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Cross-sectional developmental studies have shown working memory (WM) to 

follow monotonic developmental trajectories through childhood into adolescence.  In 

contrast, structural neuroimaging studies have shown that several brain regions, such as 

the prefrontal cortex (PFC), follow nonlinear developmental trajectories from birth 

through late adulthood.  The present study sought to explore the relationship between 

functional activation in brain regions supporting WM and age throughout adolescence.  

 Forty-two healthy adolescents (aged 11 to 18) completed a delayed-response 

WM task while functional magnetic resonance imaging (fMRI) data were collected. 

Participants studied either one or six letters (3.5 seconds), remembered the items over a 
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delay (5 seconds), and then judged whether a single probe letter was in the studied set 

(within 2.5 seconds).  An fMRI blocked design was used: four blocks per set-size and 

three trials per block. Additionally, the participants completed the Digit Span subtest 

from the Wechsler intelligence tests in order to obtain behavioral measures of WM. 

Hierarchical regression analyses were used to evaluate linear and quadratic 

relationships between WM task-related signal-change per voxel and age while evaluating 

the potential mediating effects of WM indices (response time [RT], digit span forward, 

digit span backward).  Linear relationships were found in right medial Brodmann’s Area 

(BA) 6, right cerebellum, and left BA34 when the linear effects of gender, handedness, 

response time, digit span forward, and digit span backward were controlled for 

statistically.  Thus, activation increased with age within these regions, but the linear 

trends were being suppressed by the covariates. 

  Activation on the WM task increased with age in right medial BA6 when the 

effects of WM indices, as measured in the present study, were removed.  The separate 

relationship between WM capacity and right medial BA6 activation suppressed the 

detection of the relationship between right medial BA6 activation and age. The data 

support developmental, possibly maturational, changes in the role of medial PFC in WM 

that are independent of WM ability measures used in the present study.  This finding has 

implications for broad theories about the development of WM and other cognitive 

abilities that allow for the identification of both normal and deviant developmental 

trajectories. 
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SECTION ONE 
Main Findings 

Introduction 

The present study explored the developmental trajectory of prefrontal cortex 

(PFC) activity supporting working memory (WM) using functional magnetic resonance 

imaging (fMRI).  Cross-sectional developmental studies have shown WM performance, 

based on cognitive testing, to follow monotonic developmental trajectories through 

childhood into adolescence (see Best, Miller, & Jones, 2009; Fry & Hale, 1996; 

Gathercole, Pickering, Ambridge, & Wearing, 2004; Kail & Salthouse, 1994; Luciana, 

Conklin, Hooper, & Yarger, 2005; Span, Ridderinkhof, & van der Molen, 2004; 

Swanson, 1999).   Although WM performance improvements have been attributed to 

increases in global capacity that occur with age, the underlying neural mechanisms 

supporting proposed increases in capacity are not fully understood (Gathercole et al., 

2004; Luciana et al., 2005; Swanson, 1999). In contrast to global capacity predictions, 

structural neuroimaging studies have shown that several brain regions follow nonlinear 

developmental trajectories from birth through late adulthood (Giedd et al., 1999; Giorgio 

et al., 2010; Gogtay et al., 2004). The nonlinear development of brain regions suggests 

that cognitive improvements might result from more “qualitative” changes within cortical 

structures (Gogtay et al., 2004; Johnson, 2001; Shaw et al., 2008; Span et al., 2004; Stuss 

et al., 2005) rather than from more global “quantitative” changes in neural efficiency that 

support an overall greater processing capacity (Gathercole et al., 2004; Kail & Salthouse, 

1994). 

WM is a core cognitive construct that consists of a system of processes that allow 

for the temporary maintenance and manipulation of information in the mind (Baddeley, 
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1981). WM is composed of multiple component processes (Baddeley, 1981; Miyake & 

Shah, 1999).  One multi-component model of WM includes a central executive function 

that is responsible for the processes mediating encoding, manipulation, and retrieval 

(Baddeley, 1981).  This model also includes the phonological loop, mediating the storage 

of verbal information, and the visuospatial sketchpad, mediating the storage of visual and 

spatial information.  Additionally, this model includes the episodic buffer, mediating the 

integration of data into meaningful pieces (Baddeley & Logie, 1999; Repovs & Baddeley, 

2006).  

Thus, WM consists of both storage and manipulation processes (Baddeley, 1981; 

Baddeley & Hitch, 1974).  WM storage capacity has been shown to be limited (Brenner, 

1940; Cowan, 2001; Luck & Vogel, 1997; Miller, 1955).  Cowan (2001), for example, 

suggested that WM capacity is limited to 4 +/-1 items regardless of the format (e.g., 

verbal or visual) of the stimuli being remembered. When the to-be-remembered 

information exceeds these capacity limitations, however, WM executive processes can be 

recruited to reorganize or chunk the information to fit within WM capacity limits (Cowan 

2001; Miller, 1955).  In addition to the reorganization of information into more 

manageable chunks, executive processes can also be recruited for more complex tasks, 

such as when the task requires the manipulation of computations or mental imagery 

(Kozhevnikov, Motes, & Hegarty, 2007; Seyler, Kirck, & Ashcraft, 2003).  The 

integrated use of these component processes into overall WM ability is integral to higher 

order cognitive processes, as has been demonstrated by correlations between measures of 

WM and intelligence (Engle, Tuholski, Laughlin, & Conway, 1999), reasoning 

(Carpenter, Just, & Shell, 1990; Goel & Grafman, 1995), problem-solving (Prabhakaran, 
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Narayanan, Zhao, & Gabrieli, 2000), and comprehension (Cain, Oakhill, & Bryant, 

2004).   

WM indices are often used to measure WM as a single construct (Miyake et al., 

2000; St. Clair-Thompson & Gathercole, 2006) in order to distinguish WM from other 

executive functions (EF), such as inhibition and attention.   However, the divergence of 

WM indices also has been demonstrated and provides further support that WM consists 

of unique underlying component processes (Miyake, Friedman, Rettinger, Shah, & 

Hegarty, 2001; Schneider-Garces et al., 2009).   In a latent variable analysis of verbal and 

visuospatial WM capacity, digit span forward was found to load onto a factor that 

included word span and letter span and thus was said to represent WM storage (Kane et 

al., 2004).  Although, digit span forward as a measure of WM capacity is affected by the 

use of manipulation processes (i.e., "chunking", Cowan, 2001; Miller, 1955), digit span 

backward is considered to more heavily involve the recruitment of executive resources in 

order to reorganize the set of numbers (Wechsler, 2008), and digit span backward has 

been shown to correlate more strongly with measures of intelligence than digit span 

forward (Miyake & Shah, 1999; Wechsler, 2008).  Finally, response time (RT) often has 

been used to index WM search and retrieval speed (Rypma & D’Esposito, 1999; 

Sternberg, 1966), and retrieval speed has been shown to increase with development and 

to be distinct from WM capacity (at least in young children, Cowan, Saults, Nugent, & 

Elliot, 1999).    

Several measures of WM (such as RT on WM tasks and information 

manipulation) have been shown to improve along monotonic trajectories throughout 

childhood, adolescence, and into young adulthood, when many cognitive abilities seem to 
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peak (Cowan, Saults, & Elliot, 2002; Gathercole et al., 2004; Swanson, 1999).   One 

explanation for the linear relationship between cognitive measures of WM and age is the 

global-capacity framework.  This framework holds that general changes in cognitive 

transmission times throughout the lifespan control increases and decreases in overall 

processing capacity, including the changes in WM storage and manipulation capacity that 

occur (Bashore & Smulders, 1995; Fry & Hail, 1996; Salthouse, 1996).  Thus, 

improvements on indices of WM, perhaps due to decreases in transmission times between 

WM and other relevant systems, may mediate age-related improvements in overall WM 

ability. 

An additional explanation for the differential development of WM abilities is the 

neurocognitive-change framework.  This framework holds that functional changes within 

brain regions control increases and decreases in modality-specific processing capacities 

(Pennington, 1994; Span et al.,1994), suggesting that WM storage and manipulation 

capacity changes throughout the lifespan occur with some degree of relative 

independence from other cognitive processes.  The different developmental trajectories 

for storage and manipulation components of WM, for example, have been observed based 

on the complexity of the WM task.  One study showed that a simple WM task, nonverbal 

face recognition, showed no significant improvement after age nine, but with more 

complex tasks (e.g., spatial self-ordered search), WM improvements were observed into 

adolescence (Luciana et al., 2005).  Thus, global processing capacity improvements alone 

do not fully account for the changes in cognitive performance that occur throughout the 

lifespan. Developmental changes in cognitive abilities also may be linked to maturation 

of specific brain regions (Mountcastle, 1997; Paus, 2005; Stuss, 2006).   
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The identification of spatially distinct brain regions mediating WM component 

processes is also consistent with the neurocognitive-change framework. Neuroimaging 

studies using WM have shown that WM functions are tied to discrete brain regions 

(Baldo & Dronkers, 2006; D’Esposito, Postle, & Rypma, 2000; Klingberg, Forssberg, & 

Westerberg , 2002; Kwon, Reiss, & Menon, 2002; Owen, McMillan, Laird, & Bullmore, 

2005; Rypma, 2006).  The material being remembered, the complexity of the WM task 

(such as basic storage or goal-oriented manipulation), and the specific underlying WM 

process involved (such as the encoding, maintenance, or retrieval phase) lead to the 

differential use of regions within the PFC, parietal cortex, and other brain regions (Barby, 

Koenigs, & Gafman, 2010, Motes & Rypma, 2010; Owen et al., 2005, Rypma, 2006; 

Smith & Jonides, 1999).  Based on the neurocognitive change framework, differential 

maturation rates in these regions would lead to different developmental trajectories for 

WM component processes.   

Further support for the neurocognitive change framework has been generated by 

research on the anatomical development of the brain.  Research on structural brain 

changes has shown that several regions follow nonlinear developmental trajectories from 

birth through late adulthood (Giedd et al., 1999; Giorgio et al., 2010; Gogtay et al., 2004; 

Johnson, 2001).  For example, the gray matter volume of the PFC (and parietal cortex) 

follows a quadratic developmental trajectory; the gray matter volume of the PFC 

increases from birth, peaks around 12 years of age, and then begins to decrease (Giedd et 

al., 1999). This loss of gray matter volume has been hypothesized to be a function of 

neural pruning as neural circuits are refined (Giedd et al., 1999; Giorgio et al., 2010; 

Gogtay et al., 2004; Shaw et al., 2008).  The region-specific maturation of the brain is not 
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consistent with global capacity increases but rather suggests that the different 

developmental changes in the function of specific brain regions underlie developmental 

changes in unique components of WM. 

Previous cross-sectional studies exploring functional activation in the PFC during 

WM tasks found that age accounted for a significant portion of the differences in 

activation between groups of children, adolescents, and adults during visuospatial WM 

tasks (Klingberg et al., 2002; Kwon et al.2002).  However, these studies identified 

increases in specific brain regions rather than global increases in activation.  For 

example, Klingberg, Forssberg, and Westerberg (2002) found region-specific activation 

in the superior frontal, intraparietal, and occipital areas, with older children showing 

greater activation in the superior frontal regions.  Additionally, Kwon, Reiss, and Menon 

(2002) found region specific activation in the DLPFC and superior frontal gyrus in 

children, which demonstrated that children activate similar brain regions during a WM 

task as adults. However, these studies classified participants into discrete cohorts of 

younger and older children and did not explicitly test for linear and nonlinear 

relationships, per se, between functional activation and age.  

The present fMRI study sought to explore the relationship between functional 

activation in brain regions supporting WM and age throughout adolescence by testing for 

both linear and nonlinear activation changes as a function of age to generate support for 

current models of brain development.  If the relationship between age and functional 

activation during a WM task follows a linear trajectory, support would be generated for 

the global-capacity framework.  However, there is a discrepancy between cognitive and 

structural trajectories for which this framework does not account.  Indeed, many brain 
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structures, such as cortical gray matter, follow a quadratic trend with region-specific 

peaks.  Thus, if the relationship between neural activity supporting WM and age follows 

a non-linear (e.g., quadratic) developmental trajectory, support would be generated for 

the neurocognitve-change framework by suggesting that changes in function are based on 

different maturation rates of brain regions rather than global capacity improvements that 

occur with development.     

Additionally, the present study examined the impact of various measures of WM 

as covariates.  Percent signal-change has been shown to vary with task performance and 

other behavioral measures of individual differences (Gray, Chabris, & Braver, 2003; 

Motes, Biswal, & Rypma, 2010; Rypma & D’Esposito, 1999).  Given that WM is 

comprised of multiple component processes, the effects of different indices of WM on 

brain activation patterns will be explored by evaluating mediation and suppression effects 

using different measures of WM processes.  On the one hand, specific WM components 

might account for age-related changes in functional activation, thus allowing for the 

identification of WM functions undergoing change with brain development.  On the other 

hand, statistically controlling for the WM indices might account for variability in the 

fMRI signal that is masking age-related activation changes, thus allowing for the 

identification of developmental changes in functional activation that are independent of 

the WM constructs measured but still related to the WM task.  Thus, behavioral measures 

of WM aimed to capture performance, storage, and manipulation components of WM 

were included in the study in order the better understand the relationship between age and 

functional brain activation. 
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Method 

Participants 

 Forty-two participants (age M = 14; range = 11 to 18; 17 females; 5 left-handed) 

participated in the study.  However, the data from one participant (16-year-old right-

handed male) were not included in the analyses due to artifact introduced during fMRI 

data acquisition.  Participants were recruited through ongoing studies at both Children’s 

Medical Center Dallas and the University of Texas at Dallas Center for BrainHealth, 

primarily through advertisements placed at these institutions, local middle schools, and 

the surrounding communities. All participants were prescreened for MRI contra-

indicators and for medical, neurological, and psychiatric illness.   

Procedure 

All studies were approved by the University Institutional Review Board and were 

conducted according to the principles expressed in the Declaration of Helsinki.  The 

benefits, risks, confidentiality, and other aspects of the studies were explained to the 

parents and a written description was provided.  Prior to testing, written informed consent 

was obtained from each participant’s legal guardian, and the adolescent provided their 

written assent. 

WM Task. Participants completed a blocked-design, WM item recognition task 

while fMRI data were collected.  Item recognition tasks have been used to study WM 

because the encoding, maintenance, and decision phases can be examined independently, 

and the set size can be manipulated to create sub- and supra-capacity WM sets (Motes, 

Kojori, Rao, Bennett, & Rypma, 2010; Rypma & D’Esposito, 1999; Sternberg, 1966).  
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Both a 1-letter condition and a 6-letter condition were used, with the 1-letter condition 

serving as the baseline condition and the 6-letter condition taxing the WM system. 

  Uppercase letters (B, F, G, H, J, L, M, N, Q, R, S, W, and X) were used as the 

encoding and probe stimuli, and adjacent letters in the English alphabet did not appear 

alphabetically.  The background was black, and the letters were white. The encoding 

stimuli appeared on the upper half of the screen in a white rectangular box, and the probe 

stimuli appeared on the bottom half of the screen within a small white box; the outlines 

remained on the screen throughout the trials.  If the probe stimulus matched a letter from 

the encoding stimuli, the participants were to press a single button.  If the probe stimulus 

was not present in the encoding set, the participants were not to press the button (Figure 

1). The use of a single button (rather than two buttons, one for “yes” and one for “no”) 

was due to the single response criterion used across other tasks to ensure the tasks were 

easy enough for younger participants to successfully complete. 

 

 

Figure 1. Examples of the 1-Letter trial and 6-Letter trial of the WM task. 
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For the 1-letter condition, the participants were to encode the one letter during an 

encoding phase (3.5 s), maintain this letter over a delay (5 s), and decide whether a single 

probe letter was in the studied set (2.5 s).  For the 6-letter condition, the participants were 

to encode six letters during the encoding phase (3.5 s), maintain these letters over a delay 

(5 s), and then judge whether a single probe letter was in the studied set (2.5 s).  A 1 s 

delay occurred between trials. An fMRI blocked design was used: four blocks per set-size 

and three trials per block. The 1-letter condition always appeared first.  The completion 

of the WM task during the fMRI session varied given the differing protocols of each 

study; additionally, the order of the scans completed at the fMRI session may have varied 

as the protocols were adjusted to best accommodate each participant.  RT (calculated for 

accurate responses only) was recorded for all trials in the 6-letter condition to be used as 

an index of WM, as RT has been said to measure search and retrieval speed on Sternberg 

WM tasks (Kirschen, Chen, & Desmond, 2010; Rypma & D’Esposito, 1999; Sternberg, 

1966). 

In order to determine functional activation changes, an echo planar imaging (EPI) 

sequence was used to measure the blood-oxygenation-level dependent (BOLD) signal.  

As neural activity increases, there are increased metabolic demands, and these increased 

metabolic demands trigger a compensatory blood flow response to the brain region that 

brings oxygen-rich blood to the region (Ogawa & Lee, 1990).  This hemodynamic 

response (HDR) leads to the change in the magnetic resonance signal by increasing the 

ratio of oxygenated to deoxygenated hemoglobin present in a single voxel, allowing for a 

stronger signal.  However, the HDR does not happen instantaneously in response to a 

stimulus, as there is a slow building of increased oxygenation followed by a slow decline 
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in oxygenation after the task is complete (Figure 2).  Thus, using a blocked fMRI design 

allows for the changes in HDR to be measured.  Furthermore, the use of a 1-letter control 

condition rather than a resting state control condition allows the basic visual, motor, and 

attention demands to be parceled out from the increased WM demands that occur in the 

6-letter condition. 

 

 Figure 2. Visual depiction of the idealized HDR for an fMRI blocked design. Four blocks of 1-
letter and 6-letters were used. 
 

Digit Span.  The impact of component processes underlying WM on the 

relationship between improvements in WM and age was explored by selecting indices of 

overall WM that have been shown to measure these different components.  Research has 

suggested that span tasks capture different components of WM (Schneider-Garces et al., 

2009).  Digit span forward has been said to measure a basic capacity/storage component 

of WM limited by attention (Engle & Kane, 2004; Kane et al., 2006).  Digit span 

backward, a task requiring a manipulation component, has been said to require the 
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recruitment of executive resources (Hale, Hoeppner, & Fiorell, 2002; Sattler, 2001; 

Wechsler, 2008).   Thus, tasks measuring both span forward (an index of capacity) and 

span backward (an index of manipulation) were included.  Participants completed the 

Digit Span subtest from either the Wechsler Intelligence Scale for Children, 4th Edition 

(WISC-IV; Wechsler, 2004) or the Wechsler Adult Intelligence Scale, 3rd Edition 

(WAIS-III; Wechsler, 1997).  Participants aged 11 through 16 completed the WISC-IV, 

and participants aged 17 through 18 completed the WAIS-III.  Raw Digit Span Backward 

(DSB), raw Digit Span Forward (DSF), and scaled scores on the Digit Span subtest 

(DSS) were recorded for each participant.   

Additionally, gender and handedness were treated as covariates to further control 

for related variability.  Gender was considered in the behavioral analyses, and gender and 

handedness were considered in the fMRI analyses.  Age was calculated in months, rather 

than years, to better capture the age-related variability within the sample of adolescents.  

Image Acquisition 

 High-resolution anatomical images (MPRAGE; 1 mm isovoxel; sagittal; TE = 

3.7 ms; flip angle = 12°) and functional images (EPI; voxel = 3.5 x 3.5 x 4 mm; 36 

slices/volume; 147 volumes/run; TR = 2000 ms, TE = 30 ms; flip angle = 70°; matrix = 

64x64; axial; inferior to superior interleaved) were collected on a Philips Achieva 3T 

scanner equipped with an 8-element, SENSE, receive-only head coil.  Twelve “dummy” 

scans occurred at the beginning of each functional run to remove T1 saturation effects. 

Image Analysis 

 The fMRI data were analyzed using AFNI software (Cox, 1996).  For each 

participant, the data were corrected for slice-timing offset and motion, and then spatially 
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filtered with a Gaussian kernel (FWHM = 8 mm).  The data for each voxel was scaled so 

that the deconvolution parameter estimates were expressed in terms of percent signal-

change (i.e., 100 * yt/My, t= time point).  These preprocessed BOLD time-series per 

voxel were deconvolved using modified linear regression with the regressor constructed 

by convolving a HDR model (a gamma-variate function; Cohen [1997] parameters b = 

8.6, c = 0.547; max amplitude = 1.0) with a box-car task-reference function 

differentiating 6-letter trial blocks from 1-letter trial blocks (with 1s for time-points 

within 6-letter blocks and 0s for time-points within 1-letter blocks).  This allowed for the 

estimation of percent signal-change during the 6-letter condition. Furthermore, regressors 

modeling linear and quadratic trends over the entire run and the motion correction 

parameters were also included in the regression model to remove these nuisance variables 

from the percent signal-change estimates. The resulting percent signal-change matrix 

(yielding percent signal-change per voxel for the 6-letter block relative to the 1-letter 

block) for each participant was spatially normalized to Talairach space via a 12-

parameter affine transformation (Talairach & Tournoux, 1988; resampled to a 2 mm 

isovoxel resolution) and FSL’s nonlinear warping algorithm was applied to improve 

registration (FMIRB Analysis Group; Woolrich et al., 2009). 

Results 

Behavioral Results 

Indices of WM ability included RT (calculated as the mean RTs for accurate 

responses in which the target was present during the 6-letter condition; RTs two-and-a-

half standard deviations above and below the mean were discarded), digit span forward 

(as a measure of WM capacity), and digit span backward (as a measure of WM 
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manipulation).  Although accuracy was calculated (total correct responses/total possible 

correct responses during the 6-letter condition) as an additional measure of performance, 

accuracy was not used as a measure of performance due to a task ceiling effect; only six 

participants performed worse than 93%.   

Correlations between the behavioral measures were computed to examine the 

degree to which the indices were measuring unique WM processes. Table 1 shows the 

Table 1.  Correlations between covariates. 
 
 Digit Span Forward Digit Span Backward Age Gender 

 
Response Time     -.051 .119 -.362* -.115 
Digit Span Forward  .290 .204 .080 
Digit Span Backward   .260 -.365* 
Age    .053 

* p < .05.  

Pearson correlations between the three behavioral indices of WM: RT, digit span 

forward, and digit span backward. Age and gender (coded as 0 = males and 1 = females) 

also were included to determine if these sample characteristics were related to the WM 

indices.   None of the WM measures were strongly or significantly correlated with each 

other. Although digit span forward and digit span backward were weakly correlated, r = 

.29, the low correlation suggests that there is a substantial portion of unique variance for 

each measure that justifies treating them separately in the analyses of the BOLD-age 

relationships. The weak correlation this study found between digit span forward and digit 

span backward is consistent with previous correlations between these two constructs on 

the WAIS-IV (r = .3; Wechsler, 2008).   

Analyses determining both linear and nonlinear relationships between age and 

each index of WM were performed, as research has found that improvements in WM 
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ability on a variety of tasks follow monotonic developmental trajectories throughout 

adolescence (Gathercole et al., 2004; Schneider-Garces et al., 2009).  Additionally, each 

index of WM, along with gender, was treated as a covariate in the analyses in order to 

explore potential mediation and suppression effects on the relationships between each 

index of WM and age. 

 RT linear effects.  Hierarchical multiple regression was used to explore the 

linear relationship between RT and age and the potential mediating and suppressing 

effects of the covariates.  Table 2 shows the results from the tests of linear relationships 

between performance on the WM task and age.  The results of a linear regression analysis 

indicated that RT decreased as age increased (r = -.362, p = .02), indicating that search 

and retrieval speed increased with age. 

Table 2.  Hierarchical Multiple Regression Analyses Predicting the Linear Relationship 
between RT and Age with the Addition of Covariates 
 
 R2 

∆R2 ∆ F ßage df1 df2 p 
 

RT = Age .131  5.876 -.362 1 39 .020* 
        
Hierarchical Regression        
Reduced Model: G .013  .525  1 39 .473 

Full Model: G + Age .140 .127 5.609 -.357 1 38 .023* 
        
Hierarchical Regression        
Reduced Model: DSF .003  .103  1 39 .750 
Full Model: DSF + Age .131 .129 5.637 -.367 1 38 .023* 
        
Hierarchical Regression        
Reduced Model: DSB .014  .555  1 39 .461 
Full Model: DSB + Age .179 .165 7.660 -.421 1 38 .009** 
        
Hierarchical Regression        
Reduced Model .026  .268  3 37 .808 
    G + DSF + DSB        

Full Model .181 .155 6.807 -.416 1 36 .013* 
    G + DSF+ DSB + Age        

 
Note. RT = response time; G = gender; DSF = digit span forward; DSB = digit span 
backward. 
* p <.05, **p < .01.    
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Next, the impact of gender and WM behavioral indices was considered in order 

to determine if these covariates accounted for the relationship between RT and age.  

Three hierarchical linear regression analyses were conducted: each covariate (gender, 

digit span forward, digit span backward) was included in the reduced model (to remove 

variance in RT associated with these variables), and age was added to the full model to 

determine if age added to the regression model produced a significant increase in the 

variance accounted for. Last, a hierarchical regression analysis with all covariates entered 

into the reduced model was conducted.  The results of these analyses revealed that none 

of the variables attenuated the relationship between RT and age.  Across all of the 

models, when age was added to the full model, the change in proportion of variance 

accounted for (∆R2) was significant, indicating that age was accounting for a significant 

and unique proportion of the variance.  Furthermore, the variance accounted for by age 

(ßage and ∆R2) remained relatively constant over the different analyses and, in fact, 

increased when DSB and when all of the covariates were included in the models. Thus, 

these variables were having a slight suppression effect on the relationship between RT 

and age, and controlling for their influences revealed that RT is a unique index of the 

development of WM with age. 

RT quadratic effects.  Hierarchical multiple regression was used to evaluate the 

quadratic relationship between RT and age and the potential mediating and suppressing 

effects of the covariates.  Table 3 shows the results from the tests of nonlinear 

relationships between performance on the WM task and age.  The results of a hierarchical 

regression analysis indicated that the addition of a quadratic term to the relationship 
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between RT and age did not account for significantly more of the variance (∆R2) between 

RT and age than the linear relationship alone. 

Table 3.  Hierarchical Multiple Regression Analyses Predicting the Quadratic 
Relationships between RT and Age with the Addition of Covariates 
 
 R2 

∆ R2 ∆ F ßage
2 df1 df2 p 

Model 1        
Reduced Model        
     Age   .131  5.876  1 39 .020* 
Full Model        
     Age2 .195 .064 3.014 -3.314 1 38 .091+ 

        
Model 2        
Reduced Model        
     Age + G .140  3.098  2 38 .057+ 

Full Model        
     Age + G + Age2 .212 .072 3.374 -3.550 1 37 .074+ 

        
Model 3        
Reduced Model        
     Age + DSF .131  2.876  2 38 .069+ 

Full Model        
     Age + DSF + Age2 .196 .065 2.975 -3.339 1 37 .093+ 

        
Model 4        
Reduced Model        
    Age + DSB .179  4.155  2 38 .023*  
Full Model        
    Age + DSB + Age2 .281 .101 5.203 -4.309 1 37 .028*  
        
Model 5        
Reduced Model        
     Age + DSF + DSB +   
     G 

.181  1.983  4 36 .118 

Full Model        
     Age + DSF + DSB +  
     + G + Age2 

.282 .102 4.959 -4.324 1 35 .032* 

 
Note. RT = response time; G = gender; DSF = digit span forward; DSB = digit span 
backward. 
* p <.05, +p < .1.     

Next, the impact of gender and WM behavioral indices was considered in order 

to determine if these covariates were suppressing the quadratic relationship between RT 
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and age.  Three hierarchical regression analyses were conducted: each covariate (gender, 

digit span forward, digit span backward) along with age was included in the reduced 

model (to remove variance in RT associated with these variables), and age squared was 

added to the full model to determine if age squared added to the regression model 

produced a significant increase in the variance accounted for. Last, a hierarchical 

regression analysis with all covariates entered into the reduced model was conducted.  

The models including gender and digit span forward indicated that there was a quadratic 

trend present in the relationships between age and RT when the variance of these 

covariates was accounted for statistically (gender: R2
reduced = .140, R2

full = .212, ∆R2 = 

.072; digit span forward: R2
reduced = .131, R2

full = .196, ∆R2 = .065).  However, the model 

that included digit span backward as a covariate showed that the model including the 

quadratic relationship between RT and age accounted for significantly more of the 

variance than the reduced model (R2
reduced = .179, R2

full = .281, ∆R2 = .10), thus suggesting 

that the linear effect of digit span backward suppressed the quadratic relationship 

between RT and age. Last, a hierarchical regression model with all covariates entered 

into the reduced model was conducted.  As would be expected given the suppression 

effect of digit span backward, the model including the quadratic relationship between RT 

and age accounted for significantly more of the variance than the reduced model (R2
reduced 

= .181, R2
full = .282, ∆R2 = .032).  Thus, these variables were having a slight suppression 

effect on the quadratic relationship between RT and age, and controlling for their 

influences revealed that improvements in performance on WM tasks across adolescence 

follow a monotonic curve, with more rapid improvements in retrieval speed occurring as 

adolescence progresses (Figure 3). 
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Figure 3. Graph of the relationship between RT and age (R = .362, p = .020). The addition of a 
quadratic term was significant when the linear effects of DSF, DSB, and G were controlled for 
(∆R2 = .102, p = .032).   
 

Digit span forward linear effects.  Hierarchical multiple regression was used to 

explore the linear relationship between digit span forward and age and the potential 

mediating and suppressing effects of the covariates.  Table 4 shows the results from the 

tests of linear relationships between WM capacity and age.  The results of a linear 

regression analysis indicated that although digit span forward showed some improvement 

with age, the relationship was not significant (r = .204, p = .202).     

Next, the impact of gender and WM behavioral indices was considered in order 

to determine if these covariates were suppressing the relationship between digit span 
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forward and age.  Three hierarchical linear regression analyses were conducted: each 

covariate (gender, RT, digit span backward) was included in the reduced model (to 

remove variance in digit span forward associated with these variables), and age was 

added to the full model to determine if age added to the regression model produced a 

significant increase in the variance accounted for. Last, a hierarchical regression analysis 

with all covariates entered into the reduced model was conducted.  The results of these 

analyses revealed that none of the variables suppressed the relationship between digit 

span forward and age.  Across all of the models, when age was added to the full model, 

the change in proportion of variance accounted for (∆R2) was not significant.  Thus, the 

participants’ basic WM capacity did not improve significantly as their age increased. 

Table 4.  Hierarchical Multiple Regression Analyses Predicting the Linear Relationship 
between DSF and Age with the Addition of Covariates 
 
 R2 

∆ R2 ∆ F ßage df1 df2 p 
 

DSF = Age .041  1.688 .204 1 39 .202 
        
Hierarchical Regression        
Reduced Model: G .006  .249  1 39 .620 
Full Model: G + Age .046 .040 1.589 .200 1 38 .215 
        
Hierarchical Regression        
Reduced Model: RT .003  .103  1 39 .750 
Full Model: RT + Age .042 .039 1.564 .213 1 38 .219 
        
Hierarchical Regression        
Reduced Model: DSB .064  3.574  1 39 .066 
Full Model: DSB + Age .102 .018 .747 .138 1 38 .393 
        
Hierarchical Regression        
Reduced Model        
    G + RT + DSB .129  1.821  3 37 ..160 
Full Model        
    G + RT + DSB + Age .135 .006 .264 .091 1 36 .611 

 
Note. RT = response time; G = gender; DSF = digit span forward; DSB = digit span 
backward.  
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Digit span forward quadratic effects.  Hierarchical multiple regression was 

used to evaluate the quadratic relationship between digit span forward and age and the 

potential mediating and suppressing effects of the covariates.  Table 5 shows the results 

from the tests of nonlinear relationships between WM capacity and age.  The results of a 

hierarchical regression analysis indicated that the addition of a quadratic term to the 

relationship between digit span forward and age did not account for significantly more of 

the variance (∆R2) between digit span forward and age than the linear relationship alone. 

Table 5.  Hierarchical Multiple Regression Analyses Predicting the Quadratic 
Relationships between DSF and Age with the Addition of Covariates  
 
 R2 

∆ R2 ∆ F ßage
2 df1 df2     p 

Model 1        
Reduced Model        
     Age   .041  1.688  1 39 .202 
Full Model        
     Age2 .044 .003 .103 .669 1 38 .750 
        
Model 2        
Reduced Model        
     Age + G .046  .921  2 38 .407 
Full Model        
     Age + G + Age2 .050 .004 .144 .806 1 37 .706 
        
Model 3        
Reduced Model        
     Age + RT .042  .834  2 38 .442 
Full Model        
     Age + RT + Age2 .046 .004 .139 .814 1 37 .712 
        
Model 4        
Reduced Model        
    Age + DSB .102  2.149  2 38 .131 
Full Model        
    Age + DSB + Age2 .102 .000 .005 -.146 1 37 .945 
        
Model 5        
Reduced Model        
     Age + DSB + RT + G .135  1.405  4 36 .252 

Full Model        
     Age + DSB + RT +  
     + G + Age2 

.135 .000 .010 -.231 1 35 .920 

 
Note. RT = response time; G = gender; DSF = digit span forward; DSB = digit span 
backward.  
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Next, the impact of gender and WM behavioral indices was considered in order 

to determine if these covariates suppressed the quadratic relationship between digit span 

forward and age.  Three hierarchical regression analyses were conducted: each covariate 

(gender, RT, digit span backward) along with age was included in the reduced model (to 

remove variance in digit span forward associated with these variables), and age squared 

was added to the full model to determine if age squared added to the regression model 

produced a significant increase in the variance accounted for. Last, a hierarchical 

regression analysis with all covariates entered into the reduced model was conducted.  

The results of these analyses revealed that none of the variables suppressed the 

relationship between digit span forward and age squared.  Across all of the models, when 

age squared was added to the full model, the change in proportion of variance accounted 

for (∆R2) was not significant.  Thus, age was not found to be a significant linear or 

nonlinear predictor of basic WM capacity (Figure 4).  

 

Figure 4.  Graph of the relationship between DSF and age (R = .204, p = .202).  The addition of a 
quadratic term was not significant (∆R2  = .003, p = .750). 
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Digit span backward linear effects.  Hierarchical multiple regression was used 

to explore the linear relationship between digit span backward and age and the potential 

mediating and suppressing effects of the covariates.  Table 6 shows the results from the 

tests of linear relationships between WM manipulation and age.  The results of a linear 

regression analysis indicated that although digit span backward showed some 

improvement with age, the relationship was not significant (r = .260, p = .10).   

Table 6.  Hierarchical Multiple Regression Analyses Predicting the Linear Relationship 
between DSB and Age with the Addition of Covariates 
 
 R2 

∆ R2 ∆ F ßage df1 df2 p 
 

DSB = Age .068  2.831 .260 1 39 .100 
        
Hierarchical Regression        
Reduced Model: RT .014  .555  1 39 .461 
Full Model: RT + Age .120 .106 4.561 .349 1 38 .039* 
        
Hierarchical Regression        
Reduced Model: DSF .084  3.574  1 39 .066 
Full Model: DSF + Age .126 .042 1.835 .210 1 38 .183 
        
Hierarchical Regression        
Reduced Model: G .133  5.991  1 39 .019* 
Full Model: G + Age .211 .078 3.775 .280 1 38 .059 
        
Hierarchical Regression        
Reduced Model        
    G + RT+ DSF  .244  3.974  1 37 .015* 
Full Model        

    G + RT+ DSF + Age .317 .073 3.859 .296 1 36 .057+ 

 
Note. RT = response time; G = gender; DSF = digit span forward; DSB = digit span 
backward. 
* p <.05, +p < .1  

Next, the impact of gender and WM behavioral indices was considered in order 

to determine if these covariates suppressed the relationship between digit span backward 

and age.  Three hierarchical linear regression analyses were conducted: each covariate 

(gender, digit span forward, RT) was included in the reduced model (to remove variance 
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in digit span backward associated with these variables), and age was added to the full 

model to determine if age added to the regression model produced a significant increase 

in the variance accounted for.  The results of these analyses revealed that the linear 

effects of RT suppressed the relationship between digit span backward and age (R2
reduced = 

.014, R2
full = .120, ∆R2 = .106). Last, a hierarchical regression analysis with all covariates 

entered into the reduced model was conducted.  Although the addition of age accounted 

for a marginally significant portion of the variance (R2
reduced = .244, R2

full = .317, ∆R2 = 

.073), the result of the analysis revealed that the linear effects of the covariates accounted 

for significantly more of the variance in digit span backward than age (R2 = .244, p = 

.015); the covariates predicted linear changes in age more robustly than digit span 

backward. Thus, linear changes in age do not significantly predict changes in WM 

manipulation, unless the linear effects of RT are controlled for. 

Digit span backward quadratic effects.  Hierarchical multiple regression was 

used to evaluate the quadratic relationship between digit span backward and age and the 

potential mediating and suppressing effects of the covariates.  Table 7 shows the results 

from the tests of nonlinear relationships between WM manipulation and age.  The results 

of a hierarchical regression analysis indicated that the addition of a quadratic term to the 

relationship between digit span backward and age did not account for significantly more 

of the variance (∆R2) between digit span backward and age than the linear relationship 

alone. 

Next, the impact of gender and WM behavioral indices was considered in order 

to determine if these covariates suppressed the quadratic relationship between digit span 

backward and age.  Three hierarchical regression analyses were conducted: each  
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Table 7.  Hierarchical Multiple Regression Analyses Predicting the Quadratic 
Relationships between DSB and Age with the Addition of Covariates 
 
 R2 

∆ R2 ∆ F ßage
2 df1 df2 P 

Model 1        
Reduced Model        
     Age   .068  2.831  1 39 .100 
Full Model        
     Age2 .126 .059 2.548 3.174 1 38 .119 
        
Model 2        
Reduced Model        
     Age + G .211  5.096  1 39 .011 
Full Model        
     Age + G + Age2 .249 .037 1.825 2.548 1 38 .185 
        
Model 3        
Reduced Model        
     Age + DSF .126  2.743  1 39 ..077+ 

Full Model        
     Age + DSF + Age2 .179 .053 2.379 3.017 1 38 .131 
        
Model 4        
Reduced Model        
    Age + RT .120  2.584  1 39 .089+ 

Full Model        
    Age + RT + Age2 .219 .100 4.724 4.301 1 38 .036* 
        
Model 5        
Reduced Model        
     Age + DSF + RT + G .317  4.175  4 36 .007* 
Full Model        

     Age + DSF + RT +  
     G + Age2 

.374 .057 3.207 3.320 1 35 .082+ 

 
Note. RT = response time; G = gender; DSF = digit span forward; DSB = digit span 
backward. 
* p < .05, +p < .1.  

covariate (gender, digit span forward, RT) along with age was included in the reduced 

model (to remove variance in digit span backward associated with these variables), and 

age squared was added to the full model to determine if age squared added to the 

regression model produced a significant increase in the variance accounted for. Only the 
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model that included RT as a covariate showed that the model including the quadratic 

relationship between digit span backward and age accounted for significantly more of the 

variance than the reduced model (R2
reduced = .120, R2

full = .219, ∆R2 = .1), thus suggesting 

that the linear effect of RT suppressed the quadratic relationship between digit span 

backward and age. Last, a hierarchical regression analysis with all covariates entered into 

the reduced model was conducted.    Despite the suppression of the quadratic relationship 

between digit span backward and age by RT, the addition of age squared to the full model 

revealed a trend (R2
reduced = .317, R2

full = .374, ∆R2 = .057).  Thus, after controlling for the 

linear effects of RT, there was a nonlinear component to the relationships between WM 

manipulation and age (Figure 5). 

 

Figure 5. Graph of the relationship between DSB and age (R = .260, p = .100).  The addition of a 
quadratic term was significant when the linear effects of RT were controlled for (∆R2 = .120, p = 
.039). 
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fMRI Results 

To test the hypothesis that functional activation in brain areas implicated in WM, 

such as the PFC, have a quadratic relationship with age, whole brain voxel-wise 

hierarchical regression was used (see Appendix B, Figure 10).   Using hierarchical 

regression allowed for both the linear effects (with the reduced model) as well as any 

quadratic effects (with the full model) in brain regions supporting WM to be explored.  

To control for Type I error due to multiple comparisons, the results were cluster-

thresholded based on Monte-Carlo simulations (AlphaSim software; Ward, 2000) so that 

surviving clusters were significant with a family-wise α = .05, for that analysis, and a 

voxel-level α = .005.   Clusters of  ≥146 voxels were significant with a family-wise α = 

.05, based on the simulations (1000 iterations for a dataset having 191,679 voxels [2 mm 

isovoxel], smoothness = 8 mm FWHM, cluster = pairs of voxels having a connectivity 

radius < 3.47 mm, thus having connecting faces, edges, or corners at the resampled voxel 

size). 

Linear effects.  Hierarchical multiple regression was used to explore the linear 

relationship between percent signal-change and age and the potential mediating and 

suppressing effects of the covariates.  The results of a linear regression analysis indicated 

that no clusters survived the thresholding criteria.   

Next, to reduce the variance, the impact of gender, handedness, and WM 

behavioral indices (RT, digit span forward, digit span backward) was considered to 

determine if these covariates accounted for (mediated) or detracted from (suppressed) the 

linear  relationship between percent signal-change and age.  Hierarchical regression 

revealed three clusters where percent BOLD signal-change increased as age increased 
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when the linear effects of the covariates were controlled for statistically: right medial 

BA6 (peak t = 5.528, Bage = .005, cluster size = 292), right cerebellum (peak t = 4.465, 

Bage = .002, cluster size = 282), and left BA34 (peak t = 4.347, Bage = .002, cluster size = 

164); Table 8; Figure 6).  Given that right medial BA6 has been implicated in WM tasks 

(Owen et al., 2005; Rypma, 2006; Schneider-Garces et al., 2009), the impact of each 

covariate on the relationship between percent signal-change and age was systematically 

explored in this region. 

Table 8.  Descriptive Statistics for Clusters showing a Significant Linear Relationship 
between Percent Signal-Change and Age with Covariates.  

Anatomical Structure 

 
Coordinates (RAI mm) of voxels 
with highest t-value within cluster 

 
x               y               z Bage  Cluster size 

      
Right medial BA6 -3 -1 +58 .005 292 
      
Right Cerebellum -41 +59 -34 .002 282 
      
Left BA34 +13 -5 -12 .002 164 

 
Note. Clusters are significant at p < .05.  

 

Figure 6.  Brain regions showing a linear relationship between percent signal-change and age with 
covariates controlled.  Red to yellow voxels illustrate positive correlations, where age increases 
were associated with higher signal-change.  Data were cluster thresholded with cluster α = .05 and 
voxel α = .005. 
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Next, the unique impact of potential sample characteristics and WM behavioral 

indices was considered in order to determine the individual suppression effect of each 

covariate on the independent relationship between percent signal-change and age.  Table 

9 shows the increases in right medial BA6 activation that occurred with age when the 

linear effects of covariates suppressing this relationship were removed.  First, a linear  

Table 9.  Hierarchical Multiple Regression Analyses Predicting the Linear Relationship 
between Percent Signal-Change and Age with the Addition of Covariates 
 peak 

t 
peak 
Bage 

R2 Cluster 
size 

Right Medial BA6 
 

BOLD = Age 2.977 .003 .226 17 

 
Sample Covariates      
BOLD = G + H + Age 2.983 .004 .142 25 

 
RT as a Covariate      
BOLD = G + H + RT  + 
Age 

2.993 .004 .143 22 

 
DSB as a Covariate      
BOLD = G + H + DSB + 
Age 

4.721 .005 .209 67 

 
      
DSF as a Covariate 
BOLD = G + H + DSF + 
Age 

4.438 .003 .145 156* 

 
      
Al l Covariates 
BOLD = G + H + RT + 
DSB + DSF +Age 

5.528 .005 .429 292* 

 
 
Note. Equations listed are full  models.  Coordinates (RAI mm) of clusters: x = -3, y = -1, 
z = +41.  G = gender; H = handedness; RT = response time; DSF = digit span forward; 
DSB = digit span backward. 
*Clusters greater than 146 are significant at p < .05.  
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regression analysis between percent signal-change and age showed no significant regions 

of activation.  Next, four hierarchical linear regression analyses were conducted: sample 

differences (gender/handedness) and WM behavioral indices (RT, digit span forward, and 

digit span backward) were included in the reduced model as covariates (to remove error 

variance associated with these variables), and age was included in the full model to 

determine if age added to the regression model produced a significant increase in the 

variance accounted for.  The regression analyses controlling for gender/handedness, RT, 

and digit span backward were not significant.  However, when digit span backward was 

added to model, the hierarchical regression analysis revealed a significant linear 

relationship between percent signal-change and age (peak t = 4.438, Bage = .003, cluster 

size = 156), indicating that the linear relationship between digit span forward and percent 

signal-change had suppressed the linear relationship between percent signal-change and 

age.  Last, all covariates (gender/handedness, RT, digit span forward, and digit span 

backward) were added to the model, and the removal of the linear effects of these 

variables revealed the significant relationship between percent-signal change and age 

(peak t = 5.528, Bage = .005, cluster size = 292; Figure 7).   

 

Figure 7.  Linear relationship between medial right BA6 and percent signal-change and age.  The 
linear effects of G, H, RT, DSF, and DSB were controlled for (peak t = 5.528, B = .005, cluster 
size = 292).  Red to yellow voxels illustrate positive correlations, where age increases were 
associated with higher signal-change.  Data were cluster thresholded with cluster α = .05 and 
voxel α = .005. 
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Thus, digit span forward’s relationship with both percent signal-change and age served as 

the primary suppressing factor of the relationship between percent-signal change and age.  

However, the cluster size was largest when all of the covariates were included (cluster 

size = 292), suggesting that each covariate contributed a unique suppressing effect.   

To illustrate the suppression effect of the covariates on the linear relationship 

between percent signal-change and age in right medial BA6, percent signal-change in the 

peak voxel in this region was obtained for each participant.  A scatter-plot of percent 

signal-change and age was made.  Next, age was regressed on the covariates 

(gender/handedness, RT, digit span forward, digit span backward) and percent signal-

change was regressed on the covariates (gender/handedness, RT, digit span forward, digit 

span backward) to remove the effects of these variables.  The resulting residuals were 

saved, and a scatter-plot of percent signal-change and age without the effects of the 

covariates was made.  The resulting scatter-plot illustrates the independent relationship 

between age and percent signal-change in right medial BA6 after removing the effects of 

the covariates (Figure 8). 

Quadratic effects. Hierarchical multiple regression was used to determine the 

additional contribution of age squared on percent signal-change.  A full model that 

included age squared as a quadratic predictor variable was added to the reduced model in 

order to determine if age squared accounted for significantly more of the variance 

between percent signal-change and age than the linear model alone.  However, no 

clusters showing a quadratic relationship between percent signal-change and age survived 

the thresholding criteria.  Next, the unique impact of potential sample characteristics and 

WM behavioral indices was considered in order to determine if these covariates  
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Figure 8. Illustration of the effect of the covariates on the relationship between percent signal-
change and age.  Percent signal-change was measured in the peak voxel in right medial BA6, and 
age was expressed in months.  The top scatter-plot (a) shows the relationship between percent 
signal-change and age.  The bottom scatter-plot (b) shows the relationship between percent signal-
change and age after removing the shared variance between gender, handedness, RT, digit span 
forward, and digit span backward. 
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suppressed a potential quadratic relationship between percent-signal change and age.  

Hierarchical regression did not reveal any significant clusters showing a relationship 

between percent-signal change and age squared, indicating that the linear effects of the 

covariates were not suppressing a potential nonlinear relationship between percent signal-

change and age.  The results of the hierarchical regression analysis revealed no evidence 

for a quadratic relationship between percent BOLD signal-change, indicating that 

activation changes in brain regions supporting WM do not follow a quadratic trend with 

age across adolescence.   

Discussion 

This study sought to explore the relationship between functional activation in 

brain regions supporting WM and age throughout adolescence.  After the effects of 

different measures of WM were controlled for statistically, the results indicated linear 

age-related functional activation patterns in right medial BA6.   This finding is consistent 

with existing research that suggests BA6 is a critical brain region underlying WM ability 

in both children and adults (Klingberg et al, 2002; Kwon et al., 2002; Owen et al., 2005; 

Rypma, 2006; Schneider-Garces et al., 2009), and this region is considered part of the 

dorsolateral prefrontal cortex (DLPFC)/anterior pre-motor region recruited for the 

completion of complex WM tasks requiring an executive function component, such as the 

manipulation of information (Kirschen et al., 2010; Rypma & D’Esposito, 1999).   

Furthermore, although BA6 is part of the pre-supplementary motor area, this region is 

consistently activated in a variety of executive function tasks (Crosson et al., 1999) and 

has been shown to serve a possible “executive” role in preparedness for response 

selection (Petit, Courtney, Ungerleider, & Haxby, 1998).      
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The analyses also revealed linear increases in activation with age in the right 

cerebellum and left BA34.  Although these regions are not typically considered integral 

to WM processes, both regions have recently gained attention for their impact on 

memory-related networks.  The superior cerebellum has been implicated in cerebro-

cerebellar networks activated during verbal working memory tasks (Chen & Desmond, 

2005; Crottaz-Herbette, Anagnoson, & Menon, 2004; Kirschen et al., 2010; Stoodley & 

Schmahmann, 2009).  BA34 is considered part of the parahippocampal gyrus and has 

been implicated in intentional and unintentional forgetting neuroimaging tasks (Wylie, 

Fox, & Taylor, 2007). 

Relationship between WM Component Processes and Age 

 The shared and unique linear relationships between individual WM measures and 

age were explored using hierarchical regression analyses, and the results of the 

behavioral analyses were consistent with past research that has shown monotonic 

improvements on cognitive measures of WM across adolescence (Fry & Hail, 1996; 

Gathercole et al., 2004; Luciana et al., 2005).  RT improved significantly with age, and 

digit span backward improved significantly with age when the linear effects of RT and 

digit span forward were removed.  The lack of mediation effects between the WM indices 

indicates that both search and retrieval speed (as measured by RT) and WM manipulation 

(as measured by digit span backward) each share a unique relationship with age.   

Furthermore, the improvement in search and retrieval speed and WM manipulation that 

occurred with age followed a curved monotonic trajectory (having both linear and 

quadratic components).   A quadratic relationship between WM search and retrieval 

speed and age emerged only when the linear effects of all covariates were statistically 
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controlled for, and a quadratic relationship between WM manipulation and age emerged 

when the linear effects of WM performance and age were controlled for statistically.  The 

curved monotonic relationships between both WM performance and WM manipulation 

with age suggests that overall improvements in these WM component processes occur 

more rapidly as adolescence progresses. However, basic WM capacity, as measured by 

digit span forward, did not improve significantly with age, either along a linear or 

nonlinear trajectory.  Basic WM abilities have been shown to be developed by age nine 

(Luciana et al., 2005), which could account for the failure to find developmental changes 

in WM capacity.   

The inclusion of behavioral measures of WM allowed for the unique 

developmental trends of individual WM components to be explored.  WM consists of 

both capacity/storage and manipulation processes (Baddeley, 1981; Baddeley & Hitch, 

1974).  The results showed that WM capacity, as measured by digit span forward, was 

developed by age 11, as changes in this process were not observed across adolescence.  

However, WM manipulation processes that more heavily involve the recruitment of 

executive resources, as measured by digit span backward, improved throughout 

adolescence, with more rapid changes occurring in late adolescence.  The separate 

developmental trajectories of these WM behavioral indices supports the existence of 

unique underlying component processes that contribute to overall WM ability (Miyake, 

Friedman, Rettinger, Shah, & Hegarty, 2001; Schneider-Garces et al., 2009).   Finally, 

response time often has been used to index WM search and retrieval speed (Rypma & 

D’Esposito, 1999; Sternberg, 1966).  Consistent with previous research, search and 

retrieval speed was found to increase with development (Cowan, Saults, Nugent, & 
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Elliot, 1999).  However, this study also found a nonlinear component to the decrease in 

RT with age, suggesting that greater improvements in search and retrieval speed occur 

later in adolescence. 

Relationship between Right Medial BA6 Activation and Age  

Just as mediation and suppression effects between each WM behavioral index 

were evaluated, the effects of WM capacity (digit span forward), WM search and 

retrieval speed (RT), and WM goal-oriented manipulation (digit span backward) on the 

relationship between functional activation during the WM task and age were explored.  

The results showed that functional activation increased in right medial BA6 as age 

increased during a supra-capacity load WM task.  However, this linear trend was 

apparent only after statistically controlling for the effects of WM component processes on 

functional activation.   The combination of the unique relationships between these 

covariates and functional activation in right medial BA6 obscured the relationship 

between age and right medial BA6, although WM capacity seemed to have the strongest 

suppressing influence.  

The linear relationship between percent BOLD signal-change and age was not 

explained by individual improvements in WM component processes (i.e., were not 

statistically mediated by the WM measures), suggesting that age increases contribute 

independently to heavier recruitment of this region during WM tasks.  Despite the 

significant relationship between improvements on behavioral measures of WM (such as 

RT and digit span backward) and age, the behavioral improvements do not account for 

the increase in right medial BA6 activation that occurs with age.   
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 These results further support the multi-component model of WM (Baddeley & 

Logie, 1999; Repovs & Baddeley, 2006). The digit span forward and digit span backward 

tasks captured two central features of WM, both capacity/storage and manipulation 

processes (Baddeley, 1981; Baddeley & Hitch, 1974).   Additionally, these two 

components impacted the relationship between percent signal-change and age in different 

ways.  The impact of manipulation processes did not affect the relationship between 

activation and age in right medial BA6, suggesting that manipulation processes and age 

are not related in right medial BA6. However, variability in storage capacity processes 

suppressed the relationship between activation and age in right medial BA6 with both 

basic WM storage capacity and age individually accounting for increases in right medial 

BA6 activation.  

Global-Capacity Framework versus Neurocognitive-Change Framework 

Another objective of the present study was to explore how changes in brain 

activation across adolescence fit into present models of brain development.  The global-

capacity framework holds that general changes in transmission times throughout the 

lifespan control increases and decreases in overall processing capacity, including the 

changes in WM storage and manipulation capacity that occur (Bashore & Smulders, 

1995; Fry & Hail, 1996; Salthouse, 1996). The linear relationships between BOLD 

signal-change and age were consistent with this model. However, linear relationships 

were restricted to three brain regions (i.e., right medial BA6, right cerebellum, and left 

BA34), and not more widespread as one might think with "global" capacity changes.  The 

analyses failed to show that the age-related increases in percent signal-change in right 

medial BA6 were accounted for by age-related increases in performance, WM storage, or 



38 
 

 
 

WM manipulation.  It is possible that the effects of other, unmeasured, WM processes 

obscured the relationship between amplitude increases and age in other brain regions.  It 

is possible, for example, that BA6 mediates changes that occur in attention.  Rather than 

simply being active during the motor response phase of WM response selection, BA6 has 

been found to be active throughout the entire WM task, suggesting that BA6 plays a role 

in attentional preparedness (Haxby, Petit, Ungerledier, & Courtney, 2000; Petit et al., 

1998).  It is also possible that the age-related changes are accounted for by a fundamental 

process undergoing change with development. Kail and Salthouse (1994), for example, 

have argued that developmental changes in processing speed account for developmental 

changes in a host of cognitive functions, including WM. Thus, an independent measure of 

global processing speed might account for age-related changes in these regions and more 

broadly throughout the brain. 

Despite the support generated for the global-capacity framework, this study’s 

findings do not preclude the possibility that independent neurocognitive changes occur 

throughout development as well.  The neurocognitive-change framework suggests that 

individual brain structures and functions are responsible for specific cognitive 

improvements/declines (Pennington, 1994; Span et al.,1994).  Recent fMRI research that 

explored differences in brain regions recruited during a visuo-spatial WM task between 

children (aged 10-13), adolescents (aged 14-17), and adults (>18) found support for the 

use of different networks that occurs with development.  The results indicated that the 

adolescent group activated DLPFC and premotor regions significantly more than the 

child group, indicating a shift to more specialized and efficient WM networks similar to 

those observed in the adult group (Scherf, Sweeney, & Luna, 2006); furthermore, 
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neuroimaging research exploring WM has identified networks differentially activated 

dependent on WM load and WM component processes recruited (Barby, Koenigs, & 

Gafman, 2010; Motes & Rypma, 2010; Rypma, 2006; Smith & Jonides, 1999).  Although 

the present study found linear, rather than nonlinear, relationships between brain 

activation and age, it is possible that global processing speed increases account for the 

increased specialization and efficacy of identified brain networks underlying WM tasks 

(Fry & Hale, 1996; Motes et al., 2010).   

Limitations 

One of the limitations of this study is sample size.  While relatively large for an 

fMRI study with adolescents, a larger sample would minimize within-group error.  

Furthermore, the age range of this study (11 to 18) may not have been wide enough to 

capture the full maturational trajectory of PFC development and thus obscured potential 

nonlinear relationships between functional activation and age that parallel gray matter 

volume loss.  Individual participant characteristics such as intelligence, gender, and 

pubertal status are potential confounds.  Future studies exploring percent signal-change 

activation and age across adolescence would benefit from including a measure of puberty 

status (e.g., onset of menstruation for females and hair growth for males, hormone 

samples) and a broad measure of IQ.  Furthermore, a longitudinal, rather than a cross-

sectional, study would also minimize individual differences. 

 Future studies could also include more measures.  A longer version of the current 

WM task, such as using more blocks (rather than four), would assist in countering in the 

participants’ high accuracy achievement by making the task  more challenging; 

furthermore, lengthening the task would improve the reliability of the signal-change 
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estimate.  Additionally, the use of a resting state condition would be beneficial in order to 

further differentiate brain activation between the 6-letter condition and baseline.  

Additional behavioral measures of WM could be added to further evaluate the impact of 

WM component processes on functional activation changes with age.  To measure WM 

capacity, the Operation Span (OPSAN; Turner & Engle, 1989) and Reading Span 

(RSPAN, Daneman & Carpenter, 1983) could be used to differentiate between verbal and 

visuo-spatial components of WM.  To measure WM manipulation, the use of n-back 

tasks could be used (Owen et al., 2005).  Furthermore, the addition of measures of 

processing speed, such as Symbol Search and Coding subtests from the WISC-IV/WAIS-

IV (Wechsler 2004; Wechsler 2008) and the DSVT (adapted from the Digit–Symbol 

Coding Task from the WAIS-III for use in fMRI scanners; Rypma et al., 2006) could be 

included to better ascertain whether linear improvements in amplitude are due to global 

increases in overall processing capacity.   

Future Directions 

 Although a linear relationship between percent signal-change and age across 

adolescence in right medial BA6 was found, the underlying mechanisms responsible for 

this unique relationship warrant further exploration. An extension of this study could 

include measures aimed at achieving convergent validity for measuring the WM 

construct.  While psychometrically sound behavioral measures of WM exist, it remains 

unclear if these measures adequately access brain regions believed to underlie overall 

WM ability. Including additional behavioral measures, and developing additional WM 

tasks to be completed during fMRI data acquisition, would assist in this endeavor.  
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Furthermore, convergent validity studies would further the understanding of the impact 

that component WM processes have on overall WM ability.   

 To further evaluate the current models of brain development, white matter 

tracking through the use of diffusion tensor imaging (DTI; Giorgio et al., 2010; Giedd, 

2004) could be included along with fMRI.  Global transmission speed increases have 

been linked to white matter tracts and could perhaps underlie WM improvements (Filley,  

2010; Turken et al., 2008).  Additionally, the synthesis of white matter data and 

functional activation data would further the understanding of complex brain-behavior 

relationships. 

Continued knowledge of the developmental trajectory of brain regions supporting 

WM in healthy children and adolescents will inform educational strategies and 

curriculums by targeting WM development throughout critical educational phases.  

Additionally, given that WM difficulties have been observed in a variety of childhood 

and adolescent disorders (Attention-Deficit/Hyperactivity Disorder: Sheridan, Hinshaw, 

& D’Esposito, 2007; developmental disorders: Alloway, Rajendran, & Archibald, 2009; 

bipolar disorder: Bearden et al., 2007; depressive disorders: Franklin et al., 2010), the 

ability to identify WM deficits at a neural level could impact future identification and 

treatment of these disorders.
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SECTION TWO 
Appendices 

 
APPENDIX A 

Detailed Literature Review 
 

The purpose of the present study is to explore the developmental trajectory of 

PFC activity supporting WM using functional magnetic fMRI.  WM, the overall process 

of temporarily holding and reorganizing information in the mind, is an integral aspect of 

cognitive development.  WM has been found to contribute to a range of higher order 

abilities, such as reasoning (Carpenter et al., 1990) and comprehension (Cain et al., 

2004), and WM has been implicated as an important component of fluid intelligence 

(Engle, Tuholski, Laughlin, & Conway, 1999; Wechsler, 2008).  Additionally, WM 

deficits have been associated with several childhood and adolescent disorders (Alloway 

et al., 2009; Bearden et al., 2007; Sheridan et al., 2007). Thus, given the central role of 

WM in cognitive development, understanding the brain mechanisms that mediate WM 

will advance theories of WM. 

Cross-sectional developmental studies have shown WM, based on cognitive 

testing, to follow monotonic developmental trajectories through childhood into 

adolescence (Best et al.,2009; Gathercole et al., 2004; Kail & Salthouse, 1994; Luciana et 

al., 2005; Span et al., 2004; Swanson, 1999).   These WM improvements have been 

attributed to increases in global capacity that occur with age. The underlying neural 

mechanisms supporting this proposed increase in capacity, however, are not fully 

understood (Gathercole et al., 2004; Luciana et al., 2005; Swanson, 1999).   

Despite these cognitive findings, brain structural changes in regions known to 

support WM, such as the PFC, follow a different developmental trajectory. Research on
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structural brain changes has shown that several regions follow nonlinear developmental 

trajectories from birth through late adulthood.  For example, the gray matter volume of 

the PFC follows a quadratic developmental trajectory; the gray matter volume of the PFC 

increases from birth, peaks around 12 years of age, and then begins to decrease. This 

volume loss has been hypothesized to be a function of neural pruning as neural circuits 

are refined (Giedd et al., 1999; Giorgio et al., 2010; Gogtay et al., 2004).  The nonlinear 

development of brain regions suggests that cognitive improvements might result from 

more “qualitative” changes within cortical structures (Gogtay et al., 2004; Shaw et al., 

2008; Span et al., 2004; Stuss et al.,2005), rather than from more global “quantitative” 

changes supporting an overall greater processing capacity (Gathercole et al., 2004; Kail 

& Salthouse, 1994). 

The discrepancy in the developmental trajectories between measured cognitive 

changes and brain structure changes mediating WM raises questions about the functional 

role of the PFC in supporting WM.  The cognitive developmental data suggest that linear 

increases in WM ability might be explained by global capacity increases; however, the 

anatomical data suggest that improvements in WM might be due to qualitative functional 

changes in regions, such as the PFC, that support WM ability. Indeed, this discrepancy 

between the cognitive and anatomical changes suggests that the PFC functional activity 

supporting WM might change monotonically with age, consistent with the cognitive data, 

or might change nonlinearly with age, consistent with the anatomical data. 

A better understanding of the developmental trajectory of brain regions 

supporting WM in healthy children and adolescents will advance theories about WM 

development that will inform educational strategies and curriculums that can target WM 
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development throughout critical educational phases.  Additionally, the advancement of 

theories about WM development could have broad implications for the treatment of WM 

difficulties in children and adolescents.  WM difficulties have been observed in a variety 

of childhood and adolescent disorders, such as attention-deficit/hyperactivity disorder 

(Sheridan et al., 2007), developmental disorders (Alloway et al., 2009) bipolar disorder 

(Bearden et al., 2007), and depressive disorders (Franklin et al., 2010).  Thus, given the 

central role of WM to higher order cognition and its critical role in cognitive 

development, understanding the brain mechanisms that mediate WM can aid in the 

testing and development of models of WM and higher-order cognition. The goal of the 

present study is to analyze fMRI data from preadolescents and adolescents collected 

during a WM task to examine the developmental trajectory of PFC functional activity 

supporting WM.  

WORKING MEMORY (WM) 

 Working memory (WM) is a core cognitive construct that describes the processes 

of temporarily maintaining, manipulating, and reorganizing information in the mind 

(Baddeley, 1981).  WM is a component of executive function (EF), which is a broad 

construct describing the cognitive processes responsible for goal-oriented mental control, 

such as WM, attention, inhibition, and set-shifting (Best et al., 2009).  Correlations 

between WM and measures of intelligence illustrate its central role in higher-order 

cognitive processes (Engle et al., 1999).  Indeed, without this basic ability to maintain 

and manipulate information, complex processes such as reasoning, comprehension, and 

decision-making would be difficult (Carpenter et al., 1990; Owen, McMillan, Laird, & 

Bullmore, 2005).  
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 WM is composed of multiple component processes (Miyake & Shah, 1999). One 

multi-component model of WM includes a central executive (responsible for the 

encoding, manipulation, and retrieval processes), the phonological loop (responsible for 

the maintenance of auditory information), the visuospatial sketchpad (responsible for the 

maintenance of visual and spatial information), and the episodic buffer (responsible for 

the integration of data into meaningful pieces; Baddeley & Logie, 1999; Repovs & 

Baddeley, 2006). Thus, WM encompasses both storage and manipulation processes 

(Baddeley, 1981; Baddeley & Hitch, 1974).  WM storage capacity has been shown to be 

limited (Brenner, 1940; Cowan, 2001; Luck & Vogel, 1997).  Cowan (2001), for 

example, has argued for the capacity limits of 4 +/-1 items regardless of the format (e.g., 

verbal or visual) of the stimuli being remembered. When the to-be-remembered 

information exceeds these capacity limitations, however, WM executive processes can be 

recruited to reorganize or chunk the information to fit within capacity limits (Cowan 

2001; Miller, 1955).  In addition to the reorganization of information into more 

manageable chunks, additional executive processes can also be recruited for more 

complex tasks, such as when the task requires the manipulation of computations or 

mental imagery (Kozhevnikov et al., 2007; Seyler et al., 2003). 

WM as a Core Cognitive Construct 

 The ability to manipulate information in WM is integral to higher order cognitive 

processes, as has been demonstrated by correlations between measures of WM and 

intelligence (Engle et al., 1999).  WM (as a latent variable derived from an 11 measure 

battery, N = 133), for example, has been shown to be a moderate predictor (r = .49) of 

fluid intelligence (derived from the Culture Free Intelligence Test [CFIT; Cattell, 1949] 
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& the Raven’s Standard Progressive Matrices Test [Raven’s Matrices; Raven, Raven, & 

Court, 2003]); whereas simple storage has been shown to correlate weakly with fluid 

intelligence (r = .12).  Additionally, WM is measured as a component of the WAIS-IV 

(Wechsler, 2008). Factor analysis has shown that some subtests (such as Digit Span and 

Arithmetic) consistently load onto a single factor that is believed to measure WM 

(Wechsler, 2008).  This factor captures the storage capacity (Digit Span Forward), 

manipulation (Digit Span Backward), and integration (Arithmetic) components of WM.   

The integral role that WM plays in overall intellectual abilities has been 

complemented by research showing the essential involvement of WM in reasoning 

(Carpenter et al., 1990; Goel & Grafman, 1995), problem-solving (Prabhakaran et al., 

2000), and comprehension (Cain et al., 2004). WM ability (as a latent variable derived 

from performance on the Tower of Hanoi puzzle [Hinz, 1989], N = 45), for example, has 

been shown to discriminate high performers from fair performers on the Raven’s 

Matrices (Carpenter et al., 1990), where Raven’s Matrices (Raven et al., 2003) served as 

a measure of nonverbal reasoning ability due to the complexity, nonverbal format, and 

requirement to manipulate novel information (Marshalek, Lohman, & Snow, 1983; Snow, 

Kyllonen, & Marshalek, 1984).  In computer models derived from the participants’ 

performance, the abilities for goal-maintenance and the capacity to remember items for 

rule formulation were disabled, and the differences in performance on the Raven’s 

Matrices were eliminated.  Thus, WM appeared to contribute to higher-level cognition 

both through global processes, such as goal-maintenance, and through local processes, 

such as the storage and manipulation of stimuli necessary for problem-solving.   

 



47 
 

 
 

COGNITIVE DEVELOPMENT 

The integral role of WM in both intelligence and higher-order cognitive 

processes highlights the importance of WM in normal development. Measures of 

cognitive performance have revealed that WM improves throughout childhood, 

adolescence, and into young adulthood, when many cognitive abilities seem to peak 

(Gathercole et al., 2004) and that cognitive abilities, including WM, steadily decline into 

late adulthood (Kail & Salthouse, 1994; Park et al., 2002).  Two theories have been 

proposed to explain these changes in cognitive performance throughout childhood, 

adolescence, and late adulthood: 1) the global-capacity framework, which suggests that a 

single global factor, such as increased processing speed, results in an overall greater 

processing capacity for cognitive abilities (Bashore & Smulders, 1995) and 2) the 

neurocognitive-change framework, which suggests that individual brain structures and 

functions are responsible for specific cognitive improvements/declines (Pennington, 

1994; Span et al.,1994).  The global-capacity framework holds that general changes in 

transmission times throughout the lifespan control increases and decreases in overall 

processing capacity, including the changes in WM storage and manipulation capacity that 

occur. The neurocognitive-change framework, however, holds that functional changes 

within brain regions control increases and decreases in modality-specific processing 

capacities (Baddeley, 2003), suggesting that WM storage and manipulation capacity 

changes throughout the lifespan occur with some degree of relative independence from 

other cognitive processes.  Additionally, it is likely that these two models are not 

mutually exclusive and may in fact be integrated; linear capacity improvements could 
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occur in some brain regions while nonlinear functional changes could occur in other brain 

regions. 

 Primary support for the global-capacity framework has come from cross-

sectional and longitudinal studies of changes in processing speed. The global-capacity 

framework uses processing speed as the global mechanism underlying improvements and 

declines in cognitive abilities across the lifespan because processing speed has been 

shown to mediate the age-related variations in cognitive performance (Fry & Hail, 1996; 

Salthouse, 1996). Kail and Salthouse (1994), for example, used the normative data of 

over 6000 individuals between the ages of 6 and 80 to evaluate the effects of age on 

processing speed, measured by the Visual Matching Test from the Woodcock-Johnson 

Tests of Cognitive Ability (Woodcock, McGrew, & Mather, 1990).  The results indicated 

that between the ages of 6 and 20 processing speed increased linearly, between the ages 

of 20 and 40 processing speed remained relatively constant, and between the ages of 40 

and 80 processing speed declined.  When speed of processing was statistically controlled 

for, the age-related variations in cognitive performance, as measured by the Raven’s 

Matrices (Raven et al., 2003) were reduced. This finding suggests that processing speed 

as a global mechanism is responsible for the improvements and decline in cognitive 

performance across the lifespan.  

 Processing speed as the global mechanism underlying changes in cognitive 

capacity has been further supported by evaluations of processing speed as a mediator of 

age-related changes in other cognitive abilities (Fry & Hale, 1996; Kail, 1991).  In one 

study, the relationship between processing speed, WM, and performance on the Raven’s 

Matrices (Raven et al., 2003) as a way to understand the development of general fluid 
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intelligence was evaluated (Fry & Hale, 1996).  The participants (N = 214, aged 7 to 19) 

completed four measures of processing speed, four measures of WM, and the Raven’s 

Matrices.  Path analysis indicated that processing speed mediated improvements in WM, 

and WM, in turn, mediated improvement on the Raven’s Matrices.  The authors proposed 

a developmental cascade model of intelligence, in which age-related improvements in 

processing speed led to improvements in WM, which in turn led to gains in fluid 

intelligence.  Thus, according to the global-capacity framework, brain mechanisms 

underlying processing speed underlie cognitive development by leading to overall 

improvements in processing capacity. 

Although several studies have supported the global-capacity framework, research 

on the complexity of the component processes that underlie cognitive abilities has 

provided support for a neurocognitive-change framework (Span et al., 2004). Stuss 

(1992) first proposed that a cognitive supervisory system develops in a hierarchical 

fashion, with more complex cognitive processes emerging as specific brain regions 

mature.  This model suggested that individual modules manage routine tasks, and that as 

the tasks became more complex, a “supervisory system” is needed to integrate processing 

across modules.  Stuss et al. (2005), for example, recently found support for this model in 

a study of RT in patients with frontal lesions (n = 38) and age-matched controls (n = 38).  

All participants completed two RT tasks, the Simple RT (push button 1 when the letter 

“A” appears) and the Choice RT (push button 1 when “A” appears and push button 2 

when any other letter appears); the Choice RT task required greater attention. The results 

indicated that both Simple RT and Choice RT were impaired in the superior medial lesion 

group (n = 8; p = .02, p = .07, respectively), but that the left dorsolateral frontal lesion 
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group (n = 10) and the inferior medial lesion group (n = 14) were also significantly 

slower than controls on the Choice RT task (p = .01, p = .07, respectively).  This finding 

suggested that different brain regions were integral to the efficient completion of complex 

functions, as different PFC regions were implicated when greater attention was required. 

The authors used this finding to support the theory that a PFC-mediated supervisory 

system is recruited as demands on EFs, such as attention, increase.  

Furthermore, research has raised questions about the ubiquity of processing 

speed as a mediator of changes in cognitive abilities across the lifespan (Span et al., 

2004).  Tasks measuring response selection, response inhibition, WM, adaptive control, 

and processing speed were given to children (mean age: 9.2; n = 22), adolescents (mean 

age: 15.4; n = 17), adults (mean age: 24.1; n = 21), and seniors (mean age: 68.7; n = 19). 

As expected, mean response latency was longer in the children, adolescent, and senior 

groups than in the adult group on all tasks.  However, when processing speed was 

statistically controlled, the age-related performance differences on the response selection, 

response inhibition, WM, and adaptive control tasks disappeared for the children and 

adolescents when compared to the adults. The seniors, however, performed significantly 

worse than the adults on all tasks even after controlling for processing speed. Although 

global processing speed may help explain developmental improvements in children and 

adolescents, this finding suggests that additional mechanisms, such as the changes in 

underlying brain regions, need to be considered in the study of cognitive performance 

changes across the lifespan. 

The research supporting the neurocognitive-change framework suggests that 

global processing capacity improvements alone do not account for the changes in 



51 
 

 
 

cognitive performance that occur throughout the lifespan, as cognitive abilities seem to 

be linked to specific brain regions that a supervisory system integrates into a network 

(Paus, 2005; Stuss, 2006).  It is possible that the different maturational trajectories of 

different brain regions support the development and utilization of different cognitive 

processes (Mountcastle, 1997). Thus, understanding the individual developmental 

trajectories of specific cognitive functions, such as WM, will assist in understanding the 

relationship between cognition and brain function throughout the lifespan.   

Executive Function (EF) Development  

 Research on the development of EF throughout childhood and adolescence has 

shown that performance improves along a linear trajectory (Best et al., 2009; Cepeda, 

Kramer, & Gonzalez de Sather, 2001; Huizinga, Dolan, & van der Molen, 2006), 

consistent with the global-capacity framework.  EF is considered to be a set of abilities 

that use goal-oriented mental control, such as attention, inhibition, set-shifting, and WM 

(Miyake et al., 2000; St. Clair-Thompson & Gathercole, 2006) to solve complex 

problems.  Given the high correlations between these cognitive processes, these abilities 

are often studied as a single construct (Best et al., 2009).  The underlying processes 

supporting the monotonic improvements in cognitive performance, however, are not fully 

understood, but again, these changes are consistent with the global-capacity framework. 

 Cepeda, Kramer, and Gonzalez de Sather (2001) found that linear increases in EF 

components during childhood, adolescence, and into young adulthood could be explained 

by increases in global processing capacity.  The participants (N = 152, aged 7 to 82) 

completed measures of processing speed (e.g., Digit Copying), WM (e.g., Backward 

Digit Span from the WAIS-R [Wechsler, 1981]), and executive control (e.g., a novel set-
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switching task that required participants to identify either the integer that appeared or the 

number of integers that appeared).  An inverse U-shaped function was found for RT on 

the set-shifting task across the lifespan; however, linear improvements in RT on both the 

processing speed and WM tasks were found until 20 years of age. Furthermore, for the 

subjects between the ages of 7 and 24, 84% (R2=.876) of the age-related variance of RT 

could be accounted for by improvements in processing speed and WM.  Although this 

finding suggests that an increase in global processing speed can account for EF 

improvements, the individual components of EF were not considered separately.   

In contrast, although Huizinga et al. (2006) found that improvements in EF (as 

defined by WM, shifting, and inhibition components) continued to develop linearly into 

young adulthood, the individual EF components followed different developmental 

trajectories, more consistent with the neurocognitive-change framework.  The 

participants (70 7-year-olds, 108 11-year-olds, 111 15-year-olds, and 94 21-year-olds) 

completed the Wisconsin Card Sorting Task (WCST; Grant & Berg, 1948) and the Tower 

of London (ToL; Shallice, 1982) task, two commonly used measures of EF.  Using 

confirmatory factor analysis, WM and shifting were found to be the two factors that best 

explained overall improvements on these two measures of EF that occurred with age.  

Furthermore, shifting ability increased from 7 to 15 years of age but not from 15 to 20 

years of age; therefore, the ability to shift between different sets of information seemed to 

be stable after age 15.  In contrast, WM consistently improved from 7 to 21 years of age, 

suggesting that WM continues to develop and improve into young adulthood. The 

different developmental trajectories of the EF components suggest that a single global 
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factor may not fully account for observed developmental improvements in cognitive 

abilities. 

WM Development 

 Similar to developmental improvements observed in EF, the findings on 

improvements in WM that occur with development have been mixed in their support for 

the global-capacity framework versus the neurocognitive-change framework. Although 

improvements in WM performance throughout childhood and adolescence seem to follow 

a linear trajectory (Gathercole et al., 2004; Luciana et al., 2005; Swanson, 1999), as 

would be suggested by the global-capacity framework, more qualitative changes in the 

brain regions underlying these improvements that occur with age are suggested when the 

complexity of the WM task is considered (Best et al., 2009).  This suggests that although 

cognitive abilities generally improve along linear trajectories, differences in the onsets 

and rates of change occur, supporting the neurocognitive-change framework.   

 Improvements in visuospatial, verbal, and complex WM tasks also have been 

found to be linearly related to age (Gathercole et al., 2004; Swanson, 1999), as would be 

expected in the global-capacity framework.  Gathercole et al. had over 700 children 

between the ages of 4 and 15 complete tasks from the Working Memory Test Battery for 

Children (Pickering & Gathercole, 2001).  All three components of WM were found to be 

highly correlated with age (visuospatial WM, r2 = .979; verbal WM, r2 = .971; complex 

WM, r2 = .969). Similarly, Swanson (1999) had 778 participants between the ages of 6 

and 76 complete four WM tasks: two verbal WM tasks (auditory digit sequence and 

semantic association) and two visuospatial WM tasks (mapping/directions and visual 

matrix).  Regardless of the modality, WM performance increased linearly with age, from 
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6 to 20 years of age.  These two studies provide evidence for the global-capacity 

framework, as improvements in overall processing capacity might contribute to the 

improved ability to store and manipulate information as seen in the overall improvement 

in WM performance.  

 When the complexity of the WM task has been considered, however, the strength 

of the linear relationship between age and WM performance has differed, thus suggesting 

that qualitative changes in WM ability may occur with age, as suggested by the 

neurocognitive-change framework (Luciana et al., 2005).  Luciana et al. (2005) had 

participants (N = 133, grouped as 9-10 year olds, 11-12 year olds, 13-15 year olds, 16-17 

year olds, and 18-20 year olds) complete four WM tasks (nonverbal face recognition 

memory, spatial delayed response, spatial working memory, and spatial self-ordered 

search).  The results indicated that the simplest of tasks, nonverbal face recognition, 

showed no significant improvement with age and thus seemed to be fully developed by 

age 9.  However, as the tasks became more complex, WM improvements were observed 

into adolescence (e.g., spatial location of an object showed improvement until age 12 and 

the ability to self-organize showed improvement until age 16). This study suggests that 

different WM abilities emerge at different ages; it is possible that nonlinear brain develop 

underlies WM improvements, thus supporting the neurocognitive-change framework. 

The cross-sectional developmental studies have shown WM improvements to 

follow monotonic developmental trajectories through childhood into adolescence, but 

studies also have shown differences in the onsets and rates of these changes for specific 

WM component processes (Luciana et al., 2005; Stuss et al., 2004).  Thus, these data 

have provided mixed support for the global-capacity and neurocognitive-change 
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frameworks. Cognitive models, however, are indirect measures of brain function, and 

attempts at more direct measures of the development of the brain bases supporting WM 

have come through structural and functional neuroimaging and lesion studies (D’Esposito 

et al., 2000; Owen et al., 2005; Rypma, 2006).  Indeed, a better understanding of the 

relationship between the structural and functional changes in the brain and WM 

improvements may clarify the cognitive findings.  

BRAIN-BASES OF WM 

Brain-bases of WM in Adults 

 Through the use of both neuroimaging and lesion studies, the PFC has been 

identified as having a key role in mediating WM functions (Figure 9; D’Esposito, Postle, 

& Rypma, 2000; Owen et al., 2005; Rypma, 2006). Furthermore, different brain regions 

have been shown to be differentially activated depending on WM component-process 

required, such as whether the task requires simple storage or more complex manipulation 

of information (Smith & Jonides, 1999), consistent with a hierarchical model of brain 

organization (Badre, 2008; Petrides, 2005; Stuss & Benson, 1987). 

 Different brain regions are activated depending on WM demand and the 

necessary recruitment of additional executive resources (Dove, Rowe, Brett, & Owen, 

2001; Levy & Rakic, 2000; Owen et al., 2005).  Owen, McMillan, Laird, and Bullmore 

(2005) performed a meta-analysis of studies using the n-back task to evaluate WM.  The 

n-back task requires participants to hold a series of information in the mind for an 

undetermined length of time and to recall a specific piece of information presented n-

tasks ago.  Given the complex nature of this task, the brain regions impacting different 

stages of the WM process can be explored.  This meta-analysis identified the 
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ventrolateral prefrontal cortex (VLPFC; BAs 44, 45, 47) as being activated in the most 

routine tasks (e.g., ordered information) that require basic storage and maintenance 

(additionally, see Levy & Rakic, 2000; Rypma, 2006).  However, the meta-analysis 

showed that the DLPFC (BAs 9, 46) tends to become active as tasks became more 

complex, such as when tasks required additional attention, selection, comparison, or 

judgment (additionally, see Dove et al., 2001; Rypma, 2006).  As tasks 

increase in complexity and begin to require the coordination of multiple processes (e.g., 

maintenance, manipulation, and attention simultaneously), the orbitofrontal cortex (BAs 

10 and 11) also becomes involved (Barby et al., 2010).   

 

Figure 9. Major anatomical subdivisions of the human brain. Brodmann’s Areas (BAs), 
particularly those relevant to the frontal lobe, are numbered.  The BAs conventionally considered 
to make up the DLPFC, VLPFC, and the orbitofrontal/frontopolar cortex are shown. 
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 Additionally, the involvement of different PFC regions varies depending on the 

specific underlying WM processes involved, such as during the encoding, maintenance, 

and retrieval phases (D’Esposito et al., 2000; Rypma, Prabhakaran, Desmond, Glover, & 

Gabrieli, 1999).  Motes and Rypma (2010), for example, used a partial-trial WM task as a 

way to differentiate the PFC activity throughout a WM task.  For the full-trial version of 

this task, participants were asked to encode 2 or 6 letters, maintain the letters over a 

delay, and judge whether the letters appeared in a probe set. For the partial-trial version 

of this task, the participants engaged in various combinations of the encoding and 

maintenance phases.  By completing the partial-trials, differences in brain activity during 

these three distinct phases of WM could be better ascertained.  The results indicated that 

the PFC was involved during the encoding phase for both the 2 and 6 letter sets, however 

the PFC was more active during the maintenance phase for the supra-capacity set (6 

letters) than for the sub-capacity set (2 letters).  This suggests that additional PFC 

activation during supra-capacity WM tasks may represent the recruitment of additional 

executive resources rather than route WM maintenance (Rypma & Prabhakaran, 2009).  

The evidence that WM is supported by multiple PFC regions further supports the 

neurocognitive-change framework 

 Thus, the complexity of the WM task (such as basic storage or goal-oriented 

manipulation) as well as the specific underlying WM process involved (such as the 

encoding, maintenance, or retrieval phase) leads to the differential use of regions within 

the PFC (Motes & Rypma, 2010; Owen et al., 2005).  Although performance on WM 

tasks seems to follow a monotonic developmental trajectory with age (Gathercole et al., 

2004; Luciana et al., 2005), the neuroimgaging and lesion studies suggest that specific 
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brain-regions mediate specific components and processes of WM.  Thus, WM 

improvements might not be due to global brain changes associated with global capacity 

increases but rather to local qualitative changes in the functional activation underlying 

WM processes that occurs with development.  

Brain-Bases of WM in Children and Adolescents  

 Although few studies have been conducted to look at the brain-bases of WM in 

children and adolescents, the early studies show that similar brain regions that underlie 

WM in adults also underlie WM in children.  Thomas et al. (1999) compared brain 

activation in six children (aged 8-10) and six adults (aged 19-26) and found that similar 

brain regions were activated during a visuospatial WM task (participants visually 

searched an array of boxes for a dot and indicated which box the dot had appeared in n-

trials back).  These brain regions included the right DLPFC, right superior frontal gyrus, 

and bilateral inferior parietal cortex, although quantitative differences in functional 

activation were not evaluated between the children and the adults.  Similarly, Nelson et 

al. (2000) studied brain activation in a group of children (N = 9, aged 8-11) during a 

comparable visuospatial WM task and found a similar activation pattern.  Specifically, 

the brain regions activated during the task were the right DLPFC, bilateral superior 

frontal gyrus, and right inferior parietal cortex.  Again, this study did not explore 

quantitative functional activation differences in these regions between the children and 

adult groups.  However, these studies are significant because they laid the foundation for 

the interest in functional activation supporting WM throughout development. 

 More recently, cross-sectional studies have found that age accounted for a 

significant portion of the differences in activation between groups of children, 
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adolescents, and adults during visuospatial WM tasks.  Klingberg, Forssberg, and 

Westerberg (2002) had participants (N = 13, aged 9 to 18) complete a visuospatial WM 

task (required participants to remember the location of either 3 or 5 sequentially shown 

dots in a 4 X 4 matrix of boxes and press a button after a delay to indicate if a probe dot 

appeared in a remembered location) while fMRI data was collected.  A general linear 

model was used to evaluate the main effect of activation during the WM task and age.  

This analysis revealed a positive correlation between activation and age in the bilateral 

superior frontal sulcus (considered part of the PFC; right side: t = 4.72, p < .05; left side: 

t = 4.48, p < .05) and in the intraparietal/superior parietal cortex (the parietal cortex has 

been implicated in spatial tasks; right side: t = 4.75, p < .05; left side: t = 4.65, p < .05).  

Similarly, Kwon, Reiss, and Menon (2002) collected fMRI data from participants (N = 

23; n aged 7-12 = 8, n aged 13-17 = 8, n aged 18-22 = 7) during a 2-back WM task.  

Multiple linear regression analyses were applied to the data to examine the individual 

contributions of age and performance to functional activation.  This analysis revealed that 

significant age-related activation changes occurred across subjects during the WM task 

after performance measures (response time and accuracy) were held constant (left PFC 

peak t-score: p = .091; right PFC peak t-score: p =.001).  This result shows that age is a 

significant linear predictor of functional activation changes in brain areas, such as the 

PFC, that underlie WM tasks.   

These studies suggest that functional specialization of brain regions contribute to 

improvements in WM performance and provide further support for the neurocognitive-

change model.  However, the nature of qualitative changes in brain regions requires 

further exploration as these studies only considered linear relationships between 
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performance and functional activation supporting WM with age.  Given the nonlinear 

development of brain regions (see Giedd et al., 1999; Gogtay et al., 2004), more complex 

relationships, such as quadratic models based on Giedd et al.’s 1999 study that found a 

quadratic relationship between PFC gray matter volume and age, warrant further 

exploration. 

CORTICAL DEVELOPMENT 

Although cognitive measures show that WM (and other cognitive processes) tend 

to steadily improve with development from childhood through adolescence, structural 

imaging data show that the human brain follows a nonlinear developmental pattern 

(Gogtay et al., 2004; Johnson, 2001).  Cortical brain regions follow heterochronic 

development, with individual brain regions each following individual developmental 

trajectories accounted for by bursts of synaptic development followed by neural pruning 

that occur at different periods of development.   

Synaptogenesis and Neural Pruning 

 Human brain development involves neuronal proliferation, neuronal migration, 

neuronal differentiation, synaptogenesis, and synapse elimination (Gazzaniga, Ivry, & 

Mangun, 2008).  At birth, the human brain is anatomically fully developed – including 

the cortex and its cortical layers observed in adulthood – aside from complete 

myelination.  The process of brain development begins during the first quarter of 

gestation through the process of neuronal proliferation, which refers to the genesis of the 

cells that will make-up the cerebral cortex.  This process is followed by neuronal 

migration, as the new neurons travel farther and farther outward to form the cortex; the 

first neurons to develop form the deepest cortical layers, and the last neurons to develop 



61 
 

 
 

form the outermost cortical layers.  Up until this point, all neurons are identical.  

However, after about five to six weeks of gestation, the dividing neurons become 

differentiated dependent on their respective gestational ages. 

Synaptogenesis is the formation of the synapses of neurons that occurs most 

rapidly prenatally and in the first few months after birth.  Because synapses are 

responsible for the transmission of electrical signals, the primary way that neurons 

communicate with each other, synapse connections are an integral factor in optimal brain 

functioning (Gazzaniga et al., 2008).  Research has shown that the peak density of 

synapses varies depending on the brain region (Huttenlocher, 1990; Huttenlocher & 

Dabholkar, 1997).  However, neural pruning, or synapse elimination, occurs well into 

adolescence.  Neural pruning is thought to increase the optimal functioning of the human 

brain by eliminating redundant or unnecessary neurons (Hua & Smith, 2004). 

Although synaptogenesis significantly slows after about 15 months of life, the 

overall volume of the brain continues to increase throughout adolescence (Giedd et al., 

1999).  This continued increase in volume occurs in both the gray and white matter 

structures, and this growth is likely a result of continued dendritic branching, increased 

myelination, and the addition of glial cells (De Bellis et al., 2001.)  However, despite the 

importance of synapse development, this stage of brain growth slows long before humans 

function at their optimal cognitive ability.  Thus, understanding the differences between 

the development of gray and white matter structures will shed light on the development 

of complex cognitive abilities. 
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Gray Matter Development 

Gray matter brain regions gain volume rapidly during the first few years of life 

and then begin to slowly lose volume with age throughout preadolescence and 

adolescence (Jernigan, Trauner, Hesselink, & Tallal, 1991; Johnson, 2001; Sowell et al., 

2004).  Gray matter refers to the layers of the brain where the cell bodies are, and these 

cells cluster together to form cortical structures (such as the PFC, temporal lobe, parietal 

lobe, occipital lobe, and their respective gyri); the high density of cell bodies leads to 

their grayish hue in comparison to other brain structures (Gazzaniga et al., 2008).  The 

acquisition of gray matter is likely a result of synaptogenesis initially and glial 

development thereafter.  The loss of gray matter that occurs throughout adolescence is 

somewhat more complex.  The predominant explanation for the gray matter loss is that it 

is likely a result of neural pruning and the refinement of cortical pathways (Cowan, 

Fawcett, O’Leary, & Stanfield, 1984; Huttenlocher & Dabholkar, 1997; Sowell & 

Jernigan, 1998). However, the refinement of MRI acquisition and analysis has allowed 

several studies to demonstrate robust gray matter volume changes that support this theory 

of neural pruning and refinement (Giedd et al., 1999; Giorgio et al., 2010; Gogtay et al., 

2004; Shaw et al., 2008). Interestingly, this acquisition and loss of gray matter during 

development is not a linear or uniform process.  Regions responsible for primary 

functions (such as the visual cortex) undergo this process earlier, whereas brain regions 

responsible for higher order functions (such as the PFC) undergo this process later 

(Gogtay et al., 2004).  The changes in brain volume seem to parallel cognitive abilities, 

with higher order processes such as reasoning, planning, and inhibition slowly emerging 

and maturing throughout adolescence 
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 Giedd et al. (1999) found that cortical structures follow a heterochronic 

developmental pattern, with different brain structures following unique growth curves. 

The longitudinal study had participants (N = 149, 89 male, 60 female; aged 4.2 to 21.6) 

undergo MRI scans every two years for up to eight years. The data were analyzed using a 

combination of techniques that allow individual growth patterns to be detected with both 

cross-sectional and longitudinal data.  The results indicated that, as expected, the volume 

of white matter increased linearly with age, with no significant differences in this growth 

between various cortical structures; the volume of white matter seemed to increase 

slightly more in males.  Overall, the net increase in white matter volume from age 4 to 22 

was 12.4%.  In contrast, the changes in gray matter volume varied by region and seemed 

to occur in a nonlinear fashion.  In the frontal lobe, gray matter volume increases seemed 

to follow a quadratic trend, with the peak gray matter volume for females occurring at 11 

years and the peak volume for males at 12.1 years; after this peak, the gray matter volume 

in the PFC began to decrease, resulting in a net loss during this age span.  The gray 

matter volume of the parietal lobe followed a similar pattern, with the maximum size 

occurring at 10.2 years for females and 11.8 years for males. The temporal lobe gray 

matter, although following the same nonlinear pattern, did not peak until 16.7 years in 

females and 16.5 years in males.  Unlike the other cortical brain structures, the gray 

matter in the occipital lobe seemed to follow a linear path, with a steady increase in 

volume in both sexes with age. 

 The heterochronic developmental pattern of the cortex, with different brain 

structures following unique growth curves, is a pattern that seems consistent with the 

neurocognitive-change framework (Shaw et al., 2008; Sowell, Thompson, Holmes, 
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Jernigan, & Toga, 1999; Thatcher, Walker, & Giudice, 1987.)  Furthermore, it seems that 

volume changes in the gray matter of the primary visual and auditory centers (located 

primarily in the occipital lobe) precedes the development of higher order executive 

functions, such as WM,  associated with frontal lobe function.  The authors infer that 

neural pruning, or a refinement of the neural pathways, might be responsible for the net 

loss of gray matter in the frontal cortex that occurs during adolescence.  Indeed, although 

the adolescent brain has the most gray matter volume around age 11 or 12, it might not be 

at its most efficient stage of development, as that likely occurs after neural pruning. 

 The studies exploring the changes in gray matter volume with development 

consistently find that the phylogenetically older brain regions, such as the lower-order 

sensiomotor regions, complete development earlier, while high-order (and evolutionarily 

newer) cortical regions, such as the PFC, do not complete develop until well into 

adolescence (Giorgio et al., 2010; Gogtay et al., 2004; Shaw et al., 2008; Sowell et al., 

1999).  This hierarchical development provides further support for the neurocognitive-

change framework, as the brain regions responsible for higher-order processes, such as 

reasoning and decision-making, rely on the integration of lower-order processes. 

However, further exploration of the structural cortical changes associated with 

development and functional activation changes that underlie cognitive tasks, such as 

WM, is needed. 

White Matter Development 

In contrast to gray matter volume, the volume of white matter seems to increase 

linearly throughout adolescence and into young adulthood (Giorgio et al., 2010; Giedd, 

2004); this increase in white matter volume could serve as a mechanism underlying the 
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increase in global processing capacity as suggested by the global-capacity framework. 

White matter refers to the axons of neurons, sheathed in myelin, that form tracts 

throughout the brain and connect structures; the myelin causes the axons to appear white 

(Gazzaniga et al., 2008).  Thus, the increases in white matter are likely a result of 

increases in myelination; when myelin sheaths the axon tracts connecting brain regions, 

the brain regions can communicate with each other faster and more efficiently (Filley, 

2010).  More specifically, this steady increase in the volume of white matter throughout 

adolescence is most profound in the frontal lobe and corpus callosum (Barnea-Goraly et 

al., 2005; Gogtay et al., 2004; Perrin et al., 2008).  In the 2010 study conducted by 

Giorgio et al., the DTI data revealed a relatively steady increase in white matter volume 

with age, with only a slight difference in trajectory between the four brain lobes.  

Increases in white matter volume were observed in the frontal lobe and corpus callosum, 

and in parts of the arcuate fasciculus and corticospinal tract.  As the volume of white 

matter in these critical regions increases, higher order cognitive processes become more 

refined; indeed, increases in white matter support overall processing capacity 

improvements in cognitive processes as suggested by the global-capacity framework.   

IMPLICATION OF BRAIN-BEHAVIOR RELATIONSHIPS 

When both the structural brain changes and cognitive improvements related to 

development are considered, there are three possible predictions: linear increases in white 

matter volume could lead to increases in cognitive capacity as suggested by the global-

capacity framework; regional heterchronicity in gray matter volume could lead to 

qualitative changes in brain function as suggested by the neurocognitive-change 

framework; both increases in cognitive capacity and regional hereochronicity occur and 
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thus suggest an integration of the two models. Although the gray matter volume in the 

PFC reaches its maximum size around 11 or 12 years of age, the subsequent decrease in 

gray matter is likely a result of neural pruning and refinement.  The neural pruning 

eliminates inefficient or unused pathways, while highly-used and effective pathways 

remain.  These structural changes may result in the qualitatively different use of brain 

regions while engaging in cognitive tasks.  Although performance on cognitive measures, 

such as measures of WM, may improve as a result of capacity increases, it is possible that 

structural brain changes may also contribute to this observed improvement as suggested 

by the neurocognitive-change framework. 

Thus, the relationship between brain structures and behavior may be more 

complex than linear activation patterns.  Efforts have been made to link cognitive 

functions to specific anatomical regions and to track the relationships between changes in 

behaviors and their respective underlying brain structures throughout development 

(Lenroot & Giedd, 2006).  Although cognitive processes seem to improve linearly, as 

supported by the global-capacity framework, there is a discrepancy between cognitive 

and structural trajectories that this framework does not account for; indeed, many brain 

structures, such as cortical gray matter, follow a quadratic trend with region-specific 

peaks.  
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APPENDIX B 
Rationale, Aims, and Hypotheses 

 
RATIONALE 

The discrepancy in the developmental trajectories between structural changes in 

brain regions mediating WM and performance on cognitive measures opens the question 

of what changes occur in PFC functional activity supporting WM with development.  

Cross-sectional developmental studies of cognitive performance show that cognitive 

abilities, including WM, follow monotonic developmental trajectories through childhood 

into adolescence. Although these cognitive improvements in WM have been explained by 

increases in global capacity that occur with age, the underlying mechanisms supporting 

this proposed increase in capacity are not fully understood 

 Cross-sectional and longitudinal research on the development of cortical brain 

regions mediating WM functions reveals the heterochronicity of brain development.  

Specifically, gray matter volume in the PFC seems to follow a quadratic developmental 

trajectory, with the peak in gray matter volume occurring around 12 years of age; this 

suggests that the PFC may undergo qualitative changes in functional activation that 

underlie WM improvement as suggested by the neurocognitive-change framework. 

Indeed, this discrepancy suggests that the functional changes within the PFC that support 

WM may be more complex than linear increases or decreases in activation, and could 

possibly follow the same quadratic changes seen in gray matter volume.  This finding 

suggests that the improvements in WM with age are not simply a result of improved 

processing capacity, but could reveal qualitative changes in PFC function that occur with 

age.
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Establishing the relationship between PFC functional activity supporting WM 

and improvements in WM ability will fill an existing gap in the literature that does not 

fully account for the differences between developmental anatomical changes and 

performance on cognitive measures of WM.  fMRI research will allow developmental 

models that integrate functional activation to be tested.  Furthermore, by understanding 

how the development of the human brain drives performance during integral cognitive 

tasks, such as WM, a more holistic perspective of brain-behavior relationships will 

emerge.  This understanding of the brain’s development and its relationship with 

cognitive tasks will drive future research to better identify, understand, and treat 

cognitive atypicalities in childhood and adolescence. 

AIMS AND HYPOTHESES 

Aim: Using functional activation and whole-brain analysis, this study seeks to find the 

model that best accounts for age-related variability in PFC functional activation during a 

WM task.  A linear regression model will be used to explore the strength of the linear 

relationship between functional activation and age, and a quadratic term will be added to 

the regression model to explore the strength of the quadratic relationship with age in 

order to consider potential nonlinear changes in functional activation (Figure 10).  

Hypothesis 1: Functional activation in brain areas implicated in WM, such as the PFC, 

will have a quadratic relationship with age, based on findings that structural changes in 

gray matter volume in the PFC also have a quadratic relationship with age.  This 

hypothesis will be tested using a whole brain-analysis to identify the brain regions where 

there are significant changes in the amplitude of the BOLD signal related to age.   

Hierarchical regression will be used after controlling for the linear effects of age, the  
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Figure 10. Example of linear and quadratic relationships between functional activation in brain 
regions supporting WM and age.   
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effects of gender, and the effects of performance (accuracy, capacity [derived from 

accuracy], and RT]). BOLD signal-change estimates will be regressed on linear and 

quadratic models of the age of the participants while performance variables, gender 

effects, and handedness are held constant.  It is predicted that the quadratic model will 

account for significantly more of the variance (as measured by the F-value) in BOLD 

signal-change than the linear model, thus suggesting that qualitative functional changes in 

the PFC occur throughout adolescence. 

Hypothesis 2: Changes in performance will have a linear relationship with age, given that 

WM improvements are observed with age.  Capacity will be the primary measure of 

performance; however, the effects of RT and accuracy will be explored as well.  The 

performance variables will be tested with the same hierarchical modeling used to test 

Hypothesis 1 (see Appendix D for an explanation of the performance variables used). 

Exploratory Aim: The synthesis of the cognitive changes, as measured by performance 

measures, and the functional changes in brain regions, as measured by BOLD signal- 

change, will be attempted. 
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APPENDIX C 
Description of the Samples 

 
A cross-sectional design including both retrospective and novel data was used.  

Although the data constitute a sample of convenience from two studies, all participants 

completed the same fMRI WM task and the Digit Span subtest from the WISC-

IV/WAIS-III as controls for both studies.  The completion of the WM task during the 

fMRI session varied given the differing protocols of each study; additionally, the order of 

the sessions may have varied as the protocols were adjusted to best accommodate each 

participant.  Data were collected from 42 participants (age M = 14 years; range = 11 to 18 

years; 17 females; 5 left-handed).  However, the data from one participant (16-year-old 

right-handed male) were not included in the analyses due to errors in fMRI data 

acquisition (Figure 11). 

 

Figure 11.  Frequency counts for age and gender of participants included in the study (N = 41). 
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STUDY ONE 

An fMRI Study of Amygdala Activation at Pre- and Post-Antidepressant Treatment 

Among Adolescents with Major Depressive Disorder 

Purpose. This study sought to explore brain activation differences in adolescents 

before and after antidepressant treatment (fluoxetine) compared to healthy controls using 

fMRI.  The principal investigator was Rongrong Tao, M.D., Assistant Professor at the 

University of Texas Southwestern Medical Center at Dallas and Child Psychiatrist at 

Children’s Medical Center Dallas.  The study was approved by the Institutional Review 

Board at the University of Texas Southwestern Medical Center, and the study was 

conducted according to the principles expressed in the Declaration of Helsinki.   

Participants.  Twenty-one healthy adolescents (aged 11-18; 13 males, 8 females; 

3 left-handed) completed the fMRI WM task as part of their participation in this study as 

controls.  These participants were recruited through Children’s Medical Center Dallas 

through the distribution of fliers to potentially qualifying participants.  The inclusion 

criteria for the control participants required that they be between the ages of 11 and 18, 

currently attending school, in good general medical health, of normal intelligence (i.e. 

IQ>80 based on the WISC-IV if concerns about intelligence became apparent), no 

evidence of a past or present psychiatric disorder, and no reported psychiatric disorders in 

any first-degree relatives.  The exclusion criteria for the control participants required they 

had not been taking psychotropic medications for the past four weeks, had no concurrent 

medical condition that would interfere with the study or harm the participant, had no 

contraindications to MRI scanning (e.g., metallic objects such as braces), and that no 

females could be pregnant or lactating.  At the baseline fMRI scan, the benefits, risks, 
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confidentiality, and other aspects of the study were explained to the parents and a written 

description of the study was provided.  Prior to testing, written informed consent was 

obtained from each participant’s legal guardian, and the adolescent provided their written 

assent. During baseline fMRI scans, participants completed the WM task, and these data 

were used in the present study. 

STUDY TWO 

Middle School Brain Years Project 

Purpose.  This study sought to explore the effects of Strategic Memory and 

Reasoning Training (SMART), a curriculum developed by Sandra Bond Chapman, Ph.D. 

and Jacquelyn Gamino, Ph.D. at the University of Texas at Dallas to help adolescents 

with ADHD on critical thinking skills and academic performance in middle school youth.  

In addition to receiving the SMART intervention, a portion of participants in this study 

underwent neuropsychological, EEG, and fMRI evaluations pre- and post-SMART 

intervention; the brain imaging component of this study was led by Michael Motes, Ph.D.  

The study was approved by the Institutional Review Boards at the University of Texas 

Southwestern Medical Center and the University of Texas at Dallas, and the study was 

conducted according to the principles expressed in the Declaration of Helsinki. 

Participants.  As part of the fMRI task battery, 21 participants (aged 11-17; 12 

males, 11 females; 2 left handed) completed the WM task.  These participants were 

recruited from Dallas-area schools through the distribution of fliers; some participants 

were recruited through the SMART study and some participated as neurotypical controls.  

Inclusion criteria for these participants required that they be between the ages of 11 and 

18, currently attending school, in good general medical health, of normal intelligence (i.e. 
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IQ>70 WASI, Wechsler, 1999), and no self-reported history of a past or present 

psychiatric disorder.  The exclusion criteria for these participants required that they were 

not currently taking psychotropic medications, had no concurrent medical condition that 

would interfere with the study, had no contraindications to MRI scanning (such as 

metallic objects such as braces), and that no females could be pregnant or lactating.  At 

the baseline fMRI scan, the benefits, risks, confidentiality, and other aspects of the study 

were explained to the parents and a written description of the study was provided. Prior to 

testing, written informed consent was obtained from each participant’s legal guardian, 

and the adolescent provided their written assent. During the baseline fMRI scans, these 

participants completed the WM task which was used in the present study. 
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APPENDIX D 
Additional Data Analyses/Results 

 
COMPARISON OF PARTICIPANTS 

 
Digit Span Scaled (DSS) Scores 

 
 Given that the participants were recruited from two different studies (see 

Appendix C), efforts were made to ensure that the two groups had comparable cognitive 

skills and thus could be treated as a single sample.   The Digit Span subtest from the 

WISC-IV (Wechsler, 2004) was used for all participants aged 11 through 16, and the 

WAIS-III (Wechsler, 1997) was used for all participants aged 17 through 18.  Scaled 

scores normalized by age were calculated for each participant and were used as a rough 

measure of cognitive performance.  

 An independent samples t test was performed to evaluate whether there was a 

statistically significant difference in DSS scores from the WISC-IV/WAIS-III between 

the participants from the Depression Study and the MSBY Study.  The test was not 

significant at α = .05, t(39) = 1.297,  p = .202.  Participants from the Depression Study (M 

= 10, SD = 2.83) did not perform significantly different than participants from the MSBY 

Study (M = 9, SD = 3.28), and thus could be treated as a cohesive group in terms of 

cognitive WM skills (Figure 12). 

 Additionally, correlations between DSS and other sample characteristics were 

explored.  DSS was highly correlated with both DSF (r = .804, p < .001) and DSB (r = 

.739, p < .001), as would be expected given that DSS is an aggregate of these scores.  

Thus, DSS was not treated as a covariate of an independent measure of intelligence in 

this study given its high correlation with DSF and DSB.  Furthermore, a linear regression 
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analysis was performed to evaluate whether there was a statistically significant 

correlation between DSS scores and age.  The regression analysis was not significant (r = 

.140, p = .383), indicating that variability in this aggregate measure of WM was not 

related to age.  

 

Figure 12.  Descriptive graph of Digit Span scaled scores in the two samples. 
 
Gender Differences 

 An exploration of gender was conducted to determine if gender differences were 

present across the behavioral measures.  An independent samples t test was performed to 

evaluate whether there was a statistically significant difference in DSS scores from the 

WISC-IV/WAIS-III between males and females.  The test was not significant at α = .05, 
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t(39) = 1.204,  p = .236.  Thus, males and females did not vary significantly on the rough 

measure of cognitive ability used (DSS).  An independent samples t test was performed 

to evaluate whether there was a statistically significant difference in RT between males 

and females.  The test was not significant at α = .05, t(39) = .724,  p = .473.  Thus, males 

and females did not vary significantly on their search and retrieval speed on the WM task.  

An independent samples t test was performed to evaluate whether there was a statistically 

significant difference in DSF scores between males and females.  The test was not 

significant at α = .05, t(39) = -.499,  p = .620.  Thus, males’ and females’ digit span did 

not vary significantly.   An independent samples t test was performed to evaluate whether 

there was a statistically significant difference in DSB scores between males and females.  

The t test was significant at α = .05, t(39) = 2.448,  p = .019, indicating that the males 

performed significantly better than the females on DSB.  However, the significant 

relationship between gender and DSB can be explained by three females’ low scores on 

the DSB task which skewed the relationship between gender and age in favor of males.  

When the three females’ low scores were dropped from the analysis, the t test was no 

longer significant at α = .05, t(36) = 1.682, p = 1.01.  Overall, males and females did not 

vary significantly on the complex WM ability. 

BEHAVIORAL MEASURES 

In addition to the behavioral Digit Span task (DSF, DSB), indices of performance 

on the WM task performed in the scanner (RT and accuracy) were also recorded.  RT was 

calculated as the mean RTs on correct trials during the 6-letter condition; RTs two-and-a-

half standard deviations above and below the mean were discarded as outliers.  The range 

of RTs indicated that this was a robust measure of performance on the WM task (M = 
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1098 ms, range = 451ms to 1501 ms).  However, although accuracy was calculated (total 

correct responses/total possible correct responses during the 6-letter condition), accuracy 

was not used as a measure of performance due to a task ceiling effect.  Only six 

participants performed worse than 93% accuracy (M = 92%, range = 67% to 100%).  

Furthermore, capacity estimates were derived from accuracy in the 6-letter condition 

using Cowan’s K (Cowan, 2001): K = (hit rate + correct rejection rate) – 1 X N; where N 

= set size (6).  However, given that only 12 trials were completed in the task, capacity 

estimates at the ceiling and also perfectly correlated with accuracy (r = 1).  Thus, only RT 

was used an index of performance on the fMRI WM task. 

ADDITIONAL fMRI ANALYSES 

  A whole-brain analysis revealed a linear relationship between percent BOLD 

signal-change and age in the right medial BA6.  However, no clusters showing a 

quadratic relationship between percent signal-change and age survived the thresholding 

criteria.  Thus, attempts were made to improve statistical power.  However, even with the 

use of the following analyses, no support was found a significant quadratic relationship 

between percent BOLD signal-change and age. 

Group Level 

Whole brain t-test.  To determine the functional activation patterns in brain 

areas implicated in WM, such as the PFC, voxel-wise hierarchical regression was used.   

Using hierarchical regression allowed for both the linear effects of age (with the reduced 

model) as well as any quadratic effects of age (with the full model) in brain regions 

supporting WM to be explored.  A whole-brain t-test was used to identify voxels where 

the mean percent signal-change estimates were significantly greater than zero (family-
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wise α = .05 and a voxel-level α = .005; Figure 13).  Next, only voxels showing positive 

activation were considered, and these regions were further restricted to the cortex by 

applying a mask of the cortical strip to the identified regions.  The resulting functional 

activation mask was used in the analyses in order to restrict the number of voxels and 

thus reduce the number of comparisons (i.e., voxel-wise t tests). To control for Type I 

errors, the results were cluster-thresholded based on Monte-Carlo simulations (AlphaSim 

software; Ward, 2000) so that surviving clusters were significant with a family-wise α = 

.05 and a voxel-level α = .005.   Clusters of  ≥ 49 voxels were significant with a family-

wise α = .05, based on the simulations (1000 iterations for a dataset having 11,558 voxels 

[2 mm isovoxel], smoothness = 8 mm FWHM, cluster = pairs of voxels having a 

connectivity radius < 3.47 mm, thus having connecting faces, edges, or corners at the 

resampled voxel size). 

In order to determine if a significant relationship between percent signal-change 

and age emerged with the use of this functional mask, a full model that included age 

squared as a quadratic predictor variable was added to the reduced mode that included 

age.  However, no clusters survived the thresholding criteria.  Even when the linear 

effects of the covariates were removed (G, H, RT, DSF, and DSB), no clusters survived 

the thresholding criteria. 
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Figure 13.  Results of a whole brain t-test.  The voxel-wise one-sample t-test compared the mean 
percent signal-change estimates to zero.  Red to yellow voxels illustrate positive correlations, 
where age increases were associated with higher signal-change, and blue to cyan voxels illustrate 
negative correlations, where age increases were associated with lower signal-change..  Data were 
cluster thresholded with cluster α = .05 and voxel α = .005. 
 
  Regions of Interest (ROI) analysis.  Based on previous research identifying the 

parietal cortex and anterior/inferior regions of the PFC as underlying WM (Awh et al., 

1995; Baldo & Dronkers, 2006; Rypma et al., 1999), hierarchical regression analyses 

were restricted to brain regions (ROIs) thought to underlie WM.  ROIs were drawn to 
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isolate the DLPFC (BAs 6, 9, 46), VLPFC (BAs 44, 45, 47), parietal cortex (BA 7), and 

inferior parietal cortex (BAs 39, 40; Figure 14). By restricting the analysis to 

predetermined brain regions, the number of voxels (and thus the number of necessary t-

tests) was reduced.   

 

Figure 14. ROIs approximating Brodmann’s Areas.   
 

The mean percent signal change within the ROI during the 6-letter condition was 

calculated for each participant.   Hierarchical linear regression was used to compare 

variance reduction by the reduced regression model (where percent signal-change = C + 
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B[Age] + errorreduced) to a full regression model (where percent signal-change =  C + 

B[Age] + B[Age2] + errorfull) in each ROI to assess whether there was a significant 

quadratic relationship between BOLD and age.  However, a significant relationship 

between age squared and percent signal-change was not found in any of the ROIs. 

Additionally, even when all covariates (G, H, DSF, DSB, and RT) were controlled for, a 

significant quadratic relationship between percent BOLD signal-change and age was not 

found (see Table 10). 

Table 10.  Hierarchical Multiple Regression Analyses Predicting the Quadratic 
Relationship between Percent Signal-Change and Age with the Addition of Covariates  
 

ROI R2 
∆ R2 ∆ F ßage

2 df1 df2    p 
Left BA6 .242 .002 .081 -.607 1 34 .777 
Right BA6 .115 .000 .002 -.104 1 34 .964 
        
Left BA7 .152 .002 .089 -.671 1 34 .767 
Right BA7 .114 .021 .807 2.067 1 34 .375 
        
Left BA9 .164 .001 .049 -.494 1 34 .826 
Right BA9 .031 .003 .094 .739 1 34 .761 
        
Left BA39 .095 .003 .106 -.757 1 34 .747 
Right BA 39 .106 .000 .013 -.263 1 34 .910 
        
Left BA 40 .146 .002 .085 -.657 1 34 .461 
Right BA 40 .087 .012 .434 -1.538 1 34 .515 
        
Left BA 41 .309 .000 .000 .017 1 34 .993 
Right BA 41 .183 .024 .980 2.187 1 34 .329 
        
Left BA 45 .102 .017 .628 -1.836 1 34 .434 
Right BA 45 .245 .002 .078 .594 1 34 .782 
        
Left BA 46 .169 .006 .254 -1.123 1 34 .617 
Right BA 46 .100 .005 .174 -.967 1 34 .679 
        
Left BA 47 .074 .007 .241 1.155 1 34 .627 
Right BA 47 .296 .000 .003 -.112 1 34 .957 

 
Note. All values reported are for the full model (BOLD = Age + G + H + RT + DSF + 
DSB + Age2). RT = response t ime; G = gender; DSF = digit span forward; DSB = digit 
span backward.   
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 One-way ANOVA.  In addition to the planned hierarchical regression analyses,  

a one-way analysis of variance was performed to evaluate the relationship between 

percent signal-change and age across the whole brain.  The independent variable, age, 

was broken into three groups: young participants (comprised of the 14 youngest 

participants), middle participants (comprised of the next oldest 14 participants), and old 

participants (comprised of the 13 oldest participants).  The ANOVA yielded no 

significant clusters (clusters  ≥146 voxels, family-wise α = .05), which indicated that 

there was no regions of activation that significantly differed between the three age 

groups. 

Image Level 

  Smoothing: Gaussian kernels.  Gaussian kernels are applied to the BOLD data 

in order to evenly distribute the error across a predetermined space (based on the 

smoothing kernel width) and improve the signal-to-noise ratio (AFNI software; Cox, 

1996).   Although a conventional Gaussian kernel is 8mm, the most effective smoothing 

parameter for individual data sets is unknown.  Thus, the data were re-analyzed using two 

additional Gaussian kernels in order to see if the whole-brain hierarchical regression 

analysis exploring both the linear and quadratic relationships between age and percent 

signal-change was significant.  However, neither a 5mm Gaussian kernel or a 12mm 

Gaussian kernel revealed any brain regions that showed significant quadratic relationship 

with age.  

  Removal of poor performers.  A qualitative evaluation of the data revealed that 

one participant achieved only 67% ACC.  Thus, this participant was dropped from the 

analysis.  However, the hierarchical regression analysis did not reveal any significant 
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clusters indicating a quadratic relationship between percent BOLD signal-change and 

age. 

  Removal of poorly registered images. A qualitative evaluation of the data 

revealed that one participant’s functional data did not align well with her anatomical data, 

which could result in voxel-loss at the group level.  Thus, this participant was dropped 

from the analyses.  However, the hierarchical regression analysis did not reveal any 

significant clusters indicating a quadratic relationship between percent BOLD signal-

change and age. 

  Removal of participants who moved in the scanner.  Although motion 

correction parameters were applied, each participant’s data was evaluated to identify 

participants who moved their heads more than 1 mm; head movements during data 

acquisition can create noise in the BOLD signal estimates.  Three participants were 

identified who moved more than 1 mm, and these participants were dropped from the 

analyses.  However, the hierarchical regression analysis did not reveal any significant 

clusters indicating a quadratic relationship between percent BOLD signal-change and 

age. 
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