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Background 

In developed nations, diabetes mellitus (DM) is the leading cause of 

microvascular disease like chronic kidney disease (CKD) and end-stage kidney failure 

(ESKD) (United States Renal Data System, USRDS 2003 Annual Report). CKD is a 

harbinger for future cardiovascular disease because it increases the risk for 

development and progression of cardiovascular disease (CVD) and for death from 

cardiovascular causes (1). Accordingly, patients with CKD are considered the "highest 

risk group" for subsequent CVD (2). Those with CKD are two to five time more likely to 

suffer an acute cardiovascular event (myocardial infarction, stroke, heart failure) than 

unaffected individuals (3;4), and ESKD increases this risk to greater than twenty times 

that of the general population (4;5). Patients with diabetes and CKD have a roughly 

three-fold increased risk of acute CVD event and of all-cause mortality compared to 

diabetics without CDK (6). The excess burden of CVD in individuals with CKD or ESKD 

necessitates ongoing efforts to a) understand the pathogenesis of both conditions, b) 

determine the mechanism underlying the observed associations and c) develop new 

approaches to manage and treat those with CKD. 

Mechanisms of Diabetic Complications 

The Diabetes Complications and Control Trial highlighted the importance of 

effective glycemic control in preventing microvascular complications like nephropathy 

and retinopathy in persons with T1 DM (7). Long-term follow-up of DCCT participant (the 

EDIC study) have validated the complication-related benefits of strict glycemic control 

(8;9), but these studies also suggest that hyperglycemia alone is not sufficient to 

account for all of the complications; about 40% will develop kidney and or retinal 

disease and approximately 50% will develop coronary artery disease (7-9). Similarly, 

the United Kingdom Prospective Diabetes Study (UKPDS) of type 2 diabetic subjects 

demonstrated that in this population, proper metabolic control predicted favourable long-
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term outcome with respect to development and progression of micro- and 

macrovascular diseases (10-12). Nevertheless, the complications of diabetes remain 

vexing problems that continue to confront health professionals who are managing 

patients with diabetes. A better understanding of the pathogenesis of these 

complications is expected to enhance our ability to prevent and treat the adverse 

consequences of DM. 

a) i) The RAAS and Diabetic Kidney Disease 

The role of the renal-angiotensin-aldosterone system in diabetic glomerulopathy 

has been established through basic and clinical studies (13-15). Angiotensin II regulates 

renal hemodynamics through its influences on glomerular efferent and afferent 

arterioles, and on systemic blood pressure (13;16) . In addition, angiotensin II manifest 

important non-hemodynamic effects on the kidney including, but not limited to:- i) 

increased matrix synthesis; ii) upregulation of many cytokines including transforming 

growth factor beta 1 (TGF131), connective tissue growth factor (CTGF) and plasminogen 

activator inhibitor 1 (PAI-1) that are key mediators of extracellular matrix biology; iii) 

induction of several inflammatory cytokines including interleukin (e.g IL-6) and vascular 

cell adhesion molecule 1 (VCAM-1). Accordingly, treatment with angiotensin II 

converting enzyme inhibitors (ACEi) or an angiotensin II receptor antagonist (ARBs) is 

now the standard of care for diabetic kidney disease. In animal studies, overexpression 

of renin, the enzyme responsible for generation of angiotensin I from angiotensinogen 

causes severe renal and cardiovascular disease that is attenuated by angiotensin II 

type 1 receptor blockers (17;18). Recent clinical studies like the HOPE trial involving 

those with diabetes further emphasize the importance of the RAAS in progression of 

diabetic micro- and macrovascular disease (14). However, as is the case for metabolic 

control, many affected individuals who receive ACEi and I or ARBs will experience 

progression of kidney disease suggesting the existence of other processes that 

influence disease development. 
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ii) Is Bradykinin important? 

While ACEi administration are current recommended pharmacologic agents for 

treating individuals with diabetic kidney disease, there is some evidence that the 

efficacy of these agents is not only related to blockade of the harmful consequences of 

RAAS over-activity, but to the accumulation of bradykinin that occurs secondary to ACE 

(Kininase) inhibition.(19-21) For instance, a polymorphism in exon 1 of the bradykinin 

82 receptor has been associated with lower albumin/creatinine ratio (22;23). In animal 

studies, diabetic Bradykinin 82 receptor mice developed more severe albuminuria and 

glomerulosclerosis compared with diabetic non-target littermates (24). These studies 

are relatively recent and limited in number; hence, a role for kinin in diabetic kidney 

disease remains controversial. 
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b) Protein Kinase C (PKC) and Diabetic Kidney Disease 

Protein kinase C catalyzes serine or threonine phosphorylation of protein 

substrates to mediate an array of cellular processes in a cell-specific manner. PKC may 

be activated by inositol 1 ,4,5-triphosphate (IP3), that is generated from G-protein­

coupled hydrolysis of phosphatidylinositiol 4,5 bisphosphate to IP3 and diacylgerol 

(DAG). DAG generated through phosphatidylcholine (PC) hydrolysis may also activate 

PKC. De novo DAG synthesis from glucose is believed to be the mechanism through 

which glucose activates PKC under hyperglycemic conditions. This has been 

demonstrated to occur in mesangial, vascular smooth muscle and endothelial cells, as 

well as in glomeruli of diabetic rats (25-28). 

The PKC isoform activated in diabetes is dependent on the tissue type; in the 

case of renal glomeruli, hyperglycemia and diabetes activate isoforms PKCa and 

PKC(31 (27;28). PKC activation may mediate increased oxidative stress via activation of 

NAD(P)H oxidase and generation of superoxide. In fact, administration of a PKC beta 

isoform-specific inhibitor (LY333531) to diabetic rats alleviates glomerular oxidative 

stress. Furthermore, L Y333531 also improved albumin excretion rate (AER) and 

glomerular filtration rate (GFR) in this model (27;28). A phase II clinical trial of an oral 

formulation of the aforementioned PKC beta inhibitor (ruboxistaurin, RBX) has been 

completed in individuals with type 2 diabetes mellitus (29). The patients were type 2 

diabetics with proteinuria, plasma Cr 1.7 mg/dL (women) to2.0mg/dL (men) who were 

being treated with either an ACEi or ARB or both and who received multiple risk factor 

intervention for metabolic and blood pressure control, After 1 year, RBX treatment 

caused a 24% decrease in ACR compared to a 9% decrease in the control group (29). It 

thus appears that RBX may be a beneficial add-on therapy in type 2 diabetic patients 

with proteinuria. 

c) Advanced Glycation Endproducts (AGES) 

Advanced glycation endproducts (AGEs) are compounds that may be formed in 

routine physiologic processes, but whose production is accelerated in various 
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pathophysiologic conditions including hyperglycemia, oxidative stress, inflammation and 

chronic diseases (like chronic kidney and neurodegenerative diseases). The precise 

mechanisms leading to AGE formation have not been completely elucidated. The early 

stage is characterized by non-enzymatic reaction of an amino group of a protein with 

glucose to form a Schiff base, followed by Amadori rearrangement and latter by several 

reactions eventually terminating in the formation of AGE structures like 

carboxymethyllysine (CML) and pentosidine (30-33). 

AGE-modified adducts of proteins (like CML) serve as markers of AGE formation 

under various conditions in human and animal models. These AGE-modified proteins 

mediate various adverse reactions including macrophage activation, increased cytokine 

production, matrix metalloproteinase activation and matrix derangement (33-36). In 

addition, AGE formation leads to increased cross-linking of matrix proteins further 

disrupting protein-protein and protein-cellular interaction in matrix (33;34). Similarly, 

non-matrix protein may be AGE-modified, resulting in abnormal cellular responses and 

deranged physiology. Importantly, AGE may interact with and bind to receptors for 

AGEs, known as RAGE, as well as to other receptors including type II macrophage 

scavenger receptor (32;36;37). In addition to possessing strong collagen crosslinking 

activities, in humans, serum AGEs correlate with DM complications (retinopathy, 

nephropathy and atherosclerosis), increase vascular injury and permeability, may be 

procoagulant, promote monocyte influx I migration and may interfere with NOS I NO 

production. As a result, investigations have been undertaken over the past 10 to 15 

years to determine whether prevention of AGE formation would impact on the 

aforementioned adverse consequences of hyperglycemia, oxidative stress and 

inflammation. 

Two approaches have been employed to mitigate the harmful effects of AGE­

protein adducts. The first utilizes blockers of AGE formation, while another more recent 

strategy involves administration of compounds that are capable of interrupting 

previously-formed AGEs ('AGE breakers'). 

Aminoguanidine (Pimagidine), an AGE inhibitor has been studied in type 2 
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diabetic humans with CKD in the ACTION trial. ACTION I and II were double-blind, 

placebo-controlled, randomized clinical trials designed to evaluate the safety and 

efficacy of aminoguanidine in retarding the rate of progression of renal disease in 

participants with overt diabetic nephropathy. Participants who were taking ACEi (76%) 

and lipid-lowering agents (43%) were maintained on these regimens through the study 

and the primary endpoint in the study was time to doubling of baseline creatinine. In 

ACTION I, there was no statistical significant difference between the placebo and 

aminoguanadine group with respect to the primary outcome. However, there was a 

trend to slower progression in the latter group and this group also manifested 

. statistically lower LDL-cholesterol, triglyceride and urine protein. The follow-up study, 

ACTION II was terminated early due to lack of efficacy and safety concerns (38). Other 

AGE inhibitors being considered for treatment of diabetic kidney disease include OPB-

9195 and ALT-946. 

Tthe alternate approach of using AGE breakers is currently being investigated. In 

animal studies, the AGE breaker ALT-711 (Aiagebrium) inhibits PKC isoform 

phosphorylation and nuclear translocation, proteinuria and renal fibrosis (39-41). Clinical 

trials in human, in which the drug was being evaluated for treatment of systolic 

hypertension and erectile dysfunction have been halted because of safety concerns and 

lack of a treatment effect. 

The last aspect of AGE pathobiology and diabetic nephropathy has focused on 

investigation of RAGEs. Ligands for these receptors include N-epsilon (carboxymethyl) 

lysine (CML) and S1 00/Calgranulin. Interaction between RAGE and its ligands 

upregulates the receptor and leads to a number of downstream effects including 

increased expression of vascular endothelial growth factor (VEGF) in podocytes and 

recruitment of mononuclear cells to the glomeruli (32;34;35). In RAGE overexpressing 

transgenic mice, treatment with soluble RAGE (sRAGE) diminishes proteinuria and 

glomerulosclerosis and improves renal function (42); sRAGE captures circulating AGE 

and prevents these ligand from binding to cell surface receptors. Therefore, this 

approach provides a potential alternative strategy for managing diabetic kidney disease 
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in the future. 

d) Hexosamine Pathway Flux 

In the basal state, only a small proportion of the glucose that enters cells 

(estimated at 1-3%) is shunted through the hexosamine pathway. In this pathway 

(Figure 2), glucose-6-phosphate is converted to glucosamine-6-phosphate via the action 

of the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFAT). 

GFAT may be a key factor that regulates the effects of the hexosamine pathway on 

cellular processes (43). It is believed that, by acting as a sensor of glucose levels in the 

extracellular milieu, the hexosamine pathway may participate in regulating the cellular 

responses to changes in glucose concentration in the extracellular compartment (43-

45). 
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A key product of this pathway, uridine diphosphate N-acetylglucosamine (UDP-GicNAc), 

is the substrate for the N- and 0-linked glycosylation of intracellular proteins. The 

intracellular levels of 0-linked glycosylated proteins correlate with GFAT activity, and 

blockade of GFAT activity, or inhibition of expression of GFAT with antisense 

oligonucleotides, lowers intracellular levels of 0-GicNAc-modified proteins. Some 

studies support a link between the hexosamine pathway and the development of insulin 

resistance (43-46). In addition, the hexosamine pathway also influences the expression 

of the genes for growth factors such as transforming growth factor a (TGFa) and TGF 

beta 1 (TGFP) (45-49). 

Hexosamine Pathway Flux and tissue injury: Relationship to Diabetic Glomerular 

Disease?. 

In humans, investigators have compared GFAT protein expression in normal 

kidneys and in kidneys from type I diabetes mellitus patients with clinical nephropathy. 

lmmunostainable GFAT was present at low levels in normal glomeruli, while diabetic 

glomeruli exhibited increased GFAT expression in both glomerular epithelial and 

mesangial cells(50). Although a link between GFAT activity and diabetic glomerular 

injury was not established by this study, previous reports indicated that glucose-induced 

increases in TGFI! 1 expression and activity in porcine mesangial cells are mediated by 

glucose flux though the hexosamine pathway (51). These studies suggest that GFAT 

expression is upregulated by hyperglycemia and the diabetic state and that glucose flux 

through the hexosamine pathway may be an important determinant of diabetic 

glomerular injury. 

In line with of these observations, recent studies in humans support a link 

between polymorphism in GFAT genes (GFPT1 and GFPT2) and diabetic nephropathy. 

IN African Americans, but not Caucasians, a polymorphism in the 3' untranslated region 

(3'UTR) of GFPT1 may associate with diabetic nephropathy (52). In a related study, 
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variants in the 3'UTR and exon 18 of GFPT2 were associated with type 2 diabetes in 

Caucasians and with diabetic nephropathy in African American (53). Further 

investigations will be required to clarify the role of this nutrient pathway in diabetic 

complications. 

e) Reactive Oxygen Species 

Hyperglycemia has been associated with the ·generation of reactive oxygen 

species (ROS), and some of the complications of DM may be related to oxidative injury 

(54;55). Mesangial cells exposed to high ambient glucose conditions manifest increased 

ROS like hydrogen peroxide, superoxide anion and hydroxyl radicals (56;57). Likewise, 

excess flux through the polyol pathway may serve as a source of ROS generation due 

to depletion of cofactors like NADH and NAD(P)H; ROS may also be producing during 

the ·regeneration of these factors by NAD(P)H oxidase. Accordingly, NAD(P)H oxidase 

may generate reactive intermediaries like superoxide and hydrogen peroxide that 

increase cellular oxidative stress (54;58). 

ROS are believed to promote tissue injury through multiple mechanisms 

including:- membrance and intracellular lipid peroxidation, increased extracellular matrix 

production, enhanced inflammatory cytokine generation and increased expression of 

mediators like TGF~-1. However, it should be noted that the precise mechanisms that 

lead to adverse consequences of elevated cellular ROS levels are incompletely 

understood. Nonetheless, the important pathophysiologic consequences of ROS are 

highlighted by the existence of multiple, redundant processes that serve to protect cells 

against these reactive intermediary metabolities. Included amongst these are:- i) 

cytosolic super oxide dismutase (CuZn-dependent, CuZnSOD) and mitochondrial super 

oxide dismutase (Mn-dependent, MnSOD) that catalyzes the conversion of superoxide 

to hydrogen peroxide; ii) cytosolic and peroxisomal catalase that converts hydrogen 

peroxide to water; iii) glutathione perosxidase (cytosolic and perosxisomal) which 

breaks down hydrogen peroxide. In this regard, overexpression of SOD protect mice 

against diabetic complications including kidney disease (59;60). 
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The naturally occurring anti-oxidant, lipoic acid, serves a key role in regulating 

the redox status of cells primarily by enhancing synthesis of key molecules such as 

glutathione (61 ;62). Accordingly, treatment with alpha lipoic acid has shown a positive 

impact on improving and preventing diabetic polyneuropathy (61 ;63;64), its influence on 

other complications such as diabetic nephropathy is unknown and has not been 

extensively tested, but some animal studies suggest a potential benefit of this 

intervention (65;66). 

f) Unified Hypothesis of Diabetic Complication - Brownlee's Hypothesis 

Recently, a 'unifying hypothesis' of hyperglycemia mediated complications has 

been proposed; it is based on the generation of reactive oxygen species in the 

mitochondria and suggest that effective blockade of ROS generation could be of 

therapeutic benefits (67;68). 

The central feature of this unified hypothesis is based on the observation that 

hyperglycemia inhibits the enzyme glyceraldehye 3-phosphate dehydrogenase 

(GAPDH) activity through the generation of superoxide in the mitochondrion (69). 

GAPDH inhibition leads to a) accumulation of glyceraldehye 3-phosphate which 

enhances AGE formation through increased formation of the AGE precursor 

methylglyoxal and b) PKC activation by DAG that is generated from glyceraldehye 3-

phosphate. Accumulation of the upstream metabolite fructose-6 phosphate enhances 

hexosamine pathway flux and finally, the buildup of glucose further upstream increases 

polyol pathway flux and sorbitol generation (Figure 3). 

In support of this hypothesis, overexpression of MnSOD that degrades hydrogen 

peroxide or uncoupling protein 1 (UCP-1) which collapses mitochondrial voltage 

gradient prevents hyperglycemia-induced ROS generation (70) . In endothelial cells, 

inhibition of GAPDH activity by antisense oligonucleotide (ODN) leads to activation of 

PKC, increased AGE formation and enhanced flux through the hexosamine pathway 

(71 ). The observation that hyperglycemia inhibits GAPDH by modifying this enzyme 

with ADP-ribose polymers, raised the question of whether hyperglycemia activated poly-
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ADP ribose polymerase (PARP), a nuclear- resident DNA repair enzyme (71 ). ROS 

Figure 3: Unifying mechanism of hyperglycemia-induced cellular damage (Diabetes 54:1615, 2005) 

cause DNA damage (strand breaks), PARP is activated to repair DNA and does so 

through generation of ADP-ribose from NAD+. Subsequent generation of polymers of 

ADP-ribose inhibits GAPDH as it shuttles between nucleus and cytoplasm to participate 

in the DNA repair process (56;71 ). 

Thiamine (Vitamin 81 ), the Pentose Phosphate Pathway and Diabetic 

Complicationn 

Fructose-6 phopshate and glyceraldehydes 3-phosphate are products of the non­

oxidative branch of the pentose phosphate pathway that are produced by a thiamine­

dependent enzyme, transketolase. The overall direction of transketolase catalyzed 

generation of these two metabolites is driven by substrate concentration. Hyperglycemia 

increases fructose-6 phopshate and glyceraldehydes 3-phosphate, and subsequently 

increases flux through the polyol, AGE and hexosamine pathways and activates PKC 

(Figure 4) (72). 
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Figure 4: Depiction of possible mechanism whereby Benfotiamine may inhibit 

hyperglycemic complications (72). 

Benfotiamine is a lipid-soluble analogue of thiamine with greater bioavailability 

(73). Recent observations suggest that benfotiamine is capable of blocking major 

pathways that mediate adverse consequences of hyperglycemia through activation of 

transketolase (72). Benfotiamine seems to be beneficial in the treatment of diabetic 

polyneuropathy in human and animal studies (74;75), and in combination with thiamine 

may prevent diabetic nephropathy in rats (76). Further clinical trials to test the efficacy 

of thiamine and benfotiamine for the prevention of diabetic complications in humans are 

currently in progress. 

Summary 

Diabetes Mellitus and its complications represent a growing social and financial 

burden throughout the world. Given the influence of kidney disease on cardiovascular 

disease and mortality, additional efforts and resources will be needed to achieve the 

13 



goals of a) understanding disease mechanisms and its relationship to cardiovascular 

disorders and b) preventing development and progression of kidney disease. Landmark 

studies like the DCCT, EDIC, UKPDS and HOPE have clearly highlighted the 

importance of · good metabolic and blood pressure control in the reduction of 

complication. However, in all of these studies, metabolic and blood pressure controls do 

not abolish complications. Other genetic and environmental factors seem to be 

important, hence necessitating the search for novel processes and pathways that may 

influence disease progression. The areas covered in this overview reflect ongoing 

efforts to accomplish the goals outlined. Better understanding of disease mechanisms is 

expected to translate into novel therapies and management approaches and to reduced 

social and economic burden of DM and its complication on affected individual or those 

at risk, their family and society. 
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