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Accurate chromosome segregation during cell division requires the precisely regulated release of 
chromosome cohesion.  In mitosis, sister chromatids are linked by chromosome cohesion until 
the proteolysis of the cohesion Scc1 by separase triggers the separation of sister chromatids at 
anaphase.  Chromosome dynamics during meiosis are more complex, as homologous 
chromosomes separate in anaphase I, whereas sister chromatids remain attached until anaphase 
II.  In meiosis, separase must cleave the cohesin REC-8 in a stepwise manner to separate 
homologs in meiosis I and then sister chromatids in meiosis II.  However, the mechanisms 
regulating the selective and sequential release of meiotic chromosome cohesion are unclear.  
Using C. elegans, we investigated the roles of Aurora and Polo kinases during the release of 
meiotic chromosome cohesion. 

We found that the Aurora B kinase AIR-2 is localized to sub-chromosomal regions 
representing the last points of contact between homologous chromosomes in meiosis I and 
between sister chromatids in meiosis II.  Depletion of AIR-2 by RNA interference (RNAi) 
prevented both chromosome separation and REC-8 removal during meiosis.  We showed AIR-2 
phosphorylated REC-8 at a major amino acid in vitro (T625).  The depletion of two 
phosphatases, GSP-1 and GSP-2, altered the localization pattern of AIR-2, such that AIR-2 is 
detected throughout the chromosome.  Concurrently, there was a chromosome-wide reduction in 
REC-8 and sister chromatids precociously separated at anaphase I.  We propose that AIR-2 
promotes the selective release of meiotic chromosome cohesion via the phosphorylation of REC-
8 at specific chromosomal locations and that GSP-1/2 antagonize AIR-2 activity. 
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We also described that the Polo-like kinase PLK-1 is required for the release of meiotic 
chromosome cohesion during meiosis II.  Depletion of PLK-1 by RNAi did not block the 
separation of homologous chromosomes, but the resulting dyads fail to separate during meiosis 
II.  Furthermore, in plk-1(RNAi) embryos, REC-8 was not removed from these dyads.  PLK-1 
was capable of phosphorylating REC-8 in vitro.  The gsp-1/2(RNAi) phenotype of precocious 
loss of REC-8 at anaphase I was suppressed by the simultaneous inhibition of PLK-1.  We 
propose PLK-1 regulates the second phase of meiotic chromosome cohesion release.  In 
summary, we propose that both Aurora B and Polo kinases phosphorylate REC-8 in order to 
regulate the selective and sequential release of chromosome cohesion during meiosis in C. 
elegans. 
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CHAPTER 1:  Introduction and literature review 

A.  Cell division:  Mitosis 

Cell division, one of the most central processes in all of biology, is a complex process by which a 

‘mother’ cell divides into two ‘daughter’ cells.  The purpose of cell division is to generate new 

cells, thus forming an immortal lineage of life.  Cell division was first observed in the 19th 

century by biologists, such as Rudolf Virchow, using available microscopes.  Virchow’s insight 

from these observations lives with us today in the phrase “omnis cellula a cellula,” meaning that 

all cells are derived from other cells. 

Each cell division requires the proper partitioning of all vital components into the 

daughter cells to ensure their viability.  For example, prior to every division, the mother cell 

replicates its genetic information in the form of chromosomes.  The chromosomes must be 

segregated during cell division, such that each daughter normally receives precisely one set of 

chromosomes in order to ensure their viability. 

1.  Traditional stages of mitosis 

Contemporaries of Virchow, such as Walther Flemming, separated cell division into different 

phases, based on events observable using light microscopy.  Prophase (Fig. I.1 B), the opening 

stage of cell division, was defined by the first appearance of condensed chromosomes 

(Flemming, 1879; Wilson, 1928).  The condensed chromosomes resemble threads; thus the name 

1 
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mitosis, from the Greek µιτο, meaning “thread” (Flemming, 1882).  Mitosis is the process used 

for most cell divisions that occur in eukaryotes. 

During prophase, another key event is the degradation of the nuclear envelope, a 

membrane-bound compartment separating the nuclear material, mainly the chromosomes, from 

the rest of the cytoplasm.  The complete disappearance of the nuclear envelope marks the end of 

prophase and entry into prometaphase (Fig. I.1 C).  Prometaphase involves the formation of the 

bipolar spindle, a mitotic structure that exerts on the chromosomes the forces required for their 

proper segregation.  The spindle is a large structure composed of tiny ‘cables’, which are 

microtubules that are organized by centrosomes (Flemming, 1875; Boveri, 1888).  In general, the 

centrosomes nucleate microtubules, which radiate in all directions forming the astral fibers 

(Flemming, 1875; Boveri, 1888). 

During prometaphase, the two centrosomes migrate apart, the astral microtubules shorten, 

and a growing concentration of microtubules asymmetrically extends toward the chromosomes.  

This results in the formation of the bipolar spindle, which is composed of the separated 

centrosomes connected by a concentration of microtubules meeting at the chromosomes (Fig. I.1 

D).  The bipolar spindle is composed of three main groups of microtubules:  (1) astral 

microtubules, which radiate in all directions; (2) spindle microtubules, which connect the 

centrosomes to the chromosomes; and (3) a variable number of microtubules, which meet from 

opposing centrosomes at the center of the cell. 
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Figure I.1.  The stages of mitosis.  (Reproduced from Rieder and Khodjakov, 2003.)  Panels show fixed 

newt lung cells stained for DNA in blue and microtubules in green.  A, interphase; B, prophase; C-D, prometaphase; 

E, metaphase; F-G, anaphase; and H, telophase (with cytokinesis). 

The microtubules of the bipolar spindle exert forces on the chromosomes to precisely 

move them around the cell during division (Inoue and Sato, 1967).  The first chromosomal 

movement is the congression of the chromosomes to the center of the cell (Fig. I.1 D).  The 

process of congression culminates with the alignment of all the chromosomes at the equator of 

the cell; this arrangement is termed the metaphase plate.  Visually, metaphase is the most 

impressive stage of cell division.  Metaphase is defined by the appearance of all the 

chromosomes aligned exactly at the equator (Fig. I.1 E). 

The subsequent entry into anaphase is defined by the separation of the chromosomes 

towards the opposite poles of the spindle.  During early anaphase, chromosomes are pulled apart 

by the shortening of the spindle microtubules while the centrosomes remain stationary.  This 

phase of spindle behavior is referred to as anaphase A.  Then, in anaphase B, the distance 
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between centrosomes increases, resulting in a pulling of the chromosomes even further apart.  

Lastly, the end of anaphase involves the formation of the central spindle, a microtubule structure 

between the separating chromosomes that pushes the chromosomes apart and prepares the cell 

for cytokinesis (Fig. I.1 G). 

The final stages of cell division include the events of telophase and the process of 

cytokinesis (Fig. I.1 H).  Telophase is defined by the appearance of new nuclear envelopes, 

thereby completing karyokinesis, which is the process of nuclear division (Schleicher, 1879).  

Telophase also involves the disassembly of the mitotic spindle and decondensation of the 

chromosomes.  In many cells, including all animal cells, the process of cytokinesis concludes 

cell division.  Cytokinesis is the irreversible cleavage of the mother cell into two daughter cells. 

2.  Modern molecular landmarks of mitosis 

Over the last 25 years, significant progress has been made in understanding how the life cycle of 

the eukaryotic cell is regulated at the molecular level.  In particular, studies of cyclin-dependent 

kinases (Cdks) have provided a conceptual framework for the description of the temporal control 

of the cell cycle. 

Seminal studies of Cdks and cyclins led to the awarding of the 2001 Nobel Prize in 

Physiology or Medicine to Dr. Lee Hartwell, Dr. Tim Hunt and Dr. Paul Nurse (Nasmyth, 2001).  

Through different methods, these researchers demonstrated that the cell cycle is regulated by the 

rise and fall of multiple Cdk activities that depend on the abundance of their cognate cyclins 

(Swenson et al., 1986; Alfa et al., 1989; Draetta et al., 1989; Maller et al., 1989).  The abundance 

of different cyclins oscillates in strict temporal patterns, correlating with progression through the 
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cell cycle (Evans et al., 1983; Draetta et al., 1989; Murray et al., 1989).  This molecular system is 

remarkable conserved throughout the eukaryotic kingdom, providing a universal model of 

regulation of the cell cycle in all eukaryotes (Nurse, 1990). 

a.  The cyclin-dependent kinases 

Kinases are enzymes that transfer phosphates from ATP molecules and covalently attach the 

phosphates to their targets.  Although kinases play significant roles throughout biology, this is 

especially true with regards to the cell cycle (Maller, 1993).  The cell cycle is ruled by protein 

kinases that use various phosphorylation-based mechanisms to orchestrate numerous molecular 

events (Nigg, 2001). 

Among the cell cycle kinases, the most prominent and well studied are the Cdks.  Most 

kinases initially are inactive, because a domain called the activation loop physically blocks 

access to the catalytic site (Hubbard, 1997).  Therefore, most kinases are activated by 

phosphorylation within the activation loop; this opens access to the catalytic site (Johnson et al., 

1996).  With Cdks, kinase activation requires conformational changes induced by the binding of 

cyclins.  The binding of cyclins promotes the phosphorylation of the Cdk in the activation loop 

by Cdk-activating kinases and promotes the binding of Cdk substrates (Fisher et al., 1994; 

Tassan et al., 1994; Desai et al., 1995; Fesquet et al., 1998). 

The activation of Cdk1 is sufficient to drive cells into mitosis (Newport and Kirschner, 

1984).  Cdk1 is activated specifically during mitosis by various regulatory mechanisms.  

Primarily, Cdk1 is activated by a rise in the concentrations of the mitotic cyclins, cyclin-A and 

cyclin-B, which peak at metaphase (Fig. I.2 A; Evans et al., 1983).  However, Cdk1 is kept 
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inactive, even in the presence of mitotic cyclins, by inhibitory phosphorylations added by the 

Wee1/Myt1 kinases (Gould and Nurse, 1989; Lundgren et al., 1991; Parker et al., 1992; 

McGowan and Russell, 1993; Mueller et al., 1995).  The kinase activities of Wee1/Myt1 towards 

Cdk1 are counter-acted by the phosphatase Cdc25 (Russell and Nurse, 1987; Dunphy and 

Kumagai, 1991; Gautier et al., 1991; Kumagai and Dunphy, 1991; Lundgren et al., 1991; 

Strausfeld et al., 1991).  Phosphatases function to remove phosphates from their substrates, 

operating in direct opposition to kinases. 

 

Figure I.2 A.  Mitotic cyclin levels peak at metaphase.  The abundance of the mitotic cyclins begins to 

rise prior to prophase and peaks at metaphase.  During anaphase, the mitotic cyclins are degraded rapidly. 

 

 

Figure I.2 B.  Cdk1 activity peaks at metaphase.  As a direct result of the abundance of mitotic cylcins, 

Cdk1 kinase activity rises during prophase, peaks at metaphase, and declines during anaphase. 

In general, the ease and reversibility of phosphorylation allows the cell to use 

kinase/phosphatase systems to precisely regulate molecular events requiring great temporal 
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accuracy (Maller, 1993).  One example is the regulation of Cdk1 by the Wee1/Cdc25 

kinase/phosphatase pair.  Entry into mitosis involves the activation of a small pool of Cdk1 

complexed with the mitotic cyclins, which then invokes two feedback loops.  There is negative 

feedback inhibiting Wee1/Myt1 kinase activities and positive feedback promoting Cdc25 

phosphatase activity (Hoffmann et al., 1993; Izumi and Maller, 1993; Strausfeld et al., 1994; 

Mueller et al., 1995).  Initially, the rate of Cdk1 activation is slow (Fig. I.2 B); however, above 

some threshold, the two complementary feedback mechanisms result in a precipitous feed-

forward mechanism that greatly accelerates the activation of the remaining Cdk1/cyclin 

complexes (Novak and Tyson, 1993).  Once achieved, the high activity of Cdk1/cyclin drives the 

cell into prophase by promoting such processes as chromosome condensation, nuclear envelope 

breakdown, and bipolar spindle formation (Peter et al., 1990; Ward and Kirschner, 1990; Desai 

et al., 1995). 

b.  The anaphase promoting complex 

Over the last 25 years, significant progress has been made in understanding how proteins are 

destroyed by the cell in a molecularly regulated manner.  Pioneering studies of the process of 

ubiquitin-mediated proteolysis led to the awarding of the 2004 Nobel Prize in Chemistry to Dr. 

Aaron Ciechanover, Dr. Avram Hershko, and Dr. Irwin Rose (Finley et al., 2004).  Their 

research focused on the biochemistry of numerous ubiquitin ligases and how modification of 

their substrates leads to their proteolysis by the proteasome (Finley et al., 2004).  One such 

ubiquitin ligase is the anaphase promoting complex (APC), an important regulator of the cell 

cycle. 
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The APC, also known as the cyclosome, is required for entry into anaphase.  The function 

of the APC was discovered by studies into the regulation of the abundance of mitotic cyclins 

(Irniger et al., 1995; King et al., 1995; Sudakin et al., 1995; Yu et al., 1996).  The APC is a large, 

multi-protein complex with ubiquitin ligase activity that specifically targets the degradation of 

cell cycle proteins.  Functionally, the APC covalent fastens ubiquitin chains to target proteins, 

thereby allowing their recognition and degradation by the proteasome.  The proteasome is a large 

protein complex with proteolytic activity that is constitutively active throughout the cell cycle 

(Glotzer et al., 1991; Hershko et al., 1991; Mahaffey et al., 1993). 

(1) APC/Cdc20 activity regulates anaphase 

The temporal activity of the APC is regulated within the cell cycle.  The APC is first activated 

during metaphase (Fig. I.3), in a Cdk1/cyclin-dependent manner, to target the degradation of 

multiple anaphase inhibitors (Irniger et al., 1995; Zachariae and Nasmyth, 1996; Zachariae et al., 

1996).  The APC associates with an activating subunit, Cdc20, whose abundance peaks at the 

metaphase-anaphase transition (Dawson et al., 1993; Sigrist et al., 1995; Visintin et al., 1997; 

Weinstein, 1997; Fang et al., 1998; Kramer et al., 1998; Lim et al., 1998; Prinz et al., 1998).  

Both Cdc20 and APC mutants arrest in a metaphase state, without separating their chromosomes 

(Palmer et al., 1989; Holloway et al., 1993; Dawson et al., 1995; Irniger et al., 1995; Sigrist et 

al., 1995; Ciosk et al., 1998; Lorca et al., 1998; Furata et al., 2000; Golden et al., 2000).  

Biochemically, Cdc20 has been shown to both activate APC activity in vitro and to bind to 

specific APC substrates in vivo (Fang et al., 1998; Kramer et al., 1998; Jaspersen et al., 1999; 

Pfleger et al., 2001; Schwab et al., 2001). 
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Figure I.3.  The activity of the anaphase promoting complex APC.  APC/Cdc20 activity peaks at 

anaphase, whereas APC/Cdh1 activity peaks after telophase. 

The most significant substrates of the APC/Cdc20 complex are the mitotic cyclins 

(Irniger et al., 1995; King et al., 1995; Sudakin et al., 1995).  The destruction of mitotic cyclins 

during anaphase serves to inhibit, via a negative feedback loop, Cdk1/cyclin-activity (Fig. I.2; 

Novak and Tyson, 1993).  The decline in Cdk1/cyclin activity is essential for the progression of 

the cell cycle in all eukaryotes that have been examined (Zachariae and Nasmyth, 1999).  This is 

attributed to the fact that high Cdk1/cyclin activity inhibits the later cell division events:  spindle 

disassembly, nuclear envelope reformation, and cytokinesis (Holloway et al., 1993; Surana et al., 

1993). 

(2) APC/Cdh1 activity regulates the end of cell division 

The exit from telophase requires the activity of the APC, now complexed with Cdh1 in lieu of 

Cdc20 (Fig. I.3; Sigrist and Lehner, 1997; Visintin et al., 1997).  However, unlike Cdc20, the 

abundance of Cdh1 is constantly maintained.  Prior to telophase, Cdk1 phosphorylation of Cdh1 

inhibits Cdhl-dependent APC activities.  The decline of Cdk1 activity during anaphase allows for 

a rise in Cdh1-dependent APC activity (Fig. I.3; Zachariae et al., 1998; Jaspersen et al., 1999; 

Sorensen et al., 2000).  The activity of APC/Cdh1 drives the cell through telophase and the end 

of mitosis (Zachariae et al., 1998).  Cdh1 mutants re-enter the next cell cycle prematurely; 

therefore, APC/Cdh1 activity probably functions in the timing of the following cell division by 
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maintaining low Cdk activity and by degrading various factors that promote cell division 

(Schwab et al., 1997; Sigrist and Lehner, 1997; Kitamura et al., 1998; Kominami et al., 1998). 

The activity of the APC/Cdc20 complex is required for such anaphase events as 

chromosome segregation and spindle elongation, whereas APC/Cdh1 activity is required for such 

telophase events as spindle disassembly and nuclear envelope reformation (Murray et al., 1989; 

Gallant and Nigg, 1992; Holloway et al., 1993; Surana et al., 1993; Rimington et al., 1994; 

Sigrist et al., 1995).  Like the Cdks, the function and components compromising the APC are 

conserved widely throughout eukaryotes, providing another general regulator of the cell cycle 

(Peters et al., 1996; Yu et al., 1998; Zachariae et al., 1998; Grossberger et al., 1999).  Together 

the Cdks and APC, through their protein kinase activity and protein degradation capability, 

respectively, control the major temporal transitions of mitosis and form the basis for 

contemporary understanding of the molecular control of cell division. 

3.  Molecular mechanisms regulating the events of mitotic cell division 

Although biologists have visually described the events of cell division for over a century, it was 

not until recently that this process could be described at the molecular level.  In the last few 

years, great strides have been made in understanding the molecular mechanisms behind the 

complex process of cell division.  The insights include the discovery of two related protein 

complexes, cohesins and condensins, both of which regulate chromosome structure, albeit in 

different ways.  Also, discoveries of some protein components of the spindle and kinetochore are 

beginning to give insights into various spindle behaviors. 
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However, the extent of progress is highlighted most by studies of the regulation of the 

metaphase-to-anaphase transition.  Descriptions of the molecular functions of such important 

regulators as separase and securin have accelerated the pace of research on cell division.  Finally, 

tying these discoveries to both the Cdks and the APC provides an integrated understanding of the 

molecular control of cell division. 

a.  Chromosome cohesion:  Cohesins 

Prior to mitosis, the mother cell must replicate its chromosomes.  During the process of DNA 

replication, chromosomal cohesion is established between sister chromatids.  After this stage, 

each chromosome is composed of two sister chromatids that remain linked together via 

chromosome cohesion.  Chromosome cohesion is mediated by both topological DNA 

connections resulting from the replication process and by a proteinaceous structure composed of 

cohesin complexes (Holm et al., 1985; Uemura et al., 1987; Ciosk et al, 1997; Guacci et al., 

1997; Michaelis et al., 1997; Losada et al., 1998). 

The cohesin complex is composed of at least four protein subunits:  Scc1, Smc1, Scc3, 

and Smc3 (Strunnikov et al., 1995; Guacci et al., 1997; Michaelis et al., 1997; Losada et al., 

1998; Toth et al., 1999).  Although the Scc subunits, named for sister chromatid cohesion, 

probably perform structural roles, both Smc subunits, named for structural maintenance of 

chromosomes, contain ATPase activity that is important for their function (Losada and Hirano, 

2001).  The cohesion holocomplex is believed to form a ‘scaffold’ between each pair of sister 

chromatids that has been detected throughout the length of chromosomes (Blat and Kleckner, 

1999; Tanaka, et al. 1999).  This proteinaceous scaffold is required to hold each pair of sister 

chromatids together until anaphase and is essential to resist the spindle forces that align the 
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chromosomes at metaphase (Tanaka et al., 2000; Sonoda et al., 2001; Vagnarelli and Earnshaw, 

2001). 

Cohesins are essential for life; cohesin mutants exhibit premature sister chromatid 

separation and chromosome segregation errors during cell division (Guacci et al., 1997; 

Koshland, 1997; Michaelis et al., 1997; Toth et al., 1999; Losada et al., 2000; Tomonaga et al., 

2000).  These results suggest the DNA linkages are not sufficient to link sister chromatids.  The 

fate of the DNA linkages is unclear, but they probably are resolved by DNA enzymes, called 

topoisomerases, either prior to cell division or, perhaps, during the process of chromosome 

condensation (Swedlow et al., 1993; Saka et al., 1994; Gimenez-Abian et al., 1995; Andreassen 

et al., 1997). 

b.  Chromosome condensation:  Condesins 

Chromosome condensation serves to reduce the volume occupied by the chromosomes.  

Chromosome condensation also results in the individualization of single chromatids and the 

differentiation of chromosome arms (Steffensen et al., 2001; Hagstrom et al., 2002; Losada et al., 

2002).  This process requires the condensin complex composed of CAP-D2, CAP-G, CAP-H, 

Smc2, and Smc4 (Strunnikov et al., 1995; Hirano et al., 1997; Sutani et al., 1999; Kimura and 

Hirano, 2000).  These subunits come together to form a complex with a very similar structure to 

the cohesin complex (Sutani et al., 1999).  As with cohesins, the Smc subunits of condensin use 

ATP hydrolysis to produce mechanical energy to alter their substrates (Kimura and Hirano, 

1997).  Most notably, in the presence of topoisomerases, condensin holocomplexes can induce 

the condensation of DNA in vitro (Kimura and Hirano, 1997; Kimura et al., 1999a; Hagstrom et 

al., 2002). 
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Condensin mutants sometimes display chromosome condensation, but they invariably 

exhibit chromosome segregation defects resulting from the inability to completely separate sister 

chromatids (Saka et al., 1994; Strunnikov et al. 1995; Bhat et al. 1996; Lieb et al. 1998; Sutani et 

al. 1999; Freeman et al. 2000; Lavoie et al. 2000; Ouspenski et al., 2000).  This might be 

explained by the different degrees of chromosome condensation observable in different 

organisms.  The condensin machinery is regulated by both localization and activity.  Condensin 

complexes first appear on the chromosomes in prophase, and the phosphorylation of condensin 

subunits is capable of stimulating condensin complex activity (Hirano and Mitchinson, 1994; 

Saitoh et al., 1994; Hirano et al., 1997; Kimura et al., 1998; Losada et al., 1998; Kimura et al., 

1999a). 

c.  Cdk1 directly regulates prophase and prometaphase 

The activation of Cdk1 drives cells into mitosis (Newport and Kirschner, 1984).  Recently, new 

Cdk1 substrates have been described that might explain more precisely how Cdk1 functions to 

promote the events of prophase and prometaphase.  For instance, both cohesins and condensins 

are phosphorylated during mitosis (Kimura et al., 1998; Losada et al., 2000, Tomonaga et al., 

2000; Hoque and Ishikawa, 2001).  Cdk1 is required for chromosome condensation, and Cdk1 is 

capable of phosphorylating condensins, which might be required for their activity (Kimura et al., 

1998; Collas, 1999; Sutani et al., 1999; Steen et al., 2000; Kimura et al., 2001; Losada et al., 

2000).  Similarly, Cdk1 has been shown to phosphorylate cohesions, which might facilitate their 

re-organization or removal from the chromosome (Losada et al., 2000). 

Another event during prophase that requires Cdk1 activity is nuclear envelope 

breakdown.  Cdk1 activity has been proposed to directly disassemble nuclear envelopes via the 
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phosphorylation of laminins, which are structural components of the nuclear membrane 

(Suprynowicz and Gerace, 1986; Peter et al., 1990; Ward and Kirschner, 1990; Nigg, 1992; 

Schneider et al., 1999).  Also Cdk1 activity has been proposed to directly disassemble another 

membrane-bound organelle during mitosis, the Golgi (Lowe et al., 1998). 

There is evidence suggesting that Cdk1 might directly influence spindle behaviors via the 

direct phosphorylation of microtubule associated proteins (MAPs) and microtubule motors, such 

as CENP-E (Heald et al., 1990; Peter et al., 1990; Verde et al., 1990; Buendia et al., 1992; Liao 

et al., 1994; Tournebize et al., 2000).  Finally, it has been suggested that Cdk1 might directly 

trigger anaphase by activating the APC.  The activity of the APC is temporally correlated with 

the phosphorylation of the APC, and Cdk1 is capable of phosphorylating several APC subunits 

in vitro (Kramer et al., 2000; Rudner and Murray, 2000; Tang et al., 2001).  The phosphorylation 

of the APC is proposed to increase the APC’s affinity for its activator Cdc20; however, this 

mechanism is not yet proven (Rudner and Murray, 2000). 

d.  The kinetochore 

Prometaphase involves the formation of the kinetochore, a specialized structure that connects the 

chromosomes to the microtubules of the spindle.  The kinetochore performs three functions:  (1) 

kinetochores are the sites where chromosomes capture spindle microtubules, (2) kinetochores 

monitor chromosome attachments to microtubules, and (3) kinetochores are responsible for 

chromosome motility on the spindle (for review see Mitchinson and Salmon, 2001.)  Although 

many components of the kinetochore have been described, their exact functions remain a 

mystery.  Important functional components of the kinetochore include the microtubule-based 
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molecular motors:  dynein and two kinesins, CENP-E and MCAK (Schaar et al., 1997; Sharp et 

al., 2000; McEwen et al., 2001). 

During prometaphase, spindle microtubules extend out from the centrosomes ‘searching’ 

for chromosomes; then kinetochores ‘capture’ the microtubules that they encounter (Kirshner 

and Mitchinson, 1986).  Both dynein and CENP-E have been implicated in promoting 

microtubule capture at kinetochores (Rieder and Alexander, 1990; Schaar et al., 1997; Yucel et 

al., 2000).  The spindle then is able to exert forces on the chromosomes that cause their 

congression and alignment at metaphase. 

Although the spindle appears visually as a steady-state structure, it is a very dynamic 

structure composed of both polymerizing and depolymerizing microtubules (Mitchinson and 

Kirschner, 1984; Cassimeris et al., 1988; Sammak and Borisy, 1988; Belmont et al., 1990; Inoue 

and Salmon, 1995).  Chromosome movements on the spindle are coupled to changes in the 

length of microtubules and require various motor proteins (Inoue and Salmon, 1995).  For 

instance, the motor proteins dynein, CENP-E, and MCAK have been implicated in the 

congression of the chromosomes to the metaphase plate (Walczak et al., 1996; Wood et al., 

1997; Maney et al., 1998; Starr et al., 1998; Bowman et al., 1999; Lee et al., 1999). 

The final alignment of all the chromosomes at metaphase requires each chromosome to 

be oriented such that each sister chromatid kinetochore interacts with microtubules from only 

one pole: this arrangement is known as bi-orientation.  The ability to achieve bi-orientation 

requires cohesins, condensins, and a fully functional kinetochore, although the mechanisms 

behind bi-orientation are not clear (Tanaka et al., 2000; Howe et al., 2001; Sonoda et al, 2001; 

Vagnarelli and Earnshaw, 2001; Hoque and Ishikawa, 2002; Toyoda et al, 2002). 
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e.  The spindle checkpoint  

There is evidence that kinetochores perform multiple rounds of stabilization and destabilization 

until the proper microtubule connections are established (Nicklas and Ward, 1994).  This is part 

of a more robust mechanism called the spindle checkpoint (Musacchio and Hardwick, 2002).  

The spindle checkpoint functions by inhibiting entry into anaphase until all of the chromosomes 

are bi-oriented and aligned at the metaphase plate (Taylor and McKeon, 1997; Martinez-

Exposito et al., 1999; Shonn et al., 2000; Hoffman et al., 2001; Skoufias et al., 2001; Stern and 

Murray, 2001; Taylor et al., 2001; Waters et al., 2001; Zhou et al., 2002). 

In general, the spindle checkpoint is composed of multiple Mad and Bub proteins, which 

were first described in S. cerivisae (Hoyt et al., 1991; Li and Murray, 1991).  The spindle 

checkpoint functions at the kinetochore to monitor chromosome attachments to the spindle, such 

that the presence of unattached or improperly attached kinetochores results in activation of the 

checkpoint and cell cycle arrest.  Once proper attachments are generated, the cell cycle resumes. 

During prometaphase, the Mad and Bub checkpoint proteins become enriched at 

unattached kinetochores, resulting in a diffusible signal dependent on Mad2 (Taylor and 

McKeon, 1997; Canman et al., 2002; Shannon et al., 2002).  This signal globally delays entry 

into anaphase via the inhibition of Cdc20 and APC activation (Taylor and McKeon, 1997; 

Martinez-Exposito et al., 1999; Shonn et al., 2000; Hoffman et al., 2001; Skoufias et al., 2001; 

Stern and Murray, 2001; Taylor et al., 2001; Waters et al., 2001; Zhou et al., 2002).  In fact, 

Cdc20 mutants that fail to bind Mad2 do not respond to the spindle checkpoint artificially 

induced by spindle poisons (Hwang et al., 1998; Kim et al., 1998).  Exactly what the spindle 
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checkpoint detects remains unclear, but it might be a combination of sensing attachment and/or 

tension, i.e., bi-orientation (Yu et al., 1999). 

In S. cerivisae, the Mad and Bub genes are absolutely essential for growth only in the 

presence of spindle poisons.  However in vertebrates, an intact spindle checkpoint is required for 

each cell division (Li and Murray, 1991; Dobles et al., 2000).  Recently, dynein, CENP-E, and 

MCAK all have been implicated to function in the spindle checkpoint (Chen et al., 1998; Chen et 

al., 1999; Abrieu et al., 2000; Basto et al., 2000; Chan et al., 2000; Yao et al., 2000; McEwen et 

al., 2001). 

Once the checkpoint is satisfied, the requirements for entry into metaphase have been 

met.  Metaphase requires the alignment of all chromosomes at the equator such that (1) all 

chromosomes are bi-oriented, (2) all chromosomes exhibit constant tension produced by 

opposing spindle forces, and (3) sisters remain linked together by the integrity of their 

chromosome cohesion. 

The spindle forces pulling on the chromosomes are believed to be established fully by 

metaphase, such that opposing poleward forces are counter-balanced in equilibrium (Shelby et 

al., 1996; He et al., 2001).  This has been demonstrated by experiments in which spindle 

microtubules from one centrosome are destroyed using a laser.  This results in the movement of 

the chromosome toward the opposite centrosome, without the activation of the APC and entry 

into anaphase (McNeill and Burns, 1981). 
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f.  Separase and securin regulate the metaphase-anaphase transition 

Amazing insights into the metaphase-anaphase transition have been made in the last few years 

because of the discovery of separase, a protease required for anaphase.  The separation of sister 

chromatids to opposite poles during anaphase is a synchronous process.  Studies of S. cerivisae 

revealed that the cohesin Scc1 is proteolytically cleaved by separase, which probably accounts 

for this synchrony (Uhlmann et al., 1999).  Separase is essential for chromosome segregation 

(Funabiki et al., 1996; Ciosk et al., 1998).  The cleavage of Scc1 by separase irreversibly triggers 

anaphase by breaking the cohesin complexes linking sister chromatids and allowing the opposing 

spindle forces to separate the chromosomes (Uhlmann et al., 1999).  Later experiments using 

other animals, including vertebrates, supported their results (Waizenegger et al., 2000; Hauf et 

al., 2001; Toyoda et al., 2002). 

Elegant experiments completed using S. cerivisae demonstrated the cleavage of Scc1 is 

both necessary and sufficient for chromosome separation (Uhlmann et al., 2000).  This also 

allowed further proof of the tension generated by spindle forces at metaphase, because the 

artificial induction of Scc1 cleavage in the absence of APC activation and entry into anaphase 

triggered chromosome separation (Uhlmann et al., 2000). 

Separase must be regulated carefully because, once activated, the cleavage of Scc1 is 

irreversible.  Securin is an important regulator of separase (Ciosk et al., 1998).  Securin binds 

separase thereby keeping it inactive by physically blocking access to the catalytic domain of 

separase.  Securin is a target of the APC/Cdc20 complex, which targets securin for degradation 

in anaphase and liberates separase to cleave Scc1 (Fig. I.4 A; Cohen-Fix et al., 1996; Funabiki et 

al., 1996; Yamamoto et al., 1996; Ciosk et al., 1998; Zou et al., 1999).  Non-degradable securin 
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mutants block chromosome cohesion release and chromosome separation in vertebrate cells, an 

effect similar to blocking separase function or activating the spindle checkpoint (Zou et al., 1999; 

Zur and Brandeis, 2001).  For a list of mutants that failed to separate chromosomes, see 

Appendix A. 

 

Figure I.4 A.  The separase-securin-APC regulatory axis.  The activation of APC/Cdc20 activity 

results in the degradation of securin, thereby releasing separase from inhibition by securin.  Once active, separase 

destabilizes cohesin complexes by proteolytically cleaving Scc1, allowing sister chromatid separation. 

 

Figure I.4 B.  Vertebrates display a prophase pathway of cohesin dissociation.  In vertebrates, 

the majority of cohesions are removed from the chromosome arms prior to APC activation and independent of 

separase. 
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Separase is a cysteine protease that is distantly related to the caspases and cleaves itself 

once activated (Waizenegger et al., 2000).  Separase auto-cleavage results in three subunits, 

which form a complex able to cleave Scc1 in vitro (Waizenegger 2000; Zou et al., 2002).  

However, the purpose of this auto-cleavage is unknown, because non-cleavable separase mutants 

appear fully functional (Waizenegger et al., 2000; Zou et al., 2002).  It is clear that securin 

performs other functions as well, because in some species, securin mutants fail to separate their 

chromosomes (Funabiki et al., 1996; Stratmann and Lehner, 1996; Jallepalli et al., 2001; Mei et 

al., 2001).  This probably is due to securin’s role in positively regulating separases in other 

manners, such as sub-cellular localization or pre-activation priming (Kumada et al., 1996; 

Leismann et al., 2000; Jallepalli, et al., 2001; Jensen et al., 2001; Hornig et al., 2002; 

Waizenegger et al., 2002). 

Although many of these models are based on the results of studies using yeast, vertebrates appear 

mosomal arms are 

removed from the chromosome during prophase in a process that is independent of separase, 

securin, and the APC (Fig. I.4 B; Losada et al., 2000; Sumara et al., 2000).  This prophase 

pathway results in the release of the majority (95%) of cohesin prior to metaphase, without the 

cleavage of Scc1 by separase (Losada et al., 1998; Sumara et al., 2000).  The remaining cohesin 

is located near the kinetochore and is sufficient to hold sister chromatids together (Losada et al., 

2000; Waizenegger et al., 2000; Hauf et al., 2001; Hoque and Ishikawa, 2001).  Then, at the 

metaphase-to-anaphase transition, the residual cohesin is released by the cleavage of Scc1 by 

g.  Vertebrates remove the majority of cohesins via a prophase pathway 

to have important differences.  In vertebrates, mitotic cohesins in the chro
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separase in a process dependent on securin and the APC (Fig. I.4 B; Waizenegger et al., 2000; 

Hauf et al., 2001; Jallepalli, et al., 2001). 

During telophase, the majority of cohesin removed during prophase returns to the 

chromo

Recent work has revealed an increased level of complexity in the regulation of separase.  

This is

The inhibitory phosphorylation of separase by Cdk1 is consistent with the observation 

that sec

somes (Losada et al., 2000; Sumara et al., 2000).  The reasons for the existence of the 

prophase pathway and the return of cohesion so quickly are unknown.  During prophase, the 

process of chromosome condensation is simultaneous with the prophase removal of cohesion.  

This has led to the suggestion that cohesin removal from the chromosome arms during prophase 

might be required to facilitate the condensation of the chromosome arms in organisms, such as 

vertebrates, with longer chromosomes (Losada et al., 2000; Sumara et al., 2000; Losada et al., 

2002).  A similar phenomenon has been described in Drosophila (Warren et al., 2000). 

 based on the discovery of an inhibitory phosphorylation of separase by Cdk1 in vertebrate 

cells (Stemmann et al., 2001).  The phosphorylation of separase by Cdk1 suggests a model in 

which high levels of Cdk1 activity might inhibit separase activity.  This conclusion is supported 

by the observation that expression of non-degradable cyclin-A, which presumably keeps Cdk1 

active, blocks chromosomes separation despite APC activation and the destruction of securin 

(Geley et al., 2001).  Both of these results suggest securin is not the sole inhibitor of separase. 

urin can be deleted in mouse embryos and in human tissue culture cells without causing 

defects in the timing of cohesion release (Jallepalli, et al., 2001; Mei et al., 2001).  This idea is 

further supported by the fact that mammalian cells lacking securin are capable of blocking the 
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loss of sister chromatid cohesion when the spindle checkpoint is artificially induced by spindle 

poisons (Mei et al., 2001). 

Recent work also has shown an increased level of complexity in the functions of 

separase.  Separase might be involved in regulating the spindle during anaphase, based on recent 

evidence from S. cerivisae.  Removing separase’s main target Scc1 does not obviate the essential 

functions of separase during mitosis.  Interestingly, these mutants display anaphase spindle 

defects instead of simply chromosome separation defects (Jensen et al., 2001; Severin et al., 

2001). 

The discovery of the first non-cohesin target of separase, Slk19, might explain this 

function of separase.  Slk19 is a kinetochore component that is cleaved into two fragments by 

separase.  The stable, N-terminal fragment of Slk19 transits to the central spindle during 

anaphase, and over-expression of a non-cleavable Slk19 disrupts microtubule stability of the 

spindle in anaphase (Sullivan et al., 2001). 

h.  The APC directly regulates anaphase and telophase 

Recently, novel targets of the APC have been described that help explain how the APC regulates 

the numerous events of cell division.  Although previously cell division was thought to be 

regulated indirectly by the APC’s role in the degradation of mitotic cyclins, now there is 

evidence that APC-mediated degradation plays more direct regulatory roles. 

The description of specific degradation domains in cyclins targeted by the APC led to the 

discovery of these domains in other proteins.  For instance, the important regulator of anaphase 

entry, securin, contains a D-box motif that is similar in sequence to the D-box motif in cyclin-B 
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(Glotzer et al., 1991; Hilioti et al., 2001).  The presence of a D-box in securin readily explains 

both (1) the coincident destruction of securin and cyclin-B (Cohen-Fix et al., 1996; Funabiki et 

al., 1996; Yamamoto et al., 1996; Ciosk et al., 1998; Zou et al., 1999) and (2) the observation 

that expression of non-degradable cyclin-B does not block chromosome separation whereas loss 

of APC function does (Glotzer et al., 1991; Davis et al., 2002).  The presence of a D-box in 

securin is also suggestive of why over-expression of the D-box region from cyclin-B inhibits 

chromosome separation, whereas over-expression of non-degradable cyclin-B does not inhibit 

chromosome separation (Glotzer et al., 1991; Holloway et al., 1993; Zou et al., 1999).  These 

studies show the importance of securin as a non-cyclin target of the APC. 

Similar approaches led to the discovery of other non-cyclin substrates of the APC.  The 

identities of these factors suggest direct roles for the APC in the regulation of the later events of 

anaphase and telophase.  Several microtubule motors, for example the kinesin Xkid, are targeted 

for degradation by the APC (Luca and Ruderman 1989; Murray et al., 1989; Murray et al. 1989; 

Pellman et al., 1995; Juang et al., 1997; Hildebrandt and Hoyt, 2001).  When a non-degradable 

form of Xkid is introduced into cells, it blocks spindle behaviors during anaphase A (Funabiki 

and Murray, 2000).  Also, CENP-E is degraded during anaphase, and although not proven, this is 

suggestive that CENP-E is a target of the APC (Brown et al., 1994). 

A degradation motif first described in Cdc20 and named the KEN-box is required for 

APC/Cdh1mediated destruction of Cdc20 (Pfleger and Kirschner, 2000).  The KEN-box has 

subsequently been described to regulate numerous cell division regulators such as securin, aurora 

kinases, NIMA/Nek kinases, Polo kinases, Cdc25 phosphatases, and Xkid (Pfleger and 

Kirschner, 2000; Hames et al., 2001; Hildebrandt and Hoyt, 2001, Zur and Brandeis, 2001; 

 



24 

Donzelli et al., 2002; Hagting et al., 2002; Leismann and Lehner, 2003).  These findings further 

support the hypothesis that the APC directly regulates cell division events. 

4.  Summary:  Cdk1 and the APC regulate cell division 

Now scientists can describe more fully the progression through the different stages of mitosis by 

unifying microscopic observations with molecular events.  Different cell division events have 

been shown to require specific proteins and enzymatic activities.  Furthermore, biochemical 

changes in these proteins, such as abundance or enzymatic activities, correlate with specific 

events in cell division.  The fundamental models of Cdk and APC function now are linked 

directly to cell division events, such as the regulated separation of chromosomes at anaphase by 

separase and securin. 

However, many of the molecular events still remain a mystery.  More importantly, the 

spatial regulation of the cell cycle has just begun to be integrated with the better-understood 

process of temporal regulation of the cell cycle (Pines, 1999).  For instance, the sub-cellular 

locations of important regulatory molecules throughout the cell are just beginning to be 

appreciated. 

For instance, Cdk1/cyclin-B is localized to both the chromosomes and the spindle during 

cell division (Bailley et al., 1989; Riabowol et al., 1989; Alfa et al., 1990; Leiss et al., 1992).  

Even more striking is the observation in human cells that a subset of cyclin-B localized to the 

chromosomes and centrosomes is degraded during metaphase, whereas the majority of cyclin-B 

remains stable until anaphase (Huang and Raff, 1999).  The APC is first observed on 

centrosomes and later in anaphase on the spindle (Huang and Raff, 2002; Raff et al., 2002).  
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Similarly, separase, securin, and cohesins have been observed initially on the chromosomes and 

then, during anaphase, on the spindle (Ciosk et al., 1998; Hoque and Ishikawa, 2001; Jensen et 

al., 2001; Severin et al., 2001).  With the application of live imaging techniques, the movements 

of molecules can be tracked in real-time during cell division (Rieder and Khodjakov, 2003). 
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B.  Cell division:  Meiosis 

Meiosis is a specialized type of cell division used by in species capable of sexual reproduction.  

The functions of mitosis and meiosis are quite different.  The purpose of mitosis is to produce 

two identical copies of the mother cell.  However, the purpose of meiosis is to reduce the 

chromosomal content in half.  In fact, the word meiosis means “diminution” or “reduce by half” 

(Farmer and Moore, 1905; Janssens, 1909).  In most species, the chromosome content is reduced 

by meiosis from diploid (two sets of each chromosome) to haploid (one set of chromosomes). 

In general, sexually reproducing species use the process of meiosis to produce haploid 

gametes.  Then, when female and male gametes are borught together by fertilization, the haploid 

gametes join to form diploid progeny with genetic contributions from both parents.  Meiosis is 

observed in the majority of eukaryotic species, presumably because the generation of genetic 

diversity provides an evolutionary advantage. 

Also of note is that, in sexual species, the meiotic cells are part of the germline, where 

germ cells and gametes form an immortal lineage.  This is in contrast to the soma, which is 

important as a protector and caregiver to the germline but makes no genetic contribution.  

Therefore, the germline has many features that are not found in the soma. 

For example, the germline is guarded carefully, because any genetic damage here has the 

potential of being inherited in the next generation.  Also, the gametes, especially oocytes, must 

be able to generate a new organism, which requires specialized attributes and supporting cells.  

This fact often makes the experimental analysis of meiosis difficult, because gametogenesis 

usually occurs in well-protected, specialized organs. 
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Unlike mitotic cells, meiotic cells are not easily removed from an organism and cultured 

for use in ex vivo experiments.  Unfertilized, vertebrate oocytes can be obtained readily and in 

large numbers, but they have already reached to prometaphase II and then arrest until 

fertilization.  Therefore, the earlier processes of meiosis I cannot be studied in these oocytes.  As 

in mitosis, the premiere model organisms for meiotic studies are genetically tractable species of 

yeast, and to a lesser extent, C. elegans and Drosophila. 

1.  The traditional stages of meiosis 

Early cytological studies of meiosis described events that are dramatically different from those of 

mitosis.  Just as in mitosis, meiotic cells duplicate their chromosomes prior to the meiotic 

divisions.  However, meiosis results in halving the number of chromosomes, because meiosis 

consists of two consecutive cell divisions: meiosis I and meiosis II (Fig. I.5 B).  Each of these 

divisions is sub-divided into the traditional stages of mitosis:  prophase I, metaphase I, anaphase 

I, prophase II, metaphase II, anaphase II, etc. 

The classic cytological studies also revealed unique chromosomal behaviors not seen in 

mitosis:  pairing, synapsis, and chiasmata formation (van Benenden, 1883; Weismann, 1887).  

The length of meiosis I is increased, because prophase I contains many unique chromosome 

behaviors.  The specialized meiotic prophase I has been further divided into five sub-stages:  

leptotene, zygotene, pachytene, diplotene, and diakinesis (Fig. I.5 A). 
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Figure I.5 A.  Prophase I is divided into five stages.  (Reproduced from Page and Hawley, 2003.)  The 

sub-stages of prophase I are leptotene, zygotene, pachytene, diplotene, and diakinesis. 

 

Figure I.5 B.  Chromosome segregation during meiosis.  During meiosis, homologous chromosomes, 

in this case one blue and one purple, become connected by chiasmata.  Meiosis I results in the segregation of 

homologs.  Meiosis II results in the segregation of sister chromatids; in this case, the blue dyad separates into 

individual sister chromatids. 
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Leptotene is when the chromosomes begin assembling specialized proteinaceous 

structures to prepare for synapsis (Fig. I.5 A).  Zygotene involves the first pairings of 

homologous chromosomes and later their intimate association via synapsis.  The pairing of 

homologous chromosomes, or homologs, is a process by which paternally-derived and 

maternally-derived chromosomes associate with each other based on DNA sequence homology.  

Pairing leads the more elaborate process of synapsis.  Synapsis involves the formation of a large, 

complex, proteinaceous structure between the homologs, called the synaptonemal complex (Fig. 

I.5 A). 

Entry into pachytene is defined when all the homologs have completed the process of 

synaptonemal complex formation.  Then, also during pachytene, recombination between 

homologs occurs.  Recombination is the physical exchange of DNA between homologs, which 

serves to further increase genetic diversity and is required for the formation of stable connection 

linkages between homologs. 

Entry into diplotene is marked by the disassembly of the synaptonemal complex.  This is 

the first stage when chiasmata can be observed.  Chiasmata are the result of recombination and 

mark the physical linkages between homologs (Fig. I.5 A).  Diakinesis involves chromosome 

condensation, nuclear envelope breakdown, and entry into prometaphase I. 

2.  Many molecular landmarks of meiosis are conserved with mitosis 

Despite their fundamental differences, mitosis and meiosis share much in common, because the 

process of cell division is functionally the same.  This idea is best demonstrated by molecular 

studies revealing that many of the factors regulating mitosis also perform similar functions in 

 



30 

meiosis.  In fact, the discovery of Cdk1/cyclin-B activity was partly due to studies of meiotic 

cells (Masui and Markert, 1971; Smith and Ecker, 1971).  Therefore, it has long been believed 

that meiosis is governed by the same paradigms that control mitosis:  (1) Cdk-dependent 

phosphorylation mechanisms (Draetta et al., 1989; Labbe et al., 1989; Grallert and Sipiczki, 

1990; Choi et al., 1991; Huchon et al., 1993; Liu et al., 1998; Boxem et al., 1999), and (2) APC-

regulated protein degradation mechanisms (Sigrist et al., 1995; Lorca et al., 1998; Furata et al., 

2000; Golden et al., 2000). 

Also, meiosis requires both cohesin and condensin complexes (Klein et al., 1999; 

Watanabe and Nurse, 1999; Eijpe et al., 2000; Losada et al., 2000; Pasierbek et al., 2001; Pelttari 

et al., 2001; Hagstrom et al., 2002), separase and securin (Buonomo et al., 2000; Salah and 

Nasmyth, 2000; Siomos et al, 2001; Kitagawa et al., 2002), and many other factors, such as 

spindle checkpoint proteins that have been studied well in mitotic cells, (Kitagawa and Rose, 

1999; King et al., 2000; Abrieu et al., 2001; Eaker et al., 2001). 

3.  Molecular mechanisms unique to meiosis 

Just as cytological observations over a hundred years ago revealed major differences between 

mitosis and meiosis, modern molecular studies have revealed important molecular differences 

between mitosis and meiosis.  Meiotic cells perform two consecutive rounds of chromosome 

segregation in order to reduce chromosome numbers by half.  This special ability depends on the 

unique events of the extended first prophase and, presumably, requires a multitude of meiosis-

specific factors.  The most notable of these meiosis-specific factors are the cohesin Rec8 and the 

kinetochore component Monopolin (Mam1). 
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a.  Chromosome cohesion during meiosis 

During meiosis, the key cohesin subunit Scc1 is replaced by a homologous protein called Rec8 

(Klein et al., 1999; Parisi et al., 1999; Watanabe and Nurse, 1999; Pasierbek et al., 2001).  In 

both yeast and worms, Rec8 is required for meiosis and is expressed only during meiosis (Parisi 

et al., 1999; Watanbe and Nurse, 1999; Pasierbek et al., 2001).  As for the other cohesin subunits, 

evidence from different organisms suggests there are various differences between mitosis and 

meiosis, depending on the species. 

There also is evidence in some organisms that other cohesin subunits are replaced or that 

meiosis-specific versions are used in addition to mitotic versions.  For example, in mammalian 

meiosis there are three additions:  (1) the meiosis-specific Rec8 coexists with its mitotic homolog 

Scc1, (2) the meiosis-specific Smc1β coexists with the mitotic Smc1, and (3) the meiosis-

specific STAG3 coexists with the mitotic Scc3 (Prieto et al., 2001; Revenkova et al., 2001; 

Prieto et al., 2002).  The use of meiosis-specific subunits presumably enables cohesin to fulfill 

functions that are specific to meiosis, such as recombination, mono-orientation, and the step-wise 

release of chromosome cohesion. 

Although normally Rec8 is not expressed in mitotic cells, the mis-expression of Rec8 

during mitosis is capable of rescuing yeast lacking Scc1 (Toth et al., 2000).  However, the 

converse is not true.  This demonstrates Rec8 is functionally equivalent to Scc1 during mitosis, 

whereas Scc1 is not functionally equivalent to Rec8 during meiosis. 
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b.  Prophase I:  Recombination and chiasmata formation 

Recombination is the crucial process of meiosis by which homologous chromosomes exchange 

genetic information and form chiasmata.  Recombination is initiated by the intentional creation 

of double-stranded breaks by the endonuclease Spo11 (Keeney et al., 1997; Dernburg et al., 

1998).  The presence of double-stranded breaks induces DNA repair.  However, in meiosis, the 

usual preference of mitotic cells to use a sister chromatid for repair is reversed in favor of using a 

homologous chromatid (Collins and Newlon, 1994; Schwacha and Kleckner, 1994).  This results 

in recombination between non-sister chromatids, potentially generating genetic diversity on the 

recombinant chromosome.  During pachytene recombination events are often resolved to form 

DNA crossovers between the non-sister chromatids.  Crossovers are topological linkages of 

DNA.  During most of the process of recombination, the homologous maternal and paternal 

chromatids are bound (or synapsed) together along their entire lengths to form a specialized 

meiotic structure, called the synaptonemal complex. 

(1) Synapsis 

During pachytene, the synamptonemal complex holds all four chromatids of the bivalent in a 

single bundle.  Electron microscopic analysis of the synaptonemal complex in various species 

suggests that it is composed of two axial cores, one from each homologue, that are connected by 

a central element (Zickler and Kleckner, 1998).  Within the context of the synaptonemal 

complex, the axial cores are referred to as the lateral elements, and they are composed primarily 

of cohesin complexes.  The central element, which is composed of cohesion complexes and 

Red1, lies between the lateral elements (Smith and Roeder, 1997; Klein et al., 1999).  In S. 
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cerivisae, the ability to form the central element and, therefore, the synaptonemal complex 

depends on the replacement of Scc1 with Rec8 (Klein et al., 1999). 

(2) Crossing-over and chiasmata formation 

At diplotene, the dissolution of the synaptonemal complex allows maternal and paternal sister 

chromatid pairs to separate, except in the regions of crossovers.  The physical results of 

crossovers are observed as chiasmata; these are visible with conventional light microscopy.  

After the disappearance of the synaptonemal complex, chiasmata are visual manifestations of the 

physical connections between homologs.  Chiasmata formation is required to link homologs 

together from this stage until anaphase I. 

From diplotene until anaphase I, the meiotic chromosomes often are referred to as 

“bivalents” to denote the two linked homologs.  The two linked homologs actually are composed 

of four individual chromatids.  Stable chiasmata are required for both the proper attachment of 

bivalents to the spindle and to resist the bipolar spindle forces for alignment of the bivalents at 

metaphase I.  As a consequence, in most eukaryotic organisms, recombination is obligatory for 

chromosome segregation at meiosis I.  Chromosomes defective in recombination often display 

high rates of mis-segregation during meiosis I, which is clearly seen in many C. elegans Him 

mutants (Broverman and Meneely, 1994). 
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c.  Meiosis I kinetochore:  Mono-orientation 

(1) Bivalents 

In meiotic prometaphase, bivalents begin the process of aligning themselves on the spindle.  In 

males, spermatogenesis involves the formation of a centrosomal-based spindle, similar to 

mitosis.  However, in most female meiotic systems, the constructing of the meiotic spindle is 

initiated by the bivalents, and meiosis occurs in the absence of centrosomes.  In both male and 

female systems, the structure of the bivalent chromosome is very different from chromosomes in 

both mitosis or meiosis II.  The proper geometry of bivalent chromosomes is dependent on the 

presence of chiasmata and on the mono-orientation of sister chromatid kinetochores (Fig. I.6). 

 

Figure I.6.  The geometry of bivalent chromosomes.  This drawing shows a conceptual representation 

of two types of bivalent chromosomes at metaphase I.  The location of the kinetochore determines the shape of the 

bivalent.  A typical monocentric bivalent is shown (above) with one chiasma per arm.  The sister chromatids mono-

orient their kinetochores such that the two homologs are pulled in opposite directions, denoted by the arrows.  

Telocentric chromosomes have their kinetochore located near the end of the chromosome.  Telocentric bivalents 

form a single chiasma and appear as shown (above).  In C. elegans, all bivalents have a telocentric geometry. 
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During prometaphase, the bivalents are structured with the two homologous kinetochores 

oriented in opposite directions.  This geometry allows for congression and alignment at 

metaphase, because the two kinetochores of each bivalent are attached to opposite poles of the 

spindle.  To orient homologs to opposite poles, each pair of sister kinetochores must function as 

a single unit:  this geometry is called mono-orientation.  Mono-orientation allows the two 

kinetochores from a sister chromatid pair to attach to the same pole.  Thus, most bivalents 

immediately obtain a bipolar orientation that balances the bivalent on the metaphase plate, 

because maternal and paternal kinetochores are being pulled toward opposite poles with equal 

forces (Fig. I.6). 

However, some bivalents fail to orient properly, having either both kinetochores attached 

to the same pole or only one kinetochore attached to a pole.  In this case, the kinetochores are 

able to go through successive cycles of microtubule release and reattachment until stable bipolar 

orientation of the bivalent is established.  This process is believed to be similar to the spindle 

checkpoint characterized in mitotic cells (Shonn et al., 2000). 

(2) Monopolin is required for mono-orientation 

Although mono-orientation is key to meiosis I, very little is known about this process.  In S. 

cerivisae, mono-orientation requires the meiosis-specific factor Mam1 (Toth et al., 2000).  

However, the molecular function of Mam1 is not clear.  Mam1 is first localized to kinetochores 

in pachytene, probably during the process of recombination, and it persists there until anaphase I.  

Also, factors homologous to Mam1 have yet to be found in other species.  Therefore, nothing is 

known about the factors or mechanisms that confer mono-orientation in other organisms (Toth et 

al., 2000). 
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There are suggestions that mono-orientation is conferred intrinsically by the chromosome 

structures themselves and not by the cytoplasm or spindles of these cells.  Cell fusion 

experiments using grasshopper sperm cells demonstrated that if bivalents are transferred to the 

meiosis II spindle, they align normally and disjoin to opposite poles at anaphase at the same time 

as do native meiosis II sister chromatids (Paliulis and Niklas, 2000).  This result demonstrated 

that bivalents are structured such that sister chromatid kinetochores are mono-oriented on the 

spindle, regardless of the cellular environment.  This experiment also suggested that the signal 

triggering the resolution of chiasmata – and the separation of homologs – is the same as the 

signal triggering the separation of sister chromatids at meiosis II. 

d.  Anaphase I:  Resolving the chiasmata 

Just as in mitosis, entry into anaphase I during meiosis requires activation of the APC/Cdc20 to 

destroy both M-cyclins and securing (Fig. I.7).  This is demonstrated clearly by the metaphase I 

arrest observed in APC mutants in both yeast and worms (Salah and Nasmyth 2000; Chu et al., 

2001).  Similarly, both separase and securin mutants fail to resolve chiasmata and separate 

homologs during meiosis in yeast and worms (Buonomo et al., 2000; Salah and Nasmyth, 2000; 

Chu et al., 2001; Siomos et al., 2001; Kitagawa et al., 2002). 
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Figure I.7.  Separase cleaves Rec8 to trigger anaphase I and anaphase II.  Similar to mitosis, 

both meiotic divisions involve the separase-securin-APC regulatory axis; however, only a subset of meiotic 

cohesions is removed during meiosis I. 

Just as Scc1 is cleaved by separase at the entry to anaphase of mitosis, Rec8 is cleaved by 

separase at the entry to anaphase I of meiosis (Fig. I.7).  Separase is required for chiasma 

resolution and homologue separation in both yeast and worms.  In S. cerivisae at the onset of 

anaphase I, separase cleaves the majority of Rec8 at two sites, both of which resemble the 

separase cleavage sites in Scc1 (Buonomo et al., 2000).  Mutation of these cleavage sites blocks 

chiasmata resolution and homologue separation.  In summary, the cleavage of Rec8 is both 

necessary and sufficient for homologue separation in anaphase I (Buonomo et al., 2000). 
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The block to meiosis I chromosome segregation imposed by separase inactivation or by 

non-degradable Rec8 is bypassed by Spo11 mutants.  This observation indicates that cleavage of 

Rec8 by separase is required for chromosome segregation during meiosis I only if homologs are 

linked by chiasmata (Buonomo et al., 2000).  Whether cleavage of Rec8 by separase also triggers 

anaphase I in vertebrate cells is unclear. 

During congression and alignment of the bivalents, the integrity of the chiasmata is 

crucial.  It long has been believed that sister chromatid cohesion distal to the chiasma maintains 

the connection between maternal and paternal homologs and resists the opposing forces of the 

spindle (Maguire, 1974; Carpenter, 1994).  This was demonstrated for the first time using S. 

cerivisae (Buonomo et al., 2000).  This report strongly supports the idea that, at metaphase I, 

homologs are held together by the chiasmata due entirely to chromosome cohesin complexes 

between sister chromatids located distal to the chiasmata. 

In S. cerivisae, biochemical experiments show the majority of Rec8 is destroyed in 

meiosis I but some does persist until meiosis II (Klein et al., 1999; Buonomo et al., 2000).  

However, the localization of these subsets of Rec8 is not clear.  Studies of the large 

chromosomes in mammals revealed the localization of Rec8 and STAG3 was along the axes that 

lie between sister chromatid arms from prior to meiosis until metaphase I (Prieto et al., 2001; 

Prieto et al., 2002).  Only a minor proportion of Rec8 is retained around the kinetochore until the 

second meiotic division (Prieto et al., 2002).  Similar observations were made for the localization 

of Rec8 in C. elegans and Arabidopsis (Pasierbek et al., 2001; Cai et al., 2003). 
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In vertebrates, the persistence of Rec8 along chromosome arms until the onset of 

anaphase I clearly contrasts with the behavior of Scc1 in mitosis, which largely disappears from 

chromosome arms via the prophase pathway.  The persistence of meiotic cohesins along 

chromosome arms is particularly remarkable during diakinesis, because chromosome cohesins 

are believed to be removed during mitosis to allow the process of chromosome condensation to 

shorten and compact the chromosomes (Prieto et al., 2001; Prieto et al., 2002). 

e.  Meiosis II is similar to mitosis but starts with half the chromosomes 

The second meiotic division is similar to mitosis in terms of sister chromatid orientation.  The 

main difference is that meiosis II begins with half the number of chromosomes.  During meiosis 

II, there is one set of dyads, composed of two sister chromatids each (Fig. I.7).  At metaphase II, 

the kinetochores of these sister chromatids exhibit bi-orientation, analogous to mitotic 

kinetochores.  Just like mitotic cells, meiotic cells attempt to pull sister kinetochores toward 

opposite poles at metaphase II but are prevented from doing so by the residual sister chromatid 

cohesion (Fig. I.7). 

The cleavage of the remaining Rec8 by separase triggers the poleward migration of the 

individual chromatids (Fig. I.7).  This is demonstrated best by experiments in S. cerivisae using 

the Spo11 mutant to bypass meiosis I.  The function of Separase in meiosis II was shown by the 

inability of Separase mutants to separate sister chromatids during meiosis II, when meiosis I is 

bypassed by a Spo11 mutant background (Buonomo et al., 2000).  Similarly, the expression of a 

non-degradable Rec8 prevents sister chromatid separation during meiosis II in a Spo11 mutant 

background (Buonomo et al., 2000).  In both cases, Spo11 is used to alleviate the block of 

homolog separation during meiosis I in order to analyze meiosis II. 
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f.  Counting chromosomes during meiosis and mitosis 

Each diploid cell contains two copies of each chromosome and can be defined as 2C:2N.  (The C 

number refers to the DNA content in multiples of a single genome content, and the N number 

refers to the actual number of chromosomes).  Prior to mitosis, the entire chromosome content is 

replicated during a synthesis phase, doubling the chromosome content from 2C to 4C.  However, 

because the newly replicated chromosomes remain linked to their sisters the number of 

individual chromosomes remains unchanged, staying at 2N.  In other words, DNA replication 

results in the following:  2C:2N changes to 4C:2N (Fig. I.8 A).  Then during anaphase, the 

disjunction of sister chromatids results in the doubling of the number of chromosomes, whereas 

the chromosome content remains unchanged.  In other words, anaphase results in the following:  

4C:2N changes to 4C:4N (Fig. I.8 A).  After mitosis, each daughter cell receives half of the 

chromosomes and half of the total DNA content to become 2C:2N, or diploid like their mother 

(Fig. I.8 A). 
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Figure 1.8 A.  Counting chromosomes during mitosis.  Each sister chromatid is shown in blue, with a 

white circle denote the kinetochore region.  The red circles represent cohesin complexes that link the sister 

chromatids.  The arrows indicate the direction of the pulling forces generated by the spindle. 

 

Figure 1.8 B.  Counting chromosomes during meiosis.  One maternal chromosome is shown in blue, 

and its paternal homolog is shown in purple.  The red circles represent cohesin complexes that link the sister 

chromatids together.  The arrows indicate the direction of the pulling forces generated by the spindle.  After 

recombination, the homologs are held together by sister chromatid cohesin complexes located distal, with respect to 

the kinetochore, to the chiasmata.  The diagram depicts segregation of the sister chromatids composing the maternal 

dyad, which displays evidence of recombination as shown by the small purple regions. 
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Meiosis consists of two consecutive rounds of chromosome segregation following a 

single round of DNA replication.  During a pre-meiotic synthesis phase, chromosome replication 

results in the following:  2C:2N changes to 4C:2N, just as in mitosis (Fig. I.8 B).  Then during 

the prophase I, the homologs become linked by chiasmata, reducing the number of chromosomes 

from 4C:2N to 4C:1N.  During anaphase I, the disjunction of homologs results in the doubling of 

the number of chromosomes from 4C:1N to 4C:2N.  After the first meiotic division, each 

daughter cell receives half of the chromosomes and half of the total DNA content to become 

2C:1N. 

In these 2C:1N cells, the meiotic cell has received the same amount of DNA content as in 

mitosis but the chromosomes are in the form of 1N paired sister chromatids or dyads.  This is 

very different from mitosis, in which the daughter cell receives twice as many chromosomes in 

the form of 2N single chromatids.  Then during anaphase II, the number of chromosomes 

doubles from 2C:1N to 2C:2N.  After the second meiotic division, each daughter receives half of 

the chromosomes and half of the total DNA content to become 1C:1N (Fig. I.8 B).  The result of 

meiosis is the formation of haploid cells (1C; 1N) with the chromosomes in the form of single 

chromatids. 

g.  Maintenance of proximal sister chromatid cohesion until meiosis II 

The unique ability of meiotic cells to perform two successive rounds of division – without an 

intervening phase of chromosome duplication – is due to the persistence of sister chromatid 

cohesion located in the proximity of the kinetochores.  The persistence of cohesion in the 

proximity of the kinetochore is crucial for aligning sister chromatids on the metaphase II spindle, 

and the destruction of this remaining cohesion triggers the separation of sister chromatids at the 
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onset of anaphase II.  The mechanism underlying this differential treatment of cohesins located 

in the distal chromosome arms and cohesions located in the proximity of the kinetochore remains 

obscure. 

(1)  Scc1 cannot functionally substitute for Rec8 during meiosis 

The differential regulation of cohesins might arise from differences between meiotic and mitotic 

cohesin complexes or from other molecular differences between the cytoplasmic environment of 

mitotic and meiotic cells.  Some insight about Rec8 has been gained from analysis of meiosis in 

S. cerivisae, which has had the Rec8 coding sequence replaced by Scc1 coding sequence.  In 

these rec8 mutants, which mis-express Scc1 during meiosis, meiotic recombination is defective, 

thereby preventing homologs from becoming linked together by chiasmata (Toth et al., 2000).  

Despite this defect, sister kinetochores bi-orient at metaphase I.  Then at the onset of anaphase I 

in this mutant, all the Scc1 is degraded by separase resulting in the complete loss of chromosome 

cohesion during meiosis I (Toth et al., 2000).  This observation suggests it is differences in Rec8 

versus Scc1 that account for the differential regulation of proximal sister chromatid cohesion. 

However, there also is evidence that differences in other meiosis-specific factors besides 

the cohesion Rec8 account for the differential regulation of proximal cohesion during meiosis.  

For example, Spo13 is required in S. cerivisae to maintain sister chromatid cohesion during 

meiosis I.  Spo13 is expressed only during meiosis. 

(2) Mutants that fail to protect proximal cohesion during meiosis I 

Finally, several other factors that are present during both mitosis and meiosis are involved in 

protecting proximal cohesion during meiosis I.  Several mutants have been described that fail to 
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protect proximal Rec8 during meiosis I:  Bub1, Mei-S322, Slk19, and Spo13 (see Appendix B).  

Currently, the molecular functions of these factors are not clear. 

In S. pombe, bub1 mutants separase degrades all Rec8 at anaphase I, resulting in the 

precocious separation of sister chromatids during meiosis I.  Bub1 is a kinetochore factor that has 

a well-characterized function in the mitotic spindle checkpoint.  The function of Bub1 in 

regulating Rec8 is believed to be independent of its function in the spindle checkpoint, because 

other spindle checkpoint mutants, such as Mad2, do not exhibit Rec8 defects (Bernard et al., 

2001).  However, Bub1’s role in regulating Rec8 might be indirectly due to its function in 

orienting the kinetochore. 

In Drosophila mei-S322 mutants, all Rec8 is degraded by separase at anaphase I, 

resulting in the precocious separation of sister chromatids during meiosis I.  Mei-S332 is also a 

kinetochore factor that persists in the kinetochore region throughout meiosis I and is not 

degraded until anaphase II (Kerrebrock et al., 1992; Moore et al., 1998; Tang et al., 1998).  This 

localization mirrors the localization of proximal cohesion, thereby suggesting a role in protecting 

proximal Rec8 until anaphase II. 

Finally in S. cerivisae, slk19 and spo12 mutanst display precocious separation of sister 

chromatids during meiosis I.  Slk19 is a kinetochore factor that is cleaved during mitosis by 

separase and functions in spindle stability during anaphase.  Spo12 is a novel factor with no 

homology to other proteins (Sharon and Simchen, 1990a; Sharon and Simchen, 1990b).  Genetic 

analysis shows Slk19 functions downstream of Spo12.  The observation that spo11 does not 

suppress slk19 suggests Slk19 has other roles besides regulating Rec8 (Kamieniecki et al., 2000; 

Zeng and Saunders, 2000). 
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Current evidence does not distinguish whether Bub1, Mei-S322, Slk19, Spo12, and 

Spo13 act primarily to protect proximal cohesion, to enable mono-oreintation of kinetochores, or 

serve as more general regulators of meiosis.  Because of its chromosomal localization pattern, 

Mei-S322 is considered the best candidate for a direct protector of proximal Rec8 during meiosis 

I (Kerrebrock et al., 1992; Moore et al., 1998; Tang et al., 1998). 

C.  New cell division regulators:  Aurora and Polo kinases 

Although studies of Cdk1 and the mitotic cyclins have provided an important framework for the 

regulation of cell division, it is clear that other protein kinases also play important roles during 

cell division.  Predominant among these other kinases are the Aurora and Polo kinases.  Aurora 

and Polo kinases were first described in cell division mutants in both S. cerivisae and Drosophila 

(Sunkel and Glover, 1988; Llamazares et al., 1991; Chan et al., 1993; Kitada et al., 1993; Glover 

et al., 1995).  Both Aurora and Polo kinases are similar to Cdk1, in that they are cell-cycle 

regulated with maximum kinase activity occurring during cell division and are highly conserved 

throughout the eukaryotic kingdom (Nigg, 2001). 

Like Cdk1, both Aurora and Polo kinases are required for numerous processes during cell 

division (Nigg, 2001).  However, unlike the Cdks, neither Aurora nor Polo kinases associate with 

cyclins.  Instead, Aurora and Polo kinases are regulated directly by cyclical changes in their 

abundance, similar to the regulation of mitotic cyclins.  Also, Aurora and Polo kinases show 

dynamic sub-cellular associations with various mitotic structures that probably play an important 

part of their regulation (see below).  However, the precise roles of these relatively novel kinases 

remain unclear making them an active topic of research. 
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1.  The Aurora kinase family 

The first Aurora kinase was discovered in S. cerivisae, where there is a single Aurora kinase 

family member, named Ipl1 for increase-in-ploidy (Chan et al., 1993).  In vertebrates, the Aurora 

kinases are divided into three sub-classes (A, B, and C) defined by their sub-cellular localizations 

(Adams et al., 2001a).  Aurora-A kinases are localized to the centrosomes.  Aurora-B kinases are 

chromosomal passengers, meaning they first localize to the chromosomes, then, in anaphase, 

they transit to the central spindle and cytokinetic midbody (Schumacher et al., 1998a; Terada et 

al., 1998; Adams et al., 2001b).  Aurora-C kinases, which are restricted to the germline, are not 

well studied (Bernard et al., 1998; Tseng et al., 1998; Kimura et al., 1999b).  In Drosophila and 

C. elegans, there are two Aurora kinases, which often are referred to by the vertebrate 

designations as Aurora-A and Aurora-B, although this is technically incorrect based on 

evolutionary relationships of these family members (Brown et al., 2004). 

Studies of Aurora kinases have revealed their requirement in such diverse processes as 

chromosome structure, spindle assembly, and cytokinesis (Bischoff and Plowman, 1999; Adams 

et al., 2001b).  Also, Aurora kinases are implicated strongly in oncogenesis; for review, see Giet 

and Prigent (1999).  However, exactly how Aurora kinases function in these processes is not 

clear. 

2.  The Polo kinase family 

In S. cerivisae, the single Polo kinase was first discovered in genetic screens by Dr. Lee Hartwell 

and named Cdc5 for cell division defective (Hartwell et al., 1974).  Later, Cdc5 was found to be 

a member of the Polo kinase family, named after the polo mutant in Drosophila (Sunkel and 
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Glover, 1988; Golsteyn et al., 1994).  In vertebrates, there are three distinct types of Polo kinase:  

Plk1, Plk2(Sak), and Plk3(Prk/Fnk).  Polo kinase classification is determined solely by amino 

acid sequence conservation.  Plk1 is the best studied of the three, whereas the functions of both 

Plk2 and Plk3 remain elusive.  Plk1 has been implicated in many of the same processes as Cdk1:  

(1) nuclear envelope breakdown, (2) spindle assembly, (3) activation of the APC/Cdc20, (4) cell 

cycle checkpoints, and (5) cytokinesis (Nigg, 1998).  Polo kinases have been implicated in 

oncogenesis (Knecht et al., 1999; Smith and Roeder, 1997; Wolf et al., 1997).  Exploration of the 

molecular functions of Plk1 is a very active area of research. 

3.  The regulation of Aurora and Polo kinases 

As cell cycle regulators, Aurora and Polo kinases are regulated by the two main paradigms of 

cell cycle control:  phosphorylation and degradation.  The transcription of Aurora and Polo 

kinases is constant during the cell cycle (Bischoff and Plowman, 1999; Nigg, 1998).  However, 

there is evidence that their protein levels are regulated during the cell cycle by mRNA stability 

and translational mechanisms, which regulate their protein levels such that they peak during cell 

division (Lake and Jelinek, 1993; Lee et al., 1995; Cheng et al., 1998). 

a.  Activating kinase activity via phosphorylation 

For both Aurora and Polo, kinase activation temporally mirrors Cdk1/cyclin activity but 

continues for much longer into the cell cycle, peaking during anaphase slightly after Cdk1 

activity (Fenton and Glover, 1993; Lee et al., 1995; Bischoff et al., 1998).  Both Aurora and Polo 

kinases contain conserved signature activation sequences in their kinase activation loops, similar 

to Cdk1 (Hamanaka et al., 1995; Abrieu et al., 1998; Giet and Prigent, 1999). 
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In general, both Aurora and Polo kinases have been shown to be phosphorylated in vivo 

when they are activated (Tavares et al., 1996; Kotani et al., 1998; Qian et al., 1998a).  In Aurora-

A, this can be mimicked by mutation such that T to D mutation is activated approximately 7-

fold, whereas T to A mutation prevents activation of both human and Xenopus forms (Walter et 

al., 2000; Littlepage and Ruderman, 2002).  Similarly, Aurora-B is activated by phosphorylation, 

although the phosphorylation sites are unknown (Bolton et al., 2002). 

With regard to Polo kinases, several cell-cycle regulated phosphorylation sites on Plk1 

have been mapped.  One site in particular, T201 in human Plk1, results in activation of Plk1 

kinase activity (Jang et al., 2002; Kelm et al., 2002; Wind et al., 2002).  Unlike Aurora kinases, 

where the upstream kinase is unknown, the description of a Plk1 kinase kinase (xPlkk1) in 

Xenopus might represent the upstream regulator of xPlk1 activation (Qian et al., 1998a).  

However, it has also been suggested that both Aurora and Polo kinases are activated directly by 

Cdk1 phosphorylation (Hamanaka et al., 1995; Abrieu et al., 1998; Qian et al., 1998b; Giet and 

Prigent, 1999). 

b.  Degradation 

During telophase, the decline in kinase activity of both Aurora and Polo kinases is due directly to 

degradation.  Both Aurora and Polo kinases are degraded via their conserved KEN-box motifs, 

which are targeted for degradation by the APC/Cdh1 complex during telophase (Fang et al., 

1998; Honda, et al., 2000; Pfleger and Kirschner, 2000; Walter et al., 2000; Castro et al., 2002).  

However, in S. cerivisae, Cdc5 was shown to be degraded via a D-box motif by the APC/Cdc20 

complex during late anaphase (Charles et al., 1998; Shirayama et al., 1998).  The reason for this 
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difference is unknown but might be related to the silencing of this conserved D-box domain in 

vertebrates (Castro et al., 2002; Littlepage and Ruderman, 2002). 

4.  The localization of Aurora and Polo kinases 

Most kinases are capable of phosphorylating various targets; however, target specificity often is 

regulated by the sub-cellular localization of either the kinase or its substrates.  This type of 

spatial regulation controls kinase activity towards its targets.  Aurora and Polo kinases are 

regulated both spatially and temporally by their localization to different mitotic structures within 

the dividing cell.  Both their localization and the timing of their localization require complex 

interactions with other proteins that have just begun to be appreciated.  In summary, the spatial-

temporal regulations of these novel, highly conserved kinases are critical for their many 

functions during cell division. 

a.  Sub-cellular localization of Aurora kinases 

The sub-cellular localization of both Aurora and Polo kinases is quite intriguing and informative.  

Aurora-A kinases are stably localized to centrosomes during cell division; however, Aurora-B 

kinases are very dynamic during cell division.  In many species, Aurora-B kinases are observed 

localized to the chromosomes from prophase until metaphase (Schumacher et al., 1998a; Terada 

et al., 1998; Adams et al., 2001b).  Then at anaphase, Aurora-B transits to the central spindle; 

this is called chromosomal passenger behavior.  Recently, it was shown that Aurora-B is part of a 

chromosomal passenger complex (see below).  Less is known about Aurora-A, but its association 

with TPX2 is required for its localization to the spindle (Kufer et al., 2002). 
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Aurora-B is regulated by its association with a conserved protein complex consisting of 

Aurora-B, Bir1/survivin, and INCENP.  This complex has been referred to as either the ABI 

complex or the chromosomal passenger complex (Kim et al., 1999; Adams et al., 2000; Adams 

et al., 2001a; Wheatley et al., 2001; Bolton et al., 2002).  Bir1, also known as survivin, is a small 

protein containing a BIR (baculovirus inhibitor of apoptosis) motif (Clem et al., 1991).  This 

inhibitor of apoptosis (IAP) domain is contained in many IAP proteins, which function to inhibit 

apoptosis (Deveraux and Reed, 1999).  In fact, survivin was named for its ability to prevent 

apoptosis when over-expressed in human cells treated with apoptotic stimuli (Ambrosini et al., 

1997).  INCENP has long been studied, both as the first chromosomal passenger protein and for 

its role in cytokinesis (Cooke et al., 1987; MacKay et al., 1998).  INCENP is a large protein with 

several domains.  INCENP contains a domain that binds chromatin in the N terminus and a 

microtubule binding domain in the C terminus that is required for its passenger behavior 

(Ainsztein, et al., 1998; Wheatley et al. 2001). 

Loss-of-function studies of the ABI complex revealed common phenotypes for each 

component (Cutts et al., 1999; Kim et al., 1999; Kaitna et al., 2000; Speliotes et al., 2000; Uren 

et al., 2000; Adams et al., 2001b; Oegema et al., 2001).  Also, loss of function of any of the 

subunits disrupts the sub-cellular localization of the other components.  In particular, loss of 

function of either Bir1/survivin or INCENP results in the disruption of Aurora-B localization 

(Adams et al., 2000; Kaitna et al., 2000; Speliotes et al., 2000; Adams et al., 2001c).  In fact, 

Aurora-B directly binds to both Survivin/Bir1 and INCENP to form stable complexes in vivo 

(Adams et al., 2000; Kaitna et al., 2000; Bolton et al., 2002). 
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Survivin/Bir1 and INCENP direct the location of Aurora-B kinases in the cell.  Both 

Survivin/Bir1 and INCENP are required for the movement of Aurora-B from the chromosome 

arms to concentrate at the inner kinetochore region at metaphase (Adams et al., 2000; Kaitna et 

al., 2000; Adams et al., 2001c; Bolton et al., 2002).  Also at the onset of anaphase, Survivin/Bir1 

and INCENP are required for Aurora-B to migrate to the central spindle (Adams et al., 2000; 

Adams et al., 2001c; Kaitna et al., 2000; Bolton et al., 2002).  These observations suggest the 

ABI complex subunits function to target Aurora-B kinases in a manner regulated by the cell 

cycle.  These results also suggest that the phenotypes of both Bir1/survivin and INCENP can be 

explained by the loss of function of the only known catalytic subunit of the chromosomal 

passenger complex, Aurora-B. 

b.  Sub-cellular localization of Polo kinases 

With regard to Polo kinases, dynamic movement and localization to several mitotic structures 

have been observed.  In prophase, Plk1 first appears on the nuclear envelope and centrosomes 

(Golsteyn et al., 1995; Lee et al., 1995; Arnaud et al., 1998; Moutinho-Santos et al., 1999; 

Hudson et al., 2001).  In metaphase, Plk1 is found on kinetochores, centrosomes, and spindle 

microtubules.  Then, in a manner similar to that of the passenger complex, Plk1 re-localizes to 

the central spindle at anaphase.  However, a subset of Plk1 remains associated with centrosomes 

throughout mitosis (Golsteyn et al., 1995; Lee et al., 1995; Arnaud et al., 1998; Moutinho-Santos 

et al., 1999; Hudson et al., 2001). 

There is evidence the sub-cellular localization of Polo kinases requires a highly 

conserved motif called the Polo box.  Initially, the presence of the Polo box (S-K-W-V-D-Y-S) 

was used to define whether a kinase is a Polo kinase (Nigg et al., 1998).  Both deletion of the 
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Polo box or mutations within the conserved sequence result in the mis-localization of Polo 

kinases (Lee et al., 1995; Lee et al., 1998; Lee et al., 1999; Song et al., 2000). 

5.  Multiple events of cell division are regulated by Aurora and Polo kinases 

a.  Aurora-B and chromosome structure 

A major area of research is to find how and through what targets these cell division kinases 

function.  One of the first substrates of the Aurora kinases was discovered by Dr. David C. 

Allis’s laboratory in collaboration with my mentor, Dr. Rueyling Lin.  Dr. Allis and Dr. Lin 

showed – in S. cerivisae and C. elegans, respectively – that histone H3 is a conserved substrate 

of Aurora kinases (Hsu et al., 2000).  Furthermore, they showed the loss of histone H3 

phosphorylation was correlated with chromosome condensation defects and chromosome 

segregation failure (Hsu et al., 2000). 

For a long time, it has been known that the phosphorylation of both histone H3 and 

histone H1 was correlated with chromosome condensation during mitosis in a variety of 

eukaryotic organisms (Bradbury et al., 1973; Gurley et al., 1974).  However, researchers have 

shown more recently that the phosphorylation of histone H1, and even histone H1 itself, is 

dispensable for chromosome condensation (Ohsumi et al., 1993; Shen et al., 1995).  Work done 

using Tetrahymena revealed the most direct connection between the phosphorylation of histone 

H3 and chromosome condensation (Hendzel et al., 1997; Wei et al., 1998).  The mutation of the 

phosphoryation site, serine 10, in histone H3 in Tetrahymena was sufficient to reveal both 

mitotic and meiotic chromosome segregation defects that were attributed primarily to 

malfunctions in chromosome condensation (Wei et al., 1998). 
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Aurora kinases phosphorylate histone H3 on serine 10.  The development of a phospho-

serine 10 specific, histone H3 antibody by Dr. Allis has allowed Aurora kinase activity to be 

monitored in vivo.  Although in vitro, both Aurora-A and Aurora-B are able to phosphorylate 

histone H3 at serine 10, the majority of in vivo phosphorylation appears to occur through 

Aurora-B.  This agrees with the phenotypes of Aurora-A versus Aurora-B mutants.  The loss-of-

function of Aurora-B in worms or flies results in the abolishment of histone H3 phosphorylation, 

which correlates with failures in chromosome condensation and severe chromosome segregation 

defects during mitosis (Hsu et al., 2000; Adams et al., 2001b; Giet and Glover, 2001; Hagstrom 

et al., 2002).  On the other hand, the loss of function of Aurora-A results in centrosomal defects 

and has little to no effect on histone H3 phosphorylation (Hsu et al., 2000; Hannak et al., 2001). 

In both yeast and worms, the PP1 phosphatases Glc7p, CeGLC-7α, and CeGLC-7β have 

been shown to antagonize Aurora-B kinase activity towards histone H3 in vivo (Hsu et al., 

2000).  The mechanism of GLC7 function was suggested to be via direct activity towards histone 

H3, because the yeast Glc7p was shown to dephosphorylate histone H3 in vitro (Hsu et al., 

2000).  An ipl1 mutation can be suppressed by some alleles of glc7, suggesting a balance of 

opposing activities (Hsu et al., 2000).  Also, it was shown in S. cerivisae that Ipl1 and Glc7 

regulate the balance of phosphorylation of at least one another common substrate, Ndc10 

(Biggins et al. 1999; Sasson et al. 1999).  The Glc7 phosphatases are required for cell division, 

and loss-of-function analysis in both yeast and worms revealed defects in chromosome 

condensation during mitosis (Hsu et al., 2000). 
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b.  Plk1 and cell cycle regulation 

(1) Cell cycle progression 

There are several different lines of evidence suggesting Plk1 regulates entry into mitosis via the 

activation of Cdk1/cyclin complexes.  Plk1 activates the Cdc25 phosphatase via phosphorylation, 

which antagonizes the effects of Wee1 inhibitory phosphates on Cdk1 (Kumagai and Dunphy, 

1996; Ouyang et al., 1997; Qian et al., 1998b; Qian et al., 1999).  Another target of Plk1 is 

cyclin-B, which might enhance its ability to activate Cdk1 (Toyoshima-Morimoto et al., 2001).  

These results have led to models where Cdk1 and Plk1 activation occur simultaneously and feed 

into each other to further promote Cdk1 activation. 

Plk1 also is required for exit from mitosis.  There are several observations suggesting 

Plk1 activates the APC directly via phosphorylation.  The result of this would be the promotion 

of entry into anaphase via cyclin-B and securin degradation (Charles et al., 1998; Descombes and 

Nigg, 1998; Kotani et al., 1998).  Specific Plk1 targets include APC1/Tsg24, APC6/Cdc16, 

APC3/Cdc27, and APC8/Cdc23 (Golan et al., 2002).  Interestingly, experiments in S. cerivisae 

suggest Cdc5/Plk1 activates the APC to specifically target the degradation of cyclin-B but not 

securin (Jaspersen et al., 1998; Hudson et al., 2001). 

Initially, Plk1 appears to activate Cdk1/cyclin-B activity and then later to inactivate 

Cdk1/cyclin-B activity via the promoting the activation of the APC.  Both of these actions of 

Plk1 serve to drive the cell cycle forward, albeit at different stages. 
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(2) Plk1 and cell cycle checkpoints 

In many systems, Plk1 is inhibited when either spindle poisons or DNA damage perturb the cell 

cycle.  In S. cerivisae, cdc5 mutants fail to arrest the cell cycle in response of DNA damage 

(Toczyski et al., 1997).  In response to DNA damage, the checkpoint kinase Chk2/Rad53 has 

been shown to block Plk1 activation via direct inhibitory phosphorylation of Plk1 (Bernstein and 

Coughlin, 1998; Karaiskou et al., 1999; Smits et al., 2000; Kang et al., 2002).  Also, in response 

to the spindle checkpoint, a proposed Cdc5/Plk1 substrate Bfa1 is not phosphorylated, and this 

requires an intact spindle checkpoint (Hu et al., 2001; Lee et al., 2001).  The inhibition of Plk1 

could contribute to cell cycle arrest conceivably through Plk1’s role in activating Cdk1/cyclin-B 

or the APC. 

c.  Aurora-A and Plk1 both are required for spindle assembly 

There are conflicting reports about the requirement of Aurora-A in the process of spindle 

assembly.  Work done using Drosophila showed a high frequency of monopolar spindles in 

Aurora mutants (Glover et al., 1995; Giet et al., 2002).  However, work in C. elegans showed 

bipolar spindle assembly occurs normally, but later the spindle collapses (Schumacher et al., 

1998b; Hannak et al., 2001).  Whatever the exact defect, Aurora-A kinases clearly regulate some 

aspect of spindle function during mitosis. 

There are conflicting reports about Plk1’s involvement in the process of spindle 

assembly.  Some reports show a complete failure in spindle assembly, whereas others report 

functional spindle defects after rather normal spindle assembly.  Plk1 is required for spindle 

assembly in human cells, Xenopus, and Drosophila (Lane and Nigg, 1996; Qian et al., 1998b; do 

 



56 

Carmo Avides et al., 2001; Donaldson et al., 2001).  In S. cerivisae and Drosophila, a bipolar 

spindle is formed in the absence of Plk1, but numerous microtubule defects were present in these 

mutants (Schild and Byers, 1980; Kitada et al., 1993; Ohkura et al., 1995; Herrmann et al., 1998; 

Riparbelli et al., 1998).  In C. elegans, Plk1-depleted embryos form bipolar spindles that are 

capable of organizing microtubules (Chase et al., 2000).  Studies of human cells showed Plk1 

inhibition does not prevent spindle assembly; however, spindle position defects and chromosome 

alignment anomalies were observed (Seong et al., 2002). 

d.  Aurora-B and Plk1 both are required for cytokinesis 

Analyses of both Aurora-B and Plk1 mutants clearly demonstrated roles for each in cytokinesis.  

Both Aurora-B and Plk1 are required for cytokinesis in S. cerivisae, C. elegans, Drosophila, and 

vertebrate cells (Sunkel and Glover, 1988; Ohkura et al., 1995; Carmena et al., 1998; Herrmann 

et al., 1998; Riparbelli et al., 1998; Schumacher et al., 1998a; Terada et al., 1998; Chase et al., 

2000; Severson et al., 2000; Adams et al., 2001b; Donaldson et al., 2001; Giet and Glover; 2001; 

Kawasaki et al., 2001; Song and Lee, 2001).  Also the over-expression of Aurora-B or Plk1 

causes cytokinesis defects in different organisms (Lee and Erikson, 1997; Terada et al., 1998; 

Lee et al., 1999; Song et al., 1999). 

The Aurora-B/ABI complex has emerged as a critical coordinator of events in 

cytokinesis.  Loss-of-function analyses of both INCENP and Survivin/Bir1 have shown their 

requirement for cytokinesis in various species (Cutts et al., 1999; Kim et al., 1999; Kaitna et al., 

2000; Speliotes et al., 2000; Uren et al., 2000; Adams et al., 2001c; Oegema et al., 2001).  The 

molecular function of either Aurora-B or Plk1 in cytokinesis is not clear.  Both the Aurora-

B/ABI complex and Plk1 are required for the stable recruitment of MKLP1/Eg5/ZEN-4, a 
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microtubule motor that functions to stabilize the central spindle in anaphase (Adams et al., 1998; 

Severson et al., 2000; Adams et al., 2001b).  This observation is sufficient to explain the 

cytokinesis defects, but the relationship between MKLP1 and Plk1 is not clear. 

e.  Biological substrates of Aurora and Polo kinases 

Both Aurora and Polo kinases have been proposed to regulate many different substrates, because 

of their involvement in diverse processes and their localization to diverse sub-cellular locations 

(Adams et al., 2001a; Nigg et al., 2001). 

Aurora kinases have been proposed to phosphorylate both chromosome- and spindle-

associated factors.  In S. cerivisae, Ipl1 is implicated in phosphorylating several kinetochore 

proteins, Ndc10p, Sli15p, and Dam1p (Biggins et al., 1999; Kang et al., 2001).  In S. cerivisae, 

Drosophila, and C. elegans, there is sufficient evidence to suggest Aurora-B phosphorylates 

histone H3 to regulate chromosome structure (Hsu et al., 2000; Giet and Glover, 2001).  In 

Xenopus, Aurora kinases have been implicated in phosphorylating the kinesins MKLP-1/KLP3A 

and histone H3 to regulate cytokinesis (Giet et al., 1999; Murnion et al., 2000).  For a 

comprehensive list of Aurora B substrates, see Appendix C. 

Polo kinases appear to have more pleiotropy then Aurora kinases and, therefore, have 

been implicated to have even more diverse substrates.  Proposed substrates of Plk1 include 

cyclin-B and Cdc25, during entry into mitosis, and multiple subunits of the APC to regulate 

entry into anaphase (Toyoshima-Morimoto et al., 2001; Golan et al., 2002; Toyoshima-

Morimoto et al., 2002).  Interestingly, Plk1 has been proposed to phosphorylate MKLP1, which 

is also a proposed substrate for Aurora-B kinases (Lee et al., 1995; Adams et al., 1998).  In S. 
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cerivisae, Cdc5 phosphorylates Bfa1, which might be involved in regulating cytokinesis and exit 

from mitosis (Hu et al., 2001).  For a comprehensive list of Plk1/Polo substrates, see Appendix 

D. 

6.  Summary 

Both Aurora and Polo kinases constitute key regulators of cell division.  To properly segregate 

chromosomes during cell division, the action of these kinases must be tightly controlled in both 

time and space.  The mis-regulation of both Aurora and Polo kinases is frequently observed in 

human cancers.  In order to understand their function, the substrates of these kinases must be 

identified, and how phosphorylation of these proteins contributes to cell division must be 

understood.  This should promote understanding of how the mis-regulation of Aurora and/or 

Polo kinases contributes to the chromosomal instability that is typical of most human cancers. 

D.  Significance:  Proper chromosome segregation is vital to life 

1.  Chromosome segregation errors during mitosis 

The mis-segregation of chromosomes during meiosis or mitosis leads to cells with altered 

numbers of chromosomes, a situation known as aneuploidy.  Most malignant solid tumor cells 

are highly aneuploid, especially those arising from the breast, colon, lung, oropharynx, and 

prostate.  Karyotypic studies have shown that the majority of cancers have lost or gained 

chromosomes (Lengauer et al., 1998; Jallepalli and Lengauer, 2001).  In particular, about 85% of 

colon cancer lines display aneuploid karyotypes.  Most likely, this is due to chromosome 

segregation errors during mitosis.  Though it has never been established whether aneuploidy 

promotes the genesis of tumors, intuitively it seems that losing a chromosome might be 
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tumorgenic, because of the loss of tumor suppressor genes.  Also, it is important to note that not 

only are cancers aneuploid but the karyotype of a single tumor is commonly heterogeneous, 

reflecting a continuing defect in chromosome segregation (Lengauer et al., 1998; Jallepalli and 

Lengauer, 2001). 

a.  Defects resulting in aneuploidies might contribute to tumorgenesis 

Defects in sister chromatid cohesion, resolution, and separation are capable of contributing to the 

genesis of aneuploid cells.  In S. cerivisae, a large number of genes alterations can cause 

anueploidy.  For example, non-lethal mutants in cohesins, condensins, kinetochore components, 

and checkpoint factors cause very high rates of aneuploidy (Michaelis et al., 1997; Skibbens et 

al., 1999; Toth et al., 1999; Mayer et al. 2001).  Similarly, many examples of the same types of 

factors are implicated in human cancers.  The human securin gene, originally named pituitary 

tumor transforming gene, was first described for its oncogenic ability (Pei and Melmed, 1997; 

Zhang et al., 1999; Zou et al., 1999).  More striking, deletion of securin in a human colon 

carcinoma cell line with a stable karyotype is sufficient to cause extreme aneuplopidies 

(Jallepalli et al., 2001).  Also mutations in APC subunits have been implicated in colon cancer 

progression (Wang et al., 2003).  Mice heterozygous for the spindle checkpoint gene mad2 are 

highly prone to lung cancer (Cahill et al, 1998; Jaffrey et al, 2000; Michel et al., 2001).  

Transient perturbations in any of these factors might enhance tumorgenesis, whereas continued 

perturbation is cell autonomous lethal (Shah and Cleveland, 2000). 
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b.  Aurora and Polo kinases and human cancers 

Aurora kinases are studied intensively by cancer researchers.  The genes encoding the three 

human Aurora kinases map to regions that are affected by chromosomal abnormalities in 

different cancer types, and over-expression of each of the three human Auroras has been detected 

in tumor cell lines (Bischoff et al., 1998; Tatsuka et al., 1998; Kimura et al., 1999b).  

Immortalized human cell lines that over-express Aurora-B exhibit elevated levels of histone H3 

phosphorylation and defects in chromosome segregation and cytokinesis (Ota et al., 2002).  

These cells are often aneuploid and can produce aggressive tumors in mice.  Increased levels of 

phosphorylation of histone H3 also were shown to correlate with over-expression of Aurora-B in 

some human colorectal tumor cell lines (Ota et al., 2002). 

Similarly, Polo kinases also are associated with human cancers.  The expression of Plk1 

is associated with tumorigenesis, but somewhat surprisingly, there is evidence for both up- and 

down-regulation of Plk1 in tumor cells (Knecht et al., 1999; Simizu and Osada, 2000).  This 

suggests that Plk1 can act as both a tumor suppressor and an oncogene. 

2.  Chromosome segregation errors during meiosis 

Errors in meiosis occur in as many as one in four human oocytes, resulting in the production of 

aneuploid zygotes, and the frequency of meiotic aneuploidy increases with maternal age 

(Hassold and Hunt, 2001).  The prime consequence of meiotic aneuploidy usually is zygotic 

lethality, which probably accounts for the majority of spontaneous miscarriages (Griffin, 1996).  

It has been demonstrated that one third of all spontaneously aborted embryos are trisomic for at 

least one chromosome (Hassold and Hunt, 2001).  In rare cases, such as trisomy 21, the zygotes 
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are viable, but the error leads to Down’s syndrome, the single leading cause of mental retardation 

Hassold and Hunt, 2001). 

There are several potential causes of chromosome mis-segregation during meiosis:  lack 

of chiasmata formation, defects in maintaining sister chromatid cohesion or chiasmata, the 

precocious loss of chromosome cohesion between sister chromatids at anaphase I, and severe 

defects in spindle/kinetochore interactions.  All of these potential causes might involve the same 

factors involved in generating aneuploidies during mitosis – such as cohesins, condensins, 

securin, kinetochore components, and checkpoint proteins.  However, alterations in meiosis-

specific factors also are expected to be involved in the mis-segregation of chromosomes during 

meiosis. 

Unfortunately, despite extensive study of the etiology of trisomy, there is no predominant 

mechanism underlying meiotic aneuploidy.  However, several significant conclusions have been 

made (Hassold and Hunt, 2001).  First, the majority of trisomies arise due to mis-segregation in 

oocytes and not in sperm.  Second, there is considerable variation in the incidence of trisomy 

between chromosomes, suggesting that unique structural differences between chromosomes, 

such as overall length or position of the centromere, might contribute to their mis-segregation.  

Third, the majority of segregation errors must have occurred during the first meiotic division, 

although a small percentage of errors occur during meiosis II as well. 

The fidelity of chromosome segregation is vital to cell division, be it mitosis or meiosis.  

Mitotic chromosome instabilities might contribute to both tumor progression and tumor 

heterogeneity.  Tumor heterogeneity probably aids the survival of cancer cells by allowing them 

to avoid otherwise normally effective therapeutic strategies.  Also, chromosome segregation is 
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essential for meiosis.  Meiotic anupleoidies probably underlie the majority of cases of infertility, 

spontaneous abortions, and in rare cases, congenital syndromes.  Understanding Aurora and Polo 

kinases and their roles in chromosome segregation should aid our ability to detect and perhaps 

treat these problems in humans (Hassold and Hunt, 2001; Dove, 2003; Sausville, 2004).

 



 

CHAPTER TWO:  The Aurora kinase AIR-2 regulates the selective 

release of chromosome cohesion during meiosis 

A.  Introduction 

1.  C. elegans offers many advantages to study meiosis and early embryogenesis 

C. elegans is free-living soil nematode that has become a premiere model organism for 

biological research in the last 30 years (Ankeny, 2001).  A community of researchers has 

developed a variety of genetic and molecular tools for studying C. elegans.  Also the biology of 

C. elegans offers many advantages for studying meiosis and early embryogenesis, in particular, 

strong cell biology and the ease of RNA interference (RNAi) technology.  The germline of C. 

elegans is well suited for studying the early stages of meiosis, because the nuclei are distributed 

throughout the gonad in a defined order that correlates with the sequential stages of meiosis.  In 

addition, the C. elegans germline offers optimal visualization conditions for high-resolution 

imaging of meiotic chromosomes. 

The C. elegans gonad is a tube-like syncytium consisting of thousands of germ nuclei at 

various developmental stages (Schedl, 1997).  Nuclei at the most distal end, relative to the 

spermatheca, proliferate mitotically.  Moving proximally, germ nuclei enter meiosis, progress 

through different stages of meiotic prophase I and cellularize to become oocytes (Fig. II.1).  Full-

grown oocytes are in diakinesis of prophase I and are referred to by their positions in the gonad 

relative to the spermatheca, with the most proximal oocyte being minus one (-1).  In the presence 

of sperm, –1 oocytes sequentially undergo maturation, enter the spermatheca, and become 
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fertilized (McCarter et al., 1999).  Following fertilization, the oocyte-derived nucleus completes 

two rounds of meiotic division, each marked by the extrusion of a polar body, to become a 

haploid pronucleus (Fig. II.1). 

 

 

 

 

 

Figure II.1.  The reproductive system of the C. elegans hermaphrodite.  (Reproduced from 

Rogers et al., 2002.)  Schematic representation of one arm of the C. elegans gonad, including newly fertilized 

embryos.  Nuclei are represented by open circles.  The DNA complement in oocyte-derived nuclei is indicated by 

the number inside each nucleus. 

2.  Both AIR-2 and PLK-1 are required for meiosis 

To assay gene function, RNAi can be applied to the C. elegans germline relatively easily.  The 

introduction of double-stranded RNAs (dsRNAs) into the germline results in a robust loss of 

gene function effect that is highly specific to the nucleotide sequence.  In this thesis, several 

genes were analyzed by experiments using germline RNAi.  In most cases, the technique of 

microinjection was utilized to introduce dsRNAs directly into the developing meiotic nuclei of 

the germline syncytium. 

Wildtype zygotes develop into multicellular embryos, with each diploid cell containing 

one pair of centrosomes (Fig. II.2).  Previously, Aurora and Polo kinases were studied in C. 
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elegans using RNAi (Schumacher et al., 1998a; Schumacher et al., 1998b; Chase et al., 2000).  If 

either AIR-2 or PLK-1 is inhibited by RNAi, similar phenotypes were observed (Fig. II.2):  the 

progeny of dsRNA-injected mothers arrest as single-cell embryos.  These embryos are severely 

disorganized, highly polyploid, and contain multiple centrosomes (Fig. II.2).  In particular, both 

air-2(RNAi) and plk-1(RNAi) embryos exhibit severe chromosome segregation and cytokinesis 

defects (Schumacher et al., 1998a; Chase et al., 2000).  However, the failure of cytokinesis is not 

indirectly caused by defects in chromosome segregation, because other mutants are able to 

complete cytokinesis in the presence of un-segregated chromosomes (Severson et al., 2000). 

 

Figure II.2.  Both air-2(RNAi) and plk-1(RNAi) result in 100% embryonic lethality.  The left 

column shows differential interference contrast (DIC) pictures of live embryos from wildtype, air-2(RNAi), and plk-

1(RNAi), respectively.  The right column shows fixed embryos stained with a green marker for tubulin and a red 

marker for DNA. 
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Aside from the mitotic defects, it was observed that air-2(RNAi) and plk-1(RNAi) 

embryos lack polar bodies; this suggests defects in meiosis (Schumacher et al., 1998a; Hsu et al., 

2000; Chase et al., 2000).  RNAi studies of AIR-1, another Aurora kinase, revealed some 

similarities to AIR-2; however, meiosis appeared to be unaffected (Schumacher et al., 1998b).  

Also RNAi studies of PLK-2, another Polo kinase, revealed no RNAi phenotype and also no 

additive or synergistic effects when combined with plk-1(RNAi). 

Detailed analysis of meiosis discovered that both AIR-2 and PLK-1 are absolutely 

required for meiotic chromosome segregation and polar body extrusion (Chase et al., 2000; Hsu 

et al., 2000; Oegema et al., 2001).  If RNAi embryos are examined prior to mitosis, the result of 

these meiotic defects is evident (Fig. II.3).  Both air-2(RNAi) and plk-1(RNAi) zygotes retained a 

4C DNA content in the oocyte-derived pronucleus.  After pronuclei fusion in these RNAi 

embryos, the first cell is polyploid, containing 5C DNA content during the first cell cycle. 
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Figure II.3.  Both air-2(RNAi) and plk-1(RNAi) result in meiotic failure.  The DNA content of 

pronuclei stage zygotes from wildtype, air-2(RNAi), and plk-1(RNAi), respectively.  The sperm-derived pronucleus 

is oriented to the left, and the oocyte-derived pronucleus is to the right.  In both air-2(RNAi) and plk-1(RNAi), no 

polar bodies are observed and the oocyte-derived pronucleus is polyploid, compared to the sperm pronucleus. 

This thesis explores why meiosis is defective in both air-2(RNAi) and plk-1(RNAi) 

zygotes.  In particular, the role of AIR-2 and PLK-1 was examined in terms of chromosome 

segregation during the meiotic divisions of the fertilized oocyte.  The results of this work are 

three-fold:  (1) AIR-2 functions to promote the release of chromosome cohesion between 

homologs via phosphorylation of REC-8, specifically in the chromosome arms distal to the 

chiasmata during meiosis I; (2) PLK-1 might be involved in the release of the 

proximal/centromeric chromosome cohesion, specifically during meiosis II; (3) PLK-1 might 

play novel roles in establishing cell polarity and asymmetric cell division in the embryo 

immediately following meiosis. 
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B.  Results 

Accurate chromosome segregation during cell division requires the precisely regulated 

establishment and release of chromosome cohesion.  Chromosome dynamics during meiosis are 

complex; as homologs separate at anaphase I, whereas sister chromatids remain attached until 

anaphase II.  How the selective release of chromosome cohesion is regulated during meiosis had 

not been described previously.  This research shows that the Aurora-B kinase AIR-2 regulates 

the selective release of chromosome cohesion during C. elegans meiosis. 

AIR-2 localizes to sub-chromosomal regions corresponding to the last points of contact 

between homologs in metaphase I and between sister chromatids in metaphase II.  Depletion of 

AIR-2 by RNAi prevents chromosome separation at both anaphases, with concomitant 

prevention of meiotic cohesin REC-8 release from meiotic chromosomes.  We show that AIR-2 

phosphorylates REC-8 at a major amino acid (T625) in vitro.  Interestingly, depletion of two PP1 

phosphatases, GSP-1 and GSP-2, abolishes the restricted localization pattern of AIR-2.  In gsp-

1/2(RNAi) zygotes, AIR-2 is detected on the entire bivalent.  Concurrently, chromosomal REC-8 

is reduced dramatically and sister chromatids are separated precociously at anaphase I in gsp-

1/2(RNAi) zygotes.  We propose that AIR-2 promotes the release of chromosome cohesion via 

phosphorylation of REC-8 at specific chromosomal locations and that GSP-1/2, directly or 

indirectly, antagonize AIR-2 activity. 

1.  Chromosome condensation appears normal in meiosis after AIR-2 inhibition 

The meiotic failure of air-2(RNAi) zygotes most likely was not due to a defect in chromosome 

condensation.  The six bivalent chromosomes in the oocytes of air-2(RNAi) animals condensed 
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during prophase to form short rods that were morphologically indistinguishable from those in 

wildtype oocytes (Fig. II.4; Speliotes et al., 2000).  This observation suggests that AIR-2 

functions in meiosis via a mechanism that is independent of chromosome condensation. 

 

Figure II.4.  Chromosome condensation appears normal in air-2(RNAi) oocytes.  (Reproduced 

from Rogers et al., 2002.)  DNA staining of fixed proximal gonads derived from wildtype or air-2(RNAi) animals. 

It was shown previously that in air-2(RNAi) oocytes, histone H3 phosphorylation at 

Serine 10 is abolished (Hsu et al., 2000).  In contrast, in gsp-1/2(RNAi) animals, histone H3 

phosphorylation is increased beyond wildtype levels.  We found that gsp-1/2(RNAi) results in 

severe meiotic defects (see below).  However, in gsp-1/2(RNAi) animals, the increase in histone 

H3 phosphorylation was not correlated with chromosome condensation defects. 

In summary, the severe meiotic defects in either GSP-1/2 or AIR-2 depletion can not be 

explained by defects in chromosome condensation.  Similarly, changes in histone H3 

phosphorylation in air-2(RNAi) and gsp-1/2(RNAi) animals do not correlate with chromosome 

condensation defects during meiosis.  These observations do not indicate the purpose of histone 
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H3 phosphorylation during meiosis.  Similarly, precisely what cell division processes are 

regulated by AIR-2 and GSP-1/2 during meiosis is not known. 

2.  Histone H3 phosphorylation occurs at sub-chromosomal foci 

Histones are plentiful, composing about half of the mass of chromosomes (Kornberg and Lorch, 

1999).  Histone H3 is a core histone upon which DNA is wrapped.  Aurora B kinases 

phosphorylate histone H3 at Ser10 (Hsu et al., 2000).  A commercial antibody can be used to 

detect the highly conserved phosphorylated-Ser10 epitope (H3P) in various organisms.  Previous 

studies have characterized H3P staining in C. elegans.  In C. elegans meiosis, H3P is observed 

first on the chromosomes of oocytes in diakinesis (Hsu et al., 2000). 

We performed a detailed examination of H3P staining during meiosis in C. elegans.  H3P 

staining is observed in the last four to five oocytes (Fig. II.5 A).  Under close examination, we 

observed two H3P foci associated with each bivalent chromosome (Fig. II.5 B).  These foci were 

near the junction between homologous chromosomes and in the vicinity of the chiasma (Fig. II.5 

D).  Based on this observation, we hypothesized that the H3P sub-chromosomal foci might 

represent the distal arms of the bivalent. 
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Figure II.5.  Histone H3 phosphorylation occurs at sub-chromosomal foci.  Staining of wildtype 

proximal gonad using an anti-phospho-Ser10 histone H3 antibody.  (A)  Merged image with H3P staining in green 

and DNA staining in red of the last four oocytes in the gonad.  (B-D)  Close-up of individual bivalent showing H3P 

(B), DNA (C) and merged image (D).  Schematic drawing of a typical bivalent in vertebrates (E) and C. elegans (F). 

Sister chromatids are shown in the same color, whereas homologues are represented in different colors.  The 

direction of pulling force is indicated by arrows. Green and orange bars represent cohesin molecules connecting 

chromosome arms distal and proximal, respectively, to the chiasmata. 

 

3.  In vivo 4-D analysis:  AIR-2 is required for the separation of homologs 

To better understand the defect in meiotic divisions observed in air-2(RNAi) zygotes, we 

performed four-dimensional (4-D) imaging of meiosis using a reporter strain carrying a 

transgene expressing a histone H2B–green fluorescent (GFP) fusion protein.  This imaging 

approach allows the observation of chromosome dynamics in real-time during the meiotic 

divisions. 
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In the wildtype embryo immediately after fertilization, the six bivalents begin to align 

with the long axis of each bivalent parallel to the surface of the embryo (Fig. II.6, A and F; 

Herman et al., 1979; Albertson and Thomson, 1993).  Each bivalent consists of two homologs 

arranged axially, i.e., end to end, with the inner ends being the point of contact between 

homologs and the outer ends leading toward the poles.  Later, the chromosomes rotate 90 

degrees, such that the long axis of each bivalent becomes perpendicular to the surface of the 

embryo (Fig. II.6, B and G).  About 2 min later, anaphase begins and the homologous 

chromosomes separate into two groups (Fig. II.6, C and H).  The group of chromosomes closer 

to the surface of the embryo is extruded as a polar body (Fig. II.6, D and I).  In meiosis II, the 

sister chromatids arrange in a similar end-to-end configuration.  After the completion of meiosis 

I, six univalent chromosomes appear.  They remain unaligned for 5 min, before the whole 

process repeats to separate the end-to end–joined sister chromatids (Fig. II.6, E and J). 
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Figure II.6.  AIR-2 is required for chromosome separation during meiosis.  (Reproduced from 

Rogers et al., 2002). (A–E) Schematic drawing of meiotic chromosomes in the oocyte-derived nucleus in a wildtype 

embryo.  Each bivalent is represented as two short rods joined end to end, with the outer ends leading toward poles.  

Homologues from one bivalent are indicated by different shades of gray in A–C.  After the extrusion of a polar body 

(pb), sister chromatids are shown as small short rods in D and E. (F–J) Wildtype; (K–O) air-2(RNAi); (P–T) gsp-

1/2(RNAi) meiotic embryos. (A, F, and K) Initial alignment, parallel to the cell cortex. (B and G) After a 90° 

rotation, the chromosomes are perpendicular to the edge of the embryo. (C and H) Anaphase I; (D and I) metaphase 

II; (E and J) anaphase II.  Embryos in K and P, L and Q, M and R, N and S, and O are at the same stage as those in 

F, G, H, I, and J, respectively.  All images presented here are representative slices from each time point, except for 

that in T, which is a projection of the image stack of DAPI staining from a fixed embryo.  The edge of the embryo is 

indicated by a black curve in A–E and a white curve in F–T.  The bar indicates 2.5 µm. 

In air-2(RNAi) zygotes, the bivalents appeared morphologically normal immediately after 

fertilization (Fig. II.6 K).  However, the initial alignment on the metaphase plate was slightly 

disorganized, no rotation was observed, and the long axis of each bivalent remained parallel to 

the surface of the embryo (Fig. II.6, K and L).  About 3 min after the initial alignment, a time 
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point equivalent to the onset of anaphase I in wildtype zygotes, all the chromosomes moved 

toward and were compressed against the edge of the embryo (Fig. II.6 M).  No separation of 

chromosomes was observed (n=50).  Then 5 min later, all the chromosomes moved back to their 

initial positions, appeared clearly as six bivalents, and repeated the entire process (Fig. II.6, N 

and O).  Similar RNAi phenotypes were observed for the two other ABI complex members:  the 

survivin-related protein BIR-1 and the INCENP homologue ICP-1 (data not shown).  These 

observations suggest that AIR-2 and the ABI complex are necessary for the separation of 

homologs in meiosis I and for the separation of sister chromatids in meiosis II. 

4.  AIR-2/ABI complex localizes to the junction between chromosomes in meiosis 

The air-2(RNAi) phenotype suggests an important function for AIR-2 in chromosome separation 

during meiosis.  A clue as to how AIR-2 might function in chromosome separation came from a 

detailed examination of the localization of AIR-2 during meiosis.  The bulk of AIR-2 staining 

has been shown to remain cytoplasmic in oocytes until the -1 oocyte undergoes maturation 

(Schumacher et al., 1998a).  Upon oocyte maturation, AIR-2 becomes chromatin-associated and 

remains so throughout the completion of meiosis, except during anaphase, when AIR-2 

temporarily relocates to the microtubule midzone (Schumacher et al., 1998a). 

We now show that chromatin-associated AIR-2 localizes to discrete sub-chromosomal 

foci in both meiotic divisions (Fig. II.7).  In maturing oocytes, AIR-2 was localized to sub-

chromosomal foci similar to H3P; however, H3P staining is observed earlier in the cell cycle 

(estimated to be more than 1 hr earlier).  During the meiotic divisions, the AIR-2 foci 

corresponded to the equatorial axes of the bivalent (the inner ends of homologs) in metaphase I 

(Fig. II.7, D–F) and the inner ends of the end-to-end–joined sister chromatids in metaphase II 
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(Fig. II.7, J–L).  At anaphase I, when homologs separate, AIR-2 was detected exclusively in the 

microtubule midzone between homologs (Fig. II.7, G–I). 

 

Figure II.7.  AIR-2 localizes to the junction between chromosomes.  (Reproduced from Rogers et 

al., 2002).  Antibody staining is presented in green and DAPI staining in red. (A–L) Representative slice images of 

AIR-2 (A, D, G, and J), DAPI (B, E, H, and K), or merged (C, F, I, and L) staining in oocyte-derived nuclei at 

different meiotic stages. (M–P) Only merged images are shown for BIR-1 at corresponding stages. Arrows in A–F 

and M–N point to the staining between homologs in meiosis I; in J–L and P, they point to the staining between sister 

chromatids in meiosis II. 

Both BIR-1 and ICP-1, which are ABI complex partners of AIR-2, exhibit a similar - if 

not identical - temporal and spatial antibody staining pattern to AIR-2 (Kaitna et al., 2002).  We 

showed that BIR-1 and ICP-1 also localize to the inner ends between homologs in metaphase I 

and between sister chromatids in metaphase II (Fig. II.8), identical to the pattern observed with 

AIR-2.  These foci represent the last points of contact between separating chromosomes, either 

homologs or sister chromatids.  These results suggest the intriguing possibility that the ABI 
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complex targets AIR-2 to these foci to phosphorylate a chromosomal substrate(s) to trigger the 

release of chromosome cohesion. 

 

Figure II.8.  BIR-1 and ICP-1 co-localize with AIR-2 between chromosomes.  Antibody staining 

is presented in green and DAPI staining in red.  Merged antibody and DNA staining in oocyte-derived nuclei at 

different meiotic stages.  Only merged images are shown of AIR-2, BIR-1, and ICP-1. 

5.  Histone H3 is phosphorylated at the junction between chromosomes in meiosis 

One substrate of AIR-2 is histone H3.  Antibody staining of H3P during the meiotic divisions 

showed an interesting pattern.  Intense H3P staining was detected on the inner ends between 

homologs in metaphase I (Fig. II.9, A and M) and between sister chromatids in metaphase II 

(Fig. II.9, F and R), coincident with the localization of AIR-2.  These foci represent the last 

points of contact between separating chromosomes, either homologs or sister chromatids.  At 

anaphase I, H3P was detected on the inner faces of the separating homologs (Fig. II.9, C and O), 

which although different from AIR-2, is expected for a chromosome-bound epitope.  These 
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observations also support the idea that AIR-2 functions in the separation of homologs, perhaps 

playing a role in modulating chromatin structure via the phosphorylation of histone H3. 

 

Figure II.9.  Histone H3 is phosphorylated at the junction between chromosomes.  Antibody 

staining is presented in green and DAPI staining in red.  Representative slice images of H3P (a-f), DAPI (g-l), or 

merged (m-r) staining in oocyte-derived nuclei at different meiotic stages are provided. 

6.  The localization of AIR-2/ABI and H3P is dependent on chiasmata formation 

Because there is, on average, one crossover per homolog pair in C. elegans meiosis (Brenner, 

1974; Barnes et al., 1995), bivalents initially appear cross-shaped, with the center of each cross 

being the chiasma, and then become rod-shaped as chromosomes condense further.  Because 

centromeres are located at the ends of meiotic chromosomes in C. elegans, the equatorial axes of 

the rod-shaped bivalent chromosomes correspond to the chromosome arms distal to the 

chiasmata and the poleward (or long) axis proximal in vertebrate and yeast chromosomes (Fig. 

10, A and B; Albertson and Thomson, 1993). 
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The sub-chromosomal foci observed by the staining of AIR-2, BIR-1, ICP-1 and H3P 

appear to correspond to the chromosome arms distal to the chiasmata.  Therefore, we asked 

whether these foci are dependent on chiasma formation.  Mutations in him-5 and him-8 caused a 

high frequency of non-disjoined X chromosomes, resulting in five bivalents and two non-

disjoined univalents that can be clearly observed in diakinetic oocytes (Hodgkin et al., 1979; 

Broverman and Meneely, 1994).  In him-5(e1490) or him-8(e1489) mutants, we observed very 

intense staining of AIR-2, BIR-1, ICP-1, and H3P on all five bivalents, but no detectable staining 

was detected on either of the univalents (Fig. II.11, C and E; n=42 for AIR-2; n=11 for BIR-1). 

We also examined the staining pattern of AIR-2, BIR-1, and H3P in him-14(it44ts) and 

spo-11(ok79) mutants in which crossing-over is defective for all chromosomes, resulting in 12 

visible univalents in each oocyte (Dernburg et al., 1998; Zalevsky et al., 1999).  In spo-11(ok79) 

and him-14(it44ts) mutants, approximately 50% of univalents had no detectable staining, 

whereas the other 50% had variable amounts of staining (Fig. II.11, E-F).  The reasons for this 

are unknown.  However, this result suggests that either the total number of univalents or the ratio 

of univalents to bivalents present in the nucleus affects the chromosomal localization of the AIR-

2/ABI complex and the presence of H3P. 
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Figure II.10.  The localization of AIR-2 and H3P requires chiasmata formation.  Merged and 

projected images of chromosomes stained for either AIR-2 or H3P from the -1 oocytes of him-5(e1490) (A and B), 

her-1(e1518) XO (C and D), him-14(it44ts) (E), and spo-11(ok79) mutants (F).  Arrows point to univalents, and 

arrowheads point to representative bivalents. 

To demonstrate that the presence of these sub-chromosomal foci is dependent on chiasma 

formation instead of a direct requirement for the gene him-5 or him-8, we examined the staining 

pattern for these proteins in her-1(e1518) XO animals.  In C. elegans, sex is determined by the 

ratio of X chromosomes to autosomes (Madl and Herman, 1979).  Wildtype hermaphrodites have 

two X chromosomes, whereas males have only one X chromosome.  Mutations in the sex 

determination gene her-1 result in XO animals developing into relatively normal, fertile 

hermaphrodites (Hodgkin, 1980).  The single X chromosome appears as a non-paired univalent 

in oocytes of her-1XO animals.  No staining of AIR-2, BIR-1 or H3P was observed on the 

univalents in oocytes of her-1(e1518) XO animals, whereas the staining on bivalents appeared 

wild type (Fig. II.11, D and F; n=14 for AIR-2; n=4 for BIR-1).  These results demonstrate that 

the observed sub-chromosomal foci containing AIR-2, BIR-1, and H3P are dependent on 

chiasma formation, not on the function of specific genes required for meiotic crossover. 
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7.  REC-8 remains detectable on both axes of bivalents in air-2(RNAi) zygotes 

A potential candidate for AIR-2 phosphorylation at the chromosomal arms distal to chiasmata is 

the meiotic cohesin REC-8.  The REC-8 protein was observed to localize to both poleward and 

equatorial axes of bivalents in metaphase I.  At anaphase I, only the REC-8 on the poleward axis 

remained detectable, whereas the REC-8 on the equatorial axis was absent (Pasierbek et al., 

2001).  Comparison to the mitotic cohesion Scc1 in S. cerivisae, which is degraded more 

efficiently as a phospho-protein (Alexandru et al., 2001), suggests that selective removal of 

REC-8 at anaphase I in C. elegans could be regulated via differential phosphorylation by AIR-2. 

If REC-8 is one of the in vivo substrates for AIR-2 and if phosphorylation of REC-8 

plays an important role for its degradation, one would predict that REC-8 protein would remain 

localized along both axes of the bivalents in air-2(RNAi) zygotes.  We stained meiotic 

chromosomes of wildtype and air-2(RNAi) zygotes with antibody to REC-8 (Pasierbek et al., 

2001).  In wildtype zygotes whose meiotic chromosomes appeared to be in metaphase I, 74% 

n=36) had detectable REC-8 clearly on both axes of bivalents (Fig. II.12 A).  The other 26% had 

detectable REC-8 only on the poleward, but not the equatorial, axis of bivalents (Fig. II.12 B).  

We interpret that the 26% zygotes lacking equatorial REC-8 staining had initiated anaphase I and 

the removal of REC-8 distal to the chiasmata, but have not separated their homologs.  Bivalents 

in air-2(RNAi) zygotes did not align normally at metaphase.  Because no polar bodies were 

extruded in air-2(RNAi) zygotes, we could not distinguish the first from the second meiotic 

attempt.  However, in zygotes where bivalents were clearly recognized, 100% had detectable 

REC-8.  This suggests that REC-8 is not degraded in air-2(RNAi) zygotes and that its 

degradation requires AIR-2 activity. 
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Figure II.11.  REC-8 is detectable on both axes of bivalents in air-2(RNAi) zygotes.  
(Reproduced from Rogers et al., 2002.)  Representative meiotic chromosomes stained with either REC-8 (A–E) 

antibody or DAPI (F). (A–C) Wildtype zygotes. In all zygotes examined whose homologues appeared connected, 

74% had cross-shaped REC-8 staining as shown in A, whereas 26% had no detectable equatorial staining, similar to 

that shown in B. A representative REC-8 staining in anaphase is shown in C. (D) 100% of air-2(RNAi) embryos 

with recognizable bivalents had cross-shaped REC-8 staining. (E) 100% of gsp-1/2(RNAi) zygotes had very low or 

no detectable REC-8 staining. The corresponding DAPI staining is shown in F. The number of zygotes imaged and 

scored is indicated above each panel. 

8.  AIR-2 phosphorylates the meiotic cohesin REC-8 in vitro 

Retention of REC-8 on meiotic chromosomes in air-2(RNAi) zygotes suggests that AIR-2 

activity is required for the release of chromosomal REC-8 protein.  It is possible that AIR-2 

phosphorylates REC-8 directly to promote its release.  We showed in vitro that recombinant 

AIR-2 could phosphorylate bacterially expressed REC-8.  However, recombinant AIR-2 showed 

very low or no activity toward two other C. elegans Scc1-like molecules, COH-1 and COH-2 

(Fig. II.13 A; Pasierbek et al., 2001).  No phosphorylation of REC-8 was observed when a 

kinase-dead version of AIR-2 was used in the assay (Fig. II. 13 B).  These results suggest that, in 

vitro, AIR-2 retains specificity for distinct substrates, such as REC-8. 
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Figure II.12.  AIR-2 phosphorylates the meiotic cohesin REC-8 in vitro.  (Reproduced from 

Rogers et al., 2002.)  (A) Kinase assays were performed with GST–AIR-2 (AIR-2; lanes 1, 3, and 5) or kinase-dead 

mutant GST–AIR-2 (AIR-2D; lanes 2, 4, and 6) using GST–REC-8 (lanes 1 and 2), GST–COH-1 (lanes 3 and 4), or 

GST–COH-2 (lanes 5 and 6) as substrates.  Two bands were pulled down with glutathione beads in lanes 1 and 2.  

The slower migrating band is the full-length REC-8, whereas the faster migrating band is truncated REC-8. AIR-2,* 

GST–AIR-2 autophosphorylation; AIR-2_P, Ponceau staining of AIR-2 protein; substrate,* phosphorylation of 

corresponding test substrates; substrate_P, Ponceau staining of each substrate protein. (B) Kinase assays with either 

wildtype (lanes 1 and 5), T625A (lanes 2 and 6), S626A (lanes 3 and 7), or T625A/S626A (lanes 4 and 8) REC-8 

using wildtype AIR-2 (lanes 1–4) or kinase-dead AIR-2 (lanes 5–8).  The top half is phosphorimaging, and the 

bottom half is Ponceau staining.  Full-length REC-8, AIR-2, and breakdown products are indicated at the left. 

We then mapped the in vitro phosphorylation sites on REC-8 to determine if any specific 

site(s) was used.  We predicted potential phosphorylation sites on REC-8, based on our previous 

experience with preferred substrate sites for AIR-2 (unpublished data).  We mutated the 

following nine residues to alanines, either individually or in combination:  S244, S248, 
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S244/S248, S395, S396, S395/S396, T625, S626, and T625/S626.  We then assayed their 

phosphorylation by AIR-2. 

The T625A and T625A/S626A mutations resulted in a 70% reduction of REC-8 

phosphorylation, whereas the other mutations resulted in no significant change in the overall 

phosphorylation by AIR-2 in vitro (Fig. II.13 B; unpublished data).  This result indicates that the 

majority of phosphorylation occurs on threonine 625.  Because we still detected a low level of 

phosphorylation in T625A and T625A/S626A mutant REC-8, we cannot rule out the possibility 

that AIR-2 phosphorylates additional, non-preferred sites in our in vitro assay. 

It remains to be investigated further whether T625 is phosphorylated by AIR-2 in vivo 

and whether phosphorylation of REC-8 at T625 facilitates its cleavage by separase.  However, 

the sequence surrounding T625 is intriguing.  Threonine 625 is two amino acids away from a 

consensus site, E-X-X-R, for separase cleavage, where X represents any amino acid.  In yeast, 

phosphorylations that facilitate the cleavage of mitotic cohesion Scc1 have been shown to occur 

at sites a few residues away from the separase cleavage consensus site E-X-X-R (see Appendix 

E; Alexandru et al., 2001).  Together with the above results, the in vitro kinase data support our 

hypothesis that AIR-2 promotes the release of chromosome cohesion by phosphorylating REC-8 

at specific sub-chromosomal foci. 

Recent studies have described requirements for the phosphorylation sites of various 

Aurora kinases.  The human Aurora-B kinase is directed by positively charged residue located at 

the -2 position, two residues upstream of the phosphorylated residue (Sugiyama et al., 2002).  

This positively charged residue is most effectively fulfilled by an arginine, such as in histone H3 

A-R-K-S-T-G-G (Sugiyama et al., 2002).  In S. cerivisae, the Ipl1/Aurora consensus sequence 
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was shown to be (R/K)-X-(T/S)-(I/L/V), which demonstrates a preference for hydrophobic 

residues at the +1 position (Cheeseman et al., 2002).  The sequence surrounding T625 in REC-8 

(R-R-E-T-S-I-I) is consistent with this concept.  The T625 phosphorylation site contains an 

arginine at -2 and also two hydrophobic isoleucines at +2 and +3.  Also, Ipl1/Aurora was 

demonstrated to auto-phosphorylate at an important site that is conserved among Aurora kinases 

(Cheeseman et al., 2002).  This conserved site in AIR-2 (T185) or possibly another similar site 

(T179) might represent the auto-phosphorylation observed in this kinase assay (Fig II. 13A-B).  

For a comprehensive list of Aurora-B substrates, see Appendix C. 

9.  NCC-1 is required for AIR-2 localization and histone H3 phosphorylation 

Aurora kinases contain conserved activation sites predicted to be direct targets of Cdk1 (Giet and 

Prigent, 1999; Ubersax et al., 2003).  In C. elegans, sequence analysis has revealed several 

homologues of Cdk1; however only one, named NCC-1 (nematode cell cycle), appears to be the 

primary functional homologue of Cdk1 (Boxem et al., 1999).  In ncc-1(RNAi) animals, various 

germline defects, such as delayed oocyte maturation and defective meiotic chromosome 

segregation, were observed (Boxem et al., 1999).  Despite the cell cycle delay, ncc-1(RNAi) 

oocytes eventually progress through oocyte maturation and are fertilized.  The resulting ncc-

1(RNAi) zygotes do not attempt meiosis; no polar bodies are formed, and dead polyploid 

embryos are observed arrested at the one-cell stage (Boxem et al., 1999).  Interestingly, 

chromosome morphology appears normal in the diakinetic oocytes (Boxem et al., 1999). 

Previously it had been reported that ncc-1 is required for histone H3 phosphorylation in 

germline stem cells in the distal gonad (Boxem et al., 1999).  We asked whether H3P staining in 

the diakinetic oocytes also requires NCC-1 activity.  In ncc-1(RNAi) oocytes, we did not detect 
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any histone H3 phosphorylation.  We observed a lack of AIR-2 staining in oocytes as well (Fig. 

II.14).  Although, the lack of chromosome bound AIR-2 might be an indirect result of the delay 

in oocyte maturation, AIR-2 sometimes was detected in association with the chromosomes prior 

to oocyte maturation in wildtype.  These results suggest that NCC-1/Cdk1 is required during 

meiosis for the activation of AIR-2, at least to phosphorylate histone H3, and also for the 

localization of AIR-2 to the bivalents.  The appearance of wildtype looking chromosomes in 

oocytes of ncc-1(RNAi) animals again uncouples histone H3 phosphorylation from the process of 

chromosome condensation during meiosis. 

Figure II.13.  NCC-1/Cdk1 is required for AIR-2 localization to bivalents.  Close-up of 

individual bivalents taken from –1 oocytes of wildtype (top) and ncc-1(RNAi) animals (bottom).  AIR-2 staining is 

shown in the left column, and corresponding DAPI images are shown in the right column. 

10.  RNAi of GSP-1/2 causes an increase in H3P and chromosome-bound AIR-2 

Dr. Rueyling Lin and colleagues showed that two C. elegans PP1 phosphatases, GSP-1 and GSP-

2, antagonize AIR-2 meiotic activity in vivo (Hsu et al., 2000).  Here, we tested whether GSP-

1/2 function is required for proper AIR-2 chromosomal localization.  In wildtype gonads, AIR-2 

was detected temporally in only the most proximal oocyte and spatially only at the chromosome 

arms distal to chiasmata (Fig. II.15, A, C, and D; Schumacher et al., 1998a). 
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In gsp-1/2(RNAi) animals, there was a striking increase in the number of oocytes 

containing chromosomal AIR-2 as well as the overall intensity of chromosomal AIR-2 staining.  

On average, four or five proximal oocytes had detectable chromosomal AIR-2 in gsp-1/2(RNAi) 

animals (Fig. II.15, A and B).  The intensity of chromosomal AIR-2 staining always was greatest 

in the -1 oocyte and decreased in more distal oocytes.  In all gsp-1/2(RNAi) gonads imaged, 

100% had chromosomal AIR-2 in the -2 oocyte at a level equal to or greater than that in a 

wildtype -1 oocyte (n=30).  Interestingly, in 67% of individual oocytes imaged, including all -1 

oocytes, AIR-2 staining was detected on both equatorial and poleward axes of at least one 

bivalent (n=83; Fig. II.15, E and F).  Similar results were obtained for BIR-1 and ICP-1 (Fig. 

II.16) 

Figure II.14.  gsp-1/2(RNAi) accelerates ABI localization to chromosomes in –4 oocytes.  

Merged images of fixed and stained images of proximal gonads from wildtype and gsp-1/2(RNAi) animals.  Each 

image is a cropped oocyte nucleus, and the images are arranged in a line from –5 to –1.  Each image in the line is 

taken from the same gonad.  The top line shows a wildtype gonad stained with AIR-2 in green and DAPI in red.  

The following lines show AIR-2, BIR-1 and ICP-1 in gsp-1/2(RNAi) gonads. 
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Figure II.15.  AIR-2 is mis-localized throughout the bivalents in gsp-1/2(RNAi) oocytes.  
Close-up images of individual bivalents from wildtype and gsp-1/2(RNAi) oocytes.  AIR-2 staining is shown in the 

left column, and corresponding DAPI stained images are provided in the right column. 

 

Figure II.16.  The ABI complex is mis-localized throughout the bivalents in gsp-1/2(RNAi) 

oocytes.  Close-up images of individual bivalents from wildtype (top) or gsp-1/2(RNAi) (bottom) –1 oocytes.  

AIR-2, BIR-1, and ICP-1 staining is shown green in the left column, corresponding DAPI stained images shown in 

red in the center column, and merged images in the right column. 
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We conclude from these observations that depletion of GSP-1/2 results in an increase, 

both spatially and temporally, in chromosomal AIR-2/ABI complex in the gonad.  This increase 

could reflect either an increase in the overall level of AIR-2/ABI complex in the gonad or a 

redistribution of a greater amount of cytoplasmic AIR-2/ABI complex onto the chromosomes.  

At present, we cannot distinguish between these two possibilities.  Because of the large 

cytoplasmic volume of oocytes, redistribution of cytoplasmic AIR-2/ABI complex to 

chromosomal foci could result in a significant increase in the intensity of chromosomal AIR-2 

staining.  However, the level of cytoplasmic AIR-2/ABI complex is very low, even in wildtype 

oocytes, making it difficult to determine if it is decreased in the gsp-1/2 (RNAi) animals. 

We also asked whether H3P localization is affected by inhibiting GSP1/2.  It has been 

shown that gsp-1(RNAi) alone results in an increase in the overall intensity of H3P staining 

throughout the gonad and in embryos (Hsu et al., 2000).  In gsp-1/2(RNAi) animals, the temporal 

pattern of H3P staining appeared similar to wildtype.  However, the spatial pattern of H3P along 

the chromosomes was severely altered by GSP-1/2 RNAi.  Almost all -1 oocytes exhibited H3P 

localized to both equatorial and poleward axes of the bivalents.  In younger oocytes, the effect 

was variable.  In gsp-1/2(RNAi) oocytes, the mis-localization of H3P to the proximal regions of 

the chromosome was similar to the mis-localization of AIR-2, although more intense. 
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Figure II.17.  gsp-1/2(RNAi) increases chromosomal H3P.   Merged images of fixed and stained 

oocyte nuclei from either wiltype (A) or gsp-1/2(RNAi) (B) gonads.  H3P staining is green, and DAPI staining is red.  

Close-up images of individual bivalents from either wildtype (C-E) or gsp-1/2(RNAi) (F-H) occytes.  H3P staining is 

shown in green in the left column, DAPI staining is shown in red in the center column, and merged images in the 

right column. 

 

These results demonstrate that not only does inhibition of GSP-1/2 result in an increase in 

the amount of total H3P but that there is also a loss of spatial restriction of H3P to the distal arms 

of the bivalents.  The result is an equivalent amount of H3P on both equatorial and poleward 

axes of the bivalents in gsp-1/2(RNAi) oocytes.  The increase in H3P could reflect a loss of 

global dephosphorylation of histone H3, or alternatively, it might reflect more complex 

regulation of the distal and proximal axes of the bivalents. 

We attempted to produce phenotypes by injecting histone H3 tails into the germline, 

using an assay similar to the RNAi microinjection technique.  We injected peptides 

corresponding to the N terminus of histone H3 with either (1) wildtype sequence with 
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phosphorylated serine 10 or (2) mutant sequence with serine 10 changed to alanine.  Although 

this potentially might inhibit AIR-2 or affect a histone H3 related function, no defects were 

observed (data not shown). 

11.  RNAi of GSP-1/2 results in a decrease in chromosome-bound REC-8 

We then asked whether the chromosomal localization of REC-8 is affected in gsp-1/2(RNAi) 

animals.  Out of 80 gsp-1/2(RNAi) animals examined, we did not detect a single gonad or 

embryo that had wildtype REC-8 levels.  In fact, 95% of meiotic zygotes had no detectable REC-

8 staining at all (n=27; Fig. II.12 E).  Although we were unable to detect REC-8, it is likely that 

a low level of REC-8 is present in gsp-1/2(RNAi) animals.  This is because bivalents remain 

intact in these oocytes, unlike the case in rec-8(RNAi) oocytes where bivalents disintegrate to 

form single chromatids (Pasierbek et al., 2001).  These results suggest that GSP-1/2 play a role in 

maintaining the steady-state level of chromosomal REC-8, either by increasing its chromosomal 

localization or by preventing its degradation. 

We also asked whether meiotic cohesion is removed prior to the metaphase-anaphase 

transition.  By using temperature-sensitive mutations in subunits of the APC, we are able to 

arrest meiosis at metaphase I (Golden et al., 2000; Davis et al., 2002).  Under permissive 

conditions, these mutants do not show any noticeable defects.  However, upon shifting to non-

permissive temperature, the loss of APC function results in meiotic arrest at metaphase.  Zygotes 

were examined at high temperature for REC-8 staining.  We did not detect any difference 

between REC-8 staining in APC mutants and in wildtype (data not shown).  This result 

demonstrates that there is no removal of cohesion prior to separase activation.  Therefore, the 

reduction of REC-8 staining at metaphase in GSP-1/2 RNAi is not the result of an up-regulation 
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of a prophase-like cohesion removal pathway.  Also of note, we did not detect any change in 

AIR-2/ABI staining or PLK-1 staining in metaphase arrest zygotes. 

12.  GSP-1/2 RNAi results in the precocious separation of sister chromatids 

We then investigated whether meiotic chromosome separation is affected in gsp-1/2RNAi) 

zygotes by performing 4-D imaging.  In gsp-1/2(RNAi) zygotes, bivalents were observed 

properly aligned and rotated at metaphase I (Fig. II.18).  However, at a time equivalent to the 

onset of anaphase I and the separation of homologs in wildtype zygotes (Fig. II.18), the bivalents 

in gsp-1/2(RNAi) zygotes dissociated into as many as 24 DNA-staining structures (Fig. II.18).  

We interpret these small DNA structures to be the 24 individual sister chromatids that normally 

comprise the six bivalents.  In all zygotes imaged (n=23), these small chromosomes never 

segregated into two groups and no polar bodies were extruded (Fig. II.18). 

 

Figure II.18.  GSP-2 or GSP-1/2 depletion results in precocious separation of sister chromatids.  4-D 

imaging of meiotic chromosome behavior.  All images presented here are representative slices from each time point 

except for those of anaphase of meiosis II, which are both projections of multiple slices from the image stack of a 

single zygote.  The edge of the zygote is indicated by a white curve. 
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We also examined the effects of depleting either GSP-1 or GSP-2 alone.  Although GSP-

1 and GSP-2 are partially redundant, we observed interesting differences in the contribution of 

each to the gsp-1/2(RNAi) phenotypes.  The inhibition of GSP-2 alone displayed a weakly 

penetrant defect in regulating meiotic chromosome cohesion, similar to gsp-1/2(RNAi).  On the 

other hand, the inhibition of GSP-1 did not produce any meiotic chromosome cohesion defects.  

Instead, gsp-1(RNAi) caused a very penetrant meiotic cytokinesis defect (Fig. II.19).  Although 

homolog separation appeared normal, the first polar body was reabsorbed into the zygote after 

anaphase I (Fig. II.19).  Then 12 dyads were observed, which underwent a relatively normal 

meiosis II (Fig. II.19).  During the second meiotic division cytokinesis was successful, resulting 

in a single polar body.  The resulting embryos from gsp-1(RNAi) contained oocyte-derived nuclei 

with 2C DNA content. 

 

Figure II.19.  GSP-1 depletion results in a meiosis I cytokinesis defect.  4-D imaging of meiotic 

chromosome behavior.  All images presented here are representative slices from each time point except for those of 

anaphase of meiosis II, which are both projections of multiple slices from the image stack of a single zygote.  The 

edge of the zygote is indicated by a white curve. 
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A comparison of gsp-1/2(RNAi) to separase/sep-1(RNAi) was made to confirm the timing 

of chromosome separation in gsp-1/2(RNAi).  In sep-1(RNAi) zygotes, the six bivalents remained 

in a metaphase I configuration for an extended period of time (Fig. II.20; Siomos et al., 2001).  

The homologs did not separate and meiosis I is delayed.  Then this was repeated again in meiosis 

II, where there was no homolog separation as the chromosomes again appeared as if in 

metaphase I.  In gsp-1/2(RNAi); sep-1(RNAi) zygotes, the chromosome behavior was similar to 

sep-1(RNAi) (Fig. II.20; Kaitna et al., 2002).  These results demonstrate that separase is required 

for the precocious chromosome separation observed in gsp-1/2(RNAi) zygotes.  These results 

also imply the regulation of chromosome cohesion is relatively normal until metaphase in gsp-

Figure II.20.  sep-1

1/2(RNAi) worms. 

 is required for precocious chromosome separation in gsp-1/2(RNAi).  All 

images presented here are from zygotes fixed and then stained with DAPI.  Representative images of metaphase are 

release during the metaphase I-anaphase I transition.  This is likely a result of the reduced 

chromosomal REC-8 protein observed on both the equatorial and poleward axes of bivalents in 

gsp-1/2(RNAi) zygotes (Fig. II.12 E).  This GSP-1/2 RNAi phenotype is dependent on AIR-2 

activity, because gsp-1/2(RNAi); air-2(RNAi) zygotes are indistinguishable from air-2(RNAi) 

zygotes with respect to meiotic chromosome segregation (unpublished data).  The dependence of 

gsp-1/2(RNAi) phenotype on AIR-2 activity suggests that GSP-1/2 might regulate the level of 

shown for each of the three mutants. 

These results indicate that GSP-1/2 are required for the proper regulation of cohesion 
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chromosomal REC-8 by opposing AIR-2 activity toward the phosphorylation of REC-8.  

Alternatively, GSP-1/2 might regulate the level of chromosomal REC-8 simply by restricting 

chromosomal localization of AIR-2. 

13.  A spo-11 mutant does not allow homolog segregation in air-2(RNAi) zygotes 

If the only function of AIR-2 in meiosis is to release chromosome cohesion, the chromosome 

segregation defect in meiosis I should be suppressible by mutations in which homologs are not 

We have made several attempts to suppress the air-2(RNAi) meiosis I phenotype with a 

mutation in spo-11(ok79) without success.  In spo-11(ok79); air-2(RNAi) zygotes, the 12 

univale

 

recombined to form chiasmata in the first place.  Spo11 is required for the initiation of 

recombination during meiosis.  Therefore in spo-11 mutants, homologs do not become linked 

and oocytes contain 12 univalents. 

nts behaved similar to the six bivalents in air-2(RNAi) alone.  In anaphase I of spo-

11(ok79); air-2(RNAi) zygotes, the 12 univalents all moved together as one mass and were 

pressed against the outer membrane (Fig. II.21).  Most importantly, in the period post-anaphase I 

but pre-anaphase II, all 12 univalents could be seen clearly in a single group (Fig. II.21).  We 

performed serial dilution the of AIR-2 dsRNA for injection in attempt to titrate the air-2(RNAi) 

effect.  However, all dilutions which affected wildtype meiosis had a similar effect on spo-

11(ok79), including a 1:300 dilution (approximately 10ng/µL).  These results suggest that AIR-2 

functions during meiosis in other processes, aside from its function in the separation of 

homologs. 
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igure I air-2(RNAi).  4-

D imaging of meiotic chromosome behavior.  All images presented here are representative slices from each time 

point.  The edge of the embryo is indicated by a white curve.  In spo-11 zygotes, univalent chromosomes randomly 

gregate during meiosis I; however, in spo-11; air-2(RNAi) zygotes, there is no evidence of chromosome 

segregation. 

chromosome cohesion during meiosis 

o 

ithout the careful regulation of chromosome 

segregation, meiotic cells could not maintain a constant chromosome number and sexual 

We describe here the finding that the aurora-B kinase AIR-2 promotes the release of 

meiotic chromosome cohesion in C. elegans, likely through phosphorylation of the meiotic 

cohesin REC-8.  Depletion of AIR-2 results in failure of chromosome separation during 

anaphase I and II.  AIR-2 localizes to sub-chromosomal foci corresponding to the point of 

F I.21.  spo-11 does not suppress the failure of homolog separation in 

se

 

C.  Discussion:  The Aurora-B kinase AIR-2 regulates the selective release of 

Meiotic cells must ensure proper chromosome segregation during each cell division in order t

form the immortal reproductive cycle.  W

reproduction would not be possible. 
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contact

1.  Regulation of chromosome cohesion release in meiosis 

bout the role of AIR-2 doing during 

meiosis.  We found that AIR-2 promotes the release of meiotic chromosome cohesion in C. 

elegans, likely through phosphorylation of the meiotic cohesin REC-8.  Depletion of AIR-2 

We also show that the GSP-1/2 phosphatases antagonize AIR-2 activity in chromosomal 

cohesion release, likely by restricting AIR-2 localization.  In gsp-1/2RNAi) embryos, 

chromosomal AIR-2 is elevated, chromosomal REC-8 is decreased, and sister chromatids 

separate precociously at anaphase I.  We propose that AIR-2 promotes the release of 

 between separating chromosomes in metaphase I and II, and the release of REC-8 from 

meiotic chromosomes depends on AIR-2 activity.  In vitro, AIR-2 phosphorylates REC-8 at a 

specific amino acid.   We also show that the GSP-1/2 phosphatases antagonize AIR-2 activity in 

chromosomal cohesion release, likely by restricting AIR-2 localization.  In gsp-1/2(RNAi) 

zygotes, chromosomal AIR-2 is elevated, chromosomal REC-8 is decreased, and sister 

chromatids separate precociously at anaphase I.  We propose that AIR-2 promotes the release of 

chromosome cohesion via phosphorylation of REC-8 at specific chromosomal locations and that 

GSP-1/2, directly or indirectly, antagonize AIR-2 activity. 

Our observation that inhibition of AIR-2 and histone H3 phosphorylation does not affect 

chromosome condensation during meiosis led us to ask a

results in failure of chromosome separation during anaphase I and II.  AIR-2 localizes to sub-

chromosomal foci corresponding to the point of contact between separating chromosomes in 

metaphase I and II, and the release of REC-8 from meiotic chromosomes depends on AIR-2 

activity.  In vitro, AIR-2 phosphorylates REC-8 at a specific amino acid, Thr625. 
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chromo

a.  Aurora-B kinase functions during meiosis 

 propose a novel mechanism for the 

selective release of chromosome cohesion during meiosis I and discuss how this regulation 

results from crossing over in C. elegans (Fig. II.22).  Our results strongly support a model 

some cohesion via phosphorylation of REC-8 at specific chromosomal locations and that 

GSP-1/2, directly or indirectly, antagonize AIR-2 activity. 

Although mitotic and meiotic cell divisions share many features in common, they are very 

different with respect to chromosome behavior.  Here we

whereby the selective release of cohesion during meiosis I is, in part, regulated by selective 

localization of AIR-2 at chromosome arms distal to chiasmata, which results in the subsequent 

phosphorylation of REC-8 at these sites. 

 

 

Figure II.22.  Model for how AIR-2 regulates the selective release of chromosome cohesion.  
(Reproduced from Rogers et al., 2002.)  A schematic model for how AIR-2 regulates the release of cohesion in 

meiosis I. Orange bar, unphosphorylated REC-8; red triangle, AIR-2; green bar, phosphorylated REC-8; and small 

green diamonds, degraded REC-8. 
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Cohesion between sister chromatids distal to chiasmata has been proposed to be 

responsible for holding homologs together (Maguire, 1974; Carpenter, 1994).  Nasmyth and 

colleagues have further demonstrated that release of cohesion is only required for chromosome 

eiosis I if homologs recombine and form chiasmata (Buonomo et al., 2000).  

place and time for a function in selective release of a subset of cohesins responsible for holding 

ity.  REC-8 remains between chromosomal arms distal to chiasmata in air-

2(RNAi) embryos.  Finally, our in vitro data that AIR-2 phosphorylates REC-8 strongly suggest 

 

atanabe and Nurse, 1999).  Recent evidence demonstrates that 

quite possible that Aurora kinases represent at least one group of Rec8 kinases. 

r, we found that 

ceREC-8 is not cleaved by hum

important difference between meiotic cohesions and mitotic cohesions (Toth et al., 2000).  Scc1 

segregation in m

Therefore, the observed sub-chromosomal location of AIR-2 in metaphase I puts it at the right 

homologs together. 

In addition, we show that the sub-chromosomal AIR-2 localization in meiosis I is 

dependent on chiasmata formation and that release of REC-8 from meiotic chromosomes 

requires AIR-2 activ

that AIR-2 functions through the phosphorylation of REC-8.  Studies of yeast previously 

demonstrated Rec8 to be a phospho-protein in vivo, but the kinase responsible for this was

unknown (Parisi et al., 1999; W

Rec8 is phosphorylated in vivo in mammals as well (Lee et al., 2003).  Based on our data, it is 

Currently, we are unable to directly verify this model.  To our knowledge, no one has 

been able to reconstitute a separase activity using the C. elegans separase.  We attempted to 

monitor ceREC-8 cleavage by separase using a human separase assay; howeve

an separase. 

The fact that, in S. cerivisae, Scc1 cannot substitute for Rec8 during meiosis suggests an 
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can provide sister chromatid cohesion and monopolar attachment during meiosis I in S. cerivisae 

but cannot resist separase in the vicinity of centromeres.  Rec8 clearly possesses special 

properties, which are lacking in Scc1 that enable it to be protected from separase in the vicinity 

of centromeres.  Because Rec8, but not Scc1, is protected from degradation at meiosis I, the 

retention of proximal cohesion cannot be due to the general shielding of proximal cohesin 

complexes from access or modification by enzymes like separase, Aurora kinases, or Polo 

kinases. 

In the scientific literature, several other studies have recently attempted to answer similar 

questions about the step-wise release of Rec8 during meiosis.  These studies most often involve 

studies of mutants in budding and fission yeast.  Several mutants, such as Bub1, Slk19, Spo12, 

ts, Rec8 is 

lost at centromeres during meiosis I; however, mono-orientation of sister kinetochores occurs 

normally.  In yeast, Spo12, Spo13, Slk19, and Sgo1 all are required for mono-orientation and for 

protecting proximal chromosome cohesion.  Of all these factors, only Spo13 and Sgo1 are 

specific to meiotic cells. 

Recent research has shown that the presence of Spo13 might be sufficient to protect Rec8 during 

mitotic growth in S. cerivisae (Lee et al., 2002; Shonn et al., 2002).  Mis-expression of Spo13 

transiently delays securin degradation and separase cleavage of cohesins.  Also, mis-expression 

e of securin.  This inhibition can be 

b.  Other models for the selective release of chromosome cohesion during meiosis 

Spo13, and Sgo1, display precocious Rec8 removal during meiosis I.  In Bub1 mutan

(1) Spo13 might function as a protector of proximal Rec8 

of Spo13 can prevent degradation of Scc1/Rec8 in the absenc
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overcome by the over-expression of separase, which results in efficient Scc1/Rec8 cleavage in 

the presence of extra Spo13.  The molecular mechanism of Spo13’s ability to shield Rec8 is not 

clear, as Spo13 does not physically associate with Rec8 (Lee et al., 2002; Shonn et al., 2002).  

Homologues of Spo13 have yet to be identified in other species. 

Recently several reports have identified homologues of Mei-S322 from Drosophila.  This factor 

has been named Shugoshin (Sgo1), which means “guardian spiri

(2)  Sgo1/Mei-S332 might function as a general protector of Rec8 

t” in Japanese.  Sgo1/Mei-S332 

might be a general regulator of meiosis I in many organisms (Katis et al., 2004; Kitajima et al., 

2004; Rabitsch et al., 2004; Salic et al., 2004).  Sgo1/MEI-S332 associates with chromosomes in 

 

the proximity of the kinetochores from prometaphase I until the onset of anaphase II.  In its 

absence, bivalents disjoin normally at anaphase I, but sister chromatids soon thereafter separate 

and mis-segregate at meiosis II.  Sgo1/MEI-S332 behaves in similar fashion during mitotic 

divisions, associating with centromeric chromatin during prometaphase and dissociating at 

anaphase.  It is not, however, required for chromosome segregation during mitosis.  Sgo1/MEI-

S332’s absence from chromosomes until prometaphase suggests that it is not itself part of the 

sister chromatid cohesion apparatus.  Moreover, its presence on chromosomes during metaphase 

II and during mitotic metaphases implies that it does not directly protect centromeric cohesion 

from its imminent destruction.  Though present on chromosomes during both metaphase I and 

metaphase II, Sgo1/MEI-S332 protects cohesion only at the onset of anaphase I or during a short 

period thereafter. 
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(3)  The utilization of different cohesin subtypes during meiosis 

The existence of cohesin complexes composed of different subunits during meiosis in fission 

east and vertebrates suggest another potential mechanism for regulating the differential release 

of chromosome cohesion in meiosis (Prieto et al., 2001; Prieto et al., 2002; Kitajima et al., 

2003a; Kitajima et al., 2003b).  In S. pombe, there is preliminary evidence that different cohesin 

a.  Possible roles of Aurora-B and ABI/passenger complex in meosis 

– that 

AIR-2 functions in cytokinesis (Schumacher et al., 1998a; Severson et al., 2000) and AIR-2 is 

part of the chromosome passenger protein complex (Kaitna et al., 2000; Adams et al., 2000; 

Recent studies have shown how the other components of the ABI complex might 

function.  Both Survivin and INCENP now have been shown to be substrates of Aurora-B and 

y

subtypes not only distribute to different locations on the chromosomes but also perform different 

functions (Kitajima et al., 2003a; Kitajima et al., 2003b).  In S. pombe, cohesin complexes 

containing Psc3 bind sister chromatids together until meiosis II, and Psc3 is required for mono-

oreintation during meiosis I.  On the other hand, Rec11 cohesin complexes are removed from 

chromosome arms during meiosis I (Kitajima et al., 2003a; Kitajima et al., 2003b).  Also, it is 

possible that different cohesin subtypes are targeted by kinases, such as Aurora-B and Polo 

kinases, either at different sub-chromosomal locations or at different times during meiosis. 

We have shown that AIR-2 likely phosphorylates REC-8 and promotes the release of 

chromosome cohesion during meiosis.  This finding, combined with two previous findings 

Adams et al., 2001a) – suggests that the Aurora-B/ABI complex might play a critical role in 

coordinating chromosome separation and cytokinesis during cell division. 
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potentially can stimulate Aurora-B kinase activity (Kim et al., 1999; Bishop and Schumacher, 

2002; Cheeseman et al., 2002; Honda et al., 2003).  In both Xenopus and human cells, survivin is 

capable of binding Aurora-B and enhancing its kinase activity in vitro, although in S. cerivisae 

and C. elegans, Bir1/Survivin was reported to lack this capability in similar assays (Bolton et al., 

2002; Bishop and Schumacher, 2002; Cheeseman et al., 2002; Honda et al., 2003).  In C. 

elegans, ICP-1/INCENP clearly has the ability to stimulate AIR-2 kinase activity in vitro 

(Bishop and Schumacher, 2002; Honda et al., 2003).  This stimulation requires the 

phosphorylation of ICP-1/INCENP by AIR-2 (Bishop and Schumacher, 2002; Honda et al., 

2003). 

of Aurora-B kinase activity.  The observation that in C. elegans meiosis, histone H3 

phosphorylation is delayed until the appearance of AIR-2/ABI localization might represent the 

function of BIR-1/survivin and ICP-1/INCENP in both the activation and localization of AIR-2 

to the chromosome in order to target another substrate aside from histone H3. 

ecently have been 

described as new components of the ABI complex during mitosis (Gassmann et al., 2004; 

These results suggest the function of survivin and INCENP are not only to localize AIR-2 

to specific sub-cellular sites but also to stimulate kinase activity.  This dual role of survivin and 

INCENP in both localization and activation of Aurora-B might provide important regulatory 

control 

Recently new components of the ABI complex have been discovered that might 

eventually lead to further understanding of the function of the passenger complex.  In C. elegans, 

a novel factor called CSC-1 associates with BIR-1/survivin and ICP-1/INCENP (Romano et al, 

2003).  In vertebrates, three factors − Borealin, Dasra A, and Dasra B − r
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Sampath et al., 2004).  Unfortunately, identification of these new components has not revealed 

insight into the molecular functions of the ABI/passenger complex. 

New information has been gained about ABI complex/passenger protein behavior.  It 

appears that degradation of cyclin-B and down-regulation of Cdk1 play a critical role in the 

transit of Aurora-B from the chromosome to the spindle during mitosis (Murata-Hori et al., 

2002a; 

b.  Unexplained functions of AIR-2 in C. elegans meiosis  

ut poorly defined, role in meiotic 

chromosome segregation in C. elegans.  First, if the sole function of AIR-2 in meiosis is to 

release chromosome cohesion, the chromosome segregation defect in meiosis I should be 

Parry et al., 2003).  Presumably, the ABI complex must transit to the spindle to 

coordinate cytokinesis with chromosome separation and entry into anaphase.  This function 

might be accomplished by the ability of ABI complexes to travel along microtubules to different 

locations within the cell, such as towards the cell cortex (Murata-Hori and Wang, 2002b).  This 

ability might allow the ABI complex to provide communication between the spindle and the 

cortex during anaphase.  Theories that cytokinesis is regulated directly by the central spindle is 

supported by another recent study (Alsop and Zhang, 2003). 

Two observations suggest that AIR-2 has an additional, b

suppressible by mutations in which homologues are not recombined to form chiasmata in the 

first place.  To no avail, we have made several attempts to suppress the air-2(RNAi) meiosis I 

phenotype with a mutation in spo-11.  This suggests that, in addition to the release of 

chromosome cohesion, AIR-2 likely has another role in meiotic chromosome segregation.  

Similar attempts to suppress separase sep-1(RNAi) with spo-11 mutations in C. elegans were 

reported to be unsuccessful (Siomos et al., 2001).  This failure might be caused by the 
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requirement for either AIR-2 or separase for other essential functions.  In particular, separase 

might be required in C. elegans for proper spindle stability during anaphase.  Similarly, AIR-2 

might play similar roles in regulating the anaphase spindle. 

Second, at anaphase, all chromosomes in air-2(RNAi) embryos consistently move toward 

and are pressed against the edge of the embryo, as if a force from one spindle pole is 

overwhelming any forces from the other.  Why this happens is unclear.  This is interesting in 

light of

The monopolar movement of homologs in air-2(RNAi) embryos is suggestive of spindle 

and/or kinetochore abnormalities.  Similarly, the failure of bivalent alignment at metaphase in 

air-2(RNAi) embryos is suggestive of spindle and/or kinetochore abnormalities.  Several recent 

studies

 a similar monopolar spindle phenotype observed in Drosophila aurora mutant embryos 

and Aurora-A depleted Xenopus oocytes (Glover et al., 1995; Giet et al., 1999).  However, 

because bivalents in air-2(RNAi) embryos do not align normally at metaphase, it is difficult to 

interpret spindle phenotypes at or after metaphase. 

 have indicated that Aurora-B kinases are involved in regulating spindle attachments to 

the kinetochore at least in the context of mitosis.  In human cells, Aurora-B is required for bi-

orientation of the kinetochore and might function in a cell-cycle checkpoint in order to halt the 

cell cycle in response to incorrect kinetochore attachments (Ditchfield et al., 2003; Hauf et al., 

2003; Straight et al., 2003; Lampson et al., 2004).  Over-expression of a kinase-dead Aurora-B in 

mammalian cells perturbed the spindle attachment checkpoint and caused Mad2, dynenin, and 

CENP-E to be lost from kinetochores (Murata-Hori and Wang, 2002a).  Similar observations 

were made in yeast species.  In S. pombe, Aurora/Ark1 mutants show mis-regulation of Mad2 

and defects in the spindle attachment checkpoint (Petersen and Hagan, 2003).  In S. cerivisae, 
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Ipl1/Aurora was implicated in a mitotic spindle assembly checkpoint that senses tension (Biggins 

and Murray, 2001; Li et al., 2002). 

Further research strongly supports a role for Ipl1/Aurora in regulating kinetochore 

attachments in order to achieve bi-orientation during mitosis (Cheeseman et al., 2002; Tanaka et 

al., 2002; Dewar et al., 2004).  Also, recent work has implicated regulatory connections between 

the AB

We observed defects in bivalent alignment during meiosis I in air-2(RNAi) zygotes.  This 

phenotype cannot be explained by any evidence we have gathered, but this observation does 

suggest a role for AIR-2 in kinetochore attachments and/or spindle functions.  In the 4-D 

analysi

Currently, little is known about the spindle checkpoint in C. elegans.  The antibody 

staining pattern of the spindle checkpoint factor, BUB-1, has been described (Oegema et al, 

2001).  In order to investigate checkpoint activation in relation to AIR-2 function, we examined 

the loc

I complex and separase in S. cerivisae; however, the exact nature of this connection is 

unclear (Pereira and Schiebel, 2003).  The abundance of continuing research on Aurora-B 

kinases likely will further understanding of Aurora-B kinases in the near future. 

s, air-2(RNAi) chromosomes have kinetic behavior, which presumably means that the 

kinetochores are attached to the meiotic spindle.  However, the aberrant behavior of the bivalents 

at metaphase and anaphase in both air-2(RNAi) and in air-2(RNAi); spo-11 zygotes, suggests the 

nature of the kinetochore-spindle attachments might be defective. 

alization of BUB-1 in air-2(RNAi) embryos.  Although we did not notice in obvious defect 

in BUB-1 localization during meiosis, the localization of BUB-1 in mitosis in air-2(RNAi) 

embryos (data not shown) resembled the localization of BUB-1 upon checkpoint activation by 

nocodazole treatment or anoxia (Stear and Roth, 2004).  This result demonstrates air-2(RNAi) 
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activates the spindle checkpoint during mitosis, but currently there is no evidence of AIR-2 

perturbing any checkpoints during meiosis. 

Recently evidence has been acquired that Aurora-B kinases are involved directly with the 

kinesin related factor MCAK.  MCAK is required for proper chromosome alignment and 

kinetochore-spindle attachments.  Several studies implicate Aurora-B might co-localize with and 

phosph

2.  Histone H3 phosphorylation during cell division 

of this thesis, the role of histone H3 phosphorylation during meiosis in 

during cell division was in the process of chromosome condensation (Wei et al., 1999; Hsu et al., 

orylate MCAK in order to regulate chromosome congression in vertebrate cells (Ohi et 

al., 2003; Andrews et al., 2004; Lan et al., 2004; Ohi et al., 2004).  Defects in MCAK function 

might explain the failure of homolog alignment in air-2(RNAi) zygotes and might also be 

involved in the monopolar spindle behavior at anaphase.  Unfortunately, we have no evidence to 

support this hypothesis. 

According to the results 

C. elegans is unclear.  Previous studies suggested the function of histone H3 phosphorylation 

2000).  Instead, we observed that phosphorylation occurs primarily in the short arms distal to the 

chiasmata in diakinetic oocytes.  Although this correlates temporally with chromosome 

condensation, we observed no defect in chromosome condensation when histone H3 

phosphorylation was blocked by air-2(RNAi).  The finding that AIR-2 is not required for 

chromosome condensation during meiosis is not altogether surprising in light of recent reports.  

Several studies also suggest Aurora kinases and histone H3 phosphorylation are dispensable for 

chromosome condensation during either mitosis or meiosis (Cobb et al., 1999a; Cobb et al., 

1999b; Lavoie et al., 2002; Losada et al., 2002; Sumara et al., 2002). 
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There is a growing amount of evidence against histone H3 phosphorylation playing an 

essential role in chromosome condensation.  In Drosophila, the inhibition of Aurora-B, which 

abolishes histone H3 phosphorylation, did not appear to perturb condensin recruitment and 

chromosome condensation (Giet and Glover, 2001).  Also, the artificial induction of histone H3 

phosphorylation was not sufficient to recruit condensins to the chromosome (Murnion et al., 

2000).  Similarly, experiments using in vitro extracts from Xenopus found no relationship 

between histone H3 phosphorylation and condensin function (Kimura and Hirano, 2000; 

MacCullum et al., 2002).  The most persuasive result is the observation that condensin 

complexes can interact with nucleosomes composed of histone H3 that completely lack the N 

terminus (de la Barre, et al., 2001).  Also the recent development of Aurora-B kinase inhibitors 

has shown inhibition of Aurora-B in human cells does not have a great effect on chromosome 

condensation (Ditchfield et al., 2003; Hauf et al., 2003).  Instead, defects in spindle-kinetochore 

interactions, cell cycle checkpoints and cytokinesis were observed. 

One possible explanation for the role of histone H3 phosphorylation is to target the future 

binding of AIR-2 to specific sub-chromosomal sites.  In all situations examined, the location of 

e distal arms in -4 

oocytes about 1 hr before AIR-2 localizes to the same site in the -1 oocyte.  Clearly, AIR-2 is 

able to phosphorylate histone H3 without stably associating with the chromosomes.  In ncc-

1(RNAi) animals, both H3P and AIR-2 are absent from the chromosome.  In gsp-1/2 (RNAi) 

worms, the timing of histone H3 phosphorylation appears accelerated, resulting in a premature 

increase in overall histone H3 phosphorylation.  Also, gsp-1/2 (RNAi) worms display an ectopic 

a.  Histone H3 phosphorylation might facilitate the localization of AIR-2 

H3P presages the localization of AIR-2.  In wildtype worms, H3P marks th
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appearance of histone H3 phosphorylation at more proximal regions of the bivalent, albeit at 

lower levels and delayed relative to distal regions.  Correlated with the acceleration in histone H3 

phosphorylation is the premature localization of AIR-2/ABI complex to the chromosomes and 

the ectopic localization of AIR-2/ABI complex to more proximal regions of the chromosomes, as 

presaged by the detection of histone H3 phosphorylation. 

The localization of histone H3 phosphorylation presages where AIR-2/ABI complex will 

localize later during the cell cycle.  This observation suggests that histone H3 phosphorylation 

might be involved in the localization of AIR-2/ABI complex to these chromosomal sites.  A 

specula

 

tive model to propose is that although the AIR-2/ABI complex is initially only transiently 

associated with the chromosomes for this modification, as histone H3 phosphorylation increases, 

this somehow facilitates the stable recruitment of the AIR-2/ABI complex at these sites.  

Presumably at first, the AIR-2/ABI complex is associating transiently with the histone H3 tails in 

the distal chromosome arms.  Then later, after some unknown event, the AIR-2/ABI complex 

begins to stably associate in these same chromosomal regions.  In this model, the localization of 

AIR-2 to the chromosome is most likely for another purpose because histone H3 is already 

heavily phosphorylated.  Presumably, AIR-2 is targeted to the distal arms to specifically 

phosphorylate another target, such as REC-8.  How histone H3 phosphorylation might stabilize 

AIR-2/ABI complex binding to the chromosome is unknown.  One possibility is that, once the 

amount of histone H3 phosphorylation reaches some threshold, this allows the AIR-2/ABI 

complex to be stabilized at those chromosomal regions.  Also, more complex interactions 

between AIR-2, BIR-1, and ICP-1 might be involved. 
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b.  Histone H3 phosphorylation might serve to ‘open’ the chromatin 

Previously two potential functions for histone H3 phosphorylation have been offered.  First, it 

as been suggested for a long time that histone H3 phosphorylation might alter the interactions 

of the nucleosomes with DNA.  Phosphorylation of the histone H3 tail both increases its negative 

charge and might affect the secondary structure of the tail (Baneres et al., 1997; Mutskov et al., 

The pattern of histone H3 phosphorylation during meiosis suggests another model.  We 

observed histone H3 phosphorylation along the inner faces of dividing chromosomes.  We also 

observed a correlation between defects in chromosome separation and the absence of histone H3 

phosphorylation.  Based on these observations, I favor a model in which histone H3 

phosph

h

1998; Sauve et al., 1999).  Second, histone H3 phosphorylation might serve as a signal platform 

to recruit other factors, such as condensin complexes, to the chromatin (Wei et al., 1999).  This 

concept is similar to the histone code model that is based on different factors recognizing the 

modifications on the N terminal tails of core histones.  The histone code model is that 

combinations of histone acetylation, methylation, and phosphorylation of the core histone tails 

serve as binding sites to be recognized by transcriptional regulators (Jenuwein and Allis, 2000; 

Nowak and Corces, 2003). 

orylation alters the structure of the chromatin to facilitate the separation of chromosomes.  

This function appears to begin in prophase, prior to division, at a time that is consistent with 

other localization studies (Kaszas and Cande, 2000).  In this model, an unknown histone H3 

phosphorylation-based mechanism would result in the ‘loosening’ or ‘opening’ of the chromatin 

to either enable the untangling of DNA linkages or to facilitate access to cohesins by enzymes 

such as kinases and separases.  Alternatively, histone H3 phosphorylation might serve as a 
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docking site to recruit factors, such as kinases, topoisomerases, or separase.  However, with so 

little evidence available, these possibilities are highly speculative. 

The involvement of GSP-1/2 in the regulation of meiotic chromosome cohesion release is 

demonstrated best by our observation that, in gsp-1/2(RNAi) embry

c.  Function of GSP-1 and GSP-2 phosphatases 

os, sister chromatids separate 

precociously at the onset of anaphase I.  In addition, GSP-1/2 might function in the maintenance 

of chromosomal REC-8 before anaphase, given that we observed a dramatic decrease in the level 

We believe that the function of GSP-1/2 in the regulation of meiotic cohesion is mediated 

through AIR-2.  However, we cannot rule out the additional involvement of an AIR-2–

independent mechanism.  It is possible that GSP-1/2 antagonizes AIR-2 by:  (a) directly 

inhibiting its activity, (b) restricting its chromosomal localization, (c) dephosphorylating REC-8, 

or (d) a

The first possibility is supported by recent work (Murnion et al., 2000) showing that a 

recombinant human PP1 phosphatase can inhibit directly the activity of Xenopus Aurora-B 

kinase in embryo extracts.  Recent evidence suggests all Aurora kinases contain conserved 

domains that confer direct PP1 binding (Sugiyama et al., 2002).  The second possibility is 

of chromosomal REC-8 throughout the gonad in gsp-1/2(RNAi) animals.  However, no 

phenotype was observed in gsp-1/2(RNAi) worms before the onset of anaphase I.  It is possible 

that a decrease in chromosomal REC-8 is detrimental only when combined with a high separase 

activity in anaphase.  Alternatively, this might be caused by incomplete penetrance of the gsp-

1/2(RNAi) effect. 

 combination of the preceding three mechanisms. 
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suppor

precocious separation of sister chromatids during meiosis I in gsp-1/2(RNAi) zygotes.  White circle, phosphorylated 

IR-2; green bar, phosphorylated REC-8; and green 

diamonds, degraded REC-8. 

It would be interesting to know the localization of GSP-1 and GSP-2.  With human cells, 

ted by our observation of ectopic chromosomal AIR-2 in gsp-1/2(RNAi) animals.  

Alternatively, the gsp-1/2(RNAi) phenotype could be the result of a chromosome-wide increase 

in the phosphorylation of histone H3, a previously identified substrate for Aurora-B kinases and 

Glc7 phosphatases (Hsu et al., 2000).  It is possible that an increase in phosphorylated histone 

H3 causes a change in chromatin organization that facilitates either the accessibility of AIR-2 to 

phosphorylate REC-8 or the accessibility of separase to degrade REC-8 (Fig. II.23).  Because the 

functions of Aurora-B kinases and Glc7 phosphatases are essential for meiotic divisions in a 

variety of species, it is an intriguing possibility that they might play a role in the release of 

meiotic chromosome cohesion across diverse species. 

 

Figure II.23.  Model for the mis-regulation of H3P, AIR-2, and REC-8 in gsp-1/2(RNAi).  A 

schematic model for how the mis-regulation of histone H3 phosphorylation and AIR-2 localization result in the 

histone H3; orange bar, unphosphorylated REC-8; red triangle, A

a PP1 phosphatase, which is similar to Glc7, can be biochemically purified with chromosomal 

extracts (Murnion et al., 2000).  Currently the localizations of either GSP-1 or GSP-2 in C. 
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elegans meiotic cells are unknown.  Recently, an antibody to GSP-2 was generated (Ueda H. and 

Hosono R., pers. comm.).  We found antibody staining to GSP-2 in oocytes showed a diffuse 

cytopla

Although gsp-1/2(RNAi) affects the 

al arms of bivalents, other unknown 

mechanisms must target AIR-2/ABI complex to these sub-chromosomal foci. 

ell cycle regulator 

MAPK, the DNA damage signal kinase Chk2, or even Plk1 (Mahadevaiah et al., 2001; Perez-

Hidalg

smic, nuclear, and chromatin staining.  There was no obvious GSP-2 staining at sub-

chromosomal foci, nor was there an obvious deficiency of GSP-2 staining; instead we observed a 

general, low-level GSP-2 staining throughout the bivalent. 

d.  What selectively localizes AIR-2 to the distal arms? 

In our model, the selective degradation of REC-8 during meiosis I requires the localization of 

AIR-2 specifically to the distal arms of the bivalents.  This model begs the question of what 

selectively regulates AIR-2 localization to these sites.  

restricted localization of AIR-2/ABI complex to the dist

Presumably there is some molecular information provided by the recombination 

machinery at or near the chiasmata.  This could be in the form of a histone modification, such as 

H2AX phosphorylation, or it could be a response to a sensor of recombination – also known as 

the pachytene checkpoint – that might utilize either the activation of the c

o et al., 2003; Tsvetkov et al., 2003).  Interestingly in S. cerivisae, Glc7 is activated by the 

completion of recombination at pachytene, which might involve a MAPK signal pathway (Bailis 

and Roeder, 2000).  Currently, the mechanism that selectively localizes AIR-2 is unknown, and 

furthermore, the processes by which the cell distinguishes distal versus proximal along the 

chromosomes once the chiasma is marked is not clear. 
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Recent, unpublished research in C. elegans shows that AIR-2 localization is first 

observed much earlier during diakinesis and is presaged by the localization of two synaptonemal 

components SYP-1 and SYP-2 (Nabeshima and Villeneuve, pers. comm.).  Both SYP-1 and 

SYP-2 are required for synapsis and meiotic recombination (MacQueen et al., 2002; Colaiacovo 

et al., 2003).  Although only preliminary, this observation suggests that bivalents might retain 

molecular information from the synaptonemal complex in the form of SYP-1/2 to signal where to 

load the AIR-2/ABI complex onto the bivalent.  This could easily explain why univalents lack 

AIR-2 staining, because univalents do not exhibit SYP-1/2 localization. 

Studies of anueploidy in human oocytes have shown that oocytes arrested in metaphase II prior 

to fertilization are far more likely to contain extra chromatids than they are to possess an extra 

pair of sister chromatids (Hassold and Hunt, 2001).  This is probably the result of an equational 

tion of the chromosomes during meiosis I.  This defect would occur if some 

chromosomes precociously lose cohesion throughout the bivalent prior to completing the first 

meiotic division, as occurs to all bivalents in C. elegans oocytes depleted of GSP-1/2.  It is likely 

that the oocytes giving rise to trisomies might be the result of these aneuploid oocytes, because 

their pattern of aneuploidy resembles that found in aborted fetuses (Hassold and Hunt, 2001).  In 

the future, the role of Aurora-B kinases and Glc7-type PP1 phosphatases might be important for 

understanding the mechanistic basis of the defects observed in aneuploid oocytes and fetuses. 

this Aurora kinase subtype.  Recently, it has been shown that Aurora C kinases are functionally 

3.  Significance 

division of a frac

All three subtypes of Aurora kinases are expressed in the germline of mammals.  In 

particular, Aurora-C expression is restricted to the germline, suggesting a meiotic function for 
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similar to Aurora-B kinases, being able to rescue an Aurora-B mutant during mitosis (Sasai et al., 

2004).  It will be interesting to see in mammals whether Aurora-B and Aurora-C kinases regulate 

the unique chromosomal events of meiosis, such as the selective release of chromosome 

cohesion. 

 

 



     

CHAPTER THREE:  The Polo kinase PLK-1 functions in the 

release of chromosome cohesion during meiosis II 

A.  Introduction 

Meiosis requires two rounds of chromosome cohesion release.  In meiosis I, the cohesion 

between distal sister chromatid arms is released to allow homolog separation.  In meiosis II, the 

remaining proximal/centromeric cohesion is released to permit sister chromatid separation.  The 

preceding section described evidence that the aurora kinase AIR-2 regulates the release of 

chromosome cohesion. 

Previously it was shown in budding yeast that Cdc5/Polo regulates the degradation of 

mitotic cohesion Scc1 via direct phosphorylation (Alexandru et al., 2001).  During meiosis in 

budding yeast, Scc1 is replaced by its closest homologue, Rec8.  An intriguing question is 

whether Polo kinases also regulate Rec8, especially with regard to the stepwise degradation of 

Rec8 during meiosis.  In C. elegans, the Polo-like kinase PLK-1 is required for meiosis (Chase et 

al., 2000).  This section describes an analysis of the function of PLK-1 with regard to 

chromosome cohesion release during meiosis. 

Here, we show the second phase of chromosome cohesion release might require the Polo-

like kinase PLK-1.  We show that PLK-1 is required for sister chromatid separation and REC-8 

release during meiosis II.  Interestingly, PLK-1 appears dispensable for homolog disjunction and 

REC-8 release during meiosis I.  In plk-1(RNAi) zygotes, REC-8 is removed during meiosis I, 
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allowing homolog separation.  However, REC-8 is not removed during meiosis II; therefore, 

sister chromatids fail to separate in plk-1(RNAi) zygotes.  The simultaneous depletion of REC-8 

permits sister chromatid separation in plk-1(RNAi) animals.  In gsp-1/2(RNAi) zygotes, 

simultaneous PLK-1 inhibition can suppress the precocious separation of sister chromatids, 

despite the coincident mis-regulation of AIR-2.  We propose PLK-1 promotes the release of 

meiotic chromosome cohesion via regulating phosphorylation, specifically of the 

proximal/centromeric REC-8, thereby facilitating the disjunction of sister chromatids exclusively 

during meiosis II. 

B. Results 

1.  In vivo 4-D analysis:  PLK-1 is required for sister chromatid separation 

In various organisms, Polo kinases are essential for meiosis; however, their precise molecular 

functions remain elusive, because of their pleiotropic phenotypes.  In Drosophila, the failure of 

Polo mutants to execute meiosis was attributed primarily to spindle defects (Herrmann et al., 

1998; Riparbelli et al., 1998).  In budding yeast, a temperature-sensitive mutant of cdc5/Polo is 

defective in both meiosis I and II (Schild and Byers, 1980).  More recent studies suggest Cdc5 

functions both prior to the first meiotic division in regulating spindle-kinetochore attachments 

and in the resolution of chiasmata (Clyne et al., 2003; Lee et al., 2003).  These studies argue 

Cdc5 functions in the release of meiotic chromosome cohesion via the regulation of Rec8 

phosphorylation.  We examined the function of the Polo-like kinase PLK-1 in the process of 

meiotic chromosome cohesion release in C. elegans. 
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We depleted PLK-1 by RNAi in a strain expressing a histone H2B::GFP reporter and 

then performed 4-D imaging of meiosis.  In wildtype, oocytes undergo nuclear envelope 

breakdown and enter meiotic prometaphase during oocyte maturation and ovulation into the 

spermatheca.  After fertilization, the oocyte nucleus enters metaphase I with each bivalent, 

composed of two axially arranged homologs, aligned near the surface of the embryo (Fig. III.1 

A).  At anaphase I, the homologous chromosomes separate into two groups of dyads, with the 

group closer to the surface of the embryo extruded as the first polar body (Fig. III.1, B and C).  

The remaining six dyads align at metaphase II and separate into two groups of single chromatids 

at anaphase II (Fig. III.1 D).  The group of single chromatids closer to the surface of the zygote is 

extruded as the second polar body, and the fusion of haploid pronuclei ensues (Fig. III.1 E). 

 

Figure III.1.  Meiotic chromosome behavior in live plk-1(RNAi) zygotes.  All images presented 

here are representative slices from each time point, except for that in I, which is a projection of the image stack of 

DAPI staining from a fixed embryo.  The edge of the embryo is indicated by a white curve. 

As noted previously, inhibition of PLK-1 by RNAi results in drastic and pleiotropic 

phenotypes:  100% embryonic lethality, single-cell arrest, and meiotic defects (Chase et al., 

2000).  The first defect we observed during 4-D imaging of plk-1(RNAi) animals was oocytes did 

not undergo nuclear envelope breakdown until 5-10 min after fertilization.  In plk-1(RNAi) 
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zygotes, the bivalents appeared morphologically similar to wildtype bivalents but did not align 

properly (Fig. III.1 F).  This likely was caused by the disorganization of the meiotic spindle we 

observed using a β-tubulin::GFP reporter (data not shown).  However, approximately 6 min after 

nuclear envelope breakdown, the six bivalents synchronously separated into 12 dyads, 

suggesting the coordinated onset of anaphase I (Fig. III.1 G). 

The meiotic chromosomes remained as 12 dyads (100%, n=78); they never separated into 

different groups or formed polar bodies for the remainder of meiosis, which lasted approximately 

30 min (Fig. III.1 I).  At the end of meiosis, the 4C oocyte pronucleus decondensed, which is 

clearly distinguishable from the 1C sperm pronucleus (Fig. III.1 J).  These results demonstrate 

that, despite a delay in nuclear envelope breakdown and the presence of severe spindle defects, 

homologous chromosomes separate in plk-1(RNAi) zygotes.  However, sister chromatids never 

separate in plk-1(RNAi) zygotes. 

2.  Assaying cell cycle progression in plk-1(RNAi) zygotes 

To rule out the possibility that the failure of sister chromatid separation in plk-1(RNAi) zygotes is 

due to a failure to attempt meiosis II, we examined several GFP markers whose spatial/temporal 

movements during the cell cycle are well defined.  First, the localization of the DYRK kinase, 

MBK-2, has been shown to change from uniform to punctate around the transition from meiosis I 

to meiosis II (Fig. III.2, n=30; Pellettieri, et al., 2003), and this change is dependent on the 

completion of meiosis I (Pellettieri et al., 2003).  In plk-1(RNAi) zygotes, MBK-2::GFP behaved 

similarly to wildtype, initially present uniformly around the cortex and then redistributing to foci 

concurrent with the appearance of the 12-dyad phenotype (Fig. III.2, n=19). 
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Figure III.2.  Cell cycle progression in plk-1(RNAi).  Representative images of fixed GFP::MBK-2 

zygotes, which have been projected.  Both wildtype and plk-1(RNAi) embryos show similar localization patterns for 

MBK-2 during meiosis I and meiosis II. 

Second, after the completion of meiosis II, two zinc-finger containing proteins, PIE-1 and 

MEX-5, polarize to the posterior and anterior cytoplasm, respectively, in wildtype embryos 

(Reese et al., 2000; Cuenca et al., 2003;).  In plk-1(RNAi) embryos, proper polarization of PIE-1 

and MEX-5 was observed (see Chapter Four).  Third, the OMA-1 protein is degraded rapidly 

after the first mitotic division (Lin, 2003).  In plk-1(RNAi) embryos, we also observed rapid 

OMA-1 degradation (data not shown).  These results suggest that plk-1(RNAi) embryos, despite 

meiotic spindle defects, progress through meiosis I, enter meiosis II, and then execute post-

meiotic processes.  These conclusions are supported by the previous observation of multiple cell 

cycle repetitions of aborted cytokinesis attempts in plk-1(RNAi) embryos (Chase et al., 2000). 

3.  Disruption of spindle function does not block homolog separation in meiosis I 

We believe that the observed defect in chromosome separation in plk-1(RNAi) zygotes is 

independent of its defect in spindle organization.  Although spindle organization is an integral 

part of proper meiotic divisions, it does not appear to be required for the release of meiotic 

chromosome cohesion in meiosis I.  In zygotes depleted of either an essential component of the 
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meiotic spindle, α-tubulin, or an essential regulator of meiotic spindle organization, MEI-1, two 

successful rounds of chromosome separation occurred, despite the lack of chromosome 

segregation during both divisions (Fig. III.3; Yang et al., 2003).  In meiosis I, we observed 12 

dyads in tba-1(RNAi) or mei-1(RNAi) zygotes.  However in meiosis II, we never detected more 

than 12 DAPI-staining units in tba-1(RNAi) or mei-1(RNAi) zygotes (data not shown).  These 

observations suggest meiotic spindle defects do not prevent chromosome cohesion release during 

meiosis I or meiosis II.  The appearance of 12 dyads during meiosis I in plk-1(RNAi) zygotes 

suggests the regulation of chromosome cohesion is normal, whereas the failure of chromosome 

segregation resembles the effects of general meiotic spindle mutants.  Therefore, it is not clear 

whether the failure in chromosome segregation during meiosis in plk-1(RNAi) zygotes is caused 

by defects in chromosome cohesion release and/or defects in meiotic spindle/kinetochore 

function. 

Figure III.3.  The effect of tubulin depletion resembles the effect of plk-1(RNAi).  All images 

presented here are projections of image stacks of DAPI staining of the chromosomes from fixed zygote.  The edge 

of the zygote is indicated by a white curve. 
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Based on these results, it is not clear if a second meiotic division is even attempted in plk-

1(RNAi) zygotes.  It is possible that both PLK-1 and a functional spindle are required for entry 

into meiosis II and to attempt the second meiotic division.  This possibility suggests the existence 

of checkpoint that functions to bypass meiosis II in the case of spindle disruption by inhibition of 

either tba-1 or mei-1.  Similarly, the kinetochore and/or spindle defects in plk-1(RNAi) zygotes 

also might activate this checkpoint and bypass meiosis II completely. 

4.  Localization of PLK-1 during meiosis by antibody staining 

Using an antibody to PLK-1, we analyzed the localization of PLK-1 during meiosis (Chase et al., 

2000).  The majority of PLK-1 was found associated with the chromosomes corresponding to the 

meiotic kinetochore (Fig. III.4 A), and a minority of PLK-1 was observed on the meiotic spindle 

(Fig. III.4 B).  In oocytes, PLK-1 localization was throughout the bivalent (Fig. III.4 A), in 

contrast to the restricted localization of AIR-2 (Fig. III.4 E).  At anaphase I, the localization of 

PLK-1 is very similar to AIR-2 (Fig. III.4, C and G).  At metaphase II, PLK-1 was found 

between sister chromatids coinciding with the residual, proximally located REC-8 (Fig. III.4 D).  

The presence of PLK-1 staining between sister chromatids during meiosis II coincides with a 

role in REC-8 removal at this stage.  Also, the presence of PLK-1 on the kinetochore and meiotic 

spindle correlates with roles for PLK-1 in meiotic spindle organization and kinetochore 

functions. 

The inhibition of either PLK-1 or NCC-1/Cdk1 causes a cell cycle delay, particularly in 

the process of nuclear envelope breakdown in maturing oocytes.  We tested whether NCC-1 is 

required for PLK-1 localization, especially noting the localization of PLK-1 to the nucleus 

during oocyte maturation.  There was no observable change in PLK-1 localization in the gonads 
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of ncc-1(RNAi) worms (data not shown).  This is consistent with published results suggesting 

that Plk1 activation is largely independent of Cdk1 activity (Abrieu et al., 1998; Karaiskou et al., 

2003; Anger et al., 2004; Okano-Uchida et al., 2004). 

Figure III.4.  PLK-1 is localized throughout the chromosome during meiosis.  Antibody 

staining is presented in green, and DAPI staining is shown in red.  Merged antibody and DNA staining is shown for 

wildtype meiotic chromosomes for PLK-1 (A-D) and AIR-2 (E-H) is presented. 

5.  REC-8 is retained on dyads in plk-1(RNAi) zygotes 

To further investigate the observed defect in chromosome separation in plk-1(RNAi) zygotes, we 

examined the localization of the meiotic cohesin REC-8.  During wildtype meiosis, REC-8 was 

readily detected by antibody staining on both the proximal and distal regions of the bivalent prior 

to metaphase (76%, n=41; Fig. III.5 A; Pasierbek, et al., 2001; Rogers et al., 2002).  At anaphase 

I, the REC-8 on the distal arms of the bivalent was cleaved, allowing the separation of bivalent 

into two dyads, but the REC-8 on the proximal regions remained to hold the sister chromatids 

together (100%, n=18; Fig. III.5, B and C).  In newly fertilized plk-1(RNAi) zygotes 

(representing meiosis I), we detected REC-8 on both distal and proximal arms of bivalents 
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similarly to wildtype zygotes (74%, n=19; Fig. III.5 E).  However in plk-1(RNAi) zygotes 

containing 12 dyads (representing meiosis II), we observed 97% of zygotes (n=42) had 

detectable REC-8 staining.  This is quite different from the 14% of wildtype zygotes (n=35) with 

detectable REC-8 staining at the stages between anaphase I and the end of meiosis.  This result 

suggests that the defect in the separation of sister chromatids in plk-1(RNAi) zygotes might be 

due to a failure to degrade the meiotic cohesin REC-8 during meiosis II. 

 

Figure III.5.  REC-8 is retained on dyads in plk-1(RNAi) zygotes.  REC-8 staining in wildtype (A-

F) and plk-1(RNAi) zygotes (G-J).  The left column shows DAPI staining, and the right column shows the 

corresponding REC-8 staining. 

6.  REC-8 is required to hold sister chromatids together in plk-1(RNAi) zygotes 

To test the hypothesis that cohesion complexes are responsible for holding sister chromatids 

together in plk-1(RNAi) zygotes, we examined whether the plk-1(RNAi) phenotype is dependent 

on rec-8.  When plk-1 and rec-8 were inhibited simultaneously by RNAi, more than 12 DAPI-

staining units (n=3) were observed during meiosis, as opposed to the 12 dyads observed in all 
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plk-1(RNAi) zygotes.  We also scored the number of DAPI-staining units in oocyte nuclei, 

because the chromosomes are more dispersed here and thus easier to count.   Depletion of REC-8 

alone by RNAi resulted in 32% (n=38) of the oocytes containing greater than 12 DAPI-staining 

units (Fig. III.6 A).  We detected a similar percentage (36%, n=19) of oocytes containing greater 

than 12 DAPI-staining units when both REC-8 and PLK-1 were depleted (Fig. III.6 B).  These 

results demonstrate that the maintenance of sister chromatid cohesion in plk-1(RNAi) zygotes 

depends on the meiotic cohesin REC-8.  Next, we asked if plk-1 is required for the precocious 

removal of REC-8 and the precocious separation of sister chromatids during meiosis I. 

 

Figure III.6.  REC-8 is required for the 12-dyad phenotype observed in plk-1(RNAi).  
Projected images of DAPI-stained oocytes from rec-8(RNAi) and plk-1(RNAi); rec-8(RNAi) animals. 

7.  PLK-1 is required for the precocious separation of sister chromatids in gsp-1/2(RNAi) 

zygotes 

We showed previously that when two PP1 phosphatases, GSP-1/2, were depleted by RNAi, sister 

chromatids separated precociously at the onset of anaphase I, resulting in the formation of 24 

single chromatids (Fig. III.7, A-D; Kaitna et al., 2002).  This precocious separation of chromatids 

coincided with the ectopic localization of AIR-2 to the proximal arms of bivalents and a dramatic 

decrease in chromosomal REC-8.  Here we show the phenotypes observed in gsp-1(RNAi);gsp-

2(RNAi) zygotes are dependent on PLK-1 activity. 
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Figure III.7. matid separation and precocious 

REC-8 removal in EC-8 staining in gsp-1/2(RNAi) (A-D) 

and plk-1(RNAi); gsp-1/2(RN e left column, with the corresponding 

 

. 

 

;gsp-2(RNAi) zygotes, we always observed a 

persiste

  PLK-1 is required for precocious sister chro

gsp-1/2(RNAi) zygotes.  Projected images of R

Ai) zygotes (E-H).  DAPI staining is shown in th

REC-8 staining presented in the right column. 

The first observable change in plk-1(RNAi);gsp-1(RNAi);gsp-2(RNAi) zygotes was that

prophase I bivalents had detectable REC-8 staining similar to that observed in wildtype (Fig

III.7, E and F).  The most dramatic change in the zygotes was the failure of precocious sister

chromatid separation.  In plk-1(RNAi);gsp-1(RNAi)

nt 12-dyad phenotype (100%, n=28; Fig. III.7 G) that was indistinguishable from plk-

1(RNAi) zygotes.  Furthermore, REC-8 staining was detected on the dyads of plk-1(RNAi); gsp-

1(RNAi); gsp-2(RNAi) zygotes (100%, n=14; Fig. III.7 H).  It is important to note that in these 

triple RNAi zygotes, AIR-2 is detected ectopically on the proximal arms of bivalents (data not 

shown).  These results suggest (1) ectopic AIR-2 localization is not sufficient to trigger the 

precocious separation of sister chromatids, and (2) PLK-1 is required for the release of REC-8 
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from proximal arms and separation of sister chromatids in the absence of the GSP-1/2 

phosphatases. 

We have described several RNAi situations that cause defects in meiotic chromosomes 

segregation (Table III.1).  In air-2(RNAi), plk-1(RNAi), and gsp-1/2(RNAi), meiotic chromosome 

segregation completely failed and no polar bodies were produced.  The end result of meiosis in 

all thre

Table III.1.  Summary of Chromosome Segregation Defects. 

 Chromosome Status at End of Meiosis

e situations is the oocyte-derived pronucleus retained a 4C DNA content; however, the 

connectivity of the chromosomes was very different.  In air-2(RNAi) the chromosomes remained 

as six bivalents, in plk-1(RNAi) the chromosomes remained as twelve dyads, and in gsp-

1/2(RNAi) the chromosomes separated into 24 individual chromatids.  Combining either air-

2(RNAi) or plk-1(RNAi) with gsp-1/2(RNAi) resulted in the phenotype of either air-2(RNAi) or 

plk-1(RNAi) alone (Table III.1). 

Genotype   

wildtype     1C : 1N 

air-2(RNAi)     4C : 1N 

plk-1(RNAi)     4C : 2N 

gsp-1/2(RNAi)     4C : 4N 

air-2(RNAi); gsp-1/2(RNAi)   4C : 1N 

plk-1(RNAi); gsp-1/2(RNAi)   4C : 2N 

gsp-1(RNAi)     2C : 2N 
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8.  PLK-1 loca

The mis-regul e mis-localization of 

IR-2.  The phenotypes caused by PLK-1 depletion in both wildtype and gsp-1/2(RNAi) zygotes 

suggest that PLK-1 plays a role in regulating sister chromatid cohesion.  As with AIR-2, it is 

 

Figure III.8   Merged images of 

oocyte n own in green, 

and DAPI stai

 

e N-terminal, the region compromising the kinase domain, then kinase activity was detected.  This 

ree cohesins tested:  

REC-8, COH-1, and COH-2 (Fig. III.9). 

 

lization does not appear to be altered by gsp-1/2(RNAi) 

ation of REC-8 in gsp-1/2(RNAi) most likely is caused by th

A

possible that GSP-1/2 also regulate the localization or activation of PLK-1.  However, we found 

no evidence that gsp-1/2(RNAi) perturbs PLK-1 localization in oocytes (Fig. III.8).  Therefore, in 

contrast to AIR-2, PLK-1 localization is not effected by inhibition of the phosphatase GSP-1/2. 

.  gsp-1/2(RNAi) has no detectable effect on PLK-1 localization.
uclei from wildtype (top) and gsp-1/2(RNAi) animals (bottom).  PLK-1 antibody staining is sh

ning is indicated in red. 

9.  Truncated PLK-1 phosphorylates REC-8, COH-1, and COH-2 in vitro 

We tested whether PLK-1 can phosphorylate REC-8.  When a full-length PLK-1 was purified from E. 

coli, there was no detectable kinase activity.  However, if PLK-1 was truncated to the 333 amino acids at 

th

kinase domain constructs auto-phosphorylates and is capable of phosphorylating the th

 



 128

 

Figure III.9.  This kinase assay 

was performed with  2), GST–COH-1 

(lane 3), or GST–C n all lanes.  The top 

half shows phospho

We did not map the PLK-1 phosphorylation site(s) in REC-8.  However, based on a 

dc5/Polo substrate consensus sequence, potential sites can be predicted by sequence analysis.  

We predict that PLK-1 might phosphorylate REC-8 at the following five sites:  T194 (K-E-I-T-

M-H-S), T215 (M-H-S-T-F-V-E), T250 (E-I-T-L-G-E), S420 (E-D-P-S-F-A-I), and S626 (R-E-

highly phosphorylated, which is consistent with the published function of Polo kinases in 

REC-8 COH-1 COH-2

32PPLK-1

loading
PLK-1

substrate{
none

substrate{

REC-8 COH-1 COH-2

32PPLK-1

loading
PLK-1

substrate{
none

substrate{

  The kinase domain of PLK-1 phosphorylates REC-8 in vitro. 

 GST–PLK-1(N terminus fragment residues 1-333) using GST–REC-8 (lane

OH-2 (lane 4) as substrates.  GST–PLK-1 auto-phosphorylation is observed i

r-imaging, and the bottom half shows Ponceau staining. 

C

T-S-I-I-A).  Interestingly, one predicted PLK-1 phosphorylation site in REC-8 (S626) is adjacent 

to the AIR-2 phosphorylation site (T625). 

Although the PLK-1 truncation was capable of phosphorylating REC-8, the significance 

of this result is not clear.  The fact that all three substrates tested were phosphorylated might 

suggest non-specific kinase activity.  Perhaps removing the C-terminal half of PLK-1 could be 

the cause of this substrate specificity.  Among the tested substrates, COH-2/SCC-1 was the most 
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regulating mitotic chromosome cohesion via the direct phosphorylation of Scc1 (Alexandru et 

al., 2001; Losada et al., 2002; Sumara et al., 2002).  The phosphorylation of REC-8 is much 

weaker compared to COH-2/SCC-1; however, it is possible these results indicate that REC-8 is a 

direct target of PLK-1 in vivo. 

sister chromatid separation.  The second phase of chromosome 

cohesion release might require the Polo-like kinase PLK-1, although this is not clear. 

We showed PLK-1 is required for sister chromatid separation and REC-8 release during 

C.  Discussion:  Polo kinases and chromosome cohesion release during meosis 

Meiosis requires two rounds of chromosome cohesion release.  In meiosis I, the cohesion 

between distal sister chromatid arms is released to allow homolog separation.  This appears to 

involve the selective localization of the Aurora kinase AIR-2 to the distal arms and the 

differential phosphorylation of REC-8.  In meiosis II, the remaining proximal/centromeric 

cohesion is released to permit 

meiosis II.  Interestingly, PLK-1 appears dispensable for homolog disjunction and REC-8 release 

during meiosis I.  We propose PLK-1 promotes the release of meiotic chromosome cohesion via 

regulating the phosphorylation of only the proximal/centromeric REC-8, thereby facilitating the 

disjunction of sister chromatids specifically during meiosis II (Fig. III.10).  Conversely, PLK-1 

might be required for entering into meiosis II to attempt the second meiotic division.  

Unfortunately, the data do not unambiguously support or dissuade either possibility. 
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Figure III.10.  PLK-1 regulates the release of chromosome cohesion during meiosis II.  A 

diagram of how PLK-1 and AIR-2 regulate the chromosome segregation during meiosis.  Homolgous chromosomes 

are shown in red and blue.  The circles represent cohesin complexes, with black and grey circles corresponding to 

proximal and distal cohesion, respectively. 

1.  PLK-1 is required for the release of chromosome cohesion during meiosis II 

een sister chromatids throughout meiosis.  In addition, PLK-

 remaining, 

proximally located REC-8.  In rec-8(RNAi); plk-1(RNAi) embryos, sister chromatids are capable 

of separating, demonstrating the maintenance of sister chromatid cohesion in plk-1(RNAi) 

embryos depends on REC-8.  In plk-1(RNAi); gsp-1/2(RNAi) embryos, both the precocious 

separation of sister chromatids and the precocious loss of REC-8 staining of sister chromatids are 

suppressed.  All together, these results argue that PLK-1 is required for the removal of REC-8 to 

allow the separation of sister chromatids in either a normal meiosis II or an aberrant meiosis I. 

This work demonstrates a specific role for PLK-1 in release of chromosome cohesion during 

meiosis II.  Inhibition of PLK-1 by RNAi prevents sister chromatid separation and results in the 

maintenance of REC-8 staining betw

1 is found during metaphase II between sister chromatids, coinciding with the
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Because of four indirect results, we also have implicated AIR-2 in the release of 

chromosome cohesion during meiosis II (Fig. III.10).  First, AIR-2 localization is correlated with 

the position of cohesion release in meiosis II.  Second, in spo-11 embryos, which lack bivalent 

formation, AIR-2 is required for sister chromatid separation during meiosis II.  Third, ectopic 

localization of AIR-2 to the entire bivalent is correlated with precocious loss of cohesion 

between sister chromatids in meiosis I.  Fourth, AIR-2 is required for the precocious sister 

chromatid separation observed in gsp-1/2(RNAi) embryos. 

om plk-1; gsp-1/2(RNAi) suggest that 

GSP-1/2 regulates, at least, sister chromatid cohesion via PLK-1.  In the absence of PLK-1, sister 

chromatids do not precociously separate in gsp-1/2(RNAi).  It is not clear what relationship exists 

between the GSP-1/2 phosphatases and PLK-1.  GSP-1/2 inhibition does not affect PLK-1 

localization, which suggests neither the activation nor the localization of PLK-1 is downstream 

of GSP-1/2.  Interestingly, sequence gazing reveals putative Polo kinase binding site in both 

GSP-1 (T153) and GSP-2 (T152).  If there is a functional interaction, it might suggest an 

intimate relationship between PLK-1 and the GSP-1/2 phosphatases. 

Now we show in plk-1(RNAi); gsp-1/2(RNAi) embryos, the precocious removal of REC-8 

and the precocious separation of sister chromatids is suppressed, even though AIR-2 is localized 

ectopically.  These results suggest it is likely that both AIR-2 and PLK-1 function together to 

regulate the release of REC-8 during meiosis II.  Results fr

Unfortunately, the sequence conservation between C. elegans REC-8 and budding yeast 

Rec8 does not reveal any conserved separase cleavage sites.  Based on studies by Sullivan et al. 

(2004), a separase consensus site has been defined for both budding yeast and human forms of 
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separas

We have shown in vitro that AIR-2 can phosphorylate REC-8 but not the mitotic 

cohesions COH-1 and COH-2/SCC-1.  This does not explain why all Scc1 is degraded during 

meiosis I in budding yeast.  Based on our model, Scc1 should not be modified by Aurora kinase 

and the

2.  PLK-1 does not appear to regulate chromosome cohesion release in meiosis I 

K-1 function does not appear to be required for chromosome 

cohesion release during meiosis I.  We proposed that AIR-2 regulates the selective release of 

REC-8 during meiosis I.  Inhibition of AIR-2 prevents both homolog separation and REC-8 

Although plk-1 RNAi restores REC-8 staining in gsp-1/2(RNAi) embryos, it does not 

delay or inhibit the separation of homologs in meiosis I.  Also, PLK-1 localization is unaffected 

e.  Using this information, we attempted to predict the separase cleavage sites in C. 

elegans REC-8 (Appendix E). 

refore should not be targeted for degradation by separase.  However, the exact opposite 

result was observed in yeast experiments (Toth et al., 2000).  Perhaps when Scc1 is substituted 

for Rec8, the Polo kinase Cdc5 indiscriminately targets all the Scc1 to be degraded by separase 

during meiosis I, whereas normally Polo kinases do not target Rec8 for degradation during 

meiosis I.  This is consistent with our observations that PLK-1 is not required for homolog 

separation in C. elegans.  Another, alternative explanation is that different mechanisms operate 

in S. cerivisae and C. elegans. 

Surprisingly, we observed PL

removal during meiosis I.  However, inhibition of PLK-1 does not prevent homolog separation or 

the removal of REC-8 from the distal arms, despite a delay in nuclear envelope breakdown and 

development of drastic spindle organization defects. 
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by air-

Recent studies using S. cerivisae addressed similar questions, yet they produced results 

contradictory to those of this study.  Lee et al. (2003) demonstrated that cdc5 is required for 

homolo

We cannot explain why cdc5/Polo appears to be required for homolog separation in S. 

cerivisae, whereas plk-1 appears dispensable for homolog separation in C. elegans.  One possible 

explana

2(RNAi), showing that the loss of AIR-2 phenotypes probably are not indirectly results of 

the mis-regulation.  Similar results were reported by Speliotes et al. (2000).  Similarly, PLK-1 

localization is unaffected by gsp-1/2(RNAi), which results in the mis-regulation of both AIR-2 

and REC-8, resulting in the precocious separation of sister chromatids.  Finally, in oocytes PLK-

1 localizes to bivalent and univalents equally in contrast to the selective localization of AIR-2 to 

bivalents.  Taken together, we believe these results suggest that AIR-2, and not PLK-1, is 

required for regulating the selective release of chromosome cohesion during meiosis I in C. 

elegans (Fig. III.10). 

g segregation during meiosis I, possibly via Rec8 phosphorylation.  Clyne et al. (2003) 

demonstrated that cdc5 is required for proper recombination between homologs.  Both studies 

concluded that cdc5 is required for proper homolog segregation, but the reasons for this are not 

clear and might be due to recombination defects, kinetochore attachment defects, and/or 

chromosome cohesion defects. 

tion is inhibition of plk-1 by RNAi is incomplete and therefore reveals only hypomorphic 

phenotypes.  To address this possibility, we tried producing stronger RNAi phenotypes.  

Unfortunately, in this situation, plk-1(RNAi) oocytes failed to mature and arrested at diakinesis of 

prophase I, preventing the analysis of latter events.  We would offer the simple hypothesis that, 

in this instance, different mechanisms might operate in different species. 
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PLK-1 is dispensable for meiosis I cohesion regulation regardless of why the first meiotic 

division fails.  PLK-1 is required for the proper timing of the cell cycle and probably for 

kinetochore to attach to the spindle.  In plk-1(RNAi), the chromosomes appear to float randomly, 

without being directed by organized spindle forces.  In summary, both AIR-2 and PLK-1 might 

regulate the spindle and cytokinesis during both meiosis I and meiosis II.  AIR-2 appears to 

regulate chromosome cohesion during both meiosis I and meiosis II.  PLK-1 appears to regulate 

chromosome cohesion exclusively during meiosis II. 

Studies of meiotic spindle disruption suggest the existence of a meiosis II bypass checkpoint.  In 

re was no evidence 

that a second meiotic division was attempted.  However, the cell cycle preceded and the zygote 

entered into the mitotic cell cycle.  Similar results were obtained when PLK-1 was depleted by 

RNAi.  This is highly suggestive that the plk-1(RNAi) phenotype is predominantly a result of 

spindle disruption during the first meiotic division. 

d named MDF-1 and MDF-2 (Kitagawa and 

Rose, 1999).  MDF-1/2 have been studied by RNAi, which revealed various pleiotropic 

phenotypes; however, no meiotic arrest phenotypes were observed.  The reasons for this are not 

clear, but it is possible that germline developmental defects might have obscured analysis of later 

functions for MDF-1/2 during the meiotic divisions. 

3.  The possible existence of a meiosis II-bypass checkpoint in C. elegans 

zygotes where the first meiotic division is inhibited by tubulin depletion, the

Cell division checkpoints have not been studied well in C. elegans.  Homologues of the 

key spindle checkpoint protein Mad2 were cloned an
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Although there has not been any prior description of this type of meiotic checkpoint, 

these results are not surprising.  Analysis of a temperature-sensitive mutant of Cdc5/Polo in 

budding yeast yielded similar results (Schild and Byers, 1980).  In this conditional mutant, 

different temperature-shift regimes could be performed to produce different phenotypes.  In 

some cases, the cdc5 mutant underwent a single meiotic division and divided its chromosomes 

reductionally (Schild and Byers, 1980).  More recently, analysis of a Cdc5 deletion mutant 

revealed that a small percentage of cells undergo a single meiotic division, after a long cell-cycle 

delay (Clyne et al., 2003).  In both cases, only a single meiotic division was attempted, 

suggesting the existence of a bypass checkpoint that skips either the first or the second meiotic 

division. 

Meiosis is a specialized cell division.  Meiosis I is unique because it is a reductional division 

tion of the kinetochore, and the segregation 

of homologs.  Therefore, some mechanisms regulating the selective release of chromosome 

cohesion during meiosis I must be distinct from those used in mitosis.  However, meiosis II is an 

equational division – involving the release of centromeric cohesion, bi-orientation of the 

kinetochore, and the segregation of sister chromatids – that is directly analogous to mitosis.  

Therefore, mechanisms regulating meiosis II might be expected to be similar to mitotic 

mechanisms. 

elease sister chromatid cohesion during meiosis II, a process that might 

reflect a shared mechanism with mitosis.  This concept is supported by evidence that Aurora-B 

4.  The relationship between meiosis and mitosis 

involving the resolution of chiasmata, mono-orienta

We propose here that both the Aurora-B kinase AIR-2 and the Polo kinase PLK-1 

function together to r
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kinase 

There is a growing suspicion that meiosis might be the ancestral process that gave rise to 

mitosis (Khodjakov et al., 2000; Megraw and Kaufman, 2000; Krylov et al., 2003; Murray, 

2004).  Also, it has been suggested that the recent evolution of Cdks implies many functions of 

Cdks h

5.  Possible involvement of Aurora-B kinases in mitotic chromosomal cohesion release 

e removal of 

chromosome cohesion during mitosis (Alexandru et al., 2001; Losada et al., 2002; Sumara et al., 

2002; Gimenez-Abian et al., 2004).  Whether Aurora-B kinases also play a role in the release of 

and Polo-like kinase Plx1/Plk1 function synergistically in the release of sister chromatid 

cohesion during mitosis in Xenopus and human cells (Losada et al., 2002; Sumara et al., 2002; 

Gimenez-Abian et al., 2004).  These studies also suggest Cdk1 is not essential for cohesion 

removal, further supporting a role for these relatively novel cell cycle kinases in release of sister 

chromatid cohesion. 

ave been subsumed from other kinases that originally performed these roles, perhaps 

Aurora and Polo kinases (Murray, 2004).  The similarity in the functions of Polo kinases and 

Cdk1 is a prime example of apparently overlapping functions that might have diverged more 

recently.  Polo kinases might have performed the ancestral roles of Cdk1.  Now, Polo kinases 

might no longer be required for some of their ancestral functions, which instead are provided by 

Cdk1.  Therefore, some Polo and Aurora kinase functions might be current-day avatisms of their 

ancestral functions.  Similarly, some functions of Aurora or Polo kinases during meiosis might 

have been completely adopted by other factors, such as Cdk1, only during mitosis. 

It has been demonstrated clearly in various organisms that Polo kinases facilitate th

mitotic cohesion remains unclear.  However, all studies done on invertebrates to date suggest that 

Aurora-B does not perform an essential function in release of cohesion during mitosis.  But the 
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situation might be different in vertebrates, as suggested by studies using human cell lines 

(Gimenez-Abian et al., 2004). 

First, in S. cerivisae, it has been reported that mitotic chromosome cohesion is unaffected 

in ipl1 mutants (Biggins et al., 1999); instead the release of cohesion requires another kinase, 

Cdc5/Polo (Alexandru et al., 2001).  Second, despite the polyploidy and chromosome 

segrega

In vertebrates, the release of mitotic cohesion has been shown to involve two separate 

pathways:  APC-separase-dependent and APC-separase-independent (Sumara et al., 2000; 

Waizenegger et al., 2000).  Recent work using Xenopus extracts has shown a modest requirement 

for Aur

tion defects associated with the oocyte-derived nucleus, separation of sperm-derived 

chromosomes has been observed during mitosis in air-2(RNAi), bir-1(RNAi), and icp-1(RNAi) 

embryos (Oegema et al., 2001).  Finally, we showed in vitro that AIR-2 phosphorylates REC-8 

but not two other likely mitotic cohesions, COH-1 and COH-2/SCC-1, further suggesting that 

AIR-2 does not regulate cohesins during mitosis. 

ora-B kinase in chromosome cohesion release during the prophase pathway; however, the 

mechanisms behind this function are unknown (Losada et al., 2002; Sumara et al., 2002).  

Studies using human cell lines suggest Aurora B is absolutely required for the release of 

chromosome cohesions during prophase (Gimenez-Abian et al., 2004).  These studies suggest 

potential connections between Aurora-B kinases, histone H3 phosphorylation, and the proper 

regulation of chromosome cohesion during mitosis. 

 

 



     

CHAPTER FOUR:  Preliminary data implicating the Polo kinase 

PLK-1 in the regulation of cell polarity and asymmetric cell division 

A.  Introduction 

In C. elegans, embryonic development begins with a series of asymmetric cell divisions that 

occur immediately following the completion of oocyte meiosis.  Asymmetric cell division is a 

common mechanism utilized to generate different cell types during development and, later, by 

stem cells in adults.  In general, asymmetric cell division describes the creation of non-identical 

daughter cells from a single mother cell.  Prior to division, the mother cell performs two inter-

related actions:  (1) the asymmetric localization of various factors, and (2) the positioning of the 

mitotic spindle with respect to these factors.  The coordination of these two events is necessary 

for both the proper segregation of cell fate determinants and the correct propagation of polarity 

information to the daughter cells.  The result of these events is the creation of non-identical 

daughter cells. 

1.  The Par gene hierarchy regulates cell polarity 

A powerful model for the study of asymmetric cell division is the first cleavage of the C. elegans 

embryo.  Using the power of forward genetics in C. elegans, a complex hierarchy of polarity 

regulators composed of Par genes was described.  The Par hierarchy provides a substantial 

framework for understanding the establishment of cellular polarity prior to the first cell division 

of the C. elegans embryo (for review see Cowan and Hyman, 2004).  Later research 
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demonstrated that the Par genes are conserved throughout evolution and perform similar 

 

Fertilization results in the introduction of the sperm asters into the egg cytoplasm, and the site of 

es the position of the future posterior pole.  Initially, the PAR proteins are 

tes downstream polarity events, nor is it 

known what other factors lie downstream of the Pars to perform these actions.  Recently, five 

functions in other organisms (reviewed by Macara, 2004). 

In C. elegans, eggs are symmetric and cell polarization is initiated by fertilization. 

fertilization determin

localized symmetrically throughout the egg cortex.  In response to the sperm aster signal, the 

zygote quickly becomes polarized along the anterior-posterior axis.  Many of the PAR proteins 

redistribute into anterior and posterior cortical domains.  A complex composed of PAR-3, PAR-

6, and PKC-3 is localized to the anterior cortex, whereas both PAR-1 and PAR-2 are localized to 

a complementary cortical domain in the posterior.  The establishment of these two Par domains 

is mutually exclusive, because both anterior PARs and posterior PARs inhibit the localization of 

the other.  This opposition forms a strict boundary near the center of the cell where the anterior 

and posterior PAR domains meet.  Once these two cortical domains are established, the PARs 

function to regulate the asymmetric localization of both cell-fate determinants and the mitotic 

spindle. 

It is not known how the Par network execu

factors have been described which function downstream of the Par network to direct cell 

polarity.  These factors (1,2) are the Zn-finger containing proteins MEX-5 and MEX-6 (Schubert 

et al., 2000); (3,4) the heterotrimeric, G-protein regulators GPR-1 and GPR-2 (Colombo et al., 

2003; Gotta et al., 2003); and (5) the spindle regulator LET-99 (Tsou et al., 2002).  All of these 

factors exhibit three common characteristics:  (1) they are asymmetrically localized in response 
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to the Par hierarchy, (2) they do not regulate the initial polarization of the mother cell, and (3) 

they are required for at least a subset of downstream, PAR-regulated events. 

2.  Dow

MEX-5 and MEX-6 are two, closely related, Zn-finger containing proteins with unknown 

molecular function (Schubert et al., 2000).  The Par network regulates the asymmetric 

localization of MEX-5 and MEX-6 to the anterior cytoplasm of the embryo (Schubert et al., 

2000; Cuenca et al., 2003).  MEX-5 and MEX-6 subsequently are required for the asymmetric 

localization of both posterior cell fate determinants and the asymmetric positioning of the mitotic 

spindle (Schubert et al., 2000; Cuenca et al., 2003).  In fact, recent evidence suggests that mex-

5/6 can be classified as Par genes, based on the common phenotypes of symmetric cell division 

and a loss of cytoplasmic polarity (Cuenca et al., 2003; Cheeks et al., 2004). 

o et al., 2003).  This somatic blastomere specific mechanism requires the activity of an 

ubiquitin ligase complex named the ECS, which is composed of Elongin C, CUL-2, ZIF-1, and 

RBX-1.  There also is evidence that MEX-5/6 might regulate the polarization of the cytoplasm 

prior to division via a similar mechanism that promotes the degradation of posterior cytoplasmic 

factors by an anteriorly active degradation pathway (Cheeks et al., 2004). 

nstream effectors of the Par hierarchy 

After asymmetric division, MEX-5/6 also function to promote the degradation of the 

small abundance of germline determinants that are inherited by the somatic blastomeres 

(DeRenz

GPR-1/2 are two, closely related proteins that contain GoLoco domains that regulate 

heterotrimeric G proteins via receptor-independent GTPase activation (Afshar et al., 2004; 

Couwenbergs et al., 2004; Hess et al., 2004).  In the early embryo, heterotrimeric G proteins are 
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found uniformly at the cell cortex and at the centrosomes.  The Par hierarchy is required to 

asymmetrically localize GPR-1/2 to the posterior cortex, where they locally activate 

heterotrimeric G protein signaling (Colombo et al., 2003; Gotta et al., 2003; Afshar et al., 2004; 

Couwenbergs et al., 2004; Hess et al., 2004).  The inhibition of GPR-1/2 results in a symmetric 

LET-99, a DEP domain containing protein, is observed initially throughout the cell 

cortex.  The Par hierachry functions to enrich LET-99 localization to an equatorial region of the 

cortex that is posteriorly displaced (Tsou et al., 2002).  Like GPR-1/2, LET-99 is required for 

proper spindle placement but has no role in the localization of either the PARs or the cytoplasmic 

cell fate determinants (Rose and Kemphues, 1998; Tsou et al., 2002).  Based on the presence of 

the DEP domain, it has been suggested that LET-99 might regulate heterotrimeric G protein 

signalin

Although these relatively new regulators of polarity have been described, how the Par 

hierarchy regulates cell polarity is relatively unknown.  Recently, progress has been made into 

understanding how the par genes regulate the asymmetric forces acting on the spindle (Labbe et 

al., 2003; Severson and Bowerman, 2003).  However, how the cytoplasm is divided into anterior 

and posterior domains prior to cell division is a mystery.  Both PAR-1 and MEX-5/6 clearly play 

essential roles in this process; however, their molecular roles are not clear.  Recently it has been 

sugges

spindle position but does not affect the localization of any of the PAR proteins or the localization 

of any of the cytoplasmic cell fate determinants. 

g (Tsou et al., 2003). 

ted that MEX-5/6 and PAR-1 function via regulating protein stability of cell fate 

determinants, such as MEX-1, PIE-1, POS-1 and P granules, but the molecular mechanisms 

behind these processes are not known (Cheeks et al., 2004). 
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B.  Results 

We have discovered multiple lines of evidence suggesting the Polo-like kinase PLK-1 also 

functions as a mediator of the Par network during asymmetric cell division.  PLK-1 fulfills the 

three criteria required of a downstream effector of the Par network:  (1) PLK-1 is asymmetrically 

localized in response to the Par hierarchy, (2) PLK-1 is not required for the initial polariazation 

of the PAR proteins, and PLK-1 is required for at least some of the downstream Par-regulated 

polarity

cells from prophase until anaphase; also, PLK-1 was localized to 

the chrom

entral spindle (Fig. IV.1 E).  All 

 events. 

1.  PLK-1 is polarized in the cytoplasm prior to asymmetric cell division 

A polyclonal antibody was created against a peptide corresponding to the N terminus of PLK-1 

(Chase et al., 2000).  This antibody was shown to be specific to PLK-1.  Then, using this 

antibody, the sub-cellular localization of PLK-1 was described.  PLK-1 was observed primarily 

at the centrosomes in mitotic 

osomes and kinetochore during prometaphase and metaphase (Chase et al., 2000). 

We performed a detailed analysis of PLK-1 antibody staining that resulted in additional 

observations.  During the meiotic divisions of the zygote, PLK-1 was observed at a low level in 

the cytoplasm (Fig. IV.1 A).  Then during the pronuclear migration stage, the cytoplasmic level 

of PLK-1 both increased and became enriched at the anterior pole (Fig. IV.1 B).  At the time of 

pronuclear fusion, PLK-1 was asymmetrically localized to the anterior cytoplasm and was 

present on the centrosomes (Fig. IV.1 C).  During prometaphase and metaphase, PLK-1 was 

localized to the kinetochore and the centrosomes (Fig. IV.1 D).  At anaphase, PLK-1 was 

observed on the centrosomes and, in telophase, on the c
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throughout this first division, PLK-1 was asymmetrically enriched in the anterior cytoplasm (Fig. 

IV.1 F).  To prove the described staining pattern was specific to a PLK-1 epitope, we analyzed 

ith different cell fates, the anterior daughter AB is a somatic blastomere and the 

posterior daughter P1 is a germline blastomere.  This division is asymmetric with respect to cell 

aining 32%.  

PLK-1 staining in plk-1(RNAi) embryos.  In this situation, all of the described staining was 

abolished, which is consistent with previous controls for antibody specificity (Chase et al., 

2000). 

The first mitotic division in C. elegans is asymmetric.  This division produces two 

daughter cells w

size as well.  AB is approximately 68% of the embryo whereas P2 comprises the rem

The asymmetry of the first division is characterized by the asymmetry of many markers and 

stereotyped behaviors.  Both the spindle and the cleavage furrow are positioned 56% of the total 

length of the cell displaced toward the posterior.  The spindle position is regulated by 

asymmetric forces, which act on the two centrosomes (Grill et al., 2003).  These forces are 

generated at the cell cortex and regulated by the PARs. 

The examination of PLK-1 staining in multicellular embryos also revealed an interesting 

expression pattern.  Again as noted previously, PLK-1 was localized to the centrosomes and 

chromosomes in mitotic cells.  However, PLK-1 was enriched in the cytoplasm of the somatic 

blastomere AB as compared to its germline sister P1 (Fig. IV.2, B and C).  This pattern was 

presumably a result of the enrichment of PLK-1 to the anterior cytoplasm in the one-cell stage; 

therefore, the anterior sister AB inherited more cytoplasmic PLK-1 than did P1 (Fig. IV.2, B and 

C).  Then P1 appeared to have generated more cytoplasmic PLK-1 de novo, which again was 

passed asymmetrically to its somatic daughter, EMS (Fig. IV.2, D-F).  When P2 was dividing a 
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gradient of cytoplasmic PLK-1 was observed, whereas the level of cytoplasmic PLK-1 clearly 

was symmetric in the somatic blastomeres AB, and later in its daughters ABa and ABp.  At the 

four-cell stage, sometimes EMS displayed slightly greater cytoplasmic PLK-1 staining than ABa 

or ABp (Fig IV.2 E).  This might be the result of the degradation of cytoplasmic PLK-1 in older 

somatic blastomeres. 

 

fig

appearance (B), pronuclei fusion (C), metaphase (D), anaphase (E), and telophase (F). 

 

Figure IV.1.  Antibody staining to PLK-1 reveals an asymmetric localization pattern.  This

ure displays merged images of PLK-1 antibody staining in green and DAPI staining in red.  All images are 

oriented with the anterior pole to the left.  The panels display the following stages:  meiosis I (A), pronuclei 
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gure 

displays ed with 

the an

se (H, I); 

the arrow m

into its somatic daughter cell.  One final observation of note was a cytoplasmic band of PLK-1 

staining at the one-cell stage during metaphase (Fig IV.2, H and I).  This band, which appeared 

to extend away from the chromosomes toward the cortex, might mark the location of the future 

cytokinetic furrow.  In fact, the slight posterior displacement of the chromosomes placed this 

cytoplasmic band in alignment with the cortical band of LET-99 staining. 

Figure IV.2.  Antibody staining to PLK-1 revealed a soma/germline asymmetry.  This fi

 merged images of PLK-1 antibody staining in green and DAPI staining in red.  All images are orient

terior pole to the left. pronuclei stage (A), new 2-cell stage (B), middle 2-cell stage (C), new 4-cell stage (D), 

middle 4-cell stage (E), middle 4-cell stage (F), approximately 28-cell stage (G), and 1-cell stage, metapha

arks the cytoplasmic band at the site of the future cleavage plane. 

The soma/germline asymmetry of PLK-1 localization appeared to continue during later 

embryonic divisions.  In multicellular embryos, PLK-1 localization was enriched in the dividing 

cells of the P lineage (Fig IV.2 G).  Presumably this PLK-1 will be segregrated preferentially 
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The expression pattern of PLK-1 in the cytoplasm resembles the pattern described for 

two other proteins, MEX-5 and MEX-6.  Antibody staining showed MEX-5 was preferentially 

inherited by somatic blastomeres during germline blastomere divisions (Schubert et al., 2000).  

Analysis of a GFP fusion transgenic strain verified the localization of MEX-5 and allowed 

analysis of its behavior in live embryos (Cuenca et al., 2003).  A partially redundant homologue 

of MEX-5, MEX-6, displayed an identical localization pattern when assayed in GFP fusion 

transgenic strain.  The localization of MEX-5 and MEX-6 assayed by GFP analysis showed their 

movements in realtime.  Initially, both MEX-5 and MEX-6 were distributed uniformly 

throughout the cytoplasm.  Then during pronuclear migration and fusion, MEX-5 and MEX-6 

ere quickly enriched to the anterior side of the one-cell embryo in a PAR-dependent fashion 

any polarized localization of GFP::PLK-1.  The reason for the discrepancy between the results of 

the GFP fusion analysis and the antibody study are not clear.  We did note that the GFP 

expression in the transgenic was very weak, although centrosomal localization was observed.  

Potentially, the intensity of the GFP might have prevented the detection of the cytoplasmic 

gradient at the one-cell stage.  Experiments are underway to generate additional GFP::PLK-1 

transgenics for future analyses.  We are using constructs of PLK-1 that lack enzymatic activity, 

which might cause toxicity upon high expression, in hope of obtaining a transgenic with more 

increased GFP::PLK-1 expression. 

 

w

(Cuenca et al., 2003). 

Recently, a transgenic line expressing a GFP fusion to PLK-1 was constructed (Leidel 

and Gonczy, 2003).  We examined GFP localization in this strain; however, we did not detect 
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2.  The

The localization of MEX-5 and MEX-6 to the anterior cytoplasm was dependent on the Par 

hierarchy.  Therefore, we tested whether the expression pattern of PLK-1 was dependent on the 

Par hierarchy as well.  We examined PLK-1 antibody staining in several Par mutants (Fig. IV.3).  

We discovered that PLK-1 asymmetry was dependent on all the par genes tested:  par-1 (n=38), 

par-2 (n=25), par-3 (n=41), par-4 (n=15), par-5 (n=22), and par-6 (n=7).  Although cytoplasmic 

PLK-1 asymmetry was abolished in all of these Par mutants, it is important to note that PLK-1 

remained localized to the centrosomes and chromosomes, as in wildtype (Fig. IV.3). 

API staining in red.  All images are oriented with the anterior pole to the 

left.  Selected embryos from the following mutants are shown par-1(zu310ts) (A-E), par-2(lw32) (F-J), par-3(it71) 

-O), and  either par-4(it57ts) or par-5(it55) (P-T).  Analysis of par-6(zu222) embryos yielded similar results to 

ar3(it71). 

 asymmetric localization of PLK-1 is dependent on the Par hierarchy and mex-5/6 

Figure IV.3.  PAR mutants display symmetric PLK-1 staining.  This figure displays merged images 

of PLK-1 antibody staining in green and D

(K

p
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Many of the Par mutant embryos produce equal-sized cells from the first division.  Also, 

because of polarity defects in many of the Par mutant embryos, the arrangement of the cells at 

the four-cell stage is abnormal.  In par-2 mutants, both of the cells at the two-cell stage divide 

synchronously and with transversely oriented spindles producing four equal-sized cells with a 

balanced arrangement (Fig. IV.3 J).  In both par-3 and par-6 mutants, both of the cells at the 

two-cell stage divide synchronously and with longitudinally oriented spindles, producing four 

equal-sized cells arranged in a single row (Fig. IV.3 O).  The embryos from the other Par 

mutants shown, par-1, par-4, and par-5, infrequently display division orientation defects similar 

to par-2 mutant embryos. 

These results suggest PLK-1 might function in the cytoplasm downstream of the PAR 

hierarchy.  An important issue is to determine the dependency of PLK-1 asymmetry on MEX-5 

and MEX-6.  In mex-5(RNAi); mex-6(pk440) embryos, PLK-1 localization was similar to its 

localization in the Par mutants:  the asymmetric localization of cytoplasmic PLK-1 was 

abolished (Fig. IV.4, D-F; n=18).  The loss of cytoplasmic PLK-1 asymmetry was dependent on 

both mex-5 and mex-6, because cytoplasmic PLK-1 staining in either mex-5(RNAi) (n=10) or 

mex-6(pk440) (n=21) embryos appeared similar to PLK-1 staining in wildtype embryos (Fig. 

IV.4, G-L). 
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Figure IV.4.  mex-5 and mex-6 are required redundantly for PLK-1 asymmetry.  This figure 

displays

the anterior pole to the left.  Selected embryos from the following genotypes are shown:  wildtype(A-C), mex-

t upstream of PIE-1, as was demonstrated for MEX-5/6 (Schubert et al., 2000). 

 merged images of PLK-1 antibody staining in green and DAPI staining in red.  All images are oriented with 

5(RNAi); mex-6(pk440) (D-F), mex-5(RNAi) (G-I), and mex-6(pk440) (J-L). 

The germline determinant, PIE-1, is localized to the posterior cytoplasm downstream of 

the Par hierachry and mex-5/6.  We analyzed PLK-1 staining in pie-1(zu154) and pie-1(RNAi) 

embryos to determine whether PLK-1 cytoplasmic asymmetry is dependent on this downstream 

polarity factor.  In pie-1 mutant embryos, the localization pattern for PLK-1 was very similar to 

wildtype (Fig. IV.5, A-D; n=49).  This result suggests that PLK-1 functions downstream of 

MEX-5/6 bu
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Figure IV.5.  PLK-1 asymmetry appears normal in pie-1 and G protein signaling mutants.  
his figure displays merged images, with PLK-1 antibody staining in green and DAPI staining in red.  All images 

are oriented with the anterior pole to the left.  Selected embryos from the following genotypes are shown:  pie-

1(RNAi) (A-D), goa-1(RNAi); gpa-16(RNAi) (E-F), let-99(or204ts) (G-H), and lin-5(ev571ts) (I-J). 

protein signaling is regulated 

downstream of the Par hierarchy and is required for some downstream polarity events.  The Gα  

(Srinivasan et al., 2003).  We did not detect any change in PLK-1 localization in lin-5 mutant 

embryos (Fig. IV.5, I-J; n=13).  LET-99 also might regulate G protein signaling during 

asymmetric cell division (Tsou et al., 2002).  Again, we did not detect any change in PLK-1 

localization in let-99 mutant embryos (Fig. IV.5, G-H; n=12).  These results demonstrate that 

PLK-1 asymmetry, like MEX-5 asymmetry, is established independently of G protein signaling. 

T

We also examined whether compromising heterotrimeric G protein signaling results in 

any perturbation in PLK-1 localization.  Heterotrimeric G 

i/o

subunits GOA-1 and GPA-16 are redundantly required for asymmetric cell division.  We did not 

detect any change in PLK-1 localization in goa-1(RNAi); gpa-16(RNAi) embryos (Fig. IV.5, E-F; 

n=15).  LIN-5 physically interacts with GOA-1, GPA-16, and GPR-1/2.  LIN-5 mutants exhibit 

symmetric spindle placement (Lorson et al., 2000; Srinivasan et al., 2003).  LIN-5 is predicted to 

regulate heterotrimeric G protein signaling perhaps via GPR-1/2 and GOA-1 and GPA-16 
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3.  Evidence that PLK-1 physically interacts with MEX-5 and MEX-6 

Based on the co-localization of PLK-1 and MEX-5/6, we tested whether these proteins 

physically interact.  Based on recent literature, we know the localization of Polo kinases can be 

regulated by the Polo box region’s interaction with highly specific, phospho-dependent, binding 

motifs (Elia et al., 2003a; Elia et al., 2003b).  Sequence analysis of MEX-5 and MEX-6 revealed 

a conserved, putative Polo kinase interaction motif.  We found the Polo box domain of PLK-1 

Structural analyses (Elia et al., 2003b) revealed that the two Polo boxes combine to form 

a larger functional domain termed the Polo box domain (PBD).  Crystal structure analysis of 

human Plk1’s PBD region bound to a peptide substrate uncovered how phosphorylated substrates 

interact with the PBD via numerous hydrogen bonds.  The interaction between the PBD and 

artificial peptides is high-affinity, sequence-specific, and absolutely phosphorylation-dependent.  

The implication of these studies is that the PBD directs Polo kinase binding to protein partners 

via priming phosphorylation of docking sites (Elia et al., 2003b) 

5T186D or MEX-6T190D in a yeast two-hybrid assay. 

physically interacts with both MEX-5 and MEX-6 in a yeast two-hybrid assay, if this motif is 

mutated so as to mimic phosphorylation of the putative PBD interaction motif. 

The consensus PBD interaction sequence was determined biochemically to be S-PT-P, 

with less stringent requirements for the surrounding sequences.  This conserved, PBD-interaction 

motif resembles the consensus sequence for phosphorylation by the Cdks and other proline-

directed kinases of the CMGC superfamily, such as MAPKs and GSKs (Elia et al., 2003b).  Our 

examination of MEX-5 and MEX-6 revealed a putative PBD interaction site containing the 

conserved S-T-P motif.  However, the full-length PLK-1 does not interact with either MEX-
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Studies of human Plk1 have shown that initially Plk1 is inactive, due to intramolecular 

inhibition of the kinase domain by the PBD.  In theory, the naïve PLK-1 is locked in a closed 

position by this intra-molecular inhibition.  This is likely to be the case with C. elegans PLK-1, 

because a recombinant, full-length PLK-1 purified from E. coli does not show any kinase activity 

in vitro (data not shown).  We hypothesized that the structure of full-length PLK-1 might prevent 

the PBD from interacting with its targets, such as MEX-5 and MEX-6.  Therefore, we truncated 

the yeast two-hybrid construct of PLK-1 so it contained only the PBD domain and surrounding 

sequences.  This construct (PLK-1PBD) was composed of the 330 C-terminal amino acids of 

PLK-1; this is roughly 50% of the protein sequence. 

versions of PLK-1PBD with 

compromised phospho-binding by mutating conserved residues in either the first or second polo 

box, PLK-1  PLK-1 .  Synonymous mutations in human Plk1 did not alter 

the overall protein structure (Elia et al., 2003b).  Neither PLK-1  or PLK-1

 interacted with MEX-5  or MEX-6  (Fig. IV.6). 

 

 

The PLK-1PBD fragment did not interact with either wildtype MEX-5 or MEX-6.  

However, the PLK-1PBD fragment did interact with MEX-5T186D and MEX-6T190D, suggesting 

specificity for the phosphorylation mimicking mutant constructs (Fig. IV.6).  This interaction can 

be disrupted if complementary mutations are constructed in the residues of the PBD required for 

phospho-peptide binding.  We constructed two different 

PBD polo box 1* PBDpolo box 2*

PBD polo box 1* PBDpolo box 

2* T186D T190D
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y interacts with MEX-5T186D and MEX-

6T190D.  Yeast two-hybrid analysis of protein interaction.  A plus denotes positive interaction, and a minus denotes 

no intera

was disrupted by mutations in polo box 1 W417F and V418A, or polo box 2 H542A and K544M. 

T186A This GFP fusion protein appeared to 

have wildtype localization, as compared to a wildtpye GFP::MEX-5 strain generated by Cuenca 

t al. (2003).  Previously, it was demonstrated that a wildtype MEX-5 GFP fusion was able to 

escue the mex-5/6 mutant using a similar transgenic strain (Schubert et al., 2000). 

 

 

 

Figure IV.6.  The PLK-1PBD construct physicall
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ction, as compared to appropriate controls.  Neither wildtype MEX-5 or MEX-6 interacted with any of the 

PLK-1 constructs tested.  The PLK-1PBD fragment did interact with MEX-5T186D and MEX-6T190D.  This interaction 

 

These results suggest that PLK-1 physically binds phosphorylated MEX-5 and MEX-6 in 

vivo in order to asymmetrically localize PLK-1.  In essence, our hypothesis is that PLK-1 ‘piggy 

backs’ on MEX-5/6 for its asymmetric localization.  Based on these results, we hypothesize that 

asymmetric localization of PLK-1 in vivo will depend on MEX-5T186 and MEX-6T190.  In 

order to test this idea, we constructed a transgenic worm strain expressing a MEX-5T186A 

mutant GFP fusion protein (Ppie-1::GFP::MEX-5 ).  

e

r
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We plan to test whether the T186 residue is required for this ability to rescue the mex-5/6 

phenotype.  Currently, the result is not known.  However, if T186 is essential, it implies that this 

residue is essential for MEX-5 function.  If the anterior enrichment of PLK-1 is abnormal in this 

ituation, it suggests the functional requirement of T186 is for targeting PLK-1 activity to the 

anterior cytoplasm. 

4.  PLK-1 asymmetry is predicted to depend on upstream kinases responsible for MEX-5/6 

hosphorylation 

ere are over 30 

kinases

s

p

Based on our yeast two-hybrid results and the published models for Plk1 localization (Elia et al., 

2003b), we hypothesize that PLK-1 might bind MEX-5 and MEX-6 in vivo only when they are 

phosphorylated by an unknown kinase (or kinases).  Kinases that phosphorylate PBD interaction 

S-T-P motifs are predicted to be from the CMGC super family.  In C. elegans, th

 in this group; however, we chose to examine only the candidates required for embryonic 

viability.  One likely candidate is NCC-1/Cdk1.  However, ncc-1(RNAi) caused no perturbation 

of the PLK-1 asymmetry at the one-cell stage, despite the presence of numerous other defects 

(Fig. IV.7 E; n=11).  Similarly, there was very little perturbation of PLK-1 localization caused by 

inhibition of two other candidates, mbk-2 and gsk-3 (Fig. IV.7; F and I; n=9 and n=10 

respectively).  However, temperature sensitive mpk-1(ga111ts) mutant embryos appeared to have 

lost PLK-1 asymmetry (Fig. IV.7, D and G; n=3). 
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Figure IV.7.  Analysis of PLK-1 asymmetry in several CMGC kinase mutants.  This figure 

displays merged images with PLK-1 antibody staining in green and DAPI staining in red.  All images are oriented 

1(ga111ts) (D, G), ncc-1(RNAi) (E), gsk-3(RNAi) (F), cul-2(RNAi) (H), and mbk-2(RNAi) (I). 

MPK-1 is a mitogen-activated kinase (MAPK) that has been characterized in C. elegans 

(Church et al., 1995; Ohmachi et al., 2002).  Although there is no evidence that MPK-1 is 

activated at the one-cell stage, it is known that MPK-1 is activated in the germline and oocytes, 

where it performs essential functions (Church et al., 1995; Ohmachi et al., 2002).  Perhaps one 

function of MPK-1 is to phosphorylate both MEX-5 and MEX-6 to regulate latter events during 

embryogenesis. 

with the anterior pole to the left.  Selected embryos from the following genotypes are shown:  wildtype (A-C), mpk-

CUL-2 functions in an ECS complex to degrade polarity factors after the intial 

polarization of the PAR domains (DeRenzo et al., 2003).  We observed a loss of PLK-1 

asymmetry cul-2(RNAi) embryos (Fig. IV.7 H; n=5).  The implications of this are not clear, 

however recently cul-2(RNAi) was shown to be required for proper AP polarity prior to the 
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establishment of PAR cortical polarity, at a time during meiosis II (Liu et al., 2004; Sonneville 

and Gonczy, 2004). 

5.  Inhibition of PLK-1 reveals minor polarity defects 

The polarization of the zygote is initiated by the sperm asters and requires Par proteins.  

Establishment of two mutually exclusive Par domains begins after meiosis II, during the first S-

phase.  Initially, PAR-6/PAR-3/PKC-3 complex is everywhere; then upon the appearance of the 

pronuclei, the cortical Par domains become polarized.  First, PAR-2 becomes enriched at the 

posterior cortex near the sperm asters.  Then the posterior PAR-2 domain expands towards the 

PAR domains can 

be obs

t (Fig. IV.8).  In wildtype embryos, the PAR-3/6/PKC-3 domain extended 

slightly past the m

n=44).  Also, 66% of plk-1(RNAi) embryos displayed a posterior PAR-2 domain that extended 

anterior as the PAR-6/PAR-3/PKC-3 domain retracts away from the posterior.  These two 

cortical PAR domains are mutually exclusive, such that as the posterior cortical domain expands 

the anterior cortical domain recedes.  Once established at metaphase the two 

erved oscillating slightly back and forth during a PAR polarity maintenance phase 

(Cuenca et al., 2003). 

We examined PAR localization in plk-1(RNAi) embryos.  Both the anterior and posterior 

cortical domains were localized with the proper polarity.  Although the establishment of the 

cortical Par domains appeared normal in plk-1(RNAi) embryos, the maintenance of these 

domains was no

idpoint of the embryo towards the posterior, on average about 56% of the 

embryo length (Fig. IV.8; n=10).  Also, the PAR-2 domain directly abutted the PAR-3/6/PKC-3 

domain.  In contrast, plk-1(RNAi) embryos exhibited a reduced PAR-3/6/PKC-3 domain that did 

not even reach to the midpoint of the cell, on average 44% of the embryo length (Fig. IV.8; 
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past the midpoint into the anterior cortex of the embryo (Fig. IV.8; n=44).  Unlike the situation 

in wildtype embryos, the boundary between the anterior PAR-3/6/PKC-3 domain and the 

posterior PAR-2 domain was indistinct in plk-1(RNAi) embryos (Fig. IV.8; n=16). 

We also examined air-2(RNAi) embryos as a control.  Although air-2 RNAi results in 

similar defects in both the meiotic and mitotic divisions as plk-1 RNAi, there are no obvious 

defects in cellular polarity in air-2(RNAi) embryos.  For example, PAR localization in air-

2(RNAi) embryos appeared similar to wildtype embryos (Fig. IV.8; n=21).  On average, the 

PAR-3/PKC-3 domain was positioned about 58% of the embryo length in air-2(RNAi) embryos 

(n=21).  Also, the anterior and posterior PAR domains were in direct contact at their borders 

(Fig. IV.8).  Only 10% of air-2(RNAi) embryos exhibited a PAR-2 domain that extended past the 

midpoint into the anterior cortex (n=21).  The proper localization of PAR domains in air-

2(RNAi) suggests that proper chromosome segregation and cytokinesis are not prerequisites for 

maintaining cellular polarity. 
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PAR-2 staining, which marks the posterior cort own in green, and DAPI staining is presented 

ior PAR domain in the plk-1(RNAi) embryo. 

PIE-1 is a germline determinant that is enriched in the posterior cytoplasm prior to the 

first division.  Subsequently, PIE-1 is preferentially inherited by the posterior P1 blastomere.  

EX-5/6 are known to be required for PIE-1 polarization to the posterior cytoplasm.  We 

elieved it was likely that PLK-1 would be required for PIE-1 polarization as well.  However, we 

discovered that plk-1(RNAi) had no overt effect on PIE-1 localization at the one-cell stage (Fig 

IV.9; n=17).  Although both chromosome segregation and cytokinesis were defective in plk-

(RNAi) embryos, PIE-1 localization was surprisingly similar to its localization in wildtype 

mbryos.  This result suggests that PLK-1, unlike MEX-5/6, is not required to polarize the 

ytoplasmic factors such as PIE-1.  Therefore, PLK-1 does not appear to function upstream of 

PIE-1. 

Figure IV.8.  PAR localization in plk-1(RNAi) and air-2(RNAi) embryos.  This figure shows 

merged images of fixed and stained embryos during the first mitotic division.  All embryos are oriented with the 

anterior pole to the right.  PKC-3 antibody staining, which marks the anterior cortical PAR domain, is shown in red. 

in blue.  A dashed line marks the position of the boundary between anterior and posterior Par domains.  An arrow 

indicates the expansion of the poster

ical PAR domain, is sh

M

b

1

e

c
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Figure IV.9.  PIE-1 polarization appears normal in plk-1(RNAi) embryos.  This figure shows 

merged images of fixed and stained embryos.  PIE-1 staining is shown in green and DAPI staining is shown in red.  

Although chromosome morphology and segregation are defective in plk-1(RNAi) embryos, the localization of PIE-1 

resembles that of wildtype embryos.  The PIE-1 staining on the centrosomes reveals a more symmetric spindle in 

plk-1(RNAi) embryo.  PIE-1 remains asymmetrically localized to the posterior pole in plk-1(RNAi) embryos, despite 

the failure in cytokinesis and chromosome segregation. 

Another important polarity regulator is MEX-5.  Because of our evidence that MEX-5 

and PLK-1 physically interact, we thought it was possible that PLK-1 is required for the proper 

polarization of MEX-5.  However, MEX-5 localization appeared normal in plk-1(RNAi) embryos 

(Fig. IV.10 B; n=4).  Similar to the behavior of PIE-1, the localization of the P granules was 

unaffected in plk-1(RNAi) embryos (Fig. IV.8 D; n=14) 

Another marker we examined was LET-99.  Normally, LET-99 is localized to the cortex 

in band corresponding to the future cleavage plane.  This LET-99 band is slightly displaced 

toward the posterior and aligns with the chromosomes at metaphase (Fig. IV.10 E).  We 

observed abnormal LET-99 localization in plk-1(RNAi) embryos (Fig. IV.10, F and H; n=10).  In 

most cases, LET-99 was localized to a central band, but the band was oriented at an oblique 
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angle to the equator of the cell (Fig. IV.10 F; n=7).  In rare cases, LET-99 was found localized 

ectopically throughout the anterior cortex (Fig. IV.10 H; n=3). 

 

Figure IV.10.  The localization of various polarity markers in plk-1(RNAi) embryos.  This 

the right column.  MEX-5 localization (A-B), P granule localization (C-D), and LET-99 localization (E-H) are 

e observed in plk-1(RNAi) embryos, we 

did observe spindle position defects during the first mitotic division.  In both wildtype embryos, 

the spin

figure shows merged images of fixed and stained embryos.  Antibody staining or GFP is shown in green, and DAPI 

staining is shown in red.  Wildtype embryos are shown in the left column, and plk-1(RNAi) embryos are shown in 

indicated. 
Although no defects in cytoplasmic polarity wer

dle was displaced slightly towards the posterior, which ensures the unequal size of the 

daughter cells (Fig. IV.11).  In plk-1(RNAi) embryos, the spindle remained centrally located (Fig. 

IV.11), which would result in equal-sized daughters, except for the fact that cytokinesis did not 

occur.  We analyzed many embryos to calculate the mean spindle position (Table IV.1).  The 
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deviation of the spindle position from the center of the cell was measured as a percentage of the 

length of the long axis of the cell.  Consistent with measurements reported in the literature, the 

spindle position in wildtype embryos was 56%, displaced to the posterior.  However, the spindle 

position was reduced to near 50% in plk-1(RNAi) embryos (Table IV.1).  This analysis was 

performed without a marker for the anterior-posterior axis in plk-1(RNAi) embryos.  We also 

analyzed air-2(RNAi) embryos, which revealed spindle positions very similar to wildtype 

embryos, despite chromosome segregation and cytokinesis defects (Table IV.1). 

 

Figure

flattened appearance.  In plk-1(RNAi) embryos, the spindle remains symmetrically positioned and both centrosomes 

 

 IV.11.  The spindle remains symmetric in plk-1(RNAi) embryos.  The figure shows 

merged images of fixed and stained embryos; tubulin is shown in green, and DAPI staining is shown in red.  Both 

images are oriented with the anterior pole to the left.  The dashed line indicates the cell boundary.  In wildtype 

embryos, the spindle is displaced slightly towards the posterior pole and the posterior centrosome has a characterstic 

display a morphology similar to the anterior centrosome in wildtype embryos. 
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Table IV.1.  Mean (SD) Spindle Position as Percentage of Diameter of Embryo Length 

Genotype % Embryo Length Sample Size 

Wildtype 56.5 ± 1.7 n = 35 

plk-1(RNAi) 51.3 ± 1.0 n = 42 

air-2(RNAi) 55.6 ± 1.6 n = 64 

 

Also, we observed in plk-1(RNAi) embryos that the posterior centrosome displayed a 

morphology similar to that of the anterior centrosome in wildtype embryos (Fig. IV.11).  This 

phenotype was obserbed in par-3, par-6, and pkc-3(RNAi) mutant embryos.  In these mutants, 

this phenotype was caused by a lack of posterior forces acting on the posterior centrosome.  This 

result suggests that plk-1(RNAi) might result in defects in the function of the anterior cortical 

PAR complex, which is composed of PAR-3/6/PKC-3 and also utilizes CDC-42. 

C.  Discussion:  PLK-1 regulates cell polarity downstream of the PAR genes 

larity regulators, MEX-5 and 

MEX-6. 

The early C. elegans embryo is a powerful tool for study of the process of cell polarity and 

asymmetric cell division (Cowan and Hyman 2004).  The polarization of PLK-1 to the anterior 

cytoplasm during asymmetric cell division is intriguing.  The localization of cytoplasmic PLK-1 

by antibody staining mirrors the localization of two known po
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We propose PLK-1 functions downstream of the PAR hierarchy to regulate cellular 

polarization prior to asymmetric cell division (Fig. IV.10).  The asymmetric localization of PLK-

1 is dependent on all par genes test ization of MEX-5/6.  Also, the 

initial polarizat  proteins app  plk-1(RNAi)   These results 

suggest PLK-1 functions downstream of the PAR network.  Finally, w

mis-localized in mex-5/6 mutants, suggesting PLK-1 also acts downstream of MEX-5/6 (Fig. 

IV.10). 

 

of the PARs th MEX-5/6 

 

ed and resembled the local

ion of the PAR ears normal in  embryos.

e showed that PLK-1 is 

Figure IV.12.  Model for the function of PLK-1 in asymmetric cell division.  A model for the 

position of PLK-1 in a complex hierarchy of cell polarity regulators.  PLK-1 cytoplasmic asymmetry is downstream 

to regulate downstream PAR events, such as spindle asymmetry and maintenance of PAR cortical polarities. 

 

 and MEX-5/6 but independent of PIE-1 and G protein signaling.  PLK-1 might interact wi
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We also show PLK-1 is required for the proper maintenance of the cortical localization of 

the PARs and the normal asymmetric positioning of the mitotic spindle.  This spindle position 

defect might result directly from the loss of PLK-1 or indirectly, via the failure of maintaining 

proper PAR localizations.  It is intriguing that PLK-1 asymmetry resembles MEX-5/6 

asymmetry and the loss-of-function phenotypes of PLK-1 somewhat resemble previously 

reported results for MEX-5/6 (Cuenca et al., 2003).  Also, we have detected direct molecular 

interactions between PLK-1 and MEX-5 or MEX-6 using a yeast two-hybrid assay.  This 

suggests that PLK-1 might function directly with phosphorylated MEX-5 and MEX-6 to regulate 

cell polarity and asymmetric cell division (Fig. IV.10). 

Although, the functional connection between PLK-1 and cell polarity is not clear, I will 

speculate on several possibilities:  (1) PLK-1 might function, along with MEX-5/6, in the 

maintenance of PAR localization to distinct cortical domains; (2) PLK-1 might be involved 

primarily in regulating microtubule and spindle dynamics during asymmetric cell division; (3) 

PLK-1 might function together with MEX-5/6 to target the degradation of germline factors, both 

prior to and after asymmetric cell division; and (4) PLK-1 might play as of yet unknown roles in 

somatic cells after asymmetric cell division. 

1.  PLK-1 and maintenance of PAR domains 

downstream of the Par hierarchy, MEX-5/6 appeared to regulate the maintenance of the 

localiza  the cortical PAR domains.  MEX-5/6 did not appear to regulate the establishment 

of the PAR domains, but instead regulated their maintenance latter during the cell cycle.  In the 

Previously it was shown that MEX-5/6 were required to maintain proper cortical PAR polarity 

during the first mitotic division (Cuenca et al., 2003).  Although MEX-5/6 localization is 

tion of
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majorit

In contrast to mex-5/6 embryos, plk-1(RNAi) embryos exhibited an opposite phenotype.  

In plk-1(RNAi) embryos the posterior PAR domain extended abnormal far into the anterior.  This 

observation suggests that PLK-1 and MEX-5/6 probably have an antagonistic relationship, with 

PLK-1 inhibiting MEX-5/6 function or vice versa.  The PAR localization phenotypes observed in 

plk-1(RNAi) embryos are similar to the phenotypes observed in par-1 mutant embryos. 

2.  PLK-1 and spindle placement 

s GPR-1/2, LET-99, LIN-5 and RIC-8/RGS-7 (Tsou 

et al., 2003; Gotta et al., 2003; Afshar et al., 2004; Hess et al., 2004). 

What role PLK-1 might play in spindle placement is unclear.  The most likely case is the 

defect in cortical PAR domain maintenance might result in the abnormal spindle placement 

observed in plk-1(RNAi) embryos.  An alternative explanation is that plk-1(RNAi) might disrupt 

the timeliness or coordination of the progression of the cell cycle.  As noted, plk-1(RNAi) 

y of mex-5/6 mutant embryos, the anterior PAR domain extended abnormally far towards 

the posterior.  The mechanism of this feedback regulation was unknown; however, par-1 mutants 

exhibited an opposite phenotype (Cuenca et al., 2003).  Perhaps PLK-1 is involved with either 

PAR-1 or MEX-5/6 in this mechanism. 

The defect in spindle position in plk-1(RNAi) embryos was highly penetrant.  This defect could 

be caused by a change in the forces acting upon the spindle.  Normally, the posterior centrosome 

is under stronger astral microtubule forces, which are pulling it towards the posterior pole.  This 

force asymmetry is dependent on the PAR hierarchy, on two Gα subunits GOA-1 and GPA-16, 

and on the heterotrimeric G protein regulator
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embryos display severe delays in the progression of the cell cycle.  Although not likely, it is 

possible that defects in the cell cycle might indirectly affect spindle polarity. 

There were two subsets of PLK-1 in the cell:  (1) PLK-1 that was localized symmetrically 

to the centrosomes, and (2) PLK-1 that was localized asymmetrically within the cytoplasm.  The 

regulat

mes that 

regulate spindle asymmetry.  Other factors involved in heterotrimeric G protein signaling, such 

as LIN-5 and heterotrimeric G protein subunits, have been observed localized to the centrosomes 

3.  PLK-1 and targeted protein degradation 

ion sequnece by the SCF 

complexed with βTrCP (Watanabe et al., 2004).  Another recent study showed Plk1 

phosphorylates another cell cycle regulator, Emi1, which in turn targets Emi1 for degradation 

(Hansen et al., 2004; Moshe et al., 2004).  Again, Emi1 is degraded by the SCF complexed with 

βTrCP.  The result of Emi1 degradation is the activation of the APC.  These studies support a 

role for Polo kinases in targeting their substrates for degradation via a conserved βTrCP 

mediated phosphor-degron motif, D-pS-G-φ-X-pS (Wu et al., 2003).  Perhaps, PLK-1 functions 

ion of spindle position could be under the control of either subset or both.  However, both 

PAR-1 and PAR-4 do not have penetrant spindle positioning defects; instead they have severe 

cytoplasmic polarity defects.  In both of these mutants, PLK-1 asymmetry was abolished 

suggesting that a loss of PLK-1 asymmetry does not strictly coorelate with a loss of spindle 

asymmetry.  This observation suggests that it is the subset of PLK-1 at the centroso

as well. 

Recently, it was shown that Plk1 regulates Cdk1 activation by directly targeting Wee1 for 

degradation by the SCF complex (Skp1, Cullin1 and F-box).  Plk1 phosphorylates Wee1 in a 

motif that is recognized as a phosphorylation dependent degradat
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in the early C. elegans embryo by by targeting factors for degradation via the SCF complex as 

well. 

Recently several cases have been shown where the PBD binding partner is also a 

substrate of Plk1, such as in Nir2, Nlp, Cdc25, and Wee1 (Litvak et al., 2004).  These studies 

raise the possibility that PLK-1 phosphorylates MEX-5 and MEX-6.  However sequence analysis 

does not reveal any obvious Polo kinase phosphorylation site or phospho-degron in either MEX-

5 or MEX-6.  Another possibility is that MEX-5/6 target PLK-1 to phosphorylate an as of yet 

unknown substrate in order to target it for degradation by the SCF complex.  Perhaps all the 

pleiotropic phenotypes associated with Polo kinases can be explained by a common molecular 

mechanism: the target degradation of various factors in coordination with the progression of the 

cell cycle. 

4.  Significance 

Polo kinases have been studied extensively in various organisms for their roles in cell division 

The implication of PLK-1 as a regulator of cellular polarity, asymmetric cell division, 

and cell fate in the early C. elegans embryo is intruiging.  Previously, air-1(RNAi) was shown to 

perturb cellular polarity.  However, this is probably an indirect result of centrosomal defects 

(Golden et al., 2000; Wallenfang and Seydoux, 2000; Shakes et al., 2003; Cowan and Hyman, 

and cancer formation.  The possibility of Polo kinases functioning during asymmetric cell 

division, as described here in C. elegans, is entirely novel.  It will be interesting to see if Polo 

kinases function in asymmetric cell division in other animals. 

2004).  Also, in Drosophila, Aurora-A was shown to be required for asymmetric cell division of 
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neuroblasts.  In this case, the effect is suggested to be independent of centrosomal/microtubule 

defects (Berdnik and Knoblich, 2002).  There is no evidence of Aurora-B kinases playing a role 

in asymmetric cell division or cell fates.  Here we report that the polo kinase PLK-1 might be 

involved in asymmetric cell division in C. elegans. 

 to obtain multicellular C. elegans embryos depleted for PLK-1, hoping to reveal new 

polarity or cell fate defects during embryogenesis.  In the future, it will be interesting to see what 

roles both Aurora and Polo kinase play during asymmetric cell division in animal development. 

 

Both Aurora and Polo kinases have been extensively studied for their roles in cell 

division.  To date, most of these studies have been performed in the context of single cells.  This 

is probably a result of their essential requirement for cellular life, which prevents analysis of 

multicellular stages.  Also in cases were mutants exist, such as Drosophila and C. elegans, it is 

difficult to analyze their roles, because homozygotes grow using maternal supplies which are 

depleted slowly and in different cells at different times.  We are attempting to use weaker RNAi 

phenotypes

 



     

APPENDIX A. 

Mutants that do not separate chromosomes during cell division. 
 

Mutant Phenotype Species 
APC subunits Chromosomes never separate in 

mitosis or meiosis 
Vertebrate C.e. S.c. (Holloway et al., 
1993; Irniger et al., 1995; Ciosk et al., 
1998; Furata et al., 2000; Golden et al., 
2000) 

Cdc20 Chromosomes never separate in 
mitosis or meiosis 

Vertebrate D.m. S.c. (Palmer et al., 1989; 
Dawson et al., 1995; Sigrist et al., 1995; 
Lorca et al., 1998) 

Securin Chromosomes never separate in 
mitosis or meiosis 

Vertebrate D.m. C.e. S.p. (Funabiki et al., 
1996; Stratmann and Lehner, 1996; Mei et 
al., 2001; Jallepalli et al., 2001; Kitagawa 
et al., 2002) 

Separase Chromosomes never separate in 
mitosis or meiosis 

Vertebrate C.e. S.p. S.c. (Funabiki et al., 
1996; Ciosk et al., 1998; Siomos et al., 
2001) 

Scc1 – non-
degradable 

Chromosomes never separate in 
mitosis 

Vertebrate S.p. S.c. (Uhlmann et al., 1999; 
Hauf et al., 2001; Toyoda et al., 2002) 

Rec8 – non-
degradable 

Chromosomes never separate in 
meiosis I or II 

S.c. (Buonomo et al., 2000) 

Securin– non- Chromosomes never separate in Vertebrate (Zou et al., 1999; Zur and 
degradable mitosis Brandeis, 2001; Hagting et al., 2002) 
Aurora B Chromosomes never separate in 

meiosis 
C.e. (Rogers et al., 2002) 

Plk1 Chromosomes never separate in 
mitosis 

Vertebrate (Sumara et al., 2002) 

Plk1 and Aurora 
B 

Chromosomes never separate in 
mitosis 

Vertebrate (Losada et al., 2002) 

Plk1 and Aurora 
B 

Chromosomes never separate in 
mitosis 

Vertebrate (Gimenez-Abian et al., 2004) 

 
* C.e. is Caenorhabditis elegans, D.m. is Drosophila melanogaster, S.c. is Saccharomyces 
cerivisae, and S.p. is Schizosaccharomyces pombe 
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APPENDIX B. 

Mu ng 
meiosis. 

tants that display precocious separation of sister chromatids duri

Mutant Phenotype Species 
Rec8 Precocious separation C.e. S.c. (Parisi et al., 1999; Klein et al

1999; Watanabe and Nurse, 1999; 
Pasierbek et al., 2001) 

., 

Spo12 Precocious separation ah et al., 2002) S.c. (Sh
Spo13 Precocious separation S.c. (Shonn et al., 2002; Lee et al., 2002) 
Slk19 Precocious on separati S.c. (Kamieniecki et al., 2000; Zeng and 

Saunders, 2000) 
Cdc14 Precocious separation S.c. (Sharon and Simchen, 1990a) 
Bub1 Precocious on separati S.p. S.c. (Bernard et al., 2001; Yamaguchi 

et al., 2003) 
Sgo1 

 
Precocious separation  (Tang et al., 1998; Moore et 

t Mei-S332
D.m. S.p. S.c.
al., 1998; Kitajima et al., 2004; Rabitsch e
al.,2004) 

GSP-1/2 Precocious separation gers et al., 2002) C.e. (Ro
 
* C.e. is Caenorhab ans, D.m. is Drosophila m

d S p. i
ditis eleg elanogaster, S c. is Saccharomyces 

cerivisae, an
 

s Schizosaccharomyces pombe 
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APPENDIX C. 

Known and putative Aurora-B kinase substrates. 
 

ets Sequence Situation Function Targ
Aurora B S5   QRNSLVN 

T260 RRKTVCG 
In vitro U  et al., 

2000; Kang et al., 2001; Cheeseman et al., 
2

nknown (Biggins et al., 1999; Yang

002) 
Histone S10  

S28  
o, in 

 
C ; 
SH3 

ARKSTGG In viv
ARKSAPS vitro

hromosome condensation (Hsu et al., 2000
ugiyama et al., 2002) 

CENP-A S7   RRRSRKP In vivo, in 
 

Cytokinesis (Zeitlin et al., 2001) 
vitro

INCENP S578R
S598KKRGSSAVW 
S894H

o, in 
vitro 

K
Bishop and Schumacher, 2002; Cheeseman 
e

LKESLAP In viv

KRTSSAV 

inase stimulation (Kang et al., 2001; 

t al., 2002; Honda et al., 2003) 
Survivin T117 AKETNNK  (Wheatley et al., 2004) 
REC-8 T625KRRETSII In vitro Cohesin removal from chromosome (Rogers 

et al., 2002) 
Dam1 S20  YRLSIGS 

S292 NRISLGS 

In vivo, in Phenocopies ipl1 mutant (Cheeseman et al., 
S257 RRKSILH 
S265 IRNSIAS 

vitro 2002; Li et al., 2002) 

Ask1 S200KRKISLL In vivo, in 
vitro 

Phenocopies ipl1 mutant (Cheeseman et al., 
2002; Li et al., 2002) 

Spc34 T199 RRKTIFV In vivo, in 
vitro 

Phenocopies ipl1 mutant (Cheeseman et al., 
2002; Janke et al., 2002) 

Ndc80 S100 SRLSINQ In vitro Unknown (Cheeseman et al., 2002) 
RacGAP S387 YRISGCD In vivo, in 

vitro 
Cytokinesis (Minoshima et al., 2003) 

GFAP T7  RRRITSAR 
S13  ARRSYVS 
S38  TRLSLAR 

In vivo, in 
vitro 

Cytokinesis (Kawajiri et al., 2003) 

Desmin S11  QRVSSYR 
T16  YRRTFGG 
S59  SRTSGGA 

In vivo, in 
vitro 

Cytokinesis (Kawajiri et al., 2003) 

Vimentin S72  RLRSSVP In vitro Unknown (Kawajiri et al., 2003) 
MCAK 
 

S92  KRRSVNS 
S106 GLRSRST 
S186 RRKSCIV 

In vivo, in 
vitro 

Unknown (Andrews et al., 2004; Lan et al., 
2004) 
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APPENDIX D. 

Known and putative Polo kinase substrates. 
 

Targets Sequence Situation Function 
Plk1/Polo S260 NEYSIPK 

RK 
ivo, i

S326 IDQSL
In v n vitro Catalytic activation (Wind et al., 

2002) 
Scc1      WDTSLEV 

EQ 
In vivo, in vitro Chromosome cohesion removal 

da et al., 2002) 
      DDNSV (Alexandru et al., 2001; Sumara et 

al., 2002; Losa
Cyclin B S133 METSG

S
CA 

S147 QAF DVI 
, i n/nuclear 

entry (Toyoshima-Morimoto et al., 
In vivo n vitro Cdk1/cyclin-B activatio

2001; Jackman et al., 2003;) 
Cdc25 D  vivo, i

 et al., 2002)
S198 MEFSLK In n vitro Cdk1/cyclin-B activation 

(Toyoshima-Morimoto
Cdc27/APC3 EL 

EI 
In vitro  (Golan et al., 2002;  T220 PQDTI

S427 INDSL
S435 LDSSIIS 

APC activation
Kraft et al., 2003) 
 

APC4 S770 LSESEAE  In vitro APC activation (Kraft et al., 2003) 
APC7 NN 

LL 
VR 

 vitro on (Kraft et al., 2003) S40  LTMSN
S33  RLLSS
S17  GLHSN

In APC activati

Tsg24/APC1 LDE 
T520 PSLTMSN 

VI 

  
003) 

  S47  LLGS

S608 GSLSP

In vitro APC activation (Golan et al., 2002;
Kraft et al., 2

Bfa1 T7   RPLTLNG 
EE 
PR 
EE 
IP 
GT 
FS 
SE 
KK 

 vivo, i tivity toward Tem1 
l., 2001)S17  PETSF

T24  LNTTL
T34  ETLTL
T46  STSTY
S53  PPSSV
T61  DTGTV
S431 RWVSV
S454 VGKSM

In n vitro Inhibits GAP ac
during mitotic exit (Hu et a

TCTP IG 
VI 

Microtubule stability (Yarm, 2002) S46  IDDSL
S64  GTEST

In vivo, in vitro 

Net1/Cfi1 S48  GDASLQY 
FN 
LP 
QA 

T197 TTTTIRS 
T302 IMSTMTP 

, i
S64  FTPSY
S242 GERSF
T16  VPPSL

In vivo n vitro Regulates Bfa1 and mitotic exit 
(Shou et al., 2002) 

M
 

yt1 S426 LDSSLSS 
S495 FEDTLDP 

In vivo, in vitro Cdk1/cyclin-B activation 
(Nakajima et al., 2003) 
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NudC S275 PENSKLS 
S326 MDFSKAK 

In vitro Dynein/dynactin complex involved 
in cytokinesis (Zhou et al., 2003) 

Emi1 S123 GSSSPVK 
S1
S149 GYSSFSL 
S934 VSSSFLT 

In vitro Phospho-dependent degradation 
004; Moshe et al., 

2004) 
45 YEDSGYS (Hansen et al., 2

We S53 In vivo, in vitro Phospho-dependent degradation e1A   GEDSAFG 
(Watanabe et al., 2004) 

Ninein and 
Ninein

rotei
-like 

n Nlp 
) 

p

S88 EDESSYLE  
T161  
S686  

In vivo, in vitro 
 

Microtubule anchoring at 
centrosome (Casenghi et al., 2003

Claspin S934 QDASPVA In vivo, in vitro Unknown (Yoo et al., 2004) 
 

 



     

APPENDIX E. 

ence features in C

Possible Separase REC-8: 

Protein sequ .e.REC-8. 

 sites in C. elegans 

C.e.REC-8 sites Likelihood of sites based on peptide studies 
based on core [D/E]-X-X-R (Sullivan et al., 2004) 

R9 Mayb (P2I) e 
R115 Not li 2kely* (P5Q and P Q) 
R135 Not li 2kely* (P5E and P D) 
R355 Maybe (P5D) 
R389 Excellent 
R561 Not likely (P5E and P2P) 
R623 Maybe 
R657 Excellent 
R678 Not likely (P5E and P2T) 
R689 Not likely (P6F, P5E, and P2E) 
R691 Not likely (P5E and P2T) 

“Not likely” denotes sites that are not likely to be Separase cleavage sites, based on the analysis 
by Sullivan et al., 2004.  In parentheses are listed the position and the residues that should not be 
in a Separase site.  “Maybe” denotes sites with low conservation with the consensus sequence 
determined by Sullivan et al. (2004).  “Excellent” refers to high conservation with the consensus 
sequence determined by Sullivan et al. (2004). 

Predicted phosphorylation sites in REC-8 by Scansite (MIT): 

C.e.REC-8 sites Kinase site 
S98 Potential AIR-2 site 
T194 Potential PLK-1 site 
S395 Potential AIR-2 site 
S522 Potential Casein kinase site 
T625 Confirmed AIR-2 site 

 
There are many other possible phosphorylation sites determined by sequence-gazing, as well. 
Potential PLK-1 sites:  S44, T194, T198, T233, T329, S420, T553, and S626. 
Potential AIR-2 sites:  S56, S98, S248, S395, and T625. 
 
Conservation with Rec8 in other species: 
ScRec8 has an Aurora kinase site at 455 (just next to verified Separase site 453) and perhaps at 224.  
HsRec8 has an Aurora kinase site at 432 (just next to putative Separase site) and perhaps at 66.  MmRec8 
has Aurora kinase site at 482 (which aligns with hsRec8432) just next to putative Separase site and 
perhaps at position 66 as well. 
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APPENDIX F. 

Potential Polo kina ed in cell polarity. 
 

 
Consens S/T]-P (
 

ched:  [L/E]-X-T-S-[S/T]-P-[G/L]-P 

y Proteins containing putative

MEX-5/6  LTSST
MEX-1  TSTSS
MEX-3  EMSSS
PAR-3  GGPST
PAR-3  LRVST
GPR-1/2  AIDSS
ZYG-11  SLSSS
PAL-1  ESSST
POD-1  several 

AEX-3  MLLSSPVP 

 
Polo kinase substrates: 
 
Pol oteins contai  target motifs 
 

R-1/2 
P-1 
L-3 

se binding partners and substrates involv

Polo binding motifs: 

us:       P-ϕ-X-S-P[ Elia et al., 2003b) 

Sear
 
Polarit  PBD binding 
 

PLP 
PVQ 
PFG 
PIA 
PKP 
PDP 
PVR 
PSP 

NSY-1   FSSSSPVP 
NSY-1  SQPSSPIV 
GLP-1  TTTSTPNR 
AEX-3  DRRSTPKD 
AEX-3  EYESTPVS 

 

arity pr n putative Polo kinase

GP
RN
PG
PAR-3 
ZYG-11 
OOC-3 
NOS-2 
DNC-1 
Actin 
Myosin 
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APPENDIX G. 

Materials and methods. 
: 

enetic markers used were:  LGI:  par-
(zu222); LGII: 71ts), mex-6(pk440), par-2(lw32), par-3(it71); LGIII:  mpk-

or204ts), par-5(it55), spo-11(ok79); and LGV:  
). 

K747 (par-2), KK571 (par-3), KK300 (par-4), 
 (let-99), SV124 (lin-5), JJ532 (pie-1), JJ1237 

mex-6) e

GFP Re
AZ212  

Alleles and strains
The N2 Bristol strain was used as the wildtype strain.  The g

  him-14(it44ts), lin-5(ev56
1(ga111ts), pie-1(zu154); LGIV:  him-8(e1489), let-99(

er-1(e1518), him-5(e1490), par-1(zu310ts), par-4(it57tsh

Strains used for PLK-1 staining:  KK822 (par-1), K
K299 (par-5), KK818 (par-6), SD939 (mpk-1), EU363K

( , and JJ1244 (mex-6; m x-5). 

porter Strains: 
Ppie-1::GFP::histone H2B 

WH204  Ppie-1::GFP::β-tubulin 
GZ336  Ppie-1::GFP::PLK-1 
JH227  Ppie-1::GFP::PIE-1 
JH1244  Ppie-1::GFP::PAR-6 
JH1447  Ppie-1::GFP::MEX-6 
JH1448  Ppie-1::GFP::MEX-5 
JH1473 pie-1::GFP::α-tubulin    ::GFP::PAR-2Ppie-1  and P
JH1572  Ppie-1::GFP::MBK-2 
SS747  Ppie-1::GFP::PGL-1 
TX277  nd Ppie-1::GFP::β-tubulin  Ppie-1::GFP::histone H2B a
TX492  Poma-1::GFP::OMA-1 
TX660-664 Pheatshock::PLK-1 
TX665- 1 PBD 671, 708-710 Ppie-1::GFP::PLK-
TX672-682 Ppie-1::GFP::MEX-5 mutant (T186A)  
TX698-706 Ppie-1::GFP::PLK-2 
TX707 Ppie-1::GFP::PLK-2 PBD 
 
Antibody staining: 
All anti ng was performed using freeze-cracking method as described previously (Lin et al., 
1998).  :200, 2% PFA, DMF), BIR-1 (1:100, 2% PFA, DMF), BUB-1 (1:200, methanol 20 min), 
GSP-2 % PFA, DMF), phospho-Ser10 histone H3 (1:25,000, 2% PFA, DMF), ICP-1 (1:1000, 
2% PFA LET-99 (1:50, 2% PFA, DMF), MEX-5 (no dilution, 2% PFA, DMF), PAR-1 (1:10, 2% 
PFA, DMF), PAR-2 (1:5, 2% PFA, DMF ), PAR-3 (1:20, 2% PFA, DMF), PIE-1 (1:10, 2% PFA, DMF), 
PGL-1 (  2% PFA, DMF), PKC-3 (1:100, 2% PFA, DMF), PLK-1 (1:2000, 2% PFA, DMF), and 
REC-8 (1:200, M9, MetOH, EtOH). 

RNA interference: 
Double stranded RNA were injected at concentrations of 1-3 mg/ml.  Injections were performed as 

escribe t al., 2000).  Feeding RNAi was performed as described (Fraser et al., 2000).  Plasmids 
below. 

body staini
AIR-2 (1
(1:100, 2
, DMF), 

1,10,000,

d
used for RNAi are listed 

d (Hsu e
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air-2 yk483g8; also feeding pRL983 
bir-1 yk100gf03; also feeding pRL1035 
coh-1 yk226d1 
coh-2 (scc-1) yk632f7 
gsp-1 yk393h9; also feeding pRL1036 
gsp-2 yk150g8; also feeding pRL1037 
icp-1 yk329a11; also feeding pRL1038 
plk-1 yk128g1; also feeding pRL930 
plk-2 yk840g05; also feeding pRL1427 
rec-8 pRL1062 
sep-1 yk429h5 
ncc-1 yk104h8 
pie-1 feeding pRL1141 from Seydoux Lab 
gpa-16 feeding from Wood Lab 
mbk-2 feed x Lab ing pJP1.03 from Seydou
cul-2 feed preos Lab ing pRL1184 from Ki
zif-1 feeding pRL1324 from Seydoux Lab 

 
RNAi of tba-1, tb e using dsRNA prepared from Ahringer’s feeding RNAi 

brary.  Also fee med using Ahringer’s RNAi plasmids for the following 
-1, par-1, par-2

mportant pl
ones: 
 – REC-8 

ne H
ne H

PLK-1 
PLK-1 m

4 – PLK-1 m
ain) 

ncation aa 340-648 (PBD) 

90A) 
utant (T177D) 

b-2, and mei-1 was don
plasmid li ding RNAi was perfor
genes:  air , par-3, goa-1, gsk-3, let-99, and mex-5. 

Other i asmids: 
Entry cl
pRL686
pRL1016– Histo
pRL799 – Histo

3 
3 N terminus aa 1-45 

pRL753 – 
3 – pRL108

RL108
utant (T194D/T198D) 
utant (N166A) p

pRL772 – PLK-1 truncation aa 1-335 (kinase dom
pRL1108 – PLK-1 tru
pRL1186 – PLK-1 truncation aa 340-648 (PBD) mutant (W417F/V418A) 
pRL1187 – PLK-1 truncation aa 340-648 (PBD) mutant (H542A/K544M) 
pRL1150 – MEX-5 mutant (T186D) 
pRL1185 – MEX-5 mutant (T186A) 
pRL866 – MEX-6 
pRL1207 – MEX-6 mutant (T190D) 
pRL1214 – MEX-6 mutant (T1
pRL1299 – MEX-6 m
pRL1390 – PLK-2 
pRL1391 – PLK-2 truncation aa 1-331 (kinase domain) 
pRL1392 – PLK-2 truncation aa 335-632 (PBD) 
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pRL1479 – OMA
pRL1480 – OMA
pRL1481 – MEX (T186E) 
pRL X  (T190E) 
 
GS ns and h
pRL586 – GST:
pRL554 – GST:
pRL552 – GST:
pRL1089 – GST:
pRL1090 – GST::PLK-1 m tant (T194D/T198D) constitutive active 
pRL1091 – GST::PLK-1 mutant (N166A) kinase dead 
pRL1206 – GST:
pRL GST: tant (N166A) 
pRL Phea
pRL1164 – Phea
 

ea -hybrid p pRL865) 
RL10

BD) bait 
BD) mutant (W417F/V418A) 
BD) mutant (H542A/K544M) 

 runcation (kinase domain) prey 

 
 mutant (T 190D) prey 

 

rey 
rey 

 utant (T186E) prey 
rey 

 f  
GFP::REC-8 (no transgenics recovered) 

mbardment attempted) 
ecovered) 

-1 mutant (T339E) 
-2 mutant (T327E) 
-5 mutant 

1482 – ME -6 mutant

T fusio eatshock constructs: 
:REC-8 
:COH-1 
:COH-2/SCC-1 
:PLK-1 

u

:PLK-1 truncation (kinase domain) 
e domain) mu1297 – 

 
:PLK-1 truncation (kinas

1163 – t shock78::PLK-1 
t shock83::PLK-1 

Y
p

st two lasmids:  (all based on pRL864 and 
78 – PLK-1 bait 

pRL1085 – PLK-1 prey 
pRL1094 – PLK-1 mutant (T194D/T198D) bait 
pRL1109 – PLK-1 truncation (PBD) prey 
pRL1110 – PLK-1 truncation (P
pRL868 – PLK-1 truncation (P
pRL869 – PLK-1 truncation (P
pRL1323 – PLK-1 t
pRL888 – MEX-5 prey 
pRL1151 – MEX-5 mutant (T186D) prey 
pRL1212 – MEX-6 
pRL1314 – MEX-6 mutant (T177D) prey 
pRL1319 – OMA-1 prey 
pRL1320 – OMA-2 prey 
pRL1399 – PLK-2 bait 
pRL1394 – PLK-2 truncation (PBD) bait 
pRL1398 – PLK-2 truncation (kinase domain) prey 
pRL1479 – OMA-1 mutant (T339E) p
pRL1480 – OMA-2 mutant (T327E) p
pRL1481 – MEX-5 m
pRL1482 – MEX-6 mutant (T190E) p
 
Ppie-1::GFP usions for bombardment
pRL711 – Ppie-1::
pRL765 – Ppie-1::GFP::REC-8 mutant (T625A) (no bo
pRL766 – Ppie-1::GFP::PLK-1 (no transgenics r
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ation (PBD) 
ation (PBD) mutant (W417F/V418A) (no bombardment 

tant (T186A) 
RL1403 – Ppie-1::GFP::PLK-2 

tion (PBD) 
 EX-5 (no bombardment attempted) 

pRL1216 – Ppie-1::GFP::PLK-1 trunc
pRL1315 – Ppie-1::GFP::PLK-1 trunc

attempted) 
pRL1400 – Ppie-1::GFP::MEX-5 mu
p
pRL1404 – Ppie-1::GFP::PLK-2 trunca
pRL1414 – Ppie-1::GFP::M
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