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The ultimate goal of our research is to develop a better understanding of how 

proteins evolve different structures and functions. A large scale protein clustering can 

provide a useful platform to identify such principles of protein evolution. Manual 

classification schemes accurately group homologous proteins, but they are slow and 

subjective. Automatic protein clustering methods are largely based on sequence 

information. Therefore, they often do not accurately reflect remote homologies that can 

be recognized by structural information. We hypothesized that combining evolutionary 

signals from protein sequence and 3D structure will improve automated protein 

classification. To test this hypothesis, we clustered proteins into evolutionary groups 
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using both sequence and structure by a fully automated method. We developed a stringent 

algorithm, self‐consistency grouping (SCG) method, which clusters proteins if all the 

proteins in the group are more similar to each other than to proteins outside the group. 

Comparison of SCG and other commonly used clustering methods to a widely accepted 

manual classification scheme, Structural Classification of Protein (SCOP), showed SCG 

groups to better reflect the reference classification. In depth analysis of SCG clusters 

highlights new non‐trivial evolutionary links between proteins. SCG clustering can be 

further developed as a reference for evolutionary classification of proteins.
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CHAPTER 1  

Introduction 

 

“Nothing in Biology Makes Sense Except in the Light of Evolution.”  

(Dobzhansky, 1964) 

 

1.1 Homology Inference  

As Dobzhansky wrote in his article, evolutionary theory made a profound impact 

on biological sciences. Besides all the great philosophical and theoretical innovations 

that were brought by evolutionary theory, almost all biologists make predictions and 

hypotheses based on homology arguments in their everyday practices. The inference of 

homology is, however, sometimes difficult because of the distant relationships (Kinch & 

Grishin, 2002). Or sometimes the homology inference is proved to be erroneous 

because of the complications in their evolutionary history such as multi-domain problem 

(Gilks et al, 2002). 

To infer homologous relationships, many homology search methods have been 

developed. The first milestone was the development of famous sequence similarity 

search method called basic local alignment search technique, BLAST (Altschul et al, 

1990). BLAST finds homologous proteins (hit’s) in the protein sequence database for a 

given protein (query) using pairwise sequence comparison. After BLAST, position specific 
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iteration BLAST (PSI-BLAST) was developed (Altschul et al, 1997). PSI-BLAST finds 

homologous sequences (hit’s) in the database for a protein (query) using not only the 

sequence information of hit and query proteins but also homologous proteins of query 

proteins. This position specific matrix used in PSI-BLAST was generally called profile. 

After PSI-BLAST, many researches were done how to effectively compare profiles, 

profile-profile alignment (Rychlewski et al, 2000; Sadreyev & Grishin, 2003; Sunyaev et 

al, 1999). COMPASS (Sadreyev & Grishin, 2003) and HHsearch (Soding et al, 2005) are 

the state-of-the-art methods among those profile-profile comparison methods.  After 

development of those profile-profile alignment programs, protein structural information 

as well as sequences or profiles were used to find remote homology such as HorA 

(Cheng et al, 2008). This HorA method extended the limit of homology detection since 

the structures are generally conserved longer than sequences. 

One of key features of HorA method is that it uses previously known 

homologous protein sets (called training set) to derive the principles. This kind of 

research, extracting information from training set, is referred as supervised learning. 

The name supervised learning came from the fact that the training set is consist of 

examples to supervise the “learning” process of extracting the rule.  

The classification of proteins developed in this study can be viewed as a 

methodology to detect remotely homologous proteins without pre-defined training set. 

Compared to the supervised learning procedure like HorA, the classification of protein 
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has intrinsic strength to find previously unknown information because the supervised 

learning procedure essentially mimics pre-defined examples.  

1.2 Protein Classification 

Classification is one of most fundamental logical activities of human being. Also, 

modern biology is essentially built on the famous classification of Linnaeus classification 

of species. Since classification is helpful in reducing the information and organize the 

relationships between objects, proteins naturally became subject of classification just 

like species were the subject of classification in 1700 to Linnaeus. A large body of work is 

already done in classification of proteins. Here, two orthogonal perspectives were 

chosen to briefly overview previous work in protein classification. One perspective is the 

major source of information for classification, i.e. sequence information or structural 

information. The other perspective is the main body of classifier, i.e. human experts 

(manual) or computers (automatic).  

There are quite many protein classification schemes utilizing sequence 

information or group of homologous sequences, such as Pfam (Sonnhammer et al, 1997), 

CDD (Marchler-Bauer et al, 2007), and COG (Tatusov et al, 1997). There are three major 

protein structure classification database; SCOP (Murzin et al, 1995), CATH (Orengo et al, 

1997) and Dali Domain Dictionary (Dietmann et al, 2001).  

Protein classifications can also be grouped into manual or automatic schemes. 

SCOP is one of most popular manual method and Dali Domain Dictionary is one of 

famous resources in automatic schemes. Although manual classification schemes like 
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SCOP or semi-manual classification, CATH uses both sequence and structural 

information, both classifications use sequence and structure in different hierarchical 

levels not in combination of the two at the same time. Here, the protein classification 

developed in this study uses combined information of sequence and structure for the 

first time.  
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CHAPTER 2  

Methods 

2.1 Dataset 

2.1.1 Selection of protein domains 

Since proteins are composed of semi-independent folding, functional, or 

evolutionary units in general, we used domains defined in SCOP version 1.71 (Murzin et 

al, 1995) as our unit of proteins. The non-redundant protein set was prepared. A 

representative was selected from a group of proteins (more specifically domains) with 

more than 40% sequence identity. This selection procedure essentially gives a 

representative domain set with the less than 40% sequence identity among the 

members of this representative set. This selection procedure was developed by ASTRAL 

compendium (Brenner et al, 2000). From the downloaded list of non-redundant protein 

domains, we selected proteins from all-alpha, all-beta, alpha+beta, and alpha/beta 

classes defined in SCOP database. The other classes in SCOP database are artificially 

categorized, so we excluded them from our dataset, i.e. small, membrane, and multi-

domain classes. The total number of domains in our final dataset is 7058. 

2.1.2 Preparation of protein domain structures and sequences 

Domain structures were prepared by ASTRAL compendium (Brenner et al, 2000). 

Domain sequences were prepared based on residues appeared in ATOM records in PDB 
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files. This procedure was developed to ensure simple 1:1 relationship between the 

residues in structure and sequence. 

2.2 Generation of alignments and scores 

5 different programs were used to align protein sequences or structures and the 

scores were reported. Each program uses its own scoring scheme to find the optimum 

alignment. In general, sequence alignment programs find real optimum since the search 

space is relatively small. In contrast, structural alignment programs do not guarantee to 

find the optimal alignment.  

2.2.1 Generation of sequence alignments and scores 

More exact and specific term for sequence alignment in this research is profile-

profile alignment. Sequence alignment in general means the alignment of two 

sequences based on the amino acid from the two sequences subject to the alignment. 

Profile-profile alignment is an alignment of two sequences using not only the two 

subject sequences but also their homologs found by database search. Since the 

conservation pattern in many homologous sequences helps greatly to find more 

remotely related proteins, profile-profile alignment methods were used. Here, the title 

is given as “sequence alignments and scores” to emphasize in meaning that the profile-

profile alignments use sequence information only and do not use structural information 

like the next section (2.2.2). 
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2.2.1.1 Compass  

The raw score from COMPASS (Sadreyev et al, 2007) was used as a sequence 

score. The profiles for COMPASS alignments were generated by the script (buildali.pl, 

kindly provided by Dr. Soding in his HHsearch (Soding et al, 2005) package version 1.5). 

The parameters for the alignment building script were default and database searching 

was done on NRE90 (NRE90: NR+ENV with sequence identity 90% representatives, NR: 

Non redundant database in National Center for Biological Information, ENV: sequences 

gathered from environmental sampling, i.e. deep sea water) and NRE70 (NR+ENV with 

sequence identity 70% representatives) as suggested by the author. Notably, buildali.pl 

script generated multiple sequence alignments (MSA) equivalent to the PSI-BLAST 8th 

iteration profile. Then the columns in MSA having gaps in the query sequence were 

removed. The MSA was converted to numerical profile by COMPASS program.  

2.2.1.2 HHsearch  

HHsearch (Soding et al, 2005) probability was parsed from HHM alignments. 

HHM files that are equivalent to the profile in COMPASS were generated by the script 

provided by Dr. Soding in the HHsearch package. MSA files were generated the exactly 

same way as in MSA for COMPASS profile. Then the MSA files were converted in HHM 

using hhmake program in HHsearch package. The parameters were all default. 
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2.2.2 Generation of structural alignments and scores 

2.2.2.1 DaliLite  

DaliLite (Holm & Sander, 1993) raw score was used as a structural similarity 

score. PDB files were downloaded from ASTRAL compendium (Brenner et al, 2000). 

Seleno-methionines in PDB file were changed into methionine. Other kinds of non-

standard amino acids were represented as X or Unknown. For multiple models in PDB 

files based on NMR, the first model was selected as a representative structure. In case 

of multiple alternative structural alignments, highest Z score alignments were selected 

as suggested by the author. 

2.2.2.2 FAST & TM-align 

PDB files were prepared similarly as in DaliLite program. One difference is that 

FAST (Zhu & Weng, 2005) cannot use non-standard amino acids in alignment process. All 

the non-standard amino acids where replace with Alanine for the sake of alignment 

generation, since the residue type does not affect the alignment process at all. FAST raw 

scores were parsed from the result. 

For TM-align, PDB files were prepared the exactly same way as in FAST program. 

TMalign (Zhang & Skolnick, 2005) raw scores were parsed from the alignment result.  

2.2.3 Scaling and normalization 

2.2.3.1 Scaling with simple random model 

S =
S12 − Srandom

Sself − Srandom
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S12: Score between two proteins (or domains) 1 and 2 

Sself : Average scores of two scores to proteins to themselves 

Sself =
S11 − S22

2
 

 Srandom  : Random score between two proteins 

Srandom   was defined in two different ways. 

Srandom 1 : The given alignment of proteins 1 and 2 was changed by reversing 

protein 1 in the aligned region. Then the score were calculated based on the modified 

alignment. This random score was good in keeping the composition (in sequence) or the 

connectivity (in structure) of amino acids in the alignment. 

Srandom 2 : The given alignment of proteins 1 and 2 was changed by shifting 

protein 1 fixed number of residues in the aligned region. The number of shift is decided 

by number of aligned residues in protein 1 divided by 11. The shift of aligned sequence 

of 1 will be repeated 10 times with scores calculated for each shift. The random score 

was calculated as the median of 10 scores from each shift. Since the problem in 

Srandom 1 is that it uses one random score, if the random score estimation can be easily 

biased. This Srandom 2 uses median value of many different shift random trials, it has less 

bias. 

2.2.3.2 Normalization with empirical score distribution 

Another way of normalization is using Z-score. In this study, we used slightly 

modified version of Z-score compared to other studies. 
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Z =
S12 − Mean12

Sigma12
 

S12: Score between proteins 1 and 2 

Mean12: mean of scores between protein1 against all proteins in the dataset 

and between protein2 against all proteins. “12” means that it is from both proteins 1 

and 2. 

Sigma12: Standard deviation of scores between protein1 against all proteins in 

the dataset and between protein2 against all proteins. 

This modification is based on the observation that the score distribution does 

not only depend on the query protein (protein1) but also depends on hit protein 

(protein2). 

2.3 Self consistency grouping 

2.3.1 Self consistency grouping  

Self consistency grouping (SCG) generates clusters when all the members of the 

cluster are best n (number of members in the cluster) hits. This procedure ensures that 

all the members of a cluster are closer to each other than the members outside of the 

group. SCG procedure ends when the next cluster is trivial cluster containing everything 

in representative set.  
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Figure 1 Overview of Self Consistency Grouping. Starting From selected representatives 
(step1) then similarities between all proteins are calculated (step2, e.g. for 5 selected proteins 
the similarity matrix will be 5x5). Next, the similarities are converted into ranking (step3) and 
the ranks are used to build clusters. In step3, all other proteins below the purple line are 
ordered according to the similarity to the proteins above purple line in each column. Then the 
ranking list is used to build clusters by grouping according to the consistency rule: all proteins 
within the group are closer than others outside the group are. Protein A and C are clustered 
first because they are consistently more closer to each other than others as shown in the 
ranking list; e.g. columns A and C the most closest proteins are itself and the second most 
similar proteins are C and A (red colored proteins in the ranking list). Similarity, B and D (blue 
colored proteins) are grouped. Notably, E formed cluster after A and C formed cluster because 
A and C have E as their 3

rd
 closest proteins in their ranking list (columns A and C). 
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2.3.1.1 Pseudo codes for SCG algorithm 

Problem:  

Find groups of proteins. For each group, the group should be the biggest 

(encompass as many as proteins as possible). All proteins in one group are more similar 

to the member of the same group than other proteins outside the group. Also, the 

biggest group cannot be a trivial solution of one big group containing every protein in 

the dataset. 

Inputs:  

1. Positive integer N for total number of proteins in the dataset 

2. Rank matrix N by N rank_mat for protein 1…N  

An element of rank_mat[n,m] is the rank of similarity score between 

protein n and m for query protein n.  

3. Sorted hit matrix N by N sorted_mat for proteins 1…N 

If an element of sorted_mat[n,m] = k then the mth similar protein to a query 

protein n is protein k. Here, all indices n, m, and k are between 1 and N.  

Outputs: 

An array of arrays represents clustering, clusters. clusters[i] is an array of indices 

of proteins in the cluster i. Cluster index, i is given by the order of cluster 

formation, so this cluster index i does not have any meaning except the 

uniqueness of cluster. 
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int clusters[][] SCG ( int N,  

const int rank_mat[][], 

const int sorted_mat[][] ) 

{ 

 terminal_nodes = initialize ( terminal_node for each proteins [1…N] ) 

 #check for grouping possibility for every terminal node (individual proteins) 

for cn = 2 … N : 

 for t in terminal_nodes : 

  check_for_consistency( t, cn, rank_mat, sorted_mat ) 

   

 #Convert terminal_note_list into cluster_arrays; 

 root_set = find all non-redundant root nodes from terminal_nodes 

 n=0 

 clusters = [] 

 for root in root_set : 

  clusters[n] = Root.get_terminals() 

  n++; 

}  

 

This function, check_for_consistency, checks if all the proteins of the top cn in the hit list 

of protein t. 
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Void check_for_consistency( Node t,  

int cn,  

rank_mat,  

sorted_mat ) 

{ 

 current_cluster_size = t.get_size() 

 new_terminals = sorted_mat[ t ][ current_cluster_size : cn ] #This selects all 

terminal nodes between current_cluster_size and cn. 

 root_set = roots from new_terminals and current root 

 for root1 in root_set : 

 for root2 in root_set and not root1: 

  if is_consistent( root1, root2, rank_mat ) then : 

continue to next loop 

  else : 

return  

combine_roots( root_set ) 

} 

 

This function checks for all terminal nodes under the two roots are ranks within given 

integer number cn. 

Boolean is_consistent( Node root1,  
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Node root2,  

int cn,  

int rank_mat[][] )  

{ 

 for terminal1 in root1.get_terminal_set() : 

  for terminal2 in root2.get_terminal_set() : 

   if Rank_mat[Terminal1][terminal2] <= cn : 

    continue 

   else : 

    Return false 

} 

 

The function combine_roots makes a new root node and all current root nodes make as 

child_node of a new root node. 

2.3.2 Iterative self consistency grouping 

iSCG is an extension of SCG method by building cluster of clusters. The 

similarities between clusters are defined by maximum score between members of two 

clusters determined in the previous iteration. iSCG procedure ends when the current 

iteration does not merge clusters from the previous iterations.  
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2.4 Comparing a clustering to a reference classification 

2.4.1 Reference clustering 

Reference clusters are used for monitoring quality of test clusters. Since SCOP 

database (Murzin et al, 1995) is one of the best resources and has most comprehensive 

definition for evolutionarily related proteins (SCOP hierarchy of superfamily), SCOP is 

suitable for serving as reference clustering. Sometimes SCOP families or folds can serve 

as reference. SCOP family relationship is much tighter than superfamily and SCOP fold is 

much looser than SCOP superfamily. 

2.4.2 Sensitivity 

Sensitivity (Sam et al, 2006) is a measure of the proportion of a test clustering 

covering a reference clustering. Sensitivity is also called as recall in some literatures or 

other fields. Since sensitivity is originally defined for binary classification problem, the 

test and reference clusters are reduced to binary relationships.  

Sensitivity =
 TP 

TP + FN
 

 Here,  

TP = number of pairs of objects in the same cluster for both test and reference 

clusters 

FN = number of pairs of objects in different clusters for test clustering but in the 

same reference cluster. 
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Again, the terms, TP and FN, came from the binary classification tradition. TP 

means True Positive and FN means False Negative. Here True and False mean whether 

the test result (here is a pair of objects) is right or wrong (or same/different) compared 

to reference. Positive or Negative mean that the pairs of objects are in the same cluster 

or not. 

2.4.3 Specificity 

Specificity (Sam et al, 2006) is a measure of the bad or wrong proportion in a 

test clustering compared to the reference clustering.  

Specificity = 
TP

TP+FP
 

Here, 

TP = number of pairs of objects in the same cluster for both test and reference 

clusters 

FP = number of pairs of objects in the same test cluster but not in the same 

reference cluster. 

Specificity has several variant formulas in different disciplines. The form used in 

this research is common among biomedical researchers and it is also known as positive 

predictive value in statistics. 

In statistics, specificity is defined as follows. 

Specificity = 
TP

TP+TN
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 TN: the number of links between proteins exists in different clusters in both test 

clustering and reference clustering. (FP is defined same way as before)  

Even though the definition of specificity in statistics is very attractive measure to 

compare clustering in general, it is not a good measure to compare clustering of 

proteins. This is simply because the protein clustering is generally very small or sparse. 

For sparse clustering, TN becomes too high, and specificity becomes indistinguishable 

between good and bad clustering. Compared to specificity in statistics, specificity in 

biomedical sciences (or PPV) similarly measures number of wrong links, but do not have 

the problem involving big TN, since PPV does not use TN value in the equation. 

Therefore, in this study PPV is used instead of specificity. This also fits the tradition in 

biomedical sciences. 

2.4.4 F-measure 

F-measure (Van Rijsbergen, 1979) is a single value representation that combines 

sensitivity and specificity. It is defined as Harmonic mean of sensitivity and specificity. 

F =  
2 ×  Sensitivity ×  Specificity

Sensitivity + Specificity
 

This F-measure means how similar is the test clustering to the reference 

clustering. If the test and reference is same F-measure will be 1 and 0 means they are 

mostly dissimilar. Note that original form of F-measure use the term precision (same as 

specificity) and recall (same as sensitivity) commonly used in machine learning field 

(Vens et al, 2008). 
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2.5 Inference of phylogenetic tree 

Sequence based phylogenetic trees for proteins in same clusters were inferred 

by the following steps. 

1. MSA generation: Promals3D (Pei et al, 2008) generated MSA by combining 

pairwise structural alignments from DaliLite (Holm & Sander, 1993). 

2. Distance inference: Protdist in Phylip package (Felsenstein, 1989) inferred 

distances between proteins 

3. Tree building: Weighbor (Bruno et al, 2000) built trees based on the 

distance matrix from step2. 

 

Structure based phylogenetic trees were inferred slightly modified steps. 

1. Distance inference: DaliLite Z-score were converted by simple  
Zself

Z
− 1 

transformation. 

2. Tree building: Weighbor built trees based on the distance matrix from step1. 

 

Trees based on the combined score were inferred by the same procedure as 

structure based trees but based on the combined score instead of DaliLite Z-score. 
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CHAPTER 3  

Development of Protein Classification 

3.1 Preliminaries 

3.1.1 Dataset 

Selecting proteins to be classified is the first step toward protein classification. 

Since it is our goal to provide comprehensive classification, to cover the whole protein 

universe, preferably all proteins found so far should be used. Practically this brute force 

approach is hard to achieve because of current computational limit of CPU time and 

memory. Moreover, if there are many redundant proteins in the dataset, they might 

hinder more accurate representation of protein fold space revealed by the classification 

process (Park et al, 2000). So, more reasonable choice is selecting non-redundant 

representatives to the dataset. 40% representatives, all proteins in the dataset share 

less than 40% sequence identity, were chosen because proteins generally shares 

structure and function above 40% sequence identity (Heger & Holm, 2003). 

Another consideration for the dataset is whether to use whole length proteins 

or domains. Domains were chosen as dataset. By definition, evolutionary classification 

needs the objects in the dataset to have one ancestor (Reeves et al, 2006). Domain is, in 

evolutionary context, defined as an evolutionary unit share its evolutionary history in a 

protein. This definition of domain suits well with our purpose of evolutionary 
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classification. However the domain definition, i.e. how to divide a whole length protein 

defined in one open reading frame (ORF) in genomes, is very difficult to define (Marsden 

et al, 2002). In fact the correct domain definition depends on the correct delineation of 

evolutionary history of the protein, which is the subject of this study. To avoid this 

circular problem, this study used SCOP domains (Andreeva et al, 2008). SCOP domain is 

currently one of most widely accepted evolutionary domain definition and it was 

determined by experts. 

Among SCOP40 representatives (SCOP domains shares less than 40% sequence 

identities in between), proteins do not belong regular globular protein classes, (all alpha, 

all beta, alpha+beta, and alpha/beta classes in SCOP) were excluded from the dataset. 

Those excluded proteins are mostly, membrane proteins, very small proteins, artificially 

generated proteins. The total number of proteins in SCOP40 ver. 1.71 without non 

regular globular proteins is 7085 proteins. 

 

3.1.2 Scoring schemes 

It is well established that sequence and structural changes are correlated (Anna 

R. Panchenko, 2005), but there is also difference between sequence and structures. 

Especially for higher sequence identity (more than 40%), structures are largely same. 

Also the sequence similarity drops quite rapidly compared to the structural scores. I.e. 

the structural signal lasts much longer than sequence signal. So the sequence similarity 
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and structural similarity can be complementary to each other to have better similarity 

measure. 

Three structural similarity scores and two sequence similarity scores were used 

to evaluate similarities between domains. Three structural similarity scores came from 

DaliLite (Holm & Sander, 1993), FAST (Zhu & Weng, 2005), and TMalign (Zhang & 

Skolnick, 2005). Two sequence similarity scores were calculated by COMPASS (Sadreyev 

et al, 2003) and HHsearch (Soding et al, 2005). Those programs are state-of-the-art 

similarity comparison programs in structure and sequence. We made similarity score 

matrix between all proteins in dataset for 5 different similarity scores.  

3.2 SCG clustering based on single measures 

SCG algorithm is a clustering algorithm which is based on the classical concept 

of clustering that all members in a cluster need to be more similar (or closer in distance) 

than any others outside the cluster (Everitt, 1974). The name, SCG (self consistency 

grouping), came from this strict consistency requirement that all members in a cluster 

should be consistently more similar than non-members. SCG algorithm is built on two 

assumptions; (i) there are natural groups in the dataset and (ii) the similarity measure 

gives relatively high similarity scores between members in the same natural groups 

compared to similarity score between members in different natural groups. If there is an 

ideal similarity measure without error then SCG algorithm will correctly cluster most of 

natural groups, because this ideal similarity measure will give accurately high similarity 

scores between the members of the same natural groups. And the ideal similarity 
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measure will give low similarity scores for members in different natural groups. In 

contrast, if the similarity measure is not ideal and there is an erroneous value in the 

similarity matrix (i.e. high similarity score between non-natural groups) then the strict 

consistency requirement will remove the member with the erroneous similarity score 

from the cluster determined by SCG. Also, the consistency requirement will prevent to 

form a bad cluster based on erroneous scores, because it is very hard to have 

consistently high similarity scores between non-related object by random error. In 

summary, SCG is a clustering algorithm that is highly specific and will not form many bad 

clusters because of its strict consistency requirement. However, it will also be sensitive 

to errors. Errors in similarity measure likely make the SCG clusters smaller. 

In the context of other clustering algorithms, SCG is a kind of agglomerative 

hierarchical clustering algorithm with certain differences compared to popular 

algorithms in this category such as single linkage clustering, average linkage clustering 

and complete linkage clustering. Among the popular methods, SCG is most close to 

complete linkage clustering. SCG can be seen as an algorithm that clusters similar cluster 

to complete linkage algorithm except that the cutoff is dynamically determined for each 

cluster. SCG method determines the stopping point of clustering where there is 

inconsistency that is not solved by increasing cluster size, hence SCG finds biggest 

consistent group of proteins in the ranks. In general, agglomerative hierarchical 

clustering methods require cutoff value to stop clustering. Without the cutoff value, 

those hierarchical methods cluster everything in the dataset.  



38 
 

 

SCG algorithm is also can be seen as a generalized algorithm of Clusters of 

Orthologous Groups (COG) database (Tatusov et al, 1997). In COG database, clusters of 

orthologs are defined by more than three proteins mutually most similar proteins 

between the genomes. COG and SCG are similar because both algorithms use 

information of mutually most similar proteins. SCG is, however, more general than COG 

algorithm because COG algorithm only use a mutually most similar pairs as a unit to 

define the cluster and SCG use most similar N (not pre-defined, bigger than 2 and 

smaller than the size of whole dataset) proteins. 

 

3.2.1 Cluster size analysis shows that SCG clusters are very small on average. 

Clusters were built by SCG based on similarity scores from 3 structural 

alignment methods and 2 profile comparison methods. (See details in section 2.2.) The 

raw similarity scores from each program were transformed into modified Z-scores. This 

modified Z-score are same as common Z-scores except that the distribution is 

combination of lump sum of two scoring distribution of two proteins in comparison. 

(See details in section 2.2.3.2.) Then, SCG algorithm built clusters.  
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Figure 2 Average cluster size of SCG clustering based on single scores. dali, fast, and tmalign are 
clusterings based on structural similarity scores from DaliLite, FAST, and TMalign programs 
respectively. compass and hhsearch are clusterings based on sequence similarity measured by 
profile comparison programs COMPASS and HHsearch, respectively. dali and compass shows 
relatively bigger cluster size and hhsearch shows smallest. 

 

Figure 2 shows that the clusters based on different similarity measures are all 

small. The average cluster sizes are about 2 and this is very small size. Average cluster 

size of SCOP (Murzin et al, 1995) families is about 3. So by the measuring cluster size 

only, generally SCG clusters are smaller than SCOP families. 

Figure 2 also shows that relatively smaller clusters for clusters based on TMalign 

(Zhang & Skolnick, 2005) and HHsearch (Soding et al, 2005) scores. First, TMalign is 

generally more erroneous in measuring structural similarity than DaliLite (Holm & 

Sander, 1993) or FAST (Zhu & Weng, 2005). There are possibly two reasons for that. One 

reason is the aligning algorithm of TMalign. The algorithm of TMalign is started from the 

three initial alignments and iteratively finds the optimal alignment. However, if the 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

dali fast tmalign compass hhsearh

A
ve

ra
ge

 C
lu

st
e

r 
Si

ze



40 
 

 

initial guesses are too far from the optimal alignment, TMalign probably miss the global 

optimum and TMalign is probably trapped into a local optimum alignment. The other is 

because of the TMalign scoring function. The scoring function of TMalign is only positive. 

So if the alignment is longer than the score will be higher. This makes TMalign to have 

longer alignments than other structural alignment programs. Second, HHsearch has 

smaller cluster size than other methods possibly because of the normalization 

procedure. Since the most reliable score reported by HHsearch is its probability value 

(the probability of being homologs from the comparison of Hidden Markov Models), the 

probability was converted into Z-score. However, the average cluster size is reduced 

after the Z-score normalization compared to the raw HHsearch probability. This problem 

remains to be fixed. 

3.2.2 The cluster membership projected on SCOP database shows that 

cluster contains proteins related by family or subfamily groups.  

The contents of clusters, what kind of proteins are in each cluster, can be more 

accurately established by comparing pre-existing classification (Fowlkes & Mallows, 

1983). SCOP database provides very good framework for the comparison. Sensitivity and 

specificity is measured by comparing SCG clusters and SCOP family and superfamily 

clustering.  
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Figure 3 Comparison of SCG clustering to SCOP family. All clustering labels are same as Figure 2 
Sensitivity and specificity (or ppv) values are calculated as described in methods. Both 
sensitivity and specificity have ranges from 0 to 1. Higher sensitivity indicates a bigger 
proportion of domains in the same SCOP families are also clustered in the same SCG clusters. 
Higher specificity indicates a smaller proportion in SCG clusters are from different SCOP 
families. When both sensitivity and specificity are 1, SCG clustering is exactly same content as 
SCOP family classification; whereas both are 0, SCG clustering is totally different from SCOP 
family. 

 

Figure 3 shows the comparison result of SCG clusters based on each alignment 

methods to SCOP family classification. Notably, all the methods show less than 0.6 

sensitivities. This supports the same conclusion derived by average cluster size analysis 

done in previous section. In general SCG clusters are smaller than SCOP family clustering 

and the clusters generally contain sub-family groups. COMPASS based SCG clustering 

shows higher sensitivity and specificity compared to other methods. It is not surprising 

that COMPASS show better performance than other structural alignment program 

because sequence method is better to distinguish the differences between proteins in 

family or subfamily level classification (Russell et al, 1997). 

 

0

0.2

0.4

0.6

0.8

1

dali fast tmalign compass hhsearch

sensitivity
ppv



42 
 

 

 

Figure 4 Comparison of SCG clustering to SCOP superfamily. All labels are same as Figure 3. This 
figure shows notably smaller sensitivity compared to Figure 3, due to much bigger definition of 
SCOP superfamilies. 
 

 

Figure 4 shows SCG clusters based on different information compared to SCOP 

superfamily clustering. Since SCOP superfamilies contains more remote relationships 

than SCOP family (Figure 3), sensitivities are low and specificities are much high. Notably 

the relative performance of SCG clusters remain the same. Clustering based on 

COMPASS was most similar to SCOP superfamily, even though the difference is much 

smaller than that to SCOP family. 

Even though it is very necessary to check our clustering or classification to 

previously established knowledge, we should not biased toward only recapturing 

reference database or SCOP database in our case. It is very important that the 

classification should be justified by itself, not justified by comparison with SCOP 

database. 
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3.3 Unbiased combination of scores using SCG algorithm 

The sensitivity of SCG method to errors (mentioned in section 3.2), however, 

allowed us to combine different scores without referring (or biasing towards) any 

previous knowledge. SCG method can be a means to find a better or more accurate 

combined scoring scheme than single scores by finding optimum weights to maximize 

the average cluster size. The optimally combined score is probably more accurate than 

other single measures in reflecting groups exist in the dataset. It is also known that 

homologous proteins exist as groups (families or superfamilies). Therefore, the 

combined score is probably more accurate in reflecting homologous relationships 

between proteins. 

3.3.1 Average cluster size can be a quality measure for a scoring scheme in 

SCG clustering. 

As we discussed already, average cluster size correlated to the quality of 

similarity measure. This correlation is shown clearly in the following Figure 5.  
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Figure 5 F-measures between each clustering and SCOP family. Same clustering labels are used 
as previous figures. F-measure is a combined measure of sensitivity and specificity used in 
previous figures. This value ranges from 0, indicating big difference between SCG clusters and 
SCOP family, to 1, indicating exact similarity between SCG and SCOP family. According to F-
measure, SCG clustering based on profile comparison method COMPASS (labeled as compass) 
is most similar to SCOP family. 

 

Since F-measure is a harmonic mean of sensitivity and specificity (see section 

2.4.4), it summarizes the sensitivity and specificity into one easy interpretable value. 

Figure 5 shows that COMPASS is most similar to SCOP family and HHsearch is least 

similar. And structural measures are in between. This pattern of similarity (or quality) 

measured by SCOP family is well correlated to average cluster sizes shown in Figure 2.  

3.3.2 Combining sequence and structural information makes cluster size 

bigger. 

The combined score is a linear combination of previously mentioned 5 different 

scores from sequence and structural similarities. Scores from each program were 

converted by modified Z-score transformation. (See section 2.2.3.2.) The weights of the 
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linear combination of scores were determined by maximizing the average cluster size in 

clustering built by self consistency grouping (SCG) algorithm. To overcome technical 

difficulties in finding maximum average cluster size, we used genetic algorithm (Kikuchi 

et al, 2003). Genetic algorithm (GA) is a common stochastic method to find optimum 

value in multidimensional search space. GA is inspired by genetic inheritance in 

biological systems hence the name.  

 

Figure 6 Average cluster sizes of SCG clusters from different similarity measures. Labels dali, 
fast, tmalign, compass, and hhsearch are same as previous figures. 5_scores denotes average 
cluster size of SCG clustering based on the optimally combined similarity measure using 5 
different structural and sequence similarity scores (DaliLite, FAST, TMalign, COMPASS and 
HHsearch). All average cluster sizes are the same as used in Figure 2 except for the newly 
added 5_scores. 5_scores shows biggest average cluster size. 

 

Figure 6 shows the improvement of optimally combined similarity measure 

compared to single measures. [Is it possible to show statistical measure that it is 

improved?] This relative increment is about 10% from the biggest average cluster size 
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from single similarity measures. Notably, the average cluster size is still much smaller 

than that of SCOP superfamily (~5) which is reasonable estimation of average cluster 

size of homologous proteins. 

There are possible reasons for small increment. First, although the increment in 

terms of average cluster size is not big, the actual number of new evolutionary links 

defined by the combined score is not small. Second, the combination is linear. It is 

probable that the non-linear combination of scores helps to find better scoring function 

for evolutionary distance. Since it is not trivial to have natural form of non-linear 

combination, the non-linear combination of scores is one of the future directions of our 

research.  

3.3.3 Combining sequence and structural information do not make cluster 

quality worse. 

The quality of SCG clusters based on the combined score was measured by 

comparing to SCOP family and superfamily, since the average cluster size alone does not 

guarantee that the combined score is better similarity measure than the single 

measures. The comparison is done by measuring sensitivity and specificity as previous 

comparisons. 
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Figure 7 Comparison of SCG clusters from different similarity measures to SCOP family. All 
labels are same as Figure 6. All sensitivity and specificity values are from Figure 3 except the 
newly added 5_scores. Comparing to SCOP family, SCG clustering based on compass shows 
highest specificity. Notably sensitivity of 5_scores, the combined sequence and structural score, 
is relatively high. 

 

Figure 7 shows that the comparison of SCG clusters to SCOP family classification. 

This figure shows that SCG clustering based on the combined score is similar to 

COMPASS in sensitivity yet the specificity is lower than COMPASS. Since SCG clustering 

based on similarity measure from COMPASS is better than the SCG clustering based on 

the combined score, this apparently unexpected result needs to be explained.  
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Figure 8 Comparison of SCG clusters from different similarity measures to SCOP superfamily. 
All labels are same as Figure 7. Notably, 5_scores, SCG clustering based on the optimally 
combined sequence and structural scores, shows highest sensitivity and maintain relatively 
good specificity. All sensitivity and specificity values are from Figure 4 except for 5_scores. 
 

Figure 8 shows that the quality of the SCG clustering from combined score (label 

5_score in the figure) is better than that from HHsearch, unlike Figure 7. This is because 

that SCOP family relationship is heterogeneous and not monophyletic, i.e. many close 

homologous proteins are divided into SCOP families and the division is not well defined. 

Figure 7 and  

Figure 8 show the importance of reference clustering and the caveat of 

measuring clustering quality by comparing to reference. Since the quality measure 

totally depends on reference clustering, it is very important to have very well defined 

reference clustering. The good reference cluster is, however, often not available as in 

the case of this study. And the idea of comparing to reference or “gold standard” is 

somewhat crossing borderline of trustworthy research, since clustering procedure needs 
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to be “unsupervised” or independent from previous knowledge by definition. It is not 

rare to see such a mistake that the clustering procedure is geared toward mimicking 

reference clustering from published literatures. This conceptual contamination was 

always big concern to us and we tried to prevent this problem all the time.  

3.4 Improvement of SCG algorithm: Iterative SCG (iSCG) 

Since the average cluster size of SCG clusters is still small (~2.5) after the 

combination of scores (SCOP superfamily average cluster size is 5), the very strict 

requirement of SCG was needed to be loosened. The iteration method was chosen to 

loosen SCG. This iteration idea is simple. After the SCG clustering is built based on a 

given similarity matrix, the next round is building a clustering of clusters. Each cluster in 

the previous iteration is treated as an object. And the similarity matrix is updated by 

maximum score between two clusters or a protein to a cluster. Then SCG algorithm is 

applied to the new similarity matrix for clusters. This iteration procedure can be done 

until there is no change in the clustering or convergence point. This iteration procedure 

effectively reduces the strict consistency rule of SCG algorithm. It is because the 

previously inconsistent objects can be consistent after updating the similarity matrix. 

The previous round of SCG and updating new similarity matrix between clusters in effect 

remove data points and in turn this functions as reduction in strictness of the method.   

The iteration with updating by getting maximal scores between clusters is 

similar to single linkage clustering. (See detail in section 2.3.2.) This updating procedure 

can also be viewed as applying transitivity rule for the members in each cluster. If the 
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clusters contain homologs or evolutionarily related proteins then the transitivity rule is 

very natural rule to derive the relationships between clusters, because the evolutionary 

process is, in principle, transitive. 

The iterative SCG (iSCG) has attractive features in theory, but it has one major 

drawback. The procedure will introduce more and bigger errors than SCG. The loosening 

of strict requirement of consistency rule will inevitably bring many bad clusters. 

3.4.1 iSCG makes cluster size bigger. 

iSCG clusters were built based on the combined scores. As expected from the 

thought experiment, the average cluster size is increasing as the SCG clustering goes 

iterations.  

 

Figure 9 Average cluster sizes are shown for each iterations from iSCG clustering based 
on the optimally combined 5 sequence and structure scores. iSCG (or iterative SCG) builds 
clusters of clusters in each iteration until there is no new clusters can be formed. In each 
subsequent iterations, the ranking list is re-evaluated based on between clusters using 
maximum score between members against the other cluster. Thus, the first iteration result is 
just SCG clustering and subsequently the clusters are monotonically larger.  
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Since it is rather hard to determine natural point to stop the iteration, our first 

attempt was repeat iteration up to the point where there is not changes in clusters, i.e. 

repeat the iteration up to the convergence point. Figure 9 shows the trend of average 

cluster size. The iteration procedure did not converge up to 100 iterations shown in the 

figure.   

3.4.2 iSCG makes the coverage bigger but  severely reduces specificity. 

The quality of iSCG clusters can be monitored using SCOP superfamily as before. 

The sensitivity and specificity was also used to show the similarity of iSCG clusters to 

SCOP superfamily. Notably, iSCG gives a cluster at all iterations. So the sensitivity and 

specificity can be shown and continuous lines showing the trends of the two values 

according to the iteration. 

 

Figure 10 iSCG clusters compared to SCOP superfamily. Sensitivity and specificity (or 
ppv) was measured. Since iSCG gives a different clustering in each iterations, there are a 
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trajectories of sensitivity and specificities. Sensitivity increases with iteration because the 
larger clustering naturally includes more domains (or proteins) from the same SCOP 
superfamily. Specificity decreases because larger clustering naturally decreases the proportion 
of domains from the same SCOP superfamily. The sensitivity and specificity trajectories cross 
around 13

th
 iteration. 

 

Figure 10 shows that the quality of iSCG clusters compared to SCOP superfamily. 

The similarity was most similar around at 13th iteration. As expected from our thought 

experiments, the quality of clustering is decreasing after the 13th iteration. With this 

observation and other direct observation of bad clusters in iSCG clustering, iSCG was 

linking clusters based on trivial or random similarity scores (scores < 2) above 14 

iterations. So the iSCG algorithm need to use certain cutoff to avoid linking clusters 

based on random similarities. Using transitivity principle, iSCG method clusters more 

homologous proteins. However iteration also made iSCG more vulnerable to errors and 

iSCG have to use cutoff value to keep the quality of clusters good. 

 

3.5 Establishment of the cutoff value for iSCG 

A cutoff is a value to determine boundaries of clusters. A good cutoff value is 

important for clustering, since too loose cutoff will include non-homologous proteins 

into the same cluster and too strict cutoff will divide homologous proteins into different 

clusters.  

To find a good cutoff value, clusters were built at various cutoffs. Single linkage 

clustering method (de Hoon et al, 2004) was used because single linkage clustering is 
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relatively simple and straight forward method to see the changes of clustering according 

to the cutoff. Clusters were built based on the combined scores.  

3.5.1 Cluster size distribution 

Clusters were built by single linkage clustering method based on the combined 

score at various cutoffs ranging from 1 to 8. Then, the number of clusters bigger than 5, 

10, 15, 20 and 40 (Figure 11) is counted at each cutoff.  

 

Figure 11 Cluster size distribution measured by number of clusters above 5, 10, 15, 20, and 40. 
X axis is cutoff score and Y axis is number of clusters meets the condition of size. The points in 
difference series (different size conditions) corresponding to the same cutoff value (value in X 
axis) are from the same single linkage clustering determined by the cutoff score. 

 

Figure 11 shows that the number of clusters reaches maximum value between 

cutoff 4 and 6. At the low cutoff 1, the cutoff is too permissive. There are only few 

clusters and those clusters contain almost all dataset. So the number of clusters is very 
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small, i.e. the number of clusters above size 40 is 1. This cluster contains almost all 

proteins except few. As the cutoff value gets higher the number of clusters becomes 

higher because clusters are separated from few gigantic clusters. At the high cutoff 8, 

the cutoff is too strict. The clusters reduced very small in size, i.e. the number of clusters 

above cluster size above 40 is again reduced to 2. But those two clusters are not gigantic 

clusters but quite tight homologous groups of proteins. This trend is similar in other 

sizes measurements. In clusters of size bigger than 20, 15, and 10 shows similar trend as 

in size bigger than 40; the number of clusters increase starting from cutoff 1 and then 

reach maximum around cutoff score 4 ~ 6.  

According to the data shown in Figure 11, the reasonable cutoff is likely located 

between score 4 and 6. This relatively simple approach to find a reasonable cutoff is 

good because this approach does not require any pre-defined knowledge about the 

dataset or proteins. However, the cluster size might not represent meaningful 

relationships between cluster members, i.e. homologous relationships between proteins. 

The quality of clusters can be directly checked by comparing to known “gold standard” 

or reference clustering defined by homologous relationships. 

There is another trend to note from Figure 11. The numbers of clusters around 

cutoff score 8 increase as the threshold for cluster counting decreases from 40, 20, 15, 

10 and 5. This trend is due to the number of tight clusters of very similar proteins. The 

number of those very tight clusters increases because the cluster size threshold 

decreases. The number of small tight clusters so many the cluster size distribution 
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bigger than cluster size 5 does not show clear maximum point as other distributions 

show. 

3.5.2 Comparing to SCOP database 

We can measure the quality of clustering by comparing the clustering of interest 

to reference or “gold standard” clustering as already discussed in previous sections. This 

quality measures can also provide valuable information to determine right cutoff score 

for reasonable clustering since the sensitivity and specificity are also related to cutoff 

values.  

Clusters were built by single linkage clustering method based on the combined 

score at various cutoffs ranging from 1 to 8. Then, the sensitivity and specificity were 

measured at each cutoff (Figure 12).   
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Figure 12. Comparison of clusters from single linkage clustering method to SCOP superfamily 
clustering. Single linkage clustering algorithm is used to build clusters based on the optimally 
combined 5 sequence and structure scores. Sensitivity and specificity (or ppv) is shown for 
different cutoff values. The sensitivity and specificity changes are in general same as the 
increasing iteration number in Figure 10. The sensitivity and specificity values cross each other 
around cutoff 5. 

 

Figure 12 shows that the sensitivity is decreasing and specificity is increasing 

according to the cutoff value. As the size of clusters becomes smaller according to cutoff 

value, the general tendencies of two values are opposite. If a cluster is big (low cutoff 

value) and contains many proteins then it is easy to contain more correct links. But at 

the same time, it is also likely to have some wrong links within same cluster. In contrast 

if a cluster small (high cutoff value), sensitivity is small and specificity is high. So the 

sensitivity is generally decreasing and the specificity is generally increasing as the cutoff 

becomes higher. So the reasonable cutoff value can be the point where the two values, 

sensitivity and specificity are similar or balanced. And the balanced point, cutoff 5 where 

the sensitivity and specificity intersect, can be a reasonable cutoff value.  

SCOP superfamily relationship is chosen to be a reference clustering. This is 

because superfamily relationship is where the proteins in the same group are mostly 

homologous and yet the similarities are not trivially high. In contrast, family relationship 

is too similar and many of the homologies are intertwined between families, i.e. the 

families are not generally monophyletic. SCOP fold relationship does not imply 

homology, so it is not suitable to be a reference for homologous protein classification. 
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3.5.3 Internal score distribution 

Homogeneity within clusters and separation between clusters can be yet 

another way of monitoring cluster quality. However, traditionally developed methods 

were defined for distance matrices not similarity score matrices. So we used very simple 

statistics to approximately measure homogeneity and separation.  

The minimum score between same cluster members represents the 

homogeneity of the cluster. The higher the minimum value the more cohesive the 

cluster. The maximum value between different cluster members represents the 

separation between clusters. The higher the value is the smaller the gap between 

clusters. However, the minimum and maximum values do not represent internal change 

of the clustering very well by themselves. So a balanced value of homogeneity and 

separation was devised by taking ratio of the two values.  

C =
min

x,y
Sxy

max
i,j

Sij
 

Here, x and y are proteins within the same clusters. i and j are proteins belong 

to different clusters but i should belong to the same cluster which contains x and y. This 

ratio, C-value can be defined for a cluster bigger than size 1. There will be distribution of 

C-value for a clustering, since C-value is defined for a cluster. C-value above 1 means the 

minimum value is larger than the maximum value to other clusters and the cluster is 

relatively cohesive compared to the gap to the closest other cluster. 

The median of C-value distribution in clustering at each cutoff was used to track 

the change of clustering property. 
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Figure 13. Median of C-values for clustering at each cutoff value. Clusters were built as in 
Figure 11 and Figure 12. The median of C-values are calculated from non-singletons (clusters 
size >2) in each clustering at different cutoff value. Notably, median of C-values form a plate 
around cutoff score 5-7.  

 

The median C-value per clustering was above 1 and decreased from smallest 

cutoff to largest with 5-7 stable point. However, Figure 13 contradicts to the expected 

result. Since C-value is relative cohesiveness of clusters, the median value of cluster 

expected to increase as cutoff value increases. The higher cutoff is the stricter cutoff 

and the stricter cutoff makes should make smaller tighter clusters. Since the result from 

Figure 13 is based on every cluster in a cluster without singletons, different size 

threshold was tried (as in section 3.5.1) to dissect the behavior of median C-value per 

clustering. 
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Figure 14. Median of C-values for clustering at each cutoff value for clusters bigger than 5. The 
median of C-values are from clusters bigger than size 5 in each clustering at different cutoff 
value. 

 

Cluster size above 5 shows that the medians of C- values are relatively stable 

above cutoff larger than 6 and there were changes at cutoff value 5. One notable 

difference is that the change according to various cutoffs is inverse direction of previous 

figure, all clusters without singletons. Notably, this Figure 14 shows the expected trend. 

The difference between Figure 13 and Figure 14 are the small clusters between sizes 2-5.  
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Figure 15. Median of C-values for clustering at each cutoff value for clusters bigger than 20. The 
median of C-values are from clusters bigger than size 20 in each clustering at different cutoff 
value. 
 

The expected trend is more obvious in cluster size of bigger than 20. From 

median of C-values change at different cluster sizes, it is likely that the clusters from 

cutoff above 6 and below 4 might be quite different in their quality.  

The difference between Figure 13 and other two figures, Figure 14 and Figure 15, 

is very intriguing problem. Especially the trend in Figure 13 is hard to intuitively 

understand. The reason behind the unexpected trend in Figure 13 might be those 

clusters that are resistant to be clustered with gigantic clusters are super-tight and very 

far (larger distance to closest cluster, smaller in terms of score) from other clusters. 

Those “super-tight” clusters outnumber normally behaving clusters for lower score 
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cutoff, thus the median C-value is high at low cutoff. The median C-value for high cutoff 

is lower because the relative effect of “super-tight” clusters is smaller. There are more 

“normal” clusters separated because of higher cutoff (Figure 13). This might still affect 

for the clusters size above 5 in Figure 14. Since the two different groups (“super-tight” 

versus “normal”) might be more balance for clusters size above 5, Figure 14 probably 

shows small change in absolute value of median C-values according to the change in 

cutoff. 

Finally, based on the conclusions from the sections 3.5.1, 3.5.2, and 3.5.3 it is 

very likely that the clusters are different around the cutoff value of combined score 5. 

This cutoff value was also observed in our manual analysis of clusters during the course 

of experiments. It was observed that many wrong clusters were prevented to form at 

cutoff 5. 
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CHAPTER 4  

Analysis of Protein Classification 

After established all methods for protein classification, iSCG at cutoff 5 clustered 

~7000 proteins into ~1500 proteins. In this chapter, the classification result will be 

discussed.   

4.1 Global Analysis of Protein Classification 

4.1.1 Network like representation of classification 

The clustering result can be represented as network of above significant score 

cutoff 5. The representation was prepared using Cytoscape program (Shannon et al, 

2003). As shown in Figure 16, there are few big clusters and many singleton clusters 

(clusters having only one domain as a member) up to 10% of total dataset. This circular 

layout of network visualization also helps to identify well connected clusters and 

sparsely connected clusters. This layout forms nice round circle for a cluster when all 

members in the cluster are well connected with similarity scores above the threshold. 
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Figure 16 Classification result represented as network. The blue dot (node) represents a 
domain and magenta lines (edges) represent significant similarity above threshold, the 
combined score bigger than 5. Groups of inter connected domains (clusters) are ordered by 
their sizes, the number of nodes. 

 
 

Outliers (sparsely connected members in a cluster) are represented like bristles 

(or small antennas) out of the circle. A cluster on upper right corner of Figure 16 shows 

the case clearly. If the members of clusters are form distinct groups and the relationship 
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between groups are rare, then the circular layout makes distinct circles connected by 

few lines.  A cluster on the lower right corner of Figure 16 shows three distinct groups of 

domains connected by a line representing that there are three distinct groups of 

proteins in the cluster. 

 

 
 
Figure 17 Number of clusters for each iSCG cluster size.  This distribution of cluster size shows 
that there are very many clusters of small size in the classification and small numbers of big 
clusters. 

 

Briefly mentioned sizes of clusters can be shown more clearly with Figure 17 

and Figure 18. Both figure shows that the number of clusters decrease very sharply for 

increasing cluster size. The relationship between cluster size and number of clusters can 

be modeled by power-law distribution (Dokholyan, 2005). This power-law distribution is 

also called as scale-free network or “small world effect”. This power-law distribution of 

internet web site connectivity or actor network is very interesting property of social 
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networks, like hub node. The hub node is a node (corresponding a blue dot or domain in 

previous network figure) that has many connections. It has been proposed that the 

preferential attachment to the nodes that have many connections is the probable cause 

of power-law (Qian et al, 2001).  In contrast to this idea of preferential attachment of 

node, the cluster size distribution can be power-law from random connection 

(Dokholyan et al, 2002). This implies that the proteins evolve randomly and shaped 

current protein space. 

 
 
Figure 18 Number of clusters for each iSCG cluster size.  This figure is representing same data as 
in Figure 17. X and Y axes are changed into log scales to show the power-law in cluster size 
distribution.  

 

SCOP superfamily size also shows the same power-law distribution like our 

classification. However, all those analysis of general properties cannot tell much about 

the proteins. So we checked the top10 biggest clusters. 
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4.1.2 Superclusters 

We checked the top 10 biggest clusters and named them as superclusters. In 

general they are from well known superfolds defined by Orengo and coworkers at 1994 

(Orengo et al, 1994). More specifically, Orengo and coworker defined 9 superfolds, 

Globin, Beta-trefoil, Helical bundle, Immunoglobulin folds, Ferredoxin-like fold, Jelly roll, 

Rossmann-like fold, Beta-grasp, and TIM barrel (Figure 20).  

 

Figure 19 Superclusters: Top 10 biggest clusters. This is zoomed up view of 10 clusters biggest 
in size shown in previous figure.  From left to right and top row to bottom the numbers, 1-10 
are used to designate each cluster. 

 

Supercluster 
number 

Supercluster proteins 
Supercluster 

size 
Corresponding 

superfold 

1 Immunoglobulins 169 Immunoglobulin 

2 TIM barrel 128 TIM barrel 

3 OB fold 109 - 

4 P-loop hydrolases 90 Rossmann-fold 

5 beta-Grasp 89 Beta-Grasp 

6 Galatose binding domain-like 86 Jelly roll 

7 HTH 84 - 

8 Thioredoxin fold 77 - 

9 beta-propellers 76 - 



67 
 

 

10 alpha/beta hydrolases 69 Rossmann-fold 

 
Table 1. List of proteins in 10 biggest clusters. Bold faced proteins are overlapping proteins 
with Orengo’s superfold list. The superclusters are number by 1-10 by size. Supercluster 
proteins are the majority of proteins in each supercluster. Supercluster size is the number of 
proteins in each super cluster. Corresponding superfold column shows the matching superfold 
defined by Orengo et al. [ref] If there is no matching superfold for supercluster, then “–“ is in 
the column. 

 

 

 

Globin (1thb) Beta-Trefoil (1i1b) Helical bundle (256b) 

(1thb) 

Immunogobulin (2hre)  Ferredoxin fold (1aps)  Jelly roll (2stv)  
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Figure 20 Structures of superfold proteins selected by Orengo and the coworkers (Orengo et al, 
1994). All the structures are colored from blue to red. Blue end represents N-terminus end of 
proteins and red colored end represents C-terminal end of proteins. Each structure represents 
the superfold shown as labels. The structures are from the PDB codes shown in parentheses. 
The superfold names also appeared in supercluster are in bold face. 

 

 

 

TIM barrel (7tim)  Ubiquitin-like (1ubq)  Rossmann-like (4fxn)  

OB-fold (1t9h)  Winged HTH (1jhf)  

Thioredoxin (1fo5)  Beta-propeller (1tl2)  
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Figure 21 Representative structures of superclusters. Only structures did not appear in 
superfold list (Figure 20). Structures are shown in blue to red colors. N-terminal end of proteins 
are blue and C-terminal ends are red. 

 

When we compared superclusters and superfolds, 4 superclusters are not in 

superfold list; Supercluster 3, 7, 8 and 9 (Table 1, Figure 21). Since it was 1994 when 

Orengo and coworkers made the superfold list (Figure 20), it is plausible that the 4 

supercluster proteins were not recognized at that time. To test this idea, the deposition 

time of OB-fold proteins were plotted in Figure 22.  

 

 
 
Figure 22 Number of OB fold structures deposited into PDB at each year. 

 

As anticipated, many OB-fold proteins were solved after mid 1990s. It is out of 

range of this work, but it would be intriguing to follow the representations of folds in 

researchers’ minds by monitoring the trajectory of structure deposition and citation of 
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those structures in the literatures for each structural fold. This result would give us the 

bias of PDB and structural biology field. Also if we distinguish the scientific literatures 

from other biological training than structural biology, that would be interesting result of 

how structures are represented in general biological scientists’ mind other than 

structural biologists. 

Another interesting difference between superclusters and superfolds is that 

there are folds that were in the superfold list but not in the supercluster list, i.e. Globin, 

Beta-trefoil, Helical bundle, Ferredoxin-like fold. This highlights the conceptual 

difference between superfolds and superclusters. Superfolds were defined as common 

folds among non-homologous proteins. Superclusters are, by definition of our 

classification, supposedly to be clusters of homologous proteins. For example 

ferredoxin-like fold is very common fold in current PDB. Ferredoxin-like fold proteins are 

divided into ~30 clusters in iSCG classification.  Ferredoxin-like fold proteins are thought 

to be analogous not homologous. As shown in Figure 23, many ferredoxins share the 

core structure. They share two layers of alpha and beta structure and beta-alpha-beta-

beta-alpha-beta topology with 2-3-1-4 beta strand order (Figure 23). Exopepidase 

dimerization domains and RNA binding domains are, however, very different in the 

secondary structure length. This means that if the two proteins diverged from the same 

ancestor, they have insertions or deletions (indels) on every secondary structural 

elements. Since proteins with simple topology can more easily evolved de novo, 
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ferredoxin proteins are more likely evolved independently than diverged from the 

ancestral protein. 

 

 

 

Figure 23 Analogous ferredoxin fold proteins. Exopeptidase dimerization domain and RNA-
binding domains are shown in left and right respectively. In upper panel, two proteins are 
shown in structure figure. In lower panel, the two proteins are shown in linear line to show the 
corresponding regions. The two structures are shown from blue to red as in rainbow except 
purple colored region. Equivalent region of two proteins are shown in the same color. Regions 
in purple color represent insertions or deletions (indel). 

 

Another interesting example among superclusters is supercluster #4 P-loop 

hydrolases (Figure 19). This cluster has three distinct groups. Two bigger groups are 

linked through the small connecting group. It is generally very hard to argue homology 

when the similarity is very remote (like in the case of ferredoxin-like fold example). If 

two remote groups of proteins are connected though intermediate groups of proteins, 
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then it is much more likely that the two groups of marginally similar proteins evolved 

from the same ancestor. This phenomenon is called transitivity principle and this 

transitivity is essentially the only practical method to infer remote homology reliably. 

This transitivity is analogous to the famous example of archaeopteryx (Kundrat, 2004) 

that was thought to link dinosaurs and current birds. Without the fossil records of 

archaeopteryx and other intermediate form between dinosaurs and birds, it would be 

much harder to establish evolutionary relationship between birds and dinosaurs. All the 

members in supercluster 4 are P-loop hydrolases. More specifically the two separate 

groups (not directly connected) are nucleotide kinases and G proteins. They are 

connected through small intermediate group of nitrogenase-iron like proteins. Now 

most researchers in the field regard them as homologous proteins, but they were not 

considered as homologous in mid 80’s. Especially, Thomas Steitz suggested that the 

nucleotide kinases and G proteins are analogous proteins because the beta sheet 

topology of nucleotide kinases and G proteins are quite different (Figure 24). Both 

proteins contain family specific beta-hairpins at different places in beta-sheet and this 

difference is hard to be explained simple fold migration (Grishin, 2001). The 

intermediate group, nitrogenase iron like proteins, however can help to establish the 

evolutionary link very solidly. This middle group retain N-terminal half of protein very 

similar to nucleotide kinases. C-terminal halves of nitrogenases and G proteins are also 

very similar. This transitivity rule is in fact the workhorse of our iSCG methodology. 
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Without this transitivity rule, the homologous groups defined by our method would be 

much smaller than we have. 

 

Figure 24 Different beta-sheet topology in Nucleotide kinase and G protein. The parallel beta-
strands are colored in yellow. Red and blue are anti-parallel beta-strands. Each beta-strand is 
assigned numbers 1-6 from N-termini to C-termini in both structures.  
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Figure 25 Similarity between nucleotide kinase and nitrogenase. Yellow color represents 
similar region in the two proteins. Differences between the two proteins are shown in purple 
color.  

 

 

Figure 26 Similarity between nitrogenase and G protein. Yellow color represents similar region 
in the two proteins. Differences between the two proteins are shown in purple color.  
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4.2 Analysis of Difference between SCOP and iSCG Protein 

Classification 

We compared iSCG protein classification and SCOP superfamilies. Among ~1500 

clusters of iSCG clustering, we found 84 clusters contain different SCOP superfamilies.  

 

 
 
Figure 27 Manual checking result of 83 clusters that contain different SCOP superfamilies. 
Potential homologs are clusters that are very likely to be homologous proteins. Similar fold, 
homology unclear represents clusters that is possibly to be homologous but the authors cannot 
be convinced entirely the evolutionary relationships within the group. Partial similarity H 
unlikely is clusters that have low chance to be clusters of homologous proteins. No similarity is 
blatantly wrong clusters. 

 

We divided these 84 clusters different from SCOP superfamily into four 

categories according to the quality of clusters. Potential homolog is a category for 

clusters that is quite likely to have homologs in them. The criterion of homology here is 

structural/sequence/functional features that are observed in homologous proteins, or 
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previous published established results even though SCOP superfamily did not reflected 

them. Similar fold, homology unclear is a category for clusters that contain proteins 

similar proteins but not obvious homologs like potential homolog category. This similar 

fold homology unclear category can be viewed as a category for clusters that contains 

dinosaurs and birds without archaeopteryx. As more sequences and structures are 

revealed that fill the gaps between two remote groups, the clusters belong to similar 

fold unclear homology will gradually move into potential homology category. Partial 

similarity H unlikely is a category that contains clusters of likely not homologous. 

Clusters in this category and no similarity category can be considered as wrong to us 

because the clusters are supposedly to contain homologous proteins. We put 80 clusters 

into two correct categories, potential homolog and similar fold homology unclear and 

classified three classes into two wrong categories. Clusters in each category will be 

discussed detailed fashion in next section. 

It is important to compare our result to previously known information. If the 

analysis just cataloging how many were same as previously defined evolutionary groups 

and how many were different, then we would learn very little about nature by this 

research. So we compared our clusters to SCOP superfamilies since SCOP superfamily 

relationship is the most comprehensive and very accurate deposition of currently known 

homologous group of proteins and then deeply analyzed those clusters that are 

different from SCOP superfamilies. 
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Before discussing the detailed analyses about those selected 83 clusters, it is 

necessary to differentiate the over-clustering and under-clustering. When we compare 

to different clustering schemes, the difference can be classified as over-clustering and 

under-clustering. Those 83 clustered discussed in the previous paragraph, are essentially 

over-clustering of iSCG classification compared to SCOP superfamilies. In our research, 

we paid more attention to those over-clustering because even if we made many more 

potential homologous protein groups but the new clusters are useless if they are not 

reliable. And if we made under-clustering in iSCG classification, that is not that bad 

because we can consult both iSCG result and SCOP superfamilies and select bigger 

clusters. This under-clustering problem can be roughly assessed using the coverage or 

sensitivity already measured (Figure 10). The sensitivity of iSCG clustering compared to 

SCOP superfamily is about 60%. Therefore, in some clusters iSCG classification under-

clustered compared to SCOP and in some clusters iSCG over-clustered than SCOP. But 

when iSCG clustered proteins into same cluster, those proteins are very likely to be 

homologous. 

4.2.1 Putative Homologs 

As stated in previous section, detailed analysis on clusters containing different 

SCOP superfamilies are described in this section. The main focus of this analysis is again 

to confirm if iSCG classification is indeed reasonable or not. Especially this subsection 

contains iSCG clusters that are more likely to be right. 
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Flavodoxin-like fold proteins (Cluster 6) 

family merge; superfamily break; fold split; 

Note: Significant sequence/structural similarity. Share active site region 

Class Fold Superfamily Ndom Representative SCOPid 

a/b 
Flavodoxin-
like 

CheY-like 24(25) d1r8ja2 d1a04a2 d1qo0d_ d1dcfa_ 

Succinyl-CoA synthetase domains 2 d1eucb1 

Cobalamin (vitamin B12)-binding 
domain 

5 d1bmta2 

 

Leucine-rich repeats (Cluster 42) 

family merge; superfamily break; fold split; 

Note: LRRs show highly similar hydrophobic sequence pattern and high structural similarity. This cluster has 
a problem in breaking L domain family. L domain family proteins form another cluster (Cluster 2366) by 
themselves. All leucine-rich repeats are probably homologous and needs to be clustered together. 

Class Fold Superfamily Ndom Representative SCOPid 

a/b 
Leucine-rich repeat, LRR 
(right-handed beta-alpha 

superhelix) 

RNI-like 5 d1io0a_ d1yrga_ d1fqva2 

L domain-like 12(18) 
d1koha1 d1a9na_ d1dcea3 

d1w8aa_ d1h6ta2 d1jl5a_ d1ogqa_ 

Outer arm dynein 
light chain 1 

1 d1m9la_ 

 
 

TIM barrels (Cluster 43) 

family merge; superfamily break; fold split; 

Note: All TIM barrel proteins share alpha/beta barrel topology and general active site region. 

Class Fold Superfamily Ndom Representative SCOPid 

a/b 
TIM 
beta/alpha-
barrel 

Triosephosphate isomerase (TIM) 3 d1aw1a_ 

Aldolase 31 
d1gzga_ d1f74a_ d1of8a_ d1vlia2 
d1nvma2 d1dosa_ 

Phosphoenolpyruvate/pyruvate 
domain 

11(12) 
d1dxea_ d1e0ta2 d1kbla1 
d1m3ua_ d1dqua_ 

Malate synthase G 1 d1d8ca_ 

RuBisCo, C-terminal domain 4 d1geha1 

Bacterial luciferase-like 7 d1nfp__ d1ezwa_ d1nqka_ d1luca_ 

PLC-like phosphodiesterases 5 d1o1za_ d2plc__ d1djxa3 

Cobalamin (vitamin B12)-
dependent enzymes 

5 d1ccwb_ d7reqa1 d1xrsa_ d1eexa_ 

Ribulose-phoshate binding barrel 19 
d1nsj__ d1qo2a_ d1dbta_ d1tqja_ 
d1y0ea_ 

tRNA-guanine transglycosylase 2 d1iq8a1 

Dihydropteroate synthetase-like 4 d1eyea_ d1f6ya_ 

UROD/MetE-like 4 d1j93a_ d1u1ja2 

FAD-linked oxidoreductase 2(3) d1b5ta_ 

Pyridoxine 5'-phosphate synthase 1 d1m5wa_ 

Monomethylamine 
methyltransferase MtmB 

1 d1ntha_ 
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Homocysteine S-
methyltransferase 

2 d1lt8a_ 

(2r)-phospho-3-sulfolactate 
synthase ComA 

1 d1qwga_ 

Radical SAM enzymes 3 d1olta_ d1tv8a_ d1r30a_ 

Thiamin phosphate synthase 2 d1xi3a_ 

CutC-like 1 d1twda_ 

ThiG-like 1 d1xm3a_ 

FMN-linked oxidoreductases 15 d1viza_ 

Inosine monophosphate 
dehydrogenase (IMPDH) 

3 d1jr1a1 

 
 

HeH motifs (Cluster 46) 

family break; superfamily break; fold split; 

Note: The two proteins aligned with loops/turns without gaps. Roh termination factor, N-terminal domain 
probably diverged from SAP domain superfamily. SAP domain superfamily should be clustered together but 
they are very diverse in sequence structure so SAP domain superfamily is split into three small clusters in 
iSCG clustering. 

Class Fold Superfamily Ndom Representative SCOPid 

a  LEM/SAP HeH motif  

SAP domain 1(5) d1y02a1 

Rho termination factor, N-
terminal domain 

1 d1a62_1 

 
 

Beta-trefoils (Cluster 65) 

family merge; superfamily merge; fold clean; 

Note: They are probably homologous (Ponting & Russell, 2000). 

Class Fold Superfamily Ndom Representative SCOPid 

B beta-Trefoil 

Cytokine 9 d1l2ha_ d1rg8a_ 

Ricin B-like lectins 14 d1qxma1 d1upsa2 d1dqga_ 

Agglutinin 2 d1jlxa1 

STI-like 8 d1a8d_2 d1wba__ 

Actin-crosslinking proteins 5 d1dfca2 d1hcd__ 

MIR domain 2 d1t9fa_ 

DNA-binding protein LAG-1 (CSL) 1 d1ttua3 

AbfB domain 1 d1wd3a2 

 
 

Double psi beta-barrels (Cluster 89) 

family merge; superfamily merge; fold clean; 

Note: Structural similarity between the two superfamily is moderately high (DaliLite Z-score: 7) and 
sequence similarity is low. But from the point of view that this complex fold is hard to be independently 
evolved two times, they are more likely to be homologous. 

Class Fold Superfamily Ndom Representative SCOPid 

B Double psi beta-barrel 
Barwin-like endoglucanases 3 d1bw3__ d1n10a2 d2eng__ 

ADC-like 15 d1aa6_1 d1cr5a1 d1ppya_ 
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Calponin-homology domain-like proteins (Cluster 156) 

family merge; superfamily merge; fold split; 

Note: Very high sequence similarity. Peculiar fold. 

Class Fold Superfamily Ndom Representative SCOPid 

A CH domain-like 
Calponin-homology domain, CH-domain 10 d1aoa_1 

Hook domain 1 d1wixa_ 

 
 

Winged HTH proteins (Cluster 167) 

family break; superfamily break; fold split; 

Note: HTH proteins are probably homologous (Aravind et al, 2005). 

Class Fold Superfamily Ndom Representative SCOPid 

A 

DNA/RNA
-binding 
3-helical 
bundle 

Winged helix 
DNA-binding 
domain 

80(113) 

d1ri7a1 d1aoy__ d1repc2 d1ldda_ d1w1we_ d1u5ta2 
d1lvaa2 d2foka3 d1oywa1 d1ufma_ d1d5va_ d1hsta_ 
d1xn7a_ d1hw1a1 d1ucra_ d1oyia_ d1t6sa2 d1fzpb_ 
d1dpua_ d1omia2 d1in4a1 d1xd7a_ d1bia_1 d1jhfa1 
d1fx7a1 d1mkma1 d1b9ma1 d1ixca1 d1fp1d1 
d1bjaa_ d1r7ja_ d1tbxa_ d1stza1 d1tqia1 d1ulya_ 
d1yg2a_ d1ku9a_ d1sfxa_ d1bm9a_ d1y0ua_ 
d1q1ha_ d1mzba_ d1p6ra_ d1o57a1 

C-terminal 
effector domain 
of the bipartite 
response 
regulators 

4(9) d1gxqa_ 

 
 

RuvA C-terminal domain-like (Cluster 194) 

family break; superfamily break; fold split; 

Note: SCOP mentions that UBA and HBS1 are possibly related. Between UBA and CRAL the closest link is 
4481 and 4353 with DALI 6.7 and HH 0.5. 

Class Fold Superfamily Ndom Representative SCOPid 

A 
RuvA C-terminal 
domain-like 

UBA-like 14(18) 
d1oqya1 d1otra_ d1v92a_ 
d1efub3 

CRAL/TRIO N-terminal domain 3 d1aua_1 

HBS1-like domain 1 d1ufza_ 

 
 

Immunoglobulin-like beta-sandwich (Cluster 217) 

family break; superfamily break; fold split; 

Note: The two groups show very high sequence/structural similarities. Some proteins in Fibronectine type III 
superfamily are topologically changed to make more stable dimmers, hence they were not clustered.  

Class Fold Superfamily Ndom Representative SCOPid 

B 
Immunoglobulin-
like beta-sandwich 

Purple acid phosphatase, N-terminal 
domain 

1 d4kbpa1 

Fibronectin type III 56(60) d1f42a2 
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Beta-grasp proteins (Cluster 223) 

family break; superfamily break; fold split; 

Note: Most beta-Grasp fold members are probably homologous  (Iyer et al, 2006). Interesting exception is 
members of streptokinases and superantigens. Those outliers are quite different from other beta-grasp 
proteins. 

Class Fold Superfamily Ndom Representative SCOPid 

a+b 
beta-Grasp 
(ubiquitin-
like) 

Ubiquitin-like 36 
d1k8rb_ d1gnua_ d1l7ya_ d1gg3a3 
d1v2ya_ d1h8ca_ 

TGS-like 3 d1jala2 d1tkea1 

Doublecortin (DC) 1 d1mg4a_ 

TmoB-like 1 d1t0qc_ 

CAD & PB1 domains 11 d1c9fa_ d1pqsa_ 

MoaD/ThiS 8 d1rwsa_ d1fm0d_ d1wgka_ 

2Fe-2S ferredoxin-like 17 d1feha2 d1czpa_ 

Staphylokinase/streptokinase 3(4) d1l4db_ 

Superantigen toxins, C-
terminal domain 

9 d1enfa2 

 
 
 

Alpha/alpha toroids (Cluster 228) 

family merge; superfamily break; fold split; 

 
Class Fold Superfamily Ndom Representative SCOPid 

A 
alpha/alp
ha toroid 

Six-hairpin glycosidases 16 
d1ayx__ d1lf6a1 d1h54a1 d1fp3a_ 
d1nc5a_ d1vd5a_ d1g9ga_ 

Seven-hairpin glycosidases 4 d1dl2a_ 

Chondroitin AC/alginate lyase 6 d1cb8a1 d1qaza_ 

Terpenoid cyclases/Protein 
prenyltransferases 

9(11) d2sqca2 d1c3d__ d1dceb_ 

Family 10 polysaccharide lyase 2 d1gxma_ 

 
 

Cluster 256 

family merge; superfamily break; fold split; 

YhbC-like is interesting that it is essential protein but its function is not known (Yu et al, 2001). 

Class Fold Superfamily Ndom Representative SCOPid 

B Sm-like fold 
Sm-like ribonucleoproteins 10(11) d1b34a_ d1hk9a_ 

YhbC-like, C-terminal domain 1 d1ib8a1 

 
 

Barrel-sandwich hybrids (Cluster 332) 

family merge; superfamily break; fold split; 

Note: Single hybrid motif and Rudiment single hybrid motif share significant structural similarity and 
moderate to high sequence similarity. Evolutionary trace can also be shown by tightly aligned turns. 
Duplicated hybrid motif is duplicated and dimerized single hybrid motif as the name implies. Rudiment 
single hybrid motif is splitted into two clusters (this cluster and cluster 283). This cluster and cluster 283 
might be homologous. 
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Class Fold Superfamily Ndom Representative SCOPid 

B Barrel-sandwich hybrid 

Single hybrid motif 8 d1bdo__ 

Rudiment single hybrid motif 1(7) d1e2wa2 

Duplicated hybrid motif 2 d1gpr__ d1qwya_ 

 
 

Gelsolin-like proteins (Cluster 552) 

family merge; superfamily merge; fold clean; 

Note: Moderately high sequence similarity (HHsearch 0.7) and high structural similarity (DaliZ 11) 
d1m2oa4 is very similar to d1svy_. d1svy_ is a hybrid of sec23/24 and actin depolymerizing protein. 

Class Fold Superfamily Ndom Representative SCOPid 

a+b Gelsolin-like 
Actin depolymerizing proteins 14 d1cfya_ d1p8xa1 

C-terminal, gelsolin-like domain of Sec23/24 2 d1m2oa4 

 
 

Immunoglobulin-like proteins (Cluster 662) 

family break; superfamily break; fold split; 

Note: Very high sequence similarity (HHsearch 0.97) and structural score (DaliZ 11.7). 
It is beyond reasonable doubt that all proteins in this cluster are homologous. 
The problem is in breaking (super)family relationship in SCOP database. This needs further investigation. 

Class Fold Superfamily Ndom Representative SCOPid 

B 
Immunoglobulin-like 
beta-sandwich 

Invasin/intimin cell-adhesion 
fragments 

4(6) d1cwva1 

E set domains 3(55) d1qfha1 

 
 

Beta-clip (Cluster 1207) 

family merge; superfamily merge; fold split; 

Note: Similar in structure (DaliZ 6.2). Share similarity in trimerization. SCOP also notes the similarity, too. 

Class Fold Superfamily Ndom Representative SCOPid 

B beta-clip 
dUTPase-like 6 d1euwa_ 

Tlp20, baculovirus telokin-like protein 1 d1tul__ 

 
 

HTH proteins (Cluster 1528) 

family break; superfamily break; fold split; 

Note: all HTH’s are probably homologous (Aravind et al, 2005). 

Class Fold Superfamily Ndom Representative SCOPid 

A 
DNA/RNA-binding 
3-helical bundle 

Sigma3 and sigma4 domains of RNA 
polymerase sigma factors 

4(7) d1xsva_ d1ku3a_ 

C-terminal effector domain of the 
bipartite response regulators 

4(9) d1fsea_ 

 
 

Acyl-CoA binding protein & FERM second domain (Cluster 1721) 

family merge; superfamily merge; fold clean; 

Note: High sequence/structural similarity; In 2
nd

 domain of FERM, short conserved helix and loop occupies 
the cleft between helix2 and helix 3. This cleft is the active site in Acyl-CoA binding proteins.  
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Class Fold Superfamily Ndom Representative SCOPid 

A Acyl-CoA binding protein-like 
Acyl-CoA binding protein 2 d1hbka_ 

Second domain of FERM 3 d1gg3a1 

 

Table 2 Potentially homologous clusters containing different SCOP superfamilies. Each sub-
table contains cluster title featuring the majority of proteins in the cluster with a light blue 
shadowed row. The title row is followed by a terse comparison to SCOP. This comparison is 
done at SCOP family, superfamily and fold level and given classification of “clean”, “merge”, 
“split”, and “break”. “clean” means the cluster contains exactly same as SCOP at the given level, 
i.e. “family clean” means that the cluster contains all the members in SCOP family. This label of 
“clean” usually means nice agreement on SCOP and iSCG clustering especially for the 
superfamily level. “merge” means  that the cluster contains more than one SCOP groups 
without contradicting to SCOP, i.e. cluster 1721 in the table has the “superfamily merge” label 
since this cluster contains all members in the two superfamilies. Thus “merge” might mean 
over-clustering or interesting new finding with nice agreement with SCOP. “split” means the 
cluster contains subset of one SCOP group, i.e. cluster 1528 has “fold split” because this cluster 
subset (under-cluster) compared to the DNA/RNA binding 3-helical bundle fold in SCOP. “break” 
label is very interesting case where the cluster does not agree on SCOP boundary of the groups, 
i.e. cluster 1528 has “superfamily break” because this cluster contains subset of two 
superfamilies. Usually, this “break” label requires special attention to understand why the 
disagreement on the group boundary happened. The third row is for noting short information 
for the cluster, i.e. previous literatures about the proteins in the cluster or other argument for 
homology, and other interesting observations about the contents of the cluster. From the 
fourth row, the table contains summary for each cluster. The “class”, “fold” and “superfamily” 
columns represent respective SCOP information. “Ndom” represents how many proteins in the 
cluster belongs the SCOP superfamily. If the cluster does not contain all the SCOP superfamily 
members , the total number of the superfamily in SCOP is shown in the parenthesis. 
“representative SCOP id” column shows the list of family representatives in the cluster.  

 

Protein Kinase, SAICAR synthase, and ATP-grasp (Cluster 7) 

family merge; superfamily break; fold break; 

Note: Protein kinase and others in the cluster are probably homologous (Grishin, 1999). They share 
architecture of secondary structural elements remotely and have rather conserved active site structure. 

Class Fold Superfamily Ndom Representative SCOPid 

a+b 

ATP-grasp 
Glutathione synthetase ATP-
binding domain-like 

17(19) 
d1a9xa5 d1ehia2 d1uc8a2 d1i7na2 
d2scub2 d1kbla3 

SAICAR 
synthase-like 

SAICAR synthase-like 4 d1bo1a_ d1w2fa_ d1kuta_ 

Protein kinase-
like (PK-like) 

Protein kinase-like (PK-like) 43 
d1ia9a_ d1tqia2 d1j7la_ d1nw1a_ 
d1a06__ d1cjaa_ d1e7ua4 

 

Beta-propellers (Cluster 15) 

family merge; superfamily merge; fold break; 

Note: Most beta-propellers are probably homologous (Chaudhuri et al, 2008). 

Class Fold Superfamily Ndom Representative 
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SCOPid 

b 

4-bladed 
beta-
propeller 

Hemopexin-like domain 5 d1fbl_1 

5-bladed 
beta-
propeller 

Tachylectin-2 1 d1tl2a_ 

Arabinanase/levansucrase/invertase 5 
d1gyha_ d1uypa2 
d1vkda_ d1oyga_ 

Apyrase 1 d1s1da_ 

6-bladed 
beta-
propeller 

Sialidases 11 d1f8ea_ d1v0ea1 

Kelch motif 1 d1u6dx_ 

Soluble quinoprotein glucose dehydrogenase 1 d1crua_ 

Thermostable phytase (3-phytase) 1 d1h6la_ 

TolB, C-terminal domain 1 d1crza1 

YWTD domain 2 d1ijqa1 

Calcium-dependent phosphotriesterase 2 d1v04a_ d1pjxa_ 

Tricorn protease N-terminal domain 1 d1k32a2 

Fucose-specific lectin 1 d1ofza_ 

NHL repeat 2 d1q7fa_ 

7-bladed 
beta-
propeller 

Galactose oxidase, central domain 1 d1k3ia3 

3-carboxy-cis,cis-mucoante lactonizing enzyme 1 d1jofa_ 

Putative isomerase YbhE 1 d1ri6a_ 

Sema domain 3 d1olza2 

Oligoxyloglucan reducing end-specific 
cellobiohydrolase 

2 d1sqja1 

Nucleoporin domain 2 d1xipa_ 

YVTN repeat-like/Quinoprotein amine 
dehydrogenase 

5 
d1l0qa2 d1jmxb_ 
d2bbkh_ 

Nitrous oxide reductase, N-terminal domain 1 d1fwxa2 

WD40 repeat-like 12 d1sq9a_ d1yfqa_ 

RCC1/BLIP-II 2 d1a12a_ d1jtdb_ 

Clathrin heavy-chain terminal domain 1 d1utca2 

Peptidase/esterase 'gauge' domain 2 d1ve6a1 d1qfma1 

Integrin alpha N-terminal domain 1 d1txva_ 

Tricorn protease domain 2 1 d1k32a3 

8-bladed 
beta-
propeller 

Quinoprotein alcohol dehydrogenase-like 3 d1flga_ 

C-terminal (heme d1) domain of cytochrome 
cd1-nitrite reductase 

1 d1qksa2 

DPP6 N-terminal domain-like 2 d1orva1 

 

DNA polymerse III  subunit & P-loop hydrolase (Cluster 17) 

family merge; superfamily break; fold break; 

Note: Probably homologous. Very high sequence/structural similarity. SCOP also mentioned this 
relationship. 

Class Fold Superfamily Ndom 
Representative 
SCOPid 

a/b 
DNA polymerase III chi subunit DNA polymerase III chi subunit 1 d1em8a_ 

P-loop containing nucleoside P-loop containing nucleoside 30(190) d1w36d2 d1a1va2 
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triphosphate hydrolases triphosphate hydrolases d1gkub2 d1rifa_ 

 

Rossmann-fold (Cluster 39) 

family merge; superfamily break; fold break; 

Note: The two superfamilies share much conserved structure and sequence. (Dali Z-score:10.3, HHsearch: 
0.93) And they share active site region. However the question remains that the this cluster might be over-
split and this cluster should include many more Rossmann-fold proteins. 

Class Fold Superfamily Ndom Representative SCOPid 

a/b 

NAD(P)-binding 
Rossmann-fold domains 

NAD(P)-binding Rossmann-
fold domains 

55(161) 
d1b8pa1 d1lj8a4 d1a4ia1 
d1vlla_ d1gdha1 

ATC-like 
Aspartate/ornithine 
carbamoyltransferase 

9 d1js1x2 

 

Metallo-dependent hydrolase & 7 stranded  barrel (Cluster 41) 

family merge; superfamily merge; fold break; 

Note: The two structure share high structural similarity and metal binding sites.  

Class Fold Superfamily Ndom Representative SCOPid 

a/b 

TIM beta/alpha-
barrel 

Metallo-
dependent 
hydrolases 

18 
d1itua_ d4ubpc2 d1o12a2 d1bf6a_ d1j6oa_ 
d1onwa2 d1gkpa2 d1j79a_ d1m7ja3 d1a4ma_ 
d1p1ma2 d1ra0a2 d1j5sa_ 

7-stranded 
beta/alpha barrel 

PHP domain-like 2 d1m65a_ d1v77a_ 

 

 

FAD/NAD(P)-binding domain & Nucleotide-binding domain (Cluster 260) 

family break; superfamily break; fold break; 

(Cheng et al, 2008) 

Class Fold Superfamily Ndom Representative SCOPid 

a/b 

FAD/NAD(P)-binding 
domain 

FAD/NAD(P)-binding 
domain 

37(62) 
d1ng4a1 d1chua2 d1d5ta1 
d1fcda1 

Nucleotide-binding 
domain 

Nucleotide-binding 
domain 

9 d1c0pa1 d1i8ta1 d1cjca2 

 

ATPase domain & Sporulation response regularoty protein (Cluster 275) 

family merge; superfamily merge; fold merge; 

Note: SCOP mentioned that spo0B has histidine kinase fold lacking the ATP-binding site (DALI 8.8 and HH 
0.99). 

Class Fold Superfamily Ndom 
Representative 
SCOPid 

a+b 
ATPase domain of HSP90 
chaperone/DNA topoisomerase 
II/histidine kinase 

ATPase domain of HSP90 
chaperone/DNA topoisomerase 
II/histidine kinase 

14 
d1th8a_ 
d1jm6a2 
d1b63a2 
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d1uyla_ 

Sporulation response regulatory 
protein Spo0B 

Sporulation response regulatory 
protein Spo0B 

1 d1ixma_ 

 

DnaG C-terminal domain & DnaB N-terminal domain (Cluster 290) 

family merge; superfamily merge; fold merge; 

Note: extremely high sequence/structural similarity. It should be noted as a SCOP error. 

Class Fold Superfamily Ndom 
Representative 
SCOPid 

A 

DNA primase DnaG, C-terminal 
domain 

DNA primase DnaG, C-terminal 
domain 

1 d1t3wa_ 

N-terminal domain of DnaB 
helicase 

N-terminal domain of DnaB 
helicase 

1 d1b79a_ 

 

 

Double psi beta-barrels (Cluster 692) 

family merge; superfamily break; fold break; 

(Coles et al, 2006) 

Class Fold Superfamily Ndom 
Representati
ve SCOPid 

B 

Reductase/isomerase/elongation 
factor common domain 

Translation proteins 13(14) 
d1sqra_ 
d1wb1a2 

Elongation 
factor/aminomethyltransferase 
common domain 

EF-Tu/eEF-1alpha/eIF2-gamma C-
terminal domain 

5 d1r5ba2 

Domain of alpha and beta 
subunits of F1 ATP synthase-like 

N-terminal domain of alpha and 
beta subunits of F1 ATP synthase 

2 d1w0ja2 

 

Cluster 735 

family break; superfamily break; fold break; 

Note: The two superfamilies have high structural and sequence similarity (DALI z-score: 6.6, HHsearch: 0.8). 
Structural alignment and sequence alignments agree with each other in most parts with quite several 
identical residue pairs. Their fold is kind of peculiar because there are three consecutive helices on one side 
of the beta-sheet.  But 1wfz binds a metal while 1t3q does not. 

Class Fold Superfamily Ndom Representative SCOPid 

a+b 

SufE/NifU SufE/NifU 4 d1mzga_ d1su0b_ 

CO dehydrogenase 
flavoprotein C-
domain-like 

FAD/NAD-linked reductases, 
dimerisation (C-terminal) domain 

12(13) d1xhca3 

CO dehydrogenase flavoprotein C-
terminal domain-like 

5 d1jroa3 
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Calpain middle domain, Galactose binding domain, & Collagen binding domain (Cluster 784) 

family break; superfamily break; fold break; 

Note: Calpain and Galactose binding domain have very high sequence similarity and structural similarity. 
CUB-like is rather distant from them. CUB-like have moderate structural similarity to calpain. This cluster 
should be clustered with cluster 30. So this cluster has over-split problem. 

Class Fold Superfamily Ndom 
Representative 
SCOPid 

B 

Calpain large subunit, middle 
domain (domain III) 

Calpain large subunit, middle 
domain (domain III) 

1 d1df0a2 

Galactose-binding domain-like Galactose-binding domain-like 1(47) d1wmda1 

CUB-like Collagen-binding domain 1 d1nqja_ 

 

 

Cluster 850 

family merge; superfamily break; fold break; 

(Aravind et al, 2002) 

Class Fold Superfamily Ndom 
Representative 
SCOPid 

a/b 

Adenine nucleotide alpha 
hydrolase-like 

Adenine nucleotide alpha 
hydrolases-like 

5(20) d1jmva_ 

Cryptochrome/photolyase, N-
terminal domain 

Cryptochrome/photolyase, N-
terminal domain 

5 d1dnpa2 

 

Cluster 3730 

family merge; superfamily merge; fold merge; 

(Kinch et al, 2005) 

Class Fold Superfamily Ndom 
Representative 
SCOPid 

a/b 

DAK1/DegV-like DAK1/DegV-like 4 d1mgpa_ d1oi2a_ 

IIA domain of mannose 
transporter, IIA-Man 

IIA domain of mannose 
transporter, IIA-Man 

1 d1pdo__ 

 

Cluster 4431 

family merge; superfamily merge; fold merge; 

Note: High structural similarity. Long insertion and extension are in gp5 protein. 

Class Fold Superfamily Ndom Representative SCOPid 

a+b 
Major capsid protein gp5 Major capsid protein gp5 1 d1ohga_ 

Hypothetical protein PF0899 Hypothetical protein PF0899 1 d1shea_ 

 

Table 3 Potential homolog clusters containing different folds. The legends are same as Table 2. 
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Barrel-sandwich hybrid & Hammerheads (Cluster 283) 

family merge; superfamily break; fold break; 

Sequence and structural motif of hammerhead  

Class Fold Superfamily Ndom 
Representative 
SCOPid 

B 
Barrel-sandwich 
hybrid 

Rudiment single hybrid motif 6(7) d1b6ra1 

a+b 
alpha/beta-
Hammerhead 

CO dehydrogenase molybdoprotein N-
domain-like 

6 d1jrob1 

Nicotinate/Quinolinate PRTase N-terminal 
domain-like 

5 d1vlpa1 d1o4ua2 

Pyrimidine nucleoside phosphorylase C-
terminal domain 

3 d1brwa3 

Ribosomal protein L16p/L10e 2 d1jj2h_ d1wkia_ 

 

HTH (Cluster 398) 

family merge; superfamily break; fold break; 

(Aravind et al, 2005) 

Class Fold Superfamily Ndom 
Representativ
e SCOPid 

A Putative DNA-binding domain Putative DNA-binding domain 2(14) d1l8ra_ 

a+b 
DNA-binding domain of Mlu1-box 
binding protein MBP1 

DNA-binding domain of Mlu1-box 
binding protein MBP1 

1 d1bm8__ 

 

HTH (Cluster 2756) 

family merge; superfamily break; fold break; 

(Aravind et al, 2005) 

Class Fold Superfamily Ndom Representative SCOPid 

A Putative DNA-binding domain Putative DNA-binding domain 2(14) d1jjcb1 

a+b SRP19 SRP19 3 d1jida_ 

 

Table 4 Potential homolog clusters containing different class. The legends are same as Table 2. 

 

 

4.2.1.1 Flavodoxin-like fold proteins (Cluster 6) 

Among Flavodoxin-like fold proteins defined in SCOP, three different 

superfamily proteins were clustered in this cluster; CheY-like superfamily, cobalamin 
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binding-domain superfamily and succinyl-CoA synthetase domain superfamily (Cluster 6 

in Table 2). CheY-like superfamily proteins are response regulator in bacterial two-

component regulatory systems. Cobalamin binding-domains (Bandarian et al, 2002) bind 

to the cofactor cobalamin and provide this cofactor to other enzymatic domains. 

Succinyl-CoA synthetase domains (Fraser et al, 1999) carry out phosphorylation in citric 

acid cycle. Even though the three superfamily do not share the key functional and 

conserved residues, they share structural similarity and general sequence conservation 

pattern much higher than unrelated proteins in the fold, DaliLite Z-score above 9 and 

COMPASS E-value 1.0e-9. Along with this general sequence/structural similarity, they 

share the active site region. So it is likely scenario that they share the ancestor and 

diverged to have their respective functions. 

 

 

Figure 28 Representatives of Flavodoxin-like fold protein structures. The left structure (SCOPid: 
d1r8ja2) is the representative from CheY-like superfamily. The middle structure (SCOPid: 
d1eucb1) is the representative from succinyl-CoA synthetase superfamily. The right structure 
(SCOPid: d1bmta2) is the representative from cobalamin binding-domain superfamily. All 
structures are colored from blue to red starting from N-terminus to C-terminus of proteins. 
Relative insertions are colored in white. All structures share the common core of parallel beta-
sheets (5-4-3-1-2) connected by alpha helices. The middle structure succinyl-CoA synthetase 
has extended in N-terminus with a beta-strand and an alpha-helix. The right structure 
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cobalamin binding domain has an extra alpha-helix at the C-terminal end. All extended 
structures are colored in white. 

 

4.2.1.2 Cluster 43: TIM barrel fold proteins 

TIM beta/alpha barrel fold is one of the most versatile folds to catalyze many 

different kinds of chemical reactions. Most TIM barrel enzymes have active site at the C-

terminal end of barrel which might be an indication of their common evolutionary origin 

(Nagano et al, 2002). 

Class I aldolases are grouped into 6 different subgroups in iSCG and widely 

distributed among other phosphate binding enzymes (Figure 29). Aldolase catalyzes the 

fusion or cleavage of two carbonyl compounds.  Class I aldolases have catalytic lysine 

forming Schiff base with substrate and phosphate binding sites. According to SCOP 

database all class I aldolases are classified into one family. Sub-classification of class I 

aldolases with other non-aldolase enzymes in iSCG (Figure 29) is contradicting to 

generally accepted hypothesis of their divergent evolution from common ancestor 

based on enzymatic function and active site residues.  

Current version of CATH database (ver. 3.1.0) shows similar result in classifying 

phosphate-binding TIM barrel enzyme. CATH classified the aldolases and other 

phosphate-binding enzymes in the same homologous superfamily. Also, the aldolases 

are sub-divided into smaller groups with other enzymes at the family level. PSI-BLAST 

(query: KDPG aldolase, 1eua) found Ribulose-phosphate binding enzymes (located in the 

same subtree in Figure 29) with significant E-value (1e-32 at 5th iteration) before finding 



91 
 

 

other class I aldolase subgroups. Other PSI-BLAST searched based on queries in different 

subclass of aldolases shows similar result in finding enzymes in the same subtree non-

aldolase TIM barrel enzymes before finding other different subgroup aldolases. 

Additionally, each subgroups of aldolase shows distinctive structural features outside 

the active site, i.e. extensions in N- or C-termini. 

This seemingly contradiction between functional classification and similarity 

based classification might mean polyphyletic origin of class I aldolases. Further research 

will be conducted to understand the evolutionary origin of proteins in TIM barrel fold.  
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Figure 29 Hierarchical tree for cluster 43. iSCG result is shown as hierarchical tree. Each 
superfamily is represented by distinct colors. The labels in the internal nodes are minimum 
score between the children nodes with iteration number. First column in terminal node label is 
the unique identifier for each protein for this study. Second column is SCOP id. Third column is 
short SCOP family ID. The second part of the figure displays same order of SCOP domains as the 
first part in six columns: SCOPid, SCOP family ID,  fold name, superfamily name. Finally, sixth 
column is family name.  
 

4.2.1.3 Cluster 15: Beta propeller folds 

Cluster 15 contains 31 beta propeller superfamilies defined in SCOP database. 

Beta propellers consist of 4 to 8 anti-parallel beta-sheets. The beta-sheets form toroid 

around a central axis of pseudo-symmetry. Each beta sheet is called blade from the 

analogy of the architecture to propellers in fans. Beta propellers are one of most 

versatile proteins that they bind from macro-molecules such as proteins or DNA/RNA to 

very small inorganic molecules. Many beta propeller proteins also carry out enzymatic 

reactions (Table 5).  

 

Superfamily NB Active Site  Ligand F Note 

Hemopexin-like domain 4 
Between 

two domains 
Heme B 

Homo-dimer forms active 
site. 

Tachylectin-2 5 
Between 

every blades 
Sugar B  

Arabinanase/levansucrase/inverta
se 

5 Canonical Sugar E  

Apyrase 5 Canonical Sugar E 
Cellular function in 

preventing blood clotting 

Sialidases 6 Canonical Sugar E  

Soluble quinoprotein glucose 
dehydrogenase 

6 Canonical Sugar E  

Thermostable phytase (3-phytase) 6 Canonical Small E  

TolB, C-terminal domain 6 ? ? ? 
Function in Gram negative 

Bacterial cell envelop 
integrity 

YWTD domain 6 Canonical Protein B  

Calcium-dependent 
phosphotriesterase 

6 Canonical Small E  



95 
 

 

Tricorn protease N-terminal 
domain 

6 Canonical 
Peptide

? 
B? 

Same chain with other 7 
blade 

Topologically unclosed! 

Fucose-specific lectin 6 
Between 

blades 
except 1&6 

Sugar B 
5 sugars binding. 

Somewhat controversy to 
previous 1:1 stoicheometry 

NHL repeat 6 Canonical Small B 
Sensor connected to 

receptor 

Kelch motif 6 Canonical Protein B 
E3 ligase complex substrate 

binding, 

Galactose oxidase, central domain 7 Canonical Sugar E  

YVTN repeat-like/Quinoprotein 
amine dehydrogenase 

7 Canonical Protein B/E  

Nitrous oxide reductase, N-
terminal domain 

7 Canonical Small E  

WD40 repeat-like 7 Canonical Protein B  

RCC1/BLIP-II 7 Bottom Protein B 
RCC1 binds DNA at 
canonical surface  

Clathrin heavy-chain terminal 
domain 

7 

Canonical Peptide B 

 Between 
blade 1 and 

2 
Peptide B 

Peptidase/esterase 'gauge' 
domain 

7 Canonical Peptide B 
Topologically unclosed for 

prolylpeptidase. 

Integrin alpha N-terminal domain 7 ? ? B?  

Tricorn protease domain 2 7 Canonical ? ? Topologically unclosed! 

3-carboxy-cis,cis-mucoante 
lactonizing enzyme 

7 Canonical Small E  

Putative isomerase YbhE 7 ? ? ?  

Sema domain 7 Canonical Protein B 
Do not show clear repeat 

of blades 

Oligoxyloglucan reducing end-
specific cellobiohydrolase 

7 Canonical Sugar E 

Bacterial cell wall rigidity, 
Duplicated domains bind 
with 90 degree form active 
site 

Nucleoporin domain 7 ? 
Protein
/RNA 

B  

Quinoprotein alcohol 
dehydrogenase-like 

8 Canonical Small E  

C-terminal (heme d1) domain of 
cytochrome cd1-nitrite reductase 

8 Canonical Heme B?  

DPP6 N-terminal domain-like 8 Canonical Peptide B 
Topologically unclosed, 

Glycosylation, 
Blade VII was  

 
Table 5. Summary of superfamilies in Cluster 15. Superfamilies are as defined in SCOP database. 
NB denotes number of blades. Active site column describes the general location of active sites 



96 
 

 

of the domains in the superfamily. Canonical means the pseudo-symmetric axis of top side. 
Bottom means the opposite side of top. Ligand column describes the general types of ligand for 
the superfamily. Small means general small inorganic or organic molecules except heme, sugar, 
DNA, RNA, or proteins. F denotes crude functional category. B and E represent binding function 
and enzymatic functions respectively. Question marks are used for unknown or putative 
information. 

 

Cluster 15 in iSCG classification contains all known beta-propeller families in 

SCOP except one superfamily from 6-bladed beta-propellers. Although many literatures 

considered the proteins from each number of blades are closer homologs than proteins 

from the other number of blades, i.e. 7 blades beta-propellers are considered closer 

homologs than 8 blades beta-propellers. This view is now changing with known 

examples from Kelch motifs that form 6 or 7 blades and other examples. Our 

classification of beta-propellers is in agreement with this recent literature (Chaudhuri et 

al, 2008). Although 5-8 blades beta-propellers clearly sharing their ancestors, 4 blades 

beta-propellers are quite distinct and might not share the same evolutionary origin  

One interesting feature among the beta-propellers is the “molecular velcro”.  

DPP6, POP and Tricorn (6 blades and 7 blades) (Engel et al, 2003) do not form molecular 

velcros in contrast to the rest of beta-propellers. It was speculated that the absence of 

molecular Velcro might mean those proteins are more flexible than other beta-

propellers. 
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Figure 30 Beta-propeller fold protein structures. All structures shown colored from blue (N-
terminus) to red (C-terminus). (A) Top view and (B) side view of 6 bladed beta-propeller 
Thermostable phytase ( SCOPid: d1h61a_). Blue arrows pointing molecular velcros. Red arrows 
pointing ligand binding or active sites. (C) Top view of prolyl oligopeptidase (SCOPid: d1qfma1). 
No molecular velcros for this protein. (D) Top view of Tachylectin (SCOPid: d1tl2a_). 
Tachylectin has unusual sugar binding sites between blades. 
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Figure 31 Different types of blades in beta-propeller. (A) Common type of blade and (B) 
uncommon type of 6 bladed beta propeller GyrA protein (Fifth blade from SCOPID: d1wp5a_) 

 

Two proteins in beta-propeller fold formed different cluster (cluster 5835). Their 

beta-blade structures are different from other beta-propellers. This might indicates that 

the two gyrase domains are not homologous to the other common beta-propellers 

(Corbett et al, 2004).  

4.2.1.4 Cluster 41: Metallo-dependent hydrolase and PHP domain 

Cluster 41 contains metallo-dependent hydrolase superfamily and PHP domain-

like superfamily proteins. Metallo-dependent hydrolases are TIM barrel fold proteins 

and these enzymes catalyze various reactions using one or more divalent metal ions 

(Lisa Holm 1997 JMB) coordinated by Histidines. PHP domain-like proteins are known as 

putative phosphate esterase and nucleases. PHP proteins belong to 7 stranded 

beta/alpha barrel fold. SCOP classified PHP domains and metallo-dependent hydrolases 

into different folds according to their number of repeating beta/alpha units. 
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PHP domains and metallo-dependent hydrolases have similar metal binding 

sites with conserved Histidines (HXH motif). They also have similar barrel cap with C-

termini helices which is different from many other TIM barrels with barrel cap by N-

termini helices or beta hairpins. Similar to Cluster 41, CATH database also merged PHP 

domains into metallo-dependent hydrolase Homologous superfamily. 

The similarity between PHP domains and other superfamilies in 7 stranded 

beta/alpha barrel fold are not as high as PHP and MDH. Also the similarity appears to be 

largely come from the topological similarity of 7 beta/alpha units. This relatively closer 

similarity between PHP and MDH supports the hypothesis of the polyphyletic origin of 7 

stranded beta/alpha barrels. 

 

4.2.1.5 Cluster 4431: Pyrococcus furiosus hypothetical protein and major 

capsid protein gp5 

Hypothetical protein PF0899 is a functionally unknown protein in Pyrococcus 

furiosus, a hyperthermophilic archeon. Major capsid protein gp5 is structural protein to 

assemble procapsid of bacteriophage HK97 (Wikoff et al, 2006). PF0899 and gp5 

proteins are classified into different folds in SCOP.  

Common region of PF0899 and gp5 are colored from blue to red. Major capsid 

protein gp5 has insertion and extension (white colored region in the Figure 32) 

compared to PF0899. The insertion and extension stabilize oligomeric complex of gp5 

proteins. PF0899 might be transferred from viruses infecting hyperthermophilic archaea. 
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There are three reasons; 1) Many genes are transferred from phages to bacteria 

(Salzberg et al, 2001), 2) Other close pyrococci do not have homolog of PF0899 protein 

except the few species having close homolog, and 3) PF0899 is the closest protein to 

Major capsid protein gp5 among known proteins and the two proteins are quite 

different from other proteins. The hypothesis of horizontal gene transfer of PF0899 

from viral capsid protein will be clearer, as we accumulate more genome sequences of 

archaeal viruses. 

 

Figure 32 Representative structures in cluster 4431. The left structure is PF0899 (SCOPid: 
d1shea_) and the right structure is major capsid gp5 protein (SCOPid: d1ohga_). Equivalent 
regions have same color from blue to red. N-terminal end of PF0899 is blue and C-terminal end 
of PF0899 is colored in red. Insertion or deletion is white.  
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4.2.2 Similar in fold but unclear in homology 

 

OB-fold (Cluster 10) 

family break; superfamily break; fold split; 

Note: Sequence/structural diversity is quite high. Generally share functional sites. MOP-like superfamily is 
the most divergent group. 

Class Fold Superfamily Ndom Representative SCOPid 

b 
OB-
fold 

Hypothetical protein 
YgiW 

1 d1nnxa_ 

Bacterial enterotoxins 16 d1an8_1 d1c4qa_ 

TIMP-like 5 d1br9__ d1uapa_ d1jb3a_ 

Nucleic acid-binding 
proteins 

74(81) 
d1dgsa2 d1bvsa3 d1fjgl_ d1fl0a_ d1k3ra1 d1uwva1 
d1jb7b_ d1je5a_ d1u5ka1 d1ltla_ d1gm5a2 d1b8aa1 

MOP-like 11 d1g2913 d1fr3a_ d1h9ka1 

Tail-associated 
lysozyme gp5, N-
terminal domain 

1 d1k28a1 

Heme chaperone CcmE 1 d1lm0a_ 

 

Viral coat and capsid proteins (Cluster 27) 

family merge; superfamily merge; fold split; 

Note: Viral coat proteins.  

Class Fold Superfamily Ndom Representative SCOPid 

B 
Nucleoplasmin-like/VP 
(viral coat and capsid 
proteins) 

Group II dsDNA 
viruses VP 

6 d1p2za1 d1hx6a1 d1m3ya1 

Positive stranded 
ssRNA viruses 

35 
d1cwpa_ d1ohfa_ d1f8v.1 d1a6ca3 
d1aym1_ d1ihma_ d1auya_ d1c8na_ 

Satellite viruses 3 d2stv__ 

 

Cluster 59 

family merge; superfamily break; fold split; 

Note: High structural similarity but rather low sequence similarity (Dali Z: 9.4, HHsearch:0.13) 

Class Fold Superfamily Ndom Representative SCOPid 

a/b 
Restriction 
endonucleas
e-like 

Restriction endonuclease-
like 

11(33) 
d1ev7a_ d1sa3a_ d1dmua_ d1sx5a_ 
d1xhva_ d1azo__ d3pvia_ d1gefa_ 
d1y1oa_ 

tRNA-intron endonuclease 
catalytic domain-like 

3 d1a79a1 
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Cluster 87 

family merge; superfamily merge; fold split; 

 

Class Fold Superfamily Ndom 
Representative 
SCOPid 

a/b 
The "swiveling" 
beta/beta/alpha 
domain 

Phosphohistidine domain 2 
d1kbla2 
d1zyma2 

LeuD-like 3 d1aco_1 

Carbamoyl phosphate synthetase, small subunit 
N-terminal domain 

1 d1a9xb1 

Transferrin receptor ectodomain, apical domain 1 d1de4c2 

Swiveling domain of the glycerol dehydratase 
reactivase alpha subunit 

1 d1nbwa1 

RraA-like 1 d1nxja_ 

Putative cyclase 1 d1r61a_ 

 

Profilin-like proteins (Cluster 97) 

family merge; superfamily merge; fold clean; 

Note: PAS, LuxR, and sensor kinase are probably homologous (Cheng et al, 2008). SNARE, Roadblock, and 
GAF are probably homologous. But the relationship between the two groups is not clear. 

Class Fold Superfamily Ndom Representative SCOPid 

a+b 
Profilin-
like 

Profilin (actin-binding protein) 3 d1acf__ 

GAF domain-like 7 d1stza2 d1f5ma_ d1mkma2 

PYP-like sensor domain (PAS domain) 8 
d1bywa_ d1p97a_ d1v9ya_ 
d1nwza_ d1ll8a_ d1oj5a_ 

SNARE-like 6 
d1nrja_ d1gw5m2 d1h3qa_ 
d1ifqa_ 

Pheromone-binding domain of LuxR-like 
quorum-sensing transcription factors 

1 d1l3la2 

Sensory domain of two-component sensor 
kinase 

2 d1ojga_ 

Roadblock/LC7 domain 4 d1tgqa_ 

 

Ferredoxins (Cluster 173) 

family break; superfamily break; fold split; 

 
Class Fold Superfamily Ndom Representative SCOPid 

a+b 
Ferredoxin-
like 

Acylphosphatase-like 4 d1aps__ 

EF-G C-terminal domain-like 4(6) d1t95a3 d1dar_4 d1vi7a2 

eEF-1beta-like 2 d1f60b_ 

Ribosomal protein S6 2 d1loua_ 

ACT-like 7 
d1tdj_2 d1phza1 d1q5ya_ 
d1psda3 d1u8sa1 

CheY-binding domain of CheA 1(2) d1u0sa_ 

Dimeric alpha+beta barrel 5(19) d1mli__ d1s7ia_ d1mwqa_ 
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d1i1ga2 

D-ribose-5-phosphate isomerase 
(RpiA), lid domain 

2 d1o8ba2 

GlnB-like 8 
d1naqa_ d1vfja_ d1o51a_ 
d1h3da2 

 

SH3-like barrel proteins (Cluster 183) 

family merge; superfamily break; fold split; 

 
Class Fold Superfamily Ndom Representative SCOPid 

b 
SH3-like 
barrel 

Cap-Gly domain 5 d1ixda_ 

GW domain 2 d1m9sa2 

Chromo domain-like 1(7) d1wgsa_ 

SH3-domain 33 d1i07a_ 

Electron transport accessory 
proteins 

5 
d1ugpb_ d1vie__ d1dj7b_ 
d1jb0e_ 

Translation proteins SH3-like 
domain 

3(9) d1jj2p_ d1nppa2 

Tudor/PWWP/MBT 10 d1xnia2 d1h3za_ d1oi1a2 

 

Cluster 269 

family merge; superfamily break; fold split; 

Note: They share common structural core of helical bundle. 

Class Fold Superfamily Ndom Representative SCOPid 

a 
SAM domain-
like 

SAM/Pointed domain 12 d1oxja1 d1bqv__ 

RuvA domain 2-like 3(4) d1cuk_2 d1kfta_ 

C-terminal domain of RNA polymerase alpha 
subunit 

2 d1doqa_ 

Rad51 N-terminal domain-like 4 
d1u9la_ d1szpa1 
d1y88a1 

 

Cluster 297 

family merge; superfamily merge; fold split; 

Note: They share common structural core and crossover loop. This cluster needs further attention. 

Class Fold Superfamily Ndom Representative SCOPid 

a/b 
Phosphorylase
/hydrolase-like 

HybD-like 2 d1c8ba_ d1cfza_ 

Purine and uridine phosphorylases 11 d1b8oa_ 

Peptidyl-tRNA hydrolase-like 2 d1ryba_ 

Pyrrolidone carboxyl peptidase 
(pyroglutamate aminopeptidase) 

1 d1iu8a_ 

Zn-dependent exopeptidases 20 
d1jwqa_ d1cg2a1 d1de4c3 
d1lam_2 d1h8la2 d1obr__ 
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Outliers of beta-Grasp fold (Cluster 400) 

family break; superfamily break; fold split; 

Note: Distinctive outliers in beta-grasp fold. Majority of beta-grasp are likely to be homologous (cluster 
223). The proteins in this cluster might evolve independently or it is too distant to be detected. 

Class Fold Superfamily Ndom 
Representative 
SCOPid 

a+b 
beta-Grasp (ubiquitin-
like) 

Staphylokinase/streptokinase 1(4) d1bmlc3 

Immunoglobulin-binding 
domains 

2 d1hz6a_ 

 

Cluster 443 

family break; superfamily break; fold split; 

Note: There are possibly two homologous groups. This cluster requires further investigation. 

Class Fold Superfamily Ndom Representative SCOPid 

a/b 
Ribonucle
ase H-like 
motif 

Actin-like ATPase 
domain 

31(33) 
d1g99a1 d1t6ca1 d1okja1 d1glag1 d1mwma1 
d1nbwa2 d1w97l1 d1czan1 d1woqa1 d1huxa_ 
d1sz2a1 

Ribonuclease H-like 21(30) d1hjra_ d1kcfa2 d1iv0a_ d1fxxa_ d1uoca_ 

Translational 
machinery 
components 

1(4) d1dt9a1 

DNA repair protein 
MutS, domain II 

2 d1e3ma3 

 

Beta-Prism I (Cluster 488) 

family merge; superfamily merge; fold clean; 

Note: They share common structural core and same symmetry. Sequence-wise so divergent. This cluster 
needs further attention. 

Class Fold Superfamily Ndom Representative SCOPid 

b 
beta-Prism 
I 

Vitelline membrane outer protein-I (VMO-I) 1 d1vmoa_ 

delta-Endotoxin (insecticide), middle domain 3 d1ji6a2 

Mannose-binding lectins 3 d1c3ma_ 

 

Cluster 526 

family merge; superfamily merge; fold split; 

Note: Scores between the two superfamilies; Dali Z:12.3, HHsearch:0.67. But the sequence alignment may 
not make much structural sense because it does not appear very similar to DALI alignment. The sequence 
score is erroneously high just reflecting the fact both of them have consecutive beta-strands. 

Class Fold Superfamily Ndom Representative SCOPid 

b 
Supersand
wich 

Amine oxidase 
catalytic domain 

5 d1n9ea1 

Galactose 
mutarotase-like 

20 
d1h54a2 d1lf6a2 d1k1xa2 d1jova_ d1nsza_ d1nkga3 
d1jz8a4 d1txka2 d1cb8a3 d1qwna2 d1xsia2 
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Cluster 555 

family merge; superfamily merge; fold split; 

 
Class Fold Superfamily Ndom Representative SCOPid 

a+b Ferredoxin-like 

Bacterial exopeptidase dimerisation domain 6 d1lfwa2 

MTH1187/YkoF-like 4 d1lxja_ d1s99a_ 

Hypothetical protein TT1725 1 d1j27a_ 

eIF-2-alpha, C-terminal domain 1 d1q8ka2 

 

Cluster 597 

family merge; superfamily break; fold split; 

 
Class Fold Superfamily Ndom Representative SCOPid 

a+b Bacillus chorismate mutase-like 
YjgF-like 3(4) d1jd1b_ 

PurM N-terminal domain-like 6 d1clia1 

 

Cluster 668 

family merge; superfamily merge; fold split; 

 
Class Fold Superfamily Ndom Representative SCOPid 

b 
Double-
stranded 
beta-helix 

RmlC-like cupins 28 
d1xe7a_ d1eyba_ d1y9qa2 d1x7na_ d1lrha_ 
d1v70a_ d1vj2a_ d1x8ma_ d1j1la_ d1juha_ d1sfna_ 
d1pmi__ d1xsqa_ d1ep0a_ d1m4oa_ d1o5ua_ 

Clavaminate 
synthase-like 

12 
d1jopa_ d1e5sa_ d1dcs__ d1h2ka_ d1ds1a_ d1jr7a_ 
d1nx4a_ d1otja_ 

cAMP-binding 
domain-like 

12 d1cx4a1 d1ft9a2 d1omia1 

Regulatory protein 
AraC 

1 d2arca_ 

 

N-cbl like 4 helical bundles (Cluster 778) 

family merge; superfamily merge; fold split; 

Note: 4-helical bundles. Good structural similarity score due to the structural core (Dali Z:7.3). But no 
detectable sequence similarity. 

Class Fold Superfamily Ndom 
Representative 
SCOPid 

a 
N-cbl 
like 

N-terminal domain of cbl (N-cbl) 1 d2cbla2 

Transferrin receptor ectodomain, C-terminal domain 1 d1de4c1 

 

Cluster 843 

family break; superfamily break; fold split; 

Note: They share common core of 7 beta strands in two beta-sheets packing. 
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Class Fold Superfamily Ndom Representative SCOPid 

b Prealbumin-like 

Starch-binding domain-like 1(4) d1nkga1 

Carboxypeptidase regulatory domain 2 d1h8la1 

Transthyretin (synonym: prealbumin) 1 d1f86a_ 

Cna protein B-type domain 1(3) d1ti6b1 

Aromatic compound dioxygenase 4 d1dmha_ 

Hypothetical protein PA1324 1 d1xpna_ 

 

Cystatin-like proteins (Cluster 1182) 

family merge; superfamily break; fold split; 

Note: The proteins in this cluster share alpha-beta(x4) structural core. One protein (d1x9ya2) in cystatin 
superfamily was excluded from cluster and form singleton cluster (cluster 8125) because of forming 
swapped dimerization. 

Class Fold Superfamily Ndom Representative SCOPid 

a+b 
Cystatin-
like 

Cystatin/monellin 5(6) d1mola_ d1kwia_ d1stfi_ 

NTF2-like 19 
d1gy7a_ d1m98a2 d1hkxa_ d1oh0a_ d1tp6a_ d1nwwa_ 
d1tuha_ d1ulib_ d1s5aa_ d1idpa_ d1sjwa_ d1mwsa1 

 

Activator of Hsp90 ATPase & Bacterial permeability-increasing protein 1 (Cluster 1216) 

family merge; superfamily merge; fold clean; 

Note: Striking structural similarity (DaliZ 9.4), but sequence similarity is not high. The relationship should be 
studied further. 

Class Fold Superfamily Ndom 
Representative 
SCOPid 

a+b 
Aha1/BPI domain-
like 

Bactericidal permeability-increasing protein, BPI 2 d1ewfa1 

Activator of Hsp90 ATPase, Aha1 1 d1usub_ 

 

Two alpha hairpins: Prefoldin & tRNA binding arm (Cluster 1561) 

family merge; superfamily break; fold split; 

Note: Good sequence similarity (HHsearch 0.82) and high structural similarity (DaliZ 9.6). But they are mere 
two long helices connected by a loop. Also the loops are quite different in the two superfamilies. 

Class Fold Superfamily Ndom Representative SCOPid 

A Long alpha-hairpin 
Prefoldin 2 d1fxka_ 

tRNA-binding arm 1(4) d1seta1 

 

Open-sided beta-meanders and the chimera (Cluster 1961) 

family merge; superfamily merge; fold clean; 

Note: Moderately good structural similarity score (DaliZ 5.4) but no sequence similarity detected. d1ospo_ 
can be considered as hybrid of histone methyltransferase (d1h3ia1) and the other outer surface protein 
(d1rjlc_). The relationship needs further study. 

Class Fold Superfamily Ndom Representative SCOPid 

b open-sided Outer surface protein 2 d1ospo_ 
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beta-
meander 

Histone H3 K4-specific methyltransferase 
SET7/9 N-terminal domain 

1 d1h3ia1 

 

Canonical IF3-like domains (Cluster 2859) 

family merge; superfamily merge; fold split; 

Note: (beta-alpha)x2-beta-beta core. This cluster might have homologous proteins but not sure because of 
high structural/sequence diversities. iSCG splitted IF3-like fold proteins into 5 different clusters due to their 
oligomeric status and other structural features. 

Class Fold Superfamily Ndom 
Representative 
SCOPid 

a+b 
IF3-
like 

Translation initiation factor IF3, C-terminal domain 1 d1tig__ 

YhbY-like 2 d1jo0a_ 

AlbA-like 3 d1nh9a_ d1vm0a_ 

 

Secretion chaperone & Arp2/3 complex subunit (Cluster 2947) 

family break; superfamily break; fold split; 

Note: Moderate structural similarity but no significant shared sequence motif was found. The modes of 
dimerization are different in two superfamilies. First helices have opposite directions with one strand 
deletion in Arp2/3 complex subunit superfamily. 

Class Fold Superfamily Ndom 
Representative 
SCOPid 

a+b 
Secretion chaperone-
like 

Type III secretary system 
chaperone 

7(8) d1ry9a_ 

Arp2/3 complex subunits 3 d1k8kd1 

 

Table 6 Clusters containing different superfamilies within same fold in “Fold similar; Homology 
unclear” category. The legend is the same as Table 2. 

 

 

4.2.2.1 Cluster 10: OB-fold proteins 

OB-fold proteins share the topology of 5 stranded beta-barrels. OB-fold proteins 

are very diverse in function but shows relatively well conserved structural fold (Arcus, 

2002). OB-fold proteins are classified into 10 different superfamilies in SCOP. Among 

those 10 superfamilies, iSCG clustered 7 superfamilies into cluster 10. The superfamilies 

clustered into this cluster are followings; Nucleic acid-binding proteins, MOP-like, TIMP-
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like, Bacterial enterotoxins, Heme chaperon CcmE, Hypothetical protein YgiW, and N-

terminal domain of Tail-associated lysozyme gp5.  

Majority of proteins (72 proteins out of 109 total proteins in cluster 10) belong 

to nucleic acid-binding superfamily. Nucleic acid-binding proteins are diverse in their 

molecular functions from anticodon-binding in tRNA synthetase to double stranded DNA 

binding in cold shock proteins. But their evolutionary relationship is clear with high 

structural similarity with same general function at the same active site with conserved 

sequence motif related to protein fold stability (Theobald et al, 2003b). Other 

superfamilies in this cluster generally do not share the function of nucleic acid binding, 

but they share structural similarity along with sequence motif related to fold stability 

(Arcus, 2002; Ginalski et al, 2004; Mitton-Fry et al, 2002; Theobald et al, 2003a). MOP-

like superfamily has specialized function in binding small molecule, i.e. molybdenum 

(Wagner et al, 2000). TIMP-like superfamily proteins developed their function in binding 

and inhibiting metalloproteases (Williamson et al, 1994). Thus the general function of 

TIMP-like superfamily is binding proteins. Bacterial enterotoxins are subdivided into two 

groups, AB5-like toxins and superantigens. AB5-like toxins bind to oligosaccharides on 

mammalian cell surface and puncture them (Merritt & Hol, 1995). Superantigens bind to 

MHC II complex and T-cell receptors and make many different T-cells activated (C. 

Bachert, 2002). Thus the general function of superantigen proteins is binding to protein. 

Heme chaperon CcmE forms intermediately covalent bond with heme on histidine 

residue close to C-terminal end (Enggist et al, 2003). The surface for ligand binding is 
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hydrophobic and relatively flat to bind heme (Enggist et al, 2002). The function of 

Hypothetical protein YgiW is not known yet, but this protein is very similar to single 

stranded DNA binding proteins in Nucleic acid binding protein superfamily, which 

suggest the function of YgiW (Ginalski et al, 2004). N-terminal domain of Tail-associated 

lysozyme gp5 is a protein insert phage T4 double stranded DNA through the pore 

generated by lysozyme gp5 (Kanamaru et al, 2002). This N-terminal domain of gp5 has 

putative function of double stranded DNA binding. The superfamilies in this cluster are 

similar in topology but it is hard to definitely conclude their homology given the simple 

topology of OB-fold and vast functional diversity of those OB-fold proteins. Detailed 

analysis with more recent structures and sequences will give us definite answer about 

conclusive relationships between the proteins in this cluster.  

  

Figure 33 Network view of Cluster 10. Each domains or proteins represent as colored circles 
(node). Lines connecting domains (edges) represent significant similarity between domains 
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(above combined score 5). Different node colors were mapped for different SCOP superfamilies; 
Nucleic acid binding domains: blue, Bacterial enterotoxins: purple, TIMP-like: yellow, Heme 
chaperon CcmE: light blue, Hypothetical protein YgiW: dark yellow, MOP-like: green, N-
terminal domain of lysozyme gp5: red. The edge colors represent the combined score values; 
the higher the value the lighter the color (from black to white). One exception is the light 
purple edge connecting MOP-like domains (green circles) and Nucleic acid-binding domains 
(blue circles). This edge is below the significant score but added to show the connectivity. 

 

While most similarity links are confident with significant score, one link colored 

in light pink connecting MOP-like domains and Nucleic-acid binding domains are below 

the significant score threshold. MOP-like domains are indeed quite different from other 

proteins in the OB-fold. MOP-like domains bind small molecule and use different binding 

site different from other members. The binding site for small molecule is at the interface 

between the homo-dimer. 

 One other interesting feature of this cluster is that the domains form two big 

groups within the cluster as shown in Figure 33. Those two groups are functional groups; 

the nucleic acid-binding proteins (denoted as blue circles) in the left group are majorly 

single strand binding proteins and the nucleic acid-binding proteins in the right group 

are majorly double strand binding domains. Also the left group has more diverse 

functions than the lower group. From this observation, it is tempting to argue that the 

evolutionary origin of OB-fold might be in the single strand binding domains. Again, it 

needs more extensive study to have definite conclusion. 

Within the upper group the bacterial enterotoxins also form two distinct groups; 

the left group consist of AB5 toxins that binds oligosaccharides on the cell surface and 

the right group is superantigen that bind T-cell receptors and MHC complexes. This 
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might indicate that those two bacterial enterotoxins evolved independently from 

nucleic acid binding OB-fold proteins. 

 

4.2.2.2 Canonical IF3-like domains (Cluster 2859) 

This cluster contains proteins of core structure beta-alpha-beta-alpha-beta(x2) 

(Figure 34). Three superfamilies are clustered; IF3 C-terminal domain, AlbA-like, and 

YhbY-like superfamilies. IF3 C-terminal domain binds to ribosome on the two helices 

(Pioletti et al, 2001). AlbA proteins probably bind DNA on the same surface (Chou et al, 

2003). YhbY proteins also probably bind RNA on the same helical surface (Liu & Wyss, 

2004). Given the functional information of those proteins, the proteins in this cluster 

might be homologous. But the sequence conservation was hard to detect. 

IF3-like fold proteins in defined in SCOP database are split into 5 different 

clusters due to structural features, such as trimerization (cluster 1119, RNA 3’-terminal 

phosphate cyclase superfamily), relatively parallel helix interation (cluster 762, SirA-like 

superfamily), missing first strand (cluster 3822, R3H domain), and wider distance 

between two helices (cluster 2062, C-terminal domain of ProRS). Notably, all the 

proteins in the IF3-like fold are implicated to interact with DNA or RNA except SirA-like 

proteins. SirA proteins are implicated in disulfide bond formation. However the 

functional site for RNA 3’-terminal phosphate cyclases and R3H proteins probably 

different from other DNA/RNA interacting proteins in this fold. 
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Figure 34 Representative structures in cluster 2859. The left structure is IF-3 protein and the 
middle structure is AlbA protein. The right structure is YhbY protein. All proteins in color blue 
to red color are equivalent domains. Also all equivalent secondary structural elements are in 
the same color. The middle structure (AlbA protein) was shown in homo-dimeric status. The 
dimer partner is shown in gray.  

 

4.2.3 Partial similarity, unlikely in homology 

Four helical bundles (Cluster 319) 

family merge; superfamily merge; fold break; 

Note: Four helical bundle forms the structural core of proteins in the cluster. Interestingly, bromodomain-
like fold and four-helical up-and-down bundles are mirror images. They are connected through I/LWEQ 
domains. Partial alignments between fold groups; 3 helices aligned.  

Class Fold Superfamily Ndom Representative SCOPid 

a 

A middle domain 
of Talin 1 

A middle domain of Talin 1 1 d1sj7a1 

I/LWEQ domain I/LWEQ domain 2 d1r0da_ 

Four-helical up-
and-down bundle 

Apolipoprotein 1 d1gs9a_ 

Histidine-containing phosphotransfer 
domain, HPT domain 

6 
d1y6da_ d1c02a_ 
d2a0b__ d1sr2a_ 

d1i5na_ 

Bacterial GAP domain 3 d1g4us1 

Outer surface protein C (OspC) 1 d1f1ma_ 

FAT domain of focal adhesion kinase 1 d1k04a_ 

Oxygen-evolving enhancer protein 3, 1 d1nzea_ 

Flagellar export chaperone FliS 2 d1orja_ 

Aspartate receptor, ligand-binding domain 1 d2liga_ 

Nickel-containing superoxide dismutase, 1 d1t6ua_ 
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NiSOD 

Mannose-6-phosphate receptor binding 
protein 1 (Tip47), C-terminal domain 

1 d1szia_ 

Domain from hypothetical 
2610208m17rik protein 

1 d1ug7a_ 

TrmE connector domain 1 d1xzpa1 

Cytochromes 7 d1bbha_ d256ba_ 

alpha-catenin/vinculin 11 d1t01a1 

Bromodomain-
like 

Acyl-CoA dehydrogenase C-terminal 
domain-like 

8 d1w07a2 d1ivha1 

alpha-ketoacid dehydrogenase kinase, N-
terminal domain 

2 d1gkza1 

Plant invertase/pectin methylesterase 
inhibitor 

2 d1rj1a_ 

Mob1/phocein 1 d1pi1a_ 

STAT-like 
CAPPD, an extracellular domain of 

amyloid beta A4 protein 
1 d1rw6a_ 

 

Coiled coil proteins (Cluster 964) 

family merge; superfamily merge; fold break; 

Note: Proteins in this cluster share coiled coil structural core similarity. The most similar proteins between 
superfamilies are d1avo.1 and d1i4da_ (Dali Z-score 9 and HHsearch 0.9). DNA repair protein MutS domain 
III are quite different from the other two superfamilies. 

Class Fold Superfamily Ndom 
Representative 

SCOPid 

a 

DNA repair protein MutS, 
domain III 

DNA repair protein MutS, 
domain III 

2 d1e3ma1 

BAR/IMD domain-like BAR/IMD domain-like 2 d1i4da_ d1urua_ 

Four-helical up-and-down 
bundle 

Proteasome activator reg(alpha) 1 d1avo.1 

 

Hsp33 & GFP (Cluster 1729) 

family merge; superfamily merge; fold merge; 

Note: Surprisingly high structure similarity score between barrel protein and two beta-sheets with a helix 
inside. (Dali Z-score 6).  

Class Fold Superfamily Ndom Representative SCOPid 

a+b 
Hsp33 domain Hsp33 domain 3 d1hw7a_ 

GFP-like GFP-like 3 d1ggxa_ d1gl4a1 

 
Table 7 Summary for clusters in “partial similarity, unlikely homology” category. The legend is 
same as Table 2. 
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4.2.3.1 Coiled coil proteins (Cluster 964) 

This cluster contains many different coiled coil proteins. They are BAR/IMD 

domain-like proteins, DNA repair protein MutS domain III, and proteasome activator reg 

(alpha).  

Since they are all alpha helical proteins, they share structural similarities came 

from this alpha helical packing. The structural similarity between them measured by 

DaliLite Z score is close to 9 that is quite high score. This high score, however, just reflect 

the fact that their structural alignment is quite long over 120 or more residues were 

aligned by matching long helices (Figure 35). One other thing should be mentioned is 

that HHsearch probability is also quite high 0.9 or 90% but the alignments from 

HHsearch are very short (10 residues) and meaningless. This high HHsearch score came 

from the secondary structure matching and amino acid composition bias. In general 

significant structural similarity and sequence similarity are quite strong evidence for 

homology but those similarity scores need to be considered based on the quality (or 

correctness) of alignments. 
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Figure 35 Representative structures from Cluster 964. The left structure is BAR/IMD domain 
like and the right structure is Four-helical up-and-down bundle structure. Both structures are 
colored from blue to red. Blue ends are N-termini and red ends are C-termini. 

 

4.2.3.2 Cluster 1729: Hsp33 and GFP-like proteins 

This cluster contains Hsp33 (Heat Shock Protein 33) and GFP (Green Fluorescent 

Protein)-like fold proteins. As the name implies, Hsp33 is a molecular chaperone. Hsp33 

is different from other chaperon in the regulation of chaperone function since Hsp33 is 

induced by redox potential change by the oxidizing environment (Vijayalakshmi et al, 

2001). GFP proteins emit fluorescent light and extensively used in laboratories.  

Hsp33 and GFP fold are different in their three dimensional shape. The 

architecture of Hsp33 is two beta sheet that flanked by alpha helices packed against 

each other with a long helix inside. The architecture of GFP is a perfect beta barrel with 

a helix inside of the barrel. The DaliLite Z-score 6 between GFP and Hsp33 is very 

surprising score given their architectural and topological differences (Figure 36). 

However there is no sequence, structural or functional evidence that the two proteins 

share ancestors, since this structural similarity detected by structure comparison 

programs are spurious and random similarity.  
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Figure 36 Representative structures from cluster 1729. The left structure is Hsp33 and the right 
structure is Green Fluorescent Protein (GFP). Structures are colored from blue to red. The N-
terminal ends are colored in blue and the C-terminal ends are colored in red. 

 

4.2.4 No Similarity, wrong cluster 

Mirror images (Cluster 363) 

family merge; superfamily merge; fold break; 

Note: mirror image 

Class Fold Superfamily Ndom Representative SCOPid 

b 

Single-
stranded right-
handed beta-

helix 

Pectin lyase-like 19 
d1rwra_ d1daba_ d1ofla_ d1ru4a_ 

d1tyv__ d1bhe__ d1gq8a_ d1bn8a_ 
d1qcxa_ d1ogmx2 d1h80a_ 

Alpha subunit of glutamate 
synthase, C-terminal domain 

1 d1ofda1 

C-terminal domain of 
adenylylcyclase associated 

protein 
2 d1k4za_ 

Stabilizer of iron transporter 
SufD 

1 d1vh4a_ 

Single-
stranded left-
handed beta-

helix 

Trimeric LpxA-like enzymes 11 
d1fxja1 d1j2za_ d1qrea_ d1ocxa_ 

d1tdta_ d1ssqa_ 

An insect antifreeze protein 1 d1l0sa_ 

Adhesin YadA, collagen-binding 
domain 

1 d1p9ha_ 
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Table 8 Summary of cluster in “No similarity, wrong cluster” category. Table legend is the same 
as in Table 2. 

 

4.2.4.1 Mirror images (Cluster 363) 

Cluster 363 contains right handed single stranded beta-helix and left handed 

single stranded beta-helices. Since the two folds do not have any structural similarity, 

this cluster is clearly wrong. This cluster is formed because the wrongly high score of the 

most influencing DaliLite score. The program DaliLite uses contact matrix similarity to 

quantify the similarity between structures. And the chirality information is lost when the 

contact matrix is compared. In general, this loss of information does not cause any 

problem, but this regular left-handed beta-helix and right-handed beta-helix was not 

distinguished by the contact matrix. This problem will be fixed by checking the chirality. 

 

 

Figure 37 The representative structures in cluster 363. The left structure is single-stranded left 
handed beta-helix and the right structure is single-stranded right handed beta-helix. The 
structures are colored from blue to red. Blue color represents N-terminus and red color 
represents C-terminus. 
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CHAPTER 5  

Concluding Remarks 

Homology inference is one of classical topic in computational biology but still an 

ongoing quest for computational biologist. Many homology inference methods are 

developed in searching sequence similarity or structural similarities. But after proteins 

had diverged and found their own functional niche in the ecological environments (i.e. 

the molecular, cellular, or organismal context) and changed into quite different 

sequences and structures, it is very challenging task to elucidate their true evolutionary 

history.  

The work described in this dissertation is can viewed on the perspective of 

finding homologous proteins without consulting previous knowledge or gold standard. 

This procedure of extracting new rules without consulting gold standard (commonly 

known as clustering analysis) is, however, very challenging task and one of most 

extensively studied area. In bigger view of scientific activities, this clustering analysis is 

also one of versatile technique used by researchers in vast array of expertise, since the 

core idea of extracting information without previous knowledge is indeed a very 

appealing to researchers in many fields of studies. Also it should be emphasized that the 

work described in this dissertation is not the first one using clustering in protein 

classification. Already a large body of research was done on this particular subject. 
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One might ask for the validity of the basic assumption at this point; why do we 

need to develop an automatic classification procedure (or clustering analysis procedure) 

to classify proteins? One generally accepted answer is that the number of newly found 

sequences and structures are beyond human ability to make good classification. In 

another point of view, the answer might be that the automated classification procedure 

might simply filter likely homologs out of vast number of non-homologs. This will reduce 

the effort of experts which can be already a big success. However, this modest goal will 

be naturally achieved if we try to make a automated classification procedure that is 

comparable (not necessarily better than experts) to experts in the field like SCOP 

database or CATH (in the sense this is semi-curated by experts not entirely automatic).  

The main focus in previous research of the field of protein classification was on 

developing better algorithms to fix problems in similarity measures. Even though 

similarity measures are generally good to detect strong similarities, especially sequence 

similarity measures are very accurate by the endeavors of many brilliant researchers in 

the field of remote sequence similarity search, the similarity measure inevitably makes 

some spurious errors because these similarity measures are statistical in nature. Even if 

the error rate is very low, extensive comparison of proteins, i.e. the dimension of the 

similarity matrix for 7000 proteins is 7000 times 7000 ~=49,000,000, naturally increases 

the number of errors by sheer large number of comparisons. This is why in this study we 

combined many different similarity measures. Another reason to combine is that it 

would be beneficial to combine information from different sources, i.e. sequence and 
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structure. Indeed combining information help to have better clustering, as expected. 

This combination of information and building better classification was largely neglected 

in the field. 

Beside combining and making better similarity measure, to achieve more 

accurate classification (i.e. comparable to manual classification or low errors in 

classification) we developed a stringent clustering method. This clustering method 

developed and termed as self consistency grouping (SCG) is an appealing methodology 

in not making errors because it requires strict criterion that all proteins should be more 

similar to form a cluster (details in section 3.2). Indeed this requirement is very strict 

and the clusters were very small. Since the methodology is very sensitive to the quality 

of similarity measure, SCG was used as a tool to combine different information. SCG is 

now became one of few tools to combine information without consulting previous 

known examples (or training set). It should be noted that after the combination of 

scores, the quality of the “combined similarity measure” was still low. There are possibly 

several reasons; 1) the combination was done in linear way. Since the main focus was to 

show that the combination works, the simplest way was chosen. 2) the normalization 

might be inadequate. As shown in the over-splitting in small or abundant proteins, like 

HTH or Rossmann-like folds, the simple normalization by Z-score without removing 

homologous protein made the same normalized score have different significance in 

different kind of proteins. 3) The number of scores tried might not enough to achieve 

higher quality.  
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One of the ambitious future goals is to establish better reference or gold 

standard database. Currently, SCOP database is regarded as a gold standard. Even 

though SCOP is one of best available resource, it is not perfect, as shown by the deep 

analysis done in this work. It is possible that the quality of automated classifications 

were graded lower than the actual quality because of the imperfect reference. The work 

described in this thesis possibly contributes to the field by iteratively improving 

reference database.  This work started from SCOP domains and the first version of 

automated classification is finished. Based on the manual analysis we can start second 

round of refined domains (domain definitions are sometimes wrong as we found during 

analyses) with improved reference. This improved reference can be built by combining 

first version of automatic classification result with SCOP database result. After each 

iteration, the reference database can be closer to the true evolutionary classification 

and apart from initial starting point SCOP database. 

Besides protein classification, there are many different future research 

directions. Since databases of millions of pairwise sequence comparisons and structural 

comparisons were produced, those databases can be very useful to any large scale 

sequence-structure-function relationship studies. Those databases already used in 

improving profile-profile alignment methods and remote similarity search methods. One 

interesting new research might be studying the power of sequence positional 

correlation in improving the quality of protein structure predictions. 
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