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The clinical problem: the mortality of acute renal failure remains high. 

Acute renal failure (ARF)a is 
a syndrome characterized by 
a decline in renal function 
over the course of hours to 
weeks, and is associated with 
renal parenchymal injury, 
primarily to the renal tubules. 
It occurs in approximately 
5% of inpatients and 30% of 
patients in intensive care 
units 1

• A recent meta­
analysis indicates that the 
mortality of patients with 
ARF remains 50% despite 
modem medical technology 
2

. Two other studies using 
insurance records suggest 

so 
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High mortality after acute renal failure 
(Waikar SS JAm Soc Nephrol2006. 17:1143-1150). 

that the mortality has decreased over recent years 3
;
4

. The difference between the meta­
analysis and the retrospective insurance studies is not clear. But, the latter may have 
included more patients with less severe ARF. In any case, even the most optimistic 
studies show a recent mortality of approximately 40% 5

• We need to do better. 

The highest mortality occurs in patients who require dialysis. However, even small 
decreases in renal function are associated with increased mortality. For example, after 
cardiothoracic surgery in over 4000 patients, an increase in serum creatinine of 0.1 to 0.5 
mg/dl increased mortality by 90% at 30 days after surgery 6

. 

The continued high mortality of ARF contrasts with the improved survival after 
myocardial infarction, which has dropped from 50% to 6% over the last 25-30 years 7

• 

Initially promising therapies for ARF have not only failed in clinical trials, but in some 
cases, harm rather than help. These now defunct therapies include loop and osmotic 
diuretics, renal dose dopamine, atrial natriuretic peptide, insulin-like growth factor and 
endothelin-receptor antagonists 8

• 

Why is this mortality so high? Answering this question is a major challenge in modem 
nephrology. This grand rounds will discuss some emerging concepts about how the 
inflammatory response to ischemic renal injury exacerbates, and may ameliorates that 
lUJUTy. 

• The nomenclature for acute renal failure has been changed over the years. Previously, this syndrome was 
called "acute tubular necrosis" or ATN; more recently, some prefer the term "acute kidney injury" or AKI. 
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Problems in making the diagnosis of ARF. 

ARF is one major cause of acute renal dysfunction. 

One major difficulty in treating ARF is making the diagnosis in time to make a difference 
in the course of the disease. The problem is differentiating ARF from the other etiologies 
of acute renal dysfunction. These 
etiologies have been divided into three 
broad categories, and have been discussed 
in many excellent standard textbooks and 
review articles (for example 1

). We 
summarize them briefly. 

1) Pre-renal causes occur in 55-60% of 
patients. In these situations, the renal 
parenchyma is intact, and the decrease 
renal function is due to decreased 
perfusion of the kidneys. These include 
decreased intravascular volume, for 
example after hemorrhage; decreased 
cardiac output, for example after excessive 
doses of antihypertensives; renal 
vasoconstriction, for example after 
excessive cyclosporine doses; and 
administration of drugs that impair 
autoregulation of renal blood flow, for 
example angiotensin-converting enzyme 
inhibitors or inhibitors of prostaglandin 
synthesis inhibitors. 

2) Post renal causes occur in less than 5% 
of patients but should not be missed 
because many of these causes may be 
treated. Again, the renal parenchyma is 
intact, and the decreased renal function is 
caused by obstruction ofurine flow. 
Obstruction may occur in the ureters, 
bladder neck, or urethra. 

3) Intra-renal causes occur in the 
remainder of patients. Unlike pre-renal 
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Small increases in serum creatinine are associated 
with increased mortality. Lassnigg A. J. Am Soc 
Nephro 15:1597-1605. 2004. 

and post-renal causes of renal dysfunction the initial pathophysiology lies within the 
kidney and is accompanied by early structural lesions in the parenchyma. Intra-renal 
causes include diseases of the large renal vessels; glomeruli and renal microvasculature; 
and tubulointerstitial nephritis , for example associated with allergic responses to drugs. 
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ARF, the focus of this grand rounds, is a major intra-renal cause of renal dysfunction. In 
the clinical setting, multiple etiologies are often present at the same time. These include 
decreased renal perfusion (ischemia), injury of non-renal organs, infection, and toxins 
(either exogenous such as radiocontrast and other drugs, or endogenous such as 
myoglobin). Indeed a difficulty in treating ARF may be the multiple etiologies, each of 
which may have a different pathophysiology . 

.----------------------------------------. 
This grand rounds will focus 
on ischemic ARF, which 
contributes to many cases of 
ARF. 

Difficulty in making the 
diagnosis of ARF early enough 
to in itiate therapy. 

Although making the diagnosis 
of renal dysfunction is 
conceptually simple, and easy 
at late stages in the disease 
when few therapeutic options 
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Molitoris. JAm Soc Nephrol 14: 265-267 2003 . 

are available. The problem is making the diagnosis early enough for meanful treatment. 
Ischemic ARF may be divided into 5 major phases: prerenal, initiation, extension, 
maintenance, and recovery 9;

10
. Unfortunately, our patients are usually well into the 

maintenance phase before we make the diagnosis. 

Because we do not know 
how to easily and directly 
measure renal injury, our 
current diagnosis relies on 
assaying two major renal 
functions and assuming that 
decreased functions are 
directly correlated with 
injury. Unfortunately, this 
may not be true, particularly 
early after injury 8;

11
• One 

function is the glomerular 
filtration rate (GFR). Even if 
we were able to easily and 
reliably measure the GFR, 

GFR 

RENAL MASS 

this would be a poor indicator of injury because, in many patients, the renal mass must be 
markedly reduced before the GFR decreases. An excellent example is the preserved GFR 
of normal people who lose half their renal mass. These normal people are living kidney 
donors who give one of their two kidneys to a loved one with endstage renal disease. 
Furthermore, we have problems measuring the GFR. We rely on the serum creatinine as 
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surrogate. Unfortunately, it takes time (in many cases, days) for the serum creatinine to 
rise after renal injury, the same increment in serum creatinine may have different clinical 
implications depending 
the baseline creatine, and, 
in addition, the serum 
creatinine depends on the 
patient's diet, muscle 
mass, and metabolic 
state. These issues of 
measuring the GFR and 
interpreting the serum 
creatinine were ably 
discussed by Dr. Henry 
Quinones in a recent 
Grand Rounds. 

RENAL 
MASS 

--- _., 
., 

The other major renal TIME (DAYS) 

function used to diagnose 

S Cr 

renal injury is the urine output and composition (urine volume, FEN a, specific gravity, 
etc). However, the normal kidney may put out 0.5 to almost 50 liters ofurine in a day. 
The normal urine may be concentrated and contain almost no sodium, or be dilute and 
rich in sodium depending upon the subject's physiologic state. Interpreting what urine 
the kidney should be producing in a given patient at a given time may be a formidable 
challenge, and requires a detailed history and excellent serial physical exams. For 
example, a high FEN a and low urine osmolality may be found in a hypotensive, oliguric 
patient with ARF, or in a normal person who has just ingested a big MAC combo, super­
sized, at MacDonald's. 

An important and easily available test is the urine analysis. If "renal failure casts" are 
present, the likelihood of ARF is very high 12

. Unfortunately, many patients with ARF 
will not have "renal failure casts", and the urine may not be examined by experienced 
observers. The urine analysis is an underutilized test. 

Despite these limitations, the serum creatinine and urine output are what are available 
now. Definitions for ARF based on these measurements are used in recent multicenter 
studies: PICARD (Program to Improve Care in Acute Renal Disease) 13

, and the RIFLE 
criteria ("risk of renal dysfunction: injury to the kidney") of the Acute Dialysis quality 
Initiative (ADQI) 14

-
17

• Those wishing to read excellent discussions of the current clinical 
state of treating ARF, complete with unanswered questions, may wish to read these 
important articles. 

We need an "instantaneous" marker of renal injury analogous to the cardiac troponin. 
New markers of renal injury are being investigated that may fulfill that need. The most 
promising are molecules produced by injured renal tubules. These include interleukin 18, 
KIM 1 18

, and NGAL 19
-
2 

• The latter was reviewed by Dr. John Hartono at a recent 
resident update conference. 
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Inflammation exacerbates ischemic ARF during the "extension" and "maintenance" 
phase. 

We define inflammation as 
mediators ordinarily 
considered necessary for 
eliminating infectious 
pathogens. These include 
leukocytes, the molecules 
produced by these cells, 
and the molecules that 
regulate leukocyte 
functions. These also 
include molecules such as 
interleukin 18 and 
complement that kill 
pathogens but may be 
produced by cells other 
than leukocytes. The 
relatively "new" idea is that 
ischemic injury elicits 
inflammation, and this 
inflammation exacerbates 
and regulates the injury. 

Before discussing the 
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relationship between JanC\VC".tv l!nrr1unobiolof!v 2001 
ischemic injury and 
inflammation, we will discuss the regulation of the inflammatory response. 
Understanding these basics is important for understanding how experimental inhibition of 
inflammation ameliorates ischemic renal injury. 

A number of experimental therapies prevent the infiltrate and thus ameliorates renal 
injury after ischemia . To understand how these work, we must review the five major 
steps that occur during the translocation of leukocytes from the blood, across the 
endothelium, and into the interstitium. See reviews e2

). 

First, injured renal tubule cells release pro-inflammatory molecules, discussed 
later in this grand rounds. 

Second, in response to these mediators, endothelial cells express adhesion 
molecules. 

Third, leukocytes in the blood adhere by weak, reversible interactions to P and E 
selectins, vascular cell adhesion molecule-! (VCAM-1), and hyaluronate on the activated 
endothelium. 
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Fourth, during this weak adherence, the leukocytes receive activation signals, 
including chemokines such as interleukin 8 and MCP-1 produced by injured renal 
tubules, which change the conformation of their cell-surface beta 2 integrins so that these 
bind theircounterligands on 
the endothelium. The beta 2 
integrins on leukocyte cell 
surfaces are LF A -1, mac-1, 
and VLA 4, which bind to 
counterligands on the 
endothelium; these include 
ICAM 1 and 2, and VCAM 
1. 

Fifth, the leukocytes 
move across the endothelium 
(diapedesis), and migrate to 
the sites of injury in response 
to chemotactic molecules. 

Sixth, the leukocytes 
are activated by their 
interactions with 
inflammatory molecules 

TABLE 2. Incidence of delayed graft function, rejection, 
CMV disease, and posttransplant length of stay 

T ntraoperatively Postoperatively 
(n=27J (%) (n=3ll l%) 

Delayed graft function 4 (14.8)" 11 (35.5) 
Rejection episodes 1 (3.7) 5 (16) 
Cellular rejection 1 (3.7) 2<6.5) 

episodes 
Humoral rejection 0 9.7 

episodes (C7ff.) 

CMV disease rate at 6 3.7 6.5 
mo (o/c) 

Posttransplant length 7.5" 11 
of stay (daysl 

a P<0.05. 
~> P=0.02. 

Intra- vs post operative Thymoglobulin. Goggins. 
Transplantation 76:798. 2003. 

embedded in the extracellular matrix, molecules on the cell surfaces of the renal tubule 
cells, and cytokines. 

Seventh, the activated leukocytes produce molecules such as reactive oxygen 
species (ROS) and nitric oxide that damage renal cells. 

Inflammation has been observed after experimental rodent ischemic injury not only in the 
kidney 23

-
25

, but also the heart 26
;
27

, brain 28
-
30

. Inhibiting the inflammation by preventing 
one or more of the seven steps above, ameliorates ischemic injury in most studies. 

But our goal is not to treat ischemic ARF in rodents but in our patients. Does this 
hypothesis apply to humans. A number of investigators have noted the potential 
difficulties in extrapolating rodent studies to human ARF 31

-
33

• 

Inflammation does occur during human ischemic acute renal failure, leukocytes are 
present 34

. The importance of pro- and anti- inflammatory genes is supported by 
increased susceptibility of patients correlates with polymorphisms of these genes 35

. 

Post-anastomosis biopsies of renal allof-!'a:ft show inflammation, particularly in 
deceased, compared to living, donors 3 

-40. Furthermore, intraoperative biopsies have 
also indicated expression of pro-inflammatory genes 4 1

-44 . Such inflammation may be a 
response to ischemic injury to the allograft due to the hypotension associated with the 
trauma that caused brain death, due to the cold storage, and due to the warm ischemia 
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during creation of the vascular anastomoses. In addition, inflammation in the cadaver 
kidneys was also caused by neurohormonal effects of brain death 45

. Inflammation 
during these intraoperative biopsies are not due to rejection because there is no time for 
immune recognition of the transplant. Furthermore, biopsies ofkidneys between 
identical twins, where there is no allo-recognition, also shows inflammation that must be 
due to ischemic injury occurring during the transplant process 46

. 

Some of the most convincing studies of the maladaptive effects of the inflammatory 
response to ischemic injury involve polyclonal anti-thymocyte antibodies. These 
preparations contain antibodies to endothelial adhesion molecules and ameliorate 
ischemic injury to renal 47

, or hepatic 48 transplants, and muscle 48
-
50

. 

The right stuff in the wrong place: the pro inflammatory effects of intracellular 
molecules released into the extracellular space by necrotic cells. 

Although the inflammatory response 
to ischemia may an important 
determinant of the extent of injury 
and repair, how ischemic injury is 
translated into inflammation is a 
major outstanding question. Recent 
data indicate that molecules, 
normally residing within cells, elicit 
inflammation when they are released 
into the extracellular space by 
necrotic cells. 

I Necrosis I 

/-~/ 
( /, 
I 

Intracell 1 

TLR4 detects molecules released by 
injured cells, and mediates the 
inflammatory response to ischemia. 

Ischemia molecules 

' ) '--/ 

A major discovery was the insight that receptors, such as TLR4, not only recognizes 
endotoxin, but also recognizes molecules released by injured cells 51

-
59

. These molecules 
are called "endogenous" because they are produced by mammalian cells and to 
differentiate them from endotoxin, the "exogenous" TLR4ligand that is produced by 
gram negative bacteria. 

Striking confirmation for the importance ofTLR4 in ischemic disease were experiments 
comparing inflammation and injury in wildtype mice versus TLR4 deficient mutant mice 
after ischemia to the heart 60

;
61

, liver 62
-
64

, lung 65
, and kidney 66

. In all of these studies, 
mutant mice with non-functional TLR4 are protected from ischemic injury. 

The ligands for TLR4 include heat shock protein 70 51
;
52

. Other ligands may be 
fragments of the extracellular matrix that result from its degradation after tissue injury. 
Two of these fragments, heparan sulfate and hyaluronan, activate TLR4 58

;
59

;
67

-
69

, and 
may participate in ischemic ARF. Low molecular weight heparan sulfates are released 
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when neutrophil elastase degrades heparan sulfate proteoglycans in the extracellular 
matrix (see review 70

). Inhibition of neutrophil elastase ameliorated ischemic acute renal 
failure in rodents, possibily by inhibiting the ~roduction of heparan sulfate fragments 71

. 

Hyaluronan increases in the ischemic kidney 2
• Low molecular weight hyaluronans are 

released when hyaluronidases from tubules and leukocyes degrade the extracellular 
matrix. Small hyaluronans stimulate renal tubular cells to produce MCP-1 (a 
macrophage chemokines), and TNFa (a proinflammatory cytokine) in vitro 73

. Biglycan 
is another extracellular matrix component that may stimulate TLR4 after tissue injury 74

• 

Other endogenous molecules also interact with TLR4, but they are less well studied than 
the hsp's and extracellular matrix components discussed above. Fibronectin IliA is a 
variant fibronectin that is produced by stressed cells 75

, and is increased during ischemic 
ARF 76

. ~-defensin is found in kidneys stressed by infection 77
, but ~-defensin 

production during ischemic ARF has not previously been examined. Hsp60 is not known 
to increase after renal ischemia, but might still be released during ischemic ARF and 
stimulate TLR4 57

. Tamm Horsfall protein may also be a TLR4ligand 78
. 

Multi-ligand receptors for multi-receptor ligands may detect ischemic injury? 

The previous sections indicates that there are many endogenous TLR4-ligands in addition 
to endotoxin, the exogenous TLR4 ligand. How does TLR4 act as a "receptor" for these 
diverse molecules? That one receptor may interact with multiple ligands has become a 
recurring theme in immunology. TLR4 is just one example of a growing family of 
"multiligand receptors". Other such receptors include RAGE (for example references 
79

;
80

), and CD91 (also known as LRP [for example references 81
;
82

]). One explanation of 
how TLR4 is activated by different ligands is that all the ligands have, in common, large 
hydrophobic regions that interact with the leucine rich region of TLR4. See review 83

. 

In the same manner, endogenous TLR4ligands may have more than one receptor. For 
example, hsp proteins are intracellular chaperones, designed to bind to many denatured 
proteins by virtue of their exposed hydrophobic regions. It should therefore not be 
surprising that that hsp should bind to many cell surface receptors by virtue of their 
hydrophobic regions. Thus, a number of receptors 52

;
84

-
86

, in addition to TLR4 have been 
proposed for the endogenous TLR4 ligands. These include CD91 87

;
88

, TLR2, and 
RAGE. These are discussed in greater detail below. 

These interactions between the hydrophobic regions of cell surface receptors such as 
TLR4 and the hydrophobic regions of ligands such as hsp may reflect the two functions 
of these receptor-ligand systems 83

. On the one hand, as discussed above, these receptor­
ligand systems allow the immune system to detect injury. This may include the detection 
of denatured intracellular proteins via the CATERPILLAR family of molecules 89

-
91

. 

This family ofproteins may regulate the "inflammatory caspases" (caspase 1 and 11) that 
process interleukin 1 ~ and interleukin 18 into their active form. Interleukin 18 has a 
maladaptive role in ischemic acute renal injury 92

;
93

. On the other hand, these receptor-
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ligand systems allow these receptors to recognize many molecules produced by 
pathogens, such as endotoxin, that are also hydrophobic. 

Why there should be so many ways to detect molecules released by injured cells is not 
clear. Do all injured cells release the same molecules, are different molecules released 
after different types of death and injury, do different molecules and receptors elicit 
different inflammatory responses? In very broad strokes, we will discuss the different 
modes of programmed cell death and the different inflammation elicited by different 
types of death later in the chapter. However, a profound understanding of these questions 
remain to be elucidated by future research. 

Other receptors that detect molecules released by injured cells and thus trigger 
inflammation: TLR2, RAGE, and CD91. 

TLR2: TLR2 is related to TLR4 and may also recognize hsp's 94
-
96

. Mice with non­
functional TLR2 are protected from ischemic renal failure 97

• Renal tubules express both 
TLR2 and TLR4 after severe ischemic in~ury 98

;
99

. TLR2 may also be important in 
ischemic injury to the liver 100 and heart 01 

In some experimental systems, uric acid is released by necrotic cells and mediates an 
inflammatory response 102

;
103

• Some data suggests that TLR2 on leukocytes detects this 
extracellular uric acid 104

;
105

. 

RAGE: Although RAGE is best known as the receptor for advanced glycation 
endproducts and for its contribution to the secondary complications of diabetes mellitus, 
including diabetic nephropathy 106

-
109

, RAGE also detects molecules released by injured 
cells, and triggers an inflammatory response. 

Of the RAGE injury ligands, the best understood is HMGB 1 110
;
111

. HMGB 1 is 
expressed by all eukaryotic cells and is highly conserved through evolution. It was 
originally described as nuclear protein that enables interactions between DNA and 
nuclear proteins that regulate transcription. However, in the late 1990's a search for 
mediators of shock revealed that HMGB 1 elicited lethal inflammation 112

. Antibodies 
against HMGB1 prevented shock. Subsequent experiments showed that HMGB1 was 
released by necrotic cells, and actively secreted by leukocytes of the innate immune 
response. The little inflammation seen after apoptosis, as opposed to necrosis, may result 
from sequestration ofHMGB1 within the nucleus ofapoptotic cells. 

HMGB 1 consists of three domains. The A and B boxes bind to DNA, and the C box is 
negatively charged. The proinflammatory effect of HMGB 1 may be reproduced by 
recombinant B box. Recombinant A box peptide is a specific antagonist of the 
proinflammatory effects. Thus, there is therapeutic potential in using these genetically 
engineered peptides to either increase or decrease inflammation. 
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The major receptor for HMGB1 is RAGE 110
;
111

. However, the inhibition of RAGE with 
specific agents does not entirely inhibit the effects of HMGB 1. Therefore other ligands 
have also been proposed. These include heat shock proteins and members of the 
intracellular SlOO family of proteins 80

;
113

-
115

• Release of RAGE-ligands is important not 
only during ischemia and shock, but also may play a role in autoimmune disease 116 

where ongoing injury may perpetuate the maladaptive inflammation. 

Although the role ofRAGE-HMGBl in renal ischemia is not known, inhibition of RAGE 
with a soluble blocking receptor does ameliorate hepatic ischemia 117

. 

CD91: This is also a receptor for heat shock proteins 81
;
86

;
118 released by injured cells. It 

has been targeted as a means of increasing immunity against tumors. In addition to 
binding heat shock proteins, CD91 also binds a2-macroglobulin 119

;
120

, collectin and 
calreticulin 121

, and is known as LDL receptor related protein 122
. 

When death is no accident: necrosis as a programmed event. 

The above section shows that 
molecules released from 
necrotic cells elicit an 
inflammatory response. 
Necrosis is often considered 
accidental death. However, a 
growing body of data indicates 
that necrosis may also be a 
programmed event 123

-
128

. This 
suggests that when 
inflammation is desirable, a 
cell may be programmed to die 
a necrotic death, and thus 
release the pro-inflammatory 
molecules discussed above. 

,......----_. IPOI'I~!II 
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Arne, Bioassays 26:882 2004 

Poly (ADP-ribose) polymerase [PARPJ and programmed necrosis. 

The PARP's are a family of 18 genes. PARP-1 regulates necrosis 129
-
131

. That an enzyme 
regulate necrosis indicates that death is no accident, but is programmed. Pharmacologic 
inhibition ofPARP ameliorates ischemic acute renal injury in rodents 132

;
133

• Transgenic 
knockout ofPARP-1 also decrea es injury after acute renal ischemia 134

;
135

. Inhibition of 
PARP-1 also ameliorates ischemic injury ofthe brain and liver. 

The best known function of P ARP-1 is to repair DNA damage, such as occurs in response 
to oxidative stress during ischemic acute renal failure. Renal PARP-1 levels increase 
during ischemic acute renal failure 132

;
136

. 
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It is not intuitively obvious why such a repair enzyme should be required for necrosis. 
One possibility is that, it the face of massive DNA damage, P ARP depletes intracellular 
NAD+ and thus ATP stores. This leads to necrosis, especially in the setting of 
mitochondrial damage as discussed later in this section 137

-
139

. However, necrosis is not 
necessarily correlated with intracellular energy stores in all model systems. Another 
possibility is that P ARP-1 enhances the activity ofNFKB and other pro-inflammatory 
transcription factors. PARP may also increase mitochondrial release of AIF. 

Some suggest that caspases degrade P ARP and thus direct cell death down an apoptotic 
pathway 140

. However, there is decreased ischemic acute renal injury in mice expressing 
a genetically engineered PRAP-1 that cannot be degraded by caspases 141 

Cyclophilin D, mitochondria, and programmed necrosis. 

Another argument that necrosis is regulated comes from studies of mice with transgenic 
knockout of cyclophilin D. Such mice have decreased necrosis during ischemic acute 
renal failure 142

-
14 

. Cerebral ischemia was similarly ameliorated in these knockout 
animals 145

. These results extend data that cyclosporine, by inhibiting cyclophilin D, 
ameliorates ischemic injury in some tissues 146

;
147 

Cyclophilin D regulates the mitochondrial permeability transition, and the subsequent 
release of mitochondrial molecules that regulate cell death. The above data suggest an 
important role for mitochondria in regulating necrosis 146

;
148

-
150

. Whether opening this 
pore results in necrosis or apoptosis may depend upon several factors. One is the length 
of time that the pore is open- transient opening might result in apoptosis; longer 
opening, necrosis 151

. In addition the availability of ATP may switch the mitochondrial 
signal from necrosis to apoptosis 149

. This is in line with data showing that lower, more 
prolonged decreases in ATP are associate with necrosis, while shorter and lesser ATP 
depletion result in necrosis in renal cells 152 and that lesser oxidant injury also leads to 
apoptosis instead of necrosis 153

;
154

. Finally, intracellular pH also regulates. The return 
of the pH from acidic to more alkaline with reperfusion makes necrosis more likely 149

. 

Additional examples of programmed necrosis in vivo. 

We will now review three additional striking examples ofthe importance of programmed 
necrosis in vitro. 

One example is the host defense against murine vaccinia virus. This virus protects itself 
by preventing apoptotic programs within infected host cells. In mice with wildtype 
TNFR2, infected cells die by programmed TNFa-mediated necrosis, and elicit a 
protective inflammatory response. Mice with TNFR2 knockout have a reduced 
programmed necrosis and thus reduced anti-viral inflammatory response and decreased 
viral clearance 155

. 
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The second example is the difference between cerulean pancreatitis in rats versus mice. 
The worse outcome in the latter is due to greater programmed necrosis. Rats have high 
apoptosis and low necrosis and thus a better clinical outcome. Mice have low apoptosis 
and high necrosis and thus a worse outcome with more inflammation. This difference 
was due to different function of the X-linked inhibitor of caspases (XIAP) in these two 
species. There was less inhibition of caspases, and thus less inhibition of apoptosis, in 
the rat by XIAP 156

• 

The third example is the exacerbation of shock when apoptosis is inhibited in mice given 
TNF a. In this case, switched programmed cell death from apoptosis to necrosis had fatal 
consequences 157

• 

After suicide, disposal of the corpse: regulation of inflammation by macro phages 
after they phagocytose apoptotic cells. 

Apoptosis occurs during ischemic acute 
renal failure 158

-
164

• The goal of this 
discussion is not the regulation of this 
apoptosis but rather the effect of apoptosis 
on inflammation. In other words, we 
discuss phagocytic clearance of the 
apoptotic cells before their loss of 
membrane integrity and leakage of the 
proinflammatory molecules discussed in 
the previous section. Such clearance is 
regulated by "eat me", "don't eat me", 
"come get me" signals. 

A pop roUe ecll 
/ Chernutacht 

~ Lyso-PG 

Bratton & Henson. Nature Medicine 11:26. 2005 

The surface of the apoptotic cell has "eat me" signals that trigger phagocytosis by 
macrophages. A major signal is phosphatidylserine that has somehow "flipped" from the 
intracellular leaflet to the extracellular leaflet of the plasma membrane where it is 
recognized by macrophage receptors including the phosphatidylserine receptor after 
bridging by Annexin I. Other less well understood interactions between apoptotic cell 
and macrophage also contribute to the "eat me" signal. These include sites also capable 
of binding collectins such as mannose binding protein, C1q, C3blbi, oxidized LDL, and 
thrombospondin 1. In addition, the apoptotic cell surface has decreased "don't eat me" 
signals such as CD31. Furthermore, phosphatidylcholine on apoptotic cell surfaces is 
cleaved by phospholipase A2 to form lysophosphatidyl choline which is the best 
understood chemoattractant "come get me" signal issued by apoptotic cells to 
macrophages. [See review 165

]. 

Under many circumstances, macrophages, which have engulfed apoptotic cells, release 
anti-inflammatory molecules that prevent further inflammation. (for example 166

;
167

). 

The phosphatidylserine receptor on macrophages may trigger the release of inhibitory 
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cytokines, but this begs the question of why this receptor is not triggered when 
macrophage phagocytose necrotic debris, including phosphatidylserine on the 
intracellular side of cell membrane fragments 168

. In the absence of a receptor for 
phosphatidylserine, macrophages cannot ingest a~ofototic cells, and the lungs of such 
mice fill with cellular debris and inflammation 16 

•
1 0

• This may reflect the consequences 
of overwhelming the phagocytotic system with too many apoptotic corpses as perhaps 
occurs during ischemic acute renal failure 161

. This situation may reflect "post-apoptotic 
necrosis" and the release of proinflammatory mediators. 

However, there are a number of experimental circumstances where phagocytosis of 
apoptotic cells results in the release of pro-inflammatory molecules by macrophages, and 
where ingestion ofnecrotic debris results in the release of anti-inflammatory molecules. 
This may reflect the influence of cytokines in the microenvironment 171

, or the redox 
potential of the microenvironment that can oxidize phospholipids and turn them into 
macrophage activating signals 172

;
173

. 

Conclusion. 

Acute renal ischemia elicits an inflammatory response. We have focused a large part of 
this review on the nature of the inflammation and its possible consequences. Among the 
factors that elicit and regulate the inflammatory response to inj~, including complement 
174

;
175

, and gene activation by hypoxia! reactive oxygen species 1 6
-
178

, we have focused 
this review on how the mode of cell death and products of injured and dying cell regulate 
inflammation because of the recent major developments in these areas. 
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