. for and more each group.

From reference 97

Genetic Polymorphisms

(References 99-107)


Table 31

POLYMORPHIC COMPLEMENT COMPONENTS

component	gene frequency	linked to	chromosome	reference
C4	(2 loci)	HLA	6	O'Neill et al. (1978)
C2	0.05	HLA	6	Hobart & Lachmann (1976) Alper et al. (1976) Meo et al. (1976)
Factor B	0.28	HLA	6	Allen (1974)
C3	0.22	Le	19	
C8 α-γ β	0.4	PGM1	1	Mevag et al. (1984) Alper et al. (1983)
C6	0.33	C7	?	Hobari et al. (1975)
C7	0.01	C6	?	Hobart et al. (1978)
C5	0.05 (Mel)	-		Hobart et al. (1981)
Factor D	0.05 (Neg)	Con and the set	C44 000	Hobart & Lachmann (1976)
C4-binding protein	0.02	in see the ti	Selection - security	Rodrigues de Cordoba et al. (1983)
CR1	0.1	the state of the second	a spop eli ve ya	Wong et al. (1983)

From reference 99

Figure 30

From reference 101

Table 32

Effect of amino group modification of E. on the uptake of C4A and

C4 Isotype	C4 Deposited on Normal Cells (ng)	C4 Deposited on Ethylacetimidate- Treated Cells	Ratio of Deposition Ethylacetimidate Normal
C4A (Ve)	202 (± 4)	100 (± 9)	0.50
C4B (Be)	609 (± 101)	666 (± 44)	1.09

 $^\circ$ Values are mean \pm SD of triplicate measurements. The number of cell per assay was 1.6 \times 10'.

Table	33	

d CAP

Expt.	C1-Bearing Cell ^a	Sensitizing Antibody	C4 Isotype ^a	C4 Deposited (ng)	C4B:C4A Deposition Ratio
۱۴	E _H	Human anti-A	C4A (Bu) C4B (Ca)	58 ± 12 125 ± 6	2.2
	U937	Rabbit IgG anti-βa-micro- globulin	C4A (Bu) C4B (Ca)	64 ± 5 131 ± 13	2.0
	K562	Human IgM anti-i	C4A (Bu) C4B (Ca)	168 ± 19 245 ± 9	1.5
	Es	Rabbit IgM anti-Forssman	C4A (Bu) C4B (Ca)	125 ± 4 603 ± 16	4.8
24	EH	Human anti-A	C4A (Ve) C4B (Be)	323 552	1.7
	EH	Human IgM anti-i	C4A (Ve) C4B (Ca)	275 654	2.4
	E _H (group O)	Human IgG anti-P	C4A (Ve) C4B (Ca)	20 29	1.5
	U937	Rabbit IgG anti-β ₂ -micro- globulin	C4A (Ve) C4B (Be)	990 1548	1.6
	K562	Human IgM anti-i	C4A (Ve) C4B (Be)	805 1463	1.8
	Es	Rabbit IgM anti-Forssman	C4A (Ve) C4B (Be)	623 2940	4.7
	Es	Rabbit IgG anti-Es	C4A (Ve) C4B (Ca)	1544 7513	4.9

• For E_N and E_s, the number of cells per assay was 1.6 × 10⁷. For U937 and K562 cells, the number per assay was 3.4 × 10⁸. • The C4 phenotypes of the donors were as follows. Bu: A3.3.2 Bg0.g0; Ve: A3.3 Bg0.g0; Ca: Ag0.g0 B1.1: Be: Ag0.g0

From reference 106

Figure 31

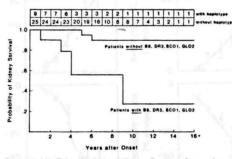


Figure 2. Life-Table Analysis of Kidney Survival (Serum Creati-nine ≤2.0 mg per deciliter [177 µmol per liter] without Dialysis or Transplantation) in Patients with Membranoproliferative Glomerulonephritis.

Nine patients had the extended haplotype B8,DR3,SC01,GLO2, and 25 patients did not.

Anaphylatoxins and Disease (References 108-135)

Table 34

Biological and Physicochemical Characterization of Anaphylatoxins

Approximate order	C3a ED50	C5a ED50
(1) Smooth muscle contraction GP lleum	6-9 x 10 ^{-9 M}	4-6 x 10 ^{-10 M}
(2) Vascular Permea- bility in human skin	10 ⁻¹⁰ -10 ⁻¹² mole	s 10 ⁻¹³ -10 ⁻¹⁴ moles
(3) Mast cell, histamine release rat mast cells	10 ⁻¹⁵ -10 ⁻⁶ M	yes, not quantitated
(4) Induce PMN migration: Human Neutrophils	Inactive	1 - 3 x 10 ^{- 9} M
	Physico.ch	emical characteristics
Molecular weight	9000	11000
Amino acid residue	77	74
Carbohydrate	-	+
Ip	9.4-9.6	8.4-8.6
Alpha-helix	40-45%	40%
Heat stability	> 90 C	> 90 C
Acid stability (rm temp/1 hour)	pH 0-13	pH 0-13

From reference 140

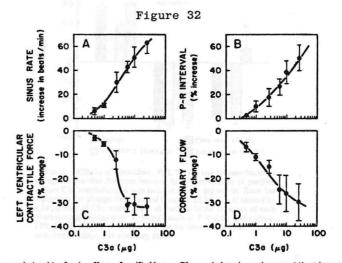


Fig. 1. Dose-response relationships for the effects of purified human C3a anaphylatoxin on sinus rate (A), atrioventricular conduction time (i.e., P-R interval) (B), left ventricular contractile force (C), and coronary flow rate (D) in isolated guinea pig hearts. Each point (mean, 4-6 hearts; \pm SEM) represents the maximum change from control occurring within 4 min of the administration of each C3a dose. Control values (mean \pm SEM) were as follows: sinus rate, 219 \pm 5 beats/min; P-R interval, 65 \pm 2 msec; contraction, 6.4 \pm 0.3 g; coronary flow, 4.5 \pm 0.2 ml/min (n = 30).

From reference 118

Table 34

	C3a	C3a des-Arg
Sinus rate	+25 ± 3	+7 ± 5
-R interval	$+18.0 \pm 5.1$	$+1.0 \pm 1.0$
Contractility	-24.1 ± 3.6	-3.1 ± 1.1
Coronary flow	-19.2 ± 4.3	-4.7 ± 1.0

Numbers indicate mean percentage changes in atrioventricular conduction time, left ventricular contractility, and coronary flow, or changes in beats/min for sinus rate (\pm SEM; n = 4), in isolated guinea pig hearts, after administration of a 6-µg dose of C3a or C3a des-Arg. C3a was incubated for 30 min at 37°C (pH 7.6) with carboxypeptidase B or saline. respectively. Each change caused by C3a was significantly different (P < 0.03) from the corresponding C3a des-Arg value.

From reference 118

Figure 35

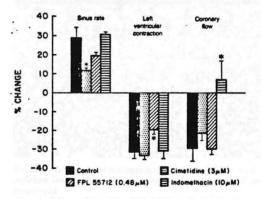
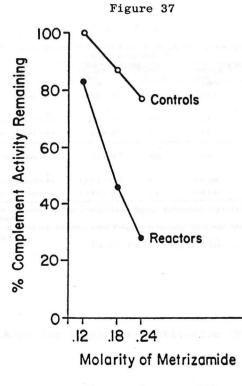
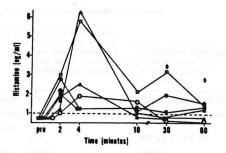
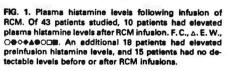



FIG. 5. Effects of cimetidine, FPL 55712, and indomethacin on changes in cardiac function induced by administration of purified human C3a anaphylatoxin into isolated guinea pig hearts. Each bar represents the change from control (mean \pm SEM; n = 4) caused by a 24-µg dose of C3a, either in the absence or in the presence of each pharmacologic antagonist. •, Significance at P < 0.05. Cimetidine, FPL 55712, and indomethacin did not by themselves modify ainus rate, contractility, and coronary flow.

Figure 36


Representative light-microscopic views of lung thin sections of inflated lower lobes from guinea pigs sacrificed 5 minutes after treatment


The guinea pigs were infused via the carotid artery with (A) 40 mg of SCPN inhibitor, (B) cobra venom factor (CVF) alone, or (C) both SCPN inhibitor and CVF. Inflation fixation was performed with buffered formalin at 25 cm H₂O pressure for all sections. The alveolar wall thickness, alveolar space size, bronchiole (\blacklozenge) and arteriole (\blacklozenge) wall thickness in lungs of inhibitor-treated animals (Panel A) is indistinguishable from that observed in lung of untreated animals. The lungs of CVF-treated animals (Panel B) gave evidence of some irregularity in the alveolar matrix but otherwise appear unaffected. The tissue section in Panel C appears markedly abnormal with alveolar matrix, bronchioles and arterioles grossly distorted (H and E×60).

From reference 128

Figure 38

Table 35

Inflammatory activities of synthetic C3a and C4a peptides and analogs compared to the natural anaphylatoxins

	Smooth muscle co	ntraction	Skin w	
	Effective doses ^a	Relative	Effective	Relative
	(molar)		(1000)	
Native human C3a residues (1-77)	6-9 x 10-9	(100)	0.1-0.2	(100)
70 Ala-Ser-His-Leu-Gly-Leu-Ala-Arg		11	- K	
Ala-Ser-His-Leu-Gly-Leu-Ala-Arg	9-12 x 10-7	0.7	56	3
<u>Ala-Ala-Ala</u> -Leu-Gly-Leu-Ala-Arg	5-7 x 10-7	1.3	5-6	3
Native human C4a residues (1-77)	1-2 x 10-7	(100)	10-20	(100)
70 Lys-61y-61n-Ala-61y-Leu-61n-Arg	1.0-1.5 x 10-3	0.1	2500-5000	0.3-0.6
Ala-Ala-Ala-Ala-Gly-Leu-Gln-Arg	1.0-1.5 x 10-4	1.0	2500-5000	0.3-0.6

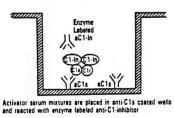
*Minimum concentration of factor required to elicit full contraction of guinea-pig ileal strip

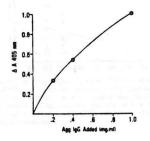
in a 1.5 ml bath. Quantity of factor that induces a wheal 8-11 mm in diameter when injected intradermally in guinea-pig skin. From reference 110

From reference 110

Modern Assays for Complement Activation (References 136-146)

Table 36

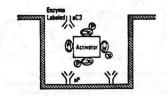

Methods to Detect and Quantitate Complement Activation


Complement Activation Mechanisms

	Complement factors acti- vated partially or completely by proteolytic cleavage	Complement factors acti- vated in part or completely by protein-protein complexing	Complement fac- tors normally not requiring activation
Classical Pathway	C1r, C1s, C2, C3, C4	Ciq (Ciq, Cis, Cis), C2, C4	Clq
Alternative Pathway	Factor B, C3	Factor B, C3, properdin	Factor D
Membrane Attack Mechanism	C5	C5, C6, C7, C8, C9	C6, C7, C8, C9
Control factors	None	None	Factor H, Factor I, C4b binding protein, Carboxypeptidase N

Figure 39

CLASSICAL PATHWAY ELISA



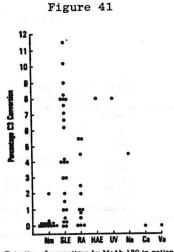
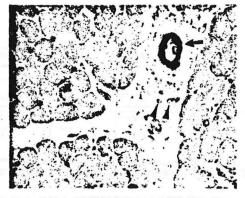

From reference 136

Figure 40

Alternative Pathway ELISA


Activator-sorum mixtures are placed in anti-propordin equated wells and reacted with surprise labeled anti-C3.

Detection of neoantigen by MoAb 130 in patients' plasma. The percentages of C3 conversion in the plasma of 14 normal individuals (Nm). 26 patients with systemic lupus erythematosus (SLE). 12 patients with rheumatoid arthritis (RA), and one patient each with hereditary angioedema (HAE), uritearial vasculitis (UV), nephritis (Ne), cancer (Ca), and vasculitis (Va) are presented.

From reference 143

Figure 42

Medium-Sized Perimysial Arteriole (Arrow) in a Biopsy Specimen from a Patient with Childhood Dermatomyositis, Showing Transmural Staining of the Vessel Wall. This vessel is surrounded by inflammatory cells (arrowheads) that did not react with antibody to the membrane attack complex. Vessels that did react with the attack complex are seen in the endomysium at the left.

Table 37

	Plasma Concentration of C3A DesArg after Thermal Injury.				
	C3A DESARO				
	ng/ml*				
Controls	100±5				
Patients (days after burn)					
0-5	305±42†				
6-8	546±691				
9-13	490±721				
14-19	409±541				
20-50	260±36†				

Mean ±SEM.

A (20%)

PMN

800

600

tP<0.005 for the dif

From reference 144

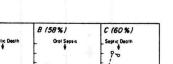
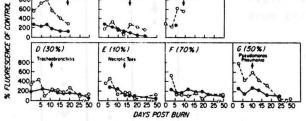



Figure 44

Time Course of Neutrophil (PMN) Expression of CR1 (Open Circles) and CR3 (Closed Circles) in Individual Patients with Burns, as Measured by Indirect Immunofluorescence.

Results are expressed as percentages of fluorescence obtained with neutrophils from normal subjects. Percentages in parentheses refer to the total body-surface area burned.

From reference 144 1.1

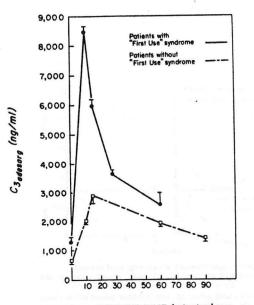
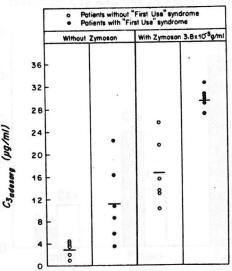
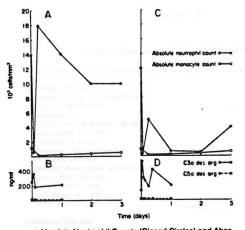


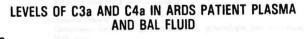
Figure 45 From ref. 134

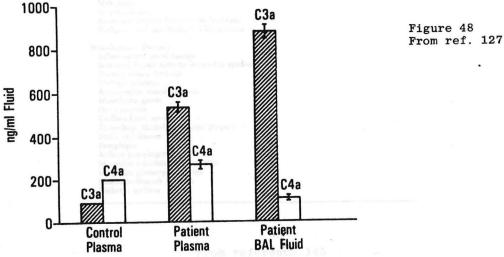
DIALYSIS TIME (minutes)

Complement Activation during Hemodialysis with New Cuprophane-Membrane Dialyzers in Patients with and without the First-Use Syndrome.

Each data point is the mean \pm S.E.M. for all patients in that group.


Figure 46 From ref. 134


C3a desArg Levels in Spontaneously Activated and Zymosan-Activated Plasma from Patients with and without the First-Use Syndrome during Hemodialysis.

The bar indicates the mean value for the group. Note that there is no overlap between C3a desArg levels in zymosan-activated plasma.

Absolute Neutrophil Counts (Closed Circles) and Absolute Monocyte Counts (Open Circles) after the First Infusion (Panel A) and the Second Infusion (Panel C). Levels of C3a desArg (solid line) and C5a desArg (dashed line) in serum are shown as determined by radioimmunoassay after the first (Panel B) and the second infusion (Panel D).

Preliminary data obtained for anaphylatoxin levels in plasma and BAL fluid taken from a patient with adult respiratory distress syndrome (ARDS)

The patient developed ARDS following bone marrow transplantation

Figure 47 From ref 141

Table 48

Diseases Associated with Elevated Levels of Circulating Immune Complexes

Rheumatic Diseases Systemic lupus erythematosus Systemic lupus erythematosus Sjögren's syndrome Scieroderma Mixed connective tissue disease Rheumatoid arthritis Polyarteritis nodosa Wegener's granulomatosis Temporal arteritis Iuvanik chaumatoid arthritis Temporal arteritis Juvenile rheumatoid arthritis Eosinophilic fasciitis Behçet's syndrome Ankylosing spondylitis Reiter's syndrome

Infectious Diseases Bacterial endocarditis Meningococcemia Gonococcemia Leprosy Syphilis Streptococcal infections Salmonellosis Infected ventriculoatrial shunts Dengue Viral hepatitis Infectious mononucleosis Cytomegalovirus Subacute sclerosing panencephalitis

Neoplastic Disease

Carcinomas, (breast, lung, head and neck, gynecologic, gastrointestinal, kidney) Carcinoma, (oreat, iong, inco inco incom Melanoma Neuroblastoma Acute and chronic lymphocytic leukemia Hodgkin's and non-Hodgkin's lymphomas

Miscellaneous Diseases Inflammatory bowel disease Intestinal bypass arthritis dermatitis syndrome Intestinal bypass arthritis dermatitis syn Primary bilary cirrhosis Multiple sclerosis Amyotrophic lateral sclerosis Myasthenia gravis Optic neuritis Guillain-Barré syndrome Thrombotic thrombocytopenic purpura Sickle cell disease Paraphing Pemphigus Pemphigus Bullous pemphigoid Idiopathic interstitial pneumonitis Idiopathic glomerulonephritis Schönlein-Henoch purpura Diabetes mellitus

Pharmacologic Modulation of Complement Activation and Actions (References 147-152)

While pharmacologic strategies to manage the complement system are primitive for most situations, the knowledge gained to date is encouraging. The use of gene activating drugs (eg danazol), of effective premedication for radiocontrast reactions, of specific factor replacement (C1-INH), colchicine for FMF, and other approaches indicate that many avenues are opening for the future. The complexity of the complement system dictates care when the intricately interacting components are modified in hopes of clinical benefit.

Summary and Speculation

The data reviewed at these rounds indicate that major strides have been made toward understanding the role of complement in human health and disease. New laboratory methods for assessing classical pathway activation, alternative pathway activation, membrane attack complex assembly, anaphylatoxin generation, and complement receptors on cell surfaces have rendered the conventional C3, C4, and total hemolytic complement values archaic for most uses.

Our new knowledge and powerful new assessment methods open the door for more rational and effective investigation, diagnosis, and monitoring of a wide range of diseases (at a minimum the diseases associated with immune complexes - Table 38). Hopefully these rounds will have made the transition to the future easier.

Until recently the human complement system was obscure and relatively inaccessible to the clinician. Neither is true any longer. We are rapidly reducing our ignorance while beginning to effectively monitor and control the complement system.

54

TENT ALLAS. 1945. ANTINONE LABERADENE ACTIVATIONE C. FIRST CLAPONER OF COMPLETENT, BY CALMELINE, J.

REFERENCES:

Overview

- 1. PORTER RR, 1984. INTRODUCTION TO THE COMPLEMENT SYSTEM. Phil Trans R Soc Lond B 306:279-281.
- 2. MULLER-EBERHARD HJ, 1983. INTRODUCTION. Springer Semin Immunopathol 6:117-118.
- COOPER NR, et.al. 1985. COMPLEMENT EFFECTOR MECHANISMS IN HEALTH AND DISEASE. J Invest Dermatol 85:39s-46s.
- 4. BROWN EJ, et.al., 1984. COMPLEMENT. IN: FUNDAMENTAL IMMUNOLOGY. ED. PAUL WE. RAVEN PRESS, New York, pp 645-668.
- 5. ATKINSON JP, et.al., 1980. COMPLEMENT. IN: CLINICAL IMMUNOLOGY -ED. PARKER CW. WB SAUNDERS, Philadelphia, pp 219-271.
- MULLER-EBERHARD HJ, MEISCHER PA (Eds.). 1983. COMPLEMENT. SPRINGER-VERLAG, New York, pp 1-474.
- STASTNEY P, COMPLEMENT. Internal Medicine Grand Rounds. January 18, 1968.
- SMILEY D, ROLE OF COMPLEMENT IN HUMAN DISEASES. Internal Medicine Grand Rounds. November 1, 1973.
- 9. JASIN HE. 1979. COMPLEMENT AND DISEASE. Internal Medicine Grand Rounds. June 7, 1979.
- 10. JASIN HE, 1984. IMMUNE COMPLEX DISEASES IN PERSPECTIVE-PARADIGM LOST. Internal Medicine Grand Rounds. Nay 10, 1984.

Classical Pathway Activation

- 11. COOPER NR, 1985. THE CLASSICAL COMPLEMENT PATHWAY: ACTIVATION AND REGULATION OF THE FIRST COMPLEMENT COMPONENT. Adv Immunol 37:151-216.
- 12. KOVACSOVICS T, et.al. 1985. ANTIBODY-INDEPENDENT ACTIVATION OF C1, THE FIRST COMPONENT OF COMPLEMENT, BY CARDIOLIPIN. J. Immunol. 135:2695-2700
- 13. COLOMB MG, et.al., 1984. ACTIVATION OF C1. Phil Trans R Soc Lond B 306:283-292.
- 14. CARTER PE, et.al., 1984. STRUCTURE AND ACTIVITY OF C1r AND C1S. Phil Trans R Soc Lond B, 306:293-299.
- 15. GAGNON J, 1984. STRUCTURE AND ACTIVATION OF COMPLEMENT COMPONENTS C2 AND FACTOR B. Phil Trans R Soc Lond B 306:301-309.

- 16. GIGLI I, et.al, 1985. REGULATION AND DEREGULATION OF THE FLUID-PHASE CLASSICAL PATHWAY C3 CONVERTASE. J. Immunol. 135:440-444.
- 17. ZICCARDI RJ, 1986. CONTROL OF C1 ACTIVATION BY NASCENT C3b AND C4b: A MECHANISM OF FEEDBACK INHIBITION. J. Immuncl. 136:3378-3383.

Alternative Pathway Activation

- 18. LACHMAN PJ, et.al. 1983. INITIATION OF COMPLEMENT ACTIVATION. IN:COMPLEMENT. SPRINGER-VERLAG, NEW YORK, pp 147-166.
- 19. PANGBURN MK, et.al, 1983. THE ALTERNATIVE PATHWAY OF COMPLEMENT. IN COMPLEMENT, EDS. MULLER-EBERHARD HJ, MEISCHER PA, SPRINCER-VERLAG, New York, pp 185-214.
- 20. CZOP JK, et.al. 1985. PROPERTIES OF GLYCANS THAT ACTIVATE THE HUMAN ALTERNATIVE COMPLEMNT PATHWAY AND INTERACT WITH THE HUMAN MONOCYTE b-GLUCAN RECEPTOR. J. Immunol. 135:3388-3393.
- 21. JOINER KA, et.al., 1986. C3 BINDS PREFERENTIALLY TO LONG-CHAIN LIPOPOLYSACCHARIDE DURING ALTERNATIVE PATHWAY ACTIVATION BY SALMONELLA MONTEVIDEO. J. Immunol. 136: 710-715.
- 23. MATSUSHITA M, et.al. 1986. ALTERNATIVE COMPLEMENT PATHWAY ACTIVATION BY C4b DEPOSITED DURING CLASSICAL PATHWAY ACTIVATION. J. Immunol. 136:2994-2998.
- 22. RATNOFF WD, et.al., 1983. THE ROLE OF ANTIBODY IN THE ACTIVATION OF THE ALTERNATIVE COMPLEMENT PATHWAY. Springer Semin Inumunopathol 6:361-371.
- 23. GROSSMAN N, et.al. 1986. C3b BINDING, BUT NOT ITS BREAKDOWN, IS AFFECTED BY THE STRUCTURE OF THE O-ANTIGEN POLYSACCHARIDE IN LIPOPOLYSACCHARIDE FROM SALMONELLAE. J. Immunol. 136:2208-2215
- 24. SUNDSMO JS, et.al. 1983. RELATIONSHIPS AMONG THE COMPLEMENT, KININ, COAGULATION, AND FIBRINOLYTIC SYSTEMS. Springer Semin Immunopathol 6:231-258.

Biologic Effector Systems

- 25. COOPER NR, et.al., 1984. COMPLEMENT, VIRUSES, AND VIRUS INFECTED CELLS. IN COMPLEMENT, EDS. MULLER-EBERHARD HJ, MEISCHER PA, SPRINGER-VERLAG, New York, pp 345-366.
- 26. ROSS GD, et.al., 1985. MEMBRANE COMPLEMENT RECEPTORS SPECIFIC FOR BOUND FRAGMENTS OF C3. Adv Immunol 37:217-268.
- 27. SCHREIBER RD, 1983. THE CHEMISTRY AND BIOLOGY OF COMPLEMENT

RECEPTORS. IN COMPLEMENT, EDS. MULLER-EBERHARD HJ, MEISCHER PA, SPRINGER-VERLAG, New York, pp 115-146.

- 28. FEARON DT, 1983. THE HUMAN C3b RECEPTOR. Springer Semin Immunopathol 6:159-172.
- 29. FEARON DT, 1985. HUMAN COMPLEMENT RECEPTORS FOR C3b (CR1) AND C3d (CR2). J Invest Dermatol 85:53s-57s.
- 30. FISCHER E, et.al., 1986. CHARACTERIZATION OF THE HUMAN GLOMERULAR C3 RECEPTOR AS THE C3b/C4b COMPLEMENT TYPE ONE (CR1) RECEPTOR. J. Immunl.136:1373-1377.
- 31. BOHNSACK JF, et.al. 1985. FIBRONECTIN-ENHANCED PHAGOCYTOSIS OF AN ALTERNATIVE PATHWAY ACTIVATOR BY HUMAN CULTURE-DERIVED MACROPHAGES IS MEDIATED BY THE C4b/C3b COMPLEMENT RECEPTOR (CR1). J Immunol. 135:2680-2686.
- 32. ESPARZA I, et.al., 1986. INTERFERON-DEPENDENT MODULATION OF C3b RECEPTORS (CR1) ON HUMAN PERIPHERAL BLOOD MONOCYTES. J.Immunol. 136:1360-1365.
- 33. O'SHEA JJ, et.al. 1985. TUMOR-PROMOTING PHORBOL ESTERS INDUCE RAPID INTERNALIZATION OF THE C3b RECEPTOR VIA A CYTOSKELETON-DEPENDENT MECHANISM. J Immunol 135:1325-1330.
- 34. FRIES LF, et.al. 1985. FACTOR I CO-FACTOR ACTIVITY OF CR OVERSOMES THE PROTECTIVE EFFECT OF IgG ON COVALENTLY BOUND C3b RESIDUES. J. Immunol. 135:2673-2679.
- 35. BOHNSACK JF, et.al. 1986. INTERACTION OF CULTURE-DERIVED MACROPHAGES WITH THE FIBROBLAST-BINDING DOMAIN OF FIBRONECTIN IS A NECESSARY BUT INEFFICIENT SIGNAL FOR FIBRONECTIN ENHANCEMENT OF CR1-MEDIATED PHAGOCYTOSIS. J. Immunol. 136:3793-3798.
- 36. CHANGELIAN PS, et.al., 1986. TISSUE-SPECIFIC PHOSPHORYLATION OF COMPLEMENT RECEPTORS CR1 AND CR2. J Exp Med 163:101-115.
- 37. YANCEY KB, et.al. 1985. HUMAN C5a MODULATES MONOCYTE FC AND C3 RECEPTOR EXPRESSION. J. Immunol. 135:465-470.
- 38. METHA RL, et.al. 1986. BINDING AND CATABOLISM OF AGGREGATED IMMUNOGLOBULINS CONTAINING C3b BY USING U937 CELLS. J. Immunol. 136:1765-1771
- 39. MOLD C, et.al. 1986. INCORPORATION OF THE EPSTEIN BARR VIRUS/C3d RECEPTOR (CR2) INTO LIPOSOMES AND DEMONSTRATION OF ITS DUAL LIGAND BINDING FUNCTIONS. J. Immunol. 136:4140-4145.
- 40. SIAW MFE, et.al. 1986. BIOCHEMICAL AND ANTIGENIC ANALYSIS OF THE EPSTEIN BARR VIRUS/C3d RECEPTOR (CR2). J. Immunol. 136:4146-4151.

- 41. WRIGHT S et.al. 1986. PHORBOL ESTERS CAUSE SEQUENTIAL ACTIVATION AND DEACTIVATION OF COMPLEMENT RECEPTORS ON POLYMORPHONUCLEAR LEUKOCYTES. J. Immunol. 136:1759-1764.
- 42. GRIFFIN FM, et.al. 1985. EFFECTS OF DIFFERENTIATION IN VIVO AND OF LYMPHOKINE TREATMENT IN VITRO ON THE MOBILITY OF C3 RECEPTORS OF HUMAN AND MOUSE MONONUCLEAR PHAGOCYTES. J. Immunol. 135:3394-3397
- 43. REYNES M, et.al. 1985. HUMAN FOLLICULAR DENDRITIC CELLS EXPRESS CR1, CR2, AND CR3 COMPLEMENT RECEPTOR ANTIGENS. J Immunol. 135:2687-2694.
- 44. BERGER M, et.al. 1985. CALCIUM REQUIREMENTS FOR INCREASED COMPLEMENT RECEPTOR EXPRESSION DURING NEUTROPHIL ACTIVATION. J. Immunol. 135:1342-1348.
- 45. HARTUNG HP, et.al., 1983. SYNTHESIS OF COMPLEMENT BY MACROPHAGES AND MODULATION OF THEIR FUNCTIONS THROUGH COMPLEMENT ACTIVATION.IN COMPLEMENT, EDS. MULLER-EBERHARD HJ, MEISCHER PA, SPRINGER-VERLAG, New York, pp 279-322
- 46. HUGLI TE, 1983. STRUCTURE AND FUNCTION OF THE ANAPHYLATOXINS. IN COMPLEMENT, EDS.MULLER-EBERHARD HJ, MEISCHER PA, SPRINGER-VERLAG, New York, pp 73-100.
- 47. MULLER-EBERHARD HJ, 1983. THE MEMBRANE ATTACK COMPLEX. IN COMPLEMENT, EDS. MULLER-EBERHARD HJ, MEISCHER PA, SPRINGER-VERLAG, New York, pp 227-278
- 48. MULLER-EBERHARD HJ, 1985. THE KILLER MOLECULE OF COMPLEMENT. J. Invest Dermatol 85:47s-52s.
- 49. PODACK ER, et.al., 1984. MEMBRANE ATTACK BY COMPLEMENT. Mol Immunol 21:589-603.
- 50. BHAKDI S, et.al. 1986. C5b-9 ASSEMBLY: AVERAGE BINDING OF ONE C9 MOLECULE TO C5b-8 WITHOUT POLY-C9 FORMATION GENERATES A STABLE TRANSMEMBRANE PORE. J. Immunol. 136:2999.
- 51. HANSCH GM, et.al. 1985. INDUCTION OF PROSTANOID SYNTHESIS IN HUMAN PLATELETS BY THE LATE COMPLEMENT COMPONENTS C5b-9 AND CHANNEL FORMING ANTIBOITIC NYSTATIN: INHIBITION OF THE RECYLATION OF LIBERATED ARACHIDONIC ACID. J Immunol. 135:1320-1324.

Regulatory Proteins

- 52. PANGBURN MK, 1986. DIFFERENCES BETWEEN THE BINDING SITES OF THE COMPLEMENT REGULATORY PROTEINS DAF, CR1, AND FACTOR H ON C3 CONVERTASES. J. Immunol. 136:2216-2221.
- 53. SHIN ML et.al. 1986. MEMBRANE FACTORS RESPONSIBLE FOR HOMOLOGOUS SPECIES RESTRICTION OF COMPLEMENT-MEDIATED LYSIS: EVIDENCE

FOR A FACTOR OTHER THAN DAF OPERATING AT THE STAGE OF C8 AND C9. J Immunol 136:1777-1782.

- 54. KINOSHITA T, et.al. 1986. ENDOGENOUS ASSOCIATION OF DECAY-ACCELERATION FACTOR (DAF) WITH C4b AND C3b ON CELL MEMBRANES. J. Immunol. 136:3390-3395.
- 55. SCHONERMARK S, et.al., 1986. HOMOLOGOUS SPECIES RESTRICTION IN LYSIS OF HUMAN ERYTHROCYTES: A MEMBRANE-DERIVED PROTEIN WITH C8-BINDING CAPACITY FUNCTIONS AS AN INHIBITOR. J Immunol. 136:1772-1776.
- 56. KRISTENSEN T, et.al. 1986. STRUCTURAL ANALYSIS OF HUMAN COMPLEMENT PROTEIN H: HOMOLOGY WITH C4b BINDING PROTEIN, b₂ -GLYCOPROTEIN I, and THE BA FRAGMENT OF B². J. Immunol. 136:3407-3411.
- 57. ZICCARDI RJ. 1984. THE FIRST COMPONENT OF HUMAN COMPONENT (C1): ACTIVATION AND CONTROL. IN COMPLEMENT, EDS. MULLER-EBERHARD HJ, MEISCHER PA, SPRINGER-VERLAG, New York, pp 167-184.

(SEE ALSO REF 19)

Biologic Activities

- 58. COOPER NR, et.al. 1984. THE ROLE OF ANTIBODY AND COMPLEMENT IN THE CONTROL OF VIRAL INFECTIONS. J INVEST IMMUNOL 83:1215-1275.
- 59. COOPER NR, et.al., 1983. COMPLEMENT, VIRUSES, AND VIRUS-INFECTED CELLS. Springer Semin Immunopathol 6:327-347.
- 60. DANIELS CA, et.al., 1970. NEUTRALIZATION OF SENSITIZED VIRUS BY PURIFIED COMPONENTS OF COMPLEMENT. Proc Nat'l Acad Sci USA 65:528.
- 61. BROWN EJ, et.al., 1983. THE ROLE OF COMPLEMENT IN HOST RESISTANCE TO BACTERIA. Springer Semin Immunopathol 6:349-360.
- 62. BROWN EJ, et.al., 1984. THE ROLE OF COMPLEMENT IN HOST RESISTANCE TO BACTERIA. IN COMPLEMENT, EDS. MULLER-EBERHARD HJ, MEISCHER PA, SPRINGER-VERLAG, New York, pp 367-378.
- 63. WINKELSTEIN JA. 1983. COMPLEMENT AND THE HOST'S DEFENSE AGAINST THE PNEUMOCOCCUS. CRC Critical Rev in Micro 11:187-208.
- 64. FINE, DP, 1981. COMPLEMENT AND INFECTIOUS DISEASES. CRC Press, Inc. Boca Raton Florida, pp 1-157.
- 65. SHEARER WT, et.al. 1984. CORRELATION BETWEEN COVALENT ATTACHMENT OF C3 AND CALCIUM UPTAKE IN ANTIBODY-STIMULATED L CELLS. Res Comm Chem Pathol Pharmacol. 45:163-78.
- 66. HUGLI TE, 1984, COMPLEMENT AND CELLULAR TRIGGERING REACTIONS. Fed

Proc 43(10):2540-2542.

- 67. MORGAN EL, et.al. 1984. ANAPHYLATOXIN-MEDIATED REGULATION OF HUMAN AND MURINE IMMUNE RESPONSES. Fed Proc 43:2543-2547.
- 68. WEIGLE WO, et.al., 1983. REGULATION OF IMMUNE RESPONSE BY COMPONENTS OF THE COMPLEMENT CASCADE AND THEIR ACTIVATED FRAGMENTS. Springer Semin Immunopathol 6:173-194.
- 69. WEIGLE WO, et.al. 1983. REGULATION OF IMMUNE RESPONSE BY COMPONENTS OF THE COMPLEMENT CASCADE AND THEIR ACTIVATED FRAGMENTS. Spring Sem Immunopath 6:173-194.
- 70. WALKER C, et.al. 1986. INTERFERENCE OF A C3-FRAGMENT PREPARATION WITH IL 2-DEPENDENT PROLIFERATION. J. Immunol. 136:3396-3401.
- 71. NYDEGGER UE, et.al., 1983. THE ROLE OF COMPLEMENT IN IMMUNE CLEARANCE OF BLOOD CELLS. Springer Semin Immunopathol 6:373-398.

Complement Deficiencies - General

- 72. NUSINOW SR, et.al., 1985. THE HEREDITARY AND ACQUIRED DEFICIENCIES OF COMPLEMENT. Med Clin N A 69:487-504.
- 73. LACHMANN PJ, 1984. INHERITED COMPLEMENT DEFICIENCIES. Phil Trans R Soc Lond. B 306:419-430.
- 74. AGNELLO VA, 1978. COMPLEMENT DEFICIENCY STATES. Medicine 57:1-23.
- 75. ALPER CA, et.al. 1984. INHERITED DEFICIENCIES OF COMPLEMENT PROTEINS IN MAN. IN COMPLEMENT, EDS. MULLER-EBERHARD HJ, MEISCHER PA, SPRINGER-VERLAG, New York, pp 409-420.

Complement Deficiencies - Infectious Complications

- 76. ROSS SC, et.al. 1984. COMPLEMENT DEFICIENCY STATES AND INFECTION: EPIDEMIOLOGY PATHOGENESIS AND CONSEQUENCES OF NEISSERIAL AND OTHER INFECTIONS IN AN IMMUNE DEFICIENCY. Medicine 63:243-273.
- 77. RAO CP, et.al., 1985. INHERITED C8b SUBUNIT DEFICIENCY IN A PATIENT WITH RECURRENT MENINGOCOCCAL INFECTIONS: IN VIVO FUNCTIONAL KINETIC ANALYSIS OF C8. Clin Exp Immunol 60:183-190.
- 78. TAUSK F, et.al., 1985. LEPROSY; ALTERED COMPLEMENT RECEPTORS IN DISSEMINATED DISEASE. J Invest Dermatol 85:58s-61s.
- 79. BOTTGER EC, et.al. INFLUENCE OF GENETICALLY INHERITED COMPLEMENT DEFICIENCIES ON HUMORAL IMMUNE RESPONSE IN GUINEA PICS. J.

Immunol. 135:4100-4107

80. GAITHER TA, et.al., 1984. DEFICIENCY IN C3b RECEPTORS ON NEUTROPHILS OF PATIENTS WITH CHRONIC GRANULOMATOUS DISEASE AND HYPERIMMUNOGLOBULIN-E RECURRENT INFECTION (JOB'S) SYNDROME. Inflammation 8:429-444,

Complement Deficiency - Autoimmune Complications

- 81. HOLME E, et.al., 1986. DECREASED C3b RECEPTORS (CR1) ON ERYTHROCYTES FROM PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOUS. Clin Exp Immunol 63:41-48.
- 82. YOSHIDA K, et.al., 1985. THE CHANG IN C3b RECEPTORS ON ERYTHROCYTES FROM PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS. Clin Exp Immunol 60:613-621.
- 83. ROSS GD, et.al. 1985. DISEASE-ASSOCIATED LOSS OF ERYTHROCYTE COMPLEMENT RECEPTORS (CR₁, C3b RECEPTORS) IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOUS AND OTHER DISEASES INVOLVING AUTOANTIBODIES AND/OR COMPLEMENT ACTIVATION. J. Immunol. 135:2005-2014.
- 84. BAKKE AC, et.al., 1986. STUDIES ON HUMAN BLOOD LYMPHOCYTES WITH iC3b (TYPE 3) COMPLEMENT RECEPTORS. J. Immunol. 136:1253-1259.
- 85. BRICKMAN CM, et.al., 1986. IMMUNOREGULATORY DISORDERS ASSOCIATED WITH HEREDITARY ANGIOEDEMA I. J Allergy Clin Immunol 77: 749-757,
- 86. BRICKMAN CM, et.al., 1986. IMMUNOREGULATORY DISORDERS ASSOCIATED WITH HEREDITARY ANGIOEDEMA II, J Allergy Clin Immunol May: 758-767.

Complement Deficiency and Immune Complex Metabolism

- 87. NAAMA JK et.al., 1985. PREVENTION OF IMMUNE PRECIPITATION BY PURIFIED CLASSICAL PATHWAY COMPLEMENT COMPONENTS. Clin Exp Immunol. 58:486-492.
- 88. SCHIFFERLI JA, et.al., 1985. THE ROLE OF C1, C1-INACTIVATOR AND C4 IN MODULATING IMMUNE PRECIPITATION. Clin Exp Immunol. 60:605-612.
- 89. ROBEY FA, et.al., 1985. C-REACTIVE PROTEIN MEDIATES THE SOLUBILIZATION OF NUCLEAR DNA BY COMPLEMENT IN VITRO. J Exp Med 161:1344-1356.
- 90. NAAMA JK, et.al., 1985. PREVENTION OF IMMUNE PRECIPITATION BY PURIFIED COMPONENTS OF THE ALTERNATIVE PATHWAY. Clin Exp Immunol. 60:169-177.

91. SCHIFFERLI JA, et.al., 1983. COMPLEMENT, THE IMMUNE-COMPLEX LATTICE, AND THE PATHOPHYSIOLOGY OF COMPLEMENT-DEFICIENCY SYNDROMES. Lancet Oct 22, 957-959.

Complement Deficiency - Regulatory Proteins

- 92. PARKER CJ, et.al., 1985. CHARACTERIZATION OF THE COMPLEMENT SENSITIVITY OF PAROXYSMAL NOCTURNAL HEMOGLOBINURIA ERYTHROCYTES. J Clin Invest 75:2074-2084.
- 93. NICHOLSON-WELLER A, et.al., 1983. AFFECTED ERYTHROCYTES OF PATIENTS WITH PAROXYSMAL NOCTURNAL HEMOGLOBINURIA ARE DEFICIENT IN THE COMPLEMENT REGULATORY PROTEIN, DECAY ACCELERATING FACTOR. Proc Natl Acad Sci USA 80:5066-5070.
- 94. PANGBURN MK, et.al., 1983. DEFICIENCY OF AN ERYTHROCYTE MEMBRANE PROTEIN WITH COMPLEMENT REGULATORY ACTIVITY IN PAROXYSMAL NOCTURNAL HEMOGLOBINURIA. Proc Natl Acad Sci USA 80:5430-5434.
- 95. FRETWELL, MD, et.al., 1982. EXACERBATION OF A LUPUS-ERYTHEMATOSIS-LIKE SYNDROME DURING TREATMENT OF NON-C1-ESTERASE-INHIBITOR-DEPENDENT ANGIOEDEMA WITH DANAZOL. J Allergy Clin Immunol. 69:306-310.
- 96. BERGAMASCHINI L, et.al., 1983. C1 INH CONCENTRATE IN THE THERAPY OF HEREDITARY ANGIOEDEMA. Allergy 38:81-84.
- 97. MATZNER Y, et.al., 1984. C5a-INHIBITOR DEFICIENCY IN PERITONEAL FLUIDS FROM PATIENTS WITH FAMILIAL MEDITERRANEAN FEVER. N Engl J Med 311:287-290.
- 98. SCHWABE AD & LEHMAN TJA, 1984. C5a-INHIBITOR DEFICIENCY A ROLE IN FAMILIAL MEDITERRANEAN FEVER? (EDITORIAL) M Engl J Med 311:325-326.

Genetic Polymorphisms of Complement Proteins

- 99. HOBART, MJ, 1984. PHENOTYPIC GENETICS OF COMPLEMENT COMPONENTS. Phil Trans Soc Lond B, 306:325-331.
- 100. CAMPBELL RD, et.al., 1986. THE MOLECULAR GENETICS OF COMPONENTS OF COMPLEMENT. Adv Immunol. 38:203-244.
- 101. PORTER RR, 1984, THE COMPLEMENT COMPONENTS OF THE MAJOR HISTOCOMPATIBILITY LOCUS. CRC Crit Rev in Micro 6:1-19.
- 102. COLTEN HR, 1984. EXPRESSION OF THE MHC CLASS III GENE. Phil Trans R Soc Lond B, 306:355-366.
- 103. EDWARDS JH, 1984. POPULATION GENETICS OF C4 WITH THE USE OF

COMPLEMENTARY DNA PROBES. Phil Tran R Soc Lond, B306:405-417.

- 104. FEY G, et.al., 1983. STRUCTURE AND EXPRESSION OF THE C3 GENE. Springer Semin Immunopathol 6:119-147.
- 105. CAMPBELL RD, et.al., 1984. THE FACTOR B AND C2 GENES. Phil Trans R Soc Lond B, 306:367-378.
- 106. ISENMAN DE, et.al. 1986. COVALENT BINDING PROPERTIES OF THE C4A AND C4B ISOTYPES OF THE FOURTH COMPONENT OF HUMAN COMPLEMENT ON SEVERAL C1-BEARING CELL SURFACES. J. Immunol. 136:2542-2550.
- 107. WELCH TR, et.al., 1986. MAJOR-HISTOCOMPATIBILITY-COMPLEX EXTENDED HAPLOTYPES IN MEMBRANEOPROLIFERATIVE GLOMERULO-NEPHRITIS. N Eng J Med 314:1476-1481.

[Contributions to our basic knowledge in this area by Dr. J. Donald Capra and UTHSCD colleagues summarized in Proc Nat'l Acad Sci USA. 79:6347, 1982]

Anaphylatoxins and Disease

- 108. UNSON CG, et.al., 1984. ACTIVE SITE OF C3a ANAPHYLATOXIN: CONTRIBUTIONS OF THE LIPOPHILIC AND ORIENTING RESIDUES. Biochemistry 23:585-588.
- 109. Lu Z-X, et.al., 1984. CONFORMATIONAL ANALYSIS OF COOH-TERMINAL SEGMENTS OF HUMAN C3a. EVIDENCE OF ORDERED CONFORMATION IN AN ACTIVE 21-RESIDUE PEPTIDE. J Biol Chem. 259:7367-7370.
- 110. HUGLI TE, et.al., 1983. THE ACTIVE SITE OF HUMAN C4a ANAPHYLATOXIN. Molecular Immunol 20:637-645.
- 111. HUGLI TE, et.al., 1977. SYNTHETIC PEPTIDES WITH THE BIOLOGICAL ACTIVITIES AND SPECIFICITY OF HUMAN C3a ANAPHYLATOXIN. Proc Natl Acad Sci USA 74:1826-1830.
- 112. KREUZPAINTER G, et.al., 1986. INACTIVATION OF C3a BY A MONO-CARBOXYPEPTIDASE PRESENT IN CULTURE SUPERNATANTS OF STIMULATED GUINEA PIG PERITONEAL MACROPHAGES. J Immunol. 136:3384-3389.
- 113. GERVASONI JE, et.al. 1986. DEGRADATION OF HUMAN ANAPHYLATOXIN C3a BY RAT PERITONEAL MAST CELLS: A ROLE FOR THE SECRETORY GRANULE ENZYME CHYMASE AND HEPARIN PROTEOGLYCAN. J. Immunol. 136:285-292.
- 114. JOHNSON AR, et.al., 1975. RELEASE OF HISTAMINE FROM RAT MAST CELLS BY THE COMPLEMENT PEPTIDES C3a AND C5a. Immunology. 1067-1080.
- 115. KOWNATZKI E, 1982. TRIGGERING OF MAST CELLS. Molecular

Immunol 19:1297-1300.

116. SHOWELL HJ, et.al., 1982. C3a-INDUCED LYSOSOMAL ENZYME SECRETION FROM HUMAN NEUTROPHILS. Int Archs Allergy 67:227-232.

117. BJORK J, et.al., 1985. MICROVASCULAR EFFECTS OF ANAPHYLATOXINS C3a AND C5a. J Immunol. 134:1115-1119.

118. DEL BAZO UH, et.al., 1985. CARDIAC DYSFUNCTION CAUSED BY PURIFIED HUMAN C3a ANAPHYLATOXIN. Proc Natl Acad Sci USA 82:886-890.

119. STIMLER NP, et.al., 1981. ANAPHYLACTI ACTIONS OF PLATELET-ACTIVATING FACTOR. Am J Path 105:64-69

120. HARTUNG H-P, et.al., 1983. INDUCTION OF THROMBOXANE RELEASE FROM MACROPHAGES BY ANAPHYLATOXIC PEPTIDE C3a OF COMPLEMENT AND SYNTHETIC HEXAPEPTIDE C3a 72-77. J Immunol. 130:1345-1349.

- 121. GREER J, 1985. MODEL STRUCTURE FOR THE INFLAMMATORY PROTEIN C5a. Science. 228:1055-1060.
- 122. HUGLI TE, 1981. THE STRUCTURAL BASIS FOR ANAPHYLATOXIN AND CHEMOTACTIC FUNCTIONS OF C3a, C4a, AND C5A. CRC Crit Revs in Immunol. 321-366.
- 123. HUEY R and HUGLI TE, 1985. CHARACTERIZATION OF A C5a RECEPTOR ON HUMAN POLYMORPHONUCLEAR LEUKOCYTES (PMN). J. Immunol. 135:2063-2068.
- 124. STIMLER NP, 1984. SPASMOGENIC ACTIVITY OF C5adesArg ANAPHYLATOXIN ON GUINEA PIG LUNG PARENCHYMAL STRIPS:SENSITIVITY OF THE LEUKOTRIENE-MEDIATED COMPONENT TO CYCLOOXYGENASE INHIBITORS. Biochem and Biophys Ress Comm. 125:852-858.
- 125. CLANCY RM, et.al., 1983. ARACHIDONATE METABOLISM BY HUMAN POLYMORPHONUCLEAR LEUKOCYTES STIMULATED BY N-FORMYL-MET-LEU-PHE OR COMPLEMENT COMPONENT C5a IS INDEPENDENT OF PHOSPHOLIPASE ACTIVATION. Proc Natl Acad Sci USA 80:7200-7204.
- 126. HUGLI TE, et.al., 1985. EFFECTS OF THE C5a ANAPHYLATOXIN AND ITS RELATIONSHIP TO CYCLO-OXYGENASE METABOLITES IN RABBIT VASCULAR STRIPS. Br J Pharmac 84:725-733.
- 127. HUGLI TE, 1983. ACTIONS OF THE ANAPHYLATOXINS ON PULMONARY TISSUES. IN: THEORETICAL AND CLINICAL ASPECTS OF ALLERGIC DISEASES. ALMQVIST AND WIKSELL, Stockholm, pp 197-211.
- 128. SIEGLE RL, et.al., 1983. IN VITRO COMPLEMENT CONSUMPTION BY CONTRAST MATERIALS AND ANALOGUES: REACTORS VS NONREACTORS. Invest Rad 18:387-389.

- 129. FREYRIA A-M, et.al., 1982. EFFECTS OF FIVE DIFFERENT CONTRAST AGENTS ON SERUM COMPLEMENT AND CALCIUM LEVELS AFTER EXCRETORY UROGRAPHY. J Allergy Clin Immunol 69:397-403.
- 130. HASSELBACHER P, et.al., 1980. IN VITRO EFFCTS OF RADIOGRAPHIC CONTRAST MEDIA ON THE COMPLEMENT SYSTEM. J Allergy Clin Immunol 66:217-222.
- 131. SIMON RA, et.al., 1978. RADIOGRAPHIC CONTRAST MEDIA INFUSIONS. MEASUREMENTS OF HISTAMINE, COMPLEMENT, AND FIBRIN SPLIT PRODUCTS AND CORRELATION WITH CLINICAL PARAMETERS. J Allergy Clin Immunol. 63:281-288.
- 132. ARROYAVE CM, et.al., 1976. ACTIVATION OF THE ALTERNATIVE PATHWAY OF THE COMPLEMENT SYSTEM BY RADIOGRAPHIC CONTRAST MEDIA. J Immunol 117:1866-1869.
- 133. LIEBERMAN P, et.al., 1979. COMPLEMENT ACTIVATION FOLLOWING INTRAVENOUS CONTRAST MATERIAL ADMINISTRATION. J Allergy Clin Immunol, 64:13-17.
- 134. HAKIM RM, et.al., 1984. COMPLEMENT ACTIVATION AND HYPER-SENSITIVITY REACTIONS TO DIALYSIS MEMBRANES. N Eng J Med 311:878-882.
- 135. EKNOYAN G, 1984, SIDE EFFECTS OF HEMODIALYSIS (Editorial). N Eng J Med 311:915-917.

Modern Assays for Complement Activation

- 136. COOPER NR, et.al., 1983. METHODS TO DETECT AND QUANTITATE COMPLEMENT ACTIVATION. Springer Semin. Immunopathol. 6:349-360.
- 137. LIN RY, et.al., 1986. IN VIVO REDUCTION OF CIRCULATING C1q BINDING IMMUNE COMPLEXES BY INTRAVENOUS GAMMAGLOBULIN ADMINISTRATION. Int Archs Allergy Appl Immunol 79:286-290.
- 138. NILSSON T., et.al., 1985. THE PREVENTION OF IMMUNE PRECIPITATION BY PURIFIED COMPONENTS OF THE ALTERNATIVE PATHWAY. Clin Exp Immunol 60:169-177.
- 139. WAGNER JL, et.al., 1984. RADIOIMMUNOASSAY FOR ANAPHYLATOXINS: A SENSITIVE METHOD FOR DETERMINING COMPLEMENT ACTIVATION PRODUCTS IN BIOLOGIC FLUIDS. Anal Biochem. 136:75-88.
- 140. SATOH PS, et.al., 1983. MEASUREMENT OF ANAPHYLATOXINS: AN INDEX FOR ACTIVATION OF COMPLEMENT CASCADES. BioTechniques June/July:90-95
- 141. CLARKSON SB, et.al., 1986. TREATMENT OF REFACTORY IMMUNE THROMBOCYTOPENIC PURPURA WITH AN ANTI-FCy-RECEPTOR ANTIBODY.

N Engl J Med 314:1236-1239.

- 142. MERI S, et.al., 1985. COMPLEMENT LEVELS AND C3 BREAKDOWN PRODUCTS IN OPEN HEART SURGERY: ASSOCIATION OF C3 CONVERSION WITH THE POSTPERICARDIOTOMY SYNDROME. Clin Expt Med. 60:597-604.
- 143. TAMERIUS JD, et.al. 1985. DETECTION OF A NEOANTIGEN ON HUMAN C3bi AND C3d BY MONOCLONAL ANTIBODY. J. Immunol.135: 2015-2019.
- 144. MOORE FD, et.al., 1986. NEUTROPHIL ACTIVATION IN THERMAL INJURY AS ASSESSED BY INCREASED EXPRESSION OF COMPLEMENT RECEPTORS. N Engl J Med 314:948-953.
- 145. ENDO L, et.al., 1985. CLINICAL UTILITY OF ASSAYS FOR CIRCULATING IMMUNE COMPLEXES. Med Clin N A. 69:623-636.
- 146. KISSEL JT, et.al., 1986. MICROVASCULAR DEPOSITION OF COMPLEMENT MEMBRANE ATTACK COMPLEX IN DERMATOMYOSITIS. N Engl J Med 314:329-334.

Pharmacologic Modulation of Complement Activation and Actions

- 147. ASGHAR SS, 1984. PHARMACOLOGICAL MANIPULATION OF COMPLEMENT SYSTEM. Pharm Rev 36:223-244.
- 148. GREENBERGER PA, et.al., 1985. PROPHYLAXIS AGAINST REPEATED RADIOCONTRAST MEDIA REACTIONS IN 857 CASES. Arch Intern Med 145:2197-2200.
- 149. FARNAM J, et.al., 1985. COMPLEMENT AND IGE-MEDIATED RELEASE OF HISTAMINE FROM BASOPHILS IN VITRO. J Immunol. 134:541-547.
- 150. RING J, et.al., 1985. INDOMETHACIN ENHANCES IN VITRO HISTAMINE RELEASE INDUCED BY ANTI-IGE AND Ca-IONOPHORE BUT INHIBITS C5a INDUCED RELEASE REACTIONS BY BASOPHILS OF ATOPICS AND NORMALS. Int Arch Allergy Appl Immunol. 77:225-227.
- 151. NEOH SH, et.al., 1980. THE IN VITRO ACTIVATION OF COMPLEMENT BY RADIOLOGIC CONTRAST MATERIALS AND ITS INHIBITION WITH epsilon-AMINOCAPROIC ACID. Invest Rad. 16:152-158.
- 152. BERGAMASCHINI L, et.al., 1983. C1-INH concentrate in the therapy of hereditary angioedema. Allergy. 38:81-84.