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Introduction: 
The lifetime risk for kidney stone disease currently exceeds 6-12% in the general 
population 1

'
2

• In the final quarter of the 21st century, the prevalence of kidney stone 
disease increased in both gender and ethnicity 2. Although kidney stone nephrolithiasis is 
perceived as an acute illness, there has been growing evidence that nephrolithiasis is a 
systemic disorder which leads to end-stage renal disease (ESRD) 3

-
5

• It is also associated 
with an increased risk of hypertension 6

-
10

, coronary artery disease 11
'
12

, the metabolic 
syndrome (MS) 13

-
18

, and diabetes mellitus 19
-
22

• Nephrolithiasis without medical 
treatment is a recurrent illness with a prevalence of 50% over 10 years 23

. Nephrolithiasis 
has remained a prominent issue which imposes a significant burden on human health and 
is a considerable financial expenditure for the nation. In 2005, based on inpatient and 
outpatient claims, this condition was estimated to cost over $2.1 billion 24

. A novel 
strategy for the development of new drugs has been hampered largely by the complexity 
of this disease's pathogenetic mechanism and its molecular genetic basis. Our further 
understanding of these underlying pathophysiologic mechanisms will be the key step in 
developing more effective preventive and therapeutic measures. In this Medicine Grand 
Rounds I shall highlight our recent progress in elucidating the pathophysiologic 
mechanisms of uric acid (UA) and calcium oxalate nephrolithiasis. 

Etiologic mechanisms of uric acid stone formation 
Three major factors for the development ofUA stones are low urine volume, acidic urine 
pH, and hyperuricosuria. However, abnormally acidic urine is the principle determinate 
in UA crystallization. The etiologic mechanisms for UA stone formation are diverse, and 
include congenital, acquired, and idiopathic causes 25

. The most prevalent cause of UA 
nephrolithiasis is idiopathic. In its initial description, the term "gouty diathesis" was 
coined 26

. The clinical and biochemical presentation of idio~athic UA nephrolithiasis 
(IVAN) can not be attributed to an inborn error of metabolism 5

'
27

'
28 or secondary causes 

such as chronic diarrhea 29
, strenuous physical exercise 30

, and a high purine diet 31
• 

Physicochemical characteristics of uric acid 
In humans and higher primates, UA is an end product 
of purine metabolism. Due to their lack of the hepatic 
enzyme, uricase, which converts uric acid to soluble 
allantoin, their serum and urinary levels of UA is 
considerably higher than in other mammals 32

. 

Normally, urinary uric acid solubility is limited to 
96mg/L. In humans with a urinary UA excretion of 
600mg/day, this should generally exceed the limit of 
solubility and susceptibility to precipitation 33

• 

Moreover, urine pH is another important factor in UA 
solubility. UA is a weak organic acid with an 
ionization constant (pKa) of 5.5 34

'
35

• Therefore, at a 
urine pH less than 5.5, the urinary environment 
becomes supersaturated with sparingly soluble, 
undissociated UA which precipitates to form UA 

stones 19,36,37. 

pKa = 5.5 
H+ + Urate Uric Acid 

~ • 
t Undissociated Uric Acid 

Figure 1. The physicochemical characteristics of Uric Acid 
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Relative Risk of Nephrolithiasis 
Epidemiology of uric acid 
nephrolithiasis and the 
metabolic syndrome 2 

1.5 

HPFS NHSI NHS II 

Body Weight D < 150 • 150- .170- .190- • >22 

The MS is an aggregate of 
features that increase the risk 
of type 2 diabetes mellitus 
(T2DM) and atherosclerotic 
cardiovascular disease 13

-
15

• In 
a retrospective analysis of our 
stone registry, we initially 
showed a high prevalence of 
features of the MS in JUAN 
patients, leading us to 
determine that patients with 
IU AN share characteristics 
similar to those of the MS. 

Taylor et al, JAMA, 2005 

Figure 2. The relationship between body weight and the adjusted relative risk 

Numerous 

studies have 

epidemiologic 

shown that 
for nephrolithiasis. obesity, wei~ht gain, and 

T2DM are associated with an increased risk of nephrolithiasis (Figure 2) 8
•
39

. Despite the 
large sample size, stone composition was not reported among these studies. Our center 
was the first to report the high 
prevalence of uric acid stones 
as the main stone constitute 
found in T2DM. Additionally, 
recent retrospective and cross­
sectional studies have noted an 
increased prevalence of UA 
stones among obese and T2DM 
patients21

'
4043

• However, 
T2DM and a greater body mass 
index (BMI) were shown to be 
independent risk factors for 
nephrolithiasis (Figure 3) 43
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Pathophysiology of low urine 
pH in idiopathic uric acid 
nephrolithiasis 
The metabolic defect suspected 
for low urinary pH in UA stone 

Figure 3. Distribution of calcium~~ ~'~9/[jg2s.\ones with respect to body mass 
and diabetes mellitus status 

Daudon et al, JASN, 2006 

formation was described almost 4 decades ago 44
. Defective ammoniagenesis or excretion 

was attributed as a possible pathogenetic mechanism. Initial studies showing 
abnormalities in glutamine metabolism which resulted in the impaired conversion of 
glutamine to a-ketogluatrate and consequently resulted in reduced renal ammonium 
(N~ +) excretion, were not supported by further investigation 4548

• Over the past decade, 
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major progress has been made in the further elucidation of factors resulting in unduly 
acidic urine pH seen in subjects with IUAN. Mechanistic studies have shown that the two 
major factors responsible for abnormally low urine pH are a combination of defective 
NH4+ excretion and increased net acid excretion (NAE). 

Defective ammonium excretion 
Increased acid production alone may not be sufficient in causing abnormally acidic urine, 
since the excreted acid is neutralized by urinary buffers. Evidence of defective ~ + 
excretion was provided in IVAN subjects under a fixed, metabolic diet 19'21 . Therefore, an 
unduly acidic urine pH in the IVAN population is not related to environmental factors but 
it is, in part, related to the higher body weight in these subjects 49. The defective~+ 
production in these subjects was further explored by the administration of an acute acid 
load, which amplified the ammoniagenic effect 19. Similar findings were also 
demonstrated in IUAN subjects on a random diet 20. Furthermore, it has been shown that 
in normal subjects, urinary pH and N~ + /NAE ratio falls with increasing features of the 
MS, indicating that renal ammoniagenesis and low urine pH may be features of the 

6.6 <> 24 h urine pH 
p for linear trend < 0.001 

1.0 

6.4 • Urine NH//NAE 
p for linear trend< 0.001 
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Figure 4: The inverse association between 24-hour urinary pH (0 pH) and 
the ratio of urinary ammonium to net acid excretion (• NH//NAE) with 
the number of features of the metabolic syndrome in 148 non-stone 
forming individuals. (Significant linear trend for both parameters, 
p<O.OOS) 

general MS and not 
IVAN specific 50 

(Figure 4) . 

Several studies have 
provided evidence 
supporting a 

relationship 
between UA 

nephrolithiasis, 
obesity, and insulin 
resistance 19'21'40-43 . 
The mechanistic 
connection between 
peripheral insulin 
resistance, urinary 
pH, and NH4 +, was 
first demonstrated 
using the 

hyperinsulinemic 
euglycemic clamp 
technique in 
subjects with IUAN 
22 These studies 

support the potential role of insulin resistance in an impaired urinary ~ + excretion and 
low urinary pH. Insulin receptors are expressed in various portions of the nephron 51•52. 
Furthermore, in vitro studies have shown that insulin plays a stimulatory role in renal 
ammoniagenesis 53•54. In addition, NH/ secretion is regulated by the sodium-hydrogen 
exchanger (NHE3) 55. Since NHE3 plays a key role in the transport or trapping ofNH/ 
in the renal tubular lwnen 55

, insulin resistance may potentially lead to defective renal 
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NH4 + excretion. One other plausible mechanism may be substrate competition by 
substituting circulating free fatty acid for glutamine, which is increased in the MS, 
thereby reducing the proximal renal tubular cell utilization of glutamine and renal 
ammoniagenesis 56

. 

Increased net acid excretion 
An elevated NAE may occur due to increased endogenous acid production or because of 
dietary influences such as low dietary alkali or the increased consumption of acid rich 
foods 35

• Metabolic studies comparing subjects on fixed, low acid-ash diets showed a 
higher NAE in JUAN patients compared to control subjects, suggesting that endogenous 
acid production may increase in JUAN 33

. In addition, the urinary NAE for any given 
urinary sulfate (a surrogate marker of acid intake) tended to be higher in patients with 
T2DM 20

• These studies also implied that the pathophysiologic mechanism accounting for 
increased NAE is related to obesity/insulin resistance. Supporting this correlation, 
additional studies have shown increased organic acid excretion with higher body weight 
and higher body surface area 57

•
58

. The nature of these putative organic anions and their 
link to obesity and/or UA stones has not been fully studied. However, our indirect 
estimate of organic acid excretion from the urinary anion gap (calculated as the 
difference between total measured cations and anions) demonstrated a higher value in 
JUAN and T2DM subjects without kidney stones. 

Potential role of renallipotoxicity 
Under normal conditions, when caloric intake and caloric utilization are balanced, 
triglycerides accumulate in adipocytes 59

•
60

. A disruption in this tight balance leads to the 
tissue redistribution of triglycerides which are deposited within parancheymal liver cells, 
cardiac myocardial cells, skeletal muscle cells and pancreatic P-cells GO-GS. The process of 
fat deposition in tissues other than adipocytes is termed lipotoxicity 60

• Cellular injury is 
primarily due to the accumulation of nonesterified fatty acids (NEFA) and their toxic 
metabolites including fatty acyl CoA, diacylgJycerol, and ceramide 59

•
66

•
67

• It has been 
shown that fat redistribution is accompanied with impaired insulin sensitivity 62

, cardiac 
dysfunction 64

, and steatohepatitis 61
•
6 

. There is an emerging interest in the role of renal 
lipotoxicity in the pathogenesis of renal disease 66

•
69

•
70

. A few studies have revealed a 
mechanistic link between obesity, obesity-initiated MS, and chronic kidney disease 69

•
70

. 

Additional studies have displayed a possible role of sterol regulating element binding 
proteins (SREBP) in renal fat accumulation and injury 71

-
73

. At the present time, there is 
insufficient data available to suggest whether renal lipotoxicity influences endogenous 
acid production and reduces renal ammoniagenesis, consequently leading to abnormally 
acidic urine. 

Calcium oxalate nephrolithiasis 
Calcium oxalate is the most prevalent type of kidney stone disease in the United States 
and has been shown to occur in 70-80% of the kidney stone population 74

. The prevalence 
of recurrent calcium oxalate stones has progressively increased in untreated subjects, 
approaching a 50% recurrence rate over I 0 years 23

. Although it affects both genders, 
calcium oxalate nephrolithiasis generally tends to occur in more men than women. In the 
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calcium oxalate stone former, urinary oxalate and urinary calcium are equally conducive 
in raising urinary calcium oxalate supersaturation 75

. 

Hyperoxaluria is encountered in 8% to 50% of kidney stone formers 76
-
78

• The main 
etiologic causes ofhyperoxaluria can be classified into three groups: (1) increased oxalate 
production as a result of an inborn error in metabolism of the oxalate synthetic pathway, 
(2) increased substrate provision from dietary oxalate rich foods or other oxalate 
precursors, and (3) increased intestinal oxalate absorption (Table 1) 74

• With the study of 
1 b fi . 79,80 d 

oxa o acter onmgen~s ~n Table 1: Causes of Hyperoxaluria 
the role of putative amon 
transporter S1c26a6 81 as Increased Oxalate Production 
potential tools in the treatment of 
primary hyperoxaluria, our 
knowledge of the 
pathophysiologic mechanisms of 
oxalate metabolism has advanced 

Increased substrate provision 

Increased intestinal oxalate absorption 

significantly over the past decade 82
• It is anticipated that these advances will lead to the 

development of new drugs targeting the intestinal absorption and secretion of oxalate. 
These targeted treatments could be used rigorously in the treatment of hyperoxaluria in 
the kidney stone forming population. 

Physicochemical properties of oxalate 
The human serum oxalate concentration ranges between 1-5 ~M, however, due to water 
abstraction in the kidney, its concentration is one hundred times higher in the urine 74

•
83

. 

At a physiologic pH, oxalate will form an insoluble salt with calcium. Since the solubility 
of calcium oxalate in an aqueous solution is limited to approximately Smg/L at a pH of 
7.0, assuming that normal urine volume ranges between 1-2 L/day and normal urinary 
oxalate excretion is less than 40mg/day, normal urine is often supersaturated with 
calcium oxalate. However, under normal conditions, the blood is under-saturated with 
respect to calcium oxalate. As seen in patients with primary hyperoxaluria and renal 
insufficiency, when the serum oxalate concentration increases to above 30~, the blood 
becomes supersaturated with calcium oxalate 84

. In the plasma, oxalate is not significantly 
bound to protein and is freely filtered by the kidneys. A recent study reported that urinary 
calcium is as important as urinary oxalate in raising calcium oxalate supersaturation 75

• 

Oxalate homeostasis 
Hepatic production 
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In mammals, oxalate 
is an end product of 
hepatic metabolism 79 

(Figure 5). The major 
precursor for hepatic 
oxalate production is 
glyoxalate 
metabolism within 
hepatic peroxisomes. 
This metabolic 
conversion is 
mediated by enzyme 
alanine-glyoxalate 
aminotransferase 
(AGT). Under normal 
circumstances, the 
metabolism of 
glyoxalate to 
glycolate and glycine 
determines the 

l 
C. Ox 

conversiOn of Figure 5: Oxalate Metabolism 

Plasma .. 
Oxalate 

L 

glyoxalate to oxalate. Glyoxalate is also metabolized to glycolate by enzyme D-glycerate 
dehydrogenase, which has both glyoxalate/ hydroxypyruvate reductase (GR/HPR) 
activity 85

. An inborn error in metabolism with an AGT and GRIHPR deficiency leads to 
oxalate overproduction, which results in type 1 and type 2 primary hyperoxaluria 79

,
81

•
85

. 

Several other metabolic precursors of oxalate metabolism, including the breakdown of 
ascorbic acid, fructose, xyulose, and hydroxyoproline, have also been incriminated. 
However, their influences on oxalate ~roduction, under normal physiologic 
circumstances, have not been fully accepted 86

-
8

. 

Intestinal absorption 
Dietary oxalate intake plays an important role in urinary oxalate excretion. The estimated 
intake of oxalate ranges between 50-1000 mg/day 77

•
78

•
89

. Oxalate rich foods primarily 
include seeds, such as chocolate which is derived from tropical cacao tree, and leafy 
vegetation, including spinach, rhubarb, and tea. Approaching approximately 45%, the 
contribution of dietary oxalate to urinary oxalate excretion has been shown to be much 
higher than previously described 90

• Additionally, with intestinal oxalate absorption 
ranging between 10-72%, this relationship between oxalate absorption and dietary 
oxalate intake has not been shown to be linear 90

. 

In human subjects, the exact intestinal segment participating in oxalate absorption has not 
been determined. Indirect evidence suggests that oxalate absorption occurs throughout a 
large segment of the small intestine. This has been proposed since the main percentage of 
absorption occurs during the first 4-8 hours after the ingestion of oxalate rich foods 91

-
93

• 

This inference has been made based on the reported 5-hour intestinal transit time from the 
stomach to the colon. However, it has also been suggested that the colon may also 
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participate in oxalate absorption, but to a lesser extent 93
• In addition, the paracellular 

intestinal oxalate flux has been suggested to occur in the early segment of the small 
intestine largely due to the negative intestinal luminal potential and higher luminal 
oxalate concentration compared to the blood 94

. 

Recently, the putative anion exchange transporter (Slc26a6) has been shown to play a 
major role in intestinal oxalate transport 82

. The Slc26a6 is expressed in the apical portion 
of various segments of the small intestine such as the duodenum, jejunum, and ileum. It 
can also be found in the large intestine, but to a smaller percentage 95

. In vitro studies 
using the Ussing chamber technique demonstrated defective net oxalate secretion in mice 
with a targeted inactivation of the Slc26a6 96

. Moreover, in vivo studies in the Slc26a6-
null mice on a controlled oxalate diet reported high urinary oxalate excretion, increased 
plasma oxalate concentration, and decreased fecal oxalate excretion 96

. The differences in 
urinary oxalate excretion, plasma oxalate concentration, and fecal oxalate excretion were 
abolished following a 7-day equilibration on an oxalate free diet. These findings suggest 
that the reduction of net oxalate secretion in Slc26a6-null mice increases net oxalate 
absorption, raising plasma oxalate concentrations and consequently raising urinary 
oxalate excretion. These results were also associated with bladder stones and Y asue­
positive crystals in the kidney. This study concluded that the Slc26a6 anion exchanger 
plays a key role in urinary oxalate excretion 96 (Figure 6). 

Jiang et al, Nature Genetics, 2006 

Figure 6. Urolithiasis and renal tubular changes in Slc26a6-null mice 

Role ofOxalobacter Formigenes 
Among many other bacteria including Eubacteruim Lentum, Enterococcus Faecalis, 
Lactobacillus, Streptoccus thermopilus, and Bifidobacterium infantis, oxalobacter 
formigenes (OF) have been reported to degrade oxalate 94

. OF was first isolated in 
ruminates 97 and has since been found in many animal species as well as in humans 98

. 

However, OF is not found in infancy. The bowel becomes colonized with this bacterium 
at approximately 6-8 years of age. It decreases in later years and may only be found in 
the feces of 60-80% of the adult population99

• 

OF is a gram-negative obligate anaerobe microor§anism which primary utilizes oxalate 
as a source of energy for cellular biosynthesis 1 0

. In this process, oxalate enters the 

8 



oxalobacter via an oxalate:formate antiporter. It then utilizes its own enzymes, formyl 
CoA transferase and oxalyl-CoA decarboxylase, to convert oxalate into formate and 
C02101. The electrogenic process of heterologous oxalate:formate antiporter activity 
serves as an ion-motive pump generating ATP synthesis 101 . 

The clinical importance of OF colonization is primarily suggested for patients with 
recurrent calcium oxalate nephrolithiasis 102-104, in patients with enteric hyperoxaluria 
105'106, and in those with cystic fibrosis 107. Studies in patients with urolithiasis and cystic 
fibrosis have shown that the prolonged use of antibiotics may abrogate the bowel 
colonization of OF and may irreversibly destroy these bacteria. Very recently, a case­
controlled study of 274 patients with recurrent calcium oxalate stones and 259 normal 
subjects matched for age and gender, displayed that the prevalence of OF was 
significantly lower in the stone formers. In this study, 17% of stone formers were positive 
for OF vs. 38% of normal subjects. This relationship persisted with age, gender, race, 
ethnic background, region, and antibiotic use 108 (Table 2). 

Table 2: Oxalobacter formigenes in stool among patients with recurrent CaOx kidney stones 
and control subjects 

Case Patients 
0. formigenes (n = 247) 

Status 
n % 

Positive 42 17 
Negative 205 83 

Control Subjects 
(n :: 259) 

n % 

99 38 
160 62 

Crude OR 

0.3 
1.0t 

Mu~ivariate OR (95% Cl)a 

0.3 (0.2 to 0.5) 
1.0b 

10R based on unconditional logistic regression with the following factors in the model: 0. formigenes, age, gender, region, education, race, dietary oxalate, 
antibiotic use, and family history of stones. OR calculated using conditional logistic regression: 0.3 (0.1 to 0.5). 
bReference category. 

Kaufman et al, JASN, 2008 

The colonization of OF may be regulated by dietary oxalate intake. This has been shown 
in animal models where a significant decrease in urinary oxalate resulted from the 
administration or in the upregulation of OF colonization 102'109. Recently, it has been 
shown that the role of OF in oxalate metabolism not only depends on its capacity to 
degrade intestinal luminal oxalate but also on its capacity to stimulate the intestinal 
secretion of endogenously produced oxalate 110

• The result of these animal experiments 
has recently been conveyed into human diseases 80. One such study conducted in patients 
with type 1 primary hyperoxaluria, in subjects with normal renal function, and in patients 
with chronic renal insufficiency, reported the reduction of urinary oxalate which ensued 
following the oral administration of OF 80. The major drawbacks ofthe use of OF are (A) 
the lack of large, long-term, controlled studies namely in calcium oxalate kidney stone 
formers and in subjects with enteric hyperoxaluria such as patients with cystic fibrosis or 
those following a gastrointestinal bypass procedure, (B) the variable response to OF 
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administration, and (C) OF's short life span upon the complete utilization of its primary 
nutrient source, oxalate. Future long-term studies and perhaps the development of target 
drugs which either upregulate the intestinal secretion of oxalate by stimulating Slc26a6 or 
provide the enzyme products of OF to allow for its persistent oxalate degrading capacity, 
are necessary in overcoming these deficiencies. 

Renal excretion 
The kidney plays an important role in oxalate excretion. With impaired kidney function, 
plasma oxalate concentrations progressively rise and result in kidney damage. Eventually, 
with further impairment, there is a robust spike in plasma oxalate concentration which 
exceeds its saturation in the blood and thereby increases the risk of systemic tissue 
oxalate deposition. It has recently been demonstrated that Slc26a6 is also expressed in the 
apical portion of the proxima] renal tubule 111 and influences the activity ofvarious apical 
anion exchangers 112

. In Slc26a6-null mice, it has been shown that Cl-oxalate exchange 
activity is completely inhibited, and the activity of Cl-/OH- and Cl-/HC03 is significantly 
diminished. However, the significance of this putative anion transporter in calcium 
oxalate stone formation has not been fully elucidated. 

Randall's plaque in the pathogenesis of calcium oxalate stones 
Several mechanisms have been proposed for the formation of calcium stones. Firstly, it 
has been suggested that the increased supersaturation of stone forming salts are 
responsible for the process of homogenous nucleation in the lumen of the nephron. This 
process, followed by crystal growth, ultimately results in an obstruction in the distal 
nephron. Secondly, it has been suggested that crystal forms in the renal tubular lumen 
adhere to the luminal renal tubular cells. This adhesion then induces renal cell injury 
resulting in the formation of a fixed nuclei which interacts with the supersaturated urinary 
environment and results in crystal growth. These processes both lead to nephron 
obstruction and consequently result in intratubular calcification 113

. 

Dr. Alexander Randall was the first to argue that intraluminal plugging is an infrequent 
occurrence in kidney stone formers 114

. Conversely, he suggested that interstitial calcium 
phosphate deposits are initial niduses which anchor urinary crystals beneath the normal 
uroepithelial cells of the renal papilla. The erosion of the overlying uroepithelium 
exposes these deposits, referred to as plaques, to the supersaturated urine which then 
propagate calcium oxalate stones. He found these lesions to be interstitial as opposed to 
intraluminal, and without any inflammatory reactions. He also showed these deposits to 
be mainly found in the tubular basement membrane and in the interstitial collagen. 
Randall's hypothesis was primarily disputed since it was carried out in cadaveric kidney 
specimens and not in a targeted kidney stone forming population 114

. His major 
discovery, however, was a small stone propagated in the renal pelvis which was attached 
to a calcium plaque found in the papillae of the kidney. 

Characteristics of the interstitial plaques 
Randall's initial observations were recently followed with the development of modem 
techniques for determining mineral composition. These techniques have been used to 
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characterize the nature of crystals attached to these plaques and to develof. novel 
techniques to visualize Randall's plaque in vivo in patients with nephrolithiasis 11 

•
116

• An 
analysis of over 5000 stones showed the main mineral composition of interstitial plaque 
to be mainly carbapatite. However amorphous carbonated calcium phosphate, dosium 
hydrogen urate, and uric acid were found to a smaller extent 117

. Another study utilizing 
~-t-CT determined that apatite crystal surrounded by calcium oxalate was the main mineral 
composition of Randall's plaque 118

. 

It was first shown that Randall's plaques occur more frequently in patients with kidnel 
stones as compared to non-stone formers undergoing an endoscopic evaluation 11 

. 

Furthermore, a relationship was found between metabolic abnormalities in patients with 
calcium stones and the number of plaques 120

. The result of this study was reached using 
digital video and endoscopic techniques to accurately estimate the extent of Randall's 
plaque in both 
calcium stone forming 
and non stone 
forming subjects 121

. 

In this study, the main 
biochemical profiles 
correlating with the 
formation of 
interstitial plaque 
were urinary volume, 
urinary pH, and 
urmary calcium 
excretion (Figure 7). 
Higher urmary 
calcium and lower 
urinary volume 
showed an increased 
coverage of the renal 
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Figure 7: Correlation between papillary plaques and urinary profiles 

papilla with plaque. This study supports a mechanistic relationship between water 
abstraction in the renal medulla and papilla with plaque formation. Additionally, a 
separate retrospective study, using nephroscopic papillary mapping with representative 
still images and MPEG (Moving Pictures Expert Group) movies in a total of 13 calcium 
oxalate kidney stone formers, determined the percent of plaque coverage to be directly 
correlated with the number ofkidney stones formed 122

. 

Localization of Randall's plaque ., 

Fh:wre 8: Sites and characteristics ofcrvstal deposition "'""'n .. t "' .lf":l ?nn~ · Kl ?nn!'i 

The basement membrane 
of thin descending loops of 
Henle is the principle site 
of Randall's plaque 
localization 115

• The thin 
descending limb basement 
membrane is made up of 
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collagen and mucopolysaccharides, which attract calcium and phosphate ions 123
• Once 

attracted to this protein matrix, the crystallization processes begins. In the interaction 
following, calcium phosphate crystals grow and Eropagate to the surrounding collagen 
and mucopolysaccharide-rich renal interstitium 1 4

. This complex then makes its way 
through the urothelium and serves as a nidus for calcium oxalate deposition, ultimately 
resulting in calcium oxalate kidney stone formation. Randall's plaque has only been 
localized in the basement membranes and in the interstitium. It has never been found in 
the tubular lumen within epithelial cells or ves~els. Within the basement membrane, this 
plaque consists of coated particles of overlying regions of crystalline material and organic 

. 116 (F. 8) matnx tgure . 

Mechanism of plaque formation 
The mechanism of interstitial plaque formation has not been fully elucidated. Our 
limitations in this area are based on the lack of availability of an animal model which 
mimics this human disease. A few clinical studies have suggested a correlation between 
urine volume, urinary calcium, and severity of stone disease with the fraction of papillary 
interstitium covered by Randall's plaque 119

-
122

• Although this link is not causal, however, 
it indicates some correlation between plaque formation and kidney stone disease in 
idiopathic hypercalciuric patients. It is plausible to propose that plaque formation in the 
thin descending limb of Henle occurs due to an increase in interstitial calcium and 
phosphate concentration as well as an increase in renal papillary osmolality as a result of 
water abstraction in this nephron segmet 125

• Moreover, whether increasing interstitial 
fluid pH affects the abundance of plaque formation has been suggested but has never 
been fully explored 116

. 

Absence of Randall's plaque 
Following gastric bypass surgery 
Hyperoxaluria and calcium oxalate stones are a common occurrence in patients following 
intestinal bypass surgery due to morbid obesity 116

'
126

. In these subjects, there is no plaque 
observed in the renal papilla. However, crystal aggregates are found in the inner 
medullary collecting ducts (IMCD). Moreover, in contrast to conditions in idiopathic 
calcium oxalate stone formers, there is evidence of renal IMCD cell injury, interstitial 
fibrosis, and inflammation adjacent to the crystal aggregates. The IMCD crystal 
aggregates are usually composed of apatite crystals. The deposition of these apatite 
crystals occurs despite an acidic urinary environment, implying that tubular pH may be 
different from the final urinary 1 16

•
126 

· 9). _ 
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Cystine stone formers 
In cystinuric patients, there is a blockage of the Bellini duct (BD) with cystine crystal 
aggregate. Additionally, apatite crystals are also shown to be present in the IMCD and in 
the thin loops of Henle. Although small areas of plaque formation have been noted in the 
renalpapillae, the cystine stones are attached to cystine deposits in the BD 127

. In this 
condition, there is evidence of cell injury, interstitial fibrosis, and obstruction. These 
pathological changes are potentially responsible for the dysregulation of proton secretion 
and its consequent alkaline microenvironment which is highly conducive to apatite 
crystal deposition. 

Brushite stone formers 
In brushite stone formers, similar to calcium oxalate stone formers following gastric 
bypass surgery, there is evidence of cell injury and interstitial fibrosis in the IMCD 
adjacent to apatite crystal deposits. Although brushite stone formers, much like idiopathic 
calcium oxalate stone formers, have plaque in the renal papilla, the stones have not been 
shown to attach to the plaque 128

• This may be due, in part, to technical difficulties since 
the high burden of brushite stones may affect the structural integrity of the renal papillae, 
making it difficult to detect smaller stones that may be attached to the plaque. 

Conclusion 
Kidney stone disease remains a major public health burden. Its pathophysologic 
mechanisms are complex, mainly because it is a polygenic disorder, and it involves an 
intricate interaction between the gut, kidney, and bone. Additionally, an exact animal 
model to recapitulate the human disease has not yet been defined. Despite these 
limitations, our comprehension of uric acid stone formation's link to insulin resistance 
and renallipotoxicity, the underlying mechanisms of intestinal oxalate transport, and the 
role of renal papillary plaque in idiopathic calcium oxalate stone formation, has advanced 
significantly over the past decade. These elucidations can potentially lead us to the 
development of novel drugs targeting basic metabolic abnormalities which abrogate stone 
formation. 
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