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ABSTRACT 

COMPREHENSIVE ANALYSIS OF LUNG CANCER PROGNOSTIC FACTORS 

 

Shidan Wang, Ph.D. 

 

The University of Texas Southwestern Medical Center at Dallas, 2019 

 

 

Supervising Professor: Yang Xie, Ph.D. & Guanghua Xiao, Ph.D. 

 

 

Lung cancer is the leading cause of death from cancer. It is remarkably heterogeneous in 

histopathological features and highly variable in prognosis. Analysis of prognostic factor is 

anticipated to guide clinicians for treatment selection, enhance patient care, and help 

understanding biological mechanism of tumor progression. To extend current knowledge 

about lung cancer prognosis, this dissertation analyzed lung cancer prognostic factors in three 

levels. First, in tumor level, deep learning aided pathology image analysis was used to extract 

tumor geometry and microenvironment features, upon which an image-based survival 

prediction model was built and independently validated for lung adenocarcinoma. Second, in 

patient level, a nomogram was built with demographic and clinical variables for patients with 

small cell lung cancer. The nomogram was implemented online for public usage. Third, in 

population level, how facility type and volume affect survival outcome and surgery selection 

for early stage non-small cell lung cancer was analyzed. 
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CHAPTER ONE – INTRODUCTION 

Lung cancer is the leading cause of death from cancer1. It is remarkably heterogeneous in 

histopathological features and highly variable in prognosis. Lung cancer is mainly composed 

with two histologic types: Non-Small Cell Lung Cancer (NSCLC, ~ 85%) and Small Cell 

Lung Cancer (SCLC, ~ 14%)1-3, which are different in treatment and prognosis. NSCLC is a 

group of several subtypes, including adenocarcinoma (ADC, ~ 40% of all lung cancers), 

squamous carcinoma (SCC, ~ 30%), large cell carcinoma (~ 10%), and other much less 

common subtypes. Those NSCLC subtypes originate from different types of lung cells but 

share similar treatment approach.  

One of the most critical question is how to treat lung cancer patients properly and effectively. 

According to the National Comprehensive Cancer Network (NCCN) clinical practice 

guideline4, treatment of lung cancer should be planned by doctors and clinicians using 

multiple source of information, including medical history, imaging, and pathology report. 

The treatment decision should be made upon comprehensive consideration of response, 

toxicity, and the life expectancy5. Thus, building prognostic model for lung cancer patients is 

anticipated to be an important tool for individualized treatment selection. In addition to 

guiding treatment selection, building survival-predicting model can provide guideline to 

patients, such as facility selection. Furthermore, identifying new prognostic factors can help 

researchers to understand biological mechanisms of lung cancer progression. 
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1.1 FACTORS AFFECTING PROGNOSTIC OUTCOMES IN DIFFERENT 

ASPECTS 

Lung cancer prognosis is affected by multi-level factors (FIGURE 1), i.e., tumor level, 

patient level, and population level. In this dissertation, three studies were conducted with 

different methodologies to analyze those prognostic factors separately. For tumor level 

factors, we specifically focused on histopathological features. 

 

FIGURE 1 Overview of lung cancer prognostic factors and corresponding analysis 

methodologies.  
 

1.1.1 Histopathological Features 

Hematoxylin and Eosin (H&E)-stained tumor tissue slide scanning into electronic images is a 

routine procedure in lung cancer diagnosis. The pathological images produced by this 

procedure capture histological details in high resolution. Digital pathology images of tumor 
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tissues not only contain essential information for tumor grade and subtype classifications6, 

but also information on the growth patterns and TME, such as the spatial distributions and 

organization of different types of cells. Out study aimed to automatically extract pathological 

image features and evaluate their prognostic value. We developed two deep learning 

algorithms to recognize tumor region and TME, separately. Well-defined feature extraction 

methods were then implemented to quantify histopathological features. Finally, based on 

image features, a prognostic model was built to evaluate risk score for each individual 

patient.  

Tumor Diagnosis 

Adequate TMN staging is critical for clinicians to choose accurate therapeutic methods7. 

Pathology image analysis acts as an important tool to determine the patients’ TMN stage. For 

example, pathological N stage, which aims to describe the presence of lymph node invasion, 

relies on lymph node dissection. However, detecting tumor metastasis to lymph node is 

laborious and requires highly skilled pathologists, especially when amount of dissected 

lymph node is high and metastasis region is small. In addition to TMN staging, tumor spread 

through air spaces (STAS)8 detection also requires detailed inspection of a whole slide 

image. STAS has been clinically illustrated as significantly negative prognostic factor for 

recurrence and survival8. Thus, fast and accurate quantification of STAS through automatic 

lung cancer detection is urgently desired. Our automatic tumor recognition model is 

anticipated to facilitate the laborious process required for tumor diagnosis. 

TME Characteristics 
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In addition to lung cancer diagnosis, pathology images also provide tremendous information 

on TME. Specifically, lymphocyte, stromal cells, macrophages, and blood vessels mainly 

compose the lung tumor microenvironment (TME) in addition to tumor cells. It is especially 

noteworthy that in lung cancer, tumor-infiltrating lymphocytes (TIL) has been reported as 

positive prognostic factors9, stromal cells has been reported to have complex prognostic 

effects10,11, and angiogenesis have been reported as negatively associated with survival 

outcome12. Thus, in our TME segmentation model, 6 cell types were considered: tumor, 

stroma, lymphocyte, macrophage, karyorrhexis, and red blood cells. 

1.1.2 Patient Level Factors 

Both demographics and clinical information have been reported as prognostic factors. 

Demographics include age, gender, race, family history, smoking status, and social-economic 

status2. Clinical information include Tumor, Node, and Metastases (TNM) stage, tumor 

grade, and comorbidity13. It is noteworthy that these factors are usually correlated with each 

other, which should be taken into consideration in survival analysis. Our study aimed to use 

patient level factors collected in a national-wide database to produce an individualized 

prognostic model. Thus, we trained a prognostic nomogram, upon which we can easily get 

risk score and corresponding survival curve for an individual patient by simply adding risk 

scores contributed by clinical factors.  

1.1.3 Population Level Factors 

Population level factors refer to the factors that are defined or calculated in a group of 

patients instead of individuals, such as state-level diabetes rate and zip-code level household 



5 

 

income. Out study particularly focused on the factors related to patient care: facility type and 

facility volume. Although how teaching facility (TF) status14-17 and facility volume15,18-22 

affect care quality has been widely investigated, the effect of non-TF type on survival 

outcome, whether the correlation between high-volume and better survival outcome persists 

in all types of facilities, and what the underlying reasons are remain unknown. Cox 

proportional hazard model was used to evaluate influence of facility type and volume on 

survival outcome; logistic regression model was used to evaluate influence of facility type 

and volume on probability of surgery selection. 

1.2 ADVANCES IN DEEP LEARNING ALGORITHM FOR IMAGE RECOGNITION 

To quantify histopathological features from H&E stained images, the challenge is to 

automatically classify and segment different cell types in pathology slides. Since deep 

learning methods has shown great power in handling image recognition tasks, we developed 

two deep learning algorithms for image recognition in pathology images. We will introduce 

the concepts in machine learning and deep learning, and summarize current applications and 

our contribution in this section. 

1.2.1 The Concepts in Machine Learning 

When solving a problem, we are actually predicting of the answer (the output) to the problem 

(the input). Sometimes we can manually define a fixed computer (the machine) algorithm to 

solve a problem, but in many cases, the algorithms are implicitly contained in the data; i.e., 

they are not easily to be theoretically defined without utilizing the data. The goal of “machine 

learning” is to learn the algorithm and to approximate the desired output23. To perform 
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machine learning, we need data that consists of multiple input instances and corresponding 

true outputs (the ground truth). Data used to derive the algorithm is called “training set”; data 

used to decide which algorithm to use from multiple trained ones is called “validation set”; 

data used to evaluate the prediction performance is called “testing set”.  

1.2.2 Deep Learning Algorithms 

Deep learning is a branch of machine learning field. Since 2012, deep learning has made 

significant improvements in all image recognition benchmarks24-26. The applications of deep 

learning algorithms in digital pathology have had remarkable success in traditional pathology 

tasks. For example, deep learning algorithms achieved performance comparable to 

pathologists in interpreting whole-slide images for the detection of tumor regions27-29 and 

lymph node metastases30.  

To understand how deep learning excels in these areas, we build conceptual connections of 

deep learning in the machine learning literature. In essence, deep learning is a special kind of 

ANN, which is one category of machine learning algorithm. Deep learning and other ANNs 

are inspired by biological neural networks and mathematically construct a network model 

with multiple connected layers. The first network layer (called the “input” layer) receives 

inputs (e.g. slide images). It has a set of parameters and can use them to compute outputs. 

Similarly, each successive network layer receives inputs from its previous layers, uses its 

parameters, and computes outputs. At the end, the last network layer (called the “output” 

layer) calculates the outputs of the whole model. The layers between the “input” and 

“output” layers are not visible as they do not directly receive model input or generate model 
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outputs, and thus are called the “hidden” layers. In this process, prediction outputs from a 

good neural network can well approximate the observed outputs. Although ANNs claim 

excellent performances based on theoretical work31, historically, it has been notoriously hard 

to calculate the network parameters when the total number of network layers exceeded three, 

which limited the performance of the model. Fortunately, this is no longer a severe 

bottleneck, owing to the advancements in computational hardware, the scale of data 

accumulation, and the improvements in algorithms. Nowadays, popular ANNs can have 

hundreds of layers. The machine learning community refers to these algorithms as “deep 

learning” to distinguish them from the conventional “shallow” artificial neural network 

(ANN) algorithm.  

CNN 

Convolutional Neural Network (CNN) is a form of deep learning model specifically designed 

to deal with high-dimensional data, such as 2-D and 3-D images. The basic structure of CNN 

is composed by a group of convolution layers and pooling layers, followed by several fully 

connected layers. The goal is to predict the class of input object, such as images. This 

network structure enables the extraction of representational features for prediction. The 

design of CNN is inspired by the functional mechanism of the visual cortex24: instead of 

using all outputs from the previous layer, a convolution kernel only focuses on a certain area, 

the so-called “receptive field”, to compute a feature at the corresponding spatial position. By 

spatially sliding the “receptive field” along the input dimensions (e.g., along the width and 

height directions for 2-D images), a “feature map” is computed as the outputs from the 
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convolution layer. As the number of parameters is determined by the area of the receptive 

field, convolution layers have much fewer parameters than the image size. This design thus 

effectively reduces the number of parameters within a neural network and greatly improves 

its computational efficiency. 

Mask-RCNN 

Through utilizing the building block of convolution layers and pooling layers, CNN has 

many derivatives, one of which is Mask Regional Convolutional Neural Network (Mask-

RCNN)32. Different from the simple goal of image classification as CNN, Mask-RCNN aims 

to simultaneously identify the bounding boxes of all objects within the input image, classify 

each object, and segment the object within the bounding boxes. Thus, when multiple objects 

in the same category are close to each other, Mask-RCNN is still able to distinguish each 

object with its own boundary. 

1.2.3 Applications in Tumor Pathologic Image Analysis 

The applications of deep learning algorithms in digital pathology have had remarkable 

success in traditional pathology tasks. Deep learning algorithms achieved performance 

comparable to pathologists in interpreting whole-slide images for the detection of tumor 

regions27-29 and lymph node metastases30 by predicting each region of input pathology image 

as tumor or non-malignant. In addition to malignant region detection, deep learning models 

to distinguish different lung cancer subtypes were also developed. Coudray et al. trained a 

CNN to classify lung cancer image patches into normal, ADC, or SCC33. Coudray et al also 

trained a CNN to predict mutation status of 6 frequently mutated genes in lung ADC patients 
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based on 512*512 pixels pathology image patches33. To estimate the classification accuracy 

of mutated vs. non-mutated, the Area under the Curve (AUC) was between 0.733 and 0.856 

for each of the 6 genes in validation dataset. 

As TME is widely accepted as important factor affecting tumor progression and 

immunotherapy response, several deep learning models were also trained to characterize lung 

TME. Saltz et al. developed a CNN model to distinguish lymphocyte image patches against 

necrosis or other tissue patches across pathology slides of multiple cancer types including 

lung ADC and SCC34. Through quantifying spatial organization of detected lymphocyte 

image patches in whole slide imaging (WSI), they reported the relationship among TIL 

distribution patterns, prognosis, and lymphocyte fractions. Wang et al. developed another 

CNN model to distinguish tumor cell, stroma cell, and lymphocytes in cell level in lung ADC 

pathology images35. In Wang’s study, basic image processing methods were used to extract 

small image patches centered with cell nuclei; the image patches were then categorized in 

different cell types using CNN. A prognostic model using image features describing the 

proportion and distribution of detected cells was then trained and validated in two 

independent datasets. Another important application is automatic microvessel segmentation 

to quantify pathological angiogenesis in lung ADC using Fully Convolutional Neural 

Network (FCN)36, which is a derivative of CNN and aims at image segmentation37. The 

microvessel segmentation model by Yi et al is trained in lung ADC H&E stained images and 

showed generalizability to breast cancer and kidney cancer pathology images. While manual 

segmentation is laborious and error-prone, such automatic microvessel segmentation enables 

fast and quantitative characterization of area and spatial distribution of microvessels. 
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1.2.4 Contribution and Innovation of Our Methodology 

Although traditional image processing methods have been applied to segment lymphocyte 

nuclei and to analyze spatial organization of cells in TME, such as TIL34 and stroma cells38, 

accurate and efficient lung tumor detection and TME segmentation remain big computational 

challenges because of the following reasons. 1) The composition of lung cancer 

microenvironment is complex; in addition to the aforementioned cell types, other structures 

including bronchus, cartilage, and pleura are also often detected in lung cancer pathology 

image. Such complexity makes manual segmentation laborious and traditional feature 

definition hard. 2) For H&E stained slides, the color could vary a lot according to different 

staining conditions and the length of period from slide making to scanning. 

In this dissertation, through cooperation with experienced pathologists, we developed two 

individual deep learning algorithms for automatic tumor detection and TME computational 

staining. They were the first models to recognize tumor and different types of cell nuclei in 

lung WSI, separately. Based on these pioneer models, image features that were hard to 

extract using traditional image analysis tools were analyzed and proved prognostic. By 

applying the model development pipeline to other cancer types, our methodologies are to be 

generalized easily and readily. Thus, our research serves as first attempts to apply cutting-

edge deep learning models to pathology image analysis in lung cancer and provides smooth 

pipeline to generalize our models to other cancer types. 
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CHAPTER TWO – DIGITAL PATHOLOGY IMAGE ANALYSIS 

2.1 BACKGROUND AND RATIONALE 

With the advance of technology, H&E stained tumor tissue slide scanning into electronic 

images is a routine procedure for cancer diagnosis. This procedure produces pathological 

images that capture histological details in high resolution. With the development of 

computational algorithms, automatic tumor region detection allows for tumor size calculation 

and tumor shape estimation, and automatic nuclei recognition allows for TME quantification. 

For analysis of H&E stained pathology images, deep learning methods have been developed 

to distinguish tumor regions27, detect metastasis28, predict mutation status39, and recognize 

TIL regions34 in breast cancer as well as in other cancers.  

However, due to the complexity of lung cancer tissue structures (such as microscopic alveoli 

and micro-vessel), neither automatic lung cancer region detection nor nuclei 

segmentation/classification deep learning algorithms from H&E stained pathology images 

were available. Thus, in this section, we aimed to develop the first deep CNN algorithm to 

automatically recognize tumor regions and the first Mask-RCNN algorithm to automatically 

recognize different cell types in TME of lung ADC (LUAD) H&E pathology images. The 

image features from two different aspects, the tumor shape level and the cellular level, were 

then quantified and used to build an image-based prognostic model. The flow-chart of this 

study in summarized in FIGURE 2. 
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FIGURE 2 Flow chart of pathological image analysis pipeline for tumor detection and nuclei 

segmentation.   

 

2.2 METHODS 

2.2.1 Data Collection 

NLST LUAD 

208 40X H&E stained pathology images for 135 LUAD patients were acquired from the 

National Lung Screening Trial (NLST) dataset (https://biometry.nci.nih.gov/cdas/nlst/). 

The NLST is a randomized trial to screen lung cancer in high-risk patients with CT or 

single-view chest radiography. 54,000 participants were enrolled between 2002 and 2004; 

the median follow-up time was 6.5 years. In the NLST dataset, the H&E stained images 

were sampled from lung tumor tissues that were resected during diagnosis and treatment 

https://biometry.nci.nih.gov/cdas/nlst/
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of lung cancer. Corresponding clinical information for the LUAD patients from the NLST 

dataset were acquired. Clinical variables include age, gender, smoking history, stage, and 

information for overall survival. 

TCGA LUAD 

431 40X images for 372 LUAD patients were acquired from the Cancer Genome Atlas 

(TCGA) dataset (https://wiki.cancerimagingarchive.net/display/Public/TCGA-LUAD). 

The TCGA dataset comprehensively collected molecular and histopathological data spanning 

33 cancer types. Corresponding clinical information for the 372 LUAD patients from the 

TCGA dataset were acquired. Clinical variables include age, gender, smoking history, stage, 

and information for overall survival. The patient characteristics were summarized in TABLE 

1. Messenger Ribonucleic acid (mRNA) expression data for the TCGA dataset were 

available online at http://firebrowse.org. Gene expression data of the 372 patients from the 

TCGA LUAD dataset were downloaded and preprocessed. All gene sets from the Reactome 

database were used in the following analysis of image-genomic association40

TABLE 1 Patient characteristics for the NLST LUAD and TCGA LUAD datasets. 

 NLST LUAD TCGA LUAD 

Number of patients 135 372 

Number of pathology slides 208 431 

Age at diagnosis (years, median (min - max)) 64 (55 - 74) 66 (33 - 88) 

Follow-up (years, median (min - max)) 4.1 (0.1 – 7.1) 0.5 (0.0 - 5.9) 

Vital status (%) Alive 94 (69.6) 297 (79.8) 

Deceased 41 (30.4) 75 (20.2) 

Gender (%) M 77 (57.0) 208 (55.9) 

F 58 (43.0) 164 (44.1) 

Cancer stage (%) I 90 (66.7) 208 (55.9) 

II 12 (8.9) 95 (25.5) 

https://wiki.cancerimagingarchive.net/display/Public/TCGA-LUAD
http://firebrowse.org/
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III 22 (16.3) 47 (12.6) 

IV 10 (7.4) 21 (5.6) 

NA 0 (0.0) 1 (0.3) 

Smoking status (%) Smoker 74 (54.8) 254 (68.3) 

Non-smoker 61 (45.2) 118 (31.7) 

 

For both of the NLST and the TCGA dataset, a specialized lung cancer pathologist, Dr. Lin 

Yang, M.D., labeled the Region of Interest (ROI) for each of the pathology images. Another 

lung cancer pathologist, Dr. Adi Gazdar, M.D., Professor, confirmed the labelling. 

2.2.2 Deep Learning for Tumor Detection 

Image Patch Generation 

For tumor detection, a CNN model was trained to classify non-malignant tissues, tumor 

tissues, and white regions based on image patches of H&E stained pathology images. The 

patch size was determined as 300 × 300 pixels under 40X magnification, to ensure at least 20 

cells within one patch. Tumor and non-malignant patches were randomly extracted from 

tumor regions and non-malignant regions labeled by a pathologist, respectively. The patches 

were classified as white if the mean intensity of all pixel values was larger than a threshold 

determined from sample images. 2139 non-malignant, 2475 tumor and 730 white patches 

were generated in total. Images were scaled to the range [0, 1] by dividing by 255 before 

being fed into the model. 

CNN Training Process 
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The Inception (V3) architecture41 with input size 300 × 300 and weights pre-trained on 

ImageNet was used to train our CNN model. The network was trained with stochastic 

gradient descent algorithms in Keras with TensorFlow backend. The batch size was set to 32, 

the learning rate was set to 0.0001 without decay, and the momentum was set to 0.9. From 

the extracted 5,344 image patches, 3,848 patches (72%) were allocated to the training set, 

428 patches (8%) to the validation set, and the remaining 1,068 patches (20%) to the testing 

set, with equal proportions among the three classes. Keras Image Generators were used to 

normalize and flip the images, both horizontally and vertically, to augment the training and 

validation datasets. The maximum number of epochs to train was set to 50. To avoid 

overfitting, the training process automatically stopped after validation accuracy failed to 

improve for 10 epochs. 

Prediction Heatmap Generation 
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To avoid prediction on a large empty image area and to speed up the prediction process, the 

Otsu thresholding method followed by morphological operations such as dilation and erosion 

was first applied to pathology images to generate the tissue region mask42,43. A 300 × 300 

pixel window was then slide over the entire mask without overlapping between any two 

windows. The image patches were predicted with batch size 32, and one image patch was 

predicted only once without rotation or flipping. For each image patch, probabilities of being 

in each of the three classes were predicted, and a heatmap of the predicted probability was 

generated for each pathology image (FIGURE 3). For each image patch, the class with the 

highest probability was determined as the predicted class.  

 

FIGURE 3 Whole-slide tumor region detection. (A) Original slide. (B) Predicted tumor 

probability. Each point in the heatmap corresponds to 300 × 300 pixels image patch in original 40x 
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slide. (C) Predicted region labels. Yellow: non-tissue background; green: tumor region; blue: normal 

region. 

2.2.3 Deep Learning for Nuclei Segmentation 

Training, Validation, and Testing Sets Preparation 

In order to construct the training set for the Mask-RCNN algorithm, 127 image patches (500 

× 500 pixels) from 39 pathological ROIs were extracted from the NLST dataset (FIGURE 

2). In these patches, different types of cell nuclei were labeled for each image patch under 

supervision of expert pathologists. Every pixel within the mask was labeled as 1 of 7 

categories: tumor nuclei, stroma nuclei, lymphocyte nuclei, macrophage nuclei, red blood 

cells, karyorrhexis, and others (background). These labels (also called as the mask) were then 

used as the ground truth for training Mask-RCNN model and evaluating the model 

performances. The labeled images were randomly divided into training, validation, and 

testing sets. To ensure independence among these datasets, image patches from the same ROI 

were assigned together. More than 12,000 cell nuclei were included in the training set, while 

1227 and 1086 nuclei were included in the validation and testing set, respectively.  

Training Process 

A neural network model was developed using the Mask-RCNN architecture. The pre-trained 

model was fine-tuned on our training dataset from the NLST study. Images were 

standardized (centered and scaled to have zero mean and unit variance) for each red, green, 

and blue (RGB) channel. To increase generalizability and avoid bias from different H&E 

staining conditions, we performed extensive augmentations on the image patches. Specially, 
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random projective transformations were applied to images and their corresponding masks; 

each image channel was randomly shifted using linear transformation. For the training 

process, the batch size was set to 2, the learning rate was set to 0.01 and decreased to 0.001 

after 500 epochs, the momentum was set to 0.9, and the maximum number of epochs to train 

was set to 1000. In the validation set, the model trained at the 707th epoch reached the lowest 

loss. As a result, this model was selected and used in the following analysis to avoid 

overfitting. Python (version 3.5.2) and python libraries (Keras, version 2.1.5; openslide-

python, version 1.1.1; tensorflow-gpu, version 1.8.0) were used44. 

Segmentation Performance Evaluation 

Since the Mask-RCNN model simultaneously segments and classifies cell nuclei, three 

criteria were used to evaluate the segmentation performance in the validation and testing 

datasets respectively. First, detection coverage was calculated as the ratio between the 

detected nuclei and the total ground truth nuclei. Each ground truth nuclei was matched to a 

segmented nucleus, which generated the maximum Intersection over Union (IoU). If the IoU 

for a ground truth nuclei were > 0.5, this nuclei would be labeled “matched”; otherwise it 

was labeled “unmatched”. Second, nuclei classification accuracy was determined for the 

matched nuclei by comparing the predicted nuclei type with the ground truth. Third, 

segmentation accuracy was evaluated by the IoUs, which were calculated for each detected 

nuclei and averaged in different nuclei categories. 

2.2.4 Quantification of Pathology Image Features 



19 

 

Tumor Level Features 

In a pathology image, sometimes there are multiple tissue samples. To distinguish different 

tissue samples in the same image, disconnected tissue regions were first identified by 

morphological operations on heatmaps of predicted classes43. To remove the effects of some 

very small tissue samples, the tissue regions with area smaller than half of the largest tissue 

region in the same image were removed from analysis. Within each tissue region, the tumor 

region with the largest area was regarded as the “main tumor region”. Three classes of 22 

tumor region features were estimated for each tissue sample: tumor size description, tumor 

shape description, and negative control. When multiple tissue samples were available for one 

patient, either due to multiple tissues within one image or multiple images for one patient, the 

22 image features were averaged to generate patient-level image features. 

Features Describing Tumor Size 

Area was used to estimate the number of image patches predicted as tumor. Convex area was 

used to estimate the number of patches within the convex hull of predicted tumor region. 

Filled area was used to estimate the number of patches within the predicted tumor region 

with all the holes filled in. Perimeter was used to estimate the length of tumor region borders. 

Major/minor axis length was used to estimate the axis length of ellipse that has the same 

normalized second central moments with the predicted tumor region.  

Features Describing Tumor Shape  
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Number of regions was used to estimate the number of disconnected tumor regions. Number 

of holes was used to describe the Euler characteristics of tumor region. Here, 8-connectivity 

was used to determine disconnected tumor regions and disconnected holes45. Perimeter2
 to 

area ratio was used to describe the roundness of tumor border. Eccentricity was the ratio of 

the focal distance over the major axis length of the ellipse; eccentricity=0 indicates a circle. 

Extent was the ratio of the area to the number of patches in the bounding box of tumor 

region. Solidity was the ratio of the area to the convex area. 

Features Designed as Negative Control 

Angle between the X-axis and the major axis for the main tumor region only depended on 

how pathologists put the tissue onto the pathology slide, and thus served as a negative 

control. 

Cell Level Features 

In order to make the nuclei segmentation model computationally more efficient while getting 

a good representation of each ROI, instead of applying the Mask-RCNN model to the whole 

slide, 100 image patches (1024 × 1024 pixels) were randomly sampled and analyzed for each 

pathologist-labeled ROI. These 100 image patches provide a good coverage of the ROI. 

Nuclei were then segmented and classified through the Mask-RCNN model developed from 

section 2.2.3. 

Nuclei Density of Different Cell Types 
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The density of each type of nuclei were calculated as the nuclei amount per 1024 × 1024 

pixels image patch (yielding 6 image features). 

Nuclei Distribution of Different Cell Types 

In order to characterize the spatial organization of cells using a graph, we calculated the 

centroids of nuclei and used them as vertices to construct a Delaunay triangle graph for each 

image patch46. The Delaunay triangle graph connects nuclei into a graph, and the number of 

connection and the average length (i.e. spatial distance) between two types of nuclei 

summarize the spatial organization of different types of cell. Since 6 nuclei categories were 

included in this study, the edges of the graph were classified into 21 categories [i.e. 6 × (6-

1)/2 + 6 = 21] according to their vertices pairs. For each image patch, the number of 

connections (i.e. edges) for different categories were counted (which leads to 21 features), 

the lengths of the connections were averaged for each edge category (yielding another 21 

image features). 

Thus, in total, 48 cell level image features were extracted. The image features were averaged 

across the 100 patches for each ROI in pathology image. When 2 or more pathology slides 

were available for 1 patient, the features from the slides are averaged for each patient. 

2.2.5 Prognostic Model Based on Pathological Image Features 

Model Development 

Overall survival, defined as the date of diagnosis till death or last contact, was used as the 

response for survival analysis. An elastic-net-regularized Cox proportional hazard model was 



22 

 

developed in the NLST LUAD dataset and independently validated on the TCGA LUAD 

dataset. Given a set of input image features for each patient, the output of the Cox regression 

model was a risk score, with a higher risk score indicating worse prognosis.  

Model Validation 

Based on the risk scores, the patients in TCGA LUAD cohort were dichotomized into high- 

and low-risk groups using the median risk score as a cutoff. A log-rank test was used to 

compare survival differences between predicted high- and low-risk groups. The survival 

curves were estimated using the Kaplan-Meier (K-M) method. A multivariable Cox 

proportional hazard model was used to test the prognostic value and determine the hazard 

ratio of risk groups defined by image features after adjusting for other clinical characteristics, 

including age, gender, smoking status, and stage. R software, version 3.4.2, and R packages 

(survival, version 2.41-3; glmnet, version 2.0-13; spatstat, version 1.55-1) were used47,48. The 

results were considered significant if two-tailed p value <0.05. 

2.2.6 Association Analysis between Image Features and Genetic Pathways 

Gene expression data of 372 patients from the TCGA LUAD dataset were downloaded and 

preprocessed. Spearman rank correlation was used to evaluate the correlation between 

mRNA expression levels and image features. For each image feature, Spearman rank 

correlations for all mRNA expression levels were used for gene set enrichment analysis 

(GSEA). All gene sets from the Reactome database were used40. For multiple testing 

correction, Benjamini-Hochberg (BH)-adjusted p values were used to detect significantly 
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enriched gene sets. Gene sets with BH-adjusted two-tailed p values < 0.05 were regarded as 

significantly enriched. R packages Hmisc (version 4.1-1), fgsea (version 1.4.1), and gplots 

(version 3.0.1) were used49. 
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2.3 AUTOMATIC TUMOR REGION RECOGNITION FOR PATHOLOGY IMAGES 

2.3.1 CNN Model Distinguishes Tumor Patches from Non-malignant and Empty Region 

Patches 

5344 tumor, non-malignant, and white image patches were extracted from 27 LUAD H&E 

stained pathology images. The image patches were split into training, validation, and testing 

datasets. The CNN model was trained on the training set. The training process stopped at the 

28th epoch after validation accuracy failed to improve after 10 epochs. The overall prediction 

accuracy of the CNN model in the testing set was 89.8%; the accuracy was 88.1% for tumor 

patches and 93.5% for non-malignant patches. 

2.3.2 Tumor Region Recognition in Giga-pixel Pathology Images 

In the NLST LUAD dataset, the pathology images have sizes ranging from 5280 × 4459 

pixels to 36966 × 22344 pixels (median 24244 × 19261 pixels). To identify tumor regions, 

each image was partitioned into 300 × 300 image patches. To speed up prediction, tissue 

regions were first identified and only the image patches within the tissue regions were 

predicted by the CNN model (FIGURE 4). The predicted probabilities of the image patches 

were summarized into heatmaps of tumor probability (FIGURE 3). An example of a tumor 

probability heatmap is shown in FIGURE 3. The tumor region heatmap, predicted as the 

category with highest probability, is shown in FIGURE 3. Each pixel in the heatmaps 

corresponds to a 300 × 300 pixel image patch in the original 40X pathology image. 
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FIGURE 4 Operations to speed up slide-level prediction process. (A) The original slide. (B) The 

image mask after Otsu thresholding. (C) The image mask after dilation and removing small objects of 

the mask in (B). (D) The final mask after dilation, erosion, and filling up holes of mask in (C). (E) 

Overlap final image mask and original pathology slide. 

 

2.4 AUTOMATIC TME CHARACTERIZATION FOR PATHOLOGY IMAGES 

2.4.1 Mask-RCNN Simultaneously and Accurately Classifies and Segments Cell Nuclei 
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The developed Mask-RCNN model detects the bounding box and category for the individual 

nucleus, and segments the nucleus at the same time. FIGURE 5 demonstrates some of the 

segmentation results. In total, there were 6 nuclei categories: tumor, stroma, lymphocyte, 

macrophage, red blood cell, and karyorrhexis, and all other remaining structures or spaces 

were considered as background. Different nuclei were colored according to the predicted 

categories (FIGURE 5). For detected objects, the overall classification accuracy was 85% 

and 85% in the validation set and the testing set, respectively, while the accuracy for tumor 

nuclei was 88% in validation and 90% in testing, respectively. The detection coverage was 

75% and 77% in the validation set and the testing set, respectively. The mean IoU was 76% 

overall and 76% for tumor nuclei in the testing set. 
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FIGURE 5 Deep-learning based nuclei segmentation results in pathological images. The image 

patches are 1024*1024 pixels under 40X magnification and from different patients in the TCGA 

LUAD dataset. 2.4.2 Generation of Whole Slide Nuclei Segmentation Map 



28 

 

The developed Mask-RCNN model can be applied to the entire digital pathology image to 

generate a whole-slide map of nuclei segmentation map, where tumor region and lymphocyte 

infiltration areas were clearly illustrated (FIGURE 6). 

 

FIGURE 6 Whole-slide nuclei segmentation.  Original pathology slide (upper) and detected nuclei 

(bottom) are shown. 

 

2.5 PROGNOSTIC VALUE OF PATHOLOGY IMAGE FEATURES 
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2.5.1 Features of Predicted Tumor Regions Correlate with Survival Outcome 

Based on the predicted tumor region heatmap, tissue samples were identified and 22 shape 

and boundary-based features were extracted for each tissue sample. For each patient, the 

image features from multiple tissue samples of the same patient were averaged. The 

associations between tumor region features and prognostic outcome were summarized in 

TABLE 2 in the NLST LUAD dataset. It shows that many features were associated with 

survival outcome. Most tumor area-related features, including area, perimeter, convex area, 

filled area, major axis length, and minor axis length, both for all tumor regions and for the 

main tumor region, were associated with poor survival outcome. Interestingly, the number of 

holes and the perimeter2 to area ratio (an estimation of circularity and boundary roughness), 

were also associated with poor survival outcome (for all tumor regions: per 100 number of 

holes, HR = 1.087, p value = 0.033; per 1000 perimeter2 to area ratio, HR = 1.15, p 

value = 0.016; similar results for main tumor region). Examples comparing tumor regions 

with high and low values of eccentricity and perimeter2 to area ratio of main tumor region 

were illustrated in FIGURE 7. As expected, the angle between the X-axis and the major axis 

of the main region was not correlated with survival, which served as a negative control of the 

feature extraction process. 
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FIGURE 7 Comparison of tumor shapes with different values of eccentricity and PA ratio. 
Original heatmaps are cropped to the same size with same image scale. Yellow, main tumor region; 

green, non-main tumor region (as defined in section 2.2.4); dark blue, normal tissue; blue, blank part 

of pathology slide. PA ratio, perimeter2 to area ratio. 

 

TABLE 2 Univariable survival analysis of tumor region features.  * 1 pixel in heatmap = 1 patch 

in 40X pathological slide. Patch size, 300 * 300 pixels. 

Tumor region features HR (95% CI) p value 

Number of regions (per 1000) 1.29 (0.64-2.58) 0.48 

Area sum of all  regions (per 1000 pixel*) 1.03 (1.01-1.05) 0.003 

Perimeter sum of all regions (per 1000 pixel) 1.09 (1.03-1.15) 0.003 

Sum of convex area for all regions (per 1000 pixel) 1.02 (1.01-1.03) 0.005 

Sum of filled area for all regions (per 1000 pixel) 1.03 (1.01-1.05) 0.003 

Sum of hole numbers of all regions (per 100) 1.09 (1.03-1.16) 0.003 

Sum of major axis length of all regions (per 1000 pixel) 1.40 (1.00-1.96) 0.051 

Sum of minor axis length of all regions (per 1000 pixel) 2.65 (1.10-6.40) 0.030 

Perimeter^2/area of all regions (per 1000) 1.18 (1.03-1.35) 0.019 

Area of main region (per 1000 pixel) 1.03 (1.01-1.05) 0.009 

Convex area of main region (per 1000 pixel) 1.02 (1.00-1.03) 0.010 

Eccentricity of main region 6.37 (0.57-71.56) 0.13 

Hole number of main region (per 100) 1.09 (1.02-1.15) 0.006 

Extent of main region 4.90 (0.19-126.30) 0.34 

Filled area for main region (per 1000 pixel) 1.03 (1.01-1.04) 0.007 

Major axis length for main region (per 100 pixel) 1.57 (1.11-2.21) 0.010 

Minor axis length for main region (per 100 pixel) 1.73 (1.05-2.83) 0.031 

Angle between the X-axis and the major axis of main region 0.98 (0.64-1.50) 0.92 

Perimeter of main region (per 1000 pixel) 1.09 (1.02-1.15) 0.007 

Solidity of main region 7.24 (0.45-117.40) 0.16 

Average tumor probability of the main region. (per 0.10) 1.11 (0.53-2.24) 0.78 

Perimeter^2/area for main region (per 1000) 1.21 (1.03-1.42) 0.021 
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2.5.2 Nuclei Recognition-based Features of TME Correlate with Survival Outcome 

In univariable analysis in the NLST LUAD dataset, several cell level features were 

significantly correlated with survival outcome (TABLE 3). For example, higher karyorrhexis 

density, karyorrhexis-karyorrhexis connections and karyorrhexis-red blood cell connections 

were associated with worse survival outcome, which was expected as both features indicate a 

high rate of necrosis. Furthermore, stromal nuclei density and stromal-stromal connection 

were associated with better survival outcome, which agreed with our current knowledge that 

more stromal tissues corresponds to better prognosis. 

TABLE 3 Significantly prognostic cell level features in univariable survival analysis. Features 

are dichotomized by the median value. P values are calculated using Ward test. 

Cell level features (high vs. low) HR (95% CI) p value 

Stroma-stroma edges number 0.32 (0.16 – 0.63) 0.001 

Karyorrhexis-karyorrhexis edges number 2.54 (1.32 – 4.91) 0.006 

Stroma nuclei number 0.41 (0.21 – 0.80) 0.009 

Karyorrhexis number 2.27 (1.19 – 4.33) 0.013 

Red blood cell-karyorrhexis edges number 1.98 (1.05 – 3.74) 0.035 

 

2.5.3 Development and Validation of Prognostic Model 

The tumor level feature and cell level features were pooled together to build a prognostic 

model. The image feature-based model was developed in NLST LUAD dataset and then 

independently validated in the TCGA LUAD dataset. Coefficients of the prognostic model 

were summarized in TABLE 4. For each patient in the TCGA LUAD dataset, the model 

predicts a risk score, based on which, the patient was assigned to either high- or low-risk 

group. The survival curves of the predicted high and low-risk groups were shown in 

FIGURE 8, where the high-risk group showed significantly worse survival than the low-risk 

group (log-rank test, p value = 0.00067). The risk group predicted by image features also 

served as an independent prognostic factor (high- vs. low-risk, hazard ratio [HR] = 2.23, 95% 
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confidence interval [CI] = 1.34-3.70, p value=0.002), after adjusting for clinical variables 

including age, gender, smoking status, and stage ( 

TABLE 5).  

 

FIGURE 8 K-M plot of predicted high- and low-risk group in the TCGA LUAD dataset. Log-

rank test, p value = 0.00067.  

 

TABLE 4 Variable coefficients in the image-feature based risk prediction model. 

Features Coefficients 

Perimeter sum of all regions (per 1000 pixel) 1.38*10-2 

Perimeter^2/area of all regions (per 1000) 5.51*10-2 

Stroma cell density -7.59*10-5 

Tumor-lymphocyte connection density 4.25*10-6 

Tumor-necrosis connection density -8.89*10-4 

Stroma-lymphocyte connection density -2.29*10-7 

Stroma-macrophage connection density -1.16*10-4 

Lymphocyte-lymphocyte connection density 5.10*10-8 

Average length of tumor-stroma connection 3.05 *10-2 

Average length of tumor-red blood cell connection -2.34*10-3 

Average length of tumor-macrophage connection -1.45*10-5 

Average length of stroma-red blood cell connection -7.95*10-3 

Average length of stroma-macrophage connection -2.66*10-2 

Average length of lymphocyte-macrophage connection -1.08*10-2 
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TABLE 5 Multivariable analysis of image feature-based risk in the validation dataset. 
TCGA dataset (n=371) HR (95% CI) p value 

High- vs. low-risk 2.23 (1.34 – 3.70) 0.002 

Age (year) 1.02 (0.99 – 1.05) 0.097 

Male vs. female 0.79 (0.48 – 1.30) 0.35 

Smoker vs. non-smoker 0.99 (0.60 – 1.64) 0.98 

Stage   

    Stage I ref - 

    Stage II 2.26 (1.28 – 4.00) 0.005 

    Stage III 4.06 (2.16 – 7.63) <0.001 

    Stage IV 3.52 (1.38 – 8.98) 0.008 

 

2.6 ASSOCIATION BETWEEN IMAGE FEATURES AND TRANSCRIPTIONAL 

ACTIVITY OF BIOLOGICAL PATHWAYS 

GSEA was performed to study the association between image-derived TME features and the 

mRNA expression generated from bulk tumor tissues in the TCGA LUAD dataset. Our 

analysis identified biological pathways whose mRNA expression profiles were significantly 

correlated with image-derived features (such as densities of tumor cell nuclei, stromal cell 

nuclei, lymphocytes and karyorrhexis) (FIGURE 9A-D). For example, we observed that 

transcription activation of both T-cell receptor (TCR) and Programmed cell death protein 1 

(PD1) pathways were positively correlated with the lymphocytes density in the tumor tissue 

of each patient (FIGURE 9A). This observation is consistent with previous reports that 

genes involved in TCR and PD1 pathways were expressed in immune cells50,51, supporting 

for the reliability of the TME features derived by this deep-learning based approach. In 

addition, the expression of the extracellular matrix organization gene set, for which 

fibroblasts act as an important source52, is positively correlated with the density of stromal 
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cells density in tumor tissue of each patient (FIGURE 9B). This correlation also supports the 

image-derived cell composition features. It is noteworthy that after we randomly shuffled the 

patient IDs and repeated the same analysis, such correlation was no longer observed, which 

serves as a negative control. 

Furthermore, in our results, cell cycle gene expression was positively enriched with both the 

tumor cell density and the karyorrhexis density for each patient (FIGURE 9C, D). To look 

into this enrichment, expression levels of genes within the cell cycle gene set with p value 

<0.001 in Spearman rank correlation analysis for the TCGA LUAD dataset were visualized 

in FIGURE 9E, where patients were sorted and grouped according to their tumor nuclei 

density. Positive correlations between gene expression and tumor nuclei density can be 

observed for most of the genes. Only one cell cycle related gene, POLD4, showed an inverse 

trend (FIGURE 9E). Furthermore, this pattern of POLD4 compared with other genes in the 

cell cycle gene set was reported previously in lung cancer53: while most cell cycle genes were 

upregulated in lung cancer, c is usually downregulated. The observation of the upregulated 

cell cycle gene set with the density of tumor cells indicates that the image-derived tumor cell 

density is representative of tumor status. 
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FIGURE 9 Correlation between image features and mRNA expression in bulk tumor.  (A-D) 
Volcano plots of gene set expression enrichment analysis results correlating mRNA expression level 

with tumor nuclei density (A), stroma nuclei density (B), lymphocyte density (C), and karyorrhexis 

density (D) respectively. 13 interesting gene sets are highlighted. (E) To look into the significantly 

correlated gene sets, an example heatmap shows that most mRNA expression level in the cell cycle 

gene set are positively correlated with tumor nuclei density. Only genes with p value < 0.001 in 

spearman rank correlation with tumor cell number are shown. Patients are grouped according to 

tumor cell number per image patch showing on the top row. For best view, mRNA expression levels 

are centered across all patients for each gene. 

 

2.7 PUBLICLY ACCESSIBLE PATHOLOGICAL IMAGE ANALYSIS TOOL 

2.7.1 GitHub for Tumor Region Detection and Characterization Tool 

All scripts of utilizing the CNN model for tumor region detection and feature extraction were 

shared in GitHub: https://github.com/sdw95927/pathology-images-analysis-using-CNN. The 

open-source scripts enables researchers to reproduce our results and develop new models in 

other cancer types. 

2.7.2 Webserver for Pathology Image Segmentation Model 

In order to facilitate the usage of this Mask-RCNN model, we developed an online tool 

(http://lce.biohpc.swmed.edu/maskrcnn/analysis.php) for this deep-learning based nuclei 

segmentation and classification model (FIGURE 10). The only required input for this tool is 

a pathology image (FIGURE 10A). Each uploaded input image will be assigned a job ID 

(FIGURE 10B). The segmentation results will be automatically displayed and the spatial 

coordinates of each nucleus can be downloaded as an Excel table (FIGURE 10C).  

https://github.com/sdw95927/pathology-images-analysis-using-CNN
http://lce.biohpc.swmed.edu/maskrcnn/analysis.php
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FIGURE 10 Illustration of performing pathological image segmentation online. Web-

portal: http://lce.biohpc.swmed.edu/maskrcnn/analysis.php. Using 40X H&E stained 

pathology images smaller than 1024 * 1024 pixels as input will automatically generate 

segmentation result and cell information will be downloadable. Computation time for each 

image is usually shorter than 1 minute.  

 

http://lce.biohpc.swmed.edu/maskrcnn/analysis.php
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2.8 DISCUSSION 

In this section, two deep-learning based analysis tools were developed using standard H&E 

stained pathology images to study the tumor shape features and TME, respectively. These 

tools successfully visualizes the presence of malignant regions and the spatial distribution of 

tumor cells, stromal cells, lymphocytes, and inflammatory cells in the TME from LUAD 

patients. The tumor region features and topological features of cell spatial organizations were 

quantified and found to be associated with patient survival outcome and transcription 

expression of biological pathways. Based on these tumor shape-based and TME-related 

image features, we developed a prognostic model for LUAD patients and the model was 

independently validated in another patient cohort. Our results show that the prognostic model 

predicts patient survival independent of other clinical variables in the validation cohort. 

This is the first study to quantify tumor shape-related features using a CNN-based model in 

lung cancer. In addition, both the main tumor body and the tumor spread through air spaces 

(STAS, sometimes referred as aerogenous spread with floating cancer cell clusters [ASFC]) 

can be easily detected in the heatmaps8,54. Since the median size of 40X pathology images is 

24244 × 19261 pixels and the STASs usually only occupy 1 image patch (300 × 300 pixels) 

in the NLST dataset, it is labor intensive for human pathologists to circle accurate tumor 

boundaries and indicate the entire tumor STASs. Thus, automatically generating the tumor 

region heatmap will facilitate pathologists in finding tumor regions and quantifying STASs. 

More importantly, our study has developed a computation-based method to quantify tumor 

shape, circularity, irregularity and surface smoothness, which can be an essential tool to 
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study the underlying biological mechanisms. Although tumor size is a well-known prognostic 

factor, quantifications of the tumor area and perimeter-related features from pathology 

images are challenging and time-consuming for human pathologists. Thus, it is a natural step 

to extract image features directly from the predicted tumor heatmaps, thereby avoiding a 

subjective assessment by a human pathologist. 

This is also the first study to automatically segment and classify nuclei in LUAD. Although 

several previous studies have tried to analyze the TME and discover prognostic image 

features, these studies involved time-consuming hand labeling by pathologists38,55,56. In 

contrast, we developed a fully automated and subjective nuclei segmentation and 

classification strategy that requires manual labeling only in constructing the training set. In 

addition, this deep-learning aided method enables segmentation of all nuclei within a whole 

slide image. Since the number of cells for a whole slide image could be tremendous 

(~2,000,000 on average), manually labelling all of them is impractical. Thus, this deep-

learning method empowers quantification of the microenvironment across the whole slide 

image. Furthermore, although developed in LUAD, this method can be easily generalized to 

other cancer types by retraining the model using the tools on our website. 

The associations between the extracted TME features and patient prognosis were evaluated in 

this study. Karyorrhexis, a representative of necrosis, has been reported as an aggressive 

tumor phenotype in lung cancer57. Consistently, the numbers of karyorrhexis and 

karyorrhexis-karyorrhexis edges were shown as negative prognostic factors in this study. On 

the other hand, the numbers of stromal cells and stromal cell-stromal cell edges were positive 
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prognostic factors, which is consistent with a recent report on LUAD patients11. Those 

consistencies support the validity of this segmentation neural network and the potentiality of 

using cell organization features as novel biomarkers for clinical outcomes.  

The image-derived TME features show interesting correlations with the transcriptional 

activities of biological pathways. For example, gene expression levels of TCR and PD-1 

pathways were positively correlated with the number of lymphocytes detected from tumor 

tissues. This indicates the image-derived TME features may be used to study or predict 

immunotherapy response, since several promising cancer immunotherapies rely on activation 

of tumor-infiltrated immune cells and blocking immune checkpoint pathways51,58. In 

addition, the gene expression extracellular matrix organization pathway is associated with the 

number of stromal cells in tumor tissues. Since traditional transcriptome sequencing is done 

in bulk tumor, accurate cell composition derived from pathological images could help to 

improve the evaluation of gene expression for each individual cell type. Moreover, the 

correlation between image features and transcriptional patterns of biological pathways hints 

at the potential usage of image features to study tumor bioprocesses, including cell cycle and 

metabolism status.  

Gene expression patterns have been widely used to study the underlying biological 

mechanisms of different tumor types and subtypes59,60; moreover, genes with abnormal 

expression could become potential therapeutic targets of cancers61,62. However, traditional 

transcriptome profiling is usually done in bulk tumor63, which contains multiple cell types, 

such as stromal cells and lymphocytes, in addition to tumor cells. This bulk tumor-based 
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sequencing could blur or diminish the mRNA expression changes arising from a single cell 

type or from different cell compositions in the TME. Currently, the relationship between the 

transcription activities of biological pathways and the tumor morphological 

microenvironment remains unclear. In this study, using the Mask-RCNN model, we derived 

TME-related features correlated with the expression patterns of biological pathways, 

indicating the biological relevance of these TME features. The Mask-RCNN model can be 

potentially used as tool to study TME in addition to gene expression analysis.  

There were some limitations to these two models for tumor geometry quantification and 

TME dissection. First, information on the individual nucleus is not considered since this 

study focused on nuclei organization. Morphological and intensity features of nuclei have 

been reported as prognostic factors, which can be automatically extracted using this nuclei 

segmentation algorithm64. Second, some special structures, such as bronchus and cartilage, 

were not included in the TME dissection algorithm. This study handled this problem by 

avoiding such structures during ROI annotation. However, a more comprehensive training set 

would be desirable for whole slide analysis. Third, pathological images are 2-dimensional, 

which loses the 3-dimensional spatial information. Combining the tumor prediction and 

feature extraction algorithms with other imaging techniques, such as CT or X-Ray, may 

produce more comprehensive descriptions of the tumor region and improve the performance 

of the current risk prediction model. 
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CHAPTER THREE – NOMOGRAM WITH CLINICAL INFORMATION 

3.1 BACKGROUND AND RATIONALE 

Lung cancer is the leading cause of death from cancer in the United States and worldwide. 

SCLC accounts for 13.6% of all lung cancer cases1,65. Compared to non-small-cell lung 

NSCLC, in which the 5-year survival rate is 18.0%, SCLC has only a 6.2% 5-year survival 

rate, and is characterized by a more rapid tumor growth rate and death from recurrent 

disease66,67. Over the last several decades, there have been only modest improvements in 

patient survival68 and no molecularly targeted therapy has proven beneficial for SCLC 

patients69. Nomogram prognostic models that predict patient outcomes may facilitate better 

treatment stratification and outcome evaluation, as well as more refined patient enrollment 

criteria for clinical trials in SCLC. Furthermore, a recent study in breast cancer5 showed that 

user-friendly online prognostic tools could greatly enhance patient care. However, currently 

there are no such online tools available for prognosis of SCLC. 

To date there are three studies of nomograms in SCLC, published by Xie et al67, Pan et al70, 

and Xiao et al71. The nomograms developed from those studies provide useful tools for 

clinicians and researchers to stratify the risk of SCLC patients. However, two of the studies 

simply classified patients as limited or extensive stage without using the more accurate TNM 

staging proposed by the IASLC72. Furthermore, there is a lack of independent validation for 

these models, probably due to the limited sample size (n = 93867, 27570, and 64771 
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separately). Other non-nomogram prognostic models include the Manchester score and Spain 

score. However, both of these were developed on small sample sets (n = 407 for Manchester 

score and n = 341 for Spain score) and divided patients into only three risk groups73,74.  

The goal of this section was to identify prognostic factors for SCLC patients, and then 

develop and validate a new nomogram prognostic model in a large SCLC patient cohort. 

Compared to the previously published models, our model has the following advantages: 1) it 

was validated in an independent set; 2) it was developed and validated with a much larger 

sample size; 3) it was developed across multiple facilities and facility types, which greatly 

diminishes sample selection bias; 4) it utilizes accurate SCLC staging criteria: the American 

Joint Committee on Cancer (AJCC) 8th edition TNM staging system proposed by IASLC75,76; 

and 5) it provides an online webserver so that clinicians can use the nomogram model easily. 

3.2 METHODS 
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FIGURE 11 Flow chart of nomogram development. 3.2.1 Data Collection 

NCDB SCLC 

We identified 202,194 SCLC cases from National Cancer Database (NCDB); 34,380 of them 

met our inclusion criterion that they do not contain any missing data for the variables 

selected by univariable survival analysis (FIGURE 11). The cases are independent and 

recorded by annual reports from all the CoC-accredited programs from 2004 to 2013. 24,680 

cases that were diagnosed from 2004 to 2011 were assigned to the training group and used to 

develop a nomogram prognostic model. The 9,700 cases diagnosed from 2012 to 2013 were 

assigned to the testing group and used to validate the model. 
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The variables collected were age, gender, race, Hispanic origin, Charlson/Deyo Score, 

sequence number, primary site, laterality, grade (tumor’s resemblance to normal tissue), 8th 

edition TNM stage, and treatment type. Two extra variables were constructed based on the 

NCDB variables. 1) Treatment was defined as the stratification result of surgery, 

chemotherapy, and radiation therapy. 2) TNM stage was defined according to the coding 

guidelines of the Collaborative Staging Manual and Coding Instructions for the new 8th 

edition lung cancer staging system defined by the AJCC and the Union for International 

Cancer Control (UICC)77-80, and followed Yang et al’s method81. Stages IA1, IA2, and IA3 

were combined together in our study as stage IA, since no significant prognostic differences 

were detected among the three sub-stages76. The patient characteristics were summarized in 

TABLE 6. 

TABLE 6 Patient characteristics of the NCDB SCLC training and testing sets.  P values were 

calculated by Chi-square test. 
 Training set (%) Testing set (%) p value 
No. of cases 24,680 9,700  
Year of diagnosis 2004-2011 2012-2013  
Age   0.09 
      < 65y 9,559 (38.7) 3,855 (39.7)  
      ≥ 65y 15,121 (61.3) 5,845 (60.3)  

Gender   0.9 
      Male 12,240 (49.6) 4,803 (49.5)  
      Female 12,440 (50.4) 4,897 (50.5)  

Race   0.73 
      White 22,276 (90.3) 8,779 (90.5)  
      Black 1,912 (7.7) 727 (7.5)  
      Other 492 (2.0) 194 (2.0)  

Hispanic origin   0.91 
      Non-Hispanic 24,084 (97.6) 9,463 (97.6)  
      Hispanic 596 (2.4) 237 (2.4)  

Charlson/Deyo score   <0.001 
      0 13,288 (53.8) 5,031 (51.9)  
      1 7,629 (30.9) 3,061 (31.6)  
      ≥ 2 3,763 (15.2) 1,608 (16.6)  

Sequence number*   0.82 
      0 24,084 (97.6) 9,463 (97.6)  
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      1 527 (2.1) 213 (2.2)  
      ≥ 2 69 (0.3) 24 (0.2)  

AJCC V8 TNM stage   <0.001 
      IA 1,207 (4.9) 160 (1.6)  
      IB 463 (1.9) 74 (0.8)  
      IIA 140 (0.6) 18 (0.2)  
      IIB 853 (3.5) 97 (1.0)  
      IIIA 1,548 (6.3) 156 (1.6)  
      IIIB 902 (3.7) 89 (0.9)  
      IIIC 208 (0.8) 27 (0.3)  
      IVA 14,699 (59.6) 6,655 (68.6)  
      IVB 4,660 (18.9) 2,424 (25.0)  

Treatment   <0.001 
      No surgery, no chemo, no radiation 5,025 (20.4) 2,213 (22.8)  
      No surgery, no chemo, radiation done 1,230 (5.0) 520 (5.4)  
      No surgery, chemo done, no radiation 7,668 (31.1) 3,473 (35.8)  
      No surgery, chemo done, radiation done 7,901 (32) 3,050 (31.4)  
      Surgery done, no chemo, no radiation 856 (3.5) 116 (1.2)  
      Surgery done, no chemo, radiation done 64 (0.3) 8 (0.1)  
      Surgery done, chemo done, no radiation 1,000 (4.1) 165 (1.7)  
      Surgery done, chemo done, radiation done 936 (3.8) 155 (1.6)  

Primary site   <0.001 
      C340 2,298 (9.3) 911 (9.4)  
      C341 11,019 (44.6) 4,152 (42.8)  
      C342 968 (3.9) 368 (3.8)  
      C343 4,959 (20.1) 1,923 (19.8)  
      C348 485 (2.0) 200 (2.1)  
      C349 4,951 (20.1) 2,146 (22.1)  

Laterality †   <0.001 
      Not a paired site 2,298 (9.3) 911 (9.4)  
      Only one side involved 20,447 (82.8) 8,016 (82.6)  
      Bilateral involvement 624 (2.5) 154 (1.6)  
      Paired site but lateral origin unknown; 

midline tumor 

1,311 (5.3) 619 (6.4)  

Grade   <0.001 
      Well differentiated 88 (0.4) 8 (0.1)  
      Moderately differentiated 179 (0.7) 39 (0.4)  
      Poorly differentiated 2,795 (11.3) 899 (9.3)  
      Undifferentiated 5,037 (20.4) 1,457 (15)  
      Cell type not determined, not stated or not 

applicable 16,581 (67.2) 7,297 (75.2) 

 

* Sequence number: 0 means the tumor diagnosis is the only one over the lifetime of the patient. If 

the patient has multiple tumor diagnoses, sequence number refers to the sequence of this diagnosis, 

with 1 refers to the 1st diagnosis. 

† Laterality: the side of a paired organ (for lung cancer, the organ is lung) on which the primary 

tumor originated. 
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3.2.2 Prognostic Model Based on Clinical Characteristics 

Nomogram Development 

A nomogram was developed using the training cohort of 24,680 patients diagnosed from 

2004 to 2011 in the NCDB SCLC dataset. Overall survival was defined as the length of time 

from diagnosis to death or last contact, and used as the primary outcome. Univariable Cox 

regression and Wald test were used to screen for variables that were significantly correlated 

with overall survival in the training group. Predictors with a p value less than 0.05 were fed 

to a multivariable Cox regression model. Backward stepwise selection based on Bayesian 

Information Criterion (BIC) was used to further eliminate redundant variables. The resulting 

multivariable Cox regression model was used to calculate risk score and build the final 

nomogram prognostic model. The assumptions were made here that the timing and sequence 

of the treatments were interchangeable, and none of these are salvage treatment due to 

recurrence/progression. 

Model Validation 

To validate our model, four criteria were used to evaluate prediction performance in the 

testing set. 1) The cases were grouped according to their predicted risk score, and K-M 

survival curves and Wald test were used to compare survival differences among the groups. 

2) A concordance index (c-index) was calculated to estimate the similarity between the 

ranking of true survival time and of predicted risk score. The theoretical value of the c-index 

is between 0 and 1; a c-index larger than 0.5 indicates prediction performance better than 
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random guessing. When evaluating the performances of different models, c-indexes from 

different models were compared using z-test. 3) The AUC of time-dependent ROC82,83 was 

calculated at each month from the 1st to the 30th month. Integrated AUC was calculated by 

averaging the AUC values. 4) Calibration curves were plotted to evaluate the consistency 

between predicted survival probability and actual survival proportion at 1 and 2 years, 

separately84. 

The other two models, the AJCC 8th edition TNM staging system and the traditional 

limited/extensive staging system, were also tested for prognostic performance in the testing 

group. C-index and integrated AUC were used to compare this nomogram with the two 

staging systems. Here, extensive stage was defined based on the presence of distant 

metastases (M1 stage)85,86. All other cases (M0 stage) were grouped as limited stage.  

All computations in this section were conducted in the R environment, version 3.3.248. R 

packages “survival” (version 2.40-1), “timeROC” (version 0.3), and “rms” (version 5.1-2) 

were used. Results with p value ≤ 0.05 were considered statistically significant. 

3.3 RESULTS 

3.3.1 Characteristics of the Training and Validation Cohorts 

In total, 202,194 SCLC cases were identified in NCDB, among which, 34,380 cases that did 

not contain any missing variables were included in this study. Based on year of diagnosis, 

included cases were divided into two distinct groups: cases that were diagnosed from 2004 to 

2011 (n = 24,680) were used as the training cohort, while cases that were diagnosed from 
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2012 to 2013 (n = 9,700) were used as the validation cohort. The follow-up time ranged from 

0 to 10.76 years (median 0.64 year) for the training cohort and from 0 to 2.92 years (median 

0.53 year) for the testing cohort. Characteristics of the two sets were shown in TABLE 6. In 

comparing the training and testing sets, the demographic variables were similar, while the 

clinical variables, including Charlson/Deyo score, 8th AJCC stage, and laterality, were 

significantly different. 

3.3.2 Building Nomogram Prognostic Model in Training  

In univariable analysis, age, gender, race, Hispanic origin, Charlson/Deyo score, TNM stage 

by AJCC 8th edition, treatment type, primary site, laterality, and grade were significantly 

associated with overall survival in the training group (TABLE 7). After stepwise selection to 

further remove potential redundancy, age, sex, race, ethnicity, Charlson/Deyo score, TNM 

stage by AJCC 8th edition, treatment type, and laterality were used in the final nomogram 

model (coefficients summarized in TABLE 8). The final risk score was calculated by adding 

up the score of each item using the nomogram depicted in FIGURE 12A. The TNM stage 

defined by the AJCC 8th edition showed the largest range of risk scores, followed by the 

treatment type and age. The predicted survival probability using the Cox regression model of 

risk scores was plotted in FIGURE 12B. 

TABLE 7 Univariable survival analysis of clinical features in SCLC. 

Variable HR (95% CI) p value 

Age 1.02 (1.02-1.02) < 0.001 

Sex (Female vs. Male) 0.84 (0.83-0.85) < 0.001 

Race   

      White 1 (reference) - 

      Black 0.97 (0.95-0.99) 0.006 

      Other 0.94 (0.90-0.97) 0.001 

Hispanic origin (Yes vs. No) 0.95 (0.92-0.99) 0.028 
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Charlson/Deyo score   

      0 1 (reference) - 

      1 1.22 (1.20-1.24) < 0.001 

      ≥ 2 1.59 (1.56-0.61) < 0.001 

Sequence number   

      0 1 (reference) - 

      1 1.00 (0.98-1.01) 0.82 

      ≥ 2 1.01 (0.92-1.11) 0.83 

AJCC V8 TNM stage   

      IA 1 (reference) - 

      IB 1.22 (1.07-1.39) < 0.001 

      IIA 1.63 (1.34-1.98) < 0.001 

      IIB 1.60 (1.45-1.78) < 0.001 

      IIIA 2.12 (1.94-2.31) < 0.001 

      IIIB 2.55 (2.32-2.81) < 0.001 

      IIIC 3.26 (2.81-3.78) < 0.001 

      IVA 5.25 (4.88-5.65) < 0.001 

      IVB 7.04 (6.51-7.61) < 0.001 

Treatment   

      No surgery, no chemo, no radiation 1 (reference) - 

      No surgery, no chemo, radiation done 0.72 (0.70-0.74) < 0.001 

      No surgery, chemo done, no radiation 0.46 (0.45-0.47) < 0.001 

      No surgery, chemo done, radiation done 0.26 (0.25-0.26) < 0.001 

      Surgery done, no chemo, no radiation 0.19 (0.18-0.20) < 0.001 

      Surgery done, no chemo, radiation done 0.28 (0.24-0.33) < 0.001 

      Surgery done, chemo done, no radiation 0.13 (0.13-0.14) < 0.001 

      Surgery done, chemo done, radiation done 0.13 (0.12-0.14) < 0.001 

Primary site   

      C340 1 (reference) - 

      C341 0.89 (0.88-0.91) < 0.001 

      C342 0.90 (0.87-0.92) < 0.001 

      C343 0.96 (0.94-0.98) < 0.001 

      C348 1.07 (1.03-1.11) < 0.001 

      C349 1.13 (1.11-1.16) < 0.001 

Laterality   

      Not a paired site 1 (reference) - 

      Only one side involved 0.94 (0.93-0.96) < 0.001 

      Bilateral involvement 1.47 (1.40-1.54) < 0.001 

      Paired site but lateral origin unknown; midline tumor 1.18 (1.15-1.21) < 0.001 

Grade   

      Well differentiated 1 (reference) - 

      Moderately differentiated 0.99 (0.86-1.14) 0.86 

      Poorly differentiated 1.29 (1.15-1.46) < 0.001 

      Undifferentiated 1.39 (1.23-1.56) < 0.001 

      Cell type not determined, not stated or not applicable 1.44 (1.28-1.62) < 0.001 
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TABLE 8 Variable HRs in the clinical-feature based risk prediction nomogram. 

Variable HR (95% CI) p value 

Age 1.01 (1.01-1.02) < 0.001 

Sex (Female vs. Male) 0.88 (0.85-0.90) < 0.001 

Race   

      White 1 (reference) - 

      Black 0.88 (0.84-0.92) < 0.001 

      Other 0.89 (0.80-0.98) 0.02 

Hispanic origin (Yes vs. No) 0.75 (0.68-0.82) < 0.001 

Charlson/Deyo score   

      0 1 (reference) - 

      1 1.18 (1.14-1.21) < 0.001 

      >= 2 1.36 (1.31-1.41) < 0.001 

AJCC V8 TNM stage   

      IA 1 (reference) - 

      IB 1.17 (1.02-1.35) 0.02 

      IIA 1.49 (1.20-1.84) < 0.001 

      IIB 1.70 (1.52-1.90) < 0.001 

      IIIA 2.04 (1.83-2.26) < 0.001 

      IIIB 2.38 (2.11-2.68) < 0.001 

      IIIC 2.97 (2.50-3.54) < 0.001 

      IVA 3.86 (3.48-4.27) < 0.001 

      IVB 5.62 (5.06-6.24) < 0.001 

Treatment   

      No surgery, no chemo, no radiation 1 (reference) - 

      No surgery, no chemo, radiation done 0.67 (0.63-0.71) < 0.001 

      No surgery, chemo done, no radiation 0.35 (0.33-0.36) < 0.001 

      No surgery, chemo done, radiation done 0.25 (0.24-0.26) < 0.001 

      Surgery done, no chemo, no radiation 0.31 (0.28-0.35) < 0.001 

      Surgery done, no chemo, radiation done 0.35 (0.27-0.46) < 0.001 

      Surgery done, chemo done, no radiation 0.21 (0.19-0.23) < 0.001 

      Surgery done, chemo done, radiation done 0.18 (0.17-0.20) < 0.001 

Laterality   

      Not a paired site 1 (reference) - 

      Only one side involved 0.95 (0.91-0.99) 0.02 

      Bilateral involvement 0.72 (0.66-0.79) < 0.001 

      Paired site but lateral origin unknown; midline tumor 1.05 (0.98-1.13) 0.19 
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FIGURE 12 Nomogram to calculate risk score and survival probability for SCLC patients.  (A) 
Race includes black (B), white (W) and other (O). Treatment types include: no surgery, no chemo, no 

radiation (1); no surgery, no chemo, radiation done (2); no surgery, chemo done, no radiation (3); no 

surgery, chemo done, radiation done (4); surgery done, no chemo, no radiation (5); surgery done, no 

chemo, radiation done (6); surgery done, chemo done, no radiation (7); and surgery done, chemo 

done, radiation done (8). Laterality of tumor origin includes: not a paired site (0), only one side 

(either left or right) is involved (1), bilateral involvement (2), paired site with unknown origin side or 

midline tumor (3). (B) Predicted survival probability curve corresponding to risk scores ranging from 

2 to 22. 

 

3.3.3 Validation and Sensitivity Analysis 
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The proposed nomogram was validated in the independent testing set (n=9,700). The survival 

difference between any two adjacent groups, which were grouped by predicted risk score, 

was significant (p value < 0.05, FIGURE 13A & B). The median survival times of score 

groups ranged from 0.7 months (when risk score > 18) to 30.9 months (when risk score < 6). 

The c-index was 0.722 ± 0.004 and the integrated AUC was 0.79 from the 1st month to the 

30th month (FIGURE 13C). A calibration curve at 1 year (FIGURE 13D) or 2 years 

(FIGURE 13E) also showed high consistency between predicted survival probability and 

actual survival proportion. 

With regard to prognostic ability, the proposed nomogram performed better than the two 

commonly used SCLC staging systems, the AJCC TNM system and limited/extensive 

staging system (FIGURE 13C). The AUC of the nomogram was the highest throughout the 

1st to the 30th month, followed by the 8th edition TNM staging system. The integrated AUC of 

the proposed nomogram was 0.789, while those of the 8th edition TNM staging system and 

the limited/extensive staging system were 0.634 and 0.598, respectively. The c-index of this 

nomogram (0.722 ± 0.004) was also significantly higher than the c-indexes of the 8th edition 

TNM staging system (0.550 ± 0.003) and the limited/extensive staging system (0.539 ± 

0.002), confirming the strong prognostic power of this proposed nomogram.  

To evaluate the robustness of our model to missing data, a sensitivity analysis was performed 

on the excluded cases diagnosed from the year 2012 to 2013 (n = 11,020). The missed 

variables were imputed using corresponding modes in the training cohort (TABLE 6): 

missed stages (n = 10,416) were imputed as “stage IVA”; missed treatment types (n = 508) 
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were imputed as “No Surgery, Chemo Done, Radiation Done”; missed Hispanic origins (n = 

819) were imputed as “False”. Under the circumstance of having at least one variable 

imputed, the survival difference between any two adjacent predicted risk groups was still 

significant. The c-index was 0.691 ± 0.004, and the integrated AUC was 0.734. A calibration 

curve at 1 year or 2 years still showed high consistency between predicted survival 

probability and actual survival proportion, proving the robustness of this nomogram to 

missing data. 

 



55 

 

 

FIGURE 13 Validation of proposed nomogram prognostic model in the testing set. (A) Risk 

scores of testing set cases were calculated according to the model in Figure 1 and grouped into 8 

subgroups. K-M plot was depicted for each group. (B) Summary of groups in (A). HR was calculated 

using Coxph regression model between each two adjacent lines. P-value was calculated using Wald 

test. (C) AUC was calculated for three prognostic models for every month from the 1st to the 30th 

month. Blue: nomogram developed in this study; green: AJCC 8th TNM staging system; red: 

limited/extensive staging system. (D, E) Calibration curves compare predicted and actual survival 

proportions at 1 year (D) and 2 years (E), separately. Distributions of predicted survival probabilities 

are plotted at the top. Error bars represent 95% CIs.  
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3.3.4 Webserver for Easy Access of Our Own and Previously Published Models 

An online version of our nomogram can be accessed at 

http://lce.biohpc.swmed.edu/lungcancer/sclc_nomogram, to assist researchers and clinicians. 

Online implementation of the other nomograms from Pan et al, Xiao et al, and Xie et al are 

also available (FIGURE 14B-D). Predicted survival probability across time can be easily 

determined by inputting clinical features and reading output figures and tables generated by 

the webserver. 

http://lce.biohpc.swmed.edu/lungcancer/sclc_nomogram
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FIGURE 14 Illustration of performing prognostic nomogram online.(A) The newly developed 

nomogram in this study (Wang model). (B-D) Published nomograms by Pan et al (B), Xiao 

et al (C), and Xie et al (D: Extensive Stage; E: Limited Stage). 
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3.4 DISCUSSION 

In this study, a prognostic nomogram was developed and validated using a large cohort of 

SCLC cases across the United States. This nomogram, based on routinely available 

demographic, staging and treatment information, predicts the survival probability for 

individual SCLC patients. The publicly accessible online implementation will assist 

clinicians in making treatment decisions. 

Compared with other prognostic indexes, such as the Manchester Score74 and the Spain 

prognostic index73, our model calculates individualized survival probability rather than 

assigning cases into a few risk groups, thus better capturing heterogeneity across patients. 

Compared with the previously published nomogram by Xie et al., this model used a much 

larger training dataset and involved multiple treatment facilities, which allowed for smaller 

sampling bias. The internal c-index of this model was 0.744 ± 0.002, higher than in 

previously published models (0.73 for both nomograms in 67). Independent validation of our 

model showed significantly different outcomes among different score groups (FIGURE 

13A&B). A high concordance index (0.722 ± 0.004) and integrated AUC score (0.789, 

FIGURE 13C) in the testing set also indicated the strong predictive ability of our nomogram 

model. In addition, combining demographic, clinical and treatment information together 

produced a nomogram with better performance than using staging information alone 

(FIGURE 13B). Thus, this comprehensive and individualized risk score calculation method 

could be used as stratification criteria in randomized studies and clinical trials. 
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In this nomogram, age, gender, race, ethnicity, Charlson/Deyo score, AJCC 8th edition stage, 

treatment type and laterality were kept after univariable Cox regression screening and 

backward stepwise selection. Age, gender, and Charlson/Deyo score have previously been 

shown significantly relevant to survival of SCLC patients67,87. Noticeably, AJCC 8th edition 

stage contributed the most to the final risk score (FIGURE 12A), with clear distinctions 

between each two adjacent TNM stages (TABLE 8), and showed better prognostic 

performance than the limited/extensive staging system with higher c-index and AUC 

(FIGURE 13B). The significant contribution of TNM stage to this nomogram externally 

validates the performance of the 8th edition TNM lung cancer classification system, and 

highlights the importance of applying this more accurate staging system to SCLC rather than 

using the traditional limited/extended staging72,75,88. 

This proposed nomogram also illustrates the prognostic implications of using different 

treatment methods (FIGURE 12A, TABLE 8). As expected, cases treated with both surgery 

and chemo-radiation therapy have the lowest risk score and cases not treated with any 

method have the highest risk score. Furthermore, the nomogram (FIGURE 12B) is 

consistent with current research in that it predicts better survival for surgery with chemo-

radiation (treatment type 7 and 8) than for surgery with chemotherapy alone (type 3 and 4). 

However, the risk scores of different treatment methods are not recommended for direct use 

as a guideline for treatment selection, since clinical treatment decisions should be made 

based on multiple factors such as TNM stage and patient comorbidities66.  
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There were several limitations in the development of this nomogram. The first limitation was 

a lack of some routinely available clinical data, such as the neutrophil to lymphocyte ratio 

(NLR) and platelet to lymphocyte ratio (PLR). The absence of this information prevented 

direct comparison of performance between our model and another published nomogram67. 

Constructing a prognostic model using both the factors identified in our model and other lab 

tests such as NLR would thus be beneficial in creating an even more accurate prognostic 

prediction. The second limitation was the inability to capture interaction terms among the 

predictors. For example, patients with early stage disease (stage I & II) were more likely to 

receive surgery than patients with late stage disease (stage III and IV). The interactions 

between stage and treatment strategies are worth further investigation. To satisfy the 

requirement for convenience and interpretability of the nomogram, interaction terms were not 

considered in this model. However, a more complex model considering all potential 

interaction terms would be expected to have better prognostic performance. The third 

limitation was that the sequence of treatment was not considered. Since neither recurrence 

nor progression is recorded in the dataset, we have to consider the treatment as baseline 

variables instead of time-varying covariates. Finally, out of 200,000 SCLC patients from the 

NCDB, there are only 34,380 patients without missing values. This large percent of missing 

data might introduce some selection bias. 
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CHAPTER FOUR – FACILITY INFLUENCES SURVIVAL AND 

SURGERY SELECTION 

4.1 BACKGROUND AND RATIONALE 

Lung cancer screening trials, such as the International Early Lung Cancer Action Program (I-

ELCAP)89 and the NLST90, have shown great benefits in early-stage disease detection and 

10-year survival rate improvement. The implementation of low-dose computed tomography 

(CT) screening is expected to increase the incidence of diagnosed early-stage NSCLC91. 

Other recent developments in treatment advances for early-stage NSCLC include stereotactic 

body radiotherapy (SBRT)92 and robotic/minimally invasive surgery93.  

Early-stage NSCLC is a potentially curable condition, so treatment selection especially 

receipt of potentially curative surgery is a well-known determinant of survival, which has 

been included as the standard care for eligible early stage NSCLC into the European Society 

for Medical Oncology (ESMO) guidelines94. How teaching facility (TF) status affects care 

quality has been widely investigated, showing a positive relationship between TF status and 

patient outcomes14-17. In reported studies of facility type and surgical lung cancer 

treatment15,17,95,96, only some studies report overall survival outcome, while others report 

resection outcomes. The limited population size in previous studies meant that stratification 

of patients by early and late stage has not been performed. Moreover, the effect of non-TF 

type on survival outcome has not yet been reported.  
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The relationship between facility volume and care quality has also been investigated for over 

40 years, with mixed results18. For cancer treatment, most studies found that higher volume 

was associated with lower operative morality rate and better survival outcomes for 

patients15,19,20, while others found no difference21,22. One possible reason is that estimation of 

low-volume hospitals’ performance would be unstable because of small sample size97. Also, 

it is still unknown whether this association persists in all types of facilities, and if so, what 

the underlying reasons are.  

To investigate these knowledge gaps, this study aimed to evaluate the influence of facility 

type and volume on surgery selection and survival outcome in early stage NSCLC. Although 

facility volume-outcome and TF status-outcome have been widely investigated 

independently, to our knowledge, this was the first study to stratify the volume effect by 

facility type.   

4.2 METHODS 



63 

 

 
FIGURE 15 Flow chart of investigating how facility type and volume affect patient survival 

outcome.  
 

4.2.1 Data Collection 

332,175 early stage (stage I or II) NSCLC patients were identified from the NCDB. The 

cases are independent and recorded by annual reports from all the CoC Accreditation 

Programs from 2004 to 2013 (Error! Reference source not found.). 1,299 facilities were 

involved and had been categorized by the CoC Accreditation Program into 4 types of 

program as follows: Community Cancer Program (CCP), which accessions 100 to 500 newly 

diagnosed cancer cases per year; Comprehensive Community Cancer Program (CCCP), 

which accessions 500 or more cases per year; Academic/Research Program (ARP), which 

participates in cancer-related clinical research and mandates postgraduate education, 

including residency training; Integrated Network Cancer Program (INCP), defined by 

American College of Surgeons website (https://www.facs.org/), as "an organization that 

owns, operates, leases, or is part of a joint venture with multiple facilities providing 

https://www.facs.org/
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integrated cancer care and comprehensive services". In this study, facility volumes were 

determined by counting the number of NSCLC patients reported annually according to the 

NCDB. Median volume for all facilities was determined and used to categorize each facility 

as high- or low-volume to study the joint effects of facility type and volume. To separate the 

effect of patient volume from facility type, median facility volume for each facility type was 

determined and used to assign each facility as high or low volume within each facility type.  

In addition to facility type information, other demographic and clinical variables collected 

included: age at diagnosis, gender, race, insurance status, comorbidity, treatment, and 

resident zip code-level characteristics (median household income collected from 2008 to 

2012, proportion without high school diploma collected from 2008 to 2012, and urban/rural 

area collected in 2013). Comorbidity was represented by Charlson/Deyo score, where 0 

means no comorbid conditions. Treatment information, including surgery, chemotherapy, 

and radiation therapy, was collected. Treatment information was stratified into four groups: 

1) surgery performed; 2) no surgery but radiation therapy performed; 3) no surgery or 

radiation therapy but chemotherapy performed; 4) no treatment received.  

4.2.2 Statistical Analysis 

To study the surgery selection, a multivariable logistic regression model adjusted by potential 

confounders was used to calculate the odds ratio (OR) of surgery selection among different 

facility types or volumes. Wald tests were used to check if OR = 1. In survival analysis, 

overall survival was defined as time from diagnosis to death from any reason or last contact. 

K-M survival curves were used to visualize overall survival; Cox regression models and 
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Wald tests were used to compare survival difference among different facility types or 

volumes in both univariable and multivariable analysis adjusted for potential confounders. To 

further rule out the effect of potential confounders, propensity score matching was used to 

weight and balance patient groups with different clinical characteristics98. Propensity score 

estimates the conditional probability of selecting a certain treatment condition given all 

covariates that may affect this selection; thus, weighting patients under different conditions 

to balance propensity scores helps infer the relationship between treatment condition and 

outcome independent of other covariates. All variables listed in section 4.2.1 were considered 

in propensity score matching. All p values were two-sided; results were considered 

significant at p value ≤ 0.05. All analyses were performed with R software, version 3.4.299. R 

packages “survival” (version 2.41-3) and “twang” (version 1.5) were used.  

4.3 RESULTS 

4.3.1 Patient Characteristics Differed across Facility Types  

In total, 332,175 early stage NSCLC patients reported by 1,299 facilities were included in 

our analysis. Compared with other facility types, NSCLC patients reported by ARP were 

younger, more likely female, more likely non-white, had lower Charlson/Deyo comorbidity 

scores, and more likely to have private insurance (Error! Reference source not found.). 

Patients reported by INCP were more likely to come from higher income and higher 

education areas, and metropolitan counties. 

TABLE 9 Characteristics of 1,299 facilities studied in NCDB NSCLC. Chi-square test is used 

to calculate p values. 

 All CCP CCCP ARP INCP p value 
No. of hospitals 1,299 433 598 232 36  
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No. of patients 332,175 32,403 163,981 112,673 23,118  

Age (%)      <0.001 

     <65 yr 29.2 28.5 27.2 32.5 27.8  

     >= 65 yr 70.8 71.5 72.8 67.5 72.2  

Sex (%)      <0.001 

     Male 49.6 51.7 50 48.5 48.7  

     Female 50.4 48.3 50 51.5 51.3  

Race (%)      <0.001 

     White 88.4 89.2 91.2 84.2 87.1  

     Black 8.6 8.1 6.5 11.7 9.5  

     Other 3.0 2.7 2.3 4.1 3.3  

Stage of disease (%)      <0.001 

     I 76.5 72 76.1 78.3 77  

     II 23.5 28 23.9 21.7 23  

Charlson/Deyo score (%)      <0.001 

     0 53.7 52.5 51.8 57.4 50.2  

     1 32.6 32.7 33.7 30.4 34.8  

     >= 2 13.7 14.8 14.4 12.2 15  

Insurance status (%)      <0.001 

        Not insured 1.6 1.7 1.4 1.9 1.7  

        Private insurance 26.1 21.9 25.5 28.4 24.8  

        Medicaid 3.9 4.9 3.3 4.6 3.8  

        Medicare 65.3 68.6 67.5 60.6 68.4  

        Other government 1.2 1 1 1.5 0.7  

        Unknown 1.9 1.8 1.2 3.1 0.6  

Surgery rate (%)      < 0.001 

        Received 69.9 60.8 68.4 74.8 69.8  

        Not received 30.1 39.2 31.6 25.2 30.2  

Resident zip code-level characteristics       

    Median household income, USD (%)      <0.001 

        < $38,000 19.4 20.8 19.6 19.4 15.9  

        $38,000 - $47,999 25.4 31.7 26.6 22.3 23.5  
        $48,000 - $62,999 26.8 26.7 27.8 24.9 30  

        ≥ $63,000 28.3 20.9 26 33.4 30.6  

    Proportion without high school diploma (%)      <0.001 

        ≥  21% 17.0 19.4 16.7 17.3 14.6  

        13% - 20.9% 27.9 31.9 28.6 26.2 25.1  

        7% - 12.9% 33.6 35.3 33.9 32.1 36.2  

        < 7% 21.5 13.4 20.8 24.4 24.2  

    Urban/Rural (%)      <0.001 

        Metropolitan counties 81.7 70.1 79.9 85.8 90.6  

        Urban counties 16.1 26.7 17.3 12.8 8.7  

        Rural counties 2.2 3.2 2.8 1.4 0.7  

 

4.3.2 Facility Type is Associated with Patients’ Survival Outcomes  

Among different categories of facilities, ARP had the best survival outcome with median 

survival time of 59.1 months, followed by INCP (49.9 months), CCCP (46.3 months), and 
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CCP (36.0 months) (FIGURE 16). To further investigate whether the facility type was an 

independent factor in survival outcome, a multivariable Cox regression was performed to 

study the association between facility type and patient survival adjusted by treatment 

selection, age, gender, race, stage, Charlson/Deyo score, insurance status, income, education, 

and urban/rural (TABLE 10). Propensity score matching through these confounders also 

showed similar results as using multivariable Cox regression model as shown in TABLE 10. 

The significant differences in patient survival persisted among all different facility types, 

indicating that facility type was an independent factor affecting lung cancer prognosis.  
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FIGURE 16 K-M plot of patients from different facility types. ARP showed the lowest HR and 

the longest median survival time. 

 

TABLE 10 HR of NSCLC patients in different facility types in multivariable Cox regression. 

 
HR (95% CI) p-value  HR (95% CI) p-value 

Individual-level characteristics 
  

    Stage   

    Facility type 
  

        Stage I reference  

        CCP reference 
 

        Stage II 1.60 (1.58-1.62) < 0.001 

        CCCP 0.94 (0.92-0.95) < 0.001     Treatment approach   

        ARP 0.86 (0.84-0.87) < 0.001         Surgery received reference  

        ICNP 0.91 (0.88-0.93) < 0.001         No surgery; RT received 2.48 (2.45-2.51) < 0.001 
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    Age at diagnosis 
  

        No surgery or RT; CT received 3.67 (3.57-3.77) < 0.001 

        < 65 yr reference 
 

        No treatment received 4.43 (4.36-4.50) < 0.001 

        ≥  65 yr 1.40 (1.37-1.42) < 0.001 Resident zip code-level characteristics   

    Gender 
  

    Median household income, USD   

        Male reference 
 

        < $38,000 reference  

        Female 0.74 (0.73-0.75) < 0.001         $38,000 - $47,999 0.97 (0.87-0.97) < 0.001 

    Race 
  

        $48,000 - $62,999 0.94 (0.92-0.95) < 0.001 

        Black reference 
 

        ≥ $63,000 0.87 (0.85-0.89) < 0.001 

        Other 0.86 (0.83-0.89) < 0.001     Proportion without high school diploma   

        White 1.05 (1.03-1.07) < 0.001         ≥  21% reference  

    Insurance status 
  

        13% - 20.9% 1.00 (0.99-1.02) 0.76 

        Not insured reference 
 

        7% - 12.9% 1.00 (0.99-1.02) 0.79 

        Private insurance 0.81 (0.78-0.85) < 0.001         < 7% 0.97 (0.95-0.99) < 0.001 

        Medicaid 1.08 (1.03-1.13) < 0.001     Urban/Rural   

        Medicare 0.99 (0.95-1.04) 0.73         Metropolitan counties reference  

        Other government 0.94 (0.88-1.00) 0.05         Urban counties 1.01 (1.00-1.02) 0.15 

        Unknown 0.92 (0.87-0.97) < 0.001         Rural counties 1.04 (1.00-1.07) 0.03 

     Charlson/Deyo score 
  

   

        0 reference 
 

   

        1 1.17 (1.15-1.18) < 0.001    

        ≥ 2 1.44 (1.42-1.46) < 0.001    

 

4.3.3 Facility type is Associated with Surgery Selection 

To determine if different facility types had a different tendency to perform surgery, 

multivariable logistic regression was used to calculate the OR of surgery selection, adjusted 

by all other available demographic and clinical variables, including stage (TABLE 11). The 

likelihood of performing surgery was significantly different between different facility types. 

Specifically, the ARP facilities were the most likely to treat patients with surgery (OR = 1.81, 

ARP vs. CCP), followed by INCP (OR = 1.44, INCP vs. CCP), CCCP (OR = 1.36, CCCP vs. 

CCP) and CCP (used as reference). Interestingly, this was the same order of facility types, 

from best to worst, when analyzed for patient survival. Propensity score matching across the 

four facility types showed similar results and support this finding. 
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TABLE 11 Adjusted OR of performing surgery for each facility type. 

Facility types OR (95% CI)* p value 

CCP 1 (Reference)  
CCCP 1.36 (1.33-1.40) < 0.001 

ARP 1.81 (1.76-1.87) < 0.001 

INCP 1.44 (1.39-1.50) < 0.001 

 

4.3.4 Joint Effects of Facility Type and Patient Volume on Patient Survival Outcome 

The distribution of facility volume is shown in FIGURE 17. When further stratified by the 

median annual volume of all facilities (17.9 cases/year), patient survival outcomes and 

facility types demonstrated a similar trend, but within a facility type, high-volume facilities 

had better survival than low-volume facilities (FIGURE 18). Thus, we further investigated 

the effects of facility type as a primary factor and facility volume as a secondary factor on the 

surgery selection and patient outcome in the following analysis.  
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FIGURE 17 Violin plot of annual patients for each facility grouped by different facility 

types. Distribution of facility volumes was shown with density plot. Median, 1st quantile, and 

3rd quantile of facility volumes were shown with box plot for each facility type. 
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FIGURE 18 K-M plot of patients from different facility types and volumes.  High volume was 

defined as more than 17.9 stage I/II cases annually, which was the median volume across all facilities. 

No data of INCP low-volume facilities was shown because volumes of all INCP facilities were more 

than 17.9 stage I/II cases annually.  
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4.3.5 The Effects of Patient Volume within the Same Facility Type 

As a secondary factor, the effect of facility volume on overall survival was then investigated 

individually for each facility type. Within each facility type, the facilities were dichotomized 

into high- and low-volume groups using the median facility volume as a cutoff. Consistent 

with previous reports, for CCP, CCCP, and ARP, the high-volume group showed better 

survival outcome than low volume group in univariable analysis, while no significant 

survival difference was detected for INCP. However, multivariable analysis showed that only 

in ARP and CCCP was higher volume found to be an independent factor associated with 

better survival outcome. In INCP, no difference was found between high- and low-volume 

facilities. Surprisingly, in CCP, high-volume facilities had modestly worse survival outcomes 

than low-volume facilities (HR = 1.05, 95% CI 1.02-1.10). Propensity score matching also 

showed similar HR results, which led to the same conclusion. To investigate the differences 

in surgery selection between high- and low-volume facility groups, multivariable logistic 

regression was used to calculate the OR of surgery selection. Interestingly, for each facility 

type, high-volume facilities were more likely to select surgery than low-volume facilities. 

Propensity score matching results closely followed the trends. 

4.4 DISCUSSION  

This study examined a large cohort of 332,175 early stage (stage I and II) NSCLC patients 

from the NCDB to study the relationship between facility type, surgery selection, and patient 

outcomes. The large sample size and multi-facility data collection greatly improved the 

statistical power and generalizability of this study. Although facility volume-outcome and TF 
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status-outcome had been widely investigated independently, as far as we are aware, this is the 

first study to stratify the volume effect by facility types, including TF status.  

ARP showed the best overall survival, consistent with previous reports14,15,95. To our 

knowledge, this is the first study to identify a gradient in adjusted, long term survival with 

the best outcomes among patients treated in ARP sites followed by those in INCP, CCCP and 

CCP (with the worst outcomes). This ranking persisted after multivariable adjustment by age, 

gender, race, treatment, and other socioeconomic status information, indicating facility type 

is an independent predictor of survival outcomes for NSCLC patients.  

To understand the factors accounting for the survival difference among different facilities, it 

is noteworthy that facilities with improved overall survival were more likely to perform 

surgery. Since surgery is the preferred treatment modality for resectable patients94,100, the 

correlation between surgery rate and survival outcomes rank strongly suggests that survival 

outcomes among facility types largely result from selected treatment modality. This result 

should alert hospital facilities to ensure the most appropriate treatment modality is chosen 

when evaluating patients, and surgery should be selected when clinically appropriate. The 

correlation found between surgery rate and survival outcomes also invokes an urgent need 

for researchers to determine the specific reasons why surgery is performed more frequently at 

ARP and if there are any other factors that explain outcome differences between facility 

types, which requires future analysis. A possible explanation for these findings is that high 

volume and ARP facilities may have greater availability of cardiothoracic surgeons 

experienced in lung cancer surgery, and are therefore more likely to offer surgical treatment 
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modalities to early-stage NSCLC patients. This result could also arise from improper staging 

in community facilities, which have higher modality rate, leading to selection of 

inappropriate treatment modality. In any case, the survival analysis combined with surgery 

selection tendency verified the existence of care quality differences between facility types. 

In our multivariable analysis, the effect of volume was modest and smaller than the effect of 

facility type. Interestingly, for CCP facilities, high-volume facilities performed even worse 

than low-volume ones after adjusted for other confounders, which is inconsistent with 

previous studies15,95. Adjustment by clinical and demographic confounders and using a 

nationwide database largely reduced potential bias due to patients’ own characteristics, which 

might explain this inconsistency with other reports. However, it was still possible that other 

quality measures, such as surgical mortality ratio, were improved in high-volume CCP 

facilities, which requires further study. 

Our results support the idea that for cancer patients or health plans, selecting hospitals with 

ARP facility type performing a high volume number of lung surgeries would be reasonable 

when no other quality measures are available101. However, such a recommendation should be 

approached carefully in context of a few limitations. First, cost was not considered in our 

research as cost information was not available from NCDB database. Since it has been 

reported that the average cost was 60% higher in teaching hospitals but lower in high-volume 

facilities102,103, it is an important consideration in addition to facility type and volume when 

considering healthcare outcomes. Second, the survival outcome was not in favor of high-

volume facilities in multivariable analysis in CCP, which means if a CCP facility was being 
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considered, high-volume facilities would not necessarily be a better choice. Third, facility 

volume rather than procedure volume was considered in our research. It might be reasonable 

to choose a hospital according to surgeon volume or type rather than facility volume, as some 

previous studies have found improved outcomes when cardiothoracic surgeons with high 

individual case volumes perform lung cancer surgery104,105. This information was not 

available from NCDB and was therefore not included in our study.  
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CHAPTER FIVE – CONCLUSION AND FUTURE WORK 

In summary, we adapted three different methodologies to analyze lung cancer prognostic 

factors in tumor, patient, and population levels respectively. 1) To analyze tumor level 

histopathological features, deep learning based pathology image analysis served as a 

powerful tool to replace error-prone and laborious work of pathologists. Two deep learning 

models were developed to automatically recognize tumor region and segment cell 

components in TME respectively. Based on computation staining results from deep learning, 

tumor-level features were proved significant prognostic factors independent of clinical 

variables. 2) To analyze patient-level factors, a nomogram was built to incorporate both 

demographics and clinical variables for individualized prognosis. The online implementation 

of the nomogram would help both clinicians and patients in making treatment decisions. 3) 

As population-level factors, facility selection, including different types and volumes, was 

proved to affect both overall survival and surgery selection. The different tendency to select 

surgery can largely explain the survival difference existed among different facility types. 

In the future, we will: 1) validate performance of our models in independent cohorts. 

Especially, to validate nuclei recognition accuracy of the mask-RCNN model, H&E stained 

images with corresponding immunohistochemistry (IHC) stained slides will be collected; the 

nuclei recognition results for the paired slides will be compared. The inconsistency, if there is 

any, will be added to the training set to refine our model with IHC stained slides serving as 
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ground truth. 2) Fully utilize TME information through developing novel deep learning 

methods. Specifically, a new model, “Graph Convolution Network (GCN)”106, will be 

adapted to fit into the graph structure of TME, where each nucleus serves as each vertices, 

and geometric relationship between a pair of nuclei serves as each edge. Since GCN only 

utilizes nucleus type and spatial position information, using GCN to classify different 

histologic subtypes and patient outcomes will be more explainable than algorithms with 

direct image input and thus providing insights of how nuclei components and distributions 

affect patient outcome. 3) In addition to prognostic prediction, we will utilize the features in 

three different levels to predict treatment response. Other cohorts with both pathology 

images, clinical data, and therapeutic response data will be collected and analyzed. We will 

especially focus on quantification of innate immune activity through pathological image 

analysis. Since immunotherapy such as anti-PD1 and anti-PDL1 antibodies has shown 

durable response in certain NSCLC patients107, it is important to estimate whether the TME 

is in immunosuppressive state and select the patients who benefits the most from certain 

immunotherapy. This individualized predictive model will be validated and used to guide 

clinical trials by assigning patient treatment groups according to predicted treatment 

response. Overall, we are aiming to develop novel and powerful algorithms to facilitate 

pathological diagnosis, prognosis, and prediction of therapeutic response.   
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