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ABSTRACT 

Molecular and functional characterization of the human brain is challenging due to its experimental 
inaccessibility. Most of our understanding about human brain function relies on the assumption that 
biological processes uncovered in model organisms are conserved in humans. Comparisons of the human 
brain with non-human primate brains offer to both uncover the novelties in human brain evolution and better 
evaluate the insights obtained from model organisms about human brain function. To achieve this, high-
throughput sequencing methods on post-mortem brain tissues provide a rewarding readout to understand 
human brain evolution at the molecular level. In addition to their use in comparative studies, these 
technologies were also utilized with a hope to understand molecular underpinnings of measurable human 
brain activity metrics. During my dissertation, I read relevant literature extensively (Chapter 1) and sought 
to understand human-specific epigenomic and transcriptomic changes at cellular resolution in the cortical 
brain (Chapter 2). Additionally, after in-depth analysis of many human brain single-nuclei RNA-seq 
datasets, I found a pervasive ambient RNA contamination problem, and devised in silico solutions to tackle 
this problem. My efforts improved the analytical approach in the field as well as in my research (Chapter 
3). I have also been involved in efforts to identify transcriptomic correlates of brain activity in human subjects 
(Chapters 4-5). After detailing these efforts, I discuss the implications of these findings, weigh their impact 
on our understanding of human brain function and offer ideas for further research (Chapter 6). 
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CHAPTER 1: Background 

Note: The second part of this chapter – Molecular evolution of the human brain - is 

modified from a commissioned book chapter (accepted for publication) titled: “Differences 

in brain gene expression between humans and primates”. It has been accepted for 

publication as a chapter in the book titled “The evolutionary roots of human brain 

diseases”. This chapter is an edited version of my own original writing. It has been edited 

by my thesis supervisor Genevieve Konopka and has also been updated after feedback 

from the editors of the book. 

Caglayan, E. and Konopka, G. (2023) ‘Differences in brain gene expression 
between humans and primates.’, in The evolutionary roots of human brain 
diseases. Oxford University Press.  

Phenotypic evolution of the human brain 

Comparisons with other species, especially chimpanzees that shared a last 

common ancestor with humans ~6 million years ago1, provide an opportunity to better 

categorize and understand the molecular and phenotypic evolutionary changes that are 

unique to humans. Phenotypic changes are especially important since prominent 

changes in the molecular landscape are often interpreted as causally linked to phenotypic 

changes. Despite the manifest uniqueness of human cognition, pinpointing the 

phenotypic changes unique to humans has been challenging. In this section, I categorize 

and provide an overview of these efforts.

 

Behavioral traits 

Although cognitive differences between human and non-human primates are 

evident, cognitive skills have been surprisingly difficult to compare between human and 

non-human primates. A prominent point of discussion is whether the capacity to 
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understand the mental state of others – also known as theory of mind – is unique to 

humans2,3. This possibility has been examined in great apes. Chimpanzees are able to 

behave accordingly to newly acquired knowledge of another chimpanzee in multiple 

experimental paradigms. For example, when a subordinate chimpanzee observed food 

being hidden in sight of a dominant chimpanzee, the subordinate chimpanzee did not 

reach out to the food3. However, the subordinate chimpanzee reached out to the food if 

she observed the dominant chimpanzee did not witness where the food was hidden3. 

Interestingly, chimpanzees did not change their behavior when they observed another 

chimpanzee had a false belief (e.g., when the food was moved to a new location and the 

dominant chimpanzee did not witness this)3. These results indicate that chimpanzees 

may possess theory of mind, albeit to a limited degree compared to humans3. However, 

some critics have argued that these behaviors may arise from adaptive behavioral 

reflexes and not reflect an actual mental state of awareness4. More recently, great ape 

species were tested in a false belief paradigm by measuring the eye movements of the 

subjects that look in anticipation of a certain behavior (anticipatory looking)5. Contrary to 

previous research, the researchers found that great apes may possess false belief 

understanding5, although others pointed out the high variability of results obtained with 

anticipatory looking test6. Other cognitive tests have also been performed on non-human 

primates. For example, to understand abstract thinking by measuring basic logical 

inference, the researcher hides food in one out of two cups and shows the subject which 

cup is empty. When presented with the choice, both apes and monkeys were able to 

select the cup with the food, indicating that non-human primates are able to do inferential 

reasoning7,8. 
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Similar to theory of mind and other logical inferences, many cognitive capabilities 

that are effortlessly executed by humans can also be executed by other animals (both 

mammals and birds) including mental time travel, problem solving and toolmaking among 

others9. Therefore, the current understanding is that humans are mostly not unique in 

being able to perform cognitive tasks, but rather in how advanced they can perform these 

tasks compared to other species. For example, the first systematic behavioral 

observations of chimpanzees demonstrated that toolmaking - previously considered as a 

unique human trait –  was shared with non-human primates10. Decades of subsequent 

research showed that many non-human species can make and/or use tools, but no 

species could demonstrate similar complexity of tool usage as humans9. Taken together, 

these results indicate that our closest genetic relatives may possess higher cognitive skills 

than previously appreciated but to a lesser extent than humans. 

Perhaps the most salient cognitive ability that is considered to be uniquely human 

is language. Since non-human primates are not able to use vocalization for learning and 

complex communication, efforts to understand language capabilities in apes have 

focused on teaching sign language to newborn apes during their infancy and observing 

the ape’s competency in language in comparison to human infants9. In two independent 

studies, researchers raised baby chimpanzees named Washoe and Nim who 

communicated only through American Sign Language. Washoe and Nim were reported 

to learn hundreds of signs and multisign utterances (mainly two-signs)11,12. It was noted 

that the breadth of sign utterances was too high to be explained by rote memorization11. 

Researchers also noted that Washoe was able to form a two-sign combination that was 

never taught before13. For example, when pointed to a swan on water, and asked ‘what 
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that’, Washoe signaled ‘water bird’. As an alternative explanation, researchers raising 

Nim noted that Washoe may simply be signaling what she is observing (that is, water and 

bird) and not relating the two signs11. They also noted that Nim lacked many 

characteristics of language that typically developed in age-matched human infants. For 

example, mean length of sign utterances did not change in Nim’s development. Nim’s 

mean length of utterances were between 1 - 2, whereas they increased rapidly for human 

infants from 1 to 5 signs in 1–3-year-olds11. These behavioral metrics have been observed 

both in healthy controls and deaf infants who communicate with sign language11. When 

Nim uttered >2 signs, he often repeated one of the signs twice (e.g., eat Nim eat) and his 

longest utterance was a 16 sign with many repeats: give orange me give eat orange me 

eat orange give me eat orange give me you11. In contrast, human infants often add 

increasing semantic complexity and rarely repeat the words in a similar fashion11. 

Researchers also noted that Nim interrupted his teacher more often than human infants 

would and his utterances mostly followed his teacher’s utterances11. Taken together, the 

authors claimed that apes lack the innate ability to develop language similar to humans 

which supports the hypothesis that language is a genetic endowment unique to 

humans11,14. 

Anatomical and stereological differences 

In addition to the behavioral and cognitive complexity, human brain evolution is 

also characterized by enlargement in the last 2.5 million years that resulted in three times 

larger brains than our closest genetic relative chimpanzees15. Some studies also pointed 

out that brain weight to body weight ratio in the human brain is seven times larger than 

an average mammalian brain and three times larger than an average primate brain16. 
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However, others note that large brain weight relative to body weight is not an indicator of 

higher cognitive ability, and it correlates with cognitive ability less than brain weight 

alone17,18. Some studies further note that brain mass and neuron number do not scale 

similarly in all lineages. For example, brain mass increases more compared to neuron 

number in the rodent lineage than in the primate or insectivore lineages17. In other words, 

primate brains scale to contain more neurons for the same weight, thus saving more 

space compared to rodent brains19. In contrast, non-neuronal cells scale similarly 

between lineages17. However, humans do not show extraordinary divergence in terms of 

their neuronal or non-neuronal cell numbers per brain mass compared to other primates17. 

The authors therefore argue that the human brain scales similarly to other primate brains 

in terms of cell counts per brain mass17,19. While the large size of the human brain may 

be linked to the evolution of higher cognitive capacity in humans, these results call for a 

reconsideration of the most appropriate measure to utilize allometric differences to 

understand the unique trends in human brain evolution. 

In addition to high-level allometric comparisons, compositional differences (e.g., 

density and number of neuronal processes) also need to be examined to understand 

human brain evolution. Decades of research focused on varying brain regions and cortical 

layers while utilizing different technologies. As a result, most studies do not provide 

entirely overlapping conclusions with previous studies. For example, in one study, 

dendritic spine density in the neocortex was observed to be greater in human upper layer 

pyramidal neurons compared to macaques and marmosets20. Another study found similar 

dendritic spine density between human and chimpanzee cortex21. However, both studies 

found longer and more branched dendrites in humans compared to chimpanzees and 
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monkeys20,21. While this could reflect that dendritic spine density is similar between 

human and chimpanzees but different in monkeys, more comprehensive studies are 

needed to complement these results. Indeed, a more recent study provided a 

comprehensive comparison of synapse densities – but not spine densities – across 

multiple primate species which revealed higher synapse density in humans compared to 

all primates including chimpanzees22. Notably, synapse and dendritic spine density are 

higher in association areas than primary sensory cortex, which may be linked to their 

function in neural plasticity and higher order computations with potential consequences 

for human brain evolution21,23. 

In contrast to synapse and dendritic spine density, neuron density is lower in 

humans than other primates, although the difference is more subtle between humans and 

other apes22. This difference was also more prominent in visual cortex than inferior 

temporal cortex22. Lower neuron density in humans is also supported by recent spatial 

transcriptomics profiling that found both three fold less cell density and fewer neurons 

than glia in human cortex compared to mouse cortex24. Previous studies also showed 

higher glia to neuron ratio in humans compared to non-human primates using Nissl 

staining25, however these results were not supported by quantitative analyses in single-

cell approaches26,27. These results suggest a trend for less neuron density in humans and 

a need for more comprehensive study between humans and non-human primates to 

elucidate changes in neuron density, glia density and other cell type densities as well as 

their relative proportions. Importantly, while relative cell type proportions can be obtained 

by single-cell or single-nuclei sequencing methods, density measurements require 
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preservation of tissue space. Future comparative spatial transcriptomics studies across 

primate tissues will be informative to answer these questions. 

 As I will detail in the next chapter, most comparative studies at the molecular level 

characterize the cells resident in the tissue, often at transcriptomic and epigenomic levels. 

However, this is a very limited scope for a brain tissue that is highly connected both within 

itself and with other brain regions. For example, subcortical neurons synapse onto cortical 

neurons within the neocortex and very little is known about whether and how these 

synaptic transmissions differ between species. Such biological processes are unlikely to 

be captured by comparative transcriptomics of tissues or nuclei. By immunostaining 

crucial receptor proteins across species, several studies have identified that humans and 

chimpanzees have more dense innervations of serotonergic, dopaminergic and 

cholinergic axons from subcortical regions onto prefrontal cortex compared to macaque 

monkeys28-30. Other studies have focused on the connectivity differences of language-

relevant brain areas between humans and chimpanzees using brain imaging 

measurements (e.g magnetic resonance imaging or diffusion tensor imaging), although 

they offer limited resolution31. More studies are needed to elucidate differences in 

connectivity and molecular identity of connections compared to non-human primate 

brains. 

Molecular evolution of the human brain 

Phenotypic comparisons of the human brain with non-human primate brains 

revealed surprisingly few differences. It should be noted that comparing phenotypic 

readouts between species requires a priori knowledge about the importance of the 

phenotype for the overarching question (e.g., importance of dendritic spines for human 
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brain evolution). Some have noted that the human brain may possess many unique 

phenotypes that require unbiased detection methods32,33. Since the phenotypic changes 

that make us human are majorly contributed by – if not fully caused by – genetic changes, 

a closer examination of the functional consequences of human-specific genetic changes 

may permit discovery of previously unsuspected phenotypic changes33. Indeed, many 

studies have compared the sequence or regulation of human genome to non-human 

primate genomes with a focus on brain function. In the following section, I will focus on 

efforts to identify and characterize genetic and gene regulatory changes associated with 

human brain evolution. 

Evolution and function of human-specific DNA sequences 

Human-specific DNA sequence changes are, directly or indirectly, connected to 

human-specific gene regulatory changes, human-specific novel genes, and human-

specific alterations of the protein structures. Genes encoding for proteins expressed in 

the brain are largely conserved in the human genome34. Notable exceptions have been 

an active area of research since altering amino acid composition of a single gene is more 

amenable to genetic modification in experimental systems than sequence changes in the 

non-coding genome35. However, in this chapter, we will focus on the gene regulatory 

effect of DNA sequence changes that comprise the millions of human-specific 

substitutions, insertions and deletions36. Since ~98% of the human genome is non-

coding, most of these changes are in the non-coding genome, and understanding their 

functional role is an exciting and ongoing challenge. 

Human-specific substitutions can be either functional genomic changes or neutral 

changes without a functional consequence. To determine functional genomic sequences 
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with increased divergence specifically in human evolution, one approach is to identify the 

genomic sequences that are highly conserved across many vertebrate species with low 

substitution rate indicating functionality, and then retain the regions that accumulated 

significantly more human-specific substitutions on this constrained background, indicating 

accelerated evolution of the conserved elements on the human lineage. The 

accumulation of studies utilizing this approach has yielded ~3000 human accelerated 

regions (HAR)37. While some studies have exclusively focused on non-coding 

sequences38, other studies have carried out genome-wide analyses and found >90% of 

the accelerated regions to be non-coding39, indicating that most HARs are likely to affect 

gene regulation rather than protein sequences. 

Associating HARs to nearby genes for the identification of their potential functions 

revealed enrichments for genes involved in neuronal functioning, specifically in 

neurodevelopment40. In their analysis of 2649 non-coding HARs, Capra et al. found that 

773 are predicted to be developmental enhancers and 251 of them are predicted to be 

active in brain40. Predicted enhancer activity in development motivated functional 

characterization of HARs with reporter assays through injection into mouse embryos40,41. 

These studies revealed activity of HARs in the developing brain, with the HARs driving 

different patterns of reporter activity compared to the ancestral state of the genomic 

region40. Even with ways to narrow down the regions to the most promising candidates, 

low-throughput methodology, such as reporter assays in mouse embryos, is a major 

roadblock for the functional characterization of HARs. More recently, studies have been 

able to parallelize the delivery of genomic constructs into cultured cells, allowing the high-

throughput characterization of the effects of sequence changes on regulatory function 
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using MPRAs, or massively parallel reporter assays42-44. MPRAs function as reporter 

assays that produce RNA as a readout instead of fluorescence. Combined with RNA-seq, 

this technique allows parallelized screening of the activity of regulatory regions of 

interest45.  Studies utilized MPRAs by delivering HARs and their corresponding 

chimpanzee sequences into neural stem cells or neural cells in culture. Two studies found 

that 50-60% of active HARs displayed significantly altered activity compared to 

chimpanzee sequences42,43. Another study found this to be 27.5%44. Importantly, the lack 

of differential activity could be due to the limitations of the culture systems or cell types 

being utilized, indicating that, even at ~50%, this is likely an underestimation of functional 

activity of human-specific sequence changes in HARs. Moreover, the functionality of the 

HARs to drive reporter expression was also similar between the same cell types from 

human / mouse43, and human / chimpanzee42, indicating that HAR functionality is 

primarily driven by the human-specific sequence changes and not by the trans effects of 

the cellular environment. In addition to uncovering the pattern of HAR activity, these 

studies also further characterized some HARs for their role in human neural stem cells. 

An example was a HAR-regulated gene, PPP1R17, that slows cell cycle progression in 

neural progenitor cells43. PPP1R17 and other genes with human-specific functions (e.g 

SRGAP2C that promotes radial glia migration and increases spine density46), could be 

molecular factors responsible for neoteny in human brain development. 

HARs comprise only a small portion of all human-specific genomic changes44. The 

sequencing of ancient human genomes has also allowed identification of human-specific 

substitutions that were ancestral in Neanderthals and Denisovans, pointing out regions 

that were likely changed more recently in modern human evolution47. Genes carrying 
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modern human-specific amino acid substitutions are enriched in neurodevelopmental 

function, similar to HARs47. Notably, three of these genes are associated with kinetochore 

of the mitotic spindle (CASC5, KIF18A, SPAG5)47. Both human-specific substitutions not 

linked to HARs and modern human-specific substitutions were also recently characterized 

by MPRAs44,48. Interestingly, human-gained enhancers (HGE) that have human-specific 

substitutions that are not necessarily characterized as HARs caused differential activity 

in 33.9% of the active HGEs44. Similarly, ~23% of active modern human-specific 

substitutions were differentially active compared to the ancestral sequences48 and the 

genes associated with the loci of differentially active sequences are enriched for brain 

anatomy and function48. These results indicate that modern human-specific substitutions 

and human-specific substitutions in the non-HAR enhancers are also important sources 

of molecular evolution in human cells. 

Gene regulatory changes – single gene comparisons 

While genomic changes provide the ultimate resource for identifying the genomic 

underpinnings of human evolution and disease, the functional consequences of human-

specific genomic changes are highly complex. Even if a genomic change is correlated 

with a detectable phenotype, uncovering the activity of this genomic change in different 

organs, tissues and cell types is an arduous task. Moreover, the majority of the genomic 

changes are non-coding and their interactions with gene promoters are mostly unknown. 

Genomic changes can also exert a functional impact indirectly by altering the expression 

of a gene that subsequently differentially alters the expression patterns or function of 

other genes. Methodologies have been insufficient to capture such a complex interaction 

since this would require high-throughput screening of molecular function throughout 
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development to adult stages and at high cellular and regulatory (from DNA to protein) 

resolution. However, gene expression and chromatin architecture can be investigated in 

whole tissues, and more recently, at single-cell resolution per tissue. Such breakthroughs 

have allowed investigators to understand human-specific gene regulatory novelties, 

especially in brain tissues. In this section, we will summarize the major findings from these 

studies that span more than a decade and discuss their relevance to the understanding 

of human brain disorders. 

As mentioned above, human-specific changes are largely non-coding, but can also 

rarely be among coding sequences. Nonsynonymous changes in the coding sequences 

can potentially alter the function of the given protein, which can have indirect effects on 

the molecular landscape of the cell. Regulatory proteins, such as transcription factors and 

RNA-binding proteins, can be prioritized to test this hypothesis and uncover potential 

human-specific gene expression changes caused by these human-specific evolutionary 

novelties in regulatory proteins. Variants in the coding region of the transcription factor 

FOXP2 are associated with both language disorders49 and in human evolution through 

positive selection50. Humanized FOXP2 mice that express the two human-specific amino 

acids show altered ultrasonic vocalizations (~30kHz-~100kHz), indicating that human-

specific FOXP2 sequence functionality may have been altered in brain circuits that 

underlie motor-relevant behaviors in human evolution51. Another study tested whether 

human FOXP2 has differential transcriptional targets compared to chimpanzee FOXP2 

(FOXP2chimp) in cultured neuronal cells52. Interestingly, ~100 genes were differentially 

regulated by FOXP2 compared to FOXP2chimp indicating that many gene expression 

changes in humans can be driven by differential trans activity of a single regulatory 
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protein. These genes were also enriched in genes that are differentially expressed 

between human and chimpanzee brain tissues, underscoring the relevance of this finding 

for in vivo functions52. A more recent study characterized the modern human-specific 

coding sequence change in NOVA1, an RNA binding protein that regulates alternative 

splicing and is associated with neurological disorders53. Despite NOVA1’s regulation of 

alternative splicing, which may not directly affect gene expression levels, the authors 

found 277 differentially expressed genes in brain organoids expressing the modern-

humanized NOVA1 compared to the ancestral NOVA153. Another recent study using 

overexpression in mouse and ferret cortex as well as human brain organoids found that 

the modern-human version of TKTL1 (hTKTL1), that codes for an enzyme in the 

glycolysis pathway, increases the production of basal radial glia and neurons compared 

to the ancestral variant54. While this study did not investigate whether there are gene 

regulatory changes associated with hTKTL1, the authors’ phenotypic observations 

suggest that hTKTL1 evolution likely affects the wiring of the gene regulatory programs. 

Taken together, these studies have shown that human-specific changes in the function 

of a single regulatory protein can affect the expression patterns of many other genes, 

leading to phenotypic alterations, and indicating that the molecular networks of a given 

human brain cell can be very different than a comparable chimpanzee (or other non-

human primates) cell. 

Gene regulatory changes - transcriptomic comparisons in the developing brain 

The effects of human-specific coding sequence changes can be considered as 

trans-effects as they alter gene expression through a diffusible molecule whereas a HAR 

regulating a nearby gene’s expression is considered a cis-effect. Strikingly, the studies of 
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protein coding evolution show that functional changes, even in a single protein, can affect 

the expression patterns of many other genes. It is not feasible, if not currently impossible, 

to predict the complex regulatory landscape of human brain cells compared to non-human 

primate brain cells by DNA sequence data alone. Human-specific phenotypes at different 

developmental and cellular levels are also challenging to delineate using DNA sequence 

alone without comprehension of the regulatory landscape of each gene in humans and 

non-human primates in a given biological context. To overcome these challenges, many 

studies have adopted a more direct approach to understanding the human-specific 

molecular functionality by comparing the transcriptomes of humans and non-human 

primates. Importantly, these studies use brain tissue from developing and adult humans 

and non-human primates. While initial studies utilized microarray technology, more recent 

studies have adopted RNA-sequencing, as it is not prone to biases in the pre-determined 

sequences central to hybridization-based microarray technology. Here, we outline these 

comparative transcriptomics studies and discuss key findings. 

The human brain is larger than a non-human primate brain and has unique 

cognitive capabilities. These phenotypes are proposed to be due to the heterochronous 

development (i.e. altered developmental rate or timing) of human features, including brain 

cell types. To understand whether there is molecular support for these changes, and to 

characterize human-specific molecular alterations related to heterochrony, studies have 

compared the transcriptomes of the brains of humans and non-human primates in early 

development. 

An early study focused on the early postnatal development of the dorsolateral 

prefrontal cortex (DLPFC) using tissue from humans, chimpanzees and rhesus 
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macaques, and found an excess number of genes that show delayed expression in 

humans relative to chimpanzee and rhesus-macaque55. Later studies also found 

heterochronous transcriptomic changes in human brain tissues. One study showed that 

the peak expression of synaptic genes in the prefrontal cortex was delayed until 5 years 

in humans, whereas this was achieved at ~1 year in chimpanzees and rhesus 

macaques56. However, a morphological study showed prolonged synaptic maturation in 

chimpanzees until 5 years old, arguing that the original study may have suffered from low 

sample sizes in chimpanzees57. A more recent study compared the transcriptomes of 

human and rhesus macaque brains across prenatal and postnatal development by 

matching the chronological ages of humans and non-human primates according to their 

transcriptomic profile58. Comparing the heterochrony in the transcriptomic signatures of 

five major biological processes (neurogenesis, neuronal differentiation, astrogliogenesis, 

synaptogenesis, myelination), the authors found that synaptogenesis related genes were 

not delayed but accelerated in human neocortex58. These studies may have yielded 

different results due to variabilities in the readout (gene expression versus neuronal 

morphology) and analytical approaches to match the chronological age between species. 

In contrast to tissue-based comparisons, in vitro studies using induced pluripotent 

stem cell (iPSC) derived neurons offer a more controlled setting to study heterochrony in 

human and non-human primate neuronal development. Studies differentiating human and 

chimpanzee neurons from iPSCs consistently reported slower maturation in human 

neurons both in terms of neuronal morphology (e.g. dendritic length) and also in terms of 

neuronal function (e.g. synaptic firing)59-61. Transcriptomic comparisons also revealed that 

genes related to neuronal maturation were differentially expressed in human compared 
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to non-human primate neurons60. While this lends support for the initial observation of 

delayed transcriptomic upregulation of neuronal development in humans56, these studies 

did not explicitly test whether the heterochronous genes in in vivo development matched 

the heterochronous genes in in vitro development. Importantly, transcriptomic profiles of 

monolayer and organoid culture systems have been shown to largely correspond to 

prenatal development unless cultured for ~1 year62, while comparative transcriptomic 

studies targeting neurodevelopment were often from postnatal tissues older than 1 year. 

Nevertheless, in vitro studies have shown that human neuronal maturation is slower than 

chimpanzee neuronal maturation outside of their tissue environment, indicating that this 

property is an intrinsic feature of human neurons. 

Another heterochronic biological process associated with human development is 

myelination. Myelination in the central nervous system is mediated through 

oligodendrocytes that mature postnatally. Comparisons of myelination levels in human 

and chimpanzee cortical gray matter throughout postnatal development showed that 

myelination is prolonged in the human brain, extending beyond late adolescence, 

whereas it peaked before sexual maturation in chimpanzees63. A carbon dating study of 

human oligodendrogenesis also showed that oligodendrocyte generation is prolonged in 

the gray matter of the cortex until ~40 years old, whereas oligodendrocyte generation 

peaked at ~5 years old in white matter, indicating that the observation of prolonged 

myelination in humans might be specific to the gray matter of the cortex64. Transcriptomic 

comparisons have also shown delayed increased expression of myelination related genes 

in humans compared to rhesus macaque58. A recent study found that the cortical gray 

matter of the adult human brain has a higher ratio of OPCs (oligodendrocyte progenitor 
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cells) and lower ratio of mature oligodendrocytes compared to non-human primates65, 

indicating that humans may retain a larger oligodendrocyte progenitor pool, and therefore 

a likely higher progenitor capacity, compared to non-human primates even in late 

adulthood. 

The developing brain has many different cell types progressing through various 

stages of maturation at a given time point. Most investigations that focused on 

development have been at the tissue level, thus human-specific regulatory patterns 

throughout development are currently being investigated at the cell type level. One study 

compared fetal human and rhesus macaque brain at single-cell resolution in dorsolateral 

prefrontal cortex but noted the high variability of expression patterns at single-cell 

resolution and utilized bulk transcriptomes to identify differentially expressed genes 

between the species and investigated their expression across cell types58. The authors 

found 14 differentially expressed genes in humans including TRIM54 – a gene encoding 

a protein important in axonal growth – expressed in excitatory neurons at lower levels in 

humans than rhesus macaque58. Given that even a single regulatory gene can be 

responsible for over a hundred gene expression changes52,53, this number is likely an 

underestimation and future studies are needed to elucidate the human-specific regulatory 

changes more accurately. 

Gene regulatory changes - transcriptomic comparisons in the adult brain 

The differential maturation of the human brain indicates that the molecular 

architecture of the mature human brain is likely vastly different from that of a non-human 

primate brain. Post-mortem tissues from the adult brain are more readily accessible to 

researchers than those from the developing brain, especially for endangered non-human 
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primates such as chimpanzees. Therefore, comparative transcriptomic studies on the 

adult brain have been more frequent and thus more insightful than the limited studies 

from the developing brain. Additionally, these studies have uncovered the immense 

cellular heterogeneity in the adult human brain, which is largely reflected in non-human 

primate brains27,65. This section aims to outline these efforts and provide an overview of 

human-specific molecular features in the adult human brain. 

Tissue-level comparisons of human-specific gene expression changes were 

identified by comparing anatomically matched tissues typically from human, chimpanzee 

and rhesus macaque brains, although some studies included more species including 

bonobo26 and gorilla66 as well as a new world monkey marmoset as an outgroup to rhesus 

macaque (an old world monkey)27,67. Since gene expression differences between humans 

and chimpanzees can be either due to a change in humans or chimpanzees, studies have 

used another non-human primate (often rhesus macaque) as an outgroup species and 

identified human-specific gene expression changes as the genes that are consistently up 

/ down regulated in both human-chimpanzee and human-rhesus macaque 

comparisons68,69. Focusing on multiple brain regions from cortical and subcortical regions, 

these studies have identified hundreds of human-specific gene expression differences. 

While human-specific gene expression alterations are often reproducible across 

studies68, quantitative comparisons have not always yielded the same conclusion. For 

example, focusing on three brain regions, frontal pole from neocortex, caudate nucleus 

and hippocampus, one study found more human-specific gene expression differences in 

the frontal pole compared to the caudate nucleus or hippocampus68. However, another 

study identified a greater number of human-specific gene expression changes in the 
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striatum and thalamus compared to cortical regions69. A more recent study conducted a 

comparative survey of 33 anatomical brain regions and found a greater number of human-

specific gene expression changes in the cerebral cortex, hypothalamus and cerebellar 

gray and white matter regions compared to striatal regions26. Variability across such 

studies could be explained by differences in the exact anatomical regions used (e.g., 

striatum encompasses caudate nucleus, putamen, and nucleus accumbens), as well as 

differences in the analytical and experimental approaches. A meta-analysis that starts 

from the raw data across these and other studies could be instructive with respect to any 

potential differences in analytical methods. 

Several studies have sought to prioritize specific differentially expressed genes in 

a number of ways. One approach is to carry out assessment of co-expression networks 

(co-expressed genes that are likely co-regulated). Multiple studies using this approach 

have found that these gene modules are often not conserved between humans and non-

human primates68,69. Notably, one study identified a gene module that contained FOXP2 

as a hub gene (a gene with the highest level of correlation with the other genes in the 

module), providing further support that FOXP2 may have important human-specific 

functions68. Another hub gene in a human-specific gene module was CLOCK, which is 

implicated in psychiatric diseases in addition to its role in circadian rhythms68. Human-

specific molecular changes in the striatum also revealed that genes involved in dopamine 

biosynthesis (tyrosine hydroxylase: TH and DOPA decarboxylase: DDC) were human-

specifically upregulated69. Interestingly, TH was downregulated in several great apes but 

not in humans in the neocortex, indicating that it was likely downregulated in the great 

ape divergence but upregulated again in human lineage69. A recent single-cell 
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comparative study also found that cell types orthologous to TH expressing human SST 

(somatostatin) neurons are present in chimpanzees but lack TH expression. This is in 

contrast to human, rhesus macaque and marmoset SST neurons that express TH27. 

While great apes other than chimpanzees were not examined in this study, both previous 

and more recent findings suggest that great apes lack TH+ neurons. Therefore, TH 

upregulation (and SST+TH+ neurons) may have been convergently evolved in humans 

with currently unknown functional consequences. Thus, these studies have uncovered 

human-specific molecular features at the tissue level. 

Brain tissues are notable for containing multiple cell types. The major cell types 

include neurons, astrocytes, microglia, oligodendrocytes and OPCs (oligodendrocyte 

progenitor cells), with many subtypes within each major cell type (especially neurons). 

Tissue level comparisons combine transcripts from all cell types in a tissue, potentially 

masking any cell type-specific effects. To circumvent this problem, some studies have 

isolated nuclei from post-mortem tissue and used flow cytometry to sort several major cell 

types per tissue sample across species70,71. Comparing differential gene expression in 

oligodendrocytes, one study found that previous tissue level comparisons failed to 

capture the human-specific gene expression changes in oligodendrocytes70. The authors 

also showed evidence for an increased number of human-specific gene expression 

changes in oligodendrocytes compared to neurons70. Another study distinguished 

excitatory and inhibitory neurons from each other and found that many genes with human-

specific expression in one cell type was not altered in the other71. Broad cell type 

categories (excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes, OPCs, 

microglia) have been further examined across species using single-nuclei RNA-
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sequencing (snRNA-seq), finding that glial gene expression changes may be more 

human-specific compared to neuronal gene expression changes despite having similar 

evolutionary rates of change when all branches are considered26. These results could 

indicate that glial functions may have been altered in a more human-specific manner. 

Given the recent discoveries on neuron-glia interactions (e.g., both OPCs and microglia 

can engulf neuronal processes and affect the specificity and turnover of neuronal 

connections72,73), glial function could also indirectly alter the neuronal and neural function 

of the human brain. 

snRNA-seq of post-mortem brains has facilitated cellular characterization of brain 

regions. High quality datasets have shown that each of the broad cell type categories of 

the human cortex (explained above) contain further transcriptomically distinct subtypes74. 

Neurons are especially heterogeneous with more than a dozen distinct subtypes for both 

excitatory and inhibitory neurons74. Comparisons between human and non-human 

primate brains have revealed that the complex and heterogeneous diversification of 

neuronal subtypes are largely conserved across species27,65,75. However, the 

abundances of subtypes are not always uniform across species. For example, upper layer 

excitatory neurons are more abundant in human and chimpanzee compared to other non-

human primates27,75. Several less abundant subtypes of excitatory neurons, inhibitory 

neurons, astrocytes and microglia are also absent in certain species, including a human-

specific microglia subtype27. Transcriptomic comparisons of conserved cell types have 

shown that cell type identity is more conserved among inhibitory neurons compared to 

excitatory neurons across species75. Another study showed that most human-specific 

gene expression changes are only observed in one or a few subtypes (both in excitatory 
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and inhibitory neurons), and failure to disentangle neuronal subtypes masked these 

changes65. One example is human-specific upregulation of FOXP2 in only two (out of 14 

detected) excitatory subtypes in the posterior cingulate cortex (PCC)65. Strikingly, this 

upregulation was not observed in a similar comparative transcriptomic study from DLPFC, 

and comparisons of PCC with other cortical regions showed higher FOXP2 levels in PCC, 

indicating that subtype-specific FOXP2 upregulation in humans is also region-specific65. 

In addition to its neuronal subtype-specific and region-specific upregulation, FOXP2 is 

also human-specifically upregulated in microglia27. These results revealed novel human-

specific changes in the levels of critical regulatory genes, motivating future studies to 

characterize the functional consequences of these novelties in human evolution. 

Gene regulatory changes - epigenomic comparisons in the adult brain 

Non-coding genomic elements function to regulate gene expression. These 

genomic elements are also referred to as gene regulatory elements (GREs), and they can 

be further classified based upon their precise functioning (e.g., enhancers, promoters, 

silencers). GRE function can be detected by the presence of histone markers, chromatin 

state (open or closed) or the level of DNA methylation. It is possible to profile these 

markers through various high throughput assays and compare the level of epigenomic 

readout across species. While epigenomic profiling may not be as informative as 

transcriptomic profiling – since little is known about the functions of non-coding regions – 

the results of such profiling can help to pinpoint the GREs that function human-specifically 

and provide further mechanistic insight into the regulatory evolution of the human brain. 

Histone proteins are physically associated with DNA and can be modified to 

facilitate or obstruct the function of a given DNA sequence. Functionally active DNA 
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sequences (such as enhancers and promoters) are free of histone proteins, and the 

histone proteins flanking these regions are typically modified with H3K27ac or 

H3K4me176. Several comparative studies have captured the active GREs with an 

antibody against H3K27ac and these DNA sequences were profiled in post-mortem 

human and non-human primates brain tissues using chromatin immunoprecipitation 

sequencing (ChIP-seq)67,71,77. Similar to genes, GREs are also largely conserved across 

species at the sequence level; however, their activity can vary between species, 

indicating that the conserved GREs were modulated during evolution to create novel 

molecular networks77. One study showed that regulatory gains in adult hominins (common 

in human and chimpanzee) are enriched in elements that regulate oligodendrocyte gene 

expression, further implicating human-specific changes in the oligodendrocyte lineage67. 

Another study compared the epigenomes of prenatal human and rhesus macaque brains 

by profiling enhancers (H3K27ac) and promoters (H3K27ac and H3K4me2) and found 

enrichments for elements that are linked to genes involved in neuronal proliferation and 

migration among the human-gained enhancers78. 

Another, more stable epigenetic modification that can change gene expression is 

DNA methylation. The majority of DNA methylation occurs on CpG sites, however non-

CG methylation (CH methylation) can also modulate gene expression. Multiple studies 

have shown that CH methylation is enriched in brain tissue, in particular in neurons, and 

accumulates during the development of neural circuitry79,80. Interestingly, human neurons 

contain more CH methylation compared to chimpanzee neurons whereas CG methylation 

levels are similar between the two species79. These studies reveal another layer of 

human-specific gene expression regulation in the brain. 
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Multiple modalities of the epigenome can be profiled with high-throughput assays 

at the tissue level, however achieving cellular resolution in epigenomics has been a 

technical challenge. Recently, a highly efficient assay for profiling open-chromatin 

genomic regions (ATAC-seq) has been optimized for single-cell sequencing. A recent 

study compared the transcriptome and epigenome of human, chimpanzee and rhesus 

macaque brains at cellular resolution65. Focusing on the GREs with human-specific 

accessibility changes, the authors found that elements that had gains in accessibility 

specifically in human upper layer excitatory neurons are enriched for FOS / JUN 

transcription factor motifs. Since FOS / JUN are immediately transcribed upon neuronal 

depolarization and target hundreds of genes81, altered accessibility of putative FOS / JUN 

targets indicate that gene regulation upon neuronal depolarization has likely undergone 

human-specific modifications, specifically in upper layer excitatory neurons that are 

important for higher order cognition82. The authors also found that human-specific 

chromatin accessibility gains in deep layer excitatory neurons are enriched for FOX 

transcription factor motifs, including FOXP2, that are factors consistently implicated in 

neurodevelopment and cognitive functions83. Utilizing the comparative genomic 

sequence datasets, the authors further showed that human accelerated regions (HARs) 

and modern human-specific variants are enriched within human-specific chromatin 

changes. Interestingly, while HAR enrichment was observed in all cell types, modern 

variant enrichment was specific to an upper layer excitatory subtype, indicating potentially 

more cell type specificity in recent human evolution65.  
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 Taken together, these studies show past and present efforts to understand human 

brain evolution at the cellular and molecular level by using comparative transcriptomics 

and epigenomics (Figure 1). 
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Figure 1: Summary of approaches to identify human-specific cellular and gene regulatory 

changes. 
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CHAPTER 2: Molecular features driving cellular complexity in human brain 

evolution 
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Abstract 

Human-specific genomic changes contribute to the unique functionalities of the human brain1-5. The cellular 

heterogeneity of the human brain6,7 and the complex regulation of gene expression highlight the need to 

characterize human-specific molecular features at cellular resolution. Here, we analyzed single-nuclei RNA-

sequencing and single-nuclei open chromatin sequencing (ATAC-seq) datasets in human, chimpanzee, and 

rhesus macaque brain tissue from posterior cingulate cortex. We show a human-specific increase of 

oligodendrocyte progenitor cells (OPCs) and a decrease of mature oligodendrocytes across cortical tissues. 

Human-specific regulatory changes were accelerated in OPCs and we highlight key biological pathways that 

may be associated with the proportional changes. We also identify human-specific regulatory changes in 

neuronal subtypes, which reveal human-specific upregulation of FOXP2 in only two of the neuronal subtypes. 

We additionally identify hundreds of new human accelerated genomic regions associated with human-specific 

chromatin accessibility changes. Our data also reveal that FOS / JUN and FOX motifs are enriched in the human-

specifically accessible chromatin regions of excitatory neuronal subtypes. Together, we reveal multiple novel 

mechanisms underlying the evolutionary innovation of human brain at cell type resolution. 
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Main text: Phenotypic differences between humans and our closest extant relatives, including chimpanzees and 

other great apes, are driven by a combination of regulatory and coding sequence changes1. These genomic 

underpinnings of human brain evolution can be elucidated by genome-wide comparisons with non-human 

primate species. Previous studies have profiled the transcriptome of brain tissues in bulk to identify human-

specific gene expression changes2-4. These findings highlighted human-specific changes including in 

synaptogenesis3,5 and myelination5,8. However, brain tissue has tremendous cellular heterogeneity6,9. Therefore, 

single-cell genomics approaches are required to identify the full scope of human-specific gene regulatory 

changes.  While previous studies have explored comparisons of epigenome or transcriptome between humans 

and other species7,10-15, a systematic identification of human-specific epigenomic and transcriptomic changes at 

cellular resolution is lacking. To address this gap of knowledge and assign changes to the human lineage, here 

we profiled the transcriptomes and epigenomes of adult tissue from posterior cingulate cortex from humans and 

chimpanzees (Pan troglodytes) and included rhesus macaques (Macaca mulatta) as an outgroup. Our single 

nuclei RNA-sequencing (snRNA-seq) and single nuclei open chromatin profiling-sequencing (snATAC-seq) 

revealed significant changes in proportions of cells in the oligodendrocyte lineage, uncovering thousands of 

human-specific regulatory changes. We further assessed the association of these regulatory changes with the 

underlying human-specific substitutions, providing critical links between changes in DNA sequence and function 

in human brain evolution at cellular resolution. We also uncovered specific enrichment of the immediate early 

gene transcription factors FOS and JUN motifs in human-specific chromatin accessibility gains, indicating human 

specificity in activity dependent gene regulation. These results shed light on previously unknown cellular 

dimensions of human brain evolution. 

 

Results 

To identify molecular and cellular changes accompanying human brain evolution, we examined the evolution of 

Brodmann area 23 (BA23) by applying snRNA-seq and snATAC-seq approaches to the same samples. Notably, 

BA23 is part of the posterior cingulate cortex, a hub region in the default mode network16 that is involved in 

higher-order cognitive process such as theory of mind and has been implicated in schizophrenia17. Despite such 

importance, there is currently no detailed study of BA23 at single-cell resolution. We detected 148,540 nuclei 



 

using snRNA-seq (Human: 41,397, Chimpanzee: 53,539, Macaque: 53,604) and 73,486 nuclei using snATAC-

seq (Human: 28,630, Chimpanzee: 20,703, Macaque: 24,153) after quality control (Extended Figures 1, 

Supplementary Table 1, Methods). We annotated major cell types (Extended Figures 1-2) and neuronal 

subtypes (14 excitatory subtypes and 8 inhibitory subtypes) (Extended Figures 3) across species in both 

snRNA-seq and snATAC-seq (see Methods). 

 

Proportional changes in oligodendrocytes 

Evolutionary changes can arise from both proportional13 and/or gene regulatory2,5,10-12,18 changes of cell types. 

Compared to non-human primates, the human brain has prolonged myelination and altered gene regulation in 

the oligodendrocyte lineage5,8,18, indicating possible changes in human-specific cell type abundances. Assessing 

the proportional changes of the oligodendrocyte lineage in single-cell genomics can be particularly challenging 

since glia express fewer transcripts than neurons as evidenced by fewer unique molecular identifiers (UMIs) 

(Extended Figure 1E) and are thus more prone to filtering during empty droplet removal with a UMI cutoff. To 

overcome this bias, we used a low UMI cutoff after empty droplet removal (see Methods) and calculated the 

percentage of mature oligodendrocytes (MOLs) and oligodendrocyte progenitor cells (OPCs) compared to all 

glia. We found a human-specific increase in OPC abundance and a human-specific decrease in MOL abundance 

while astrocytes and microglia were not significantly altered (Figure 1A, Supplementary Table 2). To confirm 

this finding using an independent method that preserves tissue anatomy, we performed single molecule 

fluorescence in situ hybridization (smFISH), which validated a significant increase of OPC and a significant 

decrease of MOL populations in humans compared to chimpanzees (Figure 1B-D). We then examined data 

from other cortical regions that were previously profiled. Re-analysis of a snRNA-seq dataset from anterior 

cingulate cortex11 yielded a concordant result with our finding (Figure 1E, Extended Figure 4A-B). We further 

validated this with smFISH using anterior cingulate cortical tissue from humans and chimpanzees (Figure 1F-

H). Since we quantified the signal from all layers of the cortex, we also divided the columnar images into sections 

which revealed similar trends in both cortical regions (Extended Figure 4C-F), indicating that the result is not 

driven by uneven sampling of cortical layers. In addition, we examined a bulk RNA-sequencing data set of the 

entire oligodendrocyte lineage in the dorsolateral prefrontal cortex18. Using deconvolution, we found a higher 

OPC/MOL ratio in humans, regardless of which species was used as reference (Figure 1I, Extended Figure 



 

4G). Re-analysis of a comparative dataset7 in primary motor cortex tissue yielded similarly increased proportions 

of OPCs and decreased proportions of MOLs in humans compared to marmosets (Figure 1J) and a similar, 

trend compared to rhesus macaques (Figure 1K). Notably, we did not observe similar abundance changes in 

the caudate nucleus11 or dentate gyrus19 (Extended Figure 4H-I). Together, these results show that adult human 

brain cortical regions have proportionally more OPCs and fewer MOLs compared to non-human primates. 

 

Gene regulatory changes in OPCs 

To understand the gene regulatory novelties in the human lineage, we identified human-specific gene expression 

alterations (HS-Genes: HS-Up-Genes and HS-Down-Genes) and human-specific chromatin accessibility level 

alterations in cis-regulatory elements (HS-CREs: HS-Open-CREs and HS-Closed-CREs) per cell type 

(Extended Figures 4J, 5A-B, Supplementary Tables 3-4, see Methods). Focusing on the oligodendrocyte 

lineage, we found an increased relative abundance of HS changes compared to CS changes (chimpanzee 

specific) in OPCs than MOLs in both snRNA-seq and snATAC-seq (Figure 2A). Applying a similar approach to 

the anterior cingulate cortex11 yielded similarly accelerated evolution in OPCs (Figure 2B) as well as a significant 

overlap with our results (Extended Figure 4K-L).  

 

Among the human-specific regulatory changes in OPCs, HS-Down-Genes are enriched in cytoskeletal activity 

(Figure 2C; Supplementary Table 5), which is crucial for OPC migration and oligodendrocyte differentiation20. 

We posited that marker genes in committed oligodendrocyte progenitors (COPs) may also have been altered in 

human OPCs. We identified 15 COP marker genes that are common across all species in our dataset and in two 

additional human datasets21-23. Two COP markers, SH3RF3 and KIF21A were HS-Down-Genes in OPCs (Fig 

2D-F). In line with the enrichment of cytoskeletal genes, KIF21A is a kinesin motor protein that is involved in 

microtubule function, whereas SH3RF3 encodes for a SH3 domain containing protein with ubiquitin ligase 

activity, a process also implicated in oligodendrocyte maturation24. We also identified a HS-Closed-CRE in OPCs 

near the transcriptional start site (TSS) of SH3RF3, potentially linked to the human-specific downregulation of 

this gene (Figure 2G). Interestingly, snRNA-seq from the frontal cortex of adult mice showed that most primate 

COP markers exhibit upregulation in COPs or NFOLs (newly formed oligodendrocytes) compared to OPCs, 



 

except for Sh3rf3, indicating potential primate-specificity (Fig 2H-J). Together, these results highlight key 

regulatory changes in human OPCs which may underlie human-specific proportional changes in the 

oligodendrocyte lineage. 

 

Neuronal subtype specificity of evolution 

We identified 14 subtypes of excitatory neurons and 8 subtypes of inhibitory neurons across species in both 

snRNA-seq and snATAC-seq (Extended Figures 3). Unlike the oligodendrocyte lineage, we found that the 

neuronal subtype abundances were largely conserved across species (Extended Figures 3B,H, 

Supplementary Table 2). The rates of gene regulatory changes were similar between human and chimpanzee 

lineages across most subtypes (Extended Figure 5C-D). However, a few neuronal subtypes displayed 

signatures of human-specific acceleration in the epigenome (e.g. L2-3_1) or the transcriptome (e.g. L5-6 

FEZF2_1) (Extended Figure 5C-D). 

 

We observed a high heterogeneity of HS changes among neuronal subtypes (Extended Figure 5E). Since most 

previous comparative studies lacked cellular resolution at the subtype level, we assessed reproducibility between 

the previous bulk comparisons12,18 and the subtype-resolved comparisons. While we found an overall enrichment 

between the species-specific genes across different studies (Extended Figure 6A-C), bulk studies consistently 

showed low overlap with the more subtype-specific HS changes (Extended Figure 6D-E). Notably, when we 

pooled the excitatory subtypes, our power to detect subtype-specific HS changes were also substantially reduced 

(Extended Figure 6F-G). Therefore, most neuronal HS changes are not shared by more than a few subtypes 

and are masked in bulk approaches. 

 

Subtype-specific evolution of FOXP2 

We examined human-specific expression of transcription factors that are altered in only a few subtypes and 

found that FOXP2, a key transcription factor known for its roles in the development of cortical-striatal circuits 

related to speech and language and human brain evolution25,26, showed human-specific upregulation in two 



 

excitatory subtypes (Figure 3A). This contrasted with the previous comparative studies of adult cortex that did 

not find a significant difference in the FOXP2 expression between human and chimpanzee neurons11,12,14,18. 

Among these two subtypes, the L5-6_THEMIS_1 subtype (the most abundant THEMIS+ subtype, also marked 

by C1QL3, Extended Figure 3E) displayed low levels of FOXP2 in non-human primates (Figure 3A). We used 

smFISH to independently validate this finding in intact tissues and confirmed both more FOXP2 and THEMIS 

co-positive cells in human compared to chimpanzee (Figure 3B-C), and more FOXP2+ puncta in human 

THEMIS+ cells but not in THEMIS- cells (Figure 3B,D). Interestingly, a recent study found similar FOXP2 levels 

across species in all neuronal subtypes of the dorsolateral prefrontal cortex14. Corroborating this result, we also 

found significantly lower levels of FOXP2 in the THEMIS+ C1QL3+ neurons of prefrontal cortex and anterior 

cingulate cortex in an independent dataset23 (Figure 3E-F). These results suggest that subtype-specific 

upregulation of FOXP2 is also brain region-specific. Notably, some of the experimentally validated FOXP2 

downstream targets (VLDLR, SRPX2, CNTNAP2, MET, DISC1)25 are not human-specifically altered in these two 

subtypes, indicating potentially distinct FOXP2 gene regulation among neuronal subtypes in the cortex (Figure 

3A; Supplementary Table 3). Two previously identified FOXP2 targets, CNTNAP2 and MET are human-

specifically upregulated in layer 4 subtypes (Figure 3A). These results indicate a previously underappreciated 

neuronal subtype heterogeneity of key functional regulators in human brain evolution. 

 

Co-evolution of chromatin and RNA 

We then investigated the overall association between chromatin accessibility changes and gene expression 

changes. We found that the association between human specific gene expression and chromatin accessibility 

changes was the strongest at promoters and declined with the distance from the TSS (Extended Figure 7A). 

This trend was observed only among the gains and losses that are concordant between the genome and the 

transcriptome (HS-Up-Gene and HS-Open-CRE/HS-Down-Gene and HS-Closed-CRE) but not in the discordant 

overlaps (e.g. HS-Up-Gene and HS-Closed-CRE) (Extended Figure 7A). Overlaps for concordant, but not 

discordant, gains or losses were significant for nearly all subtypes (Extended Figure 7B-D). Together these 

results show that HS-CREs are significantly associated with HS-Genes and this association is stronger if the 

former is near TSS and both are altered in the same direction. 



 

 

To further refine associations between CREs and HS-Genes, we scanned the 500kb vicinity of each HS-Gene 

for HS-CREs that are altered in the same direction in the same cell type. This analysis assigned at least one HS-

CRE to 26% of HS-Genes across cell types (Supplementary Table 6). Focusing on the FOXP2 gene and 

surrounding genomic regions, we identified four HS-Open-CREs in the L5-6_THEMIS_1 subtype. Two of these 

CREs are also close to another HS-Up-Gene (MDFIC) (Figure 3G, Supplementary Table 6). Among the other 

two, one resides within a FOXP2 intron, whereas the other one is ~244kb away from the nearest FOXP2 TSS. 

To identify putative targets of human-specific FOXP2 upregulation, we then retained HS-CREs that have a 

FOXP2 motif and are associated with an HS-Gene in the same subtype. This analysis yielded 47 genes for the 

L5-6_THEMIS_1 subtype and 14 genes for the L4-6_RORB_2 subtype (Extended Figure 7E-F, 

Supplementary Table 6). We note that the FOXP2 upregulation in L5-6_THEMIS_1 is greater than in L4-

6_RORB_2 (logFC 0.8 and 0.4, respectively), and our analysis identified 3.35-fold more putative FOXP2 targets 

in L5-6_THEMIS_1 than in L4-6_RORB_2 (human-specific changes are only 1.8-fold more in L5-6_THEMIS_1 

than L4-6_RORB_2). We further highlighted 7 genes that are not altered in the other 12 subtypes, similar to 

FOXP2 itself (Extended Figure 7E). Together, these results provide a list of potential epigenomic alterations 

associated with transcriptomic alterations in human brain evolution. 

 

Novel human accelerated regions 

A goal of comparative genomic studies is to connect the changes at genomic sequences to functional changes. 

We therefore focused on human accelerated regions (HARs)27, which are genomic regions that have significantly 

accelerated sequence evolution in the human lineage28. We found that 30% of published HARs overlapped the 

CREs in our dataset (~2.5-fold excess compared to randomized background, p-value < 0.05. Extended Figure 

8A), reaffirming the significance of these regions in human brain evolution10,29,30. Published HARs within CREs 

also showed modest but significant enrichment in HS-CREs in several cell types (Figure 4A). However, these 

published HARs utilize sequence evolution without consideration of a specific tissue. Leveraging the snATAC-

seq dataset, we hypothesized that we could find many accelerated genomic regions by performing HAR analysis 

restricted to the CREs we identified (see Methods). The odds ratio of published HAR and HS-CRE association 



 

is ~1.4, which was achieved in our analysis with an unadjusted p-value cutoff of 0.001 (Figure 4B, 

Supplementary Table 7). We note that, in contrast to previous genome-wide approaches, this focused approach 

to define HARs allows us to relax statistical criteria (unadjusted p < 0.001) without reducing the effect sizes 

observed in published HARs, while simultaneously enhancing validity by linking substitution changes to 

functional changes (i.e. HS-CREs). We named these segments “cortical HARs” since the cellular composition of 

cortical brain regions are similar and we found that CREs from other cortical regions show a high degree of 

overlap with our dataset (Extended Figure 8B). Many published HARs are also cortical HARs (Extended Figure 

8C) and we identified >3 fold more HS-CREs overlapping a cortical HAR than overlapping a published HAR 

(Extended Figure 8D). Cortical HARs were also significantly enriched in HS-CREs from most cell types (Figure 

4C), and we highlight some notable examples of HS-CRE associated HARs that are important for synaptic 

(CELF4)31 or oligodendrocyte (NRG3)32 function (Extended Figure 8E-F). Together, these results demonstrate 

a significant association between sequence divergence and chromatin accessibility in human evolution and 

provide hundreds of novel HARs accompanying chromatin accessibility change at cell type resolution in the 

human brain. 

 

Chromatin evolution in modern humans 

Comparison of anatomically modern human genomes to those of archaic humans permits the identification of 

‘modern human-specific’ variants with unknown functional consequences33. We thus investigated the 

associations between modern human-specific variants and chromatin changes in the brain. In total, we identified 

12,161 modern human-specific variants associated with HS-CREs (Supplementary Table 8), which was a 

significant enrichment (p= 0.007, see Methods). Among the cell types, we found significant a enrichment only in 

upper layer excitatory neurons (Figure 4D).  

 

To compare the enrichments of modern human-specific variants to those that are specific to the entire human 

lineage (termed ‘human-specific’ henceforth), we first identified ~1.5 million human-specific substitutions within 

the CREs (Supplementary Table 9). Similar to the HARs, human-specific substitutions were significantly 

enriched in HS-CREs, and we noted the example of GRIK4, which encodes a glutamate receptor subunit 



 

implicated in brain disease34 (Extended Figure 8G-H). As expected, human-specific substitutions also 

encompassed ~88% of previously identified modern human-specific variants (Extended Figure 8I). To reduce 

the confounding effects of sample sizes, we randomly down-sampled human-specific substitutions to match the 

number of modern human-specific variants and calculated their association with HS-CREs per cell type. This 

analysis revealed greater associations between modern human-specific variants and upper layer HS-CREs 

compared to the substitutions along the entire human lineage (Figure 4E, Extended Figure 8J). Gene ontology 

enrichment analysis of HS-CREs with modern human-specific variants revealed the ephrin receptor signaling 

pathway as the only ontological enrichment (Figure 4F-G). These results indicate that modern human-specific 

variants are associated with human-specific CRE changes. 

 

Activity-response elements in human CREs 

Transcription factors (TFs) are key components in evolution and disease. We found enrichments of diverse TF 

binding motifs in HS-Open-CREs across neuronal subtypes (Extended Figure 9A-B, Supplementary Table 

10). Notably, we observed significant enrichments for FOS / JUN motifs in the upper layer excitatory neurons 

and for FOX motifs in the lower layer excitatory neurons (Figure 5A-B). We further identified TFs that may be 

functional at these HS-CRE target sites by examining the accessibility of each enriched TF within each family 

(Extended Figure 9C-D, Figure 5A-B).  

 

FOS / JUN TFs are immediately transcribed upon neuronal depolarization and target hundreds of CREs35,36. 

Since FOS / JUN TFs respond to environmental stimuli, we decided to test whether FOS / JUN TF enrichment 

in HS-Open-CREs is driven by environmental factors. We first asked whether greater post-mortem-interval (PMI) 

in human tissues compared to chimpanzee and rhesus macaque tissues, a limitation to many similar 

studies12,14,18, is driving this enrichment. To test this, we substituted our human snATAC-seq dataset (named 

PMI_24) with a surgical human dataset from middle temporal gyrus that has no PMI (PMI_0)37. We similarly 

found all excitatory subtypes in this dataset and identified HS-CREs which displayed highly significant overlaps 

with the PMI_24 HS-CREs (Extended Figure 9E-G) as well as enrichments of similar motifs (Extended Figure 

9H). Similar to the PMI_24 dataset, HS-Open-CREs in the upper layer excitatory neurons were highly enriched 



 

in FOS / JUN motifs (Extended Figure 9I). These results show that FOS / JUN enrichments in upper layer 

excitatory HS-Open-CRE are not driven by PMI differences. 

 

To provide an orthogonal test for a possible environmental effect on FOS / JUN motif enrichments, we asked if 

HS-Open-CREs with FOS / JUN motifs also contain signatures of accelerated evolution. If FOS / JUN motif 

enrichments in HS-Open-CREs are driven by environmental factors, human-specific substitutions within the HS-

Open-CREs with FOS / JUN motif occurrences should be depleted compared to other HS-Open-CREs. Contrary 

to this expectation, we found a significant excess of HS-substitutions and accelerated evolution when HS-Open-

CREs with FOS / JUN motifs were compared to the non-specific (NS) CREs (Figure 5C-D). FOX targets were 

also more divergent in humans compared NS-CREs with or without FOX motifs (Figure 5E-F). An example of a 

human-specific gain of a FOS / JUN motif within a human-accelerated region is shown near MTHFD2L (Figure 

5G), which encodes a key enzyme in the one-carbon metabolism associated with neurotransmitter synthesis38. 

Taken together, these results do not support a possible environmental cause. 

 

In summary, we have uncovered proportional and gene regulatory changes in human brain evolution using single 

cell genomics and have linked human-specific DNA sequence divergence, chromatin accessibility and gene 

expression at cellular resolution. 

 

Discussion 

In this study, we delineated epigenomic and transcriptomic features of human brain evolution at cell type 

resolution. We found that the adult human cortex had an increased proportion of oligodendrocyte progenitor cells 

and a decreased proportion of mature oligodendrocytes compared to non-human primates. Focusing on 

neurons, we showed that many human-specific changes were found in only a few neuronal subtypes, and 

demonstrated human-specific up-regulation of FOXP2 in two neuronal subtypes. We also associated genomic 

sequence changes with HS-CREs at cellular resolution and identified hundreds of novel HARs that were 

associated with open chromatin in the adult brain. Furthermore, we identified increased FOS / JUN transcription 



 

factor targets among the HS-Open-CREs in the upper layer excitatory neurons, emphasizing a previously 

underappreciated temporal dimension of human-specific molecular traits. 

 

Previous studies showed prolonged myelination in human brain development compared to chimpanzees and 

rhesus macaques5,8. Correspondingly, the production of myelinating oligodendrocytes reaches a plateau in 

individuals older than ~40 years old in gray matter39. Interestingly, we observed proportionally higher OPCs in 

humans compared to chimpanzees and rhesus macaques even though individuals in our dataset are all in their 

mid- to late- adulthood (humanized age, Supplementary Table 1). We also found that COPs, cells that denote 

active oligodendrocyte generation40, are extremely rare (only 74 nuclei in all species), indicating low levels of 

oligodendrocyte generation in all species in our samples. We hypothesize that the higher proportion of OPCs 

and lower proportion of MOLs can contribute to neural plasticity in the human brain by altering myelination 

patterns. Non-canonical functions of OPCs such as pruning axonal branches and contributing to synaptic 

function have been recently described41, indicating that increased numbers of OPCs in the human brain may 

serve functions other than providing a reservoir for mature oligodendrocytes. We note that a recent study found 

more divergence between species for MOLs compared to OPCs by comparing the gene expression 

correlations42. The discrepancy with our results could be due to differences in the brain regions analyzed, sorting 

strategy (NeuN- sorted versus not sorted), as well as in the analytical pipeline (e.g., correlations vs. differential 

gene expression). We also note that our approach separates human-specific changes to chimpanzee-specific 

changes as a measure of human-specificity, making it better tailored to highlight the changes in human lineage.  

 

Single-cell sequencing facilitates characterization of regulatory changes in all cell types. However, we recently 

discovered that neuronal ambient RNAs contaminate glial cell types and require rigorous removal before 

identification of differentially expressed genes21, as such contamination can skew the differential gene 

expression results43. We found that a recent study14 shows evidence of human-specific differences in the level 

of ambient RNA contamination in glial cell types, indicating the importance of ambient contamination removal 

(Extended Figure 10A-B). Among the studies with human-chimpanzee comparisons, our snRNA-seq dataset 

is thus far the only one to remove ambient RNA contamination11,14. Upon removal of ambient RNAs, we 



 

uncovered that cytoskeletal activity and ubiquitin ligase activity through SH3RF3 are specifically decreased in 

human OPCs (Figure 2C-G). Both biological processes are linked to oligodendrocyte maturation, indicating that 

such functions might be linked to the human-specific OPC increase20,24. These results also suggest that an 

evolutionary modification in human brain may have been achieved through a loss of function in OPCs44. 

 

We found a subtype- and human-specific upregulation of FOXP2 which may be unique to the posterior cingulate 

cortex. We also note that most FOX TF motifs are enriched in the HS-Open-CREs in THEMIS+ C1QL3+ neurons 

(Figure 5B), and while the FOXP2 motif enrichment itself was not significant, this could be ascribed to possible 

variations of FOXP2 binding sites in different tissues. Indeed, we previously showed that FOXP2 can act both 

as a repressor or activator via heterodimerization with other TFs at distinct DNA motifs45. In addition, a recent 

study identified human-specific FOXP2 upregulation in microglia14, with a similar trend in our dataset 

(Supplementary Table 3), suggesting a previously undescribed potential role of FOXP2. These results provide 

further insights into the role of FOXP2 in human brain evolution. 

 

Interestingly, association between human-specific gene expression changes and chromatin accessibility 

changes was significant only between the concordant changes but not between discordant changes (Extended 

Figure 7). While CREs can act as repressors and cause downregulation of their target genes (which would lead 

to discordant overlaps), the repressor activity of the CRE recruits histone deacetylases and closes the chromatin 

accessibility on its target regions46, which could lead to overall closed accessibility, thus manifesting as a 

concordant change.  

 

We discovered a novel enrichment of FOS and JUN family motifs in specifically cortical upper layer excitatory 

HS-Open-CREs. Late activity-regulated genes are known to be evolutionarily divergent35, 47-49 and display high 

cell type specificity50. Along with the previous studies, our results underscore the need for more direct 

experiments to understand how adult human cortical cells respond to neuronal activity, and the underlying 

evolutionary trajectories. We also note that some of our analyses are limited to BA23 and future comparative 



 

studies from other brain regions are needed. Overall, our results provide a comprehensive roadmap for 

delineating functional regulatory mechanisms of human brain evolution at cellular resolution. 
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Methods 

Specific details of all analyses can be found in our github page: 

https://github.com/konopkalab/Comparative_snATAC_snRNA 

 

Sampling strategy for snRNA-seq and snATAC-seq 

All human tissue was obtained from the University of Texas Neuropsychiatry Research Program (Dallas Brain 

Collection). Chimpanzee and macaque tissue were obtained from Yerkes National Primate Research Center. 

Brodmann area 23 (BA23, part of the posterior cingulate cortex) was dissected from frozen post-mortem tissue 

slabs. Humanized age (calculated as described before18) and sex were matched between species to minimize 

the effect of demographics. In total, 4 individuals were sequenced from each species (Extended Figure 1A, 

Supplementary Table 1). 

https://cran.r-project.org/web/packages/pheatmap/index.html
https://github.com/konopkalab/Comparative_snATAC_snRNA


 

 

Single-nuclei RNA-seq library Preparation 

Nuclei for snRNA-seq were isolated from human, chimpanzee, and macaque BA23 brain tissue. Briefly, the 

tissue was homogenized using a glass Dounce homogenizer in 2 ml of ice-cold lysis buffer (10 mM Tris-HCl, 10 

mM NaCl, 3 mM MgCl2, and 0.1% Nonidet™ P40 Substitute) and was incubated on ice for 5 min. Nuclei were 

centrifuged at 500 × g for 5 min at 4 °C, washed with 4 ml ice-cold lysis buffer and, incubated on ice for 5 min. 

Nuclei were centrifuged at 500 × g for 5 min at 4 °C. After centrifugation, the nuclei were resuspended in 500 μl 

of nuclei suspension buffer (NSB) containing 1XPBS, 1%BSA (#AM2618, Thermo Fisher Scientific) and 0.2U/ul 

RNAse inhibitor (#AM2694, Thermo Fisher Scientific). Nuclei suspension was filtered through a 70-μm Flowmi 

Cell Strainer (#H13680-0070, Bel-Art). Debris was removed with a density gradient centrifugation using the 

Nuclei PURE 2M Sucrose Cushion Solution and Nuclei PURE Sucrose Cushion Buffer from Nuclei PURE Prep 

Isolation Kit (#NUC201-1KT, Sigma Aldrich). Nuclei PURE 2M Sucrose Cushion Solution and Nuclei PURE 

Sucrose Cushion Buffer were first mixed in a 9:1 ratio. 500 μl of the resulting sucrose solution was added to a 2 

ml Eppendorf tube. 900 μl of the sucrose buffer was added to 500 μl of isolated nuclei in NSB. 1400 μl nuclei 

suspension was layered to the top of the sucrose buffer. This gradient was centrifuged at 13, 000 x g for 45 min 

at 4 °C. Nuclei pellet was resuspended, washed once in NSB and, filtered through a 70-μm Flowmi Cell Strainer 

(#H13680-0070, Bel-Art). Nuclei concentration was determined using 0.4% Trypan Blue (#15250061, Thermo 

Fisher Scientific). A final concentration of 1000 nuclei/μl was adjusted with NSB.  

Droplet-based single-nuclei RNA-seq libraries were prepared using the Chromium Single Cell 3’ v3.1 (1000121, 

10x Genomics) according to the manufacturer’s protocol51. Libraries were sequenced using an Illumina NovaSeq 

6000.  

 

Single-nuclei ATAC-seq library Preparation 

For snATAC-seq, nuclei were isolated from human, chimpanzee, and macaque BA23 tissue as previously 

described (https://www.protocols.io/view/isolation-of-nuclei-from-frozen-tissue-for-atac-se-6t8herw). Briefly, 

tissue pieces neighboring to the tissue used for snRNA-seq were cut and homogenized using a glass Dounce 

homogenizer in ATAC-seq homogenization buffer (0.25M sucrose, 25mM KCl, 5mM MgCl2, 20mM Tricine-KOH 

https://www.protocols.io/view/isolation-of-nuclei-from-frozen-tissue-for-atac-se-6t8herw


 

(pH7.8), 1 mM DTT, 0.5mM spermidine, 0.15mM spermine, 0.3% NP40, protease inhibitors). The nuclei filtered 

through a 70-μm Flowmi Cell Strainer (#H13680-0070, Bel-Art) and were pelleted by centrifugation for 5 min at 

4 °C at 350 x g in a 2 ml Eppendorf tube. The supernatant was discarded, and the nuclei were resuspended in 

400 μl of homogenization buffer. 400 μl of 50% iodixanol solution was added to the nuclei suspension and was 

mixed by pipetting. 600 μl of 30% Iodixanol solution was layered under the 25% mixture. 600 μl of 40% Iodixanol 

solution was then layered under the 30% mixture. This gradient then centrifuged for 20 minutes at 4°C at 3,000 

x g. After centrifugation the nuclei were recovered at the 30%-40% interface. Transfer the nuclei in a new 

Eppendorf tube and resuspend in 200 μl ATAC-RSC-Tween buffer (10mM Tris-HCl pH7.5, 10mM NaCl, 3mM 

MgCl2, 0.1% Tween-20). Nuclei concentration was determined using 0.4% Trypan Blue (#15250061, Thermo 

Fisher Scientific). Nuclei integrity was tested by staining with Ethidium Homodimer-1 staining (Cat#E1169, 

Invitrogen). Droplet-based single-nuclei ATAC-seq libraries were prepared using the Chromium Single Cell 

ATAC Library kit (1000110, 10x Genomics) according to the manufacturer’s protocols. Libraries were sequenced 

using an Illumina NovaSeq 6000.  

 

Single-nuclei RNA-seq preprocessing and annotation 

Bcl files were converted to fastq using cellranger mkfastq. Barcode correction and reference genome alignment 

were done using cellranger count with default parameters (Software: 10x Genomics Cell Ranger 3.1.0). For the 

alignment, genome builds GRCh38, panTro5 (Pan_tro 3.0), rheMac10 (Mmul_10) were used as reference 

genomes for human, chimpanzee and macaque, respectively. The BAM output from cellranger count was further 

processed to keep only uniquely mapped reads using samtools (-q 255)52. Since chimpanzee and macaque gene 

annotation files (gtf) are less accurate than human, chimpanzee and macaque reads were then mapped to 

human coordinates using CrossMap53. featureCount was used to count reads mapping to gene body54, and 

umi_tools55 was used to create the count matrix (Gene by cell barcode. Per sample, the top 50,000 cell barcodes 

with highest UMI count were pre-filtered for faster computation). 

To remove ambient RNA contamination, we used CellBender on the un-normalized count matrix per sample56. 

We note that without ambient RNA removal, glial cells were shown to be conspicuously contaminated with 

neuronal ambient RNAs21. 



 

Empty-droplet filtered output from CellBender was further processed to retain only the protein coding and 

orthologous genes (between H. sapiens, P. troglodytes, M. mulatta) similar to Berto et al18. An orthologous gene 

list was obtained from Ensembl version 10357. For quality control, we only kept nuclei with >200 UMI and 

percentage of reads mapping to mitochondria < 5. We then clustered nuclei for further analysis. The following 

methods from Seurat v358 were used to perform and visualize clustering (a similar approach was followed for 

each new clustering; details are available in the publicly available code): normalization (SCTransform), 

dimensionality reduction (RunPCA), batch correction (RunHarmony, default parameters), k-nearest neighbors 

(FindNeighbors) on batch corrected dimensions and clusters identification by shared nearest neighbors 

(FindClusters). UMAP embedding was then computed for visualization in 2D space (RunUMAP). We removed 

clusters with an unusually high number of detected genes accompanied with high expression of at least two 

typically distinct marker genes as potential nuclei doublets. We re-clustered the nuclei and repeated this process 

if needed until no such clusters were found. We then used canonical marker genes (e.g GAD1 for inhibitory 

neurons) and a reference dataset6 (using label transfer, see next paragraph) to broadly annotate nuclei in each 

species. Major cell types were defined as: excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes, 

oligodendrocyte progenitor cells, and microglia. After broad annotation, we extracted each broad category (e.g. 

excitatory neurons) from all species and integrated them across species using the default approach in Seurat v3 

across all samples (SelectIntegrationFeatures, PrepSCTIntegration, FindIntegrationAnchors). We then clustered 

the nuclei on the integrated matrix per cell type and further removed potential doublets with the same criteria as 

above. We additionally removed clusters with high enrichment in previously identified ambient RNA markers as 

previously described21. 

To annotate neuronal subtypes, we used a previous study6 as reference to annotate our clusters via label transfer 

(FindTransferAnchors, TransferData). We assigned each cluster an annotation label based on the layer and 

marker gene of predominant predicted annotations per cluster. These annotations were also verified with known 

marker genes that separate certain neuronal subtypes (Extended Figures 3).  

We note that endothelial cells were removed from the analysis since we did not detect a distinct cluster of 

endothelial cells in snATAC-seq. 

 



 

Single-nuclei ATAC-seq preprocessing and annotation 

Bcl files were converted to fastq using cellranger mkfastq. Barcode correction and reference genome alignment 

were done using cellranger-atac count with default parameters (Software: 10x Genomics Cell Ranger ATAC 

1.1.0). For the alignment, genome builds GRCh38, panTro5 (Pan_tro 3.0) and rheMac10 (Mmul_10) were used 

as reference genomes for human, chimpanzee and macaque, respectively. The BAM output from cellranger 

count was further processed to keep only uniquely mapped and properly paired reads using samtools52. Read 

duplicates were removed using MarkDuplicates from Picard tools59. Peak calling was performed using macs260 

with following parameters: --nomodel, --keep-dup all, extsize 200, --shift –100 to enrich for the cut sites. To obtain 

peaks concordant across samples, peak calling was performed by pooling all samples from each species as well 

as per each sample. Peaks from pooled samples were kept for further analysis only if they overlap >50% with 

peaks per sample in 3/4 of samples. This yielded a list of consensus peaks for each species. 

To obtain a final set of peaks from consensus peaks, chimpanzee and macaque peaks were converted to human 

coordinates using liftOver61. All peaks were then merged using bedtools62, resulting in merged peaks with a 

minimum distance of 200 between them (-d 200). To keep peaks with a reliable level of conservation across all 

species, merged peaks were reciprocally mapped to chimpanzee or macaque genomes and any peaks with 

more than 2-fold change in size, multi-mapped or less than 50% conserved (-minMatch=0.5) were discarded in 

each liftOver operation. Merged peaks were then filtered for the peaks that reciprocally mapped to both 

chimpanzee and macaque by requiring >50% overlap between a peak in the merged peak set and reciprocally 

mapped peak set (bedtools intersect -f 0.5 -F 0.5). Despite being conservative, this approach kept >93% of the 

initial peaks, indicating that sequence identity of most open chromatin peaks are reliably conserved across 

species and allow direct comparisons between species in downstream analysis (e.g differential accessibility). 

After this stage, peaks were also referred to as CREs (cis-regulatory regions). 

To obtain peak-cell count matrix, reads were counted in each species’ own coordinates using custom functions 

on bed files. To keep high quality cells, only the barcodes with >3000 reads in peaks, <100000 reads in peaks 

and >15% fraction of reads in peaks were kept for further analysis. Barcode multiplets63 were additionally 

removed using cellranger’s, clean_barcode_multiplets_1.1.py tool. Resulting matrices were processed 

separately in each species. Following methods from Seurat v358 were used to perform and visualize each 

clustering (please find details in the publicly available code): Dimensionality reduction was performed with latent 



 

semantic indexing (LSI, using functions RunTFIDF and RunSVD in Signac64). Batch correction was achieved 

with harmony on LSI dimensions (RunHarmony65). Batch corrected dimensions were then used to compute k-

nearest neighbors (FindNeighbors) and identify clusters by shared nearest neighbors (FindClusters). UMAP 

embedding was computed for visualization in 2D space (RunUMAP). 

To annotate snATAC-seq cells, correspondence between gene accessibility and gene expression is required. 

To achieve this, gene activity matrix was calculated using Cicero66 for each species. Only the CREs with more 

than 1% accessibility were retained for analysis, and CREs in protein coding genes (gene body +3kb upstream) 

were used to annotate CREs to genes (annotate_cds_by_site) which was further processed to build the 

unnormalized gene activity matrix (build_gene_activity_matrix). Both major cell types (e.g. Excitatory) and 

subtypes (e.g. L2-3_1) in snATAC-seq were annotated via label transfer with the corresponding snRNA-seq 

dataset as reference. All snRNA-seq to snATAC-seq label transfers were done separately for each species. 

Clusters with mixed annotation accompanied with unusually high number of reads in peaks and mixed marker 

gene activity (typically distinct marker genes highly accessible in the same cluster) were removed as potential 

doublets. Annotation label was assigned per cluster depending on the dominant annotation for each cluster. All 

cell types found in snRNA-seq were distinctly found in snATAC-seq and thus annotated with the same names. 

Cell Type Fraction Comparisons 

For comparison of cell type ratios, we calculated the fraction of glial cell types within all glia, the fraction of 

excitatory subtypes within all excitatory cells and the fraction of inhibitory subtypes within all inhibitor cells for 

each individual in both snRNA-seq and snATAC-seq. To determine whether the fraction differences were 

significant between species, we calculated the p-value using a log likelihood ratio on two nested models: 

H0: Fraction ~ Assay (snRNA-seq or snATAC-seq) 

H1: Fraction ~ Assay (snRNA-seq or snATAC-seq) + Species (e.g human and chimpanzee). 

This was done for each pairwise species comparison per cell type. The statistics are available in Supplementary 

Table 2. 

 

Single molecule fluorescent in situ hybridization 



 

See Supplementary Table 1 for sample demographics. Cortical BA23 (posterior cingulate cortex) and anterior 

cingulate cortex (ACC) samples from all species were postmortem, flash-frozen tissues that were embedded in 

OCT (optimal cutting temperature) compound. The tissue was sectioned at -20C to 20µm on Superfrost Plus 

Microscope slides. Single molecule fluorescent in situ hybridization (smFISH) was performed using RNAScope 

Multiplex v2 Fluorescent assays. Protease was applied for 30 minutes and all subsequent steps including probe 

application, tyramide signal amplification, channel development, and fluorophore application were performed 

according to the manufacturer’s instructions for fresh frozen tissue except with the addition of Sudan Black B.  

0.05% Sudan Black B was added to the tissue after application of DAPI to quench autofluorescence.  Probes for 

MOG (human: 543181-C2, chimpanzee: 1076431-C2 Advanced Cell Diagnostics), PDGFRA (Advanced Cell 

Diagnostics, human: 604488, chimpanzee: 1120031), THEMIS (Advanced Cell Diagnostics, human: 407261), 

and FOXP2 (Advanced Cell Diagnostics, human: 551661-C2) were incubated with the tissue and hybridized with 

their target genes. Opal fluorophores 570 (NC1601878, Akoya Biosciences, 1:750) and 620 (NC1612059, Akoya 

Biosciences, 1:750) were used to label the gene-specific probes after signal amplification. A 3-plex human 

(320861, Advanced Cell Diagnostics), and nonhuman primate (320901, Advanced Cell Diagnostics) positive 

control probe was used for each species alongside a primate negative control probe (320871, Advanced Cell 

Diagnostics). 

To separate fluorophore signals, multispectral imaging was performed on a Zeiss LSM 880 in UT Southwestern’s 

Quantitative Light Microscopy Core. Final imaging was performed on the Zeiss LSM 710 and Zeiss LSM 880 

confocal microscope at x20 magnification in the UT Southwestern Neuroscience Microscopy Facility on 

chimpanzee and human samples. 

To determine the composition of OPCs and MOLs in both BA23 (human: n=2, chimpanzee: n=3) and ACC 

(human: n=3, chimpanzee: n=3), We sampled 2-4 vertical bins (layer 1-6) of cortex from each individual and 

evenly divided each bin from the apical to basal boundary into 5 sections, and then we randomly selected 2-4 

subareas (456x456 pixels) in each section to quantify the number of cells (DAPI 405 nm), OPCs (PDGFRA, 488 

nm), and MOLs (MOG, 555 nm) by using self-generated ImageJ Macro code and R script in Fiji and R 

respectively (https://github.com/konopkalab/Comparative_snATAC_snRNA). Maximum intensity projection 

images were generated from 13 slices of Z stack. OPCs were defined as PDGFRA and DAPI double-positive 

cells, while MOLs were defined as MOG and DAPI double-positive cells. Data were analyzed using a linear 

https://github.com/konopkalab/Comparative_snATAC_snRNA


 

mixed model with species as the fixed factor and individual as the random factor per comparison (lme467 package 

in R, with REML = F).  

To compare the expression of FOXP2 in THEMIS+ neurons between human (n=3) and chimpanzee (n=3), we 

quantified the fraction of FOXP2+ neurons in THEMIS+ neurons, and the number of fluorescent puncta as a 

proxy for FOXP2 expression levels in BA23. We sampled 2-3 images from the deep layers of each individual, 

and then we randomly selected 2-3 subareas of each image to quantify the fraction of DAPI (405 nm), FOXP2 

(488 nm), and THEMIS (555 nm) triple positive neurons in DAPI and THEMIS double positive neurons. Data 

were analyzed using a mixed linear model using species, image, and subarea as the fixed factors. For the puncta 

quantification, we used the same images as the fraction quantification but selected only the cells with individually 

distinguishable puncta. This resulted in the quantification of 3-11 THEMIS+ neurons and 3-9 THEMIS- neurons 

per image. Data were analyzed using a linear mixed model with species as the fixed factor and individual as the 

random factor per comparison (lme467 package in R, with REML = F).  

Single-nuclei RNA-seq differential gene expression and identification of species-specific gene 

expression 

We performed differential gene expression (DGE) using two approaches: a single-cell based DGE approach and 

a pseudobulk based DGE approach. We retained the pseudobulk DGE results for all analyses as both the HS-

Genes and CS-Genes were more reproducible with previous studies12,18 compared to the single-cell based DGE 

method (Extended Figure 10C-E). 

For the pseudobulk DGE method, we aggregated all cells per cell type and species using sumCountsAcrossCells 

from scuttle68 and only retained the genes that were detected in all samples (UMI > 0) of at least one species. 

DGE analysis was performed using edgeR QLRT approach69 and differentially expressed genes (DEGs) were 

determined with FDR (< 0.05) and logFC (logFC >0.3 or logFC < -0.3) cutoffs. DGE analysis was performed with 

the following covariates: humanized age, sex, and library batch. Humanized age was calculated as described 

before by linear modeling of life traits between species70. Genes with species-specific expression were 

determined as before18. Briefly, HS-Genes were determined as DEGs that are H > C = M or H < C = M (C = M 

was determined if FDR > 0.1, H: human, C: chimpanzee, M: rhesus macaque). The same criteria were used for 



 

CS-Genes. Genes that are consistently different between macaque-human and macaque-chimpanzee were 

referred to as macaque versus human-chimpanzee genes. 

For the single-cell DGE method, genes were tested for differential gene expression using MAST68. The same 

covariates were used as the pseudobulk method, except for cngeneson as recommended by the MAST 

approach68. Genes with FDR < 0.05 and absolute average log (ln) fold change > 0.25 were considered significant. 

Genes with species-specific expression were determined as described for the pseudobulk method above. 

 

Single-nuclei ATAC-seq differential CRE accessibility and identification of species-specifically 

accessible CREs 

Similar to DGE, we performed differential CRE accessibility using two approaches: a single-cell based approach 

and a pseudobulk based approach. We retained the pseudobulk method results for all analyses as both the HS-

CREs and CS-CREs were more reproducible with the previous study12 compared to the single-cell based method 

(Extended Figure 10F). 

For the pseudobulk method, we used the edgeR QLRT approach, which is widely used for differential 

accessibility analysis71, similar to the DGE analysis. We aggregated all cells per cell type and species and only 

retained the CREs that were detected in all samples (total detected reads > 3) of at least one species, and among 

the top 100,000 CREs by accessibility per cell type. Differentially accessible CREs were determined with FDR 

(< 0.05) and logFC (logFC >0.3 or logFC < -0.3) cutoffs. Differentially accessible CRE analysis was performed 

with the following covariates: humanized age and sex. Species specifically accessible CREs were determined 

in the same manner as the species-specifically expressed genes described above.  

For the single-cell method, CRE accessibility was used as the response variable and logistic regression was 

used to fit two models of covariates with or without species identity per comparison. Then, a log-likelihood ratio 

test was used to determine the p-value which was later adjusted with FDR correction. The covariates were: 

humanized age, sex, and total gene activity (as a measure of cell-depth and quality, calculated using Cicero66). 

To determine an effect size cutoff, we first calculated a mean accessibility ratio among tested CREs per pairwise 

comparison (MeanAccChimp / MeanAccHuman) and used this to normalize accessibility of one species to 

another. This was then used to compute delta accessibility (HumanAcc - ChimpAccNormalized) for all CREs, 



 

which followed a normal distribution around zero. This calculation was done for each pairwise comparison per 

cell-type and 1.5 standard deviation (sd) away from the mean was used as cutoff. Therefore, only FDR < 0.05 

and sd > 1.5 CREs were considered significant. Species-specifically differential CREs were determined with the 

same criteria used for species-specifically expressed genes as described above. 

 

Analysis of previously published datasets 

Khrameeva et al.11 was analyzed from publicly available fastq files (GEO accession: GSE127898). 

Preprocessing (until count matrix) was done similar to our own dataset, including ambient RNA correction by 

CellBender56. Since species were mixed in the same library, we assigned cell barcodes to a given species 

(human, chimpanzee, bonobo, rhesus macaque) by counting reads with no mismatch (done for each species) 

and assigning the cell barcode to the species with the most counts. Our annotation corresponded with the original 

publication for >99.9% of the cell barcodes annotated in the original study11. We then used 200 UMI as cutoff, 

rather than 500 UMI in the original study, as we are interested in the ratios of OPC and MOLs, and glial cells 

have overall lower number of UMI (Extended Figure 1E). We then used canonical markers to identify the major 

cell type and define the ratio of OPC and MOL nuclei per sample. 

Kozlenkov et al12. was analyzed from supplementary tables. The overlap of CREs was tested for statistical 

significance with a Fisher’s exact test. For overlap of species-specifically accessible CREs, we used the number 

of all CREs as background. 

Berto et al.18 OLIG2 dataset was deconvoluted using MuSiC72 as previously done73 except that the reference 

single cell study was used from this dataset (human, chimpanzee and macaque were used separately for 

comparisons). 

Velmeshev et al.23 raw count matrix was filtered to contain only L5/6 CC THEMIS+ neurons from the healthy 

controls. L5/6 CC was further subclustered and filtered to only contain C1QL3+ subclusters. We also only 

retained the orthologous protein coding genes initially identified for the original comparative analyses. Differential 

gene expression was performed between posterior cingulate cortex – prefrontal cortex and posterior cingulate 

cortex – anterior cingulate cortex using the pseudobulk DGE (edgeR QLRT) as described before. 



 

Bakken et al. was analyzed for the proportional changes in the oligodendrocyte lineage. We obtained the 

metadata associated with the final count (NEMO identifier: dat-ek5dbmu) and computed fraction of OPC and 

MOL in all glia per individual. For species with both Snare-seq and single-nuclei transcriptome (human and 

marmoset), both datasets were utilized. 

 

Epigenome-Transcriptome Associations 

To test overlap of epigenomic and transcriptomic changes, we expanded the cis-regulatory elements on both 

sides of the TSS (transcription start site) with either 1) increasing distance (Extended Figure 7A), or 2) for 500kb 

to identify potential HS-CREs associated with HS-Genes. We used 500kb as most physical interactions between 

enhancers and promoters are within 500kb distance74. We determined that a HS-CRE and HS-Gene are 

associated if the following conditions are true: 

1- They are both found in the same cell type (neuronal subtypes are treated as different cell types). 

2- They are altered in the same direction (e.g HS-Open-CRE and HS-Up-Gene). 

3- The HS-CRE is within 500kb on either side of the TSSs per HS-Gene. 

 

Gene Set Enrichment Analyses 

Gene ontology (GO) enrichment for HS-Genes was done using the clusterProfiler package in R75. HS-Up-Genes 

and HS-Down-Genes were tested separately with all genes tested for differential expression used as the 

background. Background was calculated separately for each cell type. Only the GO enrichments with FDR < 

0.05 and fold change > 1.3 were considered significant. 

Modern variant associated HS-CREs were first divided into HS-Open-CREs and HS-Closed-CREs. Then the 

nearby genes were annotated using annotatr76. Background genes were similarly identified by annotating all 

accessible CREs to their genes with annotr76. Similar to HS-Genes, GO enrichment was performed using the 

clusterProfiler package in R. Since only the L2-3_2 subtype showed enrichment, we performed modern variant 

GO enrichment only for this subtype. 

 



 

Motif Enrichment Analysis 

Non-redundant motifs for human were downloaded from the JASPAR 2018 database77. A binary CRE motif 

matrix (CREs in the rows, motifs in the columns) was created using Signac, which calculates the motif matrix 

using motifmatchr78. We then tested the enrichment of motifs in HS-Open-CREs per cell type using a log 

likelihood ratio test on two nested binomial linear regression models (Evolution: HS-Open-CRE or not):  

H0: Evolution ~ CRE length 

H1: Evolution ~ CRE length + Motif occurrence 

CRE length was added as a covariate since longer CREs will include more motifs. To avoid capturing the motifs 

divergent between species in general, and to highlight the motifs only divergent in the human-evolution, the 

background was selected as all evolutionarily divergent CREs for the given cell type. Motifs with FDR < 0.05 and 

logFC > 0 were considered as significantly enriched. Motif enrichments were clustered and visualized using 

pheatmap79. 

 

Visualization of CREs 

To visualize CREs across all species, we converted raw chimpanzee and rhesus macaque snATAC-seq reads 

to human coordinates using CrossMap53. This was done separately for reads counted in each cell type. For more 

accurate comparisons of the track plots between the species, reads were randomly down-sampled to the lowest 

number of read detected per species for the given subtype. The reads were then converted to bigwig format and 

visualized using IGV80 (Integrated Genome Viewer). Tracks were log transformed and presented at the same 

scale for all comparisons. 

 

Identification of cortical HARs 

To identify HARs within the CREs our dataset, we followed a similar approach to a previous study81. We first 

segmented each CRE into 150bp (the size of the smallest CRE in our dataset). We then used the following 15 

primate species from a 30-species alignment from UCSC82: Homo sapiens, Pan troglodytes, Gorilla gorilla, 



 

Nomascus leucogenys, Macaca mulatta, Macaca fascicularis, Macaca nemestrina, Cercocebus atys, 

Chlorocebus sabaeus, Mandrillus leucophaeus, Colobus angolensis, Callithrix jacchus, Saimiri boliviensis, 

Cebus capucinus, Aotus nancymaae, and retained the CRE segments that have no gaps in at least 8 species 

and no gaps between human, chimpanzee and rhesus macaque (the species used in our single-cell genomics 

experiments) using the rphast package83.  

 

To estimate the neutral substitutions per CRE, we padded each CRE by 25kb upstream and 25kb downstream, 

and ran the phyloFit function with the following parameters on the phylogenetic tree of all species: 

subst.mod="SSREV", EM = T, nrates = 4. To test acceleration in human lineage, we then used phyloP function 

on each CRE segment using its corresponding neutral model with the following parameters: method = 'LRT', 

mode="ACC", branches = ‘hg38'. The final list of HARs was determined using the cutoff p-value < 0.001. 

 

Identification of modern human variants 

The original publication of modern human variants lists 321,820 human-specific substitutions that contain an 

ancestral allele either in the Altai Neanderthal or in the Altai Denisovan genome33. Since the original publication, 

two additional high quality Neanderthal genomes have been reported84,85. We have therefore updated this 

original list of human-specific substitutions and only retained the substitutions that are different than in all 

reported high quality archaic genomes (3 Neanderthals and 1 Denisovan). This resulted in 98,550 human-

specific substitutions. The original publication had only retained the substitutions that are present in >90% of 

present-day humans using the human polymorphism dataset33. Since then, the human polymorphism dataset 

expanded from 1092 individuals from 14 populations86 to 2504 individuals from 26 populations87. Therefore, we 

updated this cutoff with the most recent 1000 genomes phase 3 dataset87, which reduced the number of human-

specific substitutions to 91,488. Since we were mainly interested in assessing the modern variant enrichment in 

HS-CREs compared to all CREs, we further filtered for the modern human variants overlapping the CREs in our 

dataset, which resulted in 12,161 variants. Out of 12,161 variants, 1920 variants (15.7%) overlapped HS-CREs. 

 

Identification of human-specific substitutions 



 

Our main objective to identify human-specific substitutions was to compare them with the modern human 

variants. Since modern variant analysis only used chimpanzee and gorilla as outgroup species33, we also limited 

our comparison to apes. We used the 30 species genome-wide alignment and extracted the alignment for 

human, chimpanzee, gorilla and gibbon. We excluded orangutan because its alignment was not based on 

synteny (it was based on reciprocal blast) and showed more missing elements in the alignment compared to 

other species. Using this 4-way alignment, we then identified single-nucleotides that are only different in humans 

and map to the CREs identified in this dataset and referred to them as human-specific substitutions. Similar to 

the modern human variants, we further filtered human-specific substitutions for presence in at least 90% of 

modern day humans according to the 1000 genomes project phase 3 database87. 

 

Analyses of HS-CRE enrichment in HARs and modern variants 

For a full list of published HARs, we merged the bed files of a compendium of HARs27 and another HAR study 

based on accessibility patterns of chromatin81 using bedtools62. To test the overlap of all CREs with published 

HARs, we generated background genomic regions of similar GC content and length using genNullSeqs from the 

gkmSVM package with default parameters88. We then randomly selected the same number of regions as the 

entire CRE list (n=100) and tested for significantly higher overlap of HARs with the observed CREs compared to 

the randomized background using an empirical p-value. 

Enrichment of HARs in HS-CRE were tested by logistic regression. Predictor variables were CRE length and 

CRE evolution (HS or NS (non-significant)), and the response variable was whether the CRE contains a HAR or 

not. The effect of CRE evolution was tested with a likelihood ratio test. The test was performed for each major 

cell type separately (excitatory neurons, inhibitory neurons, MOLs, OPCs, astrocytes, microglia).  

To test which cell-types evolved more recently after the split of modern humans from other ancient human 

species (Neanderthals and Denisovans)33, we performed a negative binomial regression. Predictor variables 

were CRE length and CRE evolution and the response variable was the number of overlapping modern variants. 

The effect of CRE evolution was tested with a likelihood ratio test. The test was performed for each major cell 

type separately (excitatory neurons, inhibitory neurons, MOLs, OPCs, astrocytes, microglia). We also tested the 



 

overall enrichment of modern variants by considering HS-CREs as a CRE that is a HS-CRE in at least one cell 

type. 

Reported p-values were FDR adjusted in all enrichments. CRE length was used as a covariate in both 

enrichments since larger CREs tend to have more variants and a better chance to overlap HARs and modern 

variants. 

 

Analysis of surgically resected human snATAC-seq 

Raw fastq files were downloaded from the GEO database (accession number: GSE139914, brain region: BA38, 

middle temporal gyrus)37. We pre-processed the snATAC-seq similar to the original publication; however, instead 

of performing peak calling to generate the peak-cell matrix, we counted the reads in the CREs identified in our 

dataset for direct comparison of accessibility on the same CREs. We extracted the excitatory cells as they were 

annotated in the original study and annotated the subtypes by co-clustering with the human snATAC-seq 

excitatory subtypes in this study. We then performed differential accessibility analyses as described above, this 

time comparing the surgical human tissue and chimpanzee / rhesus macaque samples per excitatory subtype. 

Motif enrichment analyses were also performed as before on the HS-Open-CREs per excitatory subtype. 

 

Data availability: Raw and processed data are available at NCBI GEO under the accession number 
GSE192774.Processed data associated with Bakken et al. was accessed from 
https://assets.nemoarchive.org/dat-ek5dbmu. Other datasets were obtained using their GEO accession 
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Figure 1: The oligodendrocyte lineage is proportionally altered in human evolution. (A) The fraction of 
OPC and MOL (mature oligodendrocytes) in glia are altered in humans. Each dot represents a sample (red: 
snATAC-seq, pink: snRNA-seq. N = 4 individuals per species per assay. P-value: likelihood ratio test, two-sided. 
See methods). (B-D) smFISH shows increased PDGFRA (OPCs) and decreased MOG (MOLs) signals in 
humans compared to chimpanzees (region: posterior cingulate cortex). (B) A representative image, scale bar 
is 100 μm. (C-D) Quantification of the fraction of OPCs and MOLs. Each data point is the average of all subareas 
in a section (2-4 subareas/5 sections/individual. Human: 10 sections. Chimpanzee:15 sections, see Methods). 
The p value is the main effect of species from a linear mixed model (random effect: individual, two-sided). Error 
bars represent SEM. (E) The fraction of OPCs or MOLs in glia based on snRNAseq from anterior cingulate 
cortex (n = 4 individuals per species, P-value: Wilcoxon rank sum test, two-sided). (F) smFISH similar to (B), 
but for anterior cingulate cortex. (G-H) Quantification of the fraction of OPCs mOLs as in (C-D) Human: 15 
sections, chimpanzee:15 sections, see Methods. (I) Deconvoluted proportions of cells from OLIG2 expressing 
bulk RNA-seq (reference dataset: human snRNA-seq from this study, n = 22 (human), 10 (chimpanzee), 10 
(rhesus macaque) individuals. P-value: Wilcoxon rank sum test, two-sided). (J-K) Fraction of OPC or MOLs in 
glia per species in the primary motor cortex. (J) Human – marmoset comparison, (K) human – rhesus macaque 
comparison. N = 5 (human), 4 (marmoset), 3 (rhesus macaque) individuals. P-value: Wilcoxon rank sum test, 
two-sided. Boxplots represent median and interquartile range in panels A, E, I-K. 
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Figure 2: Human-specific gene regulatory changes in the oligodendrocyte lineage. (A) The proportions 
of HS (human-specific) regulatory changes to HS + CS (chimpanzee-specific) regulatory changes are higher 
in OPCs than MOLs (left: snRNA-seq, right: snATAC-seq). P value: chi-square test, two-sided. (B) Same as 
in (A), except using the anterior cingulate cortex snRNA-seq dataset. (C) Gene ontology enrichment for HS-
Down-Genes in OPCs highlights altered cytoskeletal function (p-value: Fisher’s exact test, one-sided). (D) 
Overlap of HS-Down-Genes in OPCs and primate-conserved COP (committed oligodendrocyte progenitor) 
markers reveal two COP markers with loss-of-function in human OPCs (p-value: Fisher’s exact test, one-
sided). (E-F) Expression levels of (E) SH3RF3 and (F) KIF21A1 across cell types in human, chimpanzee, 
rhesus macaque. FDR corrected p-values compare the expression levels in OPCs between species (see 
Supplementary Table 3). (G) snATAC-seq coverage plots of the Human-DOWN-CRE near SH3RF3 in OPCs. 
TSS: transcription start site. Track scales are the same in all species. (H) UMAP plot of oligodendrocyte lineage 
cells in mouse adult frontal cortex dataset. NFOL: newly formed oligodendrocytes. (I) Expression pattern of 
primate-conserved COP markers across mouse oligodendrocyte lineage cell types. Only Sh3rf3 expression is 
decreased in COPs or NFOLs compared to OPCs. (J) Violin plots of Sh3rf3 and Kif21a expression in mouse 
oligodendrocyte lineage cell types. 



 3 

 

 

 

 

 

Figure 3: Subtype and cortical region-specific upregulation of FOXP2 in human neurons. (A) Expression 
levels of FOXP2, CNTNAP2 and MET in the posterior cingulate cortex (PCC) show subtype-specific 
expression changes in the human brain. Human-specific expression is labeled with a red asterisk, x-axis 
denotes species and excitatory subtypes. (B-D) smFISH of FOXP2 and THEMIS in anterior cingulate cortex 
(ACC) shows greater number of FOXP2/THEMIS+ cells in human compared to chimpanzee. (B) A 
representative image. Solid circles show FOXP2 and THEMIS overlapping cells; dashed circles show 
THEMIS+ cells without FOXP2 expression. Scale bar is 50 μm. (C-D) Quantification of the FOXP2+ cells (C) 
and (D) FOXP2+ puncta per cell in (left: THEMIS+ cells, right: THEMIS- cells). The p value is the main effect 
of species from a linear mixed model (random effect: individual, two-sided) with each data point representing 
a subarea/image/individual. Error bars represent SEM. N = 3 individuals per species.  (E-F) FOXP2 is 
upregulated in the PCC compared to pre-frontal cortex (PFC) and ACC in THEMIS+ neurons (E) but not among 
all excitatory neurons (F). Y-axis: normalized and log-transformed expression levels. (G) snATAC-seq 
coverage plots of HS-Open-CREs near FOXP2 in L5-6_THEMIS_1 and L5-6_FEZF2 2-3 neurons. The HS-
Open-CREs shown have human-specific chromatin accessibility in L5-6_THEMIS_1 neurons but not in L5-
6_FEZF2_2-3 neurons. Track scales are the same in all species. 
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Figure 4: Significant association of chromatin accessibility changes with sequence divergence. (A) 
Enrichment of publicly available human accelerated regions (HARs) within the HS-CREs. Enrichment is tested 
by a logistic regression model with CRE length and evolution of the CRE as the predictor variables (HS-CRE 
or not HS-CRE) and HAR as the response variable (HAR or not HAR, P-value: likelihood ratio test, two-sided). 
(B) Odds ratio of HAR and HS-CRE association compared to HAR and NS-CRE (non-significant CREs; all 
CREs that are not HS-CREs) for published HARs (dashed blue line) and HARs identified in this study per log 
likelihood cutoff (x-axis). Red line indicates the log likelihood cutoff that corresponds to p=0.001 (one-sided). 
Red dot indicates the odds ratio that corresponds to p=0.001 cutoff. (C) Cortical HAR analysis reveals stronger 
association with HS-CREs (same enrichment analysis as (A) between cortical HARs and HS-CREs). (D) 
Modern human-specific variant enrichment within the HS-CREs. Enrichment is tested by a negative binomial 
regression model with CRE length and evolution of the CRE as the predictor variables (HS-CRE or not HS-
CRE) and the number of modern human-specific variants as a response variable (P-value: likelihood ratio test, 
two-sided). (E) Log fold changes of substitution and HS-CRE association for substitutions on the human (blue) 
and modern human lineage (tile red) per excitatory subtype. Human lineage-specific substitutions were 
randomly down sampled for 100 times to 12,161 (the number of modern human-specific variants) for 
comparison. Empirical p-value (two-sided) is reported for conserved (in blue) and accelerated (in tile red) 
subtypes in modern humans. Boxplots represent median and interquartile range. (F) Gene ontology 
enrichment of HS-Open-CREs with modern human-specific variants in L2-3_2 subtype. (G) snATAC-seq 
coverage plots of Human-Open-CREs near EPHB1 in L2-3_2 neurons which has a modern human variant. 
Track scales are the same in all species. 
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Figure 5: Accessibility changes highlight subtype-specific transcription factor target evolution in the 
human brain. (A-B) FOS / JUN (A) and FOX (B) family transcription factors (TFs) enrichments in HS-Open-
CREs. Heatmap shows the log fold changes of TF motif enrichment within HS-Open-CREs per TF motif and 
per subtype (Blue asterisks: FDR < 0.05. Red rectangles: distinctly more accessible TFs within these 
subtypes). (C) Ratio of HS substitutions by CRE length per group of CREs. Groups from left to right: HS-Open-
CREs that contain at least one motif, HS-Open-CREs that do not contain a motif, NS-CREs (non-significant 
CREs) that contain a motif, NS-CREs that do not contain a motif. Only the enriched subtypes per TF group 
and the highlighted TFs -in panel A- per TF family were used for these comparisons. (N = 1519, 2894, 38486, 
109452 CREs left to right). Boxplots represent median and interquartile range. P-value: Wilcoxon rank sum 
test (two-sided). (D) Same CREs as (C) except using the mean log likelihood ratios per CREs computed in 
the HAR analysis. (E-F) Same comparison as (C-D) except using FOX motifs. (N = 1338, 3075, 38774, 109164 
CREs left to right.). (G) Track plot of an HS-Open-CRE with a HAR and contains a human-specific gain of a 
FOS/JUN motif. Identical sequences with respect to the human sequence are shown with dots. The motif 
representation on the bottom is a FOS motif. 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extended Figure 1: Annotation and quality control of single-nuclei RNA-seq and single-
nuclei ATAC-seq. (A) Distribution of sex and humanized age of samples. (B) Broadly 
annotated UMAP of nuclei per species. (C) Total nuclei number per sample after filtering. (D) 
Normalized, log (ln) transformed expression values of major cell type markers. (E) Violin plots 
of number of detected UMIs (log10 transformed) per major cell type. (F) Percentage of cells 
contributed per individual per species per major cell type. (G) Broad annotation of snATAC-
seq data per species. (H) Total nuclei number per sample after quality control. (I) Nucleosome 
band pattern per sample; each line represents one sample. First, second and third peaks 
represent nucleosome free, mononucleosome and dinucleosome fractions, respectively. (J) 
Percentage of cells contributed per individual per species per major cell type. (K) Clarity of 
annotation transfer from snRNA-seq to snATAC-seq as displayed by Jaccard similarity index, 
which is the number of nuclei with the same final annotation and prediction (intersection) 
divided by the total number of nuclei with a given annotation or prediction (union). y-axis 
represents final annotation; x-axis represents the prediction which was assigned by label 
transfer per nucleus. Higher values indicate more similarity between final annotation and initial 
prediction. (L) Fraction of reads in peaks per sample (N = 9280, 5383, 5657, 4655, 5941, 
4381, 5691, 4690, 3321, 6426, 5984, 6793 left to right). Boxplots represent median and 
interquartile range. 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

Extended Figure 2: Annotation of oligodendrocyte lineage cells. (A) UMAP visualization 
of integrated and annotated oligodendrocyte lineage nuclei in snRNA-seq. Oligodendrocyte: 
mature oligodendrocytes, COP: committer oligodendrocyte progenitor cells, OPC: 
oligodendrocyte progenitor cells. (B) Percentage of nuclei per sample for each subtype in 
snRNA-seq. (C) Normalized and scaled (z-scored) expression values of major oligodendrocyte 
lineage cell type markers. (D) UMAP visualization of annotated oligodendrocyte lineage nuclei 
in snATAC-seq per species. (E) Clarity of annotation transfer from snRNA-seq to snATAC-seq 
as displayed by Jaccard similarity index (similar to Extended Figure 1K). (F) Percentage of 
cells contributed per individual per species per major cell type. (G-H) smFISH of PDGFRA 
(OPC) and MOG (MOL) in humans (G) and chimpanzees (H) (region: posterior cingulate 
cortex. Images span all cortical layers in both species. Scale bar is 100 μm). Similar results 
have been obtained for 4 bins across 2 humans and for 6 bins across 3 chimpanzees (see 
Extended Figure 4C-D). 

 



 

Extended Figure 3: Integration and annotation of neurons. (A) Annotated UMAP of excitatory neurons 
integrated across all species in snRNA-seq. (B) Percentage of nuclei per sample for each excitatory subtype 
in snRNA-seq. (C) Annotated snATAC-seq per species in the UMAP space. All 14 subtypes identified in 
snRNA-seq are also distinctly annotated in snATAC-seq for all species. (D) Percentage of nuclei per sample 
for each excitatory subtype in snATAC-seq. (E) Excitatory subtype markers for validation of annotation 
(expressions are normalized and log transformed). Note that the individual cells are plotted for C1QL3 since 
the expression level is not sufficient for a violin plot. (F) Clarity of annotation transfer from snRNA-seq to 
snATAC-seq as displayed by Jaccard similarity index (similar to Extended Figure 1K).  (G) Annotated UMAP 
of inhibitory neurons integrated across all species in snRNA-seq. (H) Percentage of nuclei per sample for each 
inhibitory subtype in snRNA-seq. (I) Known inhibitory subtype markers for validation of annotation. Expression 
levels are normalized and log transformed. Note that the individual cells are plotted for NMBR, PAX6, SYT6 
since the expression level is not sufficient for a violin plot. (J) Annotated snATAC-seq per species in the UMAP 
space. All 8 subtypes identified in snRNA-seq are also distinctly annotated in snATAC-seq for all species. (K) 
Percentage of nuclei per sample for each inhibitory subtype in snATAC-seq. (L) Clarity of annotation transfer 
from snRNA-seq to snATAC-seq as displayed by Jaccard similarity index (similar to Extended Figure 1K). 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extended Figure 4: Additional analyses on the oligodendrocyte lineage. (A) UMAP of MOLs and OPCs 
in the anterior cingulate cortex (ACC). (B) Percentage of cells contributed per individual per species per cell 
type. (C-F) Fractions of MOLs and OPCs in smFISH experiments per section (see Figure 1). Stitched column 
images encompassing all layers were divided into 5 equal parts from upper (Section 1) to lower layers 
(Section 5) in all images from human and chimpanzee. (C-D) are data from posterior cingulate cortex (PCC), 
and (E-F) are data from ACC. Each data point is a bin that contains sections from all layers. C-D: 4 bins from 
2 humans, 6 bins from 3 chimpanzees. E-F: 9 bins from 3 humans and 3 chimpanzees. Data are represented 
as mean values +/- SEM. (G) Deconvoluted proportions from OLIG2+ bulk RNA-seq dataset (reference 
datasets: (left) chimpanzee, (right) rhesus macaque from this study). N = 22 (human), 10 (chimpanzee), 10 
(rhesus macaque) individuals. P-value: Wilcoxon rank sum test, two-sided). (H-I) Fraction of OPCs or MOLs 
in glia in (H) caudate nucleus and (I) dentate gyrus per species. Each dot represents a sample (p-value: 
Wilcoxon rank sum test, two-sided. Caudate nucleus: N = 6 per species. Dentate gyrus: N = 6 for human, 3 
for rhesus macaque). Box plots represent median and interquartile range in panels G-I. (J) Number of 
species-specific regulatory changes (PCC snRNA-seq (top), ACC snRNA-seq (middle), and PCC snATAC-
seq (bottom, log10 transformed for better readability). (K) Distributions of UMIs (unique molecular identifiers) 
in ACC and PCC oligodendrocyte lineage nuclei (N=12 individuals both for PCC and ACC). Box plots 
represent median and interquartile range. (L) Enrichment results between species-specifically expressed 
genes in ACC (x-axis) and PCC (this study, y-axis). Blue asterisk indicates a significant overlap(FDR < 0.05, 
Fisher’s exact test, one-sided).  

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extended Figure 5: Additional analyses of the regulatory changes in neuronal subtypes. (A-B) 
Number of regulatory changes that are human-specific, chimpanzee-specific or differential between rhesus 
macaque - human and rhesus macaque – chimpanzee in (A) snRNA-seq or (B) snATAC-seq (log10 
transformed for better readability). (C) Scatter plots of number of HS-Genes and CS-Genes per neuronal 
subtype. Dashed rectangles indicate the subtypes with an excess number of human-specific regulatory gene 
expression changes (Two-sided chi-square test, FDR < 0.05). Shaded area indicates 95% confidence 
interval around the best fit (R indicates Spearman’s rank correlation coefficient). (D) Same as (C) for HS-
CREs and CS-CREs identified in snATAC-seq data. (E) Percentage distribution of excitatory HS-Genes that 
are found in only one subtype or shared among increasing number of subtypes (x-axis). Sum of all 
percentages equal 100. From left to right: in excitatory snRNA-seq, excitatory snATAC-seq, inhibitory 
snRNA-seq¸ inhibitory snATAC-seq. 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extended Figure 6: Comparisons of neuronal expression patterns between this dataset and 
previous comparative bulk datasets. (A-C) Enrichments of species-specific expression patterns 
between this study and previous bulk studies between excitatory neurons (left) and inhibitory neurons 
(right). (A) Transcriptomic changes between the Kozlenkov et al. dataset and this dataset, (B) epigenomic 
changes between the Kozlenkov et al. dataset and this dataset, (C) transcriptomic changes between the 
Berto et al. dataset and this dataset. FDR values are from a Fisher’s exact test with multiple testing 
correction. (D-E) Subtype-specific changes are captured less in the bulk RNA-seq datasets. (D) 
Comparison of excitatory HS-Genes between a previous bulk analysis and this dataset. Top: odds ratio 
between the bulk dataset and this dataset with increasing subtype specificity of HS- Genes (from right to 
left). Bottom: percentage of HS- Genes that were also found in the bulk dataset. (E) Same comparison as 
(D) with HS-CREs. (F-G) Subtype-specific changes are captured less when the subtypes are combined 
within the same dataset. (F) Same comparison as (D) with HS-Genes but this time pseudobulk data results 
are obtained by combining the subtypes in this study. (G) Same comparison as (F) with HS-CREs. 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extended Figure 7: Associations between HS-Genes and HS-CREs. (A) The specificity of association 
between HS-Genes and HS-CREs decreases with increasing distance from the transcription start site 
(TSS). Y-axis shows the odds ratio, which is defined by the ratio of HS-Genes associated with HS-CREs 
divided by the ratio of not significant genes (NS-Genes) associated with HS-CREs. We calculated the 
odds ratio for increasing the distance from the TSS in both directions for four different associations (from 
left to right): HS-Open-CRE & HS-Up-Gene, HS-Open-CRE & HS-Down-Gene, HS-Close-CRE & HS-Up-
Gene, HS-Open-CRE & HS-Down-Gene. The value for each observation was obtained by taking the mean 
across all cell types. (B-D) Enrichments between HS-CRE associated genes within a 10kb window from 
the TSS and HS-Genes per cell type. (E-F) Putative target genes of human-specific FOXP2 upregulation 
in (E) L5-6_THEMIS_1 and (F) L4-6_RORB_2 cells. All genes show human-specific up / down regulation 
in their respective subtype and reside within 500kb of at least one human-specific chromatin accessibility 
change that has a FOXP2 motif. Dark blue circles indicate the genes that are not altered in the other 12 
excitatory subtypes (similar to FOXP2 itself). Red loop in (A) indicates that FOXP2 itself is also identified 
with this analysis in the L5-6_THEMIS_1 subtype. 

 



 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extended Figure 8: Further associations between human-specific substitutions and human-
specific chromatin accessibility changes. (A) Pie-chart distribution of published HARs overlapping 
CREs in this dataset. (B) Ratio of non-BA23 CREs overlapping BA23 CREs (denominator: all CREs in 
BA23). Each dot represents an independent library prep. Red datasets indicate cortical regions, blue 
datasets indicate sub cortical regions. (Sample sizes; Superior Middle Temporal Gyri: 8, Middle Frontal 
Gyrus: 12, Parietal Lobe: 7, Hippocampus: 16, Caudate: 32, Putamen: 11, Substantia Nigra: 14. Box plots 
represent median and interquartile range). (C) Overlap between cortical HARs (identified in this study) and 
published HARs (p-value: One-sided chi-square test). (D) Number of HS-CREs associated with a cortical 
HAR or a published HAR. (E-F) Examples of HS-Open-CRE associated HARs. Bottom panel shows the 
multi-species alignment for CELF4 HAR. Dots represent no change from the human (hg38) sequence. 
Human-specific changes conserved in other lineages are highlighted in shaded blue. (G) Enrichment of 
human-specific substitutions within the HS-CREs per major cell type. Enrichment is tested by a negative 
binomial regression model with CRE length and evolution of the CRE as the predictor variables (HS-CRE 
or not HS-CRE) and number of human-specific substitutions as a response variable(Significance: 
likelihood ratio test). (H) Example of an HS-Open-CRE with many human specific substitutions. (I) Overlap 
of substitutions that are specific to the human lineage (in comparison to chimpanzee, gorilla and gibbon) 
and previously identified modern human substitutions. (J) Log fold changes of substitution and HS-CRE 
association for substitutions on the human (blue boxplots) and modern human lineage (tile red dots) per 
cell type (except for excitatory cells). Human lineage-specific substitutions were randomly down sampled 
for 100 times to 12,161 (the number of modern human-specific variants) for comparison. Box plots 
represent median and interquartile range. 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extended Figure 9: Supplementary motif enrichment results. (A-B) Hierarchical clustering of motif 
enrichments (log-fold change) in HS-Open-CREs across (A) excitatory and (B) inhibitory neuronal 
subtypes. Transcription factors (TFs) associated with each motif enrichment are displayed in rows and the 
neuronal subtypes are displayed in columns. Only the motifs enriched in at least one subtype are 
displayed. (C-D) Accessibility of (C) FOX and (D) FOS / JUN family TFs. Accessibility is assessed by the 
normalized gene activity scores (calculated using Cicero51) per gene per subtype. (E) Annotated UMAP of 
excitatory neurons in snRNA-seq of surgically resected samples (referred to as PMI0 compared to 
postmortem BA23 human samples that are referred to as PMI24 in this figure). (F) Percentage of nuclei 
per sample for each excitatory subtype in snRNA-seq. (G) Enrichments of species-specifically expressed 
genes when PMI0 or PMI24 datasets were used as the human dataset in the comparative analyses. (H) 
Pearson correlations (test for p-value is two-sided) between the log fold changes of HS-Open-CRE motif 
enrichments when PMI0 or PMI24 datasets were used as the human dataset in the comparative analyses. 
(I) Heatmap of motif FOS / JUN motif enrichments per excitatory subtype in HS-Open-CREs. Colors 
correspond to –log10(FDR); numbers correspond to log fold change of enrichment. 

 



 

Extended Figure 10: Comparisons with external datasets (A) Expression levels of three ambient RNA 
markers highly expressed in neurons (SYT1, SNAP25 and NRGN21) in the Ma et al. dataset14. The dot 
plot is generated through the interactive web tool linked to the original publication. Dashed square brackets 
indicate glial cell types, which show exceptionally low levels in the human dataset. Note that the smallest 
dot shows the presence of a transcript in 40% of the cells. (B) Same as (A) using this PCC dataset. 
Neuronal ambient RNA markers are detected at very low levels in glial cells across species after ambient 
RNA removal. (C-E) Enrichment of HS-Genes between the previous study (y-axis) and the current study 
(x-axis) with two alternative methods. (F) Enrichment of HS-CREs between the previous study (y-axis) 
and the current study (x-axis) with two alternative methods. For simplicity, we combined all HS-Genes 
from the subtypes of a major cell type (e.g. all excitatory neuronal subtypes were combined for the 
excitatory cell type comparisons). P-values were computed using a Fisher’s exact test (one-sided) and 
false discovery rate (FDR) was calculated per panel. 
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SUMMARY

Ambient RNA contamination in single-cell and single-nuclei RNA sequencing (snRNA-seq) is a significant
problem, but its consequences are poorly understood. Here, we show that ambient RNAs in brain snRNA-
seq datasets have a nuclear or non-nuclear origin with distinct gene set signatures. Both ambient RNA sig-
natures are predominantly neuronal, and we find that some previously annotated neuronal cell types are
distinguished by ambient RNA contamination. We detect pervasive neuronal ambient RNA contamination
in all glial cell types unless glia and neurons are physically separated prior to sequencing. We demonstrate
that this contamination can be removed in silico and show that previous single-nuclei RNA-seq-based anno-
tations of immature oligodendrocytes are glial nuclei contaminated with ambient RNAs. After ambient RNA
removal, we detect rare, committed oligodendrocyte progenitor cells not annotated in most previous adult
human brain datasets. Together, these results provide an in-depth analysis of ambient RNA contamination
in brain single-nuclei datasets.

INTRODUCTION

Single-nuclei RNA sequencing (snRNA-seq) experiments involve

nuclei isolation and subsequent capture of each nucleus in a sin-

gle droplet containing a unique cell barcode. However, this cap-

ture process can also encapsulate freely floating transcripts, re-

sulting in contamination of the endogenous expression profile.

These extraneous transcripts have been previously referred to

as ‘‘ambient RNAs’’ (Luecken andTheis, 2019; Young andBehjati,

2020). Because ambient RNAs are expected to be primarily

derived frommore abundant cell types, ambient RNA contamina-

tion in less abundant cell types can result in a considerably

skewed endogenous expression profile. Thus, failure to account

for ambient RNA contamination can result in biological misinter-

pretation, especially in cell types with less abundant transcripts.

Many previous studies have not removed ambient RNA contam-

ination from the endogenous expression profiles of their datasets;

therefore, it is possible that ambient RNA contamination consti-

tutes an important problem that has led to misinterpretations in

the downstream analyses. In our study, we address this possibil-

ity by reanalyzing several previously published datasets.

In addition to contaminating the endogenous expression pro-

files of nuclei, ambient RNAs are also captured in droplets that

do not capture nuclei. These droplets are referred to as ‘‘empty

droplets’’ (Lun et al., 2019; Macosko et al., 2015). Interestingly,

empty droplets do not always show a clear separation from the

non-empty droplets in terms of unique read counts, underscor-

ing the high levels of ambient transcripts that are captured in

most single-nuclei (and single-cell) preparations (Lun et al.,

2019). The lack of clear separation between empty and non-

empty droplets based on read counts makes it difficult to justify

using a read-count-based cutoff (also called UMI—unique mo-

lecular identifier—cutoff). A UMI cutoff can lead to the miscalling

of empty droplets as non-empty droplets, or the miscalling of

certain cell types that contain fewer transcripts than others as

empty droplets (Luecken and Theis, 2019). Recent tools have

addressed this problem by distinguishing non-empty from

empty droplets by using other metrics, such as expression pro-

file and nuclear fraction (Heiser et al., 2021; Lun et al., 2019;

Muskovic and Powell, 2021). However, the composition of

empty droplets is tissue-dependent and the specific composi-

tion of empty droplets for a given tissue is often not explored.

Without proper understanding of the transcriptional composition

of empty droplets, it can be difficult to decide whether a given

cluster of cell barcodes are empty droplets or non-empty drop-

lets that captured real nuclei/cells.

Taken together, ambient RNAs pose two challenges: contam-

ination of the endogenous profile of real nuclei/cells and ambig-

uous separation of empty and non-empty droplets. With respect

to these two issues, contamination in real nuclei/cells has
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received less attention. Several recently developed tools are

specifically designed to remove ambient RNA contamination

from real nuclei/cells; however, their utilization has been limited

(Fleming et al., 2019; Yang et al., 2020; Young and Behjati,

2020). Additionally, while these tools aim to be effective across

different tissues, the genetic signatures of ambient RNA contam-

ination differ between tissue types. Thus, it is also important to

characterize the overrepresented genes in the ambient RNA

population of a given tissue type. This will aid both the interpre-

tation of previously published datasets as well as assess the ef-

fects of ambient RNA contamination removal tools for specific

tissues by evaluating the levels of ambient RNA population

before and after the removal of contamination. In this study,

we focus on snRNA-seq studies from brain tissue, one of the

most frequently profiled tissues using this technique due to its

high cellular heterogeneity (Bakken et al., 2021; J€akel et al.,

2019; Nagy et al., 2020; Velmeshev et al., 2019). Brain tissue is

also a good model to understand the effects of ambient RNA

contamination, as neurons are more abundant and contain

more transcripts than glia in the adult mammalian cortex (Ru-

zicka et al., 2020). Therefore, ambient RNA profiles from

snRNA-seq studies of brain should be biased for neurons. We

hypothesize that this bias may contribute to both empty droplets

with neuronal signatures as well as distinctive neuronal read

contamination in non-neuronal cell types.

Here, we analyzed ambient RNA signatures from human brain

snRNA-seq datasets (Table S1) by retaining additional cell barco-

des that are typically removed due to low UMI counts. We found

two types of ambient RNAs separated by their intronic read ratio:

non-nuclear ambient RNAs with low intronic reads and nuclear

ambient RNAs with high intronic reads. Comparisons with

nuclei-sorted datasets (SDs) revealed that non-nuclear ambient

RNA can be cleared by physical nuclei sorting. We show that the

ambient RNA signature is predominantly neuronal in origin and

that all glia are contaminated with ambient RNAs. Ambient RNA

contamination in glia was removed in datasets depleted of neu-

rons (NeuN� SDs) before droplet capture (Hodge et al., 2019).

As an in silico alternative, we used CellBender (Fleming et al.,

2019) and subsequent subcluster cleaning, which also removed

detectable ambient RNA contamination from glia. Re-analysis of

the oligodendrocyte (OL) lineage trajectory after ambient RNA

removal revealed that previously annotated immature OLs are

likely glial nuclei contaminated with ambient RNA. Instead, we

found a rare, transient cell type named COPs (committed oligo-

dendrocyte progenitor cells), which were previously described in

an adolescent mouse dataset (Marques et al., 2016) but not

described in most human snRNA-seq datasets, with few excep-

tions (J€akel et al., 2019; Perlman et al., 2020). Together, our results

provide an in-depth analysis of ambient RNAcontamination in sin-

gle-nuclei brain datasets and reveal misinterpreted results that

can be explained by ambient RNA contamination.

RESULTS

Both nuclear and non-nuclear ambient RNAs confound
cell-type annotation
Studies of adult brain tissue have repeatedly shown a greater

number of transcripts present in neurons compared with glia

(Ruzicka et al., 2020). Interestingly, several snRNA-seq studies

reported some neuronal cell types (e.g., Neu-NRGN and Neu-

mat in Figure 1A) that have fewer transcript counts than other

neurons (Ruzicka et al., 2020; Velmeshev et al., 2019). We also

noticed that Neu-NRGNs had higher mitochondrial reads than

other neuronal cell types (Velmeshev et al., 2019) (Figure 1B).

Because this dataset was generated by nuclei isolation but not

nuclei sorting (purification of DAPI+ nuclei with flow cytometry),

we refer to it as non-SD 1 (NSD1). Considering the possibility

of non-nuclear transcript contamination in nuclei-based

sequencing, cell barcodes with high non-nuclear contamination

should contain lower intronic read ratios because intronic reads

will not be present in non-nuclear transcripts. We thus hypothe-

sized that Neu-NRGNs and Neu-mat may be represented by cell

barcodes with a high amount of such non-nuclear transcript

contamination in NSD1. To test this hypothesis, we calculated

the intronic read ratio per cell barcode (see STAR Methods)

and found that Neu-NRGN but not Neu-mat displayed markedly

lower intronic read ratios compared with other cell types (Fig-

ure 1C). To test whether these cell types are similar to normally

discarded cell barcodes with low UMI counts, we then clustered

an excess number of cell barcodes that contained low UMI

counts together with the annotated cell barcodes from the orig-

inal publication. To identify annotated cell barcodes that cluster

with lowUMI cell barcodes, we focused on the clusters that were

largely, but not fully, filtered out (>75% filtered) in the original

publication and named them ‘‘ambient clusters’’ (Figures 1D

and 1E). We found that Neu-NRGN cell barcodes predominantly

clustered with the ambient clusters while other cell types were

almost absent in ambient clusters, except for Neu-mat (Fig-

ure 1F). If Neu-NRGN cell barcodes are indeed highly contami-

nated with non-nuclear ambient RNA, they should also be

depleted of long non-coding RNAs (lncRNAs), which are retained

in the nucleus (Guo et al., 2020). Indeed, Neu-NRGN barcodes

contained fewer lncRNAs than other neurons (Figure 1G). An

interesting example is MALAT1, which has an elevated expres-

sion in the brain (Bernard et al., 2010) and was depleted among

Neu-NRGN cell barcodes relative to other cell types (Figure 1H).

Together, these results indicate that Neu-NRGN cell barcodes

contain high non-nuclear ambient RNA contamination and are

unlikely to represent intact nuclei.

We hypothesized that non-nuclear ambient RNA can be

removed by fluorescence activated nuclei sorting (FANS). To

test this, we analyzed another cortical snRNA-seq dataset,

named SD1, in which the authors performed nuclei sorting (puri-

fication of DAPI+ nuclei with flow cytometry) (Lake et al., 2018).

This sample preparation contrasts with the previous dataset

(NSD1) we discussed that performed nuclei isolation but not

nuclei sorting by flow cytometry (Figure 1). Because a low in-

tronic read ratio indicates the presence of non-nuclear tran-

scripts, we then determined the intronic read ratio in both data-

sets to assess whether non-nuclear transcripts are removed by

nuclei sorting. As expected, NSD1 displayed a low intronic

read ratio in cell barcodes with low UMI counts, as these cell

barcodes are primarily associated with ambient RNAs (Fig-

ure 2A). In contrast, we found that the intronic read ratio did

not markedly change with increasing UMI counts in SD1 (Fig-

ure 2B). We then assessed ambient RNA signatures after the
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Figure 1. Neu-NRGNs are comprised of non-nuclear ambient RNAs

(A) Log10 transformed UMI counts per neuronal cell type in NSD1. Cell types with an unusually low UMI count are shown in red.

(B) Mitochondrial read percentage per neuronal cell type in NSD1. Cell types with significantly higher mitochondrial read percentage are shown in red (Wilcoxon

rank sum test, p value < 0.05).

(C) Intronic read ratios of all cell types in NSD1.

(D) UMAP representation after co-embedding of same numbers of published (blue) and filtered cell barcodes (red) (dataset: NSD1).

(E) Clusters that are >75% composed of filtered cell barcodes are highlighted and named ambient clusters (dataset: NSD1).

(F) Bar plot of the percentage of cell barcodes in ambient clusters per cell type. Red: ambient clusters, blue: other clusters.

(G) Heatmap of normalized, log-transformed, and Z scored expression levels of lncRNAs across cell types. The means of all lncRNAs were taken before

calculating Z scores.

(H) T-distributed stochastic neighbor embedding (tSNE) plot of the normalized and log-transformed expression level of MALAT1 in all nuclei in NSD1.
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removal of non-nuclear ambient RNA and found ambient clus-

ters in SD1 (Figures 2C and 2D). Interestingly, SD1 ambient clus-

ter markers were highly and distinctly enriched in the Neu-mat

markers from NSD1 (Figure 2E). We also observed significant

enrichment of SD1 ambient cluster markers in other neuronal

cell-type markers, although it was markedly less compared

with Neu-mat. Co-clustering of SD1 ambient clusters and

NSD1 cell types also grouped SD1 ambient clusters and Neu-

mat cell barcodes together (Figure 2F). Overall, these results

indicate that Neu-mat cell barcodes carry an unusually high nu-

clear ambient RNA signature, and Neu-NRGN cell barcodes are

distinctly contaminated with non-nuclear ambient RNA. These

results also reveal that nuclei sorting, but not nuclei isolation

alone, effectively removes non-nuclear ambient RNA; however,

nuclei sorting cannot remove nuclear ambient RNA. Therefore,

we named NSD1 ambient RNA markers ‘‘non-nuclear ambient

markers’’ and SD1 ambient RNA markers ‘‘nuclear ambient

markers’’ (Table S2). We selected a combination of the top 500

nuclear ambient markers and the top 500 non-nuclear ambient

markers (logFC > 1 and false discovery rate [FDR] < 0.05) for

the subsequent enrichment analyses.

To provide independent support for these results, we then

analyzed a second snRNA-seq cortical human dataset that did

not include nuclei sorting (NSD2, see STAR Methods and

Table S1) and a cortical human dataset that was generated after

nuclei sorting (SD2) (Tran et al., 2021). We reproduced a similar

pattern of increasing intronic read ratio with increasing UMI in

the NSD2, whereas this was not observed in SD2 (Figures S1A

and S1B). We then similarly identified ambient clusters from

the NSD2 dataset (Figure S1C). The intronic read ratio distribu-

tion in ambient clusters was bimodal, andwe divided the clusters

into two categories: cell barcodes with high intronic read ratio

(High-Intron-CB) and cell barcodes with low intronic read ratio

(Low-Intron-CB) (Figure S1D). In line with the previous results,

genes overrepresented in Low-Intron-CB were highly enriched

in non-nuclear ambient RNA markers, whereas High-Intron-CB

were enriched in nuclear ambient RNA markers (Figure S1E).

Signatures and sources of non-nuclear and nuclear
ambient RNAs
To better understand the ambient RNA marker genes, we per-

formed gene ontology enrichment and found that non-nuclear

Figure 2. Non-nuclear and nuclear ambient RNAs are distinct from each other

(A and B) Intronic read ratio across increasing UMI count in (A) NSD1 and (B) SD1. UMI counts are divided into intervals of 100, from 100 to 2,000.

(C) UMAP representation after co-embedding of the same numbers of published (blue) and filtered cell barcodes (red) (dataset: SD1).

(D) Clusters that are >75% composed of filtered cell barcodes are highlighted and named ambient clusters (dataset: SD1).

(E) Heatmap of enrichments between ambient RNA markers and Neu-mat or Neu-NRGN cell types in NSD1; Fisher’s exact test, log10(FDR).

(F) Co-embedding of Neu-NRGNs, Neu-mat, and SD1 ambient clusters.

See also Figures S1 and S2 and Tables S2 and S3.
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ambient RNA markers are enriched for genes involved in ribo-

somal, mitochondrial, and synaptic functions, whereas nuclear

ambient RNA markers are enriched for genes related to synaptic

function (Figures S2A and S2B; Table S3). As previously hypoth-

esized (Thrupp et al., 2020), we asked whether non-nuclear

ambient RNAs are enriched in genes comprising synaptosomes,

which are also marked by ribosomal, mitochondrial, and synap-

tic activity (Hafner et al., 2019). Using the top 500markers in each

ambient RNA group, we found that non-nuclear ambient RNAs

are more enriched than nuclear ambient RNAs for transcripts

of both vGLUT1-depleted (originating from postsynapse +

soma) and vGLUT1-enriched (originating from presynapse) syn-

aptosome markers (Hafner et al., 2019) (Figure S2C). Because

nuclear ambient RNAs also showed significant association and

were enriched in overall synaptic function but not ribosomal

and mitochondrial function (Table S3), we then hypothesized

that nuclear ambient RNAs are derived from highly expressed

genes captured in neuronal nuclei. Indeed, nuclear ambient

RNAs largely overlapped with genes that are highly expressed

in neurons (Figure S2C). We note that this also explains the sig-

nificant enrichments between neuronal cell-type markers and

nuclear ambient RNA markers that we observed (Figure 2E).

We also observed that the top non-nuclear ambient RNA and nu-

clear ambient RNA markers were also distinct, further under-

scoring the hypothesis that ambient RNAs are derived from

different sources (Figure S2C).

Ambient RNA contamination of glial nuclei can be
removed in silico

Given that neuronal genes are overrepresented in both ambient

RNA types, we then hypothesized that ambient RNA contamina-

tion can make the transcriptomic profile of glial cell types appear

more neuronal-like. As sorting for nuclei that do not express the

neuronal marker NeuN (referred to as NeuN�) prior to droplet

capture should remove neuronal ambient RNAs, we compared

SDs and NSDs with three NeuN� sorted snRNA-seq datasets

(NeuN� SD) (Bakken et al., 2021; Hodge et al., 2019; Sadick

et al., 2022). We identified genes significantly overrepresented

in the four exemplar datasets (SD1, SD2, NSD1, NSD2)

compared with the three NeuN� SDs in 6 major cell types: excit-

atory and inhibitory neurons, OLs, OPCs (OL progenitor cells),

astrocytes (AST), andmicroglia (MIC) (Table S4). We called these

genes ‘‘NeuN� depleted genes.’’ For each comparison, we then

selected the top 500 NeuN� depleted genes and performed

enrichment for ambient RNA markers. Despite the neuronal

signature of ambient RNA markers, their enrichments within

the NeuN� depleted genes were consistently significant in all

glial cell types across the studies (Figures 3A and 3B). Notably,

the association of ambient RNA markers and NeuN� depleted

genes was consistently less in neuronal cell types than in glia

(Figures 3A and 3B). Together, these results show that glial nuclei

in cortical snRNA-seq are likely contaminated with neuronal

ambient RNAs.

Our findings suggest that neuronal ambient RNAs contami-

nate glial nuclei unless samples are sorted to remove neuronal

nuclei prior to droplet capture. To further test our finding, we

used a dataset that employed two sorting strategies: one that

depleted neurons (NeuN� and LHX2+ sorting also referred to

as NeuN� SD3 in our comparisons) and one that did not deplete

neurons (SOX9+ sorting) (Sadick et al., 2022) (Figures S3A–S3C).

In line with our hypothesis, ambient RNA markers appeared less

‘‘expressed’’ across glial nuclei in the dataset with neuron deple-

tion (Figure S3D), and genes less represented in the neuron

depleted dataset were significantly enriched in ambient RNA

markers (Figure S3E). We note that two ambient RNA markers

we exemplify (CSMD1 and RALYL) showed similar expression

patterns between the two datasets. These genes are likely

endogenously expressed in OPCs as high expression levels

are detectable across the other NeuN� SDs (Bakken et al.,

2021; Hodge et al., 2019), underscoring the importance of distin-

guishing ambient RNA contamination from endogenous tran-

scripts per cell type. Together, these results provide further proof

of neuronal ambient RNA contamination in the cortical snRNA-

seq datasets.

Ambient RNA contamination within droplets that contain real

nuclei is a general problem in snRNA-seq experiments, and

various tools exist to remove ambient RNA contamination

(Fleming et al., 2019; Yang et al., 2020; Young and Behjati,

2020). To assess the performance of these tools in the analyzed

datasets, we used NeuN� SDs as the ground truth and asked

which tool would lower the percentage of reads explained by

ambient RNA markers to the levels observed in NeuN� SDs in

glial cell types.We applied SoupX (Young andBehjati, 2020), De-

contX (Yang et al., 2020), and CellBender (Fleming et al., 2019),

with default parameters on each dataset. Overall, we observed a

lower percentage of ambient RNA in NeuN� SDs compared with

other datasets where no removal was performed (Figure S4).

Among the three ambient RNA removal tools, CellBender was

consistently better at reducing the ambient RNA contamination

levels across the datasets (Figures S4A–S4D). Comparison of

all NeuN� SDs and ambient RNA removal tools in glial cell types

showed that there was no significant difference between the

NeuN� SDs and CellBender results in terms of the percentage

of reads explained by ambient RNA markers (Figure S4E). We

highlight this in OLs from SD1 that show low levels of SYT1,

CSMD1, and KCNIP4 after CellBender, similar to NeuN� SDs,

while DecontX- and SoupX-treated datasets display substantial

levels of contamination (Figure S4F). Together, these results

show that CellBender performs better than DecontX and SoupX

to remove neuronal ambient RNA contamination from glial

nuclei.

We next asked whether CellBender could fully remove

ambient RNA contamination. For each dataset, we calculated

the enrichments between ambient RNA markers and genes

depleted in NeuN� SD1 (chosen as these genes have the lowest

ambient RNA percentage in glial cell types among all NeuN�
SDs) before and after applying CellBender (Figures S4A–S4D).

Focusing on the OLs (from SD1), we found that CellBender sub-

stantially reduced ambient RNA contamination (Figure 3C). How-

ever, enrichment was still significant, indicating that ambient

RNA contamination was not fully removed. To investigate this,

we next subclusteredOLs and found that markers of a small sub-

cluster were highly enriched in ambient RNAs (Figures 3D and

3E). Removing this subcluster fully removed detectable ambient

RNA contamination from OLs (Figures 3C and 3F) and increased

correlation with NeuN� sorted OLs (Figure 3G). We then applied
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Figure 3. Ambient RNAs contaminate glia expression profiles

(A and B) Dot plots using odds ratio and FDR adjusted p values as measurements of ambient RNA enrichment of genes depleted in NeuN� sorted datasets

compared with other datasets that did not perform NeuN� sorting; comparisons include: (A) between NSDs and NeuN� SDs; and (B) between SDs and NeuN�
SDs (per major cell type using a Fisher’s exact test).

(C) The same enrichment as in (A and B) after each analysis (in y axis as rows) performed in oligodendrocytes from the SD1 dataset. Numbers: FDR value; colors

scale: �log10(FDR).

(D) UMAP plot of SD1 oligodendrocytes after CellBender.

(E) Heatmap of enrichment between oligodendrocyte cluster markers and ambient RNA markers.

(F) Violin plots of gene expression (log transformed) in oligodendrocytes after each analysis. Left column: oligodendrocyte markers; right column: ambient RNA

markers. NeuN� sorted, NeuN� SD1.

(G) Spearman rank correlations of all genes between SD1 oligodendrocytes and NeuN� sorted oligodendrocytes after each analysis (x axis).

(H) The same enrichment as in (C) performed in all datasets and glial cell types after each analysis.

(I) Spearman rank correlations of all genes with the NeuN� sorted dataset. Correlations were performed per cell type per dataset (y axis) after each analysis (x

axis). The numbers and color of the heatmaps indicate the correlation coefficient.

See also Figures S3–S9 and Table S4.
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this procedure to each glial cell type per dataset and found that

there was little to no contamination after CellBender and addi-

tional subcluster cleaning (Figure 3H). The removed subclusters

had a consistently lower intronic read ratio in datasets that did

not undergo nuclei-sorting, in line with the expectation that

ambient RNA contamination contains non-nuclear reads unless

nuclei are physically sorted (Figure S5A). Indeed, nuclei-SDs

contained similar intronic read ratios between removed subclus-

ters and other nuclei. (Figure S5B). We note that SD2 contained

fewer nuclei compared with the other datasets and did not

demonstrate robust subclusters; thus, we omitted subcluster

cleaning for SD2.

Although neuronal nuclei are also expected to be contami-

nated with ambient RNAs, NeuN-based sorting is not helpful in

revealing ambient RNA contamination in neuronal nuclei, as

ambient RNAs are dominated by neuronal signatures. To assess

the levels of ambient RNA contamination in neuronal nuclei, we

leveraged the lower intronic read ratio of relatively more contam-

inated nuclei in the NSDs (Figure S5A). To reveal this association

for all nuclei, we calculated a non-nuclear ambient RNA percent-

age and assessed its association with a non-intronic read ratio.

Both measures are expected to be higher in ambient RNA-

contaminated nuclei. Indeed, we observed high correlations be-

tween the two metrics for all cell types (Figures S6A–S6C and

S6E). In line with the previous results, ambient RNA contamina-

tion was decreased by CellBender and further removed by sub-

cluster cleaning in all glial cell types (Figures S6A and S6B). Strik-

ingly, CellBender did not reduce ambient RNA contamination

from the neurons (Figures S6C and S6E). As expected, non-nu-

clear ambient RNA markers NRGN and CHN1 levels were higher

in more contaminated neuronal nuclei, whereas nuclear-retained

MALAT1 levels were lower (Figures S6D and S6F). Contamina-

tion patterns were similar among the previously annotated

neuronal subtypes of NSD1, indicating that ambient RNA

contamination in neurons is a cell-type agnostic problem and,

unlike glia, is not accounted for by CellBender (Figures S7A

and S7B). Other ambient RNA contamination removal tools

were alsomore effective in glia than neurons, indicating a general

deficiency in the current methods to remove ambient RNA

contamination from the dominant cell type in the tissue

(Figures S7C and S7D).

To test the effect of ambient RNA removal on all genes,we then

assessed the correlation of all expressed genes between a given

dataset and a NeuN� SD. We found that ambient RNA removal

consistently increased overall correlations, indicating that

ambient RNA removal results in better reproducibility between

datasets (Figure 3I). Neurons were also similarly correlated with

the NeuN+ SD before and after CellBender (Figure S5C). These

results indicate that ambient RNA contamination in glia can be

effectively removed with CellBender and subcluster cleaning

without undesired effects on the overall gene expression profile.

Ambient RNA contamination is also detected in a mouse
brain snRNA-seq dataset
To assess whether ambient RNA contamination is similar in

mouse cortical snRNA-seq data, we generated snRNA-seq da-

tasets from the frontal cortex of four P56 (postnatal day 56)

mice. Similar to human datasets, the intronic read ratio was

less in cell barcodes with low UMI counts (Figure S8A) and

ambient clusters were distributed bimodally with Low-Intron-

CB and High-Intron-CB (Figures S8B and S8C). Low-Intron-CB

markers were also enriched in non-nuclear ambient RNAs,

whereas High-Intron-CB markers were enriched in nuclear

ambient RNAs (Figure S8D). We similarly ran CellBender and

performed subcluster cleaning on glial cell types. Both steps

selectively removed the ambient RNA signature from all glial

cell types (Figure S8E). Thus, we conclude that ambient RNA

types and the contamination of glial cell types by neuronal

ambient RNAs are not specific to human brain datasets.

In situ hybridization reveals no overlap of ambient RNA
markers and glia
Because ambient RNA contamination arises from the RNAs

released from dissociated cells and nuclei, we hypothesized

that assays carried out using intact tissue should reveal consid-

erably lower expression of neuronal ambient markers in glia. To

test this, we used probes to an OL marker (Mog) and three

ambient RNA markers (Rbfox1, Snap25, Syt1) and performed

pairwise single molecule fluorescent in situ hybridization

(smFISH) on cortical slices from adult mice. Indeed, we found

almost no overlap between any of the three ambient RNA

markers and Mog (Figures S9A–S9D; Table S5). In contrast,

the snRNA-seq from the mouse frontal cortex indicated that

>75% of nuclei contained reads from all three markers in the

OLs (Figure S9E). This prevalent contamination was abolished

after the ambient RNA removal process (CellBender + subcluster

cleaning) (Figure S9E). These results provide further support for

the prevalence of neuronal ambient RNA contamination in glial

snRNA-seq nuclei.

Previously annotated immature oligodendrocytes are
glia contaminated with ambient RNAs
Glia can express genes that are typically associated with

neuronal function. For example, OPCs can make synapse-like

contacts with axons and express glutamatergic receptors that

bind to neurotransmitters secreted by neurons, affecting OL

maturation in vitro (Fields, 2015; Luse and Korey, 1959; Wake

et al., 2011). We also found that glutamatergic receptors func-

tionally studied in OL maturation (e.g., GRIA2, GRIA4, and

GRM5 in OPCs [Fields, 2015; Kougioumtzidou et al., 2017;

Wake et al., 2011]) remain present in our analysis after ambient

RNA removal (Figure S10A). However, such ambiguity in cell-

type expression patterns raises the possibility that neuronal

ambient RNA contamination in glia might have been implicated

with biological function in previous snRNA-seq studies. For

example, the snRNA-seq study that generated SD1 identified

‘‘immature OLs,’’ which were marked by greater expression of

many neuronal genes, but many marker genes of this cell-type

annotation were not independently validated (Lake et al.,

2018). Based on our findings, we considered the alternative pos-

sibility that this excessive neuronal gene expression signature is

ambient RNA contamination. In line with this interpretation, we

found that�80% (46 out of 58) of immature OLmarkers overlap-

ped with the top 200 most abundant ambient RNA markers (Fig-

ure 4A). Using the gene-cell matrix from the original publication,

we reconstructed the lineage trajectory between OPC and OL
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Figure 4. Ambient RNA contamination causes misinterpretation of transitioning oligodendrocytes in the human brain
(A) Overlap of the immature oligodendrocyte markers in SD1 and the top 200 most abundant ambient RNA markers.

(B) The oligodendrocyte lineage trajectory as reconstructed with destiny. The ‘‘transition’’ zone: the 400 cell barcodes around the middle cell barcode based

on DC1.

(C) Heatmap enrichments between the trajectory zones (OPC, transition, and OL) and either ambient RNA or immature oligodendrocyte markers using a Fisher’s

exact test. Numbers: FDR; color scale: �log10(FDR).

(D) The same lineage trajectory as (B) with cell barcodes removed after subcluster cleaning highlighted.

(E) UMI counts of cell barcodes within the OPC, transition, or OL zones.

(F) The oligodendrocyte lineage trajectory after CellBender.

(G) The same lineage trajectory as (F) with cell barcodes removed after subcluster cleaning highlighted.

(H) UMAP of OPC subclustering. COP, committed OPCs.

(I) The ratio of COPs within OPCs or within the transitioning cells to the total number of OPCs and transitioning cells. Asterisk: p value < 0.05, chi-square test.

(J) Heatmap of oligodendrocyte lineage markers (Z scored across cell types per marker gene).

(K) Overlap of COP markers (compared with OPCs) across datasets. The top 100 markers were selected (FDR < 0.05).

(L) Violin plots of the expression levels of the top COP markers in three datasets.

See also Figures S10–S12 and Tables S5 and S6.
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(Figure 4B). Cell barcodes between OPC and OL (‘‘transitioning

cells’’) showed high enrichment for both immature OL and

ambient RNA markers (Figures 4B and 4C), and these cell barc-

odes were removed during our subcluster cleaning procedure

(Figure 4D). These cell barcodes displayed similar UMI counts

compared with OPC and OL, indicating that they are also not

glia-neuron doublets (Figure 4E). Because CellBender reduces

ambient RNA contamination, we also assessed the OPC-OL tra-

jectory after CellBender, which revealed a less continuous tra-

jectory compared with the original dataset (Figure 4F). Similar

to the original dataset, cell barcodes between OPC and OL

were removed during subcluster cleaning (Figure 4G). We per-

formed smFISH experiments to examine whether cells express-

ing the annotated immature OLmarkers (GRIN2A and SYT1) also

express an OL lineage marker (OLIG2). We found essentially no

overlap of expression of these genes in human cortical samples

(Figures S9F and S9G; Table S5). In contrast, there was �10%

overlap of these markers in the SD1 snRNA-seq dataset (Fig-

ure S9H). Together, these results indicate that the OPC-OL

pseudotime trajectory is driven by ambient RNA contamination

rather than the biological differentiation of OLs.

We hypothesized that ambient RNA-contaminated nuclei can

be detected as transitioning cells between any two glial cell

types in pseudotime analysis, as all glial nuclei are expected to

contain neuronal ambient RNA contamination in a brain gray

matter preparation. Therefore, we generated a pseudotime anal-

ysis between OPC and AST and found similar ‘‘transitioning

cells’’ (Figures S10B and S10D). Because OPCs can achieve

multipotency under certain conditions (Chamling et al., 2021;

Sim et al., 2011; van Bruggen et al., 2017), we could not exclude

the possibility that this could be a real biological function (i.e.,

OPCs differentiating into AST). For a definitive answer, we tested

two non-OL lineage cell types, AST andMIC, which also revealed

similar ‘‘transitioning cells’’ that were highly enriched in both

ambient RNA and immature OL markers and were effectively

removed by our ambient RNA removal process (Figures S10E–

S10G). Given that immature OLs also lack known markers of

COPs or premyelinating OLs (Pre-OLs) (e.g., BCAS1, ENPP6,

and GPR17 [Hughes and Stockton, 2021]) (Figure S10H), our re-

sults indicate that nuclei previously annotated as immature OLs

in several snRNA-seq studies are not transitioning cells but

rather glia with a high contamination of neuronal ambient RNA.

Ambient RNA removal reveals rare cell type in adult
human brain snRNA-seq datasets
Initial single-cell studies on the adolescent mouse OL lineage

identified COPs and NFOLs (newly formed OLs) as transitioning

OL cells (Marques et al., 2016). This work established marker

genes, including Gpr17, which peaked in COPs, was reduced

in NFOLs, and was absent in mature OLs (Marques et al.,

2016). A study in human-induced pluripotent stem cell-derived

OPC culture also showed that GPR17 regulated OL maturation

in human cells (Merten et al., 2018). However, few single-cell

RNA-seq studies in the adult human brain have identified these

populations (Fernandes et al., 2021; J€akel et al., 2019). Because

these studies used different annotation labels andmarker genes,

it is also unclear whether transitioning OLs are consistent across

human datasets. Robust annotation of these cells in human da-

tasets is crucial to understand the role of the OL lineage in neuro-

logical diseases (Akay et al., 2021; J€akel et al., 2019; Nagy et al.,

2020; Phan et al., 2020).

To determinewhetherwe can identify COPs after ambient RNA

removal,wesubclusteredOPCs.GPR17+COPsweredetectable

and clustered separately from OPCs in NSD1, NSD2, and SD1

(Figures 4H, S11A, and S11C). In SD2, plotting of COP markers

in the Uniform Manifold Approximation and Projection (UMAP)

space revealed a small population of nuclei with high expression

of COP markers, although they did not cluster separately due to

the low number of nuclei in this dataset (Figure S11E). Impor-

tantly, COPs were significantly depleted within the transition

zoneof thepseudotimeplot (Figure 4I), further indicating that pre-

viouspseudotime analysesweredriven byambientRNAcontam-

ination rather than demonstrating biological underpinnings of OL

maturation. To validate the identity of COPs, we then plotted

genes known to be associated with COPs or Pre-OLs (BCAS1

[Fard et al., 2017], GPR17 [Chen et al., 2009], FYN [Sperber and

McMorris, 2001]) as well as genes that are upregulated in Pre-

OLs but are also expressed in OLs (TFEB [Sun et al., 2018],

ENPP6 [Xiao et al., 2016]). We found that BCAS1, GPR17, and

FYN selectively marked COPs, and TFEB and ENPP6were upre-

gulated in COPs compared with OPCs consistently across the

datasets (Figures 4J, S11B, S11D, and S11E). Overall, 58 out of

the 211 (27%) topmarkers of COPswere shared between at least

two datasets (Figure 4K). To highlight previously undescribed

markers for COPs in the adult human brain, we then found the

most specific COP markers compared with both OPCs and

OLs which—in addition to GPR17, BCAS1, and FYN—revealed

TNS3 (Marques et al., 2016), SH3RF3, EPHB1, CRB1, SIRT2,

and ARHGAP5 as additional potential markers for future studies

of OL biology in the human brain (Figure 4L; Table S6). Given that

we could detect similar COP populations in all datasets, we also

re-analyzed a previous study that identified COPs in the adult hu-

man brain white matter (J€akel et al., 2019). Surprisingly, in the

original annotation, COP markers did not have a higher expres-

sion in COPs than OPCs (Figure S12A). Clustering OPCs and

COPs revealed a subpopulation of nuclei that were very similar

to COPs in other human datasets on account of their marker

gene expression levels (‘‘COPs-New’’) (Figures S12B and

S12C). To assess whether previously annotated COPs (‘‘COPs-

Old’’) could be ambient RNA contamination, we also checked

expression levels of neuronal genes. This revealed high expres-

sion of both ambient and non-ambient neuronal genes, indicating

‘‘COPs_Old’’ might be OL-neuron doublets rather than ambient

RNA contamination (Figure S12C). Indeed, COPs-Old displayed

similar UMI count levels to neuronal cell types, in contrast to

ambient RNA driven clusters which contained lower UMI count

levels (Figures 1A, 4E, and S12D). These results provide further

evidence of the extreme rarity of COPs in human brain datasets,

which can be masked by technical artifacts.

Stepwise guideline for detection and removal of
ambient RNAs
Our results show that a combination of existing tools and careful

analysis can remove ambient RNA contamination and improve

the biological relevance of results. To illustrate our approach in

a more direct way, we present a stepwise guideline that outlines
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the major steps important in our analysis (Figure 5). Although

ambient RNA removal tools aim to be a one-step solution for

this problem, we advise researchers to identify ambient RNA

populations and their markers genes in their own dataset, which

is achievable using common methods (Figure 5, steps 1–4). This

can then be used to assess whether a specific cell population is

marked by high ambient RNA contamination, which may not

have been removed or cleaned of ambient RNAs by the special-

ized tools (e.g., CellBender, Figure 5, steps 5–7). Taken together,

we show pervasive contamination of glia by neuronal ambient

Figure 5. Stepwise guidelines of ambient

RNA marker detection and ambient RNA

removal

Steps 1–4 describe how to identify ambient RNA

markers in the given dataset. Steps 5–7 describe

how to use this information to further remove

ambient RNA-contaminated cell barcodes after a

formal ambient RNA contamination removal tool

such as CellBender is applied. Left, for non-sorted

datasets; right, for nuclei-sorted datasets.

RNAs and successfully remove them using

available methods, which reveals the un-

derappreciated biology of transitioning

OLs in the adult human brain. We also pro-

vide a stepwise guideline outlining our inte-

grated approach to tackle ambient RNA

contamination in single-nuclei datasets

from brain tissue.

DISCUSSION

Here, we provide an in-depth examination

of ambient RNAs in brain snRNA-seq data-

sets. We identify nuclear and non-nuclear

ambient RNAs with different gene signa-

tures and find that previously annotated

neuronal cell types have a high contamina-

tion of ambient RNAs (Ruzicka et al., 2020;

Velmeshev et al., 2019). We then show that

the high prevalence of neuronal reads in

ambient RNAs contaminate glia but can

be effectively removed using CellBender

and additional subcluster cleaning. These

results are not unique to the human brain

and are reproducible in mouse cortical

snRNA-seq data. We also show that imma-

ture OLs previously identified in snRNA-

seq datasets are artifacts of neuronal

ambient RNA contamination. After ambient

RNA removal, we can identify populations

of COPs in all human brain snRNA-seq da-

tasets and highlight both known and previ-

ously undescribed markers of COPs.

Finally, we provide a stepwise guideline of

ambient RNA marker identification and

removal.

Our findings suggest that single-nuclei isolation does not

entirely remove non-nuclear reads. The presence of cell barco-

des with high proportions of non-nuclear reads indicates that

cytoplasmic mature RNAs also contribute to contamination dur-

ing nuclei isolation. We found that marker genes of non-nuclear

reads significantly overlap with mRNAs that localize to synapto-

somes (Figure S2) and that the non-nuclear ambient RNAs are

largely abolished when the intact nuclei are physically sorted

by FANS (Figures 2B and S1B). Although these results indicate

that non-nuclear reads are likely derived from all cell types, it is
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also possible that mature mRNAs can be carried over into drop-

lets by the endoplasmic reticulum that is still attached to the nu-

cleus after isolation or sorting. Therefore, some non-nuclear

reads may be derived from the same cell as the captured

nucleus.

We leveraged the intronic read ratio difference between the

empty and non-empty droplets to reveal that previously anno-

tated cell clusters (Neu-NRGNs) contain high levels of non-nu-

clear ambient RNA contamination and are likely empty droplets

(Figure 1C). However, non-nuclear contamination measured by

intronic read ratio is not sufficient to identify all healthy nuclei/

cells. For example, a recent study highlighted the distinction of

damaged cells and empty droplets that only contain ambient

RNA (Muskovic and Powell, 2021). The authors noted that

damaged cells contain a similar intronic read ratio (i.e., nuclear

fraction) to real cells, but they display lower UMI counts

compared with other cells with similar annotation. Similarly, we

find that the Neu-mat cluster has lower UMI counts compared

with other neurons despite having a similar intronic read ratio,

indicating that this cluster likely contains damaged nuclei

(Figures 1A and 1C). Additionally, we observe that while empty

droplets have lower intronic read ratios, these ratios are still sub-

stantially higher than zero, indicating that nuclear reads also

contribute to ambient RNAs (Figures 1C and 2A). Finally, intronic

read ratio is not an indicator of empty droplets in datasets that

underwent nuclei sorting by flow cytometry, as this procedure

only removes non-nuclear ambient RNAs (Figure 2B). In nuclei-

SDs (e.g., SDs in this study), empty droplets can be better iden-

tified by assessing a given cluster’s enrichment for the ambient

RNA markers (Figure 2E). We offer several functions to find

ambient RNA markers for this purpose (Figure 5, steps 1–4).

In addition to empty droplets, ambient RNAs can contaminate

all non-empty droplets. We focused on contamination in glial

nuclei as they contain fewer transcripts than other cell types in

the brain. We found that ambient RNAmarkers were underrepre-

sented in the glial nuclei from studies that physically separated

neurons and glia, indicating that some reads mapping to

neuronal genes in datasets without neuron-glia separation are

not representative of neuronal endogenous expression

(Figures 3A and 3B). To remove the neuronal ambient RNA

contamination in glia, we utilized CellBender (Fleming et al.,

2019) and subsequent detection of subclusters with ambient

RNA contamination. Together, thesemethods removed neuronal

ambient RNA contamination from glial nuclei and improved cor-

respondence with NeuN� SDs (Figures 3C–3I). Based on these

results, we recommend two approaches for cortical snRNA-

seq experiments: (1) physical separation of glia from nuclei

(e.g., by FANS) or (2) in silico cleaning of neuronal ambient

RNA contamination. Our approach for the in silico cleaning in-

volves two steps: using a formal ambient RNA removal tool

(CellBender) and subsequent removal of contaminated subclus-

ters that are not successfully cleaned of ambient RNAs after

CellBender (Figures 3C–3E). We show that failure to remove

ambient RNA contamination can have important consequences,

such as the misannotation of contaminated glial nuclei as imma-

ture OLs (Lake et al., 2018). Importantly, CellBender alone did

not remove all ambient RNA contamination, and the remaining

contaminated nuclei were positioned between OPCs and OLs

in the pseudotime trajectory (Figures 4B–4G). We thus recom-

mend utilizing both CellBender and subsequent subcluster

cleaning to account for ambient RNA contamination. We provide

a stepwise guideline for the in silico approach we have taken to

remove ambient RNA contamination from glial cell types

(Figure 5).

Neuronal reads are abundant within the ambient RNA popula-

tion, making ambient RNA contamination in glial cell types

distinct from the endogenous gene expression of glial nuclei. In

contrast, ambient RNA contamination in neurons is difficult to

separate from the endogenous neuronal gene expression, and

cell barcodes with a higher percentage of ambient RNA markers

may be biologically relevant. As an unbiased method, we used

the positive correlation of non-intronic read ratio and ambient

RNA percentage across cell barcodes as a measure of contam-

ination in NSDs. This revealed that neither CellBender nor other

tools (DecontX and SoupX) could substantially reduce ambient

RNA contamination in neuronal cell types (Figures S6C–S6F

and S7). Although the cell barcodes with high contamination

can be manually removed, determining a threshold for removal

would be arbitrary and could reduce the number of nuclei re-

tained for analysis. Currently, we suggest caution in interpreting

‘‘novel’’ neuronal cell types and cell states even if the common

ambient RNA removal tools are applied. Our study shows that

ambient RNA contamination in neurons can be assessed by us-

ing metrics such as intronic read ratio (if the dataset has non-nu-

clear ambient RNAs) and the percentage of ambient RNA

markers identified from the same dataset or similarly prepared

datasets from similar tissues.

We showed that analysis of nuclei from the OL lineage after

ambient RNA removal revealed COPs in all independent data-

sets. Although COPs have been identified before (Marques

et al., 2016; Perlman et al., 2020), many studies did not annotate

them (Nagy et al., 2020; Ruzicka et al., 2020; Sadick et al., 2022;

Tran et al., 2021; Velmeshev et al., 2019). This could be hindered

by both ambient RNA contamination and the rarity of COPs in the

adult brain. COPs are �0.04% of cells in the adult brain (NSD2

samples from 30 to 80 years old) and �0.3% of cells in the

adolescent brain (NSD1 samples from 4 to 22 years old). We

also showed that previously annotated COPs in adult human

brain white matter are likely OL-neuron doublets and that real

COPs are detectable and similarly rare (�0.1% of all cells) (Fig-

ure S11). In line with this, live cell imaging in the mouse brain

showed that �80% of transitioning OLs rapidly undergo cell

death, which should result in a transient and rare cell population

(Hughes et al., 2018). A carbon dating study of human genomic

DNA in OLs also showed low levels of oligodendrogenesis in

adulthood, which further supports the rarity of transient cells in

the adult human brain (Yeung et al., 2014). Despite being rare,

COPs are critical to examine because OL maturation is altered

in both neurological diseases (de Faria et al., 2021; Phan et al.,

2020) and human evolution (Miller et al., 2012; Zhu et al.,

2018). Thus, ambient RNA removal is important for accurate

analysis of underrepresented cell types. Another recent study

also uncovered that glial cell types respond to enzymatic disso-

ciation during single-cell and single-nucleus library preparation

and confound the transcriptomic profile (Marsh et al., 2022).

Here, we show that all glial cell types are also contaminated
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with neuronal ambient RNA transcripts, causing misinterpreta-

tion of glial single-cell analysis. Together, these results indicate

that both data generation and data analysis of glial cell types

should be revisited and updated.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Human cortical tissue

B Mouse cortical tissue

d METHOD DETAILS

B Preprocessing and count matrix generation

B Single-nuclei library preparation

B Ambient cluster analysis

B Comparison with NeuN- datasets

B Ambient RNA removal with CellBender, DecontX

and SoupX

B Subcluster cleaning of glia after CellBender

B Assessment of ambient RNA contamination signatures

in glia

B In-situ hybridization and image quantification

B Pseudotime analysis

B OPC subcluster analysis

B Identification of COP Marker Genes

B Other enrichments

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

neuron.2022.09.010.

ACKNOWLEDGMENTS

The authors thank Dr. Dmitry Velmeshev, Dr. Arnold Kriegstein, Dr. Tao Wang,

and Dr. Lu Sun for their critical comments on themanuscript. We also thank Dr.

Shin Yamazaki and the UTSW Neuroscience Microscopy Facility for their help

with imaging and Dr. Shane A. Liddelow and Michael O’Dea for additional in-

formation about their sorted dataset. The authors thank the NIHNeuroBioBank

for providing human brain tissue. G.K. is a Jon Heighten Scholar in Autism

Research and TownsendDistinguishedChair in Research on Autism Spectrum

Disorders at UT Southwestern. E.C. is a Neural Scientist Training Program

fellow in the Peter O’Donnell Brain Institute at UT Southwestern. This work

was partially supported by the James S. McDonnell Foundation 21st Century

Science Initiative in Understanding Human Cognition Scholar award, NHGRI

(HG011641), NINDS (NS115821), and NIMH (MH126481, MH103517) to

G.K., and an American Heart Association Postdoctoral Fellowship (915654)

to Y.L.

AUTHOR CONTRIBUTIONS

E.C. and G.K. conceptualized the study. Y.L. collected snRNA-seq data and

performed smFISH. E.C. performed all analyses. Y.L. edited the manuscript.

E.C. and G.K. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 23, 2022

Revised: April 20, 2022

Accepted: September 8, 2022

Published: October 13, 2022

REFERENCES

Akay, L.A., Effenberger, A.H., and Tsai, L.H. (2021). Cell of all trades: oligoden-

drocyte precursor cells in synaptic, vascular, and immune function. Genes

Dev. 35, 180–198. https://doi.org/10.1101/gad.344218.120.

Angerer, P., Haghverdi, L., B€uttner, M., Theis, F.J., Marr, C., and Buettner, F.

(2016). destiny: diffusion maps for large-scale single-cell data in R.

Bioinformatics 32, 1241–1243. https://doi.org/10.1093/bioinformatics/btv715.

Ayhan, F., Douglas, C., Lega, B.C., and Konopka, G. (2021). Nuclei isolation

from surgically resected human hippocampus. Star Protoc. 2, 100844.

https://doi.org/10.1016/j.xpro.2021.100844.

Bakken, T.E., Jorstad, N.L., Hu, Q., Lake, B.B., Tian, W., Kalmbach, B.E.,

Crow, M., Hodge, R.D., Krienen, F.M., Sorensen, S.A., et al. (2021).

Comparative cellular analysis ofmotor cortex in human,marmoset andmouse.

Nature 598, 111–119. https://doi.org/10.1038/s41586-021-03465-8.

Bernard, D., Prasanth, K.V., Tripathi, V., Colasse, S., Nakamura, T., Xuan, Z.,

Zhang, M.Q., Sedel, F., Jourdren, L., Coulpier, F., et al. (2010). A long nu-

clear-retained non-coding RNA regulates synaptogenesis by modulating

gene expression. EMBO J. 29, 3082–3093. https://doi.org/10.1038/emboj.

2010.199.

Chamling, X., Kallman, A., Fang, W., Berlinicke, C.A., Mertz, J.L., Devkota, P.,

Pantoja, I.E.M., Smith, M.D., Ji, Z., Chang, C., et al. (2021). Single-cell tran-

scriptomic reveals molecular diversity and developmental heterogeneity of hu-

man stem cell-derived oligodendrocyte lineage cells. Nat. Commun. 12, 652.

https://doi.org/10.1038/s41467-021-20892-3.

Chen, Y., Lun, A.T., and Smyth, G.K. (2016). From reads to genes to pathways:

differential expression analysis of RNA-Seq experiments using Rsubread and

the edgeR quasi-likelihood pipeline. F1000Res 5, 1438. https://doi.org/10.

12688/f1000research.8987.2.

Chen, Y., Wu, H., Wang, S., Koito, H., Li, J., Ye, F., Hoang, J., Escobar, S.S.,

Gow, A., Arnett, H.A., et al. (2009). The oligodendrocyte-specific G protein-

coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat.

Neurosci. 12, 1398–1406. https://doi.org/10.1038/nn.2410.

de Faria, O., Jr., Pivonkova, H., Varga, B., Timmler, S., Evans, K.A., and
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Adult mouse (P56) frontal cortex specimens Table S1 N/A

Adult human posterior cingulate cortex specimens Table S1 N/A

Deposited Data

Mouse snRNA-seq data This paper GEO: GSE198640

Human nuclei-sorted snRNA-seq data (SD1) Lake et al., 2018 GEO: GSE97930

Human nuclei-sorted snRNA-seq data (SD2) Tran et al., 2021 https://research.libd.org/globus

(endpoint: jhpce#tran2021)

Human non-sorted snRNA-seq data (NSD1) Velmeshev et al., 2019 BioProject: PRJNA434002

Human non-sorted snRNA-seq data (NSD2) This paper GEO: GSE198951

NeuN- sorted dataset 1 Hodge et al., 2019 https://portal.brain-map.org/atlases-and-data/

rnaseq/human-mtg-smart-seq

NeuN- sorted dataset 2 Bakken et al., 2021 https://assets.nemoarchive.org/dat-ek5dbmu

NeuN- sorted dataset 3 Sadick et al., 2022 GEO: GSE167494

Human cortical oligodendrocyte data J€akel et al., 2019 GEO: GSE118257

Software and Algorithms

CellRanger v.3.0.2 10x Genomics https://www.10xgenomics.com/products/

single-cell-gene-expression/

R version 4.1.2 The R Project https://www.r-project.org/

Seurat_3.0.1 Stuart et al., 2019 https://github.com/satijalab/seurat

Scran_1.18.7 Chen et al., 2016 https://bioconductor.org/packages/release/

bioc/html/scran.html

GeneOverlap_1.30.0 Shen, 2020 https://bioconductor.org/packages/release/bioc/

html/GeneOverlap.html

CellBender_0.2.0 Fleming et al., 2019 https://github.com/broadinstitute/CellBender

DecontX Yang et al., 2020 https://github.com/campbio/celda

SoupX Young and Behjati, 2020 https://github.com/constantAmateur/SoupX

Destiny_3.8.1 Angerer et al., 2016 https://bioconductor.org/packages/release/bioc/

html/destiny.html

clusterProfiler_4.2.2 Yu et al., 2012 https://bioconductor.org/packages/release/bioc/

html/clusterProfiler.html

SynGO Koopmans et al., 2019 https://www.syngoportal.org/

Umi-tools_1.1.1 Smith et al., 2017 https://github.com/CGATOxford/UMI-tools

STAR_2.7.10 Dobin et al., 2013 https://github.com/alexdobin/STAR

Subread_2.0.1 Liao et al., 2014 https://sourceforge.net/projects/subread/files/

Gread_0.99.3 Srinivasan et al., 2016 https://rdrr.io/github/asrinivasan-oa/gread/

Critical commercial assays

RNAscope� Multiplex Fluorescent Reagent Kit v2 ACD Bio-techne Catalog #: 323100

Chromium Single Cell 30 v3 10x Genomics Cat#1000153

Chemicals, peptides, and recombinant proteins

RNAscope� Probe-Hs-OLIG2-C2- mRNA ACD Bio-techne Catalog #: 424191-C2

RNAscope� Probe Hs-SYT1-C3- mRNA ACD Bio-techne Catalog #: 525791-C3

RNAscope� Probe-Hs-GRIN2A- mRNA ACD Bio-techne Catalog #: 485841

RNAscope� Probe-Mm-Mog-C2 mRNA ACD Bio-techne Catalog #: 492981-C2

RNAscope� Probe-Mm-Syt1- mRNA ACD Bio-techne Catalog #: 491831

RNAscope� Probe-Mm-Rbfox1- mRNA ACD Bio-techne Catalog #: 519911

RNAscope� Probe-Mm-Snap25- mRNA ACD Bio-techne Catalog #: 516471
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RESOURCE AVAILABILITY

Lead contact
Further requests for resources should be directed to and will be fulfilled by the lead contact, Genevieve Konopka (genevieve.

konopka@utsouthwestern.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Raw fastq files of mouse single-nuclei RNA-seq dataset are accessible in GEO with accession number: GSE198640. Re-analyzed

processed matrices are accessible in GEO with accession number: GSE198951. All analysis codes are available in our github

page: https://github.com/konopkalab/Ambient_RNA_In_Brain_snRNAseq.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human cortical tissue
Human postmortem posterior cingulate cortex samples were provided by the NIH NeuroBioBank. 17mm tissue sections were

sectioned for the in-situ hybridization experiment detailed in the methods. Tissues from both adult (age range 45-75) males and fe-

males were used in the experiments. Demographic information of the samples is listed in Tables S1 and S5.

Mouse cortical tissue
All experiments were performed according to procedures approved by the UT Southwestern Institutional Animal Care and Use Com-

mittee. Mouse frontal cortex samples were collected for the single-nuclei RNA-sequencing and in-situ hybridization as detailed in the

methods. Adult (postnatal day 56) male and female wildtype C57BL/6J mice were used in the experiments. Mice were maintained on

a 12-hr light on/off schedule. Detailed information of the samples is listed in Table S1.

METHOD DETAILS

Preprocessing and count matrix generation
Datasets were downloaded fromNCBI-GEO database (Table S1). Within the datasets, we only used the cells generated from cortical

brain tissue. Specifically, NSD1 was from prefrontal and anterior cingulate cortex (n = 41 samples from anterior cingulate cortex and

prefrontal cortex), NSD2 was from posterior cingulate cortex (n = 4 samples), SD1 was from prefrontal (n = 13) and visual cortex (n =

24), and SD2 was from anterior cingulate cortex (see below for final sample size). Barcode correction and filtering was done using

umi_tools whitelist (retained top 20,000-80,000 cell barcodes per sample depending on the dataset to keep the ambient cell barcode

population) and umi_tools extract (Smith et al., 2017). Alignment was done using STAR aligner (Dobin et al., 2013) with the reference

genomes of GRCh38 (for the human datasets) or GRCm38 (for themouse dataset). featureCountwas used to count readsmapping to

gene body only for uniquely mapping reads (Liao et al., 2014), and umi_tools countwas used to create the count matrix. Count matrix

using only intronic reads were similarly obtained using featureCount on a custom gtf that only contained introns (created using con-

struct_introns from gread package in R (Srinivasan, 2016)). Intronic read ratios were then calculated per cell barcode by taking the

ratio of the number of UMI counts mapping to introns and the number of UMI counts mapping to the gene body.

For DAPI+ sorted datasets, a Spearman’s rank correlation between UMI counts (log10) and intronic read ratio was computed for

each sample. Only the samples with correlation lower than the correlation coefficient of 0.05 were considered sorted and used for

further analysis. This criterion retained all samples in the SD1 study (Lake et al., 2018) and one sample (Br5400_sACC) in the SD2

study (Tran et al., 2021).

For ambient RNA cleanup, CellBender was used on the raw matrix of gene counts with default parameters (Fleming et al., 2019).

Single-nuclei library preparation
We processed 4 c57BL/6J P56 mice (2 males and 2 females). Mice were rapidly decapitated and brains were quickly removed. The

isolated brain was quickly transferred to an ice-cold coronal brain sectionmold (Braintree Scientific, BS-A 5000) andwashedwith ice-

cold 1X PBS (Cytiva, SH30256.01). The boundary of the olfactory bulb and frontal cortex was aligned to the first indentation where the

first razor blade (Fisher Scientific, 12-640) was inserted to remove the olfactory bulb. The second razor blade was inserted into the

third indentation. The coronal sectionsmatched with coronal numbers 22-36 in the Allen Brain Atlas: Mouse Reference Atlas, Version

2 (2011). We then removed the subcortical region from this section and separated the left and right hemisphere samples into different

Eppendorf tubes. The tubes were flash frozen in liquid nitrogen.

The nuclei isolation procedure was modified from our previous work (Ayhan et al., 2021). The frozen section from the left hemi-

sphere was transferred to a Dounce homogenizer with 2ml of ice-cold Nuclei EZ lysis buffer (Sigma-Aldrich, NUC101). We then in-

serted pestle A for 23 strokes followed by pestle B for 23 strokes on ice. The homogenized sample was transferred to a 15ml conical
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tube.We added 2ml of ice-cold Nuclei EZ lysis buffer and incubated on ice for 5min. Nuclei were collected by centrifuging at 500 g for

5min at 4C.We discarded the supernatant and added 4ml of ice-cold Nuclei EZ lysis buffer to resuspend nuclei. We then repeated the

incubation and centrifuge steps and resuspended the nuclei in 200ul of nuclei suspension buffer: 1X PBS, 1% BSA (ThermoFisher,

AM2618), and 0.2 U/ul RNAse inhibitor (ThermoFisher, AM2696). Finally, the nuclei suspension was filtered twice through Flowmi Cell

Strainers (Bel-Art, H13680-0040). Wemixed 10ul of nuclei suspension with 10ul of 0.4%Trypan Blue (Gibco, 15-250-061) and loaded

this suspension on a hemocytometer (SKC, DHC-N015) to determine the concentration. 10,000 nuclei/sample were used to prepare

snRNA-seq libraries using 10X Genomics Single Cell 30Reagent Kits v3 (Zheng et al., 2017). Libraries were sequenced by theMcDer-

mott Sequencing Core at UT Southwestern on a NovaSeq 6000.

Tissue processing, single-nuclei RNA-seq library preparation and sequencing for the NSD2 dataset was performed as previously

described (Ayhan et al., 2021).

Ambient cluster analysis
To retain cell barcodes that predominantly contain ambient RNAs, we kept two timesmore cell barcodes than the original publication

per sample. For datasets generated in this study, we retained two times more cell barcodes than the number of nuclei targeted.

Therefore, the final count matrix included both the cell barcodes that mostly represented real nuclei (and were annotated as real

cell types in the published datasets) and newly retained cell barcodes that mostly represented empty droplets. Since not all newly

retained cell barcodes are predominantly ambient RNAs (e.g. they could be doublets, or low quality nuclei of various cell types),

we then performed clustering to identify clusters that contained high numbers of newly retained cell barcodes and clustered distinctly

compared to annotated cell types per dataset. The following methods from Seurat v3 (Stuart et al., 2019) were used to perform and

visualize clustering: normalization (SCTransform), dimensionality reduction (RunPCA), batch correction (RunHarmony, default pa-

rameters), k-nearest neighbors (FindNeighbors) on batch corrected dimensions and clusters identification by shared nearest neigh-

bors (FindClusters). UMAP embedding was then computed for visualization in 2D space (RunUMAP). Clusters that were largely

composed of newly retained cell barcodes (>75%) were annotated as ambient clusters. We note that 75% is unusually high since

only 50% of the newly retained barcodes were originally filtered out in the previous publication.

To identify ambient cluster marker genes, we ran DGE (differential gene expression) analysis using pseudobulk edgeR (Chen et al.,

2016). Briefly, counts were aggregated per sample and pseudobulk DGE was run with pseudoBulkDGE function (method = ‘edgeR’)

in the scran package (Lun et al., 2016). Ambient cluster markers were identified with logFC > 0.3 and FDR < 0.05 cutoffs.

Enrichment of ambient cluster markers with annotated cell types was done using a Fisher’s exact test from theGeneOverlap pack-

age (Shen, 2020). The total number of expressed genes were used as background (we followed this strategy for all Fisher’s exact test

enrichments).

Comparison with NeuN- datasets
To find differentially expressed genes in each dataset compared to the NeuN- sorted datasets, we first identified 6major cell types in

all datasets: excitatory neurons, inhibitory neurons, oligodendrocytes, OPCs, microglia and astrocytes. Using pseudobulk DGE (see

above) in matched cell types, we then identified differentially expressed genes with significantly higher number of reads than in the

given NeuN- sorted dataset. This was performed separately for each NeuN- sorted and other datasets. For the NeuN- sorted dataset

and SD2 comparisons we used Wilcoxon rank sum test (FindMarkers function from Seurat) since we retained only one sample from

this dataset (see Preprocessing and Count Matrix Generation).

For enrichment with ambient cluster markers, we selected the top 500 differentially expressed genes (ranked by logFC) among the

NeuN- depleted genes in each comparison (logFC > 1 and FDR < 0.05). Similarly, the top 500 ambient RNA markers were selected

from both nuclear ambient RNA and non-nuclear ambient RNA markers. Enrichment analyses were performed as above.

Ambient RNA removal with CellBender, DecontX and SoupX
All ambient RNA removal tools were run with the default parameters and according to the instructions. For CellBender (Fleming et al.,

2019), the input was the raw gene – cell barcode count matrix. For DecontX (Yang et al., 2020), the input was the filtered matrix as

recommended (Yang et al., 2020). For SoupX, both the filtered and raw matrices were given as input (Young and Behjati, 2020).

Subcluster cleaning of glia after CellBender
To subcluster glia after CellBender, we used the annotation provided in the original publication and processed each glia cell type

separately per study. For the datasets generated in this study, we performed clustering as described and annotated glia based

on established marker genes (e.g. MBP, PCDH15, APBB1IP, SLC1A3). Clustering was done similarly as above and marker genes

of subclusters (identified using the default parameters in Seurat’s FindAllMarkers (Stuart et al., 2019) function were tested for enrich-

ment of ambient RNA markers using a Fisher’s exact test. For this, we selected the top 500 (by logFC) ambient RNA markers from

both nuclear and non-nuclear ambient RNA lists and combined them. We removed the subclusters with distinctly high levels of

enrichment of ambient RNAs (FDR < 0.001 and odds ratio > 3) compared to other subclusters. All steps of ambient RNA contami-

nation removal are outlined in Figure 5. We also showcase our mouse snRNA-seq dataset and provide analysis scripts that match

each step in the stepwise guideline in our github page: https://github.com/konopkalab/Ambient_RNA_In_Brain_snRNAseq.
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Assessment of ambient RNA contamination signatures in glia
To compare ambient RNA contamination in glia after each type of analyses, we first found cell barcodes common between annotated

cell barcodes in each original publication and the retained cell barcodes after CellBender. We then only retained common cell barc-

odes in all downstream analyses that compared the original dataset and analyses that included ambient RNA contamination removal

(Figure 3). This was to ensure that only gene expression levels were different and the enrichments are not driven by cell barcode dif-

ferences between analyses. However, we note that the analysis with CellBender + subcluster cleaning contained fewer cell barcodes

as ambient RNA rich subclusters were removed after CellBender. To test ambient RNA marker enrichment, we first found differen-

tially expressed genes with significantly greater number of reads than in the NeuN- sorted dataset per cell type per dataset (logFC > 1

and FDR < 0.05). These gene lists were then tested for enrichment of ambient RNAmarkers (the combined top 500 genes were used

as before) using a Fisher’s exact test.

To test whether the global gene expression profile is altered after these different analysis methods, we found genes expressed in at

least 5% of cells per cell type per dataset to remove lowly expressed genes. We then kept the genes that survive this threshold in all

datasets and performed a Spearman rank correlation between each dataset and the NeuN- sorted dataset using the average log

expression of genes in the normalized matrix.

In-situ hybridization and image quantification
Flash-frozen human postmortem cortical BA23 samples (n=3) and mouse whole brains (n=2) were embedded in Tissue-Tek CRYO-

OCT Compound (#14-373-65, Thermo Fisher Scientific). We sectioned tissue at -20C to 17mm on Superfrost Plus Microscope slides

(#12-550-15, Thermo Fisher Scientific). Fluorescent in situ hybridization (FISH) was performed using RNAScope�Multiplex Fluores-

cent Reagent Kit v2 assay for fresh frozen tissue (#323100, Advanced Cell Diagnostics) with the additional step of 0.05%SudanBlack

B incubation at room temperature for 10 minutes after application of DAPI to quench autofluorescence. Species-specific probes

were used for human: Hs-GRIN2A-C1 (485841), Hs-OLIG2-C2 (424191-C2), Hs-SYT1-C3 (525791-C3) and mouse: Mm-Syt1-C1

(491831), Mm-Rbfox1-C1 (519911), Mm-Snap25-C1 (516471), Mm-Mog-C2 (492981-C2) respectively. Opal fluorophores 520

(FP1487001KT, Akoya Biosciences), 570 (FP1488001KT, Akoya Biosciences) and 620 (FP1495001KT, Akoya Biosciences) were

used to label C1, C2, and C3 channel respectively for the gene-specific probes after signal amplification.

We captured images from cortical areas of human and mouse by using a Zeiss LSM 710 at x20 magnification in the UT South-

western Neuroscience Microscopy Facility. Maximum intensity projection images were generated from 13 slices of a Z stack. We

randomly sampled 2-4 cortical areas (488x488 mm) from each brain section for both human andmouse tomanually quantify the num-

ber of cells (DAPI 405 nm), neurons (GRIN2A, Syt1, Rbfox1, and Snap25, 488 nm; SYT1, 594 nm), and oligodendrocytes (OLIG2 and

Mog, 555 nm). We then calculated the fraction of neurons, oligodendrocytes, and overlap between the two cell types.

Pseudotime analysis
To be consistent with SD1 (Lake et al., 2018), we used the DiffusionMap function from destiny (Angerer et al., 2016) only on the visual

cortex samples to build pseudotime trajectories between OPC-OL or between other pairs of glial cell types using the matrix provided

by the authors. Diffusion maps were created with parameters n_pcs=100 and k=100. The first two eigenvectors of diffusion maps

were plotted for visualization. To identify markers of ‘transitioning’ cell barcodes, we found the middle cell barcode based on the first

eigenvector (DM1) and labeled 200 cell barcodes around themiddle cell barcode as ‘transitioning cells’. The remaining two groups of

cell barcodes were labeled by their original annotation label (e.g. OPC). We then found marker genes for each of these pseudotime

groups (FDR < 0.05 and logFC > 0.25 using FindMarkers in Seurat (Stuart et al., 2019)) and ran enrichment with ambient RNAmarkers

and immature oligodendrocyte markers identified in SD1 using a Fisher’s exact test.

OPC subcluster analysis
To identify potential transitioning OPCs, we separately subclustered OPCs from three different datasets: SD1 (Lake et al., 2018),

NSD1 (Velmeshev et al., 2019), and NSD2 (GEO accession: GSE198951) after CellBender and subcluster cleaning based on high

ambient RNA contamination. We further removed subclusters with high expression of markers from two distinct major cell types

as potential doublets. Committed oligodendrocyte progenitors (COPs) were identified by high expression of GPR17 (as previously

established (Marques et al., 2016)) among other markers (e.g. BCAS1, FYN).

To identify subclusters of J€akel et al. (J€akel et al., 2019), we performed dimensionality reduction and clustering on cells with the

annotation of ‘OPCs’ and ‘COPs’ using Seurat v3 as described above. We then identified ‘COPs-New’ by the established marker

genes (BCAS1, FYN, GPR17). For the heatmaps, all mature oligodendrocytes were combined and annotated as ‘OL’. Normalized

and log transformed expression levels for each gene was then z-transformed across 4 cell type annotations (OPC, COP-New,

COP-Old, OL). For the UMI counts plots, we retained the original labels for neuronal cell types. Both control and multiple sclerosis

samples were used and no additional cell filtering (other than subsetting by annotation) was applied for all analyses.

Identification of COP Marker Genes
Genes upregulated in COPs compared to OPCs were identified using the FindMarkers function from Seurat. Significant genes

(FDR < 0.05 and expressed in >10% of COPs) were ranked by their avg_logFC and the top 100 genes per dataset were selected.

ll
NeuroResource

e4 Neuron 110, 4043–4056.e1–e5, December 21, 2022



To highlight genes specific to COPs compared to OPCs and OLs, we found the percentage of nuclei that expressed at least one

read of each significant gene. We then computed the difference of percentages between both COPs-OPCs and COPs-OLs. We then

took the intersection of the top 20 genes with the greatest difference in favor of COPs in both comparisons. This was repeated for all

three datasets. Genes thatmarkedCOPs in at least two datasets were reported asCOPmarkerswithin the oligodendrocyte lineage in

human brain (Table S5).

Other enrichments
Gene ontology (GO) enrichment of ambient RNA signatures was done using the clusterProfiler package in R (Yu et al., 2012) with all

expressed genes used as the background. The full table of GO results is available in Table S3.

To test enrichment of ambient RNA markers with vGLUT1-Depleted and vGLUT1-Enriched genes from Hafner et al. (Hafner et al.,

2019), we first converted themouse gene symbols to human gene symbols using SynGO (Koopmans et al., 2019). Fisher’s exact tests

were performed as before.

To overlap ambient RNAs with highly represented genes in neurons in snRNA-seq datasets, we identified the top-represented

genes among all neurons by taking the mean of each gene across all cell barcodes annotated as neurons separately in both SD1

and NSD1 (except for Neu-NRGNs and Neu-mat). The intersection of the top 500 genes in both datasets (403 genes) was used to

overlap with ambient RNA markers.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analysis-specific quantifications and statistics can be found in their corresponding method section. Individual statistics (e.g

adjusted p-value, odds ratio, fold change) for each comparison can be found in the figure legends and on the figures. Sample sizes

of the snRNA-seq dataset can be found in the methods. Unless otherwise stated, all samples from the associated publication were

retained for the analyses of this study. Sample sizes of the in-situ hybridization experiment can also be found in the methods and the

figure legends.We did not conduct a separate benchmarking for the selection of the statistical analyses, however we strived to select

the most up to date and benchmarked methods (e.g we favored pseudobulk methods instead of the single-cell based methods for

the differential gene expression analyses (Squair et al., 2021)).
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Figure S1 (Related to Figure 2). Independent confirmation of nuclear and non-nuclear 
ambient RNA types. (A-B) Plots of intronic read ratios across increasing UMI counts in (A) 
non-sorted dataset 2 (NSD2) and (B) sorted dataset 2 (SD2). UMI counts are divided into 
intervals of 100 from 100-2000. (C) The clusters that contain >75% of filtered cell barcodes are 
highlighted and named ambient clusters (dataset: NSD2). (D). Plot of the distribution of intronic 
read ratios within ambient clusters. Yellow: Low-Intron-CB (CB: Cell Barcodes), blue: High-
Intron-CB. (E) Heatmap of enrichments between ambient RNA types. Nuclear ambient RNA 
and non-nuclear ambient RNAs from SD1 and NSD1 were compared (see Figures 1-2). 

 



 

 

 

 

Figure S2 (Related to Figure 2). Characterization of ambient RNA markers. (A) Gene 
ontology (GO) enrichments for non-nuclear and nuclear ambient RNA markers. Example 
genes per GO term are shown on the right. (B) Heatmap of enrichments between presynaptic 
synaptosomes (vGLUT1 Enriched) and others (vGLUT1 Depleted) (Fisher’s exact test; 
numbers indicate FDR; heatmap color indicates -log10FDR). Genes from the synaptosome 
dataset were converted from mouse to human symbols prior to enrichment. (C) Overlaps 
between the top 500 most distinct ambient RNA markers and the top 500 highly expressed 
genes in neurons. 

 



 

 

 

 

 

 

Figure S3 (Related to Figure 3). Comparison of neuron depleted and non-depleted 
snRNA-seq datasets from the same study. (A-B) UMAP plots of sorted datasets with neuron 
depletion (NeuN- LHX2+ sorted, also used as NeuN- SD3) (A) and without neuron depletion 
(SOX9+ sorted) (B). (C) Stacked bar plots of both datasets that show cell type composition by 
percentage. (D) Dot plot of expression levels (normalized, log2 transformed) of selected 
ambient RNA marker genes across glial cell types. (E) Overlap between genes 
overrepresented in the SOX9+ sorted dataset and the top 500 ambient RNA markers. Only 
nuclear ambient RNA markers were used since non-nuclear ambient RNAs were removed in 
the sorted datasets. 



  

Figure S4 (Related to Figure 3). Comparison of ambient RNA removal tools. All tools were 
evaluated based on the percentage of reads explained by ambient RNA markers in glial cell types. 
These percentages were then compared to the percentages of ambient RNA markers in NeuN- sorted 
datasets (NeuN- SDs). (A-D) Comparison of ambient RNA marker percentages in SD1 (A), SD2 (B), 
NSD1 (C) and NSD2 (D). Dashed lines in red correspond to the median values of the CellBender result. 
(E) Summary of comparisons in A-D. Each dot represents a median value of the boxplots in A-D. 
Numbers indicate p-values from one-sided Wilcoxon rank sum tests between the NeuN- SD results 
and the results from each ambient RNA removal tool or no removal. (F) Violin plots of the expression 
levels of selected ambient RNAs after implementation of CellBender, DecontX or SoupX. The plot 
contains the expression values of oligodendrocytes from SD1.  



 

 

 

 

 

Figure S5 (Related to Figure 3). Supplementary analyses of CellBender adjustment and subcluster 
cleaning. (A) Intronic read ratios per cell barcode in subclusters that were removed due to ambient RNA 
contamination (red) or not removed (blue) per glial cell type in datasets that did not perform nuclei sorting 
(NSD1 and NSD2). (B) Same as in (A) but in a dataset that performed nuclei sorting (SD1). (C) Heatmap 
of Spearman rank correlations of all genes with the NeuN+ sorted dataset (SD2). Correlations were 
performed per cell type per dataset (y-axis) after each analysis (x-axis). Both numbers and heatmaps 
indicate the magnitude of correlation coefficient. 



 

 

 

 

Figure S6 (Related to Figure 3). Association of non-intronic read ratios and the percentage of non-
nuclear ambient markers across nuclei per cell type. (A-B) Scatter plots of non-intronic read ratios (x-axis) 
versus the percentage of non-nuclear ambient markers (y-axis) in glial cell types either before CellBender (red), 
after CellBender (orange), or after CellBender + subcluster cleaning (lightblue) using either the NSD1 (A) or 
NSD2 dataset (B). (C, E) Scatter plots of non-intronic read ratios (x-axis) versus the percentage of non-nuclear 
ambient markers (y-axis) in excitatory and inhibitory neurons using either the NSD1 (C) or NSD2 (E) dataset. 
(D, F) Normalized and z-transformed expression levels of non-nuclear ambient markers NRGN, CHN1 and 
nuclear-retained non-coding gene MALAT1 in either the NSD1 (D) or NSD2 (F) dataset. R corresponds to the 
Spearman’s rank correlation coefficient. 



 

 

 

Figure S7 (Related to Figure 3). Association of non-intronic read ratios and the percentage of non-
nuclear ambient markers across nuclei in subtypes or using other tools. (A) Scatter plots of non-
intronic read ratios (x-axis) versus the percentage of non-nuclear ambient markers (y-axis) per annotated 
excitatory subtype before CellBender (red) or after CellBender (orange). (B) Same as A, but for inhibitory 
subtypes. (C) Scatter plots of the non-intronic read ratios and percentage of non-nuclear ambient markers 
per annotated broad cell type after SoupX. (D) Scatter plots of the non-intronic read ratios (x-axis) versus 
the percentage of non-nuclear ambient markers per annotated broad cell type after DecontX. All plots are 
from the NSD1 dataset. R corresponds to the Spearman’s rank correlation coefficient. 



 

  

Figure S8 (Related to Figure 3). Ambient RNAs in a mouse brain snRNA-seq dataset. (A) The 
intronic read ratio across increasing UMI counts in a mouse brain snRNA-seq dataset with no nuclei-
sorting. UMI counts are divided into intervals of 100 from 100-2000. (B) The clusters that contain greater 
than >75% of filtered cell barcodes are highlighted and named ambient clusters. (C) The distribution of 
intronic read ratios within ambient clusters. Yellow: Low-Intron-CB (CB: Cell Barcodes), blue: High-Intron-
CB. (D) Heatmap of enrichments between ambient RNA types. Nuclear ambient RNA and non-nuclear 
ambient RNAs are identified from SD1 and NSD1 (see Figures 1-2). (E) Dot plot enrichments between 
genes with significantly lower expression (DOWN) after CellBender (left) or subclustering steps (right) 
with ambient RNA markers or cell type markers. Cell types are indicated in the y-axis. 



  

Figure S9 (Related to Figure 3): In situ hybridization does not detect ambient RNA 
markers in oligodendrocytes. (A-C) Representative images of smFISH for a marker of 
mature oligodendrocytes (Mog+ cells, solid arrows) and 3 markers of ambient RNAs (Rbfox1, 
Snap25, Syt1) reveal no overlap (dashed arrows) in adult mouse frontal cortex. (D) 
Quantification of smFISH experiments to indicate the percentage of cells positive for each 
gene relative to the number of DAPI+ cells (7 sagittal images obtained from 2 mice were 
quantified for each experiment). Data are represented as mean ± SEM  (E) The percentage of 
cells that contain at least one read of each gene per given population for each specified 
analysis in the adult mouse snRNA-seq dataset. The dataset is the one from Supplementary 
Figure 8. (F) Representative images of smFISH for a marker of mature oligodendrocytes 
(OLIG2+ cells, arrows) or genes that mark neurons (SYT1 and GRIN2A, positive cells are 
highlighted in circles) in adult human posterior cingulate cortex. (G) Quantification of smFISH 
experiments to indicate the percentage of cells positive for each gene relative to the number 
of DAPI+ cells (13 images from 6 tissue sections obtained from a total of 3 individuals were 
quantified for each experiment). Data are represented as mean ± SEM. (H) Percentage of cells 
that were annotated as belonging to the oligodendrocyte lineage or containing at least one 
read from the given gene in the original SD1 dataset. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S10 (Related to Figure 4). Immature oligodendrocytes are explained by ambient 
RNA contamination. (A) Violin plots of expression of glutamatergic receptors in NeuN- sorted 
OPCs and SD1 OPCs with or without ambient RNA removal. (B) Pseudotime trajectory of SD1 
as reconstructed with destiny between OPCs and AST (astrocytes). The ‘transition’ zone was 
defined as the 400 nuclei around the middle nucleus based on DC1. (C) Heatmaps of 
enrichments between trajectory zones (OPC, Transition, AST) and ambient RNA or immature 
oligodendrocyte markers (Fisher’s exact test; numbers indicate FDR; color scale is -
log10(FDR)). (D) The same lineage trajectory as (B) with the nuclei removed after subcluster 
cleaning highlighted. (E-G) The same trajectory approach used in (B-D) but instead using MIC 
(microglia) and AST. (H) Z-transformed gene expression of COP or Pre-OL (premyelinating 
oligodendrocyte) markers in the OPC-OL lineage trajectory. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S11 (Related to Figure 4). Committed progenitor cells in additional adult human 
brain snRNA-seq datasets. (A, C) UMAP of OPC subclustering from (A) NSD2 or (C) NSD1 
datasets. COP: committed OPCs. (B, D) Heatmap of z-transformed gene expression of 
oligodendrocyte lineage marker genes (z-scored across cell types per marker gene) from (B) 
NSD2 or (D) NSD1 datasets. OPC markers: PCDH15, PTPRZ1. COP markers: GPR17, FYN, 
BCAS1. COP and OL markers: ENPP6, TFEB. (E) Feature plots of oligodendrocyte lineage 
markers genes for OPCs from SD2. The color scheme reflects the z-score per the expression 
of each gene across cell types (legend on the right side of the plot). 



 

 

 

 

 

Figure S12 (Related to Figure 4). Re-assessment of previous COP annotations in human 
brain snRNA-seq white matter dataset. (A) Violin plots of expression levels (normalized, log 
transformed) of COP markers in the original annotation of OPCs and COPs (‘COPs_Old’) 
versus expression in nuclei we hypothesize to be true COPs (‘COPs_New’). (B) UMAP plot of 
OPCs and COPs. The small subpopulation suspected to be real COPs is indicated as 
‘COPs_New’ whereas the nuclei previously annotated as COPs are shown as ‘COPs_Old’. 
(C) Heatmap of z-scored gene expression of oligodendrocyte lineage markers, two top 
ambient RNA markers (SYT1: Nuclear, SNAP25: Extra-nuclear) and other neuronal markers 
in the same dataset. The colors indicate the z-scored expression across cell types per marker 
gene. Note that z-scored expression only shows the relative expression levels among the four 
cell type annotations. (D) Log10 transformed UMI count values per cell type. OL: 
oligodendrocytes. Neuronal cell types are annotated as in the original publication. 
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Association between resting-state functional brain
connectivity and gene expression is altered in
autism spectrum disorder
Stefano Berto 1,9, Alex H. Treacher 2,9, Emre Caglayan 1,9, Danni Luo2, Jillian R. Haney3,4,5,

Michael J. Gandal 3,4,5,6, Daniel H. Geschwind 3,4,5,6, Albert A. Montillo 2,7,8✉ & Genevieve Konopka 1✉

Gene expression covaries with brain activity as measured by resting state functional mag-

netic resonance imaging (MRI). However, it is unclear how genomic differences driven by

disease state can affect this relationship. Here, we integrate from the ABIDE I and II ima-

ging cohorts with datasets of gene expression in brains of neurotypical individuals and

individuals with autism spectrum disorder (ASD) with regionally matched brain activity

measurements from fMRI datasets. We identify genes linked with brain activity whose

association is disrupted in ASD. We identified a subset of genes that showed a differential

developmental trajectory in individuals with ASD compared with controls. These genes are

enriched in voltage-gated ion channels and inhibitory neurons, pointing to excitation-

inhibition imbalance in ASD. We further assessed differences at the regional level showing

that the primary visual cortex is the most affected region in ASD. Our results link disrupted

brain expression patterns of individuals with ASD to brain activity and show developmental,

cell type, and regional enrichment of activity linked genes.
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Brain architecture and activity are governed by gene reg-
ulatory mechanisms that can be captured using tran-
scriptomic measures1–3. How these mechanisms are

impacted in neuropsychiatric disorders such as autism spectrum
disorder (ASD) remain incompletely understood. Recent advan-
ces in human brain imaging genomics have the translational
potential to address the challenge of detecting genes associated
with either structural or functional measurements4–6. For
instance, several studies have highlighted the influence of genetic
variants on brain imaging phenotypes, identifying common loci
that affect brain morphology, structure, and connectivity7–11.
However, despite this considerable progress in understanding the
genetic influence on human brain phenotypes, the gene reg-
ulatory mechanisms supporting such functional measurements
remain mostly unknown. Identification of such gene expression
patterns that underlie functional measures of human brain
activity is particularly compelling as such insights will provide
opportunities for future modulation of normal or pathological
behaviors.

To date, several studies using resting-state functional MRI (rs-
fMRI) measurements across cortical regions have identified gene
expression patterns that support functional signals in human
brain12–15. Such studies were a pioneering first step to determine
reliable sets of genes that correlate with functional brain network
measurements. These studies also established methodologies that
can also be applied to study the association between gene
expression and functional measurements in neuropsychiatric
disorders. For example, genomic perturbations associated with
differences in brain activity in a neuropsychiatric disorder such as
ASD can now be examined. Individuals with ASD have altera-
tions in both brain activity16–18, and gene expression patterns
(including at the cell-type level)19–22; thus, integrating datasets of
brain imaging phenotypes, transcriptional landscapes, and cell-
type expression patterns should provide insight into ASD
pathophysiology. Moreover, because several ASD-relevant genes
are chromatin modifiers or involved in neuronal activity23–26, we
hypothesized that brain gene expression patterns that typically
support functional brain activity in healthy individuals might be
severely affected in ASD. Therefore, coupling measurements of
brain gene expression and activity has the potential to identify
genes whose expression underlies functional networks observed
in rs-fMRI and how such relationships are altered in ASD.

Here, we apply an approach to understand the gene expression
signals that may underlie human brain activity (as assessed by rs-
fMRI) relevant to ASD. In contrast with previous studies that
used a reference dataset from a small number of “control” brain
donors27–29 or blood30, we use post-mortem brain gene expres-
sion datasets from a greater number of individuals who are
characterized as either neurotypical or who were diagnosed with
ASD. Because of the rarity of post-mortem tissue available from
ASD brain donors, our study is restricted to a subset of cortical
regions. Nonetheless, we identify genes with expression patterns
in brains from individuals with ASD that are differentially cor-
related with rs-fMRI activity. We also identify a small number of
cortical regions that display the greatest impact of gene expres-
sion on brain activity (e.g., primary visual cortex and inferior
temporal cortex). Our analyses consider the developmental
expression pattern of the genes we identify related to ASD status.
We find that many of these genes have altered expression patterns
over postnatal development into adulthood suggesting that these
particular genes are indeed relevant for brain activity respon-
siveness. Together, our results provide key insights into both
specific genes and cortical regions that are at risk in ASD. The
coupling of two diverse measurements (transcriptome and rs-
fMRI) facilitates the prioritization of specific ASD mechanisms
that might be missed by using only one type of dataset.

Results
Integration of resting-state functional MRI and gene expres-
sion measures in individuals with ASD and controls. To
identify differentially correlated genes, we determined the spatial
similarity between rs-fMRI and gene expression changes in the
human brain of subjects with ASD compared to controls across
11 matched cortical regions. We used rs-fMRI data from an
imaging database containing individuals with ASD and matched
controls (ABIDE I31 and ABIDE II32) and cortical RNA-
sequencing (RNA-seq) datasets from persons with ASD and
matched controls across development into adulthood33 (Fig. 1).
We computed two extensively validated measures of brain acti-
vation to characterize brain function from rs-fMRI. The first
brain measure, fractional Amplitude of Low-Frequency Fluctua-
tions (fALFF)34, quantifies a subset of brain activity within the
low frequency band that form a fundamental feature of the
resting brain, and that activity is vitally important whether at rest
(daydreaming, musing) or attending to a specific task. The second
brain measure, Regional Homogeneity (ReHo)35, is a com-
plementary measure of the similarity in the temporal activation
pattern manifested by clusters of voxels rather than single voxels
as in fALFF. This measure of local functional connectivity is itself
a close derivative of the underlying brain activity35. We generated
voxel-wise maps of fALFF and ReHo for a total of 1983 subjects
from the ABIDE I and ABIDE II datasets (ASD= 916, CTL=
1067; Supplementary Fig. 1 and Supplementary Data 1), and
analyzed a total of 11 regions of interest (ROIs) matching the
transcriptomic data using Brodmann area (BA) designations:
BA1/2/3/5 (somatosensory cortex), BA4/6 (premotor and pri-
mary motor cortex), BA7 (superior parietal gyrus), BA9 (dorso-
lateral prefrontal cortex), BA17 (primary visual cortex), BA20/37
(inferior temporal cortex), BA24 (dorsal anterior cingulate cor-
tex), BA38 (temporal pole), BA39/40 (inferior parietal cortex),
BA41/42/22 (superior temporal gyrus), BA44/45 (inferior frontal
gyrus).

We first assessed differences between cases and controls for both
fALFF and ReHo (Fig. 2a). We identified 4 ROIs with a significant
difference for fALFF and 1 ROI for ReHo (Wilcoxon Rank Sum Test,
p < 0.05; Supplementary Fig. 2a). BA20/37 was commonly different
using either measurement. Even though effect sizes were small
between cases and controls for all the ROIs analyzed (Cohen’s d;
d < 0.3) in agreement with other reports36,37, we observed consistency
between fALFF and ReHo (Spearman Rank Correlation, rho= 0.46;
Fig. 2b). These data reflect subtle, yet replicable functional activity
measurements linked to ASD calculated by two rs-fMRI measure-
ments. However, because the differences between cases and controls
using rs-fMRI were minimal with a small to null contribution to the
analysis, we assessed the rs-fMRI—gene expression relationship using
the control subject ReHo and fALFF values. We first assessed the
complementarity of these two rs-fMRI measurements in controls.
There was a significant correlation between fALFF and ReHo values
across individuals in each singular ROI analyzed (Spearman’s
rho= 0.58, p < 2.2 × 10−16; Supplementary Fig. 3a, b). These data
further confirmed the complementarity of these two distinct
measurements of rs-fMRI values. To understand ASD pathophysiol-
ogy in the context of brain activity and gene expression, we spatially
matched RNA-seq data33 from 11 cortical areas for a total of 360
tissue samples from cases (ASD) and 302 control samples (CTL)
(Supplementary Fig. 4a). The variance explained by technical and
biological covariates was accounted for and removed before further
analyses (see “Methods” and Supplementary Fig. 4b).

Identification of genes differentially correlated with rs-fMRI
between ASD and controls. We sought to identify genes with
correlated expression to imaging measurements across regional
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rs-fMRI values. To do this, we used Spearman’s rank correlation
between mean regional values of fALFF or ReHo and regional
gene expression. To take advantage of the entire ABIDE dataset,
we randomly sampled from the ABIDE dataset 200 times, and
correlated each sample with the genomic data (see “Methods”).
We defined genes correlated with ReHo and/or fALFF in both
controls and ASD (Supplementary Fig. 5a and Supplementary
Data 2). Using a Fisher r-to-z transformation, we assessed the
significance of the difference between ASD and CTL correlations
in both fALFF or ReHo values. We next used a Fisher’s method to
combine the resultant p-values defining 415 differentially corre-
lated genes (DC genes; Diff Cor P < 0.01, CTL FDR < 0.05; Fig. 3a;
“Methods”). DC genes showed a high proportion of positively
correlated genes with similar correlation coefficients in both
measurements (59.8%; Fig. 3b; Supplementary Fig. 5b). We next
examined the effect sizes and the relationship between fALFF and
ReHo values (Fig. 3c; Supplementary Fig. 5c). For a P < 0.01, DC
genes showed an effect size larger than 1.8, resulting in ~3% of the

gene expressed in our data (Fig. 3c). Among the genes with
highest effect size, we found FILIP1, which encodes a filamin A
binding protein important for cortical neuron migration and
dendrite morphology38–40, and GABRQ, a gene encoding a
GABA receptor subunit highly expressed in von Economo
neurons41,42. In addition, the effect sizes of the DC genes calcu-
lated with fALFF and ReHo strongly correlate (Spearman Rank
Correlation, rho= 0.54, p < 2.2 × 10−16; Supplementary Fig. 5c),
further confirming the reproducibility of the DC genes in two
different rs-fMRI measurements.

Next, we compared the genes we identified with genes linked
with rs-fMRI values from independent studies14,15. Because these
earlier studies analyzed only healthy individuals, we first
compared the genes correlated only in CTL with the ones
previously reported. We found that previously fMRI-correlated
genes were significantly enriched in CTL genes, revealing
reproducibility of fMRI-correlated genes despite variation in
cortical regions and type of fMRI measurements (Wang et al.:

a

−0.1

0.0

0.1

Cohen’s d

ReHo

fALFF

R = 0.46

−0.2

−0.1

0.0

0.1

0.2

−0.2 −0.1 0.0 0.1 0.2
Cohen's d ReHo

C
oh

en
's

 d
 fA

LF
F

b

Fig. 2 Imaging differences between ASD and CTL. a Differences between ASD and CTL calculated by Cohen’s d (effect sizes) derived from ASD–CTL
comparison for both rs-fMRI measurements across the ROIs analyzed. b Scatter plot depicting the spatial correlation between Cohen’s d values of fALFF
and ReHo. Each dot corresponds to the ROI analyzed.
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odds ratio (OR)= 17.3, FDR= 2.5 × 10−15, Richiardi et al.:
OR= 3.2, FDR= 1.5 × 10−10; Fig. 3d, Supplementary Fig. 5d).
Among them, 6 genes overlapped in all previous studies, and 2
out of the 6 genes were also among the DC genes between ASD-
CTL (PVALB and SCN1B; Fig. 3d–f). These two genes are
particularly compelling as SCN1B, which encodes a beta-1
subunit of voltage-gated sodium channel, is a highly expressed
gene in fast-spiking parvalbumin (PVALB+) cortical interneur-
ons, which play a key role in neuronal networks, and whose
oscillations are linked with ASD43–46. Because PVALB gene
expression has a rostrocaudal axis gradient47, we next evaluated
the spatial distribution of both candidates’ gene expression in the
ROIs. We found that both PC1 (principal component 1), as well
as SCN1B and PVALB, displayed differences in the rostrocaudal
axis (PVALB ~ PC1, rho= 0.41; SCN1B ~ PC1, rho= 0.37), with
higher expression in caudal cortical regions (Fig. 3g). These genes
were similarly correlated with rs-fMRI measurements, (PVALB ~
fALFF, rho= 0.32; SCN1B ~ fALFF, rho= 0.33; PVALB ~ ReHo,
rho= 0.38; SCN1B ~ ReHo, rho= 0.42), but these correlations are
affected by ASD status (Fig. 3f). Overall, these results identify
many brain activity-related genes and imply that some of the high
confidence genes such as PVALB and SCN1B support brain
activity affected in ASD.

Differentially correlated genes have specific developmental
trajectories. Although we identified DC genes across all samples

with a median age of 22 years old, we asked how DC genes
compare between CTL and ASD across development given that
autism is a neurodevelopmental disorder. We leveraged the
transcriptomic dataset from this study to detect whether DC
genes follow a specific developmental trajectory in individuals
with ASD compared with CTL subjects (see “Methods”). We
identified three main clusters of DC genes: one highly expressed
in adults (Adult), one highly expressed in early development
(EarlyDev), and one with relatively stable trajectory throughout
development (Stable) (Fig. 4a). Interestingly, genes in the Adult
cluster are upregulated until adulthood in neurotypical indivi-
duals but this upregulation is delayed in individuals with ASD. In
contrast, the genes in the Stable and EarlyDev clusters follow a
similar trajectory in both groups (Fig. 4a and Supplementary
Fig. 6a). Because each region differs by sample size, we used a
subsample approach and recalculated the developmental trajec-
tories. We found that differences in sample size between regions
did not affect the overall result (Supplementary Fig. 6b). We
additionally assessed gene expression patterns in BrainSpan
dataset48 generated using healthy brain tissue (0–40 years old)
and found similar trajectory patterns with the Adult cluster dis-
playing immediate upregulation until adulthood similar to CTL
in our dataset (Supplementary Fig. 6c).

Next, we sought to understand the functional properties of the
genes associated with these developmental trajectories. Overall,
we found enrichments for transporter activity, ion channel
activity, and DNA-binding activity which are crucial for proper
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development and have been repeatedly implicated in ASD25,49,50

(Fig. 4b and Supplementary Data 2). However, these enrichments
were not distinct for a single developmental trajectory. In
contrast, enrichment in steroid binding was only present in the
Adult cluster with relatively high significance (Fig. 4b). Steroid
binding was mainly driven by enrichment for estrogen receptor
(ESRRG, ESRRA) and nuclear glucocorticoid receptor (NR3C1,
NR3C2) genes. We find this intriguing given that steroid levels are
altered in autistic individuals even in early development51,52 and
the ratio of sexes was very similar in our dataset (CTL female
ratio: ~0.18, ASD female ratio: ~0.18). Thus, our results indicate

that altered steroid biology in ASD is linked to brain activity
changes across cortical regions.

To understand the cell type-specific properties of the rs-fMRI
genes, we performed enrichment for gene expression data derived
from single-cell RNA-seq studies41 (“Methods”). We observed
that the genes in the Adult cluster were highly enriched for
parvalbumin (PVALB) expressing interneurons whereas EarlyDev
genes were enriched for excitatory neurons. No cell-type
enrichment was detected for the genes in the Stable cluster
(Fig. 4c). Because PVALB expression follows an anterior to
posterior regional gradient47, we imputed PVALB+ interneurons
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abundance for each of the region analyzed (see “Methods”). We
conducted a deconvolution analysis using MuSiC53, which allows
the inference of relative cell-type abundance in bulk data. Single-
nuclei RNA-seq from a multi-cortical region data was used to
infer cell-type proportions54. We estimated the relative cell-type
abundance by subjects and brain regions. As expected, the
PVALB+ interneurons fractional abundance was higher in
posterior regions compared with anterior regions (Supplementary
Fig. 6d; Supplementary Data 3). Notably, the relative abundance
of these interneurons was significantly reduced in individuals
with ASD in posterior regions such as BA7 and BA17. These data
indicate that our results are potentially driven by PVALB+
interneurons regional abundance further demonstrating the
important role of these interneurons in ASD pathology. We next
investigated the association of developmental gene clusters with
genomic data from brain disorders including ASD55. The Adult
cluster is enriched for downregulated genes in individuals with
ASD while the EarlyDev cluster is enriched for upregulated genes
in individuals with ASD (Fig. 4d). This result was relatively
specific to ASD as similar gene lists from individuals with
schizophrenia or bipolar disorder showed little to no enrichment
(Fig. 4d). This result was further confirmed using modules of co-
expressed genes dysregulated in such disorders (Supplementary
Fig. 6e). Together, these data extend the emerging picture of
molecular pathways disrupted in ASD corresponding to rs-fMRI
measurements14,15,30,56.

The relationship of rs-fMRI and gene expression is altered at
the brain region level. Due to the limited number of samples per
ROI, we were not able to assess the association between brain
activity and gene expression at a regional level. We overcame this
limitation with a leave-one-region out (LoRo) approach inferring
the contribution of each region in our results (see “Methods”).
Briefly, by leaving one of the 11 regions out at a time, we were able
to test whether the differential correlation was affected by one
region or several specific regions. We calculated the z-score from
the z-to-r Fisher transformation from each analysis and combined
with the Fisher’s method (Supplementary Data 4). We observed a
significant contribution from the primary visual cortex (BA17),
temporal cortex (BA20/37, BA38), parietal cortex (BA39/40), and
motor cortex (BA4/6) (Fig. 5a). We next examined the enrichment
of regional differential expressed genes (DEG; FDR < 0.05, |
log2(FC)| > 0.3; see “Methods”) between ASD-CTL in DC genes.
We explored whether any of the developmental gene clusters were
enriched for specific regional DEG. Interestingly, we found the
highest enrichment of Adult and EarlyDev cluster genes in cortical
areas associated with vision and proprioception (BA17 and BA7)
(Fig. 5b). Taken together, these results support the emergent role
of the visual cortex in ASD pathophysiology57,58.

Discussion
Assessing gene expression in the brain permits a relevant exam-
ination of how biological pathways might be altered in the tissue
of interest and connected to genetic predispositions. Moreover,
functional imaging provides an important window into pheno-
types associated with mental illness. Combining these approaches
can help begin to bridge the gap between genes and behavior.
Indeed, previous work has demonstrated a correspondence
between human brain gene expression and functional con-
nectivity as measured by fMRI14,15,30. However, the studies using
brain gene expression only used neurotypical populations. Local
brain activity measures such as ReHo and fALFF can assess
neuronal connectivity and activity. When restricted to a specific
image acquisition site and age range (e.g., children or adoles-
cents), previous studies using ReHo and fALFF have found

significant differences between CTL and individuals with ASD in
cortical regions but in different brain regions and directions59–63.
However, protocol variability across sites can induce inconsistent
findings in functional connectivity64. A quantitative meta-analysis
indicated that only connectivity between the dorsal posterior
cingulate cortex and the right medial paracentral lobule con-
sistently differs between individuals with ASD and CTL subjects
across sites and ages;65 however, these regions were not available
for tissue sampling in this study. Structural imaging studies have
also indicated the difficulty in finding differences between indi-
viduals with ASD and CTL subjects when no age restriction is
imposed66–68. In contrast to these age and site-restricted reports,
our study includes ages from 5 to 64 years and data from 37 sites
whose differences are retrospectively normalized and such dif-
ferences with previous studies likely underlie our finding of few
significant differences in brain activity between cases and
controls.

We speculated that the expression of genes and their associa-
tion with brain activity may underscore their potential relevance
for any functional brain activity that is disrupted in ASD. In line
with this, our results suggest that genes typically associated with
rs-fMRI lose their association when ASD genomics are included.
These genes are important for brain development, regional dif-
ferences, and excitatory/inhibitory identity. As previously repor-
ted, GABAergic signaling is disrupted across mouse models of
ASD69 and GABA interneurons have a key role for cortical cir-
cuitry and plasticity70–72. Interestingly, genes highly expressed in
the Adult gene cluster that are significantly associated with brain
activity are overrepresented in a subpopulation of inhibitory
interneurons expressing parvalbumin. In contrast, genes highly
expressed in early development are overrepresented in excitatory
neurons. In line with the role of parvalbumin neurons in normal
brain circuitry and oscillations70,73,74, this distinct association
might underscore the excitation-to-inhibition ratio imbalance in
autism. Moreover, the relative abundance explained by the Adult
genes of PVALB+ interneurons is significantly decreased in
individuals with ASD. Because spatial PVALB+ expression cov-
aries with rs-fMRI across regions47, we hypothesized that the
relative increased abundance of these interneurons in the visual
cortices and conversely the reduction shown in individuals with
ASD explains the differential correlation in the specific subset of
Adult genes. Therefore, these results further underscore the
important role of parvalbumin interneurons in autism.

We hypothesize that genes severely dysregulated in autism
such as SCN1B, KCNAB3, FMN1, or VAMP1 might additionally
contribute to the excitation-to-inhibition ratio affecting normal
network function and circuitry. Moreover, previous studies have
shown that inhibitory neurons control visual response precision
with increased activity leading to a sharpening of feature selec-
tivity in mouse primary visual cortex58. Additionally, multiple
lines of evidence have indicated that individuals with ASD show
slower switching between images in binocular rivalry57,75–77.
Here, we provide evidence that regional brain expression influ-
ences the association between rs-fMRI values and gene expres-
sion, with the visual cortex as the major contributor to the
variance explaining the rs-fMRI—gene association. Therefore,
these results contribute to a consistent emerging role of the visual
cortex in ASD pathology. However, because subjects who
underwent fMRI measurements might not have had uniform
instructions (or resultant behavioral compliance) to keep their
eyes open or closed, it is possible that the visual cortex data could
be influenced by such behavior.

Finally, any functional interpretation of the genes identified
should be made with caution. Here, we assessed the relationship
between gene expression and rs-fMRI across cortical areas based
on correlation, which is not necessarily evidence of causation.
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Moreover, functional imaging analysis of the ROIs used does not
show large differences between neurotypical and individuals with
autism. The primary limiting factor in spatial resolution and
brain coverage is driven by the restricted tissue sampling/avail-
ability from postmortem disease cohorts. Larger sample sizes may
in the future allow for a more detailed investigation of these genes
at the regional level increasing both specificity and sensitivity.
Additionally, candidate genes should be further analyzed in vivo
using model systems to provide a basic understanding of their
effects on brain activity. In conclusion, we have established that
autism pathology significantly impacts the relationship between
gene expression and functional brain activity. Our results
uncovered genes that are important for excitation-to-inhibition
ratio balance and visual cortex function. These results provide
molecular mechanisms for future studies relevant to under-
standing brain activity in individuals with autism.

Methods
All research in this manuscript complies with all relevant ethical regulations. This
study was approved by the UT Southwestern Medical Center Institutional
Review Board.

fALFF and ReHo. To provide image-derived phenotypes (IDPs) for each subject in
the ABIDE cohort, regional measures of brain function were computed including
the fractional amplitude of low-frequency fluctuation (fALFF; https://fcp-indi.
github.io/docs/latest/user/alff.html?highlight=falff) and regional homogeneity
(ReHo; https://fcp-indi.github.io/docs/latest/user/reho). Supplementary Fig. 1
illustrates the main processing steps of the image analysis pipeline.

Imaging materials. This study used resting-state fMRI from the 916 ASD and
1067 CTL subjects of both ABIDE I and ABIDE II32,78. Details of the pulse
sequence parameters used in this data acquisition are provided in Supplementary
Data 1. After the removal of subjects with image artifacts, high head movement, or
poor MNI152 coregistration, we analyzed the data from the remaining 710 ASD
(79% male), and 606 CTL (87% male) subjects, whose age ranges from 5 to
64 years.

fMRI preprocessing. All data from each subject were preprocessed consistently—
as described below—and are illustrated in Supplementary Fig. 1. The 3dSkullStrip
method from the brain extraction tool (BET) was applied to remove skull and non-
brain tissue79. The first 5 volumes were censored to allow for MRI scanner dynamic
instability to settle. To correct for head movement, volume realignment was
applied frame by frame, to register each volume to the mean volume with an affine
transformation. Slice timing correction was applied to ensure volume slices align
temporally.

Images were processed with a generalized linear model (GLM) to regress out:
(1) global signal fluctuation, (2) physiological noise represented by white matter
and CSF fluctuation, (3) fluctuation correlated with the 6 original affine head
motion parameters (X/Y/Z/pitch/roll/yaw), (4) their first derivatives, squares, and
squared derivatives, and 5) noise fluctuations captured from five components from
aCompCor80. Scrubbing was applied to remove frames with a Jenkinson framewise
displacement (FWD) > 0.5 mm, and subsequently replaced with an interpolated
frame. ReHo was calculated with scrubbed data; however, ALFF and fALFF were
not calculated with scrubbed data because the framewise removal and alteration
disrupts the temporal structure precluding Fourier transform-based approaches81.

For subjects with multiple fMRI scans, the scan with the lowest head motion,
measured by mean FWD, was selected for analysis. For each resulting subject scan,
a subject was excluded if their scan had excessive head motion. Specifically, scans
meeting at least one of these three requirements were removed: (1) mean
FWD > 0.30 mm, (2) greater than 50% of frames being scrubbed, or (3) scans with
outlier mean, 1st, 2nd, or 3rd quantile DVARS values. DVARS was defined as the
root mean square of the temporal change of the fMRI voxel-wise signal at each
time point82,83. The package CPAC v1.8.0 was used for fMRI pre-processing
including head motion correction, scrubbing, and nuisance regression.

Calculation of fALFF and ReHo. We computed fALFF and ReHo from the resting-
state fMRI using C-PAC (v1.8.0)84 in native subject space, resulting in a volumetric
map of fALFF and a map of ReHo for each subject. fALFF34 quantifies the slow
oscillations in brain activity that form a fundamental feature of the resting brain.
ALFF is defined as the total power within the low-frequency range (0.01–0.1 Hz)
and forms an index of the intensity of the low-frequency oscillations. The nor-
malized ALFF known as fALFF is defined as the power within that low-frequency
range normalized by the total power in the entire detectable frequency range.
fALFF characterizes the contribution of specific low-frequency oscillations to the
entire frequency range34. To increase the signal to noise ratio by removing high-
frequency information, we spatially smoothed each derivative map with a Gaussian
kernel. ReHo35 aims to detect complementary brain activity manifest by clusters of
voxels rather than single voxels as in fALFF. ReHo evaluates the similarity of the
activity time courses of a given voxel to those of neighboring voxels using Kendall’s
coefficient of concordance (KCC)85 as the index of time series similarity. This

b
O

dds R
atio

3

5

7

5
10
15
20

-log
10 (F

D
R

)
a

0
1
2
3
4
5

**** **** **** **** ****

1

2

3

4

BA17

BA20
_3

7
BA24

BA3_
1_

2_
5

BA38

BA39
_4

0

BA4_
6

BA41
_4

2_
22

BA44
_4

5
BA7

BA9

Z
-s

co
re

-log
10 (F

D
R

)

BA17

BA20_37

BA24

BA3_1_2_5

BA38

BA39_40

BA4_6

BA41_42_22

BA44_45

BA7

BA9

Adu
lt

Ear
lyD

ev

Sta
ble

Fig. 5 Leave one region out (LoRo) analysis underscores the importance of specific brain regions. a Brain visualizations and violin plots depicting the
contribution of each ROI in the differential correlation after the specific region was removed (LoRo). Brain visualizations represent the −log10(FDR) of the
comparative analysis between ROIs after LoRo analysis (One-sided Wilcoxon’s rank sum test). Violins represent the Z-score (Y-axis) of differential
correlation after the specific region (X-axis) was removed. **** corresponds to a significant lower Z-score compared with other regions (p < 0.001; One-
sided Wilcoxon’s rank sum test). Dots represent the mean Z-score for the specific Brodmann area. Lines represent the standard deviation (SD). N= 415
genes from independent analysis. Exact P-value: BA17 p < 2e−16, BA20_37 p < 2e−16, BA38 p= 6.8e−05, BA39_40 p < 2e−16, BA4_6 p < 2e−16.
b Bubblechart with −log10(FDR) and Odds Ratio from Fisher’s Exact test representing enrichment between developmental groups and genes differentially
expressed in each region. X-axis shows abbreviations for each region. Y-axis represents each developmental cluster identified.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31053-5 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3328 | https://doi.org/10.1038/s41467-022-31053-5 | www.nature.com/naturecommunications 7

https://fcp-indi.github.io/docs/latest/user/alff.html?highlight=falff
https://fcp-indi.github.io/docs/latest/user/alff.html?highlight=falff
https://fcp-indi.github.io/docs/latest/user/reho
www.nature.com/naturecommunications
www.nature.com/naturecommunications


measure requires the cluster size as an input to define the size of the neighborhood.
In this study, we used a cluster size of 27 voxels. The 26 neighbors of a voxel, x, are
those within a 3 x 3 x 3 voxel cube centered on voxel x. The similarity of the
activation time courses between each voxel, x, and its 26 nearest neighbors was
calculated using:Wx ¼ ð∑ðRiÞ2 � nð�RÞ2Þ= 1

12K
2ðn3 � nÞ� �

.Wx is the KCC for voxel
x and ranges from 0 to 1, representing no concordance to complete concordance. Ri
is the rank sum of the ith time point. R is the mean value over the Ri’s. K is the
cluster size for the voxel time series (here K= 27). n is the total number of ranks.

Registration. The mean processed fMRI image was nonlinearly registered directly
to an EPI template in MNI152 space using the symmetric normalization (SyN)
non-linear registration method of the ANTs (v2.3.5) package86,87. The resulting
composite transform was then applied to both the fALFF and ReHo maps to
provide derivative maps in normalized MNI152 space. We used EPInorm-based
registration as it better accounts for nonlinear B0 field inhomogeneities at the air to
tissue interfaces88,89. Supplementary Figure 7 illustrates the improvement
EPInorm-based registration has over more the commonly applied T1norm based
registration. In this study, EPInorm registration yielded more accurate spatial
normalization of the brains to the standard atlas space in which regional values are
computed. Regions of improved registration included the sinuses which present
air/tissue interfaces that induce non-linear distortions which are properly handled
through EPInorm co-registration. EPInorm registration also had a substantially
lower standard deviation around the brain periphery across the 1316 subjects
assessed.

Lastly, subjects with poor EPInorm registration88 (discussed below) were
removed. Specifically, mis-registration was identified through a combination of
manual inspection and through the detection of scans with an outlier number of
misaligned brain-masked voxels using the interquartile range (IQR) outlier test90.

Segmentation. In this study, we adapted the Brodmann atlas publicly available
through MRICron (v1.0.9) to form the 11 multi-area regions from which tissue
samples were drawn from matched donor brains. Supplementary Data 1 illustrates
how we combined Brodmann areas to generate 11 regions that correspond with the
RNA sequence data. We used the resulting 11 region atlas to assign a region label
(parcellate) to each voxel in the fALFF and ReHo maps to enable computation of
the mean regional fALFF and ReHo values for all subjects.

Site correction. We accessed publicly available ABIDE data across 30 different
sites. These sites used MRI devices from different manufacturers (Siemens, Philips,
GE) and used different MRI pulse sequences and participant protocols, which can
cause differences in the absolute value of the fMRI acquired and can affect fALFF
and ReHo values (Supplementary Data 1). As the mean fALFF and ReHo varied
between sites, we applied a correction to minimize site differences. To suppress site
differences, the difference between the cohorts mean regional value and each site’s
mean regional value was calculated. This regional difference was then subtracted
from each region value for all subjects belonging to the corresponding site.

Derivative map normalization. To provide better inter-subject comparisons, we
normalized regional fALFF and ReHo values to the weighted mean, weighted by
the number of voxels for each region, over all of the regional values for each
subject. To reduce the impact of confounders, we regressed out age, site, and sex
using a linear model.

RNA-seq processing and analysis. Quality control was performed using FastQC
(v.0.11.9). Reads were aligned to the human hg38 reference genome using STAR91

(v.2.5.2b). Picard tool was implemented to refine the quality control metrics (http://
broadinstitute.github.io/picard/) and to calculate sequencing statistics. Gencode
annotation for hg38 (v.25) was used for reference alignment annotation and
downstream quantification. Gene level expression was calculated using RSEM92.
Dup15q individuals were removed from the initial data33. Technical replicates were
collapsed by the maximum expression value and maximum RNA integrity value. A
total of 302 Control and 360 ASD were used for the final analysis. Supplementary
Figure 8 represents the pairwise comparison of demographics from the RNA-seq
and rsfMRI datasets. Supplementary Data 1 provides details on all the covariates.
Only protein-coding genes were considered. Counts were normalized using counts
per million reads (CPM) with the edgeR (v3.32.0) package in R93. Normalized data
were log2 scaled with an offset of 1. Genes were considered expressed with
log2(CPM+ 1) > 0.5 in at least 80% of the subjects. Normalized data were assessed
for effects from known biological covariates (Sex, Age, Ancestry, and PMI), tech-
nical variables related to sample processing (Batch, BrainBank, RNA Integrity value
(RIN)) and technical variables related to sequencing processing based on PICARD
statistics (https://broadinstitute.github.io/picard/).

We used the following sequencing covariates:
picard_gcbias.AT_DROPOUT, star.deletion_length, picard_rnaseq.PCT_
INTERGENIC_BASES,
picard_insert.MEDIAN_INSERT_SIZE, picard_alignment.PCT_CHIMERA
Spicard_alignment.PCT_PF_READS_ALIGNED, star.multimapped_percent,
picard_rnaseq.MEDIAN_5PRIME_BIAS, star.unmapped_other_percent,

picard_rnaseq.PCT_USABLE_BASES, star.uniquely_mapped_percent.
Residualization was applied using a linear model. All covariates except

Diagnosis, Subjects and Regions were taken into account:
mod <- lm(gene expression ~ Sex+Age+Ancestry+ PMI+ Batch+ BrainBank+

RIN+ seqCovs).
This method allowed us to remove variation explained by biological and

technical covariates.
Adjusted expression was calculated by extracting the residuals per each gene and

adding the mean of the gene expression: adjusted gene expression <− residuals(mod) +
mean(gene expression)

Adjusted CPM values were used for rs-fMRI—gene expression correlation and
resultant visualization.

fMRI-gene expression correlation analysis. We performed Spearman’s rank
correlation between the mean regional values of fALFF and ReHo and the regional
gene expression across the 11 cortical areas analyzed. To define fMRI-gene
expression relationships, we used random subsampling (200 times) of neurotypical
individuals from the ABIDE I and II datasets. We matched the number of subjects
per each cortical area (e.g., 25 ASD subjects for BA17). We performed correlation
across the regions using all 11 areas matching with the gene expression dataset and
averaged Spearman’s rank statistics over the 200 subsamples. P-values from
Spearman’s rank statistics were adjusted by Benjamini–Hochberg FDR. Differential
Correlation analysis was performed comparing the resulting Rho from neurotypical
individuals to individuals with ASD for each gene using the psych (v2.0.12) package
in R. We combined the resultant Differential Correlation p-values and effect sizes
using a Fischer’s combination test in R. Significant results are reported at FDR <
0.05 for neurotypical individuals’ statistics and P-value of combined differential
correlation at p < 0.01.

Leave-one-region out (LoRo) analysis. We performed the same subsampling
approach followed by differential correlation analysis as described above leaving
one region out at the time. This method allowed us to determine the effect of each
region in the resultant z from the differential correlation analysis between healthy
individuals and autistic individuals. Next, we calculated the contribution of each
region based on a principal component analysis using the resultant z-values. We
visualized resultant contributions in a multi-dimensional plot.

Developmental analysis. The identification of gene clusters with different
developmental trajectories was performed on DC genes using all subjects except for
individuals above 60 yr as they were represented only in the ASD group.

We applied residualization as previously described removing the age from the
covariates.

mod <− lm(gene expression ~ Sex+ Ancestry+ PMI+ Batch+ BrainBank+
RIN+ seqCovs).

Then, we scaled gene expression and divided genes into three clusters according
to the scaled expression values of healthy subjects only, using the Kmeans function
from the amap (v0.8) package in R. We plotted the developmental trajectories
using the loess regression and ggplot2 (v3.3.2) package in R. To make loess
regression computationally possible, 8000 data points were randomly sampled.
Repeated samplings yielded very similar patterns. We made no adjustments for
developmental time points and the x-axis directly represents the age of the subjects.
We annotated clusters based on visual inspection of their trajectory. To subsample
diagnosis-region groups (e.g., ASD BA17 samples), we determined the diagnosis-
region group with minimum number of samples and randomly subset other groups
to that number. Then we plotted expression values with loess regression as before.

To assess the significance of trajectories, we compared gene expression between
age brackets of 5 years using t-test (One-tailed. Greater expression for Adult (e.g
Ha: 0–5 < 5–10) and less expression for EarlyDev (Ha: 0–5 > 5–10) with
increasing age).

The BrainSpan dataset48 was downloaded from www.brainspan.org
(normalized matrix: “RNA-Seq Gencode v10 summarized to genes”). Data were
then log2 transformed (log2(data+ 1)). To match with the current study, the
following brain regions were removed: AMY, OFC, Ocx, URL, DTH, CB, CBC,
MD, STR, and HIP. For each gene, the expression values were z-transformed across
samples. To understand expression pattern across ages, samples were divided into
age groups per 5 years. Only postnatal samples were kept to match with the
current study.

Allen single nuclei RNA-seq analysis. Multi-Region snRNA-seq41 (MTG, V1C,
M1C, CgGr, S1C, A1C) was from the Allen Brain Map portal (https://portal.brain-
map.org/atlases-and-data/rnaseq). Briefly, data was analyzed using Seurat94

(v3.9.9). Data was subsetted by removing nuclei with >10,000 UMI and >5% of
mitochondrial gene expressed. Published cell-type annotations included in the
metadata were used for downstream analyses. We identified cell-type markers
using FindMarkers function based on Wilcoxon-rank sum test statistics. Markers
were defined by Percentage of Cells expressing the gene in the cluster >0.5,
FDR < 0.05 and |log2(FC)| > 0.3.
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Functional enrichment. We performed the functional annotation of differentially
expressed and co-expressed genes using ToppGene95. We used the GO and KEGG
databases. Pathways containing between 5 and 2000 genes were retained. We
applied a Benjamini–Hochberg FDR (P < 0.05) as a multiple comparisons adjust-
ment. Brain expressed genes (Brainspan, N= 15585) were used as background.

Gene set enrichment. We performed gene set enrichment for neuropsychiatric
DGE55, neuropsychiatric modules55, and cell-type markers41 using a Fisher’s exact
test in R with the following parameters: alternative = “greater”, conf.level= 0.95.
We reported odds ratios (OR) and Benjamini–Hochberg adjusted P-value (FDR).
Brain expressed genes (Brainspan, N= 15585) were used as background.

Deconvolution. Deconvolution was performed by MuSiC (v0.1.1)53 in R. This
method leverages transcriptomic signatures of cell-types considering cross-subject
heterogeneity and gene expression stochasticity. Bulk RNA-seq data is deconvo-
luted to obtain proportions of cell-types in each sample. We used single-cell data
that was downloaded from the Allen Brain Map portal (https://portal.brain-map.
org/atlases-and-data/rnaseq). Published cell-type annotations included in the
metadata were used as reference for cell-type abundance inference.

Statistical analysis and reproducibility. No statistical methods were used to pre-
determine sample sizes. Nevertheless, the data here reported is in line with the
sample size of previous studies96,97. Samples were not randomized. ASD subjects
with Chromosome 15q Duplication were excluded from the downstream analysis.
Data collection and analysis were not performed blind to the conditions of the
experiments. Findings were not replicated due to the limitation of the multi-region
ASD transcriptome data. Nevertheless, we used two independent rs-fMRI mea-
surement to refine and increase the confidence of our findings. For fALFF/ReHo rs-
fMRI values and bulk RNA-seq transcriptomic data, distribution was assumed to
be normal but this was not formally tested. Non-parametric tests have been used to
avoid uncertainty when possible. Data collection and analysis were not performed
blind to the conditions of the experiments.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imaging data from ABIDE I and II are available to approved investigators who
register with the NITRC (Neuroimaging Informatics Tools and Resources Clearinghouse)
and 1000 Functional Connectomes Project to gain access. Details and access information
are provided here: http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html and here:
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html.
The source bulk RNA-seq data generated in this manuscript are available via the

PsychENCODE Knowledge Portal (https://psychencode.synapse.org/). The
PsychENCODE Knowledge Portal is a platform for accessing data, analyses, and tools
generated through grants funded by the National Institute of Mental Health (NIMH)
PsychENCODE program. Data is available for general research use according to the
following requirements for data access and data attribution: (https://psychencode.
synapse.org/DataAccess). For access to content described in this manuscript see: https://
doi.org/10.7303/syn4587615.

Code availability
Custom R code and data to support the data correction, correlation analysis, visualizations,
functional, and gene set enrichments are available at https://github.com/konopkalab/
AUTISM_rsFMRI_GeneExpressionCorrelations and https://github.com/DeepLearning
ForPrecisionHealthLab/AUTISM_rsfMRI_ProcessingConnectivityExtractionAndSubject
Matching.
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Supplementary Figure 1: Overview of image analysis pipeline. Three steps are used to calculate 
regional values from MRI. Step 1: Subject fMRI (green) is spatially normalized to atlas space. Step 2: 
Local functional activity measures are derived for each subject (e.g. fALFF) and coregistered to atlas 
space. Step 3: Mean regional measures are computed using the atlas (yellow) for each region for each 
subject. 

 

 



 

Supplementary Figure 2. rs-fMRI data quality control. a, Boxplots of fALFF and ReHo 
measurements comparison between ASD (red) and CTL (black) across multiple ROIs analyzed. Stars 
correspond to the significant differences between ASD and CTL based on one-sided Wilcoxon rank 
sum’s test (** p = 0.001, * p = 0.05). Boxes extend from the 25th to the 75th percentiles, the center 
lines represent the median. ASD: N = 606 biologically independent samples, CTL: N = 710 biologically 
independent samples.  Exact P-value fALFF: BA17 p = 0.048, BA20_37 p = 0.001, BA7 p = 0.04. Exact 
P-value ReHo: BA20_37 p = 0.026. 
 

 



 

Supplementary Figure 3. Comparisons of the two types of rs-fMRI measurements. a, Scatter plot 
comparing fALFF (X-axis) and ReHo (Y-axis) between the 11 ROIs analyzed in CTL. Spearman rank 
rho values and associated p-values are shown colored by ROIs. Black line corresponds to the across-
ROIs (pancortical) correlation (Spearman’s rank correlation test, two-tailed). b, Distribution of fALFF 
and ReHo measurements in the 11 ROIs analyzed in CTL. Boxes extend from the 25th to the 75th 
percentiles, the center lines represent the median. ASD: N = 606 biologically independent samples, 
CTL: N = 710 biologically independent samples.   
 

 

 

 

  

 

 

 

 



 

Supplementary Figure 4. RNA-seq data quality control and covariate metrics. a, Principal 
component analysis based on the RNA-seq data of all the subjects used in this study. b, Variance 
explained by each covariate adjusted across 10 principal components.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Figure 5. Comparison of differentially correlated genes using either imaging 
metric or with other published datasets. a, Distribution of Spearman’s rank p-values in both rs-fMRI 
measurements for ASD and CTL.  b, Scatterplot depicting the correlation between CTL and ASD fALFF 
and ReHo rho values for the differentially correlated genes (DC genes) (Spearman’s rank correlation 
test, two-tailed). c, Scatterplot depicting the correlation between fALFF and ReHo differentially 
correlated effect sizes (Spearman’s rank correlation test, two-tailed). d, Barplot depicting the -
log10(FDR) of the overlap between CTL specific and DC Genes with previously published rs-fMRI genes 
(Fisher’s Exact Test). e, Permutation tests of the presented overlaps. Brain expressed genes were 
randomly permuted matching the number of rs-fMRI genes identified in the two independent studies. 
Histograms show the distribution of overlapped genes between permuted data and genes found in this 
study. Overlaps and p-values were obtained using 1000 random permutations. Black lines indicate the 
original overlap.   
 

 

 

 

 

 

 



 

Supplementary Figure 6. Gene expression comparisons of ASD and CTL across developmental 
trajectories. a, Statistical comparison of developmental trajectories. Samples were divided into age 
brackets and age brackets were compared by one-sided t-test (alternative hypothesis: greater with 
increasing age in Adult, less with increasing age in EarlyDev). Numbers on graph are p-values, y-axis 
indicates Z-scored gene expression. Note that z-score spans a larger interval compared to Figure 4a. 
ASD: N = 360 biologically independent samples, CTL: N = 302 biologically independent samples. Boxes 
extend from the 25th to the 75th percentiles, the center lines represent the median. b, Developmental 
trajectories after equalizing diagnosis-region groups by random subsampling. Loess regression was 
used to fit smooth curve for the values of all genes per cluster across development. Smooth curves are 
shown with 95% confidence bands. Y-axis indicates Z-scored gene expression.  c, Developmental 
trajectories of Adult, EarlyDev and Stable gene clusters using BrainSpan atlas (similar to Figure 4a). d, 
Line chart showing the median with standard error of PVALB+ interneurons imputed proportions across 
the 11 regions analyzed based on Adult, EarlyDev, Stable genes. Stars correspond to the significant 
differences between ASD and CTL based on one-sided Wilcoxon rank sum’s test (** p = 0.01, * p = 
0.05). Y-axis indicates cortical regions by anterior-to-posterior ordering. e, Barplot of enrichment 
between developmental clusters and modules associated with autism, bipolar disorder, and 
schizophrenia (Y-axis) from an independent study. 
 



 
 
 

 
 
Supplementary Figure 7: Quantitative comparison of EPInorm-based versus T1norm-based co-
registration. Each panel shows a mid-coronal image (left), mid-sagittal image (middle) and mid-axial 
image (right). Top panels show fMRI (yellow/red overlay) coregistered to MNI T1 anatomical atlas 
(underlay) using (A) T1norm-based co-registration and (B) EPI based registration. Both co-registrations 
are 3-dimensional. EPInorm based co-registration better aligns the derivative maps (fALFF and ReHo) 
to brain anatomy and reduces areas of misregistration (blue circles). Bottom panels show the standard 
deviation for fALFF values across subjects using (C) T1norm-based co-registration and (D) EPInorm-
based co-registration. 
 



 
 
Supplementary Figure 8. Averaged demographic information for ASD and CTL groups. a) 
Pairwise comparison of demographic information containing biological and technical covariates for 
RNA-seq. In red: ASD subjects; in black: control. b) Pairwise comparison of demographic information 
containing biological and technical covariates for rs-fMRI. In red: ASD subjects; in black: control. c) 
Distribution of the age of the individuals who provided data for either RNA-seq or rs-fMRI studies. RNA-
seq: ASD: N = 360 biologically independent samples, CTL: N = 302 biologically independent samples.  
rs-fMRI: ASD: N = 606 biologically independent samples, CTL: N = 710 biologically independent 
samples. Boxes extend from the 25th to the 75th percentiles, the center lines represent the median.  
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Genome-wide association studies (GWAS) and gene expres-
sion profiling of the human brain have unlocked the ability 
to investigate the genetic basis of complex brain phenomena. 

These datasets have principally been applied to noninvasive imag-
ing studies, especially correlations with structural magnetic reso-
nance imaging (MRI) or resting-state functional MRI1–4. Existing 
methods have relied on published datasets of gene expression from 
postmortem brains, which means that neurophysiological and 
behavioral data are not from the same individuals who contributed 
gene expression data5,6. This limits the potential impact of such 
approaches to determine how genes support key cognitive processes 
such as episodic memory and highlights the need to develop new 
datasets in which individuals contribute both neurophysiological 
and gene expression data7. Another issue affecting previous stud-
ies is that neurophysiological measurements such as resting-state 
functional MRI are not directly linked to cognitive phenomenon. 
Thus, we previously attempted to correlate gene expression lev-
els with oscillatory signatures of successful memory encoding8, as 
the fundamental role of these oscillations in supporting memory 
behavior has been well established in rodents and humans9,10. These 
oscillatory signatures are measures of the degree to which memory 
encoding success modulates oscillatory power in a given frequency 
band. They were quantified using intracranial electrodes implanted 
for seizure mapping purposes, with recordings made as participants 
performed an episodic memory task. We used a large database of 
intracranial electroencephalography (iEEG) recordings obtained 
over 10 years to piece together a distribution of these oscillatory 
signatures across brain regions. We identified genes correlated with 
these oscillatory signatures, including those previously linked to 
memory formation in rodent investigations, genes linked to cogni-

tive disorders such as autism spectrum disorder (ASD) and novel 
genes that are prime targets for further investigation. However, as 
with other studies, this dataset did not have the benefit of both neu-
rophysiological and gene expression information from the same 
individuals.

With the goal of explicating links between gene expression and 
brain oscillations and identifying propitious targets for neuromod-
ulation to treat memory disorders, here, we compiled an unprec-
edented dataset from 16 human participants who first underwent 
iEEG during which we measured oscillatory signatures of episodic 
memory encoding using a well-refined signal-processing pipeline. 
These participants then underwent a temporal lobectomy, during 
which an en bloc resection of the lateral temporal lobe permitted 
the acquisition of high-quality tissue specimens that were processed 
immediately after removal from a common brain region (Brodmann 
area 38 (BA38)) from which in vivo recordings had been previously 
obtained. This approach allowed us to identify genes linked with 
mnemonic oscillatory signatures by correlating gene expression 
information with iEEG data obtained from the same individuals. 
Prioritization was performed using the following different steps: 
multivariate analyses (MVAs) followed by decomposition by brain 
oscillation using correlations; gene regulatory network connectiv-
ity and cell-type-specific expression and/or epigenomic state; and 
immunofluorescence staining confirmation. This robust analytical 
approach to combine human electrophysiological data by iEEG and 
genomic data from the same participants highlighted genes that 
might be relevant for mechanisms of episodic memory.

We made the a priori decision to focus on BA38 in this analysis 
for the following reasons: (1) the region has been shown to exhibit 
strong memory-related oscillatory signatures in multiple investiga-
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tions11,12; (2) resection of this region is standardized in an en bloc 
temporal lobectomy operation, thereby allowing preservation of 
blood supply to the region until a period of less than 5 min from 
procurement of tissue for processing and maximizing the quality 
of the specimen; and (3) iEEG investigations preceding temporal 
lobectomy in this particular population invariably include sampling 
from this region.

An inevitable feature of our dataset is that the participants suf-
fered from intractable epilepsy, which presents an important caveat 
to the interpretations of the results. However, recent experiments 
have shown that blood-oxygenation-level-dependent patterns 
elicited during successful encoding in patients with epilepsy par-
ticipating in cognitive studies do not show significant differences 
compared to healthy controls13. Moreover, since we examined gene–
oscillatory signature correlations across these individuals rather 
than in comparison to an alternative cohort of data, we could insti-
tute control methodologies to partially account for this concern. 
These included strict artifact-rejection routines and the exclusion 
of data from regions of seizure onset, as well as using matched post-
mortem gene expression samples from both unaffected individuals 
and patients with epilepsy to adjust gene expression levels.

Results
Generation of within-individual memory oscillatory signatures 
and a gene expression dataset. To determine the relationship 
between memory-related brain oscillations and gene expression, we 
analyzed iEEG recorded as participants encoded episodic memo-
ries along with gene expression data from the same 16 individu-
als (Supplementary Table 1). Oscillatory signatures of successful 
memory encoding (subsequent memory effects (SMEs)) were cal-
culated from recorded iEEG signals by comparing oscillatory pat-
terns during successful versus unsuccessful memory encoding. We 
use the term “oscillations” to describe oscillatory power extracted 
in predefined frequency bands, but address issues related to the use 
of this term in the Discussion. We used the free-recall task, a stan-
dard test of episodic memory for which oscillatory patterns have 
been well described14, and calculated oscillatory signatures utiliz-
ing our well-established signal-processing pipeline8,15,16 (Fig. 1 and 
Methods). On average, participants remembered 24.3% of memory 
items, with a rate of list intrusion (erroneous recollection) of 5.4%. 
These characteristics are consistent with previous publications 
of the performance of participants undergoing iEEG during this 
task11. Further behavioral characteristics, including response prob-
ability curves by serial position and conditional response probabil-
ity curves, are shown in Extended Data Fig. 1a,b. These revealed 
expected patterns for free recall, including primacy and recency 
effects and temporal contiguity for immediate lags.

SMEs were extracted from electrodes located in the temporal 
pole by first normalizing the iEEG signal following wavelet decom-
position and statistically comparing oscillatory values between suc-
cessful versus unsuccessful encoding events across 56 log-spaced 
frequencies from 2 to 120 Hz. This was done using a permutation 
procedure, whereby trial labels are shuffled 1,000 times within each 
recording electrode. We made the a priori decision to average oscil-
latory data for each individual across all electrodes localized to the 
anterior temporal pole (BA38) by expert neuroradiology review, as 
this seemed the most generalizable approach. Extended Data Fig. 
1c shows that the variance of SME values across participants for all 
bands is greater than the variance within participants, which sup-
ports the validity of this approach. Data were averaged over a mean 
of 3.6 electrodes per participant. The resulting oscillatory signatures 
were averaged into six predefined frequency bands before enter-
ing these data into our model to estimate gene correlation values 
(Fig. 1d,f). The proportion of electrodes exhibiting significant dif-
ferences in oscillatory power between successful and unsuccessful 
encoding demonstrated that significant memory-related oscillatory 

patterns were present (Extended Data Fig. 1d). Significant effects 
at the individual level are also shown (Fig. 1d), and these results 
were consistent with previous work17 related to memory patterns 
in the anterior temporal lobe. In addition, the correlation between 
observed SME values revealed an expected relationship between 
low- and high-frequency SMEs (Extended Data Fig. 1e). We note 
that observed differences may be due to functional changes in nar-
rowband oscillations or broadband power shifts (or a mix of the 
two). Extended Data Fig. 1f,g shows the results of an oscillation 
detection analysis, which indicated that narrowband oscillations 
were present in our data, and we comment on this issue in the 
Discussion. These 16 study participants then underwent a temporal 
lobectomy operation. This surgery was performed by a single sur-
geon (B.C.L.) using a technique that was standardized across these 
participants for obtaining tissue from BA38 (Fig. 1e). None of the 
individuals included in this study had gross or radiographic lesions, 
such as temporal sclerosis or cortical dysplasia. Participants with 
seizure onset in the temporal pole were not included in our data.

We generated whole-transcriptome RNA-sequencing (RNA-seq) 
data from the 16 BA38 samples. In addition to the 16 individuals 
with matched oscillatory signature measurements and gene expres-
sion data, we generated BA38 RNA-seq data from an additional 11 
temporal lobectomies from individuals for whom we did not obtain 
oscillation measurements, and postmortem tissue from 12 healthy 
individuals and 8 patients with epilepsy to validate our predictions 
using permutations/bootstraps (Fig. 1f and Methods). Principal 
component analysis revealed that gene expression was uniform 
across samples, with no outliers (Extended Data Fig. 1h–m). 
Variance explained by technical, biological and sequencing covari-
ates was analyzed and removed before further analyses (Extended 
Data Fig. 1n). These adjusted gene expression values were used to 
calculate gene–oscillatory signature correlations across individuals 
for each frequency band and co-expression networks.

Memory oscillatory signatures are correlated with gene expres-
sion. To determine the relationship between memory oscillatory 
signatures and gene expression, we performed a MVA followed by 
decomposition by brain oscillation using a Spearman’s rank corre-
lation that included the aforementioned permutations/bootstraps 
(Methods). Correlations between gene expression and brain oscil-
lations were performed across participants, with each participant 
contributing a single gene-expression value and a single SME value 
per frequency band. The MVA detected a total of 753 genes with 
false-discovery rate (FDR)-corrected P values of <0.05 (Fig. 2a) for 
SME–gene expression correlations. The F-statistics for the signifi-
cant genes we identified were robust and greater than for nonsig-
nificant genes (Extended Data Fig. 2a). We next decomposed the 
MVA by a correlative analysis to identify genes whose expression 
correlated with memory-related oscillatory signatures in each of 
the six frequency bands (“SME genes”; multivariate, FDR < 0.05; 
Spearman’s rank correlation ρ and permutations P < 0.05). Of the 
753 genes detected by MVA, 300 genes were linked with memory 
effects in specific frequency bands, with a high proportion associ-
ated with 2–4 Hz delta band oscillations (Fig. 2a and Supplementary 
Table 2). The majority of the identified genes were specific to one 
frequency band, with primarily only a small number of genes shared 
by delta and one other frequency band (Fig. 2b). Spearman’s ρ val-
ues were robust and greater than for random expectation (Extended 
Data Fig. 2b,c). These results further confirmed the significance of 
the identified genes.

Data from these 16 individuals also included a control behav-
ioral paradigm in which individuals performed simple mathemati-
cal problems, which allowed us to observe oscillatory signatures 
linked to this separate cognitive domain (Methods). We performed 
the same analysis as above to test whether gene–oscillatory sig-
nature associations were specific for mnemonic processing. Our 
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dataset also included cortical thickness estimates for BA38 for each 
individual, which were extracted from our FreeSurfer process-
ing routine, allowing us to perform an additional control analysis 
looking for genes correlated with this measurement. We did not 
observe an overlap with these alternative data, and all the genes 
highlighted below using co-expression network analysis were 
memory-specific (that is, gene–oscillation correlations were specific 
for memory-related oscillatory effects). Finally, we looked for gene 
correlations with memory performance (that is, behavioral data 
without regard to any oscillatory signature observations). Only one 
gene associated with oscillatory signatures overlapped with those 
identified in these control analyses, thereby reinforcing the unique 
memory-relevant information obtained by examining gene–oscilla-
tory signature correlations (Fig. 2c).

Networks refine molecular pathways associated with memory. We 
sought to understand the functional properties of the genes identi-

fied as correlated with oscillatory signatures of successful memory 
encoding. We performed consensus weighted gene co-expression 
network analysis (WGCNA; Methods, Extended Data Fig. 3a and 
Supplementary Table 3) using gene expression from resected tem-
poral lobe tissue together with the postmortem gene expression 
datasets. We placed the memory genes into a systems-level context 
to identify co-expression networks (for example, modules of highly 
correlated genes) linked with brain oscillations to further priori-
tize genes. We required that identified modules were robust across 
these multiple expression datasets (Methods), and this identified a 
total of 26 modules. Of these, six were significantly associated with 
oscillatory-signature-correlated genes (Fig. 3a and Extended Data 
Fig. 3b).

Two modules were significantly associated with delta oscilla-
tory signatures, one module with both delta and low-gamma oscil-
lations, and three modules were significantly associated with beta 
oscillatory signatures (Fig. 3a). Notably, we did not detect module 
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associations for genes correlated with cortical thickness or recall 
fraction (behavioral measurement), whereas genes correlated with 
oscillations during the mathematical tasks were associated with 
two independent modules, which provides further confirmation 
that genes associated with memory encoding and their networks 
are distinct (Fig. 3b). In addition, in three of these modules (WM4, 
WM12 and WM21), we identified significant enrichment for the 
SME genes (Extended Data Fig. 3c). Moreover, SME genes within 
these three modules showed higher connectivity compared with 
other genes, which suggests that oscillatory-signature-associated 
genes have a central role in the transcriptome of BA38 (Extended 
Data Fig. 3d). We also observed convergence of genes and mod-
ules associated with oscillatory-signature-correlated genes from our 
previous work8, which examined gene–oscillatory signature asso-
ciations across cortical regions (Fig. 3c). The convergence of these 
findings using different patient populations and methods gives con-
fidence to our inferences regarding the link between these genes 
and mnemonic processes. The two modules positively associated 
with delta oscillatory signatures (WM4 and WM12) were enriched 
for genes implicated in ion channel activity (Fig. 3d). Notably, WM4 
contained previously identified genes correlated with memory 
oscillatory signatures8 (Fisher’s exact test, FDR-corrected P = 0.003, 
odds ratio (OR) = 4.4), whereas WM12 is enriched for a previously 
identified8 synaptic-related module correlated with memory oscil-
latory signatures (Fisher’s exact test, FDR-corrected P = 1.0 × 10−07, 
OR = 4.1) (Fig. 3c).

Because ‘hub genes’, genes with high intramodular connectivity, 
have been previously shown to drive module and network struc-
ture18, we examined the correlated modules for any hub genes 
that might have previously been linked to memory or cognition. 
SHANK2, one of the WM12 hub genes, encodes a synaptic scaf-
folding protein. Mutations in SHANK2 have been linked with ASD, 
intellectual disability and schizophrenia19,20. Moreover, SHANK2 
has been associated with learning and memory deficits21, thereby 

further confirming the pivotal role of this WM12 hub gene in mem-
ory encoding. Importantly, modules associated with different oscil-
latory frequency bands exhibited different functional properties. 
In contrast to the delta-associated modules, modules linked with 
beta oscillatory signatures (WM11 and WM22) were significantly 
associated with alternative splicing and chromatin remodeling (Fig. 
3d). In accordance with previous results8, we observed that both 
modules were enriched for genes in SME15, a module linked to 
beta oscillatory signatures containing genes implicated in splicing 
(Fisher’s exact test, FDR-corrected P = 2.2 × 10−10, OR = 3.9 (WM11) 
and P = 2.1 × 10−05, OR = 3.8 (WM22)) (Fig. 3c). These data may 
support alternative splicing regulation as a mechanism for variation 
in oscillatory signatures observed across individuals.

Modules of memory oscillatory signatures are linked with neu-
ropsychiatric disorders. We next investigated the association 
of SME modules with genomic data from brain disorders. Using 
comprehensive transcriptomic and genetic data from multiple dis-
orders (Methods), we assessed enrichment for genes dysregulated 
in neuropsychiatric disorders and GWAS enrichment using linkage 
disequilibrium (LD) score regression. The WM4 module associ-
ated with delta oscillatory signatures was significantly enriched for 
downregulated genes in ASD (Fisher’s exact test, FDR-corrected 
P = 4.3 × 10−4, OR = 2.95) and variants associated with ASD (Fisher’s 
exact test, FDR-corrected P = 0.001) (Fig. 4a,b and Supplementary 
Table 4). WM12 showed enrichment for GWAS associated with 
attention-deficit/hyperactivity disorder (ADHD; FDR = 0.001), 
bipolar disorder (BD; FDR = 0.003), major depressive disorder 
(MDD; FDR = 0.006), schizophrenia (SCZ_2018; FDR = 5.8 × 10−6) 
and variants associated with educational attainment (FDR = 0.03) 
and intelligence (FDR = 0.002) (Fig. 4b and Supplementary Table 4). 
Most importantly, we did not detect any significant enrichment for 
epilepsy-associated loci in the memory-related modules (Fig. 4b), 
and the enrichment for variants associated with non-brain-related 
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traits and disorders was minimal (Extended Data Fig. 4a). We 
also found an enrichment for WM4 (FDR = 8.9 × 10−07, OR = 3.3) 
and WM12 (ASD: FDR = 3.9 × 10−06, OR = 3.4; ASD (scored 1–3): 
FDR = 3.2 × 10−04, OR = 4.5) in ASD-associated genes from the 
SFARI Gene database (Fig. 4c).

We next compared the correlated modules with those found 
in a meta-analysis of transcriptomic data across neuropsychiat-
ric disorders22. Both WM4 and WM12 are enriched for a mod-
ule severely affected in ASD, with RBFOX1 as a predominant hub 
(geneM1; FDR = 1.5 × 10−29, OR = 7.9 (WM4) and FDR = 2.0 × 10−10, 
OR = 3.92 (WM12)) (Extended Data Fig. 4b). Interestingly, RBFOX1 
is also a hub in WM12 (Fig. 3d), which provides further support 
for the role of this gene in neuropsychiatric disorders and memory. 
The beta module WM21 was enriched for schizophrenia variants 
(SCZ_2018; FDR = 0.03) (Fig. 4a,b and Supplementary Table 4), 

whereas the beta module WM22 was enriched for a splicing module 
affected in schizophrenia (geneM19; FDR = 2.6 × 10−09, OR = 6.6) 
(Extended Data Fig. 4b). Overall, the association of delta and beta 
oscillatory-signature-correlated modules with neuropsychiatric dis-
orders for which memory is impaired provide further support for 
the role of these genes and pathways in episodic memory.

Modules of memory oscillatory signatures are associated with 
specific cell types. To develop cell-type-specific associations for the 
identified correlated genes, we performed single-nucleus RNA-seq 
(snRNA-seq) analysis on tissue from six participants, four of whom 
contributed oscillatory data (Supplementary Table 1). We sequenced 
the transcriptomes of 17,632 nuclei (Extended Data Fig. 5a), detect-
ing an overall median of 11,498 unique molecular identifiers 
(UMIs) and 4,069 genes (Extended Data Fig. 5b,c). We accounted 
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for technical and biological covariates before dimensionality reduc-
tion (Methods). We initially identified 24 clusters. We next used a 
publicly available snRNA-seq dataset from middle temporal gyri to 
further define our initial clusters by both cell-type and layer speci-
ficity (Methods and Supplementary Table 5). After the comparison 
based on marker enrichment (Methods), we focused on a robust 
set of 20 transcriptionally defined clusters (Fig. 5a). The propor-
tion of cells were similarly distributed by participant in all clusters 
(Extended Data Fig. 5d,e). In total, we defined nine inhibitory neu-
ron, eight excitatory neuron and three major non-neuronal clusters 
(Extended Data Fig. 5f,g). These clusters showed high expression 
of known major markers for their respective cell types (Fig. 5b and 
Supplementary Table 5).

We found that the delta-correlated modules WM4 and WM12 
were strongly enriched for excitatory and inhibitory neurons (Fig. 
5c). Specifically, WM4 and WM12 were highly enriched for com-
binations of RORB+THEMIS+FEZF2+ deep-layer excitatory neu-
rons. These deep-layer neurons have been associated with memory 
encoding circuitry receiving GABAergic inputs from the hippo-
campus23. In addition, delta rhythmicity might arise from deeper 
layer intrinsic bursting neurons24 that project to other subcortical 
regions25. Therefore, these results further underscore the importance 
of these deep-layer excitatory neurons in episodic memory encod-
ing. Moreover, both modules showed enrichments for combinations 
of SST+VIP+PVALB+ inhibitory neurons. Interestingly, fast-spiking 
parvalbumin (PVALB)-containing basket cells decisively control 
excitatory output, and they are required for memory consolidation 

regulating neocortical–hippocampal circuitry26. Meanwhile, soma-
tostatin (SST)-expressing neurons target distal dendrites of pyra-
midal cells27, and they play a role in memory circuitry and cortical 
oscillatory synchronization28. While SST+PVALB+ interneurons 
specifically inhibit pyramidal neurons, VIP+ neurons both inhibit 
and disinhibit pyramidal neurons29,30 and might be implicated in 
working memory circuitry31.

In addition, the module negatively associated with delta oscilla-
tory signatures, WM21, was enriched for glia cells, with a predomi-
nance of oligodendrocyte-related genes (Fig. 5c), which provides 
support for a possible role for oligodendrocytes in memory cir-
cuits and neuronal synchrony as previously reported elsewhere32. 
Moreover, using snRNA-seq data from brain tissue of patients with 
ASD or Alzheimer disease (Methods), we found that WM4 is sig-
nificantly enriched for genes dysregulated in layer 2–4 excitatory 
neurons and SST+ inhibitory neurons in ASD, whereas WM21 is 
significantly enriched for oligodendrocyte markers affected in 
Alzheimer disease (Extended Data Fig. 5h,i). These results confirm 
the role of the modules associated with delta oscillatory signatures 
as linked to cognitive disorders at the cell-type level.

WM4 and WM12 are both enriched for delta-oscillatory- 
signature-correlated genes, cognitive-disease-related variants and 
multiple neuronal types. To validate our approach for the purpose 
of identifying targets for the future development of neuromodula-
tion strategies specific to brain disorders and cell types, we selected 
one hub gene from one of the delta modules. IL1RAPL2, which 
encodes an interleukin-1 (IL-1) receptor accessory protein, is a 
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hub gene in the WM4 module. Intriguingly, along with its para-
log IL1RAPL1, IL1RAPL2 promotes functional excitatory synapse 
and dendritic spine formation33 and is associated with ASD34. Our 
snRNA-seq data showed that IL1RAPL2 has the greatest expression 
in RORB+ deep-layer excitatory neurons, but it is also expressed in 
SST+LAMP5+ upper layer inhibitory neurons (Fig. 5d). Fluorescence 
immunohistochemistry (IHC) analysis of independently obtained 
tissue resections showed that IL1RAPL2 has the greatest overlap-
ping expression with a marker of excitatory neurons (CAMKII), 
some overlap with a marker of inhibitory neurons (GAD67) and 
no overlap with a marker of astrocytes (GFAP) or a marker of oli-
godendrocytes (OLIG2) (Fig. 5e,f). Along with its role in excitatory 
synapse formation, the snRNA-seq and memory oscillatory signa-
ture association indicated that IL1RAPL2 might play an essential 
role in regulation of memory encoding in humans. Together, these 
results underscore the importance of further studies focused on the 
role of IL1RAPL2 in memory and excitatory–inhibitory synaptic 
etiologies.

snATAC-seq reveals transcription factors as key regulators of 
memory-correlated modules. We next sought to understand what 
transcription factors (TFs) regulate modules of memory oscillatory 
signatures. We performed single-nucleus ATAC-seq (snATAC-seq) 
analysis on tissue obtained from three unique participants 
(Supplementary Table 1). We assessed the chromatin state of 22,177 
nuclei (Extended Data Fig. 6a), with a median of 7,733 identified 
peaks (Extended Data Fig. 6b,c). We identified 17 clusters that were 
labeled by integrating the snATAC-seq data with the snRNA-seq 
data (Fig. 6a, Extended Data Fig. 6d and Methods). The propor-
tion of nuclei from the three participants were similarly distributed 
among the clusters (Extended Data Fig. 6e). We noted differences 
between the resolution of the snRNA-seq and snATAC-seq datas-
ets in terms of the cell types identified, with a high percentage of 
non-neuronal cells in the snATAC-seq dataset (Extended Data Fig. 
6f,g). We speculate that this difference might be due to a bias in the 
snRNA-seq data caused by a larger amount of RNA and expressed 
genes in neuronal cell types35. Indeed, the glia-to-neuron ratio 
(GNR) in human gray matter varies between 1.13 and 1.64 (ref. 36). 
The GNR resolved by snATAC-seq was in line with this assumption 
(~1), whereas snRNA-seq data underestimated the GNR (~0.15) 
(Extended Data Figs. 5g and 6f,g).

Overall, this multi-omics method allowed us to detect 
cell-type-specific regulatory loci whose accessibility profiles were 
consistent with the cell-type gene expression. Using motif analy-
sis, we explored the enrichment of TFs in the cell-type-specific 
regulatory loci associated with the identified modules of memory 
oscillatory signatures. Among the modules with a cell-type asso-
ciation, motif enrichment was detected only in WM12 (Fig. 6b 
and Supplementary Table 6). Interestingly, we found that WM12 
showed enrichment for SMAD3 motifs, a WM12 hub gene (Fig. 

6b and Supplementary Table 6). Remarkably, SMAD3 motifs were 
observed in the promoter regions of other WM12 hub genes associ-
ated with neuropsychiatric disorders and memory such as SHANK2 
(ref. 20) (Fig. 6c). In addition, WM12 contained genes associated 
with neuronal etiologies, and we found that SMAD3 is primarily 
expressed in excitatory neurons (Fig. 6d). This result was further 
confirmed by fluorescence IHC analysis of independently obtained 
tissue resections (Fig. 6e,f). Overall, these results highlight the role 
of specific TFs in the regulation of the chromatin landscape neces-
sary to express putative genes associated with memory oscillatory 
signatures and provide novel molecular entry points for under-
standing human memory.

Discussion
We set out to understand the genomic underpinnings of oscilla-
tory patterns that support episodic memory encoding in humans, 
with the goal of identifying genes that are propitious targets for 
neuromodulation strategies to treat memory disorders. Using an 
unparalleled dataset from 16 human participants that included 
measurements of brain oscillations linked to successful episodic 
memory encoding and transcriptomic data from the temporal pole 
in the same individuals, we identified modules of genes that link 
specific cell types and cellular functions with memory-related oscil-
latory signatures.

Our analysis is fundamentally different from previous attempts 
to correlate gene expression with behavioral measurements such 
as memory performance37,38. Oscillatory correlates of successful 
memory encoding represent an ‘intermediate step’ between gene 
regulation and memory behavior. Oscillations are localized to the 
brain region in which they are recorded using intracranial-depth 
electrodes and are dissociable into frequency bands with distinct 
properties. Linking neurophysiological measurements (such as 
these oscillatory signatures) with gene expression data will establish 
specific testable hypotheses in subsequent investigations for these 
identified genes. The hub genes described in Fig. 3d may represent 
the most propitious targets for subsequent testing using animal 
models or other approaches.

Our work sheds light on the molecular mechanisms that give 
rise to oscillatory correlates of successful memory encoding39. Our 
observation that delta oscillatory signatures are linked to ion chan-
nel genes and that these genes tend to be expressed in oligoden-
drocytes leads to the fascinating implication that the generation of 
low-frequency oscillatory patterns linked to mnemonic processing 
in humans is at least partially dependent on glial modulation of 
oscillations. This is based on our observations across all participants 
and on the single-nucleus expression analysis. This conclusion is 
supported by the role of oligodendrocytes in learning and memory 
acting on depolarization of membrane potential32,40, which accel-
erates axonal conduction and ion channel activity as reflected by 
the delta-associated modules with positive association (WM4 and 

Fig. 5 | SME-specific modules are enriched for excitatory and inhibitory neurons. a, UMAP representation of the 20 classes of cell types using the BA38 
snRNA-seq data. Each dot represents a nucleus. Excitatory neurons (Exc) are highlighted in a dark blue gradient, the inhibitory neurons (Inh) in a red 
gradient and the non-neuronal cells (Astro, Oligo and OPC) in a light blue gradient. Cell types were annotated using a publicly available single-cell dataset. 
A Fisher’s exact enrichment test between cell markers of the two datasets was performed. Major cell types tend to cluster near one another. b, Violin plots 
representing gene markers for the major cell types detected. The y axis represents the log-normalized expression (log(norm exp)) of each marker gene in 
each cluster. The markers for excitatory neurons (for example, CUX and RORB) are highlighted in blue. The markers for inhibitory neurons (for example, 
GAD1 and RELN) are highlighted in red. The markers for non-neuronal cells (for example, FGFR3, MOBP and VCAN) are highlighted in green. c, Bubble chart 
showing the enrichment of the SME modules for cell-type markers defined using Seurat. The color gradient represents the −log10(FDR) and the bubble 
size represents the OR from a Fisher’s exact enrichment test of genes in modules from this study with genes expressed in specific cell types defined by our 
snRNA-seq data. The x axis represents the SME-specific modules. The y axis represents the cell classes from the present study. Boldface type indicates 
the six modules significantly associated with memory-related brain oscillations. d, Violin plot representing the log-normalized expression level of IL1RAPL2. 
The adjacent dot plot represents the average expression (gradient) and percentage of cells (size) expressing IL1RAPL2. The order of cell types follows the 
labels of c. e,f, IHC of independent human temporal lobe specimens demonstrates the specific expression of IL1RAPL2 in excitatory (CAMKII-α+) and 
inhibitory neurons (GAD67+) in BA38 (e), but not in oligodendrocytes (OLIG2+) or astrocytes (GFAP+) (f).
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WM12). Moreover, genes expressed in these positively associated 
modules were overrepresented in deep layers of excitatory neurons 
implicated in memory-encoding circuitry and delta-rhythmicity 
formation41–43 and in SST+VIP+PVALB+-expressing interneurons 
important for mediating cortical–hippocampal communication 
during memory encoding44. These results further support the role of 
the identified genes in memory encoding and specifically highlight 
cell types that might be implicated in episodic memory.

We observed interesting properties for genes correlated with 
delta oscillations, but not theta oscillations, which runs contrary 

to rodent data that universally implicate theta frequency activ-
ity in successful memory formation. However, in the human tem-
poral lobe, oscillations outside the 4–9 Hz range routinely exhibit 
memory-relevant properties, including cross-frequency coupling; 
thus, our findings are in line with previous observations using oscil-
latory signatures of successful memory encoding in humans45. In 
humans, these low-frequency oscillations represent a consistent 
feature of oscillatory signatures of memory formation, including 
influence on the timing of single unit activity45–47. The significant 
representation of genes correlated with delta oscillatory signatures 
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in our analysis may reflect the functional importance of these 
low-frequency components in humans.

A caveat in interpreting our data is that all the participants suf-
fered from intractable epilepsy. Clearly, the use of such a specific 
population is necessary to generate these highly valuable data 
with both in vivo oscillations and gene expression data from the 
same individuals. However, several features of our analysis, such 
as under-enrichment for genetic variants associated with epilepsy 
and data integration with epileptic and healthy tissues, give us con-
fidence that the insights we have uncovered represent more general-
izable associations between gene expression and brain oscillations. 
Furthermore, numerous human studies have established that iEEG 
observations from participants have correlates using noninvasive 
studies of healthy participants and in animal models48–50. Moreover, 
we employed strict artifact-rejection criteria and eliminated elec-
trodes located in the seizure-onset zone in our analysis, thereby 
reducing the impact of abnormal activity on observed oscillatory 
signatures51. We also integrated several control steps in our analysis, 
including incorporation of the duration of epilepsy to adjust gene 
expression values. Finally, several of the key genes we identified (for 

example, IL1RAPL2 and SMAD3) have been independently shown 
to be linked to memory processing in data from non-epileptic indi-
viduals and genetically modified rodent models34,52. Even though 
these correlative analyses do not imply causality, these genes have 
been highlighted by stringent correlative statistics, by high connec-
tivity in the modules associated with memory oscillations and by 
cell-type expression specificity. Using this analytical approach, we 
defined IL1RAPL2 and SMAD3 as genomic markers for episodic 
memory for further investigation at the molecular level in model 
systems.

An important issue one must consider when using participants 
who underwent neurosurgery to obtain both oscillation and gene 
expression data relates to timing. Specifically, the use of human 
participants simply does not allow collection of tissue specimens 
immediately after behavior-related oscillations are observed. Brain 
oscillations are dynamic, occurring during specific behavior, but 
gene expression snapshots are taken later in time, when the partici-
pants underwent temporal lobectomy. In practical terms, this means 
that genes we identify as being linked to oscillatory signatures of 
successful memory formation necessarily must persist in their 
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Fig. 6 | snATAC-seq highlights TFs regulating SME-correlated modules. a, Visualization of the 14 classes of cell types identified from BA38 snATAC-seq 
data. Nuclei are displayed based on UMAP. Each dot represents a nucleus. Cell classes were annotated using the BA38 snRNA-seq data generated in this 
study. Excitatory neurons are highlighted in a gradient of blue colors, the inhibitory neurons in a gradient of red and the non-neuronal cells in a gradient of 
turquoise. b, TF binding site enrichment for the three modules associated with cell types (WM4, WM12 and WM21). Only WM12 tends to have enrichment 
of TF binding motifs (dots to the right of the dashed line). SMAD3 is shown as a top TF whose motif is enriched in the WM12 module. The y axis represents 
the −log2(FC) of the motif enrichment reported by FindMotifs in Seurat. The x axis represents the −log10(FDR) of the motif enrichment reported by 
FindMotifs in Seurat. The dashed line corresponds to FDR = 0.05. c, Genome visualization tracks of snATAC-seq open chromatin regions representing 
SMAD3 binding sites in the promoter of the WM12 hub gene SHANK2. The red ridge plot represents the snATAC-seq data. The SMAD3 binding sites 
are indicated in blue. d, Violin plot representing the log-normalized expression level (y axis) of SMAD3 for each cell type defined by snRNA-seq. The 
adjacent dot plot represents the average expression (gradient) and percentage of cells (size) expressing SMAD3. e,f, IHC of independent human temporal 
lobe specimens demonstrates the specific expression of SMAD3 in excitatory neurons (CAMKII-α+; e), but not in inhibitory neurons (GAD67+; e), 
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expression at least over a period of weeks, and that our study can-
not identify genes whose expression is differentially induced (across 
participants) due to mnemonic stimuli over shorter time scales. 
We also note that while we use the term “oscillations” to describe 
power extracted in six predefined frequency bands, we acknowl-
edge that the measurement of SMEs may reflect power differences 
that arise due to differences in both narrowband oscillations and 
broadband power shifts. We include examples of narrowband oscil-
lations detected in our data using the multiple oscillation detection 
algorithm (MODAL; Methods). Future investigations may establish 
whether gene-expression correlation patterns are additionally cor-
related with such broadband power shifts during encoding53, incor-
porating slope shifts or a quantification of episodes in which bursts 
of oscillations occur. Broadly stated, this area remains an active area 
of investigation in human electrophysiology54.

Collectively, this translational work establishes an experimental 
and analytical approach for deconstructing human behavioral and 
cognitive traits, such as memory, using integrative physiological 
and multi-omics techniques. Integration of single-nucleus tran-
scriptomic and epigenomic data allowed us to identify the cell-type 
specificity of the memory-related gene co-expression modules and 
potential regulators of these modules. This molecular characteriza-
tion of human memory highlights key genes that can be further 
studied in model systems. We anticipate that this within-individual 
approach can be used in future studies to highlight molecular 
pathways of other human complex traits with the goal of identi-
fying therapeutic targets and linking clinical and genomic data at 
the individual level. Importantly, investigations using animal and 
in vitro models will be necessary to definitively characterize the 
memory-related properties of the genes identified in our analysis.
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Methods
Experimental model and participant details. Participants and memory task. 
The research protocol was approved by the Institutional Review Board at UT 
Southwestern, and informed consent was obtained from each participant. 
Participants contributing gene expression data were recruited from the UT 
Southwestern surgical epilepsy program during a preoperative visit before 
temporal lobectomy. These participants underwent iEEG to map seizure-onset 
location. Participants needed to complete a full session of the free-recall task 
with a minimum performance (recall fraction >10%) to be included. Participants 
performed a free-recall task consisting of multiple study–test cycles. During the 
study period, 12 words from a preselected pool of high-frequency, single-syllable 
common nouns were visually presented, one at a time, on a computer screen for 
a duration of 1.6 s followed by a blank screen of 4 s with 100 ms of random jitter. 
Participants were instructed to study each word as it appeared on the screen. 
The presentation of the last item in a list was followed by a 30-s period during 
which a math distractor task (A + B + C = ??) was performed to limit rehearsal. 
Participants were then instructed to verbally recall as many items as possible 
from the immediately prior list in no particular order. A full session consisted of 
12 full study–test cycles and 1 practice study–test cycle that was excluded from 
analysis. One complete session yielded electrophysiological recordings from 144 
word-encoding epochs (12 lists × 12 words) and a variable number of retrieval 
epochs. Participants performed between 1 and 9 sessions of the free-recall task 
over several days (median number of 2). Behavioral performance was measured 
by calculating the fraction of successfully recalled memory items. A list intrusion 
rate was measured for each participant (the proportion of recall attempts that were 
classified as list intrusions relative to veridical recall). List intrusions are items seen 
on previous lists incorrectly recalled on the list being tested.

iEEG processing. iEEG data were recorded using a Nihon Kohden EEG-1200 
clinical system. Signals were sampled at 1,000 Hz and referenced to a common 
intracranial contact. Raw signals were subsequently re-referenced to an average 
reference montage, after excluding channels with frequent interictal activity or 
other subsequent noise. All analyses were conducted using Matlab with both 
built-in and custom-made scripts. We employed an automated artifact-rejection 
algorithm to exclude interictal activity and abnormal trials (kurtosis threshold >4) 
in line with previous publications using similar iEEG datasets55.

We compared oscillatory power at 1,600 ms immediately following the study 
item presentation for subsequently recalled and non-recalled words. The iEEG 
signal from each encoding epoch along with a 1,500-ms flanking buffer was 
notch-filtered from 58 to 62 Hz to reduce possible line noise contamination 
(Butterworth, first order). The filtered signal was then subjected to spectral 
decomposition using the wavelet transform (width of 6) with log-spaced 
frequencies from 2 to 120 Hz. The decomposed spectral power values were then 
averaged across the entire 1,600-ms period. Oscillatory power values were divided 
into trials for which items were later remembered (recalled) and trials for which 
items were not remembered (non-recalled). Oscillatory power for the recalled 
trials was compared to non-recalled trials at each frequency using a two-sample 
t-test to determine the SME. We incorporated a permutation procedure, shuffling 
trial labels between the two classes 1,000 times to generate an unbiased estimate 
of the type 1 error rate17. We obtained an estimate of the magnitude of the SME 
by identifying the position of the true t-statistic from the distribution of 1,000 
t-statistics resulting from the randomly shuffled recalled and non-recalled event 
labels to generate a P value. We then applied normal inverse transformation 
to the P value matrices of each electrode to convert them to SME Z values to 
combine across frequency bands. To limit the overall number of comparisons 
in our analysis, we averaged the SME Z values into six frequency bands (delta 
2–4 Hz, theta 4–8 Hz, alpha 8–16 Hz, beta 16–30 Hz, low gamma 30–70 Hz and 
high gamma 70–120 Hz). Because our goal was to determine how variance in 
memory-related oscillatory patterns depend on differences in gene expression, 
there was no SME threshold applied to filter which electrodes were included in 
the gene correlation analysis (we included data from all the electrodes). We made 
the a priori decision to average all SME estimates (Z values) across the region of 
interest (BA38) within each participant before calculating gene correlations, which 
we believed was the most unbiased method for this analysis. Data distribution was 
assumed to be normal, but this was not formally tested.

We also measured oscillatory power differences for successful versus 
unsuccessful math trials for use in the control analysis (described below). This 
utilized the same shuffling procedure as described above and the same methods 
for extraction of signal across electrodes. To identify the presence of narrowband 
oscillations during successful events during memory encoding, we used an 
oscillation-detection algorithm. Artifact-free trials from BA38 region electrodes 
were used to identify peak frequencies using MODAL for frequency ranges from 
2 to 50 Hz. This algorithm included a procedure to remove 1/f fit from the power 
spectrum and adaptively identify frequency bands56,57.

Anesthetic. For all samples, we calculated the time under anesthetic before 
procurement of tissue using the time of initial anesthetic induction as documented 
in the “Anesthesia event” encounter in the software Epic patient care. All cases 
were the first of the day, and a standardized anesthetic induction procedure was 

utilized incorporating remifentanil, propofol and rocuronium, with desflurane 
as an inhalational agent during the procedure (0.5 MAC). All patients received 
dexamethasone before induction. The mean interval between induction and tissue 
processing from the temporal pole was 219 ± 21 min (95% confidence interval).

FreeSurfer segmentation. FreeSurfer extraction form T1 mprage volume acquisition 
was used to quantify the cortical thickness in the temporal pole58. Volume data for 
the temporal pole were identified from the aseg.stats files (in millimeters) for each 
participant (one value per participant).

Resected brain samples. All surgical samples included in this study were BA38 
resections from patients with temporal lobe epilepsy. The brain specimen was 
dropped into ice-cold 1× PBS in a 50-ml conical tube immediately after removal 
from the patient. After four to five inversions, the tissue sample was transferred 
to a fresh tube with ice-cold 1× PBS for a second wash. The specimen was then 
moved to a Petri dish and grossly dissected by scalpel into ~12 subsamples and 
immediately frozen in individual Eppendorf tubes in liquid nitrogen as the 
tubes were filled. Care was taken to avoid major blood vessels. Gray matter was 
prioritized over tracts of white matter in an attempt to increase homogeneity 
and consistency of results across all samples. Time from removal of brain to 
flash freezing ranged from roughly 2 min for the first piece to about 7 min for 
the last subsample. Three to four of the subsamples were extracted for RNA, 
and the subsample with the highest RIN value was selected for RNA-seq. See 
Supplementary Table 1 for detailed demographic information.

Tissue preparation for sequencing. Postmortem brain samples. Twelve samples 
of BA38 were obtained from the Dallas Brain Collection. These tissue samples 
were donated from individuals without a history of neurological or psychiatric 
disorders, as previously published59. Eight samples of BA38 were obtained from the 
University of Maryland Brain and Tissue Bank. These samples were donated from 
individuals with epilepsy. See Supplementary Table 1 for detailed demographic 
information.

RNA-seq. Total RNA was purified using an miRNeasy kit (217004, Qiagen) 
following the manufacturer’s recommendations. RNA-seq libraries from mRNA 
were prepared in-house as previously described60. Sequencing was performed on 
randomly pooled samples by the McDermott Sequencing Core at UT Southwestern 
on an Illumina NextSeq 500 sequencer. Single-end, 75-base-pair (bp) reads were 
generated. Data collection and analysis were not performed blind to the conditions 
of the experiments. No statistical methods were used to predetermine sample sizes 
because of the limitation of availability of human brain surgical tissues

Isolation of nuclei from resected brain tissues (snRNA-seq). Nuclei were 
isolated as previously described61 (https://www.protocols.io/view/
rapid-nuclei-isolation-from-human-brain-scpeavn). Surgically resected cortical 
tissue was homogenized using a glass Dounce homogenizer in 2 ml of ice-cold 
Nuclei EZ lysis buffer (EZ PREP NUC-101, Sigma) and was incubated on ice 
for 5 min. Nuclei were centrifuged at 500 × g for 5 min at 4 °C, washed with 
4 ml ice-cold Nuclei EZ lysis buffer and incubated on ice for 5 min. Nuclei were 
centrifuged at 500 × g for 5 min at 4 °C. After centrifugation, the nuclei were 
resuspended in 1 ml of nuclei suspension buffer (NSB) consisting of 1× PBS, 1% 
BSA (AM2618, Thermo Fisher Scientific) and 0.2 U µl−1 RNAse inhibitor (AM2694, 
Thermo Fisher Scientific) and were filtered through a 40-μm Flowmi Cell Strainer 
(H13680-0040, Bel-Art). The concentration of nuclei was determined using 0.4% 
Trypan Blue (15250061, Thermo Fisher Scientific). The final concentration of 
1,000 nuclei per μl was adjusted with NSB. Droplet-based snRNA-seq libraries 
for the first batch were prepared using Chromium Single Cell 3′ v.2 (120237, 
10× Genomics) according to the manufacturer’s protocol62. Libraries were 
sequenced using an Illumina NextSeq 500 at the McDermott Sequencing Core 
(UT Southwestern). Droplet-based snRNA-seq libraries for the second batch were 
prepared using Chromium Single Cell 3′ v.3 (1000075, 10× Genomics) according 
to the manufacturer’s protocol. Libraries were sequenced using an Illumina 
NovaSeq 6000 at the North Texas Genome Center (UT Arlington).

Isolation of nuclei from resected brain tissue (snATAC-seq). For snATAC-seq, nuclei 
were isolated as described above. After lysis, the nuclei were washed once in 
500 μl of nuclei wash buffer consisting of 10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 
3 mM MgCl2, 1% BSA and 0.1% Tween-20. Nuclei were resuspended in 500 μl 
of 1× Nuclei Buffer (10× Genomics). Debris was removed via density gradient 
centrifugation using Nuclei PURE 2M Sucrose Cushion Solution and Nuclei PURE 
Sucrose Cushion Buffer from a Nuclei PURE Prep Isolation kit (NUC201-1KT, 
Sigma Aldrich). Nuclei PURE 2M Sucrose Cushion Solution and Nuclei PURE 
Sucrose Cushion Buffer were first mixed in a 9:1 ratio. A total of 500 μl of the 
resulting sucrose buffer was added to a 2-ml Eppendorf tube. A total of 900 μl of 
the sucrose buffer was added to 500 μl of isolated nuclei in NSB. A total of 1,400 μl 
suspension of nuclei was layered to the top of sucrose buffer. This gradient was 
centrifuged at 13,000 × g for 45 min at 4 °C. Nuclei pellets were resuspended and 
washed once in nuclei wash buffer. The concentration and integrity of the nuclei 
were determined using ethidium homodimer-1 (E1169, Thermo Fisher Scientific). 
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Finally, nuclei were resuspended in 1× Nuclei Buffer at a concentration of 4,000 
nuclei per μl for snATAC-seq. Droplet-based snATAC-seq libraries were prepared 
using Chromium Single Cell ATAC kit solution v.1.0 (10× Genomics) and 
following the Chromium Single Cell ATAC reagent kits user guide: CG000168 Rev 
B. The library was sequenced using an Illumina NextSeq 500 at the McDermott 
Sequencing Core at UT Southwestern.

Immunofluorescence staining of human tissue. Fresh surgically resected 
tissue was fixed in 4% paraformaldehyde in 1× PBS for 24–48 h at 4 °C and then 
cryoprotected in a 30% sucrose solution. The tissue was sectioned at 7 µm using a 
cryostat (Leica). Sections underwent heat-induced antigen retrieval in citrate buffer 
(pH 6.0) for 10 min at 95 °C. Sections were blocked with 2% fetal bovine serum 
(FBS) in 0.1 M Tris (pH 7.6) for 1 h at room temperature. After blocking, the sections 
were incubated with primary antibodies in 0.1 M Tris pH 7.6/2% FBS overnight at 
4 °C and subsequently incubated with secondary antibodies in 0.1 M Tris pH 7.6/2% 
FBS for 1 h at room temperature. Sections were immersed in 0.25% Sudan 
Black solution to quench lipofuscin autofluorescence and counterstained with 
4′-6-diamidino-2-phenylindole (DAPI). Sections were mounted and cover slipped 
using ProLong Diamond Antifade mountant (P36970, Thermo Fisher Scientific). 
The following antibodies and dilutions were used: goat anti-IL1RAPL2 (PA5-47039, 
Thermo Fisher Scientific 1:20); rat anti-SMAD3 (MAB4038, R&D Systems, 1:100); 
rabbit anti-CaMKII alpha (PA514315, Thermo Fisher Scientific, 1:50); chicken 
anti-GFAP (ab4674, Abcam, 1:400); mouse anti-GAD67 (MAB5406, Millipore, 
1:200); mouse anti-OLIG2 (MABN50, Millipore, 1:200); species-specific secondary 
antibodies produced in donkey and conjugated to Alexa Fluor 488, Alexa Fluor 555 
or Alexa Fluor 647 (Thermo Fisher Scientific, 1:800). Images were acquired using 
a ×63 oil objective on a Zeiss LSM 880 confocal microscope. Experiments using 
secondary antibody only were conducted for each antibody to ensure specificity. 
The anti-ILRAPL2 antibody was validated by Thermo Fisher Scientific using flow 
cytometry of human HepG2 cells. The anti-SMAD3 antibody was validated by R&D 
Systems using flow cytometry in human PC-3 cells and IHC in human pancreatic 
cancer tissue and human MDA-MB-231 cells63. The anti-CamKII antibody was 
validated by Thermo Fisher Scientific using IHC in human brain and western 
blotting in human 293 cells64. The anti-GFAP antibody was validated by Abcam 
across many species, including human. Protocol validations include IHC and 
immunofluorescence. A total of 211 references are provided for this antibody at 
https://www.abcam.com/gfap-antibody-ab4674.html. The anti-GAD67 antibody 
was validated by Millipore in human brain via IHC. Over 75 references are provided 
at http://www.emdmillipore.com/US/en/product/Anti-GAD67-Antibody-clone-
1G10.2,MM_NF-MAB5406#anchor_BRO. The anti-OLIG2 antibody has been 
validated by Millipore in human via IHC, and 15 references are provided at http://
www.emdmillipore.com/US/en/product/Anti-Olig2-Antibody-clone-211F1.1,MM_
NF-MABN50#documentation. Immunofluorescence staining was performed in 
four different surgically resected tissues (data not shown), and a representative 
optimized image is shown in Figs. 5e,f, and 6e,f.

Computational methods. Bulk RNA-seq mapping, quality control and expression 
quantification. Quality control was performed using FastQC (v.0.11.9). Reads 
were aligned to the human hg38 reference genome using STAR (v.2.5.2b)65. For 
each sample, a BAM file including mapped and unmapped reads that spanned 
splice junctions was produced. Secondary alignment and multi-mapped reads 
were further removed using in-house scripts. Only uniquely mapped reads were 
retained for further analyses. Quality control metrics were performed using RSeQC 
(v.2.6.4)66 with the hg38 gene model provided. These steps included the number 
of reads after multiple-step filtering, ribosomal RNA reads depletion and defining 
reads mapped to exons, untranslated regions and intronic regions. Picard tool was 
implemented to refine the quality control metrics (http://broadinstitute.github.io/
picard/) and to calculate sequencing statistics. Gencode annotation for hg38 (v.24) 
was used for reference alignment annotation and downstream quantification. Gene 
level expression was calculated using HTseq (v.0.9.1)67 using intersection-strict 
mode by gene. Counts were calculated based on protein-coding genes from the 
annotation file.

Covariate adjustment. Counts were normalized using counts per million reads 
(CPM) with edgeR (v.3.32.0) package in R68. Normalized data were log2-scaled with 
an offset of 1. Genes with no reads were removed. A total of 15,192 genes were 
used for the downstream analysis.

Normalized data were assessed for effects from known biological covariates 
(sex, age, race, ethnicity, hemisphere, epilepsy duration (EpDur)), technical 
variables related to sample processing (RNA integrity number (RIN) and batch). 
The postmortem interval (PMI) was not considered in the analysis because it was 
confounded with the brain resected data from living individuals.

Residualizations were calculated using the following model:

Gene expression  ageþ sexþ raceþ ethnicity
þEpDurþ RINþ hemisphere þ batch

Residuals were extracted and average gene expression added as follows:

Adjusted gene expression ¼ residualsþ average gene expression

We applied two residualizations: (1) resected tissues and (2) resected tissues 
plus frozen tissues.

The adjusted CPM from the 16 participants were used for SME correlation and 
quantile regression. The adjusted CPM from resected tissue and frozen tissue were 
used for the consensus WGCNA analysis and permutations/bootstraps analysis.

MVA. We performed a MVA based on the following model:

Gene expression  SME : bandþ EpDur þ RINþ batchþ 1=participantsð Þ

Due to the limited sample size and because we did not want to 
over-parametrize the model, we utilized the three fixed covariates that explained 
the highest variance in the data: EpDur, RIN and batch. Contrasts were used to 
compare SME association between waves. Genes with FDR < 0.05 were considered 
to be differentially associated with SME. The analysis was performed using edgeR 
(v.3.32.0)68. These results were integrated with the correlative analysis to define the 
final 300 SME genes. The code used for this analysis is available at GitHub (https://
github.com/konopkalab/Within_Subject).

Correlation analysis and permutation analysis. Spearman’s rank correlation was 
performed between each of the six memory brain oscillations and gene expression. 
We also utilized this method for six math brain oscillations, thickness and 
behavioral performances.

For this analysis, we used within-individual bulk RNA-seq from BA38 resected 
tissue from the 16 participants with calculated SMEs (WrS).

We next performed permutations/bootstraps analysis using the following three 
datasets:

	1.	 Additional participants: bulk RNA-seq from BA38 resected tissue without 
SMEs from an additional 11 participants (ArS).

	2.	 Independent data healthy: bulk RNA-seq from BA38 frozen tissue from 12 
participants (HfS).

	3.	 Independent data epilepsy: bulk RNA-seq from BA38 frozen tissue from 8 
participants with epilepsy (EfS).

Bootstrapping was applied by randomly subsampling 16 participants (as WrS) 
from the composite data and recalculating the correlation 100 times. We then 
calculated a Monte Carlo P value comparing the observed effect with the simulated 
effects for each gene as follows:

sum abs simulated rhoð Þ≥abs observed rhoð Þð Þ=100

We calculated two Monte Carlo P values: (1) BootP, based on WrS + ArS (only 
resected tissues) and (2) BootP_All, based on WrS + ArS + HfS + EfS (resected 
tissues and frozen tissues).

We additionally applied a permutation approach, shuffling the gene expression 
of WrS and recalculating 100 times the correlation between oscillations and 
gene expression. We then calculated a Monte Carlo P value (PermP). Nominal P 
value < 0.05, PermP < 0.05, BootP < 0.05 and BootP_All < 0.05 were used to filter 
for significant correlations, as reported in Supplementary Table 2.

Co-expression network analysis. To identify modules of co-expressed genes in 
the RNA-seq data, we carried out WGCNA (v.1.69)18. We applied a consensus 
analysis based on WrS + ArS + HfS + EfS data, defining modules highly preserved 
across multiple datasets. This method was applied to reduce the potential noise 
between different types of data. A soft-threshold power was automatically 
calculated to achieve approximate scale-free topology (R2 > 0.85). Networks 
were constructed with the blockwiseConsensusModules function with biweight 
midcorrelation (bicor). The modules were then determined using the dynamic 
tree-cutting algorithm. To ensure the robustness of the observed network, we used 
a permutation approach, recalculating the networks 200 times and comparing the 
observed connectivity per gene with the randomized one. None of the randomized 
networks showed similar connectivity, thereby providing robustness to the network 
inference. Module sizes were chosen to detect small modules driven by potential 
noise on the adjusted data. A deep split of four was used to more aggressively split 
the data and create more specific modules. Spearman’s rank correlation was used to 
compute module eigengene–memory oscillatory signature associations.

snRNA-seq analysis. snRNA-seq data from BA38 were processed using the mkfastq 
command from 10× Genomics CellRanger (v.3.0.1). Extracted paired-end fastq 
files (26/28-bp (v2, v3) long R1: cell barcode and UMI sequence information; 
124-bp long R2: transcript sequence information) were checked for read quality 
using FastQC (v.0.11.9). Gene counts were obtained by aligning reads to the hg38 
genome using an in-house pipeline. UMI tools (v.1.0.0)69 was used to generate 
a whitelist of barcodes and to extract reads to match the detected barcodes. 
Reads were aligned to the human hg38 reference genome using STAR (2.5.2b)65. 
Gencode annotation for hg38 (v.24) was used as reference alignment annotation. 
Gene level expression was calculated using featureCounts (v.1.6.0)70 by gene. 
UMIs per gene across all detected nuclei were further calculated using UMI tools. 
Two batches from three participants were processed for a total of six samples. 
Nuclei with >10,000 UMI and >5% of mitochondrial gene expressed were 
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removed. Downstream analysis was performed using Seurat (v.3.9.9)71. Briefly, 
we normalized the expression data and integrated the two different batches of 
sequencing by SCtransform, retaining 3,000 variable genes. We constructed 
a k-nearest neighbor graph based on the Euclidian distance in 30 principal 
component space and identified distinct clusters of cells using the Leiden algorithm 
(resolution of 0.8). Visualization of clusters was performed by applying the 
function RunUMAP() based on uniform manifold approximation and projection 
(UMAP)72 in two dimensions. Cell-type markers were identified by Wilcoxon’s 
rank-sum test (two-sided; Benjamini–Hochberg-adjusted; FDR < 0.05, log2(fold 
change) > 0.3, pct.1 > 0.5). Clusters were annotated based on marker enrichment, 
with markers defined by middle temporal gyrus data73. Briefly, data were 
downloaded from the Allen portal (https://portal.brain-map.org/atlases-and-data/
rnaseq). Seurat was used to define the markers for each cluster by Wilcoxon’s 
rank-sum test (two-sided; Benjamini–Hochberg-adjusted; FDR < 0.05, log2(fold 
change) > 0.3, pct.1 > 0.5). Statistics for the overlap between BA38 and middle 
temporal gyrus markers was performed by Fisher’s exact test (one-sided with the 
alternative greater; Benjamini–Hochberg-adjusted). Labels for BA38 cell types 
were selected by using the highest significant enrichment defined by an OR with 
FDR < 0.05. These labels were used for all downstream analysis and snATAC-seq 
integration. The code used for this analysis is available at GitHub (https://github.
com/konopkalab/Within_Subject).

snATAC-seq analysis. snATAC-seq data from BA38 of three participants were 
processed using the Cell Ranger ATAC pipeline. Seurat extension Signac 
(v.1.1.0)71 was used for additional filtering, clustering and annotation. Cells 
with total fragments in peaks <1,500 or <15% of the total fragments were not 
considered for further analysis. Clustering and creating a gene activity matrix 
were done using the default parameters. Only the cells with >0.5 confidence in 
annotation were considered for downstream analysis. The gene activity matrix 
was produced by counting fragments in the gene body +2 kb upstream. Identified 
clusters were cross-referenced to the snRNA-seq data using Seurat integration 
workflow. Visualization of the clusters was performed by applying UMAP72 in 
two dimensions. Motif enrichment testing was applied to the upstream regions 
of the genes in each module. Motif analysis was performed only for the modules 
with cell-type enrichment (WM4 and WM12: excitatory–inhibitory clusters; 
WM21: oligodendrocyte–oligodendrocyte progenitor cell clusters). Fragments for 
excitatory–inhibitory clusters and oligodendrocyte–oligodendrocyte progenitor 
cell (OPC) clusters were extracted separately from the Cell Ranger’s fragments.tsv 
file. For each cut site, the fragments.tsv file was adjusted to contain 200 bp around 
the cut site, and peaks were called using MACS2 (v.2.1.1)74. The CIS-BP database 
for human was used for enrichment (http://cisbp.ccbr.utoronto.ca/index.php)75. 
Only TFs with directly determined motifs were kept. TFs were filtered for presence 
in >30% of cells in the cluster that was being tested for enrichment. A motif matrix 
(peaks in rows, motifs in columns) was created using CreateMotifMatrix from 
Signac. Using the FindMotifs function from Signac, the enrichment of each TF 
was tested for the upstream peaks of module genes versus upstream peaks of all 
genes using all the peaks as background. Peak visualization was done using IGV 
(v.2.8.13)76. The code used for this analysis is available at GitHub (https://github.
com/konopkalab/Within_Subject).

Functional enrichment. Functional annotation of the genes within the modules was 
performed using GOstats (v.2.56.0)77 and confirmed by ToppGene78. We used Gene 
Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Expressed 
genes (15,192) were used as background. A one-sided hypergeometric test was 
performed to test overrepresentation of functional categories. A Benjamini–
Hochberg-adjusted P value was applied as a multiple comparisons adjustment.

Neuropsychiatric genes. ASD-associated genes used for Fig. 4c were downloaded from 
SFARI Gene database79. ASD (1–3) are ASD genes with a score between 1 and 3. 
Modules and genes differentially expressed in ASD, SCZ and BD were downloaded 
from an independent source22. Differentially expressed cell-type markers from 
snRNA-seq of ASD and AD were downloaded from independent sources80,81.

GWAS data and enrichment. We used genome-wide gene-based association analysis 
implementing MAGMA (v.1.07)82. We used the 19,346 protein-coding genes from 
human gencode v.19 as background for the gene-based association analysis. Single 
nucleotide polymorphisms (SNPs) were selected within exonic, intronic and 
untranslated regions as well as SNPs within 10-kb upstream/downstream of the 
protein-coding gene. SNP associations revealed 18,988 protein-coding genes with 
at least one SNP. Gene-based association tests were performed using LD between 
SNPs. Benjamini–Hochberg correction was applied, and significant enrichment 
is reported for FDR < 0.05. Summary statistics for GWAS of neuropsychiatric 
disorders and non-brain disorders were downloaded from the Psychiatric 
Genomics Consortium and the GIANT Consortium83–97. Supplementary Table 4 
reports MAGMA statistics for each of the GWAS data analyzed. The following 
GWAS acronyms were used for the figures: AD, Alzheimer disease; ADHD, 
attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; BD, 
bipolar disorder; BMI, body mass index; CHD, coronary artery disease; CognFun, 
cognitive functions; DIAB, diabetes; EduAtt, educational attainment; EP, epilepsy; 

HGT, height; MDD, major depressive disorder; OSTEO, osteoporosis; SZ, 
schizophrenia.

Gene set enrichment. Gene set enrichment was applied to correlated genes and SME 
genes from our previous study as shown in Fig. 3c, SME genes from the current 
study as shown in Extended Data Fig. 3c, neuropsychiatric differentially expressed 
genes as shown in Fig. 4a and Extended Data Fig. 4b, ASD genes as shown in Fig. 
4c, and cell-type markers as shown in Fig. 5c and Extended Data Fig. 5h,i. We used 
a Fisher’s exact test in R with the following parameters: alternative = “greater”, conf.
level = 0.95. We reported OR and Benjamini–Hochberg-adjusted P values (FDR).

Statistical analysis and reproducibility. No statistical methods were used to 
predetermine sample sizes because of the limited availability of human brain 
surgical tissues. Participants were not randomly selected for inclusion in the study 
based on the availability of human tissue/oscillation data. However, tissue pieces 
were randomized for processing for RNA-seq. Data collection and analysis of 
human participants were not performed blind to the conditions of the experiments. 
However, separate individuals carried out wet-bench and dry-bench analyses. 
Thus, the researcher was blinded to patient/oscillation characterization while 
processing tissue for RNA and data analysis. The final analysis required including 
participant covariate information, so the researcher was unblinded to participant 
characteristics and oscillation data at that point. For SME values, bulk RNA-seq 
transcriptomic data, snRNA-seq transcriptomic data and scATAC-seq epigenomic 
data distributions were assumed to be normal, but this was not formally tested. 
Nonparametric tests were used to avoid uncertainty when possible. Data collection 
and analysis were not performed blind to the conditions of the experiments.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The RNA-seq dataset used for memory oscillatory signature analysis in this study 
are available at GEO with accession number GSE139914.

Code availability
Custom R codes for the quality control, MVA, correlative analysis, permutation/
bootstraps, WGCNA, snRNA-seq analysis, snATAC-seq analysis, visualizations, 
functional enrichments, GWAS enrichment and gene set enrichments are available 
at https://github.com/konopkalab/Within_Subject.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Data quality control. a, Box plots depicting the probability of recall for items presented at each serial position. Primacy and recency 
effects are visible, consistent with expectations for performance in the free recall episodic memory paradigm. Whiskers on box plots represent maximum 
and minimum values. Boxes extend from the 25th to the 75th percentiles, the center lines represent the median. Loess regression with confidence 
intervals is superimposed to depict the overall distribution. Smooth curves are shown with 95% confidence bands b, Lag conditional response probability 
curves in our data (lag CRP), indicating expected temporal clustering behavior. Loess regression with confidence intervals depicts the overall distribution. 
Smooth curves are shown with 95% confidence bands. c, Boxplot showing the comparison of within-subject variance (across all measured electrodes 
at each band, blue box plot,) with the variance across subjects (at each band, yellow box plot). Across subjects variance is significantly greater than 
within-subject variance. Reported p-value from Wilcoxon rank sum test (one-sided with alternative greater). Boxplots extend from the 25th to the 75th 
percentiles, the center lines represent the median. d, Scatter plot showing the fraction of all BA38 electrodes exhibiting a significant subsequent memory 
effect at each frequency. We observed significant differences predicting recall success across the frequency spectrum, including the delta and gamma 
bands. Loess regression with confidence intervals depicts the overall distribution. Smooth curves are shown with 95% confidence bands. e, Distribution 
of SME values for each brain oscillation and cross-correlation based on Spearman’s rank correlation. f, Barplots showing the fraction of electrodes at 
which oscillations were detected in each frequency band in the recalled and non-recalled conditions. 85% of electrodes exhibited an oscillation in at least 
one of the delta, theta, or alpha frequency bands. g, Scatter plot showing individual electrode examples of power curves used for oscillation detection via 
the MODAL algorithm, both before and after subtraction of the best fit line. h, Principal component analysis of the subjects used for the within-subject 
analysis. Variance explained by each principal component is highlighted in the axis. i, Barplot showing the variance explained by each covariate adjusted 
across 10 principal components (wVE) for the within-subject data. Technical, biological and sequencing covariates calculated by PICARD (see Methods) 
are included. l, Principal component analysis of all the subjects used in this study. PMep = post-mortem epileptic subjects, UT = within-subjects, PMctl 
= post-mortem healthy subjects. m, Variance explained by each covariate adjusted across 10 principal components (wVE). Type corresponds to the 
three different types of data included in the analysis (PMep, UT, PMctl). Technical, biological and sequencing covariates calculated by PICARD (see 
Methods) are included. n, Association between the first two components and covariates based on adjusted gene expression. X-axis corresponds to the 
-log10(P-value) from linear regression modeling between PCs and covariates.
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Extended Data Fig. 2 | SME gene robustness and overlap with other tasks. a, Boxplot showing the difference between F-statistics of the SME genes 
(Multivariate analysis) compared with the other genes. Stars correspond to the Wilcoxon’s rank sum test (N, Sign = 753, NotSign = 14439; one-sided with 
alternative greater; p < 0.0001 = ****; Benjamini-Hochberg adjusted: Delta, FDR = 2.3x10−249, Theta, FDR = 3.2x10-205, Alpha, FDR = 4.1x10-140, Beta, FDR = 
2.1x10-159, Low Gamma, FDR = 7.2x10-207, High Gamma, FDR = 1.3x10-63). Boxes extend from the 25th to the 75th percentiles and the center lines represent 
the median. b, Violin plots showing the rho^2 of the genes significantly associated with each brain oscillation. Standard errors are calculated based on the 
rho^2 distribution of the significantly correlated genes. Dots represent the median rho^2 for the specific brain oscillation. c, Violin plots showing the rho^2 of 
the genes significantly associated with each brain oscillation (Obs = observed) compared with rho^2 derived from the permutation control analyses (Perm 
= Permutation). Standard errors are calculated based on the rho^2 distribution of the significantly correlated genes. Dots represent the median rho^2 for 
the specific brain oscillation. 100 random permutations were applied to calculate the Perm values (see Methods). Stars correspond to the Wilcoxon’s rank 
sum test (unadjusted, one-sided with alternative greater; p < 0.0001 = ****).
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Extended Data Fig. 3 | WGCNA highlights modules associated with memory oscillations. a, Representative network dendrogram for the consensus 
WGCNA. Heatmap shows the correlation between memory oscillatory signatures and genes. Red = positively correlated, Blue = negatively correlated. b, 
Heatmap showing the module association between memory oscillatory signatures and module eigengenes (Spearman’s rank correlation). Warm colors 
represent positive correlations and cool colors represent negative correlations. P-values for each correlation together with exact correlation values are 
contained within each box. c, Bubble-chart showing the enrichment for 300 SME genes decomposed by brain oscillation. Gradient color represents the 
-log10(FDR) and bubble size represents the odds ratio (OR) from a Fisher’s exact enrichment test of each module with disease-relevant gene lists. Y-axis 
shows the brain oscillations labels. X-axis indicates the modules of the present study. d, Boxplots showing the differential connectivity (for example 
number of edges) between SME genes and non-SME genes in the modules associated with memory oscillatory signatures with SME genes enriched. 
Stars correspond to the results of a Wilcoxon’s rank sum test (one-side test with alternative greater; p < 0.001 = ****, p < 0.01 = **, p < 0.05 = *; 
Benjamini-Hochberg adjusted: WM4, FDR = 0.016, WM12, FDR = 0.048, WM21, FDR = 4.5x10-4). Boxes extend from the 25th to the 75th percentiles and 
the center lines represent the median.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ArticlesNATUrE NEUroScIEncE

Extended Data Fig. 4 | Memory-related modules are enriched for gene co-expression modules associated with neuropsychiatric disorders. a, 
Bubble-chart showing the enrichment for loci associated with human traits used as negative controls. Gradient color represents the -log10(FDR) from 
linkage disequilibrium gene set analysis performed by MAGMA. Y-axis shows the acronyms for the GWAS data utilized for this analysis (see Methods). 
b, Bubble-chart showing the enrichment for modules of co-expressed genes dysregulated in ASD, SCZ or BD. Gradient color represents the -log10(FDR) 
and bubble size represents the odds ratio (OR) from a Fisher’s exact enrichment test. Y-axis shows the acronyms for the modules associated with 
neuropsychiatric disorders utilized for this analysis (see Methods). X-axis shows the modules of the present study. Modules significantly correlated with 
memory-related oscillations are highlighted in bold text.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | snRNA-seq quality control metrices and module enrichment for cell-types dysregulated in cognitive disorders. a, Barplot showing 
the total number of nuclei identified per subject. Colors correspond to the two different batches. b, Quality control boxplots for snRNA-seq with number 
of genes detected, number of UMIs and percentage of mitochondrial genes. Colors correspond to the two different batches. Boxes extend from the 25th 
to the 75th percentiles and the center lines represent the median. Dots represent outliers. c, Scatter plot showing the relationship between number of 
UMIs (X-axis) and detected genes (Y-axis). Each sample is indicated in a different color. d, UMAP plots showing the distribution of nuclei in each subject. 
Colors correspond to the two different batches. e, Proportion of nuclei representing the identified clusters. Colors correspond to the six different subjects 
analyzed. f, UMAP plots showing the distribution of the three major cell-classes: GABAergic (blue), Glutamatergic (red), and non-neuronal (green). g, 
Pie chart showing the proportion of the three major cell-type classes (GABAergic, Glutamatergic, and non-neuronal cells). h, Bubble-chart showing the 
enrichment of the SME modules for cell-type markers dysregulated in ASD. Color gradient represents the -log10(FDR) and bubble size represent the odds 
ratio (OR) from a Fisher’s exact enrichment test. Y-axis shows the acronyms for the cell-types defined in the ASD study. i, Bubble-chart showing the 
enrichment of the SME modules for cell-type markers dysregulated in Alzheimer disease (AD). Color gradient represents the -log10(FDR) and bubble size 
represent the odds ratio (OR) from a Fisher’s exact enrichment test. Y-axis shows the acronyms for the cell-types defined in the AD study.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Articles NATUrE NEUroScIEncE

Extended Data Fig. 6 | snATAC-seq quality control metrices. a, Barplot showing the total number of nuclei identified per subject. b, Quality control 
boxplots for each snATAC-seq sample demonstrating the total number of peaks, the number of reads in the peaks and the percentage of reads in 
peaks. Boxes extend from the 25th to the 75th percentiles and the center lines represent the median. Dots represent outliers. c, Scatter plot showing 
the relationship between total number of reads (X-axis) and percentage of reads in the peaks (Y-axis). Each sample is indicated in a different color. d, 
Heatmap of the pairwise similarity between cluster identities. Y-axis shows the snRNA-seq clusters. X-axis shows the snATAC-seq clusters. Gradient 
corresponds to the percentage of cells for the corresponding prediction label. e, UMAP plots showing the distribution of nuclei in each subject. f, UMAP 
plots showing the distribution of the three major cell-classes: GABAergic (blue), Glutamatergic (red), and non-neuronal (green). g, Pie chart showing the 
proportion of the three major cell-type classes.
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CHAPTER 6: Discussions and Future Directions 

My thesis research focused on molecular understanding of human brain evolution 

using comparative genomics at cellular resolution. To this end, I compared epigenomes 

and transcriptomes of human, chimpanzee and rhesus macaque using single-nuclei 

sequencing. To ensure biologically relevant interpretation of my findings, I performed an 

in-depth analysis of other single-nuclei omics datasets as well as other data modalities 

(e.g., DNA sequence comparisons). My efforts revealed the pervasiveness of ambient 

RNA contamination in single-nuclei RNA-seq datasets, a previously underappreciated 

problem (Chapter 3). Analyzing comparative datasets after accounting for this and other 

technical biases (e.g., doublets, barcode multiplets, inter-individual variation, post-

mortem interval differences between species), my analyses revealed fundamental 

novelties in human brain evolution that were previously uncharacterized (Chapter 2). In 

the next sections, I discuss the implications of my findings, gaps in the current knowledge 

and the potential future directions.

 

Compositional and functional evolution of oligodendrocyte lineage 

We detected proportionally higher oligodendrocyte progenitor cells (OPCs) and 

lower mature oligodendrocytes in human brain compared to non-human primate brains. 

This observation is consistent across four cortical brain regions, different datasets and 

experiments (including single-molecular fluorescent in-situ hybridization (sm-FISH)) 

(Chapter 2, Figure 1). Interestingly, we did not observe a human-specific increase of 

OPCs in two subcortical regions (dentate gyrus and caudate nucleus). Although our 

results follow a pattern of cortical and subcortical division, the spatial span of our 
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observation remains low to make a definitive conclusion. While most studies profile a 

single brain region or few brain regions, recent studies have expanded into many other 

brain regions. For example, one study profiled 106 regions across the human brain at 

cellular resolution84. Similarly, another study profiled 30 brain regions in rhesus macaque 

at cellular resolution85. While these studies provide useful references, they may not be 

directly utilized for rigorous comparative analyses which require brain regions to be 

anatomically matched across species to prevent region-specific differences from being 

interpreted as species-specific differences. It is therefore paramount to expand the 

region-matched cross-species comparisons to the entire brain for a comprehensive 

understanding of evolutionary changes in the cellular landscape of the human brain. 

There are also striking differences in oligodendrocyte maturation between gray and white 

matter; the rate of oligodendrogenesis reaches a plateau at ~5 years old in white matter 

but increases until ~40 years old in gray matter64. Since most comparative studies to date 

only focused on gray matter cortical regions, it is currently unknown whether 

oligodendrocytes also have human-specific proportional and/or different regulatory 

changes in the white matter and whether this would be heterogeneous across the white 

matter regions. Thus, future studies with increased spatiotemporal span and resolution 

can make significant contributions to our understanding of oligodendrocyte evolution in 

the human brain, provided that they are carefully designed to account for biological 

covariates.

 

Comparative studies also suffer from low temporal resolution. Most evolutionary 

comparisons, including ours, focus on ‘adult’ stage that spans from the end of 
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adolescence to death. This can be especially limiting for oligodendrocyte lineage; since 

i) oligodendrocytes mature later in the prefrontal cortex than in the posterior cortical 

regions86 and ii) both myelin content and myelin related gene upregulation are prolonged 

beyond adolescence in human development compared to non-human primates58,63. 

Studies in ageing also show that gene expression is variable during adulthood and can 

dramatically change in old brains87,88. Changes in gene expression are not homogenous 

either; glial cell types undergo more gene expression changes than neuronal cell 

types87,88. Most comparative studies ignore the potential consequences of the age 

difference between species. For example, some studies show more human-specific 

changes in glia than other cell types26,66. But this might also be explained by the 

comparison of different age groups between species (i.e., they might be age-specific 

instead of species-specific) which is often not accounted for in the interpretation or 

analysis26,66,75. To circumvent this problem, we humanized the ages of non-human 

primates based on the life history traits70,89. Since life history traits are often 

developmental (e.g., weaning, sexual maturity), transcriptome or methylome based 

predictions could be more accurate measurements and these measurements have 

already been implemented to compare the developing tissues and organoids across 

species58,60. However, their accuracy and generalizability need to be tested in the adult 

brain. Another option is to generate data from all age groups and identify evolutionary 

changes based on whether and how they change with age across species. However, this 

would require a massive effort, especially considering the need for expanding the number 

of brain regions (as discussed above), species and sample size for a rigorous 

comparison. 
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As previously mentioned, myelination is prolonged past adolescence in human 

brain compared to non-human primate brains58,63 and we show that adult individuals (>35 

years old in human age or humanized age) have low proportions of mature 

oligodendrocytes. This indicates that humans could still have lower myelin content than 

other species during adulthood since studies in mice show that new myelination often 

correlates with new oligodendrocyte generation90,91. To test these predictions, myelin 

content can be compared between human and non-human primate brains across ages 

during adulthood. Since myelin content is the greatest in deep layers and least abundant 

in upper layers, it would be important to do this comparison across layers. Notably, we 

observed similar results for OPC and oligodendrocyte proportional differences between 

human and chimpanzee tissues when we compared across cortical layers (Chapter 2, 

Extended Figure 4) . 

High OPC and low oligodendrocyte proportions in the human cortex implicate 

slower or less frequent maturation in human brains compared to non-human primate 

brains. iPSC-derived or primary culture systems can be used to understand whether there 

is an intrinsic difference of oligodendrocyte maturation clocks between the species60. If a 

phenotypic divergence is found, these in vitro systems can be faithful model systems to 

dissect the molecular mechanisms behind oligodendrocyte maturation. One could test 

some of the hypotheses of our study such as a potential causative link between lower 

cytoskeletal activity in human OPCs and oligodendrocyte maturation. If in vitro systems 

do not show phenotypic differences in oligodendrocyte maturation, transplantation of 

human and non-human primate OPCs into rodent brain might provide a better proxy for 
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in vivo conditions and also enable evolutionary comparisons of other features such as 

synapses between OPCs and axons in human OPCs and non-human primate OPCs92,93. 

Interestingly, both myelination and oligodendrogenesis are known to be induced 

by neuronal activity93,94, indicating that lower oligodendrocyte and -potentially- myelin 

content in the human brain may result in increased potential for activity-induced 

myelination in humans. This could indicate increased potential of adult human brain to 

alter neural wiring by new myelination compared to non-human primates. It is also 

possible that activity-dependent oligodendrocyte generation and myelination might be 

intrinsically different in humans than chimpanzees. These hypotheses could be tested by 

experimentation on the iPS-derived co-cultures of oligodendroglia and neurons95 across 

species. 

Heterogeneity and activity dependent regulation in neurons 

 Single-nucleus sequencing has revealed the extreme heterogeneity of neurons 

and identified many neuronal subtypes with unknown function74. Not surprisingly, 

comparisons across brain regions show that some neuronal subtypes are region-specific 

or show changes in abundance across regions75. Although we did not identify significant 

changes in the neuronal subtype abundance between species (except for more abundant 

upper layer excitatory neurons in hominins compared to rhesus macaques, as previously 

reported27,75), widening the breadth of single nuclei sequencing across species can reveal 

significant species-specific differences in other brain regions. 

 Depolarization of neurons immediately induces gene expression changes in many 

transcription factors (TFs) – also a few non-TF genes – that are known as immediate early 

genes or early response genes81. These TFs subsequently regulate hundreds of genes 
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that regulate synaptic transmission known as late response genes81. Interestingly, recent 

studies show that late response genes are heterogeneous across different cell types and 

species (mouse or human)96,97. Since most early response genes are shared across cell 

types and species, this indicates that other trans (co-factors of early response genes) and 

/ or cis (changes in the DNA sequence that alter TF binding) changes that determine the 

profile of late response genes. While single-nuclei transcriptomics can effectively capture 

global gene expression profiles, human and non-human primate brain tissues are almost 

exclusively from post-mortem brains, preventing identification of activity-dependent 

genes at cellular resolution. Indeed, we have also detected very low levels of immediate 

early genes in our study (Chapter 2, Supplementary Table 3). However, immediate early 

genes are in open-chromatin state at basal levels, and while some late response genes 

require chromatin decondensation98, many can be in open-chromatin state 

(Supplementary Table 4). Therefore, single-nuclei ATAC-seq provides a unique 

opportunity to analyze whether there are differences in the chromatin accessibility of late 

response genes between species. An unbiased approach to this is to test whether 

enriched motifs among human-specific chromatin accessibility regions contain motifs of 

early response genes. Interestingly, we found significant enrichments for FOS and JUN 

motifs within human-specific chromatin accessibility gains, specifically among upper layer 

excitatory neurons (Chapter 2, Figure 5A-B). This was also accompanied by a significant 

excess of human-specific DNA sequence changes within these regions, indicating a 

genetic causation (Chapter 2, Figure 5C-F). These observations indicate a potential 

human-specific response to neuronal depolarization that can differentially regulate 

synaptic plasticity in humans. It is also possible that activity-regulated genes between 
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human and non-human primate largely overlap but differ in the degree of their 

upregulation due to differences in their chromatin accessibility at the basal state. 

Importantly, a study on human brain slices suggests that human upper layer excitatory 

neurons have more complex and graded action potentials than rodents99. These results 

indicate that more work is needed to uncover the evolutionarily divergent functional 

properties of human neurons and the underlying molecular mechanisms. Future studies 

can compare activity-dependent gene regulation and firing properties between human 

and monkey (macaque or marmoset) brain slices. iPSC-derived cultures (monolayer or 

organoid) can also be useful and more versatile models; however, they are more similar 

to prenatal neurons and offer limited cell type heterogeneity100. 

Insights from genotypic changes 

 Human-specific DNA sequence changes underlie the cognitive capabilities of the 

human brain among many other traits that evolved in the human body. Therefore, the 

challenge is to identify genetic changes that are causative to molecular mechanisms 

linked to the unique functions of the human brain. Since the publication of the chimpanzee 

genome, studies have identified stretches of genome that have an excess number of 

human-specific substitutions (human accelerated regions, HARs101). Notably, HARs were 

identified from the entire genome, and thus are not prioritized to be functional in the 

human brain. Our methodology can fill this gap since we utilized the single-nuclei ATAC-

seq data from human, chimpanzee and rhesus macaque neocortex to identify chromatin 

accessible regions in that brain region. Testing for human-specific DNA sequence 

acceleration within these regions in comparison to the entire anthropoid lineage, we 

revealed ~3800 HARs that were i) significantly enriched in human-specific chromatin 
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accessibility changes, ii) significantly overlapped with the previously published HARs, and 

iii) revealed ~580 HARs that were within human-specific chromatin accessibility changes. 

Therefore, these findings provide a promising list of HARs that are associated with 

human-specific activity in cortical brain and can be further tested to dissect their 

mechanism. 

 To understand the functional impact of HARs in a high throughput manner, recent 

studies have compared human and chimpanzee sequences in massively parallel reporter 

assays (MPRA) in monolayer cell cultures43,102. These studies revealed that nearly 50% 

of the previously identified HARs are neurodevelopmental enhancers43. Since our HARs 

are defined within the neocortex, they provide a more relevant list for brain evolution that 

can be readily tested with MPRA approaches. Moreover, since our data also provide 

classification of these HARs based on their cell type activity, this list can be further refined 

to include HARs that are linked to human-specific chromatin activity in the cell type more 

similar to the cell type of the monolayer culture (e.g., glutamatergic monolayer culture, 

excitatory neurons). However, some cell types are challenging to transfect, hindering the 

interpretability of MPRAs. Viral injection into mouse brain followed by single-nuclei RNA-

sequencing to capture cell type heterogeneity might be an alternative approach, but the 

scalability of this approach to hundreds of genomic regions with reliable signal from 

diverse cell types presents a technical challenge. Taken together, approaches driven by 

changes in the genomic sequence can provide unique opportunities to understand how 

genotypic changes bring evolutionary innovation in the human brain. 
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