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Metabolic enzyme function is dependent on the larger context of a biochemical pathway. 

Despite detailed characterization of the requisite molecular “parts,” it remains difficult to 

predict the adaptive response to a simple perturbation. That is: if the activity or expression of 

a single enzyme is changed, what other proteins (if any) require compensatory mutation? 

Comparative genomics and experimental evolution provide two powerful approaches to 

begin addressing these questions. In my thesis work, I examined adaptive interactions with 

the essential enzyme dihydrofolate reductase (DHFR). Analyses of gene synteny and co-

occurrence across 1445 bacterial genomes indicated that DHFR coevolves with thymidylate 

synthase (TYMS), but is relatively decoupled from the rest of the folate metabolic pathway 



 

(and genome). Through directed evolution of E. coli, I demonstrated that these two enzymes 

adapt cooperatively in response to antibiotic stress. An allele replacement experiment 

confirmed that a pair of mutations to DHFR and TYMS were sufficient to reconstitute the 

entire trimethoprim resistance phenotype, establishing that the two enzymes are capable of 

independently driving adaptation. In the final component of my thesis, I drew on the ‘mirror-

tree’ method to define a new measure of residue-residue coevolution which corrects for the 

phylogenetic relationship among species. In summary, my results verify that small groups of 

genes within larger metabolic pathways can form adaptive modules that evolve as a unit in 

response to environmental or mutational stress. Moreover, my mirror-tree inspired analysis 

provides a path forward for understanding how coupled adaptation between genes manifests 

at the resolution of site specific constraints on the protein sequence. 
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1 

CHAPTER ONE 
 

Introduction 

1.1 Mapping adaptive interactions in central metabolism 

Central metabolism results from the collective action of many enzymes. For model 

organisms like E. coli, prior work has enumerated many of the biochemical reactions 

catalyzed and how they are assembled to produce functioning biochemical pathways [2]. 

Large-scale collection of genome sequences has now provided metabolic “parts lists” for 

many other organisms [3], enabling genome-scale metabolic network reconstructions for a 

diversity of species [4-6]. Despite these efforts, it remains difficult to predict the fitness 

consequences of single point mutations or even gene knockouts [7, 8]. It is further 

complicated to understand how these systems adapt in response to environmental change or 

stress. For example: if the activity or expression of a single enzyme is changed, what other 

proteins (if any) require compensatory mutation? Such adaptive interactions are derived from 

the functional dependence of individual enzymes on their greater genetic context. Our ability 

to predict the effect of perturbations [9, 10], quantify the relationship between mutation and 

disease [11, 12], or rationally engineer new metabolic systems [13-15] is limited by an 

unknown pattern of functional coupling. Thus, an ability to generally map the adaptive 

interactions between enzymes would aid in focusing mechanistic work, suggest new 

strategies for the engineering of novel cellular systems, and provide a path toward the 

predictive modeling of cellular phenotypes. 
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1.2 Predicting adaptive interactions through coevolutionary inference 

Comparative genomic analyses provide a general strategy for inferring the adaptive 

couplings between proteins that have shaped the evolution of cellular systems. The basic 

premise is that nature has already conducted a long-term experiment of perturbation and 

adaptation, which is recorded in the genomes of extant species. In these models, conservation 

is taken as an indicator of functional importance, while correlation is regarded as a signal of 

coevolution. Because coevolutionary analyses only report on the outcomes of selection, they 

can reveal interactions across diverse scales and mechanisms [16-20]. Statistical coevolution 

has been modeled in the context of both single protein families (residue-residue interaction) 

and entire genomes (gene-gene interaction) [20]. We propose that coevolving proteins, as 

determined by statistical analyses, represent core, conserved adaptive interactions. As such, 

these methods provide computational hypotheses which motivate direct testing in individual 

organisms through targeted perturbation and directed evolution experiments. The central goal 

of this thesis is to produce a computational and experimental roadmap for one might 

quantitatively evaluate our capacity to predict adaptive interactions through comparative 

genomics. Hereafter, I will provide a brief review of comparative genomic methods and their 

associated biological ramifications.   

Analyses of coevolution can be roughly divided up into three categories, in order of 

decreasing granularity: 

1. Co-occurrence: the correlated loss and gain of genes across species 

2. Synteny: the conservation of physical proximity on the chromosome 
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3. Sequence coevolution: correlated changes in amino acid identity between positions of 

the protein sequence 

Each approach has been shown to successfully associate gene products with known 

interaction [18, 19, 21]. However, it is non-obvious that the three different approaches would 

capture the exact same set of interactions when optimized. How effectively different 

mechanisms of interaction are imprinted on these evolutionary reporters is not well 

understood. As such, there is value in rigorous development and examination of each method 

in parallel.  

Gene co-occurrence, sometimes called phylogenetic profiling, represents the coarsest 

measure of coevolution [21]. The biological reasoning that motivates this approach is that 

once a key component of a pathway or physical complex is lost, selection would dictate that 

the cells also dispense of the remaining no-longer-functional genes. Conversely, horizontal 

transfer represents a mechanism by which collections of functionally related genes can be 

passed from one organism to the next [22]. Acquiring a new phenotype can be dependent on 

the joint function of two or more genes. Therefore, organisms receiving only part of an 

enzymatic pathway would likely be outcompeted by those with the complete set of necessary 

genes. These events are tracked in an indirect manner through an analysis of gene co-

occurrence across extant species. Each family of orthologous genes is represented by its 

‘phylogenetic profile,’ a one-dimensional binary vector indicating whether that gene is 

present across a collection of species. Gene families can then be clustered based on their 

phylogenetic profile by a variety of statistical metrics [21, 23, 24]. 
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A related strategy for the inference of evolutionary coupling is the statistical analysis 

of gene synteny, which refers to the conservation of genetic context. The arrangement of 

genes on a bacterial chromosome is a highly conserved genetic feature [25, 26]. The selective 

underpinnings of this result come from the informational processes of DNA replication and 

gene expression. Replication asymmetry drives the positioning of highly expressed genes 

near the origin, facilitating increased copy number during periods of fast growth [27]. 

Essential genes demonstrate a bias for the leading strand as to avoid head-on collisions 

between DNA and RNA polymerases [28]. The selective focus of synteny is gene co-

expression. One-dimensional distance between genes has been shown to be the strongest 

determinant of co-expression in several bacteria [18]. This property is thought to have driven 

the formation of operons and supraoperons containing functionally related genes [18, 22, 29, 

30].  

The most stringent notion of synteny is called gene order conservation (GOC). As its 

name suggests, the method is concerned with genes that are directly adjacent on the 

chromosome. The size of intergenic regions is neglected, which means it is only practically 

applicable to prokaryotes. GOC is defined as the relative frequency that two contiguous 

genes have their respective orthologs contiguous in another species. After 500 million years 

of evolution, about 50% of genes that are initially contiguous will remain so for the average 

bacterium [26]. This indicates strong purifying selection against deleterious rearrangements. 

Analysis of GOC show that the data is well-described by an empirical model in which gene 

pairs fall into two categories: fast rearranging and slow rearranging [26]. The pattern of GOC 
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decay over evolutionary time is thus consistent with the case where selection on the 

proximity of specific families of orthologs is conserved across many species.  

A more general definition of synteny considers the conservation of genes within 

kilobase (kb) sized segments of the chromosome. Recent work examined synteny as the 

number of times two genes occurred within a normalized distance threshold on the 

chromosome. [24]. The frequency of this event was then compared against a null expectation 

based on a model where genes are randomly and uniformly shuffled across species. The 

biological rationale of this approach stems from the observation that E. coli and B. subtilis 

genes within 10kb of one another uniformly co-express [18]. The vast majority of gene pairs 

in E. coli are well described by the null model, despite its simplicity. Specific pairs of genes 

show statistically significant coevolution according to gene synteny. These have been shown 

to be enriched for proteins that are known to physically interact as well as enzymes with a 

shared metabolic intermediate. 

 Lastly, perhaps the most challenging domain of comparative genomics is the analysis 

of amino acid sequence coevolution. In this class of methods, protein families are represented 

by their multiple sequence alignment (MSA). The dimensionality of this data is much greater 

than that of a simple binary indicator or gene-gene distance. The problem is further 

complicated by the fact that the strength of selection varies widely across the length of the 

protein [17]. Due to the factors of increased dimensionality and variable selection, this data is 

more susceptible to noise and the presence of a confounding phylogenetic signal [31]. 

Despite these challenges, various methods have been developed for the analysis of individual 
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protein families [16, 20, 32]. The output of such analyses is a map of coevolution between 

pairs of positions in a given multiple sequence alignment.  

Statistical coupling analysis (SCA) is a framework that identifies coevolving 

networks of amino acids in the three dimensional protein structure [33]. This type of 

network, termed a ‘sector,’ has been implicated in the mediation of allostery, substrate 

specificity, and other facets of protein function [32, 34-36]. However, application of SCA to 

protein-protein coevolution is nontrivial. Work in one superfamily of multi-domain proteins 

suggests that SCA may be informative beyond the context of single domains, but the 

generality of this finding is yet unknown [37]. Critically, SCA lacks a natural definition for 

an ‘interaction score’ between a pair of protein families. On the other side of the coin is 

direct coupling analysis (DCA), which uses coevolution to infer the physical contact map of 

a protein [16]. In contrast to the interconnected networks described by SCA, DCA identifies 

a sparse pattern of physically contacting residue-residue pairs smattered across the three 

dimensional structure. These DCA contacts have proved powerful in three-dimensional 

structure prediction [16]. DCA has also been shown to detect contacts between proteins, 

namely the physical interfaces within a macromolecular complex [38, 39]. However, DCA is 

limited in its ability to predict protein-protein interactions a priori. This is due to a 

combination of computational expense and limited sensitivity[40]. As a result, physical 

interface prediction using DCA is either restricted to small datasets or aided by a prior 

screening via synteny or co-occurrence [39]. Because DCA identifies interaction based on 

the coevolutionary signature at a physical interface, the method would not be able to capture 

the full range of adaptive dependencies present in central metabolism.  
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 A contrasting model of protein sequence coevolution, named ‘mirror-tree,’ is 

expressly purposed for the prediction of adaptive interaction between proteins. Instead of 

analyzing correlations in amino acid identity between specific positions of a multiple 

sequence alignment, mirror-tree tracks the change in total sequence similarity across species 

[19]. This feature allows the analysis to explicitly account for the phylogenetic relationship 

of each species when determining protein-protein coevolution [41, 42]. Similar to synteny 

and co-occurrence, this method culminates with a coarse grained ‘interaction-score’ 

consisting of a single number indicating the strength of coevolution between two proteins. 

While it was initially conceived as a method for identifying physically-interacting proteins, 

some evidence suggests that the application of mirror-tree could be more general [19, 43].  

The tradeoff is that unlike SCA or DCA, the existing mirror-tree analyses provides no insight 

into which positions in the protein structure drive coevolution. So at present, successfully 

predicting protein-protein interaction using sequence information comes at the sacrifice of 

positional resolution. Developing a framework unifying the analysis of residue-residue 

coevolution with the prediction of evolutionary interactions is an open problem, which I 

explore later in my thesis.  

 Overall the tools of comparative genomics, consisting of co-occurrence, synteny, and 

amino acid sequence coevolution, provide a general strategy for the inference of adaptive 

interaction between proteins. While previous work has largely focused on using these tools to 

annotate protein function and predict physical interaction [1, 39, 40], I propose that the 

absence of statistical coevolution between most proteins can be taken as a prediction of 

adaptive independence. Intriguingly, genome wide analyses of synteny and co-occurrence 
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across bacteria have identified quasi-modular groups of genes which are evolutionarily 

coupled to one another but less so to the remainder of their cellular system and genome [18, 

23]. These results suggest the possibility that cellular systems might be decomposed into 

smaller adaptive units, consisting of a few genes that evolve together in response to 

environmental stress or mutation. In my thesis work, I investigated this possibility using E. 

coli folate metabolism as a model system. My results provide a proof-of-concept that 

coevolutionary analysis might be used to identify small adaptive units embedded in larger 

cellular systems. 

 

1.3 Folate metabolism as a model system 

To experimentally test the idea that evolutionary couplings can be used to identify 

adaptive interactions in a given organism, I focused on the metabolic enzyme Dihydrofolate 

Reductase (DHFR, encoded by the E. coli gene folA). DHFR is essential for the synthesis of 

purine nucleotides, thymidine, and several amino acids [44]. As a consequence, it is a 

common target for antibiotics, antimalarials, and chemotherapeutics [45, 46]. DHFR has 

become a prominent model system for studying evolution due to its metabolic centrality, and 

our capacity to perturb its function through small molecule inhibitors. Recent work has 

utilized DHFR as a vehicle for understanding the evolution of drug resistance [47-51], 

protein conformational dynamics [52-54], and the evolutionary constraints on horizontal 

gene transfer [55, 56]. However, it remains unclear how the relationship between DHFR and 

cellular fitness is dependent on its greater metabolic context. Understanding how mutations 

to other enzymes might be able to compensate for a reduction in DHFR function is important 
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to questions of antibiotic resistance and more generally the evolution of folate metabolism. 

As such, DHFR provided a well-studied system to test the capacity for comparative genomics 

to predict adaptive interactions. 

To map the network of enzymes that have the potential to adaptively interact with 

DHFR, I used STRINGdb. STRING is a database that integrates many types of biological 

Figure 1.1 Biochemical map of folate metabolism. Abbreviated enzyme names are displayed in 

black or grey text. Black text and lines correspond to enzymes that were annotated as highest 

confidence interactions with DHFR (folA) in STRINGdb v10.5 [1]. Metabolites are indicated in 

blue. See abbreviations for complete names of each enzyme and compound. 
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data, including gene synteny, co-occurrence, co-expression, and high-throughput experiments 

(e.g. yeast two-hybrid). Its stated goal is to uncover “both direct and indirect functional 

interactions” between proteins. The amalgamated STRING score is benchmarked against its 

ability to recapitulate KEGG pathways. The STRING database (v10.5, [1]) and KEGG 

pathway maps [3] indicate 16 core enzymes that complete  the one-carbon cycle and are 

biochemically coupled to DHFR (e.g. they are linked by a product or substrate, Figure 1.1). 

The complete folate metabolic pathway, as identified by STRING, interconverts folic acid 

derivatives through a series of one-carbon group transfers. Methionine, serine, thymidine, 

and purine nucleotides are produced in the process [44]. The input of the pathway is 7,8-

dihydrofolate (DHF), which is produced through the addition of L-glutamate to 

dihydropteroate by the bifunctional enzyme dihydrofolate synthase/folylpolyglutamate 

synthase (FPGS). Dihydrofolate is not active in one carbon metabolism so it must first be 

reduced by DHFR. DHFR catalyzes the stereospecific conversion of DHF to 5,6,7,8-

tetrahydrofolate (THF) in an NAPDH-dependent manner. THF is then modified at both the 

N-5 and N-10 positions by a diversity of one-carbon groups. Various THF species serve as a 

one-carbon donor for the synthesis of amino acids and purine nucleotides (Figure 1.1). 

Oxidation of reduced folate (5,10-Methylene THF) back to DHF is exclusively carried out by 

thymidylate synthase (TYMS), which concurrently convers uridine monophosphate (dUMP) 

to thymidine monophosphate (dTMP). 

Like many microorganisms, E. coli lack the ability to transport folate into the cell. As 

a result, the folate metabolic pathway is the target of several well-known antibiotics. These 

include sulfamethoxazole (SMX) and trimethoprim (TMP), which are commonly prescribed 
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in combination [57]. Sulfamethoxazole impedes the production of DHF through the 

inhibition of FPGS activity, while trimethoprim competitively binds DHFR. Together, these 

compounds limit the production of reduced folates, resulting in adverse changes to 

metabolite abundances and reaction velocities. The final outcome of trimethoprim inhibition 

on metabolism and bacterial growth is dependent, in part, on environmental conditions.  

In a nutrient poor context (e.g. media lacking amino acids), trimethoprim addition 

causes cell stasis. Mass spectrometry profiling of intracellular metabolite concentrations in E. 

coli has detailed the underlying cascade of metabolic events [58, 59]. The most immediate 

consequence of DHFR inhibition is the accumulation of its substrate DHF. At high 

concentrations, DHF exhibits product inhibition of upstream FPGS [59]. In other organisms, 

this metabolite has also been shown to inhibit the activities of MTHFR and TYMS [60-62]. 

Reduced flux through the pathway leads to the hierarchical depletion of folate-dependent 

metabolites [58]. Intracellular glycine depreciates on the fastest timescale, accounting for an 

almost immediate halt in growth. This is followed by the simultaneous depletion of 

thymidine (dTTP) and Methionine, followed by adenosine triphosphate (ATP) sometime 

later. Related cofactors of the folate pathway, such as AICAR and dUMP, accumulate 

concurrently. The fastest starvation event, the depletion of glycine, stops growth through 

activation of the stringent response [63]. Long term stasis is stabilized by the purine 

deficiency which develops sometime later.  

In a nutrient rich environment containing exogenous amino acids, trimethoprim 

inhibition primarily results in cell death. Since glycine starvation and thus the stringent 

response are abated, the depletion of thymidine constitutes the fastest and most dominant 
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effect in the cascade. Thymine starvation has been shown to induce the premature initiation 

of DNA replication [27]. While the ensuing chain of cause and effect are not completely 

understood, this has lethal consequences due to double-stranded breaks, single strand gaps, 

and recombination intermediates at the origin [64]. The localized DNA breakage eventually 

results in degradation of the origin of replication (oriC). This phenomenon is referred to as 

thymineless death [65].  

Given that trimethoprim has pleiotropic metabolic ramifications spanning the entire 

folate metabolic pathway, it presents a non-trivial yet well-defined opportunity to study how 

complex cellular systems adapt to targeted perturbation. That is, which enzymes adapt in 

response to inhibition of DHFR with trimethoprim? As a first step towards this question, we 

examined the extent to which the biochemical connections between folate metabolic enzymes 

lead to co-evolution across species, using comparative genomics. 

 

1.4 Coevolution in the folate pathway 

We analyzed gene synteny and co-occurrence across 1445 completely sequenced 

bacterial genomes to study the pattern of evolutionary coupling between the 16 core enzymes 

of folate metabolism [24]. As a null model, the amalgamated STRING scores an associated 

pathway map of folate metabolism suggested a dense pattern of biochemical interactions in 

which most enzymes of the pathway are coupled to one another. In contrast, synteny and co-

occurrence indicate that evolutionary coupling in the pathway is both sparse and modular 

(Figure 1.2). The maps of coevolution produced by synteny and co-occurrence are 

qualitatively consistent with one another. Most pairs of enzymes do not show any statistical 
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coevolution, despite their apparent proximity in biochemical space. We observed several 

small groups of enzymes which demonstrated internal coevolution but remained statistically 

independent from the rest of the pathway. As one might expect, one such evolutionary unit 

consisted of the glycine cleavage system proteins H, P, and T (gcvH, gcvP, and gcvT in E. 

coli). These gene products comprise a single macromolecular complex, which facilitates the 

conversion of glycine to serine  [66]. Modular coevolution is also observed between three 

pairs of biochemically related enzymes: 1) DHFR and TYMS 2) methionine synthase (MS) 

with methionine tetrahydrofolate reductase (MTHFR) and 3) the purine biosynthesis proteins 

PGT and IMPS. These interactions are likely mediated by a biochemical mechanism, since 

the proteins are not known to physically bind.  

Figure 1.2 Coevolutionary maps of folate metabolism. A-B Statistical coevolution according to analyses of 

gene co-occurrence and synteny as computed across 1445 complete bacterial genomes. Coupling between gene 

pairs in folate metabolism is indicated as a relative entropy Dij
intra

, shown by pixel intensity. Enzyme names are 

labeled on the top and left of each heatmap, with corresponding gene names in grey italics along the right. In E. 

coli, a single gene (folD) encodes a bifunctional enzyme which catalyzes both the methylene tetrahydrofolate 

dehydrogenase (MTD) and methenyltetrahydrofolate cyclohydrolase (MTCH) reactions as shown by the 

biochemical pathway in Figure (1.1). 
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There are a few technical caveats relevant to the hypothesis of adaptive independence 

that is motivated by our statistical results. First, some false negatives are expected due to 

limited statistical power. These would constitute enzyme pairs that do in fact coevolve, but 

that signal is not recovered by our present analysis. We find only six evolutionary couplings 

out of 120 enzyme pairs, despite the fact that 83 enzyme pairs are coupled biochemically 

through a shared product or substrate. Therefore, a high false negative rate would necessary 

to explain the sparsity observed in our statistical maps of coevolution. More generally, the 

pattern of adaptive interactions in a pathway need not strictly resemble its biochemical map 

given the non-linear relationship between enzyme activities, metabolite concentrations, and 

fitness. Thus, the observed sparsity may reflect a modular organization of adaptive 

constraints that have been conserved throughout evolution. Since our results are the product 

of statistical inference across thousands of genomes, they are not expected to capture 

idiosyncratic interactions that are specific to a particular organism or environmental 

condition. We hypothesize that coevolutionary maps represent a prediction of the core, 

conserved adaptive couplings and their degree of independence from the rest of the genome. 

If true, these would provide for identifying the evolutionary building blocks of metabolic 

pathways, consisting of smaller, multi-gene adaptive units, which do not depend strongly on 

the choice of model organism or environment.  
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CHAPTER TWO 
 

Directed Evolution of Trimethoprim Resistance in E. coli 

 

2.1 Background and introduction 

2.1.1 Harnessing evolutionary inference for hypothesis generation 

Extant species are the product of a convolution of various selective pressures with a 

largely unknown (and possibly shifting) network of functional constraints between genetic 

elements. We attempt to learn the constraints that guide evolutionary outcomes through 

comparative genomic analyses. But how do these statistical results translate into meaningful 

and testable experimental hypotheses? As described in chapter 1, my colleagues and I applied 

analysis of two coevolutionary measures to bacterial folate metabolism (Fig. 1.2) [1]. A key 

finding of this analysis was that small groups of genes demonstrated a strong signature of 

coevolution while maintaining statistical independence from rest of the pathway. We termed 

these collections of 2-3 genes evolutionary modules. We hypothesized that genes within an 

evolutionary module would demonstrate two defining characteristics. Based on the presence 

of statistical coupling, we propose that the fitness effect of perturbing one gene in the module 

should be dependent on the functional state of the others. Conversely, we expect that genes 

within a module should be capable of co-adapting to relevant perturbing or change in 

environment in a way that is independent from the rest of the pathway; this would help 

explain our observation of statistical independence from the remainder of the genome.  
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To test this hypothesis, we chose an evolutionary module comprised of the essential 

metabolic enzymes dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS) for 

experimental study. The two proteins are not known to physically interact. Rather, they 

catalyze sequential steps of the folate metabolic pathway, suggesting a possible biochemical 

mechanism of coupling. We chose E. coli as our model organism, where the function of 

DHFR is directly tied to growth rate [2]. Despite the fact that genes encoding DHFR and 

TYMS are in synteny in many bacterial species, they are several megabases apart in E. coli. 

Figure 2.1 Growth competition assay for paired DHFR/TYMS mutants. A, Barcoding strategy for using 

deep sequencing to count genotype frequencies over time. The schematic represents a plasmid encoding a single 

copy of the folA (DHFR) and thyA (TYMS) genes. The library encapsulated 10 variants of E. coli DHFR with 

known catalytic activity, paired with either a wild-type (WT) or loss-of-function (R166Q) TYMS allele (20 

genotypes in total). Each allele was labeled with a unique 5 nucleotide identifier denoted ‘BAR’ in the 

schematic. The plasmid library was transformed into E. coli ER2566 ΔfolA ΔthyA for growth competition. The 

number of each barcode pair (𝑵𝒎𝒖𝒕) relative to the reference genotype (WT/WT; counts denoted by 𝑵𝑾𝑻) is 

monitored over time through deep sequencing to provide a relative frequency 𝒇(𝒕). B, Sample plot of log-

relative frequency over time for select genotypes. Points represent relative frequencies estimated from next 

generation sequencing of culture samples collected over time. Data are color coded to match the genotype 

labels which are in DHFR/TYMS format. Lines represent a least squares fit of linear slope 𝒎, which is equal to 

the exponential growth rate of each genotype relative to wild-type. The slope of the WT/WT line is therefore 

zero by construction. Relative growth rate provides a measure of fitness and indicates whether a genotype will 

become enriched in the population or deplete over time.  
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As a result, these experimental tests will also determine whether the functional coupling 

underlying gene synteny persists even in the absence of proximity on the chromosome. If the 

prediction that evolutionary modules adapt as a relatively independent unit proves to be true, 

then this work could provide a strategy for using evolutionary statistics to decompose cellular 

systems into smaller, adaptive subunits.  

2.1.2 Using targeted perturbation to assay functional coupling between enzymes 

 The statistical coevolution observed between DHFR and TYMS suggests that fitness 

effect of mutating one of the enzymes should be tied to the functional state of the other. To 

test this prediction, we examined the fitness (as assessed by growth rate) of E. coli for an 

array of DHFR and TYMS genotype combinations. We utilized a set of 10 previously 

characterized E. coli DHFR mutants spanning a range of catalytic activities (kcat/Km). Each 

DHFR was paired with either a wild-type (WT) or catalytically dead (R166Q) TYMS, 

constituting 20 genotypes in total (Figure 2.1A). DHFR/TYMS pairs were expressed on a 

plasmid system wherein each genotype was labeled with a genetic barcode. By using next 

generation sequencing to count barcode frequency over time, we were able to culture all 

genotypes in a pooled relative growth rate assay (Figure 2.1B). Counts of frequency over 

time were converted into a relative fitness, which expresses the difference in exponential 

growth rate between each genotype and the reference (WT/WT). Growth rates were 

measured in M9 minimal media with 0.4% glucose, 0.1% amicase and either a partial or full 

rescue of R166Q TYMS through thymidine supplementation (5 or 50 ug/ml thymidine). In 

both TYMS backgrounds and experimental conditions, we observed that decreasing DHFR 

activity produces a monotonic decline in relative growth rate (Figure 2.2). In the 5 μg/ml 
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thymidine condition, introducing the R166Q TYMS mutation resulted in a fitness defect 

when paired with a wild-type DHFR, as expected (Figure 2.2A). However, the growth defect 

due to a decrease in DHFR activity was mitigated by the presence of the inactive TYMS 

mutant. When paired with the slowest DHFRs, the R166Q TYMS allele outperformed its 

wild-type. The fitness cost associated with an inactive R166Q TYMS was completely 

rescued by supplementation with 50 μg/ml thymidine. In this condition, R166Q TYMS 

always outgrew wild-type TYMS as DHFR activity was reduced (Figure 2.2B). These results 

confirm that selection for DHFR activity is directly coupled to the functional state of TYMS. 

In particular, we observed a pattern of buffering epistasis in which the cost of reducing 

Figure 2.2 The fitness cost of decreased DHFR activity is buffered by a loss-of-function in TYMS. A,B Scatter 

plots of DHFR mutants spanning an array of catalytic activities (kcat/Km) when paired with either a wild-type (WT; 

grey dots) or catalytically dead (R166Q; red dots) TYMS. Relative growth rate (h
-1

) is normalized against the 

WT/WT genotype; error bars denote standard error across triplicate measurements. The relative DHFR point 

mutants are indicated along the top of the plot. The assay was conducted in M9 and 0.1% amicase supplemented 

with either 5 or 50 μg/ml thymidine. Results from both conditions indicate that the R166Q TYMS mutation buffers 

the fitness cost of reducing DHFR activity.  
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DHFR activity can be compensated for with the introduction of a catalytically inactive 

TYMS. Our findings are consistent with a biochemical constraint wherein the relative 

activity of TYMS should not greatly exceed that of DHFR.   

2.1.3 Metabolomic profiling reveals a constraint on the intermediate dihydrofolate 

To better understand the biochemical constraints on DHFR and TYMS function, we 

characterized the metabolic changes that result from perturbation to these two enzymes. 

More specifically, we selected 10 DHFR/TYMS pairs from the above relative growth rate 

measurements for liquid chromatography-mass spectrometry (LC-MS) profiling of folate 

metabolites. Cells were harvested from log-phase growth in M9 glucose media supplemented 

with 0.1% amicase and 50 μg/ml thymidine. As shown by the growth competition assay, 

DHFR mutants in this condition display significant growth defects individually. However, 

the corresponding DHFR/TYMS double mutants are restored to near wild-type growth. 

Current mass spectrometry methods allow discernment between the full diversity of folate 

species, which vary in oxidation, one-carbon modification, and polyglutamylation state [3]. 

Thus, our approach permits broad study of the metabolic consequences resulting from 

mutation. 

The data show that a reduction in DHFR activity alone causes an accumulation of its 

substrate, indicated by the increase in intracellular DHF (Figure 2.3A, bottom four rows). 

This effect is accompanied by a depletion of reduced polyglutamated folates (Glu ≥ 3), while 

a number of mono- and di-glutamated reduced folate species are increased. Prior work found 

that high concentrations of DHF generate product inhibition of its upstream enzyme FP-γ-

GS. In addition to the synthesis of DHF, FP-γ-GS is responsible for the catalysis of reduced 
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folate polyglutamylation. [4]. The polyglutamylation of reduced folates is important for their 

retention and  use as substrates in several downstream reactions [5]. Our findings are 

consistent with the inhibition of FP-γ-GS by overabundant DHF. Unsurprisingly, the 

metabolic signature and fitness defect that we observe due to decreased DHFR activity 

resembles the effect of its competitive inhibitor trimethoprim [4, 6]. Mutants displaying the 

most severe accumulation of DHF and depletion of THF grow more slowly (Figure 2.3B). 

When a loss-of-function TYMS mutant is introduced, the metabolite profiles become much 

closer to that of wild-type (Figure 2.3A, rows 2-5). The accumulation of DHF is somewhat 

abrogated and polyglutamated reduced folate levels are increased. Thus, coordinated 

Figure 2.3 Metabolic changes due to reduced DHFR activity can be compensated through a loss-of-

function in TYMS. A, Liquid chromatography-mass spectrometry profiling of intracellular folate species for 

select DHFR/TYMS mutant combinations from the growth competition assay. Cells were cultured in M9 media 

supplemented with 0.1% amicase and 50 μg/ml thymidine. DHFR/TYMS genotypes are labeled along the right-

hand side of the heatmap; folate species and polyglutamylation state are indicated along the top. Data represent 

the mean of three replicate measurements of log2abundance relative to wild-type. In the background of a wild-

type TYMS, the data show that mutations reducing DHFR activity result in an accumulation of DHF and a 

depletion of reduced folates (bottom four rows). The effect is partially abrogated by introducing an inactivating 

mutation to TYMS (rows two through five). B, The corresponding doubling time of each mutant pair, as 

measured in batch culture under the same experimental conditions. 
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decreases of both DHFR and TYMS better maintain the underlying balance of metabolites. 

Measurements of growth rate in batch culture confirm that this restores growth rate to near 

wild-type levels (Figure 2.3B). These findings provide a plausible biochemical explanation 

for the observed statistical association between DHFR and TYMS by synteny and co-

occurrence across thousands of bacteria. The bifunctional fused form of DHFR/TYMS found 

in protists and plants may represent an extreme outcome of this selection which guarantees 

stochiometric expression [7, 8]. 

 

2.1.4 Examining adaptive independence using forward evolution 

The above data demonstrate coupling between DHFR and TYMS but does not 

exclude the possibility that they interact with the other products of the genome. To test for 

adaptive interactions more broadly, I proposed a second-site suppressor screen. The 

experiment is simple: apply a perturbation to E. coli DHFR, allow cells to adapt, then 

sequence the genome to identify compensatory mutation. This experiment would either 

verify the adaptive independence of the DHFR/TYMS pair or unveil other interactions that 

were unknown a priori. The antibiotic trimethoprim (TMP) is a competitive inhibitor of 

DHFR which allows for a titratable reduction in enzyme activity. Erdal Toprak and 

colleagues established an experimental system for evolving resistance to trimethoprim, and 

potentially many other antibiotics, in E. coli through sustained drug stress [9]. The workhorse 

of this study is a continuous culture apparatus called the morbidostat/turbidostat [10]. The 

morbidostat facilitates the dynamic control of drug concentration in response to growth rate 

and optical density (Figure 2.4). The basic idea is that drug concentration is increased as long 
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as the culture maintains a minimum optical density and outgrows the rate of dilution. This 

prevents the loss of viability due to excessive antibiotic stress, while maintaining constant 

selection pressure as population resistance increases.  

In prior work, Toprak et al used the morbidostat to evolve trimethoprim resistant E. 

coli MG1655 with constant phenotypic adaptation over 20 days. Their experiment featured 

five replicate populations grown in M9 minimal media. However, the adaptive mutations 

resulting from this condition where wholly constrained to DHFR. The total set of possible 

mutations was comprised of two substitutions in the promoter region and nine in the coding 

Figure 2.4 Evolution of trimethoprim (TMP) resistance using the morbidostat. A, Schematic of the 

continuous culture tube. Dilutions with fresh media are made through the series of inlet lines labeled ‘A,’ ‘B,’ 

and ‘C.’ A constant culture volume of 15 ml is maintained via aspiration through the waste line. B-C, Control 

strategy for the addition of trimethoprim.  Pixels indicate the OD600 trajectory for a single tube and are colored 

according to the current trimethoprim concentration. The culture grows unperturbed until it reaches a 

minimum OD600 of 0.05, at which point it is subjected to periodic dilution every 20 minutes. As long as the 

culture is below an OD600 of 0.15, media ‘A,’ containing no trimethoprim, is used. Once the culture surpasses 

this second threshold, trimethoprim is introduced through the use of media ‘B.’ Dilution with media ‘B,’ 

continues until the culture growth rate is suppressed below the dilution rate. In the event that the concentration 

of trimethoprim in the culture reaches 60% of that of media ‘B,’the program switches to media ‘C’ containing 

5-fold more trimethoprim. This allows continuous selection even as the population adapts. If media ‘C’ is used 

in a given day, the trimethoprim concentration of both ‘B’ and ‘C’ are incremented by a factor of 5 following 

day. This example plot represents an excerpt from the data of my trimethoprim evolution experiment. 
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sequence. Each of the replicates featured a single promoter mutation and quasi-ordered 

acquisition of 2-3 coding sequence mutations. While their experiment revealed a number of 

modifications to the DHFR enzyme that rendered the cell less sensitive to trimethoprim, they 

did not observe compensatory mutations elsewhere in the pathway or genome. It is possible 

that the nutrient-scarce media conditions utilized were prohibitive to evolutionary routes 

beyond the DHFR locus. In contrast to the findings by Toprak et al, TYMS loss-of-function 

mutations have been observed in trimethoprim resistant clinical isolates from multiple genera 

of gram negative bacteria [11, 12]. This observation supports the notion that evolving 

trimethoprim resistance in other environments may yield different evolutionary outcomes. 

Understanding the evolutionary interactions of DHFR and its capacity for adaptive 

independence thus requires further experimental study. 

 

2.2 Forward evolution of trimethoprim (TMP) resistance using the 

morbidostat 

I conducted forward evolution of E. coli MG1655 in the presence of trimethoprim 

using the morbidostat. In order to elaborate on past work in this system by Toprak and 

colleagues, I chose growth media that provided buffering of selection on the folate pathway. 

In particular, I used M9 glucose media supplemented with 0.2% amicase and several 

concentrations of thymidine (5, 10, and 50 μg/ml). Amicase provides a source of free amino 

acids, which are among the essential products of the folate pathway. Thymidine 

concentrations were chosen to range from a partial to full rescue of TYMS activity. By 

alleviating selective pressure on the entire pathway, I sought to expose a broader range of 
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adaptive mutations without biasing the experiment toward a particular result. My 

experimental design was based on the common practice of conducting second site suppressor 

screens for essential genes under relatively permissive conditions [13]. One forward 

evolution population was evolved in each of the three thymidine concentrations. The strategy 

for modulating trimethoprim concentration in response to growth rate of each culture was 

adapted from Toprak et al (Figure 2.4) [9]. I observed steady increase in resistance over the 

course of 13 days (Figure 2.5), at which point the concentration of trimethoprim in my stocks 

began to approach the solubility limit of the drug. The adaptive progress in each culture can 

Figure 2.5 OD600 measurements and trimethoprim concentration over 13 days of forward evolution. The 

morbidostat was used to adapt three populations to trimethoprim stress in differing thymidine concentrations 

(indicated along the top left). Pixels are color coded according to trimethoprim concentration in the culture tube at 

the time of the density measurement. Discontinuities at day 5 are the result of a technical interruption; cultures we 

restarted using the previous day’s glycerol stock. An enhanced view of day 7 in the 50 μg/ml thymidine condition is 

provided by Figure 2.4. 
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be represented by the median trimethoprim concentration experienced in a given day. I 

plotted this quantity as a function of the number of generations elapsed (Figure 2.6). The 

results confirm the acquisition of a nearly 1000-fold increase in trimethoprim resistance by 

each experimental evolution population. Interestingly, the final adaptation event required 

more generations as thymidine supplementation increased (Figure 2.6). After 13 days of 

selection with trimethoprim, the experiment was terminated so that I could assess the 

potential drivers of adaptation through whole genome sequencing.  

 

2.3 Whole genome sequencing of evolved strains 

 The first step in mapping the genetic origin(s) of adaptation was to sequence genomes 

from the resulting populations. I chose ten clonal isolates (strains) from each experimental 

evolution condition for genotypic and phenotypic characterization. I chose to sequence 

individual genomes rather than the mixed population in order to preserve potentially relevant 

information about specific combinations of mutants. A shotgun (short-read) sequencing 

approach was used to obtain a genome and predicted mutations for each isolate. Read 

Figure 2.6 Trimethoprim concentrations permissive of growth throughout the forward evolution 

experiment. The plot indicates the median trimethoprim concentration in each culture tube as a function 

of the number of generations elapsed. Generation counts were estimated from the (piecewise) fold 

change in optical density over time.  
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quantity and depth varied across strains, but generally the average number of reads per base-

pair exceeded 30x coverage. Read count, coverage, and statistics for each strain are reported 

in Table 2.1. Whole genome sequences of the selected isolates revealed that strains from all 

three evolution conditions acquired mutations to both DHFR and TYMS (in some cases only 

TYMS; Table 2.A1). Strains 4, 5, 7, and 10 from the 50 μg/ml thymidine condition displayed 

mutations in TYMS but no detectable changes at the folA (DHFR) locus or promoter region. 

Read count at the folA locus of these strains did not indicate any amplification events either. 

All other sequenced isolates obtained one of three amino acid substitutions in the DHFR 

protein coding sequence. In each case, the mutations to DHFR reproduce previously reported 

adaptation in an earlier morbidostat study of trimethoprim resistance [9]. The TYMS 

mutations observed included two instances of insertion sequence (IS1) mediated mutation, a 

frame shift mutation, the loss of two codons, and a non-synonymous active site mutation. 

These mutations are consistent with a loss-of-function in the TYMS protein. The ubiquity of 

mutations to DHFR and TYMS indicates that these two proteins play an important role in the 

evolution of trimethoprim resistance, and supports the hypothesis that they co-adapt in 

response to antibiotic stress.  
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Condition Strain Coverage Dispersion (σ
2
/μ) Reads (10

6
 )  Avg read length (BP) 

  5 thy 1 55 4.4 2.07 126 

    2 40 3.4 1.52 125 

    3 40 3.4 1.43 131 

    4 35 3.5 1.46 114 

    5 29 2.3 0.985 138 

    6 38 3 1.45 122 

    7 46 3 1.53 142 

    8 68 4.1 2.30 137 

    9 52 3.2 1.70 140 

    10 52 4.2 1.80 134 

  10 thy 1 32 3.4 1.13 135 

    2 34 3.3 1.16 138 

    3 34 3.4 1.19 135 

    4 48 3.9 1.67 135 

Evolved   5 42 3.6 1.46 133 

Strains   6 31 2.9 1.12 132 

    7 29 2.9 1.03 131 

    8 25 2.6 0.843 137 

    9 31 2.9 1.07 135 

    10 41 3.4 1.44 135 

  50 thy 1 42 3.5 1.46 133 

    2 35 3.4 1.32 126 

    3 33 3 1.16 134 

    4 21 3.1 0.879 116 

    5 18 3.7 0.793 115 

    6 25 3.5 0.990 121 

    7 24 2.9 0.887 125 

    8 31 3.2 1.13 130 

    9 29 2.9 1.00 136 

    10 24 3.2 0.936 126 

  5 thy 1 44 3.1 1.53 134 

    2 50 3.2 1.92 122 

Parent 10 thy 1 36 2.2 1.32 129 

Strains   2 40 2.5 1.45 130 

  50 thy 1 35 2.3 1.18 137 

    2 38 2.5 1.26 138 

Table 2.1 Sequencing statistics of forward evolution strains. Ten clonal isolates (strains) were 

selected from the endpoint of each evolution condition for whole genome sequencing (WGS). Two 

clonal isolates were sampled from the corresponding parent cultures in order to identify variants already 

present in each population. Genomes were constructed by aligning short-length reads against a reference 

(see materials and methods for details). Total number of reads and average read length are displayed for 

each strain. Coverage refers to the mean number of reads mapped to each basepair in the genome. 

Dispersion indicates the normalized variance in coverage. 
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2.4 Materials and methods 

2.4.1 Experimental model and subject details 

The parent strain of the forward evolution experiment was E. coli MG1655 with a 

chromosomal green fluorescent protein (egfp) and chloramphenicol resistance (cat) cassette 

introduced at the P21 attachment site by phage transduction.  

2.4.2 Forward evolution of TMP resistance using the morbidostat  

The morbidostat/turbidostat apparatus was built as described by Toprak and colleagues [10]. 

To begin the experiment, the parent strain was grown overnight at 37 ˚C in Luria Broth (LB) 

with 30 μg/ml chloramphenicol [14] added for positive selection. The overnight culture was 

washed twice into M9 media the following day. All subsequent steps were performed at 30˚C 

in M9 minimal media supplemented with 0.4% glucose, 0.2% amicase, and 30 μg/ml of 

Cam. The washed overnight was used to inoculate three new cultures of M9 media further 

supplemented with either 5, 10, or 50 μg/ml thymidine (thy). These constitute the full 

experimental conditions for trimethoprim selection, and will henceforth be referred to as day 

0 (with day 1 denoting the first period of morbidostat culture). Day 0 cultures were grown 

overnight in round-bottom tubes. The next morning, each culture was streaked onto agar 

plates: two colonies would be sampled from each plate to provide genomes of the parental 

strain. The remainders of the day 0 cultures were used to inoculate morbidostat tubes with the 

corresponding media and thymidine supplementation. Each population was inoculated at a 

starting density of approximately 0.005. Cultures were allowed to grow unperturbed until 

they surpassed an OD600 of 0.06, at which point they underwent periodic dilutions with fresh 

media. The dilution rate is described by the formula: 
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𝑟𝑑𝑖𝑙 = 𝑓 ln
𝑉

𝑉 + Δ𝑉
  

where 𝑉 = 15𝑚𝑙 is the culture volume, and Δ𝑉 = 3 𝑚𝑙 is volume added. A dilution 

frequency of 𝑓 = 3 ℎ−1 was chosen, resulting in rdil = 0.55. Dilutions for each population 

were made using one of three media (labeled A, B, and C) with matching thymidine 

supplementation but different amounts of trimethoprim. Media A always contains no 

trimethoprim and is used whenever the culture is below an optical density of 0.15 or the 

growth rate dips below the dilution rate. Above this density, trimethoprim is introduced 

through the use of media B. In the event that the concentration of trimethoprim in the culture 

tube reaches 60% of the stock of media B, the program switches to media C containing 5-

fold more trimethoprim. This process allows for continuous selection even as the population 

adapts. The initial drug concentrations of these media were 0, 11.5, and 57.5 μg/ml. Cycles of 

growth and dilution were sustained for a period of ~22 hours each day, at which point the run 

was stopped in order to make glycerol stocks, replenish media, and update TMP stock 

concentrations. If media C was used in a given day, then medias B and C are incremented by 

a factor of 5 for that population. Culture vials for the next day of evolution were filled with 

fresh media and inoculated with 300 μl from the previous day’s culture. A schematic of the 

morbidostat and an illustration of the protocol for drug addition is provided by Figure 2.4. 

The complete trajectories of OD600 versus time for 13 days of experimental evolution are 

shown in Figure 2.5. 

2.4.3 Genome preparation and sequencing  

Two clonal isolates were chosen from each adapted day 0 culture, and ten isolates were 

randomly sampled from the endpoint of each evolution condition (36 strains in total). 
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Isolation of genomic DNA was conducted using the QIAamp DNA Mini Kit (Qiagen). The 

Nextera XT DNA Library Prep Kit (Illumina) was used to fragment and label each genome 

for sequencing. Paired end sequencing was performed using a v2 300-cycle MiSeq Kit 

(Illumina). Average read length and coverage is reported in Table 2.1. 

2.4.4 E. coli genome assembly 

Genome assembly and mutation prediction was conducted using the bowtie2 [15] dependent 

program breseq [16].  The reference sequence for read alignment was a modification of the 

E. coli MG1655 complete genome (accession no. NC_000193) edited to include the GFP 

marker and chloramphenicol resistance cassette in the parent strain. Breseq predicted 

mutations are reported in Table 2.A1. 
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Appendix 2 

 
Name Mutation   Strains Annotation 

folA CCG to CTG P21L 10thy: 7 dihydrofolate reductase 

  CTC to CGC L28R 5thy: 1-10; 50thy: 1, 6   

  TGG to AGG W30R 10thy: 1-6, 8-10; 50thy: 2, 3, 8, 9   

thyA IS1(+) +9bp (627-635/795 nt) 50thy: 2, 3, 8, 9 thymidylate synthetase 

  IS1(+) +9bp (564-572/795 nt) 50thy: 4, 5, 10   

  Δ1 (535/795 nt) 10thy: 1-10   

  Δ6 (525-530/795 nt) 50thy: 7   

  TGG to AGG W133R 50thy: 1, 6   

  Δ6 (64-69/795 nt) 5thy: 1-10   

dusB IS1(+) +10bp (573-582/966 nt) 10thy: 1-10 tRNA-dihydrouridine synthase B 

  IS1(+) +8bp (818-825/966 nt) 5thy: 1-10   

cynR AAT to AAA N272K 5thy: 10 transcriptional activator of cyn operon; autorepressor 

  AAA to GAA K271E 5thy: 6, 9, 10; 10thy: 4-6, 10   

  TTG to TTT L267F 5thy: 3, 8, 10; 10thy: 1, 7, 8; 50thy: 6   

ychE/oppA Δ1199 (+254/-485) 5thy: 2, 4, 5; 10thy: 2, 3, 7-10 
UPF0056 family inner membrane protein/oligopeptide ABC transporter 

periplasmic binding protein 

gadX GAT to GGT D38G 5thy: 5; 10thy: 2 acid resistance regulon transcriptional activator; autoactivator 

  GCG to TCG A37S 10thy: 2, 3, 5-10; 50thy: 8 
 

otsB/araH A to G (-136/+31) 10thy: 2, 3; 50thy: 3, 9 
trehalose-6-phosphate phosphatase, biosynthetic/L-arabinose ABC 

transporter permease 

  C to A (-142/+25) 5thy: 3; 10thy: 2   

  G to A (-164/+3) 10thy: 7; 50thy: 9   

yfbL/yfbM G to A (+31/-72) 5thy: 6, 7, 8; 10thy: 2, 5, 10 putative M28A family peptidase/DUF1877 family protein 

betI TCC to CCC S182P 10thy: 1, 2, 4 
choline-inducible betIBA-betT divergent operon transcriptional 

repressor 

  ACC to CCC T178P 10thy: 4   
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Name Mutation   Strains Annotation 

 betI GAT to GAA D176E 10thy: 1, 4, 5   

  GAT to AAT D176N 10thy: 2, 4   

ybaL TAA to GAA *559E 10thy: 8; 50thy: 10 inner membrane putative NAD(P)-binding transporter 

  GTG to GGG V555G 5thy: 5, 6   

cat/egfp C to G (+289/-204) 5thy: 3, 8; 10thy: 4, 5 chloramphenicol acetyltransferase/green fluorescent protein 

  C to G (+299/-194) 10thy: 5   

fis TCG to TAG S30* 50thy: 2, 3, 8, 9 global DNA-binding transcriptional dual regulator 

lacI CCC to CCA P332P 10thy: 8 lactose-inducible lac operon transcriptional repressor 

  ACC to CCC T329P 5thy: 6; 10thy: 7, 8   

chaA ACC to CCC T10P 50thy: 7 calcium/sodium:proton antiporter 

  GTA to GAA V8E 10thy: 5   

  CAA to AAA Q5K 10thy: 2   

csrA TAA to TAC *62Y 50thy: 4, 5, 10 pleiotropic regulatory protein for carbon source metabolism 

citG ACC to CCC T255P 5thy: 2; 10thy: 3 2-(5''-triphosphoribosyl)-3'-dephosphocoenzyme-A synthase 

ompF/asnS G to T (-529/+74) 10thy: 2 outer membrane porin 1a (Ia;b;F)/asparaginyl tRNA synthetase 

  C to A (-540/+63) 10thy: 8   

lpoB CAA to CAC Q38H 5thy: 6; 50thy: 9 OM lipoprotein stimulator of MrcB transpeptidase 

sapA ACC to CCC T304P 5thy: 2; 50thy: 4 
antimicrobial peptide transport ABC transporter periplasmic binding 

protein 

yddE CAA to CAC Q14H 50thy: 4, 5 PhzC-PhzF family protein 

  ACC to CCC T12P 50thy: 4   

yghQ GTG to GGG V332G 5thy: 7; 10thy: 10 putative inner membrane polysaccharide flippase 

  GGA to GGG G323G 10thy: 10   

agaD GGA to GGG G120G 10thy: 1 N-acetylgalactosamine-specific enzyme IID component of PTS 

  GCC to TCC A126S 10thy: 1, 3   

rtcA AGT to GGT S215G 10thy: 3; 50thy: 9 RNA 3'-terminal phosphate cyclase 

gntR GAA to GGA E147G 10thy: 4, 5 d-gluconate inducible gluconate regulon transcriptional repressor 
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Name Mutation   Strains Annotation 

  GTG to GGG V146G 10thy: 4   

yiaK ACC to CCC T309P 10thy: 7; 50thy: 6 2,3-diketo-L-gulonate reductase, NADH-dependent 

  GAA to AAA E313K 10thy: 7   

rrfB/murB C to G (+126/-175) 10thy: 2, 10 
5S ribosomal RNA of rrnB operon/UDP-N-

acetylenolpyruvoylglucosamine reductase, FAD-binding 

ampC GTA to GGA V48G 10thy: 1, 8 penicillin-binding protein; beta-lactamase, intrinsically weak 

thrC CTC to ATC L3I 50thy: 7 L-threonine synthase 

dapB/carA T to A (+301/-155) 50thy: 6 
dihydrodipicolinate reductase/carbamoyl phosphate synthetase small 

subunit, glutamine amidotransferase 

paoC CAA to AAA Q72K 50thy: 9 PaoABC aldehyde oxidoreductase, Moco-containing subunit 

acrR IS1(+) +9bp (320-328/648 nt) 50thy: 7 transcriptional repressor 

ybdK TGG to CGG W263R 5thy: 5 weak gamma-glutamyl:cysteine ligase 

dtpD/ybgI T to A (-84/-187) 10thy: 3 dipeptide and tripeptide permease D/NIF3 family metal-binding protein 

ssuB GGC to GGG G44G 10thy: 3, 8 aliphatic sulfonate ABC transporter ATPase 

  GTG to GGG V43G 50thy: 10   

putP GAT to GGT D55G 50thy: 3 proline:sodium symporter 

serX A to G (72/88 nt) 10thy: 8 tRNA-Ser 

flgF CAG to CGG Q19R 50thy: 10 flagellar component of cell-proximal portion of basal-body rod 

pabC TAC to GAC Y92D 10thy: 3 
4-amino-4-deoxychorismate lyase component of para-aminobenzoate 

synthase multienzyme complex 

dadX ACC to CCC T284P 5thy: 2 alanine racemase, catabolic, PLP-binding 

oppF CCG to CAG P273Q 10thy: 3 oligopeptide ABC transporter ATPase 

uspF/ompN G to A (-108/+33) 5thy: 7 
stress-induced protein, ATP-binding protein/outer membrane pore 

protein N, non-specific 

yneM/dgcZ G to A (+75/+144) 10thy: 3 inner membrane-associated protein/diguanylate cyclase, zinc-sensing 

yebV/yebW G to T (+26/-79) 10thy: 7 uncharacterized protein/uncharacterized protein 

araH CAA to AAA Q322K 10thy: 2 L-arabinose ABC transporter permease 

mntH GTG to GGG V313G 10thy: 1 manganese/divalent cation transporter 

xapR ATG to ATA M176I 5thy: 6 transcriptional activator of xapAB 

uraA ATT to GTT I311V 50thy: 7 uracil permease 
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Name Mutation   Strains Annotation 

relA CAT to CAA H518Q 5thy: 3 (p)ppGpp synthetase I/GTP pyrophosphokinase 

ptrA GAT to GAA D38E 10thy: 1 protease III 

  GAT to AAT D38N 10thy: 1   

  CGT to CGA R35R 10thy: 1   

rsmI CAT to CAA H235Q 10thy: 6 16S rRNA C1402 2'-O-ribose methyltransferase, SAM-dependent 

gltF/yhcA Δ4 (+90/-79) 50thy: 7 periplasmic protein/putative periplasmic chaperone protein 

fis-yhdX Δ9555 
 

50thy: 7 fis, yhdJ, yhdU, acrS, acrE, acrF, yhdV, yhdW, yhdX 

acrS TAT to TTT Y187F 10thy: 3 acrAB operon transcriptional repressor 

secY GTA to GGA V274G 10thy: 2 preprotein translocase membrane subunit 

xylF GAA to AAA E195K 50thy: 6 D-xylose transporter subunit 

uhpT GAA to GGA E447G 50thy: 8 hexose phosphate transporter 

pstA GGT to GGG G112G 50thy: 5 phosphate ABC transporter permease 

  ATT to GTT I106V 50thy: 5   

pyrB ACC to CCC T54P 50thy: 4 aspartate carbamoyltransferase, catalytic subunit 

 

 

Table 2.A1 Complete list of non-synonymous mutations observed in the trimethoprim evolution experiment. 
Mutation predictions and gene annotations were produced by Breseq (see 2.4 Materials and methods). The strain 

column indicates experimental condition and clonal isolate(s) in which each mutation was observed. Location of 

each mutation in the amino acid sequence or intergenic region is indicated where applicable. 
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CHAPTER THREE 
 

The Genetic Drivers of Trimethoprim Resistance 

 
3.1 Background and introduction 

 The major goal of my trimethoprim (TMP) evolution experiment was to uncover the 

genetic basis of adaptation to the targeted inhibition of dihydrofolate reductase (DHFR). 

After 13 days of experimental evolution, whole genome sequencing was used to produce a 

map of the resultant mutations. Some fraction of these are expected to be non-adaptive, while 

others provide a competitive advantage [1]. Neutral or deleterious ‘hitchiker’ mutations can 

fix in a population by occurring alongside an advantageous allele [2]. In addition, it is 

impossible to completely decouple the selection for trimethoprim resistance from adaptation 

to the growth medium, and turbidostat environment. Mutations that optimize the ability of E. 

coli to harness glucose as a carbon source, for example, also have a chance to come to 

fixation. My experimental evolution populations began each day by growing to a threshold 

density without the addition of additional trimethoprim. This period of relaxed selection 

allows for the enrichment of such alleles. These could be described as ‘generally adaptive’ if 

they provide a competitive advantage even in the absence of trimethoprim inhibition. One 

cannot exclude the possibility that these would become prevalent in the same strains that 

acquired resistance-causing mutations. Therefore it is difficult, if not impossible, to discern 

between hitchhikers, resistance-causing, and generally adaptive variants from sequencing 

data alone [1]. Thus, targeted experiments are needed in order to ascribe specific phenotypic 
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consequences to the observed mutations, and to identify adaptive interaction(s) between 

DHFR and the other mutated genes. More generally, this work establishes appropriate 

experimental approaches necessary to interrogate the adaptive couplings of a given enzyme.   

 

3.2 Phenotyping the thymidine dependence in the evolved populations 

 The thyA (TYMS) locus acquired the largest variety of mutations across the three 

populations of my trimethoprim evolution experiment, with particularly rich diversity in the 

50 μg/ml thymidine condition. In total, these span substitutions near the active site, insertion, 

deletion, frame shift, and transposable element (IS1) mediated mutations. In all cases, the 

observed mutations seem likely to induce a reduction or loss-of-function in thymidylate 

synthase (TYMS). The observed genotypic diversity would make sense given the large target 

size of loss-of-function mutations. Additionally, thymidine auxotrophy has been observed in 

trimethoprim resistant clinical isolates from multiple genera of gram negative bacteria [3, 4]. 

To test for a reduction of TYMS activity in the evolved strains, I measured the dependence of 

growth rate on exogenously supplemented thymidine. I measured the total growth of all 30 

endpoint strains across 8 different concentrations of thymidine. Each of the strains 

demonstrated a roughly monotonic increase with thymidine concentration (Figure 3.1). In all 

cases, the ability to grow in the absence of exogenous thymidine had been lost, indicating 

that they had become auxotrophs. These findings suggest that the thyA variants produced by 

my trimethoprim evolution experiment are an example of convergent evolution. Despite the 

apparent diversity, the mutations are phenotypically equivalent in that they inactivate TYMS 

and cause thymidine auxotrophy.  
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Figure 3.1 Thymidine dependence of the 30 evolved strains. Data shown indicate singlicate measurements. The 

y-axis denotes the positive integral of log(OD600) evaluated over 20 hours of growth. At low thymidine, total 

growth exhibits a monotonic increase as thymidine concentration is also increased. In a number of cases, this 

culminates with a plateau in which total growth flattens out. Each of the strains exhibits thymidine auxotrophy. 
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3.3 Trimethoprim stress is necessary to induce rapid thyA loss-of-function   

Thymidine auxotrophy was observed in every clonal isolate harvested from the 

endpoint of the trimethoprim evolution experiment. It is possible that the presence of 

thymidine in the growth medium alone is sufficient to drive inactivation of the thyA locus. 

This could occur if the enzymatic activity of TYMS carried some metabolic cost which was 

counterbalanced by the necessity of thymidine production. TYMS converts 5,10-methylene 

tetrahydrofolate (THF) back into dihydrofolate (DHF). Dihydrofolate is not itself active in 

one carbon metabolism, requiring NADPH in order to be reduced [5]. Therefore, TYMS 

activity incurs an energetic toll on the cell in the form of NADPH consumption. As a result, a 

loss-of-function mutation in TYMS may provide a competitive advantage against wild-type 

in the presence of exogenous thymidine. So,  is thymidine supplementation sufficient to drive 

TYMS loss-of-function on a similar timescale even in the absence of trimethoprim? To 

answer this question, I used continuous culture to facilitate sustained exponential growth in 

the presence of exogenous thymidine. For the purpose of direct comparison, the experimental 

conditions and parental E. coli strain matched that of my trimethoprim evolution experiment. 

Triplicate populations were grown in M9 minimal media supplemented with 0.4% glucose, 

0.2% amicase and 50 μg/ml thymidine. This thymidine concentration provided the strongest 

rescue of auxotrophs and corresponds to the highest level of supplementation in the 

trimethoprim evolution experiment. Continuous exponential growth was achieved using the 

‘turbidostat’ mode of the morbidostat/turbidostat apparatus [6]. In the turbidostat setting, 

cultures grow uninterrupted while below a target optical density. Each time the density 

surpasses that threshold, that culture is diluted with a fixed volume of fresh media. This 
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program facilitates sustained exponential growth in a confined range of optical densities. The 

threshold was set at 0.15, corresponding to the target OD for TMP addition in the 

trimethoprim evolution experiment.  

My three replicate cultures grew under these conditions for a period of five days, at 

which point biofilm formation became prohibitive. In a similar fashion to the trimethoprim 

evolution experiment, ten clonal isolates were harvested from each endpoint population for 

phenotyping. I used replica plating on Luria Broth (LB) supplemented with 0 and 50 μg/ml 

thymidine to screen for TYMS loss-of-function. Results indicate that all 30 strains grown 

without trimethoprim selection retained TYMS function. For comparison, I selected 10 

Figure 3.2 Lack of thymidine dependence after growth in the absence of TMP. A, Ten colonies from 

day 6 of the 50 μg/ml thymidine condition of the trimethoprim evolution experiment. Replica plating on 0 

and 50 μg/ml thymidine demonstrates that they have become thymidine auxotrophs. B, Ten colonies from 

three replicate populations grown in 50 μg/ml thymidine without TMP selection. Cultures were grown until 

biofilm formation became prohibitive. Replica plating indicates that TYMS activity was retained in all 

strains.  
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colonies from day 6 of the 50 μg/ml thymidine condition of the trimethoprim evolution 

experiment. Replica plating demonstrated that thymidine auxotrophy had already fixed in the 

population by this time (Figure 3.2). To quantify the amount of evolutionary time elapsed in 

each case, I used optical density versus time to estimate the total number of generations. I 

found that day 6 of the corresponding trimethoprim evolution experiment condition 

constituted 10-20 more generations than those populations grown without selection (Figure 

3.2). Thus, I conclude that the rapid acquisition and fixation of a TYMS loss-of-function 

variant was dependent on the presence of trimethoprim and not just thymidine.  

  

3.4 Assessing the genetic drivers of resistance 

 Based on biochemical context and evolutionary statistics, I hypothesized that paired 

mutations in DHFR and TYMS were driving adaptation to trimethoprim stress. Consistent 

with this, TYMS acquired a loss-of-function mutation in a trimethoprim-dependent manner 

in every evolved population of my morbidostat forward evolution experiment. Additionally, 

one of three amino acid substitutions was observed in each folA (DHFR) locus in 27 out of 

30 total strains (across all experimental conditions). All three mutations had been previously 

observed in trimethoprim resistant E. coli [7]. The affected residues are located in the 

substrate binding pocket. Biochemical characterization shows that these substitutions confer 

additional specificity to DHFR by either reducing the competitive binding of trimethoprim or 

increasing its affinity for the proper substrate [8, 9]. Mutations were not observed elsewhere 

in the pathway. These findings generally support the hypothesis that DHFR and TYMS 

function as an adaptive unit. However, the role of other common genetic variants in the 
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evolution of trimethoprim resistance cannot be excluded from sequencing data alone. A few 

genes outside of the folate pathway were found to mutate in multiple experimental conditions 

(Table 3.A1). Of particular interest were recurring mutations to the gadX and dusB loci. The 

gadX gene product is known regulator of the acid response system; trimethoprim has been 

shown to induce an acid response in E. coli which implicates the up-regulation of the gadX 

target genes gadB/C [10]. The repeated interruption of the dusB reading frame by IS1 

mediated insertions is notable because dusB is located in an operon upstream of the E. coli 

global transcriptional regulator fis [11]. As previously mentioned, such mutations could be 

neutral or generally contribute to growth in this these continuous culture conditions. In order 

to quantify the genetic origin of adaptation to trimethoprim, I asked whether the mutation 

pairs observed at the folA and thyA loci are sufficient in order to recover the full resistance 

phenotype. If true, this would demonstrate that adaption was driven by these two genes and 

not mutations elsewhere in the genome.  

 I used lambda red recombineering to introduce representative pairs of folA/thyA 

mutations from the trimethoprim evolution experiment back into the ancestral wild-type 

background. I constructed four total genotypes, which were termed ‘reconstitution strains.’ 

Each reconstituted genotype included a TYMS loss-of-function (Δ25-26) with either a wild-

type, P21L, W30R, or L28R DHFR allele (labeled R1-4 respectively). Erdal Toprak 

generously provided three strains containing only the DHFR single mutants for comparison 

[12]. These were produced through a different recombination protocol and thus contain 

additional chromosomal antibiotic markers but are otherwise identical. I phenotyped the 

ancestral strain, evolved strains, folA single mutants, and reconstitution strains for 
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trimethoprim resistance. In each case, phenotyping was conducting in M9 glucose media 

supplemented with 0.2% amicase and the thymidine concentration matching each respective 

strain’s forward evolution condition. Reconstitution and DHFR single mutant strains were 

phenotyped in both the 5 and 5 μg/ml thymidine conditions. Triplicate growth measurements 

were made for each strain across an array of trimethoprim concentrations. The resulting dose 

response curves were used to estimate IC50, the drug concentration at which growth is half 

maximal. Most evolved strains obtained an IC50 between 700-1000 μg/ml, representing 

nearly a thousand-fold increase over the parental strains (Table 3.1). The entire genotype to 

phenotype mapping is illustrated in Figure 3.3. The reconstitution strains demonstrated a 

level of resistance that was equal or greater than that of the evolved strains when measured in 

the condition in which they occurred. Consistent with this, one of the evolved strains only 

contained mutations in DHFR and TYMS (Figure 3.3C evolved colony #1 in the 50 μg/ml 

thymidine condition). The resistance of DHFR single mutants (shown in red) was markedly 

lower than the corresponding DHFR/TYMS double mutant. The paired mutations featured in 

the reconstitution strains provide a greater level of resistance in combination than they do 

individually. Not only do these findings indicate that DHFR and TYMS coevolved in 

response to trimethoprim stress, but changes to these two loci are sufficient to reproduce the 

full resistance phenotype of the evolved populations. 
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  Condition Strain IC50 (μg/ml) Std Err   Condition Strain IC50 (μg/ml) Std Err 

  5 thy 1 750 21   5 thy 1 0.91 0.036 

    2 720 24     2 1.1 0.043 

    3 710 85 Parent  10 thy 1 0.86 0.0071 

    4 910 11 Strains   2 0.95 0.11 

    5 770 7.7   50 thy 1 1.2 0.037 

    6 790 7.3     2 1.3 0.091 

    7 870 12   5 thy WT 4.6 0.049 

    8 840 10     P21L 41 0.5 

    9 640 46     W30R 14 0.6 

    10 830 81 folA single   L28R 370 4.9 

  10 thy 1 890 63 mutants 50 thy WT 5.1 0.21 

    2 870 19     P21L 40 0.72 

    3 1000 37     W30R 18 0.61 

Evolved    4 970 25     L28R 420 8.9 

Strains   5 900 150   5 thy WT/Δ25-26 NA NA 

    6 1000 18     P21L/Δ25-26 450 25 

    7 830 120     W30R/Δ25-26 580 25 

    8 1100 37 Reconstitution   L28RR/Δ25-26 1100 21 

    9 1000 140 Strains 50 thy WT/Δ25-26 NA NA 

    10 1000 31     P21L/Δ25-26 820 81 

  50 thy 1 1100 55     W30R/Δ25-26 1000 45 

    2 780 29     L28RR/Δ25-26 >1800 NA 

    3 820 49 

         4 NA NA 

         5 NA NA 

         6 1000 18 

         7 820 77 

     
    8 870 20 

     
    9 760 65 

     
    10 NA NA 

     

Table 3.1 Trimethoprim resistance (IC50) for forward evolution strains. IC50 and standard error were determined 

from triplicate growth measurements taken across an array of trimethoprim concentrations. Measurements were conducted 

in the thymidine concentration indicated under the ‘condition’ tab. For forward evolved and parent strains, this means that 

IC50 was measured in the same condition as the initial selection using the morbidostat. Reconstitution strains are labeled 

based on their respective folA/thyA mutant pairs in an otherwise clean genetic background. Reconstitution and folA single 

mutant strains were measured the two indicated thymidine concentrations. An estimate of IC50 could not be obtained for 

most strains featuring a loss-of-function in TYMS paired with a wild-type DHFR (evolved strains 50thy-4,5,10; recon 

strain 1). These grew slowly in all TMP concentrations without a clear sigmoidal dose response. 
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Figure 3.3 Genotype to phenotype map of the trimethoprim evolution experiment. Ten colonies (strains) were 

isolated from the endpoint of each forward evolution population (30 in total) for characterization. A-C, The leftmost 

panel of each section displays the mutations observed in the strains sampled from that evolution condition. Genes 

mutated in two or fewer strains across all conditions are excluded for brevity (as are synonymous mutations). See 

Table 2.A1 for a complete list of non-synonymous mutations. Gene names are labeled across the top edge of the 

mutation maps, while the specific nucleotide and amino acid changes are denoted along the bottom. If a given gene 

is mutated in particular strain, then the whole section corresponding to that gene is shaded blue for the sake of visual 

inspection. All but four strains acquired mutations to both folA and thyA, which encoded DHFR and TYMS. One 

strain which obtained mutations in only DHFR and TYMS is labeled with a small red star. Trimethoprim resistance 

and thymidine dependence phenotypes are displayed to the right of the mutation maps. Resistance is reported as an 

IC50, with standard error computed across triplicate measurements (see Table 3.1 for exact values). For comparison, 

three ‘reconsitution strains’ (R2-4), featuring representative pairs of mutations in folA and thyA have been included 

in panels A and C. Red dots correspond to the phenotype of the folA mutation taken alone. Thymidine dependence is 

represented by the positive integral of log(OD600) over time (see Figure 3.1 for complete set of measurements). 
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3.5 Materials and methods 

3.5.1 Calculation of total growth for thymidine dependence and IC50 estimation 

Growth was quantified as the positive integral of OD600 over time. This measure is sensitive 

to mutational or drug-induced changes in the duration of the lag-phase as well as exponential 

growth rate [7]. For each replicate, I defined a start time (t0) at the end of lag phase for the 

reference condition (50 μg/ml thymidine or 0 μg/ml trimethoprim). Start time was chosen 

computationally as the last point before monotonic growth above the limit of detection. The 

log(OD600) curves were vertically shifted such that the start time becomes zero and all 

subsequent values are positive. Curves were then numerically integrated using the trapezoid 

method over an interval of 15 hours in the case of thymidine dependence, and 10 hours for 

trimethoprim dose-response.  

3.5.2 Measurement of growth as a function of exogenous thymidine concentration 

All strains were grown overnight in LB + 5 μg/ml thymidine (thy), with the exception of 

those evolved in the 50μg/ml thy condition, which were supplemented with 50 μg/ml thy to 

ensure viability. Overnight cultures were washed twice into M9 media supplemented with 

0.4% glucose and 0.2% amicase. These were used to inoculate a 96-well plate containing an 

array of thymidine concentrations. Cultures began at an OD600 of 0.005, and grew at 30°C 

over a period of 20 hours with periodic injection of distilled, deionized water to maintain 

culture volume against evaporative loss. Optical density was monitored in a Victor X3 plate 

reader. 

3.5.3 Turbidostat culture without trimethoprim selection in 50 μg/ml thymidine 
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The E. coli MG1655 strain used for this experiment was identical to the trimethoprim 

evolution parent strain. To begin the experiment, the parent strain was cultured overnight at 

37°C in Luria Broth (LB); 30 μg/ml of chloramphenicol [13] was added for positive 

selection. For subsequent steps and turbidostat growth, I used chloramphenicol selective M9 

media supplemented with 0.4% glucose, 0.2% amicase, and 50 μg/ml thy. The overnight 

culture was washed twice with M9, and then back diluted for a second overnight adaptation 

at 30°C. The following day, the parent culture was used to inoculate three turbidostat tubes 

containing 17ml of M9 supplemented with 50 thy. The starting optical density of each culture 

was approximately 0.005. Each culture grew unperturbed while below a threshold OD600 of 

0.15, at which point it was diluted with 2.4 ml of fresh media. Cycles of sustained 

exponential growth density continued for a period of ~22 hours a day, at which point the run 

was stopped in order to make glycerol stocks and replenish the media. Culture vials for the 

following day of continuous culture were filled with fresh media and inoculated with 300 μl 

of the culture from the previous day.  

3.5.4 Construction of the reconstitution strains using scarless recombination 

I followed the protocol for scarless genome integration using a modified λ-red system 

developed by Tas et al. [14]. In this method, a tetracycline [15] resistance cassette (“landing 

pad”) is first integrated at the target set. The landing pad is then excised by the endonuclease 

I-SceI, and replaced with the desired mutation by λ-red mediated recombination. NiCl2 is 

used for counterselection against cells retaining the tetracycline cassette. Tas et al. have 

provided a detailed protocol; here I will just give the specifics necessary for my experiments. 

For the λ-red machinery, I transformed the plasmid PTKRED (Addgene plasmid #41062) 
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[16] into electrocompetent E. coli MG1655 with a chromosomal egfp/cat resistance cassette 

(the forward evolution parent strain). To introduce the Δ25-26 TYMS mutation, I first 

recombined the tetA landing pad between genome positions 2,964,900 and 2,965,201 

(genome NC000913). For the DHFR mutations (L28R, W30R, and P21L), the landing pad 

recombined between 49,684 and 49,990. Following landing pad insertion, cells were induced 

with 2mM IPTG and 0.4% arabinose, then transformed with 100ng of dsDNA PCR product 

containing the mutation of interest (with appropriate homology arms). This reaction 

underwent 3 days of outgrowth at 30°C in rich defined media (Teknova) with glucose 

substituted for 0.5% v/v glycerol. Media was supplemented with 6 mM or 4 mM NiCl2 for 

counterselection against tetA at the thyA or folA locus respectively. The outgrowth culture 

was streaked onto agar plates and screened for the loss of tetracycline resistance daily (using 

LB supplemented with 50 μg/ml thy, 30 μg/ml spectinomycin, and +/- 5-10 μg/ml Tet). All 

genotypes were confirmed by Sanger sequencing of the complete folA and thyA open reading 

frame; for folA the promoter region was also sequenced.  

3.5.5 Measurement of trimethoprim dose-response curves 

All strains were grown overnight in LB + 5 μg/ml thymidine (thy), with the exception of 

those evolved in the 50 μg/ml thy condition, which were supplemented with 50 μg/ml thy to 

ensure viability. Overnight cultures were washed twice into M9 media supplemented with 

0.4% glucose, 0.2% amicase, and the thymidine concentration matching their respective 

forward evolution condition (5, 10, and 50 μg/ml thy). Washed cells were back-diluted 1:10 

then grown for 5.5 hours at 30°C. After adaptation, cultures were used to inoculate 96-well 

plates containing the same media along with serial dilutions of trimethoprim. Three replicates 
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were inoculated at a starting OD600 of 0.005 for each combination of strain and drug 

concentration. Optical density was monitored using a Tecan Infinite M200 Pro microplate 

reader and Freedom Evo robot at 30°C over a period of at least 12 hours.  

3.5.6 IC50 estimation 

Trimethoprim (TMP) resistance of each strain was quantified using its absolute IC50, which 

is the drug concentration (μg/ml) at which growth is half maximal. The relationship between 

growth and trimethoprim inhibition is modeled using the following four parameter logistic 

function:  

𝑌 =
𝑎 − 𝑑

1 + (𝑋/𝑐)𝑏
+ 𝑑 

where 𝑌 is growth, 𝑋 denotes TMP concentration, a is the asymptote for uninhibited growth, 

d is the limit for inhibited growth, c provides the concentration midway between a and d, and 

b captures sensitivity [17]. The above model was fit to growth versus TMP concentration 

using MATLAB. Absolute IC50 is the concentration 𝑋∗ for which growth 𝑌(𝑋∗) = 𝑎/2. 
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Appendix 3 

 
E. coli gene Abbreviation Name Uniprot ID Mutation Description 

folA   DHFR dihydrofolate reductase P0ABQ4 coding 

Catalyzes the reduction of THF to DHF, an 

essential reaction for de novo glycine and purine 

synthesis, and for DNA precursor synthesis. 

thyA   TYMS thymidylate synthase P0A884 coding 

Catalyzes the reduction of dUMP to dTMP while 

utilizing 5,10-methylene THF as the methyl donor 

and reductant in the reaction, DHF as a by-product 

dusB   DUSB tRNA-dihydrouridine synthase B P0ABT5 coding 

Catalyzes the synthesis of 5,6-dihydrouridine via 

the reduction of the C5-C6 double bond of uridine 

on target tRNA. 

cynR   CYNR HTH-type transcriptional regulator CynR P27111 coding 

Positively regulates the cynTSX operon for cynate 

metabolism, and negatively regulates its own 

transcription. 

ychE   YHCE UPF0056 membrane protein YhcE P25743 intergenic (/oppA) Putative inner membrane protein. 

oppA   OPPA periplasmic oligopeptide-binding protein P23843 intergenic (ychE/) 
A component of the oligopeptide permease, a 

binding protein-dependent transport system. 

gadX   GADX HTH-type transcriptional regulator GadX P37639 coding 

Positively regulates the expression of about fifteen 

genes involved in acid resistance such as gadA, 

gadB and gadC. Depending on the conditions 

(growth phase and medium), can repress gadW. 

otsB   TPP Trehalose-6-phosphate phosphatase P31678 intergenic (/araH) 

Removes the phosphate from trehalose 6-

phosphate (Tre6P) to produce free trehalose. Also 

catalyzes the dephosphorylation of glucose-6-

phosphate (Glu6P) and 2-deoxyglucose-6-

phosphate (2dGlu6P). 

araH   ARAH 
L-arabinose transport system permease protein 

AraH 
P0AE26 intergenic (otsB/) 

Part of the binding-protein-dependent transport 

system for L-arabinose. Probably responsible for 

the translocation of the substrate across the 

membrane. 

yfbL   YFBL uncharacterized protein YfbL P76482 intergenic (/yfbM) N/A 

yfbM   YFBM protein YfbM P76483 intergenic (yfbL/) N/A 
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E. coli gene Abbreviation Name Uniprot ID Mutation Description 

betI   BETI HTH-type transcriptional regulator BetI P17446 coding 

Repressor involved in the biosynthesis of the 

osmoprotectant glycine betaine. It represses 

transcription of the choline transporter BetT and 

the genes of BetAB involved in the synthesis of 

glycine betaine. 

ybaL   YBAL Putative cation/proton antiporter YbaL P39830 coding Putative antiporter. 

cat   CAT chloramphenicol acetyltransferase 
 

intergenic 

(/eGFP) 

Chloramphenicol resistance marker introduced by 

phage transduciton. 

eGFP   EGFP enhanced green fluorescent protein 
 

intergenic (cat/) 
Enhanced green fluorescent protein introduced by 

phage transduction. 

fis   FIS DNA-binding protein Fis P0A6R3 coding 

Activates ribosomal RNA transcription, as well 

other genes. Plays a direct role in upstream 

activation of rRNA promoters. Binds to hundreds 

of transcriptionally active and inactive AT-rich 

sites. 

lacI   LACI lactose operon repressor P03023 coding 
Repressor of the lactose operon. Binds allolactose 

as an inducer. 

chaA   CHAA sodium-potassium/proton antiporter ChaA P31801 coding 

Sodium exporter that functions mainly at alkaline 

pH. Can also function as a potassium/proton and 

calcium/proton antiporter at alkaline pH. 

csrA   CSR carbon storage regulator P69913 coding 

A key translational regulator that binds mRNA to 

regulate translation initiation and/or mRNA 

stability, initially identified for its effects on central 

carbon metabolism. 

ttdR   TTDR HTH-type transcriptional activator TtdR P45463 intergenic (/ttdA) 

Positive regulator required for L-tartrate-dependent 

anaerobic growth on glycerol. Induces expression 

of the ttdA-ttdB-ygjE operon. 

ttdA   L-TTDα L(+)-tartrate dehydratase subunit alpha P05847 intergenic (ttdR/) 
Catalyzes the oxidation of (R,R)-tatrate to 

oxaloacetate. 

Table 3.A1 Functional annotations for commonly mutated genes. Each of these genes were mutated at least 3 

times across all conditions of the trimethoprim evolution experiment. Descriptions were paraphrased from UniProt. 
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CHAPTER FOUR 
 

A Phylogenetically Aware Model of Positional Coevolution 

 

4.1 Background and introduction 

4.1.1 Understanding the constraints on protein sequence through models of coevolution 

The previous chapters of my thesis explore the application of evolutionary statistical 

approaches in identifying multi-protein modules that shape the adaptation of cellular systems. 

The models of coevolution utilized in that work were based exclusively on a low-

dimensional representation of each gene: their presence or absence (co-occurrence), and their 

position on the chromosome (synteny). However, the evolution of complex systems such as 

central metabolism can also occur through more subtle changes to the amino acid sequences 

of its proteins. For example, my case study of the metabolic enzymes dihydrofolate reductase 

(DHFR) and thymidylate synthase (TYMS) demonstrated how a constraint on metabolite 

concentration might drive reciprocal changes to the amino acid sequence. Nevertheless, even 

my own experiment involved only 300 generations of evolution, and selected for the 

complete inactivation of TYMS. These results represent a short period of selection and a 

relatively coarse change compared to substantial evolutionary record accessible through 

genomics. In order to map the functional constraints between interacting protein sequences in 

a way that is not dependent on choice of model organism or environment, it is necessary to 

define an appropriate model of inter-gene protein sequence coevolution.  
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Various methods have been developed for the statistical analysis of coevolution 

within individual protein families and between the sequences of interacting proteins [1-3]. 

Many of the efforts toward modeling inter-protein sequence coevolution have emphasized on 

the prediction of structural contacts between proteins that physically bind [4, 5]. By 

construction, these approaches are expected to “miss” coevolution between proteins that do 

not directly bind. In contrast, mirror-tree analyses have been shown to be a general indictor 

of functional couplings which are not limited to the case of physical interaction [6]. Similar 

to synteny and co-occurrence, this method produces an interaction score which quantifies the 

degree of evolutionary coupling between proteins families as single scalar value. Moreover, 

the mirror-tree analysis can incorporate an explicit model to control for the effect of 

phylogeny. In existing mirror-tree analyses, the site-specific origin of this coevolutionary 

signal is neglected. Developing a framework that can unify the analysis of residue-residue 

coevolution with the prediction of evolutionary interaction is an open problem, which I 

explore in this chapter. 

4.1.2 Basic principles of the mirror-tree analysis 

Mirror-tree is a coevolutionary analysis which uses information in the coding 

sequence to infer interactions between protein families. It was introduced by Pazos and 

Valencia as a tool for predicting which combinations of proteins engage in a macromolecular 

complex [7]. More recent work applying the principals of mirror-tree has broadened its 

biological scope.  Using a derivative method called evolutionary rate covariation (ERC), 

Clark and colleagues demonstrated a similar magnitude of sequence coevolution between 

physically binding proteins and those that only interact genetically [6]. Many instances of 
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sequence coevolution in the absence of known binding come from metabolic and 

biosynthetic pathways. For example, three enzymes in galactose metabolism exhibit some of 

the strongest coevolutionary signal in the entire analyzed proteome (Gap1p, Gal7p, and 

Gal10p; >4000 proteins). These proteins are analogous to my case study of dihydrofolate 

reductase (DHFR) and thymidylate synthase (TYMS) in that they catalyze sequential steps of 

their respective pathway and are collinear on the chromosome. Clark et al report that elevated 

ERC signal significantly overlaps with correlated codon adaptation and thus co-expression 

[6]. The potential implication of gene-synteny as a second mode of coevolution between 

galactose enzymes supports the notion that a single adaptive interaction may imprint itself on 

multiple evolutionary observables.  

While the application and technical details of mirror-tree methods have developed 

over time, the basic premise remains the same. In the mirror-tree analysis, protein families 

are represented by their sequence similarity matrix. This two-dimensional array is computed 

from a multiple sequence alignment (MSA), and describes the percent identity of the amino 

acid sequence across all pairs of species that contain it. The information in a similarity matrix 

provides the basis for estimating phylogenetic trees [8]. In fact, the only difference between 

base mirror-tree and ERC lies in imposing a tree structure on the data and explicitly 

estimating branch lengths. The objective of mirror-tree methods is to statistically assess 

whether a pair of protein families is undergoing sequence change across the same pairs of 

species or branches of a phylogenetic tree. The mechanistic origin of this signal has been 

debated, but it’s thought to arise due to both site-specific constraints and a shared fluctuation 

of selective pressures between coupled proteins [9-11].  
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The first step of computing the mirror-tree score between a pair of protein families is 

to filter their sequences as to only include species that contain both orthologs. For simplicity 

of explanation, the case where multiple paralogous sequences exist for in the same species 

will be neglected here (see 4.6.5 Materials and methods for details).  𝑆𝐴 represents the 𝑀𝑥𝑀 

sequence similarity matrix for family 𝐴 as defined across a set of 𝑀 species. The upper-

triangle of 𝑆𝐴 contains 𝑀pair = 0.5𝑀(𝑀 − 1) total elements where each possible pair of 

species is represented exactly once. Since the object of mirror-tree is to compare identity 

change across species, this upper triangle is reshaped into a one-dimensional vector denoted 

in |𝑠𝐴⟩ bra-ket notation. The base implementation of mirror-tree computes the Pearson 

correlation between two such similarity vectors. I will denote the standard score as |𝑠̂𝐴⟩ =

(|𝑠𝐴⟩ − |𝜇𝑠𝐴⟩)/𝜎𝑠𝐴 , where 𝜇𝑠𝐴  and  𝜎𝑠𝐴  are the mean and standard deviation of |𝑠𝐴⟩ 

respectively. The term |𝜇𝑠𝐴⟩ is used to represent a vector with the same dimensions as |𝑠𝐴⟩ 

where every element is equal to the mean. The Pearson correlation between two families 𝐴 

and 𝐵 can then be written using the following inner product: 

𝑟𝐴𝐵 =
⟨𝑠̂𝐴|𝑠̂𝐵⟩

𝑀pair
  

By definition, this value ranges from -1 to 1 and captures the magnitude and direction of 

linear association between the two similarity vectors. Negative values indicate that one 

protein family is being conserved while the other is varying, and vice versa. This is an 

extreme case and not expected to occur in the base implementation of mirror-tree due to the 

phylogenetic relationship of the samples. Positive values occur when the conservation or 

variation of one protein family is coordinated with the other. Positive values with the highest 
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magnitude are taken as an indicator of functional coupling, Pazos and Valencia used this 

measure to predict physical interactions in their 2001 study of the E. coli proteome with 

modest success [7]. 

4.1.3 Incorporating phylogenetic information into mirror-tree 

 By using Pearson correlation, each species pair is treated as a Bernoulli sample 

(independent trial). Since individual species are related through the structure of a 

phylogenetic tree, this choice trades off accuracy for simplicity. Sato and colleagues 

demonstrate a way to incorporate phylogenetic information into the model without 

compromising linearity [12, 13]. They accomplished this using the statistical tool of partial 

correlation. Conceptually, this amounts to measuring the association between two variables 

while controlling for any confounding factor(s). For the purpose of this work I will focus on 

the use of phylogeny as the only control variable, although Sato and colleagues also consider 

a higher-order partial correlation where association between proteins 𝐴 and 𝐵 is measured 

while controlling for mutual dependence on all other protein families in in the dataset (𝑁 − 2 

in an analysis of 𝑁 proteins) [14]. As with individual protein families, phylogenetic 

information is encoded in an 𝑀𝑥𝑀 similarity matrix defined across the same set of 𝑀species 

as the considered protein pair. A number of numerical models of phylogeny may be used, 

including a simple average sequence similarity across all analyzed protein families contained 

in those 𝑀species. Other examples include the sequence similarity of 16s ribosomal RNA as 

well as housekeeping genes (such as the subunits of RNA polymerase), which have been 

shown to be a stable indictor of genome divergence across species [15]. Each of the 

phylogenetic models considered by Sato et al were shown to improve performance over base 
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mirror-tree [12, 13]. The upper-triangle of the phylogenetic similarity matrix 𝑃 is reshaped 

into a one dimensional vector which I’ll denote |𝑝⟩. To compute partial correlation, one first 

applies the following operation to each protein family: 

|𝜀𝐴⟩ = |𝑠𝐴⟩ −
⟨𝑠𝐴|𝑝⟩

‖𝑝‖2
|𝑝⟩ 

Geometrically, this operation obtains the component of |𝑠𝐴⟩ that is orthogonal to phylogeny 

|𝑝⟩ by subtracting its projection; the projection onto |𝑝⟩ along with the orthogonal 

component form a right triangle where |𝑠𝐴⟩ is the hypotenuse. The Pearson correlation 

between orthogonal components |𝜀𝐴⟩ and |𝜀𝐵⟩ is then computed from an inner product of 

their standard scores |𝜀̂𝐴⟩ and |𝜀̂𝐵⟩ as above. This value constitutes the partial correlation 

𝑟𝐴𝐵∙𝑝 between families 𝐴 and 𝐵 with the effect of |𝑝⟩ removed, and provides a more effective 

indicator of functional relationships.  

 

4.2 Derivation of positional mirror-tree 

 Canonical mirror-tree is a coarse-grained measure of coevolution which condenses 

the data of multiple sequence alignments into a single interaction score. Previous studies 

have looked at origin of the mirror-tree signal with respect to the protein sequence, albeit not 

to the resolution of mapping all sites individually. Kann and colleagues investigated the role 

of positions located in the binding interface of physically interacting proteins [10]. While 

their results indicate that sequence coevolution is enriched at the binding interface, the rest of 

each protein still carried a significant signal of coevolution. Congruently, Hakes et al found 

that restricting their mirror-tree analysis of yeast proteins to the relevant surface or binding 
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sites did not lead to any improvement in interaction prediction [9]. However, these only 

represent one possible view of how site-specific interactions might underlie the full-length 

mirror-tree score. Important interactions need not be constrained to the surface or binding 

interface of two proteins. Indeed, work on predicting histidine kinase-response regulator 

interaction partners found that residue pairs carrying the signal of sequence coevolution were 

not restricted to those that are in direct contact at the interface [16]. 

In order to construct a mapping from the full-length mirror-tree tree score to the 

individual positions of each alignment, one begins with the similarity vector which is the 

building block of the analysis. The sequence similarity vector of a given protein family 𝐴 can 

be represented as an average across all of the positions in the protein sequence: 

|𝑠𝐴⟩ =
1

𝐿𝐴
∑|𝑠𝑖

𝐴⟩

𝐿𝐴

𝑖=1

 

In this expression, index 𝑖 enumerates the positions in an aligned protein sequence of length 

𝐿𝐴.  Congruently, |𝑠𝑖
𝐴⟩ is a binary vector which contains a 1 if the amino acid identity at 

position 𝑖 is conserved in a given species pair and a 0 if it is not. The next ingredient in 

mapping mirror-tree to the resolution of site-specific contributions is to note that the inner 

product used used to compute |𝜀𝐴⟩ and  𝑟𝐴𝐵
partial is bilinear. This means that the function 

⟨𝑥|𝑦⟩ is linear with respect to its inputs 𝑥 and 𝑦. Thus, |𝜀𝐴⟩ can also be understood as an 

average across the positions of the alignment.  

|𝜀𝐴⟩ =
1

𝐿𝐴
∑ (|𝑠𝑖

𝐴⟩ −
⟨𝑠𝑖

𝐴|𝑝⟩

‖𝑝‖2
|𝑝⟩)

𝐿𝐴

𝑖=1
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I will analogously refer to the individual terms of this sum as |𝜀𝑖
𝐴⟩. If |𝑠𝑖

𝐴⟩ records the 

transitions of position 𝑖 across species, then |𝜀𝑖
𝐴⟩ captures the degree to which that pattern of 

transitions deviates from the phylogenetic relationships between species. Moving forward to 

the mirror-tree score itself, one can make the following substitution: 

𝑟𝐴𝐵∙𝑝 =
⟨𝜀𝐴 − 𝜇𝜀𝐴|𝜀𝐵 − 𝜇𝜀𝐵⟩

𝑀pair𝜎𝜀𝐴𝜎𝜀𝐵
 

=
1

𝐿𝐴𝐿𝐵𝑀pair𝜎𝜀𝐴𝜎𝜀𝐵
∑ ∑ ⟨𝜀𝑖

𝐴 − 𝜇𝜀𝑖
𝐴|𝜀𝑗

𝐵 − 𝜇𝜀𝑗
𝐵⟩

𝐿𝐵

𝑗=1

𝐿𝐴

𝑖=1

 

While 𝜇𝜀𝑗
𝐴 refers to the mean of the position-specific |𝜀𝑖

𝐴⟩, it should be noted that the 

standard deviation 𝜎𝜀𝐴 is not linear with respect to the positions and is thus computed across 

the full length of the alignment. However, the summation term of the expanded equation is 

equal to the covariance of positional vectors |𝜀𝑖
𝐴⟩ and |𝜀𝑗

𝐵⟩. Thus, the mirror-tree score is 

composed of a normalized sum across all possible covariances between the positions of 

alignments 𝐴 and 𝐵. Based on the equations above, I defined the following positional 

coevolution matrix.  

𝐶𝑖𝑗
𝐴𝐵∙𝑝 =

1

𝑀pair𝜎𝜀𝐴𝜎𝜀𝐵
⟨𝜀𝑖

𝐴 − 𝜇𝜀𝑗
𝐴|𝜀𝑗

𝐵 − 𝜇𝜀𝑗
𝐵⟩ 

The dimensions of this matrix are 𝐿𝐴𝑥𝐿𝐵, and the average across its elements is exactly equal 

to the canonical mirror-tree score. As such, this simple series of substitutions is enough to 

produce a linear mapping between the full-length mirror-tree score and scaled positional 

covariances. This work provides roadmap for studying sequence coevolution between 

proteins at the resolution of individual positions using a framework that has already been 
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verified to predict diverse functional relationships. However, it also invites the question of 

whether position-resolution information can be used to improve the performance of mirror-

tree as a whole. 

 

4.3 Application to a focused test set 

 In order to illustrate my implementation of positional mirror-tree and make initial 

observations, it was necessary to define a small collection of proteins to serve as a focused 

test set. For this purpose, I elected to focus on proteins that are known to physically interact, 

which is the most well-studied context of inter-protein residue-residue coevolution [4, 5, 17-

19]. I chose a set of 4 protein complexes from E. coli which were referenced by either our 

analysis of gene synteny or the work by Ovchinnikov and colleagues applying direct 

coupling analysis to physically-interacting proteins [4]. This test set, with gene names shown 

in italics, consists of the following complexes: 

1. Cytochrome bd oxidase subunits cydA and cydB [20] 

2. The flagellar motor switch fliG, fliM, and fliN [21] 

3. Ribonucleoside-diphosphate reductase subunits nrdA  and nrdB [22] 

4. Tryptophan synthase which consists of trpA and trpB [23] 

As a computational control, I used our existing analyses to produce maps of coevolution in 

this test set according to synteny and co-occurrence (Figure 4.1A-B). Each of the complexes 

are easily resolvable by both of our coarse-grained statistical measures, with one exception 

being that the nrdA/nrdB gene pair only produces a weak co-occurrence signal. Next, I 

implemented a phylogenetically-corrected full-length mirror-tree method, and applied it to 
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these complexes (Figure 4.1C). The result is a signed heatmap of coevolution. Negative 

values show that a pair of protein families exhibits less correlation in sequence change than 

would be expected from the phylogenetic relationships among the samples. These can be 

interpreted as indicating that two proteins undergo sequence change between distinct 

branches of the phylogenetic tree (even though a tree is not being explicitly constructed). 

Negative partial correlation values are observed between almost every pair of non-interacting 

proteins in the dataset. Positive values indicate that two proteins exhibit correlation 

orthogonal to phylogeny, which would constitute repeated events of coevolution across 

Figure 4.1 Statistical coevolution in a test set of 4 physical complexes. E. coli gene names are labeled along 

the left and top of axes of the figure. Gene products with a known physical interaction share a prefix, such as 

cyd-. A-B Statistical coevolution according to analyses of gene co-occurrence and synteny computed across 

1445 complete bacterial genomes. Coupling between gene pairs in the test set is reported as a relative entropy 

Dij
intra

, shown by pixel intensity. C, Statistical coevolution between amino acid sequences according to mirror-

tree. Coupling between gene products is reported as a partial correlation, where the effect of phylogeny has been 

excluded. Positive values indicate coevolution orthogonal to the known phylogenetic relationships among the 

samples (species). Values along the diagonal would be equal to 1 by definition, so these are excluded from each 

heatmap 
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parallel branches of the phylogenetic tree. These are taken as ‘true’ coevolution and a 

prediction of evolutionary coupling. The results of the full-length mirror-tree analysis agree 

well with synteny, co-occurrence, and the known functional relationships among these test 

proteins.  

In this work, I derived a mapping from the full-length mirror-tree signal onto the 

individual positions of the amino acid sequence alignment. When applied to a pair of protein 

families, this produces a signed residue-level coevolution matrix that describes the degree of 

Figure 4.2 Intra- and inter- protein coevolution according to positional mirror-tree. A, Positional mirror-

tree matrices for all individual proteins and protein pairs in my test set of 4 complexes. Matrix blocks 

corresponding to each protein and protein pair are separated by black dividers. Gene names are labeled across 

the top and left of the heatmap. The values 𝑪𝒊𝒋 constitute scaled positional covariances computed using the 

mirror-tree framework. Positive values indicate evolutionary coupling. B, A reconstruction of the full-length 

mirror-tree score for all protein pairs. The x-axis displays the full-length mirror-tree score computed for each 

protein pair in the dataset (Figure 4.1C). The y-axis displays an average taken across all values in the 

corresponding positional mirror-tree matrix. These data illustrate that the full-length mirror-tree interaction score 

can be exactly and additively reconstructed from information in the positional matrices.  
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evolutionary coupling between all pairs of positions across the two alignments. The 

interpretation of the sign of these values is the same as in the case of the full-length mirror-

tree analysis; positive values indicate evolutionary coupling beyond the expectation from 

phylogeny. I computed both intra- and inter- protein positional coevolution using this method 

for all of the proteins in my toy system (Figure 4.2A). The signal within each resulting 

positional coevolution matrix is heterogeneous. In the context of interacting proteins, this 

means that not all pairs of positions carry the signal of evolutionary coupling equally. As 

described before, the values in each positional coevolution matrix constitute scaled positional 

covariances and are distributed around the full-length mirror-tree interaction score. In Figure 

4.2B, I demonstrate that the average value of each positional coevolution matrix can be used 

to exactly reconstruct the full length mirror-tree scores within my dataset. This framework 

will provide a basis for the future study of positional coevolution between interacting protein 

sequences. 

4.4 Comparison of positional mirror-tree to statistical coupling analysis 

 How does positional mirror-tree compare to existing measures of protein sequence 

coevolution? Potential choices for comparison include statistical coupling analysis (SCA) 

and direct coupling analysis (DCA). The SCA positional coevolution matrix is derived from 

covariance in amino acid identity and weighted by single-site conservation [24], while DCA 

fits amino acid covariance terms to an underlying model assuming pairwise positional 

interaction [2]. These operations are computed across species rather than species pairs. As a 

result, neither SCA nor DCA can easily accommodate a linear model of phylogenetic 

information. Since positional mirror-tree is also based on the direct observation of 
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covariance, SCA is the more natural comparison. I computed the SCA measure of 

coevolution for all inter-protein position pairs in my test set. These constitute the SCA-

version of the off-diagonal blocks in my positional mirror-tree matrix (Figure 4.2A). I plotted 

SCA values against mirror-tree on two-dimensional axes for 6 of the total 36 protein pairs 

(Figure 4.3). Because each inter-protein coevolution matrix contains on the order of 10
4
-10

5
 

values, the data are visualized as a kernel density estimate (created using Seaborn v0.9.0). In 

these plots, shading indicates the density of points (position pairs) in two-dimensional space. 

To quantify the linear association between SCA and mirror-tree, I used Pearson correlation 

(r-values and best-fit lines shown in black). The resulting r-values range between 0.4-0.7, 

indicating a direct linear relationship. Because positional mirror-tree incorporates 

phylogenetic information to produce a signed measure of coevolution, some disagreement is 

expected. For methods such as SCA utilizing single-site and joint amino acid frequencies, 

positional covariance due to phylogeny is not directly discernable from “true” coevolution 

[25]. Thus, one would expect some points to exhibit high SCA values but non-positive 

mirror-tree values. When I restrict my correlation analysis to only consider position pairs 

with positive positional mirror-tree scores, the linear association between SCA and positional 

mirror-tree increases to approximately 0.8 for each protein pair (Figure 4.3; orange text and 

best-fit lines). These results show that despite vast mathematical differences between the two 

methods, position pairs that coevolve strongly according to mirror-tree are also likely to 

coevolve according to SCA.  
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4.5 Distinct communities of coevolving positions in the mirror-tree matrix 

 A key result in the statistical coupling analysis of individual protein families is the 

identification of collectively coevolving communities of amino acids, termed ‘sectors’ [1, 

24]. The identification of sectors through statistical analysis has provided insights as to how 

specific positions in the protein structure mediate properties such as allostery [26], substrate 

specificity [27], and thermodynamic stability [1]. One particular work on the S1A 

Figure 4.3 Statistical comparisons between SCA and positional mirror-tree. Each plot represents the inter-

protein coevolution matrix for a single protein pair according to positional mirror-tree (x-axis) versus SCA (y-

axis). Because each inter-protein coevolution matrix contains on the order of 10
4
-10

5
 position pairs, the data are 

displayed as a kernel density estimate (sklearn v0.9.0). The depth of shading within each contour indicates the 

density of data points encompassed within. Pearson correlation and a best fit line were computed for all the data 

(black) and restricting to the case where positional mirror-tree is positive (orange). 
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superfamily of serine proteases identified multiple independent sectors within the same 

protein, each associated with a distinct aspect of protein function [1]. The statistical 

association observed between SCA and positional mirror-tree motivates the question of 

whether distinct coevolving communities of positions can be resolved from within positional 

mirror-tree matrices as well. I applied agglomerative clustering (sklearn v0.20) to the intra-

protein positional mirror-tree matrices of tryptophan synthase subunits trpA and trpB. Both 

intra- and inter- protein coevolution matrices are plotted as before, but positions have been 

Figure 4.4 Distinct collections of coevolving positions in the trpA and trpB sequence alignments. I 

used agglomerative clustering to identify 2 distinct coevolving communities of positions within each of 

the trpA and trpB intra-protein coevolution matrices (diagonal blocks). Data presented constitute the 

positional mirror-tree matrices of the trpA/trpB pair with the axes (positions) having been sorted 

according to cluster identity. Positions exhibit positive evolutionary coupling to other positions in the 

same cluster, but are negatively coupled between clusters. Similarly, each cluster identified within trpA 

demonstrates positive evolutionary coupling with one cluster from trpB, and is decoupled from the 

other.  
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sorted based on cluster (Figure 4.4). Much like independent SCA sectors, the data indicate 

two distinct clusters of positions exhibiting modular coevolution. Positional mirror-tree 

scores are largely positive among positions within the same cluster and negative between 

clusters. Despite the fact the clusters were defined based only on intra-protein coevolution, 

the same pattern persists in the inter-protein coevolution matrix between interacting subunits 

encoded by trpA and trpB. Each cluster of trpA is positively coupled to exactly one cluster 

from trpB and negatively coupled to the other. These findings raise questions about whether 

community detection is relevant to the analysis of inter-protein coevolution as well: can the 

community detection be used to improve our capacity to predict adaptive couplings using 

mirror-tree? Further work is needed in order to better understand the prevalence of distinct 

coevolving communities within positional mirror-tree matrices, and their potential biological 

or mechanistic implications.  

 

4.6 Materials and Methods 

4.6.1 Software and data analysis 

Data analysis was performed with custom scripts written with the AnacondaV2.4.0 data 

science distribution of Python 2.7 [28]. Some of the code for alignment processing was 

adapted from the Python-based Statistical Coupling Analysis software package (pySCA) 

[24].  

4.6.2 Multiple sequence alignment generation and preprocessing 

Alignments were acquired from eggNOG, a public resource of orthologous groups at 

different taxonomic levels [29]. The alignments used in this work were obtained from the 
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‘trimmed’ tab for the eubacterial taxa of each orthologous gene group. Trimmed alignments 

from eggNOG have already been filtered to remove highly gapped positions. Before analysis, 

alignments were further processed to remove highly gapped positions and sequences. First, 

positions with a gap frequency over 20% were filtered. Sequences whose proportion of 

gapped positions remained greater than 30% after the initial filtering step were subsequently 

removed from the alignment. Highly gapped sequences provide less information about amino 

acid coevolution and can indicate an incorrectly identified paralog.  

4.6.3 Estimating phylogenetic similarity 

Estimation of phylogenetic similarity between species pairs was conducted using an all-

protein average, based on work by Sato et al [12]. I computed the average sequence 

similarity across all proteins in the test dataset represented in a given species pair. In order to 

ensure that this average encompassed some protein families that did not interact, I restricted 

my dataset to only include species that contained at least 5 of the 9 total proteins. The all-

protein average is intended to estimate genome similarity and thus the phylogenetic 

relationships among species pairs. This information was incorporated into the mirror-tree 

analysis as the |𝑝⟩ vector. 

4.6.4 Empirical down-weighting of redundant species  

The available protein sequences and complete genomes do not constitute an even or random 

sampling of bacterial phyla. To control for the effect of oversampling particular clades, I 

implemented a reciprocal species weighting scheme. This strategy was first applied to direct 

coupling analysis of multiple sequence alignments by Morcos et al [2], and has since adopted 
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by other theoretical frameworks [24]. The basic idea is to combine redundant species into a 

single effective species. The species weight 𝑤𝑔 for a given species 𝑔 is defined:  

𝑤𝑔 =
1

|{ℎ: 𝑃𝑔ℎ > (1 − 𝛿)}|
 

The expression in the denominator indicates the total number of species ℎ whose 

phylogenetic similarity to 𝑔 is above the threshold 1 − 𝛿. The work presented here uses 

𝛿 = 0.1, meaning that species with phylogenetic similarity above 90% are combined. 

Utilization of species weights renders a new definition of sample size, referred to here as the 

number of effective species. The sample size for a pair of protein families is simply the sum 

of all species weights for species that contain an ortholog of both proteins, denoted: 

𝑀𝑒𝑓𝑓 = ∑ 𝑤𝑔 

I wished to apply this principle to the sequence similarity vector, where dimensions represent 

species pairs rather than individual species. The natural generalization of the above heuristic 

is to weight each species pair 𝑔, ℎ by the product of its respective individual species weights 

𝑤𝑔𝑤ℎ. This results in the analogous number of effective species pairs which is 

0.5𝑀𝑒𝑓𝑓(𝑀𝑒𝑓𝑓 − 1). The weighting scheme was applied to all dimension-reduction 

operations computed across species pairs, such as the average or inner product of similarity 

vectors. The result is that the effect of overrepresented species is numerically mitigated.  

4.6.5 Treatment of paralogous sequences 

Some proteins in the test dataset contained more than one paralog in a given species. With 

respect to species weighting, these sequences are considered as within a phylogenetic 

distance of 𝛿 = 0 from one another. When computing the mirror-tree score between two 
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protein families, the dimensions of their respective similarity vectors need to match exactly. 

This is accomplished by filtering the set of species in each alignment down to those that 

contain both proteins. Paralogous sequences complicate this process slightly because 

multiple rows of the alignment can correspond to a single species. For illustration, consider 

the case where protein family 𝐴 contains 3 sequences in a given species, while protein family 

𝐵 contains only 2 paralogs. The objective is to filter each alignment such that corresponding 

rows are drawn from the exact same species. Because my test set only concerns protein 

families that interact through physical binding, I assumed a 1:1 matching between paralogs 

across protein families. Since interacting proteins are often found in the same operon, I 

matched each paralogous sequence from family 𝐵 to the sequence from 𝐴 that was closest on 

the chromosome. For simplicity, I used the numerical gene IDs contained in each eggNOG 

alignment as a proxy for chromosomal proximity, since these indicate the ordering of genes 

on the chromosome. As a result, each alignment row from family 𝐵 was paired with exactly 

one sequence from family 𝐴, and the remaining ‘orphan’ sequence from family 𝐴 was 

dispensed of for the purpose of this comparison. There are a number of other potential 

implementations that could handle this slight complexity, but given the rarity of paralogs in 

my test set it is expected to have a minimal effect on the results. 
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CHAPTER FIVE 
 

Conclusions and Future Directions 

5.1 A two-enzyme adaptive unit in bacterial folate metabolism  

 In my case study of bacterial folate metabolism, comparative genomic analyses of 

gene synteny and co-occurrence suggested a sparse pattern of evolutionary coupling in 

which most enzymes in the pathway do not coevolve. Several groups of 2-3 proteins 

exhibited strong evolutionary coupling with one another but remained decoupled from 

the rest of the pathway. A notable example is the enzyme pair dihydrofolate reductase 

(DHFR) and thymidylate synthase, which catalyze sequential biochemical steps but are 

not known to physically interact. Experimental analyses of E. coli support the 

interpretation that these two enzymes behave as a relatively independent adaptive unit. 

The activities of DHFR and TYMS are coupled by a shared constraint on metabolite 

concentrations.  Reducing DHFR activity causes an accumulation of the toxic 

intermediate dihydrofolate (DHF) and a fitness defect, both of which can be abrogated by 

the reciprocal inactivation of TYMS. Under conditions of trimethoprim stress, adaptation 

was driven by a combination of mutations to DHFR and TYMS without requiring 

compensatory modification to other folate genes. Additional experimental data collected 

by our lab supports the idea that DHFR and TYMS are more tightly coupled to one 

another than any other enzymes in the pathway [1]. These results expose the potential for 

an intermediate level of organization in cellular systems in between the scale of 

individual genes and the entire pathway. Further, they motivate careful interpretation of 
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not only the presence of evolutionary coupling between genes, but its absence as well. It 

becomes less obvious that membership in the same KEGG pathway is a specific enough 

target for interaction prediction approaches; instead, the goals of comparative genomics 

and the type of interactions being predicted (shared biochemical intermediate, physical 

complex, and/or adaptive interaction) should be carefully considered. 

DHFR and TYMS represent a first case study, and, by construction, comparative 

genomic analyses are not expected to predict all possible interactions.  Analysis of 

synteny and co-occurrence are computed from an average across thousands of species, 

encapsulating hundreds of millions of years of evolutionary divergence. Idiosyncratic 

interactions that are particular to a specific environment (including those never 

encountered in evolutionary) or model organism are also expected to exist. This nuance is 

illustrated by recent, not-yet published work by Joao Rodrigues and Eugene Shakhnovich 

[2]. Very much analogous to my own study, the authors engineered a reduction of 

function into DHFR and then adapted E. coli to higher levels of fitness while titrating 

molecular products of the folate pathway out of the medium. Expectedly, a number of 

trials resulted in a reversion of the deleterious mutation to DHFR, which is a trivial 

solution to this evolutionary problem. All other repeats in the experiment were dominated 

by a loss of TYMS function as the first step of adaptation. However, due to the fact that 

their media contained thymine instead of thymidine, this was followed by the inactivation 

of a second locus. Phosphopentomutase, encoded by deoB, is an enzyme involved in the 

thymine salavage pathway.  By inactivating deoB, the salvage of exogeneous thymine is 

diverted away from glycolysis and toward the production of dTMP. Thus, the inactivation 
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of deoB only becomes relevant after TYMS acquires a loss-of- function and is contingent 

on this particular environmental condition. We expect that the adaptive units predicted by 

synteny and co-occurrence, such as DHFR and TYMS, represent well-conserved, core 

interactions that can sometimes be elaborated on under particular environmental 

conditions or in particular species. We propose that if perturbation is made to one gene of 

the adaptive unit, the first and most common adaptive mutations will also occur within 

the unit (whether in the directly affected gene or elsewhere). Further, mutations within 

the unit should largely suffice to restore function, with mutations outside the pair having 

more subtle or idiosyncratic effects. 

 If it is generally possible to decompose metabolic pathways into smaller, adaptive 

subunits, then this would suggest a route to identify building blocks for biosynthetic 

engineering. Such adaptive units could provide fundamental insights as to how cells 

maintain homeostasis and evolve in the face of changing environments. For example, 

thymidine synthesis is the rate-limiting step for DNA synthesis of eukaryotic cells. 

Transcription of the DHFR and TYMS genes is greatly upregulated through a common 

transcription factor at the G1/S cell cycle transition [3].  In silico modeling of eukaryotic 

folate metabolism reveals that computationally increasing the activities of DHFR and 

TYMS 100-fold results in increased synthesis of thymidine but only modest changes to 

the concentration other folates. Thus, decoupling the DHFR/TYMS pair from the 

remainder of the pathway may represent a strategy for ensuring modularity of the 

different metabolite pools. Substantial further work is necessary to go beyond this case 

study and comprehensively test the relationship between the modules identified by 
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comparative genomics, the pattern of functional dependency in the cell, and adaptation to 

environmental changes.  

 

5.2 Genome wide analysis of synteny and co-occurrence reveals 

additional coevolving pairs 

 With this goal in mind, we extended our analyses of synteny and co-occurrence to 

consider all gene families represented in E. coli. The computational methods for this 

work are described in detil by Schober et al [1], but in brief: We defined gene families 

using the Clusters of Orthologous Groups of proteins (COGs) by Koonin and colleagues. 

COGs represented in E. coli were filtered based on their sample size in 1445 complete 

bacterial genomes in order to ensure adequate statistical representation. All possible pairs 

among the remaining gene families were analyzed based on synteny and co-occurrence 

2095 COGs, ~500,000 pairs in total). To compare our analysis to existing functional 

annotations, we mapped metabolic proximity from KEGG and  [4] and (2) the set of 

high-confidence binding interactions in E. coli reported by the STRINGdb onto the 

considered gene pairs [5]. Consistent with intuition and prior work, co-evolving gene 

pairs show enrichment for physical complexes, enzymes in the same metabolic pathway, 

and more specifically, enzymes with a shared metabolite (Figure 5.1A-B). To identify 

gene pairs that are strongly evolutionarily coupled to each other but decoupled from the 

remainder of the genome, we constructed scatterplots of the resulting data (Figure 5.1C-

D). These plots indicate the strength of coupling within each gene pair (as a relative 

entropy, along the x-axis) compared to the strongest external coupling involving just one 
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of the two genes. Gene pairs that fall below the diagonal (dashed line) are more tightly 

coupled to one another than they are to any other gene in the dataset. These scatterplots 

provide a simple graphical method for predicting two-gene coevolving units (258 by 

synteny, 194 by co-occurrence, such as the DHFR/TYMS pair indicted in red. Our 

analysis will need to be extended in order to identify larger communities within the 

complete network of coevolutionary relationships [6]. Many of the predicted adaptive 

units are engaged in the same physical complexes, while others share a metabolic 

intermediate like DHFR and TYMS.  

In this plot, the degree of pairwise modularity is indicated by the distance of each 

point from the diagonal. By construction, points above the dashed lane have an 

interaction with at least one other gene that is similar to or greater than the coupling 

within the pair. The highly modular regime where regime where 𝐷𝑖𝑗
intra> 1.0 and 𝐷𝑖𝑗

exter< 

0.5 on the synteny plot, we observe a few other pairs with experimental evidence for 

adaptive coupling.  For example, the accB/accC gene pair encodes two of the four 

subunits of acetyl-CoA carboxylase, which catalyzes the first enzymatic step of fatty acid 

biosynthesis. Previous work shows that overexpressing either accB or accC individually 

causes a reduction in fatty acid biosynthesis; however, overexpressing the two genes in 

stoichiometric amounts rescues this defect [7, 8]. Similar constraints on relative 

expression have also be observed for the selA/selB and tatB/tatC gene pairs [9, 10]. The 

tatB/tatC genes encode subunits of the TABCE twin arginine translocation complex, 

while selA/selB are involved in selenoprotein biosynthesis but not known to bind 

physically. In conclusion, the statistical pattern of modular coevolution that we observed 
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in the folate pathway is also relevant to many other cellular contexts. The gene pairs 

below the diagonal now serve as a starting place for more deeply understanding the 

hierarchy of evolutionary couplings within cellular systems. We propose that adaptive 

modularity may be a general property of cellular systems, and the data presented here 

provide the necessary computational hypotheses to test this claim more generally.  

Figure 5.1 Genome wide analyses of coevolution in E. coli. Data represent an analysis of 2095 ortholog 

families (COGs) found in E. coli across 1445 bacterial genomes; computational methods are described in 

Schober et al [1]. A-B, Enrichment of physical and metabolic interactions as a function of evolutionary 

coupling, according to synteny and co-occurrence respectively. C-D, Scatterplot of evolutionary coupling for all 

analyzed gene pairs. Each point represents a unique pair of orthologous genes (COGs). Coupling within the pair 

is shown on the x-axis, while the strongest external coupling involving just one member of that gene pair is 

indicated along the y-axis. Thus, gene pairs below the dashed line are more strongly coupled to one another than 

they are to any other family of ortholgs in the analysis. Color-coding reflects annotations from the STRING 

database (physical interactions) or KEGG (metabolic pathways): green represents physical binding, while pairs  

in dark blue or light blue are not annotated as physical interactions but are found in the same pathways. Pairs 

colored dark blue share a metabolic intermediate. The DHFR and TYMS gene pair is highlighted in red on each 

plot.  
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5.3 Using coevolution to study the functional constraints on the amino 

acid sequence 

  Modification to the amino acid sequence of a protein can mediate subtle or even 

innovative changes to its function and thus the behavior of a pathway as a whole. 

However, the functional constraints between interacting proteins that shape the evolution 

of protein sequences are still poorly understood. In order to produce the most complete 

description of adaptive coupling between proteins, we seek to infer these constraints from 

models of coevolution. Given the mostly-direct relationship between the amino acid 

sequence and protein function, doing so has the potential to provide insight into the 

mechanistic forces that underlie such interactions. Mirror-tree is a computational method 

which compares the evolutionary history of two protein families and produces an 

interaction score based on covariance in their coding sequences [11]. Unlike a number of 

other approaches, the mirror-tree framework is able to explicitly incorporate information 

about the phylogenetic relationships between its samples (species) [12, 13]. 

Phylogenetically aware mirror-tree has been shown to be a reliable indicator of functional 

interaction, but does not explicitly describe coevolution between individual positions of 

the amino acid sequence. In the final component of my thesis work, I derived an additive 

mapping between the mirror-tree interaction score and the contribution of individual 

sequence positions. The resulting matrix, termed positional mirror-tree, describes 

coevolution between all position pairs between the amino acid sequences of two protein 
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families. By taking an average across all of the values of the positional mirror-tree 

matrix, one can exactly reconstruct the canonical mirror-tree interaction score.  

For illustrative purposes, I applied this new measure to a toy system consisting of 

several well-known physical complexes. Somewhat surprisingly, I found that positional 

mirror-tree is numerically similar to an established model of sequence coevolution called 

statistical coupling analysis (SCA), despite substantial differences in their mathematical 

construction. However, a fraction of the position pairs that appear to coevolve according 

to SCA are represented as phylogenetic noise in the positional mirror-tree framework. In 

addition, positional mirror-tree is unique in its ability to quantify the total interaction 

between protein families. The mirror-tree matrix is sometimes able to resolve multiple 

distinct collectively coevolving groups of positions within the same protein family. 

Previous studies guided by SCA has shown that such communities can modularly 

determine specific aspects of protein function such as substrate specificity or thermal 

stability [14]. Further computational and experimental work is needed to test the 

biological significance of the positional mirror-tree matrix and its relationship to other 

existing models of sequence coevolution. Given the existence of multiple coevolving 

communities within some protein families, intelligently utilizing position-resolution 

information may provide a strategy for improving the predictive power of mirror-tree. 

Sequence coevolution should prove to be a powerful companion to methods such as 

synteny and co-occurrence in our quest to understand the adaptive interactions between 

proteins which shape the cell. The work presented here provides the theoretical 

framework and experimental motivation for doing so. 
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