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Proteins are beautiful materials evolved to channel specific energetic perturbations 

into particular functions.  At the core of virtually every biological process are two features of 

a protein: the energetic architecture and the mechanisms of energy propagation.  Structural, 

dynamics, and mutagenesis experiments have revealed that anisotropy and cooperativity are 

common features of the energy propagation in proteins; however, a complete understanding 

of the patterns and mechanisms of energy propagation remain unclear from these studies.   

Previous work in our lab developed a methodology, termed the Statistical Coupling 

Analysis (SCA), to estimate energetic interactions between residues in a protein from their 

statistical co-variation through evolution.  The results of this algorithm revealed a small 

subset of the residues in a protein have significant energetic interactions and form a 

connected substructure in proteins and show excellent agreement with mutagenesis data in 

several systems.   

vii 



Using the same fundamental concepts of the original SCA, we have developed an 

improved version of SCA.  This new algorithm provides, for the first time, a global map of 

the co-evolutionary interactions between residues in a protein from a multiple sequence 

alignment.  The results of the new SCA are consistent with the original method but produce 

values for all pairs of positions.   

We then used the energetic map provided by SCA to understand the physical basis of 

specificity in the PDZ domain.  The co-evolutionary energetic map of the PDZ domain 

predicts a long range interaction between position 372, a known specificity determinant that 

directly interacts with ligand, and position 322.  Thermodynamic measurements in one PDZ 

domain reveal that position 322 modulates the specificity-determining interaction between 

372 and its ligand contact.  Structural studies show that flexibility at 322 is tuned to make 

conformational change on one side of the binding pocket sensitive to interactions at the 

distant specificity-determining contact.  This designed mechanical coupling allows the 

domain to have AND gate-like behavior in screening for specific binding interactions.  

Understanding the logic and mechanism of a co-evolved interaction gives confidence in the 

ability of SCA to identify the functionally critical interactions in a protein, even when not 

structurally obvious.   

Given the functional and structural relevance of SCA predictions, we next addressed 

the topology of the energetic map in proteins.  Analysis of several structurally and 

functionally diverse proteins revealed several common striking features in their energetic 

maps.  First, the highly co-evolved positions in a protein show a high degree of mutual co-

evolution so that, together, they form a nearly completely co-evolved sub-cluster.  Secondly, 

the pattern of energetic interactions in proteins is highly heterogeneous, and fit a power-law 

distribution where most residues have very few co-evolutionary links with other residues and 

a few residues have many co-evolutionary links.  The data is very consistent with extensive 

mutagenesis studies in several systems.  Together, these experiments begin to demonstrate 

that the contiguous networks identified by SCA reflect structural regions capable of 

cooperatively channeling energy to produce functionality.   
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Chapter 1  Introduction 
 

Through evolution proteins have achieved stability and functionality remarkably 

well-tuned for specific purposes.  Studies of numerous systems have collectively 

demonstrated that proteins are tuned to respond to energetic perturbations in a specific 

manner.  Such energetic perturbations may include, for example, substrate binding, 

covalent modification, or voltage changes.  For example, allosteric signaling proteins 

reliably convert ligand binding into structural changes at a distant site [1].  Similarly, 

motor proteins use a mechanical amplifier to convert the energy released from breakdown 

of a high energy substrate in a catalytic core into motion [2].  Also, enzymes rely on the 

cooperative interaction of several amino acids to interact with specific substrates and 

efficiently catalyze complex reactions [3].  All these examples share one aspect of protein 

energetics: the collective interaction of specific sets of amino acids to deliver function.  

Viewed from a materials science perspective, proteins display functional 

properties that classify them as very impressive ‘smart materials’ [4].  An emerging 

branch of materials science engineering, smart materials will be materials capable of both 

sensing environmental changes and performing a predetermined adaptive response.  

Engineers currently attempt to design smart materials with two components abundantly 

evident in biological systems: sensors to detect inputs from the environment and actuators 

to execute a specific physical change.  For instance, the retinal chromophore of rhodopsin 

is a ‘sensor’ that is tuned so that light of a particular wavelength triggers its cis-trans 

isomerization [5].  This switch in the chromophore then initiates ‘actuator’ events: 

conformational changes in the protein ultimately cause structural changes in the 

cytoplasmic loops [5].  While functional characterizations of proteins clearly demonstrate 
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the efficiency of their sensors and actuators, a complete understanding of their underlying 

mechanism is lacking.  Thus, while materials science engineers attempt to exploit the 

physical properties of various substances to design smart materials, protein research 

attempts to deconstruct the physical features of protein structures that endow them with 

‘smart’ functionality.   

Collectively, studies of numerous systems (some are discussed below) indicate 

that proteins attain their functionality through complex energetic interactions among a 

precise arrangement of atoms.  Complete understanding of any function, whether it is 

binding, catalysis, or allostery, therefore depends on describing two features of the 

protein: 1) the energetic architecture of amino acid interactions in the protein, and 2) the 

mechanisms of energy propagation through the network of interatomic interactions.  

Motivated by this view of proteins, the goals of my research fall into three categories:   

1) To develop a way of globally mapping the evolutionary constraint between 

residues as a surrogate for their energetic interactions. 

2) To understand why and how residues in one protein, the PDZ domain, evolve 

and energetically interact. 

3) To understand the topology of amino acid interactions in proteins.   

Decades of research into this topic, generally referred to as the sequence-structure-

function problem, have revealed several important general features regarding these 

energetic interactions.  In the remainder of this chapter I will review several of these 

themes as they pertain to my research.  
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Insight from structures 

Protein structures, either from X-ray crystallography or nuclear magnetic 

resonance (NMR) spectroscopy, have provided extremely useful insights into the 

mechanistic basis for function.  For example, structures of individual enzymes provide 

clues about protein active sites.  Enzyme-substrate analog structures have allowed the 

detailed description of several reaction coordinates [1].  Numerous structures of protein-

protein complexes have revealed that interaction surfaces display geometric and chemical 

complementarities critical for specific interactions [1].  These examples highlight the 

value of structures in understanding the mechanistic role of individual amino acids.  

While structural studies are unable to directly report the energetic value of interactions 

among atoms, they have revealed important constraints on the underlying energetic 

architecture in proteins.   

 

Conformational changes, flexibility, and stability 

Comparison of active and inactive states of enzymes and signaling proteins has 

revealed that many proteins have the ability to undergo significant conformational 

changes in a highly coordinated manner.  G protein activation provides a dramatic 

example.  In the GDP-bound state G proteins are maintained in an inactive configuration 

[6].  Upon GTP binding, the switch I and II regions undergo conformational changes 

involving both significant displacements and disorder to order transitions.  Together, the 

switch regions form the interaction surface for effector proteins and GTPase activators [6].  

Signaling relies on the ability of the structure to channel energetic interactions reliably 

and efficiently into specific conformational changes.  The essence of this ‘energy 
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channeling’ is that the protein contains built-in mechanisms suited for propagating and 

delivering energy in a manner appropriate for triggering specific structural changes.  Thus, 

nucleotide exchange can reliably trigger conformational change at a distance.   

G protein conformational changes highlight the critical role of flexibility in 

protein structure and function.  Studies of numerous proteins have shown that structurally 

disordered regions, usually in loops or linkers, are often sites of functional importance.  In 

G proteins the switch regions are tuned to behave, as suggested by their name, like binary 

switches.  Similarly, loops in antibodies and T-cell receptors provide conformational 

plasticity to permit promiscuous binding to antigens [7].  Furthermore, mutations to 

catalytic positions of T4 lysozyme, citrate synthase, staphylococcal nuclease, and other 

enzymes dramatically reduce enzymatic activity but increase thermal stability [8, 9].  

Crystal structures of the T4 lysozyme mutants showed that the stabilized mutant proteins 

take a conformation similar to that of the enzyme-product complex – a structure with 

decreased flexibility [8].  All these examples highlight the importance of dynamics as 

well as structure.  From an evolutionary point of view, proteins in nature can be seen as 

evolutionary solutions to two opposing tendencies: 1) rigidity, to achieve necessary 

stability and 2) flexibility, to make required conformational changes.   

The balance of these opposing tendencies in proteins, first stated by Pauling and 

colleagues, is known as the ‘stability-function hypothesis’ [10].  Stability derives from a 

hydrophilic exterior, tight packing in the hydrophobic core, and minimal disordered loops 

[11].  However, structural elements that are critical for function often violate these 

patterns.  Protein-protein interfaces often rely on surface exposure of hydrophobic patches 

[12].  Signaling proteins often utilize “disorder-to-order” changes to transfer energy [6].  

Enzymes are built to complement the transition state of the reaction coordinate rather than 
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the ground state [9].  These examples indicate that there must be a well-tuned energetic 

architecture in proteins that represents the evolutionary solution to the stability-function 

balance.  How has evolution organized energy in proteins to deliver both stability and 

dynamic function?  Understanding this issue is a critical part of understanding protein 

mechanisms.  

Structures reveal features of energy distribution 

High resolution X-ray crystal structures have also provided some insight into 

parsing of energy in local regions of structures.  A recent example came from a 0.83 A 

structure of α-lytic protease, an extremely stable enzyme released into the soil by 

Lysobacter enzymogenes [13].  Previous studies had shown that the α-lytic protease 

maximizes its longevity in the harsh extracellular environment through a large and highly 

cooperative kinetic barrier to unfolding (t1/2 = 1800 years); it achieves the extremely 

stable folded state with the catalytic aid of an N-terminal pro region.  After releasing all 

geometric constraints during refinement, the structure showed that Phe228, a position in 

the core of the C-terminal domain, was significantly distorted from planarity at an 

estimated energetic cost of 4.1 kcal/mol [13].  The authors suggest the strain in Phe228 

stores energy “like the spring in a spring-loaded latch” and contributes to the 

cooperativity of unfolding [13].  Importantly, the structure shows that the geometric 

distortion of Phe228 results from steric interactions with neighboring positions 

constraining the ‘spring’, primarily Thr181 and Trp199.  Furthermore, comparison of 

several bacterial serine protease sequences and structures revealed an intriguing 

correlation between the amino acid character of position 199 and the distortion at position 

228.  The alignment suggested that proteases with large cyclic residues at position 199 

tend to have residues at position 228 with distorted geometry; these proteases accordingly 
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have larger pro regions presumably to catalyze the formation of the distorted geometry.  

The combination of structural and evolutionary data provides a striking example of 

evolutionary pressure to build and conserve a cooperative energetic architecture among 

several positions in order to maintain extreme stability.  

While structures have provided enormous insights into how proteins achieve their 

function, several significant features of the physical nature of proteins are not revealed.  

First, structures do not allow the global energetic mapping among all atoms even with 

their exact positions.  Second, the mechanisms of energy propagation among positions are 

not generally clear from structure alone.  Lastly, protein function depends critically on the 

motion of atoms in the structure, a feature generally not apparent from structures.  As the 

examples discussed above indicate, X-ray crystal structures provide hints at these critical 

issues and serve as extremely useful springboards for experiments focused on elucidating 

the energetic architecture and dynamic state of atoms in proteins.     

 

Perturbation Analysis: Mutagenesis and Structures 

Heterogeneous energy distribution and long-range effects 

A powerful and commonly employed technique used to probe the energetic 

architecture of proteins is to measure the effect of perturbations to the system through 

site-directed mutagenesis [14].  With X-ray crystal structures as guides, measurements of 

the energetic effect of perturbations to a system have revealed several critical physical 

features in the energetics of amino acid interactions.   

A seminal application of this strategy focused on understanding the source of the 

binding energy of human growth hormone (hGH) to its receptor (hGH-R) [15].  Alanine 

scanning mutagenesis of the approximately thirty receptor amino acids comprising a 
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majority of the interface showed that the positions did not contribute uniformly to the 

binding energy.  Instead, two tryptophan residues packing with each other and comprising 

only a small fraction of the interface accounted for the majority of the binding energy, 

giving rise to the term binding “hot spot”.  Interestingly, kinetic measurements suggested 

that the tryptophans are cooperatively positioned through the supportive packing of 

several other positions [16].  Thus, binding energy seems to be parsed in a highly 

heterogeneous way, with many residues having little contribution and a few making large 

contributions.  Importantly, this heterogeneity is not obvious in crystal structures of the 

protein complex.  

A particularly striking biological example of functional tuning through 

mutagenesis occurs in the evolution of the immune response to an antigen.  In a 

phenomenon known as affinity maturation, each time the immune system encounters a 

particular antigen it produces antibodies that bind to that specific antigen with increasing 

affinity.  This adaptive response depends on somatic hypermutation of antibody genes.  

Identification of the locations of mutations responsible for the improved affinity of one 

antibody-antigen interaction surprisingly revealed that the mutations occurred not in the 

interface, but at some distance from it [17].  This further demonstrates not only the 

heterogeneous nature of the underlying energetic architecture in proteins but also that this 

feature plays a critical role in the evolution of function.   

The same heterogeneity of residue contribution seems to underlie energy 

transmission through proteins.  In an effort to understand the physical mechanism by 

which energy propagates through proteins, several groups undertook a structural 

perturbation analysis based on the idea that the structural effects of a mutation should 

reflect the underlying energetic architecture.  Structural studies of mutations in T4 
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lysozyme, gene V protein, lambda repressor, and other proteins showed that, in general, 

proteins have an inherent tolerance for perturbation at many sites that allows them to 

dissipate structural changes by distributing the effect over a large region [18-20].  Single 

site mutations often cause effects that are greatest near the site of mutation and rapidly 

decrease radially in all directions.  For example, the structure of the Staphylococcal 

nuclease mutant V66K was almost unchanged from wild type except in the immediate 

vicinity of position 66 [21]. However, other studies have revealed, in some places, that 

structural effects of perturbations are context dependent, asymmetric, and sometimes 

cause effects over significant distance [22-25].  For example, the ribonuclease-S mutant 

M13F shows an unexplainable 1.5 A movement of a loop 20A away from the site of 

mutation [26].  Crystallography studies of hemoglobin [27], serine proteases [28], and 

dihydrofolate reductase [29] also show that ligand/substrate binding or mutation to these 

proteins induces long-range structural changes not predictable from ground state 

structures.  Thus, both structural and thermodynamic perturbation experiments indicate 

energy distribution in proteins is highly heterogeneous and allows long-range propagation 

of perturbations.   

   

Probing cooperativity through mutant cycles 

Functional measurements have revealed that proteins have highly cooperative 

structures in which the energetic contribution of a set of positions is not simply the sum of 

their individual contributions.  Analysis of single mutations, however, only reveals the 

contribution of individual amino acids to structure and function and does not reveal the 

energetic interactions among positions in a protein. Cooperative interactions among 
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amino acids can be estimated through a formalism known as thermodynamic mutant cycle 

analysis [30].  This method estimates the interaction between two positions by measuring 

the effect of a mutation at one position in two different conditions: 1) in a wild type 

background, and 2) in the background of a mutation at the second position (figure 1-1).  

The difference between these two energies, , defines the thermodynamic coupling 

between these two mutations and reports the extent to which the mutations feel one 

another.   If the two mutations are completely independent of each other, the 

thermodynamic coupling energy is zero.  This condition is also referred to as additivity, 

since the effect of this double mutant is the additive energetic effect of the single mutants.  

However, deviation from zero demonstrates that the mutations interact, although the 

mechanism of their interaction is not revealed.  This condition is referred to as energetic 

non-additivity of the mutation pair.  It is important to remember that this coupling energy 

( ) is the coupling due to the mutations, and equals the native coupling energy 

only at the limit were the mutations are complete and pure loss of function.  Nevertheless, 

mutGΔΔ

mutGΔΔ

Figure 1-1.  Thermodynamic mutant cycle analysis.  The energetic interaction of sites can be 
estimated by measuring the effect of mutation A at one site in two different conditions: 1) WT 
background (ΔGA|WT), and 2) in the background of a mutation B at a second site (ΔGA|B).  The 
difference of these two values (ΔΔGA,B) reports the extent to which the mutations feel each other 
and defines the thermodynamic coupling of the two mutations.  If the effects of the mutations are 
completely independent, or additive, then * 0 kTG mut =ΔΔ .  If, however, the effects are different then 
the mutations are said to be thermodynamically coupled to the extent given by mutGΔΔ . 
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with subtle mutagenesis, this approach can help probe the energetic constraints between 

sites or proteins.   

Thermodynamic mutant cycle analysis has been used to dissect intra- as well as 

intermolecular interactions [31-33].  Though no experiment has totally saturated a protein 

with double mutant cycles, available data paint a picture of amino acid interaction that 

resembles results from studies of the protein-protein interaction surface.  Most sites 

energetically couple only locally, while a few couple anisotropically at a distance.  Data 

from numerous systems including hemoglobin, staphylococcal nuclease, tyrosyl-tRNA 

synthetase show that sparse long-range nonadditivity is a common feature of the energetic 

architecture of proteins [34, 35].  These results again highlight the highly anisotropic and 

cooperative nature of energy propagation in proteins.   

All of these measurements are thermodynamic in nature and provide no 

mechanism for energy propagation between sites in a protein.  A structural analogue of 

the thermodynamic cycle, termed the structure cycle, could give some insight into how 

two positions interact [30, 36].  Following the logic described above, this method 

compares the structural effect of a mutation on each atom of the protein in two different 

scenarios: 1) in a wildtype background, and 2) in the background of another mutation.  

While this method has only been applied in a few systems, the data show that mutation 

pairs that are thermodynamically independent are, as expected, also structurally additive 

[36].  Structures of cycles showing thermodynamic nonadditivity have identified 

particular structural regions that respond to a mutation differently in one background than 

another [19, 29, 37].  These results again support the view that the physical nature of 

proteins supports fracture-like propagation of energy.   
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While thermodynamic cycle analysis only reveals pairwise interactions, functional 

behavior may involve higher order cooperativity.  Detection of higher order interactions 

can simply be envisioned as an expansion of the basic formalism described above.  For 

example, three-way interactions could be interrogated with thermodynamic cubes and 

four-way interactions with hypercubes [34].  It quickly becomes apparent that, while 

thermodynamic and structural cycles are well-suited to study a limited set of positions, 

they are impractical for a complete mapping of even pairwise energetic interactions in a 

protein due to the massive numbers of mutants that would be required.  In addition, the 

structure cycle analysis would require very high resolution data since very small 

displacements may account for significant thermodynamic differences.  These limitations 

highlight the need for an alternate method to measure the global mapping of energetic 

interactions in the protein.   

 

The core is critical for structure and function 

Hydrophobicity vs. Packing 

One of the observations from mutagenesis experiments of several systems has 

been that core positions are more sensitive to perturbation than surface positions [38].  

Since these observations suggested that the core may encode structurally and functionally 

important information, many studies attempted to understand the energetic architecture of 

this region in more detail.   

Protein structures show that cores generally consist of hydrophobic side chains 

with tight, jigsaw puzzle-like packing nearly as dense as organic molecule crystals [39].   

This observation suggests the energy in the core may have at least two major sources: 
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hydrophobic interactions among side chains and the energy of packing.  Analysis of 

sequence alignments revealed that hydrophobicity patterns are indeed one of the most 

conserved features in fold families [40, 41].  Furthermore, proteins are thought to derive 

their stability from the hydrophobic collapse of the core [40].  If hydrophobicity is the 

sole determinant of stability then mutations conserving the core hydrophobicity content 

should have similar effects on stability.  Experiments testing this hypothesis in several 

systems including T4 lysozyme and gene V protein, however, showed clear context 

dependence of the effect of mutations on stability [19, 42, 43].  Furthermore, mutagenesis 

of multiple adjacent positions in the cores of Staphylococcal nuclease and lambda 

repressor showed that while nonpolar to nonpolar mutations were tolerated, few had close 

to wild type activity [44, 45].  Comparison of mutant sequences and their energetic effects 

showed that shape and total volume were constrained among those with wild type-like 

activity [45].  These experiments suggest that the specific packing of residues in the 

interior is at least as important as the hydrophobic effect and may even dominate the 

energetic stability of proteins [46].   The anisotropy of packing may be a plausible 

explanation for the heterogeneous and anisotropic pattern of free energy couplings in 

proteins.   

 

Parsing of packing energy in protein cores 

Packing is defined as the optimization of van der Waals interactions and the 

minimization of cavities [39].  It is thus a function of the sizes and shapes of the side 

chains and is closely related to the distribution of free energy in the protein.  Tight 

packing optimizes attractive van der Waals interactions and therefore increases the 
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enthalpic contribution to the free energy.  Tight packing also, however, minimizes the 

number of states and decreases entropy.  Throughout the core, the balance of these two 

terms, enthalpy from tight packing and entropy from loose packing, is expected to 

determine the net free energy value of amino acid interactions [39].  This argument is not 

to discount other potential sources of free energy, but simply to state the dominant forces 

operating in the core.   

What is the distribution of packing energy in proteins?  Experiments in GroEL [47] 

and lambda repressor [48] have shown that proteins are not optimally packed, as 

originally suggested by comparisons of protein and organic crystal structures.  Mutations 

in these and other systems have been found to improve packing and increase stability.  

This observation makes intuitive sense: an optimally packed protein would be less 

dynamic and less tolerant of mutation, features that would decrease function and 

evolvability.  Nonetheless, proteins generally display a significant sensitivity to mutations 

in the core, especially to those that replace small side chains with larger ones [38].  

Together, these observations indicate that proteins are not optimally packed but close to it.   

To more carefully map the energetics of packing, several studies have used 

thermodynamic mutant cycle analysis.  In one notable example, the cooperativity of 

packing in the core of Staphylococcal nuclease was dissected through an array of single, 

double, triple and quadruple mutants [43, 49-51].  The data showed, as expected, that 

adjacent positions formed highly cooperative arrangements.  The packing of the core did 

not involve any tested higher order interactions; rather, it could be approximated as a 

series of short range pair-wise interactions.  The authors of this work conclude that such 

pair-wise packing is a key selection factor in the evolution of proteins.  A criticism of this 

work is that the coupling of adjacent sites may just reflect the average spatial correlation 
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distance of mutagenesis.  Also, the failure to find high order couplings may just reflect 

the experimental limitation on the number of sites tested, and the fact that fold stability, 

not function, was assayed.   

 

Structural studies of the core 

Since packing is a function of shapes and volumes, an analysis of the structural 

effects of core mutations provides a particularly relevant approach to probe packing 

interactions in the core.  In general, the cores showed plasticity, responding to minimize 

the volume changes of mutations.  Backbone and side chains adjusted to minimize 

cavities or accommodate additional atoms; the structural adjustments were usually largest 

near the mutated site and decreased radially [39].  However, significant heterogeneities in 

the structural responses were observed.  T4 lysozyme mutants showed some regions were 

less able to fill cavities than others suggesting local heterogeneity in rigidity [24].  

Furthermore, long-range effects to mutations have also been observed; for example, the 

A98V mutation in the T4 lysozyme core causes structural changes 15 A away [52].  In 

thioredoxin, hydrogen exchange data showed that a core mutation causes a change in the 

dynamics at a distant site [53].   

A further demonstration of heterogeneity in local packing comes from structural 

studies of mutants in green fluorescent protein (GFP).  In an attempt to understand the 

mechanism of energetic cooperativity in cores of proteins, one group employed a 

structure cycle approach, solving structures of GFP mutants corresponding to three 

thermodynamic cycles [54].  Single mutations caused structural changes that overlapped 

in multiple regions.  However, double mutant structures showed that thermodynamic 
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coupling resulted not from the entire region of overlap but from a specific structural 

subset [54].  Demonstration of such structural hotspots in GFP, a particularly rigidly 

packed protein, indicates that plasticity in the core allows for decomposition of energetic 

coupling.   

Taken together, the mutagenesis and structural data argue for an interesting 

architecture in the protein core: many sites of weak, local coupling but a few sites of 

strong, propagated coupling.  Such a heterogeneous architecture for packing is consistent 

with a structural basis for specific, coordinated, long-range interaction between functional 

surfaces.  Evidence of regional differences in plasticity also hints at an often ignored 

dynamic dimension of the protein structure.   

 

Dynamics are critical for function 

Numerous lines of evidence indicate that proteins are highly dynamic materials 

and that the temporal scale of atomic fluctuations is a critical component of their 

energetic map.  Early high temperature time-resolved X-ray crystallography experiments 

of myoglobin demonstrated that proteins are highly dynamical systems [55].  Structures 

of the inactive and active states of G protein (discussed above) emphasize how energetic 

perturbations at one site can cause significant changes in the dynamic state at a distant 

site.  How does the jostling of atoms in one region propagate through the structure?  

Ultimately, a complete understanding of a protein should involve a description of the 

atomic trajectories as the protein performs its specific function.  Motions of the atoms in a 

protein are critical for function though this dimension of protein behavior has been 

difficult to measure until recently.  Recent developments in NMR spectroscopy have 
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allowed measurement of the rates of chemical exchange [56].  In general, atomic 

fluctuations occur on time scales ranging from femtoseconds to days.  Mapping chemical 

exchange rates and their changes should provide significant insight into both the energetic 

map and mechanisms of energy propagation in proteins.  Below, I review some recent 

work in relating protein dynamics to function.   

 

Dynamics are heterogeneous 

 Several studies have attempted to characterize the fast time scale (picosecond to 

nanosecond) fluctuations of side chains.  These fast motions are particularly interesting as 

they are related to the number of states explored by the protein.  Thus, fast motions reflect, 

to some extent, the entropy of the protein in the folded state, often referred to as the 

residual entropy since it is significantly less than the entropy of the unfolded state [56].  

15N relaxation measurements on numerous systems have generally revealed that the main 

chain atoms are essentially rigid [56].  This rigidity, however, seems to serve as a scaffold 

for more varied dynamics in side chains.  Measurements of 13C and 15N relaxation suggest 

that side chains are often very dynamic and are sometimes decoupled from backbone 

motions [56].   

One such relaxation experiment measured the fast time scale dynamics of 

calmodulin side chains.  The data showed that the amplitudes of motion fell in a 

heterogeneous spectrum roughly divisible into three groups [57].  The authors also 

showed that retrospective analysis of previously published data found the same three 

categories of fast dynamics in other systems [57].  The observation of dynamic 

heterogeneity raises the possibility of addressing two important features of protein 



 17

dynamics: 1) the rigorous correlation between function and temporal fluctuations and 2) 

conservation of patterns of dynamics within protein families.   

 

Dynamics correlate with function  

 NMR experiments have begun to probe the relationship between atomic 

fluctuations and function.  Many studies have focused on correlations in changes in slow 

time scale (microsecond to millisecond) dynamics since this is the approximate time scale 

of many biological events.  A natural system in which to probe the correlation of 

dynamics and function is an enzyme since these proteins have characteristic turnover 

rates that might be compared to the time scale of atomic fluctuations.  One group 

measured backbone dynamics in human cyclophilin A (CypA), a peptidyl-prolyl cis/trans 

isomerase, in the presence and absence of substrate and found a physically connected set 

of amino acids with micro- to millisecond dynamics [58].  The authors point out that the 

positions in this “dynamic hotspot” are critical in binding substrate; importantly, the slow 

time scale of their chemical exchange correlates well with substrate turnover (~ 10,000 s-1) 

[58]. 

 Proteins involved in signaling have been selected to reliably transfer information 

and thus also represent particularly relevant systems to understand the link between 

dynamics and function. 15N relaxation experiments of SpoOF, a response-regulator 

protein from Bacillus subtilis, identified a group of adjacent residues that experience slow 

time scale dynamics; intriguingly this ‘hot spot’ of slow dynamics involves the same 

residues that form a protein-protein interaction surface [59].  Similar 15N relaxation 

experiments probed the change in backbone dynamics of NtrC, a member of the two-

component system signaling family, upon activation by phosphorylation [60].  The data 
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suggest that, in the unphosphorylated state, the domain is in equilibrium between active 

and inactive conformations; phosphorylation shifts this equilibrium towards the active 

conformation.  Interestingly, upon phosphorylation slow dynamics disappear in a region 

of the protein, a region known to undergo structural change upon activation.  The data 

from these two systems begins to build the case that slow-time scale fluctuations are 

related to function.   

Others maintain that the functionally relevant motions are not necessarily only in 

the slow time scale regime [56, 61, 62] .  Instead, it is possible that the free energy that 

drives functional processes comes from changes in the fast time scale (ns) fluctuations 

that affect the entropy of the system.  One study analyzed the change in side chain fast 

dynamics upon peptide binding to calmodulin [63].  The data showed that side chains 

throughout the protein undergo a rigidification upon ligand binding.  The authors 

suggested this change in internal entropy may be a critical mechanism for modulating 

binding affinity or propagating energy in signaling proteins.  The evidence for the 

correlation of both fast and slow dynamics with function suggests that it is likely that both 

are critical components of the underlying mechanism.  Perhaps energetic perturbations at 

one site cause changes in fast time scale motions in adjacent regions that are, in turn, 

coupled to slow time scale motions in other regions.  The precise parsing of dynamics, 

however, will likely differ from one protein family to another and even between members 

of the same protein family.  Regardless, these initial insights motivate a rigorous study of 

dynamics, energetics, and function in one system.   
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Coupled dynamics correlate with function 

As discussed above, structural and mutagenesis data clearly show that atoms in 

proteins act cooperatively.  Such cooperative units likely have distinctive dynamical 

features.  Many have suggested cooperative interactions will be reflected by correlated 

motion on a slow time scale since they involve larger, more massive, units moving in 

unison.  Currently, NMR relaxation measurements only characterize individual side chain 

dynamics but do not directly show coupling of motion.  One recent study proposed a 

method for detecting correlated fast internal motions through analysis of dynamical 

changes induced by mutations [64].  The strategy is based on the idea that if two bond 

vectors have coupled dynamics, then a subtle mutation that affects one is likely to 

similarly affect the other.  When applied to 15N relaxation of the immunoglobulin G-

binding domain of Streptococcal protein G, the data suggested there was a “network of 

correlated motions in which the dynamics of residues on opposite sides of the protein are 

sensitive to each other by virtue of intervening noncovalent interactions.” [64]  While this 

work also suggests heterogeneity and cooperativity in the dynamical dimension of protein 

G, it has yet to be determined if the network of correlated motions in this case is 

functionally relevant. 

Significant understanding of the functional role of correlated atomic motions has 

come through very high resolution X-ray crystal structures and molecular dynamics 

simulations.  Collection of very high resolution diffraction data (better than 1.2 A) allows 

more detailed modeling of electron density with anisotropic B factors.  By increasing the 

number of parameters describing electron density, anisotropic B factors allow depiction 

of electron clouds surrounding atoms as three dimensional ellipsoids rather than as 

spheres thus revealing the major axes of motion.  Although no information about the time 
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scale of motion can be ascribed to these pictures, they give very useful insights into the 

co-variation of atomic motion.  For example, a 0.82 A structure of photoactive yellow 

protein (PYP) in the dark-adapted ground state shows that a group of atoms in the active 

site show motion that anticipates the initial stages of double bond isomerization in the 4-

hydroxycinnamic acid chromophore, the critical step in photoactivation of PYP [65].  

Similar evidence for correlated motion has also been found in other proteins including 

HIV protease [66].  These concerted motions are yet another dramatic example of an 

innately biased energy landscape in which cooperative interactions of several residues are 

tuned for functionality. 

Atomic trajectories from molecular dynamics simulations, if experimentally 

corroborated, can provide a powerful means of probing the link between synchronized 

dynamics and function.  A recent study used normal mode analysis to understand the 

physical basis of α-lytic protease specificity [3].  Previous structural and mutagenesis 

experiments showed this enzyme derives its specificity from the interaction of a small 

residue (preferably Ala) on the peptide substrate with its primary specificity pocket.   A 

simulation of the peptide-free state shows the atoms comprising its primary specificity 

pocket are involved in highly correlated motion such that the walls of the pocket vibrate 

in phase and maintain a constant pocket volume [3].  Interestingly, a mutation known to 

increase promiscuous activity was found to disrupt this correlated motion and allow out 

of phase vibrations giving the pocket the ability to accommodate substrates of different 

sizes.  Thus, local energetic interactions have been tuned to modulate conformational 

plasticity and manifest as coordinated regional dynamics. 

Another recent example demonstrating the importance of flexibility and coupled 

motion came in a study of Src, an allosterically regulated tyrosine kinase [67].  Src 
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consists of three domains: the Src homology SH2 and SH3 domains followed by a kinase 

domain.  Previous work showed that phosphorylation of a tyrosine in the C-terminal tail 

of the protein results in an intramolecular association between the SH2 domain and the 

phosphorylated C terminal tail somehow causing a decrease in the kinase activity.  To 

understand the physical basis of this allostery, one group used targeted molecular 

dynamics to simulate the atomic trajectories of the protein in several conformations.  

When the SH2 domain is bound to phosphorylated C terminal tail, simulations reveal 

strong correlated motion between the SH2 and SH3 domains.  Furthermore, simulations 

suggested this correlated motion depends on the rigidity of the linker between the SH2 

and SH3 domains.  If true, loss of rigidity by mutation of critical linker positions to 

glycine would destroy correlated motion rendering the kinase insensitive to 

phosphorylation state.  Indeed, yeast expression assays suggest such mutants are 

constitutively active, thus demonstrating the functional importance of appropriate tuning 

of hotspots of energy transfer.  Overall, the model that is beginning to emerge is that 

proteins are dynamically heterogeneous, with certain regions undergoing concerted 

fluctuations that contribute to function.  

 

Conclusions and previous work from the lab 

While the ‘sensors’ and ‘actuators’ of any single protein have not been described 

to complete atomistic understanding, this brief review demonstrates several critical 

physical features that have emerged.  First, the specific arrangement of atoms in a protein 

establishes a network of energetic interactions that dictate structure and function.  Each 

protein has a particular pattern of energetic interactions between residues that represents 
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an evolutionary balance between the need to achieve requisite stability and to perform 

function appropriately.  The interactions support cooperative behavior among atoms to 

create coordinated responses to energetic perturbation.  Accordingly, the pattern of 

energetic interaction is highly heterogeneous and the structure supports long range 

transfer of energy.   

In any protein system, applications of all the techniques discussed in the review 

above are focused on the same two issues stated at the outset of this chapter: 1) the 

energetic manifold, and 2) the mechanisms of energy transfer.  However, while the 

methodologies have revealed important insights, they provide only partially 

complementary data sets.  Mutagenesis experiments provide thermodynamic mappings 

but do not reveal mechanism; technical limitations preclude large scale application and 

limit us to regional and low-order studies.  Structural studies provide the detailed three-

dimensional organization of proteins that gives some insight into mechanism but are 

devoid of energetic interactions and dynamic information.  NMR relaxation 

measurements have only recently been developed and promise to bridge the dynamic 

dimension of the protein with function but, so far, only through limited temporal and 

regional windows.  Given their limitations, it is clear that an energetic mapping by these 

methods will, at best, be incomplete.  In the absence of an energetic map these methods, 

even in combination, can only give limited understanding into the inner workings of the 

‘sensors’ and ‘actuators’ of proteins.   

Previous work from our lab sought to reveal a more complete characterization of 

the energetic architecture in proteins [68, 69].  Motivated by the idea that important 

interactions in proteins should be conserved through evolution, previous lab members 

developed an algorithm, termed the statistical coupling analysis (SCA), which extracts 
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amino acid coupling information from the evolutionary record of a protein family.  The 

results of SCA show good agreement with experimental data in several protein families, 

verifying that it indeed captures critical physical interactions in the protein.  This method 

and its results formed the basis for my thesis work.  The next chapter describes an 

improved form of SCA that produces more complete and accurate measures of the co-

evolution of positions in a protein.  Chapter 3 presents thermodynamic and 

crystallography experiments focused on understanding the physical mechanism 

underlying a cooperative interaction among positions in the interface between a PDZ 

domain and peptide ligand.  The data show that the coupled interaction is critical for 

maintaining binding specificity and evolvability; conformational flexibility is necessary 

to optimize the coupled energetics though it sacrifices binding affinity.  Chapter 4 

provides an analysis of the global topology of the energetic maps of several proteins as 

provided by SCA.  Overall, my thesis work:  

1) provides, for the first time, a hypothesis for the global architecture of amino 

acid interactions,  

2) provides a mechanistic dissection to test this hypothesis through 

crystallographic and thermodynamic analysis in one protein, and 

3) shows that this global architecture is conserved in many disparate protein 

families.  
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Chapter 2  Measuring Evolutionary Coupling in Proteins 

 

Introduction 

Proteins achieve their structure and function through characteristic patterns of 

energetic interactions among their amino acid residues.  As argued in chapter 1, a finely 

balanced and evolutionarily specified energetic architecture endows proteins with both 

necessary stability and the ability to reliably channel energetic perturbations into specific 

functions.  Descriptions of the patterns of energetic interactions between amino acid 

residues are at the heart of understanding any function, whether binding, catalysis, or 

allosteric activation.  While structural, mutagenesis, and dynamics experiments have 

provided invaluable hints about the energetic topology in local regions of proteins, they 

have generally not yielded a complete picture of the important interactions.   

Work from our lab has attempted to globally map the energetic interactions 

between amino acids in proteins through a sequence-based statistical method known as 

the statistical coupling analysis (SCA) [1-3].  SCA estimates the thermodynamic 

interactions between sites in a protein by measuring the strength of their co-variation 

through evolution.  Application of this method to several protein families revealed a 

surprising result: subsets of highly co-evolving residues formed physically connected 

networks including surface and core positions.  Importantly, the residues identified by 

SCA in several protein families also showed strong correlation with functional data [4, 5].  

As these results formed the foundation for my thesis work, I will briefly review the 

statistical coupling method and its results.  In its original form, the results of this method, 

while in close agreement with functional data, did not give a completely global mapping.  
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After discussing this limitation, I will describe an improved form of the analysis.  This 

new formalism extracts more information from a protein alignment and produces co-

evolution measurements for all pairs of positions. 

 

Statistical coupling analysis: site-specific perturbation 

Measuring evolutionary energy at each site 

In theory, comprehensive thermodynamic mutant cycle analysis applied to all 

pairs of positions in a protein would give an estimate of the complete map of pairwise 

interactions; in practice, however, the massive number of mutations required for such a 

data set renders such an analysis impractical to execute.  In addition, mutagenesis only 

estimates interaction energies by introducing perturbations at sites.  No real knowledge of 

the native interaction energies is given.  A potential alternate approach is suggested by 

considering evolution as a large-scale experiment in mutagenesis.  Proteins found in 

nature, after all, are evolutionary solutions to the structure-function problem achieved 

through systematic random mutagenesis with selection for function.  A sequence 

alignment of homologous proteins, if diverse and containing many sequences, is a 

representative ensemble of sequences coding for a common overall structure and function.  

The distribution of amino acids in these sequences should then reflect their common 

physical constraints.  The foundation of SCA rests on two simple concepts [2].  First, 

functionally important sites should be constrained through evolution and will thus show 

amino acid frequencies that differ from their mean amino acid frequencies in all proteins.  

As a corollary, positions that are not functionally constrained should have frequency 
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distributions that approach the mean.  Second, energetic coupling between two sites, 

whether important for stability or function, should force these sites to co-evolve.  Such 

co-evolution should be measurable in an alignment of sufficient size and diversity.  These 

two ideas guide the definition of the statistical parameters used to measure conservation 

and co-variation in a protein alignment.   

At the core of SCA is the view of a sequence alignment as a statistical ensemble 

near equilibrium.  That is, the sequences: 1) have undergone sufficient mutagenesis to 

have randomized sites that are unconstrained, and 2) comprise a reasonable sampling of 

this diversity.  If so, a deviation in the probability distribution of amino acids between 

two sites corresponds to a statistical free energy difference in a state space of all possible 

amino acid distributions.  Consider the observed frequency of an amino acid x at a site 

i, .  Given the frequency of amino acid x in all proteins is , the probability of 

getting , denoted , is given by the binomial density function:  
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Here N is a normalized number of sequences in the alignment and  is the normalized 

number of sequences with amino acid x at position i.  Using this relation we can also 

determine the probability of the reference state; that is, the probability of getting amino 

acid x, , at the mean frequency observed in the multiple sequence alignment (MSA), 

.  The use of the binomial density function has two purposes: 1) to quantitatively 

account for cases where a frequency of an amino acid is zero, and 2) to represent the 

intuitive notion that the evolutionary significance of changes in observed amino acid 

frequencies should be greater as the conservation of an amino acid increases.  Thus, the 
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probability density ratio of an amino acid frequency changing from 0.6 to 0.65 should be 

greater than a change from 0.1 to 0.15 given a mean frequency of 0.05.   

With the probabilities of the observed ( ) and reference states ( ) we can 

calculate the statistical energy difference between them using the Boltzmann distribution, 

which provides a relationship between the energy difference between two states and their 

probabilities:  
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The statistical energy differences between the observed and reference states can be 

calculated for all amino acids at a site to give a twenty element statistical energy vector 

for each site:  
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The magnitude of the vector in equation 2-3 defines the conservation parameter for site i: 
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This parameter has arbitrary units of kT* and is a measure of the total statistical energy at 

each site.  At unconserved sites  approaches zero and increases with conservation.   stat
iGΔ

This formalism can be used to calculate the probability for all amino acids at all 

sites, giving a 20 x m matrix of probabilities for the alignment, PPA, where m is the 

number of positions in the alignment and PA denotes parent alignment.  These 

probabilities can be used to determine a 20 x m matrix of amino acid statistical energies, 

ΔGPA. Calculation of the magnitude of the 20 element vector for each site gives a vector 

of m conservation values.  For example, figure 2-1A shows the 94 conservation values for 
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a PDZ domain (PSD95, Discs large, Zo-1) alignment with 240 sequences and 94 

positions.  Mapping the values onto a representative PDZ domains structure (PDZ3 from 

PSD95, figure 2-1B) shows that highly conserved positions identify the active site of the 

protein.  This definition of evolutionary energy provides a measure of the total constraint 

at a site, that is, the conservation of a site.   

Figure 2-1 PDZ domain conservation energies.   A) Conservation energies were calculated 
as described using an alignment with 240 sequences and 94 positions.  The positions are 
numbered according to PDZ3 from PSD95 (PDB accession: 1BE9).  The secondary structure 
of this domain is indicated above the graph.  Clearly, most positions show low conservation 
and a subset rise above the noise. B) Conservation values mapped colorimetrically from blue 
(low) to red (high) on CPK rendition of PDZ3 shows that most conserved position occur in the 
active site of the protein.   

A 

B 
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Measuring evolutionary coupling by site-specific perturbation 

 Conservation reports the evolutionary energy at one site and is commonly used to 

indicate structural or functional importance.  However, conservation at one site may not 

be independent of conservation at other sites.  A measure of co-evolution between pairs 

of sites is interesting since it may represent the physical constraints between sites.  

Conservation analysis does not provide information about the co-conservation of 

positions through evolution.  To reveal these interactions, SCA uses frequency 

perturbations in an approach that is a statistical analog of the thermodynamic mutant 

cycle analysis.  The basic experiment is to perturb the amino acid distribution at a specific 

site and calculate the change in the conservation energy at all other sites.  Specifically, a 

perturbation to the amino acid frequency distribution is made by extracting only 

sequences with a particular amino acid at a position j.  The resulting subalignment must 

have sufficient size and diversity to be representative of the parent alignment [3] and still 

be at statistical equilibrium.  Observed and reference probabilities can be calculated for 

each amino acid at each position of this subalignment exactly as described above and are 

denoted and respectively.  Similarly, the Boltzmann equation can again be used 

to determine conservation energies for all amino acids at all sites of the subalignment.  

This gives the conservation energy vectors for site i in two different states: 1) in the 

parent alignment and 2) in the background of a perturbation at site j.  The extent to which 

the distribution at site i depends on the distribution at j is simply captured by the 

magnitude of the difference between these two conservation energy vectors.  This defines 

the statistical coupling between sites i and j and is expressed:  
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    valasp,...,arg,ala,=x

A useful vectorial depiction of the statistical perturbation experiment is shown in 

figure 2-2.  The axes of this twenty-dimensional space measure the statistical energies of 

each amino acid at a position; for visualization, the first three amino acid dimensions are 

shown in the figure.  A twenty-dimensional vector of statistical energies for a position 

(equation 2-3) in an alignment can be imagined as a vector in this space.  Statistical 

coupling between sites i and j simply measures the displacement in the vector for site i 

caused by a frequency perturbation at site j.   

Figure 2-2.  Vectorial representation of SCA by site specific perturbation.  Axes represent 
three of twenty amino acid dimensions.  The dashed lines represent component amino acid 
conservation energies for respective solid blue vectors.  The solid dark blue vector represents the 
conservation energy vector for site i in the parent alignment.  The light blue vector represents the 
conservation energy vector for the same site in the background of a statistical perturbation at site 
j.  The difference in the two, depicted as the black vector, represents the statistical coupling of 
positions i and j. (Adapted from [1]). 

Statistical coupling can be calculated for all sites and reports the extent to which 

the frequency at site i depends on the perturbation made at site j.  Note that statistical 

perturbations can only be made when subalignments are representative of the parent 
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alignment [3]; due to the limitations of the subalignment size and diversity not all sites 

meet this criterion.  Thus, a complete data set by this method consists of an m x q matrix 

of statistical coupling values, where m is the number of positions and q is the number of 

perturbations (and q < m).  For example, 37 of 94 PDZ domain alignment positions meet 

the criteria for perturbation.  Each column of the 94 x 37 ΔΔG matrix (figure 2-3, A-B) 

represents the statistical coupling energies to all positions in the protein for an individual 

statistical perturbation experiment at some position in the alignment.  Two dimensional 

iterative clustering of this matrix extracts patterns of energetic interactions from this 

alignment (figure 2-3, B) and identifies a cluster of highly co-evolving positions.    

A B C

94 

37 

Figure 2-3.  SCA results for PDZ domain by site specific perturbation.  A) Rows represent 
94 positions in the PDZ domain and columns represent 37 different perturbations.  Statistical 
coupling values represented as gradient from blue (low) to red (high).  B) Two dimensional 
clustering identifies a cluster of highly co-evolving positions.  C) Mapped onto the structure of 
PSD95-PDZ3, these positions form a connected unit that includes the peptide binding pocket, 
part of the core, and positions on the back site of the domain.  Co-crystalized peptide is shown in 

Application of this method to the PDZ domain, G-protein coupled receptor, 

hemoglobin, and serine protease alignments revealed a common finding [3].  In all 
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families small subsets of highly co-evolving positions form structurally contiguous 

networks that include part of the protein core and link known functional sites (figure 2-3, 

C).  The results of this method show the power of SCA to identify functionally important 

interactions.  However, the  matrix shows two important practical issues related 

to the method of statistical perturbation.  First, as noted above, the number of 

perturbations is limited and therefore prevents calculation of statistical couplings between 

all pairs of residues.  Second, each perturbation is different in magnitude (since 

frequencies of amino acid at sites vary) and hence statistical coupling values between two 

positions are not reciprocally symmetric if interrogated by perturbations at both sites.  

That is, perturbation of i causes an effect on j which is not necessarily the same as how 

perturbation of j causes an effect on i. The incompleteness and asymmetry resulting from 

this methodology complicate analysis of the topology of the energetic interactions (to be 

discussed in chapter 4) and hence necessitate an alternate method to extract evolutionary 

couplings.   

statGΔΔ

 

Measuring statistical coupling with small perturbations 

Overview of method 

The effects of the two fundamental postulates guiding the development of the 

statistical coupling analysis can be imagined in the twenty dimensional amino acid space 

described above.  Energetically important positions will have frequency distributions that 

differ from the mean and, by definition, will have conservation energy vectors with larger 

magnitudes.  Furthermore, energetic coupling between two positions should cause their 

respective conservation energy vectors to become correlated as mutations and selections 
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occur through the course of evolution.  In its original form, SCA reveals this correlation 

by measuring the effect of a relatively large statistical perturbation at one position on the 

frequency distribution at all other positions.  This approach, however, sacrifices much 

information in the alignment. By neglecting very low or high amino acid frequencies the 

original SCA provides no information about pairs of positions with low coupling.  

Furthermore, differences in the magnitudes of each perturbation results in asymmetric 

coupling energies between two positions.     

An alternative approach is to measure the effects of many trials of much smaller 

statistical perturbations to the entire alignment.  A small fluctuation in the frequency 

profile at a site can be imagined as a minor deflection in its corresponding conservation 

energy vector (figure 2-4A).  A small perturbation to the entire alignment should cause a 

small deflection in the conservation energy vector for every position.  For example, 

consider the effect of randomly selecting 50% of the alignment over many trials.  If two 

positions i and j are evolutionarily coupled, their conservation energy vectors,  and 

respectively, should fluctuate in a correlated manner through the course of many 

such small perturbations (figure 2-4, A).  Such correlation is the result of amino acid co-

evolution, where the component amino acid conservation energies of two coupled 

positions, and  (where x = ala, arg, …, val), are coupled.  In other words, the 

fluctuations in amino acid conservation energies, given by the difference between the 

parent and post-perturbation energies and depicted as  in figure 2-4, A , should co-

vary.  Thus, a comparison of the trajectories of the amino acid conservation energy 

fluctuations through many small fluctuation experiments should reveal evolutionary 

stat
iG
r

Δ

stat
jG
r

Δ

x
iGΔ x

jGΔ

x
iGΔΔ



 38

coupling.  This approach is methodologically distinct, but conceptually identical, to that 

presented by Lockless and Ranganathan [2]. 

Figure 2-4 Vectorial representation of SCA by small perturbation.  A)  Axes represent 3 of 
20 amino acid dimensions.  Dashed lines represent component amino acid conservation 
energies for corresponding solid vectors.  Solid thick blue and green vectors represents 
conservation energy vectors in the parent alignment for position i and j, respectively.  Solid 
thin vectors represent small perturbations to corresponding conservation energy vectors. 
Differences between perturbed and parent vectors can exist in any of twenty amino acid 
dimensions ( aa

posGΔΔ ).  If positions are coupled, these fluctuations should correlate.  B) 
Experiment space in which each axis represents a unique perturbation.  Dashed lines represent 
components for thick vectors and simply measure corresponding aa

posGΔΔ .  Thus, solid lines 
trace vector for each amino acid at each position.  Co-variation between two amino acids at 
two positions, stat

jaaiaaG 2,1ΔΔ , is represented as the dot product of their corresponding vectors.   

A 

B 

 

How can we compare trajectories caused by small perturbations?  To extract co-

variation of amino acid deviations we can imagine an experiment space where each axis 

represents one trial of introducing a random fluctuation to the entire alignment (figure 2-4, 

B).  For any particular amino acid at any position, the amino acid-specific energetic 

perturbation, , caused in a particular fluctuation trial is measured on the 

corresponding trial axis.  Repeating the experiment T times creates a T-dimensional 

experiment space in which we can trace the trajectory of energetic perturbations for each 

 t)(trialx
iGΔΔ
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amino acid at each position with the vector x
iG
r

ΔΔ .  A quantitative measure of co-variation 

between two amino acids at two positions is the dot product of their corresponding 

vectors in this experiment space (figure 2-4, B).  The projection of one experiment vector 

on another is a measure of statistical inter-dependence.  Thus, two independently 

fluctuating sites will produce experiment vectors that must be orthogonal and, hence, 

have a dot product of zero.  Note that the Pearson correlation coefficient differs from this 

measurement of correlation since it only measures the cosine of the angle between the 

two experiment vectors.  The dot product, however, includes the magnitudes of the 

vectors ( θcosBABA
rrrr

=• ) and thus weights for their conservation.  Furthermore, by 

incorporating directionality, the dot product can account for both correlated and anti-

correlated changes: fluctuations that move in the same direction together will have large 

positive dot products while those that move in opposite directions will have large 

negative dot products.  This analysis increases accuracy by measuring coupling at the 

level of each amino acid at each position and only requires a means of making small 

perturbations. 
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Small fluctuations through random perturbation 

 To explain the method, I will introduce a specific set of positions to be followed 

throughout the sections below.  Consider the PDZ domain alignment with 240 sequences 

and 94 positions.  Amino acid frequency distributions at three conserved positions (325, 

359 and 372) are graphed in figure 2-5.  The central process in the new method is to make 

small perturbations to the entire alignment and see if fluctuations in such amino acid 

frequencies tend to correlate.   

Figure 2-5 Amino acid frequency distributions at three conserved positions in the PDZ 
domain alignment.  A) The distribution at position 325 shows this position is dominated by Phe, 
Ile, and Leu giving it a *kT8.94=Δ statG .  B) The distribution at position 359 shows only 
three amino acids (Ile, Leu, and Val) giving it a *kT3.122=Δ statG .  C) The distribution at 
position 372 shows approximately half of the sequences have His at this site giving it a 

*kT0.139=Δ statG .  Note that the y axes are scaled differently.   
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One simple way to make small fluctuations in a statistical ensemble is through 

random perturbation, for example, by randomly selecting 50% of the alignment.  On 

average, subalignments made by such random selection over many trials will have exactly 

the same frequency distribution as the parent alignment.  Thus, the average energetic 

effect in 1000 trials of selecting 50% of sequences in the PDZ alignment is zero (figure 2-

6, A and D).  However, in any one such trial there will be small deviations from the 

parent alignment frequency distribution and, hence, the standard deviation of the change 

in conservation of an amino acid at a site is non-zero (figure 2-6, D).   

The energetic effect of the random perturbation to the alignment can be calculated 

using the formalism described above.  The 20 x m conservation energy matrix for the 

random subalignment, ΔGSA, provides an energetic measure of its state.  The energetic 

deviation between the states of the parent alignment and the random subalignment is thus 

the difference of their respective conservation energy matrices:  

ΔΔGt = ΔGPA - ΔGSA      (Eq. 2-6)

This matrix captures the energetic deviation for each amino acid at each position in trial t.  

Note that these are the deviations plotted on the axes of the experiment space described 

above (figure 2-3B).  Each random perturbation trial generates a unique ΔΔGt matrix; 

repeated T times, these two dimensional matrices comprise a 20 x m x T three 

dimensional experiment matrix denoted ΔΔG.  The record of fluctuations for each amino 

acid at each position in this matrix can thus be seen as coordinates for a unique vector in 

the T-dimensional experiment space (see figure 2-9).  

Applying this methodology to a PDZ domain alignment with 94 positions based 

on random selection of 50% of the sequences over 1000 trials produces a 20 x 94 x 1000 

ΔΔG matrix.  Thus, the experimental trajectory for each amino acid at each position is 
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described by a 1000 element vector.  For example, the values in the ΔΔG vectors for three 

conserved amino acids, Phe325, His372, and Ile359, are graphed in figure 2-6, A-C.  The 

adjacent histograms (figure 2-6, D, E, F, respectively) of these values show Gaussian 

distributions centered on zero, consistent with the random nature of the fluctuations.  

Thus, the experiment space contains a unique fluctuation vector for each amino acid with 

magnitudes proportional to their conservation energies.   

Figure 2-6.  Random selection results.  Each experiment consists of 1000 trials of randomly 
selecting 50% of the parent alignment.  A,B,C) Graphs show ΔΔG fluctuation vectors for 
Phe325, His372, and Ile359, respectively.  D,E,F) Histograms of corresponding fluctuation 
vectors show Gaussian distributions centered at zero, consistent with random nature of 
perturbation.  Dot products of Phe325 and His372 show statistical coupling 58.1 kT*.  Vertical 
scrambling of the alignment gives -1.31 ± 8.15 kT* which suggest these amino acids have 
significantly co-evolved (p<10-10).  His372 and Ile359 show evolutionary coupling of -9.0 kT*
and random statistical coupling of -4.75 ± 12.5 kT*, suggesting these amino acids are 
evolutionarily independent.   
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Dot products of pairs of vectors give the extent of their co-variation through T 

trials of random fluctuation.  Because the fluctuations are very small and subject to 

random noise, the probability of correlated fluctuation on any one trial is very low; 

however, over many trials of random perturbation amino acid distributions of 

evolutionarily coupled positions should show co-variation.  On the other hand, 

evolutionarily independent sites will have completely independent trajectories.  Note that 

since the measurement is based on stochastic perturbations, increasing the number of 

trials increases the signal of the coupling measurement.  As is standard practice in 

measurement of signal in a stochastic system, the coupling measurement should be 

normalized by the number of trials.   

Each pair of amino acids at each position has a unique statistical coupling energy.  

For example, using the PDZ domain data set of 1000 trials of 50% random selection, the 

dot product of the vectors for Phe325 and His372 show a coupling energy of 58.1 kT* 

(figure 2-6).  To determine the significance of this coupling energy we randomly 

scrambled each column of the alignment and calculated coupling for the same amino acid 

pair.  Since the amino acid frequency at each site is unchanged by this process, the 

conservation at each position stays the same; however, the correlation between sites is 

scrambled causing the statistical coupling in the alignment to be removed.  One-hundred 

trials of this randomization showed a coupling between Phe325 and His372 of -1.31 ± 

8.15 kT*, indicating the observed co-variation is very significant (p<10-10).  On the other 

hand, the native experiment vectors for His372 and Ile359 show a coupling energy of -9.0 

kT*.  Random scrambling of the matrix gives a coupling of -4.75 ± 12.5 kT* for His372 

and Ile359, suggesting they are not significantly evolutionarily coupled (p = 0.73).   
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Calculating dot products for all pairs of amino acids at all PDZ positions gives a 

matrix that is 94 x 94 x 20 x 20 and captures all coupling information in the alignment.  

While perturbation of the alignment by random selection is mathematically valid, 

complete extraction of co-evolution information from the alignment would require an 

extremely large number of trials.  Instead, we found that a simpler method to extract the 

same information from the alignment is to measure the effect of removing only one 

sequence at a time.   

 

Making small fluctuations through single sequence elimination  

As a practical matter, the same process as above can be achieved through single 

sequence elimination.  In the limit of random elimination, the smallest possible 

perturbation to an alignment with N sequences is simply the removal of one sequence.  In 

this approach, subalignments are made by throwing out one sequence from the alignment.  

The small perturbation approach described above can then be conducted using these 

subalignments of N-1 sequences.  Since there are only N sequences, there are N possible 

subalignments and N trials (as opposed to T trials in the random selection method above) 

in this method.  Importantly, each sequence in the alignment is treated as an experimental 

trial, creating an experiment space with N dimensions.   

Proceeding as above, a unique ΔΔGn matrix can be calculated for each sequence in 

the alignment.  Together, these form a three-dimensional ΔΔG experiment matrix that is 

20 x m x N in size.  Each amino acid at each position therefore has an experiment vector 

defined by a sequence of N values.  For example, application of the single sequence 

elimination calculation for all 240 sequences in the PDZ alignment generates a 20 x 94 x 
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240 ΔΔG matrix.  The graph shown in figure 2-7A plots the  values for Phe325.  

Position 325 is highly conserved with 117 Phe in 240 sequences, giving an amino acid 

conservation energy of -90.2 kT* for Phe325.  The graph in 2-7A shows  

oscillates between one of two values.  This is rooted in the fact that single sequence 

elimination has only one of two effects on the conservation energy of Phe at 325.  If the 

sequence removed had a Phe at 325, the frequency of Phe in the subalignment will be 

smaller and closer to random causing a decrease in  to -89.6 kT*, giving a  

of approximately 0.6 kT* (figure 2-7B).  However, if the sequence removed does not 

have a Phe at 325, the resulting subalignment will be even more enriched with Phe 

causing an increase in  to -90.8 kT*, giving a  of approximately -0.6 kT* 

(figure 2-7B).  Thus, the vector represented graphically in figure 2-7A is an energetic 

PheG325ΔΔ

PheG325ΔΔ

PheG325Δ PheG325ΔΔ

PheG325Δ PheG325ΔΔ

Figure 2-7.  Single sequence elimination fluctuation vector  for Phe325.   A) ΔΔG vector 
oscillates between one of two values through the 240 sequences in the PDZ domain alignment, 
depending on whether or not the sequence removed had a Phe at position 325.   B) The parent 
alignment has 117 Phe at 325 out of 240 sequences.  If the removed sequence did not have a Phe 
at 325, the subalignment is further enriched for Phe and its conservation energy moves away 
from zero.  If, however, the sequence removed had a Phe at 325, the subalignment is closer to the 
reference state and the energy moves closer to zero.   

A B 
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profile for Phe at position 325: it simply marks presence or absence with a quantal change 

in conservation energy.  The vector depicting Phe325 in the 240-dimensional experiment 

space of the PDZ domain alignment is represented by this specific set of values. 

 The degree of evolutionary coupling is expressed as the dot product of the 

fluctuation vectors for two amino acids:   
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 (Eq. 2-8) 

For example, figure 2-8 shows graphs of ΔΔG vectors for three representative amino 

acids at three PDZ domain positions: Phe325, His372, Ile359.  Careful inspection of the 

Figure 2-8.  Single sequence elimination at three sites.  Vectors for (A) Phe325 and (B) 
His372 appear correlated and indeed have a significant ΔΔG = 60.2 kT*.  However, vectors for 
(B) His372 and (C) Ile359 do not appear correlated and have a low coupling of ΔΔG = -9.6 kT*. 
Each of these values are only one element in 20 x 20 matrices that capture the coupling between 
each pair of positions (D,E).  The magnitude of these 400 values gives the statistical coupling 
between the corresponding pair of positions.  
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graphs reveals that Phe325 and His372 have very correlated trajectories as n goes from 1 

to 240 (compare figure 2-8, A and B).  The dot product of these two vectors is 0.25 kT*.  

To determine the significance of this value we performed the same vertical scrambling 

experiment described above and found that the expected random coupling for the amino 

acid frequencies at these positions is 0.0004 ± 0.04 kT*, suggesting that these positions 

have indeed significantly co-evolved (p < 10-10).  However, the trajectories of His372 and 

Ile359 do not appear correlated (compare figures 2-8, B and C).  Correspondingly, their 

dot product and randomized dot product is -0.04 kT* and 0.003 ± 0.04 kT*, indicating 

their evolutionary coupling is insignificant (p = 0.22).   

For each pair of positions in an alignment we can calculate the dot products of all 

possible pairs of amino acids, giving a 20 x 20 matrix of 400 amino acid-pair specific 

coupling energies.  Mathematically, this is simply represented as matrix multiplication of 

the two 20 x N matrices for the two sites (see figure 2-9).  The coupling information in 

the entire alignment is therefore represented in an N x N x 20 x 20 matrix, where N=240 

for the PDZ domain alignment.  For example, figure 2-8D colorimetrically shows the 

elements of the 20 x 20 amino acid coupling matrix corresponding to positions 329 and 

372; one of these 400 values corresponds to the coupling between Phe329 and H372 

discussed above.  The coupling between Phe329 and His372 clearly dominates these 

couplings.  The corresponding matrix for positions 359 and 372 (figure 2-8E), however, 

shows very low coupling energies.  The magnitude of the 400 amino acid coupling 

energies corresponding to a pair of positions defines their statistical coupling energy:   

∑ΔΔ=ΔΔ
400

,, aajaai
stat

ji GG       (Eq. 2-8)  
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For example, positions 325 and 372 show significant evolutionary coupling of 0.25 kT* 

(p < 0.0001) while positions 359 and 372 have very low coupling of 0.04 kT* (p = 0.28) 

(figure 2-9).  Thus, the statistical couplings between all pairs of positions in the alignment 

are represented by an N x N matrix.  Note that the 20 x 20 matrix corresponding to the i,j 

position pair is exactly the same as the transpose of that for the j,i pair.  Because this 

method quantifies the effect of energetic perturbations at the level of individual amino 

acids, it is possible to calculate statistical couplings between all pairs of positions and the 

resulting matrix is completely symmetric.   
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Figure 2-9.  Overview of SCA by small perturbation.  Small perturbations can be made by 
either random selection or single sequence elimination (random selection is depicted above).
Conservation energy matrices can be calculated for both the parent alignment (ΔGPA) and 
subalignment (ΔGSA).  The difference of these defines the ΔΔGt matrix, where t denotes the 
particular trial.  Repeating this for T trials generates a three dimensional ΔΔG matrix that is 20 
x m x T (note that in single sequence elimination, T=N).  Coupling between two amino acids at 
two sites is simply the dot product of their ΔΔG fluctuation vectors.  Thus, coupling between 
two sites, i and j, is simply represented as the matrix multiplication of their corresponding 20 x 
T ΔΔG matrices.  This gives a 20 x 20 matrix for each pair of positions that contains the 
coupling energies between each pair of amino acids at sites i and j.  The magnitude of these 
400 values defines the statistical coupling energy between sites i and j.   
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Statistical coupling analysis of PDZ domain 

 For the PDZ domain alignment with 240 sequences and 94 positions, analysis 

based on single sequence elimination gives a symmetric 94 x 94 statistical coupling 

matrix, colorimetrically represented in figure 2-10A.  This matrix is a global 

representation of the co-evolutionary relationships between all pairs of positions in the 

PDZ alignment. Clearly, most positions show very little coupling to other positions, 

suggesting evolutionary independence, while a subset shows strong coupling to a few 

positions.   

To understand the patterns of evolutionary interactions, the data in the coupling 

matrix can be imagined as a network represesentation in which vertices are PDZ positions.  

Between every pair of vertices is an edge representing corresponding evolutionary 

coupling energy, the value of which is an element in the coupling matrix.  To identify the 

significant evolutionary interactions in the PDZ domain we plotted a histogram of the 

coupling values (figure 2-9B).  The graph shows that coupling values show a highly 

skewed distribution with low coupling between most pairs and high coupling between a 

small subset which is well-described by a log-normal distribution: 
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Here σ is the standard deviation and xo is the mean.  Log-transformation of the x-axis of a 

log-normal distribution produces a normal distribution.  Display of the data in this manner 

makes the distribution easier to appreciate and is shown in the right panel of figure 2-9, B.  

Using the standard deviation from the fit (given in figure) we can establish an energetic 

threshold for significant evolutionary interaction.  For example, at a 3.5σ (28 kT*) cutoff 
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to the PDZ domain matrix, we find 33 couplings out of 4371.  Paring down the graph 

representation to only these edges reveals that these couplings connect 19 positions (20 % 

of PDZ positions) into a nearly completely connected subset (figure 2-9C).   

Figure 2-10.  SCA analysis of PDZ domain.  (A) The single sequence elimination method 
yields a 94 x 94 DDG matrix for the PDZ domain alignment.  (B) The distribution of coupling 
energies in this global co-variation analysis fits a log-normal distribution.  (C) Graph 
representation of the interactions 3.5σ above the mean reveals a nearly completely connected 
subgraph.  (D) Positions in this highly co-evolving network form a connected unit when 
mapped on the structure of a representative PDZ domain (PSD95-PDZ3 with co-crystallized 
peptide from C-terminus of CRIPT shown in teal). 
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Importantly, the 19 positions identified by this method are in agreement with 

those identified by the original SCA.  Mapping these residues on the structure of a 

representative PDZ domain (PDZ3 from PSD95) shows a completely connected structural 

network that includes the majority of the binding site, part of the core, and several distant 

residues on the backside of the protein.  Previous work from our lab showed that the 

statistical coupling energies (using the original method) showed excellent agreement with 

thermodynamic coupling [2].  

Analysis of coevolution in alignments of other protein families, including GPCRs, 

G proteins, hemoglobin, WW domains, and ligand binding domains, further emphasize 

these themes.  In each family, the single sequence elimination SCA reveals small subsets 

of mutually co-evolving positions that formed connected units when mapped on their 

respective structures.  The coupled positions were nearly identical to those already 

identified by the original SCA.  This previous work also showed that these sets of coupled 

positions have excellent correlation with a large body of published functional data for 

these systems [2-5].   

 

Conclusion 

 In this chapter, I have described an alternate approach to SCA that provides, for 

the first time, a completely global map of co-evolution between pairs of positions in 

which coupling between pairs of positions is reciprocal.  A critical feature common to this 

new SCA method and its original formulation is their view of the alignment as a 

statistical ensemble.  This view allows the use of Boltzmann statistics to define the 

conservation energy, an energetic measure that lies at the core of both approaches and is 
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the source of the sensitivity of both methods.  By focusing on each amino acid at each 

position, the new method allows a finer parsing of conservation energy than the original 

method.  As a consequence, it is possible to extract a global map of statistical coupling 

energies that is completely symmetric.   

 The results of both SCA methods are very consistent.  In all protein families 

studied both methods identify the same set of highly co-evolving positions.  Graph 

representation of the networks emphasizes two critical and surprising features.  First, 

there is sparseness in the pattern of significantly co-evolving positions.  Most sites are 

evolutionarily independent and only a small subset show significant evolutionary 

interaction.  Secondly, these subsets of positions are not scattered throughout the protein; 

instead, they are organized into a highly inter-linked network to form a nearly completely 

connected subgraph.  This highly improbable arrangement of the energetic topology must 

endow some evolutionary advantage to the protein.  Mapping of the coupled positions 

onto structures consistently reveals physically contiguous networks that link distant sites 

on the protein through a subset of core positions.  Highly coupled positions identified in 

GPCRs, hemoglobin, and serine proteases showed strong correlation with published 

functional data [3].  Recent work in the G protein  [4] and ligand binding domain [5] 

demonstrated that the highly coupled pathways identify the core allosteric mechanism in 

these proteins.  These results from proteins with diverse functions suggest the coupled 

networks of residues contain the core energetic interactions that enable protein function.  

 The analysis presented here focuses on the high coupling values in the heavy tail 

region of the log-normal distribution.  However, this is not to discount the information 

contained in the low coupling values – those below 3.5σ in PDZ domains.  As stated 

previously, in all protein families studied so far the coupling energies in the tail of the 
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distribution repeatedly form connected structural networks that connect functional 

surfaces.  While data shows that these high couplings contain the core functional 

processes in proteins, it is unlikely that they operate in complete isolation from the 

remainder of the protein.  It is possible that a subset of the low coupling energies form a 

necessary bridging framework that connects the highly-coupled core functional unit to the 

remainder of the protein.  Furthermore, while the discussion above and in the following 

chapters focuses on the functional role of coupling energies, the co-evolutionary 

information is likely to embed function as well as stability since both are evolutionarily 

selected properties.  Recent work in our lab has tested this by making two categories of 

synthetic (not found in nature) WW domain sequences with a Monte Carlo algorithm: 1) 

sequences with the same conservation pattern as natural sequences, and 2) sequences with 

the same coupling pattern as natural sequences [1].  Folding studies of these novel 

proteins demonstrated that the coupling information is necessary and sufficient to build 

folded WW domains [1].  Ongoing experiments in our lab are attempting to parse the co-

evolutionary interactions that are necessary for folding from those necessary for 

endowing functionality.   

The complete mapping of evolutionary couplings provides the foundation to 

address two general questions.  First, since the evolutionary analysis and mutagenesis 

experiments are intrinsically thermodynamic measurements, these analyses do not 

provide insight into the underlying mechanism of interaction between positions.  In the 

next chapter I will present a combination of crystallographic and thermodynamic studies 

of the PDZ domain that are focused on understanding a set of interactions predicted by 

SCA.  The fourth chapter takes a graph theoretic approach to analyze the topology of the 

network and its functional implications.   
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Materials and Methods 

Statistical coupling analysis.  All alignments used in these analyses were provided from 

members of the Ranganathan lab and were prepared as described in [3].  Statistical 

coupling analyses, curve fitting, and clustering was performed with MATLAB (version 

6.5.0.180913a (R13), Natick, MA).  The choice of cutoff value depends on the 

distribution of values which depends on the size and diversity of the alignment.  

The MATLAB code used is given in Appendix A.  

statGΔΔ
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Chapter 3  Logic and Mechanism of an Evolutionarily 
Conserved Interaction in a PDZ Domain 

 

Introduction 

 Statistical coupling analysis results provide a critical piece of the structure-

function puzzle.  Mutagenesis studies in numerous systems have shown that the networks 

of highly co-evolving residues identified by SCA capture energetic interactions necessary 

for function.  [1-3]  These findings motivate an atomic level description of the 

mechanisms that underlie evolutionary coupling.  A complete description of the atomic 

events that allow energy to propagate among the atoms in this network should bring us 

closer to a complete explanation of how functionality is achieved.  However, the problem 

is complex.  Though SCA can identify amino acid interactions, it does not tell us about 

mechanism.     

A clue about mechanism does emerge from the striking physical connectedness of 

these networks.  Long-range energy transfer may occur through chains of anisotropic 

local interactions.  In other words, these contiguous networks may reflect structural 

regions capable of converting and propagating energy between adjacent residues, 

ultimately channeling it into functional events such as binding, catalysis or long-range 

signaling.  Ample evidence shows that proteins are indeed structurally inhomogeneous.  

Crystallographic studies often show that mutations induce atomic displacements that 

propagate anisotropically, often resulting in changes at very distant sites [4].  NMR 

dynamics experiments have revealed hotspots of slow time scale dynamics that correlate 

with known regional and temporal functional importance [5, 6].   
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In the light of the SCA results, these observations raise two questions.  First, what 

physical properties characterize statistically coupled networks?  Second, what is the 

mechanistic basis of their cooperative energetic interactions?  In this chapter I will 

describe a combination of thermodynamic and crystallographic experiments I have 

performed to address these issues.   

The experiments focus on the dissection of a set of functionally important 

interactions in the binding interface of a PDZ domain and peptide.  Tuned molecular 

interfaces such as these are common and conserved features of protein-protein interaction 

domains, enzymes, and signaling proteins.  PDZ domains therefore represent an excellent 

model system to study this fundamental phenomenon with a combination of co-variation 

analysis and biophysical experiments. 

 

Background 

Interfaces must balance affinity and specificity 

Each protein-protein binding interface has a characteristic specificity and affinity 

evolved to suit a particular function.  In one elegant example, recent work showed that the 

behaviors of multi-domain proteins depend on the binding affinities of regulatory 

domains for their respective regulatory molecules [7].  This group showed that modular 

binding domains, like PDZ or SH3 domains, could be combined with catalytic domains to 

create novel proteins with sophisticated behaviors.  Importantly, these behaviors, like 

allostery and signal integration, could be adjusted by simple changes in the individual 

domains.  For example, one protein consisted of a PDZ domain, an SH3 domain and a 

VCA domain that stimulates actin polymerization; in the inhibited state the PDZ and SH3 
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domains bind internal autoinhibitory sequences and prevent actin polymerization.  

Activation of the protein required input of both the PDZ ligand and the SH3 ligand and 

hence the protein acts as a regulatory AND gate.  However, a mutation in the PDZ 

domain that causes a ten fold decrease in binding affinity converted the protein to an OR 

gate in which input of either ligand was sufficient for activation.  This example illustrates 

how simple changes at one molecular interface can significantly affect the properties of a 

signaling molecule and the behavior of an entire signaling pathway.   

The fidelity of a signaling pathway depends on the reliable sequential transfer of 

information through a specific set of components.  Minimization of inappropriate cross-

talk between components of different pathways requires that proteins avoid non-specific 

interactions.  In recent demonstrations of this design principle, two groups studied the 

specificity of the SH3 domain from the yeast protein Sho1p, a membrane protein that 

initiates the yeast hyperosmotic stress response.  A critical interaction in this MAP kinase 

(MAPK) pathway is the binding of the Sho1 SH3 domain to a prototypical PXXP motif in 

Pbs2, a MAPKK.  One group sought to determine how specifically the Pbs2 binding 

motif interacts with the Sho1 SH3 domain among all 27 SH3 domains found in yeast. [8].  

The data showed that the peptide ligand (from Pbs2) bound only to the Sho1 SH3 domain 

with no cross-reactivity to any other yeast SH3 domain.  Importantly, the ligand did 

interact with non-yeast SH3 domains.  Together, these observations indicate the 

complement of yeast SH3 domains has evolved under negative selection.  In other words, 

the affinities between yeast SH3 domains and their respective ligands have evolved to 

minimize cross-reactivity.  To test the importance of specificity, they introduced a 

mutation in Pbs2 that binds the Sho1 SH3 with slightly higher affinity but also cross-

reacts with other yeast SH3 domains. Interestingly, the promiscuous mutant strain could 



 59

not adapt as well to high-stress growth conditions and was out-competed by the wild type 

strain.  In total, these data indicate that reliable output from the hyperosmotic stress 

response pathway depends critcally on the strength of the interaction between the Sho1 

SH3 and Pbs2. 

Another group addressed the importance of the strength of this interaction for the 

reliability of the hyperosmolarity response pathway [9].  To do this, they made yeast 

strains in which the Sho1 SH3 domain was replaced with mutants that bound the Pbs2 

motif with a range of weaker affinities; these strains were assayed for their response to a 

hyperosmolar environment.  In vivo measurements showed a linear correlation between 

the strength of the interaction and the output of the hyperosmolarity response pathway: 

weaker interactions gave smaller outputs and stronger inteactions gave larger outputs.  

Interestingly, weak interactions also correlated with increasing inappropriate activation of 

the related mating pheromone response pathway, also a MAPK pathway.  These two sets 

of experiments demonstrate that loss of binding specificity at even one step in a signaling 

pathway can, ultimately, lead to a fitness defect for the cell.  Interactions among amino 

acids involved in protein-protein interactions must have mechanisms that achieve a 

functional balance between specificity and affinity in the face of competing substrates.   

 

General mechanisms of specificity and affinity 

Structural and mutagenesis experiments probing numerous protein-protein 

complexes have revealed several important principles underlying binding energy.  

Structures of complexes have shown that specificity relies on geometric and chemical 

complementarity of contacting surfaces [10] .  For example, groups of residues in a 
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protein may form a pocket, such as the S1 pocket of α-lytic protease, suited to 

accommodate only a specific residue [11].  In some systems, such pockets become 

hotspots for tumorigenic mutations [12, 13].  While these structural studies have, in 

general, only addressed the contribution of individual residues, binding measurements 

suggest that more complex mechanisms can significantly tune binding energy.  Studies of 

the human growth hormone receptor and antibody-antigen complexes show that residues 

in the interface do not contribute equally to the binding energy; a few residues comprising 

only a small fraction of the interface are hotspots that account for most of the binding 

energy [14].  To add to this complexity, multiple residues, often distantly positioned, can 

interact cooperatively to modulate the binding energy [15-17].  Thus, a complete 

understanding of binding energy requires a mechanistic description of all cooperative 

interactions that affect binding.   

 

Energetic networks in proteins retain evolvability 

In addition to meeting functional requirements, proteins must also maintain an 

ability to adapt to a changing environment, a capacity referred to as evolvability.  While 

the property of evolvability is typically applied by evolutionary biologists to the level of 

organisms, it is also relevant and abundantly evident in proteins.  Indeed, since the 

fundamental level of mechanistic action in evolution is the protein, it should not be 

surprising to observe the feature of evolvability in proteins.  In the face of changing 

environmental pressures, a protein with greater evolvability would endow an organism 

with a fitness advantage.  In general, evolvability is defined [18] as the “capacity to 

generate heritable, selectable phenotypic variation.”  From this perspective, the 
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evolvability of a protein can be seen as the efficiency with which it can be converted 

through mutations to perform a new function; a highly evolvable protein would require 

very few mutations to switch to a new function.  Thus, while performing a particular 

function, the energetic architecture of a protein must also maintain a functional plasticity 

that allows rapid adaptability.   

While no experiments we are aware of have explicitly assessed the evolvability of 

proteins, mutagenesis data from several systems clearly demonstrates that the energetic 

framework of proteins is highly adaptable.  For example, one group recently showed that 

as few as 18 mutations to a ribose binding protein could convert it to a triose phosphate 

isomerase, a particularly dramatic change in function [19].  Importantly, this novel 

protein had significant enzymatic activity and was capable of supporting growth of 

bacteria.  In a second example, one group used phage display libraries of mutant SH3 

domains to screen for domains capable of binding to two ligands, a Src-binding peptide 

and an Abl-binding peptide [20].  Analysis of the isolated domains indicated that only 

two or three substitutions could cause a dramatic change in binding specificity.  Similarly, 

mutation of only one position in PDZ and WW domains significantly shifts the binding 

specificity [21, 22].  These results are consistent with and suggest an energetic logic for 

the phenomena of binding hotspots.  A focus of binding energy in a protein-protein 

interface may allow rapid change in binding specificity through mutagenesis of hotspot 

residues only.  Together, these examples indicate that the energetic architecture in 

proteins must not only allow the cooperative interactions necessary for function, but must 

also maintain functional plasticity.  While mutagenesis studies have revealed these 

fundamental features of the energetic framework, they have not explained the mechanistic 

basis for how amino acids in a protein achieve these properties.  The PDZ domain is a 
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protein-protein interaction domain with well established class specificity and a known 

crystal structure; it represents an excellent model system in which to understand how 

collective interactions among multiple positions can tune binding energy [23, 24].  

 

 

Evolutionary and thermodynamic coupling in the PDZ domain 

PDZ domain background 

PDZ domains are protein-protein interaction modules approximately 90 amino 

acids long and typically bind to the C terminal 4-5 amino acids of target proteins [23].  

Named after the first three proteins in which they were observed (PSD95, Discs large, Zo-

1), PDZ domains have since been found to be well-represented in Caenorhabdatis 

elegans, Drosophila melanogaster, and mammalian genomes [23].  PDZ-containing 

proteins serve as scaffolds to assemble supramolecular complexes in specific subcellular 

locations [23].  Such scaffolding proteins often contain multiple PDZ domains or 

combinations of PDZ and SH3 domains.  By co-localizing the components of a pathway, 

such scaffolding proteins are thought to dramatically enhance the speed and reliability of 

signaling [23].   

The crystal structure of PDZ3 from PSD95 bound to a peptide ligand  (hereafter 

protein and peptide are referred to as PDZ3 and PWT, respectively) shows that the protein 

takes an approximate β-sandwich fold with the peptide binding in a pocket formed by the 

βB strand and αB helix (figure 3-1A).  This and other PDZ-ligand structures have 

revealed several common structural features of PDZ-ligand interfaces [24].  First, the 

carboxy terminus of the peptide forms a hydrogen bonding interaction with the 
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carboxylate-binding loop between βA and βB.  Second, the P-2 position of the peptide 

(peptide numbering convention refers to the carboxy terminus amino acid as P0 and 

counts backwards from this residue) of the peptide interacts with the αB1, the first side 

chain of the αB helix.  Several mutagenesis studies have found this interaction to be 

critical in determining binding specificity [23, 25].  Accordingly, this interaction has been 

used to organize PDZ-ligand interactions into three general classes [23, 26].  PDZ3 is an 

example of a class I domain in which His at αB1 forms a hydrogen bond with a Ser or 

Thr at the P-2 position (figure 3-1A).  In class II domains hydrophobic amino acids at both 

αB1 and P-2 positions form hydrophobic interactions [26].  Class III domains have a 

negatively charged amino acid at αB1 interacting with an acidic moiety at the P-2 position 

[26].  The correlation between amino acids at the αB1 and P-2 positions suggest this 

interaction is an energetic hotspot strongly dictating specificity.  

 

Thermodynamic analysis of a PDZ hotspot 

The strength of the interaction between the αB1 and P-2 positions can be estimated 

using thermodynamic mutant cycle analysis [27].  In this method the energetic effect of a 

mutation at site i is measured in two different conditions: 1) in a wild type background, 

and 2) in the background of a mutation at another site j.  The difference between these 

two energetic effects is defined as the thermodynamic coupling energy, , between 

sites i and j and reports the extent to which these two mutations energetically interact.  

For example, the H372Y mutation in PDZ3 converts the αB1 position from a class I to a 

class II amino acid.  Binding measurements of this mutant to P

mut
jiG ,ΔΔ

WT by isothermal titration 

calorimetry (ITC) show that H372Y destabilizes binding by 3.25 ± 0.09 kcal/mol (figure 
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3-1B), reflecting a nonspecific interaction.  However, in the background of a T7F peptide 

mutation that converts the P-2 position to a class II amino acid (mutated peptide referred 

to as PT7F), the H372Y mutation only destabilizes binding by 0.54 ± 0.09 kcal/mol (figure 

3-1B).  The significantly smaller energetic effect simply reflects that the compensatory 

mutation at the P–2 position essentially completely converts the interaction to a class II 

interaction.  The 2.71 ± 0.09 kcal/mol thermodynamic coupling of these mutations is 

large and highlights the role of this interaction in discriminating between specific and 

non-specific binding interactions.   

Figure 3-1 PDZ3 structure and thermodynamics.  A) Crystal structure of PSD95-PDZ3 
bound to peptide highlights several critical interactions.  The contact between H372 and T7, in 
this case through a hydrogen bond, is a specificity defining interaction in PDZ domains.   The 
carboxy terminus of the peptide interacts with the carboxylate binding loop.  B) 
Thermodynamic mutant cycle analysis reveals that mutations at the contacting residues H372 
and T7 are, as expected, strongly coupled.  C) However, in the background of a mutation at 
322 in the carboxylate  binding loop on the other side of the binding pocket, the coupling 
decreases by 0.8 kcal/mol, indicating a three-way energetic coupling between these positions. 
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Importantly, this finding is consistent with the role of this interaction in at least 

two class I PDZ domains as a site of binding regulation through covalent modification.  

Protein kinase A mediated phosphorylation of the serine at the P-2 position of the 

inwardly rectifying potassium channel Kir2.3 inhibits binding to a class I PDZ domain in 

postsynaptic density-95 protein (PSD-95) [28].  In a similar mode of regulation, 

phosphorylation of the serine in the P-2 position of β2-adrenergic receptor by the serine-

threonine kinase (GRK-5) inhibits binding to a class I PDZ domain in Na+/H+ exchanger 

regulatory factor (NHERF) [29].  These examples illustrate a general energetic principle 

in regulation of binding interactions: binding regulation often occurs through perturbation, 

in this case via covalent modification, at a focus of binding energy.  These data further 

support the claim that the strong thermodynamic coupling between αB1 and P-2 measured 

in the PDZ3-peptide interaction reflects an evolutionarily conserved binding hotspot.   

Knowledge of this thermodynamic coupling does not reveal the potentially 

complex mechanism by which these two mutations interact.  Binding studies in other 

systems suggests that the energy likely reflects perturbation of not only the contact sites 

but also energetic interactions among other amino acids in the protein.  However, 

identification of all other PDZ3 positions involved in tuning this interaction is not 

possible from the crystal structure, and thermodynamic mutant cycle analysis of all pairs 

of positions is impractical.   
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SCA reveals energetic interactions 

If SCA truly maps the propagation pattern of energetic perturbations then the 

global PDZ domain co-evolutionary mapping should predict positions that influence the 

interaction between 372 and P-2.  The statistical couplings for position 372 are represented 

in the row corresponding to this position in the 94 x 94 matrix of PDZ domain statistical 

couplings (figure 3-2A).  The bar graph of these values in figure 3-2B reveals that most 

positions in the domain are evolutionarily independent of position 372 while only a few 

show significant statistical coupling.  Since each of these evolutionarily coupled positions 

may interact with position 372 through unique mechanisms, we chose to first focus on 

only one significant predicted interaction.  Application of a 3.5σ (0.12kT*) energetic 

cutoff (discussed in chapter 2) identifies seven positions that have significantly co-

evolved with position 372 (figure 3-2C).  Position 322 shows significant mutual statistical 

coupling with position 372 ( , p = 0.0002) and is particularly 

interesting because of its position on the opposite side of the binding pocket in the 

carboxylate binding loop (figure 3-1A).  The significant co-evolution of these positions 

predicts that position 322 energetically interacts with position 372.  

*kT 14.0=ΔΔ statG

To test the role of position 322 as a modulator of coupling energy we determined 

the thermodynamic coupling of the H372Y and PT7F mutations in the background of a 

glycine to alanine mutation at position 322 (figure 3-1C).  By analogy, figures 3-1B and 

C can be seen as opposite faces of a thermodynamic cube that compare the coupling 

energy of H372Y and T7F in the wild type and G322A backgrounds.  Binding energies 

(figure 3-1C and table 3-1) show that, in the background of G322A, thermodynamic 

coupling between H372Y and T7F falls to 1.95 ± 0.14 kcal/mol.  This 0.8 ± 0.18 kcal/mol 
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Figure 3-2.  SCA analysis of PDZ domain and position 372.  A) SCA analysis gives a 94 x 94 
matrix containing the global map of pairwise interactions (chapter 2).  Secondary structure and 
position numbering are from PDZ3 from PSD-95.  B) Bar graph of values in row corresponding 
to position 372 shows significant (greater than 3.5σ, as indicated by dased line) co-evolution 
with 7 positions.  C) Network graph shows all significant statistical couplings in PDZ domain. 
The results of this analysis suggest positon 322 is energetically coupled to position 372.   

decrease in thermodynamic coupling reveals an energetic interaction among these three 

amino acids, supporting the SCA prediction.  In the wild type state PDZ3 is tuned to 

distinguish between specific and nonspecific peptides with a coupling energy of 2.71 

kcal/mol.  However, position 322 on the opposite side of the binding pocket decreases the 
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strength of this discrimination.  Thus, long range cooperativity plays a role in PDZ 

domain function.   

 

Thermodynamic analysis shows interaction important for evolvability 

Thermodynamic measurements also reveal a critical role for position 322 in the 

evolvability of PDZ3 specificity.  Dissociation constants of wild type protein to the two 

peptides reveal that PDZ3 is tuned to favor the class I PWT over the class II PT7F by 50 

fold (table 3-1).  As stated above, the H372Y mutant shows a significant switch in 

specificity favoring the class II peptide over the class I by almost 2 fold.  This single 

mutation tips the binding affinity balance and begins to convert the protein to a class II 

PDZ domain, revealing an innate evolutionary plasticity.  We can define the evolvability 

quantitatively with a score:  

WTclassII
d

WTclassI
d

mutclassII
d

mutclassI
d

K
K
K
K

tyEvolvabili

,

,

,

,

=       (Eq. 3-1) 

This evolvability score captures the ability of a mutation to switch binding specificity 

from class I to class II.  For H372Y, this ratio (1.8/0.02, see table 3-1) gives an 

evolvability score of 90.1, consistent with the well-established role of this position as a 

specificity determinant.  In fact, binding studies of the class III PDZ domain in neuronal 

nitric oxide synthase (nNOS) showed that a tyrosine to histidine mutation at the αB1 

position converts its binding specificity to that of a class I PDZ domain [25].  Thus, 

position 372 is a determinant of binding specificity and evolvability.  
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In contrast to H372Y, the G322A mutation alone does little to affect binding 

specificity.  Similar to the wild type protein, this mutant has an approximately 30 fold 

stronger binding affinity for class I peptide over class II peptide (table 3-1), giving the 

G322A mutation an evolvability score of only 1.5.  However, in the background of 

G322A, the effect of H372Y is significantly altered.  While H372Y shows clear 

preference for PT7F, the H372YG322A mutant shows a nearly equal preference for PWT 

and PT7F (table 3-1).  The evolvability score of H372Y in a G322A background is 22.7.  

Thus, the G322A mutation reduces the class-switching potential of the H372Y mutation.  

Since G322A specifically influences the energetics of position 372, we conclude that this 

long range interaction contributes to the evolvability (or plasticity) of the PDZ domain.  

The fact that this amino acid combination is so highly co-selected in evolution is an 

indication of its functional relevance.  If the interaction between positions 322 and 376 is 

indeed engineered by evolution as suggested by SCA and thermodynamic measurements, 

we should be able to uncover a physical mechanism for this interaction.  Such a 

demonstration would add to the confidence in our claim that this is a selected interaction 

in PDZ domains.   

 

Protein Peptide ΔH (kcal/mol) TΔS 
(kcal/mol) ΔG (kcal/mol) Kd (μM) )(

)(

7FTd

WTd

PK
PK

Pwt -8.6  ± 1.6 -0.4 ± 1.6 -8.3 ± 0.1 0.87 ± 0.1 WT 
PT7F -3.6 ± 1.4 2.2 ± 1.5 -5.9 ± 0.1 44.8 ± 5.8 

0.02 

Pwt -2.0 ± 0.3 3.0 ± 0.4 -5.0 ± 0.03 205.8 ± 10.2 H372Y PT7F -0.4 ± 0.1 5.0 ± 0.1 -5.4 ± 0.03 111.8 ± 5.3 1.8 

Pwt -10.5 ± 1.9 -1.7 ± 1.9 -8.8 ± 0.04 0.4 ± 0.2 G322A PT7F -4.9 ± 0.3 1.7 ± 0.4 -6.6 ± 0.11 15.3 ± 2.8 0.03 

Pwt -3.7 ± 0.2 2.0 ± 0.2 -5.7 ± 0.02 70.7 ± 2.3 H372YG322A PT7F -2.0 ± 3.2 3.4 ± 0.4 -5.4 ± 0.07 104.7 ± 11.8 0.68 

Table 3-1.  Isothermal titration calorimetry binding measurements.  Each value represents the average 
± standard deviation of three measurements.  
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Structural mechanism of high-order coupling 

Structural role of position 322 

A clue to the mechanism of position 322 comes from a comparison of the binding 

energies in the two thermodynamic cycles (figures 3-1, B-C and table 1).  The G322A 

mutation stabilizes binding of wild type and almost mutant all proteins to both PWT and 

PT7F peptides.  For example, WT binds PWT with a binding energy of -8.28 ± 0.1 kcal/mol 

(Kd = 0.87 ± 0.1 μM) while G322A binds the same peptide with ΔG = -8.78 ± 0.04 

kcal/mol (Kd = 0.38 ± 0.2 μM).  To understand the mechanism by which G322A 

stabilizes binding, we solved the X-ray crystal structures of the WT and G322A proteins, 

both peptide-free and bound to PWT.  The protein was expressed as N-terminal GST 

fusion protein in E. coli, purified over GST affinity chromatography, and crystallized in 

sodium citrate.  Structures were solved using rigid body refinement and the 

Ramachandran plot showed no outliers for any structure.  These and other structures 

discussed below were solved under isomorphous conditions to ensure that observed 

atomic displacements were not the consequence of differences in crystal contacts (see 

methods and Table 3-2 at end of chapter).   

To determine peptide induced conformational changes to the WT protein, we 

overlayed the free and PWT-bound WT structures by least squares minimization of Cα 

positions and calculated the displacement of each atom.  Upon peptide binding, the major 

atomic displacements in the WT protein occur in the carboxylate binding loop (figures 3-

4, A-C).  Specifically, the vector diagram (figure 3-4C) shows that, upon PWT binding, the 

loop moves to an orientation we refer to as ‘clamped down’.  This involves a shift of 4.8 

A in the end of the loop towards the α2 helix (figure 3-3A).  Additionally, comparison of 
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carboxylate binding loop B factors in these two structures shows peptide binding induces 

a disorder-to-order conformational change in this region (figure 3-3B).   

Figure 3-3  Disorder to order conformational change in carboxylate binding loop.  A)
Overlay of Cα traces for three structures (WT free in light blue, WT bound to Pwt in dark blue 
and white respectively, and G322A free in red).  B) Zooming in on the carboxylate binding loop, 
we see the peptide-induced conformational change in the WT structures, referred to here as 
‘clamped down’ (compare light and dark blue Cα traces).  The free G322A structure (red) shows 
that it is in the clamped down even in the absence of peptide.  C) Bar graph of B factors of Cα
atoms at indicated positions shows that, in addition to displacement, there is a disorder-to-order 
transition upon peptide binding to WT protein (compare light and dark blue bars).  The G322A 
mutation itself induces this transition even in the absence of peptide binding (red bars).  
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The picture of conformational changes induced by peptide binding to G322A is 

clearly different.  An overlay of G322A structures in the free and PWT bound states shows 

essentially no atomic displacements upon binding to PWT (figures 3-4, D-F, table 3-2).  

The loop is already in the clamped down conformation in the G322A mutant in the 

absence of peptide.  This uncoupling of peptide binding to conformational change 

suggests the G322A mutation has stabilized a high-affinity, clamped-down conformation 

in the absence of peptide.  

To determine how position 322 controls conformational change in the carboxylate 

binding loop we solved and compared the peptide-free WT and G322A structures (figures 

3-4, G-I, table 3-2).  These structures reveal the G322A mutation itself induces the same 

clamping down conformational change in the carboxylate binding loop normally observed 

with peptide binding to the WT PDZ3.  Comparison of B factors shows that the G322A 

mutation also causes a disorder to order conformational change in the carboxylate binding 

loop in the absence of peptide (figure 3-3, A and B).  Thus, in the peptide-free state, the 

G322A mutation appears to redistribute the protein conformational ensemble to a bound-

state conformation. This structural change provides an explanation for the increased 

affinity of G322A-containing proteins for both Pwt and PT7F peptides.  The structures 

suggest stabilization of the loop by the G322A mutation decreases the entropic cost 

associated with clamping the loop upon peptide binding to the WT protein.   

Why would evolution design a peptide-induced conformational change in the 

carboxylate binding loop that sacrifices binding affinity?  As discussed above, recent 

studies comparing yeast SH3 domain specificities have shown that evolution has not 

simply optimized binding affinity at protein-protein interfaces.  Rather, as found in PDZ3, 

binding interactions have been designed to achieve specificity for partners in the face of 
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Figure 3-4.  Position 322 controls the conformational change of PDZ3 to peptide binding.
All panels depict differences between a reference structure and a perturbed state structure.  Bar 
graphs (A, D, G) show displacements of protein atoms (numbered according to PDB) in response 
to a perturbation.  Colorimetric representation of these displacements (B, E, H) are shown from 
blue (low) to red (high) on a CPK model of the reference structure.  Vector diagrams (C ,F, I) 
show least squares overlay of C� trace of reference (blue) and perturbed states (protein in yellow 
and peptide in gray).  Vectors are drawn from atomic centroid in reference state to the 
corresponding centroid in the perturbed state.  Upon Pwt binding to WT PDZ3 (A-C) the 
carboxylate binding loop clamps down.  However, G322A shows no significant atomic 
displacements in response to Pwt binding (D-F).  This occurs because the G322A mutation itself 
induces essentially the same clamping conformational change in the carboxylate binding loop 
(G-I).  
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competing ligands.  In addition, since evolvability is a key characteristic of natural 

proteins, perhaps the co-selection between positions 322 and 372 contributes to the 

facility of class-switching by the PDZ domain.  Either way, it is clear that understanding 

the role of G322 involves understanding its long-range cooperativity with the 

specificity/evolvability determinant, the αB1-P-2 interaction. 

 

Structural analysis of double mutants 

Recent work has shown that the mechanism underlying thermodynamic coupling 

between two mutations can be revealed through analysis of the structural analog of the 

thermodynamic cycle [30-32].  Comparison of the structural effects of a mutation in two 

different backgrounds can provide a physical mapping of how two mutations structurally 

interact; this structural interaction can be correlated with their energetic coupling.  To 

understand the physical basis of the high order coupling among these positions, we solved 

the structures of WT and H372Y proteins in three states: peptide-free, bound to PWT, and 

bound to PT7F.   

Structural comparison of PWT-bound WT and H372Y structures revealed that 

H372Y causes two major structural effects (figure 3-5, A-C).  First, tyrosine at 372 

appears to prevent the N-terminal end of the peptide from binding though the C-terminal 

amino acid and carboxyl terminus are bound as in the WT structure.  By disrupting 

several protein-peptide contacts, a tyrosine at position 372 seems to actively select against 

a class I ligand, reflected in the substantially weaker binding between H372Y and PWT 

(Kd = 205.8 ± 10.2 μM).  Second, the structural comparison shows an unexpected long-

range physical consequence of H372Y.  The interaction of H372Y and PWT leaves the 
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Figure 3-5. Mutations H372Y and T7F structurally interact through both local and 
propagated atomic displacements.  Bar graphs (A, D) show atomic displacements (�r) in 
protein (black bars) and peptide (gray bars) atoms induced by H372Y mutation in Pwt and PT7F
backgrounds, respectively.  Atom numbering follows PDB file numbering.  Colorimetric 
representations of displacements (B, E) are shown from blue (low) to red (high) on CPK models
of protein, with bound peptide shown as stick model.   Vector diagrams (C, F) show least squares 
overlay of C� trace of reference (protein in blue and peptide in white) and perturbed (protein in 
yellow and peptide in gray) states. Vectors are drawn from atomic centroid in reference state to 
the corresponding centroid in the perturbed state.  H372Y has two major effects in a Pwt
background: the mutation prevents the N-terminal end of the peptide from binding and leaves the 
carboxylate binding loop is in the unclamped conformation.  However, in the PT7F background, 
H372Y has essentially no structural effect. 
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carboxylate binding loop in the unclamped conformation suggesting the nonspecific 

binding between H372Y and PWT is not sufficient to induce conformational change in the 

loop.  This demonstrates a remarkable finding: coordination of the terminal carboxylate is 

perhaps necessary, but certainly not sufficient to cause clamping down of this loop.  

Achieving the clamped down state also requires the αB1-P-2 interaction.  In this sense, the 

carboxylate binding loop acts like an AND gate, clamping down only if the C-terminal 

site and the P-2 site of the ligand are recognized correctly.   

The dramatic structural effects of H372Y shown in figure 3-5C reveals the 

mechanism of class II specificity and a common design principle underlying specific 

protein-protein interactions.  As previously observed in SH3 domains, binding specificity 

depends on a balance of forces in the binding interface [33].  The structure of H372Y 

bound to peptide shows that the side chain of the carboxy terminal valine of the peptide 

forms a presumably favorable van der Waals interaction with the hydrophobic binding 

pocket.  However, the tyrosine at position 372 clearly makes an extremely disruptive 

interaction with the peptide and significantly reduces the binding affinity for Pwt.   

If the carboxylate binding loop is an AND gate as described above, then restoring 

the αB1-P-2 interaction in the H372Y mutant should restore loop clamping.  Comparison 

of structures of WT and H372Y bound to PT7F peptide shows that the class-switching 

mutation on the peptide almost completely structurally compensates for the H372Y 

mutation (figures 3-5, D-F).  In the background of the T7F mutation, H372Y has little 

effect on the peptide or protein.  This makes structural sense since the tyrosine at 372 and 

phenylalanine of PT7F can now form class II hydrophobic interactions. The compensated 

interaction of this contact is apparently sufficient to allow the carboxylate binding loop to 

adopt a clamped-down conformation.   
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Thus, we now see the structural logic of energetic communication between 

positions 322 and 372.  The αB1-P-2 interaction triggers both local and non-local 

(carboxylate binding loop) structural changes.  Position 322 is a determinant of the non-

local effect.  The cycle of structures reveals that the H372Y and T7F mutations interact 

through their compensatory effects in two regions of the PDZ domain: proximally in the 

peptide and distally in the carboxylate binding loop.  From these data it is easy to imagine 

how perturbation of the long-range mechanical coupling between these two structural 

regions could be used to modulate binding affinity.  Evidence from two PDZ domain 

systems, NHERF and PSD-95, shows that phosphorylation of the P-2 position of the 

respective binding partners inhibits binding [28, 29].  In the light of these structural 

observations, it is likely that phosphorylation in these systems disrupts interactions at the 

αB1-P-2 contact in the respective binding interfaces and prevents the long-range 

mechanical coupling necessary for binding.  Thus, it may be that effective regulatory 

control by phosphorylation also requires the thermodynamic coupling with the 

carboxylate binding loop modulated by G322.  Overall, these data strongly provide a 

mechanistic underpinning for thermodynamic and evolutionary coupling of positions 322 

and 372.  The fact that these interactions are at long range and are not obvious in any 

previous PDZ structural studies highlights the value of the SCA in identifying such 

residue pairs.   

As a further test of our hypothesis, we sought to demonstrate that mutation at 

position 322 selectively interferes with the non-local structural effects of the αB1-P-2 

interaction.  Given the ability of 322 to control carboxylate binding loop conformational 

change, we predicted that in the background of G322A mutation the effect of H372Y 

would prevent structural communication between position 372 and the carboxylate 
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binding loop.  In other words, the structural changes induced by H372Y would only 

extend to the peptide and not to the carboxylate binding loop.  To test this, we solved the 

structures for the same cycle in the presence of the G322A mutation (table 3-2).  As 

Figure 3-6. G322A uncouples carboxylate binding loop conformational change from 
peptide binding.  Bar graphs (A, D) show atomic displacements in protein (black bars) and 
peptide (gray bars) atoms induced by H372Y mutation in G322A Pwt and G322A PT7F
backgrounds, respectively.  Atom numbering follows PDB file numbering.  Colorimetric 
representations of displacements (B, E) are shown from blue (low) to red (high) on CPK models
of protein, with bound peptide shown as stick model.   Vector diagrams (C, F) show least squares 
overlay of Ca trace of reference (protein in blue and peptide in white) and perturbed (protein in 
yellow and peptide in gray) states. Vectors are drawn from atomic centroid in reference state to 
the corresponding centroid in the perturbed state.  H372Y has only one structural consequence in 
the G322A Pwt background: it distrupts the N-terminal end of the peptide from binding (A-C). 
The T7F mutation compensates for this local structural displacement (D-F).  
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predicted, comparison of structures of G322A and H372YG322A bound to PWT show that 

H372Y only ejects the N-terminal end of the peptide and has no effect on the carboxylate 

binding loop (figures 3-6, A-C).  Thus, the G322A mutation completely structurally 

uncouples the long- and short-range effects of the H372Y mutation.  As before, in the 

background of the T7F mutation, H372Y has no structural effects (figures 3-6, D-F).   

The combination of structural and thermodynamic data indicate that the flexibility 

of the carboxylate binding loop (with glycine at position 322) is tuned to make its 

physical response sensitive to the interaction between positions 372 and P-2.  This 

mechanical coupling is a built-in mechanism for screening for specific interactions and 

for optimizing plasticity of the PDZ domain, but comes at the cost of decreased binding 

affinity.  By optimizing this long-range coupling, the designed flexibility improves the 

role of position 372 in two regards: 1) as an evolutionary hotspot such that mutations at 

this position cause a significant class redistribution of the binding partner profile, and 2) 

as a regulatory hotspot, such that phosphorylation of substrates interacting with position 

372 may permit larger free energy destabilization. 

 

Balance of stability and function 

The demonstration of the functional importance of G322 for regional instability is 

not novel.  This concept, originally stated as the ‘stability-function hypothesis’ by Pauling, 

is evident in numerous systems [34].  For example, comparisons of thermophilic, 

mesophilic, and psychrophilic enzymes show that their stabilities are tuned for specific 

operating temperatures [35].  Additionally, enzymes are tuned to stabilize the transition 

state of a reaction coordinate and thus are necessarily not optimally stable in their ground 
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states [36].  These examples highlight the fact that regional instabilities are necessary 

compromises in the evolutionary balance of stability and function.  The thermodynamic 

and structural dissection of the set of interactions in PDZ3 described above not only 

clearly demonstrates another solution of this balance, but also shows how regional 

inhomogeneities may be coupled to other energetic interactions in the protein.   

Tuning the physical properties of flexible regions represents a means to modulate 

function.  For example, the physical basis for the improved affinity of the G322A 

mutation illustrates a structural mechanism also observed in antibody maturation.  Recent 

structural comparisons revealed that the unbound conformation of the mature antibody 

closely resembles the antigen-bound conformation of the germline antibody [37].  This 

suggests the mutations acquired during maturation shift the conformational equilibrium 

such that the mature antibody exists in an ensemble that more closely matches the bound-

state conformation.  This decrease in flexibility sacrifices the binding repertoire of the 

antibody but produces improved complementarity to a specific antigen and hence 

enhances the binding affinity of that specific interaction.  Similarly, the G322A mutation 

pre-organizes the binding site such that it more closely complements peptide and 

enhances binding.  However, this improved binding weakens a built-in mechanism for 

selecting specific interactions.   

 

Par-6 PDZ domain shows allosteric regulation involving loop 

In light of the results discussed above, modulation of carboxylate binding loop 

flexibility can be imagined as a means to regulate ligand binding.  A combination of 

structural and thermodynamic experiments studying the regulation of a PDZ domain in 
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Par-6 adds to the diversity of roles for the carboxylate binding loop [38].  Par-6 is a 

conserved protein involved in establishing cell polarity and contains a PDZ domain 

adjacent to a CRIB motif; these domains bind the Rho GTPase Cdc42 in a GTP-

dependent manner.  Structural studies of the complex showed that Cdc42 contacts the 

PDZ domain in two regions: 1) along the β1 strand and 2) in the α1 helix [39].  

Intriguingly, the α1 helix contains several residues (PDZ3 numbering: 345, 350, 351, 352) 

in the PDZ statistically coupled network and is located on the backside of the PDZ 

domain.   

Binding measurements showed that the affinity of Par-6 PDZ domain for peptide 

ligand improves 13 fold in the presence of Cdc42 [38].  That is, Cdc42 binding to the 

back of the domain allosterically controls binding at the active site.  What is the 

mechanism for this regulation?  The P171G mutation in the Par6 PDZ domain was found 

to uncouple this long-range regulation [38].  Interestingly, position 171 of the Par-6 PDZ 

domain corresponds to PDZ3 position 322.  The location of this position in the 

carboxylate binding loop suggested a potential role for Cdc42 in regulating binding 

interaction.  To address this, the authors compared the mobilities of the carboxylate 

binding loop from an NMR structure of the free Par-6 PDZ domain and a crystal structure 

of the Cdc42-bound Par-6 PDZ domain.  Though a comparison of mobility from these 

different techniques is tenuous, the authors claim that upon Cdc42 binding, the 

carboxylate binding loop of the Par-6 PDZ domain becomes more ordered.  In addition to 

providing the first demonstration of allosteric regulation of PDZ domain binding, this 

work showed remarkable consistency with already published SCA results.  Note that in 

the Par-6 PDZ domain, this position is a proline.  It is possible that proline, rather than 

glycine, provides a rigidity in this domain necessary to transmit energy of Cdc42 binding 
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into ordering of the carboxylate binding loop.  In combination with the structural analysis 

of PDZ3 described above, these two case studies indicate that PDZ3 position 322 acts as a 

critical energetic relay point.  Flexibility at this position is tuned to create appropriate 

energetic coupling of distant structural elements.  Together, these two studies provide 

evidence for the majority of the PDZ domain SCA network: the Cdc42-Par6 work 

connects the back side (αA) to the carboxylate binding loop and our work connects the 

αB1-P-2 interaction to the carboxylate binding loop. 

This mechanistic insight demonstrates the power of SCA to identify important 

interactions among positions even when acting at long range and not structurally obvious.  

However, these results only represent a part of a complete atomistic understanding of how 

PDZ3 modulates its binding.  The structural analysis of energetics above only considered 

the atomic displacements caused by mutation.  However, other processes, such as 

dynamical fluctuations, are likely to significantly contribute to binding energetics.  

Additionally, the statistically coupled network identified numerous other highly co-

evolving interactions that remain unexplained by these structures.  Each of these 

interactions may have a unique mechanistic explanation.  In the remainder of this chapter 

I will discuss experiments which we conducted to address other interactions in PDZ 

domains.   

 

Understanding the effect of V386I 

One of the hallmark results of SCA is that, in all proteins analyzed, the 

structurally contiguous networks connect distant sites through several intervening van der 

Waals contacts.  What mechanisms allow energetic interaction between such positions?  
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One possibility is that atoms in statistically coupled units are tightly packed to create a 

micro-region of increased rigidity.  Such a region of relative solidity would permit 

efficient, anisotropic propagation of energy between distant sites.  We reasoned that such 

solid-like regions should display distinctive mechanical features such as a tendency to 

anisotropically propagate physical displacements.  To test this in PDZ3, we measured the 

structural and thermodynamic effects of a mutation at Val386.  Position 386 is located on 

the backside of the protein with the side chain facing towards the core.  SCA suggests that 

this position is most strongly coupled to positions 322, 362, and 345 (figure 3-2C).   

To characterize the energetic effect of a perturbation at position 386 on binding, 

we measured binding energies of the V386I mutant to both class I and class II peptides by 

ITC.  Both PWT and PT7F binding measurements show an approximately three fold 

Figure 3-7.  V386I has little structural effect.  (A) Bar graph shows atomic displacements in protein 
(black bars) and peptide (gray bars) induced by the V386I mutation.  Atom numbering follows PBD 
numbering.  (B) Colorimetric representations of displacements are shown from blue (low) to red (high) on 
a CPK model of the WT protein with bound peptide shown as stick model.  (C) Vector diagram show least 
squares overlay of Ca trace of WT (protein in blue and peptide in white) and V386I (protein in yellow and 
peptide in gray) states.  Vectors are drawn from atomic centroid in WT Pwt state to V386I Pwt state. 
Clearly, V386I causes little detectable structural perturbation.  
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destabilization (-7.64 ± 0.12 kcal/mol and -5.41 ± 0.11 kcal/mol, respectively) relative to 

wild type PDZ3.  To understand the structural basis of these destabilizations we solved 

the structures of V386I in complex with PWT and in complex with PT7F.  Comparison of 

the WT and V386I structures bound to PWT showed very little significant change between 

the two structures (figure 3-7).  Thus, from this data set it is impossible to determine the 

mechanism underlying the destabilization caused by V386I.  

The analysis of V386I highlights several critical issues in correlating structural 

and energetic effects of mutations.  While atomic displacement may be indicative of a 

change in the energetic state between two structures being compared, no correlation can 

be made between the magnitude of displacement and the magnitude of the energetic 

effect.  The physical basis of the small energetic effect of V386I may be at the limit of the 

resolution of structural analysis.  Furthermore, as noted previously, crystal structures do 

not capture all critical physical features of proteins.  The mutation may exert its influence 

on the dynamic features of the protein, such as coupled motions among binding pocket 

residues, which would not be observed in crystal structures.   

In an attempt to further characterize the effect of V386I, we solved the peptide-

free structure of the mutant.  Though isomorphous with other structures analyzed, the 

peptide-free structure showed different crystal contacts as reflected by a significantly 

smaller unit cell size (87.0 A).  Consequently, comparison with other structures would not 

only report energetic differences caused by the mutation but also effects induced by 

crystal packing.  Given the small energetic and structural effects observed in the 

interaction between V386I and either peptide, we decided not to further pursue 

thermodynamic and structural studies of this mutant (though a structure of the double 

mutant H372Y V386I bound to Pwt was obtained).   
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Understanding the interaction between I359V and H372Y 

In the thermodynamic and structural analysis of the interaction between positions 

372, 322, and P-2, we showed the power of SCA to predict a functionally important 

cooperative interaction.  If the results of SCA indeed reflect the energetic interactions in 

proteins, then the converse should also apply; that is, interactions predicted to be weak 

should show thermodynamic and structural independence.  We tested this by analyzing 

the energetic interaction between positions 359 and 372.  Position 359 serves as a 

particularly appropriate control because it is located in the core of the protein and is 

highly conserved but statistically uncoupled to 372 (0.04 kT*, p = 0.38) and located in the 

core of the protein.   

 Thermodynamic cycle analysis based on ITC binding measurements with PWT 

showed that the I359V mutation was indeed not thermodynamically coupled to H372Y.  

To confirm that these perturbations are structurally independent, we solved the PWT-

bound structures of I359V and the H372Y I359V double mutant (table 3-2).  The I359V 

mutant bound to PWT is essentially identical to wild type PDZ3 bound to PWT (figure 3-8).  

As discussed above, H372Y has two structural effects:  1) proximally, it prevents the N 

terminal end of the peptide from binding and 2) distally, the carboxylate binding loop 

remains in the unclamped conformation.  In the background of I359V, H372Y shows 

exactly the same effects, confirming that structural independence correlates with 

thermodynamic as well as evolutionary additivity.   These findings are consistent with the 

observed correlation between structural and thermodynamic additivity in other systems 

[31, 32].  
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Figure 3-8.  Structural interaction between H372Y and I359V.  Figures show structural 
effects of H372Y in two different backgrounds: 1) WT bound to PWT (A, B, C) and, 2) H372Y 
bound to PWT (D, E, F).  Bar graphs (A, D) show little structural change induced by I359V in 
either background.  CPK renditions of PDZ domain (B, E) with colorimetric representation of 
atomic displacements from blue (low) to red (high) simply reflect that I359V causes minimal 
atomic displacements in either background.  Vector plot (C) on overlayed Cα traces of WT (light 
blue) bound to PWT (white) and I359V (yellow) bound to PWT (gray) indicate no structural 
changes; similarly, there are no changes (F) between H372Y (light blue) bound to PWT (white) 
and H372Y I359V (yellow) bound to PWT (gray).   
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Conclusion 

Summary of results  

This chapter presents a set of experiments focused primarily on elucidating the 

mechanistic basis for coupled interactions in the interface between PDZ3 and a peptide 

ligand.  Thermodynamic data reveal that the strength of the specificity-determining 

contact between H372 and P-2 depends on the presence of glycine at position 322, located 

on the opposite side of the binding pocket.  Mutation of this glycine to alanine 

significantly reduces the strength of the coupling and, therefore, the ability to distinguish 

specific binding interactions.  As a consequence, position 322 controls the evolvability of 

the PDZ domain.  In a wildtype background, the H372Y mutation can flip the binding 

profile of the domain so it prefers class II ligands over class I ligands by two fold.  

However, in the G322A background, the evolutionary potential at position 372 is 

dramatically reduced; in this context the H372Y mutation creates a protein with 

essentially equal preference for both classes.   

How does this coupled interaction happen?  Structural studies of the mutants in 

complex with ligands demonstrate that glycine at position 322 endows the carboxylate 

binding loop with flexibility such that a conformational change in this region is sensitive 

to class-specific interactions at a distant site.  The G322A mutation structurally uncouples 

conformational change in the loop from peptide binding.  These findings provide a clear 

example of a regional structural inhomogeneity tuned to allow long-range cooperativity 

that optimizes both specificity and evolvability.  Indeed, the role of position 322 as an 

evolutionarily conserved energetic lynchpin was also demonstrated by recent experiments 

that revealed its role in Par-6 allosteric regulation.  Together, the data demonstrate the 



 88

power of SCA to identify functionally critical energetic interactions, even when not 

obvious from structure alone.   

 

Physical evidence for pathways in other proteins 

Based on the experiments described above, a combination of crystallography, 

NMR relaxation, and molecular dynamics experiments should be able to detect structural 

units critical for energy propagation.  In fact, evidence for the presence of structurally 

inhomogeneous units tuned for energy propagation has been found in several systems.  

For example, NMR relaxation and molecular dynamics experiments suggest the presence 

of contiguous networks of atoms with correlated motion in dihydrofolate reductase and 

lactate dehydrogenase [40, 41].  The coupled motions occur on time scales ranging from 

femtoseconds to milliseconds and involve both active site and distant exterior residues; 

kinetic measurements of the effects of mutagenesis at these positions suggest the coupled 

motions are important for promoting catalysis.  In a second example, structural studies of 

kinesin mutants attempted to understand the physical basis of its allosteric regulation [42].  

Kinesin is a motor protein whose ATPase activity is enhanced when a distant surface 

region of the protein is bound to filament.  Structures of kinesin mutants that uncoupled 

this allosteric regulation revealed structural changes that define a connected pathway 

from the microtubule binding site to the ATP binding site.  The authors of this work 

suggest this pathway is a means of communicating the energy of binding directly to the 

active site and is therefore critical for motor movement.  These and other examples [43, 

44] indicate an emerging ability to rigorously characterize the internal physical features of 

proteins and how these features relate to functional behavior. While the available methods 
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partially complement one another, they cannot, even taken together, provide a complete 

mechanistic understanding.  However, guided by the the energetic map provided by SCA, 

these techniques should ultimately provide significant insight into the physiochemical 

basis of function.   

  

Future work to understand coupling 

While the data presented in this chapter provide useful insights into mechanisms 

tuning binding energy in the PDZ domain, they do not provide a complete 

physiochemical understanding of how binding energy is tuned in PDZ3.  The analysis 

shown here only focused on one interaction suggested by SCA.  The network graph in 

figure 3-2C shows 25 other interactions each of which has its own unique physical 

mechanism.  How do these other atomic interactions contribute to the binding energy?  

Furthermore, these experiments only address the correlation of atomic displacements with 

thermodynamic coupling and do not reveal the role of the dynamic state of the protein.  

Another physical change that occurs with peptide binding is a significant decrease in 

entropy (indicated by temperature factors) in several regions of the PDZ domain.  These 

entropic changes may play a significant role in coupling distant structural elements.  A 

careful characterization of changes to the dynamic state of the domain, at both slow and 

fast time scales, will be a critical step in achieving a more complete mechanistic 

understanding of function.   

Recent work from several labs has made significant inroads to a characterization 

of the dynamical dimension of proteins.  NMR relaxation experiments were used to study 

changes in fast time scale dynamics (ps-ns) in the PDZ domain from human tyrosine 
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phosphatase 1E induced by peptide binding.  The data indicate that ligand binding 

induces changes in dynamics at positions in the binding pocket at distant sites; 

importantly, these positions show strong correlation with the highly coupled network 

identified by SCA [45].  Molecular dynamics experiments using novel protocols to 

optimize the signal-to-noise ratio have also been used to probe the energetic architecture 

of PDZ domains.  The data suggest that energetic perturbations on the coupled network in 

PDZ3 tend to propagate preferentially through the network; furthermore, perturbations off 

the network dissipate locally [46].   

The data presented in this chapter, both from work in our lab and other labs, 

indicates that the networks identified by SCA not only correlate strongly with function 

but also have distinct physical features tuned to allow cooperative energy propagation.  At 

present, these results only present a small fraction of the physical mechanisms operating 

in the network.  The initial glimpses of the PDZ energetic architecture presage a richness 

of physical interactions represented by the SCA matrix.  How are the fundamental inter-

atomic forces combined to create the links in each energetic network?  Each link in the 

network likely has a unique solution to this question; it is also possible that a particular 

network link has a different physical explanation in each member of a protein family.  An 

extensive combination of SCA results and biophysical techniques, such as NMR, 

crystallography, and molecular dynamics, should expose the physical principles 

underlying the sequence-structure-function problem in proteins.  Given the observation 

that the SCA network correlates with physical cooperativity at a ‘microscopic’ level, it is 

also worth understanding the organization of the network at a more ‘macroscopic’ level.  

Specifically, how are the links arranged in the network?  The next chapter presents an 

analysis of the toplogy of the energetic architecture as revealed by SCA. 
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Protein Synch. Res % 
comp 

R 
factor 

Last 
shell 
R 

Mos. Unit 
cell 
length 

Unique 
refl. 

# 
atoms 

Rfree/R 

ALS, 8.2.1 1.95 99.3 0.052  0.314 0.749 90.03 9569 881 26.9/23.6 WT APS, ID19 1.8 99.9 0.038 0.461 0.249 89.09 11775 917 26.8/25.3 
ALS, 8.2.1 1.45 100 0.049 0.496 0.369 89.67 22549 1032 23.7/21.5 
APS, ID19 1.58 99.9 0.039 0.443 0.314 89.18 19565 1080 24.6/21.9 
APS, ID19 1.58 100 0.049 0.437 0.272 89.16 17216 1062 24.9/22.1 WT Pwt

APS, BM19 1.53 99.1 0.060 0.507 0.357 89.35 18905 1044 24.3/22.5 
APS, ID19 2.0 99.5 0.067 0.510 0.705 88.91 8567 963 26.4/22.8 WT PT7F ALS, 8.2.1 1.6 99.4 0.045 0.456 0.324 89.17 16573 1001 24.6/22.8 
APS, ID19 2.1 99.9 0.058 0.435 0.401 89.28 7623 878 26.5/23.7 
APS, ID19 2.1 99.9 0.057 0.467 0.662 89.18 7757 867 29.8/26.6 H76Y 
APS, ID19 2.0 100 0.057 0.448 0.159 89.18 8727 899 29.3/25.8 
APS, ID19 2.1 98.4 0.051 0.532 0.647 88.29 7751 901 28.7/24.9 H76Y Pwt APS, ID19 2.0 98.8 0.051 0.513 0.183 88.54 8771 893 28.4/27.3 

H76Y PT7F ALS, 8.2.1 1.5 98.5 0.059 0.430 0.527 90.05 20273 1021 26.0/24.1 
APS, ID19 1.97 99.9 0.058 0.413 0.411 89.27 9149 966 26.3/23.1 G26A APS, ID19 1.9 99.7 0.064 0.479 0.334 89.16 10036 960 25.6/22.9 
APS, ID19 1.58 100 0.377 0.356 0.356 89.74 17567 1060 23.9/21.8 
APS, ID19 1.63 99.9 0.044 0.462 0.493 89.26 15773 1050 23.9/21.3 G26A Pwt

APS, ID19 1.53 99.9 0.054 0.496 0.210 89.36 19033 1070 22.7/19.6 
G26A PT7F APS, ID19 1.65 99.6 0.053 0.411 0.311 89.20 15155 1084 25.2/22.0 
V90I ALS, 8.2.1 1.85 99.9 0.045 0.492 0.912 87.00 10150 866 29.6/25.4 

ALS, 8.2.1 1.5 100 0.041 0.506 0.378 89.27 20164 1039 25.8/22.9 V90I Pwt APS, ID19 1.67 99.9 0.055 0.502 0.231 89.36 14730 1045 24.2/21.8 
V90I PT7F APS, BM19 1.92 100 0.053 0.510 0.385 89.11 9805 925 29.5/27.6 

APS, ID19 2.1 99.7 0.066 0.438 0.542 88.26 7274 975 28.2/27.0 
APS, ID19 1.65 99.8 0.037 0.309 0.398 89.31 15253 1063 24.2/22.0 I63V Pwt

APS, BM19 1.55 99.8 0.053 0.431 0.193 89.61 18298 1016 26.8/24.0 
I63V PT7F APS, BM19 2.15 99.7 0.078 0.450 0.477 88.97 7024 854 28.6/23.6 
H76YG26A APS, ID19 1.9 100 0.072 0.414 0.440 89.07 10076 918 28.6/23.6 

ALS, 8.2.1 1.65 99.7 0.042 0.333 0.710 89.39 15137 969 27.2/25.2 
APS, ID19 1.63 99.9 0.049 0.433 0.274 88.94 15632 1008 25.5/21.5 H76YG26A Pwt

APS, ID19 1.61 100 0.051 0.507 0.189 88.79 16122 999 27.3/23.9 
H76YG26A PT7F APS, ID19 1.60 99.5 0.046 0.522 0.377 89.12 19056 1066 23.9/21.1 
H76YV90I APS, BM19 2.15 99.8 0.053 0.479 0.406 89.62 7092 862 29.2/27.6 
H76YV90I Pwt ALS, 8.2.1 1.77 99.0 0.043 0.509 0.656 88.96 12222 901 31.1/27.0 
H76YI63V APS, BM19 1.9 98.9 0.049 0.574 0.352 89.08 9958 867 29.8/28.4 

ALS, 5.0.1 1.82 99.9 0.052 0.495 0.445 88.49 11187 901 28.5/25.3 H76YI63V Pwt APS, ID19 2.05 100 0.056 0.476 0.320 88.16 7859 870 27.5/26.6 
H76YI63V PT7F ALS, 5.0.1 1.96 99.9 0.036 0.453 0.278 89.27 9255 866 28.3/27.4 

Table 3-2 Crystallographic Data.  For proteins where multiple structures were solved, the structure with 
the highest resolution was used for structural comparisons discussed in the text.  (Abbreviations.  Synch.: 
synchrotron where data was collected.  Res: resolution.  % comp: percent completeness.  Mos.: mosaicity.  
Unique refl.: number of unique reflections).   
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Materials and Methods 

Mutagenesis, expression, purification, crystallization.  A pGEX4T-1 plasmid expressing 

a GST-PDZ3 fusion was obtain from Roderick MacKinnon.  Site directed mutagenesis 

was carried out on PDZ3 of rat PSD-95 (residues 294-402) using standard polymerase 

chain reaction-based techniques.  The domains were expressed as N-terminal glutathione 

S-transferase (GST) using the pGEX4T-1 vector in Escherichia coli [strain BL21(RP), 

Stratagene].  Cultures (1L) were grown in Terrific Broth to an optical density (600 nm) of 

1.6 at 37C, induced for 4 hours at 25C with 500 μM isopropyl-β-D-thiogalactopyranoside, 

and then harvested by centrifugation.  Pellets were resuspended in Buffer A (140 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4 (pH 7.3), 1.0 mM dithiothreitol 

(DTT)) with protease inhibitors (10 μg/ml pepstatins, 10 μg/ml leupeptins, 0.1 mM 

phenyl methyl sulphonylfluoride), lysed by sonication, and then centrifuged.  Fusion 

protein was purified from the supernatent through GST affinity chromatography.  The 

PDZ domains were cleaved off the resin through thrombin proteolysis (Sigma, 100U per 

6 ml resin, 4 hr room temperature) and purified to homogeneity using a Mono Q HR5/5 

(Amersham) column run with a linear gradient from low salt (1.0 mM DTT, 20 mM Tris-

HCl (pH7.5)) to high salt (1.0M NaCl, 1.0 mM DTT, 20 mM Tris-HCl (pH 7.5)).  The 

protein was dialyzed into 10 mM NaCl, 10 mM HEPES, 1.0 mM DTT (pH 7.2) and 

concentrated as necessary.  For crystallization, the protein was concentrated to 33 mg/ml 

and either flash frozen or immediately used.  Crystals of both peptide-free and bound 

PDZ proteins were grown in focused grid-screen trials with a range of Na Citrate (0.6 M 

to 1.1 M) and pH (7.0-7.6) conditions.  In crystal trials of PDZ-peptide complex, 

dissolved peptide (either Pwt or PT7F) was added to a 2:1 molar ratio with protein.  Sitting 
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drops (4 μl) were set up in a 1:1 ratio with reservoir solution.  Bipyrimidal crystals 

appeared within a week.  Mutants containing the H372Y mutation required microseeding 

from WT crystals to initiate growth.  Crystals were first stabilized in 0.9 M Na Citrate, 

0.1 M HEPES (pH 7.4) and then cryoprotected by transferring into the same solution with 

progressively higher (up to 20%) glycerol concentration.  An alternate and more efficient 

means of crystallization involved adding 20% glycerol to the crystallization trials 

solutions.  However, this method required addition of microseeds to obtain crystals within 

a 3 to 5 days; without addition of microseeds crystals appeared variably in several weeks 

to months.  Since this solution already contained 20% glycerol, cryoprotection only 

required incubation with well solution for 20 minutes.  The crystals were frozen in 

propane.  All crystals were screened at the home R-AXIS II or IV sources; only crystals 

showing diffraction better than 2.2 A and mosaicity less than 0.4 were saved and taken to 

the synchrotron for final data collection. 

 

Binding measurements.  Isothermal titration calorimetry (ITC) measurements were 

conducted at 25C using the VP-ITC microcalorimeter (MicoCal Inc.) by making 38 

injections (8 μl each) of peptide ligand into PDZ protein.  The peptides (PWT is the C-

terminal nine amino acids of CRIPT, N-TKNYKQTSV-C, and PT7F simply mutates the 

antepenultimate position) were dissolved in 10 mM NaCl, 10mM HEPES (pH 7.2), 1.0 

mM DTT.  Concentration of peptide (0.5 mM to 2.8 mM) and protein (0.05 mM to 0.15 

mM) in each run were determined from absorption at 280 nM.  The ratio of peptide to 

protein concentrations was adjusted between 10:1 and 30:1 (depending on the 

dissociation constant) in order to reach saturation in the binding reaction.  In all titrations, 

the reference power was 12.9 ucal/s and equilibration time was 180s between peptide 
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injections.  Peaks were integrated and the titration curve was fit using Origin (MicroCal) 

assuming a 1:1 stoichiometry.  The values given in Table 1 are averages and standard 

deviations from 3 measurements for each protein.  

 

Data Collection, Structure Determination, and Analysis of Structures.  Data were 

collected at synchrotrons indicated in Table 3-2.  Diffraction data were indexed, 

integrated, and scaled with HKL2000.  Structures were solved using the software 

Crystallography and NMR System (CNS).  An initial model was obtained from rigid body 

refinement of the published PDZ3 structures (1BE9 and 1BFE).  This model was then 

iteratively refined through rounds of simulated annealing, positional refinement, B-factor 

refinement, solvent modeling, and model building in O.  A randomly selected set of 

reflections (5%) was flagged for statistical cross-validation calculations (Rfree).  The 

Ramachandran plot for all models show excellent geometry and no outliers for all models.  

Note that in the H372Y crystal structure, the N terminal end of the peptide forms a 

symmetry-related contact with the β2 strand of an adjacent PDZ domain in the crystal.  

The displacement in this part of the peptide is noted but neglected as an artifact of 

crystallization; we assume this novel contact does not contribute significantly to the 

structural differences observed. Analysis of all structures was performed in MATLAB 

(version 6.5.0.180913a (R13), Natick, MA).  The MATLAB code written for this analysis 

is given in appendix B.   
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Chapter 4: The Energetic Topology of Proteins 

Introduction 

Reductionism has been the central theme of essentially every level of biological 

research, from the atomic interactions in proteins to the development of tissues.  

Reductionist approaches have proven invaluable in understanding the behavior of 

complex systems – both biological and nonbiological – where the behavior of the system 

is determined by collective interactions among its set of components [1].  For example, 

the understanding of energy propagation through electrical power grids depends on a 

detailed map of power lines and relay stations.  An explanation of information flow 

through the internet depends on a map of websites and connecting links.  Elucidation of 

how ligand binding to receptor ultimately results in altered cell behavior requires a 

detailed description of each intervening step in a signaling pathway.  Despite the success 

of this approach, analyses of such data sets have shown that the output of complex 

systems depends on a network of interconnected interactions among the components.  

Regional power grids, local computer networks, and biochemical signaling pathways 

obviously do not exist in their respective environments in isolation.  Rather, they form 

important interactions with other parts of their networks.  Understanding the behavior of a 

complex system requires a macroscopic description of the architecture of its underlying 

network of interactions.   

Recent research on numerous complex systems has attempted to understand the 

nature of complex behavior by taking a more global perspective of the individual 

components.  These studies have turned to the emerging mathematical field of graph 

theory to model the complex interactions.  Graph theory began in the 1950s with the work 
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of Paul Erdos and Alfred Renyi and has recently made a resurgence as applications have 

been found in numerous complex physical and social systems.  In graph theory, any 

network may be represented as a graph in which vertices represent individual components 

and interactions between components are represented as links between vertices [1].  This 

depiction allows the development of parameters that describe the topology and properties 

of networks.      

 Similar to the systems described above, proteins display functional behavior that 

depends on complex interactions among amino acids.  Until recently, the map of 

interactions in a protein were known by mutagenesis studies that generally only revealed 

contributions of single positions in limited regions of the protein.  However, the results of 

SCA provide a global energetic map based on co-evolutionary interactions between 

positions in a protein alignment and allow, for the first time, an analysis of the energetic 

topology in proteins.  This chapter presents work I have done that studies the energetic 

architecture in proteins as revealed by SCA.   

 

Energetic Architecture from Structures 

Gross inspection of tertiary structures of proteins generally indicates a compact 

arrangement of amino acids packed in a relatively ordered network of interactions.  For 

example, figure 4-1A shows a CPK rendering of PDZ3 from PSD95 [2].  A simple 

interpretation of this and other structures is that the atomic contacts capture the 

structurally and functionally important energetic interactions.  To understand the 

distribution of contacts and energetic interactions according to this view we can construct 

a graph representation of this domain as shown in figure 4-1B.  Here, residues are 
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Figure 4-1.  Contact network in proteins has a homogeneous network. (A) CPK 
representation of PDZ3 from PSD95 (co-crystallized peptide shown as stick) shows a tightly 
packed protein.  (B) Network graph representation of PDZ3 where nodes correspond to positions 
in the protein and edges are drawn between nodes that are contacting (where contact is defined as 
within the sum of the atomic van der Waals radii plus 20%).  Note that the particular position of 
a node here has no significance.  (C) Cumulative histogram of contacts in 10 different proteins 
shows a very tight, homogeneous distribution.  The red curve shows the fit for the PDZ domain 
data to a cumulative Poisson distribution.   Together, the proteins have a mean of 4.93 ± 0.33 
contacts.  
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represented by vertices and contacts between them are represented by edges; the number 

of links a node has with other nodes is defined as its degree, k.  Following a common 

definition, contact between two residues occurs when any pair of residues between them 

is within the sum of their van der Waals radii plus 20%.  The graph suggests a uniform 

network of contacts in which each residue makes approximately the same number of 

contacts with other residues.  Indeed, a histogram of the fraction of residues making k or 

more contacts with other residues in PDZ3 is well fit by a cumulative Poisson distribution 

(figure 4-1C), the expected distribution of a homogeneous interaction network, showing 

an average connectivity of approximately five [3].  Indeed, the same distribution of 

contacts is observed in many structurally and functionally distinct proteins.  Taken 

together, the ten proteins in figure 4-1C show an average connectivity of 4.93 ± 0.31 and 

clearly demonstrate the established notion that packing density is high within the core of 

all proteins [4, 5].  The Poisson distribution of vertex degrees, k, is a classic property of 

homogeneous or ‘characteristic scale’ networks and indicates that residues 

homogeneously make about the same number of direct interactions with little deviation at 

any site [6].  These results are consistent with recent studies that have also applied 

network analysis to the pattern of amino acid interactions in protein structures [7-9].   

Though the characteristic scale network model nicely describes the contact 

topology of a protein structure, it fails to account for several functional and physical 

properties of proteins.  NMR dynamics experiments show that specific subsets of residues 

display collective motions that are central to the biological role of the protein.  For 

example, specific binding of an inhibitor to a catalytic antibody [10], the motions of 

residues during catalysis of peptide bond rotation [11], and stimulus-driven 

conformational changes in the light-sensor phototropin [12] all involve conformational 
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dynamics of specific regions of the respective proteins.  Furthermore, these dynamic 

hotspots often occur both near and far from the active sites.  Similarly, binding specificity 

in the human growth hormone receptor [13, 14], catalytic specificity in serine proteases 

[15], and allosteric communication in signaling proteins [16] all depend on distributed but 

specific interactions between residues.  Thus, proteins demonstrate inhomogeneity in the 

pattern of energetic interactions between residues and these inhomogeneities are critical 

for function.  Clearly, this heterogeneous energetic architecture is not revealed by the 

homogeneous, characteristic scale interaction network seen in atomic structures. 

 

Energetic topology of PDZ domain from SCA 

 Experiments in several systems suggest that the energetic interactions predicted by 

SCA reflect important physiochemical interactions in proteins.  For example, in PDZ 

domains the results of sequence-based perturbation analysis showed excellent correlation 

with thermodynamic coupling [17].  Additionally, positions identified in hemoglobin, G 

protein coupled receptors, and serine proteases showed excellent correlation with a large 

body of published data [16].  In more recent work, mutagenesis experiments show that 

SCA successfully maps the functional mechanism in G proteins and ligand binding 

domains [18, 19].  These results, combined with the more complete SCA formalism 

presented in chapter 2, set the basis for the description of the energetic topology of 

proteins.  Construction of a network graph representation of the statistical coupling matrix 

was briefly described in chapter 2 and is reviewed here.   

The matrix shown in figure 4-2A contains evolutionary coupling energies between 

all pairs of positions in the PDZ domain and suggests, as noted previously, that only a 
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Figure 4-2  Construction of PDZ domain network.  A) The 94 x 94 SCA matrix alignment 
contains global mapping of co-evolutionary interactions in the PDZ domain.  B) Histogram in 
left panel shows that most pairs of positions have very low statistical coupling energies and a 
small subset are in the tail of the distribution.  This distribution is often referred to as heavy 
tailed and is well fit by a log-normal distribution (grey curve).    Log transformation of the x-axis 
converts this to a normal distribution (grey curve), shown in the right panel.  Application of a 
3.5σ cutoff identifies a set of 26 highly evolutionarily coupled interactions.  C) A graph theoretic 
representation in which nodes represent PDZ positions and edges represent evolutionary 
couplings shows that the 26 highly coupled interactions connects a set of 19 positions in a nearly 
completely connected subgraph.  D) Topological analysis of this graph shows that the cumulative 
degree distribution is well fit by a power law distribution with γPDZ = 3.1 (red curve).  Note that 
in this graph, the degrees are shifted by one (so that k=1 represents the fraction of residues with 
zero or more connections) in order to display the entire range of connectivity degrees on a log-
log plot.  For comparison, the gray curve represents the cumulative Poisson distribution of 
contacts plotted in figure 4-1.   
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small subset of positions is highly coupled.  A histogram of the ΔΔ values (figure 4-

2B, left panel) shows a skewed distribution in which most evolutionary couplings are 

very low and a small subset with larger values forms a so-called heavy tail in the 

distribution.  These features are well fit by a log-normal distribution function (r

statG

2 = 1.0).  

Taking the logarithm of the x-axis converts the log-normal into the easier to appreciate 

normal distribution (figure 4-2B, right panel).  The fit to the data allows application of an 

energetic cutoff to determine significant co-evolution.  A 3.5σ (0.12 kT*) cutoff to the 

PDZ domain identifies only 26 of 4371 coupling energies as significant; these significant 

interactions comprise the so-called heavy tail of the log-normal distribution.   To study 

the topological properties of the strongly co-evolving positions in the PDZ domain, we 

created a graph representation of the co-evolution map (figure 4-2C).  As in figure 4-1C, 

vertices represent positions in the PDZ domain.  However, the edges connect positions 

with significant co-evolution.  The number of links to a vertex defines the degree k of co-

evolution for each position.     

 This view of the amino acid interaction network describes a topology very 

different from that inferred from the atomic structure (figure 4-1).  Specifically, the co-

evolution graph shows strong heterogeneity in the pattern of amino acid interactions such 

that most positions (80%) are not linked to any others, and the remaining 19 positions 

comprise a highly interconnected network of co-evolving residues.  Furthermore, within 

this group of connected positions, there is significant variation in connectivity; most seem 

to have a few contacts and a small subset of positions (366, 372, 379) are highly 

connected.  A log-log plot of the fraction of positions evolutionarily connected to k or 

more positions (P(K>k)) shows an unexpected finding: rather than a uniform exponential 

network observed in the contact graph (figure 4-2D, gray curve), the cumulative 
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distribution of amino acid interactions follows a power law relationship (figure 4-2D, red 

curve): 

)1()( −−∝> γkkKP       (Eq 4-1) 

with γPDZ = 3.1.  This mathematical relationship is the hallmark of a newly discovered 

class of heterogeneous networks termed scale-free, since the nature of this network 

topology is to have no characteristic scale for connections between vertices [6, 20].   

 If the observations are not simply random, then the interconnectedness and power-

law distribution should depend on the arrangement of connectivity between residues.  To 

test this, we scrambled the PDZ statistical coupling matrix and calculated the resulting 

degree distribution of the randomized network (applying the same energetic cutoff).  A 

representative randomized matrix and network are shown in figure 4-3, A and B 

respectively.  Figure 4-3C shows that randomizing the information in the coupling matrix 

produces a degree distribution of amino acid co-evolution different than that observed for 

the natural matrix.  The degree distribution of the randomized trials is well described by a 

Gaussian distribution (figure 4-3C).  Note that homogeneous networks in which the 

number of links is small, as in this case, do not have enough sampling to properly fit a 

Poisson distribution and instead fit a Gaussian distribution.  As expected, a representative 

randomized network graph shows a homogeneous pattern of interactions that differs from 

the highly heterogeneous distribution observed in the natural matrix.  These results 

demonstrate that the power law distribution of amino acid interactions is a significant and 

non-random feature in the evolutionary record of a protein family.  It depends on a 

specific arrangement of mutual evolutionary interactions between residues.   
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Figure 4-3.  Randomization of PDZ domain network.  A,B) A representative scrambled PDZ 
SCA matrix and corresponding graph representation.  C) One hundred such trials showed a 
cumulative degree distribution (black dots) well fit by a Gaussian distribution (black curve), the 
hallmark of a random network.   This shows the heterogeneous, power law distribution 
represented by the native matrix (figure 4-2, A and C), replotted here in the blue dots and red
curve respectively, is a highly nonrandom and significant feature.

 

 The observation of a scale-free energetic architecture provides a conceptual link 

between the protein structure-function problem and the emerging science of 

understanding the behaviors of self-organized networks.  Scale-free (or power-law 

distributed) networks occur in many natural and man-made systems including the World-

Wide Web [6], the Internet [21], social networks [20], the metabolic network in many 

organisms [22], and the protein interaction network in yeast [22, 23].  Though different in 
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nearly every way, all of these networks share three common aspects.  First, they share a 

topology where the pattern of connections between vertices is strongly heterogeneous.  

Unlike the homogeneously connected Poisson-distributed networks, most vertices in a 

scale-free network are weakly connected and a few vertices, referred to as hubs, are 

highly connected and serve as central relay points that connect the whole network.  

Second, the different networks share the property of being self-organized rather than 

designed.  Indeed, the emergence of scale-free architecture has been proposed to result 

from a simple generative mechanism in which new vertices tend to connect preferentially 

to already well-connected nodes, a process that may underlie the evolution of biological 

networks [6].  Finally, these networks all display small-world character, a phenomenon 

where vertices are connected by short path lengths despite a high degree of local 

clustering [24].  With regard to proteins, this type of network displays properties that are 

strikingly consistent with the empirical observation that free energy interactions between 

amino acid residues are heterogeneous and sparsely distributed rather than uniform and 

dense.  

 

Energetic topology in diverse protein families 

 If the heterogeneous, scale-free topology is a general feature of all proteins, then 

many diverse protein families should display a distribution of interactions between 

residues that follows a power law function.  We used the SCA to analyze six other protein 

families (the class A G-protein coupled receptors (GPCR), the guanine nucleotide binding 

(G) proteins, the ligand-binding domains of the nuclear hormone receptors (LBD), the 

chymotrypsin class of serine proteases (SP), the WW domains, and the ubiquitin 
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Figure 4-4 Many structurally and functionally diverse proteins display a scale-free topology of co-
evolutionary interactions.  Graphs show cumulative probability of residues making k or more 
connections in the SCA matrix (blue circles).  Note that axes are log-scaled.  As in the PDZ domain 
(figure 4-2C), fits to these data (red lines) demonstrate the distribution of co-evolutionary interactions in 
each family is well described by a power-law distribution.  Graphs representation of highly co-evolving 
positions (cutoffs given in methods and materials) form nearly completely connected subgraphs in each 
protein family.   A, B) G protein coupled receptors, γGPCR = 2.8.  C, D) G proteins, γG = 2.7.  E,F) 
Ligand binding domains, γLBD = 2.7.  G, H) Serine proteases, γSP = 2.71.  I, J) WW domain, γWW = 3.0. 
K, L) Ubiquitin conjugating enzymes, γ  = 3.1. BUBCB
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conjugating enzymes (UBC)) that together represent a broad spectrum of diversity in 

protein structure, function, size, and location in either the membrane or cytosolic 

compartments.  Figure 4-4 shows that, regardless of these differences, every one of these 

protein families shows a pattern of amino-acid interactions that convincingly follows the 

scale-free network topology.   The adjacent network depictions indicate that, in virtually 

each case, the highly coupled positions form essentially completely connected subgraphs.  

The one exception occurs in the serine protease family where two separate subgraphs are 

observed; this is consistent with a previous SCA analysis that also showed the two 

subgraphs map to two distinct but structural units.  The fits to the power law relationships 

show scaling coefficients that are similar for these protein families (γGPCR = 2.8, γG = 2.7, 

γLBD = 2.7, γSP = 2.7, γWW = 3.0, γUBC = 3.1).  We do not understand this similarity 

mechanistically, but recognize that this suggests a common evolutionary pressure 

constraining the fraction of energetically interacting residues relative to weakly 

interacting ones in all proteins.   

 

 Functional importance of hubs: sensitivity to targeted attack 

A central property of scale-free networks is that they show significantly higher 

resistance to random perturbation than do uniform characteristic scale networks.  For 

example, random removal of vertices in a uniformly connected network causes a steady 

incremental increase in the average distance between vertices, but a similar experiment in 

a scale-free network causes little change in network connectivity [25].  This makes 

intuitive sense, since most vertices in a scale-free network are only weakly connected and 

contribute little to the overall connectivity of the network.  However, this performance 
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advantage comes at a price; targeted removal of the hubs results in a dramatic loss of 

network connectivity [25].  Thus, scale-free networks are robust to random perturbation 

but fragile to targeted attack at the hubs.  If proteins are energetically scale-free networks, 

then they should display tolerance to perturbation at weakly connected residues and 

sensitivity to perturbation of well-connected ones, regardless of where they are situated in 

the tertiary structure.   

 As a rigorous test of this hypothesis, we focused on two of the families (the 

GPCRs and PDZ domains), where comprehensive mutagenesis studies enable evaluation 

of the correlation between network connectivity and functional importance. The class A 

GPCRs are integral membrane receptors that transduce ligand binding at an externally 

accessible site to conformational change at distantly positioned cytoplasmic structural 

elements that mediate downstream signaling [26, 27].  The hub positions in the GPCR co-

evolution graph include functionally crucial residues at the ligand-binding pocket, the 

cytoplasmic interaction site for G proteins, and known sites of allosteric communication 

between the two (table 4-1).  Residues linked in the co-evolution graph are strongly 

associated with functional importance; of 76 total network positions, 66 display altered 

function upon mutagenesis in at least one GPCR family member (table 4-1).  Network 

positions are also associated with sites of clinically relevant mutations.  Eighteen of 25 

point mutations known to constitutively activate the thyrotropin receptor (TSH-R) and 

cause hyperthyroidism and 6 of 12 mutations in the luteinizing hormone receptor (LH-R) 

that cause male precocious puberty are found on the GPCR co-evolution network [28].  

Overall, we find that 44% of all residues comprising the GPCR co-evolution network are 

associated with constitutive activity in at least one GPCR family member.  To calculate 

the statistical significance of these findings, we examined a saturation mutagenesis scan  
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Structural 
location 

Rhodopsin 
position 
(general 
number)* 

 k Role or mutational effect  

102 1 Mutation in AT1-R reduced ligand binding affinity [31].  Mutation in V2-R altered ligand binding 
specificity [32]. 

103 18 Mutation in NK2-R decreased ligand binding [33].  Mutation in V2-R reduced ligand binding but 
increased maximum signal transduction and is associated with X-Linked nephrogenic diabetes 
insipidus [34].  

105 1 Mutation in TRH-R decreased ligand binding [35]. 

106  1 Mutation in C5a-R increased ligand binding affinity [36]. 

174 1  
175 6 Mutations in C5a-R [37], CCKB-R [38] and NTR1 [39] decreased ligand binding. 
178 1 Mutation in V2-R causes reduced vasopressin binding and is related to nephrogenic diabetes insipidus 

[40] 

Extracellular 
loops 

278 1 Associated with CAM and hyperthyroidism in TSH-R [28].  Mutation in MSH-R decreased ligand 
binding [41].  Mutation in FSH-R increased ligand binding affinity but decreased signal transduction 
[42].  

44 (1.39) 3 Involved in agonist binding and Na+ allostery in AA2A-R [43].  Mutation in CCKB-R decreases 
ligand binding affinity [38].  

113 (3.28) 6 Counterion in rhodopsin [44]; associated with CAM [45].  Mutation in CCR5-R reduced potency of 
ligand [46].  Mutations showed this position affects both agonist binding and potency in CB1-R [47].  

117 (3.32) 3 Associated with CAM in OPRD [29]. Mutation decreased ligand binding in AA2A-R [48], HH4-R 
[49], NK1-R [50] , D2D-R [51], and GnRH-R [52]. 

212 (5.47) 3 Mutations in OT-R [53] and GRP-R [54] affected binding affinity.  
261 (6.44) 4 Associated with CAM and hyperthyroidism in TSH-R [55].  Associated with CAM and male 

precocious puberty in LSH-R [28].  Associated with CAM in C5a-R [56].  Mutations in A1BA-R 
gave higher agonist affinity but no signal transduction [57]. 

265 (6.48) 7 Involved in chromophore tuning of rhodopsin [58].  Associated with CAM in OPRD [29].  Mutation 
in GnRH-R reduced ligand binding and signal transduction [59].  Mutation in AA3-R mutant bound 
agonist normally but was inactive [60]. 

268 (6.51) 7 Mutation reduced ligand binding in AchM1-R [61], MSH-R[62], CCKB-R [38], and GnRH-R[63].  
Mutation reduced receptor activation in AT1-R [64] and rhodopsin [58].   

269 (6.52) 4 Mutation in AA2A-R weakened binding to agonist and antagonist [65].  Mutation in GnRH-R [63] 
and D2D-R [66] reduced binding to ligand and signal transduction.  

293 (7.40) 16 Associated with CAM in AchM1-R [67].  Mutation in ETB-R increased signal transduction [68]. 

Chromophore 
binding pocket 

296 (7.43) 2 Schiff base link to chromophore of rhodopsin; mutations associated with CAMs [45].  Associated 
with CAM in OPRD [29].  Mutations in NK2-R [33] and 5H2A-R [69] decreased ligand binding 
affinity.  Mutants in LSH-R [70] and AT1-R [71] had normal ligand binding but decreased signaling.  

48 (1.43) 3 Associated with CAM and hyperthyroidism TSH-R [28]. 
51 (1.46) 3 Associated with CAM in LSH-R [72].  Mutation in rhodopsin caused ADRP with normal retinal 

binding [73].  
54 (1.49) 2 Associated with CAM in TSH-R [74].  Mutation in ET1-R reduced ligand binding [75] .  
58 (1.53) 3 Mutation in rhodopsin caused receptor to accumulate in endoplasmic reticulum and is associated with 

ADRP [73].  
73 (2.40) 8 Mutation in rhodospin caused small decrease in transducin activation [76]; in TSH-R caused slightly 

decreased TSH binding and cAMP response [77].  
74 (2.41) 1  
75 (2.42) 4  
78 (2.45) 20  
91 (2.58) 3 Mutations decreased binding affinity in Prostacyclin-R [78], CCR5-R [46], and C5a-R[79]. 
92 (2.59) 3 Mutation in Prostacyclin-R affected activation but not ligand binding [78].  Specificity determinant in 

CCR5-R [46].  
111 (3.26) 1 Mutation in AchM1-R decreases ligand binding affinity [80]. 
120 (3.35) 1 Associated with CAM in AT1-R [81]. 
124 (3.39) 6 Associated with CAM in OPRD [29].  Rhodopsin mutant had altered activation kinetics and 

transducin activation was decreased [82].  Mutation in LSH-R decreased potency [83].  D2D-R 
mutant had decreased agonist affinity but increased antagonist affinity [84]. 

125 (3.40) 4 Associated with CAM and hyperthyroidism in TSH-R [28].  Associated with CAM in C5a-R [56].  
Mutation in AchM1-R gave increased signaling efficiency with ligand and agonist [61]. 

126 (3.41) 2 Involved in photoisomerization in rhodopsin [85]. 
129 (3.44) 2 Associated with conformational change in B2Adr-R [86].  
131 (3.46) 2 Mutation in AchM1-R decreased acetylcholine potency [61].  
132 (3.47) 1 AchM1-R mutant had increased ligand binding affinity and is a CAM [87] . 
134 (3.49) 12 Part of DRY motif.  In rhodopsin, this position is protonated upon activation and is associated with 

CAMs [88].  Also associated with CAM in A1BA-R [89].  Mutation in GnRH-R [90] and OT-R [91] 
abolished ligand binding and signal transduction.  Mutation in Mel1A-R impaired activation [92]. 

136 (3.51) 7 Part of DRY motif.  Mutations in AA3-R [57] and CB2-R  [93]reduced potency of respective ligands. 
Mutation in B2-R reduced signaling [94] 

138 (3.53) 2 Mutations in FSH-R [95] and GnRH-R [96] decreased signal transduction.  
140 (3.55) 1 Critical for coupling IL8-R to G protein [97]. 
149 (4.38) 5  
152 (4.41) 1 Mutation in ACTH-R decreased both ligand affinity and maximal response [98].  Mutation in MSH-R 

caused decreased potency[99]. 
157 (4.46) 1 Associated with CAM in OPRD [29].  Mutation in C5a-R gave normal binding but decreased 

signaling [79]. Prostacyclin-R mutant had low binding affinity [78]. 

Transmembrane 
domains 

164 (4.53) 3 Mutation in AchM1-R reduced agonist binding [67]. 
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170 (4.59) 6 Associated with CAM in OPRD [29].  Mutants in both AchM1-R and AchM3-R reduced binding to 
agonist and antagonist [100]. 

171 (4.60) 3 Associated with CAMs in AchM1-R [67].  Associated with CAM and hyperthyroidism in TSH-R 
[101].  Mutation in LSH-R reduced ligand binding and signal transduction [102]. 

203 (5.38) 1 Associated with CAM in OPRD [29].  Mutation in V2-R reduced ligand binding affinity [44].   
215 (5.50) 3 Associated with TSH-R CAM and thyroid adenoma [103].  Mutation in ETB-R associated with 

Hirshsprung’s disease and causes reduced surface expression and signal transduction [104]. 
219 (5.54) 6 Associated with CAM and hyperthyroidism in TSH-R [28].  Associated with CAM and male 

precocious puberty in LSH-R [28]. 
222 (5.57) 8  
247 (6.30) 4 Associated with CAM and hyperthyroidism in TSH-R [105].  Associated with CAM and male 

precocious puberty in LH-R [106].  Also associated with CAMs in FSH-R [72], and HM1-R [107].  
Mutation in GnRH-R caused decreased signal transduction [108].  

249 (6.32) 1 Associated with CAM and hyperthyroidism in TSH-R [109].  Also associated with CAM in OPRD 
[29]. Mutation in muscarinic HM1-R caused decreased binding affinity to agonist [107]. 

253 (6.36) 3 Associated with CAMs in OPRD [29] and LSH-R [109]. FSH-R mutant had normal ligand binding 
but reduced maximal response [110].  

254 (6.37) 2 Associated with CAM and male precocious puberty in LSH-R [111].   
258 (6.41) 1 Associated with CAM and hyperthyroidism in TSH-R [109].  Associated with CAM and male 

precocious puberty in LSH-R [112].  
259 (6.42) 1 Associated with CAM and hyperthyroidism in TSH-R [109]. Also associated with CAM in LSH-R 

[28].  
294 (7.41) 2 Associated with CAM and hyperthyroidism in TSH-R[28].  Mutation in ETB-R decreased signal 

transduction [68]. 
295 (7.42) 1 Mutation in AA1-R decreased binding to agonist [113]. 
298 (7.45) 12 Associated with CAM and hyperthyroidism in TSH-R [28].  Also associated with CAM in LSH-R 

[114].  Mutation in AA2A-R decreased ligand binding [115]. 
299 (7.46) 4 Mutations in LSH-R [116] and A2a-R [65] show decreased binding to agonists. 
300 (7.47) 2 Associated with CAM and hytperthyroidism in TSH-R [28].  Mutation in AT1-R [117] and [114] 

decreases potency of bound agonist. 
302 (7.49) 2 Part of NPxxY motif.  Associated with CAM in TSH-R [118].  Mutation in CCKB-R prevents G 

protein activation though binding is normal [119].  Mutation in TRH-R decreased maximal activity 
[120]. 

 

305 (7.52) 1 Associated with CAM and hyperthyroidism in TSH-R [28].  Mutation in AchM1-R increased ligand 
binding affinity [67].   

68 2 Mutation in GnRH-R reduced cAMP production [121]. 
69 1  

141 1 Associated with CAM in AchM5-R and is involved with coupling to G protein [122]. 
144 4 Mutation in rhodopsin reduced phosphorylation by rhodopsin kinase.  Mutant in MSH-R bound 

ligand normally but was defective in signal transduction [123].  
230 2 Involved in AT1-R activation [124].  
308 1 Mutation in LSH-R is inactivating and is associated with male pseudohermaphroditism [125]. 
313 4 Undergoes conformational change during rhodopsin activation [88]. 

Cytoplasmic 
loops 

317 3  
* Numbers in parentheses follow the general numbering scheme proposed by Ballesteros et al [126]. The number before the decimal represents the helix number (1-7) and the 
number after the decimal refers to the position relative to the most conserved residue (assigned as 50) in that helix.  Loops and the N and C terminal domains are more variable 
in length and do not have a general numbering.  The organization of positions into structural locations is based on the X-ray crystal structure of rhodopsin [127].  Positions for 
which there are insufficient published data were left blank.  
5H2A-R: 5-hydroxytryptamine2A (serotonin2) receptor.  A1BA-R: �(1B)-adrenergic receptor.  AA1-R: adenosine A1 receptor.  AA2A-R: adenosine A2A receptor. AA3-R: 
adenosine A3 receptor.   AchM1-R: M1 muscarinic acetylcholine receptor.  AchM2-R: M2 muscarinic receptor. AchM3-R: M3 muscarinic receptor.  AchM5-R: M5 
muscarinic receptor.   ACTH-R: adrenocorticotropic hormone receptor.  ADRP: autosomal dominant retinitis pigmentosa.  AT1-R: type 1 angiotensin II receptor.  B2Adr-R: 
�2 adrenergic receptor.  B2-R: Bradykinin receptor.  C5a-R: C5a anaphylotoxin receptor.  CAM: constitutively active mutant.  CB1-[128]R: cannabinoid 1 receptor.  CB2-R:  
CB2 cannabinoid receptor.  CCK(A/B)-R: cholecystokinin(A/B) receptor.  CCR5-R: chemokine type 5 receptor. CCR2-R: chemokine type 2 receptor.  D1D-R: D1 dopamine 
receptor.  D2D-R: D2 dopamine receptor.  ET1-R: Endothelin 1 receptor.  ETB-R: Endothelin B receptor.  FSH-R: follicle stimulating hormone receptor.  GnRH-R: 
gonadotropin releasing hormone receptor.  GRP-R: gastrin releasing peptide receptor.  HM1-R: muscarinic acetylcholine Hm1 receptors.  HH4-R: histamine H4 receptor.  
LSH-R: luteinizing stimulating hormone receptor.  Mel1A-R: Mel1A melatonin receptor.  MSH-R: melanocyte stimulating hormone receptor.  NK1-R: tachykinin NK1 
receptor.  NK2-R: Neurokinin 2 receptor.  NTR1: neurotensin receptor 1.  OPRD = �-opioid receptor.  OT-R: oxytocin receptor.  TRH-R: thyrotropin releasing hormone 
receptor. TSH-R: thyroid stimulating hormone receptor.  V2-R: V2 vasopressin receptor.   

Table 4-1 G protein coupled receptor (GPCR) network positions and reported functional importance.   
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of the δ-opioid receptor that permits experimental assessment of every residue [29].  The 

data show that 28 of 342 aligned residues mutated (~8%) cause constitutive activation, of 

which 40% occur at positions linked by edges in the GPCR co-evolution graph.  A 

statistical evaluation of these data indicates that residues linked in the scale-free network 

are significantly associated with constitutive activity upon perturbation (p<0.03).  This is 

particularly striking given that only a small fraction of residues are linked at all by co-

evolution, and constitutive activity is but one measure of altered function.   

 The selective functional importance of network positions is demonstrated in PDZ 

domains as well.  Skelton and co-workers have reported an alanine scanning mutagenesis 

of 36 (out of 94 total) aligned residues in the Erbin PDZ domain that comprise the 

environment of the active site [30].  These authors show that 13 of these mutations 

display large effects on substrate binding, of which 8 are network positions in the PDZ 

co-evolution analysis.  In contrast, only 1 of the 21 mutations showing no functional 

effect are network positions (p < 0.001).  Thus, both the GPCRs and the PDZ domains 

show resistance to mutation at unconnected sites and sensitivity to mutation at sites linked 

in the network.  Less comprehensive but substantial evidence reinforces this result in all 

the protein families tested.  Co-evolving hubs in the G protein and the LBD families 

mediate long-range allosteric coupling [18, 19, 129, 130], and in the serine proteases and 

the WW domain [15, 131, 132], mediate binding specificity.  Together, the data 

demonstrate that the scale-free network architecture is strongly correlated with functional 

importance of residues in proteins.   
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Structurally non-intuitive sites are hubs 

 Where are the hubs in the atomic structure and how is the network as a whole 

physically organized?  In the PDZ domain, the network comprises a physically 

contiguous group of amino acids (shown as a van der Waals surface) that defines both the 

peptide binding pocket and a sparse set of interactions within the protein core that connect 

the active site with distantly positioned sites.  Interestingly, proximity to the active site is 

not well correlated with connection degree; some sites behind and far from the active site 

(336 and 362 in the PDZ3 numbering) are equally or more connected in the scale-free 

network topology than active site residues.  Despite their distant location, these sites 

qualify as hubs.  For example, residue 362 in the PDZ domain is located far from the 

peptide ligand (and was therefore not included in the structure-directed strategy for 

scanning mutagenesis of the Erbin PDZ domain), but makes 4 evolutionary links with 

other residues (figure 4-5) and physically links to the active site through packing 

interactions with residue 379.  Similarly, residue 336 lies in the core beneath the active 

site and makes 4 co-evolutionary links.  However, not all core residues are evolutionarily 

linked; residue 359 is equally buried, conserved and distant from ligand as residues 336 

and 362, but it makes no evolutionary links at all.  

 To test the prediction that hubs are functionally important regardless of where 

they are situated in the tertiary structure, we made mutations in the PDZ3 directed by the 

network connectivity rather than by structural intuition, and measured the effects on 

peptide binding (table 4-2 and figure 4-4).  Mutation of position 372 (H372A), an active 

site hub, results in a 30-fold destabilization of binding, consistent with the established 
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role of this position in mediating substrate specificity.  However, mutation of position 336 

or 362, non-active site hubs, also results in significant loss of binding (250 and 6.3-fold, 

respectively), while mutation of positions 359 and 328, evolutionarily unlinked residues, 

shows no significant change in binding despite proximity to network positions.  Network 

residues with intermediate connectivity (322, 371, and 386) show intermediate effects.  

These data support the model that hubs in the scale-free co-evolution graph mediate 

protein function, either directly by acting at the active site, or indirectly through other 

network linkages that act as pathways of energetic connectivity.  It is important to note 

that connection degree is unlikely to be the sole quantitative  predictor of functional 

Figure 4-5 Functional architecture of the scale-free amino acid network in a PDZ domain 
atomic structure.  A-D) Four successive views of 90o rotations of PDZ3 from PSD95 with 
bound substrate peptide (green).  The 19 residues in the co-evolution network of the PDZ domain 
are shown as a van der Waals surface (grey), with those residues discussed in the text numbered. 
The network positions comprise a physically contiguous sub-structure within the PDZ domain 
that defines the peptide binding pocket and a specific set of long-range sites that are linked 
through a sparse network of core contacts.  The sites included in the mutagenesis study (table 4-
1) are colored with fold changes on peptide binding relative to wild-type shown in parentheses. 
Dissociation constants were measured by isothermal titration calorimetry.  The data show that 
hubs in the scale free co-evolution network make important energetic contributions even if 
distantly positioned and not predictable from the atomic structure.   
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importance [133]; some sites, such as the catalytic triad residues of serine proteases are 

nearly invariant and therefore exhibit little co-evolution with other sites, but are clearly 

critical for function [134].  In addition, the strength of connections is not considered in 

the current analysis, and will certainly influence the magnitude of functional effect upon 

perturbation.  Nevertheless, the data demonstrate a core principle of scale-free networks 

in proteins: hubs play a dominant functional role. 

 

 

Location of mutation Protein Connection 
Degree (k) Kd (μM) Fold Effect 

(mut/WT) 
 WT  0.87 ± 0.13 -- 

H372A 6 26.12 ± 2.82 30.0 Active site, on 
network G322A 3 0.38 ± 0.02 2.3 

G329A 6 55.31 ± 9.72 63.6 
I336A 7 21.55 ± 0.53 24.8 
V362I 7 5.50 ± 0.71 6.3 
S371A 1 2.01 ± 0.76 2.3 

Peripheral to or 
distant from active 
site and on network 

V386I 4 2.50 ± 0.23 2.9 
I359V 0 1.03 ± 0.18 1.2 Off network V328I 0 0.85 1.0 

Table 4-2 Dissociation constants of PSD95-PDZ3 domain mutants.  Measurements were made using 
isothermal titration calorimetry.  Each Kd reports mean and standard deviation from three trials; the one 
exception was V328I which was only measured once.  

 

Conclusions 

In summary, the analysis shows that the topology of the network of energetic 

interactions in proteins has several recurring and surprising features:  

1) Sparseness, such that most positions show evolutionary independence and a small 

subset have significant co-evolutionary interaction.  

2) Organization, such that highly co-evolving residues form nearly completely 

connected subgraphs.  



 118

3) Heterogeneity, such that most positions have very few links and a few positions 

are hubs having many strong links.  In all proteins, the arrangement follows a 

power-law distribution, the characteristic pattern of the scale-free class of the 

networks.  

4) Functional correlation of network positions regardless of structural location.  This 

is in agreement with the established property of scale-free networks to be robust to 

random perturbation yet sensitive to targeted attack. 

This architecture is apparently predictable from a simple analysis of the evolutionary 

record of a protein family if sufficient and diverse sequence data are available.  Given the 

wide spectrum of protein structures and function examined in this study, we suggest that 

this topology is a fundamental energetic feature in all natural proteins.  The properties of 

this topology listed above raise potential applications, insights, and further questions, 

some of which I will discuss below.   

 

Identification of critical functional sites in proteins 

The limitations of mutagenesis and structural studies often make it difficult to 

interpret the complex arrangement of atoms in protein structures.  The correlation 

between connectivity and functional importance suggests that SCA results could be used 

to focus attention on specific amino acids and regions of proteins.  Previous studies as 

well as the PDZ domain structural studies described in chapter 3 demonstrate that SCA 

results indeed capture functionally important energetic interactions.  Provided sufficient 

sequence information for a protein family is available, SCA results could be used to focus 

mutagenesis, structural, and dynamics experiments to more completely understand the 
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physical underpinnings of function.  In addition, the observation of clinically relevant 

mutations in numerous GPCRs suggests SCA results may be of significant help, even in 

the absence of structure, in prediction of clinically important sites in other proteins.   

 

Potential insights into physical mechanisms 

The power law organization in the energetic architectures of proteins suggests 

behavioral features observed in other systems with this topology may also be found in 

proteins.  The first observation of a physical system displaying power law distributed 

features came from studies of phase transitions.  Here, phase transition is used in its 

broadest sense to include any phenomenon in which a disorder to order transition occurs.  

In this sense, both freezing of a liquid and the emergence of magnetization in a metal with 

decreasing temperature are considered phase transitions.  Each system exhibits a unique 

critical point at which “the system is poised to choose between two phases [1].”  

Interestingly, measurements of numerous systems revealed that when the system is 

brought close to its critical point several key features, usually normally distributed, begin 

follow power law distributions.  For example, at the liquid-gas critical point the 

distribution of droplet sizes follows a power law: many are very small and a few are very 

large.  In another example, the correlation length of metals measures the length of aligned 

magnetic spins in atoms and refers to the “distance over which atoms communicate”; at 

high temperatures correlation lengths are randomly distributed and the metal has no 

magnetization [1].  However, at the particular critical temperature of a metal, correlation 

lengths follow a power law distribution and the metal becomes magnetized.  Thus, the 
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observation of power-law distributed features is regarded as a sign that order is emerging 

from disorder.  

Given the observations of disorder to order transitions in proteins and, now, the 

finding of power-law distributed interactions, an interesting concept emerges.  The two 

observations suggest that proteins are built close to a transition point, energetically close 

to a phase transition.  Functionality, then, arises from molecular interactions specifically 

designed to push a protein over its transition point and to trigger a built-in disorder to 

order transition.  The SCA network may identify the core structural elements necessary 

for a liquid to solid transition.  This model is consistent with crystallographic and 

mutagenesis data that show proteins in nature are not optimally stable and functionality 

requires a degree of disorder [135].  If true, such phase transitions in proteins may be 

reflected by changes in the distribution of ‘correlation lengths’ in a protein, the length 

over which atoms in proteins propagate energy.  For example, the distribution of 

correlation lengths in the ground state of a signaling protein such as a GPCR would be 

normally distributed with a small mean and standard deviation.  Upon activation, the 

distribution of correlation lengths may become power law distributed allowing a small 

subset of atoms to propagate energy over a significant distance and trigger a 

conformational change.  Such changes in correlation lengths should be reflected in 

coupled motions of atoms; future studies of the dynamic state of proteins may reveal 

these features.   
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A generative model for the energetic architecture 

 The energetic architectures in proteins as revealed by SCA display several 

remarkable and unexpected features.  The analysis described in this chapter suggests not 

only that co-evolutionary interactions are sparsely distributed, but also that they are 

organized in an inter-connected and heterogeneous manner – an organization that fits a 

scale-free distribution.  Clearly not the product of a random process, this surprising 

arrangement of energetic interactions demands explanation.  Why should energetic 

interactions in proteins be scale-free?  The highly non-random nature of the energetic 

architecture suggests this common topology is the solution to specific evolutionary 

pressures. 

 As a hypothesis, the heterogeneous energetic topology may represent a design 

well suited for the evolvability of proteins, that is, the capacity of proteins to evolve novel 

functionality.  In general, there are two tendencies that underlie the evolvability of any 

system: 1) to minimize the detrimental effect of a change (mutation) to the system, and 2) 

to decrease the number of changes needed to create a new function [136].  How do 

proteins achieve this capacity?  As descriptions of every level of biological systems – 

from proteins to whole organism development – become more complete, common design 

features that contribute to the adaptability of any system have begun to emerge.  A recent 

review by Kirschner and Gerhart [136] discussed several such features and illustrated 

how these properties contribute to the adaptability of a system to change.  One critical 

feature of an evolvable system is the presence of weak coupling among its components; 

this reduces the dependence of one process on another and allows local changes without 

propagated effects.  The sparseness of the SCA matrix is consistent with this design 

feature: most of the protein is energetically independent and only a small subset of 
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positions shows significant coupling.  Indeed, proteins are empirically known to be 

tolerant to mutagenesis at most sites and very sensitive to mutation at targeted sites.  At 

the same time, the scale-free energetic topology provides a set of complex distributed 

energetic interactions evidently necessary for function.  Included in these functionally 

important interactions are the hotspot residues that are sensitive to mutation.  As 

discussed in chapter 3, mutations at such energetic hotspots may allow rapid change in 

functional properties.  This suggests that the scale-free heterogeneous topology in 

proteins represents a solution to two opposing evolutionary pressures: 1) maintaining 

weak coupling to minimize detrimental effects of mutations and 2) construction of 

distributed coupled interactions that endow a protein with stability and functionality.   

 How did this scale-free architecture come to be?  While we have not yet 

developed a generative model for the energetic topology, several properties of this model 

emerge from the discussion above and previous research on scale-free systems.  First, the 

protein tends toward minimal coupling.  Minimal coupling should be entropically favored 

and, as discussed, improves the evolvability of the protein.  Coupled interactions, then, 

should only develop to the extent necessary for stability and function.  Secondly, 

formation of a new coupled interaction tends to involve pre-existing coupled interactions 

since this should maximize the entropic state of the protein as a whole.  This concept is 

consistent with modeling studies that show scale-free topologies are generated by a so-

called “rich-get-richer” principle [6].  In other words, systems in which new nodes tend to 

connect to already existing nodes develop a scale-free topology.  Future studies on 

modeling the forces necessary and sufficient to account for the heterogeneous energetic 

topology should yield insight into the evolutionary process that created proteins.   
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Conclusions of thesis work 

The results I have discussed emphasize two features of proteins: tuning and 

heterogeneity.  A principle that has guided this work is the idea that important energetic 

interactions among residues in proteins are conserved through evolution.  Measuring and 

understanding these interactions is central to the sequence-structure-function problem.  

The new SCA methodology builds on the core formalism of the original version and 

produced consistent results but is now completely global and symmetric.  In general, SCA 

results suggest that proteins are far simpler than might be anticipated by simply looking at 

structures.  Only a small fraction of the residues in proteins have significant co-

evolutionary interactions.  These interactions have been corroborated by a large body of 

mutagenesis work in other systems.  

Together, these observations motivated a detailed dissection of one set of 

interactions in the PDZ domain to understand their role in ligand binding.  SCA results 

suggest that position 322 in the carboxylate binding loop influences the energetic 

interactions of position 372, a known specificity-determinant on the opposite end of the 

binding pocket.  Thermodynamic measurements showed that, indeed, the strength of the 

interaction between 372 and its ligand contact, position P-2, is modulated by mutations at 

322.  These experiments exposed a logic behind the co-evolution of these positions.  

Position 322 is tuned to optimize the strength of the specificity determining contact.  Seen 

another way, the interaction between 372 and 322 is tuned to maximize the evolvability 

of the domain.  Mutation at 372 can significantly shift the class-specificity of the domain.  

However, this evolutionary capacity at 372 is reduced in the presence of a mutation at 322.  

Structures of mutants revealed the physical basis of this tuning.  The flexibility at position 
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322 is tuned to make conformational change in the carboxylate binding loop sensitive to 

the interaction at the specificity-determining contact.  The structural inhomogeneity in the 

loop is a critical feature of the PDZ domain energetic architecture.  This built-in 

mechanism sacrifices affinity but endows the domain with AND gate-like behavior to 

select for specific binding interactions.  The combination of the logical and structural 

understanding lends further support to the usefulness of SCA in identifying important 

physical interactions in proteins.   

A network graph analysis of the energetic topologies of several structurally and 

functionally diverse proteins revealed several recurring features.  Consistent with the 

empirical demonstration of energetic heterogeneity, the SCA map shows a highly 

heterogeneous distribution of co-evolutionary interactions.  Most positions are 

evolutionarily independent and only a small fraction of the residues have significantly co-

evolved.  Interestingly, depiction of co-evolutionary links in a graph representation 

revealed two interesting features regarding their organization.  First, a small set of co-

evolving positions in a protein show a high degree of mutual co-evolution such that they 

form a nearly connected subgraph.  Mutagenesis data from several systems shows that 

mutations at positions in this subgraph have significant effects on function, regardless of 

their three-dimensional location in the structure.  Secondly, there is heterogeneity in the 

co-evolutionary links among the residues: most positions have very few co-evolutionary 

links and a few positions form many co-evolutionary links with other positions.  This 

distribution is well fit by a power law, the signature of a class of networks termed scale-

free.  Qualitatively, these networks display behaviors consistent with known features of 

proteins.  Most notably, they are known to be robust to mutation at most positions but 

highly sensitive to mutation at a select few positions. The conceptual link to power law 
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networks may provide further insights in to the mechanism and generative model 

underlying the energetic architecture of proteins.   
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Methods and Materials 

Sequence Alignments.  Most alignments used were provided by members of the 

Ranganathan lab; UBC alignment was a provided by E. Ozkan.  Briefly, all sequences 

(except the GPCR family) were collected from the non-redundant database using PSI-

BLAST (e-score < 0.001) and aligned using Clustal W and manually adjusted using 

standard structure-based sequence alignment techniques.  Class A GPCR sequences were 

collected as an alignment from the GPCRdb and TinyGRAP database.   

 

Contact map calculation.  In the network representation of atomic structures, nodes 

represent PSD95PDZ3 residues in no particular spatial orientation.  Edges are drawn 

between nodes if the residues are contacting in the crystal structure (1BE9).  We define 

contact between two residues if at least one pair of atoms from these residues is separated 

by less than the sum of their van de Waals radii plus 20%.  PDB accession numbers for 

the structures used to generate figure 4-1C are: PDZ (1BE9), cdc25 (1C25), DHFR 

(1RX2), GFP (1EMB), PAS (1BYW), Ras (5Q21), Rhodopsin (1F88), RXR (1FM9), 

UBC (1C4Z).  These calculations were performed with MATLAB code provided in the 

appendix A.   

 

Statistical Coupling Analysis.  All analyses followed the single sequence elimination 

method described in chapter 2.  As before, the MATLAB was used to perform all 

calculations; the code is provided in appendix A.   
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Network graph construction and analysis.  In the network graphs of the co-evolution 

matrices, the nodes represent residues and links are drawn between two nodes in the 

associated ddGstat value in the matrix is more than a cutoff value.  The cutoff values 

were determined by fitting a histogram of the ΔΔGstat values to a log-normal distribution.  

To avoid redundancy and trivial self coupling, only the values in the upper triangle of the 

ΔΔGstat matrix were used in making the histogram.  Cutoff values for determining links in 

the different protein families ranged between 2.5 and 3.6σ above the mean log-

transformed ΔΔGstat values in each matrix: give specific values for each family.  

Differences in the cutoff values for protein families are due to differences in the size and 

diversity of the respective multiple sequence alignments.  These cutoffs were used to 

determine the number of significant links to each position which were in turn used to 

generate the log-log plot of k vs cumulative probability.  Fitting these plots to equation 4-

1 gave values for γ that ranged from 2.7 to 3.1.  All fitting was done using MATLAB and 

the M-files given in the appendix.  The networks graphs were generated using pajek 

(http://vlado.fmf.uni-lj.si/pub/networks/pajek/). 

 

Mutagenesis and protein expression.  Site-directed mutagenesis was carried out on PDZ3 

of rat PSD-95 (residues 294-402) using standard polymerase chain reaction-based 

techniques.  The domains were expressed as N-terminal glutathione S-transferase (GST) 

or His6 fusions using the pGEX-4T-1 vector (Amersham) in Escherichia coli [strain 

BL21(RP), Stratagene].  Cultures (1L) were grown in Terrific Broth to an optical density 

(600nm) of 1.6 at 37C, induced for 4 hours at 25oC with 500 μM isopropyl-b-D-

thiogalactopyranoside and then harvested by centrifugation.  Cells were resuspended in 

buffer A (140 mM NaCl, 2.7 mM KCl, 10mM Na2HPO4, 1.8 mM KH2PO4 (pH 7.3), 1.0 
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mM dithiothreitol (DTT)) with protease inhibitors (10 μg/ml pepstatin, 10 μg/ml 

leupeptin, 0.1 mM phenyl methyl sulphonylfluoride), lysed by sonication, and the fusion 

protein batch purified from supernatant through GST or Ni-NTA affinity chromatography.  

The PDZ domains were cleaved off the resin through thrombin proteolysis (Sigma, 100U 

per 6 ml resin, 4 hr at room temperature) and purified to homogeneity using a Mono Q 

HR5/5 (Amersham) column run with a linear gradient from low salt (1.0 mM DTT, 20 

mM Tris-HCL (pH 7.5)) to high salt (1.0M NaCl, 1.0mM DTT, 20mM Tris-HCl (pH 

7.5)).  The protein was dialyzed into 10 mM NaCl, 10 mM HEPES (pH 7.2), 1.0 mM 

DTT  and concentrated as necessary.   

 

Binding measurements.  Isothermal titration calorimetry (ITC) measurement were 

conducted at 25C using the VP-ITC microcalorimeter (MicroCal Inc) by making 38 

injections (8μl each) of peptide ligand into PDZ protein.  The peptide (N-TKNYKQTSV-

C) was dissolved in 10 mM NaCl, 10 mM HEPES (pH 7.2), 1.0 mM DTT.  

Concentrations of peptide (0.5 mM to 2.8 mM) and protein (0.05 mM to 0.15 mM) in 

each run were determined from absorption at 280 nm.  The ratio of peptide to protein 

concentrations was adjusted between 10:1 and 30:1 (depending on the dissociation 

constant) in order to reach saturation in the binding reaction.  In all titrations, the 

reference power was 12.9 μcal/s and equilibration time was 180s between peptide 

injections.  Peaks were integrated and the titration curve was fit in Origin (MicroCal) 

assuming a 1:1 stoichiometry.  The values given in Table 4-2 are averages and standard 

deviations from three measurements for each protein.  The exception was V328I, for 

which only one measurement was made.   
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Appendix A: MATLAB code for Statistical Coupling 
Analysis 
 
Single Sequence Elimination Code:  
 
function [out_mat,out_vect, lnp]=stat_fluc3(A); 
%usage: [out_matrix, out_vectors, lnp]=stat_fluc3(alignment) 
 
% initalize variables 
aminoacids=('ACDEFGHIKLMNPQRSTVWY'); 
x=100;  % used to normalize to 100 sequences 
rr_factx = rr_fact(x); 
random=[0.072658 0.024692 0.050007 0.061087 0.041774 0.071589 0.023392... 
        0.052691 0.063923 0.089093 0.023150 0.042931 0.052228 0.039871... 
        0.052012 0.073087 0.055606 0.063321 0.012720 0.032955]; 
[numseqs,numpos]=size(A); 
numseqs_sub = numseqs-1; 
 
site_parent=zeros(20, numpos); 
lnp = zeros(20,numpos); 
 
% determine amino acid frequency (actually, the number of seqs with each aa normalized to an alignment of 100 total seqs)  
% in parent alignment and calculate ln(prob) 
for aa = 1:20 
    site_parent(aa,1:numpos) = sum(A == aminoacids(aa)).*x/numseqs; 
    lnp(aa,:) = rr_factx - gammaln(site_parent(aa,:)+1) - gammaln(100-site_parent(aa,:)+1)... 
        + site_parent(aa,:)*log(random(aa)) + (x-site_parent(aa,:))*log(1-random(aa)); 
end; 
 
% initalize variables 
out_mat = zeros(20, numpos, numseqs); 
out_vect = zeros(numpos, numseqs); 
 
for n = 1:numseqs 
     
    % initialize variables 
    DDG=zeros(1,numpos); 
    DDGmat=zeros(20,numpos); 
    site_sub=zeros(20,numpos); 
    lnp_sub = zeros(20,numpos); 
     
    % determine amino acid frequency in subalignment (actually, number of 
    % seqs with each amino acid normalized to 100 total seqs) 
    site_sub = site_parent*numseqs/x; 
    for j = 1:numpos 
        site_sub(:,j) = site_sub(:,j) - (aminoacids==A(n,j))'; 
    end 
    site_sub = site_sub.*x/(numseqs_sub); 
     
    % calculate ln(prob) for sub alignment 
    for aa = 1:20 
        lnp_sub(aa,:) = rr_factx - gammaln(site_sub(aa,:)+1) - gammaln(100-site_sub(aa,:)+1)... 
            + site_sub(aa,:)*log(random(aa)) + (100-site_sub(aa,:))*log(1-random(aa)); 
    end; 
         
    diff_lnp=lnp-lnp_sub; 
    DDGmat=diff_lnp; 
    DDG = sqrt(sum(diff_lnp.^2)); 
     
    out_vect(:,n) = DDG'; 
    out_mat(:,:,n)= DDGmat; 
end 
% out_vect=mean(out_vect'); 
 
 
%the ln(factorial) function, two ways: by gamma function if <170, and  
%by stirlings approximation if >170. 
function [m]=rr_fact(n) 
%This checks for size and calculates the ln(factorial) 
if n<=170 
   m=gammaln(n+1); 
else 
   m=n*log(n)-n; 
end 
 
 
 
function[coupling_matrix_aa,coupling_matrix_res]=global_sca2(randpert_mat); 
%usage: [coupling_matrix_aminoacid, coupling_matrix_residues]=global_sca(randpert_mat) 
% 
% Modified from Rama's code 
 
[numaa, numpos, numtrials]=size(randpert_mat); 
 
% amino_acids=('ACDEFGHIKLMNPQRSTVWY'); 
coupling_matrix_aa = zeros(numpos, numpos, 20, 20); 
coupling_matrix_res = zeros(numpos,numpos); 
for m = 1:numpos 
    site1 = squeeze(randpert_mat(:,m,:)); 
    for n = m:numpos 
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        site2 = squeeze(randpert_mat(:,n,:)); 
        coupling_matrix_aa(m,n,:,:) = site1*site2'; 
        coupling_matrix_aa(n,m,:,:) = squeeze(coupling_matrix_aa(m,n,:,:))'; 
    end 
end 
 
coupling_matrix_aa=coupling_matrix_aa./numtrials; 
 
for m=1:numpos 
    for n=1:numpos 
%         coupling_matrix_res(m,n)=norm(reshape(squeeze(coupling_matrix_aa(m,n,:,:)),1,400)); 
        coupling_matrix_res(m,n) = sqrt(sum(sum(coupling_matrix_aa(m,n,:,:).^2))); 
    end 
end 
 
 
function [pdb] = read_pdb2(filename); 
% This function reads in the fields of a pdb into a structure array. 
 
numofatoms = 0; 
pdb = []; 
 
[fid1,message] = fopen(filename, 'r'); 
atoms = 0; 
if fid1 == -1  
    disp(message) 
end 
 
 
while 1 
    line = fgetl(fid1); 
    if ~ischar(line), break, end 
    sz = size(line); 
    line = [line blanks(80 - sz(2))]; 
 
    if (line(1:4)=='ATOM') & (~strcmp(char(line(18:20)),'WAT')) & (~strcmp(char(line(18:20)),'HOH')) 
        numofatoms = numofatoms + 1; 
        pdb.atomnum(numofatoms,1) = str2int(line(7:11)); 
        pdb.atomid(numofatoms,1) = cellstr(removeblanks(line(13:16))); 
        pdb.ac(numofatoms,1) = cellstr(line(17)); 
        pdb.res(numofatoms,1) = cellstr(line(18:20)); 
        pdb.chainid(numofatoms,1) = cellstr(line(22)); 
        pdb.resnum(numofatoms,1) = str2int(line(23:26)); 
        % need to have a resnum2 for pdbs that have redundant resnum.  For 
        % example, in ser prot there is 184A and 184. 
        pdb.resnum2(numofatoms,1) = cellstr(removeblanks(line(23:27))); 
        pdb.x(numofatoms,1) = str2double(line(31:38)); 
        pdb.y(numofatoms,1) = str2double(line(39:46)); 
        pdb.z(numofatoms,1) = str2double(line(47:54)); 
        pdb.occ(numofatoms,1) = str2double(line(55:60)); 
        pdb.bfactor(numofatoms,1) = str2double(line(61:66)); 
        pdb.segid(numofatoms,1) = cellstr(line(73:76)); 
        pdb.element(numofatoms,1) = cellstr(line(77:78)); 
%         pdb.charge(numofatoms) = str2num(char(line(79:80))); 
    end          
end 
 
fclose(fid1); 
 
[pdb.strseq3, pdb.strseq1, pdb.resnumlist] = make_pdb_seq(pdb); 
 
function val = str2int(str) 
val = sscanf(str,'%d'); 
 
function out = removeblanks(in) 
[r,c] = find(~isspace(in)); 
if isempty(c), 
    out = in([]); 
else 
    out = in(:,c(1):c(end)); 
end 
 
 
 
function [alignment_trunc, align_to_strseq, best_align, strseqnum, startat, topscore] = find_seq_in_alignment(strseq1, 
alignment, resnumlist); 
% This function makes pairwise alignments of a certain sequence and each 
% sequence in an alignment.  The alignment is truncated according to the tophit. 
% The alignment and its score between the tophit and  the input sequence (strseq1)  
% are determined and passed back.  Lastly, the function makes a lookup 
% table between alignment position number and strseq number. 
 
% score each alignment sequence (removed of gaps) to the pdb sequence.  
scores = zeros(1,size(alignment,1));    %initialize scores 
for rownum = 1:size(alignment,1) 
    [scores(rownum),junk] = swalign(alignment(rownum,find(isletter(alignment(rownum,:)))), strseq1); 
end 
 
% the highest scoring sequence is assumed to be the same as the pdb 
% sequence and the alignment is truncated according to its gaps 
strseqnum = find(scores == max(scores)); 
alignment_trunc = alignment(:,find(isletter(alignment(strseqnum,:)))); 
disp(['     truncated alignment using sequence #' num2str(strseqnum) '  (score: ' num2str(max(scores)) ')']); 
[topscore, best_align, startat] = swalign(alignment_trunc(strseqnum,:), strseq1); 
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% note that the top sequence in pdb.best_align is the whole topscore  
% seqeuence from the truncated alignment and the bottom is the  
% complete structure sequence. 
 
% use swalign and a loop to make a lookup table to convert alignment # to 
% str seq number (pdb.align_to_strseq) 
alignment_pos = startat(1); strseq_pos = startat(2); 
for best_align_pos = 1:size(best_align,2) 
    if best_align(2,best_align_pos)=='|' | best_align(2,best_align_pos)==':' 
        align_to_strseq(alignment_pos) = resnumlist(strseq_pos); 
    end 
     
    % only advance the alignment/strseq_pos position if the next element in 
    % the top/bottom row of best_align is a letter; but, can only do this 
    % if not at the end of the line 
    if best_align_pos ~= size(best_align,2) 
        if isletter(best_align(1, best_align_pos+1)) 
            alignment_pos = alignment_pos + 1; 
        end 
        if isletter(best_align(3,best_align_pos+1)) 
            strseq_pos = strseq_pos + 1; 
        end 
    end 
end 
 
 
function x = fitcoupling(coupmatrix) 
% takes in an n x n coupling matrix and plots the normal, lognormal, and 
% imshow figures.  Also fits normal and lognormal histograms and returns 
% fit to normal distribution (results from log-transformation of x axis).  
 
numbins = 100; 
ndiagonal = 1;  % set to 0 to include self-coupling and 1 to exclude.  
 
 
matrix_uppertri_reshape = coupmatrix(find(triu(coupmatrix,ndiagonal))); 
[yhist,xhist] = hist(matrix_uppertri_reshape, numbins); 
 
scrsz = get(0,'ScreenSize');  
figure('Position',[scrsz(3)*3.5/10 (scrsz(4)*2.25)/4 (scrsz(3)*6)/10 (scrsz(4)*1.3)/4]); 
 
%_____LOG NORMAL GRAPH_____ 
subplot(1,2,1); 
bar(xhist,yhist);  
axis([0 max(matrix_uppertri_reshape) 0 max(yhist)]); 
title('log normal distribution');  
ylabel('number of pixels');  
xlabel('\Delta\DeltaG (kT^*)');  
hold on;  
 
options=optimset('display','final','MaxIter',[500],'MaxFunEvals',[5000],'TolFun',1e-2);     % set options 
xmax = xhist(find(yhist == max(yhist))); ymax = max(yhist);                                 % set initial values 
x0 = [ymax xmax 0.5];    
% xlb = [ymax-100 0.5*xmax]; xub = [ymax+100 1.5*xmax];          
xlb = []; xub = [];                                                                         % set lower and upper bounds 
x = lsqcurvefit(@lognormaldist, x0, xhist, yhist, xlb, xub, options);                       % do fitting and plot 
plot(xhist, lognormaldist(x,xhist), '-r','LineWidth',1.5);  
line(1) = {['f = ae^{-0.5(ln(x/x_o))/\sigma)^2}']}; 
line(2) = {['   a = ' num2str(x(1))]};  
line(3) = {['   x_o = ' num2str(x(2))]};  
line(4) = {['   \sigma = ' num2str(x(3))]}; 
text(max(xhist)*2/5, max(yhist)*3/4, line, 'Fontsize',8, 'Color','r'); 
hold off; 
 
%____NORMAL GRAPH____ 
subplot(1,2,2); 
logxhist = log(xhist); 
bar(logxhist, yhist); 
title ('normal distribution');  
xlabel('log(\Delta\DeltaG)'); 
hold on; 
 
options=optimset('display','final','MaxIter',[500],'MaxFunEvals',[5000],'TolFun',1e-2);     % set optioons 
xmax = log(xhist(find(yhist == max(yhist)))); ymax = max(yhist);                            % set initial values 
x0 = [ymax xmax 1];          
xlb = []; xub = [];                                                                         % set lower and upper bounds 
x = lsqcurvefit(@logdist, x0, logxhist, yhist, xlb, xub, options);                          % do fitting, then plot 
plot([min(logxhist):0.1:max(logxhist)], logdist(x,[min(logxhist):0.1:max(logxhist)]), '-r', 'LineWidth', 1.5);  
line(1) = {['f = ae^{-0.5((x-x_o)/\sigma)^2}']}; 
line(2) = {['   a = ' num2str(x(1))]};  
line(3) = {['   x_o = ' num2str(x(2))]};  
line(4) = {['   \sigma = ' num2str(x(3))]}; 
text((min(logxhist)+max(logxhist))*2/4, max(yhist)*3/4, line(1:4),'Fontsize',8,'Color','r'); 
sigma3 = x(2) + 3*x(3);  
line(5) = {['x_o+3\sigma = ' num2str(sigma3)]};  
line(6) = {['e^{x_o+3\sigma} = ' num2str(exp(sigma3)) ' kT^*']}; 
text(sigma3-0.2, max(yhist)*1/6, line(5:6),'Fontsize',8,'Color',[0.5 0.5 0.5]); 
text(sigma3, logdist(x,sigma3)+max(yhist)/20, '\downarrow','Color',[0.5 0.5 0.5]); 
hold off; 
 
 
%____IMSHOW FIGURE____ 
figure ('Position', [scrsz(3)/20 (scrsz(4)*1.25)/4 (scrsz(3)*2.5)/10 (scrsz(4)*4)/10]); 
imshow(coupmatrix, [min(matrix_uppertri_reshape) exp(x(2)+4.5*x(3))],'notruesize');  
% imshow(coupmatrix, [min(matrix_uppertri_reshape) max(matrix_uppertri_reshape)],'notruesize');  
color_map = jet(256); color_map = color_map(1:255,:); 
colormap(color_map); colorbar; 
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function F = logdist(x,xdata) 
F = x(1)*exp(-0.5*((xdata-x(2))/x(3)).^2); 
 
function F = lognormaldist(x,xdata) 
F = x(1)*exp(-0.5*(log(xdata/x(2))/x(3)).^2); 
 
 
 
function [links, cumpk] = analyze_graph (matrix, threshold); 
 
removeself = 1;                       % set to 1 to remove self coupling 
 
[rows,cols] = size(matrix); 
 
% calculate number of links 
matrix_bin = matrix >= threshold; 
links = sum(matrix_bin);        % note: this counts self coupling! 
 
% remove self coupling if removeself set to 1 above.  
if removeself 
    for n = 1:rows 
        if matrix(n,n) >= threshold 
            links(n) = links(n)-1; 
        end 
    end 
end 
 
 
% calculate cumulative distribution.  Values are stored such that cumpk(n) 
% contains number of nodes with n-1 more links. 
for n = 1:max(links)+1 
    cumpk(n) = size(find(links >= (n-1)),2); 
end; 
 
% switch to other way of counting: not shifted 
% for n = 1:max(links) 
%     cumpk(n) = size(find(links >= n),2); 
% end; 
 
cumpk = cumpk/rows; 
 
% graph cumpk 
scrsz = get(0,'ScreenSize');  
figure('Position',[scrsz(3)*3.5/10 (scrsz(4))/10 (scrsz(3)*3)/10 (scrsz(4)*1.3)/4]); 
k = 1:max(links)+1;      % to shift by 1 
% k = 1:max(links);      % not shifted 
plot(log10(k), log10(cumpk), 'o','MarkerFaceColor','b','MarkerEdgeColor','k'); 
axis([0 log10(max(links)+5) min(log10(cumpk/2)) 0]); 
title(['connections P(K>k) (threshold = ' num2str(threshold) ')'],'Color',[0 0 1.0]); 
xlabel('log_{10}(k)'); ylabel('log_{10}(P(K>k))'); 
hold on; 
 
% FIT POWER LAW and plot 
x0 = [0 -2]; 
x = lsqcurvefit(@powerlawfit, x0, log10(k), log10(cumpk)); 
plot(log10(1:0.1:max(k)+5), powerlawfit(x, log10(1:0.1:max(k)+5)),'-', 'Color',[0.5 0.5 0.5]); 
line(1) = {['f = mx + b']}; 
line(2) = {['     m = ' num2str(x(2))]}; 
line(3) = {['     b = ' num2str(x(1))]}; 
line(4) = {['P(K>k) = ak^{-\gamma+1}']}; 
line(5) = {['     \gamma = ' num2str(-1*(x(2)-1))]}; 
text (log10(max(k)+5)*2/3, log10(min(cumpk(cumpk~=0)))/3, line, 'Fontsize',8,'Color',[0.5 0.5 0.5]); 
hold off; 
 
function F = powerlawfit(x, xdata); 
F = x(1) + x(2).*xdata; 
 
function solution = fit_cumpoisson (xdata, ydata) 
l = 10; 
 
plot (xdata, ydata, 'o','Markerfacecolor','b'); 
hold on;  
 
solution = lsqcurvefit(@cumpoisson, l, xdata, ydata); 
 
ysolution = cumpoisson(solution, xdata); 
plot(xdata, ysolution, 'o', 'Markerfacecolor','r'); 
 
 
function F = cumpoisson (lambda, x) 
F = 1-poisscdf(x,lambda); 
 
function [pdb] = contacts (pdb_file, cutoff, write_flag, file_out); 
 
% Reads in a pdb file and calculates the contact matrices for residues 
% (#res x #res) and for atoms (not working yet)(#atoms x #atoms).  The input must include: 
% the filename (.pdb), the cutoff, a write_flag, and a name for the output 
% file.  No waters will be read in from the pdb file.  If cutoff is zero 
% then the contact is based on the default calculation (20% more than the 
% sum of the van der Waals radii).  
 
% Example:  
% >> ww2 = contact_test('ww2_12.pdb',0,1,'pdzpajek.net') 
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[atom_type] = ['C', 'O', 'N', 'S']; 
[atom_radius] = [1.9, 1.4, 1.5, 1.85]; 
cushion = 0.2; 
 
% First, read the pdb into a cell structure array 
pdb = read_pdb2(pdb_file); 
disp('read pdb file') 
 
% Make list of residues (in case there is a gap at some point) and 
% initialize pdb.contacts 
% num_atoms = size(pdb.atomnum,1); 
% pdb.resnumlist(1) = pdb.resnum(1); 
% pdb.sequence(1) = pdb.res(1); 
% count = 1; 
% for n = 2:num_atoms 
%     if pdb.resnum(n) ~= pdb.resnumlist(count) 
%         count = count + 1; 
%         pdb.resnumlist(count) = pdb.resnum(n); 
%         pdb.sequence(count) = pdb.res(n); 
%     end 
% end 
% pdb.resnumlist = pdb.resnumlist'; 
num_res = size(pdb.resnumlist,1); 
pdb.contacts = zeros(num_res, num_res); 
 
 
% Calculate contact matrix 
disp('Calculating contact matrix') 
for i = 1:num_res 
    for j = (i+1):num_res 
        % if the residues are adjacent then they are contacting 
        if j == (i+1) 
            pdb.contacts(i,j) = 1; 
            pdb.contacts(j,i) = 1; 
        else 
            % otherwise, find the indices of atoms in both aa find 
            % distances between all atom pairs from the two aa.  
            ind_i = find(pdb.resnum==str2num(char(pdb.resnumlist(i)))); 
            ind_j = find(pdb.resnum==str2num(char(pdb.resnumlist(j)))); 
            for i2 = 1:size(ind_i,1) 
                for j2 = 1:size(ind_j,1) 
                    %only do the calculation for contact if a contact has 
                    %not already been found 
                    if pdb.contacts(i,j) == 0 
                        dist = ((pdb.x(ind_i(i2))-pdb.x(ind_j(j2)))^2 + (pdb.y(ind_i(i2))-pdb.y(ind_j(j2)))^2 + 
(pdb.z(ind_i(i2))-pdb.z(ind_j(j2)))^2)^0.5; 
                        % if the cutoff is specified then see if the two atoms 
                        % are in contact, if not use the default cutoff 
                        % (sum of vdw radii plus some cushion - usually 20%). 
                        if cutoff > 0 
                            if dist <= cutoff 
                                pdb.contacts(i,j) = 1; 
                                pdb.contacts(j,i) = 1; 
                            end 
                        else 
                            atom1 = char(pdb.atomid(ind_i(i2))); atom1 = atom1(1); 
                            atom2 = char(pdb.atomid(ind_j(j2))); atom2 = atom2(1); 
                            contact_cutoff = (atom_radius(findstr(atom1,atom_type)) + 
atom_radius(findstr(atom2,atom_type)))*(1+cushion); 
                            if dist <= contact_cutoff 
                                pdb.contacts(i,j) = 1; 
                                pdb.contacts(j,i) = 1; 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 
 
if write_flag 
    disp('writing pajek file') 
    if exist (file_out,'file') 
        delete (file_out); 
        disp ([file_out ' overwritten.']); 
    end 
    fid = fopen(file_out,'w'); 
 
    fprintf(fid, '*Vertices %1.0f\n', num_res); 
    for p = 1:num_res 
        ind_Ca = find(pdb.resnum==pdb.resnumlist(p) & strcmp(pdb.atomid,'CA')); 
        fprintf(fid, '%1.0f "%1.0f"\n', p, pdb.resnumlist(p)); 
%         fprintf(fid, '%1.0f "%1.0f" %3.1f %3.1f %3.1f\n', p, pdb.resnumlist(p),pdb.x(ind_Ca), pdb.y(ind_Ca), 
pdb.z(ind_Ca)); 
    end 
     
    fprintf (fid, '*Edges\n'); 
    for p1 = 1:num_res 
        for p2 = (p1+1):num_res 
            if pdb.contacts(p1,p2)==1 
                fprintf(fid, '%1.0f %1.0f 1\n',p1,p2); 
            end 
        end 
    end 
    fclose(fid); 
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end 
 
pdb.num_contacts = sum(pdb.contacts); 
for m = min(pdb.num_contacts):(max(pdb.num_contacts)+5) 
    pdb.pk(m) = size(find(pdb.num_contacts==m),2); 
end 
pdb.pk = pdb.pk./num_res; 
 
for m2 = 1:(max(pdb.num_contacts)+5) 
    pdb.cum_pk(m2) = sum(pdb.pk(m2:end)); 
end 
 
xdata = 1:(max(pdb.num_contacts)+5); 
figure; 
[AX, H1, H2] = plotyy(xdata, pdb.pk, xdata, pdb.cum_pk); 
set(get(AX(1),'Ylabel'),'String','Probability'); 
set(get(AX(2),'Ylabel'),'String','Cumulative Probability'); 
 
set(H1,'Marker','o','MarkerFaceColor','b'); 
set(H2,'Marker','o','MarkerFaceColor','r'); 
 
 
function [distmatrix, total_coupedges, coupledandconnected] = couplingcontacts(coupmatrix, contactmatrix);  
num = 50; 
maxcoupvalue = max(reshape(triu(coupmatrix,1), 1, size(coupmatrix,1)^2)) 
 
for m = 1:num 
    % first binarize the coupling matrix around maxcoupvalue*m/20 
    bin_coupmatrix = zeros(size(coupmatrix)); 
    bin_coupmatrix = double(coupmatrix > maxcoupvalue*m/num); 
     
    % only consider the contacts that also have high coupling values 
    coupcontactmatrix = contactmatrix.*bin_coupmatrix; 
     
    % determine how many steps it takes to get from any node to any other 
    % node and binarize this matrix 
    distmatrix = dist_from_contacts(coupcontactmatrix); 
    bin_distmatrix = distmatrix > 0; 
     
    % count fraction of binarized coupling matrix edges (not including self 
    % coupling. 
    total_coupedges(m) = sum(sum(triu(bin_coupmatrix,1))); 
     
    % count number of binarized coupling matrix edges that have edges in 
    % bin_distmatrix 
    coupledandconnected(m) = 0; 
    for i = 1:size(bin_distmatrix,1) 
        for j = i+1:size(bin_distmatrix,1) 
            if bin_coupmatrix(i,j)==1 & bin_distmatrix(i,j)==1 
                coupledandconnected(m) = coupledandconnected(m) + 1; 
            end 
        end 
    end 
end 
 
function scrambled = scrambler(matrix); 
% scrambles an input matrix while preserving symmetry and the diagonal 
% elements 
 
[rows,cols] = size(matrix); 
 
scrambled = matrix; 
 
for n = 1:(100*rows^2) 
    % randomly pick two elements in matrix, making sure to not pick a 
    % diagonal element.  
    x1 = round(1 + (rows-1)*rand); 
    y1 = x1; 
    while y1==x1 
        y1 = round(1 + (rows-1)*rand); 
    end 
    x2 = round(1 + (rows-1)*rand); 
    y2 = x2; 
    while y2==x2 
        y2 = round(1 + (rows-1)*rand); 
    end 
     
    % swap two elements 
    temp = scrambled(x1,y1); 
    scrambled(x1,y1) = scrambled(x2,y2); 
    scrambled(x2,y2) = temp; 
     
    % retain symmetry 
    scrambled(y1,x1) = scrambled(x1,y1); 
    scrambled(y2,x2) = scrambled(x2,y2); 
end 
 
 
function [ident, trimalign] = trimalignment(A, cutoff); 
% makes an alignment that consists only of sequences with maximum sequence 
% identity.  The sequence identity threshold is passed as cutoff.  
 
[numseqs, numpos] = size(A); 
 
ident = zeros(numseqs,numseqs); 
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for r = 1:numseqs  
    for s = (r):numseqs 
        % determine percent identity 
        commonres = isletter(A(r,:)) & isletter(A(s,:)); 
        ident(r,s) = sum(A(r,commonres) == A(s,commonres))/sum(commonres);  
        ident(s,r) = ident(r,s); 
    end 
end 
 
count = 1; 
for n = 1:numseqs; 
    seqsabovecutoff = find(ident(n,:) > cutoff); 
    if size(seqsabovecutoff,2)==1 | seqsabovecutoff(2) > n 
        trimalign(count,:) = A(n,:); 
        count = count + 1;  
    end;  
end; 
 
 
function [weights, freq, uniqueaa] = weightseqs (alignment); 
% Takes in an alignment and determines a weight for each sequence.  Weight 
% is calculated as described in Henikoff and Henikoff (JMB, 1994).  
 
aa = ('ACDEFGHIKLMNPQRSTVWY'); 
[numseqs, numpos] = size(alignment);  
 
% determine aa frequency at all positions 
freq = zeros(20,numpos); 
for n = 1:20 
    freq(n,:) = sum(alignment == aa(n)); 
end;  
 
% determine number of unique aa at all sites 
uniqueaa = zeros(1,numpos); 
% for n = 1:numpos 
%     uniqueaa(n) = size(unique(alignment(isletter(alignment(:,n)),n)),1); 
% end;  
uniqueaa = sum(freq>0); 
 
weights = zeros(1,numseqs); 
for seq = 1:numseqs 
    for pos = 1:numpos 
        if findstr(alignment(seq,pos), aa) 
            weights(seq) = weights(seq) + 1/(uniqueaa(pos) * freq(aa==alignment(seq,pos), pos)); 
        end; 
    end; 
end;  
 
weights = weights/(sum(weights)); 
 
 
function writepajekfile(matrix, threshold, align_to_strseq, filename); 
% This function will binarize a raw matrix about a specified threshold and 
% write out the corresponding network to a pajek file with specified name.  
 
filename = [filename '.net']; 
fid = fopen(filename, 'w'); 
 
binmat = matrix >= threshold; 
 
% write list of vertices 
fprintf (fid, '*Vertices %1.0f\r',size(binmat,1)); 
for n = 1:size(binmat,1) 
    if iscellstr(align_to_strseq(n)) 
        fprintf (fid, '%1.0f "%s" ic Red\t bc Black\r', n, char(align_to_strseq(n))); 
    else 
        fprintf (fid, '%1.0f "%s" ic Red\t bc Black\r', n, [num2str(n) 'na']); 
    end 
end 
 
% write list of arcs 
matrixmax = max(reshape(matrix, 1, size(matrix,1)*size(matrix,2))); 
fprintf (fid, '*Edges\r'); 
for row = 1:size(binmat,1) 
    for col = row:size(binmat,1) 
        if binmat(row, col) == 1 
            weight = (matrix(row,col)/matrixmax) * 20; 
            fprintf(fid, '%1.0f %1.0f %3.1f\r',row, col, weight); 
        end 
    end 
end 
fclose(fid); 
 
function writepyfile(raw, threshold, pertnum, align_to_strseq, pdb, filename_prefix) 
% writes out a .py file that draws lines between highly coupled positions 
% (depending on threshold) in a structure.  Lines are colored according to whether they 
% are contacting.  
 
color_by_contact = 0; 
color_by_ddg = 1; 
 
% atom radii and contact cushion and distance calculation 
[atom_type] = ['C', 'O', 'N', 'S']; 
[atom_radius] = [1.9, 1.4, 1.5, 1.85]; 
cushion = 0.2; 
distances = squareform(pdist([pdb.x pdb.y pdb.z])); 
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% arrow parameters 
theta = pi/10; 
phi = 0; 
maxarrow = 1.0; minarrow = 0.1; 
arr_red = 0.0; arr_green = 0.0; arr_blue = 1.0;     % colors range from 0 to 1 
 
% binarize matrix and count number of incoming arcs 
binmat = raw > threshold; 
arcsin = sum(binmat,2); 
 
% open file and begin writing python script 
filename = [filename_prefix '.py']; 
if exist(filename,'file') 
    delete (filename); disp ([filename ' deleted']) 
end 
fid = fopen(filename,'w'); 
% Begin writing python script 
fprintf (fid, 'from pymol.cgo import *\nfrom pymol import cmd\nimport math\nimport whrandom\n\n'); 
fprintf (fid, 'obj = []\n\n'); 
 
% write script to put sphere at all Ca of all network positions 
for n = 1:size(binmat,1) 
    if arcsin(n) 
        ind = find(pdb.resnum==align_to_strseq(n) & strcmp(pdb.atomid,'CA')); 
        fprintf(fid, 'obj.extend([ COLOR, 0.0, 0.0, 1.0 ])\n'); 
        fprintf(fid, 'obj.extend([ SPHERE, %3.1f, %3.1f, %3.1f, 0.5 ])\n',pdb.x(ind), pdb.y(ind), pdb.z(ind)); 
    end 
end 
 
% write script to draw arrows as indicated in binmat 
for row = 1:size(binmat,1) 
    for col = 1:size(binmat,2) 
        if (binmat(row,col)==1) & (row ~= pertnum(col)) 
            % find indices of perturbed and coupled positions 
            ind1 = find(pdb.resnum == align_to_strseq(pertnum(col)) & strcmp(pdb.atomid,'CA')); 
            ind2 = find(pdb.resnum == align_to_strseq(row) & strcmp(pdb.atomid,'CA')); 
             
            % determine coordinates for ends of arrowhead lines 
            % first find theta and phi for spherical representation of second 
            % point relative to first point.  
            [th,ph,length] = cart2sph(pdb.x(ind2)-pdb.x(ind1), pdb.y(ind2)-pdb.y(ind1), pdb.z(ind2)-pdb.z(ind1)); 
            % length of arrow determined by sigmoidal formula (min and max defined above).  
            arrow_length = minarrow + (maxarrow-minarrow)/(1+10^(log10(500000)-length)^0.3); 
            % find coordinates of arrows based on length, theta, and phi (above) 
            [rx, ry, rz] = sph2cart(theta+th, phi+ph, arrow_length); 
            arrow1x = pdb.x(ind2) - rx; arrow1y = pdb.y(ind2) - ry; arrow1z = pdb.z(ind2) - rz; 
            [rx, ry, rz] = sph2cart((-1)*theta+th, phi+ph, arrow_length); 
            arrow2x = pdb.x(ind2) - rx; arrow2y = pdb.y(ind2) - ry; arrow2z = pdb.z(ind2) - rz; 
             
             
            % are positions contacting? if yes, color green.  if not, color blue 
            if color_by_contact 
                contact = 0;     
                atoms_in_1 = find(pdb.resnum==align_to_strseq(row)); 
                atoms_in_2 = find(pdb.resnum==align_to_strseq(pertnum(col))); 
                for r = 1:size(atoms_in_1,1) 
                    for c = 1:size(atoms_in_2,1) 
                        atom1 = char(pdb.atomid(atoms_in_1(r))); atom2 = char(pdb.atomid(atoms_in_2(c))); 
                        sumofradii = atom_radius(findstr(atom_type,atom1(1))) + atom_radius(findstr(atom_type,atom2(1))); 
                        if distances(atoms_in_1(r), atoms_in_2(c)) <= sumofradii*(1+cushion); 
                            contact = 1; 
                        end 
                    end 
                end 
                if contact 
                    arr_red = 1.0; arr_green = 1.0; arr_blue = 0.0; 
                else 
                    arr_red = 0.0; arr_green = 0.0; arr_blue = 1.0; 
                end 
            end 
             
            if color_by_ddg 
                for n = 1:size(raw,2); raw(pertnum(n),n) = 0; end; 
                maxddg = max(reshape(raw,1,size(raw,1)*size(raw,2))); 
                arr_red = 0.0; arr_green = 0.0; 
                arr_blue = raw(row,col)/maxddg; 
            end 
                         
            fprintf (fid, 'obj.extend([ COLOR, %2.1f, %2.1f, %2.1f])\n', arr_red, arr_green, arr_blue); 
             
            % main line 
            fprintf (fid, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
            fprintf (fid, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', pdb.x(ind1), pdb.y(ind1), pdb.z(ind1)); 
            fprintf (fid, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', pdb.x(ind2), pdb.y(ind2), pdb.z(ind2)); 
            fprintf (fid, 'obj.append (END)\n'); 
            % arrowhead 1 
            fprintf (fid, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
            fprintf (fid, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', pdb.x(ind2), pdb.y(ind2), pdb.z(ind2)); 
            fprintf (fid, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow1x, arrow1y, arrow1z); 
            fprintf (fid, 'obj.append (END)\n'); 
            % arrowhead 2 
            fprintf (fid, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
            fprintf (fid, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', pdb.x(ind2), pdb.y(ind2), pdb.z(ind2)); 
            fprintf (fid, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow2x, arrow2y, arrow2z); 
            fprintf (fid, 'obj.append (END)\n'); 
        end 
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    end 
end 
 
obj_name = ['temppy']; 
fprintf (fid, 'cmd.load_cgo(obj, ''%s'')',obj_name); 
fclose(fid); 
 
 
 
function writewvcfile(matrix, threshold, align_to_strseq, filename); 
% This function writes outs .wvc script for viewer pro.  The script creates 
% groups of residues according to their number of incoming links.  All 
% residues with k=1 will be in group k1, etc.   
 
% Example: writewvcpfile(matrix, 0.08, pdz.align_to_strseq, 'pdztest'); 
%________________________________________________________________________ 
 
 
filename = [filename '.wvc']; 
fid = fopen(filename, 'w'); 
 
binmat = matrix >= threshold; 
links = sum(binmat); 
 
for n = max(links):-1:2 
    list = find(links == n); 
    fprintf (fid, 'UnSelectAll\r'); 
    fprintf (fid, 'SetProperty Residue '); 
    if ~isempty(list) 
        for p = 1:size(list,2) 
            fprintf (fid, 'id = %s', char(align_to_strseq(list(p)))); 
            if p < size(list,2) 
                fprintf (fid, ', '); 
            end 
        end 
    end 
    fprintf (fid, ': select = on\r'); 
    fprintf (fid, 'Group k%s\r',num2str(n)); 
end 
fprintf (fid, 'UnSelectAll'); 
fclose(fid); 
function scrambled = scrambler(matrix); 
% scrambles an input matrix while preserving symmetry and the diagonal 
% elements 
 
[rows,cols] = size(matrix); 
 
count = 1; 
for r = 1:rows 
    for c = r+1:cols 
        uppertri_vals(count) = matrix(r,c); 
        count = count + 1;      
    end 
end 
 
uppertri_vals_scr = uppertri_vals(randperm((rows^2-rows)/2)); 
 
 
count = 1; 
for r = 1:rows 
    scrambled(r,r) = matrix(r,r); 
    for c = r+1:cols 
        scrambled(r,c) = uppertri_vals_scr(count); 
        scrambled(c,r) = uppertri_vals_scr(count); 
        count = count + 1; 
    end 
end 
 
function [links, cum_links] = scrambler2(matrix,threshold); 
% this program makes ten scrambled matrices using scrambler.  these are 
% used to determine a mean and standard deviation.  The data are fit with a 
% cumulative poisson distribution.  
 
% input:    matrix      N x N matrix 
%           threshold   cutoff for binarization 
 
% returns: links        matrix that is numtrials x N; contains number of links 
%                       for each position in the matrix 
%          cum_links    matrix that is numtrials x (max# of links+1) that 
%                       contains the number of positions with k or more links.  
 
 
% options 
removeself = 0;                 % if 1 then set diagonal to zero, if 0 then leave as is.  
scrambler_method = 'symmetric';     % 'symmetric', 'rows' only, or 'whole' 
 
numtrials = 100; 
 
sizematrix = size(matrix,1); 
 
% if not counting self coupling then set diagonal elements to zero 
if removeself == 1 
    for r = 1:sizematrix 
        matrix(r,r) = 0;  
    end 
end 
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% cum_links = zeros(numtrials, 20); 
links = zeros(numtrials, sizematrix); 
 
for n = 1:numtrials 
     
    % make scrambled matrix and binarize. 
    switch scrambler_method 
        case {'symmetric'} 
            scrambled = scrambler(matrix); 
        case {'rows'} 
            scrambled = zeros(size(matrix)); 
            for row = 1:sizematrix 
                scrambled(row,:) = matrix(row, randperm(sizematrix)); 
            end 
        case {'whole'} 
            scrambled = reshape(matrix(randperm(sizematrix*sizematrix)),sizematrix,sizematrix); 
    end 
     
    % binarize scrambled matrix 
    scrambled_bin = scrambled >= threshold; 
     
    % find number of links for each node 
    links(n,:) = sum(scrambled_bin); 
     
    % calculate cumulative number of links 
    % note: number of links shifted by 1.  i.e. cum_links(1) has number of 
    % nodes with 0 or more links. 
    for p = 1:max(links(n,:)+1) 
        cum_links(n,p) = sum(links(n,:) >= (p-1)); 
    end 
    cum_links(n,:) = cum_links(n,:)/size(matrix,1); 
end 
 
 
 
function solution = fit_cumpoisson (xdata, ydata) 
l = 4; 
 
loglog (xdata, ydata, 'o','Markerfacecolor','b'); 
hold on;  
 
solution = lsqcurvefit(@cumpoisson, l, xdata, ydata); 
 
ysolution = cumpoisson(solution, xdata); 
loglog (xdata, ysolution, '-g', 'Linewidth',1.5); 
 
 
function F = cumpoisson (lambda, x) 
F = 1-poisscdf(x,lambda); 
 
 
 
function [out] = test_normcdf(x,xdata); 
 
out = 1.*(1-normcdf(xdata,x(1), x(2))); 
 
 
function [fitted_curve, y, resnorm] = scmatrix_norm(xdata, ydata); 
% from Rama 
 
lb = [0 0]; 
ub = [10 10]; 
options = optimset('display', 'final', 'TolFun', 1e-3); 
 
plot (log10(xdata), log10(ydata), 'bo', 'MarkerFaceColor', 'blue'); 
 
[y, resnorm, residual] = lsqcurvefit('test_normcdf', [1 1], xdata, ydata, lb, ub, options); 
 
xplot = [1:max(size(xdata))]; 
yplot = test_normcdf(y, xplot); 
hold on;  
plot (log10(xplot), log10(yplot), '-g', 'LineWidth', 1.5); 
fitted_curve = [xplot', yplot']; 
 
 



Appendix B: MATLAB code for structural analysis 
 
 
function [pdb] = loadmodel(filename, name) 
% Loads model in proper pdb format into structure array, calculates 
% positional errors, gets data/model parameters from datasets.txt,  
% and normalizes occupancies. 
 
% Input:  .pdb file must be in proper format (i.e. ac identifier in col 17 
%           with alt conf lines together).  This is the output of the pdb_write 
%           command in O, version8 (note that the pdb file output from this 
%           command differs from proper pdb format in one way: atom numbers 
%           for atoms with alternate conformations are the same). 
%         name must agree with one of the setnames in the datasets.txt 
%           file. 
% Output:  structure array with setname as prefix.  structure contains the 
%         following fields:  
%           atomnum         atom number in structure 
%           atomid          atom identifier 
%           ac              alternate conformation identifier 
%           res             residue name 
%           chainid         chain identifier 
%           resnum          residue number 
%           x               x coord 
%           y               y coord 
%           z               z coord 
%           occ             occupancy (normalized) 
%           bfactor         B factor 
%           segid           segment identifier 
%           label           res name,res#,atomid    (eg: GLY322N) 
%           label2                   res#,atomid    (eg: ALA322N -- at mutated pos) 
%           set             setname 
%           protein         name of protein 
%           synch           synchrotron where collected 
%           refl            number of unique reflections 
%           resolution      resolution of data set 
%           rfact           R factor of data set 
%           mos             mosaicity 
%           length          length of unit cell 
%           rfr             R free of latest refinement 
%           r               R of latest refinement 
%           totalatoms1     total number of atoms in model (including all 
%                               acs and those with occ = 0) 
%           totalatoms2     total number of atoms in model not including 
%                               occ = 0 and counting alt conf atoms only once 
%           poserr          positional error - calculated by stroud formula 
 
 
prefix = name; 
[fid1,message] = fopen(filename, 'r'); 
atoms = 0; 
if fid1 == -1  
    disp(message) 
else 
    fid2 = fopen('temp.pdb','w+'); 
    while feof(fid1) == 0 
        line = fgets(fid1); 
        num = findstr('ATOM ',line); 
        if size(num) > 0                                                % if the line has "ATOM" then read it and write 
to temp.pdb 
            fprintf(fid2,line); 
            atoms = atoms + 1; 
        end 
    end 
end 
status1 = fclose(fid1); 
frewind(fid2); 
last = 0; 
 
for n = 1:atoms                                                         % read from all lines:  
    fseek(fid2,6,'cof'); 
    name.atomnum(n) = str2num(char(fread(fid2,5,'char')'));             % atom number 
    fseek(fid2,2,'cof'); 
    name.atomid(n) = cellstr(char(fread(fid2,3,'char')'));              % atom identifier 
    name.ac(n) = cellstr(char(fread(fid2,1,'char')'));                  % alternate conformation identifier 
    name.res(n) = cellstr(char(fread(fid2,3,'char')'));                 % residue 
    fseek(fid2,1,'cof'); 
    name.chainid(n) = cellstr(char(fread(fid2,1,'char')'));             % chain identifier 
    name.resnum(n) = str2num(char(fread(fid2,4,'char')'));              % residue number 
    fseek(fid2,4,'cof'); 
    name.x(n) = str2num(char(fread(fid2,8,'char')'));                   % x coord 
    name.y(n) = str2num(char(fread(fid2,8,'char')'));                   % y coord 
    name.z(n) = str2num(char(fread(fid2,8,'char')'));                   % z coord 
    name.occ(n) = str2num(char(fread(fid2,6,'char')'));                 % occupancy 
     
    if strcmp(name.ac(n),'B')                                              % normalize occupancies if there are 
alternate confs only 
        name.occ(n) = name.occ(n)/(name.occ(n)+name.occ(n-1));          %   do calculation only after second 
conformation is read 
        name.occ(n-1) = 1-name.occ(n);                                  %   note: this requires the pdb format is proper!  
    end 
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    name.bfactor(n) = str2num(char(fread(fid2,6,'char')'));             % bfactor 
    fseek(fid2,6,'cof'); 
    name.segid(n) = cellstr(char(fread(fid2,4,'char')'));               % segment identifier 
    fseek(fid2,1,'cof');                                                % this goes to the beginning of the next line 
end     
     
status2 = fclose(fid2); 
delete('temp.pdb'); 
 
name.atomnum = name.atomnum'; name.atomid = name.atomid'; name.ac = name.ac'; name.res = name.res'; 
name.chainid = name.chainid'; name.resnum = name.resnum'; name.x = name.x'; name.y = name.y'; name.z = name.z';  
name.occ = name.occ'; name.bfactor = name.bfactor'; name.segid = name.segid'; 
 
name.label = cellstr([char(name.res) num2str(name.resnum) char(name.atomid)]); 
name.label2 = cellstr([num2str(name.resnum) char(name.atomid)]); 
 
 
                                                                        % get information about data set from 
datasets.txt 
[setname protein synch res comp rfact lastr mos length refl atomnum rfr r]=textread('datasets.txt',... 
    '%s  %s      %s    %f  %f   %f    %f    %f  %f     %d   %d      %f  %f','headerlines',1); 
[numsets,blah]=size(setname); 
for m = 1:numsets 
    if strcmp(setname(m),prefix)                                        % if prefix matches assign:  
        name.set = setname(m);                                          %   setname, #refl, res, rfactor, mos, length 
        name.protein = protein(m); 
        name.synch = synch(m);                                          %   synchrotron, r, rfree 
        name.refl = refl(m); 
        name.resolution = res(m); 
        name.rfact = rfact(m); 
        name.mos = mos(m); 
        name.length = length(m); 
        name.rfr = rfr(m); 
        name.r = r(m); 
    end 
end 
 
name.totalatoms1 = atoms;                                               % total number of atoms in model 
[num_occ0,blah] = size(find(name.occ==0));                              % number of atoms with occ = 0 
[num_ac,blah] = size(find(strcmp(name.ac,'A')));                        % number of atoms with alternate conformations 
name.totalatoms2 = name.totalatoms1 - num_occ0 - num_ac;                % number of atoms in model excluding those occ = 
o and 
                                                                        %       counting those with alt confs only once. 
 
for n = 1:name.totalatoms1                                              % Calculate positional errors for all atoms 
    name.poserr(n)=stroud(name.bfactor(n), name.totalatoms2, name.refl);    
end 
name.poserr = name.poserr'; 
 
pdb = name; 
 
 
 
function [str1,str2] = dr(str1,str2,alt) 
% This function accepts two structures and finds the difference of the two: 
%           str1 --> str2 
% It returns the x-displacement (.dx), y-displacement (.dy), z-displacement (.dz),  
% displacement (.dr), normalized displacement(.drnorm).  Using the 
% direction of the vector (calculated in spherical coordinates) and the 
% magnitude of the normalized displacement, the function also calculates 
% the normalized x, y, and z vectors.   
 
% If alt = 1, atoms that have alternate conformations the difference is calculated  
% using a weighted average of its position and propagated positional 
% errors. If alt = 0 then the second conformation is not used.  
 
% Example usage: [ww2,aw27] = dr(ww2,aw27,0); 
 
% Input: two models in structure arrays. 
% Output:  additional fields in each structure:  
%       1) .dr      raw disp 
%       2) .drn     normalized displacement 
%       3) .dx      raw displacement in x  
%       4) .dy      raw displacement in y  
%       5) .dz      raw displacement in z  
%       6) .dxn     normalized displacement in x 
%       7) .dyn     normalized displacement in y 
%       8) .dzn     normalized displacement in z 
%       9) .drsets  list of sets used for calculation 
%       10).drmsg   'alternate conformations used/not used' 
 
 
[numchainA,blah] = size(find(strcmp(str1.chainid,'A')));        % number of atoms with chainid A 
[numchainP,blah] = size(find(strcmp(str1.chainid,'P')));        % number of atoms with chainid P 
total = numchainA + numchainP;                                  % number of atoms in model excluding waters 
 
for n = 1:total                                                 % Go through all protein and peptide atoms in model 1 
     
                                                                % find indices and number of occurrences for label1 
(res,#,atomid) and label2(#,atomid)  
     ind1_1 = find(strcmp(str1.label,str1.label(n)));           % indices of label1 (res,#,atomid) in str1  
     [num1_1,blah] = size(ind1_1);                              % number of occurrences of label1 in str1 (could be 1,2) 
     mc = strcmp(str1.atomid(n),'N')|strcmp(str1.atomid(n),'CA')|strcmp(str1.atomid(n),'C')|strcmp(str1.atomid(n),'O');  
% is it mainchain atom? 
      
     ind1_2 = find(strcmp(str2.label,str1.label(n)));           % indices of label1 in str2 
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     [num1_2,blah] = size(ind1_2);                              % number of occurrences of label1 in str2 (could be 
0,1,2) 
     ind2_2 = find(strcmp(str2.label2,str1.label2(n)));         % indices of label2 in str2  (label2 only has #,atomid - 
can be used to check for mutation) 
     [num2_2,blah] = size(ind2_2);                              % number of occurrences of label2 (#,atomid) in str2 
(could be 0,1,2) 
      
     if (alt==0) & strcmp(str1.ac(n),'B') 
         occupiedin1 = 0; 
     else 
         occupiedin1 = str1.occ(n); 
     end 
      
     occupiedin2=0; 
     switch num1_2                                              % is the atom found in structure 2? 
         case 0 
             if (num2_2==0)                                     % if label1 is not found and label2 is not found then it 
must not be modeled in str2 
                 occupiedin2 = 0; 
             elseif ((num2_2==1)&mc)                            % if label1 is not found but label2 is found it must be 
a mutated position (only residue names don't match). 
                 occupiedin2 = str2.occ(ind2_2(1));             % Only count as occupied if mainchain atom; let 
occupiedin2 be occupancy of that mc atom (should be 1). 
             end 
         case 1 
             occupiedin2 = str2.occ(ind1_2(1));                 % if label1 is found once then let occupiedin2 be 
whatever the occupancy of that atom. 
         case 2 
             occupiedin2 = 1;                                   % if label2 is found twice then it must be modeled as 
alternate confs in str2. 
     end 
              
     occupiedinboth = occupiedin1 & occupiedin2;                % is it occupied in both structures? 
      
     if occupiedinboth                                          % if the atom is in both structures... 
 
                                                                % str1 atom will be assigned coordinates,pe.  
         if ((num1_1==2) & alt)                                 % If atom is found twice and alt conf = 'on' = 1, then 
weight.  
             x1 = str1.x(ind1_1(1))*str1.occ(ind1_1(1)) +  str1.x(ind1_1(2))*str1.occ(ind1_1(2)); 
             y1 = str1.y(ind1_1(1))*str1.occ(ind1_1(1)) +  str1.y(ind1_1(2))*str1.occ(ind1_1(2)); 
             z1 = str1.z(ind1_1(1))*str1.occ(ind1_1(1)) +  str1.z(ind1_1(2))*str1.occ(ind1_1(2)); 
             pe1 = ((str1.occ(ind1_1(1))*str1.poserr(ind1_1(1)))^2 + (str1.occ(ind1_1(2))*str1.poserr(ind1_1(2)))^2)^0.5; 
         else                                                   % Otherwise, x1,y1,z1,pe1 are simply its corresponding 
values. 
             x1 = str1.x(ind1_1(1)); 
             y1 = str1.y(ind1_1(1)); 
             z1 = str1.z(ind1_1(1)); 
             pe1 = str1.poserr(ind1_1(1)); 
         end 
                                                                % str2 atom will be assigned coordinates,pe, and index.   
         if ((num1_2(1)==2) & alt)                              % If the atom is found twice and alt confs are 'on' then 
take weighted ave 
             x2 = str2.x(ind1_2(1))*str2.occ(ind1_2(1)) +  str2.x(ind1_2(2))*str2.occ(ind1_2(2)); 
             y2 = str2.y(ind1_2(1))*str2.occ(ind1_2(1)) +  str2.y(ind1_2(2))*str2.occ(ind1_2(2)); 
             z2 = str2.z(ind1_2(1))*str2.occ(ind1_2(1)) +  str2.z(ind1_2(2))*str2.occ(ind1_2(2)); 
             pe2 = ((str2.occ(ind1_2(1))*str2.poserr(ind1_2(1)))^2 + (str2.occ(ind1_2(2))*str2.poserr(ind1_2(2)))^2)^0.5; 
             i2 = ind1_2(1); 
         else                                                   % Otherwise, coords and error are corresponding values. 
             x2 = str2.x(ind2_2(1)); 
             y2 = str2.y(ind2_2(1)); 
             z2 = str2.z(ind2_2(1)); 
             pe2 = str2.poserr(ind2_2(1)); 
             i2 = ind2_2(1); 
         end 
                                                                % Calculate displacements 
         str1.dx(n) = x2 - x1;   
         str1.dy(n) = y2 - y1;  
         str1.dz(n) = z2 - z1; 
         str1.dr(n) = (str1.dx(n)^2 + str1.dy(n)^2 + str1.dz(n)^2)^0.5; 
          
         str1.drn(n) = str1.dr(n)/(pe1^2 + pe2^2)^0.5;   
         [theta, phi, r] = cart2sph (str1.dx(n),str1.dy(n),str1.dz(n)); 
         [str1.dxn(n), str1.dyn(n), str1.dzn(n)] = sph2cart (theta, phi, str1.drn(n)); 
          
         str2.dx(i2) = str1.dx(n); str2.dy(i2) = str1.dy(n); str2.dz(i2) = str1.dz(n); str2.dr(i2) = str1.dr(n); 
         str2.dxn(i2) = str1.dxn(n); str2.dyn(i2) = str1.dyn(n); str2.dzn(i2) = str1.dzn(n); str2.drn(i2) = str1.drn(n); 
          
     else                                                       % if atom is not found in str1 and str2 in above 
conditions then set values to 0. 
         str1.dx(n) = 0; str1.dy(n) = 0; str1.dz(n) = 0; str1.dr(n) = 0; str1.dxn(n) = 0; str1.dyn(n) = 0; str1.dzn(n) = 
0; str1.drn(n) = 0; 
     end 
end 
 
str1.dx = str1.dx';  
str1.dy = str1.dy';  
str1.dz = str1.dz';  
str1.dr = str1.dr'; 
str1.dxn = str1.dxn';  
str1.dyn = str1.dyn';  
str1.dzn = str1.dzn';  
str1.drn = str1.drn'; 
 
str2.dx = str2.dx';  
str2.dy = str2.dy';  
str2.dz = str2.dz';  
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str2.dr = str2.dr'; 
str2.dxn = str2.dxn';  
str2.dyn = str2.dyn';  
str2.dzn = str2.dzn';  
str2.drn = str2.drn'; 
 
str1.dr_sets = [str1.set str2.set]; 
str2.dr_sets = [str1.set str2.set]; 
 
if alt == 1 
    str1.drmsg = 'alternate conformations used'; 
    str2.drmsg = 'alternate conformations used'; 
else 
    str1.drmsg = 'alternate conformations not used'; 
    str2.drmsg = 'alternate conformations not used'; 
end 
 
 
 
 
 
function [str1, str2] = dr_outfiles(model_list, arrow_zone, raw_or_norm) 
 
% Function that automates analysis and outputs .txt and .py files.  The 
% .txt file has all the dr and drn values listed and can be read into 
% sigmaplot or excel.  The .py file has the python commands to draw arrows. 
% The user can specify one of three options defining which set of arrows to 
% be drawn:  
%       1) all 
%       2) Calpha atoms in peptide binding pocket 
%       3) Calpha atoms in carboxylate binding loop 
% The length of the arrows can be either: 
%       1) raw (dr) 
%       2) normalized (drn). 
% If the normalized length is chosen they will automatically be scaled by a 
% factor of 6.   
 
% Example: models = strvcat('ww2','aw27'); 
%          [ww2,aw27] = ddr_outfiles (models, 2, 'dr') 
 
%------------------------------------------------------------------------- 
 
% regions of PDZ domain 
backbone = ['N' 'CA' 'O']; 
pep_bind_pocket_res = [3:7,315:330,371:385]; 
carb_bind_loop_res = [315:325]; 
 
% arrow parameters 
theta = pi/10; 
phi = 0; 
maxarrow = 1.0; minarrow = 0.1; 
arr_red = 0.3; arr_green = 0.3; arr_blue = 1.0;     % colors range from 0 to 1 
 
if strcmp(raw_or_norm,'dr') 
    scale = 1; 
elseif strcmp(raw_or_norm,'drn') 
    scale = 6; 
end 
 
% obtain structures in structure arrays using loadmodel function.  Always 
% read in ww2 structure as temp since .txt file is printed out using these labels. 
ww2temp = loadmodel('models/ww2_12.pdb','ww2'); disp('ww2temp loaded') 
 
% model1_file = ['models/' file1]; 
% str1 = loadmodel(model1_file,model1); disp([model1 ' loaded']); 
%  
% model2_file = ['models/' file2]; 
% str2 = loadmodel(model2_file,model2); disp([model2 ' loaded']); 
 
model_list = cellstr(model_list); 
files_in_models_folder = dir('models'); 
 
for modelnum = 1:size(model_list,1) 
    for filenum = 1:size(files_in_models_folder,1) 
        if findstr(char(model_list(modelnum)), files_in_models_folder(filenum).name) 
            full_filename = ['models/' files_in_models_folder(filenum).name] 
            switch modelnum 
                case 1 
                    str1 = loadmodel(full_filename, model_list(1)); disp([char(model_list(1)) ' loaded']); 
                case 2 
                    str2 = loadmodel(full_filename, model_list(2)); disp([char(model_list(2)) ' loaded']); 
                case 3 
                    str3 = loadmodel(full_filename, model_list(3)); disp([char(model_list(3)) ' loaded']); 
                case 4 
                    str4 = loadmodel(full_filename, model_list(4)); disp([char(model_list(4)) ' loaded']); 
            end %switch 
        end %if 
    end %for filenum 
end %for modelnum 
 
% Calculate difference with dr.m function: str1 --> str2 
[str1,str2] = dr(str1,str2,0); 
disp(['calculated dr of ' char(model_list(1)) ' and ' char(model_list(2))]) 
 
% open .txt and .py files as txt_file and py_file, respectively 
txt_file = [char(model_list(1)) '_' char(model_list(2)) '_' raw_or_norm '.txt']; 
if exist (txt_file,'file') 
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    delete (txt_file); disp (['old ' txt_file ' overwritten']) 
end 
fid = fopen(txt_file,'w');  
 
switch arrow_zone 
    case 1 
        py_arrows = 'all'; 
    case 2 
        py_arrows = 'pbp'; 
    case 3 
        py_arrows = 'cbl'; 
end 
 
py_file = [char(model_list(1)) '_' char(model_list(2)) '_' py_arrows '_' raw_or_norm '.py']; 
if exist (py_file,'file') 
    delete (py_file); disp (['old ' py_file ' overwritten']) 
end 
fid2 = fopen(py_file,'w');  
 
% Begin writing python script 
fprintf (fid2, 'from pymol.cgo import *\nfrom pymol import cmd\nimport math\nimport whrandom\n\n'); 
fprintf (fid2, 'obj = []\n\n'); 
fprintf (fid2, 'obj.extend([ LINEWIDTH, 0.5])\n'); 
 
total_pro_pep = size(find(strcmp(ww2temp.chainid,'A')),1) + size(find(strcmp(ww2temp.chainid,'P')),1); 
 
for n = 1:total_pro_pep 
    % to the text file, write: ww2temp.label and corresponding str1.dr and str1.drn. 
    index = find(strcmp(ww2temp.label(n),str1.label)); 
    if index 
        fprintf (fid, '%s \t %f \t %f\n', char(ww2temp.label(n)), str1.dr(index), str1.drn(index)); 
    else 
        fprintf (fid, '%s \t 0 \t 0\n', char(ww2temp.label(n))); 
    end 
 
    % if the atom is in both ww2temp and str1 and the displacement is 
    % nonzero then calculate coordinates of the arrow lines 
     
    if index & (str1.dr(index)~=0)     
        % determine coordinates for end of arrow. 
        if strcmp(raw_or_norm,'dr') 
            x2 = str1.x(index) + str1.dx(index)/scale;  
            y2 = str1.y(index) + str1.dy(index)/scale;  
            z2 = str1.z(index) + str1.dz(index)/scale; 
        else 
            x2 = str1.x(index) + str1.dxn(index)/scale;  
            y2 = str1.y(index) + str1.dyn(index)/scale;  
            z2 = str1.z(index) + str1.dzn(index)/scale; 
        end 
                 
        % determines coordinates for ends of arrowhead lines 
            % first find theta and phi for spherical representation of second 
            % point relative to first point.  
        [th,ph,length] = cart2sph(x2-str1.x(index), y2-str1.y(index), z2-str1.z(index)); 
            % length of arrow determined by sigmoidal formula (min and max 
            % defined above).  
        arrow_length = minarrow + (maxarrow-minarrow)/(1+10^(log10(500000)-str1.drn(index))^0.3); 
            % find coordinates of arrows based on length, theta, and phi (above) 
        [rx, ry, rz] = sph2cart(theta+th, phi+ph, arrow_length); 
        arrow1x = x2 - rx; arrow1y = y2 - ry; arrow1z = z2 - rz; 
        [rx, ry, rz] = sph2cart((-1)*theta+th, phi+ph, arrow_length); 
        arrow2x = x2 - rx; arrow2y = y2 - ry; arrow2z = z2 - rz; 
         
        % write the pymol line commands to file in appropriate conditions 
        switch arrow_zone 
            case 1 
                % if all is selected then write lines for every atom with nonzero 
                % displacement 
                if str1.dr(index)~=0 
                    % main line 
                    fprintf (fid2, 'obj.extend([ COLOR, %2.1f, %2.1f, %2.1f])\n', arr_red, arr_green, arr_blue); 
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', str1.x(index), str1.y(index), 
str1.z(index)); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                    % arrowhead 1 
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow1x, arrow1y, arrow1z); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                    % arrowhead 2 
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow2x, arrow2y, arrow2z); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                end 
            case 2 
                % if only Calpha of pep_bind_pocket is selected then only write 
                % lines for backbone atoms in this region 
                if str1.dr(index)~=0 & findstr(backbone,char(ww2temp.atomid(n))) & 
find(pep_bind_pocket_res==str1.resnum(index)) 
%                 if str1.dr(index)~=0 & find(pep_bind_pocket_res==str1.resnum(index)) 
                    fprintf (fid2, 'obj.extend([ COLOR, %2.1f, %2.1f, %2.1f])\n', arr_red, arr_green, arr_blue); 
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', str1.x(index), str1.y(index), 
str1.z(index)); 
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                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                     
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow1x, arrow1y, arrow1z); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                     
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow2x, arrow2y, arrow2z); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                end 
            case 3 
                % if only Calpha of carb_bind_loop is selected then only write 
                % lines for backbone atoms in this region 
                if str1.dr(index)~=0 & findstr(backbone,char(ww2temp.atomid(n))) & 
find(carb_bind_loop_res==str1.resnum(index)) 
                    fprintf (fid2, 'obj.extend([ COLOR, %2.1f, %2.1f, %2.1f])\n', arr_red, arr_green, arr_blue); 
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', ww2.x(n), ww2.y(n), ww2.z(n)); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                     
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow1x, arrow1y, arrow1z); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                     
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow2x, arrow2y, arrow2z); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                end 
        end     % of switch 
    end     % of if 
end 
 
obj_name = [char(model_list(1)) '_' char(model_list(2)) '_' py_arrows '_' raw_or_norm]; 
fprintf (fid2, 'cmd.load_cgo(obj,''%s'')',obj_name); 
 
fclose(fid); disp([txt_file ' written']) 
fclose(fid2); disp ([py_file ' written']) 
 
 
 
function [str1, str2, str3, str4] = ddr(str1, str2, str3, str4, alt) 
% ddr calculates the structural coupling vector for 4 structures in a 
% structure cycle with format: 
%       str1 -------> str2 
%         |             | 
%         |             | 
%       str3 -------> str4 
% If alternate conformations exist they will be treated as weighted 
% averages if alt=1; if alt=0 then second conformation is not used. 
 
% Input: 4 models in structure arrays; alternate conformation flag 
 
% Output: 4 structures with additional fields for ddr and ddrnorm: 
%   .ddr            raw structural coupling 
%   .ddrn           normalized coupling 
%   .ddx            x component of ddr 
%   .ddy            y component of ddr 
%   .ddz            z component of ddr 
%   .ddx            x component of ddrn 
%   .ddy            y component of ddrn 
%   .ddz            z component of ddrn 
%   .ddr_sets       list of sets used for calculations 
%   .ddrmsg         'alternate conformations used/not used' 
 
[numchainA,blah] = size(find(strcmp(str1.chainid,'A')));            % number of atoms with chainid A 
[numchainP,blah] = size(find(strcmp(str1.chainid,'P')));            % number of atoms with chainid P 
total = numchainA + numchainP;                                      % number of atoms in model excluding waters 
 
 
for n = 1:total 
    ind1_1 = find(strcmp(str1.label(n),str1.label));                % where atom label1 (res, #, atomid) occurs in str1 
(1,2) 
    [num1_1,blah] = size(ind1_1);                                   % how many times label1 occurs in str1 (1,2) 
    ind2_1 = find(strcmp(str1.label2(n),str1.label2));              % where atom label2 (#,atomid) occurs in str1 (1,2) 
    mc = strcmp(str1.atomid(n),'N')|strcmp(str1.atomid(n),'CA')|strcmp(str1.atomid(n),'C')|strcmp(str1.atomid(n),'O');  
% is it mainchain atom? 
    if (alt==0)&(strcmp(str1.ac(n),'B')) 
        occupiedin1 = 0; 
    else 
        occupiedin1 = str1.occ(n); 
    end 
     
    ind1_2 = find(strcmp(str1.label(n),str2.label));                % where atom label1 occurs in str2 (0,1,2) 
    [num1_2,blah] = size(ind1_2);                                   % how many times label1 occurs in str2  
    ind2_2 = find(strcmp(str1.label2(n),str2.label2));              % where atom label2 occurs in str2 (0,1,2) - should 
be superset of ind1_x 
    [num2_2,blah] = size(ind2_2);                                   % how many times label2 occurs in str2 
    occupiedin2=0; 
    switch num1_2                                                   % is the atom found in structure 2? 
        case 0 
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            if (num2_2==0)                                          % if label1 is not found and label2 is not found 
then it must not be modeled in str2 
                occupiedin2 = 0; 
            elseif ((num2_2==1)&mc)                                 % if label1 is not found but label2 is found it must 
be a mutated position (only residue names don't match). 
                occupiedin2 = str2.occ(ind2_2(1));                  %     Only count as occupied if mainchain atom; let 
occupiedin2 be occupancy of that mc atom (should be 1). 
            end 
        case 1 
            occupiedin2 = str2.occ(ind1_2(1));                      % if label1 is found once then let occupiedin2 be 
whatever the occupancy of that atom. 
        case 2 
            occupiedin2 = 1;                                        % if label2 is found twice then it must be modeled 
as alternate confs in str2. 
    end 
     
    ind1_3 = find(strcmp(str1.label(n),str3.label));                % where atom label1 occurs in str3 (0,1,2) 
    [num1_3,blah] = size(ind1_3);                                   % how many times label1 occurs in str3 
    ind2_3 = find(strcmp(str1.label2(n),str3.label2));              % where atom label2 occurs in str3 (0,1,2) 
    [num2_3,blah] = size(ind2_3);                                   % how many times labels occurs in str3 
    switch num1_3                                                   % is the atom found in structure 2? 
        case 0 
            if (num2_3==0)                                          % if label1 is not found and label2 is not found 
then it must not be modeled in str2 
                occupiedin3 = 0; 
            elseif ((num2_3==1)&mc)                                 % if label1 is not found but label2 is found it must 
be a mutated position (only residue names don't match). 
                occupiedin3 = str3.occ(ind2_3(1));                  %     Only count as occupied if mainchain atom; let 
occupiedin2 be occupancy of that mc atom (should be 1). 
            end 
        case 1 
            occupiedin3 = str3.occ(ind1_3(1));                      % if label1 is found once then let occupiedin2 be 
whatever the occupancy of that atom. 
        case 2 
            occupiedin3 = 1;                                        % if label2 is found twice then it must be modeled 
as alternate confs in str2. 
    end 
     
    ind1_4 = find(strcmp(str1.label(n),str4.label));                % where atom label1 occurs in str4 (0,1,2) 
    [num1_4,blah] = size(ind1_4);                                   % how many times label1 occurs in str4 
    ind2_4 = find(strcmp(str1.label2(n),str4.label2));              % where atom label2 occurs in str4 (0,1,2) 
    [num2_4,blah] = size(ind2_4);                                   % how many times label2 occurs in str4 
    switch num1_4                                                   % is the atom found in structure 2? 
        case 0 
            if (num2_4==0)                                          % if label1 is not found and label2 is not found 
then it must not be modeled in str2 
                occupiedin4 = 0; 
            elseif ((num2_4==1)&mc)                                 % if label1 is not found but label2 is found it must 
be a mutated position (only residue names don't match). 
                occupiedin4 = str4.occ(ind2_4(1));                  %     Only count as occupied if mainchain atom; let 
occupiedin2 be occupancy of that mc atom (should be 1). 
            end 
        case 1 
            occupiedin4 = str4.occ(ind1_4(1));                      % if label1 is found once then let occupiedin2 be 
whatever the occupancy of that atom. 
        case 2 
            occupiedin4 = 1;                                        % if label2 is found twice then it must be modeled 
as alternate confs in str2. 
    end 
     
    if ((num1_2>=1) & (num1_3>=1) & (num1_4>=1))                    % if label1 occurs at least once in each then it is 
common 
        common = 1; 
    elseif (mc & (num2_2>=1) & (num2_3>=1) & (num2_4>=1))           % otherwise, only if it is a mainchain atom common 
to all 
        common = 1;                                                 % will it be considered common. (ie mutated position) 
    else 
        common = 0; 
    end 
     
    occupiedinall = occupiedin1 & occupiedin2 & occupiedin3 & occupiedin4;  % is the atom found in all 4 structures? 
     
    if occupiedinall                                                % if atom is in all or if mainchain common to all... 
                                                                    % assign str1 coordinates and pe 
        if ((num1_1 == 2) & alt)                                    % if atom is found twice in str1 and alt is on, 
coords and pe are weighted 
            x1 = str1.x(ind1_1(1))*str1.occ(ind1_1(1)) + str1.x(ind1_1(2))*str1.occ(ind1_1(2)); 
            y1 = str1.y(ind1_1(1))*str1.occ(ind1_1(1)) + str1.y(ind1_1(2))*str1.occ(ind1_1(2)); 
            z1 = str1.z(ind1_1(1))*str1.occ(ind1_1(1)) + str1.z(ind1_1(2))*str1.occ(ind1_1(2)); 
            pe1 = ((str1.occ(ind1_1(1))*str1.poserr(ind1_1(1)))^2 + (str1.occ(ind1_1(2))*str1.poserr(ind1_1(2)))^2)^0.5; 
        else                                                        % if atom found once, then coords and pe are same 
            x1 = str1.x(ind1_1(1)); 
            y1 = str1.y(ind1_1(1)); 
            z1 = str1.z(ind1_1(1)); 
            pe1 = str1.poserr(ind1_1(1)); 
        end 
                                                                    % assign str2 coordinates and pe 
        if ((num1_2 == 2) & alt)                                    % if atom is found twice and alt is on then weight 
            x2 = str2.x(ind1_2(1))*str2.occ(ind1_2(1)) + str2.x(ind1_2(2))*str2.occ(ind1_2(2)); 
            y2 = str2.y(ind1_2(1))*str2.occ(ind1_2(1)) + str2.y(ind1_2(2))*str2.occ(ind1_2(2)); 
            z2 = str2.z(ind1_2(1))*str2.occ(ind1_2(1)) + str2.z(ind1_2(2))*str2.occ(ind1_2(2)); 
            pe2 = ((str2.occ(ind1_2(1))*str2.poserr(ind1_2(1)))^2 + (str2.occ(ind1_2(2))*str2.poserr(ind1_2(2)))^2)^0.5; 
        else                                                        % otherwise, assign to values for index of label2, 
first element  
            x2 = str2.x(ind2_2(1)); 
            y2 = str2.y(ind2_2(1)); 
            z2 = str2.z(ind2_2(1)); 
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            pe2 = str2.poserr(ind2_2(1)); 
        end 
        i2 = ind2_2(1); 
                                                                    % assign str3 coordinate and pe 
        if ((num1_3 == 2) & alt)                                    % if atom is found twice and alt is on then weight 
            x3 = str3.x(ind1_3(1))*str3.occ(ind1_3(1)) + str3.x(ind1_3(2))*str3.occ(ind1_3(2)); 
            y3 = str3.y(ind1_3(1))*str3.occ(ind1_3(1)) + str3.y(ind1_3(2))*str3.occ(ind1_3(2)); 
            z3 = str3.z(ind1_3(1))*str3.occ(ind1_3(1)) + str3.z(ind1_3(2))*str3.occ(ind1_3(2)); 
            pe3 = ((str3.occ(ind1_3(1))*str3.poserr(ind1_3(1)))^2 + (str3.occ(ind1_3(2))*str3.poserr(ind1_3(2)))^2)^0.5; 
        else                                                        % otherwise, assign to values for index of label2, 
first element 
            x3 = str3.x(ind2_3(1)); 
            y3 = str3.y(ind2_3(1)); 
            z3 = str3.z(ind2_3(1)); 
            pe3 = str3.poserr(ind2_3(1)); 
        end 
        i3 = ind2_3(1); 
                                                                    % assign str4 coordinate and pe 
        if ((num1_4 == 2) & alt)                                    % if atom is found twice and alt is on then weight 
            x4 = str4.x(ind1_4(1))*str4.occ(ind1_4(1)) + str4.x(ind1_4(2))*str4.occ(ind1_4(2)); 
            y4 = str4.y(ind1_4(1))*str4.occ(ind1_4(1)) + str4.y(ind1_4(2))*str4.occ(ind1_4(2)); 
            z4 = str4.z(ind1_4(1))*str4.occ(ind1_4(1)) + str4.z(ind1_4(2))*str4.occ(ind1_4(2)); 
            pe4 = ((str4.occ(ind1_4(1))*str4.poserr(ind1_4(1)))^2 + (str4.occ(ind1_4(2))*str4.poserr(ind1_4(2)))^2)^0.5; 
        else                                                        % otherwise, assign to values for index of label2, 
first element 
            x4 = str4.x(ind2_4(1)); 
            y4 = str4.y(ind2_4(1)); 
            z4 = str4.z(ind2_4(1)); 
            pe4 = str4.poserr(ind2_4(1)); 
        end 
        i4 = ind2_4(1); 
                                                                    % calculate ddr values 
        str1.ddx(n) = (x2 - x1) - (x4 - x3); 
        str1.ddy(n) = (y2 - y1) - (y4 - y3); 
        str1.ddz(n) = (z2 - z1) - (z4 - z3); 
        str1.ddr(n) = (str1.ddx(n)^2 + str1.ddy(n)^2 + str1.ddz(n)^2)^0.5; 
        prop_pe = (pe1^2 + pe2^2 + pe3^2 + pe4^2)^0.5; 
        str1.ddrn(n) = str1.ddr(n)/prop_pe; 
%         str1.ddxn(n) = str1.ddx(n)/prop_pe; 
%         str1.ddyn(n) = str1.ddy(n)/prop_pe; 
%         str1.ddzn(n) = str1.ddz(n)/prop_pe; 
         
        [theta, phi, r] = cart2sph (str1.ddx(n),str1.ddy(n),str1.ddz(n)); 
        [str1.ddxn(n), str1.ddyn(n), str1.ddzn(n)] = sph2cart (theta, phi, str1.ddrn(n)); 
                                                                    % assign to appropriate indices in other structures 
        str2.ddx(i2) = str1.ddx(n); str3.ddx(i3) = str1.ddx(n); str4.ddx(i4) = str1.ddx(n); 
        str2.ddxn(i2) = str1.ddxn(n); str3.ddxn(i3) = str1.ddxn(n); str4.ddxn(i4) = str1.ddxn(n); 
        str2.ddy(i2) = str1.ddy(n); str3.ddy(i3) = str1.ddy(n); str4.ddy(i4) = str1.ddy(n); 
        str2.ddyn(i2) = str1.ddyn(n); str3.ddyn(i3) = str1.ddyn(n); str4.ddyn(i4) = str1.ddyn(n); 
        str2.ddz(i2) = str1.ddz(n); str3.ddz(i3) = str1.ddz(n); str4.ddz(i4) = str1.ddz(n); 
        str2.ddzn(i2) = str1.ddzn(n); str3.ddzn(i3) = str1.ddzn(n); str4.ddzn(i4) = str1.ddzn(n); 
        str2.ddr(i2) = str1.ddr(n); str3.ddr(i3) = str1.ddr(n); str4.ddr(i4) = str1.ddr(n); 
        str2.ddrn(i2) = str1.ddrn(n); str3.ddrn(i3) = str1.ddrn(n); str4.ddrn(i4) = str1.ddrn(n); 
    else                                                            % otherwise set to zero 
        str1.ddx(n) = 0; str1.ddy(n) = 0; str1.ddz(n) = 0; str1.ddr(n) = 0; 
        str1.ddrn(n) = 0; str1.ddxn(n) = 0; str1.ddyn(n) = 0; str1.ddzn(n) = 0; 
    end 
end 
 
str1.ddx = str1.ddx'; str1.ddy = str1.ddy'; str1.ddz = str1.ddz'; 
str1.ddxn = str1.ddxn'; str1.ddyn = str1.ddyn'; str1.ddzn = str1.ddzn'; 
str1.ddr = str1.ddr'; str1.ddrn = str1.ddrn'; 
 
str2.ddx = str2.ddx'; str2.ddy = str2.ddy'; str2.ddz = str2.ddz'; 
str2.ddxn = str2.ddxn'; str2.ddyn = str2.ddyn'; str2.ddzn = str2.ddzn'; 
str2.ddr = str2.ddr'; str2.ddrn = str2.ddrn'; 
 
% str3.ddx = str3.ddx';  
% str3.ddy = str3.ddy';  
% str3.ddz = str3.ddz'; 
% str3.ddxn = str3.ddxn';  
% str3.ddyn = str3.ddyn';  
% str3.ddzn = str3.ddzn'; 
% str3.ddr = str3.ddr';  
% str3.ddrn = str3.ddrn'; 
%  
% str3.ddx = str3.ddx';  
% str3.ddy = str3.ddy';  
% str3.ddz = str3.ddz'; 
% str3.ddxn = str3.ddxn';  
% str3.ddyn = str3.ddyn';  
% str3.ddzn = str3.ddzn'; 
% str3.ddr = str3.ddr';  
% str3.ddrn = str3.ddrn'; 
 
str1.ddr_sets = [str1.set str2.set str3.set str4.set]; 
str2.ddr_sets = [str1.set str2.set str3.set str4.set]; 
str3.ddr_sets = [str1.set str2.set str3.set str4.set]; 
str4.ddr_sets = [str1.set str2.set str3.set str4.set]; 
 
if alt == 1 
    str1.ddrmsg = 'alternate conformations used'; str2.ddrmsg = 'alternate conformations used'; 
    str3.ddrmsg = 'alternate conformations used'; str4.ddrmsg = 'alternate conformations used'; 
else 
    str1.ddrmsg = 'alternate conformations not used'; str2.ddrmsg = 'alternate conformations not used'; 
    str3.ddrmsg = 'alternate conformations not used'; str4.ddrmsg = 'alternate conformations not used'; 
end 
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function [str1, str2, str3, str4] = ddr_outfiles(model_list, arrow_zone, raw_or_norm) 
 
% Function that automates analysis and outputs .txt and .py files.  The 
% .txt file has all the dr and drn values listed and can be read into 
% sigmaplot or excel.  The .py file has the python commands to draw arrows. 
% The user can specify one of three options defining which set of arrows to 
% be drawn:  
%       1) all 
%       2) Calpha atoms in peptide binding pocket 
%       3) Calpha atoms in carboxylate binding loop 
% The length of the arrows can be either: 
%       1) raw (ddr) 
%       2) normalized (ddrn). 
% If the normalized length is chosen they will automatically be scaled by a 
% factor of 6.   
 
% Example: models = strvcat('ww2',aw27','bw1','aw27'); 
%          [ww2,aw27,bw1,aw27] = ddr_outfiles (models, 2, 'ddr') 
 
%------------------------------------------------------------------------- 
 
% regions of PDZ domain 
backbone = ['N' 'CA' 'O']; 
pep_bind_pocket_res = [3:7,315:330,371:385]; 
carb_bind_loop_res = [315:325]; 
 
% arrow parameters 
theta = pi/10; 
phi = 0; 
maxarrow = 0.6; minarrow = 0.05; 
arr_red = 0.0; arr_green = 0.0; arr_blue = 1.0;     % colors range from 0 to 1 
 
if strcmp(raw_or_norm,'ddr') 
    scale = 1; 
elseif strcmp(raw_or_norm,'ddrn') 
    scale = 6; 
end 
 
% obtain structures in structure arrays using loadmodel function.  Always 
% read in ww2 structure since .txt file is printed out using these labels. 
ww2temp = loadmodel('models/ww2_12.pdb','ww2'); disp('ww2temp loaded') 
 
model_list = cellstr(model_list); 
files_in_models_folder = dir('models'); 
 
for modelnum = 1:size(model_list,1) 
    for filenum = 1:size(files_in_models_folder,1) 
        if findstr(char(model_list(modelnum)), files_in_models_folder(filenum).name) 
            full_filename = ['models/' files_in_models_folder(filenum).name]; 
            switch modelnum 
                case 1 
                    str1 = loadmodel(full_filename, model_list(1)); disp([char(model_list(1)) ' loaded']); 
                case 2 
                    str2 = loadmodel(full_filename, model_list(2)); disp([char(model_list(2)) ' loaded']); 
                case 3 
                    str3 = loadmodel(full_filename, model_list(3)); disp([char(model_list(3)) ' loaded']); 
                case 4 
                    str4 = loadmodel(full_filename, model_list(4)); disp([char(model_list(4)) ' loaded']); 
            end %switch 
        end %if 
    end %for filenum 
end %for modelnum 
 
 
% Calculate difference with dr.m function: str1 --> str2 
[str1,str2,str3,str4] = ddr(str1,str2,str3,str4,0);  
disp(['calculated ddr of: ' char(model_list(1)) ', ' char(model_list(2)),', ' char(model_list(3)),' and 
',char(model_list(4))]) 
 
% open .txt and .py files as txt_file and py_file, respectively 
txt_file = [char(model_list(1)) '_' char(model_list(2)) '_' char(model_list(3)) '_' char(model_list(4)) '.txt']; 
if exist (txt_file,'file') 
    delete (txt_file); disp ([txt_file ' overwritten']) 
end 
fid = fopen(txt_file,'w'); 
 
switch arrow_zone 
    case 1 
        py_arrows = 'all'; 
    case 2 
        py_arrows = 'pbp'; 
    case 3 
        py_arrows = 'cbl'; 
end 
py_file = [char(model_list(1)) '_' char(model_list(4)) '_' py_arrows '_' raw_or_norm '.py']; 
if exist (py_file,'file') 
    delete (py_file); disp ([py_file ' overwritten']) 
end 
fid2 = fopen(py_file,'w'); 
 
% Begin writing python script 
fprintf (fid2, 'from pymol.cgo import *\nfrom pymol import cmd\nimport math\nimport whrandom\n\n'); 
fprintf (fid2, 'obj = []\n\n'); 
fprintf (fid2, 'obj.extend([ LINEWIDTH, 0.5])\n'); 
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total_pro_pep = size(find(strcmp(ww2temp.chainid,'A')),1) + size(find(strcmp(ww2temp.chainid,'P')),1); 
 
for n = 1:total_pro_pep 
    % to the text file, write: ww2temp.label and corresponding str1.dr and str1.drn. 
    index = find(strcmp(ww2temp.label(n),str1.label)); 
    if index 
        fprintf (fid, '%s \t %f \t %f\n', char(ww2temp.label(n)), str1.ddr(index), str1.ddrn(index)); 
    else 
        fprintf (fid, '%s \t 0 \n', char(ww2temp.label(n))); 
    end 
 
    % if the atom is in both ww2temp and str1 and the displacement is 
    % nonzero then calculate coordinates of the arrow lines 
     
    if index & (str1.ddr(index)~=0)     
        % determine coordinates for end of arrow. 
        x2 = str1.x(index) + str1.(raw_or_norm)(index)/scale;  
        y2 = str1.y(index) + str1.(raw_or_norm)(index)/scale;  
        z2 = str1.z(index) + str1.(raw_or_norm)(index)/scale; 
         
        % determines coordinates for ends of arrowhead lines 
            % first find theta and phi for spherical representation of second 
            % point relative to first point.  
        [th,ph,length] = cart2sph(x2-str1.x(index), y2-str1.y(index), z2-str1.z(index)); 
            % length of arrow determined by sigmoidal formula (min and max 
            % defined above).  
        arrow_length = minarrow + (maxarrow-minarrow)/(1+10^(log10(500000)-str1.ddr(index))^0.3); 
            % find coordinates of arrows based on length, theta, and phi (above) 
        [rx, ry, rz] = sph2cart(theta+th, phi+ph, arrow_length); 
        arrow1x = x2 - rx; arrow1y = y2 - ry; arrow1z = z2 - rz; 
        [rx, ry, rz] = sph2cart((-1)*theta+th, phi+ph, arrow_length); 
        arrow2x = x2 - rx; arrow2y = y2 - ry; arrow2z = z2 - rz; 
         
        % write the pymol line commands to file in appropriate conditions 
        switch arrow_zone 
            case 1 
                % if all is selected then write lines for every atom with nonzero 
                % displacement 
                if str1.ddr(index)~=0 
                    % main line 
                    fprintf (fid2, 'obj.extend([ COLOR, %2.1f, %2.1f, %2.1f])\n', arr_red, arr_green, arr_blue); 
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', str1.x(index), str1.y(index), 
str1.z(index)); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                    % arrowhead 1 
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow1x, arrow1y, arrow1z); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                    % arrowhead 2 
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow2x, arrow2y, arrow2z); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                end 
            case 2 
                % if only Calpha of pep_bind_pocket is selected then only write 
                % lines for backbone atoms in this region 
                if str1.ddr(index)~=0 & findstr(backbone,char(ww2temp.atomid(n))) & 
find(pep_bind_pocket_res==str1.resnum(index)) 
                    fprintf (fid2, 'obj.extend([ COLOR, %2.1f, %2.1f, %2.1f])\n', arr_red, arr_green, arr_blue); 
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', str1.x(index), str1.y(index), 
str1.z(index)); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                     
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow1x, arrow1y, arrow1z); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                     
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow2x, arrow2y, arrow2z); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                end 
            case 3 
                % if only Calpha of carb_bind_loop is selected then only write 
                % lines for backbone atoms in this region 
                if str1.ddr(index)~=0 & findstr(backbone,char(ww2temp.atomid(n))) & 
find(carb_bind_loop_res==str1.resnum(index)) 
                    fprintf (fid2, 'obj.extend([ COLOR, %2.1f, %2.1f, %2.1f])\n', arr_red, arr_green, arr_blue); 
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', ww2.x(n), ww2.y(n), ww2.z(n)); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                     
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow1x, arrow1y, arrow1z); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                     
                    fprintf (fid2, 'obj.extend([ BEGIN, LINE_STRIP])\n'); 
                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', x2, y2, z2); 



 157

                    fprintf (fid2, 'obj.extend([ VERTEX, %3.2f, %3.2f, %3.2f])\n', arrow2x, arrow2y, arrow2z); 
                    fprintf (fid2, 'obj.append (END)\n'); 
                end 
        end     % of switch 
    end     % of if 
end 
 
obj_name = [char(model_list(1)) '_' char(model_list(4)) '_' py_arrows '_' raw_or_norm]; 
fprintf (fid2, 'cmd.load_cgo(obj,''%s'')',obj_name); 
 
fclose(fid); fclose(fid2); 
 
 
 
 
function bargraph (model,field,title_on,cutoff) 
% Makes a bargraph of a specified field in a model.  The x-axis labels are 
% the atom labels.  The zoom is left so only x axis zooms.   
 
% Options:  If title_on is 1 then the title, y axis label, and data sets  
%               used in the figure are displayed.   
%           If a non-zero cutoff is passed then the non-zero elements (in a  
%               sorted list) in the field are tested by the lillietest.  The  
%               list that passes the test is used to determine a mean and std dev.   
%               If the list does not pass the test then a mean and std dev is  
%               calculated for the entire non-zero list. 
 
fig1_pos = [50 150 800 350];                                       % 'Position' of bargraph 
fig2_pos = [100 100 250 250];                                       % 'Position' of histogram 
 
figure('Position',fig1_pos);                                        % makes figure 
b = bar(model.(field));                                             % makes bar graph 
set(b,'FaceColor',[0 0 0.5],'EdgeColor',[0.0 0.0 0.5]); 
 
y=max(model.(field))/(30);                                          % Defines normalized unit that will be used to place 
text in bargraph 
 
% set(gca,'XTick',[1:max(model.atomnum)]);                          % set ticks and ticklabels 
set (gca,'XTick',[]); 
set(gca,'XTickLabel',''); 
 
[chainidA,blah] = size(find(strcmp(model.chainid,'A'))); 
[chainidP,blah] = size(find(strcmp(model.chainid,'P')));            % Calculated the total number of atoms to be plotted 
(includes  
atoms = chainidA + chainidP;                                        %   alternate conformations and atoms with occ = 0). 
 
text((atoms-100),(y*(31)),datestr(now),'Fontsize',6);               % displays the DATE 
 
for n = 2:atoms 
    text(n,(-1)*y,model.atomid(n),'FontSize',5.5);                  % displays the ATOMID of all atoms 
    if model.resnum(n)~=model.resnum(n-1)                           % displays the residue NUMBER only if a new one 
        text(n,(-2)*y,strcat(model.res(n),num2str(model.resnum(n))),'FontSize',8) 
    end 
end 
 
if chainidP>0                                                       % if there are peptide atoms then label the xaxis 
with protein and peptide 
    text (1,(-3*y),'Protein','Fontsize',7); 
    firstpep = min(find(strcmp(model.chainid,'P'))); 
    text (firstpep,(-3*y),'Peptide','Fontsize',7); 
end 
 
%----------if the title_on flag is 1 then show: title, ylabel, dataset info 
if title_on                                                          
 
    if strcmp(field,'dr')|strcmp(field,'drn')                       % figure out if analysis being show involves 2 or 4 
structures 
        fieldsets = 'dr_sets'; 
        numsets = 2; 
    elseif strcmp(field,'ddr')|strcmp(field,'ddrn') 
        fieldsets = 'ddr_sets'; 
        numsets = 4; 
    end 
     
    [setname protein synch res comp rfact lastr mos length refl atomnum rfr r]=textread('datasets.txt',... 
        '%s  %s      %s    %f  %f   %f    %f    %f  %f     %d   %d      %f  %f','headerlines',1); 
     
    for setnum = 1:numsets                                          % for each data set determine the corresponding 
protein structure 
        ind = find(strcmp(setname,model.(fieldsets)(setnum))); 
        name(setnum) = setname(ind);                                %   setname 
        pro(setnum) = protein(ind);                                 %   protein name 
        synchrotron(setnum) = synch(ind);                           %   synchrotron 
        reflections(setnum) = refl(ind);                            %   # reflections 
        resolution(setnum) = res(ind);                              %   resolution 
        rfactor(setnum) = rfact(ind);                               %   r factor 
        mosaicity(setnum) = mos(ind);                               %   mosaicity 
        celllength(setnum) = length(ind);                           %   unit cell length 
        rfree(setnum) = rfr(ind);                                   %   R free 
        rother(setnum) = r(ind);                                    %   R 
    end 
 
    switch numsets                                                  % display information about DATASETS (with arrows) 
        case 2 
            text (20,(y*28),model.(fieldsets)(1), 'Fontsize',8,'Fontweight','bold');        % structure 1 
            text (23,(y*27),[num2str(model.resolution) 'A'], 'Fontsize',7); 
            text (23,(y*26),[num2str(model.rfr) ' / ' num2str(model.r)],'Fontsize',7); 



 158

             
            text (70,(y*(28.2)),'\rightarrow','Fontweight','bold');                         % -->  
             
            text (110,(y*28),model.(fieldsets)(2),'Fontsize',8,'Fontweight','bold');        % structure 2 
            text (113,(y*27),[num2str(resolution(2)) 'A'], 'Fontsize',7); 
            text (113,(y*26),[num2str(rfree(2)) ' / ' num2str(rother(2))],'Fontsize',7); 
             
            text (30,(y*24),model.drmsg, 'Fontsize',6.5,'Fontangle','italic');              % alt conf message 
 
        case 4 
            text (20,(y*28),model.(fieldsets)(1), 'Fontsize',8,'Fontweight','bold');        % structure 1 
            text (23,(y*27),[num2str(model.resolution) 'A'],'Fontsize',7); 
            text (23,(y*26),[num2str(model.rfr) ' / ' num2str(model.r)],'Fontsize',7); 
 
            text (110,(y*28),model.(fieldsets)(2),'Fontsize',8,'Fontweight','bold');        % structure 2 
            text (113,(y*27),[num2str(resolution(2)) 'A'],'Fontsize',7); 
            text (113,(y*26),[num2str(rfree(2)) ' / ' num2str(rother(2))],'Fontsize',7); 
            
            text (20,(y*23),model.(fieldsets)(3),'Fontsize',8,'Fontweight','bold');         % structure 3 
            text (23,(y*22),[num2str(resolution(3)) 'A'],'Fontsize',7); 
            text (23,(y*21),[num2str(rfree(3)) ' / ' num2str(rother(3))],'Fontsize',7); 
 
            text (110,(y*23),model.(fieldsets)(4),'Fontsize',8,'Fontweight','bold');        % structure 4 
            text (113,(y*22),[num2str(resolution(4)) 'A'],'Fontsize',7); 
            text (113,(y*21),[num2str(rfree(4)) ' / ' num2str(rother(4))],'Fontsize',7); 
 
            text (70,(y*(28.2)),'\rightarrow'); text (70,(y*(23.2)),'\rightarrow');         % four arrows 
            text (30,(y*(24.5)),'\downarrow'); text(120,(y*(24.5)),'\downarrow'); 
             
            text (30,(y*19),model.ddrmsg, 'Fontsize',6.5,'Fontangle','italic');             % alt conf message 
    end 
     
     
    switch field                                                % show appropriate title 
        case 'dr' 
            text(10,(y*(31)),[char(model.protein) '  \rightarrow  ' char(pro(2)) ':   
\Deltar_{raw}'],'Fontsize',10,'Fontweight','bold'); 
            ylabel('raw displacement (A)'); 
        case 'drn' 
            text(10,(y*(31)),[char(model.protein) '   \rightarrow   ' char(pro(2)) ':   \Deltar_{norm}'], 
'Fontsize',10,'Fontweight','bold'); 
            ylabel('normalized displacement (\sigma)'); 
        case 'ddr' 
            text(10,(y*(31)),[char(model.protein) ', ' char(pro(2)) ', ' char(pro(3)) ', ' char(pro(4)) ':   
\Delta\Deltar_{raw}'],... 
                'Fontsize',10,'Fontweight','bold'); 
            ylabel('raw coupling (A)') 
        case 'ddrn' 
            text(10,(y*(31)),[char(pro(1)) ', ' char(pro(2)) ', ' char(pro(3)) ', ' char(pro(4)) ':   
\Delta\Deltar_{norm}'],... 
                'Fontsize',10, 'Fontweight','bold', 'Fontname','Helvetica'); 
            ylabel('normalized coupling (\sigma)'); 
    end 
end 
axis tight; 
 
 
%---------- do lillietest calculation and display peaks above specified cutoff 
if cutoff > 0                                                    
    sorted_nonzero = sort(model.(field)(find(model.(field)~=0))); 
    [rows cols] = size(sorted_nonzero); 
    for x = rows:-1:1 
        if lillietest(sorted_nonzero(1:x),0.01) == 0 
            x; 
            mean_field_nonzero = mean(sorted_nonzero(1:x)); 
            std_field_nonzero = std(sorted_nonzero(1:x)); 
            nrml_dist = 1; 
            break 
        end 
        if x == 1 
            nrml_dist = 0; 
            mean_field_nonzero = mean(sorted_nonzero); 
            std_field_nonzero = std(sorted_nonzero); 
        end 
    end 
     
    cutoff_2 = mean_field_nonzero + std_field_nonzero*cutoff;     
    cutoff_line(1:atoms) = cutoff_2; 
    mean_line(1:atoms) = mean_field_nonzero; 
    hold;  
    plot(mean_line,'-','Color',[0.5 0.5 0.5]); 
    plot(cutoff_line,':','Color',[0.5 0.5 0.5]);hold off; 
    
    peaks = find(model.(field)>(cutoff_2)); 
    [numpeaks blah] = size(peaks); 
    listlimit = atoms - ceil((numpeaks+1)/15) * 100 - 15; 
     
    if ~(nrml_dist) 
        text((listlimit-110),(y*25),'not normal','Fontsize',6.5,'Fontangle','italic') 
    end 
    text ((listlimit-110),(y*(28)),['mean: ' num2str(mean_field_nonzero,3)],'Fontsize',6.5); 
    text ((listlimit-110),(y*(27)),['std dev: ' num2str(std_field_nonzero,3)],'Fontsize',6.5); 
    text ((listlimit-110),(y*(26)),['cutoff: ' num2str(cutoff) '\sigma'],'Fontsize',6.5); 
    text (listlimit,(y*(28)),['Peaks > ' num2str(cutoff_2,3)],... 
        'Fontsize',6.5,'Fontangle','italic'); 
     
    for p = 1:numpeaks 
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        if (model.(field)(peaks(p)) + y) < max(model.(field)) 
            text (peaks(p),(model.(field)(peaks(p))+y),num2str(p),'Fontsize',5.5); 
        else 
            text (peaks(p)+2,(model.(field)(peaks(p))-y),num2str(p),'Fontsize',5.5); 
        end 
        text ((listlimit +(100*fix(p/15))),(y*(28 - mod(p,15))),[num2str(p) '. ' char(model.label(peaks(p))) ', ' ... 
                num2str(model.(field)(peaks(p)),3)],'Fontsize',5.5, 'Color',[0.4 0.4 0.4]); 
    end 
     
    %---------- MAKE HISTOGRAM in second figure window 
     
    figure('Position',fig2_pos);                                
    hist(model.(field)(find(model.(field)~=0)),50);  
    hold on; 
    bars = findobj(gca,'Type','patch'); 
    set(bars,'FaceColor',[0.0 0.0 0.5],'EdgeColor',[0 0 0.5]); 
    axis tight;     
     
    ylabel ('# atoms'); 
    switch field                                                        % show appropriate title and x label 
        case 'dr' 
            title([char(model.protein) '  \rightarrow  ' char(pro(2)) ':   
\Deltar_{raw}'],'Fontsize',10,'Fontweight','bold'); 
            xlabel ('bins (A)'); 
        case 'drn' 
            title([char(model.protein) '   \rightarrow   ' char(pro(2)) ':   \Deltar_{norm}'], 
'Fontsize',10,'Fontweight','bold'); 
            xlabel ('bins (\sigma)'); 
        case 'ddr' 
            title([char(model.protein) ', ' char(pro(2)) ', ' char(pro(3)) ', ' char(pro(4)) ':   
\Delta\Deltar_{raw}'],... 
                'Fontsize',10,'Fontweight','bold'); 
            xlabel ('bins (A)'); 
        case 'ddrn' 
            title([char(protein(1)) ', ' char(pro(2)) ', ' char(pro(3)) ', ' char(pro(4)) ':   \Delta\Deltar_{norm}'],... 
                'Fontsize',10,'Fontweight','bold'); 
            xlabel ('bins (\sigma)'); 
    end 
     
    [numpeaks, barcenters] = hist(model.(field)(find(model.(field)~=0)),50);    % add lines and text for mean, cutoff_2 
    plot (mean_field_nonzero,1:max(numpeaks),'-','Color',[0.6 0.6 0.6]);  
    plot (cutoff_2,1:max(numpeaks),':','Color',[0.3 0.3 0.3]); 
 
    unity2 = max(numpeaks)/30;  
    unitx2 = max(barcenters)/30;                                                % define units of figure 2. 
     
    text (unitx2*15, unity2*28, 'based on non-zero peaks', 'Fontsize', 6.5, 'Fontangle', 'italic'); 
    if numsets == 2 
        text (unitx2*15, unity2*26, model.drmsg, 'Fontsize', 6.5, 'Fontangle', 'italic'); 
    elseif numsets == 4 
        text (unitx2*15, unity2*26, model.ddrmsg, 'Fontsize', 6.5, 'Fontangle', 'italic'); 
    end 
    text (mean_field_nonzero + unitx2/2, unity2*27, ['mean:  ' num2str(mean_field_nonzero,3)], 'Fontsize', 8); 
    text (mean_field_nonzero + unitx2/2, unity2*25.5, ['std dev:  ' num2str(std_field_nonzero,3)], 'Fontsize', 8); 
    text (cutoff_2 + unitx2/2, unity2*23,['cutoff:  ' num2str(cutoff) '\sigma =  ' num2str(cutoff_2,3)],'Fontsize',8); 
 
    low = min(model.(field)(find(model.(field)~=0)));                           % label bars over cutoff 
    high = max(model.(field)); 
    [numpeaks, barcenters] = hist(model.(field)(find(model.(field)~=0)),50);    % add lines and text for mean, cutoff_2 
 
    barwidth = (high-low)/50; 
    barsovercutoff = find(barcenters > cutoff_2); 
    count = 1; 
        
    for w = min(barsovercutoff):max(barsovercutoff)                             % label all other bars 
        count = count + 0.8;    
        for z = 1:numpeaks(w) 
            bar_low = barcenters(w) - barwidth/2; 
            bar_high = barcenters(w) + barwidth/2; 
            if w==max(barsovercutoff) 
                barlabels = model.label2(find((model.(field)>bar_low) & (model.(field)<=max(model.(field))))); 
            else 
                barlabels = model.label2(find((model.(field)>bar_low) & (model.(field)<=bar_high))); 
            end 
            [num_barlabels blah] = size(barlabels); 
            for u = 1:num_barlabels 
                ylabel_loc = unity2*6*(mod(count,3)+1); 
                plot((barcenters(w)-barwidth/2), numpeaks(w):(ylabel_loc-unity2),':','Color',[0.8 0.8 0.8]); 
                if w == max(barsovercutoff) 
                    text(barcenters(w)-unitx2*2, ylabel_loc-unity2*u, barlabels(u),'Fontsize',5, 'Color', [0.4 0.4 0.4]); 
                else 
                    text(barcenters(w), ylabel_loc-unity2*u, barlabels(u),'Fontsize',5, 'Color', [0.5 0.5 0.5]); 
                end 
            end 
        end 
    end 
end 
 
hold off; 
 
vectorplot (model,field,0);                                   % Make vector plot with only str1 Calpha trace shown 
 
figure(1); 
zoom xon; 
axis tight; 
 
 



 160

function vectorplot (model,field,scale) 
% Draws a C-alpha trace of the model and the vectors for the specified field.  
% Input:  model and a field.  The field is one of four:  
%           1) dr 
%           2) drn 
%           3) ddr 
%           4) ddrn 
% Ouput: a new figure window with a C-alpha trace of the molecule and a 
%           a quiver3 plot.  
 
figure ('Position',[50 100 800 750]); hold on;  
set(gca,'XTick',[]);                            % set ticks and ticklabels 
set(gca,'XTickLabel',[]); 
set(gca,'YTick',[]);                             
set(gca,'YTickLabel',[]); 
set(gca,'ZTick',[]);                             
set(gca,'ZTickLabel',[]); 
 
 
prot_ca_ind = find(strcmp(model.atomid,'CA')&(strcmp(model.chainid,'A'))); 
pep_ca_ind = find(strcmp(model.atomid,'CA')&(strcmp(model.chainid,'P'))); 
 
% plot vectors only for protein or peptide atoms that have nonzero value for field 
% ind = find(strcmp(model.chainid,'A')|strcmp(model.chainid,'P')); 
ind = find(model.(field)~=0); 
 
plot3 (model.x(prot_ca_ind), model.y(prot_ca_ind), model.z(prot_ca_ind),'Linewidth',3,'Color',[0.7 0.7 0.7]); 
plot3 (model.x(pep_ca_ind), model.y(pep_ca_ind), model.z(pep_ca_ind),'Linewidth',3,'Color',[0.8 0.8 0.8]); 
 
switch field 
    case 'dr' 
        quiver3 (model.x(ind), model.y(ind), model.z(ind), model.dx(ind), model.dy(ind), model.dz(ind),scale); 
    case 'drn' 
        sc = 10/80; 
%         sc = 75.19/max(model.drn); 
        model.dxnsc = model.dxn; 
        model.dxnsc = model.dxn*sc; model.dynsc = model.dyn*sc; model.dznsc = model.dzn*sc; 
        quiver3 (model.x(ind), model.y(ind), model.z(ind), model.dxnsc(ind) , model.dynsc(ind), model.dznsc(ind),scale); 
    case 'ddr' 
        quiver3 (model.x(ind), model.y(ind), model.z(ind), model.ddx(ind), model.ddy(ind), model.ddz(ind),scale); 
    case 'ddrn' 
        sc = 5/24; 
        model.ddxnsc = model.ddxn*sc; model.ddynsc = model.ddyn*sc; model.ddznsc = model.ddzn*sc; 
        quiver3 (model.x(ind), model.y(ind), model.z(ind), model.ddxnsc(ind), model.ddynsc(ind), 
model.ddznsc(ind),scale); 
end 
 
if strcmp(field,'dr')|strcmp(field,'drn')                       % figure out if analysis being show involves 2 or 4 
structures 
    fieldsets = 'dr_sets'; 
    numsets = 2; 
elseif strcmp(field,'ddr')|strcmp(field,'ddrn') 
    fieldsets = 'ddr_sets'; 
    numsets = 4; 
end 
     
[setname protein synch res comp rfact lastr mos length refl atomnum rfr r]=textread('datasets.txt',... 
    '%s  %s      %s    %f  %f   %f    %f    %f  %f     %d   %d      %f  %f','headerlines',1); 
 
for setnum = 1:numsets                                          % for each data set determine the corresponding protein 
structure 
    ind = find(strcmp(setname,model.(fieldsets)(setnum))); 
    name(setnum) = setname(ind);                                %   setname 
    pro(setnum) = protein(ind);                                 %   protein name 
end 
 
switch field                                                        % show appropriate title 
    case 'dr' 
        title([char(model.protein) '  \rightarrow  ' char(pro(2)) ':   
\Deltar_{raw}'],'Fontsize',10,'Fontweight','bold'); 
    case 'drn' 
        title([char(model.protein) '   \rightarrow   ' char(pro(2)) ':   \Deltar_{norm}'], 
'Fontsize',10,'Fontweight','bold'); 
    case 'ddr' 
        title([char(model.protein) ', ' char(pro(2)) ', ' char(pro(3)) ', ' char(pro(4)) ':   \Delta\Deltar_{raw}'],... 
            'Fontsize',10,'Fontweight','bold'); 
    case 'ddrn' 
        title([char(protein(1)) ', ' char(pro(2)) ', ' char(pro(3)) ', ' char(pro(4)) ':   \Delta\Deltar_{norm}']); 
end 
view(-1,-90) 
hold off; 
 
 
 
function makepdb (str, field, filename) 
% This data accepts 1) the data for a model in the form of a structure, 2) 
% a field, and 3) the output filename.  It writes out a filename.pdb with 
% the B factor column replaced by the data in the specified field.  
 
if exist (filename,'file') 
    delete (filename); 
    disp ([filename ' overwritten.']) 
end 
 
fid = fopen(filename,'w'); 
fprintf (fid, 'REMARK Written by MATLAB on %s\n',datestr(now)); 
fprintf (fid, 'REMARK B factor column has been replaced by %s \n',field); 
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if findstr('dr',field) 
    if findstr('ddr',field)                                         % determine which field and how many sets involved 
        fieldsets = 'ddr_sets';numsets = 4; 
    elseif findstr ('dr',field) 
        fieldsets = 'dr_sets'; numsets = 2; 
    end 
     
    [setname protein synch res comp rfact lastr mos length refl atomnum rfr r]=textread('datasets.txt',... 
        '%s  %s      %s    %f  %f   %f    %f    %f  %f     %d   %d      %f  %f','headerlines',1); 
     
    for setnum = 1:numsets                                          % for each data set determine the corresponding 
protein structure 
        ind = find(strcmp(setname,str.(fieldsets)(setnum))); 
        set(setnum) = setname(ind);                                 %   setname 
        pro(setnum) = protein(ind);                                 %   protein name 
        synchrotron(setnum) = synch(ind);                           %   synchrotron 
        reflections(setnum) = refl(ind);                            %   # reflections 
        resolution(setnum) = res(ind);                              %   resolution 
        rfactor(setnum) = rfact(ind);                               %   r factor 
        mosaicity(setnum) = mos(ind);                               %   mosaicity 
        celllength(setnum) = length(ind);                           %   unit cell length 
        rfree(setnum) = rfr(ind);                                   %   R free 
        rother(setnum) = r(ind);                                    %   R 
    end 
     
                                                                    % Write out parameters: dataset, protein, 
resolution ,Rfr/R 
    fprintf (fid,'REMARK The data sets used for this calculation were: \n'); 
    fprintf (fid,'REMARK \t\tset    \tpro  \t\t\tres    Rfr\tR\n'); 
    for x = 1:numsets 
        fprintf (fid,'REMARK \t\t%s \t%s   \t\t%4.2f    %3.1f / %3.1f\n',char(set(x)), char(pro(x)),resolution(x), 
rfree(x), rother(x)); 
    end 
end     
 
for n = 1:str.totalatoms1                                           % write out ATOM lines: should execute even if 
writing b factors 
    switch char(str.chainid(n)) 
        case {'A','P'} 
            if strcmp(str.ac(n),'A')|strcmp(str.ac(n),'B')        % if the line has an alternate conformation include 
the ac 
                fprintf (fid, 'ATOM  %5d  %-3s%s%3s %s%4d    %8.3f%8.3f%8.3f%6.2f%6.2f      %-4s\n', n, 
char(str.atomid(n)), char(str.ac(n)), ... 
                    char(str.res(n)), char(str.chainid(n)), str.resnum(n), str.x(n), str.y(n), str.z(n), str.occ(n), 
str.(field)(n),char(str.segid(n))); 
            else                        % if the line doesn't have an ac, then just print everything else. 
                fprintf (fid, 'ATOM  %5d  %-3s %3s %s%4d    %8.3f%8.3f%8.3f%6.2f%6.2f      %-4s\n', n, 
char(str.atomid(n)), ... 
                    char(str.res(n)), char(str.chainid(n)), str.resnum(n), str.x(n), str.y(n), str.z(n), str.occ(n), 
str.(field)(n),char(str.segid(n))); 
            end 
        case 'W' 
            fprintf (fid, 'ATOM  %5d  %-3s %3s %s%4d    %8.3f%8.3f%8.3f%6.2f%6.2f      %-4s\n', n, 
char(str.atomid(n)), ... 
                char(str.res(n)), char(str.chainid(n)), str.resnum(n), str.x(n), str.y(n), str.z(n), str.occ(n), 
str.bfactor(n),char(str.segid(n)));             
    end 
end 
fprintf (fid, 'END'); 
   
status = fclose(fid); 
 
 
 
 
function [poserr] = stroud(B,atoms,refl) 
% This function calculates the positional error from the Stroud-Fauman 
% formula (Protein Science, 1995, Vol 4, pp. 2392-2404), given the B 
% factor, number of atoms, and the number of reflections. 
 
a=atoms/refl; 
 
p3 = 10*((epsilon(20,a)-epsilon(10,a))/(epsilon(30,a)-epsilon(20,a))); 
p2 = (epsilon(20,a)-epsilon(10,a))/(exp(20/p3)-exp(10/p3)); 
p1 = epsilon(20,a)-p2*exp(20/p3); 
poserr = p1 + p2*exp(B/p3); 
 
function [epsi] = epsilon(B,a) 
% values of k1-6 are those determined by Rama and I by fitting published 
% curves with published formulas. 
k = [-0.7238 -3.317e-5 3.6284 0.66709 0.0098103 9.9735]; 
slope = k(1) + k(2)*exp(B/k(3)); 
int = k(4) + k(5)*exp(B/k(6)); 
epsi = int + slope*exp(-2*a); 
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