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ABSTRACT 

Introduction: Excessive vocal effort perceived as strain may involve increased vocal fold 

compression. Electroglottography (EGG) in principle could provide a measure of strain directly 

connected to oscillatory kinematics at the sound source. The utility of EGG has been limited by 

considerable inter- and intra-subject variability.  

Objective: This work aims to (1) develop an algorithm to analyze EGG signal in continuous, 

dysphonic speech and (2) identify parameters that correlate with strain. 

Methods: EGG signal from 8 normal speakers and 8 subjects with adductor spasmodic 

dysphonia (ADSD) reading two-sentence excerpts from the Rainbow Passage was processed 

by the new software developed in MATLAB. The contact quotient (CQ), pulse width at the 50% 

amplitude level (EGGW50), and various closing slope and opening slope measures were 

extracted from selected speech segments. Intra-subject and inter-subject comparisons were 

then made.  

Results: None of the EGG parameters differed between normal and ADSD speakers. Within-

subject comparison among ADSD speakers showed that the opening slope measure SO7525 

distinguished between the strained and unstrained syllables. 

Conclusion: These results provide further insight into the utility and limitations of EGG. While 

EGG may have limited utility in inter-subject comparison, it may provide a useful objective 

measure of vocal strain in the same subject with variable degrees of strain or over time.  
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INTRODUCTION 

The human voice can be evaluated by a variety of methods. Electroglottographic (EGG) signal 

is produced when vocal fold vibrations produce cyclic fluctuation in the electrical impedance 

across the larynx. The EGG signal thus reflects the degree of contact between the vocal folds 

during voice production and provides a measure of voice quality based on phonatory 

physiology. However, the utility of EGG has been limited because existing methods of EGG 

signal analysis focus on the evaluation of 2-3 parameters in a segment of sustained vowel 

production, which does not reflect pathologies more apparent in conversational speech. 

Patients’ symptom severity may not be accurately reflected in a sustained vowel. The 

perceptual quality of a sustained vowel is one measure used in assessing the need for 

intervention, but this cannot be the only gauge. For example, a patient on maintenance Botox 

therapy for spasmodic dysphonia may be near-normal on the Rainbow passage when their 

voice starts to break. The potential for EGG analysis to clinically guide therapy was explored in 

this study.   

Excessive vocal effort perceived as vocal strain is a cardinal feature in many types of 

voice disorders. The identification and assessment of strain is important because they may 

guide possible targets in the phonatory system for intervention, and the reduction of vocal strain 

is often one of the primary goals of voice therapy. The “gold standard”’ for the assessment of 

vocal strain continues to be auditory-perceptual measures. Strain is one of the key attributes 

assessed in standardized clinical voice assessment protocols such as the Consensus Auditory-

Perceptual Evaluation of Voice (CAPE-V)1 and the Grade, Roughness, Breathiness, Asthenia, 

Strain scale (GRBAS)2. To circumvent limitations of perceptual evaluation3, researchers have 

sought objective correlates of vocal strain in aerodynamic and acoustic measurements. It was 
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reported 30 years ago that the perception of strain was associated with low glottal flow and high 

subglottal pressure in a repeated /pα/ syllable task in a group of dysphonic patients4. A 

subsequent study of trained voice users showed that laryngeal resistance distinguished normal 

voice from pressed voice, which is qualitatively similar to strained voice5. Measures derived from 

the acoustic signal have been investigated as well. In a comparison of comfortable versus 

maximally projected acting voice in trained actors, a moderate positive correlation was found 

between the perceptual rating of strain and the average intensity difference between the lower 

and higher spectral regions in the long-term average spectrum (LTAS) 6. More recently, the 

cepstral peak prominence, the spectral L/H ratio, and the Cepstral/Spectral Index of Dysphonia 

were all shown to have moderate to strong correlations with strain severity in the reading 

samples of dysphonic patients7. Compared to the aerodynamic measures, the acoustically-

derived parameters generally show stronger correlation with the perceptual ratings and have the 

advantage of reliable measurements from connected speech. The stronger correlation is 

perhaps not surprising since auditory perception is derived from acoustic input and is further 

removed from the aerodynamics of voice production. Despite significant progress, however, all 

objective measures have limitations. For example, differentiation of vocal quality based on 

acoustic measures may not be specific for the vocal dimension of strain, as the same acoustic 

measures can be deviant in both strained voice and breathy voice7,8. On the other hand, while 

the aerodynamic parameters of flow, pressure, and resistance are directionally sensitive to 

dimensions such as strain or breathy5, aerodynamic measurements are typically collected via 

vocal tasks that may not fully reflect the pathology of the voice disorder as manifested in 

continuous speech. 

 A physiologic measurement that could in theory quantify some aspect of vocal strain and 

is readily obtained in connected speech is the electroglottograph (EGG). The EGG measures 

the change in tissue impedance across the two sides of the larynx as the vocal folds contact 
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and separate during phonatory vibration. The change in EGG waveform during the glottal cycle 

reflects the change in vocal fold contact area (VFCA) and therefore provides a physiologically 

derived measure of vocal function connected to the oscillatory kinematics at the sound source9-

11. EGG measures are thought to indicate the degree of vocal fold medial compression12,13. 

While other elements of hyperfunctional phonatory behavior such as hyperadduction of the 

ventricular folds, excessive subglottal pressure, and hyperfunction of extrinsic laryngeal muscles 

may contribute to the auditory-perception of vocal strain, strain may also be associated with the 

degree of compression of the vocal folds 14. It is reasonable to postulate that the perception of 

strain would correlate with increased vocal fold compression or VFCA in at least a subset of 

voice disorders in which excessive strain originates primarily from the glottic level. This rationale 

to employ EGG in the assessment of strain is supported by previous data. The EGG closed 

quotient was shown to distinguish pressed phonation from normal or resonant phonation on 

sustained /a/ and /i/ in trained voice users 15,16. Further support came from a study of patients 

with adductor spasmodic dysphonia (ADSD) in which EGG measures of vocal fold adduction 

correlated with symptom severity in 2 of the 5 patients17.  

While the prior studies provided valuable, albeit at times inconsistent, data on how EGG 

measures relate to the perceptual quality of strain, there were also important limitations. First, 

much of the affirmative data came from vocal performers with no laryngeal pathology. The 

applicability of the findings to a more clinically relevant, dysphonic population is unknown. 

Second, with the exception of Fisher et al.18 and Fisher et al. 17, most studies of dysphonic voice 

using EGG have only investigated a single measure, i.e. the closed quotient or the contact 

quotient (CQ), or the percent time the vocal folds are thought to be in contact during the glottal 

cycle. This single time-domain parameter captures only a small amount of the information 

content in the complex EGG waveform, which also provides information on the rate of contact 

and de-contact, for example. The use of the CQ to represent EGG’s utility as an assessment 
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tool likely underestimates the potential of EGG. The work by Fisher and colleagues17,18 showed 

that the EGG pulse width and slope measures, parameters that are thought to reflect vocal fold 

adduction, also correlated with symptom severity in a subset of patients. These parameters, 

however, have not been further investigated by other groups. Finally, in all previous studies, 

EGG data were collected on a segment of sustained vowel in order to minimize signal distortion 

encountered in connected speech. While the CQ from connected speech has been reported19, it 

is unclear how the EGG signal was processed to take into account such distortion.  

There are several rationales to extend the capability of EGG analysis to connected 

speech. First, compared to sustained vowels or single syllables, connected speech is a more 

complete representation of speaking patterns that constitute dysphonic symptoms in daily 

activity. Second, the type and frequency of phonatory aberrations may differ between sustained 

vowel and connected speech, as has been shown in ADSD20. Finally, analysis of connected 

speech in principle avoids the significant inconsistencies introduced by the manual selection of 

a sustained vowel segment for analysis21. There is, however, a knowledge gap on how EGG 

signal in connected speech is best handled. The calculation of EGG waveform parameters 

beyond CQ is affected by the substantial DC drift in connected speech due to laryngeal 

movement relative to the skin-fixed electrodes. The effect of high-pass filtering, which is 

commonly applied to attenuate the DC drift, on waveform parameters such as the opening and 

closing slopes has not been systematically investigated. Signal processing is especially 

problematic in dysphonic speech, where distorted EGG waveforms are common and the signal-

to-noise tends to be low. Given the potential utility of EGG to provide a physiologic correlate of 

strain, there is a need for improved processing of dysphonic EGG signal and critical evaluation 

of waveform parameters beyond the CQ.  

This work aimed to develop methodology to analyze EGG signal in connected dysphonic 

speech and to apply it to ADSD in a pilot study. The two objectives were to (1) establish the 
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feasibility of automated waveform parameter extraction from EGG data that contain high 

aperiodicity, distorted waveforms, and high-frequency noise, and (2) to use the new algorithm to 

identify EGG parameters that correlate with the perceptual quality of strain in ADSD. We 

focused the initial application to one specific voice disorder in order to avoid the heterogeneity of 

disease-specific EGG findings across different disorders. We chose ADSD with the following 

considerations: (1) Strain is one of the hallmark perceptual features in ADSD speech, with a  

hyperadductive component as the dominant perceived characteristic in ADSD22;  (2) the primary 

deficit in ADSD is involuntary spasms or over-adduction of the vocal folds. Localization of the 

source of vocal strain to the vocal folds makes ADSD a better disease entity to investigate than 

other hyperfunctional voice disorders, e.g. muscle tension dysphonia, in which other 

components of the phonatory system may also make significant contribution; (3) the vocal folds 

in ADSD are morphologically normal, which allows a more direct connection between the EGG 

signal and hyperadduction, versus disorders in which strain is present in the context of vocal 

fold lesions, e.g. nodules and polyps; (4) the diagnosis of ADSD rests on the identification of 

stress-strain patterns in speech that vary with phonetic content23, yet this determination is 

dependent on listener training and experience. There is therefore a need for objective methods 

to identify stress-strain variation; and (5) since ADSD symptom is sensitive to phonetic content, 

the less-strained segments of speech can serve as internal control for each subject.  

We hypothesized that (1) EGG parameters could differentiate between normal and 

ADSD speech, and (2) EGG parameters could distinguish ADSD speech segments that are 

perceptually different in their degree of strain. In particular, we were interested in the diagnostic 

utility of the waveform parameters that convey the speed of glottal contact and de-contact, in 

order to explore the potential utility of EGG beyond the CQ. 
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METHODS 

Speakers and Data Collection 

The study protocol was approved by the Institutional Review Board of UT Southwestern 

Medical Center. A group of ADSD speakers and a gender-matched group of normal speakers 

participated in this study with prospective data collection. The ADSD speakers were recruited 

from patients seen at the UT Southwestern Voice Center. All have the diagnosis of ADSD based 

on assessment by a speech-language pathologist with extensive experience in the treatment of 

voice disorders, assessment by a laryngologist, and laryngoscopic examination. Since the intent 

of the study was to determine if it was feasible to use EGG to detect vocal strain, we selected 

twelve ADSD speakers whose vocal symptoms were relatively severe at the time of data 

collection, out of a pool of 40 screened. Our rationale was that if the utility of EGG could not be 

demonstrated in this subset of speakers, then it probably did not exist. Of the 12 ADSD 

speakers, 1 had never received treatment for ADSD, 1 was seen 18 months following his 

previous BOTOX injection, and 1 was seen 6 months following her previous BOTOX injection. 

These 3 speakers were severely symptomatic at the time of data collection. The remaining 9 

speakers were recorded just before their scheduled BOTOX injection, at 3-5 months following 

their previous injection, while they were becoming more symptomatic but before their voice 

quality had completely declined to a non-treatment level. At the time of data collection, they 

ranged from mildly to severely symptomatic compared to their own range of symptom fluctuation 

through cycles of BOTOX treatment.  

 Speakers were asked to read a two-sentence excerpt from the Rainbow Passage with 

comfortable loudness and pitch while EGG and acoustic signals were collected. The second 

and third sentences were used, from “The rainbow is…” to “…beyond the horizon”. EGG data 
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were acquired with the EG2 electroglottograph (Glottal Enterprises, Syracuse, NY) using the 

vocal fold contact area (VFCA) output and a 10 Hz low frequency limit. The manufacturer 

recommends a low frequency limit of 20 Hz for routine clinical use and states that 40 Hz may 

also be acceptable for female voices. We chose the lower cutoff of 10 Hz to further minimize 

potential waveform distortion. Lower cutoffs, e.g. 5 Hz, resulted in signal drifts that consistently 

exceeded the dynamic range of the acquisition. The signal in each channel was digitized at 25 

kHz by a DATAQ DI-720 A/D converter and recorded on a computer using WINDAQ (DATAQ 

Instruments, Akron, OH). 

Software: Overview 

Software was developed in MATLAB (versions R2011-R2013a, The Math- 

Works, Natick, MA) to display and analyze EGG data via a graphical user interface (GUI). The 

acoustic and EGG signals were displayed in a stacked manner to allow speech segment 

selection based on either signal. The GUI makes possible the inspection of EGG waveform, 

playback of the corresponding acoustic signal, and control of data processing flow. 

Signal Flow 

Software was developed in MATLAB to acquire and display the hardware-filtered EGG, which 

was in the form of a .csv file. Next the EGG baseline was to be corrected by either linear 

correction or Butterworth filtering. Following this a Savitsky-Golay smoothing filter was applied 

to the EGG, in order make further signal processing easier. Next the EGG signal was 

differentiated in order to acquire the DEGG signal. This DEGG signal was processed through a 

peak-detection algorithm we created in order to find DEGG maxima/minima. These 

maxima/minima were then used to identify EGG maxima/minima, which then allowed us to 

pursue further parameter calculations. Figure 1 below shows a diagram of the general signal 

flow described above.  
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Figure 1. Diagram illustrating general signal flow from EGG signal acquisition to parameter 

calculations.  

Signal Processing: Baseline Correction 

  Two alternative strategies were implemented to address the DC drift in the EGG signal. 

The first utilized a second-order Butterworth high-pass filter, and the second used cycle-based 

linear correction. 
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Butterworth high-pass filter 

 To determine the effect of the high-pass filter cutoff frequency on the morphology of the 

EGG waveform, select EGG parameters were calculated with Butterworth filter normalized 

cutoff frequencies of 0 (no cutoff), 1, 5, 10, 20, and 50 Hz in the sentence “The rainbow is a 

division of white light into many beautiful colors” in 5 test speech samples from patients with 

ADSD. The SC5075, SC2575, SO9050, SO7525, EGGW50, and NormalizedArea (defined 

below) were computed with each frequency cutoff and the percent deviation from values 

calculated without Butterworth filter was tabulated. This process yielded 30 values (6 

parameters per each of the 5 frequency measurements) of percent-deviation for each cutoff 

frequency, and they were binned in 0.5% increments.  

Cycle-based linear correction 

 In this method, suggested by Ron Scherer, the baseline correction was performed for 

each EGG cycle independent from other cycles. The y values over the cycle were corrected by 

an amount ∆y=B x (∆x/W), where B was the difference between the starting and ending y 

values, and W was the cycle width. Figure 2 below illustrates this method.  

  

Figure 2. Schematic illustrating cycle-based linear correction.  
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Definition of EGG Waveform Parameters 

The parameters are illustrated in Figure 3. Contact quotient (CQ) is defined by maxima 

and minima in the DEGG waveform13. EGGW50 is the pulse width at the 50% amplitude level13. 

Contact opening and contact closing slopes are defined based on previous studies9,18, and the 

normalized version is used18. In the current work, the closing height HC and opening height HO of 

each cycle are not assumed to be the same. The contact closing slope SC1090 denotes the 

normalized rise (B/HC) divided by the normalized run (A/T), where B is the EGG signal height 

corresponding to the segment between 10% and 90% of the closing height HC, A is the time 

segment corresponding to B, and T is the period of that cycle (Figure 3a). SC2575 is similarly 

defined to denote the slope between 25% and 75% of the closing height, and SC5075 the slope 

between 50% and 75% of the closing height. The opening slopes SO7550, SO7525, and 

SO9050 are defined analogously and normalized to the opening height HO instead of HC. A new 

parameter peak skew denotes the relative position of the EGG cycle peak within the cycle 

period (Figure 3b). On a scale of 0 to 1 (normalized to cycle period T), the earlier the peak 

occurs within the cycle, the smaller the peak skew value. While the peak skew parameter is 

motivated by a previous study24, we use it solely as an empiric, geometric parameter and do not 

make inference about glottal shape based on its value.  
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Figure 3a. EGG parameter definitions. 

 

Figure 3b. Peak skew definition.  
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Signal Processing: Cycle Selection 

Phonatory cycles in the EGG signal were identified indirectly using the derivative of the 

EGG (DEGG). The premise of this approach has been illustrated previously25,26, but 

modifications were implemented in the present work to facilitate its application to dysphonic 

data. High-frequency noise in the EGG signal was removed with an Savitzky-Golay (polynomial) 

smoothing filter. The DEGG was then generated using a low-pass differentiation filter27,28. 

Positive peaks in the DEGG signal, which corresponded to rapid glottal closing, were identified 

using a predefined threshold that can be changed by the user. The time-locations of the DEGG 

peaks were then used as the starting points for a local maximum search in the original, 

baseline-corrected EGG signal (without application of the polynomial smoothing filter) to identify 

the EGG maxima. EGG minima were then identified by a local minimum search between 

successive maxima.  

Signal Processing: Cycle Rejection 

 The challenge in using an automated cycle-selection algorithm to process data that 

contain a high degree of noise and waveform shape irregularity is to determine which cycles to 

keep and which to reject. If the rejection criteria are too strict, some “true” cycles will be 

rejected; if the criteria are too forgiving, “false” cycles will be included. We chose to bias our 

criteria towards the rejection of false cycles based on the following rationale and assumptions: 

1. Since the intent is to analyze speech segments, a relatively large number of cycles will be 

included in each selection; 2. in most selections, the number of true cycles will outnumber the 

number of false cycles; 3. the number of false cycles should be minimized to reduce their 

contribution to the averaged parameter values in a selection; 4. the unintentional rejection of a 

small number of true cycles is compensated by the larger true:false ratio in the remaining cycles 

following the application of rejection criteria; 5. the effect of any false cycles that remain is 

diluted by the larger true:false ratio in the remaining cycles; and 6. the averaged value of any 
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particular EGG waveform parameter of the remaining cycles should therefore be representative 

of the speech segment selection. 

 With the above in mind, we sought to reject cycles with questionable morphologies. To 

determine waveform parameters that have a high likelihood of indicating a false cycle (a cycle 

identified by the automatic cycle-identification algorithm but in fact represents noise or a false 

peak), a preliminary analysis of 5 ADSD datasets was performed using the following rejection 

criteria to remove cycles with CQ < 0.1, CQ > 0.9, or period falling outside of two standard 

deviations of the cycles in the selected data segment. The EGG corresponding to the sentence 

“The rainbow is a division of white light into many beautiful colors” was analyzed and the results 

pooled. This yielded a total of 2087 automatically identified cycles, with 376 rejected based on 

the above criteria and 1711 accepted for further analysis. The distribution of accepted and 

rejected cycles across bins of values (0 to 1 in 0.1 increments) of CQ, EGGW50, and peak skew 

was examined. Based on this analysis, the additional rejection criteria of EGGW50 < 0.1, 

EGGW50 > 0.8, peak skew < 0.1, and peak skew > 0.8 were implemented, since cycles with 

any of these morphologic features were highly unlikely to represent true phonatory cycles. 

Finally, the first two and last two cycles in each continuous segment of EGG cycles were 

also excluded from analysis to minimize waveform distortion from phonation onset and offset. 

Listeners and Perceptual Tasks 

Three speech-language pathologists with a primary practice focus on voice evaluation 

and therapy and a fellowship-trained laryngologist performed two rating tasks on each ADSD 

speech sample. For each sample, the listener was given a page printed with a 100-mm visual 

analog scale (VAS) marked in quartiles, as well as the text of the reading passage. First, the 

listeners were asked to place a single mark on the VAS to rate the “strain variability” or the 

dynamic range of the strain quality of the sample. A mark close to 0 signaled little difference in 
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strain between the least-strained syllables and the most-strained syllables in that sample, 

whereas a mark close to 100 signaled a large difference in the degree of strain between the 

least-strained and most-strained syllables. For example, a sample that sounded very strained 

on some vowels but near-normal on others would receive a high rating. A sample that had little 

strain throughout would receive a low rating, and so would a sample that sounded evenly 

strained throughout with no variation of the strain with phonetic content. In the second rating 

task, the listeners circled the syllables that sounded more strained than the rest and underlined 

the syllables without any strain. Each sample was played 3 times. All 12 ADSD speech samples 

were rated. Three samples (25%) were repeated in a different session to measure intra-rater 

agreement. For each sample, if a syllable was circled by at least 3 listeners, it was considered a 

consensus strained syllable. Consensus strained syllables were identified in 9 of the 12 

samples. The remaining 3 samples all had low strain variability and the listeners did not agree 

on which syllables were strained. These 9 samples were used for further analysis. The phrase 

“take the shape” was consistently unstrained across all 9 samples except one and was used as 

the unstrained token for 8 of the 9 samples. “Apparently” was used as the unstrained token for 

the 9th sample. 

Statistical Analysis  

Kendall’s coefficient of concordance as a measure of inter-rater agreement in the rating 

of “strain variability” among the 4 raters was calculated using the MAGREE macro in SAS 9.3. 

Cohen’s d was calculated using a third-party macro in SAS29. 

RESULTS 

Effect of Baseline Correction 

 To determine how the Butterworth filter affects EGG waveform morphology, a 

preliminary analysis using a limited dataset was performed. Select EGG parameters of a test 
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sentence in 5 ADSD subjects were calculated after filters with various cutoff frequencies were 

applied. The results are shown in Figures 2 and 3. A cutoff frequency of up to 50 Hz did not 

appreciably change the percentage of parameters that remained within 2% of the values 

calculated without a filter. However, the percentage of parameters that remained within 0.5% 

declined with increasing frequency cutoff, showing that higher cutoffs do exert an effect on the 

parameter values. Figure 4 below illustrates this. Based on this preliminary analysis, a 10 Hz 

cutoff for the Butterworth filter was utilized for subsequent parameter calculations, although a 5 

Hz cutoff was likely to produce comparable results.  

 

Figure 4. Effect of Butterworth filter cutoff frequency 

 Figure 5 shows the raw EGG signal. Figures 6-7 show the comparison between using 

cycle-based linear correction and a high-pass filter to remove the DC drift in an EGG signal from 

a moderately dysphonic patient.    
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Figure 5. Raw EGG waveform [range ~9]  

 

 

Figure 6: (top) EGG signal from moderately dysphonic patient after cycle-based linear 

correction [range ~9]. (bottom) Zoomed-in to show corresponding minimums on opening and 

closing side of cycle. Refer to Figure 2 above for schematic of linear correction.  
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Figure 7. EGG signal from moderately dysphonic patient with 10 Hz Butterworth filter applied 

(range ~1) 

EGG Cycle Selection/Rejection  

Figure 8 shows the automated selection of EGG maxima and minima from both a normal 
and ADSD speaker. Figure 9 shows both the selected and rejected EGG cycles from a 
dysphonic data set.  

 

Figure 8. EGG data from a normal and ADSD speaker, on the phrase “These take the shape.” 
Red circles denote cycle maximums and blue circles denote cycle minimums.  
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Figure 9. (top) Peak-picking in moderately dysphonic data set. (bottom) Rejected cycles 
marked by asterisks, shown on EGG (purple waveform) and DEGG (yellow waveform) and the 
yellow waveform being the DEGG.  

 

Evaluation of Slope Measures 

 Different contact closing slope measures, SC25759 and SC109018, have been reported, 

as well as one opening slope measure, SO905018. To determine which contact closing and 

contact opening slope formulations should be used for reporting in this study, these previously 

described measures as well as several new measures (SC5075, SO7525, SO7550) were 

compared in a preliminary analysis to determine which formulations had greater stability, i.e. 

less fluctuation across a speech segment. The coefficient of variance (COV-standard deviation 

divided by the mean, multiplied by 100), which serves as an index of irregularity, was calculated 

for each slope measure in the speech segment “long round arch” in the 8 normal and 8 ADSD 
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speakers. This phrase involves continuous voicing and was also used in previous studies of 

ADSD.30  

The results, shown in Figure 10, show that SC5075 had the lowest COV among both 

normal speakers and ADSD speakers regardless of which baseline correction method was 

applied. The previously reported SC1090 had the greatest COV. These results are consistent 

with the observation that the closing segment below 25% height is susceptible to waveform 

artifacts.9 Of the 3 opening slope measures tested, SO7525 had the lowest COV among normal 

speakers, whereas among ADSD speakers the COV for SO9050 was slightly lower than that of 

SO7525, by only 5%. Based on these comparisons, SC5075 and SO7525 were chosen to 

represent the contact closing and opening slopes, respectively, for subsequent analysis. Not 

surprisingly, ADSD speakers had greater COV for all slope measures than normal speakers.

 

Figure 10. Comparison of slope measures. Importantly, SC5075 and SO7525 seen to have the 
least COV.  

EGG Parameters in Normal vs ADSD Speakers 

 To determine if EGG waveform features can distinguish between normal and ADSD 

speech, the CQ, EGGW50, peak skew, SC5075, and SO7525 were calculated for the phrase 

“long round arch”. The results are shown in Table 1. None of the parameters are statistically 

different between normal and ADSD speakers.  

 High-Pass Filter Linear Correction 
 Normal ADSD p Normal ADSD p 
CQ 0.486 (0.067) 0.491 (0.068) 0.85 0.486 (0.068) 0.490 (0.069) 0.88 
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EGGW50 0.454 (0.039) 0.480 (0.062) 0.24 0.454 (0.040) 0.476 (0.065) 0.32 
Peak Skew 0.299 (0.058) 0.311(0.045) 0.57 0.299 (0.058) 0.319 (0.052) 0.39 
SC5075 11.5 (2.9) 10.6 (3.0) 0.46 11.4 (2.9) 10.4 (3.1) 0.40 
SO7525 -2.25 (0.36) -2.15 (0.64) 0.65 -2.24 (0.36) -2.20 (0.66) 0.86 
Table 1. EGG waveform parameters in normal vs. ADSD speech. Values are expressed as 
mean (standard deviation) (N=12).  

Strained vs Unstrained 

We tested the hypothesis that EGG can differentiate between strained and unstrained 

voicing within the same speaker. Consensus strained syllables were identified in 9 of the 12 

ADSD samples. These samples were rated to have high strain variability, i.e. at least 25% on 

the VAS. The syllables differed between samples (Table 2). These syllables were used as the 

strained token for within-subject comparison. The phrase “take the shape” was used as the 

unstrained token for all except one sample.  

ADSD Subject ID Strained syllables 
1 long round 
2 path 
3 light, colors, arch 
6 many, arch, above 
7 rainbow, many 
8 rain, long 
9 light, these, arch, path 
10 bow, long, high, ends 
11 above, horizon 

 Table 2. Consensus strained syllables by speaker 

EGG parameters were compared between the strained token and the unstrained token 

for each speaker, and the results are shown in Table 3. The opening slope SO7525 was 

significantly different between the strained and unstrained tokens (t(8) = 3.11, P = 0.015 and t(8) 

= 2.78, P = 0.024 for high-pass filtered and linearly-corrected data, respectively), with a large 

effect size (Cohen’s d = 1.04 and 0.93 for high-pass filtered and linearly-corrected data, 

respectively). The other parameters were not significantly different between the strained and 

unstrained tokens. 

 High-Pass Filter Linear Correction 
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 Strained Unstrained p Strained Unstrained p 
CQ 0.513 (0.076) 0.482 (0.073) 0.36 0.513 (0.076) 0.480 (0.073) 0.34 
EGGW50 0.501 (0.065) 0.459 (0.074) 0.11 0.503 (0.060) 0.458 (0.072) 0.072 
Peak Skew 0.303 (0.039) 0.327 (0.087) 0.46 0.331 (0.060) 0.307 (0.095) 0.53 
SC5075 10.3 (3.7) 12.7 (4.8) 0.11 10.0 (3.7) 12.5 (4.8) 0.095 
SO7525 -2.13 (0.72) -2.53 (0.69) 0.015 -2.18 (0.72) -2.54 (0.73) 0.024 
Table 3. EGG waveform parameters in strained vs. unstrained syllables in ADSD speech. 
Values are expressed as mean (standard deviation) (N=9). 

 

EGG-Based Strain-stress Pattern of Entire Passage 

 Since SO7525 appeared to correlate with listener’s perception of strain within a speech 

segment, this parameter was plotted for the entire speech passage to obtain a visual 

representation of parameter variation in continuous speech. An example is shown in Figure 11. 

 

Figure 11. SO7525 visual representation of parameter variation in continuous speech. 
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DISCUSSION 

The overall aim of this work was to identify objective or instrumental measures that 

correlated with the auditory perceptual quality of vocal strain. The two specific goals were to 

develop the methodology to process dysphonic EGG signal from connected speech, and to use 

it to examine the clinical utility of EGG measures as they pertain to vocal strain.  

Objective vs Subjective 

EGG analysis has the promise of objectifying a task that is difficult to quantify 

perceptually. It is difficult for listeners to differentiate a small amount of strain in running speech, 

so the goal of this study is to detect differences that we can hear but otherwise could not 

measure. When the EGG signal is carefully processed and the rating tasks are correctly 

defined, certain EGG waveform parameters correlate with perceived strain in ADSD speech. 

The clinical utility of an objective method of quantifying vocal strain is to measure symptom 

severity and monitor progress with behavioral, pharmaceutical, or surgical intervention. 

Signal Processing of EGG from Dysphonic Connected Speech 

 The first goal of the study was to develop a robust algorithm to automate the extraction 

of EGG waveform measures from dysphonic speech. The first step towards meaningful data 

extraction was to systematically evaluate the effect of baseline correction on those measures in 

order to determine an optimal approach to baseline correction. Historically, a high-pass filter has 

been applied to the raw EGG signal to remove the DC drift from laryngeal movement in 

connected speech. However, the cutoff frequency used was often not reported in publications 

and/or not specified by the equipment manufacturer. Our data showed that, for dysphonic EGG 

signals, a high-pass filter with cutoff greater than 10 Hz resulted in increased deviation of 

parameter values from those obtained from the raw signal collected with a 10 Hz low-frequency 

limit in the hardware. We concluded that a 10 Hz high-pass filter achieved a good balance 
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between sufficient reduction of DC drift and minimizing signal distortion. We further showed that 

a per-cycle linear correction scheme produced results comparable to a 10 Hz filter. By omitting 

the high-pass filter, the linear correction method has the advantage of avoiding the arbitrariness 

of choosing a frequency cutoff for the filter. The disadvantage of linear correction is the 

increased complexity of data handling. To have the highest confidence in interpreting the EGG 

parameter values, we recommend both baseline correction methods to be employed. 

 The major challenge in automating EGG signal processing from dysphonic connected 

speech is achieving the balance between selecting waveform cycles that represent true glottal 

cycles and rejecting waveform cycles that are spurious or highly dysmorphic. We implemented 

several strategies in an attempt to achieve such a balance. Following baseline correction, high 

frequency noise in the EGG signal was removed to improve the signal-to-noise in the DEGG 

signal. Automated cycle selection was carried out in the DEGG domain, following the approach 

of Henrich26. We imposed cycle rejection criteria based on several measures of waveform 

morphology to exclude cycles that have a high likelihood of being false positives. The underlying 

rationale for our approach was that the mean value of an EGG parameter will be representative 

of a selected speech segment if most cycles included in the calculation are true glottal cycles. 

We believe we have arrived at a reasonable balance of cycle acceptance/rejection (e.g. Figure 

12) through an iterative process of optimizing the rejection criteria. 
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Figure 12. EGG (purple) and DEGG (yellow) in moderately dysphonic data with EGG/DEGG 

outlier combo shown (black circles).  

A major advantage of the automated cycle-selection algorithm developed in this work is it allows 

arbitrary speech segment selection. The analysis does not depend on manual selection of the 

most stable mid-segment of a sustained syllable. The user can select the speech segment to 

encompass an entire word or phrase, with the starting and ending points in non-phonated 

breaks or in the phonated transition between two syllables.  

EGG Measures Do Not Differentiate Normal from Dysphonic Voice 

 We found that none of the EGG parameters investigated were significantly different 

between normal speakers and ADSD speakers. Substantial within-group inter-subject variability 

limited the utility of EGG measures as a means to differentiate the two groups. High inter-

subject variability has been noted in acoustic and aerodynamic measures31. High EGG CQ 

variability among healthy subjects is noted in Verdolini16.  
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Baseline Correction 

As this is the first work looking at EGG in continuous speech, careful attention must be 

given to how the baseline is treated. The baseline is subject to drift because of laryngeal 

movement during continuous speech. In order to properly analyze the cycles within the EGG 

signal, this baseline must be corrected for first. The two methods described above, using a 

Butterworth 10 Hz filter and linear correction, both seem to produce comparable results. 

Choosing a Butterworth cutoff frequency is somewhat arbitrary, which linear correction avoids. 

Additionally, linear correction does not depend on neighboring cycles or the length of the EGG 

selection. However, the downside of linear correction is that data handling is more complex 

whereas the Butterworth filter is straightforward, as it is a built-in MATLAB function. The cutoff 

frequency must be chosen to where the signal distortion that occurs at higher frequencies is 

balanced against the less robust baseline flattening at lower cutoff frequencies. The 10 Hz 

Butterworth filter provided the best balance in our study. 

Whole versus Partial Segment Selection 

Selection of a waveform segment in the EGG sample is equally as important as 

correcting the baseline. A previous study looked for an accurate and reliable method of 

selecting appropriate syllable segments, specifically aiming at identifying the steadiest segment 

of the voice sample21. It was found that selecting certain parts of a vowel segment as opposed 

to the entire segment introduces significant inconsistencies. For this reason, our analysis was 

performed on the entirety of a syllable.   

Parameter Selection and Outcomes 

Parameter selection was novel in our study, in that we explored measures that have not 

been previously used. Out of the three opening slopes measured, SO7525 was found to have 

the least coefficient of variance and was used for inter-subject and intra-subject comparisons. 

SC1090 is not a reliable measure for dysphonic data because the closing phase could have a 



 29 

large lag that accounts for more than 10% of the height17. The need for a higher cutoff, of at 

least 25%, has been previously mentioned9. Contact quotient (CQ) was unable to differentiate 

between controls and ADSD patients. In a previous study, it was found that “a specific range of 

CQs cannot be identified for resonant voice across all subjects16.” SO7525 was able to show a 

significant difference within intra-subject comparisons, indicated by Table 3 in the Results 

section. 

Advantages and Limitations 

Advantages of using the EGG signal is that it does not need a quiet environment for 

collection, which lends well to simultaneous acoustic recording. Additionally, it only includes 

phonated information without consonant or aspirated sounds.  

Though our study has used the EGG signal in a way it has not been before, there are 

limitations that must be discussed. Inherent to the EGG signal, signal-to-noise ratio is low in a 

patient with significant fat around their neck, making it difficult for DEGG peaks to be detected 

by our algorithm.  

We also acknowledge that the numerical results include artifacts from other things, like 

frequency-dependent changes in laryngeal configuration, and supraglottic contact, even mucous 

bridges that can change the impedance. Specifically, constant pitches have been used in the 

past to avoid the effect of laryngeal drift on the EGG data16. However, this study is an attempt to 

see if, despite the possible presence of the aforementioned artifacts, we can still obtain a 

correlation with strain.  

Absolute values of parameters from one syllable to another cannot be equated, as the 

effect from laryngeal drift during normal speech cannot be accounted for. As with many 

physiologic measures, inter-subject variability is high. High inter-subject variability is a common 
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feature of acoustic and aerodynamic measures31. High EGG CQ variability among healthy 

subjects is noted in Verdolini16.  

Future Directions 

Our intent is to identify waveform morphologic features that can be clinically useful. We 

are less interested in the individual parameters rather than groups of parameters, which is the 

direction we would like to take our EGG analysis in the future. EGG should be included as part 

of multidimensional voice assessment, since it may provide information complementary to 

acoustic measures12. Additionally, treatment response for spasmodic dysphonia needs to be 

multidimensional32. The potential contribution of EGG to clinical voice assessment should be a 

focus for future studies33.  

Specifically, for intra-subject data, EGG can be used as a baseline against which future 

comparisons can be made. Additionally, aside from spasmodic dysphonia, it can be applied to 

other voice disorders in which strain is prominent. It can also be used to differentiate between 

types of dysphonia (e.g. muscle tension dysphonia and spasmodic dysphonia).  

CONCLUSION 

These results provide further insight into the utility and limitations of EGG. The data 

suggest that meaningful information can be obtained from EGG of continuous dysphonic 

speech. While EGG may have limited utility in inter-subject comparison because of overlapping 

parameter values between normal and strained phonation, it may provide a useful objective 

measure of vocal strain in the same subject with variable degrees of strain or over time. Our 

findings support the conclusion from previous work using opening slope measures17. More 

extensive analysis of other speech tokens in the reading passage is required to confirm our 

preliminary finding and to determine its sensitivity.  
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