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Nuclear hormone receptors are master regulators of diverse cellular functions 

implicated in tumor pathogenesis and as oncogenic drivers of many human cancers.  To 

better understand what role these important receptors might be playing in lung cancer, three 

interconnected studies were initiated to assess nuclear receptor function, expression, and 

drugability within the lung cancer context. 

First, a “technology development” project was undertaken to produce and 

troubleshoot a CLIA-certifiable, high-throughput biomarker platform capable of mRNA 

expression signature assessment from FFPE specimens. The platform was used to assess 

NR/CoReg expression levels across a 500+ sample FFPE dataset.  Categorical NR/CoReg 

downregulation upon tumor progression as well as survival benefits for patients retaining a 

non-pathological NR/CoReg expression pattern were discovered. 
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Second, a panel of 110 NR ligands was screened across a 100-member cell line panel 

representative of all clinically-relevant facets of lung and breast cancers to pharmacologically 

interrogate these receptors as novel lung cancer targets.  Following completion of this 

screening effort, three classes of ligands targeting the estrogen, glucocorticoid, and vitamin D 

receptors (ER, GR, and VDR respectively) that exert anti-proliferative phenotypes on 

specific subsets of the lung cancer cell lines were identified.  Of particular note, several of 

these agents are routinely used in current clinical practice (particularly dexamethasone) and 

represent excellent candidates for rapid clinical translation of these findings. 

Finally, an RNAi-based systematic functional interrogation of NR/CoReg function 

was undertaken in a 100+ member cell line panel representative of all clinically-relevant 

facets of lung and breast cancers.  A reproducible classification of lung and breast cancers 

was defined based on their holistic functional states as represented by the RNAi dataset.  

Each of these “clades” of cancer cell lines was demonstrated to be specifically targetable by 

unique siRNA reagents capable of inducing growth attenuation or amplification in only that 

clade of cell lines.  Further investigation into the mechanisms of action of these siRNA 

reagents unexpectedly revealed that the phenotypes were largely mediated by miRNA-like 

seed sequence based effects rather than target-directed siRNA total complementarity 

silencing.  Following this discovery, efforts were undertaken and subsequently completed to 

identify the “true” targets of these clade-specific siRNAs. 
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CHAPTER ONE: Literature Review of Relevant Background 
Topics 

1.1 Nuclear Receptors: Master Regulators of Cellular Function 
 

Nuclear Receptors (NRs) are a unique class of proteins which serve as global regulators 

of many cellular functions.  There are 48 members of the NR superfamily which 

conventional phylogenic studies divide into seven subgroups (1999).  An alternate method of 

classifying NRs, cladistic analysis of anatomical profiling of NR transcript levels, finds six, 

similar subgroups--suggesting the conserved structure of these receptors plays a strong role 

in their function (Bookout, Jeong et al. 2006). 

 

Evolutionary, NRs are found only in metazoans with different species exhibiting a wide 

range in terms of the number of NR family members they possess (for example, C. Elegans 

has 284 NRs while rats have 47, mice have 49, and humans have 48)  (Escriva, Langlois et 

al. 1998; Zhang, Burch et al. 2004).  NRs contain five structural domains: (A) an N-terminal 

domain, (B) a DNA binding domain, (C) a hinge region, (D) a ligand binding domain, and 

(E) a C-terminal domain (Kumar and Thompson 1999).  The presence of a DNA binding 

domain allows NRs to function as transcription factors, bind DNA, and directly regulate the 

expression of adjacent genes (Tang, Chen et al. 2011). 

1.1.2 The Unique Mechanism of Nuclear Receptors 
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One of the key differences between NRs and other transcription factors is the NR’s ligand 

binding domain. Typically, the binding of a ligand (a lipophilic substance such as a hormone, 

or a xenobiotic endocrine disruptor) induces an allosteric change in the conformation of the 

receptor which activates it, leading to the up and down regulation of genes (Schupp and 

Lazar 2010).  Ligands are typically classified according to their mechanism of action 

(broadly, agonist or antagonist), the receptor(s) they bind, and whether or not they are 

naturally occurring (Sladek 2011). 

 

NRs fall into four broad classes in terms of their mechanisms of action in response to 

ligands (Mangelsdorf, Thummel et al. 1995).  Type I receptors reside as monomers bound by 

complexes in the cytosol until a ligand binding event leads to homo-dimerization of the 

receptor and translocation to the nucleus where it binds specific hormone response elements 

(HREs) and subsequently exerts its effects.  In contrast, Type II receptors exist in the nucleus 

regardless of their ligand binding status and exert their effects as hetero-dimers.  The activity 

of the receptor changes in response to ligand binding typically through the exchange of 

repressive Co-Regulator (CoReg) proteins for activating CoReg proteins.  Type III and IV 

receptors are similar to Type I differing mainly in the types of HREs they bind (an inverted 

repeat for Type I, a direct repeat for Type III, and a binding of only a single half site for Type 

IV). 
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Because of their unique mechanism, NRs represent the idealized drug target, a protein 

which naturally possesses a lipophilic small molecule binding pocket and changes its activity 

in response to a binding event(Aranda and Pascual 2001).  Given this, it is no surprise that 

the NR superfamily is the most targeted family of proteins (drugs/per family member) with 

13% of all FDA approved drugs targeting one of these receptors (Overington, Al-Lazikani et 

al. 2006).  NR targeting ligands can be endogenous, xenobiotic, or synthetic in origin and, 

although differing definitions of “ligand” makes concrete numbers difficult, it can be safely 

stated that more than 200 bona fide NR ligands have been identified to date (Sladek 2011), 

(www.nursa.org). 

1.1.3Various Mechanisms of Ligand Action 
 

Ligands can exert their effects through a variety of mechanisms each of which has a 

specific nomenclature (Germain, Staels et al. 2006).   

(A) Agonists:  Ligands classified as agonists simply bind the receptor and lead to its 

activation (typically through locking the receptor in the active conformation).  

Some examples of NR agonists include estradiol’s action on estrogen receptors α 

and β (ERα, ERβ) and dihydrotestosterone on androgen receptor (AR). 

(B) Antagonists:  Loosely, antagonists are compounds which prevent a nuclear 

receptor from adopting an active conformation.  This can occur through a variety 

of mechanisms including bulky side chains that prevent co-activator binding 

(AF-2 antagonists, exemplified by BMS614 and Retinoic Acid Receptor alpha) 
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and inactive conformations of the receptor induced by the antagonist binding 

event (such as THC’s mechanism of action on ERβ)  (Germain, Iyer et al. 2002; 

Shiau, Barstad et al. 2002). 

(C) Inverse Agonists:  Inverse Agonists are synthetic ligands capable of preventing 

the basal activity of NRs even in the absence of exogenous agonist.   This can be 

accomplished through the recruitment of Co-Repressors or though induced 

conformational changes (Greschik, Flaig et al. 2004). 

(D) Selective Nuclear Receptor Modulators:  Selective Nuclear Receptor Modulators 

(SNuRMs) represent an class of ligands that exhibit either agonist or antagonist 

activity dependent on the environmental context.  Because of their unique 

mechanism, SNuRMs have proven invaluable when attempting to overcome side 

effects associated with NR targeted drugs.  Tamoxifen is the prototypical 

example of a SNuRM which acts as an antagonist in breast tissue and an agonist 

in uterus due to higher SRC-1 levels in uterine tissue (Shang and Brown 2002).  

Typically, the differential expression of CoRegs is responsible for the specificity 

of SNuRMs (Smith and O'Malley 2004). 

  

1.2Co-Regulators: Partners with Nuclear Receptors 
 

Co-Regulators (CoRegs) are a much larger family of proteins than nuclear receptors 

(NRs) consisting of more than 300 members (Lee, Lee et al. 2001).  Unlike nuclear receptors, 

the family is not defined by structural similarity, but rather by functional similarity.  
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Specifically, a CoReg is any molecule that interacts with a nuclear receptor for the purpose of 

either (1) enhancing the NR’s transactivation (termed a coactivator) or (2) lowering the 

transcription rate at the NR’s target genes (termed a corepressor) (McKenna, Lanz et al. 

1999).  Initially, each CoReg was typecast as either a coactivator or a corepressor, but more 

recent studies have blurred the lines between the distinctions to some degree (O'Malley and 

McKenna 2008). 

 

CoRegs are an answer to how nuclear receptors can simultaneously control the activation 

and repression of hundreds of genes within a given cell (Glass and Rosenfeld 2000).  

Furthermore, the differential expression of CoRegs in different tissue types allows for the 

same nuclear receptor to have completely opposing effects on the same gene in different 

contexts (Aranda and Pascual 2001).   

1.2.1 General Model of CoRegulator Function 
 

Much variation exists among CoRegs as to the methods by which they are regulated 

(such as phosphorylation (Rowan, Weigel et al. 2000) or ubiquitination (Lonard, Nawaz et al. 

2000)) and the mechanisms by which they influence NR action.  However as a general rule, 

CoRegs exist in large complexes in a cell with these complexes then interacting directly 

(protein-protein) with NRs (McKenna, Nawaz et al. 1998).  CoRegs can receive signals from 

a large number of cellular signaling pathways including cross-talk from G protein coupled 

receptors and tyrosine signaling pathways (McKenna and O'Malley 2002). 
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1.2.2 CoRegulators and Cancer 
 

Despite their relatively recent identification, important roles for many CoRegs (both 

coactivators and corepressors) have been identified within the cancer context (O’Malley and 

Kumar 2009).  Specifically, more than half of the identified CoRegs to date have been found 

to have roles in various diseases (presumably because of their regulatory nature on NRs) with 

the most common being the cancer context (O'Malley 2006).  Some of the most highly 

studied CoRegs within the cancer context include SRC3, MTA1, and PCBP1.  SRC3 is 

amplified in approximately 10% of breast cancers and overexpressed in more than half of all 

cases (Anzick, Kononen et al. 1997).  Mouse knockout/overexpression studies with SRC3 

have confirmed its role as an oncogene within the cancer context (Torres-Arzayus, Font de 

Mora et al. 2004).  Similar to SRC3, MTA1 has also been found to be overexpressed in a 

variety of tumors (Manavathi and Kumar 2007).  MTA1 has been shown to work in concert 

with estrogen receptor alpha (ERa) to allow the estrogen-independent growth of tumor cells 

(Manavathi and Kumar 2007).  

1.3 Cancer 
 

 Given its prevalence and impact on modern society, cancer as a disease scarcely 

needs introduction.  In 2012, more than fourteen million new cases of cancer occurred 

globally and cancer was responsible for more than eight million deaths worldwide 

(approximately 14% of all human deaths) (World Cancer Report, WHO 2014).  Cancer is 

also one of the oldest known diseases with tumors having been discovered in Egyptian 
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mummies (David and Zimmerman 2010).  It has been described continuously throughout all 

medical history with reports being found in the writings of many diverse cultures from 

antiquity until modern day (Hajdu 2011).  Furthermore, the burden of cancer is increasing in 

virtually all developing/developed countries – presumably due to changes in diets, physical 

activity levels, air quality, exposure to carcinogens, and generally increased life expectancies  

(Jemal, Bray et al. 2011). 

  

1.3.1 Characteristics of Human Cancer 
 
 

Broadly defined, cancer is considered the abnormal growth of cells (caused by multiple 

changes in gene expression leading to a dysregulated balance of cell proliferation and cell 

death) that ultimately evolves into a population of cells that can invade tissues and 

metastasize to distant sites, causing significant morbidity and, if untreated, death of the host.  

Our understanding of the disease has changed significantly in the last twenty-five years with 

cancer now being largely considered a disease driven by genetic changes (Tamborero, 

Gonzalez-Perez et al. 2013).    

 

In reality, “cancer” is an umbrella term used to refer to many subsets of disease.  Each 

sub-disease can be distinguished by variations in age of onset, rate of growth, state of cellular 

differentiation, invasiveness, response to treatment, prognosis, and (arguably most 

importantly) tissue of origin (Greystoke and Mullamitha 2012).  Further sub-divisions exist 

within each tissue site which can be defined histopathologically or by the increasingly more 
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common molecularly defined methods as are commonly used in breast cancer (ER/PR/HER2 

status) or in lung cancer (KRAS/EGFR mutation status)  (Engstrom, Opdahl et al. 2013), 

(Benesova, Minarik et al. 2010).   

 

Mortality rates vary greatly between different cancer types with some having a good 

prognosis (such as breast (~80% survive) or prostate (~85% survive) cancers) and others 

being particularly deadly (such as lung (~5-10% survive) or colon (~10% survive) cancers) 

(Siegel, Naishadham et al. 2013).  Furthermore, mortality rates for different cancer subtypes 

have changed dramatically over the last 100 years with deaths due to stomach cancer today 

being half of what they were in the 1930s (presumably due to the introduction of 

preservatives) and lung cancer deaths having increased by five to ten fold during the same 

time period (largely due to increased smoking rates)  (Ngoan, Mizoue et al. 2002). 

1.3.2 Causes of Cancer 
 

Surprisingly despite centuries of study, researchers still do not have a comprehensive 

picture of the cause(s) of cancer.  However, some general concepts have been understood that 

have been applied to great benefit.  Specifically, it is know that genetic alterations 

(mutations, copy number changes, deletions, rearrangements) are responsible for much (but 

not all) of human cancer with two genetic events generally being considered the minimum 

number for early stage cancers to develop (Knudson 2001).  An extensive list has now been 

delineated of genes known to contribute either positively (oncogenes) or negatively (tumor 

suppressors) to the genesis of cancer with new genes being added regularly (Lengauer, 
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Kinzler et al. 1998).  Genetic events can occur through a variety of mechanisms including 

heredity, viral infections, metabolic-associated oxidative stress, radiation induced DNA 

brakes, and chemical carcinogens  (Jackson and Loeb 2001).  Our understanding of 

carcinogens has led to restrictions or bans on the use of many chemicals (Reviewed: 

(Siemiatycki, Richardson et al. 2004)) with the most famous case being the linking of 

cigarette smoking to lung cancer (Sasco, Secretan et al. 2004).   

1.3.3 The Epidemiology of Human Cancer 
 

Epidemiological studies of cancer have been invaluable in furthering our understanding 

of cancer biology.  Some key epidemiological findings will be reviewed. 

The most basic epidemiological finding surrounding cancer is the association of cancer 

incidence with age (average age for all sites is 67)  (Gloeckler Ries, Reichman et al. 2003) 

with the large majority of cancers occurring either early (developmental/hereditary cancers) 

or late in life (induced cancers due to genetic events).  Accounting for the most cancer deaths 

in men, the most common cancer worldwide is lung cancer--which tracks closely with 

smoking incidence with a lag time of approximately 20 years in both men and women  

(Loeb, Ernster et al. 1984).   

 

Also of importance, the prevalence of different cancer types varies significantly across 

regions with some notable examples being the disproportionately high rates of bladder cancer 

in Africa, liver cancer in China, and colorectal cancer in the developed world (Kamangar, 
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Dores et al. 2006).  Furthermore, the molecular subtypes found within a given disease can 

vary greatly by region.  For example, EGFR mutations are found much more commonly in 

Asian patients than in patients of European or North American origin (Boch, Kollmeier et al. 

2013).   

 

Within each cancer, epidemiological studies have also revealed that the underlying 

driving factors vary greatly between different cancer types.  For example, KRAS mutations 

are common in lung, liver, and colon cancers while breast cancer is often driven by hormonal 

factors or loss of tumor suppressors such as BRCA1 (Wang, Kaiser et al. 2013), (Carter 

2001).  In contrast, cervical cancer is most commonly associated with sexually transmitted 

infection with certain species of human papilloma virus (Crosbie, Einstein et al. 2013). 

1.3.4 The Biochemistry and Cell Biology of Cancer 
 

Since the 1920s work of Otto Warburg, it has been appreciated that there are differences 

between the biochemistry of cancerous cells and normal ones (Warburg, 1930).  Subsequent 

studies have further defined the common phenotypes of cancerous cells and broadly 

characterized them into ten categories known as the hallmarks of cancer (Hanahan and 

Weinberg 2011).   

 

 First and foremost, cancer cells must be able to continuously divide – a property 

referred to as “replicative immortality.”  When cells divide many times, they can encounter 
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problems due to telomere (the end caps of chromosomes) shortening.  The majority of cancer 

cells avoid this problem by activating telomerase, an enzyme capable of maintaining 

telomere integrity, though other possible mechanisms have been reported (Shay and Wright 

2011).  Because telomerase is normally expressed only in rare stem cells, this property of 

cancer has led some to hypothesize that stem cells may be preferentially selected as the cell 

or origin for many cancers (Sell 2004; Bu and Cao 2012). 

 

Along similar lines, cancer cells must maintain a fine balance between mutation-inducing 

genome instability and prevention of the cell’s ability to detect the DNA damage it has 

incurred.  Because cancers are generally caused by DNA damage, breakage of the cell’s 

DNA repair machinery is almost universal among cancers.  Of particular note, recent 

sequencing studies have identified a new subclass of cancers (characterized by an ultra-high 

number of mutations) driven exclusively by a pro-mutation environment permitted through 

mutations in POLE (Palles, Cazier et al. 2013).   

 

The mass DNA damage incurred by most cancers would typically not be permitted in a 

cell except that cancers universally develop an ability to sabotage or circumvent the cell’s 

attempts to apoptose (commit cellular suicide).  Resisting cell death is a key hallmark of 

cancer and can be accomplished through many different (often overlapping) mechanisms.  

The most common apoptosis avoidance mechanism is the inactivation of p53 which is 

observed in more than 50% of human cancers (Hollstein, Sidransky et al. 1991).  Other 
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mechanisms include mutation or deletion of key genes in the apoptotic machinery or 

upregulation of negative regulators of apoptosis (such as BCL-2) (Ashkenazi 2002). 

 

In addition to preventing apoptosis signals, a cancer cell must also prevent growth 

suppressive signals.  Typically, these are encountered in the form of cell cycle checkpoints or 

negative regulators of the cell cycle (Rabbani and Cordon-Cardo 2000).  Cell cycle 

machinery has been well-defined through countless studies (Murray 2004) and mutations can 

be found scattered throughout nearly all the “brakes” on this system with notable recurrent 

mutations occurring in Rb, CDK4, CDK6, CCND2, and CDKN2 (Nojima 1997). 

 

While disconnecting the “brakes” on the cellular growth machinery is important, equally 

important for a cancer cell is to obtain a sustaining proliferative signal.  Frequently referred 

to as driving mutations, these proliferative signals receive particular attention because much 

research has shown that cancers can often become “addicted” to these growth signals and that 

removal of the signal can lead to the rapid death of the cell  (Weinstein and Joe 2006).  There 

are many sources of proliferative signals that vary among different cancer types that can be 

arranged into common pathways (Jones, Zhang et al. 2008).  Some examples include KRAS 

or EGFR mutations (Benesova, Minarik et al. 2010), PIK3CA/PTEN alterations (Gonzalez-

Angulo, Ferrer-Lozano et al. 2011), androgen receptor signaling in prostate cancer (Heinlein 

and Chang 2004), and estrogen receptor signaling in breast cancer (Sommer and Fuqua 

2001). 
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As the pro-proliferative signals take effect, cancer cells quickly encounter atypical energy 

requirements for their growth and must change their metabolism accordingly – altering their 

production and consumption rates and methods of synthesis of carbohydrates, proteins, 

lipids, and nucleic acids.  Furthermore, cancer cells shift from oxidative phosphorylation to 

glycolysis for ATP production (the Warberg effect and the basis for PET imaging of tumors) 

presumably to reduce oxidative stress and to allow for more growth under the hypoxic 

conditions found in many tumors  (Annibaldi and Widmann 2010).     The first recognized 

change in cancer cells, deregulation of cellular energetics, remains an active topic of 

research, an active target for new therapeutics, and a mysterious segment of cancer biology 

that is not yet fully characterized  (Cairns, Harris et al. 2011).    

 

As a tumor continues to grow, it encounters new problems resulting from its increased 

resource consumption.  First among these new problems is the need for an increased blood 

supply  (Otrock, Mahfouz et al. 2007).  As tumors grow larger, the diffusion limitations of 

oxygen and nutrients become too great, and cells in the center of the tumor become necrotic 

and do not receive enough oxygen to sustain their growth (Carmeliet 2005).  To combat this 

problem, tumors initiate a process known as angiogenesis – the growth of new blood vessels  

(Tahergorabi and Khazaei 2012).  Several agents have been developed targeting this process 

most notably among which is Bevacizumab, an antibody that works by inhibiting Vascular 

Endothelial Growth Factor-A (VEGF-A) (Shih and Lindley 2006).   
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Eventually, even the local resources available following angiogenic processes are 

insufficient to allow for the continued growth of the tumor, and the cells begin the process of 

invading to new sites.  This process, known as metastasis, is what is ultimately responsible 

for most cancer morbidity and mortality as these new growths can often occur in more 

perilous locations such as the brain or liver (Valastyan and Weinberg 2011).  Although 

models vary, the typical understanding of metastasis is referred to as epithelial-to-

mesenchymal transition (EMT) whereby cells alter their properties to allow them to survive 

outside of their niche and away from adhesion signals  (Leber and Efferth 2009).  It is also 

commonly hypothesized that cells which have undergone EMT are more “stem-like” and 

have increased drug resistance properties (Singh and Settleman 2010). 

 

Finally, underlying every step of the oncogenic process is the requirement for a cancer 

cell to evade immune detection.  Although it is difficult to study, the increased incidence 

rates of cancer in immunosuppressed/immunocompromised individuals strongly suggests that 

the immune system actively detects and eliminates early stage cancers (Grulich, van 

Leeuwen et al. 2007).  Furthermore, tumor associated inflammation caused by immune cell 

invasion/infiltration into tumors plays a key role in tumor cell proliferation and immune 

tolerance  (Philip, Rowley et al. 2004).  All of these concepts have recently received much 

attention following the successful clinical trial results with anti-PD-1 antibodies (Nivolumab) 
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which are the first clinical demonstration that breaking immune tolerance can lead to tumor 

regressions (Topalian, Hodi et al. 2012). 

1.4 Lung Cancer 
 

1.4.1 Statistics 
 

Worldwide, lung cancer is the most common cause of cancer-related death in men and 

women accounting for more than 1.5 million deaths in 2012 – more than breast, colon, 

prostate, and pancreatic cancers combined (Siegel, Naishadham et al. 2013).  Considering all 

stages together, lung cancer has an approximately sixteen percent five-year survival rate with 

early stage tumors generally having good prognosis (>80% survival rates) and late stage 

tumors being nearly universally fatal (Henschke, Yankelevitz et al. 2006).   

 

The largest risk factor for developing lung cancer is undisputedly smoking with more 

than eighty percent of lung cancer cases occurring in patients reporting long-term exposure to 

tobacco smoke  (Boyle 1997).  Risk of lung cancer development is approximately eleven to 

twenty-two times higher for smokers. A dose-response relationship exists whereby heavy 

smokers are more likely than light smokers to develop lung cancer, and cessation of smoking 

results in lowered risk of mortality from lung cancer versus patients who do cease smoking 

(Shopland, Eyre et al. 1991).  Also noteworthy, lung cancer pathophysiology in never 

smokers has been found to be significantly different than in smokers – harboring fewer 
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mutations overall, higher incidence of EGFR mutations, and generally different pathologies 

(Sun, Schiller et al. 2007).   

1.4.2 Molecular Epidemiology 
 

Not surprisingly, “lung cancer” is an umbrella term encompassing many diverse disease 

states.  The most common subdivision is accomplished through pathological analysis and 

breaks lung cancer down into either small-cell lung carcinoma (SCLC, roughly twenty 

percent of cases) or non-small-cell lung carcinoma (NSCLC, roughly eighty percent of cases) 

(Jemal, Bray et al. 2011).   NSCLC can be further broken down into three subgroups: (1) 

adenocarcinoma - approximately forty percent of lung cancers, most common subtype among 

people classified as “never-smokers,” (2) squamous-cell carcinoma - approximately thirty 

percent of lung cancers, and (3) large-cell carcinoma - approximately ten percent of lung 

cancers  (Travis 2011).  Other subtypes exist that are not generally officially recognized 

(such as neuroendocrine) but which may have important clinical implications (Varlotto, 

Medford-Davis et al. 2011). 

 

 Increasingly commonly, lung cancer is also sub-classified by the particular molecular 

markers found in a given instance regardless of histotype.  The most well-studied of these is 

EGFR which drives ten to thirty percent of lung cancers (depending on which patient 

population is studied--EGFR mutations are much more common in Asian populations) and is 

the molecular marker defining EGFR inhibitor sensitivity (da Cunha Santos, Shepherd et al. 

2011).  Equally important, KRAS mutations are found in approximately twenty to thirty 



 
 

17 
 

percent of lung cancer patients and represent a particularly challenging form of the disease as 

there is currently no targeted therapy for these patients (Roberts and Stinchcombe 2013).  

Other identified drivers include HER2, BRAF, PIK3CA, AKT1, MAP2K1, and MET with 

each making up a small percentage (less than five percent) of patients (Pao and Girard 2011).  

Trials are underway testing targeted therapies for each of these subsets. 

1.4.3 Treatment 
 

The most common treatments for lung cancer include palliative care, surgery, 

chemotherapy, radiation therapy, and (increasingly) targeted therapies (Cagle and Chirieac 

2012).  NSCLC and SCLC are typically treated differently with surgery being quite common 

in NSCLC while SCLC receives only chemo/radiation combinations (Cooper and Spiro 

2006).  Chemotherapy regiments for lung cancer almost universally include a platinum-based 

agent combined with either etoposide for SCLC or a taxane for NSCLC.  Generally, 

radiotherapy is also included – especially when surgical options are unavailable (Goffin, 

Lacchetti et al. 2010) . 

 

In cases where oncogene addiction can be demonstrated by presence of certain molecular 

markers or fusion products, targeted therapies have proven very successful  (Larsen, Cascone 

et al. 2011).  Unfortunately, targeted therapy treatment is almost universally accompanied 

with relapse and resultant recurrent tumors are much more refractory to further treatment  

(Tang, Salama et al. 2013). 
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1.4.4 Nuclear Receptors and Lung Cancer 
 

As has been discussed, lung cancer is a strikingly heterogeneous disease and, as such, 

comprehensive characterization of its pathobiology has proven elusive.  Of particular note, 

little work has been done to characterize a comprehensive role for nuclear receptors in lung 

cancer.  Scattered reports exist in the literature of various NR ligands potentially having 

effects in lung cancer (particularly retinoids (example: (Fritz, Kennedy et al. 2011)) and 

glucocorticoids (example: (Greenberg, Hu et al. 2002))), but none have been conclusive.   

 

Preliminary work by the Minna and Mangelsdorf laboratories has sought to offer a broad 

scale view of NRs in lung cancer.  Initial studies have profiled the expression levels of the 

forty eight nuclear receptors across a panel of lung cancer cell lines and demonstrated 1) NR 

expression patterns are different between tumor and normal samples, 2) NR expression 

patters can subtype lung cancer specimen, and 3) NR ligands can be effective in some cases 

at eliciting an antitumor response (Jeong, Xie et al. 2012).  Further studies demonstrated the 

potential of NR expression signatures to provide prognostic information (Jeong, Xie et al. 

2010). 

 

1.5 RNAi Technology 
 

In 1998, it was discovered in C. Elegans that that mRNA could be specifically 

targeted by carefully designed, double stranded RNA molecules resulting in target cleavage, 

a discovery which led to a quick Nobel Prize award just eight years later (Fire, Xu et al. 
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1998).  siRNAs were then discovered a year later as a natural phenomenon in plants 

(Hamilton and Baulcombe 1999) and synthetic siRNAs were first used to silence specific 

target transcripts in mammalian cells two years later (Elbashir, Harborth et al. 2001).  Since 

then, the transformative power of this technology has been quickly realized, and genome-

wide libraries have been developed and used to screen the functional relationships of mRNAs 

to a variety of phenotypes, particularly focusing on the viral infection and oncology fields 

where functional relationships are key (Cullen 2006).   

 

  Extensive research has gone into optimizing the structure of synthetic siRNAs with 

short (usually 21 base pair) double-stranded RNAs featuring 5’ phosphorylated ends and 

hydroxylated 3’ ends with two overhanging nucleotides proving the most effective design.  

This design compromises between being too short for effective target specificity and too long 

such that cells activate an interferon response (Sioud 2006; Olejniczak, Galka et al. 2010).  

Naturally produced siRNAs are processed by the dicer enzyme from long double-stranded 

RNAs and short hairpin RNAs while synthetic siRNAs are transfected into cells through a 

lipid-based transfection reagent protocol  (Bernstein, Caudy et al. 2001).  RNAi specificity is 

excellent with even single-nucleotide base changes completely abolishing activity (Du, 

Thonberg et al. 2005). 

 

  With more than twenty-nine genome-wide siRNA screens having been completed by 

2011 (Sigoillot and King 2011), there can be no doubt that siRNA technology has had a 
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major impact on our understanding of functional biology.  Of particular note, three screens 

were performed in the context of HIV (Brass, Dykxhoorn et al. 2008; Zhou, Xu et al. 2008; 

Yeung, Houzet et al. 2009) to identify host factors targetable for the treatment of the disease 

(meta-analysis of the three screens (Bushman, Malani et al. 2009)).  Similarly, multiple 

independent screens were done to identify targets exhibiting synthetic lethality in conjunction 

with KRAS mutation (Sarthy, Morgan-Lappe et al. 2007; Barbie, Tamayo et al. 2009; Luo, 

Emanuele et al. 2009; Scholl, Frohling et al. 2009). 

1.5.1 RNAi and the miRNA Machinery: Initial Discoveries 
 

 As early as 2003, just two years after the first report of a synthetic siRNA in 

mammalian cells, it was discovered that siRNAs were capable of using more of the miRNA 

machinery than just the dicer enzyme and that they were, in fact, capable of functioning as 

miRNAs (Doench, Petersen et al. 2003).  In a landmark paper, it was also reported in 2003 

that siRNAs could downregulate other targets in addition to their intended target (Jackson, 

Bartz et al. 2003).  Months later, a second group independently confirmed the finding 

(Semizarov, Frost et al. 2003), and studies were undertaken to further refine the technology 

to overcome these “off-target” silencing events and to elucidate the mechanisms that might 

control them. 

 

Following these initial reports, much was learned about the interactions of synthetic 

siRNAs with the miRNA machinery.  Work in 2005 discovered that siRNA-mediated off-

target silencing was triggered by a 7-nucleotide portion of the siRNA (later termed the 
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siRNA’s “seed sequence”) (Lin, Ruan et al. 2005), and a second study identified Argonaute2 

as the protein responsible for cleavage of the guide strand of the siRNA during RISC 

activation, explaining why only one of the potential two seed sequences was causing off-

target silencing through the miRNA machinery (Rand, Petersen et al. 2005). 

1.5.2 RNAi miRNA-Like Off-Target Effects: A Wide-Spread Phenomenon 
 

In 2006, the floodgates were opened and many papers were published including several 

highly influential reviews (Echeverri and Perrimon 2006; Ma, Creanga et al. 2006) and 

methods papers (Cullen 2006; Echeverri, Beachy et al. 2006) detailing proper techniques to 

ensure the accurate interpretation of RNAi data.  It was discovered that off-target effects 

were highly prevalent in Drosophila RNAi screens as well as those done in mammalian cells 

(Ma, Creanga et al. 2006), and that off-target effects were due to 3’ UTR seed matches, not 

the overall identity of the siRNA to the off-target transcript (Birmingham, Anderson et al. 

2006; Jackson, Burchard et al. 2006). 

 

Since 2006, consensus has been reached that miRNA-like off-target effects pose a real 

problem for siRNA screens.  Much work has been done on elucidating the exact mechanisms 

by which seed sequences (Anderson, Birmingham et al. 2008; Brodersen and Voinnet 2009) 

and other parts of the siRNA (Grimson, Farh et al. 2007; Dahlgren, Zhang et al. 2008) 

contribute to off-target selection.  Other studies have focused on better defining the scale of 

the problem with array profiles being assessed for the non-targeting control siRNA against 
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GFP (Tschuch, Schulz et al. 2008) or the mechanisms by which the miRNA machinery 

selects its targets (Czech and Hannon 2011). 

1.6 Strategies to Overcome RNAi Based Off-Target Effects 
 

Since as early as 2005-almost immediately following the first reports of off-target effects- 

much research has been conducted in an effort to produce new reagents or strategies to 

overcome the challenges presented by siRNAs silencing transcripts in addition to their 

intended targets.  These efforts can be broadly categorized as (1) novel siRNA 

chemistries/structures, (2) alternative RNAi triggers, (3) better experimental designs, and (4) 

algorithms to predict and avoid off-target events.  Each will be reviewed below. 

1.6.1 Novel siRNA Chemistries/Structures. 
 

Initial work in the field of novel siRNA chemistries/structures focused on the use of 

locked nucleic acid (LNA) technology to improve both the stability of the siRNA (to aid in in 

vivo delivery) and to reduce off-target events (Elmen, Thonberg et al. 2005).  LNA 

technology modifies the ribose moiety with an extra bridge connecting the 2’ oxygen and the 

4’ carbon effectively “locking” the ribose and reducing flexibility/increasing the melting 

temperature of the oligo (Kaur, Arora et al. 2006; Owczarzy, You et al. 2011).  Although this 

technique seemed initially promising, further study demonstrated reduced silencing efficacy 

of these oligos, and difficulties in commercialization due to restrictive licensing options with 

patents prevented widespread use of LNAs in the siRNA field  (Mook, Baas et al. 2007). 
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Structural analysis of siRNAs discovered that the 2’-OH was not required for siRNA 

activity (Chiu and Rana 2003).  This finding has led to many different modifications of 

siRNAs at this position for a variety of purposes (Reviewed: (Watts, Deleavey et al. 2008)), 

the most common and frequently utilized being 2’-O-Methylation (2’-O-Me).  2’-O-Me is 

now the basis of Dharmacon’s “On-Target Plus®” product technology (one of the most 

popular siRNA products currently available) following a 2006 report demonstrating reduced 

numbers of downregulated “off-target” transcripts when using 2’-O-Me modified siRNAs 

(Jackson, Burchard et al. 2006).  Subsequent studies have been conflicting as to the efficacy 

of 2’-O-Me siRNAs with most groups reporting reduced silencing efficiency (Elbashir, 

Martinez et al. 2001; Braasch, Jensen et al. 2003; Chiu and Rana 2003; Czauderna, Fechtner 

et al. 2003) although other reports see little loss of activity (Choung, Kim et al. 2006).  

Presumably, these differences in efficacy are due to differences in experimental design 

(Kraynack and Baker 2006). 

To summarize, it is accepted in current literature that chemical modifications of 

siRNAs are capable of reducing off-target profiles and improving in vivo delivery mechanics 

of siRNAs.  However, it is also clear that no current modification scheme has been able to 

effectively solve either the off-target issue or in vivo immunogenicity concerns (Reviewed: 

(Engels 2013)). 

1.6.2 Alternative RNAi Triggers 
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Since their first identification in 2003 (Jackson, Bartz et al. 2003), off-target effects 

have led researchers to investigate alternative methods for triggering RNA-interference 

events that might achieve the same results without propagating unintended silencing events.  

The two main classes of reagents studied under this field are short-hairpin RNAs (shRNA) 

and endoribonuclease prepared siRNAs (esiRNA). 

 

Short hairpin RNAs (shRNAs) are a sequence of RNA that enters the cellular RNAi 

machinery and achieves gene silencing (Reviewed: (Rao, Vorhies et al. 2009)).  Unlike 

siRNAs, shRNAs are delivered through an expression vector which can be transfected into 

the cell as a plasmid or, more commonly, transduced using a viral or bacterial vector system 

(Singer and Verma 2008).  This vector then drives expression of the shRNA which is then 

further processed by cellular machinery to ultimately yield siRNA (Tijsterman and Plasterk 

2004).  shRNAs were first developed in 2002 (almost immediately after the initial reports 

that siRNAs worked in mammalian systems) as a method to allow for more inexpensive 

production of siRNAs as well as to allow for in vivo studies using RNAi (Brummelkamp, 

Bernards et al. 2002; Paddison, Caudy et al. 2002).   

 

Despite their widespread use, far fewer studies have been conducted to assess the 

potential that shRNAs might have for causing off-target effects than have been conducted 

with siRNAs (Reviewed: (Rao, Senzer et al. 2009)).  However, one key study conducted in 

2010 reported reduced off-target silencing from shRNAs although a robust off-target 
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signature could still be detected with the reagent (Klinghoffer, Magnus et al. 2010).  One 

possible mechanism explaining this reduction in unintended silencing events was given with 

the 2012 discovery that shRNA processing by Dicer is not as robust as previously thought 

and multiple different siRNAs could be produced from the same shRNA under certain 

conditions  (Gu, Jin et al. 2012).  Another safeguard employed by shRNA users is inherent to 

the typical shRNA screen design whereby many shRNAs targeting the same transcript are 

used independently and then the results are viewed holistically to consider if each 

independent reagent is producing the same phenotype (suggestive of an on-target effect). 

 

First introduced in 2002, endoribonuclease prepared siRNAs (esiRNA) offer a unique 

approach to solving the off-target effects issue (Yang, Buchholz et al. 2002).  esiRNA 

reagents are produced by the targeted digestion – using RNAse III - of an amplified target 

sequence (typically 400 to 600 base pairs in length).  Because miRNA specificity can be 

altered by a single frame-shift in the seed region, esiRNA pools represent approximately four 

to six hundred independent siRNAs, each with their own seed sequence, that all target the 

original transcript (Kittler, Surendranath et al. 2007).  The technology has been used 

successfully on the genome scale (Kittler, Pelletier et al. 2007; Ding, Paszkowski-Rogacz et 

al. 2009), in Zebrafish (Liu, Wang et al. 2005), and in more targeted experiments (Kolas, 

Chapman et al. 2007; Lawo, Bashkurov et al. 2009). 
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Although esiRNA reagents do convincingly reduce seed-based effects almost to the 

point of elimination (Kittler, Surendranath et al. 2007), these reagents unfortunately come 

with their own set of technical challenges.  Specifically, the enzymatic digestion step with 

RNAse III produces fragments of various sizes--the largest of which are capable of triggering 

an interferon response in cells. The interferon response is a highly-studied phenomenon 

whereby cells detect double stranded RNA (dsRNA) using complex sensors and undergo 

self-destruction in response, presumably to help prevent viral propagation (Reviewed: 

(Olejniczak, Galka et al. 2010)).  Because of their specific 21 nucleotide size, siRNAs are 

typically able to avoid triggering this response.  However, the 25 nucleotide fragments 

sometimes resultant following esiRNA production are often sufficient to trigger interferon 

responses, especially in particularly susceptible tissues.  Because of this drawback, esiRNA 

has seen limited use and it remains to be seen if further technical advancement will be 

achieved with esiRNA technology to allow for its widespread application. 

1.6.3 Better Experimental Designs 
 

One of the simplest and most common methods employed to avoid off-target effects 

involves basic changes to experimental protocols which are thought to reduce, avoid, 

prevent, or detect phenotypes resultant from off-target silencing events.  The first strategy 

developed (which is today almost universally employed) is the pooling of siRNA reagents 

targeting the same transcript (Echeverri and Perrimon 2006).  Similar to the concept behind 

endoribonuclease prepared siRNAs (esiRNAs), pooling synthetic siRNA reagents aims to 
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reduce off-target events by introducing a variety of seed sequences while continuing to 

maintain a single on-target transcript (Myers, Chi et al. 2006).  Although it is commonly 

acknowledged that using pools with fewer than 10 or 20 independent siRNAs is unable to 

fully prevent off-target silencing, the practice of performing pooled siRNA screens still 

continues. Some reasons that have been cited for the continued use of pooled siRNAs in 

screening protocols include that using pools might help reduce the magnitude of some off-

target events, and that using a pool of four siRNAs may increase knockdown efficiency of 

the intended target.  Interestingly, it has now been experimentally shown that screens which 

use pools of siRNAs find more phenotypic results than those using individual siRNAs 

(Parsons, Schindler et al. 2009). 

 

The other common experimental design technique employed by researchers for 

enhancing confidence in the specificity of phenotypic results is the validation of results by a 

second silencing reagent targeting the same transcript.  Used as a common standard for 

publication, “validation by a secondary silencing trigger” has been recommended as 

sufficient proof of on-target activity in lieu of the gold standard genetic rescue experiment 

(Cullen 2006; Mohr, Bakal et al. 2010).  While this method adds some confidence in the on-

target nature of the reported results, it has been demonstrated to be far from sufficient in 

many cases (Sigoillot and King 2011). 

1.6.4 Algorithms to Predict and Avoid Off-Target Effects 
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A different approach to avoiding miRNA-based off-target effects is the 

implementation of bioinformatics tools to try and design siRNA sequences that are less likely 

to cause off-target events (reviewed: (Tilesi, Fradiani et al. 2009)).   While many of papers 

touting tools along this vein have been published, each approach can be broadly categorized 

as follows: 

(A) Functional Off-Target Filtering: Functional off-target filtering is a two-step 

methodology that tries to use known relationships between proteins to predict off-

target events.  First, the algorithm identifies a list of transcripts that could 

potentially be downregulated by a given siRNA through a miRNA-like 

mechanism.  This list is then cross-compared to previously-derived lists of genes 

that are thought to have the same functional mechanism as the on-target of the 

siRNA being designed (Das, Ghosal et al. 2013).  (To clarify the concept with an 

example: In a siRNA screen for novel regulators of the TGFb pathway, test 

siRNAs which are predicted through computational methods to target known 

regulators of the TGFb pathway would be thrown out of the analysis as they 

would be suspected to be causing their phenotypes through an off-target 

mechanism.)  Functional filtering has been used in many other off-target 

algorithms (examples: (Iyer, Deutsch et al. 2007; Wang, Varma et al. 2009; 

Mysara, Garibaldi et al. 2011)) but has the obvious limitation of being ultimately 

hindered by the reliability and completeness of the known functional lists to 

which comparisons are being made. 
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(B) Thermodynamics/Secondary Structure Analysis: Thermodynamic/Secondary 

Structure Analysis is a category broadly encompassing algorithms that attempt to 

minimize the potential for off-target effects by computationally assessing the 

binding strength of each putative siRNA to all possible 3’ untranslated regions (3’ 

UTRs).  siRNA sequences that minimize favorable thermodynamic or structural 

interactions with transcripts other than the intended on-target are then chosen for 

use in the screening library (examples: (Naito and Ui-Tei 2012; Chen, Liu et al. 

2013)). 

 

(C)  Post-Screening Identification of Off-Target Effects: Many bioinformatics 

approaches have been developed which attempt to identify and remove off-target 

siRNAs from among already accrued data (also referred to as common seed 

analysis (CSA)).  Typically, these algorithms function by identifying seed 

sequences which are statistically enriched in siRNA pools responsible for positive 

phenotypes (Shao, Tsherniak et al. 2013; Zhong, Kim et al. 2014).  Particularly 

sophisticated iterations of this concept include an additional component whereby 

particular pathways are then integrated into the analysis pipeline to find pathways 

or processes overrepresented in the positive results (examples: (Chatterjee-

Kishore 2006; Sudbery, Enright et al. 2010; Bhinder and Djaballah 2012; Buehler, 

Khan et al. 2012)). 
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CHAPTER TWO: Materials and Methods 
 

2.1 Cell Lines 
 

Most human lung cancer cell lines used in this study were established in the John D. 

Minna and Adi F. Gazdar laboratories.  All other cell lines were kind gifts from collaborators 

as denoted below.  Cell lines were grown in RPMI 1640 (Life Technologies Inc) with 5% 

fetal calf serum (FBS) (or in a few cases 10% FBS for <10% of cell lines).  Normal human 

bronchial epithelial cells (HBECs) were immortalized with ectopic overexpression of CDK4 

and hTERT and were maintained in KSFM with supplied supplements (Invitrogen).  Some 

HBEC strains were adapted to growth in serum containing media which was accomplished 

through the incremental replacement of KSFM with R5 over approximately five to ten 

passages.  Incubation was done in humidified incubators (NuAire) at 37°C at 5% CO2. 

Before use and periodically during culturing, every cell line reported in this study was 

fingerprinted using the PowerPlex 1.2 kit (Promega) and confirmed to be the same as the 

DNA fingerprint library maintained either by ATCC or the Minna and Gazdar labs.  At the 

same times as fingerprinting, cells were additionally mycoplasma tested (Bulldog Bio).  

Experiments were performed with cells at approximately 80% confluency excepting when 

testing conditions required alternate cell numbers. 

 

Cell lines beginning with “H” were established National Cancer Institute and cell 

lines beginning with “HCC” were established at The University of Texas Southwestern 
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Medical Center Hamon Center for Therapeutic Oncology Research while colon and 

pancreatic cell lines were kind gifts from Shay and Brekken Lab on campus.  Some of the 

breast cancer cell lines used were gifts from the Fuqua lab at MDACC or the Martinez lab at 

UTSW.  Cell lines used in the screen can be found in Appendix A. 

 

2.2 Basic Tissue Culturing Techniques 
 

Standard tissue culturing practices were followed for the basic maintenance of the cell 

lines used in this study.  Some examples of such practices include the following.   

When passaging cell lines, the media was aspirated, the cells were washed with 

phosphate buffered saline solution (PBS) and subsequently incubated in a 0.25% Trypsin-

EDTA solution (Life Technologies) until cells detached from the plastic.  Trypsin was 

neutralized either through the use of serum containing media or, in the case of HBECs grown 

in KSFM, Trypsin neutralizing solution (Invitrogen). 

Frozen stocks of the cell lines were produced and stored in liquid nitrogen cold 

storage by first releasing the cells from the plastic as above.  Cells were then centrifuged 

(1000 rpm, 5min), washed in PBS, re-centrifuged, and finally suspended in a mixture of 90% 

serum and 10% DMSO (Invitrogen).   

Stereological pipettes and tissue culture plastic-ware (Corning) were used in addition 

to biosafety level II containment cabinets.  Further basic tissue culture methods can be 

referenced here (Phelan 2007). 
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2.3 Transient transfections 
  

 All transfections performed were at 20nM siRNA unless otherwise specified.  Oligo 

libraries were purchased from Qiagen as pools of four siRNAs.  Half-way through screening, 

this library was re-ordered from Dharmacon with experimental results demonstrating 

equivalent results from either synthesis of the library (not shown).  Additional oligos were 

purchased from Sigma for follow-up studies. 

 

Cell lines were optimized for transfection conditions in both 6 well and 96 well 

formats by varying lipid volume and cell number, and measuring the proliferative difference 

between scrambled control (Dharmacon) and toxic control oligo PLK1 (Sigma). Because so 

many cell lines were to be screened in the 96-well format, a detailed, high-throughput 

methodology was developed to allow the accurate determination of transfection conditions 

for each cell line.  Briefly, eight possible conditions were tested (2000, 4000, 6000, or 8000 

cells per well and 0.2 or 0.4 uL of RNAiMAX transfection reagent (Invitrogen) per well) in 

combination with cells only, lipid only, scrambled control siRNA, and toxic control siRNA 

controls.  Both transfection efficiency (inferred from the killing efficiency of the toxic 

control) and transfection toxicity (assessed by the comparison of the lipid control and the 

scrambled control to the cells only control) were considered in choosing the most appropriate 

transfection condition for each cell line tested. 
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For 6 well experiments, 2-5 uL of RNAiMAX was added to 0.5mL of serum free 

RPMI-1640, SFM, and incubated at room temperature for 5 minutes. 

A small amount of concentrated oligo was then added to the lipid mixture and 

allowed to incubate for 20 minutes at room temperature to allow the lipid-oligo complexes to 

form. Typically, 1.75x105 cells were seeded except when noted otherwise for a final volume 

of 3mL and a final serum concentration of 5% in 1640 RPMI.  When transfecting HBEC cell 

lines, all parts of the transfection protocol were carried out in KSFM + supplements (for a 

final volume of 3mL of 100% KSFM). 

 

For 96 well assays an optimized protocol was developed.  siRNAs were plated into 

96-well plates using UTSouthwestern’s High-Throughput Robotics Core Facility at a 

concentration of 100nM in 20uL of RNAse/DNAse free water (Ambion).  Edge wells were 

not used as testing wells to avoid effects caused by evaporation of the media. 

A solution of either 0.2 or 0.4 uL of RNAiMAX transfection reagent (depending on 

the predetermined transfection conditions (see above)) per 20uL of RPMI 1640 serum free 

media was made and allowed to incubate at room temperature for 5 minutes to allow for lipid 

complexes to form.  Following incubation, 20uL of this mixture was added to each testing 

well of the 96-well plate using an eight channel handheld repeating pipette gun (BioRad).  

After allowing for a 20 minute incubation period at room temperature, varying amounts of 

cells (2000 to 8000 as determined previously during optimization) were seeded in 50uL of 

RPMI 1640 + 10%FBS.  The final volume of the well was brought to 100uL using serum 
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free media resulting in a final media condition of 100uL of RMPI + 5% FBS.  Cell numbers 

were determined using a Beckman coulter counter 2000 set at 12um size gating. 

2.4 Quantitative RT-PCR 
 

RNA was harvested from cells using the RNeasy Mini Kit (Qiagen).  Cells were first 

washed with cold PBS and then washed directly from the plate using 350ul of lysis solution 

and collected.  A QIAcube automated sample prep system (Qiagen) was then used to 

reproducibly and accurately carry out the RNeasy Kit protocol.  Following protocol 

completion, RNA quality and concentration was assessed using a NanoDrop 2000 and stored 

at -80oC. 

 

cDNA was produced using the iScriptcDNA synthesis kit (BioRad)following the kit 

protocol excepting that 20ul reactions were used and only one fourth the recommended 

enzyme concentration was used.  Target gene TaqMan probes (Applied Biosystems) were 

used for quantification and internally normalized to GAPDH. RT-PCR reactions were 

performed in an ABI-7900 Real-time PCR System at 20uL final volume reactions. All 

reactions were repeated in triplicates and processed in Excel using standard methodology. 

2.5 Microarray Analysis 
 

Transcript expression data for all lung and breast cancer cell lines was generated in 

the Minna Lab using the Illumina (WSG-V3 and V4 BeadChip) array platforms. Tumor cell 
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RNA was isolated using Qiagen RNeasy kit with genomic RNA filtering and total RNA 

quality and concentration was confirmed by both NanoDrop 2000 analysis and capillary 

electrophoresis on the Experion System (Bio-Rad). Total RNA was labeled, amplifiedand re-

analyzed for quality prior to hybridization by the UTSW Simmons Comprehensive Cancer 

Center Genomics Core. 

Data was pre-processed using R package mbcb for probe summarization and 

background correction (Ding, Xie et al. 2008). Following pre-processing data was log-

transformed after quartile-normalization. Finally MATRIX (MicroArray Transformation in 

Microsoft Excel) software version 1.41 was used to import and analyze microarray 

expression data. Using MATRIX, transcript expression was normalized across samples by 

the median value, and then normalized expression signals were log2- transformed and color-

coded.  Correlations in expression, were determined by Pearson’s correlation coefficient. For 

comparison between sample classes, the ratio of log2- transformed signals from sample 

classes were generated and two-sample t-tests were performed in MATRIX to filter out non-

significant differences in expression (P = 0.05).  Further analysis was done using the 

Statistical Analysis of Microarrays (SAM) R package (Tusher, Tibshirani et al. 2001), a 

permutations based methodology to remove correlations/calculate p-values based on a false-

discovery rate. 

2.5 Protein Expression 
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Cell lysates were obtained using M-PER mammalian protein Extraction reagent 

(Thermo) supplemented with protease and phosphatase inhibitor (Roche) following a 

standard protocol involving incubation on ice, high-speed centrifugation, and supernatant 

collection.  Lysates for untreated cells were obtained from cells in mass culture collected at 

approximately 80% confluence.  For treated cells, transient transfections using siRNAs were 

carried out in 6-well dishes seeded at one-hundred and seventy-five thousand cells per well.  

Multiple wells were then pooled for further analysis. 

 

 Protein lysates were quantified using a standard Bradford assay (Promega) protocol 

and boiled in water for 10 minutes, not a heat block, for even denaturation. Samples were 

then loaded at a concentration of 50ug per well and then separated using 10% precast 

SDS/polyacrylamide gels (BioRad) followed by transfer to nitrocellulose membrane 

(Millipore).Membranes were blocked for one hour at room temperature (RT) in 5% milk 

solution then incubated at 4°C overnight in primary antibody (see appendix B for overnight 

directions), followed by secondary antibody (Cell Signaling) for thirty minutes at room 

temperature. Standard washings in TBSt were performed.  Detection of proteins was obtained 

by enhanced chemiluminescences (Thermo Scientific).  

2.7 Colony Formation Assays 
 

Colony formation assays were carried out in 6-well dishes.  Cells were plated at low 

density (100-1000 cells, typically 500 cells) in 3mL of RPMI 1640 + 5% serum.  Plates were 
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shaken according to standard procedures to ensure proper spread of the cells.  At reasonable 

intervals, plates were visually inspected under a microscope to determine the approximate 

size of the colonies.  When colony size reached approximate 50 cells per colony or a 

different, predetermined endpoint as per the necessary experimental protocol being followed, 

the assay was considered complete.  Following assay completion, plates were stained with a 

0.5% crystal violet solution, washed, and allowed to dry.  Plates were scanned using a typical 

desktop computer-attached scanner and quantified both using a “by eye” counting method 

and a software quantification method.  Comparison of results between the two methods gave 

similar results.   

 

For some experiments, it was necessary to treat the cells being used in colony 

formation assays.  For transient transfections with a colony formation read out, cells were 

first transfected as normal (see section 2.3) in 96-well plates.  Then four hours later, it was 

first confirmed visually that the cells remained detached from the plate surface.  Then the 

appropriate number of cells was removed (as determined by volume and known plating 

density) and plated as per normal colony formation protocols.  (Note: optimization 

experiments determined little difference in results between two, four, or six-hour waiting 

periods though four hours was chosen as a good compromise point between the tested 

options.) 

2.8 MTS Growth Assays 
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To measure growth rates, relative cell number was quantified using either MTS 

reagent (Promega).  For these experiments, cells were plated and reverse transfected as per 

section 2.3.  Five days following transfection, MTS regent was added to the wells as per the 

manufacturer’s protocol.  Plates were allowed 1-4 hours to “turn” the reagent from yellow to 

medium brown color and then absorbance was measured on a 96-well plate reader and 

compared to controls to obtain relative cell number information.  Likewise, in the instance of 

drug assays, cells were plated at 500-2000 cells per well and given 24 hours to adhere to the 

plate.  Following the initial plating, drugs were added and then plates were read by MTS 

assay as per the manufacturer’s protocol.  Direct comparison was made to Cell Titer Glo 

reagent using the manufacturer’s protocol (Promega) and found equivalent results with both 

reagents. 

2.9 Statistical Processing of siRNA Screening Data 
 

Following transfection in 96-well plates (2.3) and MTS assay (2.8), screening data 

was further processed in Excel using a visual basic for applications (VBA) macro.  Data were 

transferred into a common sheet, each replicate was analyzed for potential outliers using 

Grubb’s Test with any identified outliers being removed (typically, ~20 data points were 

removed per screen from a possible 550 data points).  Because of the unique nature of the 

dataset, no standardized methodology existed for the analysis of the data following outlier 

removal.  To ensure accurate interpretation of the data, two different methodologies were 
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both used and compared for the determination of relative viability and for the identification 

of hits. 

The first of these two methods was to process each individual screening replicate as 

z-scores.  Briefly, z-scores are a statistical look at a dataset that takes into account both the 

average of the dataset as a whole as well as its standard deviation.  Pros to this approach 

included that it could partially remove differential transfection efficiency as a variable from 

the analysis as well as allow for more accurate comparison between two different cell lines 

with largely differing numbers of hits.  The major con of this approach was that z-scores 

were not directly relatable to a tangible concept meaning that the calling of “hits” was 

arbitrary. 

The second method utilized was to compare each siRNA test to the plate average and 

derive a relative percent viability versus the population average (Note: this was also 

originally done versus the average of the scrambled control, but when it was discovered that 

the scrambled control could have significant viability effects (presumably due to off-target 

effects), this was no longer used).  This approach had the major advantage of resulting in an 

easily interpretable result – percent kill versus control.  However, the major disadvantages 

included the cases of cell lines with many siRNAs resulting in small kills being inaccurately 

classified as hits.  Through comparison of both z-scores and relative viabilities, hits were 

identified much more accurately. 

Finally, outlier siRNA screening replicates were identified and removed utilizing a 

simple clustering methodology (Section 2.11).  Using all the siRNA data, clustering analysis 
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was performed and it was checked to see if the replicate siRNA screens clustered with one 

another and were distinct from all other cell lines.  In cases where replicates did not cluster, 

an additional siRNA screen was performed to replace the faulty one. 

2.10 Correlation Heat Maps 
 

Correlation heat maps were generated using Excel.  Pearson correlations were 

calculated for all possible pairwise combinations of the data (z-scores, to allow for accurate 

cross-cell line comparisons) and correlation coefficients were color coded based on a scale.  

Average correlation was calculated both for inter-replicate comparisons and extra-replicate 

comparisons. 

2.11 Clustering Analyses 
 

All clustering analyses were completed using a combination of Excel VBA macros 

and R Statistical Software.  Briefly, data in Excel were transferred to R through use of a 

freeware program StatConnector.  Excel macros were used to invoke R.  Within the R 

environment, distance matrices were calculated as Manhattan distances using the dist() 

function and clustering was determined using the Ward methodology (Ward, 1963) through 

the hclust() function.  Data were then transferred back to Excel again using StatConnector 

and clusters were plotted. 

 

In some cases, it was necessary to determine not only the clustering of the data, but 

also to determine the “fitness” of the resultant clusters.  To accomplish this, R package fpc, 
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function clusterboot() was utilized (Henning, 2007).  Conceptually, this bootstrapping 

methodology calculates a Jaccard similarity index for each cluster by iteratively adding 

random noise to the dataset and determining how much noise each cluster can tolerate and 

still be resolved.   

 

2.12 Identification of Cancer Specific Hits 
 

To identify cancer-specific hits, both z-score processing and difference versus plate 

average processing of the siRNA data were considered (see section 2.9 for details).  These 

two metrics were correlated against each other and an approximate “% kill versus control” 

was estimated for each z-score.  Thus it was determined that a z-score greater than -0.8 

appropriately represented a kill of 30% or less versus controls, a z-score between -1.6 and -

0.8 approximately represented a kill of 30% to 40% versus controls, and a z-score below -1.6 

to the minimum z-score of -5 represented a kill of > 40% to up to 90% kill versus controls.  

Hits which scored significant kills (z-score < -0.8) in more than three of the cancer cell lines 

tested (n=60) but not in any of the HBEC cell lines tested (n=7) were considered as cancer 

specific hits. 

2.13 Correlation of Cancer Specific Hits with Known Phenotypes 
and Biomarkers 
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For each cancer-specific hit, the pattern of phenotype across the cancer cell line panel 

was compared to the phenotypic pattern produced by screening of 20 chemotherapeutic or 

targeted agents across the same cell line panel through correlative analyses.   

 

To identify expression, mutational, or copy number variation (CNV) deletion 

biomarkers, the results of the cancer specific hits were run through the elastic-net analysis 

pipeline.  Legacy expression, mutation, and deletion datasets were available in the Minna 

laboratory for the 60 lung cancer cell lines screened in the siRNA screen.  These data were 

converted to z-scores.  R package glmnet() (Friedman 2010) was utilized to generate sparse 

solutions of highly correlated biomarkers from each of these legacy datasets resulting in 400 

significant biomarker predictions.  These predictions were then manually curated to identify 

a small number of putative biomarkers with high likelihood of explanative power. 

 

2.14 esiRNA: Production and Statistical Analysis 
 

esiRNA were designed and produced following the published methodology without 

deviation (Kittler, Surendranath et al. 2007).  Three esiRNA libraries were utilized, two 

mirroring the 120-target NR/CoReg siRNA library and one matching the 102-target second 

siRNA library.  Screening methodology and data processing were done the exact same as 

with the siRNA libraries (see sections 2.3 and 2.9 respectively).  Each library was screened 

on a panel of 20 lung cancer cell lines and data were compared between the siRNA and 

esiRNA screens using Pearson correlations.  qRT-PCR of esiRNA knockdowns were 
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performed as in section 2.4.  Interferon response was assessed using relative IFIT1 and PKR 

mRNA levels with PolyIC (Sigma) as a control. 

2.15 Cell Cycle Analyses 
 

Cell cycle was assessed using Propidium Iodide (PI, Sigma) to label DNA content.  

Cells were trypsinized, washed, and repipetted while gently vortexing into a suspension of 

ice cold absolute ethanol and incubated overnight at -20C.  Cells were then centrifuged, 

resuspended in 500uL of PI staining solution (47% PBS (vol/vol), 47% 0.1% Triton X-100 

(vol/vol), 5% 1mg/mL PI (vol/vol), and 1% stock RNase A (vol/vol, Qiagen)), incubated at 

37C for 40 min, washed in PBS, centrifuged, and resuspended in 500uL PBS, filtered 

through a 70um cell strainer and then FACS analyzed (SCAN, BD Biosciences) with 

untreated cells used for gating purposes.  To determine the percentage of cells in each phase 

of the cell cycle, data was analyzed in FlowJo Software using a Dean Jett Fox model. 

2.16 TargetScan Identification of Predicted Seed Sequence Binding 
Sites 
 

TargetScan, a program designed to predict targets of miRNAs (Lewis, Burge et al. 

2005), was used to identify putative binding sites for each siRNA seed sequences.  UTR files 

were downloaded from the TargetScan website.  TargetScan version 60 was used for the 

analysis.  Seed sequences for the siRNAs analyzed were entered into the miRNA database 

files for the program and full siRNA sequences were entered into the miRNA context scores 

database files.  First, all putative binding sites were identified by simple sequence matches of 

the supplied sequences to the UTR files.  Then, context scores were computed using known 
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rules of miRNA binding and the full siRNA sequences to determine the likelihood (0 (worst) 

– 99 (best)) of each possible binding site being real.  Excel macros were used to map the 

results of the TargetScan analysis to known transcripts. 

 

2.17 6-Well siRNA Viability Assessments 
 

Viability following siRNA transfection was assessed by a number of methods as 

appropriate throughout the study.  

(A)   Colony Formation Readout.  Described in section 2.7 

(B)   Cell Counts.  Transfections were performed as described in section 2.3.  At the 

end of the assay, cells were carefully trypsinized and pipetted to ensure single-cell 

suspensions.  50uL samples were taken from each suspension and cell numbers 

were assessed using a Beckman Coulter Counter set at a 13um size filter.  Cell 

numbers were then compared between treatment groups and controls using t-tests. 

(C)   Crystal Violet Staining.  Transfections were performed as described in section 

2.3.  At the end of the assay, the media was aspirated and cells were gently 

washed with PBS.  Cells were then stained for 2-4 hours with a 0.5% crystal 

violet solution, were rinsed with water (not direct spray, but with a basin), and 

allowed to dry overnight.  Plates were then imaged using a desktop scanner 

(Hewlett Packard). 
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2.18 Annexin IV Staining for Apoptosis Assessment 
 

Annexin IV antibody and staining kit was obtained from Promega.  Assay was 

performed as per the manufacturer’s protocol.  FACS analysis was performed using an ARIA 

cell sorter (BD Biosciences) and results were analyzed in FlowJo. 

 

2.19 Ligand Screening 
 

Ligand screening was accomplished through use of a NanoDrop instrument in the 

UTSW high throughput screening (HTS) core facility.  Previous work had determined 

appropriate seeding densities for each cell line to be tested in the assay (data available 

through UTSW HTS Core).  Cells were seeded into 384-well plates in R5 media and allowed 

to adhere overnight.  Following plating, drugs were added such that each of the 110 ligands 

being screened was tested as a 12-point concentration curve beginning at a top concentration 

of 10uM and following four-fold dilutions.  All tests were performed in triplicate.  Four days 

following addition of drug, viability was assessed by cell titer glo reagent.  A complete list of 

the ligands tested and their commercial sources is available in Appendix B. 
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CHAPTER THREE: NR/CoReg Expression from FFPE 
Samples 

3.1 Introduction 

3.1.1 FFPE 
 

Formalin-Fixed, Paraffin-Embedded (FFPE) archival tissues and their associated 

diagnostic records represent an invaluable source of information on diseases where the 

patient outcomes are already known, particularly cancer.  FFPE samples are long-lasting and 

can even represent patient cases that are no longer seen clinically or obtainable due to 

changes in medical practice and technology (With, Evers et al. 2011).  FFPE archiving is the 
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most common methodology used worldwide for tissue storage.  Unfortunately, although the 

FFPE process preserves the tissue integrity, it also causes extensive damage to nucleic acids 

stored within the tissue (Farragher, Tanney et al. 2008).  

 

Extensive work has been done to modify nucleic acid extraction methods from FFPE 

samples such that the resultant materials are viable for standard assay technology (i.e. qRT-

PCR, microarray, RNAseq, etc.) with mixed results (Dedhia, Tarale et al. 2007).  Certainly, 

no standard methodology has yet to emerge, and competing technologies advanced from 

Illumina, NanoString, Life Technologies, Qiagen, and others continue to be tested for 

efficacy and cost effectiveness (Gnanapragasam 2010).   

3.1.2 Survival Signatures in Lung Cancer 
 

One of the current major goals in lung cancer research is the development of 

prognostic expression signatures capable of predicting good and poor clinical outcomes for 

both early and/or late stage patients (example: (Larsen, Pavey et al. 2007)).  Unlike other 

cancer fields (such as breast cancer), no standard molecular definition of lung cancer has 

been achieved, and prognostic signatures have yet to converge on common gene targets or 

repeating results (Meta-Analysis (Subramanian and Simon 2010).  Study-by-study analysis 

of the hundreds of published survival signatures is beyond the scope of this document, but 

excellent reviews have been published (Boutros, Lau et al. 2009; Burotto, Thomas et al. 

2014).  Overall, these signatures have largely failed to achieve wide-spread clinical 
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application for a plethora of reasons.  Chief among these reasons is that no group has yet to 

demonstrate a clinical benefit to differential treatment based on the results of a molecular 

profiling signature.  Stated simply, patients will receive the same treatment regardless of 

whether or not they possess certain signatures, and thus clinicians do not see benefit to 

subjecting patients to the cost and procedures necessary to classify them. 

 

As a further hurdle, prognostic expression signatures identified in preclinical systems 

must be identifiable and workable in the much more difficult and clinically-relevant medium 

of FFPE samples before wide-spread application can be achieved.  Previous work from the 

Minna lab has successfully used Affymetrix U133 plus 2.0 arrays to identify an eleven-gene 

prognostic signature in FFPE, but unfortunately microarray technology is currently not a 

clinically tractable methodology and further work is now underway to try and recapitulate 

these results using a more translatable technology (Xie, Xiao et al. 2011).   

 

3.1.3 NRs/CoRegs as Biomarkers in Lung Cancer 
 

 

As a class, nuclear receptors (NRs) and their Co-Regulators (CoRegs) have been 

largely unstudied within the context of lung cancer.  Scattered reports have examined the 

roles specific receptors might play within specific contexts (examples: VDR ligands (Kim, 

Chen et al. 2012) or PPARg ligands (reviewed: (Li, Lee et al. 2006)) as anti-proliferative 

agents), but their function as a molecular class in lung cancer is not clear.  NRs are especially 
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interesting to study as a class because of the widespread availability of FDA-approved NR 

ligands (discussed in detail in chapter 4). 

 

Early studies in the Minna laboratory laid the proof-of-concept groundwork for 

looking as nuclear receptors as a class in lung cancer by analyzing the expression of the 48 

nuclear receptors across a panel of 30 matched tumor normal fresh frozen specimen by qRT-

PCR, and then leveraging this dataset to develop a prognostic signature which was then 

validated in two independent datasets (Jeong, Xie et al. 2010).  Further analysis of this 

dataset revealed its ability to differentiate between non-small cell lung cancer specimen, 

small cell lung cancer specimen, and normal samples.  Some nuclear receptors were 

identified which exhibited histotype-specific expression, and a few nuclear receptor ligands 

including AR and ERb targeted compounds were demonstrated to have anti-proliferative 

effects in cells which exhibited high expression of these receptors (Jeong, Xie et al. 2012).  

Recently, it was further shown that some nuclear receptor ligands can act synergistically with 

tyrosine kinase inhibitors in lung cancer (Wairagu, Park et al. 2014). 

 

3.2 Aims and Goals 
 

Based on previous work in the Minna laboratory, the following goals were developed. 

(A)   Define nuclear receptor expression profiles on a larger sample set to gain 

statistical power using a clinically tractable methodology. 
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(B)   Define nuclear receptor co-regulator expression profiles using this same sample 

set and methodology. 

(C)   Recapitulate the prognostic signature identified in fresh frozen samples using the 

FFPE dataset. 

(D)   Leverage the dataset to facilitate biological findings. 

 

3.3 Results 
 

3.3.1 qNPA Technology and Selection of Housekeeping Genes 
 

Quantitative Nuclease Protection Assay (qNPA) technology, developed by HTG 

Molecular Diagnostics (Tucson, AZ), was developed for the methodology of choice for 

assessment of NR/CoReg expression from FFPE materials (first reported: (Martel, Botros et 

al. 2002)).  qNPA utilizes a simplistic protocol whereby low amounts of starting material 

(FFPE or otherwise) are directly lysed in 96-well plates (Figure 3.1).  Each well contains 

programming linkers directly arrayed and printed into the bottom of the well.  Specific 

probes for the genes of interest are designed and linked to the programming linkers.  RNA 

released from the lysing step is bound by probes and S1 nuclease is used to digest any 

unbound RNA.  The remaining RNA is released and binds to the programming linkers and is 

quantified using imaging software and horseradish peroxidase (HRP) linked probes.  

Literature reports have shown qNPA technology is comparable to microarray technology 

(Roberts, Sabalos et al. 2007), accurate (Bourzac, Rounseville et al. 2011), clinically 

applicable (Erickson 2012), high-throughput (Kris, Felder et al. 2007), capable of producing  
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survival signatures (Rimsza, Leblanc et al. 2008; Katkoori, Shanmugam et al. 2012), and 

capable of mediating the discovery of biological findings (Altar, Hunt et al. 2008; Pechhold, 

Stouffer et al. 2009; Rimsza, Wright et al. 2011; Gerson, Maddula et al. 2012).   

 
Before qNPA technology could be utilized for NR/CoReg expression assessment, a 

scheme needed to be developed to identify proper housekeeping genes relevant to the lung 

and breast cancer disease context.  To accomplish this goal, microarray data from various 

sources (n > 1600) was compiled and analyzed to identify genes with low, medium, and high 

expression with minimum variation across the panel (Figure 3.2).  From all available probes, 

the 92 most promising genes were then placed into two qNPA arrays (EC1 and EC2) and 889 

FFPE samples were run across these two EC arrays.  Ultimately, five genes (CTBP1, OAZ1, 

RPSA, EEF2, and RPS19) were chosen as optimal. 
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panel.  The ninety-two best genes were then made into two qNPA libraries and run 
across both Formalin-Fixed Paraffin Embedded (FFPE) and fresh frozen samples to 
assess their performance in the qNPA assay. 

B) The five best endogenous control (EC) genes were used as quality control (QC) genes 
in the final Nuclear Receptor (NR) qNPA array. 
 

3.3.2 qNPA Dataset Overview and Quality Analysis 
 
 

Following EC array development and housekeeping gene selection, a large panel of 

850 samples was run in triplicate across the NR/CoReg qNPA system.  Average coefficient 

of variation (CV) between replicates was found to be less than 15%, demonstrating the 

reproducibility of the technique.  Six samples were removed as outliers and cluster analysis 

of the remaining 844 samples revealed a striking ability of the qNPA dataset to distinguish 

between the lung and breast cancer samples, the known molecular subtypes of breast cancer 

(HER2+, ER+, ER-), and between the lung tumor samples and their matched normal 

counterparts (Figure 3.3).   

 

Basic comparative analyses were performed between the qNPA dataset and other 

known datasets to assess qNPA’s ability to obtain quality data from FFPE specimen.  In a 

previous study, fresh frozen tissue was collected from the exact same 272 lung cancer tumor 

specimen used in this study.  RNA was previously collected from these fresh frozen samples 

and run on microarrays (data unpublished). Comparison between the fresh frozen microarray 

data and the qNPA FFPE data revealed approximate correlation coefficients of 0.5 – a strong 

value for typical cross-platform comparisons.  Furthermore, comparison was made between 
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qNPA data and qPCR data using the exact same RNA extracts. Average correlation 

coefficients for these direct comparisons from identical starting material were found to 

typically be greater than 0.7.  Overall, it was determined that qNPA results compared 

favorably with results from other technological platforms. 
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3.3.3 Analysis of the Breast Cancer Dataset 
 

 

Unfortunately, because qNPA is not a proven technology, breast cancer (BRC) 

samples with clinical follow-up data were not able to be secured for analysis in this study.  

However, basic analysis could be performed on the non-clinically annotated samples that 

were used here.  First, it was necessary to determine how well the HTG ER and PR probes 

were able to recapitulate the known, clinically-defined levels (Allred Scores) of ER and PR 

in the analyzed samples.  (Allred scores are defined by semi-quantitation of an 

immunohistochemical (IHC) staining assay, and they are considered the gold standard for 

clinical definition of hormone receptor positive or negative patients.)  In this analysis, it was 

determined that the qNPA PR probe correlated strongly with the PR Allred Scores and 

remained linear throughout the necessary range for clinical relevance (Figure 3.4 A).  

Comparison to ER Allred Score revealed the qNPA ER probe contained sufficient dynamic 

range to successfully differentiate between ER+ and ER- samples, but lost linearity at the 

high end of the ER+ range--preventing the differentiation between the highly clinically 

relevant subsets ER+ (luminal B) and ER+++ (luminal A) (Figure 3.4 B).  Future studies will 

need to adjust the ER range by adding quencher probe to the qNPA analysis wells so all 

samples can be assessed within the linear range. 

 

Next, sub-clustering analysis was performed to determine whether or not there might 

be distinguishable subclasses of samples within the molecularly defined ER+, ER-, and 
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HER2+ subgroups.  This question is particularly relevant clinically as patients within ER+, 

ER- or HER2+ groups have been observed to sometimes have drastically different outcomes.  

Further subdivisions within these larger groups might allow for increased personalization of 

therapy or better understanding of risk factors.  Within the ER- samples, four subgroups 

could be identified and defined through expression of three probes: ER, PR, and AR (Figure 

3.5 A,C).  Approximately half of the samples analyzed fell into the PR+, ER-, AR- subgroup 

with the remaining samples approximately evenly distributed between ER+, PR-, AR-, and 

ER-, PR-, AR+, and ER-, PR-, and AR- (Figure 3.5 B).  Because the breast cancer samples 

utilized in this initial study of qNPA technology did not have associated survival outcome 

data, it could not be determined if these subdivisions were associated with differences in 

patient survival.  Future studies will focus on confirming the existence of these subgroups in 

independent datasets, and determining if the subgroups can be associated with differences in 

patient outcome or therapy responsiveness. 
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3.3.4 qNPA Re-Finds the NR Prognostic Signature in FFPE Samples 
 

 

One major goal for the qNPA analysis was to determine whether or not the NR 

prognostic signature previously reported by the Minna laboratory (Jeong, Xie et al. 2010) 

could be recapitulated in FFPE samples.   Using the same analysis techniques reported 

previously, the qNPA data were analyzed and the same survival benefit was found whereby 

patients could be stratified into the same two risk groups albeit with a lower significance than 

was previously observed (Figure 3.6). 

 

3.3.5 NRs as a Class are Downregulated in Lung Cancer 
 

 

During data analysis, it was unexpectedly observed that nuclear receptor expression 

was frequently lost in tumors compared to normal, matched samples (Figure 3.7 A).  To 

corroborate this finding, additional datasets were gathered and analyzed including The 

Cancer Genome Atlas (TCGA) dataset (Figure 3.7 B) as well as 10 previously published 

archival datasets available through The Lung Cancer Explorer online analysis tool.  Cross-

comparison of all these analyses revealed a set of 10 NRs (PPARg, NR4A2, NR4A1, 

NR4A3, NR5A2, RARb, GR, AR, NR2F1, and RORa) that were consistently downregulated 

(> 2-fold change, p < 0.05) in all the datasets analyzed (Figure 3.7 C).  It is important to note 

that these downregulation events were not the same for each tumor-normal matched pair 

analyzed, but instead represented the average effect across the dataset.  In other words, a 
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given tumor-matched normal pair could have none of the ten downregulated, some of the ten 

downregulated, or all ten out of ten downregulated. 

  

Next, survival analyses were undertaken to see if nuclear receptor expression in 

archival datasets could be a predictor of survival.  First, a ten-dataset meta-analysis (n=1405) 

was performed using the km-plot online analysis tool (Gyorffy, Surowiak et al. 2013).  

Analysis of all 48 NRs found that patients which retained NR expression had better overall 

survival than those which lost NR expression (p = 2.9e-9, Figure 3.8 A).  To confirm this 

finding, the same methodology was utilized for analysis of the MD Anderson Cancer Center 

fresh frozen microarray data (n=209).  This analysis also found higher expression of the 48 

NRs to be associated with better overall survival (p = 0.0012, Figure 3.8 B). 

  
 These survival analyses were then repeated using the 10 NRs that were found to be 

consistently downregulated in tumor samples (versus their normal controls).  In the ten-

dataset meta-analysis (n=1926), loss of the 10 downregulated NRs was found to be strongly 

associated with worse overall survival (p = 9.9e-8, Figure 3.8 C).  Approximately one fourth 

of the samples were identified as still retaining these 10 downregulated NRs while the other 

approximately three fourths were classified by the algorithm as having lost (on average) 

these 10 downregulated NRs.  The basic distribution of the average expression of these 10 

downregulated NRs can be seen in the Beeswarm Graph (Figure 3.8 D). 

  

 



 

 
 
 
 
 
Figur

Previ
forty-
Utiliz
could
their 
 
 
 
 
 
 
 
 

re 3.6 Survi
 

iously, a surv
-eight nucle
zing the sam
d also signif
NR expressi

ival Analysi

vival signatu
ear receptor

me methodolo
ficantly (p =
ion patterns.

is of qNPA S

ure was gene
rs to predic
ogy as that p
 0.0185) be 
. 

64 

Samples 

erated and pu
ct the overa
publication, i

subdivided 

ublished wh
all survival
it was determ
into low an

hich utilized 
l of patient
mined that th
nd high risk 

expression o
ts (Jeong 2
he qNPA sam

groups base

 
 

 

of the 
2009).  
mples 
ed on 



 

 
 

 
Figur

A

B

re 3.7 A Sub
 

A) Heat map
pairs).  V
upregulat
top to bot
CoRegs w
showing u

B) Volcano P
p-value a
normal sa
change, p

bset of Nucl

p of lung tum
Vertical axi
ion of each 
ttom to mak
were each s
upregulation
Plot visualiz

and horizont
amples.  Re
 < 0.05) are 

lear Recept

mor/normal m
is represents
NR/CoReg

ke data visua
eparately so

n of the given
zation of the 
tal axis repr
ceptors in th
highlighted.

65 

ors (NRs) A

matched pair
s the perce
(red).  Each

alization eas
orted left to 
n NR/CoReg
data in pane
esents the a
he upper lef
. 

Are Down R

rs data (qNP
entage of T
h column ha
ier.  Along 
right from 

g.   
el A.  Vertic
average fold
ft-hand quad

Regulated in

PA, NRs/CoR
T/N pairs th
as independe
the horizont
least to mo

cal axis repre
d change bet
drant of the

 

n Lung Canc

Regs, n=236
hat have >2
ently been s
tal axis, NR
ost % of sam

esents –log o
tween tumor
 figure (> 2

 
 

cers. 

6 T/N 
2-fold 
sorted 

Rs and 
mples 

of the 
r and 

2-fold 



 

C

 

 
 
Figur

A

 
D

C) Three diff
repeatedly
between t
microarra

re 3.8 Survi
 

A-C) Online
benefi
perfor
the 10
were w
A but 

D) Beeswarm
color-cod

fferent source
y downregul
the qNPA, T

ay datasets (n

ival Analysi

 analysis to
fit to loss or 
rmed on all 
0 NRs ident
weighted eq
for the MDA

m plot for th
ded dot (red o

es of data we
lated in tum
The Cancer
n=10) is sho

is of NRs Ex

ool KM-Plo
retention o
available lu

tified as repe
qually in the 
ACC 209 fre

he data in pan
or black dep

66 

ere analyzed
mor versus no

Genome A
wn. 

xpression in

oter (kmplot
f NR expres

ung cancer s
eatedly dow
analysis.  P

esh frozen m

nel C.  Each
pending on i

d to identify 
ormal sampl

Atlas (TCGA

n Lung Can

t.com) was 
ssion.  In pa

samples for 
wnregulated i
Panel (B) is t
microarray sa

h of the 1926
in which ana

a set of ten 
les.  Specific
A), and prev

cer 

used to de
anels A and
either (A) a
in multiple 
the same ana
amples. 

6 samples is
alysis group 

nuclear rece
cally, the ov
viously publ

 

etermine sur
d C, analysis
all 48 NRs o
datasets.  Pr
alysis as in P

s represented
it was inclu

 
 

eptors 
verlap 
lished 

rvival 
s was 
or (C) 
robes 
Panel 

d as a 
uded).  



 
 

67 
 

The majority of samples have relatively uniform, low expression of the 10 frequently 
lost NRs (black) while some samples (approximately 1/4th) have retained NR 
expression.  Higher values on the vertical axis represent proportionally larger average 
expression of the 10 NRs being analyzed. 

 
 

3.4 Discussion 
 
 

In summary, we successfully utilized the qNPA platform to analyze FFPE samples, 

and utilized the data to successfully make biologically-relevant findings.  A panel of 850 

FFPE samples was run across the qNPA platform and strong correlation was observed 

between the qNPA dataset and similar datasets gathered with other technological platforms 

(microarray, qPCR).  Data quality within the qNPA system was assessed and determined to 

be high with average CVs being around 15% between replicates.  Given interest in 

development and implementation of expression signatures for clinical applications 

(particularly from FFPE samples), the data presented here strongly support the use of qNPA 

technologies for simultaneous clinical assessment of expression levels of genetic signatures. 

 

 Analysis of the breast cancer dataset revealed successful identification of the 

generally accepted, molecularly defined subtypes of breast cancer.  Furthermore, analysis 

identified a new sub-classification of ER- samples into four subcategories which could be 

distinguished by the varying relative levels of ER, PR, or AR expression.  Both PR and AR 

are well known targets in breast cancer therapy, and further subdivision of the much more 
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deadly ER- breast cancer subtype could lead to new therapeutic options for subsets of ER- 

patients. 

 

 Expression of the 48 NRs and 72 CoRegs analyzed could successfully differentiate 

between FFPE samples taken from lung cancers versus those from matched controls.  It was 

determined that many NRs were downregulated in the tumor samples versus normal controls 

in the qNPA dataset.  Additional analyses identified ten NRs which were reproducibly lost in 

tumors versus normal controls in the TCGA dataset as well as in ten additional archival 

datasets.   Furthermore, functional relevance for the loss of NRs in lung cancers was 

supported by the observation that patients retaining NR expression overall exhibited higher 

overall survival versus those that had lost expression.  These reports represent the first 

observations of the categorical downregulation of nuclear receptors in lung cancer.   

 

3.5 Future Directions 
 
 

 Based on these findings, it is clear that qNPA represents a strong platform for 

expression signature analysis.  Future studies which aim to identify clinically relevant 

expression signatures for cancers of any type can be run through the endogenous controls 

array to identify suitable housekeeping genes.  Following housekeeping gene identification, 

the putative expression signature to be assessed can then be formatted for analysis by the 

qNPA system.    
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 Further qNPA studies with nuclear receptor expression in breast cancer samples 

should first focus on ER probe attenuation to ensure that analysis will be within the ER probe 

linear range for all samples analyzed.  Following this improvement to the assay, breast cancer 

samples with clinical follow-up information available should be run through the qNPA 

platform to allow for assessment of NRs as prognostic biomarkers in both the current 

molecularly defined subsets of breast cancer as well as in any sub-clusters that can be 

identified within each molecularly defined breast cancer subset. 

 

 Evidence for a functional role for NRs in lung cancer pathogenesis is strong.  Future 

studies should focus on delineating this functional role through overexpression/re-expression 

studies to determine what tumor suppressive effect the lost NRs may have been exerting on 

the tumors.  Further analysis into the mechanisms by which tumors downregulate NRs should 

focus on epigenetic avenues as well as possible therapeutic/small-molecule interventions that 

might lead to NR re-expression.  Particular attention should be given to the ten NRs found 

reproducibly downregulated across multiple datasets as the strong prevalence of this finding 

suggests a selection pressure driving this phenomenon.  
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CHAPTER FOUR: NR Ligand Screening in Lung and Breast 
Cancer 
 
 

4.1 Introduction 
 

4.1.1 NR Ligands as Therapeutic Agents 
 

 Due to their unique mechanism of action, nuclear receptors (NRs) represent attractive 

drug targets (see Section 1.1.3).  13% of all FDA-approved drugs target nuclear receptors in a 

diverse disease set including metabolic, neoplastic, and cardiac diseases in addition to 

hormonal imbalance syndromes (Overington, Al-Lazikani et al. 2006).  Nuclear receptors are 

master regulators of transcriptional programs within the cell and regulate metabolic 

processes, cell survival decisions, growth or senescence, and cellular signaling among other 

functions  (Huang, Chandra et al. 2010). 
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 In a cancer context, nuclear receptors are some of the most highly studied molecular 

targets (Kittler, Zhou et al. 2013; Safe, Jin et al. 2014).  A bulk of the work has been focused 

on breast (reviewed: (Conzen 2008)) and prostate cancers (reviewed: (Savoy and Ghosh 

2013)) where nuclear receptors have been comprehensively demonstrated to be completely 

responsible for the driving and regulation of cancerous signaling within these disease 

contexts.  Other cancers such as ovarian (reviewed: (Zhao, Zhang et al. 2013)), endometrial 

(reviewed: (Grundker, Gunthert et al. 2008)), or hematological malignancies (example: 

(Harousseau, Attal et al. 2006)), have also been shown to be driven or largely influenced by 

nuclear receptor signaling. 

4.1.2 NR Ligands in Lung Cancer 
 

In lung cancer, varied success has been observed with identifying biological roles for 

nuclear receptors and with using nuclear receptor drugs as treatment options in this disease 

context (Nemenoff and Winn 2005) (Beattie, Hansen et al. 1985).  Basic findings will be 

outlined below on a receptor-by-receptor basis. 

(A) Androgen Receptor (AR) – No major clinical trials have been performed to date 

with anti-androgen therapies in a lung cancer context.  However, many reports 

exist which demonstrate that lung cancer preclinical models can respond to 

androgen related compounds (Mikkonen, Pihlajamaa et al. 2010; Jeong, Xie et al. 

2012).  Also, AR exhibits cancer-specific expression patterns in lung (Kaiser, 

Hofmann et al. 1996; Mikkonen, Pihlajamaa et al. 2010), and shows significant 
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crosstalk with important lung cancer pathways including mTOR and EGFR 

signaling (Recchia, Musti et al. 2009). 

(B) Estrogen Receptor (ER) – The selective estrogen receptor modulator (SERM) 

Tamoxifen has been used in lung cancer clinical trials (Perez, Gandara et al. 

2003).  In cell line models, aromatase inhibitors have been reported effective for 

some subsets of patients (Weinberg, Marquez-Garban et al. 2005).  Additionally, 

studies have shown crosstalk between ER and EGFR signaling with combination 

of EGFR tyrosine kinase inhibitors (TKIs) and fulvestrant (an anti-estrogen that 

reduces ER protein levels) demonstrating preclinical efficacy (Klinge 2012). 

(C) Glucocorticoid Receptor (GR)–Glucocorticoids have been studied extensively 

in the context of lung cancer clinically as a pre-treatment for chemotherapy 

(Sekine, Nishiwaki et al. 1997).  Use of GR-targeted compounds as therapeutic 

agents has been largely restricted to preclinical models with many reports of 

preclinical efficacy existing (Greenberg, Hu et al. 2002; Liang, Kowalczyk et al. 

2014).  Changes in GR expression levels mediated by methylation have also been 

reported (Kay, Schlossmacher et al. 2011), and GR treatments have been tied to 

mediation of epigenetic changes (King, Trotter et al. 2012). 

(D) Peroxisome Proliferator Activated Receptor (PPAR) – No clinical trials have 

been performed using PPAR-targeted ligands as direct therapeutic agents in lung 

cancer to date.  However, many studies have demonstrated roles for PPARs in 

lung cancer pathogenesis in preclinical settings (reviewed: (Keshamouni, Han et 
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al. 2007)).  For example, pioglitazone has been demonstrated to prevent smoking 

induced lung tumors in mice (Li, Kong et al. 2012), PPAR agonists have been 

shown to induce apoptosis in subsets of lung cancer cell lines (Tsubouchi, Sano et 

al. 2000),  PPAR expression has been shown to be altered in lung cancer tumors 

and cell lines (Inoue, Kawahito et al. 2001), and PPARs have been shown to be 

key regulators of lung cancer cell metabolism (Skrypnyk, Chen et al. 2014). 

(E) Retinoid Receptors (RXR) – Several clinical trials have been performed with 

RXR ligands in lung cancer (reviewed: (Dragnev, You et al. 2013), key 

references: (Khuri, Lotan et al. 2000; Khuri, Rigas et al. 2001)).  Typically, RXR-

targeted agents have been found relatively ineffective as single agents, but have 

been found to be quite effective in enhancing the efficacy of standard 

chemotherapy regiments in subsets of patients.  Many current studies of RXR 

ligands focus on 1) understanding the mechanisms by which RXR ligands 

sensitize some NSCLC patients to chemo, and 2) identifying biomarkers which 

can predict which subset of patients would respond to an RXR/chemo 

combination therapy. 

(F) Vitamin D Receptor (VDR) – Some clinical work has been done trying to treat 

patients with VDR ligands (particularly calcitriol) (example: (Ramnath, 

Daignault-Newton et al. 2013)).  These studies have occasionally observed partial 

responses, but are typically dose-limited by hypercalcemia (though next-

generation VDR ligands (such as seocalcitriol) have been reported to overcome 
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this side effect to some degree).  Much more work has focused on VDR as a 

prognostic biomarker in lung cancer.  A meta-analysis of twenty-five different 

studies of VDR as a prognostic marker reported that 1) patients with vitamin D 

deficiency have a worse prognosis, and 2) supplementation of these patients with 

vitamin D did not demonstrate a benefit (Buttigliero, Monagheddu et al. 2011). 

4.2 Aims and Goals 
 
Based on previous work in the Minna laboratory, the following goals were developed. 

(A)  Assemble a sizeable library of ligand compounds targeting the 48 nuclear receptors 

with particular focus on both 1) representative coverage of the non-orphan NRs and 

2) ligands which have been used in previous cancer studies. 

(B)   Perform viability screening of these compounds across a comprehensive panel of 

lung and breast cancers. 

(C)   Identify compounds with selective killing effects on specific subsets of the cell lines 

and identify clinically-actionable biomarkers to predict response. 

(D)   For promising ligands, use preclinical models to obtain the necessary supporting 

evidence to result in a clinical trial. 

 

4.3 Results 
 

4.3.1 Compound Screening: Overview 
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 A library of 110 ligands was assembled (Sigma Aldrich) with representative coverage 

of both agonist and antagonist activity (as was achievable) across the 48 nuclear receptors 

(summary: Figure 4.1B, complete list: Appendix B).  Ligands previously utilized in oncology 

clinical studies or those with extensive preclinical data were prioritized.  Paclitaxel was 

included as a positive control compound for comparison to standard chemotherapy purposes.  

Compounds were screened using an ECHO Nanodrop device in 384 well plates, and 

triplicate 12-point dose response curves were generated for each compound with automated 

data processing used to determine IC50 values (Figure 4.1A, for complete methodology see 

Section 2.19).  The library was screened against a 130-member comprehensive panel of cell 

lines (cell line list included in Appendix B). 

 

 Preliminary analysis of the dataset revealed a wide range of responses to the 

compounds (Figure 4.1 C).  Some ligands such as clotrimazole, an anti-fungal shown to 

interact with PXR (Sawyer, Brogden et al. 1975), GSK4716, a selective agonist of estrogen 

related receptors ERRb and ERRg (Kim, Koh et al. 2009), or dexamethasone 21-

methanesulfonate, a covalent binder of GR (Richard-Foy, Sistare et al. 1987) were seen to 

cause strong kill phenotypes in virtually all of the cell lines tested.  Other compounds had no 

effect on cellular viability in any cell line tested.  In addition to the ligands which caused 

similar effects (either kill or no-kill) in virtually every cell line tested, ligands were also 

identified that elicited effects in some cell lines but not in others (termed “selective ligands”).  

While most of the selective ligands in the screen did not correlate with each other (i.e. they 
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did not have their selective effect on the same cell line subset), a few cases were identified 

where multiple ligands had a selective effects on a very similar subset of cell lines. 
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4.3.2 Analysis of Select Compound Classes 
 
 
 To take advantage of having multiple compounds targeting the same receptors with 

known mechanisms of action (a unique feature of the ligand library), subsets of the nuclear 

receptor ligands were analyzed independently for activity across the panel.  Several examples 

of these types of analyses will be briefly highlighted below.  However, it is important to note 

that many ligands are known to target multiple receptors depending on the concentration 

being considered.  Because of this, these analyses were used as an initial guideline with 

follow-up verification of ligand target and mechanism of action planned for particularly 

promising analysis results. 

(A) Androgen Targeted Compounds – Of the 110 ligands in the library, nine had been 

previously reported in the literature to interact with the androgen receptor (note: this 

does not exclude the possibility that they might also interact with other cellular 

targets).  Interestingly, all the compounds tested that were known to be anti-

androgens (with the exception of bicalutamide which may have had little effect due to 

its low solubility) caused viability loss in somewhat non-overlapping subsets of the 

cancer lines (typically at higher concentrations).  Nuances in differences in the 

mechanisms of action of various anti-androgenic compounds have been reported 

(Gillatt 2006) and, assuming AR-related activity is confirmed for these kill 

phenotypes, future studies might focus on elucidating these differences as explanation 

for these results. 
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(B) PPAR Targeted Compounds – Twenty-three of the 110 ligands in the library had 

been previously reported in the literature to interact with PPAR receptors (note: this 

does not exclude the possibility that these ligands might also interact with other 

cellular targets).  Interestingly, similar phenotypic outcomes were noted for specific 

subsets of the cell lines in response to multiple different PPAR ligands (Figure 4.2B).  

Unexpectedly, these ligands did not seem to target a specific PPAR, but showed more 

diversity.  However, this finding may be due to the incomplete nature of the literature 

on the mechanisms of action of some of these ligands than a true finding and further 

study should be undertaken to confirm the PPAR subtype specificity of these 

compounds.  Interestingly, the compounds available to target PPAR were largely 

agonists and strong anti-cancer activity was observed with 2-chloro-5-

nitrobenzanilide – the only known antagonist in the panel (Abd-Elrahman, El-Gowelli 

et al. 2010).   

(C) GR/MR Targeted Compounds – Thirteen of the 110 ligands in the library had been 

previously reported in the literature to interact with either the GR or MR receptors 

(these two were considered together as GR/MR ligands are known to frequently 

interact strongly with both receptors (Hantzis, Albiston et al. 2002)).  Known relative 

strengths and agonist/antagonist status for GR/MR for these 13 ligands are 

summarized in Figure 4.2C (note: this does not exclude the possibility that these 

ligands might also interact with other cellular targets).  Several interesting subgroups 

of cell lines could be identified based on their responses to these 13 ligands.  First, a 
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group of cell lines (approximately 10% to 15% of the panel) was identified that 

exhibited reduced viability following treatment with any ligand known to be at least 

as strong of a GR agonist as cortisol (triamcinolone, prednisolone, MPA, and 

dexamethasone).  Second, a non-overlapping group was found (approximately 10% of 

the panel) which showed increased growth following treatment with aldosterone, 

corticosterone, or dexamethasone.  Follow-up studies of this phenotype unexpectedly 

found that the apparent increase in viability was not due to an increase in actual cell 

number (data not shown).  Because the assay originally used (Cell Titer Glo) to 

measure cellular ATP levels as a surrogate for cell number, it is hypothesized that 

these ligands were acting on this subset of the cell line panel such that their metabolic 

phenotypes were altered.  Finally, spironolactone, an MR antagonist (Delyani 2000), 

was highly effective in a third, non-overlapping subset (approximately 20%) of the 

cell lines as an anti-cancer agent.  Both Eplerenone and RU28318 (also MR 

antagonists) did not have this same effect, which may suggest an non-MR dependent 

mechanism for the spironolactone-mediated killing as both have been found to be 

more MR selective than spironolactone. 

 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 

 
 
 
 
 
 

81 

 
 

 



 

 
 
 
 
 
 

 
 
 

82 

 
 

 

 



 
 

83 
 

 
 
 
 
 
 
 
Figure 4.2 Visualization of the NR ligand screening dataset 

 
Shown are the standalone analyses of ligands demonstrated to target (A) the AR, (B) the 
PPAR, and (C) the GR/MR.  For each case, it is important to note that many of these ligands 
are known to interact with other receptors as well.  Data shown are as IC50 values (as in 
Figure 4.1).  In panel (B), three compounds that did not have common names/abbreviations 
were indicated by their CAS#s for ease of reading.  For panel (C), additional data was shown 
indicating the agonist (Ag) or antagonist (An) status of each ligand (“AnC” was noted for 
Dex-MES as this ligand is a covalent antagonist of GR).  Furthermore, the strengths of each 
ligand (relative to cortisol) for GR or MR are shown as determined in previously published 
work (Miner, Hong et al. 2005).  Values not included in this reference are estimated from 
other publications as “low”/“high.”  “*” represents a compound which is similar in GR 
versus MR selectivity to cortisol, but is a weaker agonist. Dex-MES is indicated as an 
exception (by “**”) due to its unique mechanism.  Previous reports suggest Dex-MES 
interacts with both GR and MR. 
 
 
 
 

4.3.3 GR Agonists as Anti-Cancer Agents 
 

 Preliminary data analysis of GR/MR agonists revealed that several GR agonists 

(hydrocortisone (Newman, Nellermoe et al. 1992), triamcinolone (Jeal and Faulds 1997), 

prednisolone (Gambertoglio, Amend et al. 1980), medroxyprogesterone 17-acetate (Chilvers 

1996), and dexamethasone (Sood, Barton et al. 2007)) caused loss of fitness versus controls 

in a subset of approximately fifteen percent of the tested cell lines (Figure 4.2 C).  From 

these five compounds, dexamethasone was selected as a representative member for further 
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study due to its widespread clinical use, particular GR selectivity, and current status as a 

pretreatment for lung cancer chemotherapies (to mitigate side effects).   

 

 To begin, experiments were initiated to confirm the cell death phenotype observed in 

the ligand compound screen.  From simple visualization of the cells under the microscope 

five days post 1uM Dex treatment, it was unexpectedly discovered that dexamethasone 

treatment did not cause cell death, but instead induced massive morphological changes in the 

cells (Figure 4.3A).  Specifically, the nuclear to cytoplasmic ratio decreased significantly 

with cells becoming flattened in appearance.  Elongated cells were also frequently observed, 

and multi-nucleated cells could be seen.  Further experiments confirmed not only a 

morphological change in the cells, but also a large decrease in the total number of cells 

versus untreated controls in a five-day assay (Figure 4.3 B).  It was hypothesized that the 

observed phenotypes might be explained by a cell cycle arrest, and cell cycle analysis was 

undertaken to test this hypothesis.  As expected, a cell cycle block was observed with many 

of the dexamethasone treated cells arresting in G1 (Figure 4.3 C).   Based on these results, it 

was concluded that treatment of a subset (up to 10% to 15%) of the cell line panel resulted in 

reduced replication and morphological changes through a cell cycle arrest mechanism. 

 

 Following these observations and experiments, studies were undertaken to determine 

whether or not a biomarker could be found that was capable of predicting dexamethasone 

sensitivity.  Illumina V4 microarray data collected previously was analyzed using Matrix 
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Software (for details see section 2.5), and a genetic signature consisting of approximately 

four hundred genes was collated (Figure 4.4 A).  The signature was pulled by comparison of 

the 17 dexamethasone-sensitive cell lines (10 lung, 7 breast cancer) with 39 dexamethasone-

resistant cell lines.  Unexpectedly, “fold changes” within this signature were drastic, with 

many genes showing over 100-fold differences between sensitive and resistant cell lines.  

Interestingly, it was discovered that only the dexamethasone-sensitive lung cancer cell lines 

exhibited the sensitivity signature while the dexamethasone-sensitive breast cancer cell lines 

did not.  Cell lines that had not been tested in the ligand screen were checked for presence or 

absence of the Dex signature.  Three lung cancer cell lines that had not previously been 

screened were predicted as dexamethasone sensitive and then screened through the entire 

ligand panel screen (EKVX, H1944, and H2023).  As expected, all three of these cell lines 

exhibited exquisite sensitivity to the five GR agonists previously shown to be effective in 

causing cell cycle arrest in lung cancer cell lines exhibiting the dexamethasone-sensitivity 

signature.   

 
 
 Once the predictive power of the signature had been proven, efforts were undertaken 

to reduce the signature down to its core component(s).  First, comprehensive exome 

sequencing data (available in the Minna laboratory as an archival dataset for almost all of the 

cell lines tested in the ligand screen) was analyzed for molecular correlates showing strong 

association with the dexamethasone sensitivity phenotype.  From this analysis, it was 

determined that cell lines with mutations in LKB1 were statistically overrepresented among 
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the dexamethasone sensitive cell line group (Figure 4.4 B). LKB1 (STK11), a 

serine/threonine kinase, regulates cell polarity and is frequently deleted or inactivated in lung 

tumors (reviewed: (Sanchez-Cespedes 2011).  LKB1 is a key player in cellular metabolism 

and is required for maintaining energy homeostasis and growth under low energy availability 

conditions.  However, it was quickly determined that LKB1 could not be a sole biomarker for 

dexamethasone sensitivity as approximately 25% of the dexamethasone resistant cell lines 

were also LKB1 mutants (Figure 4.4 B).  To identify a co-biomarker for dexamethasone 

sensitivity, expression signatures (from available archival microarray data) were compared 

between LKB1 mutants that were sensitive to dexamethasone and LKB1 mutants that were 

insensitive to dexamethasone (using Matrix Software).  CPS1 was found to be more than 

100-fold upregulated in LKB1 mutant, dexamethasone sensitive cell lines versus LKB1 

mutant, dexamethasone insensitive cell lines (Figure 4.4 C).  Carbamoyl phosphate 

synthetase (CPS1) is a metabolic enzyme involved in pyrimidine and arginine biosynthesis 

and in the urea cycle ((Simmer, Kelly et al. 1990)).  Few publications are currently available 

examining the role(s) that CPS1 might play in cancer.  Analysis of cBioPortal data (summary 

site for the TCGA data results, cbioportal.org) showed a relatively high rate of CPS1 

mutation (up to 10% - 15% of samples tested, n = 172 samples) in lung cancers, though no 

recurrent mutations were seen. It is important to note that neither CPS1 nor LKB1 were 

found to be able to serve as a sole biomarker for dexamethasone sensitivity.  As with the 

LKB1 mutations, cell lines were found in the panel that had high CPS1 and were 
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dexamethasone insensitive.  Only cell lines that had both markers (high CPS1 and LKB1 

mutation) could be confidently predicted to be dexamethasone sensitive. 

 

Finally, a preliminary analysis was undertaken to see if a “CPS1-high” subpopulation 

could be identified in a patient dataset.  Analysis of the TCGA expression dataset for lung 

cancer showed a subset of patients with abnormally high CPS1 expression versus the rest of 

the analyzed panel (Figure 4.4D).   
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4.4 Discussion 
 
 Nuclear receptor ligands represent a large class of compounds with tremendous 

translational potential currently not utilized in lung cancer treatment and historically 

understudied within the context of this disease.  To address this issue, a representative panel 

of 110 nuclear receptor ligands was screened against a comprehensive panel of breast cancer 

and non-small cell lung cancer cell lines (n=130) fully representative of all currently known 

molecular definitions of these diseases.  Data confidence was exceptionally high with 

compound screening being carried out under a unique protocol utilizing both 12-point dose 

response curves and triplicate results being obtained for all pairwise combinations of drugs 

and cell lines.  This dataset provides a strong foundation for future studies to use as a starting 

point for hypothesis generation regarding the potential uses of NR ligands in lung cancer. 

 

 To provide a roadmap for successful analysis of the ligand dataset, receptor class case 

studies were performed with the Androgen Receptor (AR) ligands, the Peroxisome 

Proliferator Activated Receptor (PPAR) ligands, and the Mineralocorticoid and 

Glucocorticoid Receptor (MR, GR respectively) ligands.  These analyses revealed that our 

knowledge of NR ligand functions could be useful in understanding the dataset.  For 

example, a subset of cell lines (approximately 10% to 15%) was identified that responded to 

all five of the known GR agonists in the ligand panel, which suggests the likely involvement 

of the GR in mediation of the phenotype. 
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 After analysis of the data, dexamethasone was selected as a hit for further study.  

Dexamethasone (Dex) has widespread clinical use, exhibits particular GR selectivity, and is 

currently given to most lung cancer patients as a pretreatment to help mitigate the side effects 

of chemotherapy.  In follow-up studies, it was determined that Dex did not actually cause the 

active killing of Dex-sensitive cell lines, but instead arrested their growth.  Morphologically, 

Dex treatment had little effect in Dex-insensitive cell lines, but caused distinct changes in 

Dex-sensitive lines including the enlargement and elongation of cells.  Because only a subset 

of the NSCLC cell lines were found sensitive to Dex (approximately 10% to 15%), efforts 

were undertaken to identify a biomarker predictive of Dex sensitivity.  Initial efforts 

identified a four-hundred gene signature which was subsequently demonstrated to be capable 

of accurately predicting whether or not unknown cell lines would be sensitive to GR agonist 

treatments.  Further refinement of this signature ultimately identified an unusual dual 

biomarker whereby cell lines with both LKB1 mutations and high expression of CPS1 could 

reliably be predicted to be sensitive to Dex treatment.  Both LKB1 (a known tumor 

suppressor in lung cancer inactivated in up to 20% of patients) and CPS1 are known players 

in the regulation of cellular metabolism.  It will be interesting to see if future studies can 

further elucidate the link between Dex sensitivity, cancer metabolism, and these two markers.   

 
 

4.5 Future Directions 
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 The studies presented in chapter four represent only the beginnings of a potential 

undertaking to identifying novel roles for nuclear receptor targeted therapies in the treatment 

of lung cancers.  As mentioned in the discussion section, the breadth, comprehensiveness, 

and reproducibility of this ligand dataset are relatively unparalleled in the current lung cancer 

literature, and many future investigators will likely utilize this resource as a hypothesis 

generating point for studies on individual compounds or cell line subsets represented in this 

dataset.   

 As for more specific future goals, initial efforts should focus on finishing receptor 

class analyses for the remaining nuclear receptors (such as estrogen receptor, or vitamin D 

receptor) represented in the ligand library.  Such analyses may reveal additional ligand 

classes with similar mechanisms of action that all give the same phenotypic response pattern 

across the cell line panel.  These could then be quickly studied using a similar pipeline as 

what was done with dexamethasone.    

  

Other interesting ligands identified in the preliminary analysis of the dataset included 

Tamoxifen and Seocalcitol.  Tamoxifen is well-studied in the context of breast cancer and 

represents a rapidly translatable compound (reviewed: (Clemons, Danson et al. 2002)).  It has 

been studied as a combination therapy in phase I studies in lung cancer, but detailed analyses 

to identify clinically actionable biomarkers have been incomplete (Perez, Gandara et al. 

2003).  In the ligand studies here, it was discovered that many lung lines responded to 

Tamoxifen treatment at a level comparable to the responses seen from ER+ breast cancer cell 
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lines (data not shown).  Likewise, Seocalcitol, a well-known vitamin-D analogue used in 

several high profile phase I and II studies in hepatocellular (Dalhoff, Dancey et al. 2003) or 

pancreatic (Evans, Colston et al. 2002) cancers, showed strong effects in many of the cell 

lines tested. 

  

To complete the preclinical studies of dexamethasone, it will be necessary to first 

demonstrate in mouse models that dexamethasone effectively inhibits tumor xenograft 

growth.  Furthermore, it will be essential to examine the potential link between 

dexamethasone treatment and chemosensitivity.  Currently, dexamethasone is given to 

virtually all lung cancer patients (through a variety of dosing schemes) to help mitigate 

chemotherapy-induced nausea and vomiting (Peterson, Hursti et al. 1996).   In addition, 

many literature reports exist arguing that dexamethasone can have e a chemoprotective effect 

(example: (Zhang, Beckermann et al. 2006), a chemoenhansing effect (example: (Wang, 

Wang et al. 2007)), or no effect in combination with chemotherapy.   Most of these studies 

were done across differing tissue types, with different dosing schedules, and using different 

model systems.  It will be important to establish whether or not dexamethasone treatments 

enhance or diminish the effectiveness of chemotherapy in lung cancer models.  Additionally, 

further experiments ought to focus on elucidating the potential mechanisms of 

dexamethasone action in the dexamethasone sensitive cell lines.  Potential avenues of 

exploration include timecourse-based microarray analyses with and without dexamethasone 

to determine what transcriptional programs dexamethasone might be regulating, chromatin 
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immunoprecipitation assays before and after dexamethasone treatments to determine how 

dexamethasone treatment might be effecting glucocorticoid receptor promoter occupancy, 

and also metabolic assays to explore the potential mechanistic roles that CPS1 might be 

playing. 
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CHAPTER FIVE: RNAi Screening of NR/CoRegs in Lung 
and Breast Cancer Cell Lines 
 
 

5.1 Introduction 
 

5.1.1RNAi Technology for Cancer Phenotyping 
  

Since its discovery, RNAi technology has been utilized to great effect for a plethora 

of purposes within in virtually every context of biomedical research.  Of particular import, 

RNAi technology has allowed the systematic interrogation of the functional space 

surrounding the cancer genome in a timely and efficient fashion (Mohr, Bakal et al. 2010).  A 

variety of approaches have been employed including differing scopes of studies.  Many 

studies utilize RNAi as a secondary technique to validate or investigate findings identified 

through other methods.  More relevant here, a particularly poignant use of RNAi has been in 

screening efforts.  Typically, two variables must be considered in the design of these screens: 

1) the number of cell lines to be tested and 2) the number of siRNAs to be screened. 

 

To date, virtually all large scale RNAi efforts performed have focused on 

interrogating many genes across few cell lines (reviewed: (Sigoillot and King 2011)).  In 

direct contrast, the efforts described here aim to screen a relatively small number of siRNAs 
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(n=120) across a relatively large number of cell lines (n=130).  This unconventional goal 

presented challenges and also allowed us an uncharacteristically close look at the data 

generated from a different angle than typical large-scale screens (namely, we were interested 

in the whole dataset rather than just identifying a single hit), and this afforded us the 

opportunity to further understand RNAi technology and its potential limitations and 

applications. 

 
 
 
 

5.2 Aims and Goals 
 
The following list of aims and goals was developed both initially and during the evolution of 

the project. 

Original Goals: 

(A)   Develop a screening methodology and transfection conditions for medium-scale 

siRNA libraries being screened across large cell line panels. 

(B) Determine the effect (if any) of systematic loss-of-function of the forty-eight nuclear 

receptors and a panel of seventy-two co-regulators across the cell line panel. 

(C)   Select one or two particularly promising siRNA pools and further characterize their 

(originally: “on-target,” later: “off-target”) effects and potential as cancer-specific 

vulnerabilities. 

Additional Goals: 
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(D)   Characterize the off-target effects in the siRNA screen and add to basic biological 

understanding of siRNA off-target effects as necessary such that goals “C” and “E” 

can be accomplished. 

(E)   Discover the true target(s) of an siRNA off-target effect. 

(F)   Identify a list of seed sequences that serve as cancer-specific hits. 

 

5.3 Results 
 
 

5.3.1  Design of the siRNA Screen 
 
  

Because of the unique needs for the siRNA screen proposed (large number of cell 

lines, few siRNAs), a new methodology needed to be developed before the dataset could be 

generated (Overview in Figure 5.1A).  To overcome this challenge, a combination of high 

and low throughput methods were combined.  First, siRNAs were plated into screening 

“daughter” plates using 96-channel automated pipetting systems (Biomek, Beckman Coulter) 

available in the UTSouthwestern high-throughput core screening facility.  This methodology 

was efficient because each cell line to be screened required the same plate layout template 

and hundreds of plates could be made in a single day.  Following siRNA plating, the 

daughter plates were sealed and frozen at -20C until needed.  Because each cell line to be 

screened was only to be screened against a total of six 96-well plates, it was not efficient or 

cost effective to do the remaining portions of the siRNA screen using high-throughput 
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robotics.  Instead, a simple protocol was developed using an eight-channel automatic 

repeating pipette (BioRad) which allowed for cost-effective plating of the lipid transfection 

reagent and cells. 

 

Unfortunately, it was also determined that transfection conditions in 96-well settings 

were particularly sensitive, and it was necessary to thus individually optimize conditions for 

each cell line that would be screened.  To accomplish this goal, a simple methodology was 

developed which allowed for the simultaneous optimization of six cell lines--again using an 

eight-channel automatic repeating pipette.  Various concentrations of lipid-per-well and 

numbers of cells-per-well were tested against lipid only, scrambled siRNA, or toxic siRNA 

conditions, and controls were compared to identify the most effective conditions (Figure 

5.2A).  It should be further noted that not every cell line tested could be successfully 

transfected by these methods.  Particularly, cell lines which grew without anchoring to the 

plastic surface (typically small cell lung cancers), cell lines which grew in small clumps or 

clusters, or cell lines with exceptionally long doubling times were determined to be unable to 

pass quality control tests and were omitted from the screen.  Additionally, it should be noted 

that cell lines with mycoplasma infections were found to be greatly reduced in their ability to 

be transfected and to yield reproducible results.  As a result, extreme care was taken to ensure 

that all cell lines were mycoplasma free before their use in these assays. 

Although the number of cell lines screened was extensive, not every available cell 

line could be feasibly screened due to cost and materials restraints.  As a result, care was 
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taken to assemble as representative of a cell line panel as possible (Figure 5.1A).  Within the 

lung cell lines (n=65) care was taken to ensure representation of all relevant lung cancer 

oncogenotypes (KRAS, LKB1, p53, EGFR, etc.) as well as known cell line pairs (when 

possible). Cell lines with the most available legacy data (expression data, mutational data, 

drug sensitivity data, reverse phase protein array (RPPA) data, radiation sensitivity data, 

copy number data, methylation data, etc.) were prioritized over unknown cell lines.  

Originally, a panel of fifty cell lines was selected, but some cell lines were found difficult to 

transfect and were replaced with other cell lines in addition to 15 further cell lines to ensure a 

comprehensive panel.  Unfortunately, the histotypic representation of the panel was not 

reflective of the clinical situation due to the technical challenge of transfecting small cell and 

squamous lung cancer cell lines.  Within the breast cancer cell line panel, all available breast 

cancer lines were tested and any that passed optimization protocols were included in the 

screen (n=24).  All relevant molecular disease states of breast cancer (ER+, PR+, HER2+, 

triple negative) were represented.  Additionally, seven parental human bronchial epithelial 

cell lines (HBEC) were screened along with all possible oncogenic variants of these lines 

including p53, KRAS, LKB1, c-MYC altered lines and lines with and without growth 

adaptation to serum conditions.  For comparison purposes, seventeen additional cell lines 

from other cancer types (melanoma, hepatocellular carcinoma, prostate cancer, and 

pancreatic cancer) were also screened as materials were available. 
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5.3.2 Screening Dataset (Overview) 
  

Following completion of the screening replicate, data analysis was performed to 

remove outliers and each screen was checked to see if it clustered with the other replicate 

screens of the same cell line.  In cases where clustering was not seen, additional replicate 

screens were performed.  As discussed in section 2.9, siRNA screening data were processed 

using two complementary methodologies.   Briefly, data were converted to z-scores to allow 

for direct comparison between different screens.  The z-score methodology best accounted 

for differences in transfection efficiencies as well as reducing the significance of hits in cell 

lines with many hits and enhancing the significance of hits in cell lines with few hits such 

that the relative importance of hits could be easily compared.  However, this methodology of 

data processing was found insufficient for complete understanding of the dataset because 

biological relevance was difficult to assign between like z-scores for different cell lines.  For 

example, a z-score of -1 in one cell line might denote a large reduction in viability while the 

same score in a different cell line might falsely represent a small reduction in viability as a 

large viability reduction (presumably due to the small size of the siRNA library leading to 

large standard deviations in some cell lines with above-average numbers of hits).  To address 

this, the same data were also processed as percent versus plate average (Figure 5.2B).  While 

this methodology does not allow for direct comparison between cell lines, it does allow for 

easy extraction of biological meaning from the data.  Complementary use of both analysis 
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methodologies in hit identification proved effective in accurately calling specific data points 

hits or non-hits.   

 
  

Data were assembled into a heat-map format for broad-scale analysis (Figure 5.1B).  

While patterns of hits across the panel can be visually inspected to be relatively even 

between the cancer cell lines of all histotypes, it can be easily appreciated that the HBEC cell 

lines tested (whether in KSFM media or R5) exhibited a distinct response pattern.  Hits could 

be identified which were toxic to most of the cell lines tested, as well as hits which caused 

increased viability in the tested cell lines.  Unexpectedly, there were relatively few siRNAs 

tested which exhibited little effect. Furthermore, siRNA knockdown efficiency was also 

assessed.  Thirteen siRNA pools with interesting phenotypes were selected and their 

knockdown efficiencies were determined in three cell lines (Figure 5.1C).  Overall 

knockdown efficiency was greater than eighty percent with all thirteen siRNAs achieving at 

least seventy-five percent silencing efficiency. 

 

To assess the relative uniqueness of the response patterns of each cell line to the 

siRNA panel, correlation coefficients were calculated for all possible pairwise comparisons 

of the screening replicates (Figure 5.1D).  The data were then clustered and converted to a 

heat map format.  As expected, correlation between replicates of the same cell line was found 

to be quite strong with average correlation coefficients being approximately 0.86.  

Unexpectedly, the correlation coefficients between replicates that were of different cell lines 
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were very low (average 0.28) suggesting that each cell line responded uniquely to the siRNA 

panel.  In fact, it was discovered that cell lines of unknown identity could be properly 

identified by their unique response pattern to the siRNA screen.  Additionally, some areas of 

higher correlation could be identified.  For example, it was seen that correlation between the 

various parental HBECs was higher than background, although the differences between these 

parental HBEC lines were still surprisingly stark.  Additionally, there were a couple of 

groups of cancer cell lines that exhibited stronger-than-background average correlation 

coefficients. 

 

5.3.3 A Second siRNA Screen 
 

Following initiation of the Nuclear Receptor/Co-Regulator (NR/CoReg) siRNA 

screen, a second siRNA screen was initiated that targeted a related set of genes (Figure 5.2C).  

Specifically, fifty two chromatin remodelers, twenty seven methyl transferases and twenty 

three palmitoyl transferases were targeted for a total of one hundred and two targets.  It has 

long been appreciated that nuclear receptors act in large complexes consisting of both Co-

Regs and chromatin remodelers (reviewed: (Collingwood, Urnov et al. 1999).  Additionally, 

although much less-thoroughly studied, it has been appreciated that many nuclear receptors 

interact with methyl transferases (reviews: (Kraus and Wong 2002; Lee, Koh et al. 2002; 

Barrero and Malik 2006)).  The palmitoyl transferase targets were included as a follow-up 

screen to hits from genome-wide siRNA screens performed through a collaboration between 
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the Minna and White laboratories.  The methodology utilized for the second siRNA screen 

was identical to that used for the NR/CoReg siRNA screen, and results and quality were 

found to be comparable.  A large panel of cell lines was screened including fifty five lung 

cancer cell lines, eleven breast cancer cell lines, and twenty three HBEC variants.  Data 

analysis was performed as before (Figure 5.2D). 

5.3.4 Cluster Analysis of the siRNA Data 
 

 

As a preliminary analysis tool, clustering methodologies were utilized to establish 

relationships within the datasets (see methods 2.11).  First, it was immediately appreciated 

that the NR/CoReg siRNA data were capable of distinguishing between HBEC and cancer 

cell lines (Figure 5.3A).  Secondary analysis focused on relationships between the various 

strains of HBECs and replicates were un-averaged to allow for more detailed studies.  Next, 

clustering of all the HBEC data revealed the siRNA screening data were capable of 

distinguishing between those HBECs grown in KSFM and those grown in R5 (Figure 5.3B).  

It has previously been reported that serum adaptation can drastically alter the tumorigenicity, 

shape, and epithelial properties of HBEC cells (Sato, Larsen et al. 2013).  In addition to 

serum adaptation, various oncogenic variants of parental HBECs have been developed 

including those with inactivated p53, those with inactivated p53 and inclusion of oncogenic 

KRAS, and those with inactivated p53, oncogenic KRAS, and inactivation of LKB1.  

Furthermore, some of these oncogenically progressed variants have been then adapted to 

serum.  Upon cluster analysis it was determined that the siRNA screen was capable of 
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distinguishing between all of these different variants (Figure 5.3C).  Previously in the lab, 

isogenic soft agar clones of KRAS 30KT, p53/KRAS had been isolated and tested for their 

tumorigenic properties.  Impressively, the 120-target NR/CoReg siRNA screen could 

accurately distinguish between those clones which were capable of forming tumors in mice 

and those which were not (Figure 5.3D). 

 
 

Following these results, it was next examined whether or not the second siRNA 

screen would also be able to make these same distinctions.  Amazingly, a completely 

different set of siRNAs was also able to perform the same segregations as the NR/CoReg 

siRNA screen (Figure 5.4A – 5.4D).   

 

Given the amazing resolving power of either siRNA dataset, it was expected that the 

NR/CoReg siRNA screen would also be able to distinguish between cancer cell lines of 

differing histotypic origins.  Twenty four breast cancer cell lines and seventeen other cancer 

cell lines of various histotypes were additionally screened using the same methodology as 

before.  Unexpectedly, clustering of all the data showed no distinction between the different 

histotypes, but instead appeared to be separating the cell lines based on other characteristics 

(Figure 5.3 E).  In direct contrast, examination of HTG qNPA data (Chapter 3) for the same 

120 gene targets across a large panel showed exquisite separation of the samples based on 

their histotypic origins.  Based on these data, it was concluded that the functional state of 
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each cell line (presumably what was being queried by the siRNA panel) was not necessarily 

directly derived from the cell line’s tissue of origin. 

 

Most intriguingly, when the two dendrograms generated from the two siRNA screens 

were compared, it was found that not only were the HBEC segregations identical, but also 

that the clusters of cancer cell lines generated were strikingly similar (Figure 5.3F).  Clusters 

were generated using a principal component analysis (PCA) based methodology (to allow for 

compatibility with the R software) and the two dendrograms were compared using an R 

package denoted “dendextend.”  Bootstrapping-based analysis allowed for calculations of p-

values for the observed relationships (Figure 5.4 E, F) and the conserved cladistic 

relationships were deemed highly statically significant. 
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Figure 5.4 Recapitulation of functional relationships in the second siRNA screen. 
 

A-D) Same analysis as in Figure 5.3A-D is shown for siRNA screening dataset #2 
E) Fowlkes-Mallows Index calculations for all possible numbers of clusters for siRNA 

screen #1 dendrogram shown in Figure 5.3F. 
F) Result of bootstrapping sampling (N=1000) for siRNA screen #1 dendrogram shown 

in Figure 4F.  Calculated p-value for the similarity demonstrated in figure 5.3F is p < 
0.001. 
 

 

 

5.4.4 Identification of Cancer-Specific Hits 
 
 

Following the establishment of the quality of the data and the resolving power of the 

dataset, the challenging process of hit identification and prioritization was begun.  As was 

previously discussed, two complementary methods of data analysis were utilized to best 

separate true hits from false positives generated due to data analysis methods.  To accomplish 

this, a plot directly comparing results from the two methodologies was generated and 

analyzed (Figure 5.2B).  From the plot, it could be appreciated that any given z-score value 

included with it an approximate range for biological meaning (i.e. relative kill versus 

control).  For example, a z score of -1 could represent a biological result of 35% loss of 

viability to 50% loss of viability depending on the cell line context being analyzed.  Based on 

this information, three z-score ranges were selected that best allowed for biological 

interpretation of the z-score data.  Specifically, any result with a z-score greater than -0.8 was 

assigned a biological result of less than 30% kill and was considered to be “not a hit.”  
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Likewise, z scores between -0.8 and -1.6 were assigned to be between 30% and 40% kill and 

were considered minor hits.  Any z-score that was less than -1.6 had a kill between 40% and 

up to 90% and was considered a major hit.  Hits were then rank ordered inversely on their 

killing power against the HBEC normal controls and cancer specific hits were then 

categorized as those which scored no major hits in any of the seven HBEC control lines and 

two or fewer minor hits in any of the seven HBEC control lines (Figure 5.4A).  The majority 

of hits identified had no major or minor hits in the HBEC control lines.   

 
 Most important for clinical translation potential is the identification of a suitable 

“biomarker” capable of discerning which cancers will be susceptible to treatment.  To this 

end, efforts were undertaken to identify both traditional biomarkers (expression and 

mutational based) as well as functionally defined biomarkers based on the repeating cladistic 

relationships derived from the siRNA phenotypes (Figure 5.5B – Figure 5.5D).  Figure 5.5B 

shows an example of an siRNA pool which specifically causes viability loss only in cell lines 

which are functionally defined as “clade 1” members.  Figure 5.5C shows an example of an 

siRNA pool which specifically kills cell lines exhibiting the functional phenotype of 

“mesenchymal” (as opposed to “epithelial”).  To identify traditional biomarkers, elastic net 

analyses were performed on cell lines for which both siRNA and mutational/expression data 

were available.  One example of an identified putative biomarker is shown in Figure 5.5D 

where KEAP1 mutational status appears to predict a kill phenotype for treatment with an 

siRNA pool. 
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 Given the ability of the siRNA screen to parse between different oncogenic flavors of 

HBECs (Figure 5.3, 5.4), it is not surprising that there are siRNA hits that have specific 

effects in virtually every instance of HBEC oncogenic progression.  Some examples of 

siRNA pools that specifically kill based on growth media or oncogenic progression state are 

shown in Figure 5.5E. 
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In order to further validate the identified siRNA hits, a second set of RNAi-based 

screens was designed based on an independent technology known as endoribonuclease 

prepared siRNAs (esiRNAs).  esiRNA technology utilizes an RNAse III digestion step to 

“chop up” a target sequence into small fragments that are then used as a pool of siRNA 

reagents (see methods section 2.14 for details)  (Kittler, Surendranath et al. 2007).  An initial 

esiRNA library was produced that targeted the exact same 120 NR/CoReg targets as the 

siRNA NR/CoReg siRNA library.  This library was screened against a panel of twenty-eight 

NSCLC cell lines, two breast cancer cell lines, and three HBEC cell lines with data processed 

by the same two complementary methods as before (Figure 5.7A,B).  Unexpectedly, the 

esiRNA screen resulted in very few hits.  qRT-PCR analysis was performed to assess the 

esiRNA reagent’s abilities to knock down their targets in comparison to siRNA reagents 

against the same targets.  In ten head-to-head comparisons, it was found that both reagents 

knocked down their targets to equivalent levels (Figure 5.6B).  Likewise, timecourse analysis 

for one head-to-head comparison found virtually identical rates and efficiencies of 

knockdown over a four day period (Figure 5.7C).  Correlation analyses were performed 

between the siRNA and esiRNA screens done on the same cell lines with the same genes.  

While correlation coefficients between replicate screens for siRNA were strong (average 

0.88), and correlation coefficients between replicate screens for esiRNA were strong 

(average 0.83), it was seen that in all cases direct comparison of siRNA and esiRNA screens 

yielded a low correlation coefficient (average 0.21) (Figure 5.6A). 
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To further confirm the findings (and the potential hits from the esiRNA screen), the 

esiRNA library was resynthesized and rescreened across a subset of the thirty cell line panel 

(Figure 5.7B).  Unexpectedly, hits seen in the first synthesis of the library generally did not 

repeat, and hits found in the second synthesis of the library were generally not seen in the 

first.  Rudimentary investigation of these phenomena strongly implicated improper digestion 

of select esiRNA reagents in either synthesis of the library as a mediator of a kill-inducing 

interferon response (Figure 5.7 E-G).  Comparison of siRNA and esiRNA results on cell lines 

screened in both panels revealed many cases where siRNAs had killed a subset of the lung 

cancer cell lines, but the corresponding esiRNAs had not (Figure 5.6C).  As a broad-scale 

comparison, correlation coefficients were calculated for all pairwise comparisons of all 

screens and were analyzed (Figure 5.7D).  esiRNA screens demonstrate clear separation from 

their siRNA counterparts. 
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5.4.6 Individual Oligo Analyses 
 

Traditionally in RNAi experiments, off-target effects are detected and prevented by 

the application of a secondary silencing trigger that produces the same phenotype (Cullen 

2006).  In the esiRNA experiments, the secondary silencing trigger utilized had not been able 

to replicate the phenotype of the siRNA reagents initially used.  However, to rule out the 

potential that the incompatible results were the product of the different technological 

platforms utilized (siRNA versus esiRNA), experiments were undertaken utilizing only the 

siRNA platform to validate the phenotypes observed in the initial NR/CoReg siRNA screen.  

Specifically, each pool of four siRNA oligos was rescreened against a small handful of cell 

lines as unpooled, individual siRNA oligos.  If the effects seen with the pooled reagent were 

due to an on-target effect, it would be expected that each of the individual component oligos 

of the pool would then yield the same phenotype as the pooled reagent did.  However, if the 

pooled reagent’s phenotype were due to an off-target event, the results would not agree. 

 

As expected from the esiRNA results, it was observed that for 119/120 siRNA pools, 

tests with the individual oligos did not recapitulate the phenotype of the siRNA pool (Figure 

5.8A).  siRNA pools that caused a cell kill or cell grow phenotype were typically only 

recapitulated by one or possibly two of the four siRNA oligos comprising the pool.  

Interestingly, oligos that had no effect in the pooled context sometimes had effects when 
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used on their own.  To rule out the possibility of confounding effects from differing 

concentrations of oligo, the experiment was repeated at 5nM.  While in a few cases the 

effects were diminished slightly, overall the reduction in concentration did not change the 

alignment of the individual oligos’ phenotypes with the pool’s phenotype or the alignment of 

the 5nM results with the 20nM results (Figure 5.8B, average correlation was 0.774).  

Furthermore, these results were repeated in 12 additional cell lines (Figure 5.8C). 

To further characterize these results, the phenotypes of the four individual oligo 

treatments were averaged and then compared to the phenotype of the siRNA pools (Figure 

5.7B).  Interestingly, it was observed that, even in cases where the four individual oligos 

gave highly disparage phenotypes, the result of the pool could be approximated well by the 

average of the four individual oligos, suggesting that the pool’s phenotype may be somewhat 

a summation of its parts (Figure 5.8D).  Likewise, it was observed that the phenotype of any 

individual oligo correlated more strongly with the phenotype of the pool of oligos than it did 

with any other individual oligo (Figure 5.8E).   

 Despite these results, one pool was identified (siPRMT1) which had its phenotype 

reasonably well replicated by all four individual oligos.  First, these results were repeated and 

it was verified that the pool and all four individual oligos did in fact give the same phenotype 

(Figure 5.9A).  Next, qRT-PCR analysis was performed and it was determined that the pool 

and all four individual oligos were highly efficient at knocking down the PRMT1 transcript 

(Figure 5.8B).  Unexpectedly however, further investigations into the mechanism of action of 

PRMT1-mediated cell killing by cell cycle analysis revealed that each siRNA was killing 
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Figure 5.9 Dubious nature of verification by successive oligos. 
 

A) All four siRNAs targeting the PRMT1 transcript are shown to cause loss of viability 
(average of three cell lines). 

B) All four siRNAs targeting the PRMT1 transcript are shown to cause significant 
knockdown of the target (average of three cell lines). 

C) Cell cycle analysis (day three post treatment) for each oligo.  Clear differences in 
mechanism of killing can be observed. 
 
 

5.4.7 siRNAs Acting as miRNAs 
 

 Following these findings, it was necessary to conduct additional experiments to 

further confirm/characterize the nature of the siRNA off-target effects present in the 

screening datasets.  To accomplish this goal, five siRNA “reagents” were selected for 

microarray analysis.  Two of these pools had specific killing effects against clade 1 (siHNF4a 

pool and siHMGB2 pool) and two of these pools had specific killing effects against clade 2 

(siNURR1 pool and siSIN3B pool).  The scrambled control was included as a non-targeting 

control as well as a non-pooled reagent control.  Interestingly, it was determined by western 

blot and qRT-PCR analysis that HNF4a was not expressed in any of the cell lines tested, 

necessitating an off-target effect (data not shown).   

 

 To assess the unintended silencing effects of treatment with these five siRNA pools, 

cell lines were treated with lipid only or siRNA reagent, and RNA was harvested twenty-four 

hours later.  Comparison was not made to scramble control treated because (as the data show) 

the scramble control siRNA was suspected to be responsible for additional off-target effects 
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and would be a confounding factor in the data analysis.  All microarray analyses were 

performed in triplicate and were analyzed using Matrix Software.  Consistent with literature 

reports, it was seen that treatment of cells with the siRNA pools caused greater than two-fold 

downregulation of more than the intended on-target transcript (Figure 5.10A).  Because no 

previous literature report had compared off-target signatures between different cell lines, two 

different cell lines, H157 and H358, were included in the analysis.  Interestingly, there were 

large portions of the off-target signature that were found to be in common between the two 

cell lines while each cell line additionally had its own cell line-specific component of the off-

target signature.  As will be discussed later, it is likely that the shared portion of the off-target 

signature is more robust, but future investigations should determine whether nuances in the 

miRNA processing machinery between different cell lines could account for these 

differences in observed off-target signatures.    Depending on which specific filters are 

applied to the dataset (filters utilized in previously published off-target studies differ greatly 

leaving leeway in deciding on what filter to apply), anywhere from fifty to as many as three 

hundred transcripts are downregulated upon treatment with an siRNA reagent.  Based on 

work that will be discussed later in the document, it was determined that approximately 130 

transcripts were downregulated upon siRNA treatment.  Furthermore, it is important to note 

that overlap between these lists is small – indicating the lists generated are specific for each 

oligo and not simply a list of transcripts that change regardless of which siRNA might be 

introduced into the cell (Figure 5.12C). 
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  Although previous literature reports made it evident that the overwhelmingly likely 

mechanism for these off-target silencing events was miRNA-like transcriptional silencing, an 

in silico analysis was performed to confirm these effects in the NR/CoReg siRNA dataset 

(example references: (Birmingham, Anderson et al. 2006), (Doench, Petersen et al. 2003)).  

TargetScan, a miRNA program used to predict targets of endogenous miRNAs (Lewis, Burge 

et al. 2005), was utilized to predict the targets for each siRNA used in the microarray 

analysis.  An example positive identification is shown in Figure 5.10B whereby TargetScan 

predicted the scrambled control siRNA would knock down SIX4 mRNA and microarrays 

before and after siScramble treatment demonstrated SIX4 knockdown by the scrambled 

control siRNA.  For all five of the off-target signatures generated, relative miRNA 

enrichment was determined (Figure 5.11A).  Output from TargetScan is not a yes/no, but 

instead a scale ranging from 0-100 with 0 being no binding predicted and 100 being binding 

predicted to be highly likely.   

 

As expected, TargetScan scores were significantly higher for transcripts that were 

downregulated in both H157 and H358, suggesting that these overlapping portions of the off-

target signatures might be more highly enriched for “real” miRNA off-target events.  Overall, 

approximately 79% of the transcripts comprising the off-target signatures were found to 

consist of transcripts that contained high confidence (TargetScan prediction score greater 

than fifty) seed sequence binding sites in their untranslated regions (UTRs) (Figure 5.11B).  

Unexpectedly, it was found that there was a strong enrichment among the transcripts in the 
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off-target signatures for transcripts containing binding site for more than one siRNA in the 

siRNA pool (Figure 5.11B).  In the case of transcripts downregulated in both H157 and 

H358, an average of 80% of these transcripts were predicted to be targeted by more than one 

siRNA from the siRNA pool.  This finding suggests that siRNAs within a pooled siRNA 

reagent may be acting similarly to endogenous miRNAs in that they likely are coordinating 

together to downregulate their target transcripts.  Figure 5.11C shows an example of 

FAM117B being predicted to be downregulated by all four siRNA components of the 

siSIN3B siRNA pool. 

 

 Because no previous report had examined to what extent the off-target signature of an 

siRNA pool would be recapitulated by the individual components of that siRNA pool, 

microarray analyses before and after treatment with each individual component of the 

siNURR1 pool were undertaken (Figure 5.12A).  From the siRNA pool’s signature, the 

following results were observed.  Approximately 5% of the siNURR1 pool’s off-target 

signature was not recapitulated by any of the four individual oligos.  Approximately 30% of 

the siNURR1 pool’s off-target signature was recapitulated by a single oligo from the siRNA 

pool (each oligo consisting for approximately 25% of the 30%).  An additional 25% of the 

siNURR1 pool’s off-target signature was recapitulated by two different oligos from the 

siNURR1 pool.  Furthermore, approximately 10% of the siNURR1 pool’s off-target 

signature was recapitulated by three of the four individual oligos and the final 5% of the 

siNURR1 pool’s off-target signature was recapitulated by all four of the oligos from the 
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siNURR1 pool.  All the relevant gene lists were analyzed by Ingenuity Pathway Analysis 

Software (IPA) and it was found that only one out of the one hundred and thirty genes 

contained in the siNURR1 off-target signature was a known downstream target of NURR1.  

For each of the individual components of the siNURR1 pool, seed sequence analysis was 

performed as before utilizing TargetScan to assess the seed sequence enrichment of the off-

target signatures generated by these oligos.  As expected, off-target signatures for these 

oligos were strongly enriched (approximately 75%) for high-confidence seed sequence 

binding sites of the siRNAs used.  Interestingly, oligo #2 had a much lower enrichment than 

the other oligos and furthermore had the weakest off-target signature (Figure 5.12B). 
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5.4.8 Deconvolution of the siNURR1 Pool: Discovery of N3 
 
  

Based on the above delineated data, it was necessary to conclude that the majority of 

the phenotypes observed in the siRNA dataset were caused by miRNA-like off-target effects 

instead of on-target effects.  However, regardless of their origin, the phenotypes recorded in 

the siRNA NR/CoReg screen were highly reproducible and compelling in terms of their 

potential for cancer translational opportunities.  Specifically, approximately 90 siRNA pools 

were identified which could kill a large portion of the cancer cell lines but not the normal 

HBEC controls (Figure 5.5A).  Because these phenotypes were compelling, the new goal of 

discovering the “true target(s)” of an siRNA pool was adopted.  Standing at the forefront of 

this effort, the siNURR1 pool was selected as an excellent candidate for deconvolution 

analysis because a large portion of the lung cancer cell lines were sensitive to treatment by 

this oligo (approximately 40% to 60%) while neither the HBEC control lines nor the breast 

cancer cell lines were significantly affected (Figure 5.13A). 

 

Of first importance, it was necessary to determine which of the four siRNA oligos 

comprising the siNURR1 pool was responsible for the phenotype or if the phenotype were 

due to some sort of combinatorial effect generated by the combination of some number of 

these oligos.  Toward this end, variants of each oligo were generated which contained 

disrupted seed sequences, and all possible pairwise combinations of these functional and 
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disrupted oligos were tested (Figure 5.13B).  It was quickly appreciated that any pairwise 

combination that contained either a functional oligo #1 or a functional oligo #3 caused cell 

death while pairs which contained mutated versions of these oligos or only oligos #2 or #4 

did not cause loss of cell viability.  To confirm this finding, all possible combinations of 

three oligos (including functional and non-functional variants) were tested (Figure 5.13C).  

As expected, any combination that contained either a functional oligo #1 or a functional oligo 

#3 resulted in decreased cell viability while those without functional #1 or #3 did not.  

Interestingly, combinations containing both #1 and #3 gave a more robust kill than either 

oligo alone.  Presumably this is due to the significant dilution of the individual oligos in the 

combinations with only #1 or #3. 

 

The finding that either oligo #1 or oligo #3 independently could cause a kill 

phenotype was unexpected and further experiments were designed to investigate this 

phenomenon.  Specifically, a panel of twenty five cell lines including those most sensitive 

and most resistant to the siNURR1 pool was selected and each oligo was screened 

individually across this panel of cell lines (Figure 5.14A).  When these results were 

compared to the results of the siNURR1 pool, it was discovered that treatment of any cell 

line with oligo #1 caused massive cell death while oligos #2 and #4 caused little loss in 

viability across the cell line panel.  Only oligo #3 (referred to hereafter as N3) was found 

capable of recapitulating the phenotype of the siRNA pool.   
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 Following these results, a panel of twenty nine cell lines was rescreened with N3 in a 

six-well dish format (representative results Figure 5.14B).  Because transfections were more 

efficient in 6-well dishes (as determined by comparison of percent kill resultant from toxic 

treatment in 6-well versus 96-well formats), it was much easier to define sensitive and 

resistant populations in this format.  Additionally, it was discovered that N3 treatment in 6-

well format resulted in a binary result (either complete kill or no kill) which was again 

presumably due to the increased transfection efficiency achieved under these conditions. 

 

 Next, efforts were undertaken to attempt to find a biomarker capable of predicting 

sensitivity or resistance to N3 treatment.  Use of Matrix Software on microarray data 

available for these cell lines found a weak genetic signature with low statistical significance 

(data not shown).  When this signature was run through pathway analysis software GOrilla 

(Eden, Navon et al. 2009), a statistical association was discovered between the N3 phenotype 

and upregulation of a mesenchymal phenotype (data not shown).  Some previous efforts in 

the lab had utilized E-cadherin and vimentin western blots to characterize a subset of the cell 

lines as either epithelial or mesenchymal.  Preliminary analysis of these data suggested that 

N3 sensitive cell lines were statistically enriched for a mesenchymal phenotype.  Based on 

these results, a large-scale effort was undertaken to generate E-cadherin/vimentin western 

blots for the entire cell line panel represented in the NR/CoReg siRNA dataset (example blot 

shown in Figure 5.14 C).  A complete tabulating of these results is included in Appendix C.  

Unfortunately, upon expansion of the epithelial/mesenchymal status of the cell line panel, it 
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B) Representative six-well phenotype of a sensitive and resistant cell line five days 
following N3 treatment. 

C) Representative blot for epithelial or mesenchymal (EMT) profiling of the cell line 
panel. 

 

 

 

 

5.4.9 Mechanism of N3 and Off-Target Confirmation 
 

 Next, the mechanism of cell death following treatment with N3 was determined.  

First, cell cycle analysis was performed on both sensitive and resistant cell lines to examine 

what effects N3 might be having on the cell cycle (for method details see section 2.15).  

Based on these analyses it was discovered that N3 treatment induced a robust G2/M arrest in 

sensitive cell lines but not in resistant cell lines at three days following N3 reverse 

transfection (Figure 5.15A).  Observation of N3 treated wells showed massive cell death 

between four and five days following reverse transfection.  Based on this observation, 

Annexin IV staining (a test of apoptosis) was performed at four days following N3 treatment.  

As expected, significant apoptotic fractions could be detected in N3 sensitive but no N3 

resistant cell lines (Figure 5.15B).  To summarize, N3 treatment caused a G2/M cell cycle 

arrest three days post reverse transfection followed by an apoptotic event four days post 

reverse transfection only in sensitive cell lines. 

 



 
 

136 
 

 As further confirmation that the phenotype caused by N3 was not due to an on target 

effect, it was next considered whether or not NURR1 itself might be a biomarker for N3 

sensitivity.  NURR1 protein and mRNA expression data were assessed for a panel of sixteen 

cell lines (Figure 5.16A), and no significant association was found between N3 sensitivity 

and the expression or mRNA level of NURR1.  Specificity of the antibody was confirmed by 

a timecourse of NURR1 knockdown following treatment with N3 (Figure 5.16B).  Following 

these experiments, more sophisticated genetic rescue experiments were designed and 

performed to confirm whether or not the N3 phenotype was due to an on-target or an off-

target effect.  To accomplish this goal, two different rescue constructs were designed.  The 

first (dubbed N3-C911) was based on a concept introduced in a 2012 publication (Buehler, 

Chen et al. 2012).  Here it was reported that siRNA on-target effects were dependent on 

proper target base paring utilizing bases 9, 10, and 11 while miRNA-like off-target effects 

did not require these binding events.  Thus, simple complementation of bases 9 through 11 

between the target and guide strands of an siRNA should result in a rescue event in the case 

that the phenotype is due to an on-target effect.   

 

Analogous to the C911 concept, a second rescue construct was designed that 

complemented three bases in the seed sequence of the N3 oligo (dubbed N3-Seed).  N3 

sensitive A549 cells were treated with both rescue constructs and it was observed that only 

N3-Seed could effect a rescue while N3-C911 elicited no rescue event (Figure 5.17A,B).  

These results were confirmed by qRT-PCR whereby it was demonstrated that neither N3-
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C911 nor N3-Seed could knockdown the NURR1 mRNA transcript (Figure 5.17C).  Because 

neither rescue construct knocked down the NURR1 transcript, but only the N3-Seed 

construct was able to rescue the phenotype, it was confirmed that the phenotype caused by 

N3 could not be due to N3’s knocking down of the NURR1 transcript.  To confirm this effect 

was not cell line specific, the N3-C911 oligo was tested across the twenty-five cell line 

member panel and the results were correlated with the N3 phenotype (Figure 5.17D).  As 

expected, treatment with either the N3 oligo or the N3-C911 oligo gave analogous results. 
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5.4.10 Identification of eIF4A3 as the True Target of N3 
  

Based on the data gathered to this point, it was conclusive that the N3 phenotype was 

not mediated through an on-target event.  Because the phenotype was so compelling, studies 

were initiated to discover what the true target of N3 might be.  To accomplish this goal, 

triplicate microarrays were run before and after N3 treatment utilizing four sensitive cell 

lines (Figure 5.18A).  Two possibilities existed as to why the resistant cell lines were not 

killed by N3 treatment.  1) The resistant cell lines were resistant because of intrinsic 

molecular differences between the resistant and sensitive cell lines (i.e. some sort of 

mutational profile or expression difference).  2) The resistant cell lines were resistant because 

an essential gene was knocked down by N3 in the sensitive cell lines but not the resistant cell 

lines.  Because either possibility could be true, running microarray profiles with resistant cell 

lines was determined to not be productive as the gene list produced by the resistant cell 

line(s) would not be helpful in culling the list of genes that still needed to be tested.  

Following completion of the microarrays, it was determined at a 153 gene signature was 

reproducibly created in all four sensitive cell lines following N3 treatment.  Because no 

previous literature report had ever compared the off-target signature of a C911 reagent with 

the off-target signature of the siRNA from which it was derived, we furthermore initiated an 

experiment to confirm the working nature of the N3-C911 reagent.  Importantly, treatment of 

H157 with the N3-C911 reagent revealed that changing bases 9 through 11 had no 

discernable effect on the seed sequence caused off-target signature of N3 while still 

preventing on-target knockdown (Figure 5.18A).  These results confirmed that the C911 



 
 

142 
 

reagent was working as expected and that C911 reagents are truly capable of recapitulating 

the off-target signatures of the siRNAs from which they are derived. 

 

Utilizing the information derived from TargetScan previously, the list of one hundred 

and fifty three transcripts was culled down to ninety eight transcripts by removing any 

transcript that did not contain a significant binding site for the N3 seed sequence.  Other 

filters utilized include removing genes not significantly expressed in all of the N3 sensitive 

cell lines or genes which did not have any published literature information.  Following the 

culling of the list, a secondary siRNA screen was performed with a few important changes 

from the initial siRNA screens.  Specifically, because it was observed that siRNA pools were 

unable to mitigate off-target effects and might even be responsible for enhancing them due to 

combinatorial off-target effects, a single siRNA was utilized against each target instead of a 

pool of four siRNAs.  Because only a single siRNA was being utilized for each target, a 

follow-up C911 screen of any positively identified hits was made much more cost effective 

and simple.   

 

In the secondary screen, four sensitive cell lines and one resistant cell line were 

screened against the ninety eight target siRNA library.  Because the specific pattern of hits 

produced by N3 was known, all but three of the ninety eight siRNAs could be immediately 

excluded from the list of potential hits (Figure 5.18B).  Importantly, a control siRNA against 

NURR1 failed to elicit a kill response in any of the N3 sensitive cell lines – again confirming 
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that NURR1 could not be the cause of the N3 phenotype.  An example of a test oligo that did 

not match the phenotypic pattern of N3 is shown in Figure 5.17B.  Three test oligos (eIF4A3, 

NUDT21, and TM2D2) were found to match the N3 phenotypic pattern reasonably well and 

these three were further investigated using C911 control oligos to confirm on-target 

specificity (Figure 5.19A).  Using these C911 control oligos, it was quickly discovered that 

the phenotypes caused by NUDT21 and TM2D2 were due to seed based miRNA-like off-

target effects while the phenotype from eIF4A3 was due to an on-target effect as the C911 

versions of NUDT21 and TM2D2 were unable to rescue the phenotypes while eIF4A3-C911 

gave a complete rescue.  To confirm these results, qRT-PCR analysis of eIF4A3 mRNA 

levels was performed (Figure 5.19B).  It was seen that N3, and the siRNA against eIF4A3 

both successfully knocked down the eIF4A3 transcript while the C911 version of eIF4A3 

was no longer able to reduce eIF4A3 transcript levels. 

 

Several different roles for eIF4A3 have been identified in previous studies.  First, it 

has been appreciated in the literature that eIF4A3 plays a role in the regulation of selenium 

containing proteins (Budiman, Bubenik et al. 2011).  However, the main role in the literature 

identified for eIF4A3 is as a member of the exon junction complex (EJC) (Chan, Dostie et al. 

2004).  The EJC can collaborate with UPF1 (Kashima, Yamashita et al. 2006) or CASC3 

(Gehring, Lamprinaki et al. 2009) to mediate nonsense-mediated mRNA decay.  

Furthermore, the EJC has been reported to work with CWC22 to mediate the splicing of 

exceptionally long introns (Steckelberg, Boehm et al. 2012).  Interestingly, a previous screen 
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done by the White laboratory had identified eIF4A3 and two members of the EJC 

(MAGOHB and RMB8A) as potentially cancer-specific hits in a similar subset of lung 

cancer cell lines as those identified sensitive to N3, confirming the likely involvement of the 

EJC in the phenotype (Kim, Mendiratta et al. 2013) (Figure 5.19C).  Furthermore, the same 

study identified the EJC complex as a specific killer of oncogenically progressed HBECs 

(Figure 5.19D).   

 

 To identify which of eiF4A3’s roles might be responsible for the phenotype observed, 

siRNAs were obtained and tested against N3 sensitive and N3 resistant lines to see which 

could replicate the N3 pattern across the panel (note: all results were verified using C911 

controls (data not shown)).  Figure 5.20 depicts a simplified version of the various roles of 

eIF4A3 and a summary of the results of knocking down EJC cooperative members across the 

N3 sensitive and N3 resistant cell line panel.  Unexpectedly, loss of UPF1 and CASC3 did 

not replicate the N3 phenotype while loss of CWC22 did – implicating the much more poorly 

understood role of the EJC in the splicing of exceptionally long introns as the reason for 

eIF4A3 sensitivity in these cell lines.  Unlike the previously published study, loss of 

MAGOH and MAGOHB did not replicate the phenotype.  The most likely explanation is that 

these two proteins have been reported to compensate for one another in humans and thus loss 

of either one independently may not have been sufficient to elicit a phenotype (Singh, 

Wachsmuth et al. 2013). 
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5.4.11 eIF4A3 as a Generally Toxic Hit 
 

 Following the discovery that treatment of cells with N3 (an siRNA targeted against 

NURR1) was eliciting a phenotype through knockdown of eIF4A3, confirmation of the 

cancer-specificity of loss of eIF4A3 was necessary.  To accomplish this goal, a panel of 

twenty-five cell lines was rescreened with N3, siEIF4A3, and a C911 version of siEIF4A3 

(Figure 5.21A).  Unexpectedly, loss of eIF4A3 was massively toxic to all cell lines tested 

except for H1819, the cell line used in the follow-up siRNA screen as a representative 

resistant cell line.  In all cases, N3 performed as expected and the C911 version of siEIF4A3 

could rescue the kill phenotype confirming that the observed effects were due to an on-target 

mechanism.  While these results might seemingly suggest that eIF4A3 was not the true target 

of N3, it could not be avoided that N3 did knock down eIF4A3 quite strongly and thus, if 

eIF4A3 were not the target of N3, no sufficient explanation remained why N3 would not also 

be completely toxic to all cell lines tested through its knockdown of eIF4A3.  Based on these 

considerations, the hypothesis was developed that cell viability was highly sensitive to even 

slightly increased or decreased levels of perturbations of mRNA levels of eIF4A3 such that 
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even small differences in N3-mediated knockdown of eIF4A3 might be sufficient to explain 

complete cellular kill or rescue. 

 

 This hypothesis was tested by simple dilution studies of both N3 and siEIF4A3 in 

both a sensitive and a resistant cell line (Figure 5.21B).  As these experiments are not 

intuitive, additional explanatory labels were added to the figure.  As expected, treatment of 

Calu6 with N3 caused nearly complete loss of viability while treatment of HBEC 30KT 

showed little effect.  qRT-PCR examination of these treatments revealed an 81% loss of 

eIF4A3 in Calu6 while HBEC 30KT had only a 76% loss of eIF4A3 transcript.  Simple two-

fold dilution of N3 was then found to be sufficient to completely rescue the sensitivity of 

Calu6 to N3.  qRT-PCR examination of this treatment revealed that a two-fold dilution of N3 

reduced N3-mediated knockdown of eIF4A3 from 81% to 74%, a reduction in efficiency 

sufficient to rescue the phenotype.  Likewise, dilution of siEIF4A3 was observed to follow 

the same rule.  Any treatment which caused more than approximately 77% reduction in 

eIF4A3 mRNA levels was found to be completely toxic to the cells while treatments which 

were not sufficient to cause knockdown at this level were found to rescue the phenotype.  

Based on these results, it was concluded that there existed a razor-thin window for loss of 

eIF4A3.  Unfortunately, the previously identified “cancer-specific therapeutic window” was 

thus not due to a clinically-tractable reason, but was instead due to slight differences in the 

transfection efficiencies of various cells. 
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5.4.12 Selection of siRNA Pools for Further Analysis 
  

 Following these results, the goal was developed to identify a set of seed sequences 

that are cancer-specific killers.  To accomplish this goal, cancer-specific pools were selected 

for further analysis utilizing the following criteria: 

1. Pick oligos that give maximum coverage across the cell line panel (i.e. every cell line 

is killed by at least one of the oligos). 

2. Pick oligos that have biomarkers. 

3. Pick oligos that have activity in the individuals screening that we already did. 

4. Pick oligos with potent effects (high magnitude). 

5. Pick oligos that are particularly cancer-selective. 

6. Try to limit the picks to oligos from the NHR screen. 

Additionally, the following technical considerations were taken into account: 
 

1. Need to screen 60, 120, or 180 individual siRNAs (plate layout). 
 

2. Each oligo screened is x3 because of C911 controls and seed sequence controls (i.e. 
60 actually =180 siRNAs, 120 actually = 360 siRNAs, 180 actually = 540 siRNAs). 
 

Use of these filters identified 15 siRNA pools that 1) had good magnitude of effect in the 

screen (>40% kill in >10% of the cell line panel) (Figure 5.22), 2) had >80% coverage of the 

NSCLC panel (Figure 5.23), 3) were not toxic to the HBEC controls, 4) 13/15 had 

biomarkers (Figure 5.24;  5/15 had expression only, 4/15 had mutation only, 4/15 had both), 
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A)  The individual components of these 15 siRNA pools were tested across 10 NSCLC 

cell lines.  Results are shown in the table and are color coded as per the key.   
 

 

 

5.4 Discussion 
 
 
 Based on data presented in Chapters 3 and 4, it can be clearly concluded that Nuclear 

Receptors and their Co-Regulators have a role to play in lung cancer diagnosis, prognosis, 

and treatment.  In direct contrast, data in Chapter 5 (particularly section 5.4.5) would suggest 

that NRs/CoRegs really have little functional relevance within the lung cancer disease state 

as their removal by genetic means (esiRNA) produces little-to-no effect across a reasonably 

sized panel of lung cancer cell lines.  These seemingly contradictory pieces of evidence can 

be reconciled by concluding that NRs/CoRegs are not drivers of lung cancer pathobiology 

(as say KRAS or EGFR mutations might be considered drivers).  This observation is 

supported by the myriad of published datasets which find that NRs/CoRegs are typically not 

mutated or amplified in lung cancer as would be expected with a bona fide driver.  Along 

these same lines, it is furthermore reasonable to conclude that lung cancers are not addicted 

to the continued expression of nuclear receptors or their co-regulators as would be termed in 

a more classic case of oncogene addiction.  Instead, a careful consideration of all the data 

presented in chapters 3, 4, and 5 leads to the conclusion that, although NRs/CoRegs are not 

drivers in lung cancer, they are still important within the disease state (presumably due to 
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their role as master regulators of key cancer processes), and their manipulation through 

ligands holds potential for great therapeutic benefit and should be further explored.   

  

 Considerations about the role of NRs/CoRegs in lung cancer aside, many important 

lessons and principles stand to be learned from careful examination of the RNAi screening 

datasets presented in Chapter 5.  First, it can be reasonably concluded that interpretation of 

siRNA results without thorough consideration of miRNA-like off-target effects is perilous.  

Evidence supporting this conclusion includes 1) the unexpected resolving power (far beyond 

what would be expected of the simple phenotypic output of a mere one-hundred genes) of the 

two complementary siRNA datasets (Sections 5.3.3 and 5.3.4), 2) the complete orthogonal 

nature of the siRNA and esiRNA screening datasets performed under identical conditions 

(Section 5.3.5), 3) the microarray datasets and their enrichment for transcripts containing the 

seed sequences of the siRNAs used (Section 5.3.7), and 4) the inability of the individual 

components of the siRNA pools to recapitulate the phenotypes observed in from the pool 

(Section 5.3.6). 

 

 Fortunately, most modern RNAi screening pipelines contain steps aimed at removing 

the most egregious of miRNA-like off-target events.  However, reviews of the large-scale 

success or failure of such methods to actually accomplish the removal of such effects have 

been mixed at best with many now suggesting these methods to be completely insufficient 

(Sigoillot and King 2011).  More alarming than off-target effects in large-scale screening 
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efforts where they are systematically tested for and discovered is the potential for RNAi off-

target effects to confound everyday bench-level experimental efforts where siRNA reagents 

are being employed as only a small part of a larger experimental strategy.  Specifically, 

events like those demonstrated in Section 5.4.6 whereby multiple siRNA reagents which all 

target the same transcript, all knock down the target, and all give similar phenotypes are 

routinely interpreted as irreproachable on-target events give particular cause for concern. 

 

 As a response to these challenges, two avenues of respite are discussed.  First, C911 

controls offer a simple and cost effective methodology for assessing the presence of an off-

target effect.  As demonstrated in section 5.4.9, microarray studies with C911 reagents in 

direction comparison with their non-C911 counterparts find that C911 reagents almost 

perfectly reproduce the off-target signature of the original reagent while preventing the 

knockdown of the on-target transcript.  Widespread usage of such reagents in both screening 

protocols (as was demonstrated in Section 5.4.10) and as controls during standard bench-

level investigations (as was demonstrated in Section 5.4.11) could revolutionize the RNAi 

field and allow for continued use of these reagents even in the face of new silencing 

strategies such as CRISPRi (Larson, Gilbert et al. 2013).  In the absence of a true genetic 

rescue experiment, C911 controls offer a simplistic alternative which can be included in 

everyday experiments. 

 



 
 

160 
 

 Apart from C911 controls, the data in Chapter 5 offer a second solution to handling 

miRNA-like off-target effects akin to the old adage, “if you can’t beat them, join them.”  

Sections 5.4.10 and 5.4.11 demonstrate a novel methodological outline for the deconvolution 

and identification of the true mediator of a phenotype from an off-target effect.  Because 

genome-wide siRNA screens can be exceedingly expensive to perform, many previous 

datasets could be mined for hits that were actually mediated by miRNA-like off-target effects 

and then such deconvolution methodology could be utilized to identify the true targets of 

these off-target oligos.  Such investigations would likely be significantly more cost effective 

than efforts to repeat such large-scale efforts with alternative technologies.  Furthermore, the 

strikingly similar dendrograms presented in Section 5.3.4 suggest that an oligo library 

consisting of as few as 120 oligos is capable of saturating virtually all of the functional space 

within a large cell line panel.  Based on this discovery, screening strategies could be easily 

modified to utilize off-target screens followed by deconvolution steps to allow for screening 

of large numbers of cell lines in a “multiplexed” fashion. 

 

 Finally, as efforts to enable the in vivo delivery of siRNA-like complexes reach 

fruition, it will be important to continue to delve into the potential off-target mechanisms of 

these reagents.  Furthermore, it is feasible to consider reagents designed such that their 

phenotypes might be affected through miRNA-like mechanisms in addition to traditional on-

target silencing to allow for multi-targeted reagents. 
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5.5 Future Directions 
 
  

As covered in 5.5 – Discussion, it can be reasonably concluded from the data 

presented in Chapters 3, 4, and 5 that NRs/CoRegs do not play a role as drivers of lung 

cancer, but that they do perform important functions in terms of regulating general, global 

cellular processes that may be exploited or unintentionally altered as a consequence of a 

given lung cancer’s pathogenesis.  Based on this conclusion, it is unreasonable to continue to 

pursue the study of NRs/CoRegs as single-agent drivers of lung cancer pathobiology as was 

the aim of this branch of the study. 

However, as is often the case in scientific research, the pursuit of answers about the 

driver status of NRs/CoRegs has raised additional questions which do merit further study.  Of 

particular import, a better understanding of the true nature of siRNA off-target effects has led 

to a reinterpretation of the results presented in Section 5.3.2.  Particularly, more than one 

hundred cancer-specific hits can be identified that kill large subsets of the lung cancer cell 

lines but which do not affect the normal controls or the other lung cancers (Section 5.4.4).  

Many of these hits were successfully associated with either traditional (molecular) or novel 

(functional) biomarkers which might be clinically useful for identification of subsets of 

patients capable of response to these reagents.  Two promising avenues for future studies are 

readily apparent. 
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First, as the in vivo delivery of siRNA-like reagents becomes closer to a reality, the 

direct application of these reagents to a tumor through such a system becomes a feasible 

route of investigation.  Although in many cases it might prove more advantageous to deliver 

siRNA-like reagents targeting known driver mutations, many reports exist suggesting that 

direct targeting approaches may not prove successful (example: KRAS knockdown in KRAS 

mutant lung cancers only causes cell death in a subset of the mutant liens (Sunaga, Shames et 

al. 2011)).  Indirect targeting through siRNA reagents identified in this study and others like 

it may prove important for the targeting of these resistant tumors. 

 

Second, Sections 5.3.10 and 5.3.11 present a road map for the deconvolution of an 

siRNA pool.  Efforts have already begun to apply this methodology to additional siRNA 

pools from the NR/CoReg siRNA screen which appear particularly promising such that their 

true targets might be identified.  Specifically, an siRNA pool targeting HNF4a (which is not 

expressed in any of the cell lines tested) was found to be a specific killer of a subset of the 

cell lines (dubbed Clade 1, found in both siRNA screens).  Due to its more selective and 

specific nature, it was considered unlikely that this second siRNA pool was selectively toxic 

in a similar fashion to the N3 reagent – a hypothesis confirmed by dilution and concentration 

experiments.  Continued investigation of this pool will prove essential in the identification of 

novel targets which exhibit selective toxicity to defined subsets of the lung cancer cell lines.
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APPENDIX A – Transfection Conditions 
 

Cell Line  Cells/well  Lipid/well  Efficiency

A427  4000  0.2  84% 

A549  2000  0.4  74% 

Calu‐6  2000  0.2  83% 

DFCI 024  2000  0.2  66% 

DFCI 032  2000  0.2  86% 

EKVX  2000  0.2  77% 

H1155  2000  0.2  67% 

H1184  8000  0.2  60% 

H1299  2000  0.2  88% 

H1355  4000  0.2  67% 

H1373  8000  0.2  67% 

H1395  inconsistent results 

H1437  2000  0.2  81% 

H1568  8000  0.2  65% 

H157  2000  0.2  65% 

H1573  4000  0.4  65% 

H1607  8000  0.2  71% 

H1650  8000  0.4  72% 

H1693  2000  0.2  81% 

H1703  8000  0.2  80% 

H1792  2000  0.2  74% 

H1819  2000  0.2  69% 

H1944  2000  0.2  77% 

H1975  8000  0.2  67% 

H1993  2000  0.2  66% 

H2009  4000  0.2  68% 

H2023  4000  0.3  47% 

H2030  4000  0.2  71% 

H2073  2000  0.2  81% 

H2087  8000  0.2  73% 

H2122  4000  0.4  67% 

H2228  2000  0.2  71% 
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H226  2000  0.2  69% 

H2291  4000  0.4  39% 

H23  8000  0.2  83% 

H2347  10000  0.4  56% 

H2887  8000  0.2  73% 

H3122  8000  0.4  80% 

H322  10000  0.2  70% 

H3255  4000  0.4  56% 

H358  2000  0.2  70% 

H446  2000  0.2  60% 

H460  2000  0.2  84% 

H520  2000  0.2  51% 

H522  2000  0.2  72% 

H647  2000  0.2  63% 

H650  8000  0.2  75% 

H661  4000  0.4  77% 

H820  inconsistent results 

H838  8000  0.4  87% 

H841  2000  0.2  80% 

H920  2000  0.2  68% 

HCC1187  8000  0.2  49% 

HCC1438  2000  0.2  75% 

HCC15  2000  0.2  64% 

HCC1806  2000  0.2  67% 

HCC1833  8000  0.2  45% 

HCC1954  2000  0.2  79% 

HCC2185  8000  0.2  66% 

HCC2279  10000  0.2  46% 

HCC2405  10000  0.4  58% 

HCC2935  8000  0.2  63% 

HCC3051  8000  0.2  79% 

HCC3153  8000  0.2  78% 

HCC4006  4000  0.4  73% 

HCC4011  4000  0.4  55% 

HCC4017  2000  0.2  68% 

HCC4018  8000  0.4  24% 

HCC4019  8000  0.2  70% 

HCC44  2000  0.2  46% 

HCC461  4000  0.2  68% 
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HCC78  10000  0.2  64% 

HCC827  2000  0.2  82% 

HCC95  2000  0.2  80% 

PC9  2000  0.2  81% 

HBEC 3KT  4000  0.3  72% 

HBEC 12KT  4000  0.4  58% 

HBEC 15KT  2000  0.2  69% 

HBEC 30KT  8000  0.2  64% 

HBEC 31KT  2000  0.2  59% 

HBEC 34KT  4000  0.4  79% 

MDA MB 435  4000  0.2  81% 

MDA MB 453  4000  0.2 

MDA MB 231  4000  0.2 

MDA MB 468  8000  0.2  79% 

MCF7  4000  0.4  46% 

SKBR3  4000  0.2  63% 

T47D  8000  0.2  72% 

BT20  2000  0.2  66% 

HCC1937  2000  0.2  63% 

HBEC 3KT  4000  0.3  65‐75% 

3KT‐S6Z‐L6R  4000  0.3  65‐75% 

3KT‐53  4000  0.3  65‐75% 

3KT‐RL53  4000  0.3  65‐75% 

3KT‐RL53‐shL  4000  0.3  65‐75% 

HBEC 30KT  4000  0.3  65‐75% 

30KT‐S6Z‐L6R  4000  0.3  65‐75% 

30KT‐53  4000  0.3  65‐75% 

30KT‐RL53  4000  0.3  65‐75% 

30KT‐RL53‐shL  4000  0.3  65‐75% 

24KT  8000  0.4  74% 

HCC1500  8000  0.2  45% 

MDA MB 175  2000  0.2  55% 

BT 549  4000  0.4  50% 

H2405  2000  0.2  66% 

HCC1833  2000  0.4  66% 

H2347  2000  0.2  63% 

H2444  4000  0.2  69% 

HCC1500  8000  0.4  48% 

HCC515  2000  0.2  64% 
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HCC1395  2000  0.2  63% 

H810  4000  0.2  69% 

HCC2302  6000  0.2  50% 

ASPC‐1  2000  0.2  75% 

DU145  2000  0.2  85% 

BxPC3  2000  0.2  80% 

MIA‐PACA2  2000  0.2  80% 

PC3  4000  0.2  60% 

PANC‐1  2000  0.2  60% 

H2250  2000  0.2  73% 

CAPAN‐1  2000  0.2  50% 

OVCAR5  2000  0.2  63% 

H2258  2000  0.2  76% 

LnCAP  2000  0.2  79% 

HCC5012  6000  0.2  58% 

HT‐29  2000  0.4  84% 

HCT‐116  2000  0.2  45% 

HCC1569  8000  0.2  49% 

HCC712  4000  0.4  53% 

H727  2000  0.2  75% 

COLO‐205  4000  0.4  14% 

SK‐MEL‐28  2000  0.2  69% 

Sk‐MEL‐5  4000  0.4  42% 

SK‐MEL‐2  4000  0.4  65% 

OVCAR4  4000  0.2  65% 

KM12  2000  0.4  59% 

M14  6000  0.4  55% 
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APPENDIX B – Ligands and Cell Lines Used 
 
 It is important to note that many NR ligands have been reported to interact with 
multiple receptors depending on what concentrations are being considered.  Targets reported 
in this table are typical targets associated with the listed compounds.  Careful consideration 
of the literature should be undertaken before final assignment of any ligand to any given 
receptor target(s). 
 

CAS 
Brand 
Name 

Product 
No Name Target MW 

152-58-9 SIGMA R0500 Reichstein's substance S GR 346.460 

4759-48-2 SIGMA R3255 13-cis-Retinoic acid RAR 300.440 

57-91-0 SIGMA E8750 alpha-Estradiol ER 272.380 

50-28-2 ALDRICH 250155 beta-Estradiol Era, Erb 272.380 

84852-15-3 ALDRICH 290858 P-NONYLPHENOL ER 220.350 

1806-26-4 ALDRICH 384445 P-OCTYLPHENOL ER 206.320 

103-90-2 ALDRICH A7302 Acetaminophen CAR 151.160 

52-39-1 SIGMA A9477 Aldosterone MR 360.440 

302-79-4 SIGMA R2625 Retinoic acid RAR 300.440 

1224-92-6 sigma A6401 5alpha-Androstan-3beta-ol AR 276.460 

41859-67-0 SIGMA B7273 Bezafibrate PPARa,b,g 361.820 

90357-06-5 SIGMA B9061 Bicalutamide (CDX) AR 430.370 

474-25-9 SIGMA C9377 CHENODESOXYCHOLIC ACID, PURISS. FXR 392.570 

67-97-0 SIGMA C9756 Cholecalciferol VDR 384.640 

52214-84-3 AldrichCPR CRL7135 Ciprofibrate PPARa 289.150 

637-07-0 FLUKA 25895 Clofibrate PPARa 242.700 

23593-75-1 SIGMA C6019 Clotrimazole PXR 344.840 

50-22-6 SIGMA C2505 Corticosterone GR 346.460 

53-06-5 SIGMA C2755 Cortisone GR 360.440 

427-51-0 SIGMA C3412 Cyproterone acetate PR / AR 416.940 

72-55-9 ALDRICH 123897 1,1-Dichloro-2,2-bis(4-chlorophenyl)ethene PXR / CAR 318.030 

53-43-0 FLUKA 30770 3BETA-HYDROXYANDROST-5-EN-17-ONE AR 288.420 

64-85-7 SIGMA D6875 21-Hydroxyprogesterone 

PPARg, 
AR 330.460 

50-02-2 SIGMA D2915   MR   

6898-97-1 ALDRICH 218944 Diethylstilbestrol, mixture of cis and trans ER 268.350 

49562-28-9 SIGMA F6020 Fenofibrate PPARa 360.830 

13311-84-7 SIGMA F9397 Flutamide AR 276.210 
129453-61-

8 SIGMA I4409 Fulvestrant ER 606.770 

446-72-0 FLUKA 91955 
5,7-DIHYDROXY-3-(4-HYDROXY-PHENYL)-

CHROMEN-4-ONE ER 270.240 
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265129-71-
3 SIGMA G6793 GW7647 PPARa 502.750 

22978-25-2 ALDRICH 642355 2-Chloro-5-nitrobenzanilide PPARg 276.680 

50-23-7 SIGMA H0888 Hydrocortisone GR 362.460 

52806-53-8 SIGMA H4166 Hydroxyflutamide AR 292.210 
153559-49-

0 AldrichCPR CTG2428 Bexarotene RXR 348.480 

434-13-9 SIGMA L6250 Lithocholic acid VDR, PXR 376.570 

75330-75-5 SIGMA M2147 Mevinolin from Aspergillus sp. PXR 404.540 

71-58-9 SIGMA M1629 Medroxyprogesterone 17-acetate PR 386.520 

21829-25-4 SIGMA N7634 Nifedipine PXR 346.330 

63612-50-0 SIGMA N8534 Nilutamide AR 317.220 

112-80-1 ALDRICH 364525 OLEIC ACID PPARd, g 282.460 

57-10-3 ALDRICH 258725 Palmitic acid PPARa 256.420 

57-41-0 SIGMA D4007 5,5-Diphenylhydantoin CAR 252.270 

50-24-8 SIGMA P6004 Prednisolone GR 360.440 

1434-54-4 SIGMA P0543 5-Pregnen-3beta-ol-20-one-16alpha-carbonitrile PXR 341.490 

57-83-0 ALDRICH 850454 Progesterone PR 314.460 

82640-04-8 SIGMA R1402 Raloxifene hydrochloride ER serm 510.040 

13292-46-1 FLUKA 83907 Rifampicin PXR 822.940 
122320-73-

4 AldrichCPR CTA1760 Rosiglitazone PPARg 357.430 

84371-65-3 SIGMA M8046 Mifepristone AR / GR 429.590 

52-01-7 SIGMA S3378 Spironolactone MR 416.570 

10540-29-1 SIGMA T5648 Tamoxifen ER 371.510 

33069-62-4 AldrichCPR CSZ9953 Paclitaxel chemo 853.910 

51-24-1 SIGMA T7650 3,3',5-Triiodothyroacetic acid THR 621.930 

124-94-7 SIGMA T6376 Triamcinolone GR 394.430 
76-25-5 SIGMA T6501 Triamcinolone acetonide GR 434.500 

50471-44-8 RIEDEL 45705 Vinclozolin AR 286.110 

17954-98-2 SIGMA H9384 22(R)-Hydroxycholesterol PR 402.650 

5976-61-4 SIGMA H4637 4-Hydroxyestradiol ER 288.380 

68047-06-3 SIGMA H7904 (Z)-4-Hydroxytamoxifen ER 387.510 
102121-60-

8 SIGMA A8843 AM580 RARa 351.440 

1153-51-1 SIGMA A7883 5alpha-Androst-16-en-3alpha-ol AR 274.440 
112965-21-

6 SIGMA C4369 Calcipotriol hydrate VDR 412.600 

87958-67-6 SIGMA C5749 CGP 52608 ROR 244.340 

74772-77-3 SIGMA C3974 Ciglitizone PPARg 333.450 
338404-52-

7 SIGMA C6240 CITCO CAR 436.740 

2624-43-3 SIGMA C3490 Cyclofenil ER 364.430 
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6217-54-5 SIGMA D2534 cis-4,7,10,13,16,19-Docosahexaenoic acid RXR 328.490 
10417-94-4 SIGMA E2011 cis-5,8,11,14,17-Eicosapentaenoic acid  302.450 
107724-20-

9 SIGMA E6657   PPARg   
101574-65-

6 SIGMA G6173 GSK 4716 ERRb,g 282.340 
317318-84-

6 SIGMA G3295 GW0742 PPARd 471.490 

196808249 SIGMA G5668   

ER,AR, 
PR   

405911-17-
3 SIGMA G6295 GW3965 hydrochloride LXR 618.510 

278779-30-
9 SIGMA G5172 GW4064 FXR 542.840 

79558-09-1 SIGMA L2167 L-165,041 PPARd 402.440 
153559-76-

3 SIGMA SML0279 LG100268 RXR 363.490 

569-65-3 AldrichCPR CQP2697 
1-[(4-chlorophenyl)(phenyl)methyl]-4-(3-

methylbenzyl)piperazine PXR 390.960 

50892-23-4 SIGMA C7081 WY-14643 PPARa 323.800 
126411-39-

0 SIGMA S4194 SR 12813 PXR 504.530 

76541-72-5 SIGMA S1320 SR-202 PPARg 358.650 
293754-55-

9 SIGMA T2320 T0901317 LXR 481.330 

76150-91-9 SIGMA T1443 TCPOBOP CAR 402.060 
5630-53-5 SIGMA T0827      

97322-87-7 SIGMA T2573 Troglitazone PPARg 441.540 
725247-18-

7 SIGMA X4753 XCT790 ERRa 596.420 

362-05-0 AldrichCPR CPS0490 2-Hydroxyestradiol ER 288.380 
571-20-0 AldrichCPR CPX4140 ANDROSTANDIOL  292.460 

128-23-4 AldrichCPR CPX9476 PREGNANEDIONE PR 316.482 

63046-09-3 AldrichCPR CPS7693 6,4'-DIHYDROXYFLAVONE ER 254.240 
459789-99-

2 AldrichCPR FBP1104 6-ETHYLCHENODEOXYCHOLIC ACID FXR 420.630 

170355-78-
9 AldrichCPR EOI6719 

4-[7-(1-ADAMANTYL)-6-(2-
METHOXYETHOXYMETHOXY)NAPHTHALEN-

2-YL]BENZOIC ACID RAR 486.605 

479-13-0 AldrichCPR CPS6885 Coumestrol ER 268.220 

69552-46-1 AldrichCPR CQM0824 Carbacyclin PPARd 350.490 
141200-24-

0 AldrichCPR CTB6384 DARGLITAZONE PPARg 420.487 

2265-22-7 AldrichCPR CQS1760 DEXAMETHASONE 21-METHANESULFONATE GR 470.555 
355129-15-

6 AldrichCPR EGD5847 EPROTIROME THR 487.142 
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317318700 AldrichCPR DYK3000 

{2-Methyl-4-{{4-methyl-2-[4-
(trifluoromethyl)phenyl]-5-thiazolyl} 

methylthio}phenoxy}acetic acid PPARd 453.500 

196809-22-
0 AldrichCPR ECA0352 

(S)-2-(1-CARBOXY-2-(4-[2-(5-METHYL-2-
PHENYLOXAZOL-4-

YL)ETHOXY]PHENYL)ETHYLAMINO)BENZOI
C ACID METHYL ESTER PPARg 500.548 

247923-29-
1 AldrichCPR DRZ4004 GW-9578 

PPARa 
492.628 

11079-53-1 AldrichCPR CWV1497 HYPERFORIN   536.792 

34816-55-2 AldrichCPR CQK8990 MOXESTROL ER 326.433 

118414-59-
8 AldrichCPR DPU8322 

5-CHLORO-1-[(4-CHLOROPHENYL)METHYL]-3-
(PHENYLTHIO)-1H-INDOLE-2-CARBOXYLIC 

ACID PPARg 428.337 
221368-54-

3 AldrichCPR DFE9999 (R,R)-THC Era 320.430 

76676-34-1 AldrichCPR CSZ8595 

(7A,17A)-17-HYDROXY-3-OXO-7-
PROPYLPREGN-4-ENE-21-CARBOXYLIC ACID, 

POTASSIUM SALT MR 440.661 
151555-47-

4 AldrichCPR CTF3194 RU 58668 ER 658.765 

50-53-3 AldrichCPR CQE3295 CHLORPROMAZINE CAR 318.870 
134404-52-

7 AldrichCPR CTA1599 SEOCALCITOL VDR 454.690 

26538-44-3 AldrichCPR CSZ4182 ZERANOL ER 322.398 
111025-46-

8 AldrichCPR EBE2136 PIOGLITAZONE-D4 PPARg 360.468 
199798-84-

0 AldrichCPR EBY4119 ELOCALCITOL VDR 442.655 

144092-31-
9 AldrichCPR CTF6134 

(E)-S,S-DIOXIDE-4-(2-(7-(HEPTYLOXY)-3,4-
DIHYDRO-4,4-DIMETHYL-2H-1-

BENZOTHIOPYRAN-6-YL)-1-
PROPENYL)BENZOIC ACID RARa 484.653 

    GR   

Table of cell lines used in the ligand screen 
 

H1819  HCC1954  HCC202  H2081  H2122  H2347 
HCC40
06  H1573  H520 

H2009  HCC712  BT‐474  SKBR3  H2250 
MDA‐MB‐

361 
HCC40
32  H1373  A427 

H2073  H1693  HCC1395  HCC2688  H2258  H2052  H1355 
30KTs
hL  H3122 
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H358  H1993 
MDA‐MB‐

231 
HME‐
4077T  HCC827  HCC122  H2882  EKVX  HCC364 

H522  MCF7 
MDA‐MB‐

453 
HME‐
4064T 

MDA‐MB‐
134  HCC2108  H1355  H1944  HCC461 

HBEC3‐
KT  T47D  BT‐20  HCC70  H1437  HCC366  H1568  H446  30KT 

H157  HCC1806  HCC38  Hs‐578‐T  H2087  HCC1171  H1792  H1755 
30KT_R
L53 

H1299  ZR‐75‐1 
MDA‐MB‐

157 
MDA‐MB‐

361  H2882  HCC3051 
HCC14
38  H2452  H1838 

HCC40
17  HCC1569 

MDA‐MB‐
468  HCC2302  HCC827  H1650  22RV1 

HCC18
97  H2172 

HCC18
33  HCC3153  BT‐549  HCC2429  HCC4018  H920 

LnCap‐
AR 

HCC29
35  H23 

H727  HCC1419  HCC1187  H2887  UACC‐812  HCC4054  H1975  Calu1  H460 

H2170  HCC2185  HCC1143  HCC95  H2126  HCC4058  H2286  H2023  H290 

HCC28
14 

MDA‐MB‐
175  HCC1428  HCC44  HCC15  A549  H650  H2030  H838 

BT‐483  BT‐474  HCC2374  HCC515  HCC193  HCC1359 
HCC23
52  H2086 

HCC19
37  HCC1500  H1607  H1395  HCC78  HCC2450  H1155  H2405 
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APPENDIX C – Raw Electronic Datasets 
 
  
 Due to the sheer volume of raw data contained in the datasets summarized herein, 

it is not feasible to publish these raw values.  Additionally, the author realizes that anyone 

interested in making any use of the data herein will greatly prefer that data in an easily 

manipulated, electronic format instead of as tables here.  Instead, well-annotated 

electronic files have been created which summarize the data not published here.  These 

files have been placed on the Minna Laboratory Server.  The contents of these files are 

summarized in the table below. 

File Name Description 
NR/CoReg siRNA 

Data 
This file contains all the raw data from the siRNA screening efforts 
processes as both z-scores and “percent-versus control.” 

Screen 2 siRNA 
Data 

This file contains all the raw data from the second siRNA screening 
effort processes as both z-scores and “percent-versus control.” 

esiRNA screening 
data 

This file contains raw data from the esiRNA screens performed 
processed as percent-versus control and as z-scores. 

Ligand screening 
data 

This file contains all the raw IC50 values for each ligand tested across 
the cell line panel. 

HTG Database This file contains all the raw HTG data used for analyses in this 
document. 

Microarray Data This folder contains all the raw microarray files (not processed by 
matrix) used in these analyses. 

EMT Database EMT status of each cell line used in the screen (n=127). 
 
 
 Additionally, a folder of loose files is also included which contains all the excel 

files used to generate figures in this document.  Furthermore, PowerPoint presentation 

files are also included containing raw versions of the images included herein. 
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