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Proteins constitute the functional machinery of cells and are prime candidates for disease 

marker discovery. Mass spectrometry-based proteomics biomarker discovery holds the 

ability to interrogate a constellation of proteins simultaneously in a high-throughput 

manner to uncover a panel of markers that are specific to the presence of a disease. 

However, the rate of introduction of novel biomarkers with clinical currency has declined 

in the past few years due to challenges faced by both the discovery and validation stages. 

Surface retentate chemistry-mass spectrometry is a powerful platform that allows on-chip 

simplification of complex biological samples to better match the current dynamic range 
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of mass spectrometers. Initial reports on differential protein profiling using this approach 

produced profiles with high sensitivities and specificities for disease classification. As 

with any maturing technology, issues that were overlooked during its introduction are 

now the main barriers to its clinical utility. The improved workflow described here aims 

to address some of these pending issues. Specifically, the experimental design 

incorporated knowledge of the disease pathway into sample selection, elected sample 

sources that are rich in diagnostic markers, and adopted biological and technical 

replicates to minimize variance. To ensure reproducibility, complete automation of the 

process from sample preparation to data acquisition was incorporated along with the 

adoption of a high performance mass spectrometer with minimal mass drift. A robust data 

analysis approach was implemented to overcome the issue of overfitting and to 

effectively trim down the list of candidate biomarkers to the selected few with true 

discriminatory power to facilitate downstream validation. As a demonstration of the 

robustness and utility of the workflow, profiling studies were performed on two 

autoimmune diseases. Protein profiles with high mass peak fidelity were obtained with 

high discriminatory power. Selective differential peaks were further investigated and 

confirmed to display differential levels in clinical samples. Validation in a larger sample 

set should determine the diagnostic potential of these markers for clinical application. 

Finally, a high-throughput study is reported showing that peptoids are, in general, a 

relatively more cell permeable class of molecules than peptides, rendering them ideal for 

drug development to target disease biomarkers.  
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CHAPTER ONE 
Introduction 

 
1.1 THE BIRTH OF PROTEOMICS 

 
The Human Genome Project was officially completed in 2003 [1, 2]. The approximately three 

billion nucleotides sequenced contain within them a trove of cryptic information that ultimately 

dictates the synthesis of diverse molecules that govern the human body. A surprising discovery 

from this massive, international endeavor was that the human genome is represented by ca. 

30,000 genes, which is only twice as many as less sophisticated organisms such as the worm or 

the fly [2]. It was further revealed that only between 21,000 and 23,000 are protein-coding genes 

[3, 4] of which a meager 10,000 are active at any given time to reflect the current physiological 

state of the cell. This reinforces the notion that cellular processes are built up by complex 

networks of specific interactions of protein molecules whose diversity, structural and functional 

information cannot be ascertained from the genomic sequences alone.  

 Consequently, attention was shifted onto the proteome, which by definition is a dynamic 

collection of proteins encoded by the genome that demonstrate variation between individuals, 

between cell types, and between entities of the same type but under different pathological and 

physiological conditions [5, 6].  The study of the proteome spawned the new field of proteomics, 

which now evokes not only the identification and quantification of all the proteins in any given 

cell, but also the set of all protein isoforms and modifications, the interactions between them, 

their localization, turnover, activities and function [7].  

The sudden heightened interest in proteomics was propelled by two main concurrent 

scientific advances: the availability of gene and genomic sequence databases, and technological 

advances in protein analytical tools. Even though the study of protein structure and function has 

been the focus of biochemical research for years, determining the identity of proteins was 

difficult because of a lack of sensitive and rapid analytical methods for protein characterization 

(such as the attendant polymerase chain reaction and automated sequencing technologies that are   
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readily available for DNA analysis in genomics). These limitations were overcome by the 

emergence of mass spectrometry with soft ionization techniques such as matrix-assisted laser 

desorption/ionization (MALDI) introduced by Tanaka et al. in 1988 [8, 9] and electrospray 

ionization (ESI) introduced by Fenn et al. [10] at around the same time. Both of these 

revolutionary technologies garnered the Nobel Prize in Chemistry in 2002. These techniques 

allow peptide and protein structures to be retained during the ionization process without inducing 

fragmentation, and when coupled with the availability of the entire human coding sequence in 

genome databases, enable the identification of proteins and determination of their primary 

structure in a high-throughput, rapid and facile manner [11]. Proteomics was further facilitated in 

large-scale protein analyses by the subsequent seeding of the auxiliary field of bioinformatics 

where elaborate computational tools were conceived to store, process, analyze and interpret the 

large amounts of data generated.  

To date, mass spectrometry-based proteomics encompass three main areas of research: (i) 

protein identification initiatives to annotate all proteins within a biological specimen as 

coordinated by the Human Proteome Organization (HUPO), (ii) biomarker search in body fluids, 

cells and tissues for disease diagnosis, prognosis and response to therapeutic treatments and (iii) 

interrogation of protein-protein interactions to identify and characterize protein-binding partners. 

This dissertation will only focus on the application of mass spectrometry in biomarker discovery. 
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1.2 PROTEIN BIOMARKERS 

 
1.2.1 The case for proteins 

 

The highly acclaimed genomic blueprint of our species made available by the Genome Project 

has yet to fulfill its promise of revolutionizing biology and medicine by unraveling causal 

relationships between genes and disease onset. Indeed, the baton has now been passed on to 

proteomics. In retrospect, this is hardly surprising as genetic composition is a static state which at 

best predicts the participation of proteins in a cell, whereas cell operation is a dynamic process 

orchestrated by expressed proteins. Proteins are the functional cellular entities that partake in 

almost all the biochemical activities in the cell, ranging from transcription factors and enzymes 

involved in cellular pathways to antibodies and cytokines that dominate the immune response. 

 A protein’s function is dependent on its structure and complex interactions with other 

biomolecules, none of which can be predicted accurately from the sequence information alone. 

Studies have shown that there is a poor correlation (<0.5) between mRNA and protein expression 

levels [12-14]. This can be attributed to a myriad of post-transcriptional regulatory mechanisms. 

Moreover, a single gene can encode multiple different proteins through the process of alternative 

splicing of primary transcripts where multiple mature transcripts can be obtained from the same 

gene resulting in the translation of related but different proteins (alternative splice variants), and 

from the presence of sequence polymorphisms. This disjunction between mRNA and protein 

levels is further amplified by the greater than 200 post-translational modifications (PTMs) [15] 

that could embellish any protein in the cell [13, 16]. 

Furthermore, what makes biomarker discovery at the protein level so appealing is that the 

onset of diseases causes the protein composition of the system to change to reflect its new disease 

state. This is illustrated in Figure 1.1 which depicts the general time course of development of 

autoimmune diseases, such as narcolepsy, Type 1 diabetes and multiple sclerosis. Autoimmune 
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disease patients are usually genetically predisposed and are positive for susceptibility genes from 

the human leukocyte antigen or HLA region. However, being positive for these genes does not 

always cause the disease to develop. The precipitation of the disease is usually brought about by 

environmental factors. In the case of neurodegenerative diseases, upon exposure to these 

environmental factors, the neurons begin to sustain minor injury. With time, the number of 

neurons affected will reach a threshold level where clinical symptoms begin to appear. The 

pathogenesis of these diseases usually begins 5 to 10 years before early symptoms are presented. 

Therefore, direct analysis at the protein level provides a more encompassing view of critical 

changes that occur at the molecular level due to a disease. Proteomics not only offers the 

capability to confirm the presence of these disease-related proteins but also provides a direct 

measure of their abundance. 

 
 

 
 

Figure 1.1 Model depicting development of narcolepsy. Disease onset usually begins at the 

molecular level long before presentation of symptoms. [17] 
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1.2.2 Protein biomarkers as diagnostic entities 

 

A biomarker is defined as a characteristic that is objectively measured and evaluated as an 

indicator of normal biologic processes, pathogenic processes, or pharmacologic response to a 

therapeutic intervention [18]. Biomarkers can come from many places, including transcriptional 

profiling and DNA methylation studies in cancer [19] and metabolomics profiling studies in 

metabolic diseases [20]. Genetic biomarkers do not change with time or age and can be good 

predictors of disease susceptibility risk and responsiveness to therapeutic regimes. Unfortunately, 

they are not suitable for screening or confirmatory diagnosis as being positive for a susceptibility 

gene does not guarantee disease precipitation. As mentioned above, environmental factors are 

culpable for disease onset in complex diseases such as cancer and autoimmune conditions and 

their influence is reflected in the perturbation of the cell’s proteome composition. As such, the 

proteome is likely the most ubiquitously affected in disease and for this very reason, protein 

biomarkers are actively sought to complement genetic biomarkers. Proteomics can contribute 

directly to biomarker and drug development as almost all drugs are directed against proteins with 

the major exception of genotoxic anti-cancer drugs. Furthermore, the proteomic measurement 

already delivers the desired end point, namely the protein expression level of the gene of interest. 

The search for biomarkers in proteins has an established history in clinical chemistry, with 

precedences set by the likes of prostate-specific antigen (PSA) for the diagnosis of prostate 

cancer, Bence Jones Protein in urine for multiple myeloma, and CA-125 for ovarian cancer.  

There has been a surge of enthusiasm surrounding molecular diagnostics due to its array 

of applications in disease management. Biomarkers are most commonly utilized for diagnosis of 

disease in established cases (e.g. elevated blood glucose concentration for the diagnosis of 

diabetes mellitus). Biomarkers are also a role player in the early detection of disease. Diagnosis in 

the asymptomatic early stages coupled with early intervention dramatically improves survival 

rates as seen in cancer [21]. Novel disease markers can contribute to this as an add on to the 
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current armamentarium of diagnostic tools by presenting itself as a primary non-invasive test 

before a more involved procedure is performed, such as measuring PSA in blood for early 

diagnosis prior to confirmatory biopsies. In addition to early detection, molecular markers can 

also serve as a tool for staging of disease, in the hope that the quality of life of the patients would 

be dramatically improved when timely interventions could be introduced at a more treatable stage 

of a disease. Novel protein biomarkers may also serve as great candidate therapeutic targets for 

drug development [22].  

Protein molecular markers are assuming a prominent role in the prediction of drug 

efficacy with the dawn of personalized medicine. This is exemplified by the drug Herceptin 

(Genentech) which is only effective in breast cancer patients who express the HER2 biomarker, 

and Gleevec (Novartis) which is ineffective against chronic myeloid leukemia patients who have 

a mutation in the marker BCR-ABL. Due to their indispensable value for monitoring drug 

efficacy, treatment selection and dosage determination, it may be plausible for the US Food and 

Drug Administration (FDA) to require a biomarker to accompany each drug that is destined for 

the consumer market in the near future.  

In spite of the importance of protein markers, the rate of introduction of novel biomarkers 

into clinical practice is extremely disappointing [23, 24]. Indeed, since 1998, the rate of 

introduction of new protein analytes approved by the FDA has fallen to an average of one per 

year [25]. In cancer screening, only a handful of markers have become widely accepted by the 

clinical community, including cancer antigens 15.3, 19.9 and 125, carcinogenic embryonic 

antigen, PSA, and human papillomavirus, to name a few [26]. These scarce biomarkers 

themselves suffer from low sensitivity and specificity. For example, CA-125 which was adopted 

as a marker for ovarian cancer, is only effective in the advanced stages but not early stages, with a 

positive predictive value (PPV) of only 10% due to the fact that CA-125 is also expressed in other 

diseases [27]. Serum PSA has been adopted as a monitoring test for prostate cancer since the 

1980s, successfully impacting disease management and monitoring in prostate cancer from 
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greatly reduced presentation of men with advanced stages of the disease. However, its purported 

high sensitivity is shadowed by its low specificity of only 20 to 40% and failure to detect the 

majority of prostate cancers, including those that are high grade and those with PSA levels below 

4 ng/ml [28]. Because PSA is prostate specific, and not prostate cancer specific, increased 

concentrations of PSA are also found in benign prostatic hyperplasia, acute and chronic 

prostatitis, and prostatic intraepithelial neoplasia [29]. 

There is an urgent need for biomarkers that are disease specific to improve diagnosis, 

guide molecularly targeted therapy and monitor therapeutic response across a wide spectrum of 

disease. For heterogeneous diseases like cancer and autoimmune conditions, it is probably 

impossible to unearth a single ‘magic bullet’ marker that will detect all subtypes with high 

specificity and sensitivity. However, both sensitivity and specificity can be attained via a panel of 

biomarkers. There is growing consensus that multiple markers will be required for most 

diagnostic applications in the future. A pattern of multiple biomarkers will undoubtedly contain a 

higher level of discriminatory information compared to a single biomarker alone, particularly for 

large heterogeneous patient populations, as confirmed in several recent publications [30, 31]. 
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1.3 PROTEOMICS BIOMARKER DISCOVERY 

 
Comparative proteomics showcases a platform that is suitable for the identification and even the 

verification of the novel biomarker panels. The hypothesis is that the proteome of biological 

samples from disease patients will vary dramatically from those of healthy, control patients and 

that this difference is attributable to the differential proteins that are either directly related to the 

disease pathogenesis or a consequence of it. Therefore, semiquantitative comparisons of relative 

protein abundance between disease and control patient samples can be used to identify proteins 

that are differentially present [32-34] to populate lists of potential biomarkers. This determination 

of the relative or absolute concentration of these molecules across sizeable number of specimens 

represents a key step toward providing insight into the physiological significance or diagnostic 

potential of the individual proteins. The era of unconventional discovery-based research, in lieu 

of its hypothesis-driven counterpart, has officially arrived, made feasible by new technologies 

that allow the proteome to be measured in greater detail and with increase speed. 

De novo proteomics biomarker discovery demands a platform that is capable of detecting 

and quantifying protein marker candidates present at or below ng/ml levels in blood, where many 

disease-specific markers with clinical currency are thought to reside. PSA, for example, exists in 

the low ng/ml concentration in serum. Capture agents such as antibodies confer the sensitivity 

required and have been used in protein profiling array studies [35, 36]. This approach, however, 

is limited by the modest number of antibodies of sufficient quality that are currently available. 

The limitations of affinity approaches essentially leave mass spectrometry (MS) as the principal 

enabling technology for unbiased candidate protein marker discovery.  

MS-based proteomics biomarker discovery is poised to address the paucity of biomarkers 

due to its ability to interrogate a constellation of proteins simultaneously in a high-throughput 

manner. In fact, recent biomarker discovery studies using unbiased approaches that couple high 

performance mass spectrometers and extensive sample processing have been fruitful in the 
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detection of low abundance proteins [37, 38], making MS the current preferred strategy for 

discovery of diagnostic, prognostic, and therapeutic protein biomarkers. Indeed, MS has the 

potential to revolutionize diagnostics by facilitating biomarker discovery, generating proteomic 

profiles as disease signatures [39], enabling tissue imaging [40] and quantifying biomarker levels 

[41]. However, as discussed below, this considerable potential has yet to be realized for a variety 

of reasons. 

 

1.3.1 Challenges in proteomics biomarker discovery 

 

Proteomics biomarker discovery is still in its infancy and faces numerous biological and technical 

hurdles that have to be overcome before it can deliver its promise of populating the list of 

candidate protein markers. These concerns include, but are not limited to, the enormous range of 

protein concentrations in complex samples such as blood, the limited dynamic range of current 

proteomic technologies, and the statistical challenges inherent in high-dimensionality data sets 

populated by comparatively few samples. 

 

1.3.1.1 Proteome complexity 
 
By far, blood is the biological sample of choice for numerous reasons: (i) blood is an established 

biological sample used in clinical diagnosis with assays to measure >100 proteins already in 

existence [42], (ii) it can be procured relatively non-invasively and is easy to handle, (iii) it is rich 

in proteins (estimated to contain tens of thousands of core proteins) at an average concentration of 

80 mg/ml, and (iv) a majority of the protein constituents of the body can be found in blood. It is a 

circulating representation of all body tissues and of both physiological and pathological processes 

[23]. A multiplex of disease-specific analytes may be detectable in the blood, leading to 

convenience of testing [43]. 
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The complexity of the blood proteome is a double-edged sword. The dynamic range of 

protein abundance spans ten to eleven orders of magnitude [23] (Figs. 1.2 and 1.3). Albumin 

itself exists at a normal concentration of 50 mg/ml in blood, overshadowing the low abundance, 

important disease biomarkers (such as PSA and Interleukin-6) that are usually present in the 

relatively low concentrations of ng and pg/ml due to massive dilution post-leakage into peripheral 

blood from diseased tissues. Indeed, the ten or so high abundance polypeptides that dominate the 

human plasma originate from a few major tissues, corroborating the search for diagnostic markers 

in the low abundance population if disorders of other tissues are of interest. Since low abundance 

proteins represent some of the more functionally important gene products, such as inflammatory 

molecules, transcription factors, and other regulatory proteins, whose aberrant expression 

contributes to disease onset, overcoming this dynamic range is essential to increase detection 

sensitivity. Cell line homogenates, tissue lysates and alternative biological fluids, such as urine 

and cerebrospinal fluid, which are also amenable for discovery efforts, also pose the dynamic 

range challenge, albeit to a lesser extent. 

 

 
 
 

Figure 1.2 Relative abundance of proteins in human plasma. Abundance is plotted on a log 

scale spanning 12 orders of magnitude. Hemoglobin is included (far left) for comparison. [23] 
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Figure 1.3 Pie chart representing the relative contribution of proteins within plasma. 

Twenty-two proteins constitute ~99% of the protein content of plasma. [44] 

 
1.3.1.2 Limitations of current proteomic technologies 
 
The three main challenges in proteomic technologies today are poor sensitivity, low resolution, 

and poor reproducibility. Sensitivity is especially important given the aforementioned dynamic 

range of proteins. In order to be flagged as a potential biomarker, the low abundance molecular 

markers must be detected and quantified in the presence of an overwhelming presence of peptides 

derived from the most abundant proteins. Unfortunately, these low abundance markers are almost 

always below the limit of detection of current assays designed for unbiased biomarker discovery. 

Although contemporary mass spectrometers can achieve attomolar sensitivities for the detection 

of isolated compounds, their working dynamic range typically spans only three orders of 

magnitude within a single mass spectrum. Significant ion suppression of lower abundance 

analytes in plasma masks ion signals of less abundant species with similar mass-to-charge (m/z) 

ratios (Fig. 1.4). Low resolution instruments with poor mass accuracy also drastically limit the 

sensitive and specific detection of low abundance analytes.  

Due to the presence of protein isoforms, a separation technique with high resolving 

power is necessary to simplify the proteome into simpler mixtures for sufficient depth of 
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coverage of complex samples. As such, most separation techniques are multidimensional, 

capitalizing on the different physicochemical properties of proteins. As a consequence, a single 

sample is often separated into tens of fractions, each requiring several hours of on-instrument 

analysis time, markedly limiting sample throughput.  

Reproducibility is a formidable challenge in proteomics as exemplified by the high 

number of potential protein and peptide biomarkers discovered by scientists from various labs, 

many of which are non-overlapping for the same disease investigated. Demonstration of 

reproducibility is crucial to impart confidence on the discovered biomarkers and on the assay 

employed. 

 

 

A 

 

B

Figure 1.4   Ion suppression effect in MALDI TOF MS. (A) Mass spectra of 

gramicidin S and of a 1:2 mixture of gramicidin S and substance P in dihydroxybenzoic acid 

matrix. Gramicidin S concentration is the same in both spectra, taken under identical conditions. 

[45] (B) A mass spectrum of a sample consisting of four protein standards in equimolar 

concentrations in sinapinic acid matrix. [46] 
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Unbiased protein biomarker discovery in human plasma has been largely unsuccessful to 

date. This is reflected in the disappointing performance of attempts at large-scale characterization 

of the human plasma proteome. For instance, the recent reanalysis of the 3,020 proteins initially 

identified by HUPO only resulted in 889 proteins identified with at least a 95% confidence level 

[47, 48]. This suggests that <10% of the core plasma proteome is being effectively sampled with 

current approaches, a small fraction biased towards proteins of higher abundance (>1 µg/ml). 

Thus, even with substantial improvements in sensitivity and mass accuracy over the past decade, 

there is a profound mismatch between complex biological protein mixtures and the capabilities of 

the MS instrumentation used to analyze them. 

 

1.3.1.3 The curse of heterogeneity 
 
In addition to the technological limitations, the inherent variability in the proteomes of different 

individuals confounds the unbiased discovery of new biomarkers. It is critical to select extremely 

well phenotyped individuals in discovery studies and to control for a great variety of factors (e.g. 

age, ethnicity, time of sample collection) when obtaining samples from a disease and control 

population. This is inherently difficult. 

 

1.4 PROTEOMICS BIOMARKER DISCOVERY IN AUTOIMMUNE DISEASES 

 
Autoimmune diseases occur in up to 3-5% of the general population [49]. Autoimmunity (Fig. 

1.5) is a consequence of the breakdown of the body’s self tolerance protection mechanisms where 

immune molecules launch an attack on self molecules mistakenly deemed to be non-self, 

culminating in inflammation and tissue damage.  

Based on the ‘single initiating antigen’ hypothesis, all autoimmune diseases are initiated 

by a response to a single antigen. As the disease progresses, the response broadens through the 

process of determinant spreading to include other parts of the same molecule and other antigens 
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in the same tissue, culminating in organ-specific and systemic autoimmune diseases (Table 1.1). 

Environmental factors that could contribute to autoimmune reactions include pathogenic 

(bacterial or viral) exposure capable of inducing molecular mimicry of self-antigens for self-

reactive T cell recognition, change of physiological state as in pregnancy which affects the 

hormonal status, or lifestyle activities such as smoking and diet [49]. 

 

 

 
 

Figure 1.5 Requirements for the development of autoimmune disease. The environment can 

trigger autoimmunity in genetically predisposed individuals under conditions of immune 

dysregulation. [50] 
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Table 1.1 Examples of organ-specific and systemic autoimmune diseases with known autoantigen 

targets. [49] 

 

1.4.1 Correlation to the HLA system 

 

Major histocompatibility complex (MHC) Class II molecules have long been implicated as 

contributors to the genetic basis of  autoimmunity [51]. The human MHC gene region encodes 

multiple HLA molecules and a number of other immunologically active molecules (Fig. 1.6). The 

alleles encoding MHC Class II proteins control the antigen specificity of the autoimmune 

response and therefore are critical determinants of immune activation. Different alleles might 

have different abilities to present peptide from the target cells to autoreactive CD4+ T cells. 

Certain Class II alleles might even predispose to positive selection and reduce negative selection 

of self-reactive T cells in the thymus during T cell maturation. 
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Figure 1.6 Map of the human MHC. C4, C2, B, complement proteins; DM, TAP, proteasomes, 

protein involved in antigen processing; HLA, human leukocyte antigen; HSP, heat shock protein; 

LT, TNF, cytokines. [52] 

 
A large number of susceptibility genes are usually implicated in common autoimmune 

diseases. Associations between particular MHC Class II alleles and autoimmune diseases are well 

documented [53, 54], especially through linkage disequilibrium, a phenomenon where some of 

the alleles expressed at one Class-II locus are found linked frequently to specific alleles at a 

neighboring locus. As a result, this confounds the association between a disease and a particular 

locus as it may reflect an effect of either the locus studied, an adjacent genetic locus, or a 

combination of both. This renders disease gene identification extremely challenging. The utility 

of genetic markers in disease prediction is limited by its low specificity where many genetically 

predisposed individuals do not develop the disease. HLA-associated autoimmune diseases are 

complex, arising as a result of the interaction of environmental influences with a polygenic 

background of susceptibility. These environmental triggers result in the alteration of the protein 
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constituents of the system, opening up the opportunity for autoimmune disease biomarker 

discovery via proteomics. 

 

1.4.2 Current proteomics studies in autoimmune diseases 
 

It has so far proven extremely difficult to develop novel protein biomarkers for autoimmune 

diseases. Due to the heterogeneity in clinical presentation and disease course, new multiparameter 

assays with improved sensitivity and specificity over current single biomarkers are gravely 

needed to detect the onset of autoimmune diseases at an early stage. 

Proteomic autoimmune studies have been reported on diseases such as Type I diabetes 

[55, 56], collagen-induced arthritis [57], rheumatoid arthritis (RA) [58-60], celiac disease [61], 

multiple sclerosis [62, 63], and lupus [64]. As is true of proteomic studies in general, the low 

throughput 2DGE-MS approach (described below) has been the method of choice.  

 

1.5 PROTEOMICS BIOMARKER DISCOVERY MODALITIES 

 
To date, the two major unbiased technology platform adopted in proteomic studies are two-

dimensional gel electrophoresis (2DGE) and MS. The dynamic range of 2DGE is 104 whereas 

that of MALDI MS is about 103. This is still 6 to 7 magnitudes less than necessary to fully probe 

the blood proteome. In an attempt to increase resolution, most analytical configurations involve 

combination of existing technologies, since none of the existing separation and identification 

methodologies alone can provide a full account of the protein composition in a complex mixture. 

Each has its own strengths and limitations. 
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1.5.1 Two-dimensional gel electrophoresis (2DGE) 
 

A popular approach in proteomic profiling experiments is the 2DGE-MS configuration (Fig. 1.7). 

Here, isoelectric focusing based on charges in the first dimension and mass separation in the 

second dimension are performed. Subsequently, protein spots with differential staining are 

excised, digested, and analyzed by MS [65-67]. Its advantages include information on PTMs and 

protein processing from its size and charged forms. Albeit successful to a certain extent, this 

technique suffers from low staining sensitivity and low throughput. It is time-consuming to pick 

all spots of interest and difficult to perform automatic data analysis to acquire the large number of 

2D gel images. Resolution is limited by protein heterogeneity that leads to spot overlap and 

obscuring of low abundance proteins that comigrate with the high abundance ones. A spot could 

represent one or a few proteins with specific charges and similar mass. The limited loading 

capacity means that 2DGE is biased to high abundance proteins. Smaller proteins, extremely 

acidic, basic, or hydrophobic proteins such as transmembrane proteins are most often 

underrepresented. Reproducibility is also a concern due to the variability between gel runs that 

confound spot matching across gels. The average coefficient of variation (CV) for 2DGE runs is 

around 20% for plasma samples and around 6% for cerebrospinal fluid (CSF) samples.  

A variation of this approach is called two-dimensional difference gel electrophoresis (2D-

DIGE) [68].  Here, the two sample groups to be compared are labeled separately with distinct 

fluorescent dyes, combined and run in a single gel. The dye-labeled samples are then viewed 

individually by scanning the gel at different wavelengths to obtain quantitative information. 

Although it circumvents the problem of spot matching between gels, it still suffers from low 

resolution and low throughput.  
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Figure 1.7 A schematic showing the two-dimensional gel approach. Two different samples, A 

and B, are applied to a ‘first dimension’ gel strip that separates the proteins based on their 

isoelectric points. Then, the strip is applied to a ‘second dimension’ SDS–PAGE gel where 

proteins are denatured and separated on the basis of size. After staining, the resulting protein 

spots are quantified. Differential spots are then excised and subject to MS analysis. [69] 

 

1.5.2 Multidimensional protein identification technology (MudPIT) 
 

The favored unbiased, MS-based approach is MudPIT (Fig. 1.8) which involves the sequential, 

multidimensional column separation of the enzymatically digested proteome of interest by strong 

cation exchange and reverse phase before on-line introduction of the eluted fractions into the 

mass spectrometer for analysis [70]. This is followed by algorithmic identification of the protein 

fragments based on the mass spectral data. Protein identification is achieved through peptide mass 

fingerprinting based on the correlation between the experimentally observed peptide masses and 

the theoretical spectra of in silico digests of proteins listed in databases using specialized 

softwares such as MASCOT or SEQUEST. Alternatively, proteins can be identified via tandem 

MS (MS/MS) peptide sequencing. Peptide sequencing is based on induction of random cleavage 
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of peptide bonds between adjacent amino acids by collision with an inert gas (e.g. nitrogen, 

helium, or argon) of the parent ion to produce fragment ions. Database searches can be performed 

using the product-ion mass spectra alone or in concert with the molecular weight of the parent ion 

to increase confidence. 

This powerful technique has proven successful in increasing the coverage of the yeast 

and blood proteomes [71-75]. The drawbacks of this approach are the risk of cross-contamination 

between samples and its high cost in throughput. It also requires a large amount of protein to 

begin with, which precludes its routine use with specimens such as scarce clinical samples. The 

amount of sample that can be loaded becomes limited when capillary columns are used for better 

sensitivity in liquid chromatography-tandem MS (LC-MS/MS). 

 

 
 

 

Figure 1.8 Workflow for multidimensional protein identification technology 

(MudPIT). Proteins are prepared, digested into constituent peptides, which are then separated by 

2D chromatography and analyzed via tandem mass spectrometry. SCX = strong cationic 

exchange; RP = reversed-phase. 
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1.5.3 Novel high-throughput biomarker discovery modalities 
 

The initial discovery phase of biomarker development has to be conducted with a statistically 

significant number of representative samples of the disease of interest while the rigorous 

validation phase calls for an even larger number of samples from the population incorporating a 

broader range of cases and controls to capture the environmental, genetic, biological and 

stochastic variation in the population to be tested. The 2DGE and MudPIT technologies 

mentioned above are not, by nature, designed to handle large number of samples. Therefore, they 

are more suitable for initial discovery efforts than for larger clinical validations. A new high-

throughput methodology that allows a facile transition from discovery to validation will 

significantly reduce the translational timeline from marker development to introduction in the 

clinical setting. The methodology will also have to find a compromise between the need for depth 

and comprehensiveness of sample proteome analysis, and the need for large sample numbers. 

Although still at their infancy, novel high-throughput protein profiling technologies are 

slowly making their way into the mainstream of proteomics studies. An up and coming 

technology utilizes the protein microarray platform to probe for autoantigens and/or 

autoantibodies in autoimmune samples. A hallmark of many autoimmune diseases is the presence 

of high-affinity, high-avidity autoantibodies. Antibodies have long been used for the diagnosis 

and classification of autoimmune disease [76]. Although still in its early stages, impressive 

studies using protein microarrays have shown great utility in discovering new autoantigens and in 

differential pattern profiling [77-81]. This platform is beyond the scope of this dissertation and 

will not be discussed further.  

Another notable high-throughput approach is the SELDI TOF MS technology which has 

garnered much interest since its introduction in the 1990s [82]. This platform is discussed below 

and forms the basis of the methodology described in Chapter 2.  
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1.6 SELDI TOF MS 

 
A mass spectrometer is comprised of three basic components: an ion source that converts analytes 

into gaseous phase ions, a mass analyzer that separates the ionized species based on their mass-to-

charge (m/z) ratios, and a detector that registers the number of ions at each m/z value. All mass 

spectrometers, regardless of ionization mode or mass analyzer used, output mass spectra which 

plot the signal intensity of the ions produced against their m/z ratios. The ionization process of an 

analyte is dependent on its intrinsic physicochemical properties which govern its ionization 

efficiency, a measure of how likely the analyte will be ionized and detected by the mass 

spectrometer. In the presence of molecules that have a higher affinity for proton sequestration 

from the ionizing matrix, the probability of the outcompeted molecules to be represented in the 

mass spectrum is lowered significantly. This phenomenon, known as ion suppression, can be 

advantageous in simplifying the complex proteome to be interrogated to just the ‘ionizable 

subproteome’.  

A protein profiling approach that relies solely on the comparison of the signal intensity of 

these mass peaks from both disease and non-disease samples to uncover candidate biomarkers has 

been making its way into the mainstream of proteomics studies. These peaks, regardless of 

whether they are identified or not, will qualify for disease marker candidacy as long as the 

variation between the two states compared is consistent and reproducible. MALDI TOF MS has 

been the preferred ionization technique for differential protein pattern profiling studies as it can 

readily be automated to handle large number of samples in a short time frame. However, due to 

its limited dynamic range and the effect of ion suppression, analysis of complex samples still 

suffer from limited depth of coverage and low representation of the low abundance proteins in the 

absence of  some form of pre-fractionation. A notable variation of this approach is surface-

enhanced laser desorption-ionization (SELDI) TOF MS, where on-chip pre-fractionation is 

coupled to MALDI TOF MS. 
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1.6.1 Fundamentals 
 

SELDI TOF MS combines surface retentate chromatographic separation of proteins on a 

ProteinChip array to the direct analysis by mass spectrometry. The surface of the array chip is 

coated with capture agents of varying chromatographic properties, including anion exchange, 

cation exchange, normal and reverse phase, and metal affinity (Fig. 1.9).  

 

 
 

Figure 1.9 Surface chemistries available on ProteinChip arrays. 

 

Complex biological samples, such as serum or CSF, are incubated on the chip until 

binding equilibrium is reached. Only a subset of the proteins (depending on the surface chemistry 

employed) in the sample binds to the chromatographic surface of the chip, and the unbound or 

weakly bound proteins are washed away. The bait region (spots on the chip with immobilized 

capture agents) containing individual captured protein samples is then overlaid with a coating of 

organic acid matrix (e.g. α-cyano-4-hydroxycinnamic acid, CHCA) which co-crystallizes and 

embeds the proteins. Then, the entire chip is introduced into the vacuum chamber of a mass 

spectrometer and each spot is ablated with a focused laser beam (at 337nm for nitrogen laser, 

355nm for Nd:YAG). The excess organic matrix which serves as an energy transfer medium 

undergoes instant sublimation, liberating the embedded protein molecules in the process, to form 

ions in the gas phase. After numerous ion-molecule collisions in the plume, single protonated 
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protein ions are formed. The positively charged ions are propelled forward in vacuum into a flight 

tube by the high positive voltage applied to the chip. The mass-to-charge ratio of each ion is 

estimated from the time it takes for the launched ion to reach the detector electrode at the end of 

the flight tube. The time it takes the ion to reach the detector is dictated by its mass, with smaller 

ions traveling faster. Consequently, the spectrum provides a ‘time-of-flight’ (TOF) signature of 

ions ordered by size (Ion signal intensity versus m/z) (Fig. 1.10).    
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Figure 1.10 Schematic showing the operation of SELDI TOF MS. Orthogonal TOF 

used for detection confers greater resolution of protein/peptide species. 

 

Protein chips offer the advantage of proteome simplification by coupling retentate 

chromatography to mass spectrometry. It enables the simultaneous analysis of thousands of 

proteins while consuming minute amount of samples compared with the more traditional 2DGE, 

facilitating the identification both of individual biomarkers and diagnostic protein patterns. It 

allows for high-throughput, rapid analysis of samples (minutes or hours for large sample sets as 

opposed to days for 2DGE and MudPIT analyses), generation of simple mass spectrum for 
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analysis since ions are predominantly singly charged, high detection sensitivity down to a few 

attomoles for short peptides and obviates the need for labeling molecules.  

In comparison to the MudPIT shotgun approach where analysis is performed at the 

peptide level, SELDI TOF MS enables protein-level analysis. Information such as the integrity of 

the original protein, its isoforms, and PTMs are preserved. MALDI TOF MS, from which SELDI 

is derived, is biased towards peptides and proteins predominantly in the low molecular weight 

(LMW) mass range. This is, in part, due to diminishing ionization efficiency with an increase in 

mass. Therefore, for the best possible reproducibility and mass accuracy using SELDI, high-

resolution MS is mandatory. Proteomic diagnostic pattern “fingerprint” analysis with SELDI 

begins with high dimensional data, where thousands of proteins are represented by peaks on the 

spectra and within this forest of ion peaks, identify patterns of LMW proteins/peptides as the 

diagnostic itself. Patterns emerging from this multiparametric analysis of mass peaks can 

potentially be of high specificity and amenable for immediate validation on blinded statistically 

significant study sets. 

 
1.6.2 SELDI studies 
 

Since its conception, SELDI has been adopted predominantly by the cancer research community 

[83-90]. The past few years have witnessed the diversification of its applications to include fields 

such as immunology [91, 92], neurology [93, 94], and toxicology [95], and across a myriad of 

biological samples such as plasma, serum, CSF, urine, gastric juices and saliva [96-99]. Although 

not mainstream, there is also precedence of this platform with promising outcomes in 

autoimmune and neurodegeneration studies such as Sjögren Syndrome [100, 101], RA [102, 103], 

and Alzheimer’s [94, 104]. 
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1.6.3 SELDI issues 
 

Published reports of the pattern profiles generated by SELDI TOF MS have suggested that this 

method yields better diagnostic sensitivities and specificities than biomarkers in current use, 

culminating in extensive publicity [39, 84]. In fact, the results were so groundbreaking that it 

prompted the US Congress to pass a resolution to urge further funding of the research while the 

government licensed rights to develop the platform into a commercial diagnostic test for early 

detection of ovarian cancer [105]. However, initial hype over this technology has been dampened 

by other reports identifying potential pitfalls [106-111], which, if left unchecked, could lead to 

false positive patients undergoing unnecessary surgery and false negatives forgoing further 

screening. These issues encompass all steps from sample procurement through data acquisition to 

data mining and must be addressed before clinical application can be instituted.  

 

1.6.3.1 Preanalytical variations 
 
The introduction of variability begins at sample collection. Once the type of sample has been 

determined, care must be taken during the patient selection process. It is imperative that the 

samples be culled from larger, clinically relevant cohorts to reduce false discovery from biased 

specimen and be sufficiently large to increase statistical power and avoid unwarranted 

generalizability [112]. Confounding factors that are unrelated to the disease under study, such as 

gender, age, and physiological states (e.g. fasting, weight gain/loss, hormonal changes due to 

pregnancy), must be controlled. Studies of diseases where genetic predisposition is implicated 

must ensure that the genetic makeup of the patients is well documented.  

Unlike DNA, proteins are extremely sensitive to storage, handling, and processing 

conditions [113, 114]. Minor deviations in sample procurement protocol, such as collection in the 

fasting or feeding state, or the posture of the patient (e.g. supine or seated position), could affect 

the analyte concentration by up to 15%, resulting in biased clustering of samples unrelated to the 
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disease profiled [115]. Many analytes, such as IL-6, exhibit very significant circadian rhythm 

and, therefore, samples for their measurement must be collected at a set time. Short-and long-

term storage conditions are also of paramount importance as the utility of the protein will likely 

be assessed from stored clinical samples. As an example, CRP is a very stable protein (up to 20 

years at –20°C) while tumor necrosis factor is rather labile, requiring sample collection on ice and 

storage at –70°C or in liquid nitrogen. Other potential factors include the type of sample tubes 

used, coagulation time for serum, and number of freeze/thaw cycles [116-119]. Standardization of 

specimen collection and handling has been initiated to minimize bias from these preanalytical 

variables [120]. 

 

1.6.3.2 Analytical variations 
 
The main criticism of SELDI is in its low reproducibility. Both biological and analytical 

variability affect the reliability of the measurement for diagnosis. The robustness of the 

methodology has to be demonstrated through reproducibility of protein patterns during data 

acquisition across different batches of chips, different operators, different sites, and different 

instrumentation. This is highly dependent on the performance of the mass spectrometer used. 

Low resolution mass spectrometers that do not compensate for the broad energy spread during the 

desorption process in MALDI can result in broad peaks with shoulders that are difficult to 

reproduce, confounding downstream data analysis. Chemical noise from interfering matrix peaks 

is also a source of dissonance in mass spectra. Low mass accuracy across spectra will generate 

irreproducible profiles. Poor analytical sensitivity is also a concern particularly when the analyte 

is present in trace amounts in complex biological materials containing high-abundance molecules. 

Pre-fractionation is an absolute requirement to uncover diagnostic markers in the ng/ml 

concentration given the dynamic range of current mass spectrometers. The ideal separation 

technology that minimizes ion suppression and optimizes the display of mass peaks and, by 

extension, the number of proteins represented in the spectra will increase the chances of 
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discovering potential markers. In addition, it also has to be compatible with MS and not involve 

extensive preparative steps so as to minimize operator bias. The analytical performance of SELDI 

must be improved such that sensitivity, specificity, and dynamic range can approximate those of 

diagnosis platforms currently in use if it is to be of clinical utility. 

 

1.6.3.3 Postanalytical variations 
 
The diagnostic potency of the protein profiles is also affected by bioinformatics artifacts during 

data mining. Data overfitting is a great concern as differential mass peaks that are biased to a 

particular algorithm during disease model building do not possess true diagnostic prowess but 

instead are incorporated by chance. As a result, a high false positive rate will ensue when they are 

applied to actual test sets. Moreover, when these peaks are pursued further for identification 

purposes, not only will they drain scarce resources and time but the futile efforts will lead no 

closer to biomarkers that can be developed into a diagnostic test. These statistical challenges 

inherent in high-dimensionality data sets populated by comparatively few samples are here to stay 

in unbiased protein profiling studies, an unfortunate inheritance from transcription profiling 

studies. A more robust data analysis approach has to be adopted to overcome this impedance and 

reestablish confidence in the candidate marker peaks.  
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CHAPTER TWO 
Methodology 

 
2.1 HIGH-THROUGHPUT PLATFORM DEVELOPMENT 

 
Presently, there does not exist a technology or experimental approach that can simultaneously 

address all the challenges listed for proteomics biomarker discovery in Section 1.3.1. Even 

though SELDI had demonstrated potential in disease classification, as with any immature 

technology, all potential sources of bias will not be apparent until it has undergone objective 

evaluation over time by different users. Since a seminal report in 2002 [1], technological 

advancements in MS instrumentation and data processing methods have allowed ongoing 

improvements to the platform [2]. In light of all these changes, the underlying principle of this 

technology remains unchanged: to utilize mass spectra generated from two different sample 

groups to perform comparative data mining by coupling MS data to heuristic pattern recognition 

and data mining algorithms for discovery of differential diagnostic peaks (Fig. 2.1). As such, the 

fidelity of the mass peaks produced is of utmost importance.  

 The ideal proteomic platform for disease biomarker discovery should be able to:  

(i) analyze thousands of proteins in parallel in a high-throughput fashion using minuscule samples 

that are readily available, (ii) simplify the proteome dramatically to confer the resolution and 

sensitivity necessary to probe for low abundance proteins and to approximate the dynamic range 

of current analytical tools and (iii) be fully automated to ensure reproducibility without being 

labor intensive. The subsequent adoption of sophisticated bioinformatics tools for rigorous data 

analysis to identify differential species should result in a panel of robust biomarkers that are 

disease specific.  
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Figure 2.1 Comparative proteomics for biomarker discovery. The mass spectra from two 

sample groups (disease and non-disease shown here) are compared via bioinformatics to seek 

diagnostic marker peaks. Two differential peaks in the disease group are indicated by arrows. 

 
 
This chapter describes an undertaking to evaluate all possible variables that are within 

our control in the SELDI-based biomarker discovery workflow, from sample processing to 

candidate marker identification. The workflow is divided into three main modules: (i) sample 

processing, (ii) data acquisition and (iii) data analysis. The primary objective is the development 

and implementation of a methodology to serve as a robust front-end biomarker discovery tool that 

will facilitate subsequent identification and verification efforts of candidate disease markers. To 

this end, the discovery process entails the unbiased binary comparison between disease and 

control samples, controlling for noise from non-disease related conditions. The immediate 

product of this phase is a list of mass peaks found to be differential between the two states 

compared based on semiquantitative assessment of their relative protein/peptide abundance in the 

MS data. The tens or hundreds of initial candidates will undergo stringent screening and be 

reduced to a smaller set of peaks that possess true discriminatory power. The second objective is 

to identify these peaks and perform preliminary verification on them. Molecular identification of 
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the putative biomarker is critical if one wishes to eventually develop a more conventional, non-

MS-based assay for the marker, such as an ELISA. This general biomarker discovery process is 

depicted in Figure 2.2. 

 

 

 
Figure 2.2 General biomarker discovery process. Preanalytical variables are addressed within 

Clinical Samples, analytical variables in Sample Processing and Protein Expression Profiling and 

postanalytical variables in Bioinformatics Analysis. 

 
The hierarchical structure of the workflow is shown in Figure 2.3. At the top of the 

hierarchy is the choice of the samples to be compared, which as mentioned previously would 

ideally control for all biological variables other than the presence or absence of disease. However, 

this is extremely difficult to achieve. The middle level of the hierarchy assays variation between 

the samples within a given group, capturing the major source of biological variation. Biological 

variations are from environmental and genetic origins in a large heterogeneous population like 

humans. The lowest level of hierarchy involves replicate runs from the same sample, and captures 

the inherent analytical variation [3].  
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The importance and optimization of the parameters involved throughout the workflow are 

detailed below. 

 

 
Figure 2.3 Experimental design to reduce biological (red) and analytical (blue) variations. 

 
 

2.2 MODULE I: SAMPLE PROCESSING 

 
This section encompasses discussion on sample source, sample pre-treatment conditions, sample 

dilution factors, and sample fractionation. Different sample processing conditions were evaluated 

as the sensitivity of the assay is largely dependent on the sample preparation than mass 

spectrometric methods. An optimized condition for the parameters in Modules I and II is defined 

as the one that provides the greatest number of peaks in the mass spectrum. The reasoning is that 

the larger the proportion of total human proteome detected, the greater the chance of finding 

proteins/peptides that are affected by the disease. 
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2.2.1 Sample source 

 

Biological samples that are amenable for proteomics biomarker discovery include cells, tissues, 

and bodily fluids. Practical and technical considerations ultimately dictate the preference of one 

source of sample over the others. Cell and tissue lysates, though applicable to this workflow, 

involve cell disruption variations that are difficult to control and represents an additional source 

of sample preparation bias. Intact tissues demand the invasive procedure of biopsy and are 

predominantly used in MS imaging experiments, such as laser capture microdissection (LCM) 

MS experiments [4, 5]. Therefore, only readily accessible biological fluids will be considered 

here as they involve minimal risk and cost to obtain.  

Blood tests are the gold standard of clinical diagnosis, making blood (plasma and serum) 

a logical fluid to use for biomarker discovery. By definition, serum is the undiluted, extracellular 

portion of blood after adequate coagulation is complete. Plasma is the virtually cell-free 

supernatant of blood containing anticoagulant obtained after centrifugation [6]. Plasma introduces 

too many preanalytical variables during collection as a result of the anticoagulants used [6]. 

Therefore, serum is more desirable, in addition to also being the most archived specimen [7]. An 

added advantage of serum is proteome simplification through the removal of fibrinogen, one of 

the top five most abundant proteins in plasma, during coagulation. In the narcolepsy study 

(Chapter 4), serum samples were obtained from the Center for Narcolepsy at Stanford University. 

Disease-specific markers that arise locally tend to experience diminishing signal with 

distance from the affected site through dilution post-leakage into the circulation. Hence, 

analyzing proximal biological fluids either close to or in direct contact with the disease site may 

enhance biomarkers concentration [8]. For example, in a study of 33 patients with ovarian cancer, 

median CA-125 levels (U/ml) were 696 in serum, 18,563 in ascites and 44,850 in cyst fluid [9]. 

Furthermore, the initial protein biomarker discovery in proximal fluid may be a surrogate for its 

availability in systemic circulation, if a blood test is the eventual goal. In the multiple sclerosis 
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study (Chapter 3), CSF samples were obtained from clinical CSF banks. CSF was chosen because 

it is in direct contact with the extracellular space in the brain, and hence diseases related to the 

central nervous system (CNS) such as multiple sclerosis will potentially affect the biochemical 

composition of this body fluid. In addition, CSF has a lower dynamic range in protein 

concentration (108) than plasma (1010) (Fig. 2.4) and this in itself is a simplification of the 

proteome to be analyzed. 

Most proteomics discovery efforts are conducted with biological materials selected to 

maximize the detection of meaningful protein differences while minimizing the sample number 

required for analysis in the interest of throughput. If the sample number is kept small (<10), the 

observed differences between the two sets of specimen are in danger of being overinterpreted 

when extrapolated to the generalized population, known as the problem of sparse data [10]. There 

is currently no consensus on the ideal minimum number of samples required for biomarker 

discovery efforts although a reasonable representative selection of marker candidates can be 

achieved from a minimum of 15 samples [11]. As a pilot study, a total of 30 samples were used in 

narcolepsy. The larger multiple sclerosis study involved 60 samples.  

Our sample sets are representative of the target population as they originate from disease 

centers that collect these samples routinely for diagnosis. Both studies are described in detail in 

Chapter 3 (Case Study I: Multiple Sclerosis) and Chapter 4 (Case Study II: Narcolepsy). 
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Figure 2.4 Relative comparison of proteome complexity of human serum (A) and 

cerebrospinal fluid (B) in 2DGE. Even though there are less proteins in CSF, the dynamic range 

between the high and low abundance proteins still exists. Molecular weight is on the y-axis, 

isoelectric point (pI) on the x-axis. 

 

2.2.2 Sample pre-treatment 

 

Pre-treating complex biological samples with urea to disrupt protein-protein interactions had been 

suggested to enhance the number of detectable mass peaks in protein profiling experiments [12]. 

This is also an appealing option as it will render the samples more compatible with downstream 

biomarker enrichment technologies like reverse phase HPLC and the two-dimensional protein 

separation platform (ProteomeLab PF2D, Beckman Coulter) that denature samples prior to 

separation. This sample pre-treatment option was evaluated by comparing the mass spectra from a 

non-treated, native serum sample and a urea-treated serum sample (Fig. 2.5) on IMAC30 

ProteinChip arrays pre-charged with nickel. The sample pre-treatment condition that produced the 
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greater number of peaks, noticeably in the LMW mass range (<2,500 Da), was the native 

condition. Therefore, all serum samples in our study were analyzed in their native form.   

 

 
 

Figure 2.5 Optimization of sample pre-treatment condition. Mass spectra correspond to the 

same standard serum sample analyzed either in the non-treated, native form (A) or after urea pre-

treatment (B). More peaks were observed in the LMW region of the native sample. Signal 

intensity (y-axis) is plotted against the m/z ratio (x-axis). 

 

2.2.3 Sample dilution factor 

 

The optimization of the sample dilution ratio when introduced to the ProteinChip arrays is a 

necessary undertaking for every SELDI-based proteomic biomarker discovery study. This is 

essential as the protein composition and concentration vary with biological sample and as such, 

affect the optimal dilution factor that will maximize binding of proteins/peptides to the capture 

surface and minimize ion suppression during MS analysis (as evaluated by the number of peaks 

per mass spectrum). To demonstrate, a standard serum sample was incubated on the same chip 

either neat or diluted 10-fold. As apparent from Figure 2.6, even though the protein concentration 

is higher in the neat sample, the 10-fold diluted sample provides an increase in the number of 

observed mass peaks. The optimization of CSF and albumin-bound subproteome samples were 
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carried out for the multiple sclerosis and narcolepsy studies, as detailed in their respective 

chapters. 

 

 
 

Figure 2.6 Optimization of sample dilution factor. Mass spectra correspond to the same 

standard serum sample analyzed either neat (A) or 10-fold diluted (B) on an IMAC30 chip. 

 

2.2.4 Sample fractionation 

 

As is often the case, the overwhelming presence of peptides derived from the most abundant 

proteins causes significant ion suppression of lower abundance analytes. Therefore, pre-

fractionation is an absolute prerequisite if disease biomarkers in the ng/ml concentration range are 

to be detected. A simplified proteome will also reduce the competition among the protein 

constituents for the limited binding sites on the chip surface. 

The most expedient way to gain up to two orders of magnitude in proteome coverage is 

by depleting the most abundant-proteins [13-15]. In addition, a number of other pre-fractionation 

tools that either target subproteomes (glyco- or phosphoproteomes[16], organelle subproteomes) 

or  separate based on biochemical properties (chromatography based on ion charges or metal 

binding ability, isoelectric focusing separation) are used commonly. It is worth noting that all 
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sample processing steps and fractionation methods result in some level of analyte loss [17] and 

could introduce variability between samples.  

In our studies with CSF, the need for pre-fractionation was less stringent. As the protein 

concentration of CSF is already two orders of magnitude lower than that of plasma, no pre-

fractionation step was incorporated in the workflow. On the other hand, complex serum samples 

were fractionated into albumin-enriched and albumin-depleted fractions. Only the albumin-

enriched fraction was subject to analysis, effectively simplifying the serum proteome to just the 

albumin-bound cargo. A more elaborate fractionation of serum was not performed as a 

compromise between in-depth analysis and throughput. In spite of all the automation, the goal is 

to limit sample processing steps to where a statistical number of samples can be analyzed within a 

reasonable period of time. 

 

2.3 MODULE II: DATA ACQUISITION 

 
This section discusses matrix optimization, surface chemistry optimization, and technical 

reproducibility. In addition to the sample processing steps covered in Module I, a huge 

determinant of the resultant mass spectra quality is data acquisition conditions during the 

analytical phase. The identified sources of analytical and physical variability are evaluated and 

optimized as discussed below.  

  
2.3.1 Matrix optimization 

 

As with MALDI, the spectral quality and profile obtained from SELDI TOF MS is dependent on 

the specific type of matrix used. CHCA is generally favored for the detection of small peptides, 

3,5-dimethoxy-4-hydroxycinnamic / sinapanic acid (SA) for small and medium-sized proteins, 

while heavily glycosylated and large proteins are detected more easily using 2,5-

dihydroxybenzoic acid (DHB) or ferulic acid matrix [18]. We evaluated the two most common 



 54

matrices in MS, namely CHCA and SA, at different concentrations to determine the best 

condition for optimal display of spectrum peaks. CHCA at 5 mg/ml provided the most number of 

peaks with considerable intensity at the 1,000 to 10,000 m/z mass range (Fig. 2.7). CHCA has 

also been shown to be less amenable to in-source decay artifacts in SELDI [19]. CHCA (optional 

recrystallization) from different vendors was evaluated and that from LaserBio Labs (France) 

provided the best quality and most reproducible spectra without the need for recrystallization. It 

should be noted that cluster formation is notorious with CHCA. These clusters are usually 

observed as sodium and potassium adducts, complicating the mass spectrum in the 500 – 1,300 

mass range [20-22]. As such, only peaks greater than 1,000 Da are subject to data analysis and of 

all the peaks that are listed as statistically differential, only those that are beyond this mass range 

are given priority in identification and verification stages. 

 
 

 
 

 

Figure 2.7 Optimization of serum dilution factor and ionizing matrix concentration. 

Shown are mass spectra corresponding to the same serum sample diluted 10- and 20-fold and 

evaluated with either CHCA (A, B) or SA (D, E). CHCA was also evaluated at different 

concentrations, 5 mg/ml (A, B) and 10 mg/ml (C). 
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2.3.2 Surface chemistry optimization 

 

The strength of SELDI lies in combining separation platforms and MS capabilities to expand the 

portion of complex biological samples that can be profiled. The chromatographic surface on the 

protein chips confers another level of proteome simplification by selectively binding only a 

subset of the proteins in the sample. The larger the number of proteins is in this subset, the greater 

the chance of the biomarker of interest is captured. Four main capture surface chemistries were 

evaluated for optimal peak observation: cation exchange (CM10), anion exchange (Q10), reverse 

phase (H50), and metal affinity (IMAC30). A set of eight patient serum samples was run on chips 

with the aforementioned surface chemistries.  
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Figure 2.8 Optimization of surface chemistry. Shown are IMAC30, CM10, Q10, and H50 

surfaces evaluated for peak production with the same set of eight different patient samples. 

 

As is apparent to the eye, IMAC30 proved to be the best peak-producing platform, 

followed by CM10 (Fig. 2.8). Thus, IMAC30 was the retentate surface of choice in the workflow. 

Less in-source decay artifacts were also observed with the IMAC30 chips [19]. IMAC30 was 

further optimized using different charging metal ions such as nickel, copper, and iron. This is 

necessary as transition metals have idiosyncratic binding properties that result in differing 

peptide/protein profiles that are produced. Even though the manufacturer’s protocol 

recommended copper as the metal ion of choice, we found IMAC30 chips charged with nickel(II) 

ions displayed more output peaks, in agreement with others [12]. 
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2.3.3 Technical reproducibility 

 

The issue of reproducibility [23-27] is an inherent problem with discovery-based research, as 

echoed by microarray gene expression analyses [28]. Peak intensities with SELDI TOF MS are 

highly sensitive to experimental details. Day-to-day, lot-to-lot, and machine-to-machine variances 

resulting from sample handling and storage are all too familiar to SELDI users [29-30]. However, 

reproducibility is attainable through proper experimental design and incorporation of quality 

control checks throughout the process [31].  

Even though the reproducibility on the ProteinChip arrays have significantly increased 

upon automation of the manufacturing process, lot-to-lot variability still exists and was 

experienced first hand. Therefore, all the chips to be used within the same study were selected 

from the same batch and a chip from that batch is first evaluated with serum for spectral quality 

as part of the quality control of the workflow. A pooled reference standard serum sample obtained 

from the National Institute of Standards and Technology (NIST) is religiously applied as the 

positive control in every study to assess the overall integrity of the workflow from sample 

processing to the operating condition of the mass spectrometer.  

Operator bias in sample preparation will also introduce artifacts in the output spectrum. 

This is minimized by automating the whole workflow as much as possible with minimum human 

intervention. The PerkinElmer MultiPROBE II PLUS HT EX liquid handler was incorporated 

into the workflow to process up to twelve ProteinChip arrays (96 spots) in parallel using the 

ProteinChip array bioprocessor (Ciphergen) for high-throughput analysis (Fig. 2.9). Automation 

with a liquid handler for sample deposition, washing steps, and matrix deposition is crucial to 

achieve accurate reproducibility, minimize process-driven variability, and increase robustness of 

the platform [31]. 
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A B

Figure 2.9 High-throughput ProteinChip analysis. (A) Automation in sample preparation for 

SELDI analysis. Shown here is the MultiPROBE II liquid handler from PerkinElmer. (B) High-

throughput handling of ProteinChip arrays. Shown here is the bioprocessor from Ciphergen that 

can handle up to 12 arrays simultaneously. 

 
An in depth understanding of mass spectrometer operation is essential to capitalize on its 

strengths and know its limitations when optimizing acquisition parameters. Relatively small 

changes to the operating conditions can be amplified to produce fairly large differences in mass 

spectra, making it difficult to maintain consistent, reproducible results. Semmes et al. [31] have 

shown that the performance of the SELDI TOF MS instrument from Ciphergen may change over 

time because of varying laser intensity and detector sensitivity. Therefore, in order to minimize 

day-to-day variability seen in signal drift, all samples in the studies described in this dissertation 

were run in one setting to hold all technical variables constant. The laser intensity was set based 

on the condition that provided the best spectrum with the NIST serum sample. Prior to the high-

throughput run, the instrument was calibrated with an external calibrant to ensure mass accuracy. 

Ultimately, the performance of the mass spectrometer employed for mass peak production is the 

major determinant of peak fidelity as discussed in the following section. 
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2.3.3.1 Mass spectrometer performance comparison 
 
The strength of MS protein profiling is not in direct protein identification but rather in linking the 

signal intensity of a collection of protein peaks to a clinical outcome using bioinformatics. The 

amount of information that can be extracted with high confidence from a complex sample is a 

function of the sensitivity, resolution, and mass accuracy of the instrumentation. The values for 

both m/z and peak intensity are critical components in the construction of the SELDI spectral 

profile. For differential marker peak discovery, the mass spectra from the two sample groups are 

compared semiquantitatively at every detected peak for statistically significant changes (Fig. 

2.10). Minimal mass drift is important for accurate peak-to-peak comparison during data analysis. 

In this respect, the reliability and reproducibility of the chip and measurement system are of 

paramount importance. 

 

 

 
Figure 2.10 Peak comparison across mass spectra to uncover differential mass peaks. In 

this simplified view, spectra from five different samples (Spectrum 1 to Spectrum 5) are 

compared at every peak in the search for statistical difference in intensity, highlighting the 

importance of peak alignment. 
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Reproducibility of MS-based profiling studies can be enhanced by improving instrument 

design. The incorporation of high resolution mass spectrometers to the SELDI platform has been 

shown to yield superior diagnostic profiles to those from low-resolution instruments in terms of 

sensitivity and specificity as a result of both the increased number of peaks seen and much better 

reproducibility [29]. Therefore, the performance of the two ProteinChip-compatible mass 

spectrometers that were available to us for profiling studies was compared. In this study, 90 

sample spots were run in parallel and spectra were acquired from the same ProteinChip spots on 

the two instruments. This is accomplished by first acquiring data on the PerkinElmer prOTOF 

2000 MALDI O-TOF mass spectrometer [32] by setting the laser to ablate in a circular pattern on 

the spot. ProteinChip arrays were placed in a custom made adapter for mass spectrometry 

analysis in the prOTOF mass spectrometer (PerkinElmer/SCIEX) (Fig. 2.11). Its orthogonal 

design enabled a single external mass calibrant to achieve better than 5 ppm mass accuracy over 

the 1,000 to 10,000 mass range acquired. A 2-point external calibration of the prOTOF 

instrument was performed before spectra acquisition in a batch mode, four arrays at a time. The 

prOTOF data files generated an average of 1 million data points per spectrum. 

 
 

 
A 

 
B

 
Figure 2.11 High resolution mass spectrometry analysis. (A) Custom made adapter for 

ProteinChip analysis on prOTOF. (B) The prOTOF mass spectrometer from PerkinElmer. 
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The same ProteinChip arrays were removed from prOTOF and loaded into the Ciphergen 

PBS-IIc mass spectrometer. Data acquisition was performed through ablation of the same spots in 

a linear fashion (Fig. 2.12). Acquisition was performed in a batch mode of 12 arrays in the 

cassette that accompanied the instrument. Calibration was performed externally with the All-in-1 

Peptide Calibrant (Ciphergen) with a laser intensity of 170 and a sensitivity of 9. The PBS-IIc 

data files generated an average of 40,000 data points per spectrum. 

 

 
A 

 
B

 
Figure 2.12 Low resolution mass spectrometry analysis. (A) Cassette for high-throughput 

analysis on PBS-IIc. (B) The PBS-IIc mass spectrometer from Ciphergen. 

 

To determine the mass accuracy of the instruments, the mass of a prominent peak at m/z 

= 2021 across all spectra was examined. The mass accuracy of the prOTOF was found to be 

around 5 ppm whereas that of PBS-IIc was around 1,000 ppm (Panels A and B, Fig. 2.13). Peak 

misalignment is also apparent visually when another peak at m/z = 3805 was examined across all 

spectra (Panels C and D, Fig. 2.13). In addition, there was an observed significant mass drift (0.1-

0.2%) for the same peak intra- and interchips (Panel E, Fig. 2.13), in agreement with others [33].  
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C  

D
 

 
E 

 
 

Figure 2.13 Performance comparison between the prOTOF and PBS-IIc mass 

spectrometers. (A and B) The mass accuracy for a selected peak at m/z = 2021 was evaluated 

across spectra obtained from both mass spectrometers. The mass accuracy was determined to be 5 

ppm for prOTOF (Panel A) and 1,000 ppm for PBS-IIc (Panel B). The number of spectra 

corresponding to each mass value (y-axis) was plotted against the mass range (x-axis). (C and D) 
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When a peak at m/z = 3805 was examined, significant mass drift was observed across spectra in 

PBS-IIc (Panel D) and was almost non-existent in prOTOF (Panel C). The mass range (y-axis) 

was plotted against all acquired spectra (x-axis). (E) The mass drift of peak 2021 is shown intra- 

and interchips on the PBS-IIc system. Mass variation was observed for the same peak for samples 

within the same chip (same color) and between chips (different color). The mass range (y-axis) 

was plotted against the sample run order (x-axis). 

 

An alignment strategy was developed in-house (Fig. 2.14) in collaboration with the 

Garner Laboratory (UT Southwestern) to address the mass drift problem evident in the PBS-IIc 

spectra. The purpose of this initiative was to determine if the peak alignment of the PBS-IIc data 

could be improved and to evaluate how the mass accuracy of the aligned data compares to the 

prOTOF spectra. From within the PBS-IIc data, the spectrum with the most number of peaks was 

chosen as the reference to which the remaining spectra were aligned. Peaks with undetermined 

positions were extrapolated from neighboring peaks. Table 2.1 shows the mass accuracy across 

six peaks that span the acquired mass range for the raw and aligned data from PBS-IIc as 

compared to the raw prOTOF data. Even though significantly improved (Fig. 2.15), the aligned 

PBS-IIc data do not fair as well as the raw prOTOF data, with mass accuracy still in the hundreds 

ppm compared to <10 ppm attainable in the prOTOF data. 

 
 

 
 

 

Figure 2.14 Steps involved in the alignment strategy developed in-house for PBS-IIc data. 
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B 

Figure 2.15 A peak 1533 depicted before (A) and after (B) alignment. 

 
PBS-IIc (raw) PBS-IIc (aligned) prOTOF (raw)  

m/z 
Da ppm Da ppm Da ppm 

1011.06 1.47 1454 0.38 376 0.010 9.89 

2255.12 2.34 1038 0.54 239 0.012 5.32 

3156.64 2.97 941 0.65 206 0.024 7.60 

4127.11 3.89 943 1.17 283 0.027 6.54 

5903.79 4.25 720 0.80 136 0.034 5.76 

9288.95 5.99 645 0.81 87 0.061 6.57 

 

Table 2.1 The mass accuracy of six peaks across 1,000 to 10,000 Da is tabulated here in Daltons 

and parts-per-million for the unaligned (raw) and aligned data from PBS-IIc and unaligned 

prOTOF data. 

 

In addition to the lack of mass accuracy, the PBS-IIc instrument also suffers from low 

resolution (resolution ~750-1,000) in the 1,000 to 10,000 window compared to the prOTOF 

(resolution 15,000-20,000). Moreover, spectral resolution of the lower resolution instrumentation 

may not be able to separate specific ions that are close in m/z and can coalesce multiple specific 

discreet ions into a single broad peak, with shoulders. The use of a shoulder peak m/z value in the 

final disease model will be difficult to reproduce accurately and may fail as robust marker events 
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[31]. The CV for peak intensity had previously been reported for the PBS-IIc as 16-26% while 

the prOTOF showed a CV of 5-10% [27], in agreement with the prOTOF profiles generated from 

our ProteinChip-MS platform. This and the less than 10 ppm mass accuracy observed indicate 

that replicate spectra from individual samples are reproducible in our workflow. 

In short, we have shown the desired higher mass accuracy and lower mass drift can be 

attained from the high-resolution prOTOF, but not the PBS-IIc, the original system developed for 

ProteinChip analysis. To our knowledge, this is the first comparison between the performance of 

the prOTOF and PBS-IIc systems reported from the same sample spots. Consequently, data 

analyses were performed only on spectra acquired on the prOTOF instrument.  

 

2.4 MODULE III: DATA ANALYSIS 

 
This section covers discussion on the issue of overfitting, a novel consensus model approach, the 

statistical methods of logistic regression, CART, UPGMA, and t-test, and diagnostic accuracy 

measures. Given new discoveries are dominated by “70% successful” biomarkers [34], the focus 

is now to achieve higher sensitivity and specificity when these independent markers are 

considered collectively. SELDI is the embodiment of this model through its quantitative readout 

of multiple analytes that are combined into mathematical classification models. Indeed, the 

development of statistical algorithms for selecting promising biomarkers from a large pool of 

biomarkers is an active area of research [35-37]. 

 

2.4.1 Overfitting as a bias 

 

Even though the literature is bombarded with reports of molecular markers for an assortment of 

diseases, an overwhelming majority of them remain insufficiently validated for clinical 

application. This reflects the difficult problem of determining which biomarkers warrant the 
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substantial investment of time and money required for validation efforts. This is especially true of 

biomarkers that arise from SELDI studies, partly due to the combination of non-robust data 

analysis approaches to underpowered studies that result in false positive findings.  

Proteomics studies face the curses of high dimensionality and sparse data [10], making it 

crucial to recognize the issue of overfitting in the search of biomarkers. The studies generate high 

dimensional data where the number of variables (mass peaks) far exceeds the number of 

independent samples analyzed, which no existing traditional statistical or computational tool can 

handle. In fact, discovery-based research clearly violates the rule for predictive models that 

dictate at least ten observations for each variable to bestow confidence in the results [38].  

A common and frustrating occurrence in proteomic biomarker discovery is when 

different laboratories studying the same disease, and employing different statistical methods on 

the same data set, end up producing non-overlapping sets of biomarkers. To date, no guidelines 

exist that facilitate the selection of appropriate statistical methods to employ for data analysis in 

mass spectra. Consequently, the choice of a statistical platform for each study remains subjective. 

All data analysis methods have their strengths and weaknesses but the caveat lies in the 

realization of their statistical power only when applied to data sets where the underlying data 

distribution assumptions are met. In the case of mass spectrometry data, no a priori knowledge of 

data distribution is available. Consequently, various learning algorithms have been engaged in the 

field for classification purposes, each with its underlying biases and assumptions of distribution 

[35-37].   

Validation on independent data sets, independent of those used for discovery, is 

necessary to avoid overfitting. However, this can prove to be challenging due to limited sample 

availability. Here we describe a novel data-mining approach for the analysis and interpretation of 

mass spectra data to uncover truly discriminatory biomarkers as a solution to the issue of 

overfitting. 
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2.4.2 Consensus approach 

 

The methodology described here can be applied to any MALDI TOF derived data set for any 

disease, provided the same standard operating procedure (from biological sample procurement, 

processing, and complexity reduction to actual mass spectrometry data acquisition) is employed. 

In the proposed workflow, both parametric (logistic regression, hierarchical clustering, t-test) and 

non-parametric (Classification and Regression Tree - CART) approaches were adopted to analyze 

the raw peaks from our data set to obtain a set of consensus biomarkers (Fig. 2.16). These four 

statistical platforms were selected because they were available either as licensed softwares that 

accompanied the mass spectrometers or were developed in-house. In parametric approaches, the 

data are assumed to originate from variables with a certain probability distribution (such as 

normality and homoscedasticity). Non-parametric approaches are more robust and yield greater 

power with less well-behaved data since no prior assumptions are made. 

Consensus biomarkers are loosely defined as mass peaks with discriminatory power 

between the groups being compared that end up on the list of statistically differential peaks across 

at least two or more of the statistical strategies employed in the data mining analysis. Ideally, the 

most discriminatory marker peaks are selected as differential by all the methods employed. The 

reasoning is that in lieu of the data distribution knowledge, mass peaks that survive stringent 

conditions across multiple statistical methods are more likely to be true “biomarkers” and not 

artifacts as a consequence of bias inherent to a particular algorithm. Convergence upon a distinct 

set of biomarkers using multiple analytical platforms will confer higher confidence in these 

markers as robust entities and will increase the chance these markers may be adopted as 

diagnostic entities where subsequent identification and validation efforts should be directed. 

These biomarkers are either present specifically (all or none) or preferentially (relatively higher in 

one of the groups). Candidate peaks should be divided equally among peaks that increase and 

decrease with disease to minimize effects of variation in absolute signal intensities. 
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Figure 2.16 Schematic diagram of the multi-statistical workflow to discover consensus biomarker 

peaks. 

 

This approach is novel in several respects. First, comparisons of different statistical 

methods on the same mass spectrometry data have been reported previously [39-41] but the 

ultimate goal of these reports was the selection of a method whose prediction model outperforms 

the rest of the methods under investigation when applied to a given set of experimental data and 

the subsequent recommendation of the method that prevailed for future analyses. This introduces 

bias in the selected marker peaks which are unique to a statistical method and are most often a 

result of overfitting. This is also true when peak reduction was performed using a predefined 

statistical method prior to submitting the remaining peaks for model building comparisons. In the 
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data analysis workflow described here there is no biased peak selection prior to model building 

by the four statistical algorithms under investigation; all raw peaks within the 1,000 to 10,000 

mass range were subject to each algorithm. 

Second, we used a mass spectrometer with high mass accuracy and low mass drift to 

generate high-resolution data, which is essential for accurate peak-to-peak comparison across 

spectra. A majority of the previous studies were performed using low-resolution mass 

spectrometer data with significant mass drifts across spectra within a single experimental run that 

further complicate analysis. 

Finally, to assure a fair comparison between the methods during validation of this data 

analysis approach, the best discriminatory peaks from each method underwent the same 

diagnostic accuracy testing via receiver operating characteristic (ROC) curve analysis, as did the 

model consisting of only the consensus peaks. ROC confers a better sense of diagnostic 

performance of the biomarker peaks as it evaluates all possible cutoff values and produces the 

best trade-off between the rates of false-negative and false-positive results. The results from this 

validation stage of the consensus approach are reported later in this chapter when the consensus 

model is discussed (Section 2.4.9).  

 

2.4.3 Data preprocessing 

 

All the spectral files were first processed to restore the repeating zero signal values removed by 

the instrument software. During this process, the m/z lists were harmonized so that every 

spectrum has the same list of m/z values.  In previous studies, we found that when comparing 

groups with relatively few spectra it was beneficial to smooth the raw data. In these instances, the 

Savitsky-Golay smoothing algorithm using a 9-point fit to a cubic function is applied. High 

frequency noise in the spectrum is reduced by the smoothing but fidelity to the major features is 

preserved.  
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An inherent challenge in analyzing mass spectral data is that they suffer from high 

dimensionality, and chemical and biological noise [10]. Therefore, in an attempt to reduce 

dimensionality, the m/z peak list was trimmed and only peaks that fall within the m/z range 1-10 

kDa were subject to statistical analysis. We chose the lower cutoff value of 1 kDa to exclude any 

potential chemical noise contributed by the ionizing matrix. Furthermore, some proteins or 

peptides might be too small to be biologically informative [42]. The upper cutoff value of 10 kDa 

was selected because the ionization efficiency of molecules decreases with increasing mass and 

few peaks above the noise level were detected beyond this value.  

 The spectrum-to-spectrum alignment was checked for 6 different peaks across the m/z 

range of 1-10 kDa and found to be acceptable (<10 ppm). Due to the high mass accuracy and 

minimal mass drift of the prOTOF observed here and in agreement with others [27, 43, 44], no 

further spectral alignment was necessary.  

The total ion current (TIC) of each spectrum is calculated and the average TIC was 

computed across all spectra. Spectra with a TIC value that was either twice or half of the average 

TIC were deemed outliers and were omitted from the study. Global normalization of the signal 

intensity of the mass peaks was performed by normalizing to the average TIC of the remaining 

spectra. This confers a sense of commonality across spectra for statistical comparisons. All 

spectra were run through the Progenesis PG600 software (Nonlinear Dynamics, UK) for peak 

detection using the following parameters to remove background noise: noise filter size 4, 

background filter size 70, and isotope detection in MALDI mode with peak threshold 25 and 

window 0.1 Da. 

 

2.4.4 Logistic regression 

 

Logistic regression is a parametric modeling technique that can be used to estimate the 

probability that an individual would acquire a complex disease [45]. It produces the most 
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parsimonious model (incorporating the minimum number of variables necessary) to explain the 

observations or to categorize the disease and control groups. Logistic regression does not require 

a normal distribution and homoscedasticity for the outcome variable. Instead, it assumes the 

outcome has a binomial distribution and is governed by the logistic function. Since proteomic 

data provide a large number of variables relative to the number of observations resulting in the 

problem of sparse data mentioned earlier, inaccurate estimates of the parameters needed to predict 

the status of the new subjects can result. To address this issue, a more detailed 9-step protocol 

was developed based on recommendations by the Environmental Protection Agency and SAS 

User Group International publications to replace the default one-step calling of the PROC 

LOGISTIC procedure in SAS.  

All the variables (m/z values representative of peaks) from the data set were run first 

through a univariate analysis to test for significance in predicting the outcome of the samples. 

These variables are then checked for correlation. Since logistic regression assumes no collinearity 

among its variables, each pair of correlated variables will have the less significant one removed 

based on the univariate analysis. This trimming of the number of variables per observation is 

necessary to reduce dimensionality. In addition, variables with a Variation Inflation Factor 

exceeding 10, indicating multicollinearity were also removed [46]. 

Modeling was performed using the stepwise procedure, where variables were added 

and/or removed at each step depending on a significance test or some measure of information 

contributed by that variable to the difference between the groups. Here we set the significance 

level of entering, SLENTRY, to 0.990 and for staying, SLSTAY, to 0.995. This procedure 

continued until no variables can be added or removed. The stepwise technique effectively reduces 

the number of models under consideration while the less stringent entry and stay criteria allow 

more variables to be considered concurrently. Although stepwise procedures rely on tests or 

information for a single variable, all decisions are based on multivariate analyses. The model with 

the lowest Akaike Information Criterion (AIC) score will indicate the optimal number of 
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variables (n) to be incorporated in the model. AIC is a fitness function used to score models based 

on their quality to describe a data set. The best regression model is the one that minimizes the 

criteria used. AIC was preferred over the Schwarz Information Criterion (SC) that also 

accompanies logistic regression in SAS because it is better suited for the current goal of 

prediction [47]. Subsequent modeling will then produce a list of potential models incorporating n-

2, n-1, n, n+1, and n+2 variables. The best subset selection method was coupled to the AIC 

analysis to incorporate suboptimal models that flank the optimal model with the lowest AIC. 

Only models with high Hosmer-Lemeshow (Goodness of Fit) score and low AIC score will be 

retained. They then undergo diagnostic checking to identify outlier observations and interaction 

between variables. A typical output from logistic regression is shown in Figure 2.17. 

 

 
 

Figure 2.17 Model parameters from logistic regression. 

 

We used our modified, AIC-optimal logistic regression protocol to analyze the data set 

generated in our narcolepsy case study (Chapter 4) and compared the diagnostic power of the best 

model from this approach to the best model obtained using the default single-step calling of the 
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PROC LOGISTIC in SAS. The diagnostic measures are shown in Table 2.2. The final model 

from the default stepwise procedure has a higher AIC statistic of 69.646 with two variables 

incorporated while the AIC-optimal model from the modified procedure has an AIC statistic of 

57.798 with five variables incorporated. This means that the default stepwise model incorporated 

three predictors less than necessary to form a better predictive model. This is indicated by its 

lower Hosmer-Lemeshow goodness of fit statistic (0.669 for default versus 0.882 for AIC-

optimal). The resulting default model also has a poorer discriminatory power than the AIC-

optimal model as indicated by the lower area under the ROC curve. As for diagnostic accuracy 

(covered in more detail later in this chapter), both models have comparable sensitivity, positive 

predictive value (PPV) and negative predictive value (NPV), but the default model lacks in 

specificity and the percentage of cases accurately predicted (Table 2.2). This demonstrates that 

the modified procedure performs better than the default in producing good predictive models, and 

was thus adopted in subsequent logistic regression analyses. ROC curve analysis is performed on 

the few surviving models and an optimal cutoff value that gives the best sensitivity, specificity, 

and prediction accuracy is determined. Peaks from these models collectively create a pool of 

potential biomarker candidates. 

Logistic Regression Model Default AIC-Optimal 

Number of variables in final model 2 5 
Goodness of Fit 0.669 0.882 
AIC Statistic 69.65 57.80 
Area under ROC curve 0.793 0.910 
Sensitivity (%) 63.16 57.89 
Specificity (%) 82.22 95.56 

PPV (%) 85.96 84.62 

NPV (%) 84.09 84.31 

Percent accuracy (%) 76.56 84.38 

Table 2.2 Diagnostic accuracy measures from the default and AIC-optimal models in logistic 

regression. AIC= Akaike Information Criterion, ROC= Receiver Operating Characteristic, PPV 

= Positive Predictive Value, NPV= Negative Predictive Value. 
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An advantage of modeling using logistic regression is its ability to estimate the associated 

risk with each variable. A drawback is that logistic regression suffers from the inability to 

accurately estimate the needed parameters when the two groups are perfectly separated based on 

the variables included in the model. Small sample sizes will also render the estimates unstable. 

This situation, however, will not be encountered in CART. Logistic regression was performed 

using the Statistical Analysis Software (SAS) (SAS Institute Inc., Cary, NC).  

 
2.4.5 Classification and regression tree (CART) 

 

CART is another analytical method that can be used to generate a prediction model. It is non-

parametric, non-algebraic, and is a form of binary recursive partitioning where each group of 

patients at each “node” in a decision tree can only be split into two groups [48]. The construction 

of the classification tree begins with the variable that maximizes the group homogeneity of the 

daughter nodes. This process is then repeated where every daughter node is split into two 

subgroups until all variables have been exhausted or the end nodes are homogeneous (Fig. 2.18). 

The process involves the estimation of several linear combinations of predictor variables by 

discriminant function analysis of computing classification scores (or probabilities) that allow for 

prediction or classification of cases. Variable selection at each node is performed with one of six 

criteria – Gini, Symgini, Twoing, Ordered Twoing, Class Probability, or Entropy using 

Ciphergen’s Biomarker Patterns Software (BPS). 

Since it is non-parametric, no assumptions are made about the underlying distribution of 

the variables and highly-skewed, non-normal data sets can be handled. A drawback is some 

models can be unstable. Since all possibilities are evaluated at each splitting node, there is the 

potential of overfitting the model. To account for this, the tree is then pruned back using 10-fold 

cross-validation to obtain the optimal tree with the lowest average decision cost or error rate (Fig. 

2.19). 
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Figure 2.18 Tree diagram from CART analysis. 
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Figure 2.19 Selection of best model from CART analysis. Of the four models shown here, the 

best model with three nodes has the lowest error rate or cost. 
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2.4.6 Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 

 

UPGMA is a hierachical clustering algorithm based on the average dissimilarity, or distance, 

between the clusters and their correlation. UPGMA is a parametric technique that is most 

commonly used in microarray [49, 50] and mass spectrometry data analysis [35] because no 

prespecification of number of clusters is required. Each group is compared and a p-value is 

automatically calculated for each peak using ANOVA based on the spectra groups. The resulting 

discriminant markers between the two groups depend on the stringency parameters for biomarker 

selection, such as minimum peak intensity and p-value (Fig. 2.20). This ensures only peaks that 

are above the noise level and are statistically significant are selected. UPGMA clustering was 

performed on the Progenesis PG600 software (NonLinear Dynamics, UK). 

 

 

Figure 2.20 Differential display of candidate marker peaks in the two sample groups in 

UPGMA. Top two panels show the average signal intensity of the marker peaks in the respective 

sample group. Bottom panel shows the magnitude of the difference for each peak.   
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2.4.7 T-test 

 

A high-throughput software pipeline developed in the Garner Lab at UT Southwestern was also 

used to analyze the data sets. This analysis is similar to a previously published method [44] but 

uses a t-test instead of the Cohen’s d statistic used in the published method. The method using 

either the t-test or d statistic yielded very similar results. This software is a parametric, non-

algebraic method for finding differential marker peaks by applying three filters to the average 

intensity value of each raw m/z data point between the two groups being compared. The first 

criterion uses a t-test for measuring the difference between the means. Typically, two signals 

whose means differ with a p-value of 0.05 or less are deemed significantly different. The second 

criterion requires the signals to be above the noise level. The third criterion requires the ratio 

between the two signals to be above a preset threshold (a so-called fold change determinant). 

Signals that pass all three filters suggest that a difference exists between the two groups being 

compared (Fig. 2.21). 

 

 
 

Figure 2.21 A differential peak found in the in-house T-test method. The two groups 

compared are represented by different colors. The circles on the peaks indicate differential data 

points that are statistically significant.  
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An advantage of this approach is that it does not require peak finding and thus is 

applicable to spectra with overlapping or non-Gaussian peaks, conditions that would confound 

most peak finding algorithms. Further, the method automatically provides a weighting factor for 

each peak, as peaks that differentiate the most have more discriminating data points on them [44]. 

 
2.4.8 Diagnostic accuracy measures 

 

All statistically differential biomarkers discovered must be evaluated to determine their 

discriminatory performance characteristics between disease and non-disease patients as p-value 

alone does not indicate clinical utility. Diagnostic performance can be evaluated from its accuracy 

and predictability [51].  

Diagnostic accuracy establishes how accurately the test discriminates between those with 

and without the disease and can be determined by calculating its sensitivity, specificity, and ROC 

curve [51]. Sensitivity is a measure of the ability of the test to identify a condition when it is 

present (Table 2.3). A high sensitivity corresponds to a low false negative rate (Type II error). 

False negatives are concerning as they could lead to the misled diagnosis of disease and missed 

opportunity for therapeutic intervention. Specificity is the ability of the test to rule out a condition 

when it is absent. A high specificity corresponds to a low false positive rate (Type I error). 

Maintaining high specificity (low false-positive rates) is a very high priority as even a small false 

positive rate translates into a large number of people subject to unnecessary costly diagnostic 

procedures and unwarranted distress. Although not always true, improving the sensitivity of a test 

may lead to decreasing its specificity, particularly if it involves choosing the threshold value for 

calling the test positive.  Sensitivity and specificity are inherent properties of the biomarker test, 

and if well established, they will hold true regardless of the population tested. Depending on the 

clinical applications (e.g. screening or confirmatory diagnostics), different diagnostic measures 
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will take precedence. For example, high sensitivity is needed for screening but high specificity is 

needed for confirmation and subcategorization. Ideally, both need to be greater than 70% [34]. 

 

 
Disease  

Test Present Absent 
 

TOTAL 
Positive A = true positives B = false positives A+B = Test positives 
Negative C = false negatives D = true negatives C+D = Test negatives 
TOTAL A+C = Diseased B+D = Nondiseased A+B+C+D= Total samples 

 
Table 2.3 Contingency table for diagnostic accuracy measures. Sensitivity = true positive rate 

= A/(A+C), Specificity = true negative rate = D/(B+D), PPV = A/(A+B), NPV = D/(C+D), 

Disease prevalence = (A+C)/(A+B+C+D). 

 
ROC curves are derived from the calculated sensitivity and specificity values. The ROC 

curve, a statistical analysis method developed in the 1950s for evaluating radar signal detection, is 

used routinely today to evaluate diagnostic tests and generally for evaluating the accuracy of a 

statistical model (predictive models). Mean value comparisons between disease and normal may 

not be representative of the range of anticipated values in the population, which need to be 

separate enough that sample assignment is unambiguous so that an ideal cutoff value can be 

assigned. Given that there is no perfect test, there is an overlap in the value measured between the 

two groups, resulting in false positive and false negative results (Fig. 2.22). ROC analysis on all 

samples assists in the selection of the optimal cutoff value that represents a compromise between 

the total number of positive and negative results that can then be validated in separate data set. 

Advantages of ROC curve over simple frequencies and summary statistics for raw biomarker data 

are (i) it does not depend on the scale of raw-data measurements, which greatly facilitates 

comparison of the discriminatory capacities of different markers and (ii) that it displays true- and 

false-positive rates, quantities that are more relevant for screening purposes than raw biomarker 

value themselves [52]. 
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Figure 2.22 Sensitivity, specificity, and cutoff value. The specificity of the diagnostic test is 

represented as the shaded area under the non-disease distribution (A) above the arbitrary cutoff 

value (threshold). Sensitivity is represented as the shaded area under the disease distribution (B) 

below the same cutoff value. Both the sensitivity and specificity vary accordingly, with lower 

sensitivity and higher specificity as the threshold increases. [53] 

 
Graphically, a ROC curve is a plot of sensitivity on the y-axis against (1-specificity) on 

the x-axis for varying values of the cutoff value (Fig. 2.23). Area under the ROC curve (AUC) is 

frequently used to describe a test’s validity. The AUC is an overall summary of the diagnostic 

accuracy across the spectrum of the test. An AUC of 1.0 means the test has almost perfect 

discriminatory power between the groups compared for the diagnosis of interest (line connecting 

(0,0) to (0,1) and (0,1) to (1,1) in Figure 2.23. As a rule of thumb, an AUC >0.7 is considered 

good while >0.8 is considered great discriminatory power. Only satisfactory discrimination 

should warrant the evaluation of diagnostic accuracy measures such as sensitivity, specificity, 

PPV and NPV. The 45° diagonal line connecting (0,0) to (1,1) is the ROC curve corresponding 

AUC=0.5 (random chance). A diagnosis based on a test with an AUC of <0.5 is deemed not 

useful and efforts toward its development should be terminated. In general, ROC curve analysis 

helps select optimal tests and discards suboptimal tests.  
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Figure 2.23 ROC curve. Three hypothetical ROC curves representing the diagnostic accuracy of 

the gold standard (A, AUC = 1), a typical ROC curve (B, AUC = 0.85), and a diagonal line 

corresponding to random chance (C, AUC = 0.5). As diagnostic test accuracy improves, the ROC 

curve moves toward A, and the AUC approaches 1. [53] 

 

Diagnostic predictability establishes the ability of the test to predict the presence or 

absence of disease for a given test result and is determined by calculating the positive and 

negative predictive values [51]. PPV represents the likelihood that a patient actually has the 

disease. NPV is the likelihood that the patient is actually disease free. The PPV and NPV will 

vary depending on the prevalence of the disease in the population that is being tested. For 

example, PSA with a sensitivity of 70% and a specificity of 90% when applied to a population of 

100,000 will have a PPV of 88% if the population is nodule-positive but only 0.2% for general 

screening. Some tests are only valuable when applied to a specific population. Therefore, 

biomarkers derived from proteomics studies should be applied to a population that has a larger 

representation of the sample set used in discovery in order to maintain its predictability. 
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2.4.9 Consensus model 

 

As validation of the consensus model approach, the four algorithms described above were applied 

to our pilot narcolepsy study. Details pertaining to this study are documented in Chapter 4 (Case 

Study II: Narcolepsy). The performance of the discriminatory peaks in the resultant models from 

logistic regression and UPGMA hierarchical clustering was evaluated via ROC analyses using 

SAS. The diagnostic accuracy measures of interest are the sensitivity, specificity, PPV, NPV, 

prediction accuracy, and the AUC for narcolepsy classification. These parameters were obtained 

from the CART models via 10-fold cross-validation using the BPS software, and from the t-test 

models based on the distance proximity of the differential data points from the spectrum to be 

classified to those from spectra with known classification [44]. 

In the comparison between narcoleptic and non-narcoleptic samples, four optimal models 

were obtained using the AIC-optimal logistic regression procedure, as listed in Table 2.4. The 

mass peaks from these four models were pooled as potential biomarkers selected from logistic 

regression. 

 
Logistic Regression Model  1  2  3  4 Pooled 

Number of variables   5  1  2  2  9 

Mass peaks (m/z)  1431.80  1809.98  1809.98  1722.93  1431.80
  1839.98   3826.00  1740.94  1722.93
  2225.14     1740.94
  3986.99     1809.98
  5857.74     1839.98

      2225.14

      3826.00

      3986.99

      5857.74

 

Table 2.4 Discriminatory mass peaks from AIC-optimal models in logistic regression analysis on 

narcolepsy data set. 
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The best tree from CART analysis is the tree with the lowest cost across all splitting 

criteria. This optimal tree with a cost of 0.322 was obtained from the Twoing criterion and the 

diagnostic measures of this model are listed in Table 2.5. 

 
CART Optimal Model 

Number of variables in final model 6 
Mass peaks (m/z) 1014.32, 1690.96, 1809.98, 

3043.43, 3826.00, 3986.99 
Area under ROC curve 0.984 
Sensitivity (%) 78.95 
Specificity (%) 88.89 

PPV (%) 75.00 

NPV (%) 90.91 

Percent accuracy (%) 85.94 

 

Table 2.5 Diagnostic accuracy measures of optimal CART model. 

 

The maximum p-value was set to 0.05 and the minimum signal intensity ratio was set to 

1.5 in the in house t-test analysis. Only three possible candidate biomarkers were identified in the 

spectra – 1740.94, 3598.07, and 5078.90. They were all higher in the narcolepsy samples. The 

diagnostic performance of this three-peak model is shown in Table 2.6.  

 
T-test Optimal Model 

Number of variables in final model 3 
Mass peaks (m/z) 1740.94, 3598.07, 5078.90 
Sensitivity (%) 33.30 
Specificity (%) 84.20  

PPV (%) 50.00 

NPV (%) 72.70 

Percent accuracy (%) 67.90 

 

Table 2.6 Diagnostic accuracy measures of optimal t-test model.  
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Differential peaks from UPGMA clustering were selected with a p-value <0.05 and a 

fold-change of at least 10% between the two conditions being compared. A total of 3 peaks were 

obtained (Table 2.7) and their diagnostic accuracy measures were determined (Table 2.8). 

 
Mass peak (m/z) Fold change p-value 

1781.99 1.13 0.046 
1809.98 1.15 0.007 
3826.00 1.13 0.017 

 
Table 2.7 Statistically differential peaks from UPGMA model. Peaks are presented with their 

respective fold change and p-value. 

 
UPGMA Optimal Model 

Number of variables in final model 3 
Mass peaks (m/z) 1781.99, 1809.98, 3826.00 
Area under ROC curve 0.788 
Sensitivity (%) 36.84 
Specificity (%) 95.56 

PPV (%) 77.78 

NPV (%) 78.18 

Percent accuracy (%) 78.13 

 

Table 2.8 Diagnostic accuracy measures of optimal UPGMA model.  

 

Even though the ideal scenario is to have consensus peaks across all four platforms, the 

two peaks that were considered truly robust in this study were mass peaks at m/z 1809.98 and 

3826.00 which were selected as statistically differential in three of the four approaches. They 

were grouped collectively to form an independent diagnostic model. When used for diagnosis, 

these two peaks have a sensitivity of 63.16%, a specificity of 82.22%, a PPV of 85.96%, a NPV 

of 84.09%, and a percentage of cases correctly classified of 76.56%. The area under the ROC 

curve was 0.79 (Table 2.9).  
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 Consensus Model 

Number of variables in final model 2 
Mass peaks (m/z) 1809.98, 3826.00 
Area under ROC curve 0.793 
Sensitivity (%) 63.16 
Specificity (%) 82.22 

PPV (%) 85.96 

NPV (%) 84.09 

Percent accuracy (%) 76.56 

 
Table 2.9 Diagnostic accuracy measures of consensus model. Consensus peaks included in this 

model are peaks selected as statistically differential across three of the four algorithms.  

 

The diagnostic performance of the consensus peaks were evaluated collectively against 

the best individual model from each statistical method. In this study, UPGMA and the t-test 

produced predictive models that did not perform as well as those from logistic regression and 

CART, even though the model from UPGMA included the two consensus peaks. In contrast, the 

consensus model has the diagnostic potency in some diagnostic measures that is comparable to, if 

not better than, the individual models from each statistical platform (Fig. 2.24).  

Although admittedly limited in sample size, our comparison between narcolepsy samples 

versus all non-narcolepsy samples in this pilot study served to emulate general population 

screening, which is the intended application of these biomarkers. In this case, sensitivity is of 

more importance than specificity. Logistic regression suffers from low sensitivity (57.89%). 

CART prevailed in these measures with 78.95% sensitivity and 88.89% specificity, followed by 

the consensus model with a reasonable sensitivity of 63.16% and a specificity of 82.22%. This is 

very encouraging as the current genetic marker for narcolepsy in general is based on the presence 

of HLA DQB1*0602 which itself only has a specificity of 40% [54]. Genetic markers confer 

susceptibility but are not ideal disease biomarkers as most people who are positive for the HLA 

DQB1*0602 gene do not develop narcolepsy. The more important diagnostic measures to 
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consider are PPV and NPV, which evaluate the applicability of the diagnostic test on the target 

population. The consensus model displays the highest PPV of 85.96% and an NPV of 84.09%, 

comparable to the best logistic model. CART has the highest NPV of 90.91% but lacks in PPV 

with only 75% (Fig. 2.24).  

 

 

Figure 2.24 Diagnostic measures comparison of consensus model to the best model from 

each of the four statistical approaches. Green diamonds= sensitivity, light blue squares= 

specificity, red triangles= positive predictive value, dark blue squares= negative predictive value, 

gray circles= percent accuracy. 

 

To summarize, CART seems to produce the best model in this pilot study when all five 

diagnostic accuracy measures are considered collectively, followed by logistic regression. 

UPGMA and the t-test did not fair as well. Of interest is the performance of the consensus model 

which seems to be a good compromise between both CART and logistic regression. Albeit 

models from logistic regression and CART in this study performed better in a few of the 

diagnostic measures, not all peaks in those models warrant subsequent identification and 

validation efforts. This is because spurious peaks that are only specific to those models might be a 
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reflection of overfitting and biases to the respective algorithm. These biases could be the reason 

why the logistic and CART models appear to perform better than the consensus model. Therefore, 

downstream validation efforts and resources will be better off directed at the consensus peaks. 

An added advantage of the consensus model is the higher level of confidence in the true 

discriminatory traits of the peaks as they managed to survive various data distribution 

assumptions across statistical platforms to appear as statistically significant differentially 

expressed peaks. Another advantage of forming a consensus model is the trimming of the long list 

of potential biomarkers to be sequenced to the selected few with true discriminatory power. The 

ideal clinical assay will only need to focus on assaying the minimal number of biomarkers to 

accurately diagnose a disease state.  

 The methodology described here can be applied to any MALDI TOF derived data set to 

reconcile the disparate potential biomarker mass peaks reported by different studies on the same 

disease, provided the same standard operating procedure is employed during data acquisition. 

Consensus peaks will no doubt expedite efforts to identify robust biomarkers for clinical 

applications as their true discriminatory trait is reflected in their selection as differential 

biomarkers across several statistical platforms. Hence, they should be the main candidates where 

downstream identification and validation efforts should be focused on to assess their suitability to 

be adopted in a diagnostic assay or as therapeutic targets. Hopefully, the strategy proposed here 

will stimulate further advances and alternative approaches to the disease-state profiling based on 

high dimensional proteomic data and contribute to the discovery of useful biomarkers.  
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2.5 IDENTIFICATION AND VALIDATION STRATEGIES 

 
Critics of the differential pattern profiling approach have argued that not knowing the structure of 

the biomarkers make validation more difficult because there is no physiological hypothesis to 

help give confidence in the findings [55]. This is unfounded because, from a historical context, 

the ovarian cancer marker CA-125 has been measured for years without knowing the underlying 

identity or amino acid sequence. Furthermore, PSA has been adopted as the marker for prostate 

cancer without knowing the underlying physiologic basis for this correlation. There does not 

necessarily have to be a causal link between markers and disease. What is necessary, however, is 

that the association of a particular molecular marker with the disease of interest be reproducible 

in a statistically robust manner within and between testing sites, and can affect disease 

management by influencing therapeutic options.  

As efforts to ensure reproducibility are still ongoing, the immediate future calls for the 

identification of these putative markers to facilitate transition to the more established, higher-

throughput assay platform of ELISA which requires antibody generation. This will allow for the 

immediate bias and overfitting assessment in clinical samples. Furthermore, candidate identity is 

important to promote biological insight into the molecular mechanism of diseases. This 

information will reveal their point of origin and physiology. It is only when the identity of the 

protein is known that new therapeutics can be generated to prevent the disease occurrence or to 

better the lives of patients who failed early detection. This represents a paradigm shift from an 

unbiased discovery approach emphasizing comprehensive protein characterization via MS to a 

candidate-driven approach emphasizing high-throughput quantitative antibody-based assays. 

 An advantage of our data analysis approach is it creates a sense of stringency in the 

discovery process by reducing the number of potential candidate biomarkers for downstream 

identification and validation efforts. The prioritization of the candidates for verification will 

generally be dependent on the individual marker’s performance. 
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A significant disadvantage of SELDI- and MALDI-based approaches is it allows for the 

relative quantitation of marker peaks but does not allow for their identification. Towards this end, 

various technologies with different strengths and weaknesses have been integrated to enrich for 

and identify the candidate markers. 

 

2.5.1 Identification strategies 

 

The identification of candidate marker peaks requires their enrichment and subsequent sequence 

determination. It is essential to enrich for the biomarker peaks to fully exploit the limited 

sensitivity of the mass spectrometers used for sequencing, especially if the peaks originate from 

low abundance proteins. 

 

2.5.1.1 Biomarker enrichment 
 
A popular strategy is to first recapitulate the chip chemistry onto columns. In our workflow, the 

IMAC chip will now be replaced by IMAC columns, preferably with the same ion chelating 

group used on the ProteinChips. The array chips have immobilized nitrilotriacetic acid (NTA) 

groups to chelate the nickel ions via a tetradentate metal capture strategy (Figure 2.25). 

Consequently, this leaves two free binding sites on nickel to capture proteins. Iminodiacetic acids 

(IDA) chelate metal ions through a tridentate capture configuration, allowing three binding sites 

on nickel to capture proteins. Even though more proteins can be captured by IDA, they undergo 

metal leaching due to weaker binding to the metal ion compared to NTA. These IMAC columns 

with suspended resins that enable overnight incubation for equilibrium binding to occur have a 

higher binding capacity and allows for more target proteins to be captured. The bound species can 

then be eluted with MS-compatible solvents such as imidazole (LC-MS/MS) or acetonitrile 

(MALDI-MS/MS). Identity-based biomarker discovery is reliant upon multidimensional 

fractionation at the protein and/or peptide level to improve detection of low abundance species. 
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Therefore, the recapitulated samples can then be used for biomarker enrichment into selected 

fractions using tandem orthogonal separation technologies, such as MudPIT. Coupling more than 

two sequential separation techniques will risk inefficient recovery of scarce biomarkers in the 

process. Micro- or nanoflow HPLC may be employed to concentrate the desired species in a 

smaller volume prior to MS analysis. Automated multidimentional separation system, such as the 

PF2D [56], can also be employed by pooling clinical samples that display strong marker peak 

signal intensity in the mass spectra. A potential hurdle here is that since our biomarkers are of 

LMW, the difference in hydrophobicity between the species might be too subtle to be fully 

resolved on a reverse phase column. This strategy also negatively impacts the throughput as even 

a small number of patient samples will produce large numbers of fractions for analysis. Gel 

separation of the complex samples prior to MS analysis is also a valid enrichment method if the 

marker peaks are not of LMW as gels are biased against species <10 kDa. 

 

 

Figure 2.25 Structures of nickel binding matrices. Ni(II)-IDA allow three binding sites for 

protein capture and a tridentate metal capture configuration. Ni(II)-NTA allows two binding sites 

for protein capture and a tetradentate metal capture configuration. 
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2.5.1.2 Biomarker sequencing 
 
Assuming the biomarkers are successfully enriched, these fractionated samples can then be 

analyzed by single stage MS to determine which ones contain the marker peaks. MS/MS 

sequencing can then be used to sequence these peaks for protein identification via database search 

by tandem MS sequencing using the 4700 TOF/TOF Proteomics Analyzer (Applied Biosystems 

Inc., CA). This system was designed for high throughput with possible automation of tandem data 

acquisition followed by protein database search using their integrated Global Proteome Search 

Explorer software. This instrument is routinely used for peptide mass fingerprinting and tandem 

MS protein sequencing. It has a mass accuracy of 10 ppm and sensitivity down to the low 

picomole range.  

It is not easy to obtain efficient fragmentation of large molecules (proteins and large 

peptides) that allow for sequence determination. Known fragmentation processes including CID, 

ECD, ETD and IRMPD are in general biased toward smaller ions. The limitation of tandem MS 

sequencing is the tendency of fragmentation to occur at the few preferred sites on the molecules, 

resulting in only a few dominating fragment peaks that are not sufficient to obtain complete 

sequence information (Figs. 2.26 and 2.27). Ion trap or FT-ICR can be useful in this instance 

because of increased sensitivity. An ion trap, in theory, supports up to MSn fragmentations. 

Therefore, the couple dominant fragment peaks in MS2 can still be selected for further 

fragmentation to obtain a detailed sequence. The alternative approach to obtain the identities of 

these proteins in highly complex mixtures is to convert them enzymatically (usually by trypsin 

digestion) into their peptide components. However, a serum sample with 10,000 different proteins 

with mass range 10 to 100 kDa, each producing 20 peptides, will result in 200,000 peaks in 

MALDI within the 1 to 5 kDa mass range. Hence, separation of peptides for sequence 

determination is a must. This again leads to the problem of sample amplification from parent 

input to daughter fractions.  
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Figure 2.26 Collision induced dissociation of parent ions result in different sets of product ions, 

depending on the site of fragmentation. 
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Figure 2.27 Limitation of tandem MS analysis. MS/MS analysis of a peak 2021 resulted in 

inefficient fragmentation that did not lead to sequence identification.  

  

Another complementary approach is to subject the eluate from the IMAC columns to 

direct sequencing via FT-MS. This is possible through collaboration with sites that have access to 

the technology, such as ThermoFisher Scientific's BRIMS (Biomarker Research Initiatives in 
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Mass Spectrometry) Center in Cambridge, MA. This approach has proven successful in a recent 

report [57]. The beauty of this instrument lies in the coupling of an ion trap to the FT-ICR, both 

conferring superior sensitivity and resolution. FT-MS can reach the low attomole range in 

sensitivity. FT-MS has a unique resolution of 100,000 or more, and accuracies can be as good as 

1 ppm. This confers the ability to perform specific searches on peptide mixtures obtained from 

small clinical samples. 

Putative identity of the differential mass peaks can also be determined in silico by 

matching the nominal mass of the marker peaks to those in databases with sequence information. 

The confidence in the identifications is dependent on the mass accuracy of the mass spectrometer, 

with higher mass accuracies resulting in a more specific list of candidate proteins. 

 

2.5.2 Verification and Validation strategies 

 

A single study does not establish a scientific fact especially if the sample size is limited in size. 

Rather, secondary verification of results in the initial finding from the protein profiling study is 

imperative to show reproducibility and reduce false positives from overfitting. If the biological 

sample used in discovery is not the final diagnostic medium, verification in blood samples from 

the same patients facilitates transition to the eventual blood-based platform. Due to scarcity of 

samples, verification may have to occur in the same small sample set used in profiling. However, 

to assert confidence in the differential markers, a more targeted, and preferably orthogonal, assay 

will have to be used. The end result of this stage will be a reduced list of markers with high 

diagnostic performance that are now suitable for formal validation studies [51].  

The validation stage will recruit hundreds of clinical samples, incorporating a broader 

range of cases and controls from different cohorts and geographic locations, to better capture the 

whole spectrum of variation in the tested population. 
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2.5.2.1 Antibody-based approaches 
 
A common first step in verification is the generation of specific antibodies and their validation. In 

addition to using them for verification efforts, the antibodies can also be easily adapted to the 

sandwich enzyme-linked immunosorbent assay (ELISA) system, which is performed commonly 

in clinical laboratories. These tests are robust, high-throughput, and confer high sensitivity and 

specificity (pg/ml) because they use a pair of antibodies against the targeted molecule. However, 

use of an ELISA to test for the presence of a disease requires a single, meticulously validated 

protein biomarker of the disease, as well as extremely well-characterized, high-affinity antibody 

that can detect the protein of interest. Depending on the identity of the signature ion, it may or 

may not be feasible to proceed directly to develop a serum immunoassay for the individual 

biomarker. This is because the intensity of MALDI TOF MS does not reflect the concentration of 

the given marker associated with the ion. Moreover, cleaved versions and parent species might 

cross react with the antibody. A possibility exists to develop polyclonal antibodies as bait, and 

that following binding, the entirety of the recognized entities, including the diagnostic fragment 

are eluted and analyzed via MS. This is also advantageous to cover possible sequence changes in 

the same peptide in the heterogeneous human population notorious for single nucleotide 

polymorphisms (SNPs).  

As an initial step, the biological samples can be subject to Western blot analysis using the 

antibody to confirm the modulation in the expression level of the antigens in question. It is also 

the first check for the specificity of the antibodies raised.  Alternatively, the antibody can be used 

for immunoprecipitation experiments to deplete the biomarker in question. Western blot of the 

depleted and native samples will then confirm the expression level of the species and specificity 

of the antibody. A caveat though is that Western blots with serum require the tentative marker to 

be present in the µg/ml range. This may be overcome by pooling samples. 

The beauty of SELDI is that this discovery platform can also be utilized to a limited 

extent for biomarker validation. One way to accomplish this is to immunodeplete the marker with 
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the antibody and run the depleted and non-depleted samples on the IMAC30 chips used in 

discovery to determine if the peak of interest vanishes in the depleted sample (Fig. 2.28). 

Alternatively, the antibody can be immobilized on a ProteinChip array, incubated with sample to 

capture the biomarker of interest, and then run on MS to see if the peak of interest is observed. 

 
 

 

                                 

                                                            

 
 

Figure 2.28 Immuno-mass spectrometry approach for biomarker validation. 

Immuno-depleted samples (bottom panel) when compared to their non-depleted counterparts (top 

panel) should witness an absence of the marker peaks (3371.9 and 3442.5 here) in MS analysis. 

 

2.5.2.2 Antibody-free approaches 
 
Candidate-based validation assays rely on the specificity of the capture or detection methods, as 

seen in ELISA. However, for most novel candidates, antibodies will not be available. The 

development of a reliable immunoassay for quantitation of one target protein is expensive, has a 

long development time, and is dependent upon the generation of high quality protein antibodies 

as mentioned. These reagent limitations along with the limited ability to multiplex immunoassays 

[58] make it necessary to use alternative targeted quantitative assays to bridge candidate 

discovery and validation. 
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Targeted, hypothesis-driven mass spectrometry using multiple reaction monitoring 

(MRM) is one such assay. MRM has long been a principal tool for quantification of small 

molecules in clinical chemistry [59-61]. MS-based quantitative assays is an attractive approach 

given their improved sensitivity and specificity, the speed at which assays can be developed 

compared to immunoassays and the quantitative nature of the assay with substantial multiplexing 

capability and precision (CV <5%) [62].   

In MRM mode, the mass spectrometer with triple quadrupole capability transmits the 

parent ion and subsequent fragment ion with high sensitivity and selectivity. Figure 2.29 shows 

the configuration of the mass analyzers during MRM. The first mass analyzer is set to transmit 

only the mass of the peptide parent ion into the collision cell. Only one of the sequence ions of 

the peptide, generated by the fragmentation in the collision cell, is passed through the second 

mass analyzer to the detector. The detection of the peptide by MRM drives the acquisition of 

MS/MS to confirm the peptide sequence and thus definitively the identity of the detected peptide. 

From the theoretical peptide sequence, the fragmentation pattern of the peptide by MS/MS is 

predicted. When combined with chromatography, this makes the mass spectrometer a highly 

specific detector for the target molecule as it is highly unlikely that isobaric compounds that may 

coelute with the target compound will also have an identical fragment mass.  

MRM coupled with stable isotope dilution MS (MRM/SID-MS) enables quantitation. 

Isotopically labeled standards are added to a sample in known quantities, and the signals from the 

exogenous labeled and endogenous unlabeled species are compared. The labeled molecules 

(either labeled enzymatically or synthesized to incorporate labeled amino acids) behave nearly 

identically to the unlabeled forms with respect to ionization efficiency. This approach enables a 

moderate number of candidate proteins (30–100) to be targeted simultaneously and measured in a 

statistically viable number of patient samples required for verification [63]. 
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Figure 2.29 Multiple Reaction Monitoring (MRM). Mass analyzer Q1 is set to only transmit the 

parent m/z. The collision energy is optimized to produce a diagnostic charged fragment of this 

peptide in Q2, and Q3 is set to transmit this diagnostic fragment only. Only precursor ions with this 

exact transition will be detected (Applied Biosystems). 

 

Stable isotope standards and capture by anti-peptide antibodies (SISCAPA) [64] allows 

for the detection of biomarker candidates of low abundance by extending the sensitivity of the 

peptide assay by two orders of magnitude. In SISCAPA (Fig. 2.30), anti-peptide antibodies are 

used to enrich for the signature peptides before MRM analysis. Immunoaffinity peptide 

enrichment enhances both sensitivity and specificity, facilitating throughput by permitting 

analysis in complex matrices with little or no fractionation. Because the antibodies bind both the 

labeled and unlabeled monitor peptides equally (difference is in 13C isotope content only), 

quantitative information is preserved throughout capture and elution. An additional level of 

specificity is conferred by the fragmentation pattern of the affinity-captured peptides, allowing 

SISCAPA to act much like an ELISA with MS/MS substituted for the second antibody that has 

absolute structural specificity. Although antibody production is required in this approach, the 

development time of single antibody enrichment approaches is typically faster than two-antibody 

ELISA assays [65, 66]. 
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Figure 2.30 LC-MRM/SISCAPA-MS workflow. Depleted samples with minimal strong cation 

exchange fractionation and anti-peptide antibody enrichment significantly increases the MS-

based assay sensitivity. 

 

LC-MRM permits the ability to quantify over a wide dynamic range (over 5 orders of 

magnitude) and very low levels of detection (multiplexed assays for 6 proteins in plasma in the 1-

10ng/ml range with CV from 3 to 15% without immunoaffinity enrichment of either proteins or 

peptides). Up to 1000-fold improvement compared with direct analysis of proteins in plasma by 

MS can be achieved by simple abundant protein depletion and minimal fractionation by strong 

cation exchange at the peptide level [8, 63, 67-70].  

Priority is generally given to peptides detected in unbiased discovery experiments but not 

all peptides identified from a profiling study will be suitable for quantitative purposes due 

overlapping retention time and low confidence in peptide identification due to poor MS/MS 
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fragmentation. Therefore, in addition to the profiling markers, tryptic peptides can also be 

selected from in silico analysis of the protein sequence [71] to obtain several MRM peptides for 

the same protein. The peptides with high chances of usable MRM fragments will have to (i) 

demonstrate MS detectability with high MS/MS spectral quality, (ii) exhibit good 

chromatographic peak shape on reverse phase chromatography with preference for moderately 

hydrophobic peptides and (iii) be unique to the protein of interest. Since the semiquantitative 

measurements of peptides in the initial profiling study rely solely on the parent ion mass, they are 

susceptible to interference by unrelated peptides of the same m/z. The MRM method uses product 

ion intensity and has higher sensitivity due to double filtering of parent and product ion mass. 

Therefore, reproduction of the quantitative difference by MRM may serve to confirm the 

differential presence of the candidate markers. 

 

2.6 CASE STUDIES 

 
The workflow presented here serves as an addendum to the many innovative experimental 

designs in unbiased proteomics biomarker discovery to address the challenges discussed in 

Chapter 1. We demonstrate the practicality of this workflow by performing exploratory studies in 

two autoimmune diseases in Chapter 3 (Case Study I: Multiple Sclerosis) and Chapter 4 (Case 

Study II: Narcolepsy). The confirmation of differential presence of the discovered markers in an 

orthogonal platform for the respective study represents the fulfillment of our second objective of 

biomarker identification and verification. Our data-driven exploratory studies aim to identify 

proteins that are differentially present in confirmed disease relative to control samples, and 

prioritize identified markers in a reliable and reproducible manner. We further extended on this 

by estimating the diagnostic accuracy of the biomarkers via ROC curve analysis. This serves as a 

filter to direct only optimal markers for elaborate identification and verification efforts. Our 
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studies constitute the premise for further validation with a larger cohort derived from the target 

population across geographical sites.  
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CHAPTER THREE 
Case Study I: Multiple Sclerosis 

 
3.1 INTRODUCTION 

 
In this chapter, the acronym MS will refer exclusively to the disease Multiple Sclerosis and not 

the technique Mass Spectrometry. 

 
3.1.1 Background 

 

Multiple sclerosis (MS) is the most common inflammatory and demyelinating neurological 

disease of the brain. The prevalence varies from 1:600 to 1:2,000 with geographic location with 

incidences mostly in North America and Europe, affecting 2.5 million people worldwide and 

400,000 in the United States alone [1] (Fig. 3.1). As with most autoimmune diseases, women are 

at a higher risk than men at a 3 to 1 ratio. MS manifests itself in young adulthood, predominantly 

between the ages of 20 and 40. 

It is also debilitating with symptoms that include various degrees of paralysis, sensory 

disturbances, reduced coordination, and visual impairment such as optic neuritis. The molecular 

mechanism underlying the pathogenesis of MS remains unknown. MS is characterized by discrete 

areas of myelin, oligodendrocyte and axonal loss due to cellular and humoral immune responses 

responsible for severe inflammation and demyelination of the neurons. MS has long been 

regarded as a demyelinating disease but recent evidence suggests widespread axonal damage that 

correlates closely with the progression of disability [3]. It appears that MS is not just restricted in 

the white matter, but in the gray matter as well with occasional lack of lesions in white matter 

altogether. 

The complexity of this disease is evident in the diagnosis stages, which consist of 

relapsing-remitting (RRMS), benign, primary progressive (PPMS), primary-remitting (PRMS) 

and  secondary  progressive  (SPMS)  (Fig. 3.2).  Benign  MS  does not result in disability and the  
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patient returns to normal between attacks. Both RRMS and SPMS do not introduce new disability 

between attacks but the latter is followed by a steady increase in disability. PPMS patients see a 

steady increase in disability without attacks. 

 

 

Figure 3.1 Worldwide prevalence of multiple sclerosis. (Internet source) 

 

There are two distinct phases in MS: early (acute) and late (chronic). Relapses and 

disease exacerbations are vexing features of MS. Approximately 85% of MS is diagnosed in the 

acute RRMS stage [2], where inflammation dominates and new lesion sites appear in the white 

matter. During this stage, the patient undergoes episodic attacks and recovers, but with every 

attack, minor disability is incurred. Inflammation plays a major role in RRMS and it is at this 

stage where current therapies are most effective in controlling MS, mostly with anti-inflammatory 

drugs. Gradual progression to the chronic, fulminant SPMS causes global brain atrophy where 

lesions expand, leading to significant neurological disability and where inflammation purportedly 

decreases.  
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Figure 3.2 Multifaceted forms of multiple sclerosis. Spikes indicate episodic attacks. 
 

The current model of MS pathogenesis involves genetic, environmental, and 

immunological factors. The susceptibility genes associated with MS are responsible for tipping 

the immunological balance by allowing T cells that recognize self-antigens to remain in 

circulation, escaping negative selection during maturation in the thymus. For the most part, this 

will not promote precipitation of the disease as they are kept at bay from their myelin-sheath 

derived antigens by an intact blood-brain barrier (BBB). However, an environmental factor such 

as a viral infection might compromise the integrity of this barrier and result in an inundation of 

autoreactive T cells into the brain, thereby initiating neuronal attacks and damages (Fig. 3.3). 
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Figure 3.3 Pathogenesis model of multiple sclerosis. Myelin-reactive T cells in circulation are 

activated upon presentation to their antigen via molecular mimicry. Once they penetrate the BBB, 

they are reactivated by their target antigen and release toxic cytokines that result in neuronal 

damage. [3] 

 

3.1.1.1 HLA associations 

The heterogeneous pathogenesis of the lesions in MS is attributed to polygenic interactions 

notably in the HLA region [4, 5] (Table 3.1). These HLA genes are responsible for orchestrating 

the autoreactive immune cells in MS. Autoreactive CD4+ T and B cells are inherently present but 

once activated, they target components of the myelin sheaths. The most common antigen is 

derived from the myelin basic protein, a 170 amino acid protein with 19 arginines and 12 lysines 

that contribute to it’s basicity in interactions with negatively charged phosphate groups of 

membrane phospholipids to form a compact sheath. Subsequent release of myelin antigens 

promote a cascade of events that culminates in chronic disease development. 



 113

 

 

 
Table 3.1 Major histocompatibility complex (MHC) associations in multiple sclerosis. 

 

3.1.2 Current diagnostic tools for multiple sclerosis 

 

To date, there are no molecular tests for early detection of MS and diagnoses are currently based 

almost entirely by observation of clinical symptoms accompanied by CSF analysis, magnetic 

resonance imaging (MRI), and visual evoked potential (VEP) tests. Diagnosis of MS comes with 

elevated IgG index [6] and the presence of oligoclonal bands in the CSF, abnormalities (lesions) 

in the white matter via MRI, or delayed VEP [2]. These tests suffer from lack of disease 

sensitivity and specificity. Oligoclonal bands are not always present in MS patients and 

depending on the type of MRI used, some regions (subcortical or spinal cord) are not amenable to 

visualization. Furthermore, the readout parameters are not specific to MS. These methods are 

relied upon in the clinic simply because of the absence of a better test. Early clinical detection is 

considered late at the molecular level in MS since presentation of clinical symptoms indicates the 

disease has been present for a long time, and old lesions and some injury to the brain are already 

evident [3]. A more sensitive method to detect MS earlier or monitor its progress more accurately 

will dramatically improve the prospects of people who are predisposed to MS and serve as an 

impetus to the eventual replacement of clinical with molecular diagnosis.  
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 Current therapies aim at reducing inflammation and slowing progression into the 

irreversible disability of SPMS. Thus, they are most effective at the RRMS stage and they include 

the likes of Natalizumab, Interferon Beta, Glatiramer acetate, and Methotrexate that inhibit T cell 

activation, proliferation, and migration across the BBB.  

 

3.1.3 Proteomics studies on multiple sclerosis 

 

Proteomic studies of MS have mostly involved 2DGE, either of human serum or CSF [7-9], with 

few studies using a high-throughput mass spectrometry-based platform for biomarker discovery 

[10, 11].  Avasarala et al. analyzed serum samples from 25 RRMS patients versus 25 healthy 

controls using MALDI TOF and found 3 m/z ratio peaks observed only in the MS samples [10].  

Irani et al. analyzed CSF from 29 MS patients, 27 patients with transverse myelitis and 27 

patients with other neurological diseases using SELDI TOF MS and suggested a cleavage product 

of Cystatin C to be a biomarker for a subgroup of MS patients [11]. A notable drawback of the 

first study was the use of healthy controls instead of patients with other inflammatory diseases, 

therefore bringing into question whether those 3 peaks are specific for MS. In the second study, 

the cleavage product of Cystatin C was subsequently shown to be an artifact of storage condition 

and not a specific marker for MS [12].  

The limited number of reports on proteomic efforts in MS correlates with the infancy of 

proteomics and the technologies associated with this field. This suggests that the potential of 

biomarker discovery in MS still remains vastly untapped and more studies are warranted.  

The following sections cover the first application of the high-throughput methodology 

described in Chapter 2 on the proteomic screening of the CSF proteome in a complex disease 

such as MS.  The study is aimed at the discovery of potential biomarkers for MS to guide in the 

diagnosis and/or prognosis of the disease.  
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3.2 MATERIALS AND METHODS 

 
3.2.1 Study population and source of CSF 

 

CSF samples were analyzed from 34 patients diagnosed with MS and 26 patients with non-MS 

diagnoses (Appendix A).  CSF samples were collected and centrifuged at 250g for 10 min to 

remove cellular debris. CSF supernatants were aliquoted and stored at -80°C until analysis. MS 

patients included 14 relapsing-remitting patients with a mean age of 38.1±10.5 years and age 

range of 22-60 years, and 20 secondary-progressive patients with a mean age of 45.1±11.7 years 

and age range of 28-67 years.  Non-MS patients had a mean age of 60.4±2.4 years and age range 

of 26-91 years.  Diagnoses of non-MS patients included prostate cancer (n=2), urinary/bladder 

cancer (n=1), congestive heart failure (n=2), headache (n=3), seizure (n=5), Parkinson’s Disease 

(n=5), CNS tumors (n=5) and other neurological diseases (OND) (n=3).  The RRMS and OND 

CSF samples were collected at UT Southwestern Medical Center under an IRB-approved 

protocol.  The SPMS and other non-MS samples were acquired from the Human Brain and Spinal 

Fluid Resource Center at UCLA. 

 

3.2.2 Sample preparation 

 

CSF samples were aliquoted into 96-well microtiter plates and diluted 1:2 in 1X PBS, pH 7.4. All 

ProteinChip arrays were processed on the same day in a 96-well format as follows: IMAC30 

ProteinChip arrays (Bio-Rad) from the same batch were activated with 50 mM nickel (II) sulfate 

hexahydrate three times for 15 mins with gentle shaking, followed by a quick rinse with HPLC 

grade water. The arrays were then equilibrated with 100 mL 1X PBS, pH 7.4 on a shaker at room 

temperature for 15 mins, thrice. The buffer was discarded and remaining droplets were aspirated 

from the spots using a vacuum tip. The IMAC30 arrays were then loaded into a ProteinChip 
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bioprocessor cassette to facilitate high-throughput analysis. The diluted CSF samples were 

deposited onto the array spots using a PerkinElmer MultiPROBE II PLUS HT EX liquid handler. 

Each CSF sample was run in triplicate. The bioprocessor cassette was sealed with aluminum foil, 

placed in a humidifying chamber, and incubated overnight at 4°C in a vacuum desiccator. The 

following day, the CSF samples were removed and the arrays were washed with 200 µL 1X PBS 

three times for 15 mins with gentle shaking at room temperature. The bioprocessor was 

subsequently removed and remaining droplets were aspirated from the spots using a vacuum tip. 

The ProteinChips were allowed to air dry for 15 mins. Then, two 1 µL aliquots of 5 mg/mL α-

cyano-4-hydroxycinnamic acid (CHCA) matrix (LaserBio Labs, France) were added to each spot. 

All washing steps and matrix deposition were performed using a liquid handler to minimize 

operator bias. Matrix solution was kept protected from light at room temperature until ready for 

use. The spots were allowed to air dry before prOTOF MALDI-TOF mass spectrometry analysis. 

 
3.2.3 MALDI TOF mass spectrometry analysis 

 

ProteinChip arrays were placed in a custom made adapter for mass spectrometry analysis in the 

prOTOF2000 MALDI O-TOF mass spectrometer interfaced with TOFWorks software 

(PerkinElmer/SCIEX). Its orthogonal design enabled a single external mass calibrant to achieve 

better than 5 ppm mass accuracy over the 1,000 to 10,000 mass range acquired. A 2-point 

external calibration of the prOTOF instrument was performed before acquiring the spectra in a 

batch mode, four runs of six arrays at a time. Six spots were dedicated for the NIST reference 

serum sample and calibration was conducted at each run to ensure the integrity of the whole 

process. Acquisition was performed in one setting with a protocol optimized for ProteinChips: 

laser intensity of 78% at 100 Hz, 50V declustering voltage, 150 mL/min cooling flow rate, and 

200 mL/min focusing flow rate. The prOTOF data files generated an average of 1 million data 

points per spectrum. 
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3.2.4 Biostatistical analysis 

 

Raw spectra from the prOTOF were exported as text files using the prOTOF loader program and 

preprocessed to restore the zero-intensity values [13, 14]. The 60 CSF samples run in triplicate 

generated a total of 180 high-resolution mass spectra. Spectra from two CSF samples with 

macroscopic blood contamination were excluded from the analysis. The total ion current (TIC) of 

each spectrum was calculated and the average TIC was computed across the remaining 174 

spectra. Spectra with a TIC value that was greater than twice or less than half of the average TIC 

were deemed outliers and were omitted from the study. This eliminated 4.6 to 6% of the spectra, 

depending on the group comparisons.  Global normalization of the signal intensity of the mass 

peaks was performed by normalizing to the average TIC of the remaining spectra. 

The mass spectral data set was analyzed both by an in-house t-test-based method [14] and 

Progenesis PG600 software (NonLinear Dynamics, UK) using Unweighted Pair Group Method 

with Arithmetic mean (UPGMA) hierarchical clustering. This serves to uncover consensus, 

differential mass peaks to reduce false positive associations to peaks that are due to overfitting or 

biases to a particular algorithm, as previously described in Section 2.4.2.  

Analyses were performed to discover statistically differential markers between the 

following groups: MS vs non-MS, RRMS vs SPMS, MS vs PD, RRMS vs PD, SPMS vs PD, MS 

vs seizure and MS vs headache. The parameters for differential peak selection were set to include 

peaks with a minimum fold change of 20% between the groups compared and a p-value less than 

0.05. The stringency of these parameters was tightened in certain comparisons to obtain peaks 

that are highly differential. ROC curve analysis was then performed using SAS (SAS Institute 

Inc., Cary, NC) on the differential peaks to determine their discriminatory power. 
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3.2.5 Western blot analysis 

 

Samples from each group were separated by 10% Tris-Glycine-SDS-polyacrylamide gel 

electrophoresis and transferred to an Immobilon-PSQ 0.2 µm PVDF membrane (Millipore). 

Western blotting was performed on 9 µg total protein per lane. The membrane was blocked with 

5% milk in 1X TBST overnight and then probed for 1 h with a mouse monoclonal antibody to 

Complement C3 (sc-52632, Santa Cruz Biotechnology Inc.) diluted 1:2,000. The membrane was 

washed with 1X TBST twice for 15 mins and then with 1X PBS twice for 15 mins, followed by 

incubation for 1 h with HRP-labeled goat anti-mouse secondary antibody (Bio-Rad) diluted 

1:2,000. The washing steps were repeated before detection with SuperSignal West Pico 

Chemiluminescent Substrate (Thermo Scientific). The membrane was stripped, blocked and re-

probed with rabbit polyclonal antibody against transthyretin (sc-13098, Santa Cruz 

Biotechnology Inc.) diluted 1:2,000 and HRP-labeled goat anti-rabbit secondary antibody (Bio-

Rad) diluted 1:2,000. All antibodies were diluted in 5% milk in 1X TBST. All incubations were 

performed at room temperature. ImageJ was used for quantitation. 
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3.3 RESULTS  

 
3.3.1 Analytical variables assessment 

 

3.3.1.1 CSF dilution factor 

The first parameter evaluated was the dilution ratio of samples to maximize binding of 

proteins/peptides to the capture surface. Previous experience with human serum samples run on 

the same platform showed that the optimal dilution factor was often 1:20. Since CSF has a much 

lower protein concentration than serum, the neat, 1:2 and 1:10 dilution factors were investigated. 

The neat and 1:2 samples produced similar mass spectra profiles with an equal number of peaks 

represented that were superior to the 10-fold diluted sample (Fig. 3.4). Therefore, a 1:2 dilution 

factor was adopted for the processing of all CSF samples to minimize sample consumption in the 

discovery phase and retain a majority of the same samples for downstream validation efforts. 

 

 

Figure 3.4 Optimization of CSF dilution factor. Mass spectra correspond to the same CSF 

sample analyzed either as neat, 2-fold diluted or 10-fold diluted on an IMAC30 ProteinChip. 

Signal intensity (y-axis) is plotted against the mass range, m/z (x-axis). 
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3.3.1.2 Surface retentate chemistry 

As mentioned in Section 2.3.2, four main capture surface chemistries were evaluated for optimal 

peak observation and IMAC30 chips charged with nickel ions proved to be the best peak-

producing platform. Thus, IMAC30 was the retentate surface of choice in the workflow. 

 

3.3.1.3 Spectral reproducibility 

As a check of spectral reproducibility, two CSF samples (one from each group being profiled) 

were run in triplicate. The high accuracy and resolution conferred by the prOTOF mass 

spectrometer enabled reproducible replicate spectra from individual samples to be obtained (Fig. 

3.5). 

 

 

Figure 3.5 Spectral reproducibility was evaluated with an MS and a non-MS CSF sample run in 

triplicate on IMAC30 chip surface. 
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3.3.2 Pilot study 

 

An initial pilot study was conducted to evaluate the methodology described in the previous 

chapter for detection of differential proteins in the CSF. This preliminary study involved CSF 

samples from MS (n=5) and non-MS (n=3) patients. Figure 3.6 shows that in addition to CSF 

being a protein-rich source of biological samples suitable for proteomic studies, there are 

detectable obvious differences in the protein profiles between MS and non-MS patients using this 

readout platform.  Therefore, we proceeded to the larger MS profiling study of 60 samples. 

 

 
A 

 
 

 
B 
 

Figure 3.6 Preliminary study of multiple sclerosis. Differential protein profiles between MS 

and non-MS samples were obtainable from CSF. The mass spectra (A) and corresponding gel 

views (B) are shown. 
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3.3.3 Profiling of multiple sclerosis and non-multiple sclerosis CSF 

 

The workflow employed in this study is shown in Figure 3.7. The 60 clinical CSF samples were 

run in triplicate to minimize analytical variance in the technical process to generate a total of 180 

mass spectra. 

 

 

Figure 3.7 Cerebrospinal fluid-based biomarker discovery workflow 

 

In this study, UPGMA hierarchical clustering and an in-house t-test-based method were 

used. Statistically significant differential peaks between the MS and non-MS groups are listed in 

Table 3.2.  
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In order to form the best discriminatory model for MS classification, consensus peaks 

that displayed the highest fold change between the MS and non-MS groups were selected for 

inclusion in the prediction model. To this end, mass peaks 2,091.91, 2,162.96, 2,294.00, and 

2,898.47 were selected to form a biomarker panel collectively because they were discovered to be 

statistically differential with a fold change difference of at least two from the in-house t-test 

approach and were also selected as differential by the UPGMA algorithm. ROC curve analysis 

was performed on this four-peak model. The area under the curve (AUC) of 0.762 indicates good 

discriminatory power between the MS and non-MS groups (Fig. 3.8). In addition, this model has 

a sensitivity of 97%, specificity of 46%, and a positive predictive value (PPV) of 71% (Table 

3.3).  

Comparisons between MS to other non-MS diseases with at least three samples were also 

performed: MS vs PD, RR vs PD, SP vs PD, MS vs seizure, and MS vs headache. Comparisons 

to headache and seizure did not result in differential peaks. In the subgroup comparisons within 

MS (RRMS vs SPMS) and with Parkinson’s Disease (PD) (MS vs PD, RRMS vs PD, SPMS vs 

PD), a collection of peaks were found to be differential with p-value less than 0.005 and a fold 

change of at least two (Table 3.4).  
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Mass peaks (m/z) Fold change P-value 

UPGMA Hierarchical Clustering 

2,294.00 -1.56 <0.001 

6,945.31 -1.53 0.038 

2,898.47 -1.51 0.023 

2,091.91 -1.49 <0.001 

6,930.19 -1.46 0.033 

2,162.96 -1.44 <0.001 

6,962.27 -1.44 0.037 

3,804.88 1.36 <0.001 

2,861.34 -1.34 <0.001 

2,880.42 -1.34 0.013 

4,036.15 -1.28 <0.001 

4,751.19 1.21 0.002 

3,441.52 -1.21 0.009 

T-test 

2,091.91 ≥ 2.0 ≤ 0.05 

2,162.96 ≥ 2.0 ≤ 0.05 

2,294.00 ≥ 2.0 ≤ 0.05 

2,898.47 ≥ 2.0 ≤ 0.05 

2,861.34 ≥ 1.5 ≤ 0.05 

2,882.49 ≥ 1.5 ≤ 0.05 

3,804.88 ≥ 1.5 ≤ 0.05 

 

Table 3.2 Differential peaks discovered from UPGMA hierarchical clustering and t-test for 

the comparison between the MS and non-MS groups. Peaks are listed in decreasing fold 

change. Consensus peaks are in bold. 
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Figure 3.8 ROC curve for MS versus non-MS model. Model includes peaks at m/z 2,091, 

2,162, 2,294, and 2,898. 

 

ROC analysis of differential peaks between MS and non-MS 

Sensitivity (%) Specificity (%) PPV (%) Percent Accuracy (%) 

96.91 45.71 71.21 75.45 

 

Table 3.3 ROC curve analysis of differential peaks from group comparisons. Diagnostic 

accuracy measures of MS versus non-MS model. Model includes peaks 2,091, 2,162, 2,294, and 

2,898. PPV is the positive predictive value. 

 

A peak at m/z = 2,021 was found to be 2.5-fold stronger in SPMS than RRMS. In fact, 

this differential peak was selectively present in the SPMS group but not in the RRMS group, as 

shown in Panels A and B of Figure 3.9 (p-value <0.0001). When the expression of this peak was 

interrogated in the PD CSF samples, it was also found to be elevated over the RRMS group, 

albeit at a lesser degree than the SPMS group (Panel A, Fig. 3.9).  ROC curve analysis was 

performed on this peak to evaluate its discriminatory power between the three sample groups. It 

demonstrated strong discriminatory power between SPMS and RRMS (Fig. 3.10 and Table 3.5) 

with a high goodness of fit (Gof) score of 0.9117 and an AUC of 0.972. The sensitivity is 97% 

whereas the specificity is 88%. In contrast, this single-variate model with peak 2,021 has weak 
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discriminatory power between RRMS and PD (Gof score of 0.4039) and no discriminatory power 

between SPMS and PD (Gof score of 0.0477). 

              Group RRMS vs SPMS MS vs PD SPMS vs PD RRMS vs PD 

m/z     

2,021.09 SPMS    

2,053.05 SPMS    

2,091.91  PD PD PD 

2,162.96  PD PD PD 

2,294.00  PD PD PD 

3,804.88  MS SPMS RRMS 

 

Table 3.4 Differential peaks from subgroup comparisons. The group where the peak was 

present at higher signal intensity is indicated. SPMS = secondary progressive MS, RRMS = 

relapsing-remitting MS, PD = Parkinson’s disease. 

 

 

A 

 

B

Figure 3.9 Differential peak 2,021 between RRMS and SPMS. (A) Overlay view of mean 

signal intensity of peak 2,021 in subgroup comparisons. Red trace, RRMS; blue trace, SPMS; 

black trace, PD (B) Peak 2,021 signal intensity in SPMS and RRMS CSF samples. Horizontal 

bars indicate the arithmetic mean. 
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Figure 3.10 ROC curve for RRMS versus SPMS model. Model includes peak at m/z 2,021. 
 

ROC analysis of the differential peak 2,021 between RRMS and 

SPMS 

Sensitivity (%) Specificity (%) PPV (%) Percent Accuracy (%)

96.67 88.00 95.08 94.11 

 

Table 3.5 ROC curve analysis of differential peaks from subgroup comparison. Diagnostic 

accuracy measures of RRMS versus SPMS model. PPV is the positive predictive value. 

 

3.3.4 Identification of the 2,021 peak as a Complement C3 fragment 

 

Significant efforts to scale up the enrichment protocol and obtain a sample suitable for analysis 

by tandem FT-MS were unsuccessful. Therefore, we turned to in silico methods to generate a 

hypothesis for the molecular identity of the 2,021 mass peak. A detailed literature search of 

proteins identified in human CSF to date revealed that a peak of m/z = 2,021 had been identified 

previously as a fragment of the Complement C3 protein [15], called the C3f proteolytic fragment. 

Coincidentally, in a separate pattern profiling study employing human serum, rather than CSF, 

samples from PD and non-PD patients, a peak with m/z = 2,021 bound to serum albumin was 

found to be elevated in the PD samples. This differential peak was identified to be the C3f 
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fragment of the Complement C3 precursor (NCBI database search by FT-MS) [16, 17]. These 

observations, and the fact that our peak 2,021 is also elevated in the PD CSF samples, prompted 

us to determine whether our 2,021 peak might correspond to the C3f fragment in CSF. 

We initially attempted to probe this point at the peptide level by immunoprecipitating the 

peptide corresponding to the 2,021 peak from CSF using immobilized antibodies that recognize 

an epitope in C3f on ProteinChips, but this proved unsuccessful.  Therefore, we hypothesized that 

if the 2,021 peak is the Complement C3f fragment, then perhaps the level of intact Complement 

C3 protein might also be diagnostic and so proceeded to address this possibility. 

We analyzed the level of intact Complement C3 in both the RRMS and SPMS subgroups 

in CSF by Western blot analysis. The Complement C3 protein levels were ascertained with an 

antibody that recognizes an epitope in the C3f fragment. 9 µg of total CSF protein was loaded for 

each sample on a 10% gel. Transthyretin (TTR) was probed as a loading control for CSF. All 

remaining samples that were not consumed in prior identification efforts (16 from SPMS and 8 

from RRMS) were run and probed for Complement C3 concurrently to minimize technical bias. It 

was found that the expression of Complement C3 was elevated in the SPMS CSF samples over 

RRMS (Panel A, Fig. 3.11). The chemiluminescence intensity was quantified and the ratio of C3 

intensity over TTR intensity was calculated. The C3/TTR ratio between the RRMS and SPMS 

groups showed a statistically significant difference with a p-value of <0.05.  The box and whisker 

plot of the ratios are shown in Panel B of Figure 3.11. The protein was more abundant in the CSF 

of SPMS patients compared with RRMS cases. Based on this tight correlation between the 

Western blot data for Complement C3 protein and the mass spectrometry data, we propose that 

the m/z = 2,021 peak identified as a possible biomarker is the C3f fragment of Complement C3, 

though we cannot completely rule out the possibility that the 2,021 peak represents a different 

molecule whose level is somehow linked tightly to the level of Complement C3. 
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A 

 

B 

Figure 3.11 Differential levels of Complement C3 in the CSF of RRMS and SPMS patients. 

(A) Representative Western blot depicting stage-specific expression of Complement C3. A-D= 

SPMS CSF, E-H=RRMS CSF. TTR was used as loading control.  (B) Box and whisker plot of 

C3/TTR chemiluminescence intensity ratio. 

 

3.4 DISCUSSION 

 
CSF is produced in the choroid plexus of the brain and is replaced three to four times a day, 

reflecting the current physiological state of the central nervous system (CNS). Because of this, 

and its close proximity to the lesions that characterize MS, this biological fluid is likely to be a 

rich source of highly concentrated CNS-related disease protein biomarkers. Furthermore, the 

presence of a protein marker in proximal fluid may be a surrogate for its availability to the 

systemic circulation and can thus be probed in blood for clinical assays. In addition, CSF can be 

procured in a relatively non-invasive procedure and even though more than 80% of CSF proteins 
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originate from plasma [18], it is a less complex proteome analyze because of its lower dynamic 

range in protein concentration (108) than plasma (1010) [19]. The CSF samples were not pre-

fractionated due to its lower protein content. 

In this study, we searched for interesting protein biomarkers in the CSF of MS patients by 

coupling surface retentate chromatography, using ProteinChips, to an accurate, high-performance 

mass spectrometry readout. To date, only limited studies involving CSF based on this high-

throughput platform have been reported. Our previous study [16] and those done by others [20] 

have shown that the number of output peaks in the mass spectra is highly dependent on the 

sample processing and data acquisition conditions. Therefore, the optimization of several 

parameters for CSF analysis was undertaken prior to the actual profiling study.  

In this report, we generated and analyzed 180 CSF proteome profiles from 60 patients to 

discover biomarkers specific for MS. In the MS versus non-MS comparison, four major peaks 

with the largest number of discriminating data points [14] were incorporated into a prediction 

model to assess their ability to classify samples from both groups. The area under the ROC curve 

of 0.762 shows that these four peaks have good discriminatory power between MS and non-MS 

samples. They exhibit a sensitivity of 97% and a specificity of 46%. Even though the specificity 

in this comparison is quite low, any molecular diagnostics with specificity significantly greater 

than zero is of interest in MS as there is currently no molecular test available.  

The strength of this study lies in the heterogeneity of both the clinical MS and non-MS 

control CSF samples that encompassed patients from different stages of MS and a battery of other 

neurological diseases. It is advantageous if the sample used in a study is representative of samples 

that will be procured in the future for application in the same workflow. The inclusion of CSF 

samples from healthy people in the study is meaningless as healthy people in general will not 

have the incentive to undergo spinal taps or testing for MS. In addition, we reasoned that a 

control group consisting of CSF samples from patients with other non-MS diseases, especially 

those of inflammatory origin, would confer a specificity for MS onto the resulting candidate 
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biomarkers. Moreover, it lends itself to subgroup comparisons. CSF samples from the two major 

stages of MS allowed us to perform pattern profiling comparison of samples within the same 

neurodegenerative disease (RRMS vs SPMS) to uncover differential mass peaks to aid in the 

subclassification of MS. Also of interest to us was the five CSF samples procured from PD 

patients in the non-MS group. This enabled us to perform differential peak discovery across 

neurodegenerative diseases (MS vs PD, RRMS vs PD, SPMS vs PD).  

The correlation between newly discovered biomarkers and the disease is usually lower 

during validation. This inconsistency can be reduced by increasing specificity in the discovery 

phase through the incorporation of disease pathway knowledge, such as the progression from 

RRMS to SPMS. Approximately 85% of early phase MS is diagnosed in the acute, RRMS stage 

where inflammation is known to dominate and drug intervention is still feasible. On the contrary, 

progression to the chronic, SPMS stage could lead to significant accumulation of disability and is 

a situation where drug options are limited. Therefore, any diagnostic marker that could 

discriminate between these two stages of MS would be useful in monitoring the progression of 

the disease. In particular, peak 2,021 drew our attention because (i) of all the differential peaks 

for this RRMS vs SPMS subgroup comparison, it was the only peak to display a greater than 2-

fold change between the groups across both statistical platforms and (ii) in our in-house t-test 

approach, which provides a weighting factor to each differential peak, this peak had the most 

discriminating data points. In addition, the peak displayed strong signal intensity with a high 

signal-to-noise ratio, making it an excellent candidate for downstream identification via tandem 

mass spectrometry sequencing. Determining the identity of this peak will possibly shed some 

light on the process that underlies the neurodegenerative process MS.  

In the field of proteomic biomarker discovery, enriching for low abundance differential 

peaks from complex biological samples for identification remains a challenging endeavor. This is 

especially true in our case where our differential signature peaks are less than 10,000 Da and are 

dominated by peptides or small protein fragments. This makes it difficult to resolve the species on 
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a gel from the complex CSF proteome as an enrichment strategy for peptide mass fingerprinting 

via in-gel trypsin digestion. Initial attempts to simplify the proteome and enrich for this peak for 

sequencing via orthogonal chromatographic separations did not result in positive identifications. 

Therefore, we next performed an extensive literature search of CSF proteins identified to date via 

mass spectrometry and found that a peak with m/z = 2,021 had previously been identified as the 

C3f fragment of Complement C3 [15]. Interestingly, in a parallel and unrelated pattern profiling 

study of human serum samples from PD and non-PD patients in one of our laboratories [16], a 

molecule with m/z = 2,021 bound to albumin was also found to be elevated in the PD samples and 

subsequently identified by FT-MS to be a fragment of the Complement C3 precursor [17]. It is a 

striking coincidence that in both profiling studies of neurodegenerative diseases, a peak at mass 

2,021 was found to be differential and elevated in the group with more severe neuronal damage 

(SPMS and PD). Furthermore, the same mass peak was found to be elevated in the PD samples, 

irrespective of biological source. 

It is conceivable that the C3f fragment bound to albumin found in the serum study is also 

present in the CSF because (i) approximately 80% of CSF proteins are derived from blood [18] 

with albumin dominating the CSF proteome as it does in plasma, (ii) since albumin is only 

synthesized in the liver, its presence in the CSF must originate from blood [19], and (iii) leakage 

of molecular species of brain origin to the blood and vice versa has been documented [21, 22]. 

This led us to hypothesize that the peak 2,021 found in our CSF study could be of the same 

molecule found in both the CSF and serum studies of neurological diseases aforementioned. 

The CSF samples from both MS subgroups were probed with an antibody whose epitope 

includes the C3f fragment sequence. The relative level of the Complement C3 protein was found 

to correlate well to that of the 2,021 peak in our proteomic analysis, with higher expression level 

in the SPMS group. The difference between the RRMS and SPMS groups is statistically 

significant with a p-value of <0.05 over 16 SPMS and 8 RRMS individual CSF samples. TTR, a 

pre-albumin that is abundant in the CSF, was used as a loading control. Given these data, we 
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believe that the molecule identified in our study with m/z = 2,021 is the C3f fragment of 

Complement C3, but since we have not identified this species directly, we cannot completely 

dismiss the unlikely possibility that it is a different molecule with the same mass whose level is 

correlated with the level of Complement C3 protein. Efforts to unequivocally identify the 

differential 2,021 peak from CSF are ongoing in our laboratory. This subgroup comparison is 

admittedly limited in size as a post hoc analysis for the difference observed in the Western blots 

suggested that at least 23 samples per group being compared will have to be represented in order 

to achieve a desired power of 90%. 

Nonetheless, the discovery that the level of intact Complement C3 protein appears to be a 

useful marker for MS should make it easier to carry out more extensive future studies of far more 

patient samples. Indeed, it should be possible to design an ELISA assay for the level of this 

protein in the CSF and perhaps for the C3f fragment as well, allowing the facile measurement of 

the ratio of these polypeptides, which may be useful. 

Of course, the data presented here merely support a correlation between the level of 

Complement C3 and the C3f fragment with MS and do not prove a causal relationship. 

Nonetheless, it would not be surprising if this were indeed the case. The complement system, as 

part of the innate immune system, is involved in a repertoire of activities that include the 

recognition and killing of pathogens, and the initiation of an inflammatory response via the 

bioactive fragments that are generated during activation and their subsequent degradation. 

Complement has long been implicated in the pathogenesis of MS and its animal model EAE [23-

26]. Cytotoxic complement components can be present in the brain parenchyma either through 

transudation through a compromised BBB [27], or from local expression by resident brain cells 

[28, 29]. Even though complement proteins are usually at a low level in the CSF, complement 

expression can be induced by antibodies against myelin proteins found in MS patients [30], by 

myelin and oligodendrocytes themselves [31, 32], or by cytokines and viruses [33, 34]. Neurons 

and oligodendrocytes are especially susceptible to complement-mediated injury because although 
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they are capable of producing complement proteins and complement anaphylatoxin receptors, 

unlike astrocytes and microglia, they are deficient in membrane complement regulators [35, 36], 

contributing to their selective damage in MS [37]. 

C3 and C5 are the major components of complement with the ability to produce 

anaphylatoxins as inflammation mediators. In stark contrast to C5, C3 has been shown to be 

required for maximal disease progression to the chronic stage in a protein dose-dependent manner 

in EAE [25, 26, 38], possibly through its regulatory role of encephalitogenic T cells [39]. 

Elevated C3 activity has been reported in the serum or CSF of MS patients experiencing an acute 

relapse or secondary progressive disease [40]. 

Complement C3 has been implicated as a potential biomarker of MS in general [41] with 

recent mass spectrometry-based studies identifying Complement C3 as a differential protein in 

the MS over non-MS CSF samples [42, 43]. However, our data suggest that it may be adopted as 

a stage-specific marker, given it was found to be present at a higher level in the CSF of SPMS 

patients when probed across 16 SPMS and 8 RRMS CSF samples. Moreover, the elevated 

expression of C3 in SPMS over RRMS correlated extremely well with the differential peak 2,021 

whose putative identity from database search is the complement C3 fragment, C3f. 

The initial activation of C3 produces the cleavage products C3a and C3b. C3a is an 

anaphylotoxin that serves as an inflammation mediator involved in chemotaxis, smooth muscle 

contractions and increased vascular permeability. C3b and its proteolytic fragments serve as 

opsonins that enhance phagocytosis and lymphocyte activation [25, 44]. Endogenous proteolytic 

enzymes can subsequently cleave C3b into C3bi and C3f. C3bi is a membrane-bound 

intermediate whereas C3f is a free, diffusible component. Little is known about the physiologic 

role of C3f to date but C3f appears to be functionally related to C3a since it is also a spasmogenic 

factor and is able to enhance vascular permeability at physiologic levels [45], suggesting its role 

in inflammation via enhanced vascular permeability to promote leukocyte diapedesis. 

Furthermore, C3f potentially interacts with the C3a receptor [45]. Thus, the rapid release of C3f 



 135

may result in lysis of neuronal cells in the vicinity, promoting autoimmune demyelination to 

occur. 

 

3.5 CONCLUSION 

 
We have incorporated a highly-reproducible, high-throughput proteomic platform for the analysis 

of clinical samples to obtain a panel of candidate proteins for diagnosis and staging of MS. CSF 

represents an ideal biological source for CNS disease studies as it is routinely drawn for 

diagnostic purposes and is rich in CNS-related biomarkers. We propose Complement C3 as a 

CSF biomarker indicative of disease progression to address the paucity of diagnostic molecular 

biomarkers in MS. Even though our validation set is admittedly limited in size and validation in a 

larger sample set is warranted, we envision C3 could be developed into a clinical test that would 

be amenable for routine prognostic evaluations. Furthermore, it is anticipated that complement 

therapeutics that target either the C3 protein or C3 convertase which generates the activated C3 

fragments will significantly attenuate the disease, as seen in EAE. A clinical outcome of even a 

modest delay in progression of MS would lead to a greater quality of life than that resulting from 

any currently available treatment. 
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CHAPTER FOUR 
Case Study II: Narcolepsy 

 
4.1 INTRODUCTION 

 
4.1.1 Background 

 

Narcolepsy is a neurological disorder known to affect sleep states. Albeit non-life threatening, it 

is a debilitating and lifelong neurologic disease which impacts the daily lives of individuals 

severely since a person with narcolepsy is likely to become drowsy or to fall asleep during the 

day, often at inappropriate times and places. It is estimated to affect 3 million people worldwide 

(prevalence of 1:2,000) and 200,000 people in the United States. The highest incidence is in 

Japan and the lowest in Israel, with both men and women affected equally. Like multiple 

sclerosis, narcolepsy also manifests itself in young adulthood with onset between the ages of 15 

and 30 and eventually reaches a plateau with no progressive stage. Life expectancy is not altered. 

Interestingly, narcoleptic patients are more often born in March and less in September. 

Narcolepsy is characterized by the common feature of excessive daytime sleepiness 

(EDS) in sudden bursts of 30 seconds and variations of cataplexy. Cataplexy is a sudden loss of 

muscle tone caused by strong emotions, such as laughter, anger, fear and excitement. Another 

feature of narcolepsy is abnormal rapid eye movement (REM) sleep such as sleep paralysis and 

hypnagogic hallucinations [1]. A normal sleep cycle progresses from wakefulness to the non-

REM stage before residing in the REM stage. In contrast, a narcoleptic patient goes directly from 

full wakefulness to the REM cycle, completely bypassing the non-REM stage. The wakefulness 

state is characterized by full awareness, open sensory inputs and the ability to move muscles at 

will. During the non-REM state, one loses consciousness, sensory inputs are dampened and the 

muscles are atone. REM is a sleep state marked by limp muscles, an isolation from the 

environment, cerebral cortex reactivation, rapid bursts of eye movement and vivid dreaming by 

electroencephalography measurements. 
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Even though the term narcolepsy was first coined 130 years ago, research progress has 

been extremely slow with the initial association of this disease to the HLA gene region in the 

1980s (Fig. 4.1). Both genetic and environmental factors appear to be responsible for this 

irreversible neuronal loss. The involvement of environmental factors was implicated from a study 

of a monozygotic twin pair positive for HLA DQB1*0602 in which only one showed symptoms 

of narcolepsy with cataplexy [2]. This is further corroborated with the prevalence of the disease 

which varies with geographic location and weather climate.  

 

 

Figure 4.1 Research progress in narcolepsy over the past 100 years. [3] 

 

Recent discoveries at the molecular level have implicated the involvement of the 

hypocretins/orexins and their receptors in narcolepsy. It was found that hypocretins decrease 

drowsiness and increase alertness, among other effects. Hypocretin-1 is a 33 amino acid molecule 

with a molecular weight of 3,562 Da whereas hypocretin-2 is a 28 amino acid linear peptide with 

a molecular weight of 2,937 Da. Studies in canine [4] and murine [5] models have shown that 

defective hypocretin transmission is responsible for the narcoleptic phenotype, mainly from the 

loss of hypocretin-1 and a decrease of hypocretin neurons in the gray matter. This observation, 
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along with its association with HLA gene susceptibility and the fact that no mutations or 

polymorphisms in hypocretin system genes were found, led to the theory that narcolepsy is an 

autoimmune disease. Subsequently, narcoleptic patients were shown to have low levels of 

hypocretin in the CSF [6, 7] and hypocretin neurons were selectively damaged [8, 9].  

 

4.1.1.1 HLA associations 

Canine narcolepsy was found to be caused by mutations in the gene encoding for hcrtr2, 

hypocretin receptor-2, in colonies of narcoleptic Dobermans and Labradors [4]. Even though the 

Hcrtr2 gene is highly conserved between dog and human with a 97% similarity as shown in 

Figure 4.2, examinations revealed that mutations in hypocretin receptors were not the cause of 

human narcolepsy.  

 Instead, the genetic susceptibility of human narcolepsy is conferred by HLA DR2 and 

HLA DQ1 in linkage disequilibrium with HLA DQB1*0602 [10-12]. HLA DQB1*0602 is a 

specific marker for narcolepsy with cataplexy with 90% specificity [11]. However, most people 

positive for this susceptibility gene do not develop narcolepsy, conferring it only a specificity of 

40% for narcolepsy in general [13]. This demonstrates that a genetic marker is not terribly useful 

as a molecular diagnostic.  

 A comparison of the amino acid sequence of HLA DQB1 in human to dog (DLA-DQB1) 

and mouse (H2-Ab1) shows a high percent similarity of 81% and 75%, respectively (Fig. 4.3). In 

fact, a majority of the amino acid substitutions in the narcolepsy susceptibility gene HLA 

DQB1*0602 are also present in dog and mouse. Since the HLA system contributes to T-cell 

mediated autoimmunity, perhaps aberration of this system in dogs and mice will allow narcoleptic 

animal models more similar to the cause of the human disease to be generated at a cheaper cost to 

facilitate molecular studies of narcolepsy development. 
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Figure 4.2 Comparison of amino acid sequences of Hcrtr2 between wild-type dog, human, 

mouse and narcoleptic dogs. Amino acid residues from other sequences that differ from the 

wild-type dog are indicated in bold. Narcoleptic Labradors are represented as narc/Lab., 

narcoleptic Dobermans are represented as narc/Dob. [4] 
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Figure 4.3 Comparison of amino acid sequences of HLA DQB1 in human to dog (DLA-

DQB1), mouse (H2-Ab1) and narcoleptic patients (HLA DQB1*0602). Amino acid residues 

from other sequences that differ from non-narcoleptic human are indicated in bold. Narcoleptic 

patients positive for the HLA DQB1*0602 susceptibility gene are represented as narc/human. 

 

4.1.2 Current diagnostic tools for narcolepsy 

 

Narcolepsy is either categorized as narcolepsy (i) with cataplexy, (ii) without cataplexy or (iii) 

due to medical condition. Common to all three is the presence of EDS. Current diagnosis is 

symptom-based and includes presence of cataplexy, a high Epworth Sleepiness Test score, a short 

sleep latency time, frequent sleep onset rapid eye movement periods (SOREMP) in the multiple 

sleep latency test (MSLT), and CSF hypocretin-1 level below 110 pg/ml. Even clinical diagnosis 

tools like the MSLT can result in false positives since ‘healthy’ individuals in a Wisconsin sleep 

cohort also displayed abnormal ‘narcolepsy-like’ MSLT [14]. These tools are used for 
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confirmation of the disease after symptoms have started appearing, which is long after the 

irreversible ablation of a critical number of hypocretin neurons [15, 16].  

Early detection of narcolepsy is only possible with the discovery of novel molecular 

markers that appear either before or at the beginning of neuronal loss. These biomarkers will then 

serve a dual role for diagnosis and unraveling the molecular pathway to the pathogenesis of 

narcolepsy. 

 

4.1.3 Proteomics studies on narcolepsy 

 

To our knowledge, the study reported in this chapter is the first proteomics biomarker discovery 

in narcolepsy. It is aimed at the discovery of potential protein markers for narcolepsy with 

diagnostic utility and perhaps provide insight into the molecular basis of the disease. To achieve 

this, we analyzed the bound cargo of the carrier protein albumin in narcoleptic and control serum 

samples using the rapid readout technology described in Chapter 2.  

 
4.1.4 Biomarker amplification 

 

4.1.4.1 Hypothesis 

The relative abundance of different proteins, in their intact, cleaved, or modified forms, is a 

consequence of the ongoing physiological and pathological events. Large proteins can only enter 

into circulation via active secretion or due to increased permeability of vascular walls as a result 

of a disease. On the other hand, cells and tissues in the body can respond to the current 

physiological state of the body by shedding protein fragments/peptides produced through 

endogenous enzymatic activities [21, 22] that permeate through the endothelial cell wall into 

blood circulation via passive diffusion. Peptide biomarkers already used in diagnostics include C-

peptide for diabetes, amyloid Aβ 1-42 for Alzheimer’s, and ACTH for adrenal insufficiency. 
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Unfortunately, due to the efficiency of the glomeruli in removing molecules smaller than 50kDa 

[23], any LMW molecules generated in vivo would be cleared quickly, reducing their 

concentration to undetectable levels. However, in the presence of excess high-abundance, high 

molecular weight (HMW) serum proteins, these low-abundance LMW molecules will bind to 

these carrier proteins (Fig. 4.4). This sequestration causes the LMW species to be protected from 

renal clearance and their circulation half-lives to be potentially prolonged, dependent on the half-

life of the carrier protein For example, flavanoid and protoporphyrins are found to be 99% bound 

to albumin, and the immunoglobulin fragment, D3H44 Fab, increased its half-life from 0.8 hours 

to 10.4 hours when bound to albumin which has a half-life of 19 days, effectively increasing it’s 

circulation concentration by 40 times [24]. A recent study showed that the high abundance 

polypeptides in plasma originate predominantly from major tissues such as liver, hematopoietic 

tissues and intestines with limited representation from the CNS, prostate and ovary [25]. 

Therefore, biomarkers specific for these underrepresented tissues will most likely be in low 

abundance and possibly enriched by carrier proteins, as evident in the case of ovarian cancer [26].  

 
 

 

Figure 4.4 Biomarker amplification by carrier protein.[22] 
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In the current study, we focused on the carrier protein albumin. The advantages of 

investigating the albumin-bound subproteome is three-fold: (i) it acts like an in vivo fractionation 

step to simplify the proteome while simultaneously concentrate the low abundance potentially 

diagnostic fragments to the level that is detectable by MS [27, 28], (ii) numerous 

proteins/peptides with diagnostic potential bind to albumin [29] and (iii) these LMW molecules 

are well within the sensitivity and resolution mass region of 1,000 to 10,000 Da for MALDI TOF 

MS. These LMW peptides may be fragments of higher molecular weight inflammatory mediators 

such as cytokines and chemokines that may play a pivotal role in autoimmunity.  Indeed, these, 

along with coagulation and complement factors, are well represented in the LMW serum 

proteome which has only been characterized recently [21, 30] (Fig. 4.5). Moreover, unlike many 

plasma proteins, human serum albumin is strictly regulated by colloidosmotic pressure feedback 

mechanisms, resulting in low inter- as well as intraindividual relative standard deviation below 

7% [31]. Therefore, for the same amount of albumin captured, the variation in the bound species 

will allow differential diagnostic peptides to be uncovered. 

 

 
 

Figure 4.5 Pie chart representing the relative numbers of proteins identified within the LMW 

serum proteome. [21, 30] 

 



 150

4.1.4.2 Albuminome studies 

LMW peptides and proteins that are selectively bound to albumin in human serum are termed the 

‘albuminome’.  Common strategies that deplete high abundance proteins such as albumin have 

been shown to remove low abundance proteins such as diagnostic cytokines as well [17-20]. In 

recent years, many studies have demonstrated the diagnostic potential of these bound peptide or 

protein fragments [26, 32, 33], corroborating the biomarker amplification by carrier proteins 

hypothesis. The albumin-bound biomarker amplification concept has been proven by several 

studies. Lopez et al. [32] studied the albumin-bound LMW species and obtained a proteomic 

profiling fingerprint that is associated with Alzheimer’s. Lowenthal et al. [26] studied the 

albuminome and discovered a subset of peptides that were specific for Stage I ovarian cancer, 

including fragments of low abundance molecules such as BRCA2 and tyrosine kinases. More 

recently, Lopez et al. [33] discovered several biomarker panels that differentiated Stage I ovarian 

cancer from patients without the disease.  
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4.2 MATERIALS AND METHODS 

 
4.2.1 Study population and source of sera 

 

A total of 30 clinical serum samples were obtained courtesy of Dr. Emmanuel Mignot from the 

Center for Narcolepsy at Stanford University. The samples were stratified into 3 groups based on 

the diagnosis condition and genetic composition: (1) patients diagnosed with narcolepsy and 

positive for the HLA DQB1*0602 marker gene, denoted NARC/+ (n=10), (2) patients not 

diagnosed with narcolepsy but positive for the HLA DQB1*0602 marker gene, denoted CTRL/+ 

(n=10) and (3) patients not diagnosed with narcolepsy and negative for the HLA DQB1*0602 

marker gene, denoted CTRL/- (n=10).  

 
4.2.2 Sample preparation 

 

All samples were stored at -80°C before analysis. Each serum sample was diluted 1:10 in 

triplicate and albumin was captured selectively, followed by the elution of the bound peptide and 

protein fragments into a clean collection plate using the ProXPRESSION Biomarker HT 

Enrichment Kit (PerkinElmer). The technology is essentially an affinity chromatography with 

Cibachron blue dye which binds to albumin. The proprietary matrix in the kit where the 

Cibachron blue is immobilized retains the captured albumin carrier protein, allowing the 

subsequent elution step to only disrupt the binding of the peptide and protein fragments to 

albumin and releases them for analysis. This was performed using a PerkinElmer MultiPROBE II 

PLUS HT EX liquid handler. The bound cargo in 96-well microtiter plate was subsequently 

concentrated by vacuum centrifugation and resuspended in 1X PBS, pH 7.4 prior to incubation on 

IMAC30 ProteinChip arrays (Bio-Rad).  

All ProteinChip arrays were processed on the same day in a 96-well format as follows: 

IMAC30 ProteinChip arrays from the same batch were activated with 50 mM nickel (II) sulfate 
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hexahydrate three times for 15 mins with gentle shaking, followed by a quick rinse with HPLC 

grade water. The arrays were then equilibrated with 100 mL 1X PBS on a shaker at room 

temperature for 15 mins, thrice. The buffer was discarded and remaining droplets were aspirated 

from the spots using a vacuum tip. The IMAC30 arrays were then loaded into a ProteinChip 

bioprocessor cassette to facilitate high-throughput analysis. The serum albumin-derived samples 

were deposited onto the array spots using a liquid handler. Each serum sample was run in 

triplicate. The bioprocessor cassette was sealed with aluminum foil, placed in a humidifying 

chamber, stored in a vacuum desiccator and incubated overnight in 4°C. The following day, the 

serum samples were removed and the arrays were washed with 200 µL 1X PBS three times for 15 

mins with gentle shaking at room temperature. The bioprocessor was subsequently removed and 

any remaining droplets were aspirated from the spots using a vacuum tip. The ProteinChips were 

allowed to air dry for 15 mins. Once dry, two 1 µL aliquots of 5 mg/mL α-cyano-4-

hydroxycinnamic acid (CHCA) matrix (LaserBio Labs, France) were added to each spot. All 

washing steps and matrix deposition were performed using a liquid handler. Matrix solution was 

kept protected from light at room temperature until ready for use. The spots were allowed to air 

dry before prOTOF MALDI-TOF mass spectrometry analysis. 

Analytical variables optimization for maximal mass peak production was performed as 

described above using a standard serum sample from the NIST on IMAC30 ProteinChip arrays. 

For protein identification, serum albumin-bound cargo was obtained as described above and 

loaded onto IMAC spin columns, pre-charged with nickel. Bound species were eluted and subject 

to FT-MS analysis.  
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4.2.3 MALDI TOF mass spectrometry analysis 

 

ProteinChip arrays were placed in a custom made adapter for mass spectrometry analysis in the 

prOTOF2000 MALDI O-TOF mass spectrometer interfaced with TOFWorks software 

(PerkinElmer/SCIEX). Its orthogonal design enabled a single external mass calibrant to achieve 

better than 5 ppm mass accuracy over the 1,000 to 10,000 mass range acquired. A 2-point 

external calibration of the prOTOF instrument was performed before acquiring the spectra. The 

batch analysis of the 12 chips was split into two runs of six array chips each. This is 

constrained by the plate holder which can only accommodate a maximum of six chips. 

The sixth chip per run has three spots dedicated for the NIST reference serum sample 

(positive control), buffer blank (negative control) and calibrant (instrument calibration) to 

ensure the integrity of the whole process. Acquisition was performed with a laser intensity of 

65% at 100 Hz, 30V declustering voltage, 150 mL/min cooling flow rate, and 200 mL/min 

focusing flow rate. Mass spectra were acquired in a circular pattern. The prOTOF data files 

generated an average of 1 million data points per spectrum. 

The same ProteinChip arrays were removed from prOTOF and loaded into the Ciphergen 

PBS-IIc mass spectrometer. Instrument calibration was performed externally with the All-in-1 

Peptide Calibrant (Ciphergen). Acquisition was performed in a batch mode of 12 arrays with a 

laser intensity of 170 and a sensitivity of 9. Mass spectra were acquired in a linear pattern on the 

same spots. The PBS-IIc data files generated an average of 40,000 data points per spectrum. 

 
4.2.4 Biostatistical analysis 

 

Raw spectra from the prOTOF were exported as text files using the prOTOF loader program and 

preprocessed to restore the zero-intensity values [32, 34]. The 30 serum samples run in triplicate 

generated a total of 90 high-resolution mass spectra. Spectra from two serum samples with 
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macroscopic blood contamination were excluded from the analysis. The total ion current (TIC) of 

each spectrum was calculated and the average TIC was computed across the remaining 84 

spectra. Spectra with a TIC value that was greater than twice or less than half of the average TIC 

were deemed outliers and were omitted from the study.  Global normalization of the signal 

intensity of the mass peaks was performed by normalizing to the average TIC of the remaining 68 

spectra.  

All spectra were run through the Progenesis PG600 software (Nonlinear Dynamics, UK) 

for peak detection using the following parameters to remove background noise: noise filter size 4, 

background filter size 70, and isotope detection in MALDI mode with peak threshold 25 and 

window 0.1 Da. 

The same mass spectral data set was analyzed by four distinct algorithms. This serves to 

uncover consensus, differential mass peaks that are less prone to biases to a particular algorithm, 

as previously described in Section 2.4.2. All but the t-test analysis were performed by the same 

operator. 

Analyses were performed to discover statistically differential markers between the 

following groups: NARC/+ vs CTRL/±, NARC/+ vs CTRL/+, CTRL/+ vs CTRL/-, and GENE/+ 

vs GENE/-. ROC curve analysis was then performed using SAS on the differential peaks to 

determine their discriminatory power. 

 

4.2.5 Protein identification 

 

Samples were incubated in a denaturing solution of 8 M urea/1% SDS/100 mM ammonium 

bicarbonate/10 mM DTT pH 8.5 at 37ºC for 1 h. Next, the samples were alkylated for 1 h by the 

addition of iodoacetamide to a final concentration of 40 mM and then quenched with 2 M DTT. 

Following the addition of 4X LDS loading buffer (Invitrogen), each sample was centrifuged at 

14,000 rpm for 5 mins at room temperature, and each sample was fractionated on a NuPAGE 
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10% Bis-Tris 10 lane gel (Invitrogen) for 2.5 h at 125 volts, 50 mA and 8W. Gels were shrunk 

overnight by the addition of 50% ethanol and 7% acetic acid, and then allowed to swell for 1 h by 

the addition of deionized water. Gels were stained with SimplyBlue Safe Stain (Invitrogen) for 2-

4 h, imaged, and sliced horizontally into fragments of equal size based on the molecular weight 

markers.  

 In-gel digestion was performed after destaining and rinsing the gel sections with two 

washes of 50% ethanol and 7% acetic acid, followed by two alternating washes with 50 mM 

ammonium bicarbonate and acetonitrile. After removal of the last acetonitrile wash, 100 µL of 

sequencing grade trypsin (Promega) was added to each gel slice at a concentration of 6.6 µg/ml in 

50 mM ammonium bicarbonate/10% acetonitrile. The gel slices were allowed to swell for 30 

mins on ice, after which the tubes were incubated at 37ºC for 24 h. Peptides were extracted with 

one wash of 100 µL of 50 mM ammonium bicarbonate/10% acetonitrile and one wash of 100 µL 

of 50% acetonitrile/0.1% formic acid. The extracts were pooled and frozen at -80ºC, lyophilized 

to dryness and redissolved in 40 µL of 5% acetonitrile, 0.1% formic acid. 

 Samples were then loaded into a 96-well plate (AbGene) for mass spectrometry analysis 

on both a Thermo Fisher Scientific LTQ-FT and Thermo Fisher Scientific LCQ Deca XP Plus. 

For each run, 10 µL of each reconstituted sample was injected with a Famos Autosampler, and 

the separation was performed on a 75 µm x 20 cm column packed with C18 Magic media 

(Michrom Biosciences) running at 250 nl/min provided from a Surveyor MS pump with a flow 

splitter with a gradient of 5-60% water 0.1% formic acid, acetonitrile 0.1% formic acid over the 

course of 120 mins (150 mins total run). Between each set of samples, standards from a mixture 

of 5 angiotensin peptides (Michrom Biosciences) were run for 2.5 h to ascertain column 

performance and observe any potential carryover that might have occurred. The LTQ-FT was run 

in a top nine configuration with one MS 200K resolution full scan and nine MS/MS scans and the 

LCQ Deca XP Plus was run in a top five configuration with one MS full scan and five MS/MS 
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scans. Dynamic exclusion was set to 1 with a limit of 180 s with early expiration set to 2 full 

scans. 

SEQUEST-identified peptide sequences, protein accession numbers, and MALDI TOF 

MS m/z values corresponding to the differential peaks were entered into the FRAGMINT 

software to generate candidate protein fragments consistent with the identified protein and 

peptide sequences and the observed MALDI TOF MS m/z values as described [35]. 

 

4.2.6 Western blot analysis 

 

Serum samples from each group were separated by 10% Tris-Glycine-SDS-polyacrylamide gel 

electrophoresis and transferred to an Immobilon-PSQ 0.2 µm PVDF membrane (Millipore). 

Western blotting was performed on 50 µg total protein per lane. The membrane was blocked with 

5% milk in 1X TBST overnight and then probed for 1 h with a goat polyclonal antibody to 

Bikunin (sc-21597, Santa Cruz Biotechnology Inc.) diluted 1:2,000. The membrane was washed 

with 1X TBST twice for 15 mins and then with 1X PBS twice for 15 mins, followed by 

incubation for 1 h with HRP-labeled rabbit anti-goat secondary antibody (Bio-Rad) diluted 

1:2,000. The washing steps were repeated before detection with SuperSignal West Pico 

Chemiluminescent Substrate (Thermo Scientific). The membrane was stripped, blocked and re-

probed with rabbit polyclonal antibody against transthyretin (sc-13098, Santa Cruz 

Biotechnology Inc.) diluted 1:2,000 and HRP-labeled goat anti-rabbit secondary antibody (Bio-

Rad) diluted 1:2,000. All antibodies were diluted in 5% milk in 1X TBST. All incubations were 

performed at room temperature. ImageJ was used for quantitation. 
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4.3 RESULTS  

 
4.3.1 Analytical variables assessment 

 

4.3.1.1 Evaluation of albumin-bound subproteome 

In our study, we intend to simplify the albumin-bound subproteome one step further via an 

additional fractionation step by only analyzing species that bind to a metal affinity capture surface 

(IMAC30). As this will reduce the amount of analytes presented to the mass spectrometer during 

data acquisition, we investigated the dilution factor of serum that would optimize the binding of 

albumin to the enrichment platform, and indirectly optimize the recovery of the bound species. A 

standard serum sample obtained from the NIST was either diluted 10-fold or 20-fold prior to 

loading onto the albumin enrichment plate. Bound analytes were subsequently eluted per 

manufacturer’s protocol. The eluate was introduced to an IMAC30 surface charged with nickel in 

its entirety and analyzed by mass spectrometer (Fig. 4.6). It was apparent that a 10-fold diluted 

loading maximized the output mass peaks (Panels A and B, Fig. 4.6). A lower dilution factor was 

not investigated to conserve precious clinical samples that will be run in triplicate in the profiling 

study for validation purposes. 

For comparison, the native serum sample along with the bound cargo and flow-through 

fractions from the albumin enrichment step were run on an IMAC30 ProteinChip and analyzed. 

Figure 4.7 shows that the cargo fraction produced a similar profile to that of the native sample 

with increased intensity and species detection for the LMW population. This substantiates the 

argument that pre-fractionation is an integral part of studies involving complex biological 

samples as it reduces the effect of ion suppression considerably.  
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Figure 4.6 Optimization of serum dilution factor and ionizing matrix concentration. Shown 

are mass spectra corresponding to the same serum sample diluted 10- and 20-fold and evaluated 

with either CHCA (A, B) or SA (D, E). CHCA was also evaluated at different concentrations, 5 

mg/ml (A, B) and 10 mg/ml (C). Signal intensity (y-axis) is plotted against the mass range, m/z 

(x-axis). 

 

Figure 4.7 Comparison of native serum sample to the albumin-enriched and albumin-

depleted fractions. Shown are the mass spectra of the same serum sample analyzed in its native 

(A), albumin-enriched (B) and albumin-depleted (C) forms. The corresponding gel-views are 

displayed below the mass spectra. 
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4.3.1.2 Surface retentate chemistry and matrix choice 

IMAC30 charged with nickel ions optimized in Section 2.3.2 to generate the most number of 

peaks was used in this study. 

 The two most common matrices used in MALDI TOF MS analysis, CHCA and SA, were 

evaluated at the 5 mg/ml and 10 mg/ml concentrations. CHCA conferred more peaks for this 

particular subset of the serum proteome than SA at the preferred concentration of 5 mg/ml (Fig. 

4.6). 

 

4.3.1.3 Spectral reproducibility 

The reproducibility of the overall protein profile on the ProteinChip-MS platform was also 

evaluated. Three serum samples (one from each group being profiled) were run in duplicate on 

the same IMAC30 ProteinChip. The high accuracy and resolution conferred by the prOTOF mass 

spectrometer as discussed in Section 2.3.3 enabled reproducible replicate spectra from individual 

samples to be obtained (Fig. 4.8). 
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Figure 4.8 Spectral reproducibility was evaluated with a sample from each group run in 

duplicate on IMAC30 chip surface. NARC/+ represents serum sample from narcolepsy patients 

positive for the HLA DQB1*0602 susceptibility gene, CTRL/+ represents serum sample from 

non-narcolepsy patients positive for the HLA DQB1*0602 susceptibility gene, CTRL/- represents 

serum sample from non-narcolepsy patients negative for the HLA DQB1*0602 susceptibility 

gene. 

 

4.3.2 Profiling of narcolepsy and non-narcolepsy sera 

 

The 30 serum samples were run in triplicate to minimize analytical variance in the technical 

process. The workflow employed in this study is shown in Figure 4.9.  

In this study, four distinct classification algorithms were applied on the same narcolepsy 

mass spectral data set as described in Section 2.4.2. Four comparisons were performed between 

the three sample groups. The first comparison seeks biomarkers for narcolepsy in general, 

without taking genetic predisposition into consideration (NARC/+ versus CTRL/±). The second 

comparison seeks markers that are specific for narcolepsy with HLA DQB1*0602 genetic 
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predisposition (NARC/+ versus CTRL/+). The third comparison seeks markers for HLA 

DQB1*0602 positivity without developing narcolepsy (CTRL/+ versus CTRL/-). The final 

comparison seeks biomarkers specific for the HLA DQB1*0602 gene positivity (GENE/+ versus 

GENE/-, where GENE/+ = NARC/+ and CTRL/+, and GENE/- = CTRL/-). Although our interest 

lies in narcolepsy-specific markers, the latter two comparisons are reported for completion. 

 

 

 
Figure 4.9 Blood-based biomarker discovery workflow. 

 

Table 4.1 shows the list of candidate markers for each comparison aforementioned. All of 

the listed mass peaks appeared as potential markers with an expression difference that is 

statistically significant in at least two of the four bioinformatics platforms employed. These 

consensus peaks reduce the possibility of investigating mass peaks that are a result of overfitting 
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to a specific algorithm and confer a higher confidence in their true discriminatory ability. ROC 

analysis was performed on all four models and their respective diagnostic accuracy measures are 

tabulated in Table 4.2.  

Comparison Mass peaks (m/z) 

1740.94 

1809.98 

3826.00 

I. NARC/+ vs. CTRL/± 

5077.83 

1896.06 

2036.08 

II. NARC/+ vs. CTRL/+ 

3826.00 

2080.98 

2127.02 

2209.09 

III. CTRL/+ vs. CTRL/- 

4296.17 

1938.09 

1943.91 

2127.01 

IV. GENE/+ vs. GENE/- 

5077.83 

 

Table 4.1 Differential mass peaks discovered from logistic regression, CART, UPGMA 

hierarchical clustering and t-test. The consensus peaks listed appeared as statistically 

differential across at least two of the four classification algorithms applied to the same narcolepsy 

mass spectral data set. CTRL/± represents serum samples from all non-narcolepsy patients, 

GENE/+ represents serum samples from patients positive for the HLA DQB1*0602 susceptibility 

gene, GENE/- represents serum samples from patients negative for the HLA DQB1*0602 

susceptibility gene. 
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ROC analysis of the differential peaks for each group comparison 

Comparison Sensitivity

(%) 

Specificity

(%) 

PPV 

(%) 

AUC Percent Accuracy

(%) 

I. NARC/+ vs. 

CTRL/± 

63.16 82.22 85.96 0.79 76.56 

II. NARC/+ vs. 

CTRL/+ 

68.40 83.33 90.32 0.83 75.67 

III. CTRL/+ vs. 

CTRL/- 

72.22 66.67 77.50 0.71 68.89 

IV. GENE/+ vs. 

GENE/- 

81.08 44.44 73.68 0.66 65.63 

 

Table 4.2 Diagnostic accuracy measures for each group comparison. ROC analysis was 

performed on models consisting of differential mass peaks from Table 4.1. 

 

In all comparisons, all potential biomarkers are molecules found in differential abundance 

between the two comparison groups. Of interest to us are the differential mass peaks that are 

responsible for narcolepsy onset in general (comparison I) or responsible for narcolepsy onset in 

genetically susceptible people (comparison II). These two models have comparable diagnostic 

potential even though unique peaks were selected as statistically differential in their respective 

disease classification model. The protein profiles obtained in this study to discriminate between 

narcolepsy and controls displayed good discriminatory ability with an AUC of 0.80. Models from 

these two comparisons on the average presented a PPV of 88%, a high specificity at 83% and a 

decent sensitivity at 66%. Differential peaks in comparison III would encompass protein/peptides 

that are protective against narcolepsy in the wake of genetic susceptibility whereas peaks in 

comparison IV would represent molecules that are a product of the HLA DQB1*0602 gene.  



 164

4.3.3 Biomarker identification 

 

The platform that was employed to discover the differential peaks above is not capable of 

providing fragmentation data for identification. Therefore, the ProteinChip surface chemistry was 

recapitulated on IMAC spin columns and the enrichment protocol was scaled up to obtain a 

sample suitable for analysis by tandem Fourier transform-mass spectrometry (FT-MS). Since all 

the differential peaks of interest as listed in Table 4.1 were LMW peptides, the enriched sample 

was first separated by SDS-PAGE. The less than 15 kDa region was then excised, reduced, 

alkylated, digested and analyzed by tandem FT-MS. On the basis of the SEQUEST-identified 

peptides, the FRAGMINT software was used to generate candidate fragment identity for three 

differential peaks which were consistent with their discriminatory m/z values. Two of the 

identified fragments were from the GENE/+ versus GENE/- comparison, and one from the 

NARC/+ versus CTRL/+ comparison (Table 4.3). As we are more interested in the identity of 

candidate biomarkers for differentiating between narcolepsy and control, verification of the 

unique putative marker from the latter comparison was the prime focus. The peak at m/z = 2036 

was assigned to the peptide sequence RGPCRAFIQLWAFDAVK, which corresponds to the 

bikunin sequence of the α-1-microglobulin/bikunin precursor (AMBP). This mass peak was 

higher in the NARC/+ samples over the CTRL/+ (Fig. 4.10). 
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Group  

Comparison 

Mass Peak 

(m/z) 

Higher Expression 

in 

FRAGMINT  

Identifications 

GENE/+ vs.  

 GENE/- 

1938.09 GENE/- Serum Amyloid A4 

GENE/+ vs.  

 GENE/- 

1943.91 GENE/- Albumin 

NARC/+ vs.  

 CTRL/+ 

2036.08 NARC/+ α1-microglobulin/bikunin

 

Table 4.3 Candidate identifications from group comparisons. Identifications were obtained 

from FT-MS SEQUEST-identified peptides and FRAGMINT. 

 

 

Figure 4.10 Differential marker for narcolepsy. Overlay view of mean signal intensity of peak 

2036 in NARC/+ to CTRL/+ group comparison. Black trace, narcolepsy; red trace, control. 
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4.3.4 Validation of bikunin as a potential biomarker for narcolepsy 

 

We assessed the level of bikunin in both the NARC/+ and CTRL/+ groups in serum by Western 

blot analysis. Bikunin protein levels were ascertained with an antibody that recognizes an epitope 

within the bikunin sequence identified. 50 µg of total serum protein was loaded for each sample 

on a 10% gel. Transthyretin (TTR) was probed as a loading control for serum. All samples from 

these two groups that were not omitted from the study due to hemoglobin contamination and 

whose mass spectra were not omitted as outliers (8 from NARC/+ and 7 from CTRL/+) were run 

and probed for bikunin concurrently to minimize technical bias. It was found that the level of 

bikunin was elevated in the NARC/+ serum samples over CTRL/+ (Panel A, Fig. 4.11). The 

chemiluminescence intensity was quantified and the ratio of bikunin intensity over TTR intensity 

was calculated. The bikunin/TTR ratio between the NARC/+ and CTRL/+ groups showed a 

statistically significant difference with a p-value of < 0.05.  The box and whisker plot of the ratios 

are shown in Figure 4.11, Panel B. The protein was more abundant in the serum of NARC/+ 

patients compared with CTRL/+ cases. Based on this correlation between the Western blot data 

for bikunin protein and the mass spectrometry data, we postulate that peak at m/z = 2036 might 

represent a degraded fragment of bikunin, a protein which could play a role in the development of 

narcolepsy.  

 

 

A 
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B 

 

Figure 4.11 Differential levels of bikunin between narcolepsy and control groups. (A) 

Representative Western blot depicting levels of bikunin in the serum of narcolepsy and control 

patients. A-D= NARC/+ sera, E-H=CTRL/+ sera. TTR was used as loading control.  (B) Box and 

whisker plot of Bikunin/TTR chemiluminescence intensity ratio. 

 

4.4 DISCUSSION 

 

A common practice in biomarker discovery is to compare controls to patients with an established 

disease with the assumption that markers specific for the disease may be in higher abundance in 

the latter group. However, if the disease markers to be discovered are aimed at early detection, 

patients who are susceptible to develop the disease will constitute a more appropriate group of 

samples as these ‘pre-disease’ patients may produce biomarkers that are different from those of 

established patients. In addition, investigations of an uncommon disease like narcolepsy calls for 

case-control studies, which confer a significant advantage especially when hypotheses include 

gene-environment interactions. The search for environmental risk factors is facilitated if cases 
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and controls are chosen to be similar on this genetic marker. Therefore, in our study, we have 

enlisted as controls patients who are positive for the HLA DQB1*0602 gene and hence 

susceptible to narcolepsy, in the hope of discovering markers that are applicable to the early 

detection of narcolepsy.  

Figure 4.7 showed that the protein profiles of the native serum sample and the albumin-

bound fraction were very similar, suggesting most of the peaks observed in serum profiling 

studies might have originated predominantly from albumin-bound species, as observed by others 

[36]. Interestingly, the flow-through fraction revealed peaks that were either not detected or were 

of extremely low intensity in the native sample in the less than 2,000 m/z region. Even though it 

might be interesting to analyze the flow-through fraction for novel, low abundance biomarkers, 

this was not undertaken in the present study as the focus was in carrier protein-bound cargo and 

simply because the composition of each flow-through fraction cannot be standardized across 

samples which could introduce bias. 

In this study, we generated and analyzed 90 serum albumin-derived proteome profiles 

from 30 patients to discover biomarkers specific for narcolepsy. The potential of using proteomic 

differential protein pattern profiling can be evaluated as follows. In the case where a patient who 

is positive for the HLA DQB1*0602 susceptibility gene is being evaluated for the risk of 

developing narcolepsy, specificity is of importance over sensitivity. In this scenario, the current 

model from the NARC/+ versus CTRL/+ comparison could be used as a confirmatory test with a 

specificity of 83% and a PPV of 90%. However, sensitivity takes priority if the goal is for 

screening. In this case, the model obtained from the NARC/+ versus CTRL/± comparison will not 

be a good platform to detect those prone to develop narcolepsy since it suffers from a low 

sensitivity of only 63%. However, its specificity of 82% is still much greater than that of the 

genetic marker HLA DQB1*0602 [13]. 

The advantage of analyzing samples from patients with the same genetic background is 

that it will allow us to attribute potential biomarkers found to environmental factors that 
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propagate disease susceptibility to realization. Identification of these candidate biomarkers is thus 

crucial to the understanding of the molecular mechanisms underlying the pathogenesis of 

narcolepsy.  

A peak at m/z = 2036 was found to have a preferential presence in narcolepsy over 

control samples with the same genetic background. This peak was subsequently identified as part 

of the bikunin protein. To evaluate its potential as a disease marker, serum samples from both 

NARC/+ and CTRL/+ groups were probed with an antibody whose epitope is within the 

identified bikunin sequence. The relative level of the bikunin protein was found to correlate well 

to that of the 2036 peak in our proteomic analysis, with a higher level in the narcolepsy group. 

Given these data, we believe that the molecule identified in our study with m/z = 2036 is a 

fragment of bikunin, specifically from Kunitz domain II which confers anti-inflammatory 

property. We speculate that the degraded bikunin fragment was prevented from renal clearance 

and by extension enriched through its binding to albumin, as in the case of α1-microglobulin (the 

other unrelated protein product from the common AMBP precursor) found in human plasma to be 

complexed to IgA and albumin [37]. Our results support, but do not prove, the causal relationship 

between bikunin and narcolepsy onset. This remains to be fully validated in a larger study as this 

pilot study is admittedly limited in sample size. A post hoc analysis for the difference observed in 

the Western blots suggested that at least eight samples per group being compared will have to be 

represented in order to achieve a desired power of 90%. Nonetheless, it would not be surprising if 

bikunin assumes a role via its inflammatory property in narcolepsy development.  

A growing body of evidence has indicated that bikunin is involved in many 

pathophysiological processes, such as immune response, inflammation, tumorigenesis, and 

metastasis [38, 39]. Bikunin plays a role in inflammation and innate immunity because of its 

tandem Kunitz-type binding domains, which has anti-proteolytic and anti-inflammatory 

properties. Free bikunin molecules are present in plasma at an insignificant level. More than 98% 

of bikunin present in circulation is complexed to the proinhibitors, inter-α-inhibitor and pre-α-
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inhibitor, where bikunin remains inactive until its release through degradation by elastase at sites 

of inflammation [39]. Free or cell-bound bikunin are predicted to downregulate cytokine 

expression, render macrophages/neutrophils less active and impair inflammatory processes [40].  

Increased free, uncomplexed bikunin in blood and urine has been shown to correlate well 

with inflammatory conditions [41, 42] and to be better predictors of vascular inflammation than 

existing biomarkers [43]. Higher level of bikunin has also been reported in chronic inflammations 

in autoimmune disorders such as RA and systemic lupus erythematosus [43]. Narcolepsy is 

generally believed to be an autoimmune disease that results in the irreversible loss of hypocretin-

producing neurons. Although evidence to support the autoimmunity cause of narcolepsy has 

remained elusive, it is not an unlikely possibility as the detection of bikunin mRNA has been 

shown in rat neurons [44, 45] and human astroglias of Alzheimer’s patients in brain regions 

where loss of neurons was observed  [46, 47]. Long-standing inflammation leading to neuronal 

loss may be present before clinical symptoms are presented.  

Our primary goal was to evaluate the MS-based platform described here as a diagnostic 

and discovery tool in the hunt for biomarkers specific for uncommon diseases such as narcolepsy. 

We have shown that these differential marker peaks can serve as reliable candidates for 

downstream validation efforts and confirmed the identification of bikunin as one of the 

differential peaks by Western blot. It is also foreseeable that this methodology has clinical utility 

as a complement to existing diagnostic tools to analyze samples from patients who have first been 

screened for the HLA DQB1*0602 susceptibility gene. HLA genotyping is useful in prescreening 

before other tests because susceptible individuals can be identified early and genetic susceptibility 

does not change with time or age. Therefore, the samples used in this narcolepsy study are 

representative of the samples that will undergo the same processing procedure for diagnosis in the 

clinical setting. The preliminary results reported here suggest its potential as a non-invasive 

diagnostic tool as demonstrated by the discriminatory protein profiles obtained with higher 
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specificity than the genetic marker HLA DQB1*0602. This potential will likely be realized 

pending efforts to further validate the robustness and reproducibility of this platform.  

 

4.5 CONCLUSION 

 

Serum represents an ideal biological sample as it is rich in proteins and can be obtained non-

invasively. Our preliminary validation of bikunin as a potential player in the pathogenesis of 

narcolepsy demonstrates the applicability of this platform in biomarker discovery. Confirmation 

of bikunin’s role in a larger validation set or the discovery of other novel biomarkers using this 

methodology will no doubt fill the void created by the lack of molecular markers for narcolepsy. 

Subsequent therapeutics development targeting these markers will provide an avenue for 

controlling the disease instead of the symptoms. Even though narcolepsy is non-life threatening, a 

delay in its onset will significantly improve the quality of life of those susceptible to it. 
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CHAPTER FIVE 
High-Throughput Evaluation of Relative Cell Permeability between Peptoids and Peptides 

 
5.1 INTRODUCTION 

 
In Chapter 2, a high-throughput methodology was developed and implemented for biomarker 

(drug target) discovery. Its application in the study of multiple sclerosis (Chapter 3) and 

narcolepsy (Chapter 4) demonstrated its robustness in discovering disease-specific markers that 

are potential therapeutic targets. This chapter describes a high-throughput study that compares the 

cell permeability of peptoids to peptides and show that peptoids represent a class of molecules 

that is suitable for drug development to target disease biomarkers. 

 

5.1.1 General introduction 

 

Peptides are excellent ligands for proteins and, in particular, are often capable of targeting regions 

of proteins not easily recognized by traditional small molecules, such as protein interaction 

surfaces. However, the practical utility of peptides as drugs or tools for chemical biology is 

limited by their sensitivity to proteases and their lack of cell permeability. Therefore, there is 

considerable interest in the development of compound classes with the protein-binding properties 

of peptides, but more favorable pharmacokinetic properties. Towards this goal, we and others 

have demonstrated that peptoid [1] (oligo-N-substituted glycines) libraries [2, 3] are excellent 

sources of protein-binding ligands [4-7]. As expected, peptoids are not sensitive to proteases or 

peptidases [8]. 

We have reported previously a cell-based assay in which entry of a peptoid- or peptide-

steroid conjugate triggers the expression of a reporter gene in a dose-dependent fashion [9], 

allowing one to compare the relative cell permeability of various peptide- or peptoid-steroid 

conjugates [9]. We have found that the movement of these compounds into cells requires passive 

diffusion  and  does not appear to involve any form of active transport [10]. Using  this  assay, we  
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demonstrated that many peptoid tetramers from a combinatorial library are quite cell permeable, 

in that the peptoid-steroid conjugate induces reporter gene expression in the cell-based assay 

almost as well as the steroid alone. In other words, many tetrameric peptoids do not diminish the 

cell permeability of the attached steroid. Many octameric peptoids were also found to be cell 

permeable by this criterion, though less so than the tetramers, as expected. 

We have also employed this assay to carry out careful comparisons of the relative cell 

permeability of a small number of isomeric peptides and peptoids. These experiments, which 

involved titration of the indicator cells with different concentrations of the peptide- and peptoid-

steroid conjugates, confirmed that peptoids are anywhere from 3- to 30-fold more permeable than 

the analogous peptide, depending on the size of the molecule [11]. 

We were curious to determine if this conclusion was valid in general for peptoids and 

peptides with a wide diversity of side chains. In this report, we employ the cell-based 

permeability assay in a high-throughput mode to address this issue. The large number of 

compounds employed in this study precluded carrying out titrations and demanded a single-point 

analysis for each compound. Here, we address the technical issue inherent in carrying out such a 

screen and also consider various physical models to rationalize the results. In general, the data 

support the idea that peptoids are generally more cell permeable than peptides and that this 

difference can be attributed largely to the absence of the highly polar N–H main chain bond in 

peptoids. 
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5.2 MATERIALS AND METHODS 

 
5.2.1 Reagents and instrumentation 

 

All chemicals and reagents in organic synthesis were purchased from Sigma-Aldrich. For library 

synthesis, Polystyrene A-RAM macrobeads (500-560 µm, 0.55 mmol/g) were from Rapp 

Polymere. Rink amide AM resins (200-400 mesh, capacity: 0.71 mmol/g) were from 

NOVAbiochem. For solid phase synthesis, N-(9-Fluorenylmethoxy-carbonyl)-

acetylethyleneglycol-ethyl-amine (Fmoc-AEEA-OH), O-(7-azabenzo-triazol-1-yl)-1, 1, 3, 3-

tetramethyluronium hexafluorophosphate (HATU), and 1-hydroxy-7-azabenzotriazole (HoAt) 

were from Applied Biosystems. 2-(1H-benzotriazole-1-yl)-1, 1, 3, 3-tetramethyluronium 

hexafluorophosphate (HBTU) and N- hydroxybenzotriazole (HoBt) were from SynPep. 

Diisopropylethylamine (DIPEA) and 2, 6-lutidine were from Sigma-Aldrich. All Fmoc amino 

acid monomers were from SynPep and Advanced NOVAbiochem. O-tert-butyl ethanolamine was 

from CSPS Pharmaceuticals. Glycine tert-butyl ester acetate was from NOVAbiochem. 

Diaminobutane, isobutylamine, (R)-methylbenzylamine, bromoacetic acid, and 

diisopropylcarbodiimide (DIC) were from Sigma-Aldrich. Cell culture media and transfection 

reagents were purchased from Invitrogen. Preparative HPLC was performed on a Waters Binary 

HPLC system with a C18 reverse-phase column with the gradient elution of water/acetonitrile 

with 0.1 % trifluoroacetic acid (TFA). Mass spectrometry (MALDI TOF) was performed on a 

Voyager-DE PRO biospectrometry workstation (Applied Biosystems) with CHCA as matrix. 
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5.2.2 Syntheses of OxDex, SDex, SDex-Peptoid and SDex-Peptide analogs 

 

OxDex-COOH (Dex-17β-carboxylic acid) and SDex-COOH (Dex-21-thiopropionic acid) were 

synthesized based on previously published procedures [9, 11].  SDex-conjugated peptoid and 

peptide analogs were synthesized as described previously [11]. The analogs were capped with 

SDex-COOH steroid. 

 

5.2.3 Syntheses of OxDex-Peptoid and OxDex-Peptide libraries 

 

Both peptoid and peptide libraries were constructed on Polystyrene A-RAM macrobeads (500-

560 µm, 0.55 mmol/g) from Rapp Polymere. Peptoid library synthesis was performed as 

described previously with slight modifications [2]. The synthesis of peptoids under microwave 

conditions was performed in a 1000 W Whirlpool microwave oven (model MT1130SG) with 

10% power. Peptide library synthesis was performed using standard solid phase synthesis 

methods. The synthesis of peptides was performed in a New Brunswick Scientific Innova 4000 

incubator shaker. Standard glass peptide synthesis vessels (Chemglass) were used for the 

synthesis in the incubator shaker and in the microwave oven. Upon completion of the library 

syntheses, Fmoc-AEEA-OH and OxDex-COOH were coupled to the beads using standard solid 

phase synthesis methods. The libraries were sorted into 96-well plates in a one bead per well 

fashion and cleaved with trifluoroacetic acid:water (95:5 vol/vol) at room temperature with slight 

agitation for 2 hours. The TFA was evaporated under hoods and the compounds were 

resuspended in 20 µl 50% acetonitrile in water.  One-fourth (5 µl) of the compounds per bead was 

aliquoted into a separate 96-well plate for sequencing purposes. The remaining three-fourths 

(~60nmol) of compounds were dried and resuspended in 11.5 µl 10% DMSO in water for cell 

culture experiments. About 10 nmol of each compound was used so that each well contained 

about 100 µM of each OxDex-capped molecule in 100 µl of cell culture media. 
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5.2.4 Plasmids, cell culture, transfection, in vitro competition GR binding assays and high-

throughput cell permeability luciferase assay 

 

Procedures were performed as described previously [9-11]. HeLa cells were grown in 96-well 

plates for the high-throughput study. 

 

5.2.5 Permeability ratio determination 

 

The permeability ratio (PR) was obtained by dividing the luminescence reading from the firefly 

luciferase activity to the luminescence reading from the Renilla luciferase activity. The PR was 

then normalized to the negative (no compound) and positive (dexamethasone) control ratios from 

each plate. PR = (Firefly luminescence / Renilla luminescence) / (No compound luminescence / 

Dexamethasone luminescence). 

 

5.2.6 Statistical analysis 

 

The mean luminescence reading for the internal control Renilla luciferase was obtained from all 8 

plates. Compounds with a Renilla luminescence reading that lies greater than ± 2 standard 

deviations from the mean were omitted from the study. The mean normalized PR for each class of 

compounds was calculated from the remaining compounds. The 2-tail t-test on mean PR between 

peptoids and peptides was performed using the statistical software SAS. 
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5.2.7 Peptoid and peptide sequencing 

 

Compounds that have a normalized PR that is at least 2 standard deviations greater than the mean 

ratio were analyzed using the Applied Biosystems 4700 Proteomics Analyzer with TOF/TOF 

optics to obtain the molecular ion mass. The possible monomeric composition of the molecule 

was predicted from an in-house program written in Perl using the molecular ion mass, the known 

generic structure of the libraries, and the residue mass of the monomers. Tandem mass 

spectrometry sequencing on the same instrument was performed to confirm the sequences. 

 

5.2.8 Physicochemical property computations 

 

All physicochemical property calculations were obtained using Molinspiration Cheminformatics 

(http://www.molinspiration.com/cgi-bin/properties). LogP prediction is based on group 

contributions and takes into account the intramolecular hydrogen bonding contribution to logP 

and charge interactions. TPSA calculation is based on the summation of tabulated surface 

contributions of polar fragments (atoms regarding also their environment) and provides results of 

practically the same quality as the classical 3D PSA, but is two to three orders of magnitude faster 

[12].  
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5.3 RESULTS AND DISCUSSION 

 
5.3.1 Library design and synthesis 

 

Our previous studies with steroid-conjugated peptoid and peptide analogs demonstrated that as 

the length of the molecule increases from a dimer to an octamer, the cell permeability decreases 

[9-11]. Based on this observation, we decided to synthesize libraries of tetramers for our current 

high-throughput comparison study as a compromise between maintaining the diversity of the 

libraries and retaining decent permeability within the molecules. The peptoid libraries were 

synthesized using the ‘sub-monomer’ synthesis [3] in a conventional split-and-pool approach. 

The amines employed in this chemistry contained cationic, anionic, hydrophobic, and neutral 

moieties (Panel A, Fig. 5.1). The peptide libraries displayed comparable side chains (Panel B, Fig. 

5.1) and were constructed by standard solid-phase Fmoc chemistry. High-capacity polystyrene 

macrobeads were used to generate a sufficient amount of compound per bead (~80 nmol) for the 

cell permeability assay upon cleavage from the beads, in a one bead per well manner. 
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Figure 5.1 Chemical entities used in high-throughput study. Generic chemical structure of the 

OxDex-conjugated (A) peptoid and (B) peptide libraries and the side chain moieties incorporated. 

(C) Chemical structure of dexamethasone and its amine derivatives, OxDex and SDex. 

 

The generic structure of the libraries was OxDex-AEEA-X4-β-Ala, where β-alanine is 

the invariant C-terminal residue, and Ox-Dex is the steroid capping molecule at the N-terminus 

conjugated to the four variant monomers (X) via an acetyl-ethyleneglycolethyl-amine (AEEA) 

linker (Panels A and B, Fig. 5.1). OxDex is product of oxidative cleavage of the dexamethasone 

side chain [13]. Panel C in Figure 5.1 shows the amide form of OxDex used to determine its IC50 

value, a measure of relative binding affinity to the glucocorticoid receptor (GR). Quality control 

analyses were performed on both libraries by subjecting randomly selected beads from each 

library to high-performance liquid chromatography (HPLC), followed by mass spectrometry 
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(MS) analysis. Nine of the ten beads showed a clear major product peak in the HPLC traces with 

90% purity and a single dominant peak was observed in the mass spectra in the expected mass 

range. Note that OxDex was linked to the peptide or peptoid during solid-phase synthesis, and 

uncoupled steroid was removed by thorough washing. Thus, the solutions are not contaminated 

by free steroid, which would, of course, skew the results of the permeability assays. Furthermore, 

we have shown previously that the steroid-peptoid or -peptide linkage is stable in cell culture 

medium [10, 11]. 

 

5.3.2 High-throughput cell permeability assay 

 

The high-throughput cell permeability assay employed in this study has been described elsewhere 

[9, 10]. A schematic of the system is depicted in Figure 5.2. Briefly, the OxDex conjugates were 

exposed to HeLa cells transfected with three plasmids. One encodes for a fusion protein 

containing the Gal4 DNA-binding domain, the GR ligand-binding domain and the VP16 

transactivation domain (Gal4DBD-GRLBD-VP16). The apo form of this protein is sequestered in 

the cytoplasm in its inactive form through a tight interaction with heat shock protein 90 (Hsp90) 

in the absence of ligand This interaction is disrupted by an influx of the steroid, which binds to 

the GR LBD, allowing the fusion protein to translocate into the nucleus. It then drives the 

expression of firefly luciferase expression by activating the Gal4-responsive firefly luciferase 

reporter gene carried by the second plasmid. We have shown that the affinity of different peptide- 

and peptoid-steroid complexes for the GR LBD differs only modestly, thanks to the presence of 

the β-alanine linker between the variable sequence and the steroid [9, 10]. Therefore, expression 

of the firefly luciferase is dependent on the permeability of the steroid-conjugated molecule. The 

third plasmid carries a constitutively expressed Renilla reniformis luciferase gene that serves as a 

transfection control. The ratio of firefly luciferase activity (compound-dependent) to Renilla 

luciferase activity (compound-independent internal control) is a reflection of the concentration of 
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steroid conjugates that have successfully permeated the cell membrane into the cell. This ratio 

compensates for the well-to-well variability that could potentially arise during readouts. Four 96-

well plates from each library were used in this comparison study. To address the possibility of 

plate-to-plate variability, the permeability ratio of each compound in each plate was normalized 

to the plate’s ratio of the negative (no compound) and positive (dexamethasone) controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Schematic illustration of the cell permeability assay used in the high-throughput 

study of steroid conjugates. Refer to text for details. 

 

 

 

 

 

 

  



 188

5.3.3 Technical issues 

 

A total of eight 96-well plates (four from each library) were assayed simultaneously using the 

same batch of HeLa cells to minimize variability due to cell preparation. For practical reasons, a 

Tecan SpectraFluor Plus plate reader was chosen for the luminescence activity readout due to the 

high-throughput nature of the study. Titration of steroid-conjugated peptoid and peptide analogs 

for comparison between the Tecan and Sirius luminometer (Berthold Detection Systems) revealed 

that the reduced sensitivity of the Tecan resulted in lower luminescence readout values than the 

luminometer. Fortunately, the Tecan plate reader preserved the relative difference between the 

molecules and produced comparable EC50 values (luciferase induction) for the same molecules, 

albeit with a reading two orders of magnitude lower than that of the single-tube luminometer. 

In the actual study, the final concentration of OxDex-conjugated peptoid or peptide 

exposed to HeLa cells in each well was about 100 µM since the construct OxDex-AEEA-CONH2 

was shown to have an EC50 value of <50 µM [9]. Therefore, at this concentration, we expect the 

OxDex conjugates to show at least half-maximum induction of luciferase expression, allowing us 

to clearly distinguish between permeable and impermeable compounds. Because of the large 

number of molecules analyzed in this study, it was not feasible to examine multiple compound 

concentrations to obtain a titration curve. Therefore, it was imperative to determine beforehand 

that the readouts will be in the linear, and not the saturated, part of such a titration curve. This 

appeared to be the case for two particular peptoids that had been identified previously as having 

relatively high cell permeability [9]. However, for two peptoids that had been previously 

identified as being poorly cell permeable, only a small amount of reporter gene induction was 

observed at an extracellular concentration of 100 µM and it is not clear if this value is in the 

linear range. Based on this observation, we assume that all of the single-point readings for 

peptoids and peptides that score as relatively permeable reflect the linear part of the titration 

curve for each compound, but that this assumption may not be valid for some peptoids that are 
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unusually cell impermeable. Of course, another complicating factor is that in the analysis of the 

library, we cannot be certain that the concentration of each peptoid- or peptide-steroid conjugate 

is the same due to possible differences in synthesis efficiency, though we believe that these 

differences are not large, based on the aforementioned analysis of several compounds chosen 

randomly from the library. 

 

5.3.4 Comparison of peptoids and peptides 

 

The current study compared the relative cell permeability of 350 steroid-conjugated peptoids and 

350 steroid-conjugated peptides. The permeability ratio for each compound per well was 

calculated as (Firefly luciferase luminescence/Renilla luciferase luminescence)/(Blank negative 

control luminescence/ Dexamethasone positive control luminescence). The average permeability 

ratio from each class of molecules was subject to a 2-tail t-test using SAS. The statistical analysis 

showed that the two groups of compounds passed the equality of variance requirement and had a 

statistically significant difference with a p-value of <0.01 when the average permeability ratio of 

peptoids (0.0118) was compared to the average permeability ratio of peptides (0.0059) (Fig. 5.3). 

The relative permeability investigated here obviously reflects that of the steroid 

conjugates and may not reflect the true permeability of the parent compounds. However, any 

assay involving labeling of the molecule of interest suffers from this limitation, including 

confocal fluorescence microscopy. Thus, we restrict our comments in the discussion below to 

relative statements comparing one set of steroid-substituted molecules to another. 

 

 

 

 

 

  



 190

 

 

 

 

 

 

 

 

 

 

Figure 5.3 High-throughput comparison of relative cell permeability between peptoids and 

peptides. Permeability ratio = (Firefly luciferase luminescence / Renilla luciferase luminescence) 

/ (Blank negative control luminescence / Dexamethasone positive control luminescence). 

 

5.3.5 Comparison of physicochemical properties with permeability 

 

The prediction of absorption, distribution, metabolism, and excretion (ADME) properties of 

organic molecules continue to play a critical role in the drug discovery process and it is now 

possible to make reasonable estimates of the permeability of organic compounds based on their 

molecular structures. In an attempt to delineate the factors that are responsible for the observed 

difference in permeability between peptoids and peptides, we investigated a number of 

physicochemical properties that have been shown to affect permeability [12, 14, 15]. We first 

considered highly cell permeable peptoids and peptides that have a permeability ratio at least two 

standard deviations greater than the average permeability ratio of its class. The composition of the 

peptoids and peptides that scored as such was identified by mass spectrometry. 
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The physicochemical parameters examined include lipophilicity, polar surface area (PSA), 

hydrogen-bonding capacity (hydrogen bond acceptors and donors), molecular size, molecular 

volume, and molecular rigidity, which were calculated using Molinspiration Cheminformatics as 

reported elsewhere [12]. 

 

5.3.5.1 Lipophilicity 

A traditional molecular transport descriptor that is used to model permeability is the n-octanol–

water partition coefficient (logPoct or simply logP). LogP is still widely used as a measure of 

hydrophobicity or lipophilicity that affects membrane penetration and permeability [14-17], with 

a higher logP value indicating greater lipophilicity. The computational logP (ClogP) values in this 

study take into consideration the intramolecular hydrogen-bonding contribution and charge 

interactions. In our study, peptoids appear more cell permeable and tend to have a lower ClogP 

value than peptides, suggesting peptoids are slightly less lipophilic than peptides. The average 

ClogP value of peptoids in the high-throughput study is lower than that of peptides (-2.67 vs -

1.90) (Table 5.1). This trend of lower ClogP value with an observed higher permeability is in line 

with the study of steroid transport across Caco-2 monolayer cells by Faassen and co-workers [18] 

and other work [19]. 

 

Compound PR logP MW Nrotb Molecular 
volume 

(Å3) 

Peptoids 0.0221 -2.67 1061.65 30 976.69 

Peptides 0.0134 -1.90 1074.00 29 985.49 

 

Table 5.1. Mean value of selected molecular descriptors in high-throughput study. PR is the 

mean permeability ratio obtained from the highly permeable OxDex-conjugated compounds (≥ 2σ 

above average permeability ratio, n=12 for peptoids and n=12 for peptides). MW represents the 

molecular weight. Nrotb is the number of rotatable bonds. 
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This phenomenon could be attributed to the peptoid residues, which as imino acids are 

more hydrophilic than the corresponding amino acid counterparts based on the Liu–Deber 

hydropathy scale [20]. It is known that excessive lipophilicity is a common cause of poor 

solubility [21] and thus leads to poor cell permeability. In converting the residue to an N-

alkylglycine moiety, the N-atom becomes tertiary and more basic, likely increasing the water 

solubility of the peptoids. Although a good predictor of permeation across biological membranes, 

lipophilicity is not the sole determinant of cell permeability and other factors have been shown to 

play a role in affecting the overall permeability of a molecule. 

 

5.3.5.2 Polar surface area (PSA) 

In recent years, the PSA of a molecule has emerged as a key predictor of permeability. PSA is 

defined as the sum of the van der Waals (or solvent-accessible) surface areas of oxygen and 

nitrogen atoms, including attached hydrogens [22]. The topological polar surface area (TPSA) 

was calculated to investigate this parameter in our study. It is computationally up to three times 

faster and comparable to the classical 3D PSA. In our high-throughput study, the average TPSA 

value of the highly permeable peptoids of 335.30 Å2 is also lower than the highly permeable 

peptides’ average TPSA value of 358.80 Å2 (Table 5.2). This is a relatively small difference and 

may play only a modest role in the observed differences in the permeability of peptides and 

peptoids. To the extent that it does contribute, this means that overall, peptoids have less polar 

groups exposed to solvents than peptides, which in turn suggests that the resulting lower TPSA 

value might contribute to the higher cell permeability of peptoids over peptides. This trend is also 

present within the OxDex-conjugated peptoids with differing permeabilities. Peptoids with a 

lower TPSA tend to have a higher permeability ratio (Fig. 5.4). 
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Compound PR TPSA 
(Å2) 

H-bond 
acceptors 

H-bond 
donors 

Total  

H-
bonds 

Peptoids 0.0221 335.30 23 9 32 

Peptides 0.0134 358.80 22 14 36 

 

Table 5.2. Hydrogen bonding capacity parameters in high-throughput study. PR is the mean 

permeability ratio obtained from the highly permeable OxDex-conjugated compounds (≥ 2σ 

above mean permeability ratio, n=12 for peptoids and n=12 for peptides). Total H-bonds is the 

sum of H-bond acceptors and donors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Trend in TPSA in OxDex-conjugated peptoids. Peptoids with permeability ratio at 

least 2σ below (red), above (black), or at (blue) mean permeability ratio value. 
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Literature suggests that permeability is optimal when PSA is <120 Å2 based on a study of 

commercially available drugs [23]. Although all the molecules in our study have a PSA > 120 Å2, 

the trend of lower PSA conferring higher permeability is observed, though the effect is subtle. 

PSA has been used to predict passage though the blood–brain barrier (BBB), flux across Caco-2 

monolayers, and human intestinal absorption [22-24], and succeeded in providing good 

correlation with experimental transport data [12]. In our study, the lower TPSA in peptoids can be 

attributed to the conversion of the backbone amide from a secondary to a tertiary nitrogen which 

eliminates the very polar amide bond found in peptides. Consequently, the tendency for a 

hydration shell to form around the peptoid is reduced. It is postulated that polar groups resist 

desolvation when they move from an aqueous extracellular environment to the more lipophilic 

interior of membranes. The PSA thus may reflect at least part of the desolvation energy for 

breaking the solute:water interaction necessary in membrane transport. Specifically, the higher 

PSA in peptides may indicate the greater desolvation energy required to overcome the strong 

amide:water interactions in peptides. 

 

5.3.5.3 Hydrogen bonding capacity 

The polar functionalities of the PSA parameter of a compound can be related to its hydrogen-

accepting and hydrogen-donating ability, with hydrogen-bonding being one of two main 

components of lipophilicity. The peptoids and peptides have an equal number of hydrogen 

acceptors but the peptoids have a lower number of hydrogen donors (average of 9 hydrogen 

donors in peptoids against 14 in peptides) (Table 5.2), resulting in a reduced total hydrogen-

bonding capacity (sum of hydrogen acceptors and donors). This correlated with increased 

permeability. A modest trend of this sort is observed within the OxDex-conjugated peptoids (Fig. 

5.5).  
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Figure 5.5. Trend in hydrogen bonding capacity in OxDex-conjugated peptoids. Peptoids 

with permeability ratio at least 2σ below (red), above (black), or at (blue) mean permeability ratio 

value. Total H-bonds is the sum of H-bond acceptors and donors. 

 

Since the structural difference between peptoids and peptides mainly affects the 

hydrogen-bonding potential of peptoids, we further investigated whether it could be the main 

physicochemical parameter responsible for the higher permeability seen in peptoids. Highly 

permeable molecules from both classes with comparable ClogP values were compared for 

differences in hydrogen-bonding capacity. We found that the TPSA and hydrogen bonding 

capacity were decreased in peptoids, specifically in a reduction of hydrogen bond donor potential 

(Table 5.3). This reduction that accompanies higher permeability seen in peptoids supports the 

notion that lipophilicity can affect cell permeability only to a certain extent whereas the 

hydrogen-bonding potential might assume a more determinant role, as suggested previously [25]. 
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Compound PR logP TPSA (Å2) H-bond acceptors H-bond donors Total H-bonds 

Peptoids 0.0229 -1.70 319.03 22 9 31 

Peptides 0.0134 -1.38 353.71 22 13 35 

 

Table 5.3. Comparison of logP and hydrogen bonding capacity parameters in high-

throughput study. PR is the mean permeability ratio obtained from the highly permeable 

OxDex-conjugated compounds (≥ 2σ above mean permeability ratio) with comparable logP 

values (n=7 for peptoids and n=6 for peptides). Total H-bonds is the sum of H-bond acceptors 

and donors. 

 

Hydrogen-bonding capacity bears such significance that it constitutes two of Lipinski’s 

Rule of Five [26] of drug design. It has been found that the hydrogen-bonding capacity of a drug 

solute correlates reasonably well with passive diffusion [27, 28]. An increased N–H bond count 

for both acceptors and donors tends to worsen permeability [29, 30]. To further substantiate this 

argument, compounds with high hydrogen forming potential, such as peptides with their amide 

groups as small as di- and tripeptides, have minimal distribution through the BBB, while 

compounds possessing a tertiary nitrogen show a high degree of brain permeation [31]. Indeed, 

tertiary nitrogen is a feature of many central nervous system drugs [31]. Hydrogen-bonding 

potential might thus constitute the limiting step in cell permeation. 

Molecules with very polar amide bonds like peptides have greater hydrogen-bonding 

interactions with the surrounding water. As a result, the desolvation energy required to break 

these interactions in order for the peptides to transfer from the hydrophilic, aqueous environment 

to the hydrophobic, non-hydrogen bonding membrane interior is substantially increased. 

Moreover, once the solute:water interaction is overcome, cell permeability can be further 

hindered by the binding of the molecules to the lipid-rich layer of cell membranes through the 

donation of hydrogen-bonds as it approaches the polar surface of the membrane and desolvates as 
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it moves into the lipid portion [32]. In fact, the hydrophilic part of lipids contains hydrogen-

bonding acceptor groups which may hinder the transbilayer insertion of the high hydrogen-

donating molecules and prevent their transport across a cellular membrane via tight binding. 

Hence, the greater hydrogen-donating potential of peptides over peptoids might be the cause of 

lower permeability seen in peptides. It is therefore not surprising that modifications that result in 

the reduction of hydrogen-bond-donating capacity, such as conformational facilitation of 

intramolecular hydrogen bonds [32-38] and the absence of hydrogen donors altogether from the 

tertiary amines in the case of peptoids, will facilitate membrane permeation. 

 
5.3.5.4 Molecular size, volume, and rigidity 

Molecular size is the second basic component of solubility and permeability. Molecular weight is 

a surrogate for other properties, including molecular volume and rigidity. The simplest measure 

of molecule rigidity is by determining the number of rotatable bonds present. In our high-

throughput study, molecular size and volume are comparable between the OxDex-conjugated 

peptoids and peptides. Similarly, there is no difference in the number of rotatable bonds between 

the two classes of molecules under investigation (Table 5.1). Even though these molecular 

properties have been implicated in cell permeability [39], they appear to play a minimal role in 

the permeability difference observed between peptoids and peptides in this study. 

 

5.3.5.5 Side chain composition 

To determine if specific side chain characteristics are preferred over others in the more permeable 

molecules, the prevalence of each side chain used in the library was probed. The molecular 

formulas of the highly cell permeable molecules from both classes were predicted from their 

molecular ion mass obtained via mass spectrometry, the generic molecular structure, and the mass 

of the five residues used in the library using an in-house program. The side chains were then 

confirmed via tandem mass spectrometry sequencing, and the frequency of occurrences tabulated. 
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It appears that the highly cell permeable peptoids and peptides consist of 1.5 times more 

hydrophilic residues than hydrophobic ones (Panels A and B, Fig. 5.6), where hydrophilic 

residues are the positively charged lysine and the negatively charged aspartic acid. Phenylalanine 

and valine constitute the hydrophobic residues. Of the 12 highly permeable molecules from each 

class, a large majority of them are charged (11 for peptoids, 10 for peptides). Out of these charged 

molecules, seven peptoids and nine peptides have two or more charged residues.  

The observation that the more cell permeable molecules tend to consist of more charged 

residues than hydrophobic ones corresponds well with an increasing body of evidence supporting 

ion partitioning over neutral molecules, as substantiated by studies suggesting ionic species may 

contribute significantly to transport across Caco-2 monolayers [38, 40]. Since our cell 

permeability assay uses steroid conjugates, the charges on the highly permeable molecules may 

serve to increase solubility of the molecules in the presence of the hydrophobic steroid. 

Amphiphilicity (the combination of the hydrophilic and hydrophobic parts of a molecule) may in 

itself influence cell permeability and deserves further investigation [21]. 
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Figure 5.6 Side chain characteristic prevalence of highly permeable (≥ 2σ above mean 

permeability ratio) (A) peptoids and (B) peptides. Hydrophobic residues are Nleu and Nmba, 

hydrophilic residues are Ngly and Nlys, and neutral residue is Nser for peptoids. Hydrophobic 

residues are Val and Phe, hydrophilic residues are Asp and Lys, and neutral residue is Ser for 

peptides. 

 

5.3.5.6 Physicochemical property evaluation of SDex-conjugates 

A similar evaluation of the above parameters was performed on the SDex conjugates used in the 

study by Kwon et al. [11] (Fig. 5.7). SDex is a higher affinity GR ligand than is OxDex (Panel C, 

Fig. 5.1) and thus shifts the titration curve to lower compound concentrations. The relative 

permeability comparison between peptoids and peptides in this set of conjugates involved far 

fewer compounds but was based on careful titrations of the exact isomeric analogs. Specifically 

in Kwon’s study, a series of peptoid and peptide conjugates containing leucine and homoserine 

side chains and varying in length from dimers to octamers were synthesized and their relative cell 

permeability compared using the same cell-based reporter assay employed in our high-throughput 

study [11]. It was found that peptoids were more cell permeable than peptides, with shorter 
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conjugates exhibiting higher permeability. The physicochemical properties discussed above for 

the high-throughput study of Ox-Dex conjugates were calculated for this set of SDex-conjugated 

analogs and their values compared between peptoids and peptides. Not surprisingly, the trends 

observed in the single-point readout but more extensive set of molecules in the OxDex conjugates 

were mirrored in the SDex-conjugated molecules (Figs. 5.8–5.10, Tables 5.4 and 5.5). 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Chemical entities used in analog study. Generic chemical structure of the SDex-

conjugated analogs of (A) peptoids and (B) peptides, where n = 1, 2, 3, or 4. 
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Figure 5.8. Comparison of logP value of SDex-conjugated peptoid (POn) and peptide (PIn) 

analogs. Dimers (PO2, PI2), tetramers (PO4, PI4), hexamers (PO6, PI6), and octamers (PO8, 

PI8) are represented by their molecular weight. 

 

Compound logP Molecular 
weight 

Number of 
rotatable 

bonds 

Molecular 
volume (Å3) 

PO2 0.73 693.88 14 637.57 

PO4 -0.08 908.14 22 843.08 

PO6 -0.89 1122.41 30 1048.59 

PO8 -1.70 1336.67 38 1254.10 

PI2 1.58 693.88 14 636.86 

PI4 1.05 908.14 22 841.66 

PI6 0.53 1122.41 30 1046.46 

PI8 0.01 1336.67 38 1251.26 

 

Table 5.4 Mean value of selected molecular descriptors in analog study. All molecules 

represented here are SDex-conjugated analogs of peptoids (POn) and peptides (PIn), where 

molecule length n = 2, 4, 6, or 8. 
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Figure 5.9 Comparison of TPSA value between SDex-conjugated peptoid (POn) and peptide 

(PIn) analogs. Dimers (PO2, PI2), tetramers (PO4, PI4), hexamers (PO6, PI6), and octamers 

(PO8, PI8) are represented by their molecular weight. 

 

Compound MW TPSA 
(Å2) 

H-bond 
acceptors 

H-bond 
donors 

Total 

H- 

bonds 

PO2 693.88 178.54 11 5 16 

PO4 908.14 239.38 16 6 22 

PO6 1122.41 300.23 21 7 28 

PO8 1336.67 361.08 26 8 34 

PI2 693.88 196.12 11 7 18 

PI4 908.14 274.54 16 10 26 

PI6 1122.41 352.96 21 13 34 

PI8 1336.67 431.39 26 16 42 

 

Table 5.5 Hydrogen bonding capacity parameters in analog study. All molecules represented 

here are SDex-conjugated analogs of peptoids (POn) and peptides (PIn), where molecule length n 

= 2, 4, 6, or 8. MW represents the molecular weight. Total H-bonds is the sum of H-bond 

acceptors and donors.  
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Figure 5.10 Comparison of hydrogen bond capacity between SDex-conjugated peptoid 

(POn) and peptide (PIn) analogs. Dimers (PO2, PI2), tetramers (PO4, PI4), hexamers (PO6, 

PI6), and octamers (PO8, PI8) are represented by their molecular weight. Total H-bonds is the 

sum of H-bond acceptors and donors. 

 

5.4 CONCLUSION 

 
Undoubtedly, the overall permeability of a molecule is determined by the delicate balance of 

numerous parameters that are clearly interrelated such that changing one will affect the others. To 

date, there exists no prediction method for this crucial attribute in drug design. In this study, we 

evaluated whether a cell-based permeability assay, when conducted in high-throughput mode, 

could contribute to helping us understand the differences in cell permeability of peptides and 

peptoids. As mentioned in the introduction, careful previous studies from our laboratory of a few 

compounds have shown that peptoids are anywhere from 3 to 30 times more permeable than 

comparable peptides, depending on the compound. The single-point nature of the assays 
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conducted here appear to flatten this difference somewhat as, on average, the peptoids were found 

to be about twice as permeable as the peptides. Nonetheless, the general trend held, allowing us to 

attempt to correlate various aspects of the molecular characteristics of some of the molecules with 

the observed relative cell permeability. Of special interest is the reduction in hydrogen-bond-

donating potential of peptoids, which appears to be the dominant factor accounting for the 

increased cell permeability.  
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CHAPTER SIX 
Perspectives 

 
6.1 ENGINEERING TOOLS 

 
Numerous biomedical engineering technologies that interface molecular biology, protein 

chemistry, analytical chemistry, computer science and statistics were applied collectively in the 

search for protein disease markers in Chapters 3 and 4. In these two case studies, mass 

spectrometry was the main enabling technology for proteomics. Even though it has long been 

used in analytical chemistry for small molecule analysis, mass spectrometry only became the 

dominant platform for the study of biomolecules upon the development of soft ionization 

techniques such as MALDI and ESI. These techniques facilitate analysis of the intact 

biomolecules by allowing them to be converted to ions without inducing fragmentation. 

Innovative engineering advances also led to both the development of array chips with chemically 

derivatized surfaces to selectively capture a subset of proteins for high-throughput analysis at the 

molecular level and the development of an albumin enrichment platform based on Cibachron blue 

for the selective affinity capture of albumin. In our studies, we coupled these two proteome 

simplification technologies to the high-resolution, high-mass accuracy prOTOF mass 

spectrometer via a custom made adapter capable of handling array chips to create a powerful 

platform for high-throughput protein profiling of diseases. Once mass peaks representative of the 

sample groups were obtained, computational platforms developed by computer scientists were 

employed for data analysis. Bioinformatics engineering included the development of a novel data 

analysis approach in-house using Perl scripts, the implementation of a more elaborate logistic 

regression protocol encoded in the SAS program and the application of four unique statistical 

algorithms to the analysis of the same mass spectral data set for the discovery of differential 

peaks with high discriminatory power. These peaks were then enriched and the proteins identified 

by mass spectrometry based on tandem mass sequencing and protein database search using 

numerous database search algorithms that were developed and made available over the years.  
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6.2 CONCLUSIONS AND PERSPECTIVES 

 
There is great interest in the discovery of new protein markers for a variety of diseases to aid in 

diagnosis, prognosis and evaluation of therapeutic responsiveness. Mass spectrometry has proven 

to be the backbone technology of proteomics biomarker discovery, conferring the ability to 

interrogate thousands of proteins simultaneously in a high-throughput and facile manner. 

 Differential protein pattern profiling has the potential to be instated as a non-invasive, 

rapid test that provides diagnostic utility to assist in the clinical decision-making process. 

Independent of the identity of the peptides or proteins, the intensities of the m/z peaks form the 

discriminator and may be clinically applicable before their identities are discerned. This approach 

does not require the lengthy development and validation of antibody reagents for immunoassay-

based systems, such as costly antibody production and purification, and the subsequent tests for 

heterophillic antibody interferences. Moreover, the multimarker profiles have demonstrated both 

high diagnostic sensitivities and specificities, a desired trait unattainable by most single disease 

biomarkers of clinical currency.  

However, as a technology still growing out of its infancy, numerous notable hurdles that 

constitute the major roadblock to its clinical utility (as discussed in Chapter 2) remain to be 

overcome.  The limited sensitivity of current mass spectrometers has been the main impediment 

to the coverage depth of the proteome (Fig. 6.1). Fractionation strategies could extend this by two 

orders of magnitude but the compromise lies in achieving a balance between depth of coverage 

and throughput.  
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Figure 6.1 Sensitivity and proteome depth of coverage. The difference in blood protein 

abundance spans 10 orders of magnitude, resulting in the disparity between detectability (proteins 

identified to date, red) and applicability (biomarkers in current use, yellow). [1] 

 

 The marriage of surface retentate chemistry and mass spectrometry in SELDI TOF MS is 

a powerful technology that permits on-chip fractionation of a complex biological sample prior to 

mass spectrometry readout. Even though the process reduces the analysis to just a subset of the 

proteome that is dependent on the capture surface chemistry used, the depth of proteome 

coverage can easily be extended by a combination of different chip surfaces in the analysis of the 

same sample [2]. This is feasible due to the high-throughput nature of the platform.   

Current SELDI approaches have come under immense criticisms for its lack of 

reproducibility as well as biological and technical biases.  These challenges have in turn 
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motivated gradual improvements to the technology and more still need to be undertaken, 

especially in the experimental design, if it is to see eventual clinical utility.  

In Chapter 2, we described a workflow aimed at addressing and controlling the critical 

issues of reproducibility, variability (biological, analytical and stochastic) and false positives, 

where the entire process from sample processing to data generation and the eventual data analysis 

was monitored. The method described represents a rigorous experimental design that serves to 

address the main challenges listed in Chapter 1 for mass spectrometry-based proteomics 

biomarker discovery, as well as the often overlooked sources of variability specific to SELDI. We 

sought to increase sensitivity by matching the dynamic range of our samples to the mass 

spectrometer, either through concentration of analytes in proximal fluids or proteome 

simplification. We improved on resolution and mass accuracy by adopting a high performance 

mass spectrometer to generate more peaks in the spectrum. We demonstrated high reproducibility 

by controlling for analytical variations (automation, same batch of array chips, same operator and 

minimal mass drift). The experimental design also controls for biological variations by analyzing 

multiple samples representative of the target population and for analytical variations by running 

replicates. Furthermore, we implemented a novel robust statistical data analysis approach to 

reduce false positives from overfitting. In addition to selecting differential peaks, our data 

analysis approach narrows the list to the more discriminatory ones as candidate markers for 

identification and verification efforts.  

The robustness and utility of this optimized platform was evaluated and demonstrated in 

two independent autoimmune disease studies. In Chapter 3, a case study of multiple sclerosis 

(MS) was undertaken with sixty representative clinical CSF samples from both MS and control 

groups. A differential protein profile with good discriminatory power (AUC= 0.76) was obtained 

for the classification of MS in general. In addition, a differential peak was found to be 

preferentially higher in the secondary progressive stage in the subgroup comparison within MS. 
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Further investigation led to the identification and verification of Complement C3 as a differential 

marker in the clinical samples using Western blot.  

In Chapter 4, proteomics biomarker discovery was conducted using the same workflow 

with thirty serum samples representative of narcoleptic and non-narcoleptic patients from the 

Center for Narcolepsy at Stanford University. The non-narcoleptic group includes those who 

share the same susceptibility genetic background as the narcoleptic patients but do not display 

any symptoms of narcolepsy. In this pilot study, analysis was only performed on the bound 

species of albumin because of their known diagnostic value and also as a venue to simplify the 

serum proteome. Differential protein profiles consisting of robust biomarkers were obtained with 

great discriminatory power for each group comparison. In particular, a differential peak found in 

the comparison between narcoleptic and non-narcoleptic patients in the presence of the HLA 

DQB1*0602 susceptibility gene was successfully identified as a fragment of the bikunin protein. 

Subsequent verification using Western blot analysis between the two groups confirmed its 

preferential higher level in the narcolepsy group.  

The successful identification of differentially present proteins in these two studies 

demonstrate the robustness of this workflow that is applicable to diseases as complex as MS and 

as uncommon as narcolepsy. Given these proteins were found to be elevated in the disease group 

and not the control makes them ideal biomarkers as they are disease-specific. In addition, the fact 

that the biomarkers Complement C3 and bikunin have been implicated in the inflammatory 

processes that could be responsible for the pathogenesis of these two autoimmune diseases 

stresses the importance of sound experimental design that incorporate disease specific knowledge 

in the discovery process through the selection of appropriate samples. It is especially encouraging 

given our discovery that Complement C3 could contribute to disease severity in MS correlates 

extremely well with its role in maximal disease progression in EAE, the animal model of MS. 

The two case studies presented in this dissertation represent the exploratory phase of 

biomarker discovery, where disease marker discovery and preliminary verification efforts were 
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performed within the limited sample size available for each study. They form the basis for the 

subsequent validation phase where these known protein markers can be assessed for diagnostic 

potential in a much larger sample group (Fig. 6.2). It is foreseeable for the identified potential 

protein markers to be implemented in an ELISA-like assay to analyze more patient samples in a 

high-throughput manner to determine its diagnostic utility. Once their diagnostic potential is 

established, they can be developed into clinical assays to facilitate disease diagnosis, prognosis 

and therapeutic efficacy evaluation as well as serve as drug targets. This is especially true in the 

case of Complement C3 which our data suggest could be adopted as a stage-specific marker to 

differentiate between the more drug-treatable, relapsing-remitting stage and the chronic, 

secondary progressive stage within MS itself.  

 

Figure 6.2 Phases of biomarker discovery and validation. The gradual progression from the 

initial, unbiased discovery phase to the hypothesis-driven validation stage sees the reduction in 

the number of analytes sampled and an increase in the number of samples that are more 

representative of the target population. [3] 
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As it turns out, the high fidelity of the output spectra garnered from the optimized 

workflow allows us to revisit the notion of disease classification based solely on the identity-free 

diagnostic model. Previous doubts about this approach lied on its lack of reproducibility and 

biological inference to the disease process. In our case studies, we showed that reproducible 

protein profiles can be reliably generated when a high performance mass spectrometer is adopted. 

We see minimal mass drift among the peaks across spectra with a mass accuracy of <10 ppm 

while the signal intensity has a CV of 5% -10% in agreement with others, which is well within 

the CVs for established markers used in clinical diagnostics estimated to be in the range of 1.5% - 

10%. It is foreseeable that a reevaluation of this approach using a high performance mass 

spectrometer to demonstrate minimal interlaboratory variation will confirm and justify the utility 

of the differences between MS profiles of the disease and control specimens to generate a 

diagnostic model in the clinics. The need to unravel the peak identity before clinical adaptation is 

unfounded given the historical origin of PSA and CA-125. 

Until platform reproducibility can be demonstrated across sites in an initiative similar to 

the one with low performance mass spectrometers [4], this technology will likely remain a useful 

front-end discovery tool for biomarkers. Even if mass peak reproducibility can be guaranteed, 

there still lies the problem of detecting low abundance proteins. A recent reported approach that 

can bridge the span of protein concentration in complex biological samples and the limited 

dynamic range of current proteomics detection methods involves the use of combinatorial ligand 

libraries [5, 6]. The reasoning is that given the diverse library comprises of all possible ligands for 

the binding of both high and low abundance proteins, even though the diversity of the protein 

mixture remains unchanged, the chances of low abundance proteins finding a binding partner and 

enriched for detection are greatly enhanced. This is based on an established premise in 

combinatorial chemistry stating in order to probe a diverse biological space, an equally diverse 

chemical space is needed. Combinatorial libraries have proven successful in the analysis of the 

previously unseen proteome in human urine, serum, and platelets lysate [7-9].  
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Another persistent challenge lies in controlling the preanalytical variability during sample 

procurement as proteins are sensitive to storage, handling, and processing conditions (Chapter 2). 

Therefore, protein profiling may be more reliable if it were to focus on proteins that are less prone 

to these biases, such as antibodies. This is particularly appealing in the study of autoimmune 

diseases whose trademark is the presence of autoantibodies. Compared to traditional protein 

biomarkers, this subset of the proteome carries the advantages of improved sample stability and 

non-fluctuating levels in sera, making them highly effective biomarkers. The multiplex analyses 

of autoantibodies for disease ‘signatures’ that can confer the same level of sensitivity and 

specificity of a mass spectrometry profile for diagnosis have been reported [10-12]. The downside 

of this approach, however, is limitation to the existing known autoantigens. Combinatorial 

chemistry may again present the solution to this bottleneck where libraries of small molecules can 

be screened for novel binders to autoantibodies as a replacement for autoantigens. Admittedly, 

the binding affinity of antibodies to their small molecule binder might be significantly lower (in 

the low µM range) and thus result in low specificity. However, a panel of these independent 

weaker binders can collectively confer the high sensitivity and specificity desired, as seen in mass 

spectrometry protein profiles. The class of molecules that is suited for this endeavor should 

preferably be immune to potential interferences from the biological constituents of biological 

samples, such as protease activities in blood.  

Peptoids as the protease-resistant analogs of peptides [13] are ideal for the screening of 

the binders aforementioned. Their facile route of synthesis allows a more diverse set of functional 

groups to be incorporated than peptides, effectively expanding the chemical space to approximate 

the diversity in antibodies naturally conferred by VDJ recombination. Additionally, as presented 

in Chapter 5, we have shown that peptoids are, in general, more cell permeable than peptides. 

This makes them an attractive alternative for drug development to target protein markers in 

circulation and perhaps even autoreactive entities in the brain across the BBB. 
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Clearly, six years into the seminal report on the diagnostic application of SELDI, many 

technological issues remain to be resolved.  There is the need to carefully define a common 

operating procedure essential for the validation of this technology in anticipation of its 

introduction into clinical practice. Efforts toward this standardization have been initiated across 

disciplines by organizations such as HUPO and the American Association of Clinical Chemistry. 

Meanwhile, ongoing investigations are slowly but surely providing innovative solutions to 

address the obstacles that currently define SELDI. Critical experimental design and adoption of a 

workflow that primarily aims at reducing bias and securing reproducibility such as the one 

presented in this dissertation contribute to the betterment of this promising technology. Now is 

indeed an exciting time to be part of a global collaborative effort to fine tune a maturing 

technology to achieve its full potential in revolutionizing biomarker discovery for its multifarious 

roles of disease risk determination, early detection and diagnosis, disease staging, prognosis, 

therapeutic options evaluation, and monitoring of responsiveness to treatments, all to realize the 

simple goal of improving health and prolonging life.  
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APPENDIX A 
Clinical samples in Case Study I: Multiple Sclerosis (Chapter 3) 

 
Clinical CSF samples used in the study with patient group classification, diagnosis, gender, and 

age: MS = multiple sclerosis, RRMS = relapsing-remitting multiple sclerosis, SPMS = secondary 

progressive multiple sclerosis, OND = other neurological diseases, PD = Parkinson’s Disease. 

 

 

  

Index Sample Group Diagnosis Gender Age 

1 M558 MS RRMS F 29 

2 M875 MS RRMS F 22 

3 M584-3 MS RRMS F 43 

4 M125 MS RRMS F 32 

5 M354 MS RRMS F 42 

6 M522-1 MS RRMS F 34 

7 M376-1 MS RRMS F 57 

8 M918-1 MS RRMS M 37 

9 M465-1 MS RRMS F 31 

10 M584-2 MS RRMS F 41 

11 M125-2 MS RRMS F 33 

12 M746 MS RRMS F 42 
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Index Sample Group Diagnosis Gender Age 

13 M818 MS RRMS F 60 

14 M927 MS RRMS F 30 

15 6495 MS SPMS M 25 

16 6519 MS SPMS M 44 

17 6613 MS SPMS M 43 

18 6592 MS SPMS M 49 

19 6620 MS SPMS M 52 

20 6721 MS SPMS M 30 

21 6807 MS SPMS F 42 

22 6837 MS SPMS M 37 

23 6963 MS SPMS M 54 

24 7250 MS SPMS F 67 

25 7464 MS SPMS M 37 

26 7509 MS SPMS M 38 

27 9593 MS SPMS M 38 

28 9603 MS SPMS M 39 

29 10238 MS SPMS F 36 

30 11621 MS SPMS F 28 
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Index Sample Group Diagnosis Gender Age 

31 11620 MS SPMS F 48 

32 11757 MS SPMS M 54 

33 6935 MS SPMS M 55 

34 6876 MS SPMS M 66 

35 M142 Non-MS OND F 30 

36 M636 Non-MS OND M 60 

37 M758 Non-MS OND F 43 

38 12265 Non-MS Prostate Cancer M 79 

39 12286 Non-MS Prostate Cancer M 77 

40 12281 Non-MS Urinary/Bladder Cancer M 73 

41 12292 Non-MS Congestive Heart Failure F 91 

42 12300 Non-MS Congestive Heart Failure M 86 

43 10558 Non-MS Headache M 44 

44 11598 Non-MS Headache M 41 

45 7682 Non-MS Headache M 38 

46 6070 Non-MS Seizure M 47 

47 6232 Non-MS Seizure M 29 

48 6247 Non-MS Seizure M 49 
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Index Sample Group Diagnosis Gender Age 

49 6289 Non-MS Seizure M 26 

50 6373 Non-MS Seizure M 64 

51 11884 Non-MS PD F 80 

52 11891 Non-MS PD M 75 

53 12089 Non-MS PD M 70 

54 12099 Non-MS PD M 84 

55 12133 Non-MS PD M 80 

56 8011 Non-MS Cerebellar Tumor M 44 

57 9768 Non-MS Glioblastoma M 69 

58 12893 Non-MS Glioblastoma M 52 

59 12872 Non-MS Brain Tumor F 92 

60 12112 Non-MS Brain Tumor M 48 
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APPENDIX B 
Sequence information data of highly permeable OxDex-conjugated molecules for high-

throughput study (Chapter 5) 
 

Sequence information of highly permeable OxDex-conjugated peptoid tetramers. Highly 

permeable peptoids have a permeability ratio (PR) that is at least 2σ above the average 

permeability ratio of all peptoids in the high-throughput study. The frequency of each monomer is 

indicated for each peptoid. 

  

 

 

PEPTOIDS PR 
Molecular 

weight Sequence Composition 

   Nmba Nleu Nlys Ngly Nser 

4merTOID PL07B10 0.0213 1052 0 1 1 1 1 

4merTOID PL07B11 0.0213 1085 1 1 0 1 1 

4merTOID PL09B01 0.0221 1039 0 1 0 2 1 

4merTOID PL09E03 0.0206 1081 0 0 2 2 0 

4merTOID PL09H11 0.0229 1050 0 2 1 0 1 

4merTOID PL10C03 0.0218 1053 0 1 0 3 0 

4merTOID PL10G03 0.0228 1037 0 2 0 1 1 

4merTOID PL10H03 0.0244 1119 2 0 0 0 2 

4merTOID PL10G07 0.0216 1064 0 2 1 1 0 

4merTOID PL10D08 0.0206 1054 0 0 1 2 1 

4merTOID PL10E10 0.0223 1077 0 2 2 0 0 

4merTOID PL10H10 0.0232 1038 0 1 1 0 2 

Average 0.0221 1062      
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Sequence information of highly permeable OxDex-conjugated peptide tetramers. Highly 

permeable peptides have a permeability ratio (PR) that is at least 2σ above the average 

permeability ratio all peptides in the high-throughput study. The frequency of each monomer is 

indicated for each peptide. 

 

 

 

PEPTIDES PR 
Molecular 

weight Sequence Composition 

   Phe Val Lys Asp Ser 

4merTIDE PL05F06 0.0126 1071 1 1 0 2 0 

4merTIDE PL05F07 0.0118 1053 0 0 2 1 1 

4merTIDE PL05H11 0.0156 1097 1 1 2 0 0 

4merTIDE PL06F11 0.0115 1075 2 1 0 0 1 

4merTIDE PL06G11 0.0124 1063 2 0 0 0 2 

4merTIDE PL07B02 0.0141 1085 1 0 2 0 1 

4merTIDE PL08H03 0.0171 1084 1 1 1 1 0 

4merTIDE PL08H04 0.0170 996 0 1 1 0 2 

4merTIDE PL08H05 0.0117 1145 2 0 2 0 0 

4merTIDE PL08D07 0.0131 1024 0 1 1 1 1 

4merTIDE PL08H07 0.0119 1132 2 0 1 1 0 

4merTIDE PL08H10 0.0120 1072 1 0 1 1 1 

Average 0.0134 1074      
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