
Abstract 

The only cells in the body that cannot synthesize 
cholesterol are red blood cells (RBCs), yet RBCs contain 
~50% of circulating blood cholesterol.  Whereas HDL is 
considered the major conduit for reverse cholesterol 
transport, we hypothesize that RBCs play a role in this 
pathway. To test this hypothesis, we developed an assay 
to measure accessible cholesterol in RBCs. We purified and 
fluorescently labeled domain 4 of a bacterial toxin, 
Anthrolysin-O (ALOD4), that binds membrane cholesterol.  
We incubated fALOD4 with RBCs from 164 healthy 
subjects and measured the fluorescence intensity using 
flow cytometry. The intra-assay and intra-individual 
variability were both <10%, whereas the inter-individual 
values varied over a 10-fold range. No correlation was 
found between fALOD4 binding and total RBC-cholesterol, 
hematocrit, or indices of RBC size. fALOD4 binding was 
inversely related to membrane phosphatidylcholine (PC) (-
0.42, p=6e-7) and directly related to lyso-
phosphatidylcholine levels (LPC) (0.40, p=6e-6). 
Phospholipase A2 treatment, which converts PC to LPC, 
increased binding 3-fold.  fALOD4 binding did not correlate 
with plasma LDL-C levels, but was directly related to HDL-C 
(0.30, p=6e-4), and inversely related to triglyceride levels (-
0.57, p=2e-12). Future studies will determine if variability in 
fALOD4 binding is intrinsic to RBC membranes, is 
genetically determined, or contributes to atherosclerosis.   
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Hypothesis 

An active form of cholesterol exists 

in the membrane of RBCs which is 

able to exchange with lipoproteins, 

cells, and/or other blood 

components.  

 

Flow cytometry of fALO-D4 bound to RBCs  
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Figure 3: Output from flow cytometer. Top panel: Each point represents a single RBC. 

Side light and forward light scatter are relative measures of  cell morphology. The 

distributions of cell size and shape are similar in the absence and presence of fALO-

D4. Bottom panel. Fluorescence intensity describes the amount of  fALO-D4 bound to 

cells. Addition of fALO-D4 drives a ~500 fold increase in fluorescence of all cells. 
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Assay Development 

Anthrolysin-O, a toxin secreted by Bacillus anthracis, 

is a cholesterol dependent cytolysin 

Figure 1: Full length 

ALO has 4 domains. 

Domain 4 senses 

and binds 

membrane 

cholesterol and 

domains 1-3 induce 

pore formation and 

RBC lysis.  

 

Isolated domain 4 

binds cholesterol in 

membranes but 

does not lyse RBCs.  
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Figure 2: ALO-D4 was over-expressed in 

bacteria, purified from cell lysate and 

labeled with a fluorescent tag (Alexa 488). 
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Figure 4: fALO-D4 was used to measure active cholesterol in the RBCs of 164 healthy individuals. 

The distribution of fALO-D4 binding has a 10-fold range. 
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fALO-D4 binding (normalized fluorescence) 

Intrinsic Property of RBCs 
• Lipid Composition 

• Protein Composition 

• Carbohydrate Modification 

 

Plasma Constituents 
• Lipoproteins 

• Other proteins 

Possible Sources of Inter-individual Variation 
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Figure 5: No significant relationship 

was observed between RBC active 

cholesterol (fALO-D4 binding) and 

total RBC cholesterol measured by 

an enzymatic assay. 

N = 130 

rho = 0.02 

P = 0.9a 

Serum Lipid (mg/dL) Spearman (rho) P 

Total Cholesterol  - 0.27 0.003 

Triglycerides - 0.57 2.16E-12 

LDL Cholesterol - 0.17 0.06 

HDL Cholesterol 0.31 0.0001 

fALO-D4 binding and plasma lipid &  

lipoprotein levels 

References 

Membrane Lipid (mole %) Spearman(rho) P 

Phospholipids abundant in outer membrane leaflet  

Phosphatidylcholine (PC) - 0.42 6.00E-07 

Lyso-PC 0.39 5.89E-06 

Sphingomyelin (SM) 0.34 9.25E-05 

Phospholipids abundant in inner membrane leaflet  

Phosphatidylethanolamine (PE) 0.11 0.22 

Lyso-PE -0.08 0.36 

Phosphatidylserine (PS) -0.06 0.51 

fALO-D4 binding correlates with outer leaflet 

RBC phospholipids  
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PC:Lyso-PC and increases fALO-D4 binding  

Figure 7: Phospholipase A2 treatment 

of RBCs increases fALO-D4 binding 

by ~3 fold. 

• Domain 4 of ALO can be used to assay “accessible” 
cholesterol in RBC membranes 

 

• RBC accessible cholesterol: 
 1. ≠ RBC total cholesterol 

 2. Varies over 10-fold range  
 3. Related to outer leaflet lipids:  
  ↑SM, lyso-PC ; ↓PC 
 4. Related to plasma levels of HDL(↑),    
  TG (↓) and TC (↓)  
 

• Decreasing the PC:Lyso-PC ratio in RBC membranes 
increases accessible cholesterol by ~ 3 fold 

Future studies 

• Compare protein & carbohydrate profiles in 

RBCs from individuals in extremes of activity 

distribution 
 

• Determine if differences in activity persist after 

treatment with proteases & glycosidases. 
 

• Examine mutations that alter HDL levels and 

PC/LPC ratio affect activity 

• LCAT deficiency 

• Tangier disease 
 

• Analyze segregation of trait in families of 

individuals in the extremes of distribution 
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