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Based on studies of protein structures, functional mutagenesis, allosteric control, and 

evolutionary records of proteins, we propose that proteins are built with an architecture of 

strong and weak interactions leading to the cooperative behavior of a few residues and the 

independence of many others.  This pattern of heterogeneity determines many characteristics 

of proteins such as allosteric communication, enzymatic activity, and ligand-binding hot-spots.  

In addition, this architecture is likely to be a consequence of evolutionary selection and 

necessary in order to maintain viability while undergoing mutation and adaptation.   

Herein, I demonstrate the existence of a heterogeneous architecture in an individual 

protein (the third PDZ domain from rat PSD95) by measuring physical interactions between all 

pairs of residues.  This global perturbation analysis is performed by making evolutionarily 

conservative mutations at every position in a protein and observing physical effects by 
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monitoring a large number of NMR chemical shifts at nuclei distributed throughout the protein.  

The end result is a matrix of interactions between each mutation and all residues in the protein. 

Analysis of this chemical shift perturbation matrix reveals subsets of residues that 

interact strongly and cooperatively.  These residues create structural modes that are present in 

the both free and peptide-bound PDZ3 and include many residues important for peptide-

binding, suggesting that these structural modes are organized for the purpose of protein 

function.  Furthermore, structural modes in PDZ3 are highly correlated with the protein sector 

identified by Statistical Coupling Analysis (SCA) – a measure of residue coevolution – in the PDZ 

domain family.   

This experiment produced a global map of physical interactions in the PDZ domain.  The 

pattern of interactions is consistent with our model of a heterogeneous architecture composed 

of cooperative and independent residues.  In addition, the correlation between structural 

modes and the SCA protein sector argues that cooperative physical interactions drive evolution 

in the PDZ domain family.  The connection between physical features of individual proteins and 

statistical properties of protein families has significant applications for modeling complex 

physical behavior in proteins, for understanding the robustness and evolvability of natural 

systems, and for designing novel proteins. 
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CHAPTER 1:  Introduction 

 

Proteins are impressive because of their simultaneous simplicity and complexity.  From 

a modest twenty amino acid building blocks, Nature builds molecules with an incredibly wide 

variety of physical properties and highly complex functions.  Combinations of proteins create 

intra- and inter-cellular signaling networks, maintain and propagate genomes, and perform all 

functions seen in the theater of life – all while existing in a form that is tolerant to random 

mutagenesis, yet adaptable to perform new functions on an evolutionary time scale.  The 

central question is how is this possible?   What features of proteins enable complex functions in 

the individual molecule while maintaining robustness and evolvability throughout many 

generations and across species?  Can we make a connection between the structural and 

chemical features that provide for function and the evolutionary properties seen in the genetic 

record?  A full understanding of this connection will not only help us to better understand how 

natural proteins work (and break), but also enable us to design novel molecules with the 

desirable properties found in natural proteins. 

Collectively, studies of the biophysical, functional, and evolutionary properties of 

proteins gradually and iteratively constrain our conception of how proteins work – in essence, 

providing boundary conditions for any complete description of proteins.  This description can 

be called the general architecture of proteins and is meant to refer to how the constituent 

amino acid residues of the system interact with each other to determine the properties of the 

system.  This idea encompasses the spatial arrangement of the residues, the distribution and 

trajectory of accessible conformations, the strength of the interactions between residues, and 

when it is possible to deconvolve, the mechanisms of such interactions.  In addition, the 

concept of a general architecture also includes non-physical properties such as robustness to 

mutation and the capability to evolve new functions.  These non-physical properties cannot be 

understood by studying single protein molecules/sequences, but are reflected in the 

distribution of sequences that comprise an homologous protein family. 

One theory for a general description of protein architectures arises from the results of 

the Statistical Coupling Analysis (SCA).  SCA is a conservation-weighted measure of coevolution 
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between residues in a multiple sequence alignment (MSA) of a protein family [1].  The SCA of 

many protein families routinely identifies coevolving sets of residues that are sparse (typically 

15-20% of the total residues in the protein), distributed to connect different parts of the 

protein, and physically contiguous in the tertiary structure (but not necessarily the primary 

structure) [2].  These coevolving sets of residues are termed “sectors” and typically cross 

secondary structure elements and involve residues both at the surface and in the core of the 

protein.  Sector residues have been shown to interact cooperatively and mediate important 

protein functions [3-5].  Additionally, more than one sector may be present in a protein family, 

and the different sectors may be important for different properties of the protein [6].  These 

results suggest a physical model for proteins in which a central set of residues (the protein 

sector) interact strongly and cooperatively with each other while the rest of the residues 

interact more weakly and less cooperatively with other residues.  This type of architecture is 

consistent with known biophysical data about proteins and also provides testable hypotheses 

to explain the functional and evolutionary properties of proteins.   

The assertion that a sparse and distributed set of residues act cooperatively to perform 

a protein's function has been tested in a few focused studies, but there has never been a global 

test of residue interactions.  Previous tests have generally focused on how individual residues 

affect protein function and less on how residues interact, and especially less on the physical 

nature of those interactions.  My research focuses on testing the hypothesis that the general 

architecture of proteins is based on a small subset of strongly and cooperatively interacting 

residues interspersed among a majority of residues that are weakly coupled.  I aim to test this 

hypothesis by performing a global perturbation analysis to map the pattern of physical 

interactions in a PDZ domain.  This novel experimental approach is the first to make a global 

map of all pair-wise interactions, and as such, the results are uniquely suited to assess the 

degree of heterogeneity in residue interactions and to test whether SCA-identified coevolving 

residues interact physically and cooperatively in individual protein molecules. 
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Protein structures reveal the spatial topology of amino acids 

The obvious starting point for studying the architecture of proteins is their three-

dimensional structure.  Ever since the first protein structures were solved in 1958, we have 

classically viewed proteins molecules as adopting a single compact, low-entropy, highly-

ordered, folded structure.  However, we now know that not all proteins assume well-folded 

structures.  In fact, bioinformatics analysis of genome sequencing collected in the last decade 

predicts that as much as 1/3 of eukaryotic proteins are fully or partially disordered [7, 8].  

Furthermore, test cases indicate that this disorder enhances or is required for some proteins’ 

functions [9, 10].  Thus, a more correct view is that protein structures lie on a continuum 

somewhere between completely disordered and well-folded with high stability.  Although the 

physical mechanisms determining the amount of entropy in a polypeptide chain are extremely 

interesting from fundamental and practical perspectives, we must also look at the problem 

from the viewpoint of evolution.  Understanding why proteins evolve to have disorder or 

stability will help us to understand how they acquire these properties.   

For the purposes of this document, however, we will (with noted exceptions) restrict 

our discussion to the set of proteins that form compact, folded, and well-ordered structures.  In 

this group of proteins, a well-ordered structure is essential for maintaining the stability of the 

molecule and providing a framework for carrying out the function of the molecule such as 

organizing active site residues in enzymes.  Obtaining a three-dimensional structure of these 

proteins provides a topological description of the network of amino acids – which residues are 

close to one another, which residues are in contact, and what are their relevant orientations.  

Protein structures solved by X-ray crystallography, Nuclear Magnetic Resonance (NMR) 

spectroscopy, and cryo-electron microscopy reveal huge insights into the mechanisms of how 

proteins function.  These structures expose the organization of active sites, the location of 

substrate, cofactor, and small molecule binding sites, the topology of protein-protein binding 

interfaces, and the orientation of multi-protein complexes to name just a few of the useful 

applications.  In addition, structures determined in different functional states (e.g. with and 

without a ligand) also provide clues as to how proteins perform their functions [11] as well as 

the range of conformations accessible to the molecule [12].  An oft-cited drawback to 
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crystallography is that it only determines a single set of atomic coordinates even though we 

know that proteins access many low energy conformations and even sample folding-unfolding 

transitions quite frequently [13].  Recently however, there has been a push to use classic 

structure determination techniques (NMR and X-ray crystallography) to look at dynamics as 

well.  By examining the range of NMR modes consistent with data restraints, B-factors from 

crystal structures, or sets of crystal structures solved in slightly different conditions, we can 

now get a sense of the flexibility of the molecule and the ensemble of low energy 

conformations that it populates [12, 14-16].   

On its own however, protein structure analysis cannot answer many important 

questions.  To start, structures reveal the physical arrangement of the residues, but not the 

energetics of inter-residue interactions.  Although it is tempting to assign or infer energetic 

contributions from features such as hydrogen bonds, salt-bridges, and hydrophobic contacts, 

the true energies in the native environment are not known [17].  In addition, whatever 

flexibility and dynamic data can be inferred from crystal structures is approximate; other 

experiments are needed to determine populations of conformers and the rates of 

interconversion.  Thus, while protein structures cannot provide all the information we would 

like to know about proteins, they are clearly a necessary foundation and starting point for 

further experimental and computational studies to deepen our understanding of the general 

architecture of proteins. 

 

Atomic packing is under evolutionary pressure to be good but not perfect 

Upon inspection of well-folded protein structures, it has been observed that the amino 

acids in the molecule fit together much like pieces in a jigsaw puzzle [18].  This observation has 

motivated an entire field of inquiry to understand how the amino acids in a protein are packed 

together and what consequence this has on the function of the molecules.  How tightly are 

proteins packed and how specific are local packing interactions?  Since atomic packing is likely 

to control the physical characteristics of proteins (stability, dynamics, stiffness, etc.) we must 

try to understand how packing influences the general architecture of protein.   



 
 

5 
 

It was noted early on that the atomic packing of proteins approaches that of organic 

crystals [19-24] with similar densities found in the core and at the surface when one considers 

solvent packing at the surface [25].  These observations have been very influential and have led 

to the idea that complimentary packing is essential for protein function [26-30].  In fact, several 

successful computational protein design programs focus on explicitly optimizing the geometric 

complimentarity of side-chain packing [27, 31, 32].  However, further research points out that 

while average packing density is quite high, it is neither maximal nor uniform.  When examining 

free volume distributions, Dill concludes that protein interiors look more like liquids and glasses 

and that the residues "are more like randomly packed spheres near their percolation threshold 

[33].”  These packing imperfections are likely to be important for the function of the protein as 

local packing density has been shown to correlate with the local flexibility [34].  Thus, we see 

that proteins form compact, low-entropy structures, but not so well-packed that they lose all 

internal degrees of freedom.  Another interesting and potentially overlooked caveat to packing 

studies is that average packing density scales with the resolution of structure determination 

[35].   

In addition, average packing density varies between proteins and appears to be an 

evolutionarily selectable trait.  Most conspicuously, proteins from certain thermophilic 

organisms have increased compactness and density in order to maximize structural stability [36, 

37].  This may arise from an increased number of hydrophobic residues in the cores of these 

proteins [38], more efficient packing of hydrophobic side-chains in the core, greater 

involvement of residues in secondary structure elements, and an increased number of 

hydrogen bonds per residue [37].  However, increased packing density is not the only way to 

stabilize proteins.  Berezovsky and Shakhnovich showed that sequence optimization to enrich 

for charged residues is also seen in thermophilic organisms [37].  A greater proportion of 

charged residues on the surface has been noted before [39, 40], but Berezovsky and 

Shakhnovich explain the disparate mechanisms for thermostability by noting different 

timescales for evolutionary selection.  Proteins from ancient Archaea evolved with high packing 

densities that provided stability but also high designability (ability to tolerate large variations in 

sequence while maintaining stability and function).  Some thermophilic organisms from 
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Bacteria, however, colonized extreme environments more recently as descendants from 

mesophilic organisms and obtained enhanced thermostability by sequence optimization, which 

is potentially faster (requiring fewer mutations) than re-optimizing the entire protein for high 

efficiency packing.  Thus, we see that there is local variation in packing density inside individual 

proteins and systematic variation in average packing density for entire organisms.  All 

indications are that packing is under strong evolutionary constraint – but biased toward the 

individual need of each protein to balance dynamics and stability, rather than perfectly optimal 

packing.   

An example of this balance is illustrated in a study by Fraser et al. in which systematic 

sampling of electron density around side-chain rotamers reveals populations of cooperative 

alternate side-chain conformations that are crucial for enzymatic catalysis [41].  These coupled 

side-chain conformations occur at buried sites in the protein indicating the use of specific 

structural plasticity to allow for the motions needed to accomplish the specific function of the 

protein.  This type of evidence for functional variation in packing often goes unnoticed because 

protein structures are driven to a single low energy state when solved at cryogenic 

temperatures commonly used for crystallography and because the alternate populations can be 

small and below the traditional threshold used to discriminate signal from noise in electron 

density maps.  Another illustration that natural protein are underpacked comes from the field 

of computational protein design.  In some cases where design algorithms emphasize geometric 

complementarity, they can produce proteins that are hyper-stable when compared to natural 

proteins [32].  This result suggests that proteins can be more tightly packed than those found in 

nature and that extra tight packing and hyperstability may be an evolutionary disadvantage. 

One concludes then that compactness, stability, and local packing interactions are 

indeed important and evolutionarily selected, but these properties are not the sole 

determinants of protein architecture.  It appears that packing density and protein stability are 

selected for favorable properties – to avoid protease degradation, to inhibit protein 

aggregation, etc. – but also relaxed to allow functional motions.  Many obvious questions arise - 

are all packing interactions equally important?  Is all local packing inhomogeneity functionally 

important, or is much of it random, and if so, is there a way we can discriminate between the 
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two?  How can we better determine the energetic value of packing and residue interactions?  

How does the heterogeneity of residue interactions contribute to functional properties of the 

protein?  We thus turn to further experiments to answer these questions in light of the 

frameworks established by experimental structures. 

 

Protein dynamics provide functionally important conformation transitions 

While protein structures provide great insights into the mechanisms of protein function 

(geometry of active sites, location of allosteric sites, organization of multi-domain complexes, 

etc.), they are somewhat deceiving in the sense that they generally offer a single snapshot of 

one low energy configuration of the molecule.  We know that proteins populate many low 

energy microstates around a preferred conformation as well as convert to other energetically-

accessible conformations, but it can be difficult to determine the populations of said 

conformations and microstates.  In the case of X-ray crystal structures, there is an experimental 

limitation due to crystals being kept at cryogenic temperatures to promote stability and protect 

against radiation damage.  Below a characteristic temperature around 200-240K, protein 

molecules lose flexibility and are frozen into a single conformational substate [42-44].  Another 

limitation stems from the general approach to refine structures toward a single set of atomic 

coordinates.  NMR structures, on the other hand, often represent the structure as an ensemble 

of models consistent with the collected structural restraints; however, the structural 

heterogeneity is a convolution of a true distribution of conformations, but also a lack of 

sufficient structural restraints.  At this time, no single method is sufficient to fully describe the 

collection of conformations and motions within in a protein.  A combination of traditional 

structural determination, computational simulations, and studies aimed at measuring specific 

dynamic events within proteins will be needed to provide a more complete picture.   

In addition to the random sampling of conformational states accessible to the protein at 

physiologic temperatures, proteins have evolved to utilize these conformational transitions for 

functional purposes.  In the simplest case, a protein samples two conformations – one active 

and one inactive – but with the populations strongly biased toward the inactive state.  In the 

presence of an activator, such as phosphorylation, the active state is stabilized and the 
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populations are inverted [45, 46].  In other cases, the intrinsic dynamics of the molecule 

correlates with function such as  determining the rates of enzymatic catalysis by controlling the 

access to the active site, controlling allosteric interaction between different parts of the 

protein, or determining electron transfer kinetics [47-52].  There are several assumptions that 

go into this conclusion, however.  First, when determining atomic motions by NMR, we observe 

independent kinetics for each nucleus, and we infer that these motions are correlated with 

each other because they have the same rate constants.  In the same way, we also assume that 

these motions are causative for the functional properties of the molecule because the rate 

constants of motion match that of function, e.g. catalysis.  Although experimental 

demonstration of concerted atomic motions is extremely difficult, methods are being 

developed to address this extremely important mechanistic question [52-55].  In fact, the 

differentiation of functional motions from random thermal motion and non-productive 

conformational changes is the central challenge the field of protein dynamics. 

Given the functional importance of conformational transitions, it is evident that protein 

dynamics are under evolutionary selection.  In the case of systems such as enzymes and motor 

proteins, the necessity of conformational change is obvious, but there is also evidence for 

evolutionary selected dynamics in less obvious systems.  For instance, conformational plasticity 

at binding surfaces allows proteins to bind multiple targets [56].  In fact, this form of dynamics 

may promote evolvability by allowing some degree of functional promiscuity in order to retain 

an original function while developing a new one [57].  Allosteric communication between 

subunits or within proteins is also a process that is dependent on dynamics [58].  In fact, the 

nearly ubiquitous presence of dynamic motions and conformational heterogeneity gives all 

proteins the potential for allosteric function [59].  Evolution can then select for small 

perturbations that bias the protein toward functionally useful conformations.   

The field of protein dynamics has matured to the point where atomic motions are 

readily measurable and show strong correlations with protein function.  The question remains, 

however, as to how proteins harness structural heterogeneity into useful and productive 

motions.  What aspect of the protein’s architecture governs these motions?  Is it that stronger 

interactions between certain residues in one part of the structure relative to weaker 
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interactions to other residues allow motion with respect to the rest of the protein?  Are there 

more subtle mechanisms such as rearrangements of hydrogen bonding networks?  Is there 

something special about the architecture of natural proteins that promotes or controls 

dynamics that might not be present in de novo designs [60]?  Many of these questions are only 

beginning to be addressed and will require advances in experimental techniques (such as 

measuring correlated motions) to provide mechanistic clues along with significant advances in 

computer simulations to provide atomic detail and breadth of study across many proteins.  As 

high quality dynamic data becomes available, it will be very important that our general 

architecture of proteins appropriately discriminates functional motions from random thermal 

fluctuations. 

 

Cooperative interaction of a subset of residues creates allosteric behavior 

Any attempt to describe a general architecture of proteins must address the concept of 

allostery.  Allostery allows proteins to respond to signals from other proteins or their 

environment and enables construction of sophisticated signaling networks through feedback 

regulation.  This phenomenon was originally described as the positive cooperativity of binding a 

small molecule at distinct sites on separate subunits of a symmetric multimeric protein.  

Gradually, this definition has expanded to include cooperativity between asymmetric 

oligomers, negative cooperativity, and communication between different sites in monomers.  

Even in the past decade, significant evidence (mostly from NMR experiments) has revealed that 

allosteric communication need not occur through structural reorganization alone, but may 

involve, in part or solely, changes in the dynamic character of the protein [61-64]. 

The newfound wealth of experimental knowledge concerning protein dynamics and the 

ability to measure their entropic contribution has led to a rather extreme view wherein 1) all 

dynamic proteins are “allosteric;” 2) allosteric effectors can include small molecules, other 

proteins, DNA/RNA, covalent modifications, changes in the environment, or even mutations; 

and 3) allosteric communication always occurs by population shifts along pre-existing 

ensembles of pathways [65].  This all-encompassing view of allostery has only recently been 

espoused and primarily by a single group [65, 66].  Others, however, actively argue for a more 
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rigid, function-centric definition of energetic coupling between binding events [67].  In my 

opinion, the definition wherein any perturbation to the protein affects the entire protein and is 

thus allosteric loses any descriptive or predictive value of the concept.  In addition, the concept 

that only pre-existing conformations and pathways are accessed by perturbations is difficult to 

justify and is refuted by experimental evidence [64].  While there are clear cases of pre-existing 

high-affinity conformations existing in the un-liganded state [46], consistent with classical 

models [68], it seems unlikely that the range of substates accessible to two different systems 

will always be completely overlapping.  And at what population is a conformation considered to 

exist in the native state – as long as the energy of a state is less than infinity then it will 

populated according to the Boltzmann distribution – does that make it a pre-existing 

conformation?  I think that in over-generalizing the concept of allostery, Nussinov & coworkers 

are really just pointing out that that energy landscape around the native state is less rough or 

less steep than we may have originally thought. 

Even with the realization that allosteric signaling can occur through structural 

rearrangements or dynamic changes, some sites on the protein appear to be particularly well-

suited for propagating an effect of binding to a functional site, and this communication often 

occurs along a particular pathway of residue interactions.  Residue interactions that are 

important for allosteric communication can be inferred from the protein structures of different 

functional states [69-71], revealed by NMR chemical shift and dynamic analyses [64, 72], 

deduced from biochemical experiments [73], measured by double mutant cycle analysis [74], or 

predicted by statistical analyses of coevolution [1].  In addition, these allosteric residue 

pathways/networks can also exhibit high order cooperativity [75, 76].  Furthermore the 

principle of allosterically important residues can also be extended to the model of allostery 

through conformational selection if a network of cooperative residues is responsible for 

effecting conformational change following the binding of an allosteric effector.  Thus, the 

existence of selective communication pathways/networks reinforces the idea that evolution 

has selected for the strengthening of certain residue interactions at the expense of others.  This 

evidence that networks of cooperative interactions between a small subset of residues mediate 
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allostery makes a strong assertion that a heterogeneous protein architecture is essential for 

protein function. 

The value of identifying potential allosteric sites and understanding residue coupling 

that propagates perturbations from these sites is immense.  Allosteric sites are potential drug 

targets that may prove to be even more effective than traditional active sites because they 

often show more inter-species variability among homologs and offer the possibility of increased 

specificity and fewer side effects [77].  As such, the search for allosteric sites and novel 

allosteric activators and inhibitors is under active pursuit by both academic researchers and the 

pharmaceutical industry [77-79].  Two other practical applications of identifying allosteric sites 

and understanding allosteric communication are the de novo design of allosteric proteins and 

the synthetic combination of proteins to create novel signaling networks or useful protein-

based reagents.  While the first of these two applications is still in its infancy, the latter is under 

active development.  Successes via “best guesses” or multi-site screening have already occurred 

[80], but now the rational coupling of allosteric pathways is being tested [81].  The existence of 

heterogeneous protein architectures with embedded cooperative networks clearly suggests 

that allosteric drug screening, protein design, and engineering of allosteric coupling between 

and within proteins can be done more efficiently and effectively than the brute force screening 

of random combinations.  Future experiments will bear out which techniques to identify and 

control allosteric sites are most effective. 

 

Large-scale mutagenesis reveals that most positions tolerate significant amino acid variation 

We have already noted variation in both local and global (average) packing densities, 

but what do we know about packing specificity?  If highly optimized packing were essential for 

protein structure, function, and dynamics, then mutations that disrupt carefully coordinated 

side-chain interactions would be expected to have deleterious effects.  Several large-scale 

mutagenesis experiments contain a wealth of data that addresses this very idea of how robust 

proteins are to mutation.  Data comes from diverse in-vivo model systems such as 3-methyl 

DNA gylocsylase [82], barnase [83], diacylglycerol kinase [84], HIV-1 protease [85], lac repressor 

[86], RNase A [87], subtilisin [88], T4 lysozyme [89, 90], and TEM1 beta-lactamase [91] as well 
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as genomic substitution analyses [92].  The collective results indicate that proteins can tolerate 

substitution at many sites without significantly compromising the structure or function of the 

molecule.  However, the diversity (number of sites) and amount (number of mutations) of 

tolerance varies between proteins and varies according to the nature and stringency of the 

selection criteria.  There are also plausible reasons to expect that some proteins can tolerate 

less sequence variation than others.  For example, the more functional constraints on a protein, 

such as the number of binding sites on the surface of the molecule, the less tolerant the 

molecule should be to mutation [93].   

While some of these large-scale mutagenesis experiments focus on determining which 

sites can accept single mutations, other studies have asked how many mutations a protein can 

accept before losing structure or function.  Theoretical and experimental studies have pointed 

to the fact that only a limited number of random mutations can occur before compensatory 

mutations are necessary to restore stability/function [94].  This is most easily shown regarding 

thermal stability where most mutations seem to be slightly destabilizing [95].  The simplest 

theories assume that, on average, stability will decline exponentially with the number of 

random mutations based on the assumption that substitution effects are additive [96].  A slight 

adjustment to this theory to include the baseline excess stability of the protein seems to 

account for the experimental data slightly better with the hypothesis being that most 

mutations are largely tolerated until some stability threshold is reached at which point further 

mutations are generally deleterious [91].  This hypothesis has significant implications for 

protein evolution because it implies that proteins have some window of stability within which 

they must evolve [94].   

Many theories that arise from these mutational studies are based on abstracting ideas 

from the average effect of random mutations, but to understand the architectures of specific 

proteins, we need to understand the effect of specific mutations.  Rather than ask how many 

sites can accept mutations, we need to ask which sites can accept mutations and are these sites 

cooperative or independent.  Independent site studies are important because they reveal that 

some positions are highly substitutable while others are much less so – indicating functional or 

structural constraints on those less substitutable residues.  However, these mutation-selection-
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sequencing experiments hold the potential to reveal vastly greater amounts of information by 

also measuring cooperativity between residues.  Now that extremely high throughput 

sequencing is available [97], one should be able to create large mutation libraries and sequence 

enough variants to observe interaction between all pairs of residues, or create focused libraries 

to observe higher-order cooperativity.  These experiments are extremely exciting and will drive 

the next generation of hypotheses regarding the energetic coupling of residues and protein 

evolution[98]. 

In addition to experimental methods, significant efforts have gone into developing 

computational methods to predict the structural consequence and thermodynamic stability 

changes associated with mutation [99] .  In general, the results have been disappointing.  

Algorithms that predict thermal stability changes using various physical and knowledge-based 

parameters are generally able to match the envelope of effects seen in the entire training set, 

but the accuracy of individual predictions is low [100, 101].  This low accuracy also precludes 

the use of such algorithms to identify physical mechanisms mediating the effects. 

To summarize, a broad range of mutational experiments reveal that while a protein is 

still close to its natural sequence, many sites are relatively tolerant to mutations, while a 

smaller number of sites are very sensitive.  However, while many sites are relatively tolerant to 

accepting mutations and remaining functional, the vast majority of even accepted mutations 

lower thermal stability.  This pattern of mutational affects puts some real constraints on any 

theory for a general architecture of proteins.  Some positions require specific amino acids to 

maintain proper function while most positions tolerate variation, but are optimized for 

favorable energetic interactions in their local environment.   The latter condition also implies 

that thermal stability is distributed amongst favorable interactions throughout the protein.  

Another useful way of stating the same idea would be to say that while there may be few 

combinations of amino acids at particular positions that can create complex functional behavior 

in a protein, there are many ways for a protein to establish enough thermal stability to operate 

effectively.   
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Proteins have evolved to be evolvable 

In using the term “general architecture” of proteins, one naturally gravitates toward the 

idea of a physical/structural architecture, but the term can also apply to a conceptual 

framework.  I have already reviewed how amino acid interactions contribute to the biophysical 

properties of proteins – structure, packing density, dynamics, tolerance to mutations, and 

allostery/cooperativity – properties that apply to single protein sequences.  Because of the 

massive sequence divergence in extant species and the diversity of protein function and 

specificity, we deem proteins to be evolvable, having the inherent capability to acquire new 

functions.  While at the top level evolution is an organismal property – the species must be able 

to generate phenotypic diversity to adapt to changes in the environment, threats from 

predators, competition for energy resources, etc. – it is ultimately a property of protein 

function and the regulation of protein expression.  For proteins, evolvability can only be studied 

in the context of many related protein sequences, as it is a property we can infer from the 

ensemble but not the individual.  This ensemble property may, however, impose constraints on 

the general architecture of proteins that are just as significant as the biophysical properties of 

the individuals. 

Protein evolvability can be decomposed into two processes:  adaptability and 

robustness.  Adaptability means that proteins must be able to acquire new properties quickly 

enough by random mutation such that the new, advantageous property can arise before 

deleterious substitutions render the allele lethal by loss of function or other toxicity.  This 

process is inextricably linked to the concept of robustness; the protein must “tolerate” some 

amount of sequence divergence, otherwise random mutagenesis would be rapidly lethal.  In the 

literature, these concepts are mainly discussed inside the framework of adaptive evolution 

(most mutations are selected for a fitness advantage or to compensate for a previous 

deleterious mutation) versus the neutral theory of evolution wherein most mutations are 

selectively neutral.  While both neutral and adaptive mutations certainly occur, recent reviews 

of the literature argue that evidence points to adaptive evolution as the predominant 

mechanism [102, 103].  I will, however, avoid discussing these developed theories in favor of 

exploring the properties of proteins that allow for adaptability and robustness. 
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Because new proteins almost always arise from existing proteins, the ability to quickly 

acquire a new function rests upon a protein either already possessing the new function 

(although potentially at a low level) or being able to acquire a new function quickly (relatively 

few mutations).  There is significant evidence, especially in enzymes, that proteins often 

possess promiscuous activities in addition to their native activity and that these promiscuous 

activities may act as starting points for further positive selection [104].  Similarly, binding 

proteins may recognize multiple targets (multispecificity) via accessing multiple conformations 

[104].  These existing low-level activities can then be enhanced by positive selection while 

maintaining the original activity or gene duplication can occur and allow the separated genes to 

be optimized for different functions.  Thus, promiscuous activities and multispecificity act to 

speed up the rate of protein evolution by providing a starting point that is already close to the 

desired activity.  In contrast, the fitness density (number of functional constraints) of a protein 

is expected to be negatively correlated with evolutionary rate; however this relationship 

appears to be weak or non-existent in several organisms that have been investigated [105].   

Robustness to mutation promotes evolvability because it allows the protein to sample 

sequence variations without losing total function.  Although the exact number depends on the 

protein, the environmental context, and the selection pressure, approximately 1/3 of random 

mutations are found to be deleterious [94, 102].  This observation indicates that only a subset 

of residues are essential for function while many other residues can vary significantly in the 

context of the wild-type protein.  This architecture wherein some residues are essential while 

many are variable appears to be an evolutionarily selected feature.  For instance protein 

families with higher contact densities have higher sequence entropy and are considered to be 

more designable (more sequences are compatible with that protein’s structure and function – 

i.e. more robust) and display a faster evolutionary rate [106, 107].  Being more designable (and 

more robust) presumably allows for a greater number of evolutionary paths of sequence 

variation, making it easier to access regions of sequence space that code for new functions.   

Our lab has therefore proposed that a protein architecture with a smaller number of 

cooperative residues and a larger number of less functionally important residues underlies the 

adaptability and robustness of natural proteins.  Having a small number of cooperative residues 
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makes the protein more adaptable because a smaller number of mutations can give rise to new 

complex functions while the larger number of less functional residues promotes robustness.  

There is one important detail, however.  Almost all mutations in a protein tend to be 

destabilizing, and once a protein accumulates enough destabilizing mutations, it can cease to 

function or become toxic to the protein via aggregation.  Therefore, it appears that nearly all 

residues in the protein are under weak evolutionary pressure to promote favorable local 

interactions to provide stability while a subset of residues are under strong evolutionary 

pressure to provide function for the molecule.  Until now, it has been impossible to 

convincingly test such a hypothesis.  With the onset of high-throughput sequencing, however, 

we now appear to be in a position perform forward evolution experiments with sufficient 

sequencing statistics to test our proposal.  It will also be exciting to test computationally 

designed proteins in such evolutionary experiments to determine whether different design 

principles affect the evolutionary potential of proteins. 

 

Conclusions 

Thus far, I have reviewed many known properties of proteins – well-ordered tertiary 

structures with good (but not perfect) atomic packing, functionally important motions, 

cooperative interactions leading to allosteric behavior, robustness to mutation, and evolvability 

to acquire new functions.  Any general description of proteins must account for all these 

properties, and any theory to explain how proteins developed or evolved these properties must 

argue that it is evolutionarily more efficient and robust than competing design principles.   

For the past decade, our lab has sought to describe a general architecture of proteins 

that moves away from the structure-centric view that all atoms and all interactions are 

important.  Largely based on the results of SCA, we have proposed that the functional 

architecture of proteins is significantly heterogeneous with a small number of strong, 

cooperative interactions and a large number of weak interactions.  In many ways, this is a very 

successful conceptual construct.  It accounts for the heterogeneity of the functional effects of 

mutations [108]; it identifies functionally important residues [1-6]; and it provides a testable 

hypothesis to explain the evolvability of proteins.  In fact, SCA information was sufficient to 
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design small proteins (with significant sequence variation from any known natural proteins) 

that assumed the correct native fold and functioned similar to natural homologs [109, 110].   

SCA on its own, however, cannot describe all aspects of the general architecture of 

proteins.  At a high level, it has been difficult to extend SCA-based protein design to larger 

proteins, and at a low-level, SCA does not predict or explain why most mutations tend to lower 

thermodynamic stability.  In addition, it is not yet clear how statistical coupling relates to 

protein dynamics.  However, there is no reason to expect SCA to reveal all properties of 

individual proteins; only properties that are conserved in the protein family and that are due to 

coevolution of similar residues will give rise to statistical coupling.  Also, statistical coupling is a 

function of all evolutionary constraints on proteins, and although cases exist where SCA sectors 

appear to be devoted to a particular property [6], it is not always possible to define the 

evolutionary pressure or the mechanism that gives rise to specific couplings. 

Up to this point, we have been able to demonstrate the functional importance of SCA 

sectors, but not the mechanism by which residues are coupled.  Because SCA sectors are 

generally comprised of physically contiguous residues, we make the natural assumption that 

physical interactions are responsible for the coevolution and cooperative behavior of these 

residues.  Unfortunately, this intuitive hypothesis has been very difficult to test primarily due to 

the fact that methods to measure the qualitative or quantitative interactions between residues 

have not existed in a sufficiently high-throughput format.  This project aims to address this 

need by developing a method (termed a global perturbation analysis) to provide a high-

throughput and high spatial resolution description of physical interactions between residues in 

a protein.  The resulting data will be first be used to verify the general concept that proteins 

have a heterogeneous architecture of strong and weak inter-residue interactions.  In addition, 

this global perturbation analysis will be applied to a protein from the PDZ domain family to 

demonstrate that physical interactions in individual proteins underlie statistical coupling in the 

protein family.   
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CHAPTER 2:  A global chemical shift perturbation assay 

 

Since the fundamental unit of a protein is the amino acid residue, understanding the 

architecture of a protein rests on understanding the interactions of these residues.  

Unfortunately, we cannot directly measure the physical forces between residues, so we must 

use surrogate quantities as readouts of these interactions.  This is usually accomplished by 

making some sort of perturbation (such as a mutation) at one residue and then observing the 

resulting change in a biophysical or functional property of the protein.  As described below, 

there are currently many methods for measuring residue interactions, each having their own 

strengths and weaknesses.  However, none of the existing methods are suitable for measuring 

the physical interactions between all pairs of residues in a protein.  In this chapter, I describe 

the development of an NMR-based assay that maps physical interactions between all pairs of 

residues in a protein.  Although still labor-intensive, it is sufficiently high-throughput to provide 

a global assessment of the physical interactions between all residues in a protein. 

 

Alternative Methods 

Currently, there are several techniques to measure interactions between residues in a 

protein and many rely on mutagenesis to change the amino acid at a particular site (a 

perturbation to the system) and then measure some property of this variant protein.  The main 

factors to consider are combinatorial complexity, speed of the assay, and the readout or 

information gathered from the assay.  To illustrate combinatorial complexity, consider a 100 

amino acid protein.  Creating a single mutant at every position (such as an alanine scan) would 

require 100 variants, while a library of every possible single mutation would necessitate 19*100 

= 1,900 variants.  If one wanted to measure pairwise interactions of mutations using double 

mutant cycle analysis, then about 5,000 variants are needed to create all double mutants (when 

mutating to a single amino acid, such as an alanine scan) while almost two million variants are 

required to obtain all combinations of double mutants mutated to all possible amino acids.  

Higher order (third, fourth, etc.) mutation schemes require even greater numbers of mutants.   
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 Single Amino Acid All amino acids 

Single Mutants 100 1900 

Double Mutants 4950 ~1.8 million 

Triple Mutants 161,700 ~1.1 billion 

 
Table 2-1  Combinatorial Complexity of Mutations in a 100 Residue Protein 

 

Thus, combinatorial complexity quickly climbs out of the realm of conventional 

biophysical experiments involving protein expression and purification which generally have the 

capacity to handle tens to hundreds of variants.  Functional selection systems, such as bacterial 

growth and selection, can handle libraries in the thousands to millions, but once one goes 

above second order combinations, the combinatorial complexity quickly outgrows reasonable 

library sizes.  I will now review several existing methods to interrogate residue interactions and 

discuss their advantages, drawbacks, and limitations on the complexity they can handle due to 

restrictions inherent to each assay as well as time and monetary considerations. 

Thermodynamic mutant cycle analysis can measure the interaction energies between a 

pair of amino acids by comparing the wild-type protein, two single mutants, and the 

corresponding double mutant.  This formalism is very powerful because it measures actual 

energetic quantities, however, the energy is only related to the specific assay – thermodynamic 

stability, ligand affinity, catalytic power, etc.  One drawback to this approach is that you do not 

gain any information about the mechanism of interaction.  Additionally, mutant cycle analysis is 

usually restricted to focused studies because the assay generally requires purified protein 

which is labor intensive and time consuming to obtain.  Another method to observe residue 

interactions is to solve the structure of single mutants and observe how the effects of the 

mutation are propagated to other residues [1].  This can be a powerful method because it can 

reveal the detailed structural changes, but it is slow, is subject to crystal contact artifacts, is 

potentially not as sensitive as other methods, and does not provide direct information about 

the energetic value of structural changes.  Computer simulations can also be performed to 

calculate interaction energies between residues.  For instance, equilibrium molecular dynamics 

simulations can calculate average interaction energies over the course of the simulation 
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trajectory, and molecular mechanics force fields can be used to computationally predict the 

effect of mutations [2].  More recently, several non-equilibrium dynamics techniques have 

emerged explicitly for the purpose of identifying allosteric signaling pathways and long range 

residue coupling [3-8].  These computational methods (especially the newer non-equilibrium 

methods) are very appealing because they generate information with atomic resolution, have 

the ability to identify mechanisms of residue coupling, and can be run in parallel for many 

mutations or proteins.  While molecular simulations probably represent the future of 

mechanistic studies of protein function, the accuracy of these simulations is currently difficult 

to determine and there are no means to validate the findings of such a study without 

performing experiments.   

Finally, recent developments in high throughput sequencing offer the ability to create 

libraries of single and double mutants, screen by some functional or biophysical property, and 

then sequence the input and selected libraries to determine the effects of single, double, and 

higher order mutants (see recent studies using high throughput sequencing [9, 10]).  In effect, 

this is a high throughput implementation of the thermodynamic mutant cycles discussed above.  

While this is clearly the most exciting type of current and future experiment to interrogate 

residue interactions, assays compatible with high throughput screening and selection must be 

developed, and it is still an energetic measurement that foregoes any information about the 

mechanism of interaction. 

 

Assaying residue interactions with chemical shifts 

Since none of the above experiments met our requirements of measuring all pair-wise 

residue interactions in a reasonable amount of time while also providing some information 

about the mechanisms of interaction, we turned to NMR-based methods.  NMR chemical shifts 

are very sensitive indicators of the chemical environment of NMR-active nuclei and are 

extremely useful for reporting small structural or chemical changes in proteins.  By recording 

the chemical shifts of a wild-type protein and comparing those to the chemical shifts of a 

mutant protein, one can determine which nuclei in the protein experience a change in chemical 

environment due to a mutation.  Thus, in a single experiment, one can monitor all residues in a 
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protein and determine which ones are coupled (using chemical shifts as a reporter) to a 

mutation.  By repeating this experiment for a single mutation at all sites in a protein, one can 

create a matrix of all pair-wise interactions between the residues in a protein.   

This approach has distinct advantages and limitations.  The advantages are that 

chemical shifts are sensitive to many mechanisms of perturbation and to very small quantities 

of change.  Changes to secondary structure, local structure conformation, electric fields from 

polar groups or formal charges, hydrogen bond strength, and aromatic ring orientation all 

influence the chemical shift of a nucleus [11, 12].  In addition, chemical shifts can be obtained in 

a reasonable amount of time and are extremely precise and repeatable measurements.  

Chemical shifts do not, however, provide any information about the energetic value of a 

perturbation (mutation) as a whole or the energetic change at a particular residue or nucleus.  

Also, since they are a convolution of many structural or chemical features, it is difficult to 

determine the relative contributions of the factors that determine a chemical shift change.  

Given the advantages, drawbacks, and alternative experiments, this method of measuring 

chemical shift perturbation due to mutations offered the best option to obtain a sensitive, 

precise, and high-resolution mapping of all pair-wise interactions between residues in a protein. 

 

PSD95 PDZ3 as a model system 

 Performing a global mutation-based perturbation analysis using NMR methods 

places many constraints on the choice of a protein to study.  Firstly, I needed to choose a 

system that would conceptually test the idea that proteins have a heterogeneous architecture 

of some strong and many weak interactions with cooperative strong interactions mediating 

protein function.  Second, our experimental design of collecting high quality NMR spectra on 

many protein variants requires that the model protein express well in E. coli, be easy to isolate 

at high purity, and be soluble and monomeric at high concentrations.  Additionally, the protein 

must be relatively small to facilitate NMR spectrum acquisition (high signal/noise ratio and 

disperse resonances in the spectrum) and must have a function that can be assayed by NMR 

experiments. 
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The third PDZ domain of PSD95 of the Norway rat (hereafter referred to as PDZ3) is a 

capable model system to test a global perturbation analysis.  PSD95 (also known as SAP90 or 

DLG4) is a member of the membrane-associated guanylate kinase (MAGUK) protein family and 

is the most abundant scaffold protein in the postsynaptic density of neurons.  As shown in 

Figure 2-1, this protein contains 3 PDZ domains along with an SH3 and a guanylate kinase 

domain and has been found to bind to NMDA receptors, K+ channels, neuronal nitric oxide 

synthase, and the cysteine-rich PDZ-binding protein, CRIPT among others [13].  The third PDZ 

domain has been found to specifically interact with several proteins including citron [14], 

neuroligin [15], DHHC5 [16], and CRIPT [17], and is well characterized both structurally and 

functionally.  The PDZ domain family is deep, diverse, and amenable to SCA.  Experiments using 

small numbers of mutations have been consistent with ascribing functional importance to 

coevolving networks of residues in this domain, making this PDZ domain an ideal system to 

globally test whether evolutionary properties present in the PDZ domain family are reflected in 

the physical properties an individual PDZ domain.  In addition, PDZ3 meets all of our 

experimental criteria by being highly expressed in E. coli (50-100 mg/L), effectively purified to 

95% purity by one-step affinity tag purification, monomeric and soluble at concentrations up to 

several millimolar, and offering high quality NMR spectra with sharp and well-dispersed 

resonance peaks.   

To simulate the function of PDZ3, a 9-mer peptide (TKNYKQTSV) corresponding to the C-

terminus of CRIPT is introduced in solution.  The peptide is acetylated on the N-terminus and 

has a free carboxylic acid group on the C-terminus.  PDZ3 binds this CRIPT peptide with a KD of 

0.93 uM, and the X-ray structure of the complex is shown in panel B of Figure 2-1. 
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Figure 2-1:  PSD95 from Rattus norvegicus. 

A) PSD95 contains 3 N-terminal PDZ domains (circles), an SH3 domain (pentagon), and a C-
terminal guanylate kinase domain (rectangle).  PDZ3 is colored blue.  B) The crystal structure of 
the third PDZ domain from PSD95 is shown (cartoon) in complex with a peptide (yellow sticks) 
derived from the C-terminus of CRIPT.  C) Structure of PDZ3 with prolines shown in black 
spheres (prolines produce no resonance in an HNCO experiment) and residues 300-393 
(chemical shifts used for analysis) colored red in cartoon.   Images created from PDB 1BE9 [18].  
 

PDZ domains are ~90 amino acid protein-protein interaction modules that typically 

recognize the C-termini of binding targets [19], but have also been shown, in a small number of 

cases, to bind internal sequence motifs [20, 21] and phospholipids [22].  In eukaryotes, PDZ 

domains are often found in multidomain scaffolding proteins where they are important for 

assembling specialized subcellular signaling complexes.  In prokaryotes, PDZ domains adopt 

similar tertiary structure, but are circularly permuted with respect to their eukaryotic 

counterparts and are often partnered with various protease domains.  While typically 

considered to be passive peptide binding domains, examples have been discovered where PDZ 

domains play a dynamic role in signal transduction [23] or are allosterically regulated by 

interactions away from the conserved peptide-binding interface [24]. 

Due to the abundance and importance of PDZ domains, much effort has been invested 

in studying the binding specificity of these proteins.  While original studies of small numbers of 
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PDZ-peptide interactions suggested that a small number of specificity classes exist, more recent 

large scale ligand screens reveal that specificity profiles for individual domains are less distinct 

than previously thought, but are well-dispersed in selectivity space to minimize cross-reactivity 

within a single organism [25].  Another study using unbiased screening of random peptide 

libraries (via phage display) against many human and Caenorhabditis elegans PDZ domains 

revealed that specificity classes do exist and are evolutionarily conserved [26].  These large 

scale studies have been very useful for defining PDZ domain specificity, for understanding how 

organisms optimize large numbers of specific protein-protein interactions, and for identifying 

targets and strategies for therapeutic interventions [27, 28]. 

 

Implementation 

This NMR-based global perturbation analysis is conducted by studying 81 evolutionarily 

conserved single mutation variants of the wild-type PDZ3.  An HNCO spectrum is acquired for 

each mutant; peaks corresponding to all bonded amide-carbonyl groups are identified; and the 

chemical shift difference from wild-type is calculated for each HNC(O) group.  Spectra are also 

acquired for the same mutants in the presence of saturating quantities of a target peptide 

ligand for a total of 162 unique spectra.  The resulting chemical shift perturbation data is then 

examined for patterns of residue interactions and analyzed by principal component analysis 

(PCA) to identify mutations that show cooperative effects, manifested by similar patterns of 

perturbation.   

 

Evolutionarily conserved mutations 

One way to test a system is to make a small perturbation to its ground state and 

observe the response of the system.  The ideal perturbation is one that is large enough to elicit 

a response, but small enough to keep the system near its native state.  In a biological system, it 

is also preferable for the perturbation to be related to a natural perturbation of the system.  In 

order to closely approximate an ideal perturbation, I chose to make single mutations to either 

the consensus amino acid from the multiple sequence alignment (MSA) of the PDZ domain 

family or, when an amino acid identity for PSD95 PDZ3 matched the consensus, the next most 
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common amino acid (NMCAA).  In doing so, I attempted to make subtle perturbations to the 

native state of the PDZ domain that are likely to be observed during evolution and to be well-

tolerated by the structure.  The positional sequence conservation for a 240 sequence alignment 

of PDZ domains (alignment courtesy of Steve Lockless, see Appendix 1:) is shown in Figure 2-2 

along with the single mutation constructs that were created.  The PDZ3 construct used in this 

study contains 119 amino acids which includes an additional 14 N-terminal and 24 C-terminal 

residues that flank the conserved PDZ domain fold and are not part of the multiple sequence 

alignment.  Since the purpose of this experiment was to compare the physical properties of a 

single protein to the statistical properties of the protein family, I chose to only mutate the 81 

residues corresponding to the conserved structure and alignable sequence of the PDZ domain. 

 

 

Figure 2-2:  PDZ family sequence conservation and PDZ3 single mutants. 
The sequence entropy (conservation) at each position of a diverse 240 sequence MSA of the 
PDZ family is shown.  Positions have been truncated to those present in PSD95 PDZ3 and the 
sequence numbering corresponds to PDB 1BE9.  Secondary structure is provided for reference.  
The wild-type PDZ3 sequence is shown for residues 311-391, and the most common 
(consensus), blue, and next most common amino acid (NMCAA), red, residues are shown for 
each position.  The sequences of several single mutant constructs are provided for illustration. 
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An advantage of using mutagenesis is that the perturbation is localized to a particular 

site in the protein.  The disadvantage, however, is that mutations at different positions in the 

protein are not likely to be energetically equivalent.  In addition, my decision to use 

evolutionarily conservative mutations means that the mutations are not chemically equivalent.  

The more common approach of mutating every position to alanine does not, however, make 

the mutations any more consistent and may be more disruptive to the system than using 

evolutionarily conservative mutations. 

Although data was collected for 81 mutants, two of these variants were excluded from 

analysis.  D357N was excluded because it appeared to have a perturbation pattern by chemical 

shift perturbation that was more consistent with a global perturbation than a subtle 

perturbation near the native state.  As it turns out, this mutant was 230C destabilized relative to 

WT when thermodynamic stability was measured by differential scanning calorimetry – the 

most of any mutant in our library.  Therefore, we excluded it because it did not meet our 

criterion of a subtle perturbation.  Another mutant, N381A was excluded because the protein 

formed a dimer in the presence of CRIPT peptide.  This property was confirmed by NMR 

relaxation experiments showing the T2 values for this protein in the presence of peptide were 

significantly shorter (50ms versus 85ms) when compared to other ligand-bound PDZ domains.  

The remaining 79 mutations were all well-folded, stable, and gave excellent NMR spectra.  In 

addition, all mutants retained good affinity for CRIPT peptide with KD < 20 uM which allowed for 

saturated binding at reasonable protein and peptide concentrations.  Thus, our mutation 

strategy appears to be effective in making subtle perturbations to PDZ3.  A full list of all 

mutations included in the analysis is provided in Appendix 2:.  

 

NMR Spectra 

To obtain chemical shift measurements on ~160 proteins, I needed a very quick NMR 

experiment.  Initially, I acquired 1H-15N HSQC spectra (~20-40 minutes per spectrum) on a test 

set of ~25 proteins.  Although the spectral quality was excellent, these two-dimensional spectra 

contained significant spectral overlap, making it difficult or impossible to identify or distinguish 

some of the peaks.  It also became apparent that given the degree of peak dispersion in a 2-D 
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spectrum, it would not be possible to accurately estimate the quantity of chemical shift changes 

without obtaining residue assignments for the peaks in every spectrum.  Alternately stated, due 

to the density of the peaks, it was difficult to accurately guess which mutant peak corresponded 

to which wild-type peak.  Obtaining residue assignments is a time consuming process that 

requires three-dimensional spectra with long acquisition times and significant hands-on 

processing.  At the time this experiment began in 2006, obtaining chemical shift assignments on 

this many proteins was not a practical option.  However, there have been recent developments 

in time-compressed data acquisition schemes, high-volume data handling, automated phasing, 

automated peak detection, and automated chemical shift assignment (mainly thanks to NMR-

based structural genomics efforts) that would make high-volume chemical shift assignments 

easier today. 

In order to gain better peak dispersion, I chose to use an HNCO NMR experiment.  This 

experiment correlates chemical shifts from all bonded backbone amide nitrogen, amide proton, 

and carbonyl carbon nuclei.  Using conventional, direct sampling in both indirect (nitrogen and 

carbon) dimensions, this experiment requires at least 12 hours to obtain sufficiently high 

resolution in the indirect dimensions.  Due to the small size and good spectral behavior (sharp 

peaks) of PDZ3 and the sensitivity of the HNCO experiment, the signal/noise ratio was actually 

in vast excess of what was required.  Therefore, I decided to use a new reduced-dimensionality 

data acquisition scheme for multi-dimensional NMR.  Although several methods (shown to be 

mathematically analagous) had been described for expediting NMR data acquisition by reduced 

or joint sampling of the indirect dimensions [29], I chose the projection-reconstruction (PR) 

method [30] because it is conceptually intuitive, it requires only small modifications to the data 

acquisition practices, PR pulse sequences were already being incorporated into our default 

suite of experiments in the Varian VNMR and Biopack software suites, and processing 

algorithms were readily available and easy to use.  Projection-reconstruction works best when 

there is a high signal-to-noise ratio and a low density of peaks.  Since an HNCO spectrum only 

contains (Nresidues – Nprolines – 1) resonance peaks, this was an ideal case.  I was able to acquire a 

very high resolution PR-HNCO spectrum in less than 3 hours.   
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Basic spectral acquisition involved acquiring a small number (6-10) of equally spaced 

two dimensional (2D) projections that were processed using standard methods in the nmrPipe 

software package (see Appendix 2: for a sample processing script).  Due to the time-consuming 

nature of the manual phasing of every single 2D projection (thousands were collected), I 

implemented an automatic phasing program in Matlab (see Appendix 4:) based on the principle 

of maximizing “white space” described in a paper by Balacco and Cobas [31].  Once properly 

Fourier-transformed and phased 2D spectra were obtained, 3D HNCO spectra were calculated 

using the projection-reconstruction technique as implemented by the PR-Calc program 

developed by Coggins and Zhou [32].  PR of NMR spectra is analogous to the computed 

tomography (CT) method of medical imaging, commonly called a “CAT scan,” wherein a 3D 

image of internal anatomy is calculated from a series of 2D X-ray images taken from many 

angles.  There are several options for projection-reconstruction algorithms, but I settled on the 

lower-value (LV) implementation because it is simple and has the least projection artifacts 

compared to other algorithms.  The LV algorithm computes the intensity value of each voxel in 

3D space by comparing the corresponding values in each 2D spectrum and keeping the lowest 

value.  A hybrid backprojection/lower-value (HBLV) algorithm which keeps the lowest k (where 

1 < k < number of projections) values for each voxel was also explored.  The HBLV algorithm 

gave higher signal using k = 2 or 3, but with more shadowing artifacts in the center of the 

spectrum.  In practice, the LV and HBLV (with k = 2 or 3) algorithms produced similar spectral 

quality, but the LV algorithm was chosen for simplicity.  An example PR-Calc control file is given 

in Appendix 5:. 

 

Peak detection in NMR Spectra 

The first step in analyzing NMR spectra is to assign resonance peaks to their 

corresponding residues in the protein.  Depending on the size and complexity of the protein, tis 

can be a time-consuming process.  Peak assignments for WT PDZ3 in the free and peptide-

bound states were made using standard techniques.  In the WT spectrum, resonances are 

missing for residues 299, 308, 311, 346, and 394 because these residues are proline and 

therefore have no amide proton and are not detected by the HNCO experiment (locations 
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indicated in panel C of Figure 2-1).  In addition, the WT free spectrum is missing resonances for 

residues 320, 321, and 323 in the  loop, most likely due to chemical exchange associated 

with loop mobility, leaving 109 visible peaks.  In the WT spectrum with peptide, 111 peaks are 

visible – residues 321 and 323 are now present, likely due to reduced mobility of the 

loop as corroborated by lower B-factors in the peptide-bound crystal structure.   

From the mutant spectra, I developed a strategy to measure the chemical shift 

differences compared to WT without embarking on the lengthy process of making explicit peak 

assignments for each spectrum.  The process starts with locating peaks using a built in function 

of NMRView followed by manual adjustment according to the following procedure.  After 

automated peak-picking in NMRView, I first looked to see if there were the correct number of 

peaks – either an equal number to the WT spectrum or one less (or one more) if a residue was 

mutated to (or from) a proline.  I then overlaid the WT and mutant spectra and inspected the 

weakest peaks to see if they appeared to be true peaks rather than noise, PR artifacts, or 

Fourier transform artifacts.  Finally, I checked a few spots in the spectrum that are likely to have 

peaks very close together to see if there were any instances of multiple peaks picked as single 

peaks due to overlap in the spectrum.  At any point, I would manually add or subtract peaks as 

necessary.  If I still did not find the expected number of peaks after these manual adjustments, 

then I obtained an explicit peak to residue assignment for that mutant as described below.   

 

Assigning a limited number of datasets 

For mutant spectra that did not clearly have the expected number of peaks, I was 

concerned that measuring chemical shift differences between WT and mutant spectra would be 

greatly complicated by missing or extra peaks arising from peak overlap, spectral artifacts, or 

chemical exchange processes.  Therefore, I chose to pursue conventional peak assignments for 

this subset of mutant spectra.  Assigning an HNCO spectrum simply requires a complementary 

HN(CA)CO spectrum which correlates the Ci-1(O)HiNi and Ci(O) nuclei.  Since the HN(CA)CO pulse 

sequence has significantly less sensitivity and the spectrum has twice as many peaks as the 

HNCO, I did not try to obtain a PR-HN(CA)CO spectrum.  A conventional HN(CA)CO spectrum 

required ~12 hours of spectrometer time to collect the data.  To assign the HNCO spectrum 
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quickly, I first used a Matlab script to make a preliminary residue assignment based on chemical 

shift similarity to the WT spectrum (see Appendix 6:).  With the preliminary assignments, I then 

manually inspected the HNCO/HN(CA)CO strips and made correction to the assignments as 

necessary according to standard NMR peak to residue assignment methods.  For each assigned 

mutant, I was able to either find the missing peak(s), identify the extra peak(s), or confirm that 

a peak was indeed missing and not simply overlapped with another peak.  In total, I assigned 18 

free and 21 of the peptide-bound spectra.  These explicit peak assignments were also very 

useful for estimating errors in measuring chemical shift changes without explicit peak 

assignments as described below.  

 

Quantitating chemical shift change 

Quantitating the chemical shift change upon mutation requires matching each mutant 

peak to a WT peak to measure the difference.  This is a straightforward process for the datasets 

with assigned peak lists, but for the unassigned datasets, I had to choose an algorithm to decide 

which peaks should be paired together.  This process starts with obtaining an optimal 

superposition of each mutant spectrum to the WT spectrum to correct for small differences in 

chemical shift referencing between spectrometers that lead to small chemical shift offsets.   

Since the mutations were designed to be subtle, the mutant spectra should not be 

wholly different from the WT spectrum – there should be some nuclei that have the same 

chemical shifts and some nuclei that now have different chemical shifts.  This is the case for 

every single mutant, although there were a few mutants that did show a large number of 

chemical shift changes.  An example of the spectral comparison between WT and a mutant is 

shown in Figure 2-3 for the H1 and N15 dimensions.  Using the principle stated above that many 

chemical shifts should be the same and the assumption that direction of chemical shift change 

for the affected nuclei should (on average) be random, the mutant spectrum is aligned to the 

WT spectrum by performing a nonlinear least squares minimization on the distance between 

WT and mutant peaks for only the closest 50 peaks.  The overlay was done in each of the three 

chemical shift dimensions (H1, N15, C13(O)) independently, and this procedure was found to be 

extremely quick, robust, and insensitive to the actual number of peak distances minimized.   
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Figure 2-3:  Overlay of H1-N15 spectra of WT-pep and A347V-pep HNCO spectra. 
The WT spectrum (black) is show overlaid with a mutant spectrum, A347V (red), both in the 
presence of CRIPT peptide.  An example of a small (nearly zero) chemical shift change is shown 
in the blue magnified region while an example of a significant chemical shift change is 
highlighted in the green region. 

 

Once the mutant peaks were properly aligned to the WT peaks, one must choose how to 

calculate chemical shift changes without having explicit peak assignments.  In the literature, the 

most common method for calculating the chemical shift changes is the “minimal chemical shift 

difference” (MCSD) method [33] which simply finds the closest mutant peak to each WT peak 
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and measures that chemical shift difference.  The advantage of the minimum chemical shift 

difference method is that it will never overestimate the magnitude of chemical shift change.  

The disadvantage is that it will make many incorrect assignments when there is significant 

chemical shift change or when regions of the spectrum are crowded with peaks.  An alternative 

method is to match each WT peak to a mutant peak one-to-one such that each mutant peak 

only corresponds to a single WT peak.  I implemented a variant of this concept which I will call 

the “iterative matching” method using the following procedure:   

1) calculate the distance from each WT peak to its closest mutant peak 

2) select the WT-mutant peak match with the shortest distance and give the WT residue 

assignment to that mutant peak 

3) remove that WT-mutant peak pair from further consideration 

4) iteratively repeat steps 1-3 until all WT peaks are matched to mutant peaks. 

 

This iterative matching method has the advantage that it can often find more correct peak 

assignments, but also has drawbacks including that it requires mutant peak lists with the same 

number of peaks as WT and that it opens the possibility of over-estimating chemical shift 

changes if WT and mutant peaks are incorrectly matched.  See Figure 2-4 for an illustration of 

how the MCSD and iterative matching methods compare.  

 

 
Figure 2-4:  Peak matching algorithms to measure chemical shift change. 
Hypothetical illustration to compare the MCSD and iterative matching methods.  WT resonance 
peaks are shown in black and mutant residue peaks are shown in red.  The iterative matching 
method attempts to better pair WT and mutant peaks by iteratively matching the closest pairs 
of peaks. 
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Error Analysis 

In the process of trying to correctly identify all the peaks in the mutant spectra, I 

acquired residue assignments for 18 free and 21 peptide-bound spectra.  Using these sets of 

assignments as a testing ground, I was able to estimate the errors made by the MCSD method 

and iterative matching algorithms.  Figure 2-5 shows that the iterative matching algorithm 

makes fewer errors than the MCSD method:  42 vs. 112 for the 18 assigned free spectra and 65 

vs. 135 for the 21 assigned peptide-bound spectra.  It is important to note, however, that the 

iterative matching algorithm can produce chemical shift changes that are both too small and 

too large while the MCSD method is limited to either calculating the correct chemical shift 

change or underestimating the chemical shift change.   Based on its superior accuracy, I chose 

to use the iterative matching algorithm for all datasets that were not explicitly assigned using 

the HNCO/HN(CA)CO strategy. 
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Figure 2-5:  Accuracy comparison of the MCSD method and iterative matching algorithm. 
A)  The distribution of chemical shift measurement errors made by the MCSD method and the 
iterative matching algorithm for the 18 assigned datasets without peptide.  112 total errors are 
made by the MCSD method while 42 errors are made by the iterative matching algorithm.  B)  
The same as (A) for the 21 assigned datasets with peptide.  139 total errors are made by the 
MCSD method while 65 errors are made by the iterative matching algorithm.  Chemical shift 

difference ( = norm(H1, N15, C13) 
 

In addition to evaluating the best peak-matching algorithm, assigning ~25% of the 

spectra allowed an estimation of the error in the chemical shift change measurements for the 

datasets that were not assigned.  In Figure 2-6, the number of incorrectly matched peaks (using 

the iterative matching algorithm) is plotted versus the number of perturbations with a chemical 

shift change greater than 0.1 ppm.  This graph clearly shows that spectra with fewer chemical 

shift changes (more similar to WT) have fewer errors in the peak matching process.  In fact, 

spectra with less than 20 perturbations greater than 0.1 ppm tend to have one or zero 

mismatched peaks with the single error usually occurring at the site of mutation.  Above 20 



 

40 
 

perturbations, the number of errors in each dataset increases with the number of perturbations 

greater than 0.1 ppm.   

 

 

Figure 2-6:  Mutants with more perturbed residues are more difficult to correctly match 
peaks. 
A) The number of errors made by the iterative matching algorithm for each of the 18 spectra 
(without peptide) is plotted against the number of perturbations greater than 0.1 ppm for each 
dataset.  Above 20 perturbations > 0.1 ppm, there is a strong positive correlation with the 
number of errors.  B) Same as (A), but for peptide-bound spectra.  C & D) Histograms showing 
the number of free and peptide-bound spectra with the indicated number of perturbations > 
0.1 ppm are shown in black while assigned datasets are shown in blue.  The assigned spectra 
preferentially cover the datasets with more perturbations, and hence, more predicted errors. 

 

In panels C and D of Figure 2-6, histograms of the number of perturbations greater than 

0.1 ppm are shown for both the free and peptide-bound datasets along with an indication of 

which datasets have been assigned.  The assigned datasets span the range of 10 to 40 

perturbations greater than 0.1 ppm, but are concentrated in datasets that with greater 

numbers of significant perturbations.  This concentration is advantageous because many of the 

datasets expected to have a significant number of errors have been assigned and the vast 

majority of the unassigned datasets are expected to have few errors.  The error analysis 
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presented here argues that the iterative matching peak assignment method is highly accurate 

and produces relatively few errors.  Avoiding the need to collect HNCACO spectra to make 

conventional peak assignments for each mutant spectrum saved weeks of valuable 

spectrometer time and contributed significantly to making data collection feasible.  

 

Conclusions 

In this chapter, I described the creation of a global chemical shift perturbation assay for 

the purpose of mapping the interactions between all pairs of residues in a protein.  This assay is 

fast compared to other biophysical assays of residue interactions (such as solving protein 

structures) and offers atomic resolution that is not available in other biochemical experiments.  

The global chemical shift perturbation assay was implemented in PSD95 PDZ3, which 

represents an ideal test case. 

Several technical considerations were made in order to make this experiment possible.  

First, the use of the projection-reconstruction method for acquiring high resolution HNCO 

spectra significantly lowered the amount of spectrometer time required to obtain the necessary 

data and was essential to enabling the investigation of mutations at all positions in the protein.  

Alongside fast spectral acquisition, I implemented several automated processes including 

automatic phase correction, chemical shift referencing, and peak analysis.  These processes 

allowed the collection and processing of HNCO spectra for ~160 mutant proteins. 

After obtaining residue assignments for a significant number of the HNCO spectra, I was 

also able to evaluate the best strategy for calculating chemical shift change for unassigned 

mutants.  An iterative matching method chosen because it was found to be more accurate than 

the more common MCSD method.  I assigned ~25% of the mutant spectra which allowed me to 

estimate the incidence of errors which was found to be quite small.  In addition, these residue 

assignments will be used to calculate chemical shift change for the mutants for which they are 

available, further lowering the number of possible errors in the dataset. 

By combining conventional NMR experiments with new time-saving data acquisition 

schemes and high-throughput automated data processing, I have created a global chemical 

shift perturbation analysis that is extremely powerful and reveals information about residue 
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interactions that is not available by any other means.  The results of this experiment in PDZ3 

are presented and discussed in the following chapter. 

 

 

Methods 

Mutant library creation 

An expression construct for rat PSD95 PDZ3 was obtained from Rod Mackinnon’s laboratory which 
consisted of a pGEX-4T1 expression plasmid with the PDZ3 sequence cloned C-terminal to a glutathione 

S-transferase (GST) domain with a linker region containing a thrombin protease recognition sequence.  

The sequence of the expressed polypeptide after thrombin cleavage is: 
GSPEFLGEEDIPREPRRIVIHRGSTGLGFNIVGGEDGEGIFISFILAGGPADLSGELRKGDQILSVNGVDLRNASHE

QAAIALKNAGQTVTIIAQYKPEEYSRFEANSRVDSSGRIVTD.   

(PDZ domain boundaries indicated by underline) 

 
Of note, the construct contains the correct genomic sequence for rat PSD95 PDZ3, but has a single 

mutation (328 IV) when compared to the original published structures 1BFE and 1BE9 from the 

Mackinnon laboratory which are used for illustration purposes in this document.  Also, the construct 
contains two ND mutations near the C-terminus when compared to 1BFE and 1BE9 structures, but both 

of these residues are outside of the PDZ domain and are not well-resolved in the structures. 

 

Using a multiple sequence alignment of 240 diverse PDZ domains (Appendix 1:) assembled previously in 
the lab by Steve Lockless, I identified the most common (consensus) and next most common amino acid 

(NMCAA) at each position.  Appropriate primers were designed to mutate residues 311-391 of rat PSD95 

PDZ3 (PDB 1BE9 numbering) to the consensus amino acid (or the NMCAA whenever the wild-type 
PDZ3 residue matched the consensus amino acid), and single mutant constructs were obtained using the 

QuikChange® (Stratagene) site-directed mutagenesis kit.  Positive mutant clones were confirmed by 

DNA sequencing.  Each single mutant clone was then transformed into E. coli BL21-DE3 cells, and cell 

stocks were made using 800uL of BL21 cells (OD = 1.0, obtained during log phase growth) + 200uL of 
80% glycerol and frozen in liquid nitrogen and stored at -80OC.  A full list of mutations considered is 

provided in Appendix 2:. 

 
Protein expression 

Scrapings from BL21-DE3 cell frozen cell stocks were streaked on LB + ampicillin (AMP) plates or 

plated from fresh plasmid transformation.  From a plate, several colonies were used to inoculate 2mL of 
MDG+AMP and grown overnight at 30C.  50mL of pre-warmed M9+AMP+trace metals medium was 

inoculated with 250uL of saturated MDG culture and grown at 37C until the culture reached on OD of 

0.5.  The 50mL culture was spun down, supernatant removed, and pellet resuspended in pre-warmed 

250mL M9+AMP+trace metals medium.  Culture was allowed to grow at 37C until an OD of 0.5 was 
reached at which point the culture was cooled to 25C and expression induced with 500uM final 

concentration of IPTG.  Expression was allowed to continue for 12-14 hours until maximum OD around 

2.5 was reached.  Cells were centrifuged and resuspended in Buffer A for immediate purification or 
freezing for later purification. 

 

Protein Purification 
Cells were suspended in Buffer A and the protease inhibitors PMSF, Leupeptin, and Pepstatin were 

added.  Cells were sonicated in a vial submersed in an ice water bath to prevent excessive heating.  Lysed 
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cell contents were centrifuged at high speed (20,000 rpm in a Sorvall SS34 rotor for 30 minutes.  

Supernatant was added to 1.5-2.0mL bed volume of GST resin and incubated at 4C for 45 minutes.  GST 
resin was then washed 3x with Buffer A (140mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 1.8mM KH2PO4, 

pH 7.3) and 3x with NMR buffer (50mM NaCl, 25mM KPO4, 1mM EDTA, 0.02% NaN3, pH 7.0).  Most 

supernatant was removed and 20-100 units of thrombin was added and sample continuously mixed at 

room temperature.  Thrombin cleavage was monitored by SDS-PAGE and digest was discontinued once 
cleavage appeared to reach ~75% completion.  Supernatant was then eluted from the GST resin using a 

small disposable column, and resin was washed with 4x200uL of NMR buffer of which the flow-through 

was added to the original elution.  30uL of benzamidine sepharose resin was added to the eluted sample 
and incubated at 4C for 20 minutes to remove residual thrombin.  Benzamidine resin was then removed 

by filtration through a small disposal column and washed with 200uL NMR which was also collected.  

Final sample yields of wild-type and mutant PDZ domains were typically 1-1.5 mL of 1-1.5 mM protein.   
 

NMR sample preparation 

Purified protein samples were concentrated using an Amicon Ultra-4 3kDa MWCO filter unit to a final 

volume of 270uL.  30uL of D2O was added for a final volume of 300uL.  Samples were added to 5mm 
D2O-matched Shigemi NMR tubes and sealed. 

 

The peptide TKNYKQTSV was synthesized using Fmoc chemistry with an N-terminal acetyl group and a 
C-terminal carboxylate group and purified by reversed-phase HPLC.  Stock  peptide solution was made 

by dissolving lyophilized peptide in NMR buffer and adjusting the pH to 7.0 with NaOH.  Stock peptide 

solution was added to protein NMR samples to a final concentration of 4mM. 
 

NMR spectral acquisition 

All data was acquired on Varian Unity Inova spectrometers operating at 600 MHz with room temperature 

or cold probes at 250C sample temperature.  HNCO NMR spectra were acquired using the ghn_co pulse 
sequence provided in the Varian Biopack software package.  Data for projection reconstruction spectra 

were typically acquired with 8 projections: 0, +/- 22.50, +/- 450, +/- 67.50, 900, with 128 complex points in 

the tilted dimensions and 4 transients per point to accommodate phase cycling.   
 

NMR spectrum processing 

Intermodulated projections (ex: +/- 22.50) were first split using the PRSP software.  Individual projections 

were then processed using the NMRPipe software software package using the following protocol to 
produce frequency domain projection data: (A) direct dimension:  1) baseline correction using polynomial 

fitting, 2) signal apodization using the sine-bell function, 3) zero-filling to double the number of data 

points, 4) Fourier transform, 5) phase correction.  (B) indirect dimension: 1) forward-backward linear 
prediction to double the number of data points, 2) sine-bell apodization, 3) zero-filling, 4) Fourier 

transform, 5) phase correction.  A sample processing script is provided in Appendix 2:.   

 
A custom automatic phasing routine was written implemented in Matlab to determine optimal phases for 

the Fourier-transformed 2-D spectra using the maximum white space principle [31].  Matlab m-files are 

provided in Appendix 4:.  

 
Properly phased and Fourier-transformed projection spectra were used to reconstruct a 3-D HNCO 

spectrum using the PR-Calc software.  Input spectra were scaled using baseline noise values and 

processed using the lower-value algorithm.  A sample PR-Calc control file is included in Appendix 5:. 
 

Peak picking and adjustment 

Processed PR-HNCO spectra were loaded into the NMRViewJ software [34, 35] and peak detection was 
performed at an appropriate noise floor.  Peaks were then manually edited for overlaps, noise peaks, 

artifact peaks, etc.  Peaklists were adjusted until a correct number of peaks was detected.  If too many or 
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too few peaks existed after manual editing, and HNCACO spectrum was obtained for explicit residue 

assignment. 
 

HNCO/HN(CA)CO residue assignments 

For WT PDZ3 and each mutant that was explicitly assigned, HNCACO spectra were acquired with 

conventional linear sampling of the indirect dimensions including 50-70 complex points per indirect 
dimension.  For WT PDZ3, residue assignments were made using conventional HNCO/HN(CA)CO peak 

assignment procedures in NMRViewJ.  For each mutant, a preliminary assignment was made using the 

iterative matching algorithm using the wild-type assignments as a reference.  The mutant HNCO & 
HN(CA)CO spectra were then examined in NMRViewJ and corrections were made to the assigned 

residue-peak pairs as necessary.   
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CHAPTER 3:  A Heterogeneous Physical Architecture and Structural Modes 

Demonstrated in PDZ3 

 

One goal of this project is to test the hypothesis that proteins have a heterogeneous 

structural architecture with a large number of weak interactions between amino acid residues 

and a smaller number of strong and cooperative interactions.  The global chemical shift 

perturbation experiment, described methodologically in the previous chapter, is designed to 

test this hypothesis by systematically perturbing every residue in a protein and observing the 

effects.  Given the review of the literature concerning functional and biophysical properties of 

proteins in the first chapter, several predictions can be made.  First, I expect that each mutation 

will have an effect on its immediate local environment due to the change in mass and chemistry 

of the amino acid side chain.  In addition, we also know that most mutations slightly degrade 

thermodynamic stability, and that the interactions of each amino acid with its local 

environment are, on average, favorable [1].  Thus, I also expect to see a perturbation to the 

local environment due to the likely disruption of optimized interactions between the wild-type 

amino acid and its local contacts.  Second, I expect to observe structural heterogeneity in the 

molecule based on the heterogeneous response to mutation found in functional studies and 

based on the sparse patterns of coevolution revealed by SCA.  By structural heterogeneity, I 

mean that many mutations will have small effects confined to their local environment while 

some mutations will have larger effects including residues outside their local environment.  

Third, I expect to see sets of systematically interacting residues.  This prediction is based on the 

observation that focused testing of allosteric pathways has revealed that some residues 

interact cooperatively within proteins [2].  If cooperativity is present among residues within 

PDZ3, then this may manifest as sets of mutations that display similar patterns of perturbation 

in PDZ3 despite the mutations being different in location and character.  And finally, if 

cooperativity is observed, I can compare the patterns of structural cooperativity to the 

coevolution patterns revealed by SCA.  If networks of cooperative interactions are driving 

coevolution, then we might observe patterns of systematic perturbation that match patterns of 
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coevolution.  Each of these predictions will now be addressed by analyzing the results of the 

global chemical shift perturbation assay when applied to PDZ3. 

 

Raw Data 

Performing the global chemical shift perturbation experiment on PDZ3 resulted in the 

measurement of the chemical shift change (relative to WT) at each observed 1H, 15N, and 13C(O) 

nucleus in the protein as a result of a single mutation at each position.  The data can be 

represented as a matrix of chemical shift change values where columns represent the 

perturbation profile of each mutation and the rows represent the nuclei at which the chemical 

shifts were measured.  Since the experiment was done on each mutant and then repeated in 

the presence of saturating amounts of the CRIPT target peptide, there is both a “free” chemical 

shift perturbation matrix and a “peptide-bound” chemical shift perturbation matrix.  The raw 

chemical shift perturbation matrices are shown in panels A-B of Figure 3-1 with the proton, 

carbon, and nitrogen nuclei separated along the vertical dimension.  Since these nuclei have 

different ranges of observed chemical shifts, the nitrogen and carbon nuclei are normalized by 

standard scaling factors (N = 0.17 and C = 0.39) to compensate [3].  To simplify the display of 

the data and to more easily map the data onto the protein structure, chemical shift data from 

13Ci-1(O)1HNi
15Ni nuclei in the same bonded spin spin system are combined using a root-mean-

square (RMS) sum of the normalized chemical shift changes and assigned to the i-th residue.  

The RMS chemical shift perturbation matrix is shown in panels D-E of Figure 3-1.  In essence, 

this RMS matrix describes the interaction of each residue in the protein (represented by 

mutations in each column) with all other residues in the protein (represented by the RMS 

chemical shift perturbation of an 13Ci-1(O)1HNi
15Ni spin system in each row).  This chemical shift 

perturbation matrices in panels D-E of Figure 3-1 is conceptually analogous to a SCA matrix 

wherein each pixel represents the statistical interaction as a result of coevolution between two 

positions.  However in this chemical shift perturbation experiment, each pixel represents the 

physical interaction between two positions rather than a statistical interaction.  
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Figure 3-1:  Chemical shift perturbation matrices for PDZ3. 
A) Chemical shift perturbation matrix for free PDZ3.  Chemical shift changes at proton (1H), 
carbon (13C), and nitrogen (15N) nuclei are separated vertically.  Secondary structure is shown 
on the top and left while sequence numbering of PDZ3 is shown on the bottom and right for 
reference.  B) Chemical shift perturbation matrix of PDZ bound to CRIPT peptide.  C) Colorbar 
indicates the range of values depicted in the chemical shift perturbation matrics in ppm 
normalized to proton chemical shifts.  D & E) RMS representations of the free (D) and peptide-
bound (E) chemical shift perturbation matrices.  F) A colorbar indicates the range of values 
(ppm) depicted in the RMS matrices.  
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First-Order Observations 

Before fully dissecting the results of the global chemical shift perturbation analysis, it is 

helpful to look at the chemical shift perturbation analysis of some single mutants to examine 

the underlying data.  For each single mutant, the chemical shift change (relative to wild-type) is 

measured at all Ci-1(O)HNiNi bonded nuclei.  Although chemical shifts were recorded for nearly 

all residues in the protein, the perturbation analysis is restricted to the non-proline residues 

with visible resonance peaks in the WT protein for residues 300-393.  This restriction includes 

the canonical portion of the PDZ domain that can be sequence-aligned to other PDZ domains 

and results in 88 x 3 = 264 independent observations for each free PDZ3 mutant and 90 x 3 = 

270 independent observations for each peptide-bound PDZ3 mutant.  The peptide-bound 

spectra include observations at two additional residues in the  loop because resonance 

peaks for these residues were not visible in the free spectra due to chemical exchange effects.  

The C-terminal portion (residues 394-415) of the protein was not included in the analysis 

because it is not part of the canonical PDZ domain.  The C-terminal residues form secondary 

structure elements (1 alpha helix and 2 beta strands) that pack against the PDZ domain.  Some 

mutations near this interface have a strong effect on the extra C-terminal residues, so chemical 

shifts from these residues outside of the PDZ domain were excluded so as not to skew analysis 

of the chemical shift perturbation data.  

As an example, consider the chemical shift perturbation as a result of the two mutations 

N326S and I327L as shown in Figure 3-2.  For the purposes of illustration, the chemical shift 

changes at each bonded Ci-1(O)HNiNi nuclei are combined using the RMS distance and assigned 

to the i-th residue (in the same process as Figure 3-1 D-E) and residues with chemical shift 

change greater than 0.1 ppm are shown in spheres.  As expected, both mutations perturb their 

local environment, however the magnitude and distribution of the perturbations is quite 

different.  The mutation N326S has relatively little effect on PDZ3 with most residues having a 

very small chemical shift change and only two residues (both in close physical proximity to the 

mutation) showing a change greater than 0.1ppm.  In fact, this mutation is typical of many 

mutations which have relatively few effects on other residues; 39 free mutations and 40 
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peptide-bound mutations perturb less than 10 residues by greater than 0.1 ppm RMS (Figure 

2-6).   

 

 

Figure 3-2:  N326S and I327L mutations. 
RMS chemical shift change is shown for the N326S (upper panel) and I327L (lower panel) 
mutation.  The mutated residue is indicated in red.  Positions for which the RMS chemical shift 
change is greater than 0.1ppm have been colored using the indicated color scale and the 
corresponding residue is depicted with spheres on the PDZ3 structure.   
 

 Contrast the effect of the N  S mutation at position 326 with the I  L 

mutation at the adjacent position 327 as shown in the bottom panel of Figure 3-2.  The I327L 

mutant results in a significant chemical shift change for a much greater number of residues.  

These perturbed residues are clustered near the site of mutation but also extend to distant 

residues of the protein.  These two mutations give a small example of the diversity of chemical 
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shift perturbation patterns seen in PDZ3.  A structure-based representation of the chemical 

shift perturbations patterns for all free PDZ3 mutants is shown in Figure 3-3.  
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Figure 3-3:  Chemical shift perturbations in PDZ3.  
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The gallery shown in Figure 3-3 allows us to compare our data with some of our initial 

hypotheses.  First, an inspection of the chemical shift perturbation patterns projected onto the 

structure of PDZ3 quickly confirms that all mutations perturb their local environment regardless 

of whether the overall effect is large or small.  Second, as shown in the original examples 

(N326S and I327L), mutations in PDZ3 have a wide range of effects from very little (R313T, 

S320G, T321G, K380R) to mutations that perturb many other residues such as F325I and A375V.  

In all cases though, there are some residues within the domain that are unperturbed or only 

minimally perturbed, indicating that the overall structure of the domain has been preserved.  

Upon closer inspection of the mutations, another key observation becomes apparent.  Many 

perturbations propagate asymmetrically away from the mutation site; this holds true for 

mutations that result in both small and large numbers of perturbed residues.  An illustrative 

example is provided by the neighboring mutations of F337Y and I338V in Figure 3-4.  In the 

orientation shown, F337Y only affects residues toward the lower portion of the protein while 

I338V on effects other residues toward the upper portion of the protein.  The stark difference in 

effect may not be completely unexpected as the sidechains of the two residues are oriented on 

opposite sides of a beta strand.  However, they do illustrate that the perturbations do not 

propagate isotropically like an expanding shell from the point of mutation. 

 

 

Figure 3-4:  Mutations F337Y and I338V.  
Mutations F337Y and I338V highlight the feature that some perturbations propagate strongly 
anisotropically away from the site of mutation. 
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Thus, we find that two types of heterogeneity are present in the chemical shift 

perturbation patterns:  1) evolutionarily conservative mutations have widely varying 

magnitudes (in terms of the number of residues perturbed); and 2) the effects of mutation can 

be propagated in strongly asymmetric patterns.  Both of these findings indicate that some 

residues are more strongly physically coupled to other residues in the protein while others are 

only weakly coupled.  The question remains, however, as to whether this heterogeneity of 

physical coupling is the result of systematic cooperative interactions between a subset of 

residues or whether the patterns of strong and weak interactions are largely random.  In 

addition, if this heterogeneity is the result of cooperative interactions, are cooperative physical 

interactions important for function in PDZ3 and are these physical interactions the source of 

statistical coupling seen in the PDZ domain family? 

  

Peptide-bound Datasets 

 To aid in addressing the question of the functional relevance of these chemical shift 

perturbation patterns, chemical shift data was also recorded for each mutation in the presence 

of a saturating amount of a target peptide.  The CRIPT peptide (TKNYKQTSV) binds to PDZ3 in a 

groove created by the 2 strand and the -2 helix with the terminal carboxylate and valine 

sidechain inserting into a pocket near the base of the  loop (see Figure 2-1 and Figure 

3-5).  The structural, dynamic, and chemical shifts change of the wild-type protein as a result of 

peptide binding are shown in Figure 3-5.  Upon peptide-binding, chemical shift changes are 

seen in many, but not all of the PDZ3 residues at the binding interface and in some residues 

that do not contact the peptide.  Although only five residues of the 9-mer peptide are resolved 

in the crystal structure, the four unresolved residues are expected to be in contact with or in 

the vicinity of the loop, potentially explaining the chemical shift changes in that region.  

Another feature of peptide-binding in PDZ3 is a clamping of the  loop (shown in the 

upper left panel of Figure 3-5).  In free PDZ3, the  loop has high conformational flexibility 

as evidenced by high B-factors in the X-ray crystal structure (Figure 3-5 upper center panel) and 

an absence of chemical shift peaks for residues 320, 321, and 323 due to chemical shift 
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exchange effects.  When CRIPT peptide binds, however, the  loop adopts a more clamped 

down position, B-factors are lowered (Figure 3-5 upper right panel), and peaks corresponding to 

residues 321 and 323 are now visible in the NMR spectrum due to reduced chemical exchange.  

A peak for residue 320 continues to be undetected in the peptide-bound spectrum, presumably 

due to chemical exchange. 

 

 

Figure 3-5:  Structural and chemical shift perturbation due to peptide binding. 
Upper row left:  Structural change of PDZ3 upon peptide binding.  Unbound PDZ3 is shown in 
tan color, peptide-bound PDZ3 is shown in grey, CRIPT peptide is shown in yellow, and the B1-
B2 loops is indicated to show the clamping effect with peptide-binding.   Upper row center:  
Free PDZ3 colored by B-factors with residues 320, 321, and 323 shown in spheres.  The color 
scheme ranges from 25-55 Å2.  Upper row right:  PDZ3 bound to CRIPT peptide colored by B-
factors.  Again, residues 320, 321, and 323 are shown in spheres.  B-factors throughout the 
molecule are reduced compared to free PDZ3.  Lower row left:  Bar graph showing chemical 
shift changes upon peptide binding.  Lower row right:  Residues for which the RMS chemical 
shift change is greater than 0.35 ppm are shown as spheres and colored based on magnitude of 
chemical shift change as illustrated in the bar chart.   
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The next step in analyzing whether the heterogeneity of physical interactions is related 

to function is to determine whether the patterns of chemical shift perturbations are different in 

the functional state – peptide binding.  As in the case of the apo protein, there is a wide range 

in the magnitude of chemical shift changes due to different mutations with some mutations 

having few effects and some mutations having more numerous and distributed chemical shift 

changes.  In many cases, the pattern of chemical shift perturbations in the presence of peptide 

is very similar to the pattern in the absence of peptide with only subtle differences.  However, 

in some cases, mutations can have a significantly different effect in the presence of peptide.  An 

example is shown in Figure 3-6 where the I327L mutation has a much smaller perturbation in 

the presence of peptide than in the free state.  The opposite effect is shown in Figure 3-7 and 

Figure 3-8 where the V328A and G329S mutations cause significantly greater chemical shift 

changes in the presence of CRIPT peptide.  A full gallery of the chemical shift perturbations for 

each evolutionarily conservative single mutation in PDZ3 bound to CRIPT peptide is shown 

mapped onto the protein structure in Figure 3-9.   

 



 

58 
 

 

Figure 3-6:  I327L mutation in the absence (top) and presence (bottom) of CRIPT peptide. 
 

 

Figure 3-7:  V328A mutation in the absence (top) and presence (bottom) of CRIPT peptide. 
Note that an isoleucine is shown based on the 1BFE and 1BE9 crystal structures, however a 
valine is present at position 328 in the construct used in this project.   
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Figure 3-8:  G329S mutation in the absence (top) and presence (bottom) of CRIPT peptide.  
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Figure 3-9:  Chemical shift perturbations in PDZ3 in the presence of CRIPT peptide.  
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Evidence of cooperativity – structural modes in free PDZ3 

If the architecture of PDZ3 contains cooperative networks of residues, then we would 

expect that a perturbation to one residue in such a network would be propagated to other 

coupled residues in that network.  This architecture would cause mutations that perturb a 

cooperative network to have similar patterns of chemical shift perturbation since they are 

perturbing the same strongly interacting residues.  Inversely, if cooperative networks do not 

exist, then the chemical shift perturbation patterns would be expected to be uncorrelated or, 

more specifically, to look like the spatial organization of the protein – residues close to the site 

of mutation are perturbed while residues far from the site of mutation are not. 

 One way to identify residues that may belong to a coupled network is to find 

mutations that produce chemical shift perturbation patterns that are similar to each other, but 

different from other mutations.  Principal component analysis (PCA) is a useful way of 

identifying such patterns in high dimensional datasets by expressing the data in a form where it 

is easier to visualize the similarities and differences in the data.  PCA transforms high 

dimensional datasets by finding a new coordinate set to capture the maximum amount of 

variance in the fewest number of orthogonal dimensions.  In practice, PCA is applied by 

projecting a high dimensional dataset onto a lower dimensional set of coordinates while 

retaining the most possible information about the data.  In applying PCA to the chemical shift 

perturbation data, I treated the rows of the matrix (nuclei where chemical shifts are measured) 

as independent observations and the columns (mutations) as separate trials.  I performed PCA 

on the chemical shift perturbation matrix with the proton, nitrogen, and carbon chemical shifts 

separated along the vertical axis and only considered the magnitude of the chemical shift 

changes and not the sign.  I chose to keep the proton, nitrogen, and carbon chemical shifts 

separate (rather than combining them as in the RMS matrix) because the nuclei are sensitive to 

different mechanisms of perturbation within the structure.  In fact, the relative independence 

of these nuclei is easily seen in Figure 3-10 which shows scatter plots of chemical shift 

perturbation at nuclei that are in the same spin system.  The proton, nitrogen, and carbon 

chemical shifts are largely uncorrelated with correlation coefficients of 0.24, 0.23, and 0.28 for 

the 1H-15N, 1H-13C, and 15N-13C nuclei within the same spin system.  I chose to work with the 
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unsigned chemical shift changes because it was more intuitive to ask whether different 

mutations perturb the same nucleus rather than try to ask whether different mutations create 

identical chemical environments at the observed nucleus.  Unsigned chemical shift change data 

also has a distinct advantage in that it is less sensitive to errors in peak matching.  Errors usually 

arise when a spin system is strongly perturbed; if the chemical shift change data is unsigned, 

then an error might result in the chemical shift change being slightly larger or slightly smaller 

than the true value but still significantly different from zero.  However, if the chemical shift data 

is signed and a peak matching mistake is made, then the chemical shift change could be a large 

positive or large negative value which could then be strongly anti-correlated with a similar 

perturbation at that nucleus. 

 

 

Figure 3-10:  Proton, nitrogen, and carbon chemical shifts changes from the same spin system 
are not strongly correlated. 
Panels A-C show scatter plots of chemical shifts for each pair of 1H-15N, 1H-13C(O), and 15N-
13C(O) nuclei that are part of the same Ci-1(O)HNiNi spin systems.  Panels D-F show enlargements 
of the central regions of panels A-C. 
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PCA involves finding the eigenvectors and eigenvalues of the covariance matrix of a data 

matrix (in this case, the chemical shift perturbation matrix).  The normalized eigenvectors of the 

covariance matrix are called principal components (PC’s), and the corresponding eigenvalues 

represent weights of how much variation each PC captures of the original data matrix.  By 

examining the PC’s corresponding to the largest eigenvalues, we can represent the most 

variation of our original dataset in the fewest dimensions.  The principal components were 

calculated for the unsigned free chemical shift perturbation matrix, and the amount of variance 

captured in each principal component is shown in Figure 3-11.  A vertical red line is shown to 

indicate the largest PC weight (on average) from vertically randomized matrices containing the 

same values as the free chemical shift perturbation matrix.  Any eigenvalue larger than this 

cutoff is very unlikely to occur randomly and represents a significant feature in our dataset.  For 

the free chemical shift perturbation matrix, three PC’s are significant (collectively capturing 28% 

of the variance in the dataset), and all of the mutations are mapped onto these top three PC’s 

in Figure 3-12.   

 

 

Figure 3-11:  The proportion of variance captured in principal components of the free 
chemical shift perturbation matrix. 
Left:  A histogram of eigenvalues of the covariance matrix of the unsigned chemical shift 
perturbation matrix.  The red contour represents an average eigenvalue spectrum of a 
randomized data matrix containing the same values as the unsigned chemical shift perturbation 
matrix.  The vertical red line shows the average magnitude of the largest eigenvalue from such 
a randomized matrix.  The top three eigenvalues are shown in blue.  Right: Bar-graph showing 
the amount of variance captured by each principal component.  The top three eigenvalues are 
shown in blue and collectively capture 28% of the variance in the dataset.  
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Figure 3-12:  Chemical shift perturbation profiles projected in the PC space defined by the top 
3 PC’s.  Structural modes are identified based on similarity of mutation profiles.  
Top: Scatter plots of the mutations from the free chemical shift perturbation dataset projected 
onto the top 3 PC’s.  The mutations are grouped into three structural modes according to how 
they cluster in the PC space.  Mutations belonging to the three structural modes are colored (1) 
blue, (2) yellow, and (3) red.  Mutations at positions 322 and 325 are shown in green because 
they have significant projections in the PC space similar to structural modes 1 and 2.  Bottom: 
Residues corresponding to the free structural modes identified by PCA are shown as spheres.   

 

Mutations that are close together in the PC space have similar perturbation patterns.  By 

grouping mutations that have maximal projections along similar axes of variation in the PC 

space, we can identify mutations that have similar features in their patterns of perturbation.  

For the free dataset, we find three main groups of mutations that are colored 1) blue – positive 
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projection along PC 1 and negative projection along PC 2, 2) yellow – positive projections along 

PC 1 and PC2, and 3) red – positive projection along PC 3 and projection of less than 0.1 along 

PC 1.  In addition, two mutations at positions 322 and 325 are colored green to indicate a strong 

projection along PC 1, but neither a strong positive or negative projection along PC 2 – 

suggesting that these mutations share characteristics of the blue and yellow groups.   

If I examine the location of these mutations on the structure of PDZ3 (bottom panel of 

Figure 3-12), I find that each group is physically contiguous within the structure.  I call these 

groupings of mutations structural modes because they elicit a similar structural response within 

the protein.  The blue mode consists of residues in and around the  helix while the yellow 

mode occupies the  loop region with the green residues having similar features of both of 

these two modes.  The red mode consists of residues from the  loop region on the 

opposite side of PDZ3.  These structural modes were identified by similar patterns of chemical 

shift change which is shown more clearly in Figure 3-13 where the RMS chemical shift change 

profile and structure representation of significant chemical shift changes are grouped by 

structural mode.  These representations make it easier to see how the chemical shift 

perturbation patterns are similar within each structural mode, but largely distinct between 

structural modes.  The similarities within and differences between structural modes suggest 

that the involved residues are physically coupled to each other through a cooperatively 

interacting group of residues that interact more strongly within this group than they do with 

residues outside of this group.  In addition, because these structural modes were identified by 

patterns of maximal variation in all of the chemical shift perturbation data, they represent the 

most strongly interacting groups of residues in PDZ3.   
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Figure 3-13:  Structural modes of free PDZ3.  
The perturbation profiles of mutations belonging to each structural modes assigned in Figure 
3-12 are shown in RMS matrix format along with a structural representation of each mutation 
where residues with a chemical shift change > 0.1ppm are depicted as spheres.  
 

Evidence of cooperativity – structural modes in peptide-bound PDZ3 

The location of the structural modes is also significant; the residues in these modes are 

mostly located at the peptide binding interface while the opposite side of the beta sheet 

contains none of these residues.  In fact, many of the residues that make key interactions with 

the peptide participate in these modes.  This finding suggests that these structural modes may 

be involved in peptide binding, which we investigated by repeating the global perturbation 

analysis in the presence of peptide.   
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Figure 3-14:  PCA of peptide-bound chemical shift perturbation matrix. 
Top left:  A histogram of eigenvalues of the covariance matrix of the unsigned peptide-bound 
chemical shift perturbation matrix.  The red contour represents an average eigenvalue 
spectrum of a randomized data matrix containing the same values as the unsigned peptide-
bound chemical shift perturbation matrix.  The vertical red line shows the average magnitude of 
the largest eigenvalue from such a randomized matrix.  The top two eigenvalues are shown in 
blue.  Top right: Bar-graph showing the amount of variance captured by each principal 
component.  The top two eigenvalues are shown in blue and collectively capture 25% of the 
variance in the dataset.   Bottom left: Peptide-bound chemical shift perturbation patterns are 
shown in the space defined by the first two PC’s.  Significant projections along the first and 
second PC are colored blue and yellow, respectively.  Positions 329 and 372 have significant 
projections along both PC’s and are colored green.   Bottom right: The structural modes are 
mapped onto the PDZ3 structure as spheres, and the CRIPT peptide is shown in magenta sticks.  
Image based on PDB 1BE9. 

 

The result of PCA on the peptide-bound chemical shift perturbation dataset is shown in 

Figure 3-14.  In this case, only two eigenvalues are significant, and thus the mutation data is 

only mapped onto the top two PC’s.  Here, there are only two main axes of variation – one with 

a strong projection along PC 1 and the other with a strong projection along PC 2.  Again, there 
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are two mutations that have strong projections along both main axes, but these two positions 

are different from the two “bridging” mutations found in the free dataset.  The strongest 

structural mode is now located in the  loop while the other significant structural mode is 

a coalescence of two structural modes found the in the free protein – the  helix + the  

loop + the residues lining the floor of the peptide binding pocket that contact the most C-

terminal peptide residue.  An interesting feature is that positions 329 and 372 have projections 

along both of the first two PC’s.  Although these two mutation have a much stronger projection 

along the first PC and thus are more similar to mutations in the first structural mode, close 

inspection does reveal perturbations at position 323 and some positions in the 2 helix and 2-

6 loop that are similar to perturbation patterns seen in the second structural mode.  The likely 

source for these features is physical coupling through the peptide which makes important 

contacts with the base of the  loop (position 323) and the 2 helix.  The perturbation 

patterns for each mutant belonging to the significant structural modes of peptide-bound PDZ3 

are depicted in RMS matrix and in structure representation in Figure 3-15.  
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Figure 3-15:  Structural modes of peptide-bound PDZ3.  
The perturbation profiles of mutations belonging to each structural modes assigned in Figure 
3-14 are shown in RMS matrix format along with a structural representation of each mutation 
where residues with a chemical shift change > 0.1ppm are depicted as spheres.  
 

 

Peptide binding reorganizes the structural modes in PDZ3 by strengthening interactions 

within the  loop and between the  helix and the  loop.  This increase in physical 

cooperativity is consistent with the overall rigidification of the molecule upon peptide binding 

as seen by a decrease in B-factors in the crystal structure – especially in the  loop (see 

Figure 3-5).  This engagement and modulation of the structural modes in the presence of 

peptide argues that these modes are involved in peptide binding and that cooperative 

interactions of the involved residues may contribute to the affinity or specificity of the domain 

toward potential ligands.  It is also interesting to note that most of the residues comprising the 
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structural modes are very similar in the presence and absence of peptide with only 6 out of 23 

residues differing between the two sets.  This feature suggests that structural modes are both 

an inherent feature of the protein and important for the function of the PDZ domain.   

 

Structural modes likely contribute to statistical coupling 

The global chemical shift perturbation experiment reveals that there is significant 

heterogeneity of the physical interactions in PDZ3 and that there are groups of residues with 

cooperative interactions that I describe as structural modes.  These finding are consistent with 

predictions detailed earlier in Chapter 1 based on previous experiments and SCA.  I also find 

that the structural modes appear to be important for peptide binding – the conserved function 

of PDZ domains and the most obvious evolutionary constraint contributing to statistical 

coupling in the PDZ family.  Thus, I suspect that cooperative physical interactions in PDZ 

domains are a central mechanism driving statistical coupling in the PDZ family. 

The most obvious way to test this hypothesis is to look for a correlation between the 

residues that participate in structural modes and the residues that comprise SCA sectors.  The 

simplest way to compare the two sets of residues is to perform a Fisher’s exact test to 

determine whether the two classifiers (structural modes and statistical sectors) are associated.  

SCA was performed on a 240 sequence alignment of PDZ domains and SCA sector residues were 

identified as described in the SCA 4.0 toolbox (available from the Ranganathan lab).  The 15 

residues comprising the SCA sectors are shown in Figure 3-16 (A) as spheres on the structure of 

PDZ3.  For free PDZ3, 23 residues with the largest contributions to the strongest three PC’s are 

considered to represent the structural modes.  Figure 3-16 shows the representation of the 

structural modes and the construction of the 2 x 2 contingency table necessary for calculating 

the Fisher’s exact test.  The structural modes and SCA sector are significantly correlated with a 

p-value of 0.0009, meaning that the overlap between residue sets is statistically significant, and 

it would be very unlikely to find this level of similarity if these two sets of residues had been 

selected randomly. 
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Figure 3-16  Structural modes in free PDZ3 correlate with PDZ SCA sector. 
A) The SCA sector for the PDZ domain family is depicted on PDZ in purple spheres.  B) Structural 
modes are displayed as spheres as in Figure 3.8.  C) Overlap of SCA (purple surface) and 
structural modes.  

 

A similar analysis was performed for the peptide-bound chemical shift perturbation 

data, and 23 residues with the strongest contributions to the top two structural modes were 

considered.  Figure 3-17 compares the structural modes in the presence of peptide to the SCA 

sector residues and sets up the 2 x 2 contingency table for Fisher’s exact test.  Once again, a 

significant correlation is found between the structural modes and the SCA sector with a p-value 

of 0.0009.  I conclude that the structural modes in both the free and peptide-bound PDZ3 are 

significantly correlated with the SCA sector identified in the PDZ domain family.   
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Figure 3-17:  Structural modes in peptide-bound PDZ3 correlate with PDZ SCA sector. 
A)  SCA sector for the PDZ domain family is depicted on PDZ in pink spheres.  B) Overlap of SCA 
sectors and structural modes – SCA is shown in pink surface.  C) Cooperative structural modes 
are displayed as spheres as in Figure 3.9.   

 

 

Structural modes in a single protein are not expected to correspond exactly with SCA sectors 

Although the association between structural modes in PDZ3 and the SCA sector derived 

from the MSA of PDZ domains is significant, the correspondence is not perfect.  There are some 

residues in the SCA sector that are not part of structural modes, and there are some residues in 

the structural modes that are not part of the SCA sector.  Both of these differences are to be 

expected.   

In the first case, we find only a minority of SCA residues (3 out of 15) that are not part of 

either the free or peptide-bound structural modes.  SCA sectors are identified by statistical 

coupling that is subject to all evolutionary pressures on the individuals of a protein family.  In 

PDZ domains, we have evidence to believe that many of the SCA sector positions are important 

for peptide binding, but other evolutionary pressures could also play a role.  Statistical coupling 
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could arise from pressures to maintain fold stability, from coupling to allow allosteric regulation 

at sites away from the peptide binding surface, or from cooperativity to perform a function 

other than canonical peptide binding.  Furthermore, these properties that are under 

evolutionary selection may not be present in all individuals in the protein family.  For instance, 

we generally consider PDZ domains to act as independent protein-protein binding modules, but 

there are examples such as the Par6 PDZ – CRIB interaction where a PDZ domain is allosterically 

regulated at a site distant from the peptide binding site [4].  Other examples include the 

occurrence of tandem PDZ domains in multi-domain proteins where the interaction of the 

tandem PDZ domains appears to be important for their function [5].  Finally, there are also 

reports of PDZ domains binding phospholipids at surface locations outside of the peptide 

binding site [6], but this is not known to be a pervasive property throughout the domain family.  

Any of these extra functions or regulation could give rise to statistical coupling even if these 

features are only present in some, but not all members of the PDZ domain family.  Thus, some 

SCA sector residues could be a result of evolutionary pressures that do not constrain PSD95 

PDZ3 or are not dependent on cooperative physical interactions, and thus would not participate 

in structural modes.  

The presence of residues in structural modes that are not part of SCA sectors is also 

completely expected.  SCA sectors represent evolutionary constraints that are conserved in a 

significant number of the members of a protein family.  Each individual PDZ domain will have 

some idiosyncrasies that are not shared by a significant number of other individual domains – 

this may be partly due to neutral sequence variation and partly due to functional variation such 

as differences in the specificity preference for target ligands.  In addition, many residues that 

participate in structural modes, but are not found in the SCA sector, are located in the  

and loops.  These loops have been shown to be important for peptide binding, and 

residues at the base of these loops are key members of the SCA sector.  However the number 

of residues in the loops varies significantly in the MSA of the PDZ domain family as does the 

identity of the residues.  This lack of amino acid conservation and inability to align the residues 

lead to a lack of covariation and statistical coupling in addition to any inherent lack of functional 

specificity.  Unsurprisingly though, the loops tend to move as a mechanical unit, and 
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perturbations that affect one residue in the loop tend to affect many residues in the loop.  

Thus, although these loops act as mechanically coupled and functionally important units, they 

are not strong features of SCA.  However, residues at the bases of loops do tend to show strong 

coevolution in SCA suggesting that these could be key residues for controlling their spatial 

orientation and/or conformational dynamics.  One final discrepancy between the SCA and the 

structural modes has a likely explanation.  Position 324 participates in structural modes of both 

free and peptide-bound PDZ3.  This position is so strongly conserved in the 240 sequence PDZ 

MSA (96% glycine) that covariation with other residues is impossible to detect.  Thus, it is not 

part of the SCA sector, despite its likeliness to be functionally important since it has extreme 

sequence conservation, it coordinates the terminal carboxylate of the peptide ligand, and it 

anchors the  loop that clamps down with peptide binding.  If position 324 were 

considered to be part of the SCA sector, the p-values for the correlation between structural 

modes and SCA sectors would improve to 0.00026 for both the free and peptide-bound cases. 

 

Conclusions 

A global perturbation analysis of PSD95 PDZ3 has revealed significant information about 

the architecture of this PDZ domain.  By observing chemical shift changes as a result of 

mutation at all positions in the protein, I was able to record the physical interactions between 

all pairs of residues.  The chemical shift perturbation patterns resulting from mutation are 

strongly heterogeneous with respect to the number of perturbed nuclei and to the anisotropic 

nature of how perturbations are propagated through the structure.  This heterogeneity gives 

rise to structural modes in the protein consisting of groups of residues with strongly 

cooperative interactions.  These structural modes occur at functionally important sites in the 

PDZ domain, exist in the free state, and are engaged in and subtly reorganized in the presence 

of peptide ligand.   

When these structural modes are compared to SCA sector residues identified by an 

evolutionary analysis of the PDZ domain family, a significant correlation exists between the 

residues that comprise the structural modes and the SCA sectors.  This correlation is present in 

the free PDZ3 domain and persists when the protein is bound to the CRIPT peptide with a 
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subtle reorganization of the involved residues.  These results argue that structural modes in 

individual PDZ domains may contribute significantly to the statistical coupling found in the PDZ 

domain family. 

At first glance, this may not seem like a particularly profound statement, but I would 

argue that it augments a hypothesis about the fundamental nature of proteins in a way that has 

never been possible.  As I detailed in the introductory chapter, the scientific community has 

come to realize that proteins do not behave as a homogeneous collection of atoms.  However, 

it was not until the advent of SCA and other evolutionary covariation methods that we could 

explain and more importantly, predict some of the heterogeneous phenomena seen in 

proteins.  The hypothesis that subsets of cooperatively-interacting, co-evolving residues 

mediate protein function while many other protein sites are only weakly coupled and easily 

tolerate mutations represents a fundamental change in the way proteins are understood, and it 

has significant implications for both basic and applied biological science.   

When SCA was first published, the observation that coevolving residues formed a 

contiguous set of residues in the protein structure led to the statement that “Sets of interacting 

residues form connected pathways through the protein fold that may be the basis for efficient 

energy conduction within proteins” [7].  Although in multiple model systems, statistically 

coupled residues have been confirmed to be energetically coupled and functionally important, 

it has not been possible to show the physical mechanism underlying the statistical coupling.  As 

in the statement above, the hypothesis was always that “Sets of [physically] interacting 

residues …” create statistical coupling, but in over a decade following the original paper, no 

experiment has been able to provide direct physical evidence to support this statement.  

This global perturbation analysis in a PDZ domain does not necessarily prove the 

statement either, but it does offer an unbiased interrogation of physical interactions in a 

protein that are very clearly consistent with an overall heterogeneous architecture and with the 

pattern of statistical coupling seen in PDZ domain.  I would argue that this is currently the best 

set of physical data with which to vet the degree to which the patterns of strong and weak 

physical interactions in a protein correspond to statistical coupling in that protein family.  I do 

not believe that it is the definitive and last experiment to be done concerning this hypothesis, 
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but I do believe that it represents a step forward in our understanding of fundamental design 

principles of proteins and to some degree validates the hypothesized mechanism underlying 

SCA.  As I will discuss in the following section, I think that the results of this project will give 

direction to further experiments, may aid in the conceptual and practical advancement of 

computer simulations and models, and I hope, will inspire creative ways to apply these 

concepts to solve important problems in biology and medicine.   

 

 

 

Methods 

Chemical Shift Difference Measurement 
Mutant peak lists were assigned via methods described in Chapter 2.  The chemical shift 
difference was then determined for each nucleus by subtracting the WT chemical shift from the 
mutant chemical shift.  Due to the significant difference in the ppm range of chemical shifts for 
1H, 15N, and 13C nuclei, the chemical shifts for 15N and 13C nuclei are scaled by previously 

determined scaling factors:  N = 0.17 and C = 0.39 as is customary in the literature.  To 
simplify visualization of the chemical shift changes, proton, nitrogen, and carbon chemical shifts 
of the same spin system (13Ci-1(O)1HNi

15Ni) are combined by calculating the root-mean-square 

distance of the three chemical shifts:   = sqrt(H2 + N2 + C2).  The RMS chemical shift 
changes are used to generate figures showing residues perturbed by each mutation or by 
peptide binding.  The RMS chemical shift changes are not used for the principle component 
analysis.  
 
Principal Component Analysis 
As described in the text, PCA was applied to the matrix of all free or peptide-bound chemical 
shift changes where columns represent each mutation and rows represent the nucleus being 
observed.  For the PCA analysis, nuclei from the same spin systems are kept separate as 
independent observations (ie. RMS combination was not performed).  Chemical shifts of 15N 
and 13C nuclei are scaled as above, and the absolute value of chemical shift changes was used 
for all calculations.  PCA was performed in Matlab using standard functions.  A covariation 
matrix of the chemical shift perturbation matrix was calculated, and eigenvectors and 
eigenvalues of the covariation matrix were determined.  The number of significant eigenvectors 
to consider was determined by calculating eigenvalues from randomized matrices that contain 
the same values as the chemical shift matrix, but vertically randomized within each column.  
Eigenvalues were calculated from 100 such randomized matrices, and the mean of the largest 
eigenvalue from each matrix was calculated.  Any eigenvalue from the chemical shift 
perturbation matrix greater than the mean of the largest eigenvalues from the randomized 



 

77 
 

matrices was considered to be significant.  The choice of structural mode assignment was 
subjective based on the clustering of mutations in the principal component analysis.   
 
Statistical Coupling Analysis 
SCA was performed on the 240 sequence PDZ alignment provided in Appendix 1: using the SCA 
4.0 toolbox available from the Ranganathan Lab and described elsewhere [8].   
 
Structure Images 
All structures shown in figures were generated using the PyMOL Molecular Graphics System [9].  
PDB files 1BFE and 1BE9 were used to generate figures without and with CRIPT peptide ligand 
respectively.   
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FUTURE DIRECTIONS 

 

The experiments in this dissertation serve a dual purpose.  The first involves refining our 

understanding of the general architecture of proteins – what are the general principles 

connecting the structural features of proteins to their functional and evolutionary properties.  

The second goal is much more focused; it is to identify a physical mechanism mediating the 

statistical covariation observed between residues in a protein via SCA.  I think this project has 

succeeded on both fronts; yet despite being a “global” test, I see it as a starting point in both 

fields.   

The results of this global chemical shift perturbation analysis provide a very visual 

representation of the heterogeneity of strong and weak physical interactions within a protein 

and support the hypothesis that a heterogeneous architecture exists and is important for 

protein function.  While this project provides novel and independent support of this hypothesis, 

a single experiment cannot lay claim to the generality of this feature for all proteins.  

Generalizing this hypothesis will require data on the physical interactions within multiple 

proteins and multiple protein families.  Given the labor-intensive nature of this experiment, I 

doubt that it will be used in its current form to characterize proteins en masse.  It does 

however, conceptually bridge the gap between what I expect to be the two most common and 

most fruitful future lines of research in this area.   

First, I expect that current leap forward in DNA sequencing technologies will promote 

many large-scale thermodynamic mutant cycle-style experiments where the assay will involve 

cell selection or cell sorting and the quantification will be sequencing counts.  These 

experiments have the potential to not only thoroughly explore the sequence space surrounding 

proteins, they will also have the power to interrogate higher order coupling between residues 

and thoroughly test the hypothesis that high-level cooperativity is present and important for 

function.  Although design of my perturbation experiment does not allow for the direct 

interrogation of cooperativity between residues, it appears likely that the observed structural 

modes are a reflection of residue cooperativity, and I expect that future sequence-based 

experiments will provide a definitive answer.  Actually, these sequence-based experiments are 
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already underway in our labs and others, and I think that creativity in system and assay design 

along with intellectual focus in posing questions will determine who makes the most of these 

new capabilities.   

The second line of research, I believe, is still some years away.  Ultimately, I think that 

computer simulations are the only way to massively and broadly test hypotheses regarding the 

architecture of proteins and the detailed mechanisms of function.  Currently, however, I have 

not seen evidence that any computational approach is sufficiently accurate to blindly trust its 

results.  I do believe, though, that my collection of chemical shift perturbations may offer a 

unique dataset on which to test and develop simulations of proteins that are near their ground 

state.  Combined with functional data from Richard McLaughlin in our lab, we have a 

comprehensive dataset of mutations linked to highly precise structural information (chemical 

shifts), functional effects (peptide affinities), and thermodynamic stability that could be useful 

to anyone developing equilibrium or non-equilibrium simulation methods.  Personally, it is my 

intuition that refining structural predictions and simulations against chemical shift information 

may prove to be more productive than crystal structure coordinates because the chemical 

shifts may be more precise, more sensitive, and more reflective of the physical conditions in 

solution. 

Our lab has long argued that one advantage of studying statistical coupling is that it is 

sensitive to many evolutionary pressures.  Although we have now definitively seen that 

different evolutionary pressures can give rise to separate SCA protein sectors [1], I also suspect 

that multiple factors may contribute to what appear to be single sectors.  The deconvolution of 

factors influencing statistical coupling is very valuable because it would allow us to better 

predict protein properties from sequence data and potentially allow for the design of protein 

sequences with precisely defined properties.  This dissertation project provides evidence that 

physical interactions contribute to SCA sectors, but it is still unclear as to what quantity of SCA 

information is accounted for by this mechanism.  In addition, it is not known how much of the 

physical interactions and patterns of heterogeneity are dictated by the conserved tertiary 

structure of the protein family rather than the specific sequence-function relationship of 

individual proteins.  While I think that it will be difficult to determine all of the contributions to 
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statistical coupling, (especially since we are not even sure what the full set of evolutionary 

pressures to consider is) I think that it should be possible to better determine the influence of 

functional constraints on the physical interactions in proteins independent of structure.  One 

approach to this question would be to start with a protein family and evolve (under random 

mutagenesis) two independent sets of protein sequences based on different functional 

constraints.  One set would be required to remain folded and thermodynamically stable while 

the other set would need to retain a function (such as peptide binding) without any explicit 

stability requirement.  With a sufficiently large and diverse set of sequences and long evolution 

times, SCA could be performed on the two sets of sequences separately and the statistical 

coupling necessary for folding/stability versus function should be visible.  This type of 

information could make it easier to interpret the results of SCA as well as aid in choosing SCA 

information to use for downstream projects such as synthetic protein design and screening for 

allosteric regulators of protein function.   

 The design of novel proteins based on SCA information was initially very successful [2], 

and although there have been some promising results, it has proven to be much more difficult 

to extend this methodology to larger protein systems [unpublished data, Ranganathan Lab].  I 

think much of this difficulty in larger protein design is due to the fact that information obtained 

from SCA may be a convolution of multiple evolutionary pressures regarding the function of the 

protein as well as constraints from the tertiary structure, idiosyncratic couplings due to 

incomplete divergence of naturally extant sequences, and individual sequence optimization for 

thermal stability.  Any effort to deconvolve SCA information could bring useful advances to 

clinically significant biological efforts including a better understanding of clinically significant 

genetic sequence variations and the design of protein therapeutics with more favorable 

properties such as higher binding affinities, increased stability, or decreased off-target effects.    

 At the conclusion of this work, I have developed a novel methodology intended to 

address a very specific (and I feel very important) question in biology.  I do not expect this 

method to become a common investigation of structural biology, and in fact, I would not be 

surprised if this experiment is never repeated in this format.  However, I do think that I have 

provided strong physical evidence to support a very important hypothesis regarding a general 
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property of proteins and protein evolution.  I have argued that proteins have purposefully 

evolved a heterogeneous physical architecture (that is not detectable by visual inspection or 

most other experiments to date) that is essential for protein function and necessary for the 

protein to remain robust and evolvable.  I have presented a completely unbiased interrogation 

of a model protein system that shows physical heterogeneity that corresponds (with high 

statistical significance) to the coevolution revealed by SCA.  This result should give us 

confidence in the power of SCA to reveal meaningful and useful information about the physical 

and functional properties of proteins.  In addition, I am all the more encouraged to design 

future experiments to dissect the information provided by SCA and to further look for ways to 

apply SCA to meaningful problems in biology.  I hope that my work will encourage other 

investigators and scientists to do the same.   

 

Missed Opportunities 

At the conclusion of my data collection, and in the process of analyzing data and 

preparing reports, I had several ideas about ways to improve the experiments that I was not 

able to implement.  The first and most interesting idea would have been to look at the chemical 

shift information of the peptide itself.  In unpublished data from the Ranganathan lab, we have 

been able to investigate SCA for alignments of PDZ domains with known target ligands, enabling 

us to look at statistical coupling between residues in the PDZ domain and residues in the 

peptide.  The data showed interesting patterns of statistical coupling with some residues in the 

peptide being highly coupled to specific residues in the PDZ domain.  I believe that it would 

have been feasible to produce 13C- and 15N-labeled peptide, and that I could have used this 

labeled peptide to obtain the chemical shifts of the peptide residues in the presence of each 

PDZ mutation.  These chemical shifts could be compared to the peptide chemical shifts in the 

presence of WT PDZ3 to determine interactions between the PDZ residues and the peptide 

residues.  Although another member of the lab has already determined the peptide binding 

constant for each mutant, this experiment may have been able to provide higher resolution 

information about how each mutation changes PDZ3’s interactions with the peptide and how 

residues in PDZ3 interact through residues in the CRIPT peptide.  In addition, one could 
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compare the chemical shift change patterns of the peptide for each mutant to the statistical 

couplings of PDZ domains with target peptides.  Confirming coevolution between domains and 

between proteins has been a focus of the lab, and it would be attractive to have physical 

evidence showing this interaction as well.   

I also would have made another small modification to my data acquisition scheme to 

reduce any possible errors in my dataset.  I collected HN(CA)CO spectra and made explicit peak 

assignments for every mutant for which there was a discrepancy between the numbers of 

observed and expected peaks.  In retrospect, however, I would also like to have obtained 

HN(CA)CO spectra for the other few datasets which had a large number of significant chemical 

shift perturbations.  As shown in Figure 2-6, spectra with larger number of chemical shift 

changes were more prone to assignment errors.  However, as the data stands, I do not think 

the results of conclusions would change significantly by assigning more spectra.  I have shown 

that the vast majority of spectra are likely to have very few errors, and I have taken steps to 

mitigate any existing assignment errors by using the absolute value of the chemical shift 

changes in my analysis which prevents strong anti-correlations that could arise from peak 

assignment errors.  As I stated earlier, though, the choice and number of NMR experiments was 

limited by available spectrometer time, and many decisions were made to optimize the utility 

and quality of the massive amount of NMR data that was collected.  

Finally, I will comment on the selection of NMR experiment.  When the project was 

initially conceived, I obtained two dimensional 1H-15N HSQC spectra, but quickly realized that 

the peak density in the spectra was too great to permit detailed comparisons between WT and 

mutant spectra.  I then switched to HNCO spectra to obtain an added dimension of peak 

separation, but also with the knowledge that an HNCO spectrum has a very good signal-to-

noise ratio, has good dispersion in the 13C(O) dimension, and also has one peak per residue 

which facilitates use of the projection-reconstruction method.  In retrospect, however, I 

wonder if an HNCA experiment would have been feasible.  HNCA spectra have a slightly lower 

signal-to-noise ratio, but probably still sufficient for my experiment.  Also, HNCA spectra include 

the C resonance from the i and i-1 residues giving two peaks per residue which may have been 

sufficient to determine explicit peak assignments for each mutant with a single spectrum.  The 
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major drawback, however, would be that each spectrum would be twice as crowded as an 

HNCO spectrum, which may have been difficult to resolve with a projection reconstruction 

experiment and may have required significantly longer data acquisition times.  The HNCA 

spectrum would also have provided different data – C resonances rather than C(O) resonances 

– and I do not know whether that information would have been more or less useful.    
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Appendix 1: Multiple Sequence Alignment of the PDZ domain family 

GI Accession # PDZ Domain Protein Sequence 

   

627585     YSFVTEENTFEVKLFK----NSSGL-GFSFSREDNL-------IPEQINASIVRVKKLFPG-QPAAESG-KIDVGDVILKVNG----ASLKG-LS--QQEVISALRGT-------APEVFLLLCRPPPG 

515031b    IVSSPEREITLVNLKKD---AKYGL-GFQIIGGEKMGRL----------DLGIFISSVAPG-GPADFHG-CLKPGDRLISVNS----VSLEG-VS--HHAAIEILQNA-------PEDVTLVISQPKEK 

4507137    LPEALLLQRRRVTVRKA---DAGGL-GISIKGGRENK-------------MPILISKIFKG-LAADQTE-ALFVGDAILSVNG----EDLSS-AT--HDEAVQVLKKT-------GKEVVLEVKYMKDV 

4502129    IHFSKSENCKDVFIEKQ---KGEIL-GVVIVESGWGS-----------ILPTVIIANMMHG-GPAEKSG-KLNIGDQIMSING----TSLVG-LP--LSTCQSIIKGLE-----NQSRVKLNIVRCPPV 

3127043    EATLKQLDSIHVTILHKE--EGAGL-GFSLAGGAD------------LENKVITVHRVFPN-GLASQEG-TIQKGNEVLSING----KSLKG-AT--HNDALAILRQA------RDPRQAVIVTRRTTV 

266646     GVQQIQPNVISVRLFKR---KVGGL-GFLVKERV--------------SKPPVIISDLIRG-GAAEQSG-LIQAGDIILAVND----RPLVD-LS--YDSALEVLRGI-------ASETHVVLILRGPE 

2351794    GVQQIQPNVISVRLFKR---KVGGL-GFLVKERV--------------SKPPVIISDLIRG-GAAEQSG-LIQAGDIILAVNG----RPLVD-LS--YDSALEVLRGV-------ASETHVVLILRGPE 

2134506    VESSAEATVYTVTLEK----MSAGL-GFSLEGGKGS----------LHGDKPLTINRIFKG-AASEQSE-TIQPGDEILQLAG----TAMQG-LT--RFEAWNTIKAL------PDGPVTIVIRRKSLQ 

3953613    IHFSNSENCKELQLEKH---KGEIL-GVVVVESGWGS-----------ILPTVILANMMNG-GPAARSG-KLSIGDQIMSING----TSLVG-LP--LATCQGIIKGLK-----NQTQVKLNIVSCPPV 

1706530    TDSTMSLNIITVTLNME---KYNFL-GISIVGQSNER-----------GDGGIYIGSIMKG-GAVAADG-RIEPGDMLLQVND----INFEN-MS--NDDAVRVLRDIV----HKPGPIVLTVAKCWDP 

1588680    LPEALLLQRRRVTVRKA---DAGGL-GISIKGGRENK-------------MPILISKIFKG--LMDQTE-ALFVGDAILSVNG----EDLSS-AT--HDEAVQVLKKT-------GKEVVLEVKYMKDV 

1486367    LEDFELEVELLITLIKS---EKGSL-GFTVTKGNQ--------------RIGCYVHDVIQD--PAKSDG-RLKPGDRLIKVND----TDVTN-MT--HTDAVNLLRG--------SKTVRLVIGRVLEL 

1401051    TDSTMSLNIITVTLNME---KYNFL-GISIVGQSNER-----------GDGGIYIGSIMKG-GAVAADG-RIEPGDMLLQVND----MNFEN-MS--NDDAVRVLRDIV----HKPGPIVLTVAKCWGP 

1256761a   RAISLEGEPRKVVLHK----GSTGL-GFNIVGGEDGE--------------GIFVSFI------ADLSG-ELQRRKQILSVNG----IHLPG-DS--HEQALP-LKGA-------GQTVTIIAQYQPED 

2947232b   GFASHSLQTSDVVIHRK---ENEGF-GFVIISSLNRPES------GSTITVXHKIGRIIDG-SPADRCA-KLKVGDRILAVNG----QSIIN-MP--HADIVKLIKDA-------GLSVTLRIIPQEEL 

3878084d   LNSAGPSGSYDVLLHRN---ENDGF-GFVLMSSQHKN--------------GSTVGQIQPG-SPAARCG-RLSVGDRVIAVNG----IDILS-LS--HPDTISLIKDS-------GLSVRLTIAPPNTA 

4995819    LYSDCIIEDKTVVLQKK---DNEGF-GFVLRGAKADTPIEEFT-PTPAFPALQYLESVDEG-GVAWQAG--LRTGDFLIEVNN----ENVVK-VG--HRQVVNMIRQG-------GNHLVLKVVTVTRN 

1890856b   AGQVVHTETTEVVLTAD---PVTGF-GIQLQGSVFATET---------LSSPPLISYIEAD-SPAERCG-VLQIGDRVMAING----IPTED-ST--FEEANQLLRDS-----SITSKVTLEIEFDVAE 

1498137a   VGDRTTWEYHTVAVTRV---PGYGF-GIAVSGGRDNPHF-------ANGDPSIAVSDVLKG-GPAEDRL---QVNDRIISVNG----VSLEN-VE--YATAVQVLRDS-------GNTVQLVVKRRVPL 

3033501b   MEELTIWEQHTATLCRD---PRRGF-GIAISGGRD------------RASGSVVVSDVVPG-GPA--DG-RLQTGDHVVMVNG----VSMES-VT--STFAIQILKTC-------TKLANITVKRPRKI 

3875228    NWESTKFELIDVALHRD---PALGL-GITVAGYVHKKE----------EIGGIFVKSLVPR-SAASSSG-VIKVHDLILEVNG----TTLEH-MS--HADSVRTLVKS-------GDQVKLKLVRFPLS 

5453992    IVSSPEREITLVNLKKD---AKYGL-GFQIIGGEKMGRL----------DLGIFISSVAPG-GPADLDG-CLKPGDRLISVNS----VSLEG-VS--HHAAIEILQNA-------PEDVTLVISQPKEK 

915210c    IASSPEREITLVNLKKD---AQYGL-GFQIIGGEKMGRL----------DLGVFISSVTPG-GPADLDG-CLKPGDRLISVNS----VSLEG-VS--HHAAVEILQNA-------PEDVTLVISQPKEK 

1232104    IVSSPEREITLVNLKKD---PKHGL-GFQIIGGEKMGRL----------DLGVFISAVTPG-GPADLDG-CLKPGDRLISVNS----VSLEG-VS--HHAAVDILQNA-------PEDVTLVISQPKEK 

3880014    QESVPLEALTVVEIEK----TSKGF-GFNIVGGTDN--------PHFVGDIGIYVSSV--N-SESKSYG-VVRTGDKILSFDG----IDMTY-KT--HDEAVEVFRSV-----KIGHVAKMLIDREYLH 

3874621    AAGHETNIARILVIPR----GVKGF-GFILRGAKHVAMPLNFE-PTAQVPALQFFEGVDMS-GMAVRAG--LRPGDYLLEIDG----IDVRR-CS--HDEVVEFIQQA-------GDTITLKVITVDVA 

1176422    STKNRWQLVGPVHMTR----GEGGF-GFTLRGDSPV-----------------LIAAVVPG-GQAESAG--LKEGDYIVSVNG-----QPCKWWK--HLEVVTQLRSM------GEEGVSLQVVVTQAL 

2702347a   ENRLPDYQEQDIFLWR----KETGF-GFRILGGNEP-------------GEPIYIGHIVPL-GAADTDG-RLRSGDELICVDG----TPVIG-KS--HQLVVQLMQQA-----AKQGHVNLTVRRKVVF 

4838485    DSSGPDYKELDVHLRR----MESGF-GFRILGGDEP-------------GQPILIGAVIAM-GSADRDG-RLHPGDELVYVDG----IPVAG-KT--HRYVIDLMHHA-----ARNGQVNLTVRRKVLC 

3878084b   QYNQKPSDLITVSLIR----KPVGF-GFRLLGGVES-------------KTPLSVGQIVIG-GAAEEDG-RLQEGDEIVEIDG----HNVEG-AS--HSEAVVLLEAAA-----QNKHVKLIVRRPSRT 

2702347b   PQAAQEQDFYTVELER----GAKGF-GFSLRGGREY-------------NMDLYVLRLAED-GPAERCG-KMRIGDEILEING----ETTKN-MK--HSRAIELIKNG-------GRRVRLFLRRGDGS 

2947252    YRQPQDFDYFTVDMEK----GAKGF-GFSIRGGREY-------------KMDLYVLRLAED-GPAIRNG-RMRVGDQIIEING----ESTRD-MT--HARAIELIKSG-------GRRVRLLLKRGTGS 

3878084c   DRMSMNGNLIDVTLER----GTKGF-GFSIRGGQEFG------------SMPLFVLRIADD-GPAKADG-RLQVGDQLTTING----QSTKG-MS--HDDAIRIIKQH--------TMVNLTVLRNRLP 

2702347    SSIATQPELITVHIVK----GPMGF-GFTIADSPGGGGQR--------------VKQIVD--SPRCRG---LKEGDLIVEVNK----KNVQA-LT--HNQVVDMLIECP-----KGSEVTLLVQRGGLP 

2947232    SSGATQAELMTLTIVK----GAQGF-GFTIADSPTGQR----------------VKQILD--IQGCPG---LCEGDLIVEINQ----QNVQN-LS--HTEVVDILKDCP-----IGSETSLIIHRGGFF 

3878084    YAAAKSRDLHEIDIFK----GSEGF-GFTIADNLNGQR----------------IKKILFP-SQCPN----LMEGDTIVELDG----RNVRP-IP--HTQLVDMLRERP-----IGYRGKLVVKRGSPK 

3874215    AASSSTAPSKTITIRK----GPFGF-GFTLKSVRVYLGE-----HSEYYTIEHIVTAVVEG-SPAFHAN--LQAEDMITHVNG----HPVHN-LT--HPQLMHRLLAN-------GNELILRLVPLANT 

2695620    NPSELKGKFIHTKLRK----SSRGF-GFTVVGGDEP-------------DEFLQIKSLVLD-GPAALDG-KMETGDVIVSVND----TCVLG-HT--HAQVVKIFQSIP-----IGASVDLELCRGYPL 

3327224    DASQLKGTFLSTTLKK----SNMGF-GFTIIGGDEP-------------DEFLQVKSVIPD-GPAAQDG-KMETGDVIVYINE----VCVLG-HT--HADVVKLFQSVP-----IGQSVNLVLCRGYPL 

3878084a   DPARLGGELISTKIVK----GAKGL-GFTLIGNDSSS----------RGDEFIQVKSVLSG-GPAAANG-VLRSGDILVRVNG----RLLLG-AT--QKEACDVFVAIP-----VNEAVDIQVCRGYEL 

3876327    PQIIFNPRPHVVKVVK----SETGF-GFNVKGQVSEGGQLRSL-NGQLYAPLQHVSAVLRR-GAADQAG--LRKGDRILEVNG----LNVEG-ST--HRKVVDLIKNG-------GDELTMIVISVEDP 

1203931    ETFLENATRQVVIVKK----PDSGF-GLSIKGGSENAQN-----------MPIVISKIFKG-LPADECG-ELFIGDAIVEVNG----ISIEG-QS--HDEVVNMLKSS-------GDQVTLGVRHFTHM 

4506509    LPGPSPPRVRSVEVAR----GRAGY-GFTLSGQAPC-----------------VLSCVMRG-SPADFVG--LRAGDQILAVNE----INVKK-AS--HEDVVKLIGKC-------SGVLHMVIAEGVGR 

2500169    QSGPAPPRVRSVEVAR----GRAGY-GFTLSGQAPC-----------------VLSCVMRG-SPADFVG--LRAGDQILAINE----INVKK-AS--HEDVVKLIGKC-------SGVLRMVISEGSSH 

4504703    ---LLPHQPRIVEMKK----GSNGY-GFYLRAGSE--------------QKGQIIKDIDSG-SPAEEAG--LKNNDLVVAVNG----ESVET-LD--HDSVVEMIRKG-------GDQTSLLVVDKETD 

2224573    SCQIIPPAPRKVEMRRD---PVLGF-GFVAGSEKPV-----------------VVRSVTPG-GPSE--G-KLIPGDQIVMIND----EPVSA-AP--RERVIDLVRSC-------KESILLTVIQPYPS 

3123565    RYADLPGELHIIELEK----DKNGL-GLSLAGNKDRS------------RMSIFVVGINPE-GPAAADG-RMRIGDELLEINN----QILYG-RS--HQNASAIIKTA-------PSKVKLVFIVQSLG 

2959979c   RYGTLTGQLHMIELEK----GHSGL-GLSLAGNKDRT------------RMSVFIVGIDPT-GAAGRDG-RLQIADELLEING----QILYG-RS--HQNASSIIKCA-------PSKVKIIFIRNADH 

3123565a   TCPIVPGQEMIIEISK----GRSGL-GLSIVGGKDTPLN------------AIVIHEVYEE-GAAARDG-RLWAGDQILEVNG----VDLRN-SS--HEEAITALRQT-------PQKVRLVVYRDEAH 

5031715    IFAHVKGQRKEVEVFK----SEDAL-GLTITDN---------------GAGYAFIKRIKEG-SVIDHIH-LISVGDMIEAING----QSLLG-CR--HYEVARLLKELP-----RGRTFTLKLTEPRKA 

2462851    EKRVERLELFPVELEK----DSEGL-GISIIGMGAGAD-------MGLEKLGIFVKTVTEG-GAAHRDG-RIQVNDLLVEVDG----TSLVG-VT--QSFAASVLRNT-------KGRVRFMIGRERPG 

2623757    EKRVEKLELFPVELEK----DEDGL-GISIIGMGVGAD-------AGLEKLGIFVKTVTEG-GAAQRDG-RIQVNDQIVEVDG----ISLVG-VT--QNFAATVLRNT-------KGNVRFVIGREKPG 

1703566    ERRLERMDLFEVDLEK----GAEGL-GVSIIGMGVGAD-------SGLEKLGIFVKSITPG-GAVHRDG-RIRVCDQIVSVDG----KSLVG-VS--QLYAANTLRST-------SNRVTFTIGREQNL 

1094005    YSFVTEDNTFEVKLFK----NSSGL-GFSFSREDNL-------IPEQINGSIVRVKKLFPG-QPAAESG-KIDVGDVILKVNG----APLKG-LS--QQDVISALRGT-------APEVSLLLCRPAPG 
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515031a    YSFVTEENTFEVKLFK----NSSGL-GFSFSREDNL-------IPEQINASIVRVKKLFAG-QPAAESG-KIDVGDVILKVNG----ASLKG-LS--QQEVISALRGT-------APEVFLLLCRPPPG 

915210b    YSFVTEENTFEVKLLK----NSSGL-GFSFSREDNV-------IPEQMNTSIVRVKKLFPG-QPAAESG-QIDVGDVILKVNG----ASLKG-LS--QQEVISALRGT-------SPEVSLLLCRPPPG 

886895     TTALLLKIIFEVKLFK----NSSGL-GFSFSREDNL-------IPEQINGSIVRVKKLFPG-QPAAESG-KIDVGDVILKVNG----APLKG-LS--QQDVISALRGT-------APEVSLLLCRPAPG 

2959979b   PLAMWEAGIQAIELEK----GSRGL-GFSILDYQDP---------IDPANTVIVIRSLVPG-GIAEKDG-RLFPGDRLMFVND----INLEN-ST--LEEAVEALKGA------PSGMVRIGVAKPLPL 

3875228a   GLAVWNCVPLVIHLCK----DSRGL-GFSIVDYKDP---------THRDESVIVVQSLVPG-GVAQADG-RVVPGDRLLFVNN----HDLSN-SR--HPVPLQVRKLC--------GLVQLNNIESFIL 

5031791    ELALWSPEVKIVELVK----DCKGL-GFSILDYQDP---------LDPTRSVIVIRSLVAD-GVAERSG-GLLPGDRLVSVNE----YRLDN-TS--LAEAVEILKAV------PPGLVHLGICKPLVE 

627585a    SSPPKPGDIFEVELAK----NDNSL-GISVTVLFDKGG-----VNTSVRHGGIYVKAVIPQ-GAAESDG-RIHKGDRVLAVNG----VSLEG-AT--HKQAVETLRNT-------GQVVHLLLEKGQSP 

5453992a   SSPPKPGDIFEVELAK----NDNSL-GISVTGG----------VNTSVRHGGIYVKAVIPQ-GAAESDG-RIHKGDRVLAVNG----VSLEG-AT--HKQAVETLRNT-------GQVVHLLLEKGQSP 

915210     SSPPKPGDIFEVELAK----NDNSL-GISVTGG----------VNTSVRHGGIYVKAVIPK-GAAESDG-RIHKGDRVLAVNG----VSLEG-AT--HKQAVETLRNT-------GQVVHLLLEKGQSP 

2118000    ASPPKPGDTKEVELAK----TDGSL-GISVTGG----------VNTSVRHGGIYVKAIIPK-GAAESDG-RIHKGDRVLAVNG----VSLEG-AT--HKQAVETLRNT-------GQVVHLLLEKGQVP 

4759306    AASEGHSHPRVVELPK----TDEGL-GFNVMGGKEQ-------------NSPIYISRIIPG-GVAERHG-GLKRGDQLLSVNG----VSVEG-EH--HEKAVELLKAA-------KDSVKLVVRYTPKV 

2623836    AASEGHAHPRVIELPK----TNEGL-GFNVMGGKEQ-------------NSPIYISRMXPG-GVADRHG-GLKRGDQLLSVNG----ISVES-EH--HERAVELLKLA-------QGTVKLVVRYTPRI 

1685067    AAAEGHAHPRIVELPK----TDQGL-GFNVMGGKEQ-------------NSPIYISRIIPG-GVADRHG-GLKRGDQLIAVNG-----NVEA-EC--HEKAVDLLKSA-------VGSVKLVIRYMPKL 

1478493    VESTAEATVCTVTLEK----MSAGL-GFSLEGGKGS----------LHGDKPLTINRIFKG-AASEQSE-TVQPGDEILQLGG----TAMQG-LT--RFEAWNIIKAL------PDGPVTIVIRRKSLQ 

3127039    VDSTAEATVCTVTLEK----MSGGL-GFSLEGGKGS----------LQGDKPLTINRIFKG-AASEQSE-TVQPGDEILHLAG----TAMQG-LT--RFEAWNIIKAL------PDGPVTIVIKRKSMQ 

3127037    VESSAEATVYTVTLEK----MSAGL-GFSLEGGKGS----------LHGDKPLTINRIFKG-AASEQSE-TIQPGDEILQLAG----TAMQG-LT--RFEAWNIIKAL------PDGPVTTVIRRKSLQ 

2735710    SGDSTEATVHTVTLEK----TSAGL-GFSLEGGKGS----------LLGDKPLTVNRIFKG-AASEQSE-TIQPGDEILHLAG----TAVQG-LT--RFEAWNVIKTL------PDGPVTIVIRRRSVQ 

2224541    GRSVAVHDALCVEVLK----TSAGL-GLSLDGGKSS----------VTGDGPLVIKRVYKG-GAAEQAG-IIEAGDEILAING----KPLVG-LM--HFDAWNIMKSV------PEGPVQLLIRKHRNS 

5174575    QPLRKEPEIITVTLKK-----QNGM-GLSIVAAKG----------AGQDKLGIYVKSVVKG-GAADVDG-RLAAGDQLLSVDG----RSLVG-LS--QERAAELMTRT-------SSVVTLEVAKQGAI 

2555013    QPLRKEPEVITVTLKK-----QNGM-GLSIVAAKG----------AGQDKLGIYVKSVVKG-GAADVDG-RLAAGDQLLSVDG----RSLVG-LS--QERAAELMTRT-------SSVVTLEVAKQGAI 

1362604    SNKLPQPELQLIKLHK----NSNGM-GLSIVASKG----------AGQEKLGIYIKSVVPG-GAADADG-RLQAGDQLLRVDG----QSLIG-IT--QERAADYLVRT-------GPVVSLEVAKQGAI 

1517938    AEEDFTREPRKIILHK----GSTGL-GFNIVGGEDGE--------------GIFVSFILAG-GPADLSG-ELRRGDRILSVNG----VNLRN-AT--HEQAAAALKRA-------GQSVTIVAQYRPEE 

424013     GEEDIPREPRRIVIHR----GSTGL-GFNIVGGEDGE--------------GIFISFILAG-GPADLSG-ELRKGDQILSVNG----VDLRN-AS--HEQAAIALKNA-------GQTVTIIAQYKPEE 

2497505    GDDEITREPRKVVLHR----GSTGL-GFNIVGGEDGE--------------GIFISFILAG-GPADLSG-ELRKGDRIISVNS----VDLRA-AS--HEQAAAALKNA-------GQAVTIVAQYRPEE 

2228746a   GDDEITREPRKVVLHR----GSTGL-GFNIVAGEDGE--------------GIFISFILAG-GPADLSG-ELRKGDRIISVNS----VDLRA-AS--HEQAAAALKNA-------GQAVTIVAQYRPEE 

1517940    RAISLEGEPRKVVLHK----GSTGL-GFNIVGGEDGE--------------GIFVSFILAG-GPADLSG-ELQRGDQILSVNG----IDLRG-AS--HEQAAAALKGA-------GQTVTIIAQYQPED 

1049459b   APIAIPLEPRPVQLVK----GQNGL-GFNIVGGEDNE--------------PIYISFVLPG-GVADLSG-NVKTGDVLLEVNG----VVLRN-AT--HKEAAEALRNA-------GNPVYLTLQYRPQE 

399393b    STEDITREPRTITIQK----GPQGL-GFNIVGGEDGQ--------------GIYVSFILAG-GPADLGS-ELKRGDQLLSVNN----VNLTH-AT--HEEAAQALKTS-------GGVVTLLAQYRPEE 

3043690    KDRPYVEEPRHVKVQK----GSEPL-GISIVSGEK---------------GGIYVSKVTVG-SIAHQAG--LEYGDQLLEFNG----INLRS-AT--EQQARLIIGQ---------QCDTITILAQYNP 

3875228e   VVFLPTHLERTVKLQK----GALPL-GAVLDGDKDKGV------------NGCVVKSICGK-KAVALDG-RIQVGDFITKINT----ESLRN-VT--NSQARAILKRTN----LVGTFCNVTYITSADA 

2370149    GSDSSLFETYNVELVRK---DGQSL-GIRIVGYVG--------TSHTGEASGIYVKSIIPG-SAAYHNG-HIQVNDKIVAVDG----VNIQG-FA--NHDVVEVLRNA-------GQVVHLTLVRRKTS 

2959979a   TQKNEESETFDVELTK----NVQGL-GITIAGYIG---------DKKLEPSGIFVKSITKS-SAVELDG-RIQIGDQIVAVDG----TNLQG-FT--NQQAVEVLRHT-------GQTVRLTLMRKGAS 

1504000    TDSTMSLNIITVTLNME---KYNFL-GISIVGQSNER-----------GDGGIYIGSIMKG-GAVAADG-RIEPGDMLLQVNE----INFEN-MS--NDDAVRVLREIV----HKPGPITLTVAKCWDP 

4758216    TDSTMSLNIITVTLNME---KYNFL-GISIVGQSNER-----------GDGGIYIGSIMKG-GAVAADG-RIEPGDMLLQVND----MNFEN-MS--NDDAVRVLRDIV----HKPGPIVLTVAKCWDP 

4758218    SDSAMSLNIITVTLNME---KYNFL-GISIVGQSNER-----------GDGGIYIGSIMKG-GAVAADG-RIEPGDMLLQVKE----INFEN-MS--NDDAVRVLREIV----HKPGPITLTVAKCWDP 

930347     TDSTMSLNIITVTLNME---RHHFL-GISIVGQSNDR-----------GDGGIYIGSIMKG-GAVAADG-RIEPGDMLLQVND----VNFEN-MS--NDDAVRVLREIV----SQTGPISLTVAKCWDP 

516485     TDSTMSLNIITVSINME---AVNFL-GISIVGQSNRG-----------GNGGIYVGSIMKG-GAVALDG-RIEPGDMILQVND----VNFEN-MT--NDEAVRVLREVV----QKPGPIKLVVAKCWDP 

1199661    --------------NSE---KYNFL-GISIVGQSNER-----------GDGGIYIGSIMKG-GAVAADG-RIEPGDMLLQVNE----INFEN-MS--NDDAVRVLREIV----HKPGPITLTVAKCWDP 

1166632    TESSMSLDVITVNLNMD---TVNFL-GISIVGQTSNC-----------GDNGIYVANIMKG-GAVALDG-RIEAGDMILQVNE----TSFEN-FT--NDQAVDVLREAV----SRRGPIKLTVAKSFEN 

2104785    YKEEDVCDTFTIELQLQKR-PGKGL-GLSIVGKRN--------------DTGVFVSDIVKG-GIADADG-RLMQGDQILMVNG----EDVRH-AT--QEAVAALLKCS-------LGAVTLEVGRVKAA 

2959979g   YKEEDVCDTFTVELQKR---PGKGL-GLSIVGKRN--------------DTGVFVSDIVKG-GIADADG-RLMQGDQILMVNG----EDVRN-AT--QEAVAALLKCS-------LGTVTLEVGRIKAA 

3108057b   YRDEENLEVFLVDLQKK---TGRGL-GLSIVGKRS--------------GSGVFISDIVKG-GAADLDG-RLIRGDQILSVNG----EDMRH-AS--QETVATILKCV-------QGLVQLEIGRLRAG 

3875228d   LDPTQIYNIFEIDLVKK---TGRGL-GISIVGRKN--------------EPGVYVSEIVKG-GLAESDG-RLMTGDQILEVNG----KDVRG-CM--QEDVAAMLKTI-------TGKVHLKTTENNND 

3641615    TAEIKPNKKILIELKV----EKKPM-GVIVCGGKNN-----------HVTTGCVITHVYPE-GQVAADK-RLKIFDHICDINGTP--IHVGS-MT--TLKVHQLFHTT------YEKAVTLTVFRADPP 

1418684    IIEVVPGRKIVIEVKT----DKKPL-GVIVVGGKNN-----------YVKTGCIITHIYPE-GVIAEDK-RLKIFDHIIQVNGKE--VQCEA-MT--TLKVHQLFYTL------YEKIVTIQVYRADPP 

806292     LEDFELEVELLITLIKS---EKGSL-GFTVTKGNQ--------------RIGCYVHDVIQD--PAKSDG-RLKPGDRLIKVND----TDVTN-MT--HTDAVNLLRAA-------SKTVRLVIGRVLEL 

515031     LEDFELEVELLITLIKS---EKASL-GFTVTKGNQ--------------RIGCYVHDVIQD--PAKSDG-RLKPGDRLIKVND----TDVTN-MT--HTDAVNLLRAA-------SKTVRLVIGRVLEL 

915210a    LEDFELEVELLITLHKS---EKGSL-GFTVTKGNQ--------------SIGCYVHDVIQD--PAKSDG-RLRPGDRLIKVND----TDVTN-MT--HTDAVNLLRRA-------PRTVRLVLGRVLEL 

1094005a   LEDSELEVELLITLVKS---EKGSL-GFTVTKGSQ--------------SIGCYVHDVIQD--PAKGDG-RLKAGDRLIKVND----TDVTN-MT--HTDAVNLLRAA-------PKTVRLVLGRILEL 

3641615b   KQGTAGELIHMVTLDKT---GKKSF-GICIVRGEVKDSP-------NTKTTGIFIKGIVPD-SPAHLCG-RLKVGDRILSLNG----KDVRN-ST--EQAVIDLIKEA-------DFKIELEIQTFDKS 

1418684c   QLNASSGQVQSVTLDKT---GKKSF-GLSIVRGEARDGS---------NSKGIFIKGIVPD-SPGHLCG-KIKVGDRLLTLNG----KDVRD-AT--EPEVINLIKQA-------GSKIDLELQTYGSE 

2104785a   IFPDDLGPPQSKTITLDR--GPDGL-GFSIVGGYG----------SPHGDLPIYVKTVFAK-GAAAEDG-RLKRGDQIIAVNG----QSLEG-VT--HEEAVAILKRT-------KGTVTLMVLSLHDG 

1469876    LPPESPGPLRQRHVACLAR-SERGL-GFSIAGGKGS-------TPYRAGDAGIFVSRIAEG-GAAHRAG-TLQVGDRVLSING----VDVTE-AR--HDHAVSLLTAA-------SPTIALLLEREAGG 

2497500    VMRRKPPAEKVMEIKLIK--GPKGL-GFSIAGGVGN--------QHIPGDNSIYVTKIIEG-GAAHKDG-RLQIGDKILAVNS----VGLED-VM--HEDAVAALKNT-------YDVVYLKVAKPSNA 

297480     VMRRKPPAEKVMEIKLIK--GPKGL-GFSIAGALGT--------SIIPGDNSIYVTKIIEG-GAGHKDG-RLQIGDKILAVNS----VGLED-VM--HEDAVAALKNT-------YDVVYLKVAKPSNA 

2497501    VMRRKPPAEKIIEIKLIK--GPKGL-GFSIAGGVGN--------QHIPGDNSIYVTKIIEG-GAAHKDG-RLQIGDKILAVNS----VGLED-VM--HEDAVAALKNT-------YDVVYLKVAKPSNA 

2228746    VKRRKLASEKIMEIKLIK--GPKGL-GFSIAGGIGN--------QHIPGDNSIYVTKIIEG-GAAHKDG-KLQIGDKLLAVNS----VCLEE-VT--HEEAVTALKNT-------SDFVYLKVAKPTSM 

2497506    VRRRQPPPETIMEVNLLK--GPKGL-GFSIAGGIGN--------QHIPGDNSIYITKIIEG-GAAQKDG-RLQIGDRLLAVNN----TNLQD-VR--HEEAVASLKNT-------SDMVYLKVAKPGSL 

2497503    VRRRRPILETVVEIKLFK--GPKGL-GFSIAGGVGN--------QHIPGDNSIYVTKIIDG-GAAQKDG-RLQVGDRLLMVNN----YSLEE-VT--HEEAVAILKNT-------SDVVYLKVGKPTTI 
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1256761    ILRRRPILETVVEIKLFK--GPKGL-GFSIAGGVGN--------QHIPGDNSIYVTKIMDG-GAAQKDG-RLQVGDRLLMVNN----YSLEE-VT--HEEAVAILKNT-------SDVVYLKVGKPTTI 

2497505a   YVKRRKAFRKNHEIKLIK--GPKGL-GFSIAGGVGN--------QHIPGDNSIYVTKIIEG-GAAHKDG-KLQIGDKLLAVNS----VCLEE-VT--HEEAVTALKNT-------SDFVYLKAAKPTSM 

399393     ARDSAASGPKVIEIDLVK--GGKGL-GFSIAGGIGN--------QHIPGDNGIYVTKLTDG-GRAQVDG-RLSIGDKLIAVRTNGSEKNLEN-VT--HELAVATLKSI-------TDKVTLIIGKTQHL 

1049459    VGQYRSTRPNTSVIDLVK--GARGL-GFSIAGGQGN--------EHVKGDTDIYVTKIIEE-GAAELDG-RLRVGDKILEVDH----HSLIN-TT--HENAVNVLKNT-------GNRVRLLIQQGTGA 

4758162    YVNGTDADYEYEEITLER--GNSGL-GFSIAGGTDN--------PHIGDDSSIFITKIITG-GAAAQDG-RLRVNDCILQVNE----VDVRD-VT--HSKAVEALKEA-------GSIVRLYVKRRKPV 

399393a    DSVNGDDSWLYEDIQLER--GNSGL-GFSIAGGTDN--------PHIGTDTSIYITKLISG-GAAAADG-RLSINDIIVSVND----VSVVD-VP--HASAVDALKKA-------GNVVKLHVKRKRGT 

1049459a   VIDDHGRKWELENIVLEK--GHTGL-GFSITGGMDQ--------PTEDGDTSIYVTNIIEG-GAALADG-RMRKNDIITAVNN----TNCEN-VK--HEVAVNALKSS-------GNVVSLSLKRRKDE 

5031791b   TLPETVCWGHVEEVELIN--DGSGL-GFGIVGGK---------------TSGVVVRTIVPG-GLADRDG-RLQTGDHILKIGG----TNVQG-MT--SEQVAQVLRNC-------GNSVRMLVARDPAG 

2959979f   AHSNPTHWQHVETIELVN--DGSGL-GFGIIGGK---------------ATGVIVKTILPG-GVADQHG-RLCSGDHILKIGD----TDLAG-MS--SEQVAQVLRQC-------GNRVKLMIARGAVE 

1657758    GQRSMDGYPEQFCVRIE---KNPGL-GFSISGGISGQGNP-----FKPSDKGIFVTRVQPD-GPAS--N-LLQPGDKILQANG----HSFVH-ME--HEKAVLLLKSF-------QNTVDLVIQRELTV 

2613002    -VTAVVQRVEIHKLRQG---ENLIL-GFSIGGGIDQDPSQNP-FSEDKTDKGIYVTRVSEG-GPAEIAG--LQIGDKIMQVNG----WDMTM-VT--HDQARKRLTKR------SEEVVRLLVTRQSLQ 

1145730    GEAGASPPVRRVRVVKQ---EAGGL-GISIKGGRENR-------------MPILISKIFPG-LAADQSR-ALRLGDAILSVNG----TDLRQ-AT--HDQAVQALKRA-------GKEVLLEVKFIREV 

2133805    DAEPGNGCKPTVRIVKQ---EAGGL-GISIKGGRENH-------------MPILISKIFRG-LAAEQSR-LLFVGDAILSVNG----TDLRD-AT--HDQAVQALKKT-------GKEVVLEVKYLKEV 

2134823    VPESISNQKRGVKVLKQ---ELGGL-GISIKGGKENK-------------MPILISKIFKG-LAADQTQ-ALYVGDAILSVNG----ADLRD-AT--HDEAVQALKRA-------GKEVLLEVKYMREA 

1363070    LPEALLLQRRRVTVRKA---DAGGL-GISIKGGRENK-------------MPILISKIFKG-LAADQTE-ALFVGDAILSVNG----EDLSS-AT--HDEAVQALKKT-------GKEVVLEVKYMKEV 

3876554    EQNEAEAEKRTVRVVKY---DGNGL-GISIKGGRDNN-------------MPIVISKIFKG-MAADQAG-ELFLDDVIISVNG----ENLLD-AS--HEEAVRALKRA-------GRVVDLQVQYRRED 

1469876a   EPARIEEEELTLTILR----QTGGL-GISIAGGKGS-------TPYKGDDEGIFISRVSEE-GPAARAG--VRVGDKLLEVNG----VALQG-AE--HHEAVEALRGA-------GTAVQMRVWRERMV 

5031791a   PNFSHWGPPRIVEIFRE---PNVSL-GISIVGGQTVIKRLKN----GEELKGIFIKQVLED-SPAGKTN-ALKTGDKILEVSG----VDLQN-AS--HSEAVEAIKNA-------GNPVVFIVQSLSST 

2959979e   AAYSSWSQPRRVELWRE---PSKSL-GISIVGGRGMGSRLSN----GEVMRGIFIKHVLED-SPAGKNG-TLKPGDRIVEVDG----MDLRD-AS--HEQAVEAIRKA-------GSPVVFMVQSIVNR 

3875228c   VRSKYWGEARTVTLVRE---PNKSF-GISIVGGRVEVSQKGGLPGTGNTVCGIFIKSVLPN-SPAGRSG-QMNMGDRVISVND----VDLRD-AT--HEQAVNAIKNA-------SNPVRFVLQSLHTN 

3108057a   PQKCTEEEPRTVEIIRE---LSDAL-GISIAGGKGS----------PLGDIPIFIAMIQAN-GVAARTQ-KLKVGDRIVSING----QPLDG-LS--HTDAVNLLKNA-------FGRIILQVVADTNI 

226930     KKSQGVGPIRKVLLLKE---DHEGL-GISITGGKEHG-------------VPILISEIHPG-QPADRCG-GLHVGDAILAVNG----VNLRD-TK--HKEAVTILS---------QQRGEIEFEVVYVA 

3881858    RKRNGVGKSRKVVLSKH---PHEGL-GISITGGSEHA-------------LPIVISEIQPG-QPADRCG-QVFVGDAILSVNG----YDLRT-VK--HQEAVDILSGQ-------VQQGDLDLELVFVC 

1469876b   RRDPAPPGLRELCIQKA---PGERL-GISIRGGARGHAGNP----RDPTDEGIFISKVSPT-GAAGRDG-RLRVGLRLLEVNQ----QSLLG-LT--HGEAVQLLRSV-------GDTLTVLVCDGFEA 

2959979d   ALASEIQGLRTVEIKKG---PADAL-GLSIAGGVGS----------PLGDVPIFIAMMHPN-GVAAQTQ-KLRVGDRIVTICG----TSTDG-MT--HTQAVNLMKNA-------SGSIEVQVVAGGDV 

3168891    NLAAGTQNMHTIRIQKD---DTGKL-GLSFAGGTSNDPAPNS-----NGDSGLFVTKVTPG-SAAYRCG--LREGDKLIRAND----VNMIN-AS--QDNAMEAIKKR--------ETVELVVLRRSPS 

1363206    EEDKLGIPTVPGKVTLQKD-AQNLI-GISIGGGAQYC-------------PCLYIVQVFDN-TPAALDG-TVAAGDEITGVNG----KSIKG-KT--KVEVAKMIQEV-------KGEVTIHYNKLQAD 

3881198    EEDRLGMRIQSETIELTKD-EKGVV-GISIGGGGPYC-------------PCVYVVQVFDK-SPAFKDG-RIRCGDEIVAING----ITVKG-ER--KSAVAQLIQVS-------LNPVKITINKLEEA 

1176780    ECLSIAVELHKQEVIDAHGQVTIRV-GFKIGGGIDQDPTKAPF---KYPDSGVYITNVESG-SPADVAG--LRKHDKILQVNG----ADFTM-MT--HDRAVKFIKQ--------SKVLHMLVARADLP 

2498801    RSAEELRRAELVEIIVETEAQTGVS-GFNVAGG---------------GKEGIFVRELRED-SPAAKSL-SLQEGDQLLSAR-----VFFEN-FK--YEDALRLLQCA------EPYKVSFCLKRTVPT 

1709902    KSSSPVGEDQVVTIKMRPD-RHGRF-GFNVKGGADQN-------------YPVIVSRVAPG-SSADKCQPRLNEGDQVLFIDG----RDVST-MS--HDHVVQFIRSARSG--LNGGELHLTIRPNVYR 

5031791c   QQMAQGRQIEYIDIERP---STGGL-GFSVVALRSQN----------LGKVDIFVKDVQPG-SVADRDQ-RLKENDQILAINH----TPLDQNIS--HQQAIALLQQT-------TGSLRLIVAREPVH 

2959979k   KSMAQGRHVEIFELLKP---PCGGL-GFSVVGLRSEN----------RGELGIFVQEIQEG-SVAHRDG-RLKETDQILAING----QVLDQTIT--HQQAISILQKA-------KDTIQLVIARGSLP 

5231271    LTPRRSRKLKEVRLDRL---HPEGL-GLSVRGGLEFG-------------CGLFISHLIKG-GQADSVG--LQVGDEIVRING----YSISS-CT--HEEVINLIRTK--------KTVSIKVRHIGLI 

5031979a   MFTPEQIMGKDVRLLRIK--KEGSL-DLALEGGVDSP------------IGKVVVSAVYER-GAAERHG-GIVKGDEIMAING----KIVTD-YT-LAEADAALQKAWN----QGGDWIDLVVAVCPPK 

1890856c   RQSIPEEFKGSTVVELMKK-EGTTL-GLTVSGGIDKD-------------GKPRVSNLRQG-GIAARSD-QLDVGDYIKAVNG----INLAK-FR--HDEIISLLKNV-------GERVVLEVEYELPP 

3127039a   LDEATLKQLDSIHVTILHKEEGAGL-GFSLAGGAD------------LENKVITVHRVFPN-GLASQEG-TIQKGNEVLSING----KSLKG-TT--HNDALAILRQA------REPRQAVIVTRKLTP 

2224541a   EAKAQSENEEDVCFIVLNRKEGSGL-GFSVAGGTD------------VEPKSITVHRVFSQ-GAASQEG-TMNRGDFLLSVNG----ASLAG-LA--HGNVLKVLHQA------QLHKDALVVIKKGMD 

732430     ASSQPAKPTKVTLVKSR---KNEEY-GLRPASH-------------------IFVKEISQD-SLAARDG-DIQEGDVVLKING----TVTEN-MS--LTDAKTLIERS-------KGKLKMVVQRDERA 

4507517    ASSQPAKPTKVTLVKSR---KNEEY-GLRLASH-------------------IFVKEISQD-SLAARDG-NIQEGDVVLKING----TVTEN-MS--LTDAKTLIERS-------KGKLKMVVQRDERA 

1536970    GQPDSDRPIGVLLMKSK---ANEEY-GLRLGSQ-------------------IFIKQMTRT-ALATKDG-NLHEGDIILKING----TVTEN-MS--LTDARKLIEKS-------RGKLQLVVLRDSKQ 

4759342a   EPRGRPGPIGVLLMKSR---ANEEY-GLRLGSQ-------------------IFVKEMTRT-GLATKDG-NLHEGDIILKING----TVTEN-MS--LTDARKLIEKS-------RGKLQLVVLRDSQQ 

3033501    RQDVHMRPVKSVLVRRT---ESEEF-GVTLGSQ-------------------IFIKHITDS-GLAARNR-GLQEGDLILQING----VSSEN-LS--LSDTRRLIEKS-------EGKLTLLVLRDRGQ 

1346574    INGAELSRMREVAFEKN---QSEPL-GVTLKLN---------------DKQRCSVARILHG-GMIHRQG-SLHEGDEIAEING----KSVAN-QT--VDQLQKILKET-------NGVVTMKIIPRPQS 

105150     VKGQEVRKVRLIQFEKV---TEEPM-GITLKLN---------------EKQSCTVARILHG-GMIHRQG-SLHVGDEILEING----TNVTN-HS--VDQLQKAMKET-------KGMISLKVIPNQQS 

3641615a   KRYNMMKDLRRIEVQRD---ASKPL-GLALAGHKDRQ------------KMACFVAGVDPN-GALGSVD--IKPGDEIVEVNG----NVLKN-RC--HLNASAVFKNV------DGDKLVMITSRRKPN 

1418684b   KRYNTMRDLKKLEIVRP---TNTAL-GLALAGHSDRQ------------KMGCFVAGVNTS-GPLASVD--IKSGDEILEVNG----TVLKN-RC--HLNASVIFKNI------DGERLVLITSRRKPN 

2625023    IHFSKSENCKDVFIEKQ---KGEIL-GVVIVESGWGS-----------ILPTVIIANMMHG-GPAEKSG-KLNIGDQIMSING----TSLVG-LP--LSTCQSIIKGLK-----NQSRVKLNIVRCPPV 

5031585    IHFSNSENCKELQLEKH---KGEIL-GVVVVESGWGS-----------ILPTVILANMMNG-CPAARSG-KLSIGDQIMSING----TSLVG-LP--LATCQGIIKGLK-----NQTQVKLNIVSCPPV 

3169807    DHFCNSQNCREVCIQKR---PGEGL-GVALVESGWGS-----------LLPTAVIANLLHG-GPAERCG-ALSIGDRVTAING----TSLVG-LS--LAACQAAVREVR-----RHSSVTLSIIHCPPV 

3874209    EMFAKKETQKEVVVPKK---AGEPL-GIVVVESGWGS-----------MLPTVVLAHMNPV-GPAAHSN-KLNIGDQIINING----ISLVG-LP--LSAAQTQIKNMK-----TATAVRMTVVSTPPV 

1890856a   DSVATASGPLLVEVAKT---PGASL-GVALTTSVCCNKQ------------VIVIDKIKSA-SIADRCG-ALHVGDHILSIDG----TSMEY-CT--LAEATQFLANT-------TDQVKLEILPHHQT 

2137012    HPERRELRPRLCAMKK----GPNGY-GFNLHSDKS--------------RPGQFIRAVDPD-SPAEASG--LREQDRIVEVNG----VCVEG-KQ--HGDVVTAIKAG-------GDEAKLLVVDKETD 

1644404    KSHLRELRPRLCTMKK----GPNGY-GFNLHSDKS--------------KPGQFIRAVDPD-SPAEASG--LRAQDRIVEVNG----VCMEG-KQ--HGDVVSAIKGG-------GDEAKLLVVDKETD 

4759140    HPEQRELRPRLCTMKK----GPSGY-GFNLHSDKS--------------KPGQFIRSVDPD-SPAEASG--LRAQDRIVEVNG----VCMEG-KQ--HGDVVSAIRAG-------GDETKLLVVDRETD 

2198849    SGPLRELRPRLCHLRK----GPQGY-GFNLHSDKS--------------RPGQYIRSVDPG-SPAARSG--LRAQDRLIEVNG----QNVEG-LR--HAEVVASIKAR-------EDEARLLVVDPETD 

2137012a   DAAAGAPLPRLCCLEK----GPNGY-GFHLHGEKG--------------KVGQYIRLVEPG-SPAEKAG--LLAGDRLVEVNG----ENVEK-ET--HQQVVSRIRAA-------LNAVRLLVVDPDTD 

1644404a   DAAAGEPLPRLCCLEK----GPNGY-GFHLHGEKG--------------KVGQFIRLVEPG-SPAEKSG--LLAGDRLVEVNG----ENVEK-ET--HQQVVSRIRAA-------LNAVRLLVVDPETD 

2198849a   MAAPEPLRPRLCRLVR----GEQGY-GFHLHGEKG--------------RRGQFIRRVEPG-SPAEAAA--LRAGDRLVEVNG----VNVEG-ET--HHQVVQRIKAV-------EGQTRLLVVDQETD 
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3873819    HIPSDVTPPRLCVVEKLN--GENEY-GYNLHAEKG---------------RGQFVGTVDPD-SPAERGG--LITGDRIFAVNG----HSIIG-EN--HKKVVERIKAN-------PNRCEMLVISEEGA 

3876279    PTDAMPYLPRLAELNKGT--PDQEF-GFNLHAERG---------------RGHFIGTVDAG-GIGEKAG--LEAGQRIVGVNG----QLIYP-TTG-HKEVVALIKKD--------TMKTTLLVASEDV 

4505703    TTEEVDHKPKLCRLAK----GENGY-GFHLNAIRG--------------LPGSFIKEVQKG-GPADLAG--LEDEDVIIEVNG----VNVLD-EP--YEKVVDRIQSS-------GKNVTLLVCGKKAY 

2331224a   --MASTFNPRECKLSKK---EGQNY-GFFLRIEKD--------------TDGHLVRVIEEG-SPAEKAG--LLDGDRVLRIKR----VFVDK-EE--HAQVVDLVRKS-------GNSVTLLVLDGDSY 

1083418    LPALGSLRPPIIIHRA-----GKKY-GFTLRAIRVYMGD------TDVYTVHHMVWHVEDG-GPASEAG--LRQGDLITHVNG----EPVHG-LV--HTEVVELVLKS-------GNKVSISTTPLENT 

4589590    SPAVSGLRSPITIQRS-----GKKY-GFTLRAIRVYMGD------TDVYSVHHIVWHVEEG-GPAQEAG--LCAGDLITHVNG----EPVHG-MV--HPEVVELILKS-------GNKVAVTTTPFENT 

2224547    SAASASPHQPIVIHSS-----GKNY-GFTIRAIRVYVGD------SDIYTVHHIVWNVEEG-SPACQAG--LKAGDLITHING----EPVHG-LV--HTEVIELLLKS-------GNKVSITTTPFENT 

1925010    PFTRFLEPSRLAALRRGTAGSVTGV-GLEITYDG-------------GSGKDVVVLTPAPG-GPAEKAG--ARAGDVIVTVDG----TAVKG-LS--LYDVSDLLQGE------ADSQVEVVLHAPGAP 

2245133    PFTRFLEPGKFKSLRSGTQGAVTGV-GLSIGYPT----------ASDGPPAGLVVISAAPG-GPANRAG--ILPGDVIQGIDN----TTTET-LT--IYDAAQMLQGP------EGSAVELAIRSGPEG 

1296805    PYTRFLSSSDFSKMSKY---DMTGI-GLNIREI-----------PDDNGSLRLVVLGLILD-GPANSAG--VRQGDELLSVNG----SDVRG-KS--AFDVSSMLQGP------KETFVTIKVKHGNCG 

2224621    IGRVILNKRTTMPKDS-----GALL-GLKVVGGKMTD----------LGRLGAFITKVKKG-SLADVVG-HLRAGDEVLEWNG----KPLPG-AT--NEEVYNIILES-------KSEPQVEIIVSRPI 

2852638    ----------SVPRDS-----GAML-GLKVVGGKMTE----------SGRLCAFITKVKKG-SLADTVG-HLRPGDEVLEWNG----RLLQG-AT--FEEVYNIILES-------KPEPQVELVVSRPI 

1086750    KLIGHMILHRTENSAA-----NGDL-GLKIVGGRRTD----------TGKLGAFITQVKPG-SVADTIG-RLRPGDEVVEWNG----QSLQN-AT--YEQVYDSIAAS-------RYDTSVELIVSRSA 

2738915    GSQRRYIGVMMLTLSP-----SILA-ELQLREPS-----------FPDVQHGVLIHKVILG-SPAHRAG--LRPGDVILAIGE----QMVQN-----AEDVYEAVRT--------QSQLAVQIRRGREV 

2228536    ETKRRYIGVMMLTLTP-----QHPA-ELKLRDPS-----------FPDVSYGVLIHKVIIG-SPAHQAG--LKAGDVVLEING----QATRR-----AEDVYEAVRT--------QQSLALLVRRSYDT 

3043642    ARIKITRDSKDHTVS------GNGL-GIRIVGGKEIPGH--------SGEIGAYIAKILPG-GSAEQTG-KLMEGMQVLEWNG----IPLTS-KT--YEEVQSIISQQ-------SGEAEICVRLDLNM 

1572787    KRILLTRSYKHHNIY-------NDL-GVRVVGGKRQM----------NGELSAYVSQLHST-ANNQTLG-QIKIGDEVVEWNG----ILLRG-KT--FEEVERIVNKS-------HGEIEMVIRTYKNP 

3641615c   FIFDQFPKARTVQVRK-----EGFL-GIMVIYGK-----------HAEVGSGIFISDLREG-SNAELAG--VKVGDMLLAVNQ----DVTLE-SN--YDDATGLLKRA-------EGVVTMILLTLKSE 

1418684a   FLFEQYAKARSVQVKK-----EGFL-GIMVIYGK-----------HVEVGNGIFISDLREE-SNAMLAG--LKVGDMLLAVNK----DVCVE-SN--YDEAVALLKRA-------EGIVNLVVLTLKTE 

732430a    EDGILRPSMKLVKFRK-----GDSV-GLRLAGGND---------------VGIFVAGVLED-SPAAKEG--LEEGDQILRVNN----VDFTN-II--REEAVLFLLDL-------PKGEEVTILAQKKK 

4507517a   KMGFLRPSMKLVKFRK-----GDSV-GLRLAGGND---------------VGIFVAGVLED-SPAAKEG--LEEGDQILRVNN----VDFTN-II--REEAVLFLLDL-------PKGEEVTILAQKKK 

1839162    NEAIYGPNTKMVKFKK-----GDSV-GLRLAGGND---------------VGIFVAGIQEG-TSAEQEG--LQEGDQILKVNT----QDFRG-LV--REDAVLYLLEI-------PKGETVTILAQSRA 

1536970a   DEAIYGPNTKMVRFKK-----GDSV-GLRLAGGND---------------VGIFVAGIQEG-TSAEQEG--LQEGDQILKVNT----QDFRG-LV--REDAVLYLLEI-------PKGEMVTILAQSRA 

3033501a   EDRGYSPDSRVVRFHK-----GTTI-GLRLAGGND---------------VGIFVSGVQEG-SPADGQG--IQEGDQILQVND----VPFRN-LT--REEAVQFLVAL-------PPGEEVELVTQRNE 

5453714    ------MSNYSVSLVG-----PAPW-GFRLQGGKD-------------FNMPLTISSLKDG-GKAAQAN--VRIGDVVLSIDG----INAQG-MT--HLEAQNKIKGC-------TGSLNMTLQRASAA 

3851178    ------MSNYNVSLVG-----PAPW-GFRLQGGKD-------------FNMPLTISSLKDG-GKASQAH--VRIGDVVLSIDG----ISAQG-MT--HLEAQNKIKAC-------TGSLNMTLQRASAA 

4885207    ------MDSFKVVLEG-----PAPW-GFRLQGGKD-------------FNVPLSISRLTPG-GKAAQAG--VAVGDWVLSIDG----ENAGS-LT--HIEAQNKIRAC-------GERLSLGLSRAQPV 

3138926    -------MPQNVVLPG-----PAPW-GFRLSGGID-------------FNQPLVITRITPG-SKAAAAN--LCPGDVILAIDG----FGTES-MT--HADAQDRIKAA-------SYQLCLKIDRAETR 

3138922a   -------MPQNVVLPG-----PASW-GFRLSGGID-------------FNQPLVITRITPG-SKAEAAN--LCPGDMILAIDG----FGTES-MT--HADAQDRIKAA-------SYQLCLKIDRAETR 

2773060a   -------MPQTVILPG-----PAPW-GFRLSGGID-------------FNQPLVITRITPG-SKAAAAN--LCPGDVILAIDG----FGTES-MT--HADAQDRIKAA-------AHQLCLKIDRGETH 

1565269    -------MTHSVTLRG-----PSPW-GFRLVGGRD-------------FSLPLTISRVHAG-SKAALAA--LCPGDLIQAING----ESTEL-MT--HLEAQNRIKGC-------HDHLTLSVSRPENK 

4506531    -------MPHSVTLRG-----PSPW-GFRLVG-RD-------------FSAPLTISRVHAG-SKASLAA--LCPGDLIQAING----ESTEL-MT--HLEAQNRIKGC-------HDHLTLSVSRPEGR 

1710304    -------MTHAVTLRG-----PSPW-GFRLVGGRD-------------FSAPLTISRVHAG-SKAALAA--LCPGDSIQAING----ESTEL-MT--HLEAQNRIKGC-------HDHLTLSVSRPENK 

1705900    ------MTTQQIVLQG-----PGPW-GFRLVGGKD-------------FEQPLAISRVTPG-SKAAIAN--LCIGDLITAIDG----EDTSS-MT--HLEAQNKIKGC-------VDNMTLTVSRSEQK 

1905874    ------MTTQQIDLQG-----PGPW-GFRLVGRKD-------------FEQPLAISRVTPG-SKAALAN--LCIGDVITAIDG----ENTSN-MT--HLEAQNRIKGC-------TDNLTLTVARSEHK 

4502175    TRAADGGRLVEVQLSG-----GAPW-GFTLKGGRE-------------HGEPLVITKIEEG-SKAAAVD-KLLAGDEIVGIND----IGLSG-FR--QEAICLVKGS--------HKTLKLVVKRRSEL 

2911719    AAKAKWRQVVLQKASR-----ESPL-QFSLNGGSEKG-------------FGIFVEGVEPG-SKAADSG--LKRGDQIMEVNG----QNFEN-IT--FMKAVEILRN--------NTHLALTVKTNMFK 

2224567    AAKAKRRLMTLTKPSR-----EAPL-PFILLGGSEKG-------------FGIFVDSVDSG-SKATEAG--LKRGDQILEVNG----QNFEN-IQ--LSKAMEILRN--------NTHLSITVKTNLFV 

3138922    NYFEHKHNIRPKPFII----PGRTS-GCSTPSGID-----------------CGSGRSTPS-SVSTVS--TICPGDL--KVAA-----KMAPNIP--LEMELPGVKIVH-----AQFNTPMQLYSDDNI 

2773060    NYFEHKHNIRPKPFVI----PGRSS-GCSTPSGID-----------------CGSGRSTPS-SVSTVS--TICPGDL--KVAA-----KLAPNIP--LEMELPGVKIVH-----AQFNTPMQLYSDDNI 

595790     SHLPHTVTLVSIPASAH---GKRGL-SVSIDPPHGPPG------CGTEHSHTVRVQGVDPGCMSPDVKN-SIHVGDRILEING----TPIRN-VP--LDEIDLLIQET-------SRLLQLTLEHDPHD 

4505001    SHLPHTVTLVSIPASSH---GKRGL-SVSIDPPHGPPG------CGTEHSHTVRVQGVDPGCMSPDVKN-SIHVGDRILEING----TPIRN-VP--LDEIDLLIQET-------SRLLQLTLEHDPHD 

2257461    SRSPHTVTLVSLPAS------DGKR-GLSVSITP----------SCAEHSHTVRVTELDADFLGPDIQS-SIHIGDRILEING----TPIRS-VP--LDEIDVLIQET-------SRLLQLTIEHDPHE 

1330390    TESSMGLEVITVRLNL----ETIPL-GMTPSGHTNAR-----------GDAGLYVGDIQDR-GAVALDG-RIDIGDMIVGINE----ISLGN-YS--NKEAVQLLREAV-----QRQYLTLTIAKTGDP 

1890856    EQESSGAIIYTVELKR----YGGPL-GITISGTEE-------------PFDPIIISSLTKG-GLAERTG-AIHIGDRILAINS----SSLKG-KP--LSEAIHLLQMA-------GETVTLKIKKQTDA 

2959979h   TLQSMSQEAFERTVTIAK--GSSSL-GMTVSANKDG--------------LGVIVRSIIHG-GAISRDG-RIAVGDCILSINE----ESTIS-LT--NAQARAMLRRHS----LIGPDIKITYVPAEHL 

1666538    ALSPSGASRFEIVIPFINGSSSAGL-GVSLKARVSKKS------NGSKVDCGIFIKNVMHG-GAAFKEG-GLRVDDRIVGVED----IDLEP-LD--NREAQAALAKKLKEVGMISSNVRLTISRYNEC 

2959979i   RIMGINYEIVVAHVSKFS--ENSGL-GISLEATV----------------GHHFIRSVLPE-GPVGHSG-KLFSGDELLEVNG----INLLG-EN--HQDVVNILKEL-------PIDVTMVCCRRTVP 

3875228f   SRIGDDIEIIAAVVKPDRQSVDGGL-GISLEGTVDVLNGAQL-------CPHHYIESIRQD-GPVAKTK-VLQAGDELLQVNH----SPLYG-ES--HVTVRQALTRAV----HSGAPVTLIVARRSQH 

1498137    YEERQSAEPRFISFQK-----EGSV-GIRLTGGNE---------------AGIFVTAVQPG-SPASLQG--LMPGDKILKVND----MDMNG-VT--REEAVLFLLSL-------Q--DRIDLIVQYCK 

3875228b   KYDSDGGELVLVACER----PDGGL-GISLAGNKDRD------------KQNVFVVNVRPS-CPLA-----IRPGDELLEING----RLLNK-IS--HVAASAVVRECC----DQHQNIEIVLRRRNGA 

2959979j   DLSSLTN-VYHLELPK----DQGGL-GIAICE-ED-------------TLNGVTIKSLTER-GGAAKDG-RLKPGDRILAVDD----ELVAG-CP--IEKFISLLKTA-------KTTVKLTVGAENPG 

3879915    EFLNEVEGKVGVQLRGV---DIGGL-GFNIQGN---------------MNEGIFVKEIISK-GIAEQCG-NILVGDKIKSLT-----INFEN-MV--YEDAVTLLSYS------SPYKVKLELERKLSD 

3043690a   SLGGKVVTPLHINLSG-----QKDS-GISLENG-------------------VYAAAVLPG-SPAAKEG-SLAVGDRIVAING----IALDN-KS--LNECESLLRSCQ-----DSLTLSLLKVFPQSS 

189262     GVQQIQPNVISVRLFKR---KVGGL-GFLVKERV--------------SKPPVIISDLIRG-GAAEQSG-LIQAGDIILAVNG----RPLVD-LS--YDSALEVLRGI-------ASETHVVLILRGPE 

3041879    FHLIPDGEITSIKINRAD--PSESL-SIRLVGGSETPLV------------HIIIQHIYRD-GVIARDG-RLLPGDIILKVNG----MDISN-VP--HNYAVRLLRQP-------CQVLRLTVLREQKF 

2224701    ASETTGLVQRCVIIQK----DQHGF-GFTVSGDRIV-----------------LVQSVRPG-GAAMKAG--VKEGDRIIKVNG----TMVTN-SS--HLEVVKLIKSG--------AYVALTLLGSSPS 

2760368    LALPKNFQYLTLTVRK----DSNGY-GMKVSGDNPV-----------------FVESVKPG-GAAEIAG--LVAGDMILRVNG----HEVRL-EK--HPTVVGLIKAS--------TTVELAVKRSQKL 

5031979    SPGNRENKEKKVFISLV---GSRGL-GCSISSGPIQK-------------PGIFISHVKPG-SLSAEVG--LEIGDQIVEVNG----VDFSN-LD--HKEAVNVLKN--------SRSLTISIVAAAGR 
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5032083    RRAEIKQGIREVILCKD---QDGKI-GLRLKSIDN----------------GIFVQLVQAN-SPASLVG--LRFGDQVLQING----ENCAG-WS--SDKAHKVLKQAF------GEKITMTIRDRPFE 

2331224    FETAAPPAPGSSDQEG-----QQWL-RFLSEAGPE--------------QKGQIIKDIEPG-SPAEAAG--LKNNDLVVAVNG----ESVEA-LD--HDGVVEMIRNG-------GDQTTLLVLDKEAD 

3874414    REGYVYELATLVWVQNG---PKLGL-GIKHFQN------------------RVLVSRVDPG-SLAEK---CLVLGDHLCDVDG----IPVSD-----KDVARDLLVKNIQ----EKGKVTFVVERPDSI 

2088778    KKELAGPSSAEDYFVRK---TNGRL-GLTIYAHNDD---------------GVIRAEVRGVTSFAPR---CAQVGDSVVAVDS----ELISS-VR--NASDVEKLLRI-------GKVIHLRRKTPLTP 

3879448    SVNSGLPRILEIYLPMK---NVPYL-GLSVCTI----------------DGHIFVSEIAPE-GAVEKDG-RVNVGDQILQVNR----VSFEE-LS--GPQAVRSLREAA----SSKRPITLYISKFARG 

3123565b   DDAELQKYSKLLPIH------TLRL-GVEVDSFD----------------GHHYISSIVSG-GPVDTLG-LLQPEDELLEVNG----MQLYG-KS--RREAVSFLKEV-------PPPFTLVCCRRLFD 

630714     PLILYACFIESALLRRRS--DNINW-GLNIQSS---------------YRGVHVISEIKEG-SPADACT-KIDAGDEILMING----RTVVG-WD--LTSVVQQVGAL------DVLELSLIVKRRPRE 

1666538a   ENEKQLGIEVNAVFDE-----SSELPGTSEPTKL----------------SSVQIMKIEDG-GRIAKDG-RIRVGDCIVAIDG----KPVDQ-MSIIRVRASISDLAAV-----TSRPVTLIINRSLES 

2388583    GIVANVIFAYAIIFTQ-----VVSV-GLPVQES----------------FPGVLVPDVKSF-SAASRDG--LLPGDVILAVDG----TELSNSGSDSVSKVVDVVKRNP------EHNVLLRIERGKES 
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Appendix 2:  List of Mutations in PDZ3 

 
P311I 

R312K 

R313T 

I314V 

V315E 

I316L 

H317E 

R318K 

G319P 

S320G 

T321G 

G322S 

L323F 

G324S 

F325I 

N326S 

I327L 

V328A 

G329S 

G330Q 

E331K 

D332G 

G333N 

E334G 

G335P 

I336V 

F337Y 

I338V 

S339K 

F340S 

I341V 

L342I 

A343P 

G344D 

G345S 

P346A 

A347V 

D348A 

L349R 

S350D 

G351N 

E352R 

L353I 

R354Q 

K355V 

G356N 

Q358R 

I359L 

L360V 

S361A 

V362I 

N363D 

G364D 

V365T 

D366S 

L367V 

R368E 

N369G 

A370L 

S371T 

H372L 

E373D 

Q374E 

A375V 

A376V 

I377E 

A378L 

L379I 

K380R 

A382T 

G383S 

Q384G 

T385E 

V386L 

T387K 

I388L 

I389V 

A390V 

Q391A 
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Appendix 3:  Sample NMRPipe Processing Script for 2-D PR-HNCO data 

#!/bin/csh 

 

var2pipe -in ./$1 -noaswap -aqORD 1 \ 

  -xN  1366    -yN  256  \ 

  -xT  683    -yT  128  \ 

  -xMODE  Complex   -yMODE  Complex  \ 

  -xSW  8000    -ySW  2000  \ 

  -xOBS  599.772   -yOBS  0.0  \ 

  -xCAR  4.765   -yCAR  0.0  \ 

  -xLAB  H1    -yLAB  tilt  \ 

  -ndim  2    -aq2D  States  \ 

| nmrPipe -fn POLY -time \ 

| nmrPipe -fn SP -off 0.35 -end 0.95 -pow 1.5 -c 1.0 \ 

| nmrPipe -fn ZF -zf 1 -auto \ 

| nmrPipe -fn FT -verb \ 

| nmrPipe -fn PS -p0 170.0 -p1 -44.0 -di \ 

| nmrPipe -fn EXT -x1 6.5ppm -xn 11ppm -sw \ 

| nmrPipe -fn TP \ 

| nmrPipe -fn LP -fb \ 

| nmrPipe -fn SP -off 0.5 -end 1.0 -pow 2 -c 0.5 \ 

| nmrPipe -fn ZF -zf 1 -auto \ 

| nmrPipe -fn FT -verb \ 

| nmrPipe -fn PS -p0 2.0 -p1 0.0 -di \ 

| nmrPipe -fn POLY -auto \ 

| nmrPipe -fn TP \ 

| nmrPipe -fn POLY -auto \ 

-out $1.ft2 -verb 2 –ov 
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Appendix 4:  MATLAB code for automatic phase correction 

autophase_pdz_prhnco_white.m 

function [optimizephase] = autophase_pdz_prhnco_white(debug) 

%AUTOPHASE_PDZ_PRHNCO_WHITE tries to automatically find optimal phasing for 2D spectra used for 

PRHNCO experiments 

%   [phases,bestphase,singlebestphase] = 

autophase_pdz_prhnco_white(startbestphase,startincrement,debug) 

%   [phases,bestphase,singlebestphase] = autophase_pdz_prhnco_white([0 0 0 0],90,1) 

% 

%INPUTS 

%   startbestphase - starting phases, aplies to all spectra ... [xp0 xp1 yp0 yp1] 

%   startincrement - starting increment (in degrees) to search over phase space ... use 90 if 

unknown phases 

%   debug - 0 or 1 flag determines whether to process all files or just one to debug programming 

% 

%NOTES 

%   Start in a directory containing one folder for each 2D projection + folders "fidfiles" and 

"pr" 

%   Each projection directory must be named "pdz****" 

%   Processing files in the fidfiles directory must be named "proc*" 

%   Fid files in the fidfiles directory must be named "pdz*" 

% 

%DEPENDENCIES 

%   System installed PRSP, nmrPipe - parallel_process_prhnco_files.m 

%   parallel_process_prhnco_files.m 

%   autophase_2d_spectrum.m 

%   process_2d_nmrpipe_with_phase.m 

%   twodautophasing_fmin_short.m 

%   prcalc_prhnco_write_and_process.m 

%   read_procpar.m  

%   read_text_file_all_lines.m 

% 

%08/26/09 

%Alan Poole, Ranganathan Lab, alanpoole@alumni.wfu.edu 

  

%% Do inital processing and write procfiles 

[p,param,commands] = parallel_process_prhnco_files(0,1) 

!rm pr/* 

copyfile('fidfiles','initialfidfiles'); 

!rm fidfiles/* 

cd initialfidfiles; 

  

%% Top Level - detect files and distribute processing 

d = dir; 

d = struct2cell(d); 

fidfiles = d(1,strmatch('pdz_',d(1,:))); 

procfiles = d(1,strmatch('proc',d(1,:))); 

if numel(fidfiles) ~= numel(procfiles); 

    disp('Number of procfiles does not match the number of fidfiles'); 

    return 

end 

nfiles = numel(fidfiles); 

for ii = 1:nfiles 

    if isempty(strfind(procfiles{ii},fidfiles{ii})) 

        disp(sprintf('%s does not match %s',procfiles{ii},fidfiles{ii})) 

        return 

    end 

end 

  

if debug 

    [optimizephase] = twodautophasing(procfiles{1},fidfiles{1}); 

%     cd .. 

else  

    try matlabpool open 2; catch; end; 

    parfor ii = 1:nfiles; 

        [optimizephase(ii,:)] = twodautophasing(procfiles{ii},fidfiles{ii}); 

    end 

    try matlabpool close; catch; end; 
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    cd .. 

end 

  

cd pr/ 

prcalc_prhnco_write_and_process 

  

end 

  

%% 

function [optimizephase] = twodautophasing(procfile,fidfilename) 

% make folder for each fidfile and copy data and processing script 

foldername = sprintf('folder_%s',fidfilename); 

if exist(foldername)==7; 

    rmdir(foldername,'s'); 

end 

mkdir(foldername); 

copyfile(procfile,sprintf('%s/%s',foldername,procfile)); 

copyfile(fidfilename,sprintf('%s/%s',foldername,fidfilename)); 

cd(foldername); 

  

[optimizephase] = autophase_2d_spectrum(procfile,fidfilename,[0 0 0 0],90); 

  

ftfilename = sprintf('%s.ft2',fidfilename);  

copyfile(ftfilename,'../../pr/'); 

copyfile(procfile,'../../fidfiles/'); 

copyfile(fidfilename,'../../fidfiles/'); 

cd .. 

rmdir(foldername,'s'); 

end 

  

 

autophase_2d_spectrum.m 

function [optimizephase,score,phases,bestphase,spectra,threshold,numwhites,scoreimage] = 

autophase_2d_spectrum(procfile,fidfilename,startbestphase,startincrement) 

%% Function to search over phase variable space 

  

% initialize variables 

phasestart = [0 -270 -90 0]; phaseend = [270 360 180 270]; increments = [90 45 15 5 2 1]; 

startat = find(increments == startincrement); 

if startat > 1; 

    phasestart = startbestphase - increments(startat-1); 

    phasestart(2) = startbestphase(2) - 2*increments(startat-1); 

    phaseend = startbestphase + increments(startat-1); 

    phaseend(2) = startbestphase(2) + 2*increments(startat-1); 

    increments = increments(startat:end); 

end 

bestphase = startbestphase; 

% iterative grid search over successively smaller phase space with finer increments 

count = 1; 

spectra = cell(1,2*numel(increments)); 

threshold = zeros(1,2*numel(increments)); 

numwhites = cell(1,2*numel(increments)); 

phases = cell(1,2*numel(increments)); 

scoreimage = cell(1,2*numel(increments)); 

for ii = 1:numel(increments); 

    fprintf('increment %g\n',increments(ii)); 

    % optimize x phases 

    phases{count} = generatephases_x(phasestart,phaseend,increments(ii),bestphase(ii,:)); 

    disp(phases{count}) 

    disp(bestphase) 

    [bestphase(ii,:),spectra{count},threshold(count),numwhites{count}] = 

process_2d_nmrpipe_with_phase(phases{count},procfile,fidfilename);  

    xsteps = (phaseend(1)-phasestart(1))/increments(ii)+1; 

    ysteps = (phaseend(2)-phasestart(2))/increments(ii)+1; 

    scoreimage{count} = reshape(numwhites{count},xsteps,ysteps); 

    count = count+1; 

    phasestart(1) = bestphase(ii,1) - increments(ii); 

    phaseend(1) = bestphase(ii,1) + increments(ii); 

    phasestart(2) = bestphase(ii,2) - 2*increments(ii); 

    phaseend(2) = bestphase(ii,2) + 2*increments(ii); 
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    %optimize y phasest 

    phases{count} = generatephases_y(phasestart,phaseend,increments(ii),bestphase(ii,:)); 

    disp(phases{count}) 

    disp(bestphase) 

    [bestphase(ii,:),spectra{count},threshold(count),numwhites{count}] = 

process_2d_nmrpipe_with_phase(phases{count},procfile,fidfilename);  

    xsteps = (phaseend(3)-phasestart(3))/increments(ii)+1; 

    ysteps = (phaseend(4)-phasestart(4))/increments(ii)+1; 

    scoreimage{count} = reshape(numwhites{count},xsteps,ysteps); 

    count = count+1; 

    phasestart(3:4) = bestphase(ii,3:4) - increments(ii); 

    phaseend(3:4) = bestphase(ii,3:4) + increments(ii); 

     

    bestphase(ii+1,:) = bestphase(ii,:); 

end 

  

singlebestphase = bestphase(end,:); 

[score,optimizephase,exitflag,output] = 

twodautophasing_fmin_short(procfile,fidfilename,singlebestphase,threshold(end)); 

  

end 

  

%% Generate phases varying 1st dimension 

function [phases] = generatephases_x(phasestart,phaseend,increment,bestphase) 

nums = (phaseend-phasestart)./increment+1; 

nums(3:4) = 1; 

total = prod(nums); 

phases = zeros(total,4); 

phases(:,3) = bestphase(3); 

phases(:,4) = bestphase(4); 

count = 1; 

for ii = 1:nums(1); 

    for jj = 1:nums(2); 

        phases(count,1:2) = phasestart(1:2)+([ii jj]-1).*increment; 

        count = count+1; 

    end 

end 

end 

  

%% Generate phases varying 2nd dimension 

function [phases] = generatephases_y(phasestart,phaseend,increment,bestphase) 

nums = (phaseend-phasestart)./increment+1; 

nums(1:2) = 1; 

total = prod(nums); 

phases = zeros(total,4); 

phases(:,1) = bestphase(1); 

phases(:,2) = bestphase(2); 

count = 1; 

for ii = 1:nums(3); 

    for jj = 1:nums(4); 

        phases(count,3:4) = phasestart(3:4)+([ii jj]-1).*increment; 

        count = count+1; 

    end 

end 

end 

 

 

parallel_process_prhnco_files.m 

function [p,param,commands] = parallel_process_prhnco_files(phases,fast1) 

%PARALLEL_PROCESS_PRHNCO_FILES writes processing files, does initial processing and sets up 

directory structure for PRHNCO file processing 

%   [p,param,commands] = parallel_process_prhnco_files([0 0 0 0],1) 

% 

%INPUTS 

%   phases - 0 for initial phases of [0 0 0 0]; otherwise, enter phases for initial processing - 

[xp0 xp1 yp0 yp1] 

%   fast1 = 1 for fast processing with no linear prediction.  0 for processing with LP 

% 

%NOTES 

%   Start in a directory containing one folder for each 2D projection. 
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%   Each directory must be named "pdz****" and you cannot have other files folder that start with 

"pdz*" 

%   Free vs. peptide bound parameters are set by the presence of the string "pep" in the first 

directory name 

% 

%DEPENDENCIES 

%   System installed PRSP, nmrPipe 

%   read_procpar.m  

%   maybe more 

% 

%08/26/09 

%Alan Poole, Ranganathan Lab, alanpoole@alumni.wfu.edu 

  

%% 

d = dir; 

d = struct2cell(d); 

% delete folders "pr" and "fidfiles" if they exist 

if strmatch('pr',d(1,:),'exact'); rmdir('pr','s'); end; 

if strmatch('fidfiles',d(1,:),'exact'); rmdir('fidfiles','s'); end; 

% each projection should have a directory named "pdz_*" 

filenames = d(1,strmatch('pdz_',d(1,:))); 

n = numel(filenames); 

  

% determine if free or peptide-bound dataset by presence of 'pep' in the directory name 

if strfind(filenames{1},'pep'); 

    free1pep2 = 2; 

else 

    free1pep2 = 1; 

end 

  

if ~isequal(size(phases),[n*2-2 4]) 

    disp('No phases provided or incorrect size of phase variable'); 

end 

  

% if slow processing with linear prediction, use parallel processing 

if ~fast1 

    pctconfig('hostname','localhost'); 

    try 

        matlabpool 

    catch 

    end 

end 

  

parfor (ii = 1:n)     

    cd(filenames{ii}); 

    nhsqcflag(ii) = ~isempty(strfind(filenames{ii},'nhsqc')); 

    % get parameters from the procpar file 

    [parameters] = read_procpar('procpar'); 

    if nhsqcflag(ii) 

        parameters.pra = 90; 

    end 

    %% start printing processing file lines 

    lines = {'#!/bin/csh' '' 'var2pipe -in ./$1 -noaswap -aqORD 1 \'}; 

    lines{end+1} = sprintf('  -xN\t\t%g\t\t-yN\t\t%g  \\',parameters.np,2*parameters.ni); 

    lines{end+1} = sprintf('  -xT\t\t%g\t\t-yT\t\t%g  \\',parameters.np/2,parameters.ni); 

    if nhsqcflag(ii) 

        lines{end+1} = sprintf('  -xMODE\t%s\t\t-yMODE\t\t%s  \\','Complex','Rance-Kay'); 

    elseif parameters.pra == 90 && sum([numel(parameters.phase) numel(parameters.phase2)]) < 4; 

        lines{end+1} = sprintf('  -xMODE\t%s\t\t-yMODE\t\t%s  \\','Complex','Rance-Kay'); 

    else 

        lines{end+1} = sprintf('  -xMODE\t%s\t\t-yMODE\t\t%s  \\','Complex','Complex'); 

    end 

    lines{end+1} = sprintf('  -xSW\t\t%g\t\t-ySW\t\t%g  \\',parameters.sw,parameters.sw1); 

    lines{end+1} = sprintf('  -xOBS\t\t%g\t\t-yOBS\t\t0.0  \\',parameters.sfrq); 

    lines{end+1} = sprintf('  -xCAR\t\t%g\t\t-yCAR\t\t%s  \\',4.77,'0.0'); 

    lines{end+1} = sprintf('  -xLAB\t\tH1\t\t-yLAB\t\ttilt  \\'); 

    lines{end+1} = sprintf('  -ndim\t\t2\t\t-aq2D\t\tStates \\'); 

     

    % processing area 

    lines{end+1} = '| nmrPipe -fn POLY -time \'; 

    lines{end+1} = '| nmrPipe -fn SP -off 0.35 -end 0.95 -pow 1.5 -c 0.5 \'; 
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    lines{end+1} = '| nmrPipe -fn ZF -zf 1 -auto \'; 

    lines{end+1} = '| nmrPipe -fn FT -verb \'; 

    % correct for too narraw sweep width for some peptide datasets 

    if free1pep2 == 2 && parameters.sw < 9000; 

        lines{end+1} = '| nmrPipe -fn CS -rs 1.0ppm -sw  \'; 

    end 

    % use phases if provided, otherwise use 0,0 for x dim phases 

    if isequal(size(phases),[n*2-2 4]); 

        lines{end+1} = sprintf('| nmrPipe -fn PS -p0 %g -p1 %g -di 

\\',phases(ii,1),phases(ii,2)); 

    else 

        lines{end+1} = '| nmrPipe -fn PS -p0 0.0 -p1 0.0 -di \'; 

    end 

    % set SW larger for peptide datasets - due to far downfield shift of res 27 

    if free1pep2 == 1; 

        lines{end+1} = '| nmrPipe -fn EXT -x1 6.5ppm -xn 11ppm -sw \'; 

    elseif free1pep2 ==2; 

        lines{end+1} = '| nmrPipe -fn EXT -x1 6.5ppm -xn 12ppm -sw \'; 

    end 

     

    lines{end+1} = '| nmrPipe -fn TP \'; 

     

    % begin processing of y dimension 

    if fast1; 

        % omit this line for no linear prediction for fast processing 

    elseif nshqcflag(ii) 

        lines{end+1} = '| nmrPipe -fn LP -fb -ord 32 \'; 

    elseif parameters.pra < 30; 

        lines{end+1} = '| nmrPipe -fn LP -fb \'; 

    elseif parameters.pra > 70; 

        lines{end+1} = '| nmrPipe -fn LP -fb -ord 32 \'; 

    else 

        lines{end+1} = '| nmrPipe -fn LP -fb -ord 16 \'; 

    end 

    % f1180 dependent offset for the window fuction 

    if parameters.f1180 == 'y'; 

        lines{end+1} = '| nmrPipe -fn SP -off 0.5 -end 1.0 -pow 2 -c 1.0 \'; 

    else 

        lines{end+1} = '| nmrPipe -fn SP -off 0.5 -end 1.0 -pow 2 -c 0.5 \'; 

    end 

    lines{end+1} = '| nmrPipe -fn ZF -zf 1 -auto \'; 

    lines{end+1} = '| nmrPipe -fn FT -verb \'; 

    % use phases if provided or 0,0 f1180=n, or -90,180 for f1180=y 

    if isequal(size(phases),[n*2-2 4]); 

        lines{end+1} = sprintf('| nmrPipe -fn PS -p0 %g -p1 %g -di 

\\',phases(ii,3),phases(ii,4)); 

    elseif parameters.f1180 == 'y'; 

        lines{end+1} = '| nmrPipe -fn PS -p0 -90.0 -p1 180.0 -di \'; 

    else 

        lines{end+1} = '| nmrPipe -fn PS -p0 0.0 -p1 0.0 -di \'; 

    end 

     

    lines{end+1} = '| nmrPipe -fn POLY -auto \'; 

    lines{end+1} = '| nmrPipe -fn TP \'; 

    lines{end+1} = '| nmrPipe -fn POLY -auto \'; 

    lines{end+1} = '-out $1.ft2 -verb 2 -ov'; 

     

    % write proc+ file 

    if nhsqcflag(ii) 

        procfilenameplus = sprintf('proc_%s.txt',filenames{ii}); 

    elseif parameters.pra == 0 || parameters.pra == 90 

        procfilenameplus = sprintf('proc_%s.txt',filenames{ii}); 

    else 

        procfilenameplus = sprintf('proc_%s_++.txt',filenames{ii}); 

    end 

    fid = fopen(procfilenameplus,'w'); 

    for jj = 1:numel(lines); 

        fprintf(fid,'%s\n',lines{jj}); 

    end 

    fclose(fid); 

    [s,r] = system(sprintf('chmod +x %s',procfilenameplus)); 
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    %% Perform processing 

    if nhsqcflag(ii) 

        copyfile('fid',filenames{ii}); 

        [s,r] = system(sprintf('%s %s',procfilenameplus,filenames{ii})); 

    elseif parameters.pra ~= 0 && parameters.pra ~= 90; 

        procfilenameminus = sprintf('proc_%s_-+.txt',filenames{ii}); 

        fid = fopen(procfilenameminus,'w'); 

        for jj = 1:numel(lines); 

            fprintf(fid,'%s\n',lines{jj}); 

        end 

        fclose(fid); 

        [s,r] = system(sprintf('chmod +x %s',procfilenameminus)); 

         

        % perform PRSP separation of PRHNCO projection into positive and negative angles 

        [s,r] = system(sprintf('/usr/local/bin/prsp -s 3 2 fid %s',filenames{ii})); 

        d = dir; 

        d = struct2cell(d); 

        temp_files = d(1,strmatch('pdz_',d(1,:))); 

         

        [s,r]= system(sprintf('%s %s',procfilenameplus,temp_files{1})); 

        [s,r]= system(sprintf('%s %s',procfilenameminus,temp_files[1])); 

     

    % Next 2 if clauses do PRSP separation on 0 & 90 projections acquired with phase1 = 1,2     

    elseif parameters.pra == 90 && sum([numel(parameters.phase) numel(parameters.phase2)]) == 4             

%  

        [s,r] = system(sprintf('/usr/local/bin/prsp -s 3 2 fid %s',filenames{ii})); 

        delete(sprintf('%s_-+',filenames{ii})); 

        movefile(sprintf('%s_++',filenames{ii}),filenames{ii}); 

        [s,r] = system(sprintf('%s %s',procfilenameplus,filenames{ii})); 

    elseif parameters.pra == 0 && sum([numel(parameters.phase) numel(parameters.phase2)]) == 4 

        [s,r] = system(sprintf('/usr/local/bin/prsp -s 3 2 fid %s',filenames{ii})); 

        delete(sprintf('%s_-+',filenames{ii})); 

        movefile(sprintf('%s_++',filenames{ii}),filenames{ii}); 

        [s,r] = system(sprintf('%s %s',procfilenameplus,filenames{ii})); 

    else 

        copyfile('fid',filenames{ii}); 

        [s,r] = system(sprintf('%s %s',procfilenameplus,filenames{ii})); 

    end 

     

    cd .. 

     

    param{ii} = parameters; 

    commands{ii} = lines; 

     

end 

%% Setup directory structure, move files, and collect most relevant parameters 

if ~fast1 

    try 

        matlabpool close 

    catch 

    end 

end 

  

!mkdir pr 

!mv pdz*/*.ft2 pr/ 

!mkdir fidfiles 

!mv pdz*/pdz*.fid* fidfiles/ 

!mv pdz*/proc*.txt fidfiles/ 

  

for ii = 1:numel(param) 

    p.pra(ii) = param{ii}.pra; 

    p.nt(ii) = param{ii}.nt; 

    p.sw1(ii) = param{ii}.sw1; 

    p.sw(ii) = param{ii}.sw; 

    p.ni(ii) = param{ii}.ni; 

    p.dof(ii) = param{ii}.dof; 

    p.dof2(ii) = param{ii}.dof2; 

    p.sfrq(ii) = param{ii}.sfrq; 

    p.dfrq(ii) = param{ii}.dfrq; 

    p.dfrq2(ii) = param{ii}.dfrq2; 
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    p.gain(ii) = param{ii}.gain; 

    p.array{ii} = param{ii}.array{1}; 

    p.f1180{ii} = param{ii}.f1180; 

end 

  

save parameters p 

 

 

process_2d_nmrpipe_with_phase.m 

function [bestphase,spectra,threshold,numwhites] = 

process_2d_nmrpipe_with_phase(phases,procfile,fidfilename) 

%% Function to process data with new phases and get spectrum 

nphases = size(phases,1); 

% read procfile to get processing script 

lines = read_text_file_all_lines(procfile); 

l = strmatch('| nmrPipe -fn PS',lines); 

for ii = 1:nphases; 

    writeprocfilephases(lines,l,phases(ii,:),procfile) 

    % process with new phases 

    [spectra(:,:,ii)] = process_get_spectrum(procfile,fidfilename); 

    if ii == 1; 

        tempspectra = spectra; 

        spectra = zeros(size(spectra,1),size(spectra,2),nphases); 

        spectra(:,:,1) = tempspectra(:,:,1); 

    end 

end 

threshold = 1*mean(abs(spectra(:))); 

whitespace = abs(spectra) < threshold; 

nonwhitespace = abs(spectra) >= threshold; 

spectra_threshold = spectra .* nonwhitespace; 

posneg = squeeze(mean(mean(spectra_threshold))) > 0; 

numwhites = posneg .* squeeze(sum(sum(whitespace))); 

[c,maxwhiteindex] = max(numwhites); 

bestphase = phases(maxwhiteindex,:); 

  

end 

  

  

%%  

function [spectrum] = process_get_spectrum(procfile,fidfilename) 

  

ftfilename = sprintf('%s.ft2',fidfilename);                        % currently, procfiles have 

the output set to $1.ft2 

[s,r] = system(sprintf('%s %s',procfile,fidfilename)); 

fid = fopen(ftfilename);                                            % read ft file into matlab 

and store data 

[header,count] = fread(fid,512,'float32'); 

xpoints = header(100); ypoints = header(99); 

[spectrum,count2] = fread(fid,[xpoints ypoints],'float32'); 

fclose(fid); 

% delete(ftfilename); 

end 

  

  

%%  

function writeprocfilephases(lines,l,phases,procfile) 

lines{l(1)} = sprintf('| nmrPipe -fn PS -p0 %1.1f -p1 %1.1f -di \\',phases(1),phases(2)); 

lines{l(2)} = sprintf('| nmrPipe -fn PS -p0 %1.1f -p1 %1.1f -di \\',phases(3),phases(4)); 

fid = fopen(procfile,'w'); 

for kk = 1:numel(lines); 

    fprintf(fid,'%s\n',lines{kk}); 

end 

fclose(fid); 

[s,r] = system(sprintf('chmod +x %s',procfile)); 

end 

 

 

twodautophasing_fmin_short.m 
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function [score,optimizephase,exitflag,output] = 

twodautophasing_fmin_short(procfile,fidfilename,bestphase,threshold) 

  

  

lines = read_text_file_all_lines(procfile); 

l = strmatch('| nmrPipe -fn PS',lines); 

  

[score(1)] = optimizewhitespace(bestphase,lines,l,procfile,fidfilename,threshold); 

  

f = @(x)optimizewhitespace(x,lines,l,procfile,fidfilename,threshold); 

options = optimset('Display','iter','TolX',1,'TolFun',1); 

[optimizephase,score(2),exitflag,output] = fminsearch(f,bestphase,options); 

  

% cd .. 

  

end 

  

  

%% 

function [numnonwhites] = optimizewhitespace(phases,lines,l,procfile,fidfilename,threshold) 

writeprocfilephases(lines,l,phases,procfile) 

[spectrum] = process_get_spectrum(procfile,fidfilename); 

whitespace = abs(spectrum) < threshold; 

nonwhitespace = abs(spectrum) >= threshold; 

spectrum_threshold = spectrum .* nonwhitespace; 

posneg = squeeze(mean(mean(spectrum_threshold))) > 0; 

numwhites = posneg .* squeeze(sum(sum(whitespace))); 

numnonwhites = numel(spectrum)-numwhites; 

end 

  

  

%%  

function [spectrum] = process_get_spectrum(procfile,fidfilename) 

  

ftfilename = sprintf('%s.ft2',fidfilename);                        % currently, procfiles have 

the output set to $1.ft2 

[s,r] = system(sprintf('%s %s',procfile,fidfilename)); 

fid = fopen(ftfilename);                                            % read ft file into matlab 

and store data 

[header,count] = fread(fid,512,'float32'); 

xpoints = header(100); ypoints = header(99); 

[spectrum,count2] = fread(fid,[xpoints ypoints],'float32'); 

fclose(fid); 

% delete(ftfilename); 

end 

  

  

%%  

function writeprocfilephases(lines,l,phases,procfile) 

lines{l(1)} = sprintf('| nmrPipe -fn PS -p0 %1.1f -p1 %1.1f -di \\',phases(1),phases(2)); 

lines{l(2)} = sprintf('| nmrPipe -fn PS -p0 %1.1f -p1 %1.1f -di \\',phases(3),phases(4)); 

fid = fopen(procfile,'w'); 

for kk = 1:numel(lines); 

    fprintf(fid,'%s\n',lines{kk}); 

end 

fclose(fid); 

[s,r] = system(sprintf('chmod +x %s',procfile)); 

end 

 

 

prcalc_prhnco_write_and_process.m 

function prcalc_prhnco_write_and_process 

%AUTOPHASE_PDZ_PRHNCO_WHITE tries to automatically find optimal phasing for 2D spectra used for 

PRHNCO experiments 

%   [phases,bestphase,singlebestphase] = 

autophase_pdz_prhnco_white(startbestphase,startincrement,debug) 

%   [phases,bestphase,singlebestphase] = autophase_pdz_prhnco_white([0 0 0 0],90,1) 

% 

%INPUTS 

%    
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%NOTES 

%    

% 

%DEPENDENCIES 

%    

%09/01/09 

%Alan Poole, Ranganathan Lab, alanpoole@alumni.wfu.edu 

  

%% Load parameters 

% Expect a single variable "p" 

try 

    load parameters.mat 

catch 

    load ../parameters.mat 

end 

% read all FT files 

d = dir; 

d = struct2cell(d); 

ftfiles = d(1,strmatch('pdz_',d(1,:))); 

ftfiles = ftfiles(strfindincell(ftfiles,'.ft2')); 

  

for ii = 1:numel(ftfiles); 

    fid = fopen(ftfiles{ii}); 

    [header{ii}] = fread(fid,512,'float32'); 

    xpoints(ii) = header{ii}(100); ypoints(ii) = header{ii}(99); 

    xsw(ii) = header{ii}(101); ysw(ii) = header{ii}(230); 

    [spectra{ii}] = fread(fid,[xpoints(ii) ypoints(ii)],'float32'); 

    fclose(fid); 

end 

  

%% set prhnco parameters 

% N15 parameters 

ix = p.pra == 90; nsw = max(p.sw1(ix)); 

nsize = 256; 

nfrq = p.dfrq2(1); 

nppm = p.dof2(1)/nfrq + 89;   % note this parameter is approximate - referencing is out of date 

% C13 parameters 

ix = p.pra == 0; csw = max(p.sw1(ix)); 

csize = 256; 

cfrq = p.dfrq(1); 

cppm = p.dof(1)/cfrq + 92; 

% H1 parameters 

% test that all x sw's are the same. 

xsw2 = xsw - xsw(1);  

xpoints2 = xpoints - xpoints(1); 

tf = isequal(xsw2,zeros(size(xsw2))) && isequal(xpoints2,zeros(size(xpoints2)));  

if ~tf 

    disp('H Dim sweep widths or number of points are not equal') 

    return 

end 

hsw = xsw(1); 

hsize = xpoints(1); 

hfrq = p.sfrq(1); 

hppm = (header{1}(102)+header{1}(101)/2)/header{1}(120); 

  

%% Match angles to ft filenames ... this may not be foolproof!!!! 

nft = numel(ftfiles); 

junk = char(ftfiles); 

firstunmatch = find((sum(repmat(junk(1,:),nft,1) == junk) == nft) == 0); 

prefix = ftfiles{1}(1:firstunmatch-1); 

minusprefix = cellstr(junk(:,firstunmatch:end)); 

basicangles = p.pra; 

  

% set angle = 90 for nhsqc if it exists 

ixnhsqc = strfindincell(ftfiles,'nhsqc'); 

if ~isempty(ixnhsqc) 

    angles(ixnhsqc) = 90; 

    ix90 = find(basicangles == 90); 

    basicangles = basicangles(setdiff(1:numel(basicangles),ix90(1))); 

    minusprefix(ixnhsqc) = []; 

end 
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if ~allsame(p.dof2) 

    disp('Warning - nitrogen center (dof2) does not match for all files check NHSQC file if 

used') 

end 

  

basicangles = sort(basicangles,'descend'); 

for ii = 1:numel(basicangles); 

    anglematches{ii} = strfindincell(minusprefix,num2str(basicangles(ii))); 

    angles(anglematches{ii}) = basicangles(ii); 

    minusprefix(anglematches{ii}) = []; 

end 

  

for ii = 1:numel(angles); 

    if strfind(ftfiles{ii},'-+') 

        angles(ii) = -angles(ii); 

    end 

end 

  

  

%% Get peak intensities 

for ii=1:numel(ftfiles); 

    peakthreshold = 5*mean(spectra{ii}(:)); 

    [numpeaks(ii),sumintensities(ii),intensities{ii}] = 

nmrDrawpeaklist(ftfiles{ii},peakthreshold,1,1) 

    while numpeaks(ii) > 500 

        peakthreshold = peakthreshold*2; 

        [numpeaks(ii),sumintensities(ii),intensities{ii}] = 

nmrDrawpeaklist(ftfiles{ii},peakthreshold,1,1) 

    end 

    while numpeaks(ii) < 100 

        peakthreshold = peakthreshold/2; 

        [numpeaks(ii),sumintensities(ii),intensities{ii}] = 

nmrDrawpeaklist(ftfiles{ii},peakthreshold,1,1) 

    end 

    sortintensities{ii} = sort(intensities{ii},'descend'); 

    topintensities(:,ii) = sortintensities{ii}(1:100); 

end 

scale = max(sum(topintensities)) ./ sum(topintensities); 

  

%% Write File 

  

fid = fopen(sprintf('prcalc_prhnco_controlfile_%s.txt',prefix),'w'); 

fprintf(fid,'# pr-calc control file for PSD95PDZ3 %s PRHNCO\n',prefix); 

fprintf(fid,'prcalc version = 1\n\nexpt dims = 3\n'); 

fprintf(fid,'{ label = N15  sw = %g  size = %g  tilt = 1  sf = %4.3f  centerppm = %1.3f 

}\n',nsw,nsize,nfrq,nppm); 

fprintf(fid,'{ label = C13  sw = %g  size = %g  tilt = 1  sf = %4.3f  centerppm = %1.3f 

}\n',csw,csize,cfrq,cppm); 

fprintf(fid,'{ label = H1  sw = %4.3f  size = %g  tilt = 0  sf = %4.3f  centerppm = %1.3f 

}\n\n',hsw,hsize,hfrq,hppm); 

for ii = 1:numel(ftfiles); 

   fprintf(fid,'proj %g  dims = 2  { sw = %g  angles = *, %g, 90 }  { angles = 90, 90, 0 }  scale 

= %1.3f  file = %s\n',ii,ysw(ii),angles(ii),scale(ii),ftfiles{ii}); 

end 

  

 

read_procpar.m 

function [parameters] = read_procpar(filename) 

  

fid = fopen(filename); 

xx=1; 

while 1 

    tline = fgetl(fid); 

    if ~ischar(tline),   break,   end 

    procparlines{xx} = tline; 

    xx = xx+1; 

end 

fclose(fid); 
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searchterm = {'np 7' 'sfrq 1 1' 'tof 5' 'ni 7' 'sw 1 1' 'sw1 1 1' 'sw2 1 1' 'phase 1 1' 'phase2 

7' 'pra 1' 'nt 7' 'dof 5' 'dfrq 5' 'dfrq2 1' 'gain 1' 'array ' 'f1180 4' 'dof2 5'}; 

param = {'np' 'sfrq' 'tof' 'ni' 'sw' 'sw1' 'sw2' 'phase' 'phase2' 'pra' 'nt' 'dof' 'dfrq' 'dfrq2' 

'gain' 'array' 'f1180' 'dof2'}; 

  

for ii = 1:numel(param); 

    ix = strmatch(searchterm{ii},procparlines); 

    if isempty(ix) 

        continue 

    end 

    if strcmp('array',param{ii}); 

        a = textscan(procparlines{ix+1},'%n %s %*[^\n]'); 

        paramvalues{ii} = a[1]; 

    elseif strcmp('f1180',param{ii}); 

        a = textscan(procparlines{ix+1},'%n %s %*[^\n]'); 

        paramvalues{ii} = a[1]{1}(2); 

    else 

        a = textscan(procparlines{ix+1},'%n %n %*[^\n]'); 

        a = cell2mat(a); 

        if a(1) == 2; 

            a = textscan(procparlines{ix+1},'%n %n %n %*[^\n]'); 

            a = cell2mat(a); 

            paramvalues{ii} = a(2:3); 

        else 

            paramvalues{ii} = a(2); 

        end 

    end 

end 

  

parameters.param = param; 

parameters.paramvalues = paramvalues; 

for ii = 1:numel(param); 

    eval(sprintf('parameters.%s = paramvalues{%g};',param{ii},ii)); 

end 

  

 

read_text_file_all_lines.m 

function [lines] = read_text_file_all_lines(filename); 

  

fid = fopen(filename); 

lines = textscan(fid,'%s','Delimiter','\n'); 

lines = lines{1}; 

fclose(fid); 
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Appendix 5: Sample PR-Calc Control File for HNCO Projection Reconstruction 
# pr-calc control file for PSD95PDZ3 PR HNCO 

prcalc version = 1 

 

expt dims = 3 

{ label = N15     sw = 2200  size = 256   tilt = 1 sf=60.781 centerppm=120.0 } 

{ label = C13    sw = 2000  size = 256   tilt = 1 sf=150.838 centerppm=176.0 }  

{ label = H1    sw = 2703.125  size = 692  tilt = 0 sf=599.772 centerppm=8.75 } 

 

proj  1  dims = 2 { sw = 2000 angles =  *,  00.00, 90.00 } { angles = 90.00, 90.00, 00.00 } scale = 2.0 file = pdz_mut71_0.fid.ft2 

proj  2  dims = 2 { sw = 2000 angles =  *,  22.50, 90.00 } { angles = 90.00, 90.00, 00.00 } file = pdz_mut71_22.5.fid_++.ft2 

proj  3  dims = 2 { sw = 2000 angles =  *, -22.50, 90.00 } { angles = 90.00, 90.00, 00.00 } file = pdz_mut71_22.5.fid_-+.ft2 

proj  4  dims = 2 { sw = 2000 angles =  *,  45.00, 90.00 } { angles = 90.00, 90.00, 00.00 } file = pdz_mut71_45.fid_++.ft2 

proj  5  dims = 2 { sw = 2000 angles =  *, -45.00, 90.00 } { angles = 90.00, 90.00, 00.00 } file = pdz_mut71_45.fid_-+.ft2 

proj  6  dims = 2 { sw = 2200 angles =  *,  67.50, 90.00 } { angles = 90.00, 90.00, 00.00 } file = pdz_mut71_67.5.fid_++.ft2 

proj  7  dims = 2 { sw = 2200 angles =  *, -67.50, 90.00 } { angles = 90.00, 90.00, 00.00 } file = pdz_mut71_67.5.fid_-+.ft2 

proj  8  dims = 2 { sw = 2200 angles =  *,  90.00, 90.00 } { angles = 90.00, 90.00, 00.00 } scale = 1.8 file = pdz_mut71_90.fid.ft2 
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Appendix 6:  Matlab script for automated residue assignments based on similarity to 
a similar spectrum 

 
function [hnco,hncopeakmatch] = assign_without_replacement(hnco_assigned,hnco) 

%ASSIGN_WITHOUT_REPLACEMENT Performs matching (without replacement) of unassigned HNCO peaks to a 

set of assigned HNCO peaks 

%   [hnco] = assign_without_replacement(hnco_assigned,hnco) 

% 

%INPUTS 

%   hnco_assigned - data structure with the following fields 

%       hncowt =  

%           peak: [114x1 double] 

%           Hshift: [114x1 double] 

%           COshift: [114x1 double] 

%           Nshift: [114x1 double] 

%           volume: [114x1 double] 

%           intensity: [114x1 double] 

%           residue: [1x114 double] 

%   hnco - data structure with all fields above except 'residue' 

% 

%CAUTION:  hnco_assigned and hnco need to be overlayed (aligned) using alignpeaklist2reference.m 

first 

% 

%NOTES:  Use read_hnco_peaklist.m to get inputs 

% 

%DEPENDENCIES:  none 

% 

% Alan Poole, Ranganathan Lab 

%% 

count = 1; 

hncoleft = hnco; 

  

while numel(hnco_assigned.residue) > 0 && numel(hncoleft.peak) > 0; 

    % calculate distances from every hnco_assigned peak to the closest hnco peaks 

    for ii = 1:numel(hnco_assigned.residue); 

        [dist(ii),hncopeaknum(ii)] = find_closest_peak_hnco(hnco_assigned.shifts(ii,:),hncoleft); 

    end 

    % find the closest pair of peaks 

    [y,ix] = min(dist); ix = ix(1); 

    % keep talley of matching peaks and distances 

    hncopeakmatch(count,:) = [hnco_assigned.residue(ix) hncopeaknum(ix) dist(ix)]; 

    count = count +1; 

    % update hnco_assigned to exclude the most recently matched peak 

    hnco_assignedleft = setdiff(1:numel(hnco_assigned.residue),ix); 

    hnco_assigned.residue = hnco_assigned.residue(hnco_assignedleft); 

    hnco_assigned.shifts = hnco_assigned.shifts(hnco_assignedleft,:); 

    % update hncoleft to exclude the most recently matched peak 

    hncoix = setdiff(1:numel(hncoleft.peak),find(hncoleft.peak == hncopeaknum(ix))); 

    if isempty(hncoix); disp(['All hnco peaks used up.  ' num2str(numel(hnco_assigned.residue)) ' 

assigned hnco_assigned peaks unmatched']); end; 

    hncoleft.peak = hncoleft.peak(hncoix); 

    hncoleft.shifts = hncoleft.shifts(hncoix,:); 

    clear dist hncopeaknum y ix hnco_assignedleft hncoix 

end 

  

% hnco.residue contains the residue identity that each hnco.peak was matched to 

[c,ia,ib] = intersect(hnco.peak,hncopeakmatch(:,2)); 

hnco.residue = NaN(size(hnco.peak)); 

hnco.residue(ia,1) = hncopeakmatch(ib,1); 

% hnco.matchorder is the order in which the peaks were matched.  lower index peaks were closer to 

reference peaks 

hnco.matchorder(ia,1) = ib; 

  

end 

  

%% Included functions 

function [dist,peaknumber,diff] = find_closest_peak_hnco(peakloc,peaklist2) 

% modified on 10/14/09 to use H C N ordering and peaklist.shifts field 
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diff = [peaklist2.shifts(:,1) - peakloc(1) peaklist2.shifts(:,2) - peakloc(2) 

peaklist2.shifts(:,3) - peakloc(3)]; 

normdiff = diff; 

normdiff(:,2) = normdiff(:,2)*.39;  

normdiff(:,3) = normdiff(:,3)*.17; 

  

distances = sqrt(sum(normdiff'.^2)); 

  

[dist,index] = min(distances); 

peaknumber = peaklist2.peak(index); 

  

diff = diff(index,:); 

end 

 

 

 

function [aligned_peaklist,offset,dsum] = 

alignpeaklist2reference(refpeaks,peaklist2align,fraction_peaks2use) 

%ALIGNPEAKLIST2REFERENCE Aligns one HNCO peaklist to a reference HNCO peaklist 

%   [aligned_peaklist] = alignpeaklist2reference(refpeaks,peaklist,0.5) 

% 

%INPUTS 

%   refpeaks - reference peaklist data structure with the following required fields: peak, 

Hshift, COshift, Nshift 

%   peaklist - peaklist to align to refpeaks.  same requirement as above 

%   fraction_peaks2use - [0 to 1] use the closest fraction of peaks for alignment.  [1] aligns 

all peaks in refpeaks 

% 

%DEPENDENCIES 

%   everything is included 

% 

% Alan Poole, Ranganathan Lab 

  

%% find optimum overlay of the peaks 

options = optimset('MaxFunEvals',1000000,'TolFun',1e-7,'TolCon',1e-7); 

[offset,dsum,exitflag,output] = fmincon(@overlayhncopks,[0 0 0],[],[],[],[],[-1 -1 -1],[1 1 

1],[],options); 

  

% correct for offset to get optimum overlay 

aligned_peaklist = peaklist2align; 

aligned_peaklist.Hshift = peaklist2align.Hshift - offset(1); 

aligned_peaklist.COshift = peaklist2align.COshift - offset(2); 

aligned_peaklist.Nshift = peaklist2align.Nshift - offset(3); 

aligned_peaklist.shifts = peaklist2align.shifts - repmat(offset,size(peaklist2align.shifts,1),1); 

  

%% Nested Function 

    function [dsum] = overlayhncopks(offsetguess) 

        H = refpeaks.Hshift + offsetguess(1); 

        CO = refpeaks.COshift + offsetguess(2); 

        N = refpeaks.Nshift + offsetguess(3); 

         

        numpeaks = numel(refpeaks.peak); 

        dists = zeros(numpeaks,1); 

        for ii = 1:numpeaks; 

            [dists(ii)] = find_closest_peak_hnco([H(ii) CO(ii) N(ii)],peaklist2align); 

        end 

         

        [dists,ixdistsort] = sort(dists); 

        numpeaks2use = floor(numpeaks*fraction_peaks2use); 

        dists = dists(1:numpeaks2use); 

         

        dsum = sum(dists); 

         

    end 

end 

  

%% Included function 

function [dist] = find_closest_peak_hnco(peakloc,peaklist2) 

  

Hdiff = peakloc(1) - peaklist2.Hshift; 

COdiff = peakloc(2) - peaklist2.COshift; 
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Ndiff = peakloc(3) - peaklist2.Nshift; 

  

distances = sqrt(Hdiff.^2 + (0.17*Ndiff).^2 + (0.39*COdiff).^2); 

[dist,index] = min(distances); 

end 
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Appendix 7:  Matlab script for calculating chemical shift change between mutant and 
wild-type HNCO spectra 

 
function [data,dsum] = 

hnco_perturbation(wtpeaklist,mutant_key,res2calculate,residue_number_offset,match_algorithm,use_a

ssignments,new_or_old_offsets) 

%HNCO_PERTURBATION_NO_REPLACEMENT Calculate chemical shift perturbations 

%from WT and mutant peaklists. 

%  

%INPUTS 

%   wtpeaklist - filename of the wild-type dataset 

%   mutant_key - text file correlating mutant numbers to residue numbers 

%   res2calculate - residue numbers for which to calculate chemical shift perturbations 

%   residue_number_offset - numerical offset to match PDB or other numbering convention 

%   match_algorithm - 'replace' or 'no_replace' 

%   use_assignmens - 1 to use assignments, 0 to not use them 

%   new_or_old_offsets - 'new' or 'old' - 'new' will write a new offsets file 

% 

%NOTES:   

% 1) Must be executed from directory with all peaklists 

% 2) Mutant peaklists must be in form "pdz_mut##_*.xpk" 

% 3) Directory must include "mutant_key" 

% 

%DEPENDENCIES:  

%   read_hnco_peaklist.m 

%   alignpeaklist2reference.m 

%   assign_without_replacement.m 

% 

% Alan Poole, Ranganathan Lab, 09/24/09 

  

%% Setup 

% get mutant peaklist names 

d = dir; 

d = struct2cell(d); 

ix = strmatch('pdz_mut',d(1,:)); 

peaklists = d(1,ix); 

clear ix d 

  

% read in wt peaklist - must be assigned 

[hncowt] = read_hnco_peaklist(wtpeaklist,1); 

  

% adjust for residues to calculate 

[c,ia,ib] = intersect(hncowt.residue,res2calculate); 

data.residues = hncowt.residue(ia) + residue_number_offset; 

data.res2peakwt = hncowt.peak(ia)'; 

data.wtpeakloc = hncowt.shifts(ia,:); 

clear c ib 

  

%read mutant key to match mutant numbers to residue numbers 

fid = fopen(mutant_key); 

c = textscan(fid,'%n%s%n%s'); 

fclose(fid); 

  

% extract mutant numbers & residues from peaklist filename & mutant key 

for jj = 1:numel(peaklists); 

    x = strfind(peaklists{jj},'mut') + 3; 

    xx = strfind(peaklists{jj},'_'); 

    xxx = str2num(peaklists{jj}(x:xx(2)-1)); 

    data.mutnum(jj) = xxx; 

    ix = find(c{1} == xxx); 

    data.muts(jj) = c{3}(ix); 

%     mutations{jj} = [num2str(c{3}(ix) + residue_number_offset) ' ' c{2}{ix} ' to ' c{4}{ix}]; 

    mutations{jj} = [c{2}{ix} num2str(c{3}(ix) + residue_number_offset) c{4}{ix}]; 

end 

  

% sort data by ascending residue numbers 

[mutations2,ix2] = sortrows(char(mutations)); 

peaklists = peaklists(ix2); 

data.mutnum = data.mutnum(ix2); 
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data.muts = data.muts(ix2) + residue_number_offset; 

data.mutations = mutations2; 

clear ix2 mutations x xx xxx 

data.assigned = zeros(size(data.muts)); 

  

if strfind(peaklists{1},'pep'); 

    freepep = 'pep'; 

else 

    freepep = 'free'; 

end 

  

% read offset file if not computing new offsets 

if strcmp(new_or_old_offsets,'old') 

    [offsets] = read_offsets(freepep); 

end 

     

%% Loop over all mutant peaklists 

for jj = 1:numel(peaklists); 

    disp(jj) 

    disp(peaklists{jj}) 

    % read mutant peaklist 

    hncopks2 = peaklists{jj}; 

    if use_assignments; 

        [hnco2] = read_hnco_peaklist(hncopks2,1); 

        hnco2.residue = hnco2.residue + residue_number_offset; 

        % if >90 residues are assigned, set data.assigned(index) = 1 

        if sum(~isnan(hnco2.residue)) > 90; 

            data.assigned(jj) = 1; 

        else 

            [hnco2] = read_hnco_peaklist(hncopks2,0); 

        end 

    else 

        [hnco2] = read_hnco_peaklist(hncopks2,0); 

    end 

      

    % use calculated offsets or find optimum overlay of the peaks 

    if strcmp(new_or_old_offsets,'old') 

        ix3 = offsets(:,1) == data.muts(jj); 

        data.offset{jj} = offsets(ix3,2:4); 

        hnco2.shifts = hnco2.shifts - repmat(data.offset{jj},size(hnco2.shifts,1),1); 

    else 

        [hnco2,offset,dsum(jj)] = alignpeaklist2reference(hncowt,hnco2,0.5); 

        data.offset{jj} = offset;      clear offset 

    end 

     

    % use assignments in peaklist if available, otherwise make best guess by matching without 

replacement 

    if ~data.assigned(jj) && strcmp(match_algorithm,'no_replace') 

        [hnco2] = assign_without_replacement(hncowt,hnco2); 

        hnco2.residue = hnco2.residue + residue_number_offset; 

    end 

     

     

    for ii = 1:numel(data.residues); 

        if isfield(hnco2,'residue') && ismember(data.residues(ii),hnco2.residue); 

            ix = find(hnco2.residue == data.residues(ii)); 

            data.csd(ii,:,jj) = hnco2.shifts(ix,:) - data.wtpeakloc(ii,:); 

            data.res2mutpeak(ii,jj) = hnco2.peak(ix); 

        else 

            [junk1,data.res2mutpeak(ii,jj),data.csd(ii,:,jj)] = 

find_closest_peak_hnco(data.wtpeakloc(ii,:),hnco2); 

        end 

    end 

end 

  

data.csdnorm = data.csd; data.csdnorm(:,2,:) = data.csdnorm(:,2,:)*.39; data.csdnorm(:,3,:) = 

data.csdnorm(:,3,:)*.17; 

data.city = squeeze(sum(abs(data.csdnorm),2)); 

data.rms = squeeze(sqrt(sum(data.csdnorm.^2,2))); 

data.allshifts = 

reshape(data.csdnorm,size(data.csdnorm,1)*size(data.csdnorm,2),size(data.csdnorm,3)); 
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if isfield(data,'assigned'); data.assigned = logical(data.assigned); end; 

  

%% Offset file 

if strcmp(new_or_old_offsets,'new'); 

    fid = fopen(sprintf('offsets_%s.txt',freepep),'w'); 

    for ii = 1:numel(data.muts); 

        fprintf(fid,'%g %g %g 

%g\n',data.muts(ii),data.offset{ii}(1),data.offset{ii}(2),data.offset{ii}(3)); 

    end 

    fclose(fid); 

end 

end 

  

  

%% Extra Functions 

function [offsets] = read_offsets(freepep) 

fid = fopen(sprintf('offsets_%s.txt',freepep),'r'); 

offsetscan = textscan(fid,'%f %f %f %f\n'); 

fclose(fid); 

offsets = cell2mat(offsetscan); 

end 

  

  

function [dist,peaknumber,diff] = find_closest_peak_hnco(peakloc,peaklist2) 

% modified on 10/14/09 to use H C N ordering and peaklist.shifts field 

  

diff = [peaklist2.shifts(:,1) - peakloc(1) peaklist2.shifts(:,2) - peakloc(2) 

peaklist2.shifts(:,3) - peakloc(3)]; 

normdiff = diff; 

normdiff(:,2) = normdiff(:,2)*.39;  

normdiff(:,3) = normdiff(:,3)*.17; 

  

distances = sqrt(sum(normdiff'.^2)); 

  

[dist,index] = min(distances); 

peaknumber = peaklist2.peak(index); 

  

diff = diff(index,:); 

end 

 

 

function [structure] = read_hnco_peaklist(filename,assigned_flag) 

  

fid = fopen(filename); 

for ii = 1:6; header{ii} = fgetl(fid); end; 

C = textscan(fid,'%f%s%f%*s%*s%*s%*s%*s %s%f%*s%*s%*s%*s%*s  %s%f%*s%*s%*s%*s%*s %f%f%*[^\n]'); 

fclose(fid); 

nuclei = textscan(header{2},'%s%s%s'); 

for ii = 1:numel(nuclei); nuclei{ii} = nuclei{ii}{1}; end; 

H1 = strmatch('H1',nuclei); 

N15 = strmatch('N15',nuclei); 

C13 = strmatch('C13',nuclei); 

nuclei_cell_array = [3 5 7]; 

structure.peak = C{1}; 

structure.Hshift = C{nuclei_cell_array(H1)}; 

structure.COshift = C{nuclei_cell_array(C13)}; 

structure.Nshift = C{nuclei_cell_array(N15)}; 

structure.shifts = [structure.Hshift structure.COshift structure.Nshift]; 

structure.volume = C{8}; 

structure.intensity = C{9}; 

  

  

if assigned_flag; 

    tempres = C{2}; 

    % here, I am assuming that the residue name formatting looks like {56.HN} 

%     assigned_index = strfindincell(tempres,'HN'); 

    assigned_index = find(~cellfun(@isempty,strfind(tempres,'HN'))); 

  

    assigned_res = tempres(assigned_index); 

    dots = strfind(assigned_res,'.'); 
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    for ii = 1:numel(assigned_res); 

        res2(ii) = str2double(assigned_res{ii}(2:dots{ii})); 

    end 

    structure.residue(1,1:numel(tempres)) = NaN; 

    if numel(assigned_index); structure.residue(1,assigned_index) = res2; end 

end; 

 

 

function [data] = restrict_hnco_pert_data(data,residues,muts) 

%RESTRICT_HNCO_PERT_DATA Restrict chemical shift perturbation data to defined residues and 

mutants 

% 

%INPUTS 

%   data - data structure produced by hnco_perturbation.m 

%   residues - residue numbers of observed positions to keep 

%   muts - residue numbers of mutants to keep 

% 

%Alan Poole, Ranganathan Lab, 03-02-2010 

%% 

[~,ia] = intersect(data.residues,residues); 

[~,ib] = intersect(data.muts,muts); 

data.residues = data.residues(ia); 

data.res2peakwt = data.res2peakwt(ia); 

data.wtpeakloc = data.wtpeakloc(ia,:); 

data.muts = data.muts(ib); 

data.mutnum = data.mutnum(ib); 

data.mutations = data.mutations(ib,:); 

data.assigned = data.assigned(ib); 

data.offset = data.offset(ib); 

data.res2mutpeak = data.res2mutpeak(ia,ib); 

data.csd = data.csd(ia,:,ib); 

data.csdnorm = data.csdnorm(ia,:,ib); 

data.city = squeeze(sum(abs(data.csdnorm),2)); 

data.rms = squeeze(sqrt(sum(data.csdnorm.^2,2))); 

data.allshifts = 

reshape(data.csdnorm,size(data.csdnorm,1)*size(data.csdnorm,2),size(data.csdnorm,3)); 


