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Cross-sectional developmental studies have showkingpmemory (WM) to
follow monotonic developmental trajectories throwfliidhood into adolescence. In
contrast, structural neuroimaging studies have shtwat several brain regions, such as
the prefrontal cortex (PFC), follow nonlinear dewhental trajectories from birth
through late adulthood. The present study soumbkplore the relationship between
functional activation in brain regions supportindMénd age throughout adolescence.

Forty-two healthy adolescents (aged 11 to 18) detag a delayed-response
WM task while functional magnetic resonance imadiiMR1) data were collected.

Participants studied either one or six letters §&&onds), remembered the items over a
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delay (5 seconds), and then judged whether a spnglee letter was in the studied set
(within 2.5 seconds). An fMRI blocked design wagdt four blocks per set-size and
three trials per block. Additionally, the particiga completed the Digit Span subtest
from the Wechsler intelligence tests in order ttadobbehavioral measures of WM.

Hierarchical regression analyses were used to atalinear and quadratic
relationships between WM task-related signal-chgregeroxel and age while evaluating
the potential mediating effects of WM indices (r@sge time [RT], digit span forward,
digit span backward). Linear relationships wenenfibin right medial Brodmann's Area
(BA) 6, right cerebellum, and left BA34 when thedar effects of gender, handedness,
response time, digit span forward, and digit sparktvard were controlled for
statistically. Thus, activation increased with agthin these regions, but the linear
trends were being suppressed by the covariates.

Activation on the WM task increased with ageigiht medial BA6 when the
effects of WM indices, as measured in the pregedyswere removed. The separate
relationship between WM capacity and right medidbBactivation suppressed the
detection of the relationship between right meBi&b activation and age. The data
support developmental, possibly maturational, ckarig the role of medial PFC in WM
that are independent of WM ability measures usdaberpresent study. This finding has
implications for broad theories about the developinoé WM and other cognitive
abilities that allow for the identification of bottormal and deviant developmental

trajectories.
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SECTION ONE
Main Findings

Introduction

The present study explored the developmental tajgof prefrontal cortex
(PFC) activity supporting working memory (WM) usifunctional magnetic resonance
imaging (fMRI). Cross-sectional developmental sadave shown WM performance,
based on cognitive testing, to follow monotonicelepmental trajectories through
childhood into adolescence (see Best, Miller, &&r2009; Fry & Hale, 1996;
Gathercole, Pickering, Ambridge, & Wearing, 2004jli& Salthouse, 1994; Luciana,
Conklin, Hooper, & Yarger, 2005; Span, Ridderinkh®fvan der Molen, 2004;
Swanson, 1999). Although WM performance improvetradave been attributed to
increases in global capacity that occur with age underlying neural mechanisms
supporting proposed increases in capacity areutigtinderstood (Gathercole et al.,
2004; Luciana et al., 2005; Swanson, 1999). Inreshto global capacity predictions,
structural neuroimaging studies have shown thatraébrain regions follow nonlinear
developmental trajectories from birth through latieilthood (Giedd et al., 1999; Giorgio
et al., 2010; Gogtay et al., 2004). The nonlineartbpment of brain regions suggests
that cognitive improvements might result from mtgealitative” changes within cortical
structures (Gogtay et al., 2004; Johnson, 2001ywStal., 2008; Span et al., 2004; Stuss
et al., 2005) rather than from more global “quatitie” changes in neural efficiency that
support an overall greater processing capacityh@aetle et al., 2004; Kail & Salthouse,
1994).

WM is a core cognitive construct that consists efstem of processes that allow

for the temporary maintenance and manipulatiomfmrmation in the mind (Baddeley,



1981). WM is composed of multiple component proesgBaddeley, 1981; Miyake &
Shah, 1999). One multi-component model of WM idelsia central executive function
that is responsible for the processes mediatingding, manipulation, and retrieval
(Baddeley, 1981). This model also includes thenphamical loop, mediating the storage
of verbal information, and the visuospatial sketdhpmediating the storage of visual and
spatial information. Additionally, this model incles the episodic buffer, mediating the
integration of data into meaningful pieces (Badgé&ld_ogie, 1999; Repovs & Baddeley,
2006).

Thus, WM consists of both storage and manipulgtimtesses (Baddeley, 1981;
Baddeley & Hitch, 1974). WM storage capacity hasrbshown to be limited (Brenner,
1940; Cowan, 2001; Luck & Vogel, 1997; Miller, 1958Cowan (2001), for example,
suggested that WM capacity is limited to 4 +/-Iriseregardless of the format (e.g.,
verbal or visual) of the stimuli being remembenathen the to-be-remembered
information exceeds these capacity limitations, éev, WM executive processes can be
recruited to reorganize or chunk the informatiofittavithin WM capacity limits (Cowan
2001; Miller, 1955). In addition to the reorgariima of information into more
manageable chunks, executive processes can atecroéded for more complex tasks,
such as when the task requires the manipulati@omfputations or mental imagery
(Kozhevnikov, Motes, & Hegarty, 2007; Seyler, KirékAshcraft, 2003). The
integrated use of these component processes iet@albWM ability is integral to higher
order cognitive processes, as has been demonstnataatrelations between measures of
WM and intelligence (Engle, Tuholski, Laughlin, So@way, 1999), reasoning

(Carpenter, Just, & Shell, 1990; Goel & Grafmar93)9 problem-solving (Prabhakaran,



Narayanan, Zhao, & Gabrieli, 2000), and compreloen&ain, Oakhill, & Bryant,
2004).

WM indices are often used to measure WM as a stwistruct (Miyake et al.,
2000; St. Clair-Thompson & Gathercole, 2006) ineorb distinguish WM from other
executive functions (EF), such as inhibition artdraton. However, the divergence of
WM indices also has been demonstrated and profider support that WM consists
of unique underlying component processes (Miyakiedman, Rettinger, Shah, &
Hegarty, 2001Schneider-Garces et al., 2009). In a latent ianalysis of verbal and
visuospatial WM capacity, digit span forward wasrfd to load onto a factor that
included word span and letter span and thus wassaepresent WM storage (Kane et
al., 2004). Although, digit span forward as a nuiea®f WM capacity is affected by the
use of manipulation processes (i.e., "chunking'w&ag 2001; Miller, 1955), digit span
backward is considered to more heavily involverferuitment of executive resources in
order to reorganize the set of numbers (Wechst¥8® and digit span backward has
been shown to correlate more strongly with measaofr@delligence than digit span
forward (Miyake & Shah, 1999; Wechsler, 2008). dHiy response time (RT) often has
been used to index WM search and retrieval spegoniB & D’Esposito, 1999;
Sternberg, 1966), and retrieval speed has beennstmincrease with development and
to be distinct from WM capacity (at least in yowtgldren, Cowan, Saults, Nugent, &
Elliot, 1999).

Several measures of WM (such as RT on WM tasksrdadmnation
manipulation) have been shown to improve along rt@mo trajectories throughout

childhood, adolescence, and into young adulthotdnwmany cognitive abilities seem to



peak (Cowan, Saults, & Elliot, 2002; Gathercolalet2004; Swanson, 1999). One
explanation for the linear relationship betweennitbge measures of WM and age is the
global-capacity framework. This framework holdattgeneral changes in cognitive
transmission times throughout the lifespan cont@ieases and decreases in overall
processing capacity, including the changes in WiMasfe and manipulation capacity that
occur (Bashore & Smulders, 1995; Fry & Hail, 1986jthouse, 1996). Thus,
improvements on indices of WM, perhaps due to @ges@® in transmission times between
WM and other relevant systems, may mediate agéecelmprovements in overall WM
ability.

An additional explanation for the differential déygment of WM abilities is the
neurocognitive-change framework. This frameworkdhdhat functional changes within
brain regions control increases and decreases dalityespecific processing capacities
(Pennington, 1994; Span et al.,1994), suggestimg\iiM storage and manipulation
capacity changes throughout the lifespan occur sathe degree of relative
independence from other cognitive processes. Tferaht developmental trajectories
for storage and manipulation components of WM giample, have been observed based
on the complexity of the WM task. One study shotved a simple WM task, nonverbal
face recognition, showed no significant improvenadtér age nine, but with more
complex tasks (e.g., spatial self-ordered seaky),improvements were observed into
adolescence (Luciana et al., 2005). Thus, glolmdgssing capacity improvements alone
do not fully account for the changes in cognitiegfprmance that occur throughout the
lifespan. Developmental changes in cognitive abdlialso may be linked to maturation

of specific brain regions (Mountcastle, 1997; P&0§5; Stuss, 2006).



The identification of spatially distinct brain regis mediating WM component
processes is also consistent with the neurocognitiange framework. Neuroimaging
studies using WM have shown that WM functions & to discrete brain regions
(Baldo & Dronkers, 2006; D’Esposito, Postle, & Rygn2000; Klingberg, Forssberg, &
Westerberg , 2002; Kwon, Reiss, & Menon, 2002; QwécMillan, Laird, & Bullmore,
2005; Rypma, 2006). The material being remembéhedcomplexity of the WM task
(such as basic storage or goal-oriented manipulgtand the specific underlying WM
process involved (such as the encoding, maintenancetrieval phase) lead to the
differential use of regions within the PFC, paifie@tex, and other brain regions (Barby,
Koenigs, & Gafman, 2010, Motes & Rypma, 2010; Oweal., 2005, Rypma, 2006;
Smith & Jonides, 1999). Based on the neurocognithange framework, differential
maturation rates in these regions would lead feint developmental trajectories for
WM component processes.

Further support for the neurocognitive change fraork has been generated by
research on the anatomical development of the biR@search on structural brain
changes has shown that several regions follow neatidevelopmental trajectories from
birth through late adulthood (Giedd et al., 199&rGio et al., 2010; Gogtay et al., 2004;
Johnson, 2001). For example, the gray matter velahthe PFC (and parietal cortex)
follows a quadratic developmental trajectory; thaygmatter volume of the PFC
increases from birth, peaks around 12 years ofamgthen begins to decrease (Giedd et
al., 1999). This loss of gray matter volume hasldegothesized to be a function of
neural pruning as neural circuits are refined (Gietdal., 1999; Giorgio et al., 2010;

Gogtay et al., 2004; Shaw et al., 2008). The meginecific maturation of the brain is not



consistent with global capacity increases but rathggests that the different
developmental changes in the function of specifigrbregions underlie developmental
changes in unique components of WM.

Previous cross-sectional studies exploring funetiactivation in the PFC during
WM tasks found that age accounted for a signifigamtion of the differences in
activation between groups of children, adolescemtd,adults during visuospatial WM
tasks (Klingberg et al., 2002; Kwon et al.2002owéver, these studies identified
increases in specific brain regions rather thabajlocreases in activation. For
example, Klingberg, Forssberg, and Westerberg (2f2@&d region-specific activation
in the superior frontal, intraparietal, and oc@pireas, with older children showing
greater activation in the superior frontal regioAslditionally, Kwon, Reiss, and Menon
(2002) found region specific activation in the DIP&nd superior frontal gyrus in
children, which demonstrated that children activsteilar brain regions during a WM
task as adults. However, these studies classifi¢iitjpants into discrete cohorts of
younger and older children and did not explicidgttfor linear and nonlinear
relationships, per se, between functional activatind age.

The present fMRI study sought to explore the retethip between functional
activation in brain regions supporting WM and ag®tighout adolescence by testing for
both linear and nonlinear activation changes asetion of age to generate support for
current models of brain development. If the relaghip between age and functional
activation during a WM task follows a linear trajay, support would be generated for
the global-capacity framework. However, there iiszrepancy between cognitive and

structural trajectories for which this frameworkedaot account. Indeed, many brain



structures, such as cortical gray matter, folloguadratic trend with region-specific
peaks. Thus, if the relationship between neur@ligcsupporting WM and age follows

a non-linear (e.g., quadratic) developmental ttajgc support would be generated for
the neurocognitve-change framework by suggestiagahanges in function are based on
different maturation rates of brain regions rathan global capacity improvements that
occur with development.

Additionally, the present study examined the impdatarious measures of WM
as covariates. Percent signal-change has beemgboxary with task performance and
other behavioral measures of individual differengasay, Chabris, & Braver, 2003;
Motes, Biswal, & Rypma, 2010; Rypma & D’Esposit999). Given that WM is
comprised of multiple component processes, theesfief different indices of WM on
brain activation patterns will be explored by eing mediation and suppression effects
using different measures of WM processes. On tigehand, specific WM components
might account for age-related changes in functiactVation, thus allowing for the
identification of WM functions undergoing changetwbrain development. On the other
hand, statistically controlling for the WM indicesght account for variability in the
fMRI signal that is masking age-related activatitianges, thus allowing for the
identification of developmental changes in functibactivation that are independent of
the WM constructs measured but still related toviii task. Thus, behavioral measures
of WM aimed to capture performance, storage, andgipoéation components of WM
were included in the study in order the better ustd@d the relationship between age and

functional brain activation.



M ethod
Participants

Forty-two participants (agd = 14; range = 11 to 18; 17 females; 5 left-handed)
participated in the study. However, the data fre participant (16-year-old right-
handed male) were not included in the analysegaladifact introduced during fMRI
data acquisition. Participants were recruitedugtoongoing studies at both Children’s
Medical Center Dallas and the University of TexaPallas Center for BrainHealth,
primarily through advertisements placed at thes#titions, local middle schools, and
the surrounding communities. All participants wprescreened for MRI contra-
indicators and for medical, neurological, and p#&fle illness.

Procedure

All studies were approved by the University Indtdoal Review Board and were
conducted according to the principles expresseéldebeclaration of Helsinki. The
benefits, risks, confidentiality, and other aspettthe studies were explained to the
parents and a written description was providedor o testing, written informed consent
was obtained from each participant’s legal guarciawal the adolescent provided their
written assent.

WM Task. Participants completed a blocked-design, WM itecogaition task
while fMRI data were collected. Item recogniti@sks have been used to study WM
because the encoding, maintenance, and decisi@epban be examined independently,
and the set size can be manipulated to createasubsupra-capacity WM sets (Motes,

Kojori, Rao, Bennet& Rypma, 2010; Rypma & D’Esposito, 1999; Sternb&1966).



Both a 1-letter condition and a 6-letter conditie@re used, with the 1-letter condition
serving as the baseline condition and the 6-lettadition taxing the WM system.
Uppercase letters (B, F, G, H, J, L, M, N, QSRW, and X) were used as the
encoding and probe stimuli, and adjacent lettethérEnglish alphabet did not appear
alphabetically. The background was black, anddtiers were white. The encoding
stimuli appeared on the upper half of the screenwhite rectangular box, and the probe
stimuli appeared on the bottom half of the screi¢thimva small white box; the outlines
remained on the screen throughout the trialshdfrobe stimulus matched a letter from
the encoding stimuli, the participants were to presingle button. If the probe stimulus
was not present in the encoding set, the partitipaare not to press the button (Figure
1). The use of a single button (rather than twadmgst, one for “yes” and one for “no”)
was due to the single response criterion used siotber tasks to ensure the tasks were

easy enough for younger participants to succegfolinplete.

1 Letter Trial

Encoding Phase (3.5s) Maintenance Phase (Ss) Decision Phase (2.5s)
I L ]
+ — + — +
] ]
Right=Yes Right=Yes Right=Yes

6 Letter Trial

Encoding Phase (3.5s) Maintenance Phase (5s) Decision Phase (2.5s)
L 1 I
+ — + — +
] L]
Right=Yes Right=Yes Right=Yes

Figure 1.Examples of the 1-Letter trial and 6-Letter todthe WM task.
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For the 1-letter condition, the participants werencode the one letter during an
encoding phase (3.5 s), maintain this letter ovdglay (5 s), and decide whether a single
probe letter was in the studied set (2.5 s). Retletter condition, the participants were
to encode six letters during the encoding phaged)3.maintain these letters over a delay
(5 s), and then judge whether a single probe latssrin the studied set (2.5s). Als
delay occurred between trials. An fMRI blocked dasias used: four blocks per set-size
and three trials per block. The 1-letter conditidways appeared first. The completion
of the WM task during the fMRI session varied gitkea differing protocols of each
study; additionally, the order of the scans congulett the fMRI session may have varied
as the protocols were adjusted to best accommedate participant. RT (calculated for
accurate responses only) was recorded for altiielhe 6-letter condition to be used as
an index of WM, as RT has been said to measuretsead retrieval speed on Sternberg
WM tasks (Kirschen, Chen, & Desmond, 2010; RypmB’'Esposito, 1999; Sternberg,
1966).

In order to determine functional activation changesecho planar imaging (EPI)
sequence was used to measure the blood-oxygenetielhdependent (BOLD) signal.

As neural activity increases, there are increasetdinolic demands, and these increased
metabolic demands trigger a compensatory blood fesponse to the brain region that
brings oxygen-rich blood to the region (Ogawa & L£#890). This hemodynamic
response (HDR) leads to the change in the magresstimance signal by increasing the
ratio of oxygenated to deoxygenated hemoglobingmteis a single voxel, allowing for a
stronger signal. However, the HDR does not happs&tantaneously in response to a

stimulus, as there is a slow building of increageghjenation followed by a slow decline
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in oxygenation after the task is complete (Figure Thus, using a blocked fMRI design
allows for the changes in HDR to be measured. heamore, the use of a 1-letter control
condition rather than a resting state control cihoiallows the basic visual, motor, and
attention demands to be parceled out from the @se@ WM demands that occur in the

6-letter condition.

Blocked Design and HDR Model

1 [ etter 6 Letters 1 I etter 6 Letters

(3 Trials) (3 Trials) (3 Trials) (3 Trials)
951 ‘TR XK | (XX XXX |
- L ¢ ®
o]
N
E ° i lo
= XX XXX XXXXX

Time >

Figure 2.Visual depiction of the idealized HDR for an fMRbbked design. Four blocks of 1-
letter and 6-letters were used.

Digit Span. The impact of component processes underlying WNKhen
relationship between improvements in WM and ageexasored by selecting indices of
overall WM that have been shown to measure thdfatit components. Research has
suggested that span tasks capture different compopEWM (Schneider-Garces et al.,
2009). Digit span forward has been saideasure a basic capacity/storage component
of WM limited by attention (Engle & Kane, 2004; Kaet al., 2006). Digit span

backward, a task requiring a manipulation compariead been said to require the
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recruitment of executive resources (Hale, Hoeppfaétiorell, 2002; Sattler, 2001,
Wechsler, 2008). Thus, tasks measuring both &pamrd (an index of capacity) and
span backward (an index of manipulation) were ideth Participants completed the
Digit Span subtest from either the Wechsler Ingellice Scale for Children™£dition
(WISC-1V; Wechsler, 2004) or the Wechsler Adultdiigence Scale,"8Edition
(WAIS-III; Wechsler, 1997). Participants aged hiotugh 16 completed the WISC-1V,
and participants aged 17 through 18 completed tAé&SAIl. Raw Digit Span Backward
(DSB), raw Digit Span Forward (DSF), and scaledeson the Digit Span subtest
(DSS) were recorded for each participant.

Additionally, gender and handedness were treated\ariates to further control
for related variability. Gender was considerethim behavioral analyses, and gender and
handedness were considered in the fMRI analysge was calculated in months, rather
than years, to better capture the age-relatedhititiyavithin the sample of adolescents.
I mage Acquisition

High-resolution anatomical images (MPRAGE; 1 movisxel; sagittal; TE =
3.7 ms; flip angle = 12°) and functional images|{B®xel = 3.5 x 3.5 x 4 mm; 36
slices/volume; 147 volumes/run; TR = 2000 ms, TE=ms; flip angle = 70°; matrix =
64x64; axial; inferior to superior interleaved) waollected on a Philips Achieva 3T
scanner equipped with an 8-element, SENSE, reailyehead coil. Twelve “dummy”
scans occurred at the beginning of each functiamato remove T1 saturation effects.
Image Analysis

The fMRI data were analyzed using AFNI softwarexC1996). For each

participant, the data were corrected for slicettigndffset and motion, and then spatially
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filtered with a Gaussian kernel (FWHM = 8 mm). Tdata for each voxel was scaled so
that the deconvolution parameter estimates wereesgpd in terms of percent signal-
change (i.e., 100 *AMy, t=time point). These preprocessed BOLD timgeseper
voxel were deconvolved using modified linear regi@s with the regressor constructed
by convolving a HDR model (a gamma-variate functioohen [1997] parameters b =
8.6, ¢ = 0.547; max amplitude = 1.0) with a boxtzak-reference function
differentiating 6-letter trial blocks from 1-letteral blocks (with 1s for time-points
within 6-letter blocks and Os for time-points witti-letter blocks). This allowed for the
estimation of percent signal-change during thet@®ieondition. Furthermore, regressors
modeling linear and quadratic trends over the emtin and the motion correction
parameters were also included in the regressiorehtodemove these nuisance variables
from the percent signal-change estimates. Thetmegudercent signal-change matrix
(yielding percent signal-change per voxel for tHetéer block relative to the 1-letter
block) for each participant was spatially normalize Talairach space via a 12-
parameter affine transformation (Talairach & Touxol1988; resampled to a 2 mm
isovoxel resolution) and FSL's nonlinear warpingazithm was applied to improve
registration(FMIRB Analysis GroupWoolrich et al., 2009).
Results

Behavioral Results

Indices of WM ability included RT (calculated ag timean RTs for accurate
responses in which the target was present durm@-letter condition; RTs two-and-a-
half standard deviations above and below the mear discarded), digit span forward

(as a measure of WM capacity), and digit span baott\as a measure of WM
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manipulation). Although accuracy was calculatetbftcorrect responses/total possible
correct responses during the 6-letter conditiorgraadditional measure of performance,
accuracy was not used as a measure of performaed® @ task ceiling effect; only six
participants performed worse than 93%.

Correlations between the behavioral measures veeng@uated to examine the
degree to which the indices were measuring uniqiveprdbcesses. Table 1 shows the

Table 1. Correlations between covariates.

Digit Span Forward Digit Span Backward Age Gender
Respons¢Time -.051 1€ -362* -.11°%
Digit Span Forward 290 204 .080
Digit Span Backwardg 260 -.365*
Age .052
*p<.05.

Pearson correlations between the three behaviatads of WM: RT, digit span
forward, and digit span backward. Age and gendaildd as 0 = males and 1 = females)
also were included to determine if these sampleacheristics were related to the WM
indices. None of the WM measures were strongkignificantly correlated with each
other. Although digit span forward and digit spackward were weakly correlatads
.29, the low correlation suggests that there isbstantial portion of unique variance for
each measure that justifies treating them sepgriat¢he analyses of the BOLD-age
relationships. The weak correlation this study fbbetween digit span forward and digit
span backward is consistent with previous cormatatbetween these two constructs on
the WAIS-IV (r = .3; Wechsler, 2008).

Analyses determining both linear and nonlinearti@tahips between age and

each index of WM were performed, as research hagdfthat improvements in WM
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ability on a variety of tasks follow monotonic déyamental trajectories throughout
adolescence (Gathercole et al., 2004; SchneidereGat al., 2009). Additionally, each
index of WM, along with gender, was treated as\adate in the analyses in order to
explore potential mediation and suppression effectthe relationships between each
index of WM and age.

RT linear effects. Hierarchical multiple regression was used to exptbe
linear relationship between RT and age and theniatenediating and suppressing
effects of the covariatedlable 2 shows the results from the tests of linelationships
between performance on the WM task and age. Thatseof a linear regression analysis
indicated that RT decreased as age increased.862,p = .02), indicating that search

and retrieval speed increased with age.

Table 2. Hierarchical Multiple Regression Analyses Predigtihe Linear Relationship
between RT and Age with the Addition of Covariates

R2 AR2 AF &ge dfl df2 P

RT = Age 131 5.876 -.362 1 39 .020*
Hierarchical Regressit

Reduced Model: G .013 .525 1 39 473
Full Model: G + Agt 14C 127 5.60¢ -.357 1 38  .023*

Hierarchical Regression
Reduced Model: DS .00¢ .10¢ 1 39 .75(
Full Model: DSF + Age A31 129 5.637 -.367 1 38 2390

Hierarchical Regressit
Reduced Model: DSB .014 .555 39 461
Full Model: DSB + Age 179 165  7.660 -.421 1 38 09®%

A

Hierarchical Regression

Reduced Model .026 .268 3 37 .808
G + DSF + DSl
Full Model .181 .155 6.807 -.416 1 36 .013*

G+ DSF+ DSB + Ag

Note.RT = response time; G = gender; DSF = digit spawdrd; DSB = digit span
backward.
*p<.05, *p < .01.
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Next, the impact of gender and WM behavioral inglie@s considered in order
to determine if these covariates accounted fordtaionship between RT and age.
Three hierarchical linear regression analyses weneucted: each covariate (gender,
digit span forward, digit span backward) was ineldidh the reduced model (to remove
variance in RT associated with these variables),aam® was added to the full model to
determine if age added to the regression modelugexdia significant increase in the
variance accounted for. Last, a hierarchical regjoesanalysis with all covariates entered
into the reduced model was conducted. The resfitteese analyses revealed that none
of the variables attenuated the relationship betvi®RE and age. Across all of the
models, when age was added to the full model, llaege in proportion of variance
accounted forAR?) was significant, indicating that age was accaunfor a significant
and unique proportion of the variance. Furthermibre variance accounted for by age
(Rsge andAR?) remained relatively constant over the differemilgses and, in fact,
increased when DSB and when all of the covariatxe wcluded in the models. Thus,
these variables were having a slight suppressiectedn the relationship between RT
and age, and controlling for their influences réeddhat RT is a unique index of the
development of WM with age.

RT quadratic effects. Hierarchical multiple regression was used to @atd the
guadratic relationship between RT and age anddtenpial mediating and suppressing
effects of the covariatedlable 3 shows the results from the tests of noatine
relationships between performance on the WM taskagye. The results of a hierarchical

regression analysis indicated that the addition gfiadratic term to the relationship
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between RT and age did not account for signifigamibre of the variancAR?) between
RT and age than the linear relationship alone.

Table 3. Hierarchical Multiple Regression Analyses Predigtihe Quadratic
Relationships between RT and Age with the Addiiddovariates

R AR AF R dfl  df2 p

Model 1

Reduced Model

Age 131 5.876 1 39 .020*
Full Model

Agé€ .195 .064 3.014 -3.314 1 38 091

Model 2
Reduced Model

Age + C .14( 3.09¢ 2 38 .07
Full Model

Age + G + Agé 212 .072 3.374 -3.550 1 37 074

Model 3
Reduced Model

Age + DS} 131 2.87¢ 2 38 .06¢"
Full Model

Age + DSF + Age .196 .065 2.975 -3.339 1 37 .093

Model 4
Reduced Modt

Age + DSE A7¢ 4 .15¢ 2 38 .02
Full Model

Age + DSB + Ag? .281 .101 5.20¢ -4.30¢ 1 37 .02¢

Model 5

Reduced Mod:i
Age+DSF+DSB+ .181 1.983 4 36 118
G

Full Model
Age+ DSF+DSB+ .282 .102 4959 -4.324 1 35 .032*
+G + Agé

Note.RT = response time; G = gender; DSF = digit sjpawdrd; DSB = digit span
backward.
*p<.05,p < .1.

Next, the impact of gender and WM behavioral inglie@s considered in order

to determine if these covariates were suppresbimg|tiadratic relationship between RT
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and age. Three hierarchical regression analyses eemducted: each covariate (gender,
digit span forward, digit span backward) along véitle was included in the reduced
model (to remove variance in RT associated witsehariables), and age squared was
added to the full model to determine if age squackded to the regression model
produced a significant increase in the variancewaued for. Last, a hierarchical
regression analysis with all covariates enterea i reduced model was conducted.
The models including gender and digit span forwadicated that there was a quadratic
trend present in the relationships between agdrdndhen the variance of these
covariates was accounted for statistically (genB&Liucei .140,Rou = .212,AR =

.072; digit span forward® cqguce .131,Ru = .196,AR? = .065). However, the model
that included digit span backward as a covariateveld that the model including the
guadratic relationship between RT and age accodatesignificantly more of the
variance than the reduced mod@l e .179,Rou = .281,AR? = .10), thus suggesting
that the linear effect of digit span backward segped the quadratic relationship
between RT and age. Last, a hierarchical regressamtel with all covariates entered
into the reduced model was conducted. As woulexpected given the suppression
effect of digit span backward, the model includihg quadratic relationship between RT
and age accounted for significantly more of theéarare than the reduced modBf {quced

= .181,R%, = .282, AR’ = .032). Thus, these variables were having dsigppression
effect on the quadratic relationship between RTagel and controlling for their
influences revealed that improvements in perforraarc WM tasks across adolescence
follow a monotonic curve, with more rapid improvemteein retrieval speed occurring as

adolescence progresses (Figure 3).
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Figure 3.Graph of the relationship between RT and &je (362,p = .020). The addition of a
guadratic term was significant when the linear@fef DSF, DSB, and G were controlled for
(AR? = .102,p = .032).

Digit span forward linear effects. Hierarchical multiple regression was used to
explore the linear relationship between digit sfraward and age and the potential
mediating and suppressing effects of the covariafable 4 shows the results from the
tests of linear relationships between WM capagdity age. The results of a linear
regression analysis indicated that although djgainsforward showed some improvement
with age, the relationship was not significant(204,p = .202).

Next, the impact of gender and WM behavioral inglie@s considered in order

to determine if these covariates were suppresbmgetiationship between digit span
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forward and age. Three hierarchical linear regoessnalyses were conducted: each
covariate (gender, RT, digit span backward) wakided in the reduced model (to
remove variance in digit span forward associatet thiese variables), and age was
added to the full model to determine if age addetth¢ regression model produced a
significant increase in the variance accountedLlfast, a hierarchical regression analysis
with all covariates entered into the reduced mede conducted. The results of these
analyses revealed that none of the variables sspguiehe relationship between digit
span forward and age. Across all of the modelgndge was added to the full model,
the change in proportion of variance accounted£&?) was not significant. Thus, the
participants’ basic WM capacity did not improversfigantly as their age increased.

Table 4. Hierarchical Multiple Regression Analyses Predigtihe Linear Relationship
between DSF and Age with the Addition of Covariates

R AR AF Rege  dfL  df2 p

DSF = Age .041 1.688 .204 1 39 202
Hierarchical Regressi

Reduced Model: G .006 .249 1 39 620
Full Model: G + Agt .04¢ 04C  1.58¢ .20( 1 38 215
Hierarchical Regression

Reduced Model: R .00: .103 1 39 .75C
Full Model: RT + Age .042 039 1.564 213 1 38 219

Hierarchical Regressii
Reduced Model: DSB .064 3.574 1 39 066
Full Model: DSB + Age .102 018 747 .138 1 38 393

Hierarchical Regression
Reduced Model

G+ RT+ DSE J12¢ 1.82 3 37 .16C
Full Model

G+ RT+ DSB + Ag 3¢ .00€ .264 .091 1 36 611

Note.RT = response time; G = gender; DSF = digit spawdrd; DSB = digit span
backwarc



21

Digit span forward quadratic effects. Hierarchical multiple regression was
used to evaluate the quadratic relationship betwéghspan forward and age and the
potential mediating and suppressing effects otthariates.Table 5 shows the results
from the tests of nonlinear relationships betweevl ¥épacity and age. The results of a
hierarchical regression analysis indicated thaatidition of a quadratic term to the
relationship between digit span forward and agendidaccount for significantly more of

the variancéAR?) between digit span forward and age than the firglationship alone.

Table 5. Hierarchical Multiple Regression Analyses Predigtihe Quadratic
Relationships between DSF and Age with the Adddfd®ovariates

R AR AF Bl dft  df2 D

Model 1

Reduced Model

Age .041 1.688 1 39 202
Full Mode

Agé .044 003 .103 669 1 38 .750

Model 2
Reduced Model

Age + C .04¢ .921 2 3€ 407
Full Model

Age + G + Agé .050 .004 144 806 1 37 .706

Model 3
Reduced Model

Age + RT .04z .834 2 38 .44c
Full Model

Age + RT + Agé .046  .004 .139 814 1 37 .712

Model 4

Reduced Mod:t

Age + DSE .10z 2.14¢ 2 3¢ 131
Full Model

Age + DSB + Ag® .10z .00C .00t -.14¢€ 1 37 .94t

Model 5
Reduced Mod:t
Age+DSB+RT+G  .135 1.405 4 36 .252

Full Model
Age + DSB + RT + .135 .000 .010 -231 1 35 .920
+G + Agé

Note.RT = response time; G = gender; DSF = digit spawdrd; DSB = digit span
backwarc
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Next, the impact of gender and WM behavioral inglie@s considered in order
to determine if these covariates suppressed thdratiarelationship between digit span
forward and age. Three hierarchical regressiolyses were conducted: each covariate
(gender, RT, digit span backward) along with age imaluded in the reduced model (to
remove variance in digit span forward associatet thiese variables), and age squared
was added to the full model to determine if ageased added to the regression model
produced a significant increase in the varianceauted for. Last, a hierarchical
regression analysis with all covariates enterenl it reduced model was conducted.
The results of these analyses revealed that nothe afariables suppressed the
relationship between digit span forward and ageussgli Across all of the models, when
age squared was added to the full model, the chamg®portion of variance accounted
for (AR?) was not significant. Thus, age was not foundea significant linear or

nonlinear predictor of basic WM capacity (Figure 4)
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Figure 4. Graph of the relationship between DSF and age @04, p = .202). The addition of a
guadratic term was not significamtR2 =.003, p =.750).
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Digit span backward linear effects. Hierarchical multiple regression was used
to explore the linear relationship between digérspackward and age and the potential
mediating and suppressing effects of the covarialable 6 shows the results from the
tests of linear relationships between WM manipatatind age. The results of a linear
regression analysis indicated that although djgansbackward showed some
improvement with age, the relationship was notificant (r = .260,p = .10).

Table 6. Hierarchical Multiple Regression Analyses Predigtihe Linear Relationship
between DSB and Age with the Addition of Covariates

R AR AF Rge dfl  df2 p

DSB = Age .068 2.831 260 1 39 .100
Hierarchical Regressi

Reduced Model: RT .014 .555 1 39 461
Full Model: RT + Ag 12C .10 4561 34¢ 1 3¢ .039*

Hierarchical Regression
Reduced ModeDSF .08¢ 3.574 1 3¢ .06¢€
Full Model: DSF + Age 126 042 1835 210 1 38 318

Hierarchical Regressii
Reduced Model: G .133 5.991 1 39 .019*
Full Model: G + Age 211 .078 3.775 280 1 38 .059

Hierarchical Regression
Reduced Model

G+ RT+ DSF .24¢ 397 1 37 .015*
Full Model
G+ RT+ DSF+ Ag 317 .07 3.85¢ 29¢ 1 3€ .057"

Note.RT = response time; G = gender; DSF = digit spawdrd; DSB = digit span
backward.
*p<.05p<.1

Next, the impact of gender and WM behavioral inglie@s considered in order
to determine if these covariates suppressed thgaeship between digit span backward
and age. Three hierarchical linear regressiornyaealwere conducted: each covariate

(gender, digit span forward, RT) was included ia teduced model (to remove variance
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in digit span backward associated with these viegband age was added to the full
model to determine if age added to the regressimteirproduced a significant increase
in the variance accounted for. The results ofdlemlyses revealed that the linear
effects of RT suppressed the relationship betwéginspan backward and ag@¢quce
.014,R%. = .120,AR? = .106). Last, a hierarchical regression anakytis all covariates
entered into the reduced model was conducted.oAdth the addition of age accounted
for a marginally significant portion of the vari@an@equced= -244,Rou = .317,AR =
.073), the result of the analysis revealed thatittear effects of the covariates accounted
for significantly more of the variance in digit sphackward than ag&{ = .244,p =
.015); the covariates predicted linear changegémore robustly than digit span
backward. Thus, linear changes in age do not sigmfly predict changes in WM
manipulation, unless the linear effects of RT ametilled for.

Digit span backward quadr atic effects. Hierarchical multiple regression was
used to evaluate the quadratic relationship betwéghspan backward and age and the
potential mediating and suppressing effects otthariates.Table 7 shows the results
from the tests of nonlinear relationships betwedvl Mvanipulation and age. The results
of a hierarchical regression analysis indicatetl tti@ addition of a quadratic term to the
relationship between digit span backward and agedi account for significantly more
of the varianc€AR?) between digit span backward and age than tharlireationship
alone.

Next, the impact of gender and WM behavioral indisas considered in order
to determine if these covariates suppressed thdrati@arelationship between digit span

backward and age. Three hierarchical regressialyses were conducted: each
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Table 7. Hierarchical Multiple Regression Analyses Predigtihe Quadratic
Relationships between DSB and Age with the Adddic®ovariates

R AR AF Rge dfl  df2 P

Model 1

Reduced Model

Age .068 2.831 1 39 100
Full Model

Agé€ 126 .059 2.548 3.174 1 38 119

Model 2

Reduced Model

Age + C 211 5.09¢ 1 39 011
Full Model

Age + G + Agé 249  .037 1.825 2.548 1 38 185

Model 3
Reduced Model

Age + DSI 12¢ 2.74 1 39 077
Full Model

Age + DSF + Age 179 .053  2.379 3.017 1 38 131

Model 4
Reduced Mod:t

Age + R1 12(¢ 2.58¢ 1 39 08¢
Full Model

Age + RT + Ag? .21¢ 10C  4.72¢ 4.30! 1 38 .036*

Model 5
Reduced Mod:i

Age+DSF+RT+G 317 4,175 4 36 .007*
Full Model

Age + DSF+ RT + 374 .057 3.207 3.320 1 35 082
G + Agé€

Note.RT = response time; G = gender; DSF = digit spawdrd; DSB = digit span
backward.
*p<.05,p<.1.
covariate (gender, digit span forward, RT) alonthwige was included in the reduced
model (to remove variance in digit span backwasbeisted with these variables), and

age squared was added to the full model to deteriharge squared added to the

regression model produced a significant increaskedrvariance accounted for. Only the
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model that included RT as a covariate showed tmatrtodel including the quadratic
relationship between digit span backward and agewstted for significantly more of the
variance than the reduced mod@{j.ce .120,R%u = .219,AR? = .1), thus suggesting
that the linear effect of RT suppressed the quidmiationship between digit span
backward and age. Last, a hierarchical regressialysis with all covariates entered into
the reduced model was conducted. Despite theresgion of the quadratic relationship
between digit span backward and age by RT, thdiaddif age squared to the full model
revealed a trendRequce 317, R = .374,AR? = .057). Thus, after controlling for the
linear effects of RT, there was a nonlinear compbt®the relationships between WM

manipulation and age (Figure 5).
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Figure 5.Graph of the relationship between DSB and age (#68, p = .100). The addition of a
quadratic term was significant when the linear&fef RT were controlled fonR2 = .120, p =
.039).
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fMRI Results

To test the hypothesis that functional activatiobiiain areas implicated in WM,
such as the PFC, have a quadratic relationshipagiéh whole brain voxel-wise
hierarchical regression was used (see Appendixddy€& 10). Using hierarchical
regression allowed for both the linear effectslivite reduced model) as well as any
guadratic effects (with the full model) in brairgiens supporting WM to be explored.
To control for Type | error due to multiple comgans, the results were cluster-
thresholded based on Monte-Carlo simulations (Afimasoftware; Ward, 2000) so that
surviving clusters were significant with a familyse o = .05, for that analysis, and a
voxel-levela = .005. Clusters 0£146 voxels were significant with a family-wise=
.05, based on the simulations (1000 iterationafdataset having 191,679 voxels [2 mm
isovoxel], smoothness = 8 mm FWHM, cluster = pafrgoxels having a connectivity
radius < 3.47 mm, thus having connecting facese&dy corners at the resampled voxel
size).

Linear effects. Hierarchical multiple regression was used to exptbe linear
relationship between percent signal-change anéade¢he potential mediating and
suppressing effects of the covariat@se results of a linear regression analysis inditat
that no clusters survived the thresholding criteria

Next, to reduce the variance, the impact of gerttlngdedness, and WM
behavioral indices (RT, digit span forward, digina backward) was considered to
determine if these covariates accounted for (med)air detracted from (suppressed) the
linear relationship between percent signal-chamgkage. Hierarchical regression

revealed three clusters where percent BOLD sighaiige increased as age increased
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when the linear effects of the covariates wererctiet! for statistically: right medial
BAG (peakt = 5.528, Bg.= .005, cluster size = 292), right cerebellum kiea 4.465,
Bage = .002, cluster size = 282), and left BA34 (peakd4.347, By = .002, cluster size =
164); Table 8; Figure 6). Given that right medal6 has been implicated in WM tasks
(Owen et al., 2005; Rypma, 2006; Schneider-Garcak,€009), the impact of each
covariate on the relationship between percent siglmenge and age was systematically
explored in this region.

Table 8. Descriptive Statistics for Clusters showing a Sfigant Linear Relationship
between Percent Signal-Change and Age with Coemiat

Coordinates (RAI mm) of voxels
with highest t-value within cluster

Anatomical Structure X y z B Cluster size
Right medial BA6 -3 -1 +58 .005 292
Right Cerebellum -41 +59 -34 .002 282
Left BA34 +12 -5 -1z .00z 164

Note.Clusters are significant at< .05.

Right Cerebellum Left BA34 Right BA6

Figure 6. Brain regions showing a linear relationship betwegercent signal-change and age with
covariates controlled. Red to yellow voxels ilhasé positive correlations, where age increases
were associated with higher signal-change. Data wl@ister thresholded with cluster .05 and
voxela = .005.
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Next, the unique impact of potential sample charéstics and WM behavioral
indices was considered in order to determine ttvithual suppression effect of each
covariate on the independent relationship betweeoent signal-change and age. Table
9 shows the increases in right medial BA6 activatlmat occurred with age when the

linear effects of covariates suppressing this i@iahip were removed. First, a linear

Table 9. Hierarchical Multiple Regression Analyses Predigtime Linear Relationship
between Percent Signal-Change and Age with thetidddif Covariates
peak peak R  Cluster Right Medial BA6

t Bage size
BOLD = Age 2977 .003 .226 17 ~
-1
Sample Covariates
BOLD=G +H + Age 2983 .004 .142 25

RT as a Covaria
BOLD=G +H+RT + 2993 .004 .143 22

Age

DSB as a Covariate
BOLD=G+H+DSB+ 4721 .005 .209 67

Age
-L
DSF as a Covariate 4438 .003 .145 156* -
BOLD=G + H + DSF +
Age -2
-
All Covariates 5528 .005 .429 292*

BOLD=G +H +RT +
DSB + DSF +Age

'
[ ]

-

Note.Equations listed are full models. Coordinates (R#w) of clusters: x =-3, y = -1,
z = +41. G = gender; H = handedness; RT = respomee DSF = digit span forward;
DSB = digit span backward.

*Clusters greater than 146 are significanp &t.05.
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regression analysis between percent signal-chamjage showed no significant regions
of activation. Next, four hierarchical linear regsion analyses were conducted: sample
differences (gender/handedness) and WM behaviwdates (RT, digit span forward, and
digit span backward) were included in the reducedehas covariates (to remove error
variance associated with these variables), andvagencluded in the full model to
determine if age added to the regression modelugexia significant increase in the
variance accounted for. The regression analysasatiing for gender/handedness, RT,
and digit span backward were not significant. Hesvewhen digit span backward was
added to model, the hierarchical regression arsatgsiealed a significant linear
relationship between percent signal-change andpagkt = 4.438, Bge = .003, cluster
size = 156), indicating that the linear relatiopshétween digit span forward and percent
signal-change had suppressed the linear relatipitstiveen percent signal-change and
age. Last, all covariates (gender/handednessdigit span forward, and digit span
backward) were added to the model, and the renmadvhk linear effects of these
variables revealed the significant relationshipeen percent-signal change and age

(peakt = 5.528, By = .005, cluster size = 292; Figure 7).

Figure 7. Linear relationship between medial right BA6 gedicent signal-change and age. The
linear effects of G, H, RT, DSF, and DSB were colted for (peak t = 5.528, B = .005, cluster
size = 292). Red to yellow voxels illustrate pigitcorrelations, where age increases were
associated with higher signal-change. Data wergtet thresholded with cluster= .05 and
voxela = .005.
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Thus, digit span forward’s relationship with bo#rgent signal-change and age served as
the primary suppressing factor of the relationslgtween percent-signal change and age.
However, the cluster size was largest when alhefdovariates were included (cluster
size = 292), suggesting that each covariate cariba unique suppressing effect.

To illustrate the suppression effect of the covasan the linear relationship
between percent signal-change and age in rightahBéi6, percent signal-change in the
peak voxel in this region was obtained for eachigipant. A scatter-plot of percent
signal-change and age was made. Next, age wasssegl on the covariates
(gender/handedness, RT, digit span forward, digihsbackward) and percent signal-
change was regressed on the covariates (gendestiraests, RT, digit span forward, digit
span backward) to remove the effects of these bl@sa The resulting residuals were
saved, and a scatter-plot of percent signal-chandgeage without the effects of the
covariates was made. The resulting scatter-plattibtes the independent relationship
between age and percent signal-change in rightahBéi6 after removing the effects of
the covariates (Figure 8).

Quadratic effects. Hierarchical multiple regression was used to deiee the
additional contribution of age squared on percigmas-change.A full model that
included age squared as a quadratic predictorblan@as added to the reduced model in
order to determine if age squared accounted fmifgigntly more of the variance
between percent signal-change and age than ttar linedel alone. However, no
clusters showing a quadratic relationship betwesnegmt signal-change and age survived
the thresholding criteria. Next, the unique impafgbotential sample characteristics and

WM behavioral indices was considered in order temheine if these covariates
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Figure 8.lllustration of the effect of the covariates oe tielationship between percent signal-
change and age. Percent signal-change was measuhedpeak voxel in right medial BA6, and
age was expressed in months. The top scatte(g)lshows the relationship between percent

signal-change and age. The bottom scatter-plath{byvs the relationship between percent signal-

change and age after removing the shared variseteeebn gender, handedness, RT, digit span

forward, and digit span backward.
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suppressed a potential quadratic relationship @twercent-signal change and age.
Hierarchical regression did not reveal any sigaificclusters showing a relationship
between percent-signal change and age squaredatimdj that the linear effects of the
covariates were not suppressing a potential naaliredationship between percent signal-
change and age. The results of the hierarchigaéssion analysis revealed no evidence
for a quadratic relationship between percent BOlgda-change, indicating that
activation changes in brain regions supporting Wivhdt follow a quadratic trend with
age across adolescence.
Discussion

This study sought to explore the relationship betwiinctional activation in
brain regions supporting WM and age throughoutestmnce. After the effects of
different measures of WM were controlled for stataly, the results indicated linear
age-related functional activation patterns in rigigdial BA6. This finding is consistent
with existing research that suggests BAG6 is acaiitbrain region underlying WM ability
in both children and adults (Klingberg et al, 20B%;on et al., 2002; Owen et al., 2005;
Rypma, 2006; Schneider-Garces et al., 2009), a@ndédbion is considered part of the
dorsolateral prefrontal cortex (DLPFC)/anterior-pretor region recruited for the
completion of complex WM tasks requiring an exe@ifunction component, such as the
manipulation of information (Kirschen et al., 20Bpma & D’Esposito, 1999).
Furthermore, although BAG is part of the pre-sup@etary motor area, this region is
consistently activated in a variety of executivedtion tasks (Crosson et al., 1999) and
has been shown to serve a possible “executive’ingbeeparedness for response

selection (Petit, Courtney, Ungerleider, & Haxb99®).



34

The analyses also revealed linear increases ivasicth with age in the right
cerebellum and left BA34. Although these regioresret typically considered integral
to WM processes, both regions have recently gadtiedtion for their impact on
memory-related networks. The superior cerebellambieen implicated in cerebro-
cerebellar networks activated during verbal workimgmory tasks (Chen & Desmond,
2005; Crottaz-Herbette, Anagnoson, & Menon, 20G4sdhen et al., 2010; Stoodley &
Schmahmann, 2009). BA34 is considered part op#tiahippocampal gyrus and has
been implicated in intentional and unintentionabfdting neuroimaging tasks (Wylie,
Fox, & Taylor, 2007).

Relationship between WM Component Processesand Age

The shared and unique linear relationships betwabwidual WM measures and
age were explored using hierarchical regressiolyses, and the results of the
behavioral analyses were consistent with past rels¢hat has shown monotonic
improvements on cognitive measures of WM acrosteadence (Fry & Hail, 1996;
Gathercole et al., 2004; Luciana et al., 2005). irRgroved significantly with age, and
digit span backward improved significantly with agleen the linear effects of RT and
digit span forward were removed. The lack of mgoiiaeffects between the WM indices
indicates that both search and retrieval speethéasured by RT) and WM manipulation
(as measured by digit span backward) each shan&aeairelationship with age.
Furthermore, the improvement in search and retripe@ed and WM manipulation that
occurred with age followed a curved monotonic trjey (having both linear and
guadratic components). A quadratic relationskgmieen WM search and retrieval

speed and age emerged only when the linear efi€elscovariates were statistically
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controlled for, and a quadratic relationship betw&éV manipulation and age emerged
when the linear effects of WM performance and ageeveontrolled for statistically. The
curved monotonic relationships between both WMgrentince and WM manipulation
with age suggests that overall improvements ingWgM component processes occur
more rapidly as adolescence progresses. Howevac, WAV capacity, as measured by
digit span forward, did not improve significantlytivage, either along a linear or
nonlinear trajectory. Basic WM abilities have baetiown to be developed by age nine
(Luciana et al., 2005), which could account for ftiture to find developmental changes
in WM capacity.

The inclusion of behavioral measures of WM alloi@dthe unique
developmental trends of individual WM componentbécexplored. WM consists of
both capacity/storage and manipulation processadd@ey, 1981; Baddeley & Hitch,
1974). The results showed that WM capacity, assmrea by digit span forward, was
developed by age 11, as changes in this procegsneéiobserved across adolescence.
However, WM manipulation processes that more hgawvilolve the recruitment of
executive resources, as measured by digit spamiaadkimproved throughout
adolescence, with more rapid changes occurringténddolescence. The separate
developmental trajectories of these WM behaviardides supports the existence of
unique underlying component processes that comgritauoverall WM ability (Miyake,
Friedman, Rettinger, Shah, & Hegarty, 208thneider-Garces et al., 2009). Finally,
response time often has been used to index WMIseaud retrieval speed (Rypma &
D’Esposito, 1999; Sternberg, 1966). Consisterth wievious research, search and

retrieval speed was found to increase with devetyirCowan, Saults, Nugent, &
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Elliot, 1999). However, this study also found alireear component to the decrease in
RT with age, suggesting that greater improvemensgarch and retrieval speed occur
later in adolescence.

Relationship between Right Medial BA6 Activation and Age

Just as mediation and suppression effects betwadmWM behavioral index
were evaluated, the effects of WM capacity (digars forward), WM search and
retrieval speed (RT), and WM goal-oriented manifiafa(digit span backward) on the
relationship between functional activation durihg WM task and age were explored.
The results showed that functional activation iasesl in right medial BA6 as age
increased during a supra-capacity load WM taskwéie@r, this linear trend was
apparent only after statistically controlling fteteffects of WM component processes on
functional activation. The combination of theaqum relationships between these
covariates and functional activation in right mé&A6 obscured the relationship
between age and right medial BA6, although WM cidpaeemed to have the strongest
suppressing influence.

The linear relationship between percent BOLD sigiinge and age was not
explained by individual improvements in WM compobhprocesses (i.e., were not
statistically mediated by the WM measures), sugggshat age increases contribute
independently to heavier recruitment of this regioning WM tasks. Despite the
significant relationship between improvements onawéoral measures of WM (such as
RT and digit span backward) and age, the behavimg@iovements do not account for

the increase in right medial BA6 activation thaturs with age.
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These results further support the multi-componendel of WM (Baddeley &
Logie, 1999; Repovs & Baddeley, 2006). The digérsforward and digit span backward
tasks captured two central features of WM, botracap/'storage and manipulation
processes (Baddeley, 1981; Baddeley & Hitch, 1974lditionally, these two
components impacted the relationship between pesigmal-change and age in different
ways. The impact of manipulation processes didaffett the relationship between
activation and age in right medial BA6, suggestimg manipulation processes and age
are not related in right medial BA6. However, vhility in storage capacity processes
suppressed the relationship between activatioragedn right medial BA6 with both
basic WM storage capacity and age individually aotiog for increases in right medial
BAG6 activation.
Global-Capacity Framewor k ver sus Neur ocognitive-Change Framewor k

Another objective of the present study was to engolmw changes in brain
activation across adolescence fit into present fsazféorain development. The global-
capacity framework holds that general changesaimsmission times throughout the
lifespan control increases and decreases in oyaaikessing capacity, including the
changes in WM storage and manipulation capacitydbeur (Bashore & Smulders,
1995; Fry & Hail, 1996; Salthouse, 1996). The linedationships between BOLD
signal-change and age were consistent with thissétbwever, linear relationships
were restricted to three brain regions (i.e., rigledial BA6, right cerebellum, and left
BA34), and not more widespread as one might thiitk Yglobal" capacity changes. The
analyses failed to show that the age-related iseea percent signal-change in right

medial BA6 were accounted for by age-related irggean performance, WM storage, or
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WM manipulation. It is possible that the effectother, unmeasured, WM processes
obscured the relationship between amplitude ineseaad age in other brain regions. It
is possible, for example, that BA6 mediates chatiggtsoccur in attention. Rather than
simply being active during the motor response ploa$¥M response selection, BA6 has
been found to be active throughout the entire W8k tauggesting that BA6 plays a role
in attentional preparedness (Haxby, Petit, Ung@te& Courtney, 2000; Petit et al.,
1998). lItis also possible that the age-relatethghs are accounted for by a fundamental
process undergoing change with development. KailZadthouse (1994), for example,
have argued that developmental changes in procgsgeed account for developmental
changes in a host of cognitive functions, includikiyl. Thus, an independent measure of
global processing speed might account for agee@lehanges in these regions and more
broadly throughout the brain.

Despite the support generated for the global-capfeimework, this study’'s
findings do not preclude the possibility that indie@ent neurocognitive changes occur
throughout development as well. The neurocognitivenge framework suggests that
individual brain structures and functions are resiae for specific cognitive
improvements/declines (Pennington, 1994; Span,@84). Recent fMRI research that
explored differences in brain regions recruitedrfyia visuo-spatial WM task between
children (aged 10-13), adolescents (aged 14-1d)adnlts (>18) found support for the
use of different networks that occurs with develepi The results indicated that the
adolescent group activated DLPFC and premotor negs@nificantly more than the
child group, indicating a shift to more specialize efficient WM networks similar to

those observed in the adult group (Scherf, Sweeaéyna, 2006); furthermore,
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neuroimaging research exploring WM has identifietworks differentially activated
dependent on WM load and WM component processesitet (Barby, Koenigs, &
Gafman, 2010; Motes & Rypma, 2010; Rypma, 2006 tis&iJonides, 1999). Although
the present study found linear, rather than noalinelationships between brain
activation and age, it is possible that global pesing speed increases account for the
increased specialization and efficacy of identitiedin networks underlying WM tasks
(Fry & Hale, 1996; Motes et al., 2010).
Limitations

One of the limitations of this study is sample six&hile relatively large for an
fMRI study with adolescents, a larger sample wanidimize within-group error.
Furthermore, the age range of this study (11 tar#®) not have been wide enough to
capture the full maturational trajectory of PFC eélepment and thus obscured potential
nonlinear relationships between functional actvatind age that parallel gray matter
volume loss. Individual participant characteriststich as intelligence, gender, and
pubertal status are potential confounds. Futwrdies exploring percent signal-change
activation and age across adolescence would bérmfitincluding a measure of puberty
status (e.g., onset of menstruation for femaleshatgrowth for males, hormone
samples) and a broad measure of IQ. Furthermdoegitudinal, rather than a cross-
sectional, study would also minimize individualfdiences.

Future studies could also include more measukdsnger version of the current
WM task, such as using more blocks (rather than) fevould assist in countering in the
participants’ high accuracy achievement by makivgtask more challenging;

furthermore, lengthening the task would improveredmbility of the signal-change
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estimate. Additionally, the use of a resting statedition would be beneficial in order to
further differentiate brain activation between @ketter condition and baseline.
Additional behavioral measures of WM could be adefilirther evaluate the impact of
WM component processes on functional activatiomgba with age. To measure WM
capacity, the Operation Span (OPSAN; Turner & EntB89) and Reading Span
(RSPAN, Daneman & Carpenter, 1983) could be useliffierentiate between verbal and
visuo-spatial components of WM. To measure WM ipalaition, the use af-back
tasks could be used (Owen et al., 2005). Furthexntbe addition of measures of
processing speed, such as Symbol Search and Cadiests from the WISC-IV/WAIS-
IV (Wechsler 2004; Wechsler 2008) and the DSVT (aeleh from the Digit—Symbol
Coding Task from the WAIS-III for use in fMRI scaams; Rypma et al., 2006) could be
included to better ascertain whether linear impnosets in amplitude are due to global
increases in overall processing capacity.
Future Directions

Although a linear relationship between percentaigimange and age across
adolescence in right medial BA6 was found, the dgitey mechanisms responsible for
this unique relationship warrant further exploratié\n extension of this study could
include measures aimed at achieving convergerdityafor measuring the WM
construct. While psychometrically sound behavionabsures of WM exist, it remains
unclear if these measures adequately access bgions believed to underlie overall
WM ability. Including additional behavioral meassirand developing additional WM

tasks to be completed during fMRI data acquisitisoyld assist in this endeavor.
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Furthermore, convergent validity studies wouldHertthe understanding of the impact
that component WM processes have on overall WMtgbil

To further evaluate the current models of braivettgoment, white matter
tracking through the use of diffusion tensor imggiBTI; Giorgio et al., 2010; Giedd,
2004) could be included along with fMRI. Globarsmission speed increases have
been linked to white matter tracts and could peshaqerlie WM improvements (Filley,
2010; Turken et al., 2008). Additionally, the $wsis of white matter data and
functional activation data would further the undensling of complex brain-behavior
relationships.

Continued knowledge of the developmental trajectfryrain regions supporting
WM in healthy children and adolescents will infoeaucational strategies and
curriculums by targeting WM development throughenitical educational phases.
Additionally, given that WM difficulties have beetserved in a variety of childhood
and adolescent disorders (Attention-Deficit/Hypékéty Disorder: Sheridan, Hinshaw,
& D’Esposito, 2007; developmental disorders: AllgwRajendran, & Archibald, 2009;
bipolar disorder: Bearden et al., 2007; depresdiserders: Franklin et al., 2010), the
ability to identify WM deficits at a neural levebugld impact future identification and

treatment of these disorders.



SECTION TWO
Appendices

APPENDIX A
Detailed Literature Review

The purpose of the present study is to explorelgdwvelopmental trajectory of
PFC activity supporting WM using functional magnd¥RI. WM, the overall process
of temporarily holding and reorganizing informatiorthe mind, is an integral aspect of
cognitive development. WM has been found to cbatd to a range of higher order
abilities, such as reasoning (Carpenter et al.0)188d comprehension (Cain et al.,
2004), and WM has been implicated as an importamponent of fluid intelligence
(Engle, Tuholski, Laughlin, & Conway, 1999; Wechs2008). Additionally, WM
deficits have been associated with several childlaa adolescent disorders (Alloway
et al., 2009; Bearden et al., 2007; Sheridan g2@07). Thus, given the central role of
WM in cognitive development, understanding themraechanisms that mediate WM
will advance theories of WM.

Cross-sectional developmental studies have shown Wdlged on cognitive
testing, to follow monotonic developmental trajeis through childhood into
adolescence (Best et al.,2009; Gathercole et@4;XKail & Salthouse, 1994; Luciana et
al., 2005; Span et al., 2004; Swanson, 1999). s& MéM improvements have been
attributed to increases in global capacity thatioedth age. The underlying neural
mechanisms supporting this proposed increase imctgphowever, are not fully
understood (Gathercole et al., 2004; Luciana eR@05; Swanson, 1999).

Despite these cognitive findings, brain structafanges in regions known to

support WM, such as the PFC, follow a differentalepmental trajectory. Research on

42
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structural brain changes has shown that sever@ngdpllow nonlinear developmental
trajectories from birth through late adulthood.r Egample, the gray matter volume of
the PFC follows a quadratic developmental trajgctitre gray matter volume of the PFC
increases from birth, peaks around 12 years ofaggthen begins to decrease. This
volume loss has been hypothesized to be a funofiorural pruning as neural circuits
are refined (Giedd et al., 1999; Giorgio et al.1@0Gogtay et al., 2004). The nonlinear
development of brain regions suggests that cognithprovements might result from
more “gualitative” changes within cortical struaanGogtay et al., 2004; Shaw et al.,
2008; Span et al., 2004, Stuss et al.,2005), rdtizer from more global “quantitative”
changes supporting an overall greater processipacig (Gathercole et al., 2004; Kalil
& Salthouse, 1994).

The discrepancy in the developmental trajectoraa/den measured cognitive
changes and brain structure changes mediating Viddsguestions about the functional
role of the PFC in supporting WM. The cognitiverelepmental data suggest that linear
increases in WM ability might be explained by glot@pacity increases; however, the
anatomical data suggest that improvements in Wivhhie due to qualitative functional
changes in regions, such as the PFC, that suppdraldility. Indeed, this discrepancy
between the cognitive and anatomical changes steythed the PFC functional activity
supporting WM might change monotonically with agensistent with the cognitive data,
or might change nonlinearly with age, consistenhwhe anatomical data.

A better understanding of the developmental trajgodf brain regions
supporting WM in healthy children and adolesceritsaslvance theories about WM

development that will inform educational strategies curriculums that can target WM
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development throughout critical educational phagedditionally, the advancement of
theories about WM development could have broadigafibns for the treatment of WM
difficulties in children and adolescents. WM difflties have been observed in a variety
of childhood and adolescent disorders, such astattedeficit/hyperactivity disorder
(Sheridan et al., 2007), developmental disordeli®gay et al., 2009) bipolar disorder
(Bearden et al., 2007), and depressive disordeaskkn et al., 2010). Thus, given the
central role of WM to higher order cognition ansldtitical role in cognitive
development, understanding the brain mechanisnhgribdiate WM can aid in the
testing and development of models of WM and higireler cognition. The goal of the
present study is to analyze fMRI data from preast®ats and adolescents collected
during a WM task to examine the developmental ¢tajg of PFC functional activity
supporting WM.

WORKING MEMORY (WM)

Working memory (WM) is a core cognitive constrtiwt describes the processes
of temporarily maintaining, manipulating, and reamiing information in the mind
(Baddeley, 1981). WM is a component of executivecfion (EF), which is a broad
construct describing the cognitive processes resblenfor goal-oriented mental control,
such as WM, attention, inhibition, and set-shift{Bgst et al., 2009). Correlations
between WM and measures of intelligence illustitateentral role in higher-order
cognitive processes (Engle et al., 1999). Indestiout this basic ability to maintain
and manipulate information, complex processes agaleasoning, comprehension, and
decision-making would be difficult (Carpenter et 4090; Owen, McMillan, Laird, &

Bullmore, 2005).
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WM is composed of multiple component processeydki & Shah, 1999). One
multi-component model of WM includes a central exae (responsible for the
encoding, manipulation, and retrieval processas)phonological loop (responsible for
the maintenance of auditory information), the vispatial sketchpad (responsible for the
maintenance of visual and spatial information), Hredepisodic buffer (responsible for
the integration of data into meaningful pieces; @addy & Logie, 1999; Repovs &
Baddeley, 2006). Thus, WM encompasses both st@nagenanipulation processes
(Baddeley, 1981; Baddeley & Hitch, 1974). WM sgegaapacity has been shown to be
limited (Brenner, 1940; Cowan, 2001; Luck & Voge997). Cowan (2001), for
example, has argued for the capacity limits of-4 #£ms regardless of the format (e.qg.,
verbal or visual) of the stimuli being remembenathen the to-be-remembered
information exceeds these capacity limitations, éev, WM executive processes can be
recruited to reorganize or chunk the informatiofittaithin capacity limits (Cowan
2001; Miller, 1955). In addition to the reorgariima of information into more
manageable chunks, additional executive processealso be recruited for more
complex tasks, such as when the task requires amiporation of computations or
mental imagery (Kozhevnikov et al., 2007; Seylealet2003).

WM asa Core Cognitive Construct

The ability to manipulate information in WM is agral to higher order cognitive
processes, as has been demonstrated by correlbdtwsen measures of WM and
intelligence (Engle et al., 1999). WM (as a lateariable derived from an 11 measure
battery,N = 133), for example, has been shown to be a mtalpradictor = .49) of

fluid intelligence (derived from the Culture Frerdlligence Test [CFIT; Cattell, 1949]
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& the Raven’s Standard Progressive Matrices Temst¢R's Matrices; Raven, Raven, &
Court, 2003]); whereas simple storage has beenrstmwaorrelate weakly with fluid
intelligence ( = .12). Additionally, WM is measured as a compurad the WAIS-IV
(Wechsler, 2008). Factor analysis has shown thmessubtests (such as Digit Span and
Arithmetic) consistently load onto a single fadfaat is believed to measure WM
(Wechsler, 2008). This factor captures the stocagecity (Digit Span Forward),
manipulation (Digit Span Backward), and integrat{@mnithmetic) components of WM.
The integral role that WM plays in overall intelieal abilities has been
complemented by research showing the essentidhviem@nt of WM in reasoning
(Carpenter et al., 1990; Goel & Grafman, 1995)pfmm-solving (Prabhakaran et al.,
2000), and comprehensi¢@ain et al., 2004). WM ability (as a latent varederived
from performance on the Tower of Hanoi puzzle [Hib289],N = 45), for example, has
been shown to discriminate high performers fromgarformers on the Raven’s
Matrices (Carpenter et al., 1990), where Raven'sritkss (Raven et al., 2003) served as
a measure of nonverbal reasoning ability due tatmeplexity, nonverbal format, and
requirement to manipulate novel information (MateskaLohman, & Snow, 1983; Snow,
Kyllonen, & Marshalek, 1984). In computer modedsided from the participants’
performance, the abilities for goal-maintenance theccapacity to remember items for
rule formulation were disabled, and the differeniogserformance on the Raven'’s
Matrices were eliminated. Thus, WM appeared tdrdmute to higher-level cognition
both through global processes, such as goal-mainten and through local processes,

such as the storage and manipulation of stimulkessary for problem-solving.
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COGNITIVE DEVELOPMENT

The integral role of WM in both intelligence andhér-order cognitive
processes highlights the importance of WM in nordelelopment. Measures of
cognitive performance have revealed that WM impsateoughout childhood,
adolescence, and into young adulthood, when magmitiee abilities seem to peak
(Gathercole et al., 2004) and that cognitive abgitincluding WM, steadily decline into
late adulthood (Kail & Salthouse, 1994; Park et2002). Two theories have been
proposed to explain these changes in cognitiveopaeince throughout childhood,
adolescence, and late adulthood: 1) the globaleigaamework, which suggests that a
single global factor, such as increased procesgirgd, results in an overall greater
processing capacity for cognitive abilities (Bagh& Smulders, 1995) and 2) the
neurocognitive-change framework, which suggestsitigividual brain structures and
functions are responsible for specific cognitivepiovements/declines (Pennington,
1994; Span et al.,1994). The global-capacity freork holds that general changes in
transmission times throughout the lifespan contcieases and decreases in overall
processing capacity, including the changes in WiMasfe and manipulation capacity that
occur. The neurocognitive-change framework, howedwelds that functional changes
within brain regions control increases and decieasenodality-specific processing
capacities (Baddeley, 2003), suggesting that Wivag® and manipulation capacity
changes throughout the lifespan occur with someegegf relative independence from
other cognitive processes. Additionally, it iseliik that these two models are not

mutually exclusive and may in fact be integraté@tgdr capacity improvements could
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occur in some brain regions while nonlinear funwdiicchanges could occur in other brain
regions.

Primary support for the global-capacity framewods ltome from cross-
sectional and longitudinal studies of changes at@ssing speed. The global-capacity
framework uses processing speed as the global misohanderlying improvements and
declines in cognitive abilities across the lifespagause processing speed has been
shown to mediate the age-related variations in itiwgrperformance (Fry & Hail, 1996;
Salthouse, 1996). Kail and Salthouse (1994), farmgde, used the normative data of
over 6000 individuals between the ages of 6 anth &Valuate the effects of age on
processing speed, measured by the Visual Matchasg ffom the Woodcock-Johnson
Tests of Cognitive Ability (Woodcock, McGrew, & Madr, 1990). The results indicated
that between the ages of 6 and 20 processing $peedsed linearly, between the ages
of 20 and 40 processing speed remained relativaigtant, and between the ages of 40
and 80 processing speed declined. When speedodssing was statistically controlled
for, the age-related variations in cognitive perfance, as measured by the Raven’s
Matrices (Raven et al., 2003) were reduced. Thidifig suggests that processing speed
as a global mechanism is responsible for the ingoreants and decline in cognitive
performance across the lifespan.

Processing speed as the global mechanism undgdiienges in cognitive
capacity has been further supported by evaluatibpsocessing speed as a mediator of
age-related changes in other cognitive abilitiey Hale, 1996 Kail, 1991). In one
study, the relationship between processing spedd, &id performance on the Raven’s

Matrices (Raven et al., 2003) as a way to undedstaa development of general fluid
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intelligence was evaluated (Fry & Hale, 1996). ‘Pheticipantsl = 214, aged 7 to 19)
completed four measures of processing speed, feasunes of WM, and the Raven’s
Matrices. Path analysis indicated that processpegd mediated improvements in WM,
and WM, in turn, mediated improvement on the Ravé&ftétrices. The authors proposed
a developmental cascade model of intelligence hithvage-related improvements in
processing speed led to improvements in WM, whictuin led to gains in fluid
intelligence. Thus, according to the global-cayeitamework, brain mechanisms
underlying processing speed underlie cognitive lbgwaent by leading to overall
improvements in processing capacity.

Although several studies have supported the globp&city framework, research
on the complexity of the component processes thagrlie cognitive abilities has
provided support for a neurocognitive-change fraorkwSpan et al., 2004). Stuss
(1992) first proposed that a cognitive supervissystem develops in a hierarchical
fashion, with more complex cognitive processes gingras specific brain regions
mature. This model suggested that individual meslahanage routine tasks, and that as
the tasks became more complex, a “supervisorysydteneeded to integrate processing
across modules. Stuss et al. (2005), for examgdently found support for this model in
a study of RT in patients with frontal lesioms< 38) and age-matched contrats<38).

All participants completed two RT tasks, the SimRIE (push button 1 when the letter
“A” appears) and the Choice RT (push button 1 wh€rappears and push button 2
when any other letter appears); the Choice RTreeglired greater attention. The results
indicated that both Simple RT and Choice RT wengdired in the superior medial lesion

group 6= 8;p=.02,p = .07, respectively but that the left dorsolateral frontal lesion
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group 6 = 10) and the inferior medial lesion group=14) were also significantly
slower than controls on the Choice RT tgsk (01,p = .07, respectively). This finding
suggested that different brain regions were intagrthe efficient completion of complex
functions, as different PFC regions were implicatden greater attention was required.
The authors used this finding to support the thélmay a PFC-mediated supervisory
system is recruited as demands on EFs, such asiatteéncrease.

Furthermore, research has raised questions alm®ubibuity of processing
speed as a mediator of changes in cognitive asildcross the lifespan (Span et al.,
2004). Tasks measuring response selection, resjamsition, WM, adaptive control,
and processing speed were given to children (mgan%2;n = 22), adolescents (mean
age: 15.4n = 17), adults (mean age: 24rils 21), and seniors (mean age: 68.% 19).
As expected, mean response latency was longee ichitdren, adolescent, and senior
groups than in the adult group on all tasks. Hawewhen processing speed was
statistically controlled, the age-related perforos®differences on the response selection,
response inhibition, WM, and adaptive control tediksppeared for the children and
adolescents when compared to the adults. The sehimwever, performed significantly
worse than the adults on all tasks even after obimty for processing speed. Although
global processing speed may help explain develomhenprovements in children and
adolescents, this finding suggests that additioreathanisms, such as the changes in
underlying brain regions, need to be considerdtarstudy of cognitive performance
changes across the lifespan.

The research supporting the neurocognitive-charageework suggests that

global processing capacity improvements alone d@ocount for the changes in
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cognitive performance that occur throughout theslifan, as cognitive abilities seem to
be linked to specific brain regions that a sup@mnyisystem integrates into a network
(Paus, 2005; Stuss, 2006). It is possible thatlifferent maturational trajectories of
different brain regions support the developmentatiiitation of different cognitive
processes (Mountcastle, 1997). Thus, understandempdividual developmental
trajectories of specific cognitive functions, sashWM, will assist in understanding the
relationship between cognition and brain functimmtighout the lifespan.
Executive Function (EF) Development

Research on the development of EF throughout abdldiand adolescence has
shown that performance improves along a lineagedtajy (Best et al., 2009; Cepeda,
Kramer, & Gonzalez de Sather, 2001; Huizinga, Dofaman der Molen, 2006),
consistent with the global-capacity framework. iEEonsidered to be a set of abilities
that use goal-oriented mental control, such astét® inhibition, set-shifting, and WM
(Miyake et al., 2000; St. Clair-Thompson & Gathdec@006) to solve complex
problems. Given the high correlations betweenetegnitive processes, these abilities
are often studied as a single construct (Best €2@09). The underlying processes
supporting the monotonic improvements in cognipeeformance, however, are not fully
understood, but again, these changes are consigtarthe global-capacity framework.

Cepeda, Kramer, and Gonzalez de Sather (20013l finat linear increases in EF
components during childhood, adolescence, andyimting adulthood could be explained
by increases in global processing capacity. Thegizants \ = 152, aged 7 to 82)
completed measures of processing speed (e.g., ©ogying), WM (e.g., Backward

Digit Span from the WAIS-R [Wechsler, 1981]), anegeutive control (e.g., a novel set-
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switching task that required participants to idigreither the integer that appeared or the
number of integers that appeared). An inverse &pstl function was found for RT on
the set-shifting task across the lifespan; howdirerar improvements in RT on both the
processing speed and WM tasks were found untike2@syof age. Furthermore, for the
subjects between the ages of 7 and 24, % §76) of the age-related variance of RT
could be accounted for by improvements in procegsspeed and WM. Although this
finding suggests that an increase in global praegspeed can account for EF
improvements, the individual components of EF wereconsidered separately.

In contrast, although Huizinga et al. (2006) fotimak improvements in EF (as
defined by WM, shifting, and inhibition componententinued to develop linearly into
young adulthood, the individual EF components folid different developmental
trajectories, more consistent with the neurocogeithange framework. The
participants (70 7-year-olds, 108 11-year-olds, 134ear-olds, and 94 21-year-olds)
completed the Wisconsin Card Sorting Task (WCSBNG& Berg, 1948) and the Tower
of London (ToL; Shallice, 1982) task, two commonbed measures of EF. Using
confirmatory factor analysis, WM and shifting wéoeind to be the two factors that best
explained overall improvements on these two measufr&F that occurred with age.
Furthermore, shifting ability increased from 7 years of age but not from 15 to 20
years of age; therefore, the ability to shift beawelifferent sets of information seemed to
be stable after age 15. In contrast, WM consistémproved from 7 to 21 years of age,
suggesting that WM continues to develop and impioteyoung adulthood. The

different developmental trajectories of the EF comgnts suggest that a single global
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factor may not fully account for observed developtakimprovements in cognitive
abilities.
WM Deveopment

Similar to developmental improvements observedhntie findings on
improvements in WM that occur with development hagen mixed in their support for
the global-capacity framework versus the neurodogrchange framework. Although
improvements in WM performance throughout childhaod adolescence seem to follow
a linear trajectory (Gathercole et al., 2004; Loeiat al., 2005; Swanson, 1999), as
would be suggested by the global-capacity framewmide qualitative changes in the
brain regions underlying these improvements thatiowith age are suggested when the
complexity of the WM task is considered (Best et2009). This suggests that although
cognitive abilities generally improve along lingggjectories, differences in the onsets
and rates of change occur, supporting the neurdtbegschange framework.

Improvements in visuospatial, verbal, and compiéd tasks also have been
found to be linearly related to age (Gathercolal.e2004; Swanson, 1999), as would be
expected in the global-capacity framework. Gatbleret al. had over 700 children
between the ages of 4 and 15 complete tasks frerivibrking Memory Test Battery for
Children (Pickering & Gathercole, 2001). All threemponents of WM were found to be
highly correlated with age (visuospatial WM = .979; verbal WMr? = .971; complex
WM, r? = .969). Similarly, Swanson (1999) had 778 papticits between the ages of 6
and 76 complete four WM tasks: two verbal WM tagksditory digit sequence and
semantic association) and two visuospatial WM tésiapping/directions and visual

matrix). Regardless of the modality, WM performaintcreased linearly with age, from
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6 to 20 years of age. These two studies providdeaee for the global-capacity
framework, as improvements in overall processimgacay might contribute to the
improved ability to store and manipulate informatis seen in the overall improvement
in WM performance.

When the complexity of the WM task has been ca@rsid, however, the strength
of the linear relationship between age and WM perénce has differed, thus suggesting
that qualitative changes in WM ability may occuthwége, as suggested by the
neurocognitive-change framework (Luciana et al30 Luciana et al. (2005) had
participants | = 133, grouped as 9-10 year olds, 11-12 year @Ri4,5 year olds, 16-17
year olds, and 18-20 year olds) complete four Wéksgnonverbal face recognition
memory, spatial delayed response, spatial workiamary, and spatial self-ordered
search). The results indicated that the simpletstsks, nonverbal face recognition,
showed no significant improvement with age and geemed to be fully developed by
age 9. However, as the tasks became more confldximprovements were observed
into adolescence (e.g., spatial location of anailgrowed improvement until age 12 and
the ability to self-organize showed improvemenilage 16). This study suggests that
different WM abilities emerge at different agedsipossible that nonlinear brain develop
underlies WM improvements, thus supporting the oeagnitive-change framework.

The cross-sectional developmental studies havershéi improvements to
follow monotonic developmental trajectories throwfliidhood into adolescence, but
studies also have shown differences in the onsetsades of these changes for specific
WM component processes (Luciana et al., 2005; ®tugk, 2004). Thus, these data

have provided mixed support for the global-capaaitgt neurocognitive-change
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frameworks. Cognitive models, however, are indirmeasures of brain function, and
attempts at more direct measures of the developaiehé brain bases supporting WM
have come through structural and functional neuagimg and lesion studies (D’Esposito
et al., 2000; Owen et al., 2005; Rypma, 2006).eétj a better understanding of the
relationship between the structural and functiama@nges in the brain and WM
improvements may clarify the cognitive findings.

BRAIN-BASES OF WM
Brain-bases of WM in Adults

Through the use of both neuroimaging and lesiodiss, the PFC has been
identified as having a key role in mediating WM dtians (Figure 9; D’Esposito, Postle,
& Rypma, 2000; Owen et al., 2005; Rypma, 2006)tHarmore, different brain regions
have been shown to be differentially activated delpgg on WM component-process
required, such as whether the task requires sigtptage or more complex manipulation
of information (Smith & Jonides, 1999), consistesith a hierarchical model of brain
organization (Badre, 2008; Petrides, 2005; Stug&e8&son, 1987).

Different brain regions are activated depending\tM demand and the
necessary recruitment of additional executive resmi(Dove, Rowe, Brett, & Owen,
2001; Levy & Rakic, 2000; Owen et al., 2005). OweleMillan, Laird, and Bullmore
(2005) performed a meta-analysis of studies usirg-back task to evaluate WM. The
n-back task requires participants to hold a seriésformation in the mind for an
undetermined length of time and to recall a spegice of information presented
tasks ago. Given the complex nature of this tdekbrain regions impacting different

stages of the WM process can be explored. Thia-aretlysis identified the
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ventrolateral prefrontal cortex (VLPFC; BAs 44, 43) as being activated in the most
routine tasks (e.g., ordered information) that negbasic storage and maintenance
(additionally, see Levy & Rakic, 2000; Rypma, 2Q06)owever, the meta-analysis
showed that the DLPFC (BAs 9, 46) tends to becattigeaas tasks became more
complex, such as when tasks required additionahtdin, selection, comparison, or
judgment (additionally, see Dove et al., 2001; Rgp2006). As tasks

increase in complexity and begin to require thedimation of multiple processes (e.qg.,
maintenance, manipulation, and attention simultask®, the orbitofrontal cortex (BAs

10 and 11) also becomes involved (Barby et al.pp01

Anterior/Rostral Posterior/Caudal

Figure 9.Major anatomical subdivisions of the human br&redmann’s Areas (BAs),
particularly those relevant to the frontal lobes aumbered. The BAs conventionally considered
to make up the DLPFC, VLPFC, and the orbitofroftaiitopolar cortex are shown.
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Additionally, the involvement of different PFC iegs varies depending on the
specific underlying WM processes involved, suckasng the encoding, maintenance,
and retrieval phases (D'Esposito et al., 2000; RypRrabhakaran, Desmond, Glover, &
Gabrieli, 1999). Motes and Rypma (2010), for exeemnpsed a partial-trial WM task as a
way to differentiate the PFC activity throughol task. For the full-trial version of
this task, participants were asked to encode 2leftérs, maintain the letters over a
delay, and judge whether the letters appearegilae set. For the partial-trial version
of this task, the participants engaged in vari@mmlinations of the encoding and
maintenance phases. By completing the partidktriifferences in brain activity during
these three distinct phases of WM could be bettegrdained. The results indicated that
the PFC was involved during the encoding phasedtn the 2 and 6 letter sets, however
the PFC was more active during the maintenanceepfioashe supra-capacity set (6
letters) than for the sub-capacity set (2 lettef®)is suggests that additional PFC
activation during supra-capacity WM tasks may reeneé the recruitment of additional
executive resources rather than route WM maintenéRgpma & Prabhakaran, 2009).
The evidence that WM is supported by multiple PE@ians further supports the
neurocognitive-change framework

Thus, the complexity of the WM task (such as bagicage or goal-oriented
manipulation) as well as the specific underlying Viicess involved (such as the
encoding, maintenance, or retrieval phase) leattsetdifferential use of regions within
the PFC (Motes & Rypma, 2010; Owen et al., 2008)hough performance on WM
tasks seems to follow a monotonic developmentpddtary with aggdGathercole et al.,

2004; Luciana et al., 2005), the neuroimgaginglasin studies suggest that specific
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brain-regions mediate specific components and gsa=of WM. Thus, WM
improvements might not be due to global brain cleargssociated with global capacity
increases but rather to local qualitative changeke functional activation underlying
WM processes that occurs with development.
Brain-Bases of WM in Children and Adolescents

Although few studies have been conducted to lodkeabrain-bases of WM in
children and adolescents, the early studies shatastiilar brain regions that underlie
WM in adults also underlie WM in children. Thonetsal. (1999) compared brain
activation in six children (aged 8-10) and six aslged 19-26) and found that similar
brain regions were activated during a visuosp&t®l task (participants visually
searched an array of boxes for a dot and indicatech box the dot had appearechin
trials back). These brain regions included thitrigl PFC, right superior frontal gyrus,
and bilateral inferior parietal cortex, althouglagtitative differences in functional
activation were not evaluated between the childrahthe adults. Similarly, Nelson et
al. (2000) studied brain activation in a group loifdren (N = 9, aged 8-11) during a
comparable visuospatial WM task and found a singitdivation pattern. Specifically,
the brain regions activated during the task weeerigjht DLPFC, bilateral superior
frontal gyrus, and right inferior parietal cortefgain, this study did not explore
quantitative functional activation differenceslies$e regions between the children and
adult groups. However, these studies are sigmifibacause they laid the foundation for
the interest in functional activation supporting Wiioughout development.

More recently, cross-sectional studies have fabhatlage accounted for a

significant portion of the differences in activatibetween groups of children,
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adolescents, and adults during visuospatial WMstasddingberg, Forssberg, and
Westerberg (2002) had participants< 13, aged 9 to 18) complete a visuospatial WM
task (required participants to remember the locaioeither 3 or 5 sequentially shown
dots in a 4 X 4 matrix of boxes and press a budfter a delay to indicate if a probe dot
appeared in a remembered location) while fMRI adada collected. A general linear
model was used to evaluate the main effect of aitin during the WM task and age.
This analysis revealed a positive correlation betwactivation and age in the bilateral
superior frontal sulcus (considered part of the Pight sidet = 4.72,p < .05; left side:
t = 4.48,p < .05) and in the intraparietal/superior parietaitex (the parietal cortex has
been implicated in spatial tasks; right sitle:4.75,p < .05; left sidet = 4.65,p < .05).
Similarly, Kwon, Reiss, and Menon (2002) collectstiRl data from participantaN =
23;naged 7-12 = & aged 13-17 = & aged 18-22 = 7) during a 2-back WM task.
Multiple linear regression analyses were appliethéodata to examine the individual
contributions of age and performance to functi@wivation. This analysis revealed that
significant age-related activation changes occuai@dss subjects during the WM task
after performance measures (response time andaaggwrere held constant (left PFC
peakt-score:p = .091; right PFC peakscore:p =.001). This result shows that age is a
significant linear predictor of functional activai changes in brain areas, such as the
PFC, that underlie WM tasks.

These studies suggest that functional specializatidrain regions contribute to
improvements in WM performance and provide furthgoport for the neurocognitive-
change model. However, the nature of qualitathanges in brain regions requires

further exploration as these studies only consitiénear relationships between
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performance and functional activation supporting Whkh age. Given the nonlinear
development of brain regions (see Giedd et al.91@®gtay et al., 2004), more complex
relationships, such as quadratic models based etdGit al.’s 1999 study that found a
guadratic relationship between PFC gray mattermeland age, warrant further
exploration.
CORTICAL DEVELOPMENT

Although cognitive measures show that WM (and otlogmitive processes) tend
to steadily improve with development from childhabdough adolescence, structural
imaging data show that the human brain follows @inear developmental pattern
(Gogtay et al., 2004; Johnson, 2001). Corticainaragions follow heterochronic
development, with individual brain regions eachdwing individual developmental
trajectories accounted for by bursts of synaptietigpment followed by neural pruning
that occur at different periods of development.
Synaptogenesis and Neural Pruning

Human brain development involves neuronal prolifera neuronal migration,
neuronal differentiation, synaptogenesis, and ss@a&limination (Gazzaniga, Ivry, &
Mangun, 2008). At birth, the human brain is anataifty fully developed — including
the cortex and its cortical layers observed in tdwald — aside from complete
myelination. The process of brain developmentieduring the first quarter of
gestation through the process of neuronal prolifemawhich refers to the genesis of the
cells that will make-up the cerebral cortex. Tfiscess is followed by neuronal
migration, as the new neurons travel farther anthéa outward to form the cortex; the

first neurons to develop form the deepest cortagrs, and the last neurons to develop
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form the outermost cortical layers. Up until th@nt, all neurons are identical.
However, after about five to six weeks of gestattbe dividing neurons become
differentiated dependent on their respective gestatages.

Synaptogenesis is the formation of the synapsasufons that occurs most
rapidly prenatally and in the first few months afvé@th. Because synapses are
responsible for the transmission of electrical algnthe primary way that neurons
communicate with each other, synapse connectie@naraimtegral factor in optimal brain
functioning (Gazzaniga et al., 2008). Researctshawn that the peak density of
synapses varies depending on the brain regionghlotther, 1990; Huttenlocher &
Dabholkar, 1997). However, neural pruning, or ggeaelimination, occurs well into
adolescence. Neural pruning is thought to incréaseptimal functioning of the human
brain by eliminating redundant or unnecessary na&itblua & Smith, 2004).

Although synaptogenesis significantly slows afteowat 15 months of life, the
overall volume of the brain continues to incredseughout adolescence (Giedd et al.,
1999). This continued increase in volume occutsoih the gray and white matter
structures, and this growth is likely a result ofithued dendritic branching, increased
myelination, and the addition of glial cells (Dellgeet al., 2001.) However, despite the
importance of synapse development, this stageah lgrowth slows long before humans
function at their optimal cognitive ability. Thuspderstanding the differences between
the development of gray and white matter structuiéshed light on the development

of complex cognitive abilities.
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Gray Matter Development

Gray matter brain regions gain volume rapidly dgtime first few years of life
and then begin to slowly lose volume with age thfmut preadolescence and
adolescence (Jernigan, Trauner, Hesselink, & TdlB91; Johnson, 2001; Sowell et al.,
2004). Gray matter refers to the layers of the brain whbe cell bodies are, and these
cells cluster together to form cortical structuf@sch as the PFC, temporal lobe, parietal
lobe, occipital lobe, and their respective gytie high density of cell bodies leads to
their grayish hue in comparison to other brainditmes (Gazzaniga et al., 2008). The
acquisition of gray matter is likely a result ohsyptogenesis initially and glial
development thereafter. The loss of gray mat@&trabcurs throughout adolescence is
somewhat more complex. The predominant explan&diothe gray matter loss is that it
is likely a result of neural pruning and the refivent of cortical pathways (Cowan,
Fawcett, O’Leary, & Stanfield, 1984; HuttenlocheD&bholkar, 1997; Sowell &
Jernigan, 1998). However, the refinement of MRIwgitjon and analysis has allowed
several studies to demonstrate robust gray maitame changes that support this theory
of neural pruning and refinement (Giedd et al.,%t3Biorgio et al., 2010; Gogtay et al.,
2004; Shaw et al., 2008). Interestingly, this astjioin and loss of gray matter during
development is not a linear or uniform processgi®es responsible for primary
functions (such as the visual cortex) undergophigess earlier, whereas brain regions
responsible for higher order functions (such as?R€) undergo this process later
(Gogtay et al., 2004). The changes in brain volseem to parallel cognitive abilities,
with higher order processes such as reasoningnipigrand inhibition slowly emerging

and maturing throughout adolescence
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Giedd et al. (1999) found that cortical structui@®bw a heterochronic
developmental pattern, with different brain struetufollowing unique growth curves.
The longitudinal study had participanié £ 149, 89 male, 60 female; aged 4.2 to 21.6)
undergo MRI scans every two years for up to eiglary. The data were analyzed using a
combination of techniques that allow individual wth patterns to be detected with both
cross-sectional and longitudinal data. The resunttigated that, as expected, the volume
of white matter increased linearly with age, withgignificant differences in this growth
between various cortical structures; the volumelufe matter seemed to increase
slightly more in males. Overall, the net increes@hite matter volume from age 4 to 22
was 12.4%. In contrast, the changes in gray madieme varied by region and seemed
to occur in a nonlinear fashion. In the frontdddpgray matter volume increases seemed
to follow a quadratic trend, with the peak gray teatvolume for females occurring at 11
years and the peak volume for males at 12.1 ya#ies;this peak, the gray matter volume
in the PFC began to decrease, resulting in a setdaring this age span. The gray
matter volume of the parietal lobe followed a sampattern, with the maximum size
occurring at 10.2 years for females and 11.8 yisnnales. The temporal lobe gray
matter, although following the same nonlinear paftdid not peak until 16.7 years in
females and 16.5 years in males. Unlike the athaical brain structures, the gray
matter in the occipital lobe seemed to follow &#inpath, with a steady increase in
volume in both sexes with age.

The heterochronic developmental pattern of théegpmwith different brain
structures following unique growth curves, is a¢mt that seems consistent with the

neurocognitive-change framework (Shaw et al., 2@8yell, Thompson, Holmes,
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Jernigan, & Toga, 1999; Thatcher, Walker, & Giudit@87.) Furthermore, it seems that
volume changes in the gray matter of the primasyai and auditory centers (located
primarily in the occipital lobe) precedes the depehent of higher order executive
functions, such as WM, associated with frontakl@dnction. The authors infer that
neural pruning, or a refinement of the neural palysy might be responsible for the net
loss of gray matter in the frontal cortex that asaduring adolescence. Indeed, although
the adolescent brain has the most gray matter velnound age 11 or 12, it might not be
at its most efficient stage of development, aslikaly occurs after neural pruning.

The studies exploring the changes in gray matiknwe with development
consistently find that the phylogenetically oldeaib regions, such as the lower-order
sensiomotor regions, complete development eavlieite high-order (and evolutionarily
newer) cortical regions, such as the PFC, do nmiptete develop until well into
adolescence (Giorgio et al., 2010; Gogtay et D42 Shaw et al., 2008; Sowell et al.,
1999). This hierarchical development provideshiertsupport for the neurocognitive-
change framework, as the brain regions responfibleigher-order processes, such as
reasoning and decision-making, rely on the intégmadf lower-order processes.
However, further exploration of the structural amat changes associated with
development and functional activation changesuhderlie cognitive tasks, such as
WM, is needed.

White Matter Development

In contrast to gray matter volume, the volume oiftevmatter seems to increase

linearly throughout adolescence and into youngtadol (Giorgio et al., 2010; Giedd,

2004); this increase in white matter volume codd/ie as a mechanism underlying the
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increase in global processing capacity as suggéstéeke global-capacity framework.
White matter refers to the axons of neurons, skeeatihmyelin, that form tracts
throughout the brain and connect structures; thelimgauses the axons to appear white
(Gazzaniga et al., 2008). Thus, the increasesitewnatter are likely a result of
increases in myelination; when myelin sheaths domdracts connecting brain regions,
the brain regions can communicate with each otstef and more efficiently (Filley,
2010). More specifically, this steady increas¢himmvolume of white matter throughout
adolescence is most profound in the frontal lolt@rpus callosum (Barnea-Goraly et
al., 2005; Gogtay et al., 2004; Perrin et al., 3008 the 2010 study conducted by
Giorgio et al., the DTI data revealed a relativélyady increase in white matter volume
with age, with only a slight difference in trajectdetween the four brain lobes.
Increases in white matter volume were observeterfrontal lobe and corpus callosum,
and in parts of the arcuate fasciculus and conicasg tract. As the volume of white
matter in these critical regions increases, higinder cognitive processes become more
refined; indeed, increases in white matter suppestall processing capacity
improvements in cognitive processes as suggestéukhylobal-capacity framework.
IMPLICATION OF BRAIN-BEHAVIOR RELATIONSHIPS

When both the structural brain changes and cognithprovements related to
development are considered, there are three pegsibdlictions: linear increases in white
matter volume could lead to increases in cognitagacity as suggested by the global-
capacity framework; regional heterchronicity inygraatter volume could lead to
gualitative changes in brain function as suggelbtetihe neurocognitive-change

framework; both increases in cognitive capacity eglonal hereochronicity occur and



66

thus suggest an integration of the two models.&lth the gray matter volume in the
PFC reaches its maximum size around 11 or 12 ydage, the subsequent decrease in
gray matter is likely a result of neural pruninglaefinement. The neural pruning
eliminates inefficient or unused pathways, whilghty-used and effective pathways
remain. These structural changes may result iquladtatively different use of brain
regions while engaging in cognitive tasks. Althbygrformance on cognitive measures,
such as measures of WM, may improve as a resualpcity increases, it is possible that
structural brain changes may also contribute ®dbserved improvement as suggested
by the neurocognitive-change framework.

Thus, the relationship between brain structuresbatcvior may be more
complex than linear activation patterns. Effordsdnbeen made to link cognitive
functions to specific anatomical regions and tokrhe relationships between changes in
behaviors and their respective underlying braincstres throughout development
(Lenroot & Giedd, 2006). Although cognitive proses seem to improve linearly, as
supported by the global-capacity framework, thera discrepancy between cognitive
and structural trajectories that this frameworksdoet account for; indeed, many brain
structures, such as cortical gray matter, folloguadratic trend with region-specific

peaks.
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APPENDIX B
Rationale, Aims, and Hypotheses

RATIONALE

The discrepancy in the developmental trajectore@s/ben structural changes in
brain regions mediating WM and performance on dbgnimeasures opens the question
of what changes occur in PFC functional activitgmarting WM with development.
Cross-sectional developmental studies of cognjisformance show that cognitive
abilities, including WM, follow monotonic developmtal trajectories through childhood
into adolescence. Although these cognitive improxetsmin WM have been explained by
increases in global capacity that occur with alge underlying mechanisms supporting
this proposed increase in capacity are not fulljarstood

Cross-sectional and longitudinal research on géweldpment of cortical brain
regions mediating WM functions reveals the hetemgitity of brain development.
Specifically, gray matter volume in the PFC seemfe®llow a quadratic developmental
trajectory, with the peak in gray matter volumeuwcng around 12 years of age; this
suggests that the PFC may undergo qualitative @saimgfunctional activation that
underlie WM improvement as suggested by the negritiee-change framework.
Indeed, this discrepancy suggests that the furaitidmanges within the PFC that support
WM may be more complex than linear increases oredees in activation, and could
possibly follow the same quadratic changes segnaiy matter volume. This finding
suggests that the improvements in WM with age atesimply a result of improved
processing capacity, but could reveal qualitativenges in PFC function that occur with

age.
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Establishing the relationship between PFC functiantvity supporting WM
and improvements in WM ability will fill an existingap in the literature that does not
fully account for the differences between developtakanatomical changes and
performance on cognitive measures of WM. fMRI agsk will allow developmental
models that integrate functional activation to é&&téd. Furthermore, by understanding
how the development of the human brain drives perdmce during integral cognitive
tasks, such as WM, a more holistic perspectiver@hkbehavior relationships will
emerge. This understanding of the brain’s develayrand its relationship with
cognitive tasks will drive future research to beitkentify, understand, and treat
cognitive atypicalities in childhood and adoles@&nc

AIMSAND HYPOTHESES
Aim: Using functional activation and whole-brain anayshis study seeks to find the
model that best accounts for age-related varighiliPFC functional activation during a
WM task. A linear regression model will be use@xplore the strength of the linear
relationship between functional activation and aae| a quadratic term will be added to
the regression model to explore the strength ofjtteglratic relationship with age in
order to consider potential nonlinear changes metional activation (Figure 10).
Hypothesis 1Functional activation in brain areas implicatedVM, such as the PFC,
will have a quadratic relationship with age, basedindings that structural changes in
gray matter volume in the PFC also have a quadw@titionship with age. This
hypothesis will be tested using a whole brain-agialto identify the brain regions where
there are significant changes in the amplituddnefBOLD signal related to age.

Hierarchical regression will be used after coninglifor the linear effects of age, the
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1. Spatially normalized
Percent Signal 2. Datamatrix for regression of percent signal-change on age and
Change Maps for age-squared at highlighted voxel
each participant

Participant % Signal

ID Change

S1 4 11 121
S2 5 15 225
S3 .6 14 196
S25 .3 14 196

Regression Equation for Linear Trend:
%signal-change = C + B[Age] + error equced

ForVoxel Level Significance Testof Linear Trend:
F=MS regression/MS resid ual

Regression Equation for Linearand Quadratic Trend:
%signal-change=C + B[Age] + B[Age?] + errory

ForVoxel Level Significance Test of Quadratic Trend:
F=error, /error . ceq

3. lllustrations of Linear and Quadratic Relations hips
014 = between Age and PercentSignal Change

012 =

g 0.1 +
Eo.os 1

E0.0G b

%004 -
002 -
0 . T T . T T . .
10 11 12 13 14 15 16 17 18 19

Age

Figure 10.Example of linear and quadratic relationships leetwfunctional activation in brain
regions supporting WM and age.
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effects of gender, and the effects of performaaceuracy, capacity [derived from
accuracy], and RT]). BOLD signal-change estimatifisbe regressed on linear and
guadratic models of the age of the participantdenprformance variables, gender
effects, and handedness are held constant. feé@agbed that the quadratic model will
account for significantly more of the variance Ifasasured by thEé-value) in BOLD
signal-change than the linear model, thus sugggthiat qualitative functional changes in
the PFC occur throughout adolescence.

Hypothesis 2Changes in performance will have a linear relathim with age, given that
WM improvements are observed with age. Capacitiybeithe primary measure of
performance; however, the effects of RT and acgqunalt be explored as well. The
performance variables will be tested with the samearchical modeling used to test
Hypothesis 1 (see Appendix D for an explanatiothefperformance variables used).
Exploratory Aim:The synthesis of the cognitive changes, as medisyreerformance
measures, and the functional changes in brainmegas measured by BOLD signal-

change, will be attempted.
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APPENDIX C
Description of the Samples

A cross-sectional design including both retrospecéind novel data was used.
Although the data constitute a sample of converdram two studies, all participants
completed the same fMRI WM task and the Digit Spaiotest from the WISC-
IV/WAIS-III as controls for both studies. The coleton of the WM task during the
fMRI session varied given the differing protocofseeach study; additionally, the order of
the sessions may have varied as the protocolsadiusted to best accommodate each
participant. Data were collected from 42 partioiga(ageM = 14 years; range = 11 to 18
years; 17 females; 5 left-handed). However, tha ftam one participant (16-year-old
right-handed male) were not included in the analykee to errors in fMRI data

acquisition (Figure 11).

Mnale
WFemale

# of Participants

1100 1200 1300 1400 1500 1600 17.00 1800

Age

Figure 11. Frequency counts for age and gender of partitipacluded in the study (N = 41).
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STUDY ONE

An fMRI Study of Amygdala Activation at Pre- and Post-Antidepressant Treatment
Among Adolescentswith Major Depressive Disor der

Purpose. This study sought to explore brain activation d#feces in adolescents
before and after antidepressant treatment (flunegttompared to healthy controls using
fMRI. The principal investigator was Rongrong ThbD., Assistant Professor at the
University of Texas Southwestern Medical Centddatas and Child Psychiatrist at
Children’s Medical Center Dallas. The study wagraped by the Institutional Review
Board at the University of Texas Southwestern MadBenter, and the study was
conducted according to the principles expresseldebeclaration of Helsinki.

Participants. Twenty-one healthy adolescents (aged 11-18; 13an8@lfemales;
3 left-handed) completed the fMRI WM task as péatheir participation in this study as
controls. These participants were recruited thino@gildren’s Medical Center Dallas
through the distribution of fliers to potentiallyalifying participants. The inclusion
criteria for the control participants required ttiay be between the ages of 11 and 18,
currently attending school, in good general mediesllth, of normal intelligence (i.e.
1Q>80 based on the WISC-IV if concerns about ilgethice became apparent), no
evidence of a past or present psychiatric disoatet,no reported psychiatric disorders in
any first-degree relatives. The exclusion critépiathe control participants required they
had not been taking psychotropic medications ferg#ist four weeks, had no concurrent
medical condition that would interfere with thedjgwor harm the participant, had no
contraindications to MRI scanning (e.g., metalligegts such as braces), and that no

females could be pregnant or lactating. At theslvas fMRI scan, the benefits, risks,
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confidentiality, and other aspects of the studyeneiplained to the parents and a written
description of the study was provided. Prior wtitey, written informed consent was
obtained from each participant’s legal guardiam tre adolescent provided their written
assent. During baseline fMRI scans, participantspeted the WM task, and these data
were used in the present study.
STUDY TWO

Middle School Brain Y ears Project

Purpose. This study sought to explore the effects of Stiatétgmory and
Reasoning Training (SMART), a curriculum developgdSandra Bond Chapman, Ph.D.
and Jacquelyn Gamino, Ph.D. at the University ofabeat Dallas to help adolescents
with ADHD on critical thinking skills and acadenperformance in middle school youth.
In addition to receiving the SMART interventionpartion of participants in this study
underwent neuropsychological, EEG, and fMRI evaduest pre- and post-SMART
intervention; the brain imaging component of thigdy was led by Michael Motes, Ph.D.
The study was approved by the Institutional Revidaards at the University of Texas
Southwestern Medical Center and the University@fak at Dallas, and the study was
conducted according to the principles expresselddrbeclaration of Helsinki.

Participants. As part of the fMRI task battery, 21 participardagdd 11-17; 12
males, 11 females; 2 left handed) completed the t48W. These participants were
recruited from Dallas-area schools through theitigion of fliers; some participants
were recruited through the SMART study and soméqeated as neurotypical controls.
Inclusion criteria for these participants requitedt they be between the ages of 11 and

18, currently attending school, in good generalig@dhealth, of normal intelligence (i.e.
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1Q>70 WASI, Wechsler, 1999), and no self-reportetany of a past or present
psychiatric disorder. The exclusion criteria floese participants required that they were
not currently taking psychotropic medications, hacconcurrent medical condition that
would interfere with the study, had no contraintimas to MRI scanning (such as
metallic objects such as braces), and that no Eswaduld be pregnant or lactating. At
the baseline fMRI scan, the benefits, risks, canftdhlity, and other aspects of the study
were explained to the parents and a written desmnijpf the study was provided. Prior to
testing, written informed consent was obtained femanh participant’s legal guardian,
and the adolescent provided their written assemtind the baseline fMRI scans, these

participants completed the WM task which was usetié present study.
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APPENDIX D
Additional Data Analyses/Results

COMPARISON OF PARTICIPANTS
Digit Span Scaled (DSS) Scores

Given that the participants were recruited froro tlifferent studies (see
Appendix C), efforts were made to ensure thatwwegdroups had comparable cognitive
skills and thus could be treated as a single samplee Digit Span subtest from the
WISC-IV (Wechsler, 2004) was used for all particifsaaged 11 through 16, and the
WAIS-III (Wechsler, 1997) was used for all partigijis aged 17 through 18. Scaled
scores normalized by age were calculated for eadfcjpant and were used as a rough
measure of cognitive performance.

An independent samplésest was performed to evaluate whether there was a
statistically significant difference in DSS scofiesn the WISC-IV/WAIS-III between
the participants from the Depression Study andMB8Y Study. The test was not
significant ato. = .05,t(39) = 1.297,p = .202. Participants from the Depression StiMdy (
=10,SD= 2.83) did not perform significantly differentath participants from the MSBY
Study M = 9,SD= 3.28), and thus could be treated as a cohesitgdn terms of
cognitive WM skills (Figure 12).

Additionally, correlations between DSS and otl@nple characteristics were
explored. DSS was highly correlated with both S£ .804,p < .001) and DSBr(=
.739,p <.001), as would be expected given that DSS &ggmegate of these scores.
Thus, DSS was not treated as a covariate of apamdkent measure of intelligence in

this study given its high correlation with DSF dp8B. Furthermore, a linear regression
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analysis was performed to evaluate whether theseansatistically significant
correlation between DSS scores and age. The sgnesnalysis was not significamt<
.140,p = .383), indicating that variability in this aggede measure of WM was not

related to age.

20.007

15.004

10,007

Digit Span Scaled (DSS)

5.007 -

0.00

Depl'essilon Study MSB‘T’IStudy
Study Group
Figure 12. Descriptive graph of Digit Span scaled scoreh@two samples.
Gender Differences
An exploration of gender was conducted to deteenfigender differences were
present across the behavioral measures. An indepesamplestest was performed to
evaluate whether there was a statistically sigaifidifference in DSS scores from the

WISC-IV/WAIS-III between males and females. Thsttwas not significant at= .05,
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t(39) = 1.204,p = .236. Thus, males and females did not varyifsogmtly on the rough
measure of cognitive ability used (DSS). An indefent samplestest was performed
to evaluate whether there was a statistically figait difference in RT between males
and females. The test was not significant at.05,t(39) = .724,p = .473. Thus, males
and females did not vary significantly on theirrebzand retrieval speed on the WM task.
An independent samplésest was performed to evaluate whether there vetatiatically
significant difference in DSF scores between matesfemales. The test was not
significant ato. = .05,t(39) = -.499,p = .620. Thus, males’ and females’ digit span did
not vary significantly. An independent sampiéast was performed to evaluate whether
there was a statistically significant differencéD8B scores between males and females.
Thet test was significant at = .05,t(39) = 2.448,p = .019, indicating that the males
performed significantly better than the femaled@B. However, the significant
relationship between gender and DSB can be expldig¢hree females’ low scores on
the DSB task which skewed the relationship betwgmrder and age in favor of males.
When the three females’ low scores were droppead fie analysis, thetest was no
longer significant at. = .05,t(36) = 1.682p = 1.01. Overall, males and females did not
vary significantly on the complex WM ability.
BEHAVIORAL MEASURES

In addition to the behavioral Digit Span task (DSKSB), indices of performance
on the WM task performed in the scanner (RT andraoy) were also recorded. RT was
calculated as the mean RTs on correct trials duliag-letter condition; RTs two-and-a-
half standard deviations above and below the meae discarded as outliers. The range

of RTs indicated that this was a robust measupedbrmance on the WM taski(=
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1098 ms, range = 451ms to 1501 ms). However, @thaccuracy was calculated (total
correct responses/total possible correct respahg@sy the 6-letter condition), accuracy
was not used as a measure of performance duask agiling effect. Only six
participants performed worse than 93% accurlty 2%, range = 67% to 100%).
Furthermore, capacity estimates were derived frooai@acy in the 6-letter condition
using Cowan'’s K (Cowan, 2001): K = (hit rate + eatrrejection rate) — 1 X N; where N
= set size (6). However, given that only 12 trisése completed in the task, capacity
estimates at the ceiling and also perfectly coreelavith accuracyr(= 1). Thus, only RT
was used an index of performance on the fMRI WN.tas
ADDITIONAL fMRI ANALYSES

A whole-brain analysis revealed a linear relatign&etween percent BOLD
signal-change and age in the right medial BA6. Ehmv, no clusters showing a
guadratic relationship between percent signal-chamgl age survived the thresholding
criteria. Thus, attempts were made to improvesstzdl power. However, even with the
use of the following analyses, no support was foas@ynificant quadratic relationship
between percent BOLD signal-change and age.
Group Leve

Wholebrain t-test. To determine the functional activation patternbriain
areas implicated in WM, such as the PFC, voxel-hisearchical regression was used.
Using hierarchical regression allowed for bothlthear effects of age (with the reduced
model) as well as any quadratic effects of ageh(tiié full model) in brain regions
supporting WM to be explored. A whole-braitest was used to identify voxels where

the mean percent signal-change estimates werdisagrily greater than zero (family-
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wisea = .05 and a voxel-level = .005; Figure 13). Next, only voxels showingitios
activation were considered, and these regions fuettger restricted to the cortex by
applying a mask of the cortical strip to the idéed regions. The resulting functional
activation mask was used in the analyses in oodegdtrict the number of voxels and
thus reduce the number of comparisons (i.e., vaikedt tests). To control for Type |
errors, the results were cluster-thresholded baesddonte-Carlo simulations (AlphaSim
software; Ward, 2000) so that surviving clusterseasignificant with a family-wise =
.05 and a voxel-level = .005. Clusters of 49 voxels were significant with a family-
wisea = .05, based on the simulations (1000 iterationafdataset having 11,558 voxels
[2 mm isovoxel], smoothness = 8 mm FWHM, clustgrairs of voxels having a
connectivity radius < 3.47 mm, thus having conmecfaces, edges, or corners at the
resampled voxel size).

In order to determine if a significant relationshigtween percent signal-change
and age emerged with the use of this functionakpeéull model that included age
squared as a quadratic predictor variable was amdine reduced mode that included
age. However, no clusters survived the threshgldiiteria. Even when the linear
effects of the covariates were removed (G, H, RSFPand DSB), no clusters survived

the thresholding criteria.
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Figure 13. Results of a whole brain t-test. The voxel-wise-sample t-test compared the mean
percent signal-change estimates to zero. Redllimwegoxels illustrate positive correlations,
where age increases were associated with higheslsitpange, and blue to cyan voxels illustrate
negative correlations, where age increases weoeiassd with lower signal-change.. Data were
cluster thresholded with cluster= .05 and voxed = .005.

Regionsof Interest (ROI) analysis. Based on previous research identifying the
parietal cortex and anterior/inferior regions o fAFC as underlying WM (Awh et al.,
1995; Baldo & Dronkers, 2006; Rypma et al., 199@rarchical regression analyses

were restricted to brain regions (ROIs) thoughirtderlie WM. ROls were drawn to
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isolate the DLPFC (BAs 6, 9, 46), VLPFC (BAs 44, 43%), parietal cortex (BA 7), and
inferior parietal cortex (BAs 39, 40; Figure 14y Eestricting the analysis to

predetermined brain regions, the number of voxaatsl thus the number of necessary t-

tests) was reduced.

Figure 14.ROls approximating Brodmann’s Areas.
The mean percent signal change within the ROI dutie 6-letter condition was
calculated for each participant. Hierarchicabfinregression was used to compare

variance reduction by the reduced regression m@dere percent signal-change = C +
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B[Age] + errotequced t0 a full regression model (where percent sigialnge = C +
B[Age] + B[Ag€e?] + error,) in each ROI to assess whether there was a signtfi
guadratic relationship between BOLD and age. H@&mew significant relationship
between age squared and percent signal-changeotvémund in any of the ROIs.
Additionally, even when all covariates (G, H, DESB, and RT) were controlled for, a
significant quadratic relationship between per@&®dt.D signal-change and age was not

found (see Table 10).

Table 10. Hierarchical Multiple Regression Analyses Predigtihe Quadratic
Relationship between Percent Signal-Change andvttethe Addition of Covariates

ROI 4 AR AF Roge dfl df2 p
Left BAG 24 .00z .081 -.607 1 34 777
Right BA6 115 .000 .002  -.104 1 34  .964
Left BA7 152 .002 .089  -.671 1 34 767
Right BA7 114 .021 .807  2.067 1 34 375
Left BA9 .164 .001 049  -.494 1 34 .82
Right BAS .031 003 .09¢ .73¢ 1 34 .761
Left BA39 .095 .003 106 -.757 1 34 747
Right BA 39 .106 .000 .013  -.263 1 34 910
Left BA 40 .146 .002 .085  -.657 1 34 461
Right BA 4C .087 012 .43, -153¢ 1 34 51F
Left BA 41 .309 .000 .000 .017 1 34  .993
Right BA 41 .18: .024  .98C  2.18; 1 34 .32¢
Left BA 45 .102 017  .62¢  -1.83¢ 1 34 .43
Right BA 45 .245 .002 .078 504 1 34 782
Left BA 46 .16¢ 006  .25¢  -1.12: 1 34 617
Right BA 46 .100 .005 174 -.967 1 34 679
Left BA 47 .07¢ .007 .241  1.15¢ 1 34 .627
Right BA 47 .296 .000 .003  -.112 1 34  .957

Note.All values reported are for the full model (BOLDAge + G + H + RT + DSF +
DSB + Agé). RT = response time; G = gender; DSF =digit Sipanard; DSB = digit
span backward.
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One-way ANOVA. In addition to the planned hierarchical regressinalyses,

a one-way analysis of variance was performed ttuatathe relationship between
percent signal-change and age across the whole bféie independent variable, age,
was broken into three groups: young participanisnfmrised of the 14 youngest
participants), middle participants (comprised @& tiext oldest 14 participants), and old
participants (comprised of the 13 oldest particiganThe ANOVA yielded no
significant clusters (clusters146 voxels, family-wise. = .05), which indicated that
there was no regions of activation that signifibadtffered between the three age
groups.
Image L evel

Smoothing: Gaussian kernels. Gaussian kernels are applied to the BOLD data
in order to evenly distribute the error acrossedptermined space (based on the
smoothing kernel width) and improve the signal-tise ratio (AFNI software; Cox,
1996). Although a conventional Gaussian kern8hisn, the most effective smoothing
parameter for individual data sets is unknown. sTliie data were re-analyzed using two
additional Gaussian kernels in order to see ifithele-brain hierarchical regression
analysis exploring both the linear and quadrafitienships between age and percent
signal-change was significant. However, neithBmen Gaussian kernel or a 12mm
Gaussian kernel revealed any brain regions thatetigignificant quadratic relationship
with age.

Removal of poor performers. A qualitative evaluation of the data revealed tha
one participant achieved only 67% ACC. Thus, pligicipant was dropped from the

analysis. However, the hierarchical regressioityaisadid not reveal any significant
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clusters indicating a quadratic relationship betweercent BOLD signal-change and
age.

Removal of poorly registered images. A qualitative evaluation of the data
revealed that one participant’s functional datarditialign well with her anatomical data,
which could result in voxel-loss at the group levE&hus, this participant was dropped
from the analyses. However, the hierarchical regjom analysis did not reveal any
significant clusters indicating a quadratic relatibip between percent BOLD signal-
change and age.

Removal of participantswho moved in the scanner. Although motion
correction parameters were applied, each partitpdata was evaluated to identify
participants who moved their heads more than 1 head movements during data
acquisition can create noise in the BOLD signdhestes. Three participants were
identified who moved more than 1 mm, and thesedqgiaants were dropped from the
analyses. However, the hierarchical regressiolysisadid not reveal any significant
clusters indicating a quadratic relationship betwgercent BOLD signal-change and

age.
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