BRAIN-REGION-SPECIFIC CONTRIBUTIONS OF FOXP1 TO AUTISM AND INTELLECTUAL DISABILITY PHENOTYPES

Daniel John Araujo

APPROVED BY SUPERVISORY COMMITTEE:

Amelia J. Eisch, Ph.D. (Chair)

Genevieve Konopka, Ph.D. (Mentor)

Craig M. Powell, M.D., Ph.D.

Lenora J. Volk, Ph.D.

Jiang Wu, Ph.D.

DEDICATION

I would like to thank my thesis advisor Dr. Genevieve Konopka who has always pushed me to strive for excellence in my work. It's been an honor to study neuroscience under her supervision and she will serve as an example for the rest of my scientific career. I would like to thank my wife Sarah Teresita Vega for her unwavering love and patience. Sarah has been my best friend for the past nine years and her encouragement has allowed me to face any challenge with grit. I also thank my thesis committee members for all of their suggestions on how to improve my research. I would like to thank Dr. Timothy Raabe and Dr. Nancy Street for their continuous support of both my undergraduate and graduate career. Finally, I dedicate this dissertation to my grandparents George Cuellar Araujo and Margarita Salinas Araujo who raised my two siblings and me. Any success I've had in life belongs to them.

BRAIN-REGION-SPECIFIC CONTRIBUTIONS OF FOXP1 TO AUTISM AND INTELLECTUAL DISABILITY PHENOTYPES

By

DANIEL JOHN ARAUJO, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of Biomedical Sciences at

The University of Texas Southwestern Medical Center

In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

The University of Texas Southwestern Medical Center

Dallas, Texas

August 11, 2017

Copyright

Ву

Daniel John Araujo, 2017

All Rights Reserved

BRAIN-REGION-SPECIFIC CONTRIBUTIONS OF FOXP1 TO AUTISM AND INTELLECTUAL DISABILITY PHENOTPES

Publication No.

Daniel John Araujo, B.S.

The University of Texas Southwestern Medical Center, 2017

Supervising Professor: Genevieve Konopka, Ph.D.

ABSTRACT

Mutations and deletions in the transcription factor *FOXP1* are causative for severe forms of autism spectrum disorder (ASD) that are often comorbid with intellectual disability (ID). FOXP1 is enriched throughout the brain, with strong expression in the pyramidal neurons of the neocortex, the CA1/CA2 subfields of the hippocampus, and the medium spiny neurons of the striatum. Understanding the role that FOXP1 plays within these brain regions could allow for management of ASD and ID symptoms. This

doctoral dissertation leverages multidisciplinary techniques and *Foxp1* mutant mouse models to ascertain the role of Foxp1 in the brain and its contribution to specific ASDand ID-relevant phenotypes. In the first chapter of this dissertation, I review the literature on the characteristics, demographics, and shared genetic underpinnings of ASD and ID and I review the work linking FOXP1 to these disorders. Afterwards, I describe the regional transcriptome regulated by Foxp1 within the brain and I correlate alterations in the gene expression profile of the striatum with deficits in communication (Chapter 2). Briefly, I utilized RNA-sequencing performed on *Foxp1* heterozygous knockout animals to uncover the genes regulated by Foxp1 within the neocortex, hippocampus, and striatum. I also recorded the early postnatal ultrasonic vocalizations (USVs) of these animals and I was able to correlate changes in the properties of striatal medium spiny neurons with deficits in USV production. Next, I move onto using a Foxp1 conditional knockout (*Foxp1^{cKO}*) mouse model to ascertain the contributions of Foxp1 in the neocortex and the hippocampus to ASD and ID-related behaviors (Chapter 3). In brief, I show that total loss of *Foxp1* in the pyramidal neurons of the neocortex and the CA1/2 hippocampal subfields results in social communication deficits as well as hyperactivity and anxiety-like behaviors. I also show that *Foxp1^{cKO}* mice display gross impairments in hippocampal-based spatial-learning tasks and I correlate these deficits with alterations in the expression of genes involved in hippocampal physiology and synaptic plasticity. In my final chapter (Chapter 4), I consider the implications that these data have on our understanding of the role that Foxp1 plays within the brain and I suggest research strategies to answer the new questions that my findings have

vi

generated. I also discuss the implications that this research has on our understanding of ASD and ID pathophysiology in general and I recommend future directions for work focused on managing these disorders.

PRIOR PUBLICATIONS xi
LIST OF FIGURES xii
LIST OF TABLES xiv
LIST OF DEFINITIONS xv
LIST OF ABREVIATIONS xvi
CHAPTER ONE: Introduction1
Overview1
Autism Spectrum Disorder and Intellectual Disability
Clinical Features of Autism Spectrum Disorder
Clinical Features of Intellectual Disability4
Overlapping Demographics Between ASD and ID6
Genetics of ASD and ID7
Evidence Supporting a Role for <i>FOXP1</i> in ASD and ID
FOXP1 as a Transcription Factor11
FOXP1 as a High-Confidence ASD- and ID- Risk Gene
Known Functions of FOXP1 Within the Brain 17
Neuronal Functions of FoxP1 <i>in vitro</i> and <i>in vivo</i>
FoxP1 and FoxP2 in the Regulation of Vocal Communication
Questions Addressed in This Thesis23
Figures
Tables

TABLE OF CONTENTS

References 31
CHAPTER TWO: FOXP1 Orchestration of ASD-Relevant Signaling Pathways in the
Striatum
Abstract
Introduction 40
Materials and Methods 42
Results
Discussion67
Figures72
Tables
References 144
CHAPTER THREE: Foxp1 in Forebrain Pyramidal Neurons Controls Gene
CHAPTER THREE: Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity
CHAPTER THREE: Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity
CHAPTER THREE: Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity
CHAPTER THREE: Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity
CHAPTER THREE: Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity 149 Abstract 149 Introduction 150 Materials and Methods 153 Results 168
CHAPTER THREE: Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity Abstract 149 Introduction 150 Materials and Methods 153 Results 168 Discussion 180
CHAPTER THREE: Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity Abstract 149 Introduction 150 Materials and Methods 153 Results 168 Discussion 180 Figures 186
CHAPTER THREE: Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity Abstract 149 Abstract 149 Introduction 150 Materials and Methods 153 Results 168 Discussion 180 Figures 186 Tables 202
CHAPTER THREE: Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity Abstract 149 Abstract 149 Introduction 150 Materials and Methods 153 Results 168 Discussion 180 Figures 186 Tables 202 References 231

	Overview	236
	Materials and Methods	. 237
	Chapter 2	. 240
	Discussion	240
	Remaining Questions and Future Directions	. 241
	Chapter 3	. 244
	Discussion	244
	Remaining Questions and Future Directions	. 245
	Final Remarks	. 252
	Figures	. 254
	Tables	271
	References	282
VITAI	E	. 284

PRIOR PUBLICATIONS

Research

Usui, N., **Araujo, D.J.**, Kulkarni, A., Ellegood, J., Co, M., Ellegood, J., Harper, M., Torimui, K., Lerch, J.P., Konopka, G. Foxp1 regulation of neonatal vocal and motor behaviors via cortical development. *Submitted to Genes and Development* for peer-review.

Araujo, D.J., Toriumi, K., Escamilla, C.O., Kulkarni, A., Anderson, A.G., Harper, M., Usui, N., Ellegood, J., Lerch, J.P., Birnbaum, S.G., Tucker, H.O., Powell, C.M., and Konopka, G. Foxp1 in forebrain pyramidal neurons controls gene expression required for spatial learning and synaptic plasticity. *Re-submitted to The Journal of Neuroscience* for peer-review.

Araujo, D.J.*, Anderson, A.G.*, Berto, S., Runnels, W., Harper, M., Ammanuel, S., Rieger, M.A., Huang, H.C., Rajkovich, K., Loerwald, K.W., Dekker, J.D., Tucker, H.O., Dougherty, J.D., Gibson, J.R., Konopka, G. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. **Genes and Development** 29, 2081-2096 (2015). *These authors contributed equally to this work.

Macrini, T.E., Coan, H.B., Levine, S.M., Lerma, T., Saks, C.D., **Araujo, D.J.**, Bredbenner, T.L., Coutts, R.D., Nicolella, D.P., Havill, L.M. Reproductive status and sex show strong effects on knee OA in a baboon model. **Osteoarthritis and Cartilage** 21, 839-848 (2013).

Opinion/Resource

Araujo, D.J., Nevarez, Andres. The Grassroots Movement to Diversify STEM. SACNAS News 18, No.1, 21-23 (2015).

LIST OF FIGURES

Figure 1.1. Overlapping clinical characteristics of ASD and ID
Figure 1.2. Diagram of FOXP1 26
Figure 1.3. Co-immunopecipitation of Foxp1 with Foxp2 in the mouse striatum 27
Figure 2.1. Regulation of ASD genes by Foxp1 in the mouse brain
Figure 2.2. Foxp1 and Foxp2 regulate overlapping targets within the striatum
Figure 2.3. D_2^+ MSNs of <i>Foxp1</i> ^{+/-} mice have increased excitability
Figure 2.4. <i>Foxp1</i> haploinsufficiency results in reduced mouse vocalizations
Figure 2.5. Gene regulation by FOXP1 in human neural cells
Figure 2.6. Gene network preservation between mouse and human data sets
Supplemental Figure 2.1. Immunoblot for Foxp1 demonstrating antibody specificity 85
Supplemental Figure 2.2. Overlaps between mouse WGCNA modules and DEGs 86
Supplemental Figure 2.3. $Foxp1^{+/-}D_1 + MSNs$ have no change in excitability
Supplemental Figure 2.4. USV parameters and weight gain of <i>Foxp1^{+/-}</i> mice
Supplemental Figure 2.5. Behavioral characterization of <i>Foxp1^{+/-}</i> mice
Supplemental Figure 2.6. SHIRPA battery results
Supplemental Figure 2.7. FOXP1 ChIP-seq characterization
Supplemental Figure 2.8. Overlaps between hNP WGCNA modules and DEGs95
Figure 3.1. Generation of <i>Foxp1^{cKO}</i> mice
Figure 3.2. <i>Foxp1^{cKO}</i> mice display hyperactivity and anxiety-like behaviors
Figure 3.3. Impaired social communication in <i>Foxp1^{cKO}</i> mice
Figure 3.4. <i>Foxp1^{cKO}</i> mice display impairments in spatial learning

Figure 3.5. <i>Foxp1^{cKO}</i> mice do not display generalized learning and memory deficits 193
Figure 3.6. Altered transcriptional programs in <i>Foxp1^{cKO}</i> brains
Figure 3.7. Altered regional brain volumes in <i>Foxp1^{cKO}</i> mice
Figure 3.8. Altered hippocampal synaptic plasticity in <i>Foxp1^{cKO}</i> mice
Extended Data Figure 3.6-1. <i>Foxp1^{cKO}</i> genotype-specific WGCNA modules
Figure 4.1. Model connecting reduced striatal <i>Foxp1</i> expression to altered USVs 254
Figure 4.2. Model connecting hippocampal <i>Foxp1</i> expression loss to impaired spatial
learning and memory
Figure 4.3. Labeling of CA1 pyramidal neuron apical dendrites
Figure 4.4. Impaired USV production displayed by <i>Foxp1^{cKO}</i> mouse pups
Figure 4.5. Reduced performance by <i>Foxp1^{cKO}</i> mice in an accelerating rotarod and grip
strength test
Figure 4.6. Overlaps between P7 and adult <i>Foxp1^{cKO} neocortical and hippocampal</i>
DEGs
Figure 4.7. Regional brain volumes in P7 <i>Foxp1^{cKO}</i> mice
Figure 4.8. <i>Foxp1^{cKO}</i> mice possess decreased CA1/2 pyramidal neuron density 265
Figure 4.9. General activity and spatial learning phenotypes of <i>Foxp1^{cKOHET}</i> mice 266
Figure 4.10. Relative regional volume changes in the <i>Foxp1^{cKO}</i> mouse brain
Figure 4.11. <i>Foxp1^{cKO}</i> mice are not especially vulnerable to seizure induction

LIST OF TABLES

Table 1.1. Literature connecting FOXP1 to NDDs 28
Table 2.1. DEGs in hNPs and $Foxp1^{+/-}$ mouse brains and ChIP targets in hNPs
Table 2.2. Overlaps between $Foxp1^{+/-}$ and $Foxp2^{+/-}$ STR target genes and D1+ and D2+
MSNs genes
Table 2.3. GO categories of hNP ChIP-seq and RNA-seq datasets 132
Table 3.1. DEGs in the Foxp1 ^{cKO} neocortex and hippocampus 202
Table 3.2. Overlaps between <i>Foxp1^{cKO}</i> DEGs and SFARI-ASD genes
Table 3.3. Overlaps between <i>Foxp1^{cKO}</i> HIP and <i>Foxp1^{+/-}</i> HIP DEGs
Table 3.4. Overlaps between <i>Foxp1^{cKO}</i> HIP DEGs and other datasets
Extended Data Table 3.6-1. Representative <i>Foxp1^{cKO}</i> neocortex and hippocampus DEG
REVIGO GO categories
Extended Data Table 3.6-2. Overlaps between Foxp1 ^{cKO} DEGs and cell-type specific
genes 229
Extended Data Table 3.7-1. Top 20 increases and decreases to regional brain volumes
in <i>Foxp1^{cKO}</i> mice
Table 4.1. DEGs in the P7 Foxp1 ^{cKO} neocortex and hippocampus 271
Table 4.2. Relative regional brain volumes in P7 Foxp1 ^{cKO} mice 281

LIST OF DEFINITIONS

Autism Spectrum Disorder: a group of heterogeneous neurodevelopmental disorders characterized by social communication deficits and repetitive/stereotypic behaviors and/or interests

Chromatin Immunoprecipitation Followed by DNA-Sequencing: a technique combining chromatin-based immunoprecipitation and DNA-sequencing that is used to identify direct DNA targets of transcription factors and other DNA-binding proteins

Gene Ontology Enrichment Analysis: a bioinformatics technique used to determine statistically-enriched categories of gene products within ChIP-seq and RNA-seq datasets **Intellectual Disability:** a neurodevelopmental disorder characterized by below average IQs and impairments in intellectual reasoning and skills necessary for everyday functioning

Long-term Potentiation: a process by which excitatory synapses are strengthened in response to stimulation

RNA-sequencing: a technique used to identify differentially expressed RNA transcripts within certain cell and tissue populations

Ultrasonic Vocalizations: isolation calls produced by early postnatal rodent pups in response to separation from their mother and/or their nest

Weighted Gene Co-expression Network Analysis: a bioinformatics technique performed on gene expression (RNA-sequencing) datasets to identify networks of genes whose expression changes are correlated with one another

LIST OF ABBREVIATIONS

- **ADHD:** attention-deficit hyperactivity disorder
- ASD: autism spectrum disorder
- ChIP-seq: chromatin immunoprecipitation followed by DNA sequencing

CTX: neocortex

- D1+: Drd1a receptor positive
- D2+: Drd2 receptor positive
- DEG: differentially expressed gene
- DVD: developmental verbal dyspraxia
- FKH: forkhead domain
- **FMRP:** Fragile-X mental retardation protein
- FXS: Fragile-X syndrome
- GMD: gross motor delay
- GO: gene ontology
- **HIP:** hippocampus
- hNP: human neural progenitor
- **ID:** intellectual disability
- LTP: long-term potentiation
- MSN: medium spiny neuron
- MWM: Morris water maze
- NDD: neurodevelopmental disorder
- NGS: next generation sequencing

OCD: obsessive-compulsive disorder

qRT-PCR/qPCR: quantitative reverse transcriptase PCR

RNA-seq: RNA-sequencing

SFARI: Simmons Foundation Autism Research Initiative

SLI: severe language impairment

STR: striatum

USV: ultrasonic vocalization

WES: whole-exome sequencing

WGCNA: weighted gene co-expression network analysis

CHAPTER ONE:

INTRODUCTION

OVERVIEW

Autism spectrum disorder denotes a set of neurodevelopmental disorders, which hinder the quality of life for both affected individuals and their families. Autism is often comorbid with intellectual disability, another illness that can negatively impact the functions necessary for daily life. Susceptibility to these two conditions is in large part driven by common genetic factors. These shared risk genes are often expressed during early brain development and their expression patterns are tightly controlled by transcription factors. In order to understand the overarching mechanisms underlying autism and intellectual disability, the Konopka laboratory has concentrated on studying transcription factors with which the two disorders are genetically associated. Concentrating on transcription factors could allow for novel insights into the underlying disease mechanisms of autism and intellectual disability and open the door for new therapeutics for the two conditions. FOXP1 is a transcription factor that is widely expressed throughout the mouse and human brain and heterozygous perturbations to the coding region of FOXP1 are causative for severe forms of autism, which are often comorbid with intellectual disability. This dissertation focuses on addressing two main questions: 1) what are the gene targets of FOXP1 in both the rodent brain and human neurons? and 2) what, if any, are the brainregion-specific contributions of FOXP1 to autism- and intellectual disability-related phenotypes? The first part of my dissertation details my efforts at understanding the gene

targets of Foxp1 within distinct regions of the brain by studying a patient-relevant heterozygous *Foxp1* knockout mouse model (Chapter 2). The second part of my dissertation describes my work on characterizing a conditional homozygous *Foxp1* knockout mouse to identify the contributions of neocortical and hippocampal Foxp1 to specific autism and intellectual disability phenotypes (Chapter 3). Finally, the third part of my dissertation reviews the implications of this research and suggests future experiments to answer newly arisen questions on the role of FOXP1 in the brain (Chapter 4). In order to have a complete understanding of the results presented in this dissertation, this introductory chapter will provide background information on a broad range of topics. Specifically, this introduction will provide background on autism spectrum disorder and intellectual disability, the shared mechanisms between these disorders, and the evidence supporting the involvement of FOXP1 in their pathogenesis.

AUTISM SPECTRUM DISORDER AND INTELLECTUAL DISABILITY

Clinical Features of Autism Spectrum Disorder

The term "autism" (derived from the Greek word αὐτός ("self")) was coined by the psychiatrist Paul Eugen Bleuler to designate the emotionally withdrawn and detached behaviors he noticed in schizophrenic adults (Bleuler, 1912). Afterwards, Hans Asperger borrowed the term to define a new condition in children, with features distinct from those observed by Bleuler, that he termed "autistic psychopathy" (now called "Asperger's Syndrome") (Asperger, 1944). However, our modern usage of the word comes from the work of Leo Kanner who reported on what he called "infantile autism" in a small cohort of

children (Kanner, 1943). Similar to Asperger, Kanner described these children as having a condition that "[differed] in many respects from all other known instances of childhood schizophrenia" (Kanner, 1943). Kanner suggested what made the children unique was that they had "shown their extreme aloneness from the very beginning of life" (Kanner, 1943). Moreover, Kanner went on to say, "We must then assume that these children have come into the world with [an] innate inability to form the usual, biologically provided affective contact with people [...]" (Kanner, 1943). Kanner's hypothesis that infantile autism was "innate" would eventually lay the groundwork for what defines modern autism research: the search for neurobiological underpinnings that can be leveraged to predict and treat occurrences of the disorder.

Today, autism is no longer thought to be one disorder. Indeed, the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5), currently uses the term "autism spectrum disorder (ASD)" to denote a collection of heterogeneous neurodevelopmental disorders (NDDs) that are characterized by two core symptoms: 1) disruptions in social communication and 2) repetitive/restricted behaviors and interests (American Psychiatry Association, 2013). This definition is an umbrella term and it encompasses several distinct disorders including autism, Asperger's syndrome, pervasive developmental disorder not otherwise specified, and childhood disintegrative disorder (American Psychiatry Association, 2013). Social communication deficits in ASD entail but are not limited to loss of eye contact, improper body language, and muted facial expressions (Fakhoury, 2015; Park et al., 2016). Repetitive/restricted behaviors and

interests vary wildly but can include spinning, finger tapping, self-injury, and preoccupation with certain objects and routines (Leekam et al., 2011; Park et al., 2016).

The Autism and Developmental Disabilities Monitoring (ADDM) Network currently estimates that the incidence of ASD in children 8 years of age is 1 in 68 in the United States (Christensen et al., 2016). ASD is more prevalent in males than females (at 4:1) with symptom type but not severity also being sexually dimorphic (e.g., males exhibit more externalized symptoms than females) (Werling and Geschwind, 2013). The increased prevalence of ASD in males compared to females suggests that unique biological mechanisms conferring risk to males and/or protection to females are at play (Robinson et al., 2013; Werling and Geschwind, 2013). The prevalence of ASD has risen in recent decades but this rise has been largely explained by improved diagnostic criteria and increased public awareness for the condition (Prior, 2003; Park et al., 2016). However, given the variety of behaviors associated with ASD, which can differ in their intensity from patient to patient, early diagnosis remains challenging. In fact, while practiced physicians are able to diagnose ASD by 2-3 years of age, the average age for diagnosis is above 5 years (Shattuck et al., 2009; Maenner et al., 2013).

Thus, the current state of ASD research presents an inherent challenge: researchers treat ASD as a single condition when trying to understand its biological architecture but as a group of conditions when assessing its clinical presentation.

Clinical Features of Intellectual Disability

Previously known as "mental retardation," intellectual disability (ID) has been observed since at least the time of the Egyptian Papyrus Ebers (circa 1550 BC) (Harris, 2006). Research on ID, and neuropsychiatric conditions in general, became a feature of mainstream genetics when Fragile-X syndrome (FXS) and Down syndrome, two well-known syndromes that produce the disorder, were determined to have specific, genetic causes (Mefford et al., 2012; Vissers et al., 2016). Similar to ASD research, work on ID is currently focused on identifying liable neurobiological processes in an attempt to develop improved therapies and treatments. Lastly, as described below, the clinical presentation of ID is far more stereotypical and ascertainable than that of ASD.

There are currently two accepted sets of diagnostic criteria for ID. One set comes from the DSM-5 and it defines ID by: 1) deficits in intellectual functioning and 2) deficits in adaptive functioning (American Psychiatry Association, 2013). Deficits in intellectual functioning can affect reasoning, abstract thinking, and planning (American Psychiatry Association, 2013). Deficiencies in intellectual functioning are usually detected by an IQ score of 70 or below as well as a clinical assessment (American Psychiatry Association, 2013). Deficits in adaptive functioning can influence social skills, communication, and personal independence (at work and home) (American Psychiatry Association, 2013). Deficiencies in adaptive functioning are assessed by a variety of standardized tests as well as a clinical evaluation (American Psychiatry Association, 2013).

The other set of diagnostic criteria for ID is detailed in the definitional manual (*Intellectual Disability: Definition, Classification, and Systems of Supports* – 11th Edition) published by the American Association on Intellectual and Developmental Disabilities

(AAIDD). The two main criteria set forth in the AAIDD's definitional manual (impairments in intellectual functioning and impairments in adaptive behaviors) are analogous to those specified in the DSM-5 with a slightly different grouping of symptoms (American Association on Intellectual and Developmental Disabilities, 2010). The AAIDD and the DSM-5 also agree that ID is a NDD, as it manifests before 18 years of age. The average age for diagnosis with ID is 3 to 3.5 years with males being diagnosed slightly earlier than females (Bailey et al., 2009). At a ratio of 1.4:1, the prevalence of ID amongst males is only slightly higher than that seen in females (Bryson et al., 2008; Nicholas et al., 2008; Postorino et al., 2016; Vissers et al., 2016).

Overlapping Demographics Between ASD and ID

It has long been recognized that a considerable subset of ASD patients often present with ID (Postorino et al., 2016). However, estimates of the number of ASD cases that are comorbid for ID range widely from approximately 20% to 70% (Fombonne, 2003; Keen and Ward, 2004; Chakrabarti and Fombonne, 2005; de Bildt et al., 2005; Oliveira et al., 2007; Bolte et al., 2009; Matson and Shoemaker, 2009; Charman et al., 2011; Carlsson et al., 2013; Miller et al., 2013; Christensen et al., 2016; Postorino et al., 2016). It must be stressed that such studies are often concerned with determining the prevalence of ASD and not necessarily the co-occurrence of ID with ASD (Postorino et al., 2016). Reports on the comorbidity rates between the two disorders are also hampered by the finding that diagnosing ASD is often confounded by the presence of ID (Polyak et al., 2015). This latter observation may represent a broad trend for the re-categorization of ID

as ASD by practicing physicians (Polyak et al., 2015). Interestingly, females with ASD are at a greater risk for ID than males with ASD (Werling and Geschwind, 2013; Christensen et al., 2016). Therefore, the high prevalence of ASD in males compared to females is greatest when ID is not considered (Bryson et al., 2008; Nicholas et al., 2008; Fombonne, 2009; Werling and Geschwind, 2013; Postorino et al., 2016). Together, these observations support the notion that ASD and ID are often conflated with one another in the clinical setting.

Traits that are often comorbid with ASD and ID include hyperactivity, epilepsy, altered sleep patterns, aggression, anxiety, and abnormal sensory perception (Figure 1.1) (McGrother et al., 2006; Engel-Yeger et al., 2011; Ageranioti-Belanger et al., 2012; Fakhoury, 2015; Park et al., 2016). Symptoms shared by ASD and ID often vary in severity and can be more or less common within patient subsets. These are also secondary traits and therefore not necessary for diagnosing either illness. When included, secondary symptoms represent another roadblock for proper diagnosis for both disorders.

Genetics of ASD and ID

ASD and ID have a strong genetic component (de la Torre-Ubieta et al., 2016; Vissers et al., 2016). Estimates of the heritability of ASD range from 30 to 90% (Rosenberg et al., 2009; Hallmayer et al., 2011; Gaugler et al., 2014; Sandin et al., 2014; Chen et al., 2015; De Rubeis and Buxbaum, 2015; de la Torre-Ubieta et al., 2016; Mullins et al., 2016). Recent evidence has shown that intelligence is at least partially heritable and it has been linked to the effects of various genes (Plomin and Deary, 2015; Sniekers et al., 2017). Still, there is a scarcity of primary studies on the heritability of ID itself performed on the scale as those focused on ASD (Reichenberg et al., 2016; Vissers et al., 2016). Nevertheless, the overlapping characteristics of ASD and ID suggest that there are genetic factors common to both disorders.

The first study to identify a genetic basis for ID came in 1943 when James Purdon Martin and Julia Bell found FXS to be X-linked (Martin and Bell, 1943). Afterwards, in 1959, Jérôme Lejeune determined that Down syndrome is produced by an additional, third copy of chromosome 21 (either in part or whole) (Lejeune et al., 1959). This report was followed up by investigators who in 1991 revealed that a CGG expansion in the gene encoding Fragile-X mental retardation protein (or FMRP, an RNA-binding protein that regulates the translation of genes involved in synaptic function) is causal for FXS (Pieretti et al., 1991; Verkerk et al., 1991).

Advances in the study of ID motivated researchers to initially employ linkage studies on multiplex families (pedigrees with several affected people) (Mefford et al., 2012; Geschwind and State, 2015; Vissers et al., 2016). By utilizing linkage studies, investigators hoped to classify segments of chromosomal material (and therefore specific gene coding regions) that are shared by those with the same neuropsychiatric disorders (Mefford et al., 2012; Geschwind and State, 2015; Vissers et al., 2015; Vissers et al., 2016). Ultimately, researchers were able to uncover the causes of several ID syndromes (Vissers et al., 2016) such as Angelman syndrome (produced by silencing of *UBE3A*) (Buiting, 2010), Prader-Willi syndrome (caused by deletions of *NDN* and *SNRPN*) (Buiting, 2010) and Smith-Magenis syndrome (produced by deletions of *RAI1*) (Elsea and Girirajan, 2008;

Vissers et al., 2016). Additionally, it is now known that Down syndrome represents the most ID cases (6 to 8%) while FMRP is the most commonly mutated gene in ID (representing 0.5% of cases) (Vissers et al., 2016).

The level of success seen in genetic research focused on ID was not reproduced in linkage studies concentrated on ASD (Geschwind and State, 2015). We now know that this failure was due to the fact that these analyses did not contain the statistical power needed to produce replicable results (Geschwind and State, 2015). Moreover, with subsequent use of genome-wide association studies (used to detect single nucleotide polymorphisms between patient populations) it was determined that the complexity seen in ASD genetics is due to two main classes of mutations: 1) rare variants with large effect sizes and 2) common variants with small effect sizes (Geschwind and State, 2015).

The advent of next-generation sequencing (NGS) in the early 2000s allowed geneticists to catalog entire genomes on a time-scale that was previously inaccessible. NGS has since provided deep insights into the genomic underpinnings of ASD that could not be adequately captured by previous efforts (Geschwind and State, 2015; de la Torre-Ubieta et al., 2016). For example, large duplications or deletions of chromosomal regions (known as copy number variations or CNVs) are currently recognized as contributing to 5-7% of ASD cases (Geschwind and State, 2015; de la Torre-Ubieta et al., 2016). By integrating the results of NGS studies, researchers have been able to identify specific chromosomal loci that are associated with ASD (Geschwind and State, 2015). NGS has also allowed for the documentation of single-nucleotide variants (SNVs) in specific genes that produce ASD (Geschwind and State, 2015; de la Torre-Ubieta et al., 2016).

Interestingly, many of the genetic alterations associated with ASD are *de novo* meaning that they are not carried by either parent and that they instead arise either in a parent's germline or over the course of an embryo's development (Geschwind and State, 2015; de la Torre-Ubieta et al., 2016). FXS and tuberous sclerosis complex (caused by mutations in *TSC1* or *TSC2*) contribute to the most ASD cases (1.9% and 0.9%, respectively) (de la Torre-Ubieta et al., 2016). However, single-gene mutations are predicted to explain no more than 5% of all ASD cases (de la Torre-Ubieta et al., 2016). Lastly, NGS has yielded similar advancements with regards to understanding the role of CNVs and SNVs in ID (Vissers et al., 2016). This cache of information has provided investigators the opportunity to compare the genetic architecture underlying the two disorders.

There is a large overlap of ID-risk genes with ASD-risk genes (Vissers et al., 2016). Shared genes between the two disorders code for proteins with diverse biological functions such as chromatin modification (e.g., *AR1D1B*, *CDH2*, and *CDH8*), cellular adhesion (e.g., *CNTNAP2* and *NRXN1*), and kinase signaling (e.g., *CAMK2A*, *CAMK2B*, and *DYRK1A*) (Mullins et al., 2016). A major feature of both ASD and ID genetics is a disruption in numerous genes encoding proteins involved in synaptic function (Zoghbi and Bear, 2012). Because synapse-related genes are all necessarily expressed throughout the brain, this finding is able to explain how disparate mutations could lead to a similar clinical presentation (Zoghbi and Bear, 2012). Lastly, many of the genes associated with ASD and ID are enriched during early brain development (Geschwind and State, 2015; de la Torre-Ubieta et al., 2016; Mullins et al., 2016). Certain transcription factors

coordinate the spatial and temporal expression patterns of ASD- and ID-risk genes. Therefore, studying transcription factors that are themselves genetically associated with ASD and ID could allow for an improved understanding of the neurodevelopmental mechanisms at risk in these disorders.

EVIDENCE SUPPORTING A ROLE FOR FOXP1 IN ASD AND ID

FOXP1 as a Transcription Factor

Forkhead Box P1 (FOXP1) (Figure 1.2) is a transcription factor enriched in the developing brain and which is recognized as a high-confidence ASD- and ID-risk gene (Bacon and Rappold, 2012; lossifov et al., 2014; Sanders et al., 2015). FOXP1 belongs to the FOX family of transcription factors (made up of subfamilies FOXA-FOXS), which is defined by the presence of the forkhead (FKH) domain (Lalmansingh et al., 2012; Lam et al., 2013). The FKH region allows FOX proteins to make physical contact with DNA and thus regulate transcription (Lalmansingh et al., 2012; Lam et al., 2013). The FKH region allows fox phenotype seen in *Drosophila melanogaster* that is produced by the loss of the *forkhead* gene (*FOXA1* in humans) (Weigel et al., 1989; Hannenhalli and Kaestner, 2009). The FKH domain is approximately 100 amino acids in length and it is highly conserved amongst the FOX proteins (Lalmansingh et al., 2012).

The members of the FOXP subfamily (FOXP1-4) are involved in various biological processes including organ development, immune system functioning, and vocal communication (Hannenhalli and Kaestner, 2009; Lalmansingh et al., 2012). The FKH domain of the FOXP subfamily is uniquely shortened (to roughly 90 amino acids) and,

unlike what is seen in the other FOX subfamilies, it is positioned towards the C-terminus (Lalmansingh et al., 2012; Lam et al., 2013). Other domains found in the FOXP protein subfamily include a zinc-finger domain, a leucine-zipper domain, and a transrepression domain (Lalmansingh et al., 2012; Lam et al., 2013). With the exception of FOXP3, which cannot interact with FOXP1/2/4 due to its divergence from them, the FOXP proteins are able to homodimerize and heterodimerize with one another both in vitro and in vivo (Li et al., 2004; Sin et al., 2015; Mendoza and Scharff, 2017). I have also been able to demonstrate that Foxp1 and Foxp2 are able to interact in the early postnatal mouse striatum (Figure 1.3). Because of their shortened FKH domain, it appears that dimerization is necessary for these proteins to stably interact with DNA (Li et al., 2004; Lalmansingh et al., 2012). Dimerization amongst FOXP proteins is mediated by the leucine zipper domain (Li et al., 2004). The dimerization of FOXP proteins (known as "domain-swapping") involves the production of a "winged-helix" conformation in which two FKH regions fold over each other and allow for the bridging of two DNA molecules (Stroud et al., 2006; Bandukwala et al., 2011; Chu et al., 2011; Lalmansingh et al., 2012). Finally, because the FKH domain is highly conserved (at about 85%) between the FOXP proteins, the diversity in this subfamily stems from the flanking regions (Lalmansingh et al., 2012).

FOXP1 was first identified in 1993 as part of a screen carried out in B-cells and was originally named glutamine (Q)-rich factor 1 (QRF1) (Li and Tucker, 1993; Koon et al., 2007). QRF1 was eventually renamed FOXP1 after the human gene was cloned (Banham et al., 2001; Koon et al., 2007) in accordance with the nomenclature developed for FOX transcription factors (Kaestner et al., 2000). The FOX transcription factors are

governed by a specific naming system, which uses uppercase for primate proteins (e.g., FOXP1), title case for rodent proteins (e.g., Foxp1), and mixed case for proteins from all other species or collection of species (e.g., FoxP1) (Kaestner et al., 2000). FOXP1 is enriched throughout the body and it participates in orchestrating cardiomyocyte proliferation (Wang et al., 2004), the formation of the lungs and the esophagus (Shu et al., 2007; Li et al., 2012), and T cell and B cell development (Hu et al., 2006; Feng et al., 2010). There is also a wealth of literature describing *FOXP1* both as an oncogene and as a tumor suppressor gene (Koon et al., 2007; Brown et al., 2008; Feng et al., 2012; Lam et al., 2013; Brown et al., 2016; Xiao et al., 2016). Indeed, alterations in the expression of *FOXP1* are associated with improved and worsened prognostic outcomes for different types of cancer (Koon et al., 2007; Lam et al., 2013; Xiao et al., 2016).

Members of the NuRD complex (a chromatin-remodeling protein complex) interact with FOXP1 in the recruitment of HDACs (which silence gene expression) (Chokas et al., 2010). Additionally, FOXP1 is able to interact with CtBP and the SMRT protein complex (both transcriptional co-repressors), which are also able to recruit HDACs (Li et al., 2004; Lam et al., 2013). Consequently, FOXP1 has classically been thought of as a transcriptional repressor (Wang et al., 2003; Lalmansingh et al., 2012). Still, there is some evidence to suggest that the FOXP proteins, including FOXP1 itself, can act as transcriptional activators (Spiteri et al., 2007; Sagardoy et al., 2013). To address this question directly, I have combined chromatin immunoprecipitation followed by DNAsequencing (ChIP-seq) and RNA-sequencing (RNA-seq) analyses in human neural progenitors as well as RNA-seq analysis in a patient-relevant heterozygous *FOXP1*

knockout mouse model. With the resultant data sets, I have shown that FoxP1 is able to act as a transcriptional repressor and activator in the control of region-specific transcriptional profiles in the brain **(Chapter 2)**.

FOXP1 as a High-Confidence ASD- and ID-Risk Gene

The first piece of evidence tying FOXP1 to NDDs came from a patient displaying gross motor delay (GMD) and delayed speech who was found to harbor a large deletion in chromosome 3 that included the FOXP1 gene (Pariani et al., 2009; Bacon and Rappold, 2012). However, this deletion also included three other genes (GPR27, PROK2, and EIF4E3), which confounded interpretations (Pariani et al., 2009; Bacon and Rappold, 2012). A deletion impacting only FOXP1 was then identified in an individual displaying GMD and severe speech delay (Carr et al., 2010; Bacon and Rappold, 2012). But again, the behavioral symptoms shown by this patient could not be entirely attributed to loss of FOXP1 because this individual also presented with a type I Chiari malformation (a type of cerebellar malformation) (Carr et al., 2010; Bacon and Rappold, 2012). Shortly following this report, a karyotyping study uncovered three mutations exclusively in FOXP1 within three patients diagnosed with GMD, severe language impairment (SLI), and ID (Horn et al., 2010; Bacon and Rappold, 2012). This signified the first time that disruptions to FOXP1 were demonstrated to be causative for ID (Horn et al., 2010; Bacon and Rappold, 2012). Afterwards, researchers performing a microarray-based screen of ID cases observed a deletion impacting only FOXP1 in an individual presenting with ID and SLI (Hamdan et al., 2010; Bacon and Rappold, 2012). They also observed a nonsense

mutation affecting only *FOXP1* in an individual presenting with SLI, ID, and ASD (Hamdan et al., 2010; Bacon and Rappold, 2012). Thus, conclusive links to both ASD and ID were established for FOXP1.

Motivated by the aforementioned findings, a series of case-reports have continued to connect mutations and deletions in FOXP1 to ASD, ID, and NDDs in general (Table **1.1).** Whole-exome sequencing (WES) performed on 20 families detected a premature stop codon caused by a frameshift insertion in a patient with hyperactivity, speech impairments, and ASD (O'Roak et al., 2011; Bacon and Rappold, 2012). Whole-genomesequencing then detailed a chromosomal translocation in a patient with ASD, delays in speech acquisition, and GMD (Bacon and Rappold, 2012; Talkowski et al., 2012). However, the two afformentioned studies were confounded by disruptions in other genes (CNTNAP2 and ANK3, respectively) (O'Roak et al., 2011; Bacon and Rappold, 2012; Talkowski et al., 2012). Next, a large deletion in chromosome 3 that included FOXP1 was observed in a person with ASD, speech delay, and motor impairments (Palumbo et al., 2013). Following this, a large intragenic deletion exclusively affecting FOXP1 was identified in an individual afflicted with ID (Le Fevre et al., 2013). Then, a missense mutation was isolated in a person exhibiting ID, SLI, and ASD through WES (Srivastava et al., 2014). Afterwards, a person diagnosed with GDD and speech impairments was revealed to carry a mutation in *FOXP1* but the clinical features could not be completely ascribed to this gene because a mutation in *PRKAA1* was also uncovered (Song et al., 2015). Subsequently, a case report detailed a two-base pair deletion that yields a premature stop codon in *FOXP1* in a patient exhibiting ID, attention-deficit hyperactivity

disorder (ADHD), obsessive-compulsive disorder (OCD), ASD, anxiety, and SLI (Lozano et al., 2015). A follow-up account described the responses of this individual to pharmaceutical treatments including methylphenidate (for ADHD), sertraline (for anxiety), as well as clomipramine and aripiprazole (both for OCD) (Cohen, 2017). Lastly, WES uncovered three missense mutations in three separate individuals diagnosed with ID, abnormal sensory processing, speech and language deficiencies, and autistic features (Sollis et al., 2016).

FOXP1 has also been implicated in ASD and ID via recent, high-profile sequencing projects. Specifically, WES performed on 2,517 ASD families revealed frameshift and nonsense mutations in *FOXP1* to be causal for the disorder (lossifov et al., 2014). Another study, relying on improved analysis of results from previous sequencing efforts as well as data from a new cohort, was able to identify 71 genomic loci that are associated with an increased risk for ASD, and one of these included *FOXP1* (Sanders et al., 2015). Additionally, WES carried out on 1,133 people with severe, undiagnosed NDDs were able to identify four genetic perturbations to *FOXP1* (Deciphering Developmental Disorders, 2015). Most recently, sequencing of 208 candidate genes in over 11,700 cases of ASD, ID and developmental disorders, found eleven people with gene-disrupting mutations solely impacting *FOXP1* (Stessman et al., 2017).

The genetic perturbations influencing *FOXP1* discussed so far are all *de novo*, heterozygous in nature (homozygous disruptions are presumably lethal), and frequently produce a severe form of ASD that is often comorbid with ID (Le Fevre et al., 2013; Lozano et al., 2015; Vissers et al., 2016). However, one study has found increased

FOXP1 expression in lymphoblastoid cell lines derived from ASD patients (Chien et al., 2013). Therefore, the importance of *FOXP1* dosage to the reported symptoms still remains to be determined and I consider this in my discussion **(Chapter 4)**.

As demonstrated above, an important characteristic of almost all the reports on *FOXP1* mutations and deletions is the presence of SLI and speech impairments (Bacon and Rappold, 2012; Le Fevre et al., 2013). These deficits have helped create a recognizable phenotype associated with *FOXP1* loss (Bacon and Rappold, 2012; Le Fevre et al., 2013). Because these disturbances do not occur in the absence of other deficiencies, they may represent secondary features of decreased intellectual functioning rather than an independent disruption of communication itself (Bacon and Rappold, 2012). Thus, it is difficult to say whether or not these deficits are due to either ID or ASD (Bacon and Rappold, 2012). Nevertheless, this highlights a critical role for FOXP1 in the acquisition and expression of language (Bacon and Rappold, 2012; Le Fevre et al., 2013; Konopka and Roberts, 2016).

Taken together, these observations indicate that FOXP1 plays a role in controlling broad neurological processes such as cognitive ability, impulse control, sensory processing, social communication development, and the acquisition of motor skills (Bacon and Rappold, 2012; Le Fevre et al., 2013). Disturbances in these processes contribute to both the core and peripheral symptoms of ASD and ID.

KNOWN FUNCTIONS OF FOXP1 WITHIN THE BRAIN

Neuronal Functions of Foxp1 in vitro and in vivo

The impact of heterozygous loss of *FOXP1* on cognitive, social, and linguistic abilities has encouraged investigators to study the neuronal functions of this transcription factor (Bacon and Rappold, 2012; Golson and Kaestner, 2016). There are nine FoxP1 isoforms in humans and four in mice (Wang et al., 2003; Brown et al., 2008). FoxP1 isoforms show cell-type and time-point-specific enrichment (Shu et al., 2001; Wang et al., 2003; Brown et al., 2008; Brown et al., 2016; Garaud et al., 2017; van Keimpema et al., 2017). Foxp1A and Foxp1D are the murine isoforms of Foxp1 that show brain-specific expression (Wang et al., 2003) and they are observable by embryonic day 14.5 (E14.5) (Ferland et al., 2003). *FOXP1* is present in the human fetal brain as early as 8 weeks of gestation but it is unclear which isoform(s) this represents (Teramitsu et al., 2004; Saito et al., 2011; Onorati et al., 2014; Precious et al., 2016).

Foxp1 is highly enriched within the mouse neocortex, hippocampus, and striatum (Ferland et al., 2003; Tamura et al., 2004; Hisaoka et al., 2010). Foxp1 expression is largely restricted to the projection neurons, but not the interneurons, of these regions (Ferland et al., 2003; Tamura et al., 2004; Hisaoka et al., 2010; Precious et al., 2016). Within the pyramidal neurons of the neocortex, Foxp1 is enriched throughout layers III-VIa (Ferland et al., 2003; Hisaoka et al., 2010). Foxp1 expression in the pyramidal neurons of the neocortex, Foxp1 expression in the pyramidal neurons of the hippocampus is mostly constrained to the *Cornu Ammonis* areas 1 and 2 (CA1/2) (Ferland et al., 2003). The medium spiny neurons (MSNs) of the striatum express the highest levels of Foxp1 in the brain (Ferland et al., 2003; Tamura et al., 2004; Heiman et al., 2008; Precious et al., 2016). Foxp1 shows sparse expression in other brain regions including the olfactory bulb, the thalamus, the hypothalamus, and the amygdala (Ferland

et al., 2003). Foxp1 has been proposed to function in neuroglia such as astrocytes and oligodendrocytes (Surmeli et al., 2011; Tang et al., 2012; Freeman and Rowitch, 2013) but there is no direct evidence that it is expressed in either cell-type (Precious et al., 2016). On the other hand, microglia (the brain's resident immune cells) express detectable levels of *Foxp1* mRNA and their levels increase upon treatment with pro-inflammatory molecules (Tang et al., 2012). Stimulation with gonadal hormones can affect FoxP1 expression (Takayama et al., 2008; Shigekawa et al., 2011) but there are conflicting reports as to whether or not this translates into sexually-dimorphic expression in the brain (Bowers et al., 2013; Bowers et al., 2014; Frohlich et al., 2017).

Owing to its robust expression in MSNs, the brain-specific role of Foxp1 has been most thoroughly investigated in the striatum. Indeed, the first report to look at the role of Foxp1 within the brain employed genome-wide expression arrays and ChIP-seq on cultured MSNs overexpressing Foxp1 (Tang et al., 2012). This study found an MSN transcriptome characterized by altered expression of genes involved in immune signaling, neuronal development, and Huntington's disease-relevant pathways (Tang et al., 2012). Moreover, this article recapitulated these findings *in vivo* by using microarrays on a Huntington's disease mouse model with striatal *Foxp1* over-expression (Tang et al., 2012).

Use of a *Nestin.Cre* line (which targets neuronal and glial precursor cells in the brain) has demonstrated that mice with homozygous deletion of *Foxp1* throughout the brain display delayed striatal development and ASD- and ID-like phenotypes such as decreased sociability, hyperactivity, stereotypic/repetitive behaviors, impaired learning
and memory, and increased anxiety (Bacon et al., 2014). Microarray-based expression analysis performed on the striatum of these whole-brain *Foxp1* knockout mice discovered dysregulation of genes involved in chromatin assembly and cellular division (Bacon et al., 2014). Whole-brain *Foxp1* conditional knockout animals also possess decreased hippocampal CA1 neuron excitability (Bacon et al., 2014). Finally, FoxP1 regulates striatal differentiation by controlling the expression of the MSN-marker DARPP-32 and thus FoxP1 can be used as indicator of successful MSN transplantation (Precious et al., 2016).

Given the wide distribution of Foxp1 in the pyramidal neurons of the neocortex, attention has also been paid to the function of this transcription factor in neocortical development. Knocking down neocortical *Foxp1* mRNA results in impaired axonal development, irregular multipolar-to-bipolar shape conversion both *in vitro* and *in vivo*, and abnormal neocortical patterning (Li et al., 2015). These observations are concordant with the finding that FOXP1 is required for dendritic morphogenesis in neocortical neurons (Rocca et al., 2017). Regulation of dendritic development in neocortical neurons is dependent upon SUMOylation (a ubiquitin-like post-translational modification) of FOXP1 and the subsequent recruitment of CtBP (Rocca et al., 2017).

Over the last several years, there has been a marked improvement in our understanding of the neuronal mechanisms governed by FoxP1. Based on the work accomplished so far, FoxP1 appears to be involved in distinct processes within different regions of the brain. Proper expression of Foxp1 seems to be especially critical for MSN identity and striatal development (Bacon et al., 2014; Precious et al., 2016). Thus, there has been a focus on the striatal-dependent behavior of vocalization/speech production in

relation to altered *Foxp1* levels (Bacon and Rappold, 2012; Konopka and Roberts, 2016). Such efforts are vital for understanding the mechanisms behind the SLI phenotype that repeatedly accompanies heterozygous loss of *FOXP1* (Bacon and Rappold, 2012; Konopka and Roberts, 2016).

FoxP1 and FoxP2 in the Regulation of Vocal Communication

FOXP2 is a paralog of FOXP1 and mutations in the FOXP2 gene produce a condition known as developmental verbal dyspraxia (DVD) (Lai et al., 2001; MacDermot et al., 2005). DVD is a disorder affecting the coordination of facial muscles involved in speech control (Fisher and Scharff, 2009). DVD has been phenocopied in the isolation-based ultrasonic vocalizations (USVs) of rodent pups with altered *Foxp2* expression (Shu et al., 2005; French et al., 2007; Enard et al., 2009; Bowers et al., 2013) and alterations to USV production have been correlated with altered physiological and morphological properties in MSNs (Enard et al., 2009; Vernes et al., 2011). Moreover, mouse models of Huntington's and Parkinson's disease, conditions characterized by striatal degeneration, also produce abnormal USVs (Kurz et al., 2010; Pietropaolo et al., 2011; Grant et al., 2014). Foxp2 is co-expressed with Foxp1 in the striatum (Ferland et al., 2003; Frohlich et al., 2017) and these proteins are able to heterodimerize and homodimerize with one another (Figure 1.3) (Li et al., 2004; Sin et al., 2015; Mendoza and Scharff, 2017). Therefore, the role of FoxP1 in controlling striatal-based USVs has been of particular interest to researchers for some time (Bacon and Rappold, 2012). Consequently, I was the first to show that proper Foxp1 expression is necessary for this behavior (Chapter 2).

Following this study, a report demonstrated that loss of *Foxp1* leads to sex-specific changes in USV production (Frohlich et al., 2017).

Finally, as stated above, full-brain conditional loss of *Foxp1* results in a plethora of ASD- and ID-like behaviors (Bacon et al., 2014). However, more in-depth analyses of the behavioral consequences caused by specific disruptions in these processes are needed. To address this question, I took advantage of a *Foxp1* conditional knockout (*Foxp1^{cKO}*) mouse with ablation of *Foxp1* specifically in the pyramidal neurons of the neocortex and hippocampus. I have shown that this loss of *Foxp1* is sufficient to produce ASD- and ID-relevant behaviors such as decreased sociability, hyperactivity, and gross impairments in learning and memory tasks. I have also correlated the learning and memory deficits with altered hippocampal physiology and transcriptional signatures **(Chapter 3)**.

QUESTIONS ADDRESSED IN THIS THESIS

Chapter 2

- 1. What are the region-specific gene targets of Foxp1 within the mouse brain?
- 2. Does heterozygous loss of Foxp1 influence the production of mouse USVs?
- 3. Does heterozygous loss of Foxp1 differentially influence murine MSN subtypes?
- 4. How conserved are Foxp1 targets between human and mouse neurons?

Chapter 3

- 1. Is loss of *Foxp1* in the pyramidal neurons of the neocortex and hippocampus sufficient to produce ASD- and ID-like behaviors in mice?
- 2. What are the transcriptional and physiological changes associated with the learning and memory deficits caused by loss of *Foxp1* in the mouse hippocampus?

Chapter 4

- 1. Is Foxp1 expression in striatal neurons necessary and sufficient for proper USV production?
- Is it possible to disentangle the gene targets between Foxp1 and Foxp2 heterodimers and Foxp1 and Foxp2 homodimers?
- Can we disentangle the contributions of neocortical and hippocampal *Foxp1* to the behavioral phenotypes of *Foxp1^{cKO}* mice?
- 4. Are the behaviors caused by loss of forebrain Foxp1 developmental in origin?

- 5. Are the phenotypes exhibited by $Foxp1^{cKO}$ mice dose-dependent?
- 6. Are Foxp1 mutant mice models of ASD and ID in general?

FIGURES FOR CHAPTER ONE

Figure 1.1. Distinct and overlapping clinical characteristics of ASD and ID. ASD and ID are each defined by two unique core symptoms. However, ASD and ID often present with overlapping secondary symptoms.

FOXP1	N	polyQ		FKH	— -С
			TR		

Figure 1.2. Diagram of FOXP1. A simplified schematic of the transcription factor FOXP1 highlighting important functional domains. The forkhead domain allows the protein to make stable contacts with DNA. The leucine zipper is required for homodimerization as well as heterodimerization with other FOXP proteins. FKH, forkhead domain; polyQ, poly-glutamine segment; LZ, leucine zipper domain, TR; transrepression domain; ZF, zinc finger domain.

Figure 1.3. Co-immunoprecipitation of Foxp1 with Foxp2 in the mouse brain. Representative image showing co-immunoprecipitation of Foxp1 isoforms A and D with Foxp2 in the postnatal day 3 (P3) mouse striatum. Immunoblotting (IB) for Foxp1 (Foxp1 antibody (rabbit, 1:5000) (Spiteri et al., 2007)) was carried out after immunoprecipitation (IP) of Foxp2 (Foxp2 antibody (goat, 20 uL/IP), Santa Cruz) was performed on pooled (3 animals/pool) P3 striatal protein lysates.

TABLES FOR CHAPTER ONE

Table 1.1. Literature connecting FOXP1 to NDDs.					
Reference	Study Design	Sex	Reported <i>FOXP1</i> Disruption or Main Conclusion	Reported IQ	Reported Clinical Presentation
Pariani et al., 2009	Case report with microarray analysis	Male	785 Kb deletion (exons 1-11 deleted along with <i>GPR27</i> , <i>PROK2</i> , and <i>EIF4E3</i>)	Data Not Available (N/A)	Speech delay (SD) and gross motor delay (GMD)
Carr et al., 2010	Case report with microarray analysis	Male	1.1 Mb deletion (exons 4-21 deleted)	N/A	Severe SD, GMD, Chari I malformation, and epileptiform discharges
	Karyotyping screen on 1,523 individuals with intellectual disability	Male	498 Kb deletion (exons 7-21 deleted)	< 50 (non- verbal)	Intellectual disability (ID), GMD, global developmental delay (GDD), and SD
Horn et al., 2010		Female	659 Kb deletion (exons 5-21 deleted)	< 50 (non- verbal)	Intellectual disability (ID), GMD, GDD, and SD
		Male	1.0 Mb deletion (exons 6-21 deleted)	50 (non- verbal)	Intellectual disability (ID), GMD, GDD, and SD
Hamdan et al.,	Microarray-based screen on 245	Female	390 Kb deletion (exons 4-14 deleted)	58 (non- verbal)	ID, SLI, anxiety, and social withdrawal
2010	nonsyndromic ID and/or ASD cases	Male	c.1573C>T nonsense mutation (predicted to result in a p.R525X variant)	48 (non- verbal)	ID, ASD, SLI, and hyperactivity
O'Roak et al., 2011	WES screen of 20 ASD children and their families	Male	Single base pair insertion (+A), leading to a frameshift (predicted to result in a p.Ala339Ser <i>fs</i> *4 protein variant); an inherited <i>CNTNAP2</i> mutation also present	34 (non- verbal)	ASD, ID, and language delay
Talkowski et al., 2012	Whole-genome sequencing study on 38 patients with NDDs	N/A	Chromosomal translocation (3;10)(p13;q21.2), resulting in reduced <i>FOXP1</i> expression; <i>ANK3</i> also affected by the same chromosomal translocation	N/A	GMD, SD, and spina bifida occulta

Palumbo et al., Case report with 2013 microarray analysis		Male	1.0 Mb deletion (exons 4-21 deleted)	N/A	ASD, ID, GMD, EEG anomalies, and speech delay
Le Fevre et al., 2013	Case report with microarray analysis	Male	190 Kb deletion (exons 6-13 deleted)	N/A	GMD, SD, GDD, and ID
Srivastava et al., 2014	Whole-exome sequencing (WES) on 78 individuals with NDDs	N/A	c.1600T>C substitution, leading to a missense mutation (predicted to result in a p.W534R variant)	N/A	ID, SLI, autistic features, and MRI abnormalities
lossifov et al	WES on 2,517 families with at least one child with ASD	Male	Nonsense mutation resulting from a G>A substitution	64 (non- verbal)	ID and ASD
2014		Male	Single base pair insertion (+T) leading to a frameshift mutation	34 (non- verbal)	ID and ASD
Song et al., 2015	Case report with WES	Female	Singe base pair substitution T>C, resulting in a missense mutation	N/A	Severe SD and GDD
The Deciphering Developmental Disorders Study, 2015	WES and microarray analysis on 1,133 with severe, undiagnosed NDDs	N/A	4 perturbations affecting <i>FOXP1</i> , including a missense mutation (G>A), a nonsense mutation (Q/*), a splice donor variant (C>T), and an initiator codon variant	N/A	NDDs (undiagnosed)
Sanders et al., 2015	Whole-genome sequencing on 2,591 families with at least one child with ASD (in addition to reanalysis of previous ASD sequencing efforts)	N/A	<i>FOXP1</i> locus is associated with an increased ASD risk	N/A	ASD
Lozano et al., 2015	Case report with WES	Female	c.1267_1268delGT base pair deletions, resulting in a p.V423H <i>fs</i> *37 variant	54 (total)	ASD, ID, and SLI
Sollis et al.,	Case report with WES	Male	c.1393A>G missense mutation, resulting in a p.R465G variant	50-80 (task dependent)	ID, GDD, autistic features, attention deficit hyperactivity disorder (ADHD), and sensory processing disorder
2016		Male	c.1540C>T missense mutation, resulting in a p.R514C variant	53 (total)	GDD, ID, speech and language impairments, ADHD, and GMD

		Female	c.1317C>G missense mutation, resulting in a p.Y439* variant	N/A	Developmental delays, ID, autistic features, anxiety, and aggression
Stessman et al., 2017	Sequencing of 208 candidate genes within a cohort of >11,730 ASD, ID, and developmental disorder cases	Mixed	11 total gene disrupting mutations affecting <i>FOXP1</i>	48 (non- verbal/avera ge for 2 individuals)	ASD, ID, and/or presentation with seizures

REFERENCES FOR CHAPTER ONE

- Ageranioti-Belanger S, Brunet S, D'Anjou G, Tellier G, Boivin J, Gauthier M (2012) Behaviour disorders in children with an intellectual disability. Paediatr Child Health 17:84-88.
- American Association on Intellectual and Developmental Disabilities (2010), 11th Edition. Washington, DC, USA: American Association on Intellectual and Developmental Disabilities.
- American Psychiatry Association (2013) Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th Edition. Arlington, Virginia, USA: American Psychiatry Association.
- Asperger H (1944) The "autistic psychopathy" in childhood. Arch Psychiat Nerven 117:76-136.
- Bacon C, Rappold GA (2012) The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Human genetics 131:1687-1698.
- Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C, Gluch C, Monyer H, Rappold GA (2014) Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Molecular psychiatry.
- Bailey DB, Jr., Raspa M, Bishop E, Holiday D (2009) No change in the age of diagnosis for fragile x syndrome: findings from a national parent survey. Pediatrics 124:527-533.
- Bandukwala HS, Wu Y, Feuerer M, Chen Y, Barboza B, Ghosh S, Stroud JC, Benoist C, Mathis D, Rao A, Chen L (2011) Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 34:479-491.
- Banham AH, Beasley N, Campo E, Fernandez PL, Fidler C, Gatter K, Jones M, Mason DY, Prime JE, Trougouboff P, Wood K, Cordell JL (2001) The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. Cancer Res 61:8820-8829.
- Bleuler E (1912) The theory of schizophrenic negativism. J Nerv Ment Dis 39:133-+.
- Bolte S, Dziobek I, Poustka F (2009) Brief report: The level and nature of autistic intelligence revisited. J Autism Dev Disord 39:678-682.
- Bowers JM, Perez-Pouchoulen M, Edwards NS, McCarthy MM (2013) Foxp2 mediates sex differences in ultrasonic vocalization by rat pups and directs order of maternal retrieval. The Journal of neuroscience : the official journal of the Society for Neuroscience 33:3276-3283.
- Bowers JM, Perez-Pouchoulen M, Roby CR, Ryan TE, McCarthy MM (2014) Androgen modulation of Foxp1 and Foxp2 in the developing rat brain: impact on sex specific vocalization. Endocrinology 155:4881-4894.
- Brown PJ, Ashe SL, Leich E, Burek C, Barrans S, Fenton JA, Jack AS, Pulford K, Rosenwald A, Banham AH (2008) Potentially oncogenic B-cell activation-induced smaller isoforms of FOXP1 are highly expressed in the activated B cell-like subtype of DLBCL. Blood 111:2816-2824.
- Brown PJ, Gascoyne DM, Lyne L, Spearman H, Felce SL, McFadden N, Chakravarty P, Barrans S, Lynham S, Calado DP, Ward M, Banham AH (2016) N-terminally truncated FOXP1 protein expression and alternate internal FOXP1 promoter usage in normal and malignant B cells. Haematologica 101:861-871.
- Bryson SE, Bradley EA, Thompson A, Wainwright A (2008) Prevalence of autism among adolescents with intellectual disabilities. Can J Psychiatry 53:449-459.
- Buiting K (2010) Prader-Willi syndrome and Angelman syndrome. Am J Med Genet C Semin Med Genet 154C:365-376.

- Carlsson LH, Norrelgen F, Kjellmer L, Westerlund J, Gillberg C, Fernell E (2013) Coexisting disorders and problems in preschool children with autism spectrum disorders. ScientificWorldJournal 2013:213979.
- Carr CW, Moreno-De-Luca D, Parker C, Zimmerman HH, Ledbetter N, Martin CL, Dobyns WB, Abdul-Rahman OA (2010) Chiari I malformation, delayed gross motor skills, severe speech delay, and epileptiform discharges in a child with FOXP1 haploinsufficiency. European journal of human genetics : EJHG 18:1216-1220.
- Chakrabarti S, Fombonne E (2005) Pervasive developmental disorders in preschool children: confirmation of high prevalence. The American journal of psychiatry 162:1133-1141.
- Charman T, Pickles A, Simonoff E, Chandler S, Loucas T, Baird G (2011) IQ in children with autism spectrum disorders: data from the Special Needs and Autism Project (SNAP). Psychol Med 41:619-627.
- Chen JA, Penagarikano O, Belgard TG, Swarup V, Geschwind DH (2015) The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol 10:111-144.
- Chien WH, Gau SS, Chen CH, Tsai WC, Wu YY, Chen PH, Shang CY, Chen CH (2013) Increased gene expression of FOXP1 in patients with autism spectrum disorders. Molecular autism 4:23.
- Chokas AL, Trivedi CM, Lu MM, Tucker PW, Li S, Epstein JA, Morrisey EE (2010) Foxp1/2/4-NuRD interactions regulate gene expression and epithelial injury response in the lung via regulation of interleukin-6. The Journal of biological chemistry 285:13304-13313.
- Christensen DL, Baio J, Van Naarden Braun K, Bilder D, Charles J, Constantino JN, Daniels J, Durkin MS, Fitzgerald RT, Kurzius-Spencer M, Lee LC, Pettygrove S, Robinson C, Schulz E, Wells C, Wingate MS, Zahorodny W, Yeargin-Allsopp M, Centers for Disease C, Prevention (2016) Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years--Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. MMWR Surveill Summ 65:1-23.
- Chu YP, Chang CH, Shiu JH, Chang YT, Chen CY, Chuang WJ (2011) Solution structure and backbone dynamics of the DNA-binding domain of FOXP1: insight into its domain swapping and DNA binding. Protein Sci 20:908-924.
- Cohen SL, R.; Kolevzon, A.; Hagerman, R. J. (2017) Medication Treatment in an Adolescent Female with *FOXP1* Mutation. SRL Neurol Dis 1:001-005.
- de Bildt A, Sytema S, Kraijer D, Minderaa R (2005) Prevalence of pervasive developmental disorders in children and adolescents with mental retardation. J Child Psychol Psychiatry 46:275-286.
- de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH (2016) Advancing the understanding of autism disease mechanisms through genetics. Nat Med 22:345-361.
- De Rubeis S, Buxbaum JD (2015) Recent advances in the genetics of autism spectrum disorder. Curr Neurol Neurosci Rep 15:36.
- Deciphering Developmental Disorders S (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature 519:223-228.
- Elsea SH, Girirajan S (2008) Smith-Magenis syndrome. European journal of human genetics : EJHG 16:412-421.
- Enard W et al. (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961-971.
- Engel-Yeger B, Hardal-Nasser R, Gal E (2011) Sensory processing dysfunctions as expressed among children with different severities of intellectual developmental disabilities. Res Dev Disabil 32:1770-1775.
- Fakhoury M (2015) Autistic spectrum disorders: A review of clinical features, theories and diagnosis. Int J Dev Neurosci 43:70-77.

- Feng J, Zhang X, Zhu H, Wang X, Ni S, Huang J (2012) High expression of FoxP1 is associated with improved survival in patients with non-small cell lung cancer. Am J Clin Pathol 138:230-235.
- Feng X, Ippolito GC, Tian L, Wiehagen K, Oh S, Sambandam A, Willen J, Bunte RM, Maika SD, Harriss JV, Caton AJ, Bhandoola A, Tucker PW, Hu H (2010) Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development. Blood 115:510-518.
- Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA (2003) Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. The Journal of comparative neurology 460:266-279.
- Fisher SE, Scharff C (2009) FOXP2 as a molecular window into speech and language. Trends in genetics : TIG 25:166-177.
- Fombonne E (2003) Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord 33:365-382.
- Fombonne E (2009) Epidemiology of pervasive developmental disorders. Pediatr Res 65:591-598.
- Freeman MR, Rowitch DH (2013) Evolving concepts of gliogenesis: a look way back and ahead to the next 25 years. Neuron 80:613-623.
- French CA, Groszer M, Preece C, Coupe AM, Rajewsky K, Fisher SE (2007) Generation of mice with a conditional Foxp2 null allele. Genesis 45:440-446.
- Frohlich H, Rafiullah R, Schmitt N, Abele S, Rappold GA (2017) Foxp1 expression is essential for sex-specific murine neonatal ultrasonic vocalization. Human molecular genetics 26:1511-1521.
- Garaud S, Roufosse F, De Silva P, Gu-Trantien C, Lodewyckx JN, Duvillier H, Dedeurwaerder S, Bizet M, Defrance M, Fuks F, Bex F, Willard-Gallo K (2017) FOXP1 is a regulator of quiescence in healthy human CD4+ T cells and is constitutively repressed in T cells from patients with lymphoproliferative disorders. Eur J Immunol 47:168-179.
- Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, Mahajan M, Manaa D, Pawitan Y, Reichert J, Ripke S, Sandin S, Sklar P, Svantesson O, Reichenberg A, Hultman CM, Devlin B, Roeder K, Buxbaum JD (2014) Most genetic risk for autism resides with common variation. Nature genetics 46:881-885.
- Geschwind DH, State MW (2015) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol.
- Golson ML, Kaestner KH (2016) Fox transcription factors: from development to disease. Development 143:4558-4570.
- Grant LM, Richter F, Miller JE, White SA, Fox CM, Zhu C, Chesselet MF, Ciucci MR (2014) Vocalization deficits in mice over-expressing alpha-synuclein, a model of pre-manifest Parkinson's disease. Behavioral neuroscience 128:110-121.
- Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins J, Smith K, Lotspeich L, Croen LA, Ozonoff S, Lajonchere C, Grether JK, Risch N (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Archives of general psychiatry 68:1095-1102.
- Hamdan FF, Daoud H, Rochefort D, Piton A, Gauthier J, Langlois M, Foomani G, Dobrzeniecka S, Krebs MO, Joober R, Lafreniere RG, Lacaille JC, Mottron L, Drapeau P, Beauchamp MH, Phillips MS, Fombonne E, Rouleau GA, Michaud JL (2010) De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. American journal of human genetics 87:671-678.
- Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nature reviews Genetics 10:233-240.

Harris JC (2006) Intellectual disability: understanding its development, causes, classification, evaluation, and treatment. New York, New York, USA: Oxford University Press.

- Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suarez-Farinas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135:738-748.
- Hisaoka T, Nakamura Y, Senba E, Morikawa Y (2010) The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience 166:551-563.
- Horn D et al. (2010) Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits. Human mutation 31:E1851-1860.
- Hu H, Wang B, Borde M, Nardone J, Maika S, Allred L, Tucker PW, Rao A (2006) Foxp1 is an essential transcriptional regulator of B cell development. Nature immunology 7:819-826.
- lossifov I et al. (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515:216-221.
- Kaestner KH, Knochel W, Martinez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes & development 14:142-146.
- Kanner L (1943) Autistic Disturbances of Affective Contact. Nerv Child 2:217-250.
- Keen D, Ward S (2004) Autistic spectrum disorder: a child population profile. Autism 8:39-48.
- Konopka G, Roberts TF (2016) Insights into the Neural and Genetic Basis of Vocal Communication. Cell 164:1269-1276.
- Koon HB, Ippolito GC, Banham AH, Tucker PW (2007) FOXP1: a potential therapeutic target in cancer. Expert Opin Ther Targets 11:955-965.
- Kurz A, Wohr M, Walter M, Bonin M, Auburger G, Gispert S, Schwarting RK (2010) Alphasynuclein deficiency affects brain Foxp1 expression and ultrasonic vocalization. Neuroscience 166:785-795.
- Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP (2001) A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519-523.
- Lalmansingh AS, Karmakar S, Jin Y, Nagaich AK (2012) Multiple modes of chromatin remodeling by Forkhead box proteins. Biochim Biophys Acta 1819:707-715.
- Lam EW, Brosens JJ, Gomes AR, Koo CY (2013) Forkhead box proteins: tuning forks for transcriptional harmony. Nat Rev Cancer 13:482-495.
- Le Fevre AK, Taylor S, Malek NH, Horn D, Carr CW, Abdul-Rahman OA, O'Donnell S, Burgess T, Shaw M, Gecz J, Bain N, Fagan K, Hunter MF (2013) FOXP1 mutations cause intellectual disability and a recognizable phenotype. American journal of medical genetics Part A 161A:3166-3175.
- Leekam SR, Prior MR, Uljarevic M (2011) Restricted and repetitive behaviors in autism spectrum disorders: a review of research in the last decade. Psychol Bull 137:562-593.
- Lejeune J, Gauthier M, Turpin R (1959) [Human chromosomes in tissue cultures]. C R Hebd Seances Acad Sci 248:602-603.
- Li C, Tucker PW (1993) DNA-binding properties and secondary structural model of the hepatocyte nuclear factor 3/fork head domain. Proceedings of the National Academy of Sciences of the United States of America 90:11583-11587.
- Li S, Weidenfeld J, Morrisey EE (2004) Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Molecular and cellular biology 24:809-822.
- Li S, Wang Y, Zhang Y, Lu MM, DeMayo FJ, Dekker JD, Tucker PW, Morrisey EE (2012) Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development 139:2500-2509.

- Li X, Xiao J, Frohlich H, Tu X, Li L, Xu Y, Cao H, Qu J, Rappold GA, Chen JG (2015) Foxp1 regulates cortical radial migration and neuronal morphogenesis in developing cerebral cortex. PloS one 10:e0127671.
- Lozano R, Vino A, Lozano C, Fisher SE, Deriziotis P (2015) A de novo FOXP1 variant in a patient with autism, intellectual disability and severe speech and language impairment. European journal of human genetics : EJHG 23:1702-1707.
- MacDermot KD, Bonora E, Sykes N, Coupe AM, Lai CS, Vernes SC, Vargha-Khadem F, McKenzie F, Smith RL, Monaco AP, Fisher SE (2005) Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. American journal of human genetics 76:1074-1080.
- Maenner MJ, Schieve LA, Rice CE, Cunniff C, Giarelli E, Kirby RS, Lee LC, Nicholas JS, Wingate MS, Durkin MS (2013) Frequency and pattern of documented diagnostic features and the age of autism identification. J Am Acad Child Adolesc Psychiatry 52:401-413 e408.
- Martin JP, Bell J (1943) A Pedigree of Mental Defect Showing Sex-Linkage. J Neurol Psychiatry 6:154-157.
- Matson JL, Shoemaker M (2009) Intellectual disability and its relationship to autism spectrum disorders. Res Dev Disabil 30:1107-1114.
- McGrother CW, Bhaumik S, Thorp CF, Hauck A, Branford D, Watson JM (2006) Epilepsy in adults with intellectual disabilities: prevalence, associations and service implications. Seizure 15:376-386.
- Mefford HC, Batshaw ML, Hoffman EP (2012) Genomics, intellectual disability, and autism. N Engl J Med 366:733-743.
- Mendoza E, Scharff C (2017) Protein-Protein Interaction Among the FoxP Family Members and their Regulation of Two Target Genes, VLDLR and CNTNAP2 in the Zebra Finch Song System. Front Mol Neurosci 10:112.
- Miller JS, Bilder D, Farley M, Coon H, Pinborough-Zimmerman J, Jenson W, Rice CE, Fombonne E, Pingree CB, Ritvo E, Ritvo RA, McMahon WM (2013) Autism spectrum disorder reclassified: a second look at the 1980s Utah/UCLA Autism Epidemiologic Study. J Autism Dev Disord 43:200-210.
- Mullins C, Fishell G, Tsien RW (2016) Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops. Neuron 89:1131-1156.
- Nicholas JS, Charles JM, Carpenter LA, King LB, Jenner W, Spratt EG (2008) Prevalence and characteristics of children with autism-spectrum disorders. Ann Epidemiol 18:130-136.
- O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, Karakoc E, Mackenzie AP, Ng SB, Baker C, Rieder MJ, Nickerson DA, Bernier R, Fisher SE, Shendure J, Eichler EE (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature genetics 43:585-589.
- Oliveira G, Ataide A, Marques C, Miguel TS, Coutinho AM, Mota-Vieira L, Goncalves E, Lopes NM, Rodrigues V, Carmona da Mota H, Vicente AM (2007) Epidemiology of autism spectrum disorder in Portugal: prevalence, clinical characterization, and medical conditions. Dev Med Child Neurol 49:726-733.
- Onorati M, Castiglioni V, Biasci D, Cesana E, Menon R, Vuono R, Talpo F, Laguna Goya R, Lyons PA, Bulfamante GP, Muzio L, Martino G, Toselli M, Farina C, Barker RA, Biella G, Cattaneo E (2014) Molecular and functional definition of the developing human striatum. Nature neuroscience 17:1804-1815.
- Palumbo O, D'Agruma L, Minenna AF, Palumbo P, Stallone R, Palladino T, Zelante L, Carella M (2013) 3p14.1 de novo microdeletion involving the FOXP1 gene in an adult patient with autism, severe speech delay and deficit of motor coordination. Gene 516:107-113.

- Pariani MJ, Spencer A, Graham JM, Jr., Rimoin DL (2009) A 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis. European journal of medical genetics 52:123-127.
- Park HR, Lee JM, Moon HE, Lee DS, Kim BN, Kim J, Kim DG, Paek SH (2016) A Short Review on the Current Understanding of Autism Spectrum Disorders. Exp Neurobiol 25:1-13.
- Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991) Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66:817-822.
- Pietropaolo S, Delage P, Cayzac S, Crusio WE, Cho YH (2011) Sex-dependent changes in social behaviors in motor pre-symptomatic R6/1 mice. PloS one 6:e19965.
- Plomin R, Deary IJ (2015) Genetics and intelligence differences: five special findings. Molecular psychiatry 20:98-108.
- Polyak A, Kubina RM, Girirajan S (2015) Comorbidity of intellectual disability confounds ascertainment of autism: implications for genetic diagnosis. Am J Med Genet B Neuropsychiatr Genet 168:600-608.
- Postorino V, Fatta LM, Sanges V, Giovagnoli G, De Peppo L, Vicari S, Mazzone L (2016) Intellectual disability in Autism Spectrum Disorder: Investigation of prevalence in an Italian sample of children and adolescents. Res Dev Disabil 48:193-201.
- Precious SV, Kelly CM, Reddington AE, Vinh NN, Stickland RC, Pekarik V, Scherf C, Jeyasingham R, Glasbey J, Holeiter M, Jones L, Taylor MV, Rosser AE (2016) FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation. Exp Neurol 282:9-18.
- Prior M (2003) Is there an increase in the prevalence of autism spectrum disorders? J Paediatr Child Health 39:81-82.
- Reichenberg A, Cederlof M, McMillan A, Trzaskowski M, Kapara O, Fruchter E, Ginat K, Davidson M, Weiser M, Larsson H, Plomin R, Lichtenstein P (2016) Discontinuity in the genetic and environmental causes of the intellectual disability spectrum. Proceedings of the National Academy of Sciences of the United States of America 113:1098-1103.
- Robinson EB, Lichtenstein P, Anckarsater H, Happe F, Ronald A (2013) Examining and interpreting the female protective effect against autistic behavior. Proceedings of the National Academy of Sciences of the United States of America 110:5258-5262.
- Rocca DL, Wilkinson KA, Henley JM (2017) SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Sci Rep 7:877.
- Rosenberg RE, Law JK, Yenokyan G, McGready J, Kaufmann WE, Law PA (2009) Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med 163:907-914.
- Sagardoy A, Martinez-Ferrandis JI, Roa S, Bunting KL, Aznar MA, Elemento O, Shaknovich R, Fontan L, Fresquet V, Perez-Roger I, Robles EF, De Smedt L, Sagaert X, Melnick A, Martinez-Climent JA (2013) Downregulation of FOXP1 is required during germinal center B-cell function. Blood 121:4311-4320.
- Saito T, Hanai S, Takashima S, Nakagawa E, Okazaki S, Inoue T, Miyata R, Hoshino K, Akashi T, Sasaki M, Goto Y, Hayashi M, Itoh M (2011) Neocortical layer formation of human developing brains and lissencephalies: consideration of layer-specific marker expression. Cereb Cortex 21:588-596.
- Sanders SJ et al. (2015) Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 87:1215-1233.
- Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A (2014) The familial risk of autism. JAMA : the journal of the American Medical Association 311:1770-1777.

- Shattuck PT, Durkin M, Maenner M, Newschaffer C, Mandell DS, Wiggins L, Lee LC, Rice C, Giarelli E, Kirby R, Baio J, Pinto-Martin J, Cuniff C (2009) Timing of identification among children with an autism spectrum disorder: findings from a population-based surveillance study. J Am Acad Child Adolesc Psychiatry 48:474-483.
- Shigekawa T, Ijichi N, Ikeda K, Horie-Inoue K, Shimizu C, Saji S, Aogi K, Tsuda H, Osaki A, Saeki T, Inoue S (2011) FOXP1, an estrogen-inducible transcription factor, modulates cell proliferation in breast cancer cells and 5-year recurrence-free survival of patients with tamoxifen-treated breast cancer. Horm Cancer 2:286-297.
- Shu W, Yang H, Zhang L, Lu MM, Morrisey EE (2001) Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors. The Journal of biological chemistry 276:27488-27497.
- Shu W, Lu MM, Zhang Y, Tucker PW, Zhou D, Morrisey EE (2007) Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development 134:1991-2000.
- Shu W, Cho JY, Jiang Y, Zhang M, Weisz D, Elder GA, Schmeidler J, De Gasperi R, Sosa MA, Rabidou D, Santucci AC, Perl D, Morrisey E, Buxbaum JD (2005) Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proceedings of the National Academy of Sciences of the United States of America 102:9643-9648.
- Sin C, Li H, Crawford DA (2015) Transcriptional regulation by FOXP1, FOXP2, and FOXP4 dimerization. J Mol Neurosci 55:437-448.
- Sniekers S et al. (2017) Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature genetics.
- Sollis E, Graham SA, Vino A, Froehlich H, Vreeburg M, Dimitropoulou D, Gilissen C, Pfundt R, Rappold GA, Brunner HG, Deriziotis P, Fisher SE (2016) Identification and functional characterization of de novo FOXP1 variants provides novel insights into the etiology of neurodevelopmental disorder. Human molecular genetics 25:546-557.
- Song H, Makino Y, Noguchi E, Arinami T (2015) A case report of de novo missense FOXP1 mutation in a non-Caucasian patient with global developmental delay and severe speech impairment. Clin Case Rep 3:110-113.
- Spiteri E, Konopka G, Coppola G, Bomar J, Oldham M, Ou J, Vernes SC, Fisher SE, Ren B, Geschwind DH (2007) Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. American journal of human genetics 81:1144-1157.
- Srivastava S, Cohen JS, Vernon H, Baranano K, McClellan R, Jamal L, Naidu S, Fatemi A (2014) Clinical whole exome sequencing in child neurology practice. Ann Neurol 76:473-483.
- Stessman HA et al. (2017) Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nature genetics.
- Stroud JC, Wu Y, Bates DL, Han A, Nowick K, Paabo S, Tong H, Chen L (2006) Structure of the forkhead domain of FOXP2 bound to DNA. Structure 14:159-166.
- Surmeli G, Akay T, Ippolito GC, Tucker PW, Jessell TM (2011) Patterns of spinal sensory-motor connectivity prescribed by a dorsoventral positional template. Cell 147:653-665.
- Takayama K, Horie-Inoue K, Ikeda K, Urano T, Murakami K, Hayashizaki Y, Ouchi Y, Inoue S (2008) FOXP1 is an androgen-responsive transcription factor that negatively regulates androgen receptor signaling in prostate cancer cells. Biochem Biophys Res Commun 374:388-393.
- Talkowski ME et al. (2012) Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149:525-537.
- Tamura S, Morikawa Y, Iwanishi H, Hisaoka T, Senba E (2004) Foxp1 gene expression in projection neurons of the mouse striatum. Neuroscience 124:261-267.

- Tang B, Becanovic K, Desplats PA, Spencer B, Hill AM, Connolly C, Masliah E, Leavitt BR, Thomas EA (2012) Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS; implications for transcriptional dysregulation in Huntington disease. Human molecular genetics.
- Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA (2004) Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. The Journal of neuroscience : the official journal of the Society for Neuroscience 24:3152-3163.
- van Keimpema M, Gruneberg LJ, Schilder-Tol EJ, Oud ME, Beuling EA, Hensbergen PJ, de Jong J, Pals ST, Spaargaren M (2017) The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells. Haematologica 102:573-583.
- Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, et al. (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905-914.
- Vernes SC, Oliver PL, Spiteri E, Lockstone HE, Puliyadi R, Taylor JM, Ho J, Mombereau C, Brewer A, Lowy E, Nicod J, Groszer M, Baban D, Sahgal N, Cazier JB, Ragoussis J, Davies KE, Geschwind DH, Fisher SE (2011) Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS genetics 7:e1002145.
- Vissers LE, Gilissen C, Veltman JA (2016) Genetic studies in intellectual disability and related disorders. Nature reviews Genetics 17:9-18.
- Wang B, Lin D, Li C, Tucker P (2003) Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. The Journal of biological chemistry 278:24259-24268.
- Wang B, Weidenfeld J, Lu MM, Maika S, Kuziel WA, Morrisey EE, Tucker PW (2004) Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development 131:4477-4487.
- Weigel D, Jurgens G, Kuttner F, Seifert E, Jackle H (1989) The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57:645-658.
- Werling DM, Geschwind DH (2013) Sex differences in autism spectrum disorders. Curr Opin Neurol 26:146-153.
- Xiao J, He B, Zou Y, Chen X, Lu X, Xie M, Li W, He S, You S, Chen Q (2016) Prognostic value of decreased FOXP1 protein expression in various tumors: a systematic review and metaanalysis. Sci Rep 6:30437.
- Zoghbi HY, Bear MF (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 4.

CHAPTER TWO:

FOXP1 ORCHESTRATION OF ASD-RELEVANT SIGNALING PATHWAYS IN THE STRIATUM

Adapted From: **Araujo**, **D.J.***, Anderson, A.G.*, Berto, S., Runnels, W., Harper, M., Ammanuel, S., Rieger, M.A., Huang, H.C., Rajkovich, K., Loerwald, K.W., Dekker, J.D., Tucker, H.O., Dougherty, J.D., Gibson, J.R., Konopka, G. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. **Genes and Development** 29, 2081-2096 (2015). *These authors contributed equally to this work.

ABSTRACT

Mutations in the transcription factor *Forkhead Box P1* (*FOXP1*) are causative for neurodevelopmental disorders such as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the gene expression program regulated by FoxP1 in both human neural progenitor cells and the brains of patient-relevant heterozygous *Foxp1* knockout mice. We demonstrate a role for FoxP1 in the transcriptional regulation of autism-related pathways as well as genes involved in neuronal activity. We show that Foxp1 regulates the excitability of striatal medium spiny neurons and that reduction of Foxp1 has an evolutionarily conserved role in regulating pathways involved in striatal neuron identity through gene expression studies in human neural progenitors with altered FOXP1 levels. These data support an integral role for

FoxP1 in regulating signaling pathways vulnerable in autism and the specific regulation of striatal pathways important for vocal communication.

INTRODUCTION

Autism spectrum disorder (ASD) denotes a group of heterogeneous neurodevelopmental conditions all characterized by diminished sociability, impaired communication, restricted interests, and stereotypic behaviors. While there is a strong genetic component to ASD, this is divided amongst several hundred genes each with only a small contribution to the prevalence of the disorder (Geschwind and State, 2015). Furthermore, many autism-risk genes are thought to exert their effects during early brain development (State and Sestan, 2012; Xu et al., 2014; Parikshak et al., 2015). Transcription factors play a key role in orchestrating the spatial and temporal gene expression patterns important for early brain development. Therefore, the identification of gene networks regulated by transcription factors implicated in ASD should provide broad insights into the developmental mechanisms at risk in autism.

The transcription factors FOXP1 and FOXP2 have been implicated in neurodevelopmental disorders such as ASD and developmental verbal dyspraxia (DVD), respectively (Bacon and Rappold, 2012). Forkhead box p1 (Foxp1) is a member of the Fox family of transcription factors, for which there is a designated protein nomenclature (uppercase for primates, title case for rodents, and mixed case for all other or collection of species) (Kaestner et al., 2000). Foxp1 is highly enriched within the developing and mature neocortex, hippocampus, and striatum (Ferland et al., 2003; Teramitsu et al.,

2004). Numerous studies have identified heterozygous deletions point mutations, and duplications of *FOXP1* as being causal for ASD (Bacon and Rappold, 2012). In particular, recent large-scale whole-exome sequencing efforts have identified recurrent *de novo* mutations in *FOXP1* to be associated with ASD (lossifov et al., 2014). Therefore, understanding how FOXP1 functions within the brain should allow for key insights into the molecular pathways at risk in this disorder. Several reports have begun to elucidate a role for Foxp1 in the brain (Rousso et al., 2012; Tang et al., 2012) and recent work has shown that mice with brain-specific loss of *Foxp1* have altered hippocampal electrophysiology, striatal morphology, and diminished sociability (Bacon et al., 2014). However, the region-specific transcriptional profile of Foxp1 in the mouse brain, how well this profile is conserved in human-relevant *Foxp1* haploinsufficient models, and the behavioral consequences of disrupting these regional transcriptomes, remains unknown.

FOXP2 is a paralog of FOXP1 and mutations in the *FOXP2* gene lead to a number of brain and cognitive deficits including DVD (Fisher and Scharff, 2009; Bacon and Rappold, 2012). In addition to being able to heterodimerize with Foxp2, Foxp1 expression overlaps with Foxp2 expression in the GABAergic medium spiny neurons (MSNs) of the striatum, a brain region critically involved in human language, vocal imitation in zebra finches, and rodent ultrasonic vocalizations (USVs) (Ferland et al., 2003; Li et al., 2004; Teramitsu et al., 2004; Fisher and Scharff, 2009). Additionally, *Foxp2* mutant mice demonstrate disruptions in mouse USVs as well as alterations in the electrophysiological and projection properties of MSNs (Shu et al., 2005; Enard et al., 2009; Vernes et al., 2011; French et al., 2012). Given the role for both Foxp1 and Foxp2 in the striatum, we

hypothesized that Foxp1 regulates regional-gene expression patterns in the brain and that normal levels of Foxp1 are crucial for mouse vocalization behavior. To test this hypothesis, we took advantage of a heterozygous ($Foxp1^{+\prime}$) mouse model and a human neural progenitor cellular model with altered expression of FOXP1. Using high-throughput sequencing technologies, we used these two systems to identify a conserved role for FoxP1 in regulating autism-risk genes. We show that Foxp1 differentially regulates the excitability of dopamine receptor 1 positive versus dopamine receptor 2 positive MSNs. We also demonstrate reduced USVs in $Foxp1^{+\prime'}$ mice, similar to that seen in $Foxp2^{+\prime'}$ mice (Shu et al., 2005). This similarity in behavioral phenotype is reflected at the genomic level as Foxp1-regulated genes in the striatum overlap with genes regulated by Foxp2 in the striatum. Finally, we find that FoxP1 regulates conserved pathways involved in striatal identity in both human and mouse. Taken together, these results suggest that FoxP1 plays a critical role in regulating striatal function and vocal communication, which, when disrupted, contributes to phenotypes characteristic of ASD.

MATERIALS AND METHODS

Mice

Foxp1 heterozygous knockout (*Foxp1*^{+/-}) mice were backcrossed with C57BL/6J mice for at least 10 generations to obtain congenic animals. *Drd1a-tdTomato* line 6 and *Drd2-GFP* reporter mice were generously provided by Dr. Craig Powell and maintained on a C57BL/6J background. Mice were kept in the barrier facilities of the University of Texas Southwestern Medical Center under a 12 h light–dark cycle and given ad libitum access to water and food. All studies with mice were approved by the University of Texas Southwestern Institutional Animal Care and Use Committee.

hNP Cultures

hNP cultures were purchased from Lonza and maintained as previously described (Konopka et al., 2012). hNPs were transduced with lentiviruses containing pLUGIP-FOXP1-3XFlag or pLUGIP-GFP (control) and harvested 3 days after transduction for downstream applications, including immunoblotting, qPCR, RNA-seq, and ChIP-seq.

RNA Harvesting and qPCR

RNA was purified from either hNPs or tissues dissected out from P47 male *Foxp1*^{+/-} mice and littermate controls using an mRNeasy minikit (Qiagen) following the manufacturer's recommendations. qPCR was performed as previously described (Spiteri et al., 2007). All primer sequences are available on request.

RNA-seq

mRNA was isolated from total RNA samples using polyA selection. Four independent samples from each brain region or cell type per genotype were included for a total of 24 mouse samples and eight human samples. Samples were randomized, and barcoded libraries were generated following the manufacturer's instructions (Illumina). RNA-seq was performed by the McDermott Sequencing Core at the University of Texas Southwestern Medical Center on an Illumina HiSeq 2000 sequencer (Illumina). Stranded,

single-end 50-base-pair (bp) reads were generated for the hNP data, and stranded, paired-end 100-bp reads were generated for the mouse data.

RNA-seq Data Analysis

Reads were aligned to either hg19 or mm10 using TopHat (Trapnell et al., 2009) and Bowtie (Langmead et al., 2009). To obtain the gene counts, we used the HTSeq package (Anders et al., 2014), and the reads were normalized using the RPKM (reads per kilobase per million mapped reads) method (Mortazavi et al., 2008) implemented in the RSeQC package (Wang et al., 2012). For further analysis, we performed a sample-specific RPKM filtering considering genes with RPKM values of 0.5 in treatments or controls. EdgeR (Robinson et al., 2010) was used to detect the DEGs in each species. We applied a filter of FDR of <0.05 and absolute log fold change of >0.3 for both the human and mouse data sets. We then reconstructed the human and mouse co-expression networks using the R package WGCNA (Langfelder and Horvath, 2008). Modules were characterized using the biweight midcorrelation followed by signed network topology for both human and mouse data. Modules containing >30 genes were included in our analyses. For module visualization, we used the publically available VisANT software (Hu et al., 2013). To determine the reliability of the WGCNA module characterization and the DEGs, we performed a permutation test randomizing 1000 times the expression data associated with each gene, calculated the DEGs, and then applied the same module characterization. None of the permuted data showed similar module detection or different expression profiles compared with the observed data. We then considered the detected

modules, the detected DEGs, and the further gene overlaps significantly different from random expectation (permutation test, p=0.001). To infer the significance of the potential overlaps, we adapted a hypergeometric test. The resultant p-values were adjusted using the Benjamini-Hochberg FDR method (Benjamini and Hochberg, 1995).

Foxp2 Microarray Analysis

Data from project GSE13588 (Enard et al., 2009) were downloaded from Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo). Only *Foxp2* heterozygous and matching control samples were selected for further analysis. Microarrays were analyzed using the R programming language and Bioconductor packages. We determined gene expression levels (robust multichip average (RMA) values) and MAS5 detection p-values from the probes using the "affy" library (Gautier et al., 2004). We considered the probe sets detected in at least one sample for a p<0.05. Differentially expressed probe sets were then determined adapting the f-test function implemented in the "multtest" library (Pollard et al., 2005). The resulting p-values were then adjusted with the Benjamini-Hochberg method. Probe sets were considered differentially expressed for an adjusted p<0.05.

GO Analysis

GO analysis was carried out using DAVID (http://david.abcc.ncifcrf.gov). A category containing at least three genes and a corrected p-value of <0.05 (Benjamini-Hochberg method) was considered significant.

Antibodies

The following antibodies were used for immunoblotting (IB), immunoprecipitation (IP), or immunocytochemistry (ICC): anti- β -tubulin (rabbit, 1:10,000; abcam, 6046 [IB]), anti-FLAG (mouse, 1:10,000 [IB/ICC], 10 μ g [IP]; Sigma, F1804), anti-Foxp1 (rabbit, 1:5000 [IB], 1:1000 [ICC]) (Spiteri et al., 2007), anti-GAPDH (mouse, 1:5000; Millipore [IB]), and anti-Tuj1 (mouse, 1:1000 [ICC]; Covance, MMS-435P).

ChIP-seq

Fifty-million hNPs were used per experimental condition. Cells were fixed in 1% methanolfree formaldehyde for 10 min at room temperature and then quenched with glycine (125 mM final). Cells were washed twice in 1× cold PBS, resuspended in 10 mL of lysis buffer (50 mM HEPES-KOH at pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% IGEPAL-CA630, 0.25% TritonX-100, 10 μ L/mL protease inhibitor [PI] cocktail [Sigma], 7 μ L/mL PMSF), and incubated for 10 min on ice. Pelleted cell nuclei were then resuspended in 1 mL of nucleus lysis buffer (200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 10 mM Tris-HCl at pH 8.0, 10 μ L/mL PI, 7 μ L/mL PMSF) and incubated for 10 min on ice. Samples were sonicated in 300 μ L of shearing buffer (1 mM EDTA, 0.5 mM EGTA, 10 mM Tris-HCl at pH 8.0, 0.1% SDS, 10 μ L/mL PI, 7 μ L/mL PMSF) using a Bioruptor (Diagenode) at 3-min intervals for a total of 12 min. Ten percent of volume from each sample was collected for input controls. One-hundred micrograms of precleared sheared chromatin and 1 μ g of msFlag antibody were incubated overnight at 4°C while rotating. Magnetic lgG

Dynabeads (Invitrogen) were washed three times with 5 mg/mL BSA solution in PBS and then incubated with sheared chromatin/antibody solution for 2 hr at 4°C. Magnets were applied to samples at 4°C, and beads were washed with 500 µL of each of the following solutions supplemented with PI and rotated for 5 min at 4°C followed by magnetic separation: (1) low-salt wash buffer (0.1% SDS, 1% TritonX-100, 2 mM EDTA, 20 mM Tris-HCl at pH 8.0, 150 mM NaCl), (2) high-salt wash buffer (0.1% SDS, 1% TritonX-100, 2 mM EDTA, 20 mM Tris-HCl at pH 8.0, 150 mM NaCl), (2) high-salt wash buffer (0.1% SDS, 1% TritonX-100, 2 mM EDTA, 20 mM Tris-HCl at pH 8.0, 500 mM NaCl), (3) LiCl wash buffer (0.25 M LiCl, 1% IGEPAL-CA630, 1% deoxycholic acid, 1 mM EDTA, 10 mM Tris-HCl at pH 8.0), and (4) TE buffer. After washes, beads were resuspended in elution buffer (50 mM Tris-HCl, 10 mM EDTA, 1% SDS) and incubated for 15 min at 65°C with vortexing every 2 min. Beads were magnetically separated, supernatant was collected, and cross-linking of all samples and inputs was reversed overnight at 65°C. DNA was purified using Qiagen MinElute columns and quantified using a Qubit Fluorometer. Sequencing was performed by the University of Texas Southwestern Medical Center McDermott Sequencing Core.

ChIP-seq Data Analysis

Reads were mapped to the human genome (hg19) using TopHat (Trapnell et al., 2009) and Bowtie (Langmead et al., 2009). The aligned reads were subsequently down-sampled according to the lowest number of reads detected, whereas the potential duplicated reads were removed using the Picard package (http://broadinstitute.github.io/picard). The uniquely mapped reads were then analyzed using MACS (Zhang et al., 2008) for the detection of potential peaks. PeakSplitter

(Salmon-Divon et al., 2010) was used to subdivide the larger peaks into smaller, more precise peaks using a height filtering of 0.7. The FOXP1 peaks were further compared with the GFP peaks applying a tag density ratio (TDR). For further analysis, we considered FOXP1 peaks with a TDR >2.0. The uncovered peaks were then annotated using the AnnotatePeaks function implemented in the HOMER package (Heinz et al., 2010).

Immunoblotting

Cellular lysates were obtained using lysis buffer containing 0.5% Nonidet P-40,1 mM PMSF, 0.1 mM Na₃VO₄, 50 mM NaF, 1 uM DTT, 2 μ g/mL pepstatin, and 1 μ g/mL leupeptin. Tissue samples were lysed in buffer containing 1% Igepal, 1 mM PMSF, 0.1 mM Na₃VO₄, 2 μ g/mL pepstatin, and 1 μ g/mL leupeptin. Protein concentrations were determined using a Bradford assay (Bio-Rad). A total of 35–45 μ g of each sample was run and processed following standard protocols for both HRP-conjugated and fluorescent secondary antibodies.

Immunocytochemistry

hNPs were grown on glass coverslips and fixed with 4% PFA in PBS for 15 min and then washed with TBS at room temperature. Cells were permeabilized with TBS-T (0.4% Triton-X) for 15 min at room temperature and then washed with TBS at room temperature. Cells were treated with a blocking solution made of 3% normal donkey serum in TBS-T (0.2% Triton-X) for 30 min at room temperature. Cells were then incubated with primary

antibodies diluted in blocking solution overnight at 4°C. Afterward, cells were rinsed with TBS, treated with secondary antibodies diluted in blocking solution for 1 hr, and then rinsed with TBS, all at room temperature. Slides were imaged using a Zeiss Observer.Z1 inverted microscope and ZEN 2011 software.

Electrophysiology Methods

Electrophysiology Recordings

Acute brain slices were prepared from $Foxp1^{+/-}$ and $Foxp1^{+/+}$ mice crossed with either Drd1a-tdTomato or Drd2-GFP reporter mice (P17–P20) with the following procedure. Mice were anesthetized with 125 mg/kg ketamine and 25 mg/kg xylazine, and the brains were removed. Thalamocortical slices (Agmon and Connors, 1991) 300 μ m thick were cut at ~4°C in dissection buffer, placed in ACSF for 30 min at 35°C, and slowly cooled over the next 30 min to 21°C. Whole-cell recordings were performed in the dorsal striatum, and cells were targeted with IR-DIC optics in an Olympus FV300 confocal microscope. Recordings were performed at 21°C. Data were collected with a 10-kHz sampling rate and a 3-kHz Bessel filter. Striatal neurons were identified by GFP or tdTomato fluorescence using confocal microscopy.

Electrophysiology Solutions

ACSF contained 126 mM NaCl, 3 mM KCl, 1.25 mM NaH₂PO₄, 2 mM MgSO₄, 26 mM NaHCO₃, 25 mM dextrose, and 2 mM CaCl₂. All slices were prepared in the following dissection buffer: 75 mM sucrose, 87 mM NaCl, 3 mM KCl, 1.25 mM NaH₂PO₄, 7 mM

MgSO₄, 26 mM NaHCO₃, 20 mM dextrose, 0.5 mM CaCl₂, and 1 mM kynurenate. All solutions were pH 7.4. ACSF was saturated with 95% O₂/5% CO₂. Unless stated otherwise, the pipette solution consisted of 130 mM K-Gluconate, 6 mM KCl, 3 mM NaCl, 10 mM HEPES, 0.2 mM EGTA, 4 mM ATP-Mg, 0.3 mM GTP-Tris, 14 mM phosphocreatine-Tris, and 10 mM sucrose. This was adjusted to pH 7.25 and 290 mOsm. The junction potential was ~10 mV and was not corrected.

Ultrasonic Vocalization Recordings

Acquisition and Processing

USVs were recorded from pups isolated from their dams at P4, P7, and P10. Pups were placed into clean plastic containers inside soundproof Styrofoam boxes and recorded for 3 min. Recordings were acquired using an UltraSoundGate condenser microphone (Avisoft Bioacoustics, CM16) positioned at a fixed height of 20 cm above the pups and were amplified and digitized (~20 dB gain, sampled at 16 bits, 250 kHz) using UltraSoundGate 416H hardware and Avisoft RECORDER software (Avisoft Bioacoustics). Sound spectrograms were prepared in MATLAB (50% overlapping, 512-point Hamming windows), resulting in 1.024-msec temporal resolution and 488.3-Hz spectral resolution. Spectrograms were band-pass filtered to 20–120 kHz and filtered for white noise. Positions of ultrasonic calls were determined automatically using a previously published method (Holy and Guo, 2005).

Spectral and Temporal Measurements

Vocalization behavior occurred in spurts of activity ("bouts") separated by longer pauses. To quantify bouts of vocalization, spectrograms were segmented using a pause length of \geq 0.25 sec, which was chosen based on the empirical distribution of pause times between calls. All intercall pauses <0.25 sec represent constituents of the same bout of vocalization. The means of the dominant frequency ("mean frequency") as well as the duration time of individual calls were averaged over all calls by animal. The presence of instantaneous pitch jumps in calls was determined by a previously published method (Holy and Guo, 2005), and the fraction of all calls containing such jumps was determined for each animal. The trend slope (in hertz per millisecond) of calls lacking instantaneous pitch jumps was determined by linear regression, and slopes were averaged over all calls by animal.

Statistical Analysis of Recordings

Differences between genotypes on all measured features of vocalization were assessed using two-way analysis of variance, testing for main effects of genotype, day, and interaction of genotype by day. Post-hoc multiple comparisons were assessed using Sidak's procedure. Features of vocalization were considered independently.

Postnatal Righting Reflexes

Righting reflexes were assessed in P4, P7, and P10 $Foxp1^{+/-}$ and littermate control pups. In brief, pups were placed in a supine position on a clean, unobstructed surface, and the time taken to right onto all fours was measured using a stopwatch. A pup failed the test if

its time to right exceeded 1 min. In such cases, the time was scored as 60 sec. Each pup received one trial at each postnatal time point.

Open Field Test

The open field assay was performed on adult $Foxp1^{+/-}$ and littermate control mice by individually placing each animal in a 16-in × 16-in Plexiglass box and allowing them to explore the arena for 5 min. Videos of each mouse were obtained and scored for average velocity of movement and total distance moved using the EthoVision XT software package (Noldus).

Rotarod Test

Adult mice were placed on a textured drum within individual lanes of a Series 8 IITC Life Science rotarod. The drum was programed to accelerate from 4 to 40 rpm within a maximum time frame of 300 sec. Each mouse was positioned forward on the drum, and sensors detected the latency to fall, maximum revolutions per minute at fall, and total distance travelled for each mouse. Sensors were manually activated whenever a mouse made a full rotation holding onto the drum. Mice were tested for three consecutive days with four trials per day, separated by 20-min intervals.

Grip Strength Test

Forelimb and hindlimb grip strength was measured on adult mice using Chatillon Force Measurement equipment. Forelimbs or hindlimbs of each mouse were placed on a mesh

wire meter and pulled away from the wire at constant force. Five consecutive measurements were recorded for both hindlimbs and forelimbs and averaged for a final grip strength measurement for each mouse.

Nesting Behavior

Mouse nesting behavior was analyzed using a previously described approach (Deacon, 2006). Briefly, adult mice were individually housed overnight with 3 g of intact nesting material in a clean cage. After 16–18 hr, the amount of unused nesting material was weighed, and the nests formed were assessed, to generate a nest quality score of 1–5 for each mouse.

Grooming Behavior

Grooming behavior was assessed in adult mice by individually placing each mouse in a clean cage without nesting material and allowing them to habituate for 10 min. Afterward, grooming behaviors were recorded using an HDR-CX535 Handycam video camera (Sony), and videos were then manually scored based on the number of grooming bouts and total time spent grooming for 10 min.

SHIRPA

A modified SHIRPA behavioral screen from (Rogers et al., 1997) was performed on adult mice. First, mice were individually placed in a viewing jar for 5 min. During this time, mice were scored for (1) body position (inactive [0], active [1], or excessive activity [2]), (2)

tremors (absent [0] or present [1]), (3) palpebral closure (open [0] or closed [1]), (4) coat appearance (tidy and well-groomed coat [0] or irregularities/piloerection [1]), (5) skin color (blanched [0], pink [1], or deep red [2]), (6) whiskers (absent [1] or present [0]), (7) lacrimation (absent [0] or present [1]), (8) defecation (absent [0] or present [1]), (9) gait (fluid with 3-mm pelvic elevation [0] or lack of fluidity [1]), (10) tail elevation (dragging [0], horizontal elevation [1], or elevated tail [2]), and (11) startle response (none [0], Preyer reflex [1], or reaction in addition to Preyer reflex [2]). Mice were then transferred to a clean cage, and the following behaviors were recorded in or above this arena: (12) touch escape (no response [0], response to touch [1], or flees prior to touch [2]), (13) trunk curl (absent [0] or present [1]), (14) limb grasping (absent [0] or present [1]), (15) pinna reflex (absent [0] or present [1]), (16) corneal reflex (absent [0] or present [1]), (17) contact righting reflex (absent [0] or present [1]), (18) evidence of biting (none [0] or biting in response to handling [1]), (19) vocalizations (nonvocal [0] or audible in response to handling [1]), (20) positional passivity (struggles when held by tail [0], when held by neck [1], or laid supine [2] or no struggle [3]). Both pinna and corneal reflexes were tested with a 0.15-mmdiameter nylon filament from Touch Test Sensory Evaluators (Semmes-Weinstein Monofilaments).

Other Statistics

For qPCR, immunoblotting, electrophysiological, and behavioral assays, p-values were calculated with Student's t-test (two-tailed, type 2). F-values were calculated with two-way ANOVA followed by a Tukey post-hoc test for multiway comparison. Data were

assumed to be normally distributed. p-values for overlaps were calculated with a hypergeometric test using a custom-made R script. We obtained an independent background for population size (for humans, human protein-coding genes (20,389 genes) and BrainSpan-expressed genes (15,585 genes) (Kang et al., 2011), and for mice, Allen brain-expressed genes (13,600 genes) (Lein et al., 2007)). We used the protein-coding genes for background in the hypergeometric test used in Figure 2.5E. We used the BrainSpan-expressed genes for background in the hypergeometric test used in Figure 2.5F and Supplemental Figure 2.8. We used the Allen brain-expressed genes for background in the hypergeometric test used for Figure 2.1C and 2.2, A and D, and Supplemental Figure 2.2A. p-values were adjusted for multiple comparisons using the Benjamini-Hochberg FDR procedure when required. A two-way permutation test of 1000 was adapted to validate the overlaps. First, we randomized the external gene sets (for example, ASD or FMRP) by randomly selecting the same number of genes from an independent brain-expressed gene list (for humans, BrainSpan-expressed gene list; for mice Allen-expressed gene list) and subsequently calculating the overlap p-values. The second approach randomized the internal gene sets (for example, STR DEG or hNP_DEG) by randomly selecting the same number of genes from RNA-seq-expressed genes and subsequently calculating the overlap p-values. Moreover, we adapted a permutation test to evaluate the detected DEGs, randomizing 1000 times the RNA-seq data and recalculating the DEGs. Analysis for RNA-seq, ChIP-seq, and microarrays were performed using custom-made R scripts implementing functions and adapting statistical designs comprised in the libraries used.
Accession Numbers

The NCBI GEO accession number for the next-generation sequencing data reported in this study is GSE62718.

RESULTS

Foxp1 Gene Regulation Within Distinct Brain Regions

In order to assess the ASD-relevant role of Foxp1 within the brain, we took advantage of a *Foxp1* animal model. As *Foxp1* knockout mice are embryonic-lethal at embryonic day 14.5 (E14.5) due to a developmental heart defect (Wang et al., 2004) and as most patients with FOXP1 mutations are haploinsufficient, we carried out analyses on Foxp1 heterozygous (*Foxp1^{+/-}*) mice (Hu et al., 2006). We tested the specificity of an antibody recognizing FoxP1 using human neural progenitors (hNPs) with forced FOXP1 expression as well as whole brains from E13.5 Foxp1 KO embryos. We identified expression of two Foxp1 isoforms (A and D), previously shown to be expressed in the mouse brain (Wang et al., 2003), both of which were absent in brain tissue from KO embryos (Supplemental Fig. 2.1A). Three brain regions relevant to ASD with substantial levels of Foxp1 expression are the striatum, hippocampus, and neocortex (Ferland et al., 2003; Maloney et al., 2013). We quantitatively determined an approximately 50% reduction in total Foxp1 protein levels (isoforms A and D) in the Foxp1^{+/-} hippocampus or striatum compared to control littermates (Fig. 2.1A,B). Interestingly, neocortical expression of Foxp1 (either total protein or isoform-specific expression) was not reduced to 50% in *Foxp1^{+/-}* mice, suggesting a homeostatic up-regulation of Foxp1 in the neocortex of these animals (Fig. 2.1A,B and Supplemental Fig. 2.1B,C).

We ascertained potential transcriptional targets of Foxp1 *in vivo* using RNA sequencing (RNA-seq) in the hippocampus or striatum of $Foxp1^{-/+}$ mice and control littermates. To identify differentially expressed genes (DEGs), we filtered using a false discovery rate (FDR) of <0.05 and an absolute log fold change of ≥0.3 (Table 2.1). As a control, RNA-seq was also conducted in the neocortex and, not unexpectedly, we observed no significant changes in gene expression (data not shown).

Foxp1 Regulation of ASD-Associated Pathways in the Striatum and Hippocampus

To characterize the identified Foxp1 targets with respect to ASD etiology, we compared the list of Foxp1 DEGs with the current list of annotated ASD genes in the Simons Foundation Research Initiative Autism (SFARI) database (667 genes) (http://www.sfarigene.org). We found that in vivo Foxp1-regulated genes significantly overlap with ASD genes in both the hippocampus and striatum (Fig. 2.1C). The SFARI database stratifies genes based on the strength of their association with ASD, and when we removed the genes in categories #5 and #6 (hypothesized support and not supported, respectively) and repeated our analyses, we obtained a similar result (17 genes (p=0.057)) for striatum and 39 genes (p=0.0001) for hippocampus, hypergeometric tests) (data not shown). Using qPCR, we confirmed 11 of 12 selected targets from the overlap between the $Foxp1^{+/-}$ striatal data set and the ASD genes in independent samples (Fig. 2.1D).

Mouse Foxp1 targets were further prioritized with respect to neurodevelopmental human diseases using weighted gene co-expression network analysis (WGCNA), which allows for the discovery of networks (or modules) of genes with high levels of co-expression (Supplemental Fig. 2.2A; (Zhang and Horvath, 2005; Oldham et al., 2008)). The top hub gene (or gene with the highest number of connections) in the striatal-associated MsM18 module is *Dpp10* (dipeptidyl peptidase) (Fig. 2.1E). *DPP10* is an ASD gene that encodes for a protein that regulates surface expression and properties of the potassium channel Kv4.2 (Marshall et al., 2008; Foeger et al., 2012). Of note, the gene encoding Kv4.2, *KCND2*, has also been implicated in ASD (Lee et al., 2014) and is highlighted within the MsM19 module (Supplemental Fig. 2.2C). We also observed and confirmed that *Dpp10* is increased and that *Kcnd2* is decreased in the striatum of *Foxp1*^{+/-} mice (Fig. 2.1F).

Alteration of Kv4.2 function has been previously observed in a mouse model of Fragile X syndrome (FXS) (Gross et al., 2011), and Fragile X mental retardation protein (FMRP)-regulated genes have previously been shown to have significant genomic interactions with ASD-relevant pathways in human brain development (Parikshak et al., 2013). We therefore compared the mouse WGCNA modules with previously identified FMRP targets (Darnell et al., 2011) and found modules containing FMRP targets (MsM1, MsM6, MsM12, MsM14, and MsM23) (Supplemental Fig. 2.2A). While certainly interesting with regards to potential converging pathways, such enrichments need to be interpreted cautiously, as recent work has uncovered that FMRP targets tend to be over-

correlates with genotype and contains a number of FMRP target genes, including the gene encoding FMRP (*Fmr1*) (Supplemental Fig. 2.2B), highlighting a potential direct role for coordination of disease-relevant genes in the striatum by Foxp1 and FMRP.

Foxp1 Regulates Shared Targets with Foxp2 in the Striatum

As previous work has implicated a role for the related transcription factor FoxP2 in striatal function, including altered MSN electrophysiology and morphology (Enard et al., 2009), and as the striatum is also one of the few brain regions where Foxp1 and Foxp2 have overlapping expression (Ferland et al., 2003), we compared the list of Foxp1 target genes in the striatum with published striatal Foxp2 targets in $Foxp2^{+/-}$ mice (Enard et al., 2009). We identified a significant overlap between Foxp1-regulated genes and previously published Foxp2 targets that are changing in the same direction across data sets with reduction of the respective transcription factors, indicating possible co-regulation of these targets (Fig. 2.2A). This overlap represents 12% of the total Foxp1 target genes identified in the striatum. Using independent samples, we confirmed six of these genes changing with Foxp1 expression in the striatum via gPCR (Fig. 2.2B). Within the in vivo WGCNA analysis, both Foxp1 and Foxp2 are co-expressed within the MsM3 module, which is enriched for striatal DEGs (Fig. 2.2C). Interestingly, within the MsM3 module, the gene encoding the dopamine receptor *Drd1a* is co-expressed with both *Foxp2* and *Foxp1* (Fig. 2.2C).

MSNs of the striatum are categorized as either D_1^+ (expressing the *Drd1a* receptor) or D_2^+ (expressing the *Drd2* receptor) projection neurons, and these two subpopulations

of neurons are associated with opposing functions in the coordination of motor activity (Gerfen and Surmeier, 2011). To investigate whether disrupted Foxp1 signaling in the striatum would be expected to produce differential gene expression changes in D₁⁺ versus D_2^+ MSNs, we overlapped our RNA-seq data set with published gene lists obtained from translating ribosome affinity purification of D_1^+ and D_2^+ MSNs (Maze et al., 2014). We found a significant enrichment of both Foxp1 and Foxp2 target genes within D_1^+ MSNs specifically (Fig. 2.2D). Although we found that the number of Foxp1 target genes is roughly equally distributed between genes enriched in both D_1^+ and D_2^+ MSNs (Fig. 2.2D), the number of Foxp2 target genes enriched in D₁⁺ MSNs is almost twice the number of Foxp2 target genes enriched in D₂⁺ MSNs (Heiman et al., 2008; Vernes et al., 2011; Maze et al., 2014). These results are in line with published data showing that Foxp2 is more enriched in D₁⁺MSNs. Moreover, the overlapping targets of Foxp1 and Foxp2 going in the same direction are expressed only in D₁⁺ MSNs, supporting coordinated regulation in these specific neurons. Interestingly, Foxp1-specific target genes that are enriched in D_2^+ MSNs include several genes involved in cation transport (e.g., Atp1b1, Kcnk2, Htr7, Kcnip2, and Hrh3) (Table 2). Together, these data support a role for Foxp1 and Foxp2 providing coordinated regulation of striatal signaling pathways and that this regulation may be differential between D_1^+ and D_2^+ MSNs in Foxp1^{+/-} mice.

Reduction of Foxp1 Leads to Differential Changes in the Excitability of MSNs

Together with the co-regulation of genes by Foxp1 and Foxp2 (Fig. 2.2), the gene expression data indicated a role for FoxP1 in regulating genes coding for proteins

involved in both ion channel and neuronal activity, in particular within D_2^+ MSNs (Tables 2.1, 2.2). We therefore investigated the effect of reduced Foxp1 expression on neuronal activity within either D_1^+ or D_2^+ MSNs. At postnatal day 18 (P18), acute striatal slices were made from progeny of *Foxp1^{+/-}* mice crossed with either *Drd1a-tdTomato^{+/-}* or *Drd2-GFP^{+/-}*reporter mice (Gong et al., 2003; Ade et al., 2011) and whole-cell recordings of MSNs were carried out. D_2^+ (GFP⁺) MSNs from *Drd2-GFP^{+/-};Foxp1^{+/-}* mice (Fig. 2.3A) exhibited significantly increased excitability, as indicated by the higher number of action potentials evoked for a given current step (Fig. 2.3B,C), an increase in input resistance (Fig. 2.3D), and a decrease in current threshold (Fig. 2.3E). We also observed no differences in resting potential (Fig. 2.3F), the action potential width (Fig. 2.3G), or the frequency of the spontaneous excitatory postsynaptic events (sEPSCs) of D_2^+ MSNs (Fig. 2.3H). Interestingly, we did observe a significant decrease in the amplitude of sEPSCs of these MSNs (Fig. 2.3I). Together, these data demonstrate that reduction of Foxp1 leads to increased excitability of D_2^+ MSNs in response to reduced Foxp1 expression.

Given the opposing functions traditionally associated with D_1^+ and D_2^+ MSNs (Gerfen and Surmeier, 2011) and the possibility for differential regulation of gene expression within D_1^+ and D_2^+ MSNs in the *Foxp1*^{+/-} mouse striatum (Fig. 2.2D), we asked whether the increased excitability of D_2^+ neurons due to Foxp1 loss was generalizable to all MSNs. Again, at P18, we carried out whole-cell recordings on MSNs from acute striatal slices. Although trending toward a decrease in excitability, D_1^+ (tdTomato^{+/-};*Foxp1*^{+/-}mice (Supplemental Fig. 2.3A) exhibited no significant change in their excitability compared with controls (Supplemental Fig. 2.3B,C). We also

found no significant increase in input resistance (Supplemental Fig. 2.3D) or current threshold (Supplemental Fig. 2.3E) and no significant difference in resting potential (Supplemental Fig. 2.3F) or action potential width with reduction of Foxp1 in these neurons (Supplemental Fig. 2.3G). Finally, we observed no changes in the frequency or amplitude (Supplemental Fig. 2.3H,I) of sEPSCs. These data indicate that haploinsufficiency of Foxp1 causes differential changes in the membrane excitability of D_1^+ and D_2^+ MSNs.

Foxp1 Regulates Mouse USVs

Huntington's and Parkinson's disease mouse models provide evidence for the involvement of MSNs in directing the production of USVs (Pietropaolo et al., 2011; Grant et al., 2014). Additionally, knockout of the *Drd2* receptor reduces the number of USVs produced by mouse pups (Curry et al., 2013). Because we uncovered a significant overlap between $Foxp1^{+/-}$ and $Foxp2^{+/-}$ striatal target genes as well as altered MSN excitability as a response to loss of Foxp1, we hypothesized that reduction of Foxp1 would lead to an altered USV phenotype similar to that seen in Foxp2 mutant mice (Shu et al., 2005). To test this hypothesis, we examined the USVs of $Foxp1^{+/-}$ mouse pups in a maternal separation paradigm. Paralleling what has previously been seen in $Foxp2^{+/-}$ mice (Shu et al., 2005), we observed a significant decrease in both the number of times a $Foxp1^{+/-}$ mouse pup called ("bouts") (Fig. 2.4A) and the total number of calls (Fig. 2.4B) compared with littermate controls at P4 and P7 (see the Materials and Methods; Supplemental Fig. 2.4A for analysis details). Additionally, as a trend, the call

bouts and total number of calls produced by the $Foxp1^{+/-}$ mouse pups are reduced across all days (Fig. 2.4A,B). We also observed a significant decrease in the mean call frequency, as a trend across all days, in the $Foxp1^{+/-}$ mouse pups (Fig. 2.4C). Other parameters, such as average call duration and the fraction of calls with jumps, were not altered (Fig. 2.4D,E). Interestingly, we observed that the average slope of a call was significantly decreased in $Foxp1^{+/-}$ mice compared with controls (Fig. 2.4F). This result is the opposite of the increase in call slope exhibited by humanized Foxp2 mice (Enard et al., 2009).

Differences in weight gain have been proposed to explain some variation seen in the postnatal USVs of transgenic mouse models (Scattoni et al., 2009). However, there were no significant differences in the weight gain of $Foxp1^{+/-}$ mice compared with controls (Supplemental Fig. 2.4B). To assess whether the vocalization deficits observed in the $Foxp1^{+/-}$ mice are secondary to a generalized impairment in striatal-mediated behaviors, we assessed locomotion in the open field test as well as rotarod performance, forelimb and hindlimb grip strength, nest building, and grooming behaviors in these animals (Supplemental Fig. 2.5). We also performed postnatal righting reflexes as part of an abbreviated SHIRPA battery to evaluate overall neurological function in these mice (see the Materials and Methods; Supplemental Figs. 2.5A, 2.6). In summary, we found that $Foxp1^{+/-}$ mice display no differences in either the SHIRPA test, righting reflexes, nest building, rotarod performance, or grooming behaviors. Interestingly, $Foxp1^{+/-}$ mice do display hyperactivity in the open field test and decreased performance in the forelimb and hindlimb grip test. Together, these data suggest that wild-type levels of Foxp1 expression

are important for normal mouse vocal behavior but are not required for most striatal-based behaviors.

FOXP1 Gene Regulation in Human Neural Cells

In order to identify FoxP1 target genes that are most relevant to human brain development and ASD, we characterized the FOXP1 target genes in hNPs, which demonstrate a higher fidelity with *in vivo* brain transcriptomic data than either human embryonic stem cells or induced pluripotent stem cells (Konopka et al., 2012; Stein et al., 2014) and are genetically tractable using lentiviruses (Konopka et al., 2009). As undifferentiated hNPs do not express FOXP1 endogenously and given the current paucity of chromatin immunoprecipitation (ChIP)-grade antibodies against FoxP1, we ascertained direct FOXP1 targets by transducing hNPs with a lentivirus containing Flag-tagged FOXP1 or a GFP control virus (Fig. 2.5A). Forced expression of FOXP1 was limited to the nucleus (Fig. 2.5D).

To identify genome-wide direct targets of FOXP1, we conducted both RNA-seq and ChIP followed by DNA sequencing (ChIP-seq) in hNPs overexpressing FOXP1. Using the Flag tag on FOXP1, we identified >600 genes enriched for FOXP1 binding (Fig. 2.5B,E; Table 2.1). These directly bound targets are enriched for forkhead motifs (Supplemental Fig. 2.7; (Stroud et al., 2006)). Again, using RNA-seq, an FDR of <0.05, and an absolute log fold of ≥0.3, we uncovered >1500 DEGs within this cellular paradigm (Fig. 2.5E; Table 2.1). These DEGs are significantly enriched for gene ontology (GO) categories such as axon guidance, neuronal development, and neuronal differentiation,

and the overlap between both ChIP and RNA-seq data represents directly regulated FOXP1 targets in hNPs (Table 2.3). RNA-seq and ChIP-seq genes significantly overlap (Fig. 2.5E); however, because this overlap is significant yet small, these results suggest that the majority of gene regulation by FOXP1 occurs through indirect effects on signaling cascades, as might be expected for a transcription factor.

FOXP1 Regulates ASD-Relevant Genes in hNPs

To further characterize the identified hNP FOXP1 targets with respect to ASD etiology, we again compared the list of FOXP1 DEGs to the current list of annotated ASD genes in the SFARI database. We observed a significant overlap of FOXP1 targets and ASD genes (Fig. 2.5F). When we overlapped the list of hNP DEGs with the curated list of ASD genes (excluding genes in categories #5 and #6), we also obtained a significant overlap (48 genes, p=0.023, hypergeometric test) (data not shown). hNP DEGs that overlapped with the SFARI gene database were selected and confirmed within an independent hNP cell line using an independent measure of expression: qPCR (Fig. 2.5G). Previous work suggested that the members of the Foxp subfamily of forkhead transcription factors are primarily transcriptional repressors (Wang et al., 2003). However, we previously showed that the related transcription factor FOXP2 is also able to activate transcription (Spiteri et al., 2007). In line with those data, we found an almost equal representation of activated and repressed FOXP1 targets that overlap with ChIP-seq and ASD lists (Fig. 2.5H). Additionally, we also confirmed that FOXP1 directly binds within the first intron of DPP10 and represses its expression in hNPs overexpressing FOXP1 (Fig. 2.5I,J).

Together with the results from the *Foxp1*^{+/-} mice (Fig. 2.1F), this indicates that *Dpp10* is a conserved direct repressed target of FoxP1. Moreover, many genes overlapped with directional consistency between striatum and hNPs (12%) (Table 2.1).

Again, using WGCNA, we uncovered nine modules with first principal components correlating to FOXP1 expression (hNPM2, M3, M4, M6, M7, M13, M16, M20, and M21) (Supplemental Fig. 2.8). We then compared the hNP^{FOXP1} RNA-seq data to recently reported co-expression modules derived from *in vivo* developing human brains (Parikshak et al., 2013). We found a significant overlap of DEGs in the hNP^{FOXP1} data set with this report's M17 module (Table 2.1). The M17 module is one of three modules previously identified to contain a significant overlap with known ASD genes. We also compared the hNP^{FOXP1} RNA-seq data with two other co-expression modules: asdM12 and asdM16 (derived from human brain tissue samples from ASD cases and controls), which were highly correlated with ASD disease status (Table 2.1; (Voineagu et al., 2011)). We found that many genes within these two modules were also found within the modules correlating to FOXP1 expression. Interestingly, *DPP10* is also present in asdM12, which further emphasizes its relevance to ASD etiology. Thus, the data from manipulation of FOXP1 expression in the *in vitro* system recapitulate identified genomic relationships from *in vivo* human brain data.

Conserved Regulation of FoxP1 Targets Within the Striatum

To further demonstrate the relevance of the $Foxp1^{+/-}$ mouse data with human biology and disease, we performed an analysis of module preservation (Langfelder et al., 2011)

between either the Foxp1^{+/-} mouse hippocampal or striatal WGCNA data and the hNP WGCNA data. This approach allows one to determine how conserved gene coexpression relationships are between the two species. Interestingly, we found that there was significantly greater preservation of modules between the *Foxp1*^{+/-} mouse striatal modules and the hNP modules than between the $Foxp1^{+/-}$ mouse hippocampal modules and the hNP modules (Fig. 2.6A). To examine whether any of the preserved human coexpression modules contain specific transcription factor-binding motifs, we used the ChIP enrichment analysis (ChEA) database, which contains experimental ChIP and ENCODE data sets (Lachmann et al., 2010). We found enrichment of FOXP2 motifs as well as other autism-related transcription factors (Fig. 2.6B). Finally, we used a recently developed tool-cell-specific expression analysis (Xu et al., 2014)-to examine within which brain regions and cellular populations the conserved FoxP1 targets are enriched. We found that DEGs down-regulated with loss of Foxp1 and up-regulated with overexpression of FOXP1 are enriched for striatal genes (Fig. 2.6C). In contrast, genes up-regulated with loss of Foxp1 and down-regulated with overexpression of FOXP1 are enriched for neocortical genes (Fig. 2.6D). Together, these data suggest that FoxP1 regulates conserved pathways in both humans and mice that are important in preserving MSN identity.

DISCUSSION

Using unbiased genome-wide approaches in a patient-relevant $Foxp1^{+/-}$ mouse model and human neural cells, we uncovered a role for FoxP1 regulation of ASD-relevant genes.

We observed that Foxp1 regulates gene expression in a region-specific manner within the brain, with the hippocampus and the striatum of $Foxp1^{+/-}$ mice containing DEGs enriched for distinct ontological categories. We also uncovered altered neuronal excitability in distinct populations of MSNs as well as gross alterations in the postnatal USVs of $Foxp1^{+/-}$ mice. Last, we provide evidence that FoxP1 regulates evolutionarily conserved neuronal pathways within the striatum, which are important for striatal identity.

The inclusion of FMRP target genes within FoxP1-correlated modules suggests overarching brain mechanisms at risk in ASD pathophysiology. FMRP is an RNA-binding protein that is expressed throughout the brain and is involved in dendritic morphology and plasticity through the translational regulation of numerous genes that function at the synapse (Darnell and Klann, 2013). Deletions and mutations of the FMR1 gene can lead to FXS, which is characterized by autistic traits and intellectual disability (Hernandez et al., 2009). We found an enrichment of genes encoding ion channels altered in both the human and rodent FoxP1 models. For example, DPP10 is an ASD gene that is a conserved FoxP1 target (Figs. 2.1F, 2.5I, J). DPP10 functions to traffic surface expression of the KCND2 and KCND3 (or Kv4.2 and Kv4.3, respectively) potassium channels in neurons. We also uncovered activation of *Kcnd2* by FoxP1 (Fig. 2.1F). Moreover, *KCND2* is an FMRP target (Kim et al., 2005), rare variants and genetic association of KCND2 have been reported in autism (Klassen et al., 2011; Lee et al., 2014), and impaired KCND2 function has been directly implicated in FXS (Gross et al., 2011). This convergence of Foxp1 downstream genes with FMRP-related genes suggests potential converging transcriptional and translational dysregulation in these disorders.

Relative to the entire brain, *Foxp1* is among the top 100 enriched genes in the striatum (Heiman et al., 2008). This striatal enrichment of *Foxp1* in the brain is greater than the comparative relative striatal expression of *Foxp2*. We showed significant overlaps between Foxp1 and Foxp2 gene targets in the striatum (in particular, D₁⁺ MSN enriched genes) (Fig. 2.2A,D) and increased D_2^+ MSN excitability in Foxp1^{+/-} mice (Fig. 2.3). Given that Foxp2 is preferentially expressed in D_1^+ MSNs (Vernes et al., 2011), we hypothesize that Foxp1 and Foxp2 may work in concert to differentially regulate neuronal excitability in these two populations of MSNs and therefore control striatal-based vocalizations. Therefore, the lack of alteration of D_1^+ MSN excitability in Foxp1^{+/-} mice might be due to compensation by Foxp2, as supported by the overlapping target genes of Foxp1 and Foxp2 among D₁⁺ MSN enriched genes. The identification of Foxp1-specific targets that are known to be involved in neuronal excitability within D₂⁺ MSNs also supports the idea that differential gene regulation by Foxp1 in specific MSN subpopulations governs the observed neuronal and organismal phenotypes. For instance, Foxp1 may operate as a master regulator of genes important for overall neuronal function and activity in the striatum, with Foxp2 acting as a limiting factor for shared targets involved in vocalizations. This idea is bolstered by previous findings that *Fmr1* and *Foxp2* mutant mice exhibit increased striatal GABAergic transmission from and increased long-term depression in MSNs as well as decreased striatal volumes and deficits in postnatal USVs (Shu et al., 2005; Centonze et al., 2008; Enard et al., 2009; Roy et al., 2012; Ellegood et al., 2015). In addition, Foxp2 levels are unchanged in the striatum of *Foxp1*^{+/-} mice (Table 2.1) and do not appear to be significantly altered in either

MSN population specifically (data not shown), further suggesting that alterations in Foxp2/Foxp1 stoichiometry in D_1^+ MSNs could be driving our findings. Finally, the significant gene co-expression module preservation between the mouse striatal and hNP gene expression data supports the relevance of these mouse data to a human disorder such as ASD. Given the evolutionary distance between these two species and the developmental differences between hNPs and the adult mouse striatum, it is remarkable that these correlations were found. Therefore, such a finding is evidence for the robustness and relevance of these gene co-expression networks with respect to FoxP1 expression and function.

These data suggest a role for Foxp1 in regulating ASD risk genes in a regionspecific manner within the brain. In particular, we demonstrate that Foxp1 plays an important role in regulating genes involved in striatal development and function. In this study, we also provide the first evidence that Foxp1 specifically contributes to vocal communication. It will be important to determine how these changes occur throughout development in further experiments. Since the $Foxp1^{+/-}$ mice used in this study were whole-body knockouts and because Foxp1 has been shown to regulate the development of a host of organ systems (Wang et al., 2004; Hu et al., 2006; Shu et al., 2007; Feng et al., 2010; Li et al., 2012), it cannot be entirely ruled out that the behavioral phenotypes displayed by these mice are secondary to the peripheral consequences of the knockout. Additionally, it should be noted that other brain regions besides the striatum, such as the neocortex, are known to both express Foxp1 and contribute to the production of USVs (Hisaoka et al., 2010; Sia et al., 2013). Moreover, while this study focused on a patient-

relevant model of FOXP1 function (namely, haploinsufficiency), at least one study has demonstrated increased *FOXP1* expression in lymphoblastoid cell lines from ASD patients (Chien et al., 2013). Therefore, the regional contribution and dosage-relevance of FoxP1 to the behavioral manifestations presented in this study remain to be determined.

FIGURES FOR CHAPTER TWO

Figure 2.1. Regulation of ASD genes by Foxp1 in the mouse brain. (A) Representative immunoblot displaying reduced Foxp1 protein levels in the hippocampus (HIP) and striatum (STR), but not the neocortex (CTX), of $Foxp1^{+/-}$ mice. GAPDH was used as a loading control. (B) Quantification of Foxp1 expression in adult $Foxp1^{+/-}$ mouse

brains. Data are represented as means (±SEM). n=4 mice per genotype for each region. *p=0.033 (hippocampus); *p=0.0163 (striatum), Student's t-test, compared with wild-type levels normalized to GAPDH. (C) Venn diagram showing overlaps between the differentially expressed genes (DEGs) in the mouse and ASD gene lists (144 genes between the hippocampus and striatum ($p=1.21 \times 10^{-26}$). 116 genes between the hippocampus and ASD (p=3.74×10⁻⁹), and 43 genes between the striatum and ASD (p=0.002), hypergeometric test (p-values were adjusted using Benjamini-Hochberg FDR procedure)). (D) Confirmation of salient ASD-related gene targets in independent striatal samples from *Foxp1*^{+/-}mice using gPCR. Data are represented as means (±SEM). n=4 mice per genotype. With the exception of *Dner*, all qPCR values displayed are significant at p<0.05 (Student's t-test, compared with wild-type levels normalized to actin). (E) Visualization of a striatal-specific submodule (MsM18) that contains Dpp10 (dipeptidy) peptidase) as a major hub gene. (F) gPCR confirmation of Dpp10 and Kcnd2 activation in $Foxp1^{+/-}$ mouse striatal samples. Data are represented as means (±SEM). n=4 mice per genotype. All qPCR values displayed are significant at p<0.05 (Student's t-test, compared with wild-type levels normalized to actin).

Figure 2.2. Foxp1 and Foxp2 regulate overlapping targets within the striatum. (A) Significant overlap of DEGs in the striatum of $Foxp1^{+/-}$ and $Foxp2^{+/-}$ mice (67 genes between the $Foxp1^{+/-}$ and the $Foxp2^{+/-}$ striatal data sets (p=2.82×10⁻⁵), hypergeometric test). (B) qPCR confirmation of a subset of these genes in independent $Foxp1^{+/-}$ striatal samples. Data are represented as means (± SEM). n=3 mice per genotype. All qPCR values displayed are significant at p<0.05 (Student's t-test, compared with wild-type levels normalized to actin). (C) Visualization of the regionally specific striatal module MsM3 showing co-expression of both Foxp1 and Foxp2. Foxp1 and Foxp2 connections are highlighted in magenta. Genes in bold typeface indicate striatal DEGs, and boxed genes indicate Foxp1 and Foxp2 DEGs that overlap. (D) RNA-seq data from $Foxp1^{+/-}$ mice and microarray data from $Foxp2^{+/-}$ mice were overlapped with the most recently published list

of known enriched transcripts within D_1^+ or D_2^+ MSNs (Maze et al., 2014). Genes from both *Foxp1*^{+/-} and *Foxp2*^{+/-} mice significantly overlapped with D_1^+ MSN-enriched genes (36 genes p=1.12×10⁻⁵) and 61 genes (p=1.99×10⁻¹²), respectively, hypergeometric test). p-values for each overlap are shown within bar graphs.

Figure 2.3. D_2^+ **MSNs of** *Foxp1*^{+/-} **mice have increased excitability.** (A) Example image of a recorded GFP⁺ (D_2^+) neuron. (B) Example recordings depicting spiking in response to a 125-pA current step in control and *Foxp1*^{+/-} MSNs. (C) Firing rate versus input curves is significantly increased in *Foxp1*^{+/-} MSNs. Data are represented as means (± SEM). n=18 wild-type cells and 29 *Foxp1*^{+/-} cells. *p=0.040, two-way ANOVA with repeated measures for current step, compared between genotypes. (D) Input resistance is significantly increased *Foxp1*^{+/-} MSNs. Data are represented as means (± SEM). n=19

wild-type cells and 30 Foxp1^{+/-} cells. ***p=0.0004, Student's t-test, compared between genotypes. (E) The minimum, threshold current required for evoking an action potential is significantly decreased in $Foxp1^{+/-}$ MSNs. Data are represented as means (± SEM). n=19 wild-type cells and 30 $Foxp1^{+/-}$ cells. *p=0.049, Student's t-test, compared between genotypes. (F) Resting potential is not significantly changed in *Foxp1*^{+/-} MSNs. Data (± SEM). wild-type are represented as means n=19 cells and 30 Foxp1^{+/-} cells. p=0.53, Student's t-test, compared between genotypes. (G) Action potential width is not significantly altered in $Foxp1^{+/-}$ MSNs. Data are represented as means (\pm SEM). n=19 wild-type cells and 30 Foxp1^{+/-} cells. p=0.57, Student's t-test, compared between genotypes. (H) Spontaneous EPSC frequency is not significantly changed in $Foxp1^{+/-}$ MSNs. Data are represented as means (± SEM). n=17 wild-type cells and 25 $Foxp1^{+/-}$ cells. p=0.091, Student's t-test, compared between genotypes. (I) Spontaneous EPSC amplitude is significantly decreased in *Foxp1^{+/-}* MSNs. Data are represented as means (\pm SEM). n=17 wild-type cells and 25 *Foxp1*^{+/-} cells. **p=0.004, Student's t-test, compared between genotypes.

Figure 2.4. *Foxp1* haploinsufficiency results in reduced mouse vocalizations. (A) *Foxp1^{+/-}* mouse pups exhibit a significantly reduced number of vocalization bouts. Data are represented as means (\pm SEM). n=57 wild-type pups and 34 *Foxp1^{+/-}* pups. *p=0.033 at P4; ***p=0.0003 at P7, two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. (B) *Foxp1^{+/-}* mouse pups exhibit fewer total numbers of USVs at P7. Data are represented as means (\pm SEM). n=57 wild-type pups and 34 *Foxp1^{+/-}* pups. *p=0.038 at P4; **p=0.006 at P7, two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. (C) As a trend, *Foxp1^{+/-}* mouse pups exhibit a significant reduction in their mean call frequency across all days. Data are

represented as means (\pm SEM). n=57 wild-type pups and 34 *Foxp1*^{+/-} pups. Two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. (D) *Foxp1*^{+/-} mice show no differences in average call duration. Data are represented as means (\pm SEM). n=57 wild-type pups and 34 *Foxp1*^{+/-} pups. p=0.99, two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. (E) *Foxp1*^{+/-} mice show no difference in the fraction of calls with frequency jumps. Data are represented as means (\pm SEM). n=57 wild-type pups and 34 *Foxp1*^{+/-} pups. p=0.27, two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. (F) *Foxp1*^{+/-} mice display a significant reduction in the average slope of a call at P10. Data are represented as means (\pm SEM). n=57 wild-type pups and 34 *Foxp1*^{+/-} pups. **p=0.001, two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. The main effects for genotype and postnatal day and the interactions between these two variables are reported at the bottom of each panel.

Figure 2.5. Gene regulation by FOXP1 in human neural cells. (A) Representative immunoblot depicting overexpression of FOXP-Flag signal in hNPs transduced with a FOXP1-Flag expression construct (hNP^{FOXP1}) but not in hNPs with a GFP expression

construct (hNP^{GFP}). β-Tubulin was used as a loading control. (B) Representative immunoblot confirming expression of FOXP1-Flag in input samples and enrichment of FOXP1-Flag during the immunoprecipitation (IP) portion of ChIP from hNP^{FOXP1} lysates. (C,D) Representative images of hNP^{GFP} and hNP^{FOXP1} demonstrate that FOXP1 expression (red) in hNP^{FOXP1} is restricted to the nucleus (DAPI, blue) and that FOXP1 is not expressed within neurites (Tuj1, green) and is absent in hNP^{GFP}. (E) Significant overlap between gene targets from RNA-seq and ChIP-seq (ChIP followed by DNA sequencing) performed on hNP^{FOXP1} (92 genes between hNP^{FOXP1} RNA-seg and hNP^{FOXP1} ChIP-seg (p=4.43×10⁻⁵, hypergeometric test)). (F) Significant overlap among RNA-seq DEGs, ASD genes, and FMRP targets (102 genes between hNP^{FOXP1} RNA-seq and ASD genes (p=0.013), 122 genes between hNP^{FOXP1} RNA-seg and FMRP genes (p= 0.023), and 125 genes between ASD and FMRP genes ($p=1.34 \times 10^{-35}$), hypergeometric test (p-values were adjusted using Benjamini-Hochberg FDR procedure). (G) gPCR confirmation of a subset of these overlapping genes in independent hNP^{FOXP1} samples. Data are represented as means (± SEM). n=4 samples per treatment. All gPCR values displayed are significant at p<0.05 (Student's t-test, compared with hNP^{GFP} levels normalized to actin). (H) DEGs from these overlaps are equally represented among repressed and activated genes. (I, left panel) Human genome browser view showing the ChIP-seq result of enrichment of FOXP1 binding compared with GFP control. (I, right panel) ChIP-PCR confirmation of enriched binding of DPP10 by FOXP1 in hNP^{FOXP1} compared with hNP^{GFP} using two separate primer pairs (DPP10 primers A and B) compared with control primers. Quantified data are represented as means (± SEM),

four samples per treatment. All qPCR values displayed are significant at p<0.05 (Student's t-test, compared with hNP^{GFP} levels normalized to actin). (J) *DPP10* is represented with FOXP1 overexpression in hNP^{FOXP1} samples. Quantified data are represented as means (\pm SEM), four samples per treatment. All qPCR values displayed are significant at p<0.05 (Student's t-test, compared with hNP^{GFP} levels normalized to actin).

Figure 2.6. Gene network preservation between mouse and human data sets. (A) Module preservation analysis revealed that significantly more hNP modules are preserved in the striatum compared with the hippocampus. Zsummary scores >4 are well preserved, and those <2 are poorly preserved. (B) Genes in modules shared between humans and mice contain conserved binding sites for ASD-associated transcription factors, including FoxP2. (C) Genes down-regulated by loss of Foxp1 in mice and up-regulated by overexpression of FOXP1 in hNPs are enriched for striatal-associated genes. (D) Genes up-regulated by loss of Foxp1 in mice and down-regulated by overexpression of FOXP1 in hNPs are enriched for striatal-associated by overexpression of FOXP1 in hNPs are enriched for cortical genes. Briefly, hexagons are scaled to the stringency values of the specificity index thresholds (pSI), which ranks the region-specific enriched transcript gene lists from least specific to highly specific

transcripts; i.e., outer hexagons represent larger, less specific lists (pSI of 0.05), while inner hexagons represent shorter, highly specific lists (pSI of 0.001). Bonferroni-Hochberg (BH)-corrected p-values are shown.

Supplemental Figure 2.1. Immunoblot for Foxp1 demonstrating antibody specificity. (A) hNP samples expressing FOXP1 and E13.5 mouse brain lysates from control and *Foxp1*^{+/-} mice demonstrate expression whereas hNPs with GFP expression and brain lysate from *Foxp1* KO embryos do not demonstrate expression. (B) Foxp1A is significantly reduced only in the STR of *Foxp1*^{+/-} mice. Data are represented as means (±SEM). n=4 mice/genotype for each region. *p=0.02, Student's t-test, compared to wildtype (WT) levels normalized to GAPDH. (C) Foxp1D is significantly reduced only in the STR of *Foxp1*^{+/-} mice. Data are represented as means (±SEM). n=4mice/genotype for each region. *p=0.004, Student's t-test compared to WT levels normalized to GAPDH.

Supplemental Figure 2.2. Overlaps between mouse WGCNA modules and DEGs. (A) Heatmap displaying *Foxp1*^{+/-} mouse RNA-seq WGCNA modules that contain significant enrichments of DEGs, ASD genes and/or FMRP targets. Plus signs indicate a genotype correlation of modules within specific brain regions. Log-transformed adjusted p-values from Benjamini-Hochberg false-discovery test (hypergeometric test). (B and C) Visualization of MsM19 containing genes significantly enriched in GO categories (using DAVD bioinformatics tool, http://david.abcc.ncifcrf.gov) for MAPK signaling (MsM19). Inserts: eigengene correlation plots show that genotype correlates negatively for MsM19 within the striatum.

Supplemental Figure 2.3. *Foxp1*^{+/-} **D**₁**+ MSNs have no change in in excitability.** (A) Example image of a recorded tdTomato+ (D₁+) neuron. (B) Example recordings depicting spiking in response to a 125 pA current step in control and *Foxp1*^{+/-} MSNs. (C) Firing rate versus input curves are not significantly changed in *Foxp1*^{+/-} MSNs. Data are represented as means (±SEM). n=15 WT cells, 16 *Foxp1*^{+/-} cells. p=0.26, two-way ANOVA with repeated measures for current step compared between genotypes. (D) Input resistance is not significantly different in *Foxp1*^{+/-} MSNs. Data are represented as means (±SEM). n=18 WT cells, 19 *Foxp1*^{+/-} cells. p=0.58, Student's t-test compared between genotypes.

(E) The minimum threshold current required for evoking an action potential is not significantly altered in $Foxp1^{+/-}$ MSNs. Data are represented as means (±SEM). n=17 WT cells, 18 $Foxp1^{+/-}$ cells. p=0.25, Student's t-test compared between genotypes). (F) Resting potential is not significantly changed in $Foxp1^{+/-}$ MSNs. Data are represented as means (±SEM). n=17 WT cells, 18 $Foxp1^{+/-}$ cells. p=0.24, Student's t-test compared between genotypes. (G) Action potential width is not significantly altered in $Foxp1^{+/-}$ MSNs. Data are represented as means (±SEM). n=17 WT cells, 18 $Foxp1^{+/-}$ cells. p=0.29, Student's t-test compared between genotypes. (G) Action potential width is not significantly altered in $Foxp1^{+/-}$ MSNs. Data are represented as means (±SEM). n=17 WT cells, 18 $Foxp1^{+/-}$ cells. p=0.89 (Student's t-test, compared between genotypes). (H) Spontaneous EPSC frequency is not significantly changed in $Foxp1^{+/-}$ MSNs. Data are represented as means (±SEM). n=17 WT cells, 17 $Foxp1^{+/-}$ cells. p=0.40, Student's t-test compared between genotypes. (I) Spontaneous EPSC amplitude is significantly decreased in $Foxp1^{+/-}$ MSNs. Data are represented as means (±SEM). n=17 WT cells, 17 $Foxp1^{+/-}$ cells. p=0.88, Student's t-test compared between genotypes.

Supplemental Figure 2.4. USV parameters and weight gain of $Foxp1^{+/-}$ mice. (A) Illustration marking all major USV parameters measured including bouts, calls, mean frequency (m.f.), call duration (dur), slope, and jumps. (B) $Foxp1^{+/-}$ mice do not weigh significantly less than control littermates. Data are represented as means (±SEM). n=38 WT pups, 22 $Foxp1^{+/-}$ pups. p=0.83, two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. The main effects for genotype and postnatal day, and the interactions between these two variables, are reported at the bottom of the panel.

Supplemental Figure 2.5. Behavioral characterization of *Foxp1^{+/-}* mice. (A) Righting reflexes in *Foxp1^{+/-}* pups at P4, P7, and P10. Data are represented as means (±SEM). n=11 Foxp1^{+/-} pups, 15 WT pups. p=0.22, two-way ANOVA with a Sidak multiple comparison test compared between genotypes. (B and C) Foxp1+- mice display hyperactivity in the open field test. (B) Foxp1^{+/-} mice display increased total distance moved and (C) an increased average velocity in the open field test compared to WT mice. Data are represented as means (\pm SEM). n=27 Foxp1^{+/-} mice, 39 WT mice. p=0.0006, p=0.0007, respectively, unpaired Student's t-test compared between genotypes. (C) Foxp1^{+/-} mice do not exhibit deficits in motor coordination as measured by the latency to fall during the rotarod behavioral test. Data represented as means (±SEM) of 4 trials per day. n=9 Foxp1^{+/-} mice, 7 WT mice, two-way ANOVA with a Sidak multiple comparison test compared between genotypes. (D) $Foxp1^{+/-}$ mice exhibit deficits in grip strength in both forelimbs and (E) hindlimbs. Data represented as means (\pm SEM). n=9 Foxp1^{+/-} adults, 7 WT adults. **p=0.0058, ***p<0.0001, unpaired Student's t-test compared between genotypes. (F) $Foxp1^{+/-}$ mice show no difference in nesting behavior. Data represented as means (\pm SEM). n=9 Foxp1^{+/-} mice, 7 WT mice. p=0.7667, unpaired Student's t-test compared between genotypes. (G) $Foxp1^{+/-}$ mice show no difference in grooming behavior. Data represented as means (\pm SEM). n=5 *Foxp1*^{+/-} mice, 5 WT mice. p=0.81, unpaired Student's t-test compared between genotypes.
Test	Foxp1 ^{+/-}	wт	p-value
1. Body position	1 (±0)	1 (±0)	NS
2. Tremor	0 (±0)	0 (±0)	NS
3. Palpebal closure	0 (±0)	0 (±0)	NS
4. Coat appearance	0.11 (±0.99)	0 (±0)	NS
5. Skin color	1 (±0)	1 (±0)	NS
6. Whiskers	0 (±0)	0 (±0)	NS
7. Lacrimation	0 (±0)	0 (±0)	NS
8. Defecation	0.22 (±0.44)	0.57 (±0.53)	NS
9. Gait	0 (±0)	0 (±0)	NS
10. Tail elevation	0 (±0)	0 (±0)	NS
11. Touch escape	1.89 (±0.33)	2 (±0)	NS
12. Trunk curl	0.22 (±0.44)	0.14 (±0.38)	NS
13. Limb grasping	0.89 (±0.33)	1 (±0)	NS
14. Pinna reflex	1 (±0)	1 (±0)	NS
15. Corneal reflex	1 (±0)	1 (±0)	NS
16. Contact righting reflex	0 (±0)	0 (±0)	NS
17. Evidence of biting	0 (±0)	0 (±0)	NS
18. Vocalization (audible)	0 (±0)	0.14 (±0.38)	NS
19. Startle response	1 (±0)	1 (±0)	NS
20. Positional passivity	0.78 (±0.83)	0.43 (±0.53)	NS

Supplemental Figure 2.6. SHIRPA battery results. $Foxp1^{+/-}$ mice underwent a modified SHIRPA behavioral screen and no differences were found between the 20 different categories tested. Individual tests were scored between 0-1, 0-2, or 0-3. Data represented as means (±SEM). n=9 $Foxp1^{+/-}$ mice, 7 WT mice.

Supplementary Figure 2.7. FOXP1 ChIP-seq characterization. (A) Circular visualization of FOXP1 ChIP-seq. A' represents the chromosomal cytoband, A'' represents the FOXP1 peak height, and A''' represents the genomic distribution of FOXP1 binding sites. (B) Distribution of all FOXP1 binding site peaks in relation to gene structure.

(C) Heat map of FOXP1 ChIP-seq enrichment within gene promoters. Each row represents a 10-kb window extending 5kb upstream and 5kb downstream of the transcriptional start site (TSS). Bottom panel shows the average FOXP1 ChIP-seq enrichment across 5kb upstream and 5kb downstream of the TSS. (D) Enriched FOXP1 motifs within the detected peaks compared with GFP control.

Supplemental Figure 2.8. Overlaps between hNP WGCNA modules and DEGs. (A) Heatmap displaying hNP^{FOXP1} WGCNA modules that contain significant enrichments of DEGs, ASD genes. ASD scored genes, and/or FMRP targets. Log-transformed adjusted p-values from Benjamini-Hochberg false-discovery test (hypergeometric test). hNP_COR positive modules correlate with FOXP1 genotype. hNP_DEG indicates enrichment of FOXP1 differentially expressed genes.

TABLES FOR CHAPTER TWO

Die 2.1. DEGS in nNPS and Foxp1 mou		nouse brains and ChIP targets in hNPs.	
hNPs		<i>Foxp1</i> ^{+/-} mouse	
hNP ChIP targets	hNP DEGs	<i>Foxp1</i> ^{+/-} HIP DEGs	<i>Foxp1</i> ^{+/-} STR DEGs
ABCC1	A2M	1110008P14Rik	1190002N15Rik
ACADVL	AASS	1190002N15Rik	1700001O22Rik
ACTN2	ABCB1	1600029O15Rik	1700020I14Rik
ADAMTS1	ABCB6	1700007G11Rik	1700024P16Rik
ADRA1D	ABCB9	1700007K13Rik	1700040L02Rik
AGAP1	ABCC1	1700010I14Rik	1810041L15Rik
AGPAT4	ABCC4	1700012B09Rik	2310067B10Rik
AGPAT4-IT1	ABCC6	1700017B05Rik	3632451006Rik
AGTPBP1	ABCC6P1	1700019D03Rik	6330409D20Rik
AGTR1	ABCC6P2	1700019G17Rik	9230009102Rik
AKAP13	ABCD1	1700020I14Rik	9430020K01Rik
ALDH3A1	ABHD14A	1700024G13Rik	A830018L16Rik
ALG10B	ABL2	1700024P16Rik	A830082K12Rik
ANKRD11	ABR	1700026D08Rik	Abhd14a
ANKRD20A9P	ABRACL	1700048O20Rik	Abhd3
ANKRD30BP2	ABTB2	1700094D03Bik	Ablim2
ANO3	ACBD7	2010111101Bik	Ace
ANXA1	ACD	2010204K13Bik	Acot5
ΑΟΔΗ	ACEB3	2610020H08Bik	Acsia
ADAN AP2B1		26100201100116	Acsid Acsid
ARAP2	ACP6	2610203C20Bik	Actal
	ACSBG1	201020302011ik	Actn2
	ACSIA	3110035E14Bik	Acura
ANLON T	40553	3110039M20Rik	Acvr1c
ASCL1	AC555	1833422C13Bik	Acurl
AGOLT AGG1	ACTN2	4030520E09Dik	Acvit
ATP2B3	ACTR3R	4950539E0011ik	Adamtel5
	ACTION	4952411E2211ik	Adamisio
	ACTEZ	4932410L24Nik	Adarb2
		4933409K07 Kik	Aday 9
	ADAMISI	4933412E12RIK	Adavan1
BJGALIZ DANKI	ADAMISIZ	4933420MTTRIK	Adcyap1
BANKI	ADAMISIS	4933427D14Rik	Ag04
BFSP2	ADAMISI6	4933432109RIK	AI593442
	ADAMISIS	5430417L22RIK	AK 129341
BMPRIB	ADAMTS0	5930403L14RIK	Akap2
BUC	ADAMI 59	0030419C18RIK	Ampaz
BRD/P3	ADAMISLI	6430411K18KIK	Amzi
BRF1	ADARBI	6430571L13RIK	Angpti4
0100182	ADCK3	6430573F11RIK	Anki
C130rf45	ADCY1	6430584L05Rik	Ankrd29
C16orf82	ADCY2	6530402F18Rik	Ankrd34c
C16orf97	ADCY8	9030617O03Rik	Ano3
C19orf59	ADCY9	9230009102Rik	Apln
C1orf229	ADCYAP1R1	9330182L06Rik	Arc
C1orf233	ADD3	9430021M05Rik	Arg2
C1orf87	ADM	9630033F20Rik	Arhgap10
C2CD4B	ADORA1	9830166K06Rik	Arhgap27
C3orf49	ADORA2B	A230065H16Rik	Arhgap33
C3orf55	ADRA1A	A330050F15Rik	Arhgdib

C3orf62	ADRBK2	A330070K13Rik	Arhgef15
C6orf10	ADSSL1	A4galt	Arid3b
C6orf123	AFF3	A730017C20Rik	Arid5b
C6orf170	AGER	A830018L16Rik	Arl4d
C6orf223	AGK	A930024E05Rik	Asap2
C6orf48	AGPAT9	Aak1	Asb11
C7orf62	AGT	Aard	Asic1
C7orf66	AHNAK	Abat	Asph
C9orf123	AHNAK2	Abi1	Asphd2
CAMSAP1	AHR	Acan	Atp10a
CAMTA1	AJAP1	Acap3	Atp1b1
CBI N2	AK4	Acot3	Atp6ap2
CBI N4	AK5	Acs/4	Atn8b2
CCDC102A	AKAP12	Acs/5	B2m
CCDC54	AKAP6	Actr3b	B3ant2
CCDC57	ALAD	Acvr1c	Bbs9
CCL2	ALCAM	Adam11	BC031361
CONY		Adam23	BC048546
CD226		Adamts3	BC049352
CDC42EP4	ALDH1L2	Adamts8	BC055324
CDH18	ALDH3A2	Adamts9	Bcat1
CDH23	ALDH3B1	Adamtsl1	Bcr
CDH8	ALDOA	Adck3	Bhlhe22
СПН9	ALOX5	Adcv7	Bhlhe40
CDK5BAP1	ALPK1	Adcy9	Bthd11
CDK7	ALPK2	Adcvap1r1	Btbd3
CDKAL1	AI PI	Add2	Byes
CENPJ	AMBN	Adora1	C2cd2l
CHAC2	AMIGO2	Adra1d	C530008M17Rik
CHD1	AMOTL1	Adra2a	C730002L08Rik
CHD3	AMY2B	Agap3	Cacna1h
CHEK2P2	ANGPTL1	Aqbl5	Cadps
CHRM3	ANK1	Agfg2	Calb2
CHST2	ANK2	Agtpbp1	Calcoco1
CMAHP	ANK3	Ahi1	Camk2d
CNTN4-AS2	ANKDD1A	Ahnak	Camk2n2
CNTN5	ANKRD1	Ahr	Camkv
CNTN6	ANLN	Al115009	Car11
COL26A1	ANO1	AI854517	Cartpt
COX11	ANPEP	Ak4	Cav2
СРО	ANTXR2	Ak5	Cbln4
CPXM1	ANXA2	Ak7	Cbr3
CRH	ANXA2P2	Akap12	Ccdc136
CRYL1	AP1S3	Akap13	Ccdc141
CSF1R	APBA1	Akap9	Ccdc88c
CSTF3-AS1	APBA2	Akt3	Ccng1
CTF1	APCDD1	Aldoa	Ccno
CUL1	APCDD1L	Alk	Cd83
CUL4A	APIP	Alms1	Cdh12
CXCL13	APLN	Alox8	Cdh8
CXorf49	APOBEC3B	Amigo2	Cdh9
CXorf49B	APOBEC3C	Amotl1	Cdk14
CXXC11	APOL6	Ampd3	Cdkn1a
CXXC5	AQP1	Amph	Cds1
01/5/00			
CYFIP2	AQP11	Amy1	Celf3

CYP2A6	AQP4	Ankrd34b	Cep63
CYR61	ARAP2	Ankrd34c	Chdh
CYTH1	ARAP3	Ankrd44	Chrm4
DAB2IP	ARG2	Ankrd46	Cish
DAOA	ARHGAP10	Ankrd55	Clspn
DCAF8L1	ARHGAP19	Ankrd63	Cnr1
DCP2	ARHGAP26	Ankrd66	Cnst
DDX20	ARHGAP5-AS1	Ano1	Cntn3
DDX50	ARHGEF26	Ano2	Cntnap3
DEFB115	ARHGEF26-AS1	Ano3	Coch
DEBA	ABHGEE37	Anxa11	Col11a2
DGKK	ABL4C	Anxa2	Cpne5
DIABLO	ARRB1	Ap1s2	Cpne7
DICEB1	ABSE	Ap2a2	Crh
DIP2C	ABSI	Apold1	Crocc
DISC1	ASGR1	Arc	Crot
DKEZP58611420	ASSI	Ara2	Crtac1
DI GAP1-AS3	ASXI 3	Arboan15	Csgalpact1
DI GAP1-AS5	ATG4A	Arboan21	Cthrc1
	ATIC	Arbgap21	Cure Cure
DNAH5	ATI 2	Arbgap20	Cyr61
DNA.IC14	ATP10B	Arbgap42	Dach1
DPP10	ATP10D	Arbgap	Dbn
DPP6	ATP1344	Arhadib	Dec
	ATP1A2	Arhadia	Ddit4I
DPYD-AS1	ATP1B2	Arbaef17	Ddx11
DUSP22	ATP2B1	Arhaef25	Daxt?
ECE1	ATP2B4	Arhaef26	Dio2
ECT2	ATP5E	Arhaef28	Disp2
EDA	AURKA	Arhaef40	Digap1
EDN3	AVIL	Arhaef6	Dmkn
EEA1	AVPI1	Arid1b	Dnaic3
EFCAB4B	AXL	Arl15	Dner
EIF2B4	B2M	Arl4a	Dpp10
ELK2AP	B3GALT2	Arl5b	Dtnb
ELMO1	B3GALT4	Armcx3	Dusp1
ELTD1	B3GAT2	Arpc2	Dusp4
EML1	B3GNT2	Arpc4	Edil3
ENC1	B3GNT9	Arpp21	Efr3a
EPSTI1	B4GALT5	Asb11	Egr2
ERCC4	BACE2	Asph	Egr4
ERP27	BACH2	Asphd2	Ehbp1l1
ESM1	BAG2	Ass1	Elavl2
ETV3	BAG3	Astn2	Elavl4
FAM101A	BAI2	Atf6	Elfn1
FAM133CP	BAI3	Atg9b	Elovl4
FAM174A	BAMBI	Atp10a	Eml5
FAM189A1	BASP1	Atp2b1	Enah
FAM19A1	BBC3	Atp2b4	Endod1
FAM19A2	BBOX1	Atp6ap1I	Epha10
FAM27C	BCAM	Atp6v1a	Epha5
FAM41C	BCAN	Atp6v1c2	Epor
FAM81A	BCAT2	Atp6v1g2	Eps15
FAM83C	BCHE	Atrnl1	Eps8
FBXL14	BCL2L1	Auts2	Erf
FBXL7	BCL2L11	AW551984	Evc2

FBXO38	BCL2L12	B4gaInt1	Exph5
FGD3	BCMO1	Bai2	F730043M19Rik
FLJ25363	BCYRN1	Baiap2	Fam105a
FLJ26245	BDH2	Baiap3	Fam107a
FLJ33581	BDNF	Bbox1	Fam132a
FLJ35282	BEAN1	BC005764	Fam150b
FLJ45079	BEND5	BC018242	Fam155a
FLJ46284	BEND6	BC048546	Fam160b2
FLRT2	BEST3	BC061194	Fam19a1
FMN1	BICC1	BC068157	Fam19a2
FOXN3	BIN1	BC089491	Fam222a
EOXP1	BMF	Bc1	Fam3c
FBMD3	BMP5	Bcl11a	Fam78a
FRMD4B	BMP8B	Bcl11b	Fam84b
ESD1	BMPB1B	Bcl2	Eanch
FSHR	BNC2	Bdnf	Farp1
FUNDC2P2	BBICD5	Bex1	Fbln5
GAB1	BST1	Bex4	Ebx/16
GABBB2	BTBD11	Blnk	Ebxo32
GADL1	BTBD11 BTBD3	Brd9	Ebx034
GAK	BTBD8	Bsn	Echo1
GALNT10	BTG1	Btbd11	Faf10
GALNT18	BTN2A2	Btbd3	Faf12
GAP43	BTN3A1	C130060K24Bik	Faf9
GAS7	BTN3A2	C130071C03Bik	Fina
GATA3	BTN3A3	C130074G19Bik	Flt3
GBE1	B7W2	C4b	Empl2
GLT1D1	C10orf107	Cables1	Foxo1
GLUD2	C10orf12	Cables2	Foxp1
GOLGA3	C10orf35	Cabp1	Frmpd1
GOLIM4	C11orf96	Cabp7	Fxvd2
GPR146	C12orf75	Cacna1a	Gabra1
GPR64	C15orf39	Cacna1c	Gabra3
GREB1L	C16orf45	Cacna1g	Gabrd
GRIA3	C16orf74	Cacna1h	Gabra1
GRIK2	C18orf56	Cacna2d1	Gabrq2
GRIN2B	C18orf8	Cacna2d2	Galnt16
GRM7	C19orf18	Cacna2d3	Gcnt2
GSDMD	C1GALT1	Cacnb3	Gib6
GTF2A2	C1orf110	Cacng4	GIra3
GUCA1C	C1orf21	Cacng5	Gm136
GYG2	C1orf226	Cadm2	Gm13629
GYG2P1	C1orf56	Cadm3	Gm20300
HAO1	C1orf94	Cadps2	Gm7244
HCN1	C1orf95	Calb2	Gmpr
HIF3A	C1QL2	Calm2	Gnai1
HIST4H4	C1QTNF1	Calm3	Gnas
HMBOX1	C1QTNF3	Camk1d	Gnb2
HMGXB4	C1QTNF6	Camk2a	Gnb5
HNRNPD	C1R	Camk2b	Gng4
HNRNPKP3	C1RL	Camk2d	Gpnmb
HPGD	C1S	Camk2n1	Gpr155
HS3ST1	C21orf2	Camk4	Gpr22
HS3ST5	C2CD2	Camkk1	Gprin3
HYI	C2orf72	Camta2	Gpx6
IAH1	C2orf80	Cap2	Grb7

IFI44	C3orf58	Capza2	Grik2
IGF2BP3	C3orf70	Car4	Gyk
IGFBP7	C4B_2	Car7	H2-DMa
IGSF1	C4orf19	Cartpt	HapIn1
IL1B	C5orf49	Cbln1	HapIn4
IL1RAPL1	C8orf4	Ccbe1	Hcn1
IL6ST	C8orf44	Ccdc108	Hcrtr2
IMPA2	C8orf56	Ccdc141	Hdac9
INO80D	CABLES1	Ccdc151	Hif3a
INPP5A	CACNA1A	Ccdc153	Homer2
INSIG2	CACNB4	Ccdc19	Нрса
INTU	CAL B1	Ccdc3	Hrh3
IBEB2	CAL B2	Ccdc42	Hs3st1
IBX2	CALCBI	Ccdc65	Hspa12a
ITGB1	CALN1	Ccdc81	Hspala
ITPKB	CAMK2A	Ccnil	Hspa1b
KAT5	CAMK2B	Cosan	Hspan2
KCNH1	CAMK2N1	Cd109	Hspa2
KCNI2	CAMK4	Cdc14a	Htr2a
KCN/6	CAMKK1	Cdc40	Htr7
KCNK2	CAMKV	Cdc42en3	Id2
KCNK9	CAPG	Cdc42se2	Ido1
KCNO1OT1	CAPN2	Cdb13	lat1
KCNU1	CAPN5	Cdh18	lafn1
KCNV1	CAPS	Cdh22	lasf3
KEI	CAPS2	Cdh24	lasf9
KHDBBS3	CARD10	Cdb4	II17rc
KIAA0430	CABHSP1	Cdb6	IIdr2
KIAA0947	CASP1	Cdh7	Inf2
KIF2B	CAV1	Cdh9	lsvna1
KIF4B	CBLN1	Cdhr3	ltga11
KLF6	CBLN4	Cdk14	Itaa5
KLHDC9	CCBE1	Cdk18	Itga9
KLHL30	CCDC149	Cdkl2	ltpk1
KREMEN1	CCDC18	Cdkl4	ltpr1
L3MBTL4	CCDC28A	Cdkn1a	Ivns1abp
LAG3	CCDC71L	Cds1	Jaq1
LAMB3	CCDC74A	Cecr6	Jakmip1
LCA5	CCDC77	Can	Jdp2
LHFPL1	CCDC80	Chąb	Junb
LHX2	CCDC85C	Chml	Kcna4
LHX4	CCL2	Chn1	Kcnab1
LHX9	CCNB1	Chn2	Kcnab3
LIMCH1	CCND1	Chrd	Kcnc2
LINC00052	CCRN4L	Chrdl1	Kcnd3
LINC00273	CD274	Chrm1	Kcnh4
LINC00293	CD276	Chrm2	Kcnh5
LINC00309	CD34	Chrm3	Kcnip1
LINC00461	CD38	Chrna7	Kcnip2
LINC00470	CD59	Chst1	Kcnip4
LINC00485	CD68	Chst11	Kcnj2
LINC00507	CD74	Cidea	Kcnj3
LINC00536	CD86	Cit	Kcnk2
LINC00578	CD9	Cited1	Kcnmb2
LINC00583	CD97	Cldn22	Kcnn2
LINC00609	CDC20	Cldn26	Kcns3

LINC00645	CDC42EP2	Clic4	Kcnt1
LINC00662	CDC42EP3	Clmp	Kctd17
LINC00669	CDCA2	Clstn2	Kif17
LINC00670	CDCA8	Clvs2	Klf16
LINGO2	CDH11	Cmtm8	Klhdc7a
LMOD2	CDH20	Cnih2	Klhdc8a
LOC100130000	CDH6	Cnksr2	Klhl1
LOC100130238	CDH8	Cnrip1	Kras
LOC100130480	CDKL1	Cntn4	Krt10
LOC100130744	CDKN1A	Cntn6	Krt12
10C100131234	CDKN2B	Cntnap1	Krt9
10C100132352	CFACAM1	Cntnap5c	l ancl3
LOC100169752	CEBPB	Col11a1	Laptm4b
LOC100190940	CEBPD	Col15a1	Lhfp
LOC100192426	CECR5-AS1	Col18a1	Lhx9
LOC100288069	CELF3	Col19a1	Lifr
10C100288748	CENPW	Col23a1	Lin7a
10C100288911	CEP135	Col25a1	Lingo?
10C100505817	CEP19	Col26a1	Lingo3
10C100505875	CEP250	Col27a1	Lina
10C100506207	CEP55	Col6a1	I mo2
10C100506895	CEB1	Col9a2	L onrf3
10C100507205	CHAC2	Coro2h	
10C100507217	CHADI	Cneh1	L ra1
100100507250	СНДН	Colx1	Ligi Luran11
10C100507651	CHEK1	Colx2	Luzn2
	CHI3L1	Cone4	
10C283143	CHODI	Cpne5	l vola1
1 0C284294	CHRD	Cpne6	l zts3
1 0C284801	CHRDI 1	Crea?	Mab21/1
1 0C285074	CHBM4	Crhbp	Magi1
1 0C285692	CHBNA7	Crispld1	Map3k6
LOC285762	CHRNA9	Crls1	Map7d2
LOC375295	CHST15	Crmp1	March1
LOC388813	CHST2	Crtac1	Matn2
1 0C401397	CHST6	Crv1	Mctn2
1 0C401557	CHST7	Crybb3	Me1
1 0C440040	CHST9	Cryan	Meaf11
1 0C441204	CHSY3	Cryl1	Melk
1 0C441666	CIITA	Crym	Mertk
1 0C541471	CIBH1A	Csrnp1	Maat4b
LOC643714	CITED1	Cthrc1	Mgat5b
LOC644649	CLASP2	Ctxn1	Mir365-1
1 0C645166	CLCE1	Ctxn3	Mn1
LOC646214	CLCN5	Cuedc1	Mpped2
LOC646813	CLDN1	Cul7	Mrea
LOC649133	CLDN11	Cux1	Mxd1
LOC649395	CLDN15	Cxcl14	Mvbpc1
LOC650226	CLDND1	Cxx1c	Mvlk3
LOC654342	CLEC18B	Cxxc4	Myo16
LOC727915	CLIC1	Cyb5r1	Myo3b
LOC729121	CLIC6	Cyfip2	Муос
LOC91948	CMTM7	Cyp26b1	Myom3
LPAL2	CMTM8	Cyp4f15	Nab2
LRBA	CNIH3	D430036J16Rik	Nap1l5
LRFN5	CNR1	D630023F18Rik	NapepId

LRIG1	CNTFR	Dab1	Ndst3
LRP1B	CNTN1	Dagla	Ndst4
LRRC40	CNTN2	Dbi	Necab2
LRRC43	CNTN4	Dcc	Nefh
LRRN3	CNTN6	Dctd	Nefl
LRRTM2	CNTNAP3	Dcx	Nek2
LSP1P3	CNTNAP3B	Ddn	Nek7
MACBOD2-AS1	COBI	Ddo	Nell1
MAEA	COBLL1	Ddr2	Neurod1
MAMI 3	COL 11A1	Dakd	Ngef
MAP4	COL 11A2	Dakz	Naf
MAP7	COL 16A1	Dhrs13	Nhsl1
MARCH7	COL 1A2	Dhx33	Nkrf
MABK3	COL 22A1	Dkk3	NIk
MAST4	COL 23A1	Dlat	Nmbr
MATK	COL 5A2	Diec1	Nmpat3
MATN1-AS1		Dieu7	Nostrin
MCTP2	COL8A1	Digan1	Nosim Nosi
MEE2C		Digap?	Nov1r
MEI 20	COMT	Digap2	Nr1d1
MEIS2	COBO1C	Digapo Dik1	Nr4a1
MEICE	COBO2B		Nrin3
MGAT4C	CP44	Dix 1	Nrp2
MGC12016		Dix5	Nipz Nrvp1
MGST1	CPNEA	Dixs	Nixiii Nit5dc3
MIAT	CPNE8	Dixo	Nibaco Nitra 1
MIR1286	CPYM2	Dmv/2	Nuch2
MIR2054	CRABP2	Dilikiz Drahl	Nucl2
MIR2116	CRB1	Dhairi Dhab?	Nup93
MIR294	CREB3L1	Dnah5	Nupso Nyph1
MIR3648	CRH	Dnaho	Oacyl
MIR3668		Dnah7b	Odf4
MIR3679	CRISPI D2	Dnaic1	Onecut2
MIR383	CBYM	Dnaib1	Oprk1
MIR3913-2	CSE1	Dnajce	Otof
MIR3914_1	CSGALNACT1	Dnajco	0101 0xr1
MIR3035	CSMD2	Dnm1	Palm2
MIR421	CSNK1G1	Dnm3	Palmd
MID 4251	CSNK2A3	Doo2a	Pagr®
MIR4231 MIR4278	CSPG4	Dock10	Faylo Pard6b
MIR4270	CSPG5	Dock7	Podb10
MIR4200	CSBP1	Dock9	Podb20
MIR/318	CSBP2	Docks	Podb8
MIR4322	CST3		Posk7
MIRAARA	CTGF	Dovel5	Pde1h
MIR4462	CTNNAL 1	Dr1	Pde2a
MIR4505	CTSC	Dro1	Per1
MIR/510	CTSO	Drda	Phaotr?
MIR4635	CTTNBP2	Dtph	Phov
MIR4655	CXCI 14	Dtnbn1	Phyh
MIR4715	CXCR4		Phyhin
MIR4764	CXXC4	Duen26	Pid1
MIR4700	CYB561	Duena	Pin5k1h
MIR548A2	CYB5R2	Dusp5	Pkih
MIR548AI	CYGB	Dusp6	Pkn2
MIR548AP	CYP1B1	Dvnc1i1	Pla207
			, iargi

MIR548AR	CYP4V2	Dynll1	Plcb4
MIR54802	CYSTM1	Dynlt1f	Plcd4
MIR551B	CYTH1	E030019B06Rik	Plch1
MIR5583-1	DAB2	Ebf3	Plcl1
MIR5702	DACH1	Ece2	Plcxd1
MIR573	DACT1	Ecel1	Plcxd2
MIR653	DACT2	Ednrb	PId5
MIB663B	DAPL1	Eend1	Pmena1
MKNK1	DBX2	Efcab12	Proc
MIL3	DCBI D2	Efcab2	Pnn2
MMD		Eloub2 Efna5	Pou3f1
	DCLK2	Effab2	Pharaola
MREC		Embo	Pargo1b
		EliJa	Pargerb
	DDX60	Eliso	rpilaz
MRPL45P2		End3	Ppilop i
MIRR	DENND2A	End4	PpmTe
MISSI		EIFID	Ppm11
MYADML	DEPDCI	Elavi2	Ppp1ca
MYO15A	DEPDC4	Elfn1	Ppp4r4
MY016	DGKA	Elmo1	Prima1
MYOF	DGKD	Emilin2	Prkar2a
МҮОМ2	DGKH	Emx1	Prkg2
NACA2	DHH	Emx2os	Prr13
NAP1L3	DIO2	Enc1	Prr16
NAV3	DIRAS3	Enkur	Prrt4
NCF2	DLC1	Eno4	Ptch2
NCK2	DLG1	Enox2	Ptchd2
NCOA2	DLGAP1	Enpp1	Ptgds
NEFL	DLGAP1-AS1	Entpd7	Ptgs2
NEK4	DLGAP4	Epb4.1l4a	Ptpn3
NEO1	DLK1	Epdr1	Ptpn5
NFIA	DLL3	Epha4	Ptprg
NINJ2	DMD	Epha5	Pvalb
NLGN1	DNAJC1	Epha6	Pvrl1
NLGN3	DNAJC12	Epha7	Pvrl3
NRG1	DNAJC25	Ephb3	Pwwp2b
NRG2	DNAJC6	Ephb6	Qrfpr
NRXN3	DNASE2	Ephx4	Ralvl
NSUN6	DNER	Epn1	Ramp3
NTM	DNM3	Eps8	Rap1oap
NTRK2	DNMT3B	Erc2	Rara
NUDT3	DOCK11	Errfi1	Rasd1
NUE2	DOCK4	Evc2	Basd2
NUP35	DOCK5	Exoc314	Basgef1b
NXF2B	DOCK9	Exoc6	Rasarf2
OPHN1	DOK4	Excelo Exnh5	Basarn2
OB4K2	DPF3	Expile Evtil	Rbck1
OSMR	DPP10	Forlo	Rhm38
	DPP4	Faah	Rbms1
D2DV5	DPP6	r aan Eada2	Don1
		r dusz Eam105a	
	חעפרויט	Faill100a	
PAPULA		Familu/a	
PARDOG-ASI	DOGZ	Fam120b	Ket
PAX/	DUSPI	Fam131a	Hgs11
PCDHB1	DUSP10	Fam13c	Hgs6
PDCD11	DUSP15	Fam149a	Rgs9

PDE11ADUSP4Fam154bRhouPDE4DDUSP5Fam174bRic8bPDHA2DYRK3Fam179aRin1PDK4E2F8Fam184aRnf115PDLIM1EBF4Fam188aRpe65PDZRN3ECE1Fam196bRps6ka4PEBP1ECI2Fam198aRreb1PHACTR1ECM1Fam19a1Rundc1PHF3ECSCRFam19a2Rxfp3PHGR1EDARADDFam212bRxrgPHLPP1EDN3Fam216bRyr1	
PDE4DDUSP5Fam174bRic8bPDHA2DYRK3Fam179aRin1PDK4E2F8Fam184aRnf115PDLIM1EBF4Fam188aRpe65PDZRN3ECE1Fam196bRps6ka4PEBP1ECI2Fam198aRreb1PHACTR1ECM1Fam19a1Rundc1PHF3ECSCRFam19a2Rxfp3PHGR1EDN3Fam212bRxrgPHLPP1EDN3Fam216bRyr1	
PDHA2DYRK3Fam179aRin1PDK4E2F8Fam184aRnf115PDLIM1EBF4Fam188aRpe65PDZRN3ECE1Fam196bRps6ka4PEBP1ECI2Fam198aRreb1PHACTR1ECM1Fam19a1Rundc1PHF3ECSCRFam19a2Rxfp3PHGR1EDARADDFam212bRxrgPHLPP1EDN3Fam216bRyr1	
PDK4E2F8Fam184aRnf115PDLIM1EBF4Fam188aRpe65PDZRN3ECE1Fam196bRps6ka4PEBP1ECl2Fam198aRreb1PHACTR1ECM1Fam19a1Rundc1PHF3ECSCRFam19a2Rxfp3PHGR1EDARADDFam212bRxrgPHLPP1EDN3Fam216bRyr1	
PDLIM1EBF4Fam188aRpe65PDZRN3ECE1Fam196bRps6ka4PEBP1ECl2Fam198aRreb1PHACTR1ECM1Fam19a1Rundc1PHF3ECSCRFam19a2Rxfp3PHGR1EDARADDFam212bRxrgPHLPP1EDN3Fam216bRyr1	
PDZRN3ECE1Fam196bRps6ka4PEBP1ECl2Fam198aRreb1PHACTR1ECM1Fam19a1Rundc1PHF3ECSCRFam19a2Rxfp3PHGR1EDARADDFam212bRxrgPHLPP1EDN3Fam216bRyr1	
PEBP1ECl2Fam198aRreb1PHACTR1ECM1Fam19a1Rundc1PHF3ECSCRFam19a2Rxfp3PHGR1EDARADDFam212bRxrgPHLPP1EDN3Fam216bRyr1	
PHACTR1ECM1Fam19a1Rundc1PHF3ECSCRFam19a2Rxfp3PHGR1EDARADDFam212bRxrgPHLPP1EDN3Fam216bRyr1	
PHF3ECSCRFam19a2Rxfp3PHGR1EDARADDFam212bRxrgPHLPP1EDN3Fam216bRyr1PULTF0EDV102Fam216bRyr1	
PHGR1 EDARADD Fam212b Rxrg PHLPP1 EDN3 Fam216b Ryr1	
PHLPP1 EDN3 Fam216b Ryr1	
I PHIE2 EUNKB Fam220a Scmb1	
PID1 EEA1 Fam26e Sdc4	
PIEO FEPD1 Fam49a Sdf2l1	
PIGE EECAB6 Eam65b Sec141	
PIK3CA FFFMP1 Fam78a Sec14/3	
PIK3CB EEHC2 Farn1 Sema3t	
PIK3R1 FENA1 Fat1 Seminal	
PIP4K2A EENA5 Eat4 Servini1	
PLEC EGE Ebyl16 Sertm1	
PLEKHM3 FGFB Ebyo17 Soz6	
POCIB FGB2 Fbyo34 Sezel	
PODN EHBP1 Ebyo45 Sh2d5	
PODV EHD1 Ebyw7 Shb	
POLG EHD3 Fem1c Shf	
POL B2D EHD4 Ead5 Shisa2	
POTEA FIE24K4 Ead6 Sina1/2	
POUSE2 FIF4FBP1 Fof1 Slc17a6	
POUSE1P4 FLAVL2 Faf12 SIc1720	
POU662-4S1 FLAVL4 Faf13 Sk26a5	
PPM1H FLF4 Faf3 Slo2a1	
PPP1B3B FLK3 Faf5 Slc38a5	
PPP1B9A ELL2 Eafr1on2 Slo6a6	
PPT1 FI MOD1 Fbdc1 Slc8a1	
PBDM1 FLOVI2 Fbl1 Slc9a2	
PBDM6 FLOVL6 Fh/2 Slc9a9	
PBKCB FLTD1 Fbod3 Slit2	
PBOS1 FMI6 Fibed1 Smg5	
PBPE18 FNC1 Filip1 Smim3	
PBBG3 ENG Ekbn1b Smrd3	
PBSS35 ENHO Flot1 Soga2	
PSAT1 FN01 Flot2 Sorce2	
PSMG3-4S1 FNO3 Firt1 Sorl1	
PTGR1 ENOX1 Flitt3 Sov17	
PTPN4 ENPP2 Emp1 Sox8	
PTPRB ENTPD1 Fmnl1 Snata2/	
PTPRG-AS1 ENTPD6 Fnbn1l Snbkan	
PTPRO EOGT Fndc9 Spint1	
PURG EPAS1 Foxa1 Son1	
BAB11FIP2 EPB41L2 Foxn2 Sorv2	
RAPH1 EPB41L4A Foxo6 Sotssh	
RASSF8 EPB41L4B Foxn1 Srm	
RBFOX1 EPHA2 Frat2 Srrt	
RBM47 EPHA3 Frrs1I St8sia1	
REEP3 EPHB1 Fry St8sia2	

REG3G	EPHB2	Frzb	St8sia3
RFC3	EPHX2	Fstl1	Stard10
RGS1	EPS15L1	Fxyd7	Stard8
RGS18	EPT1	Fzd1	Steap2
RGS7	ERAP2	Gaa	Stk32a
RIC3	ERBB3	Gabra3	Strn
BNU6-67	ERI1	Gabra5	Stxbp6
BPGBIP1I	EBLEC1	Gabral	Svni2
BSG1	ESPN	Gabra3	Svt6
BTN4	ESBBA	Gad1	Tadh
RTP4	ESYT2	Gad2	Tapol
	EUTIE ETNK2	Gadd45b	Thold
54P20	ETS1	Gal	
SAI 50	ETV3	Galacta	The1d9
	ETVO	Calat12	Toorall
	E110	Gaint 13	
SENPS	FIIR	Gaintia	Tesc
SEPNI		Gainta	Igia
SERPINAISP		Gap43	
SERPINI	FABP3	Garem	Theg
SGCD	FABP5	Gcnt1	Tmem108
SGMS1	FABP7	Gcnt4	Tmem132c
SH2B2	FAM102A	Gfod1	Tmem181a
SH3KBP1	FAM117A	Gfra1	Tmem181b-ps
SH3PXD2A-AS1	FAM120C	Gfra2	Tmem181c-ps
SH3PXD2B	FAM129A	Ghr	Tmem191c
SHISA9	FAM129B	Glp1r	Tmem200a
SIX3	FAM134B	Glra2	Tmem200b
SLC10A7	FAM135A	Glra3	Tmem200c
SLC15A4	FAM13C	Glrx	Tmem215
SLC17A9	FAM162A	Gls	Tmem229a
SLC25A26	FAM171B	Gm10432	Tmem252
SLC25A37	FAM178A	Gm13152	Tmem65
SLC46A2	FAM181A	Gm14204	Tmprss9
SLC4A4	FAM189A1	Gm20751	Tox2
SLC8A1-AS1	FAM196A	Gm3002	Tpd52l1
SLC8A2	FAM198A	Gm3893	Tpst1
SLITRK1	FAM198B	Gm5089	Traip
SLITRK5	FAM19A5	Gm514	Trim11
SMOC2	FAM206A	Gm5607	Trim66
SMYD3	FAM211B	Gm6277	Tsc22d3
SNAPC1	FAM212B	Gm6537	Tshz2
SNHG5	FAM216A	Gm973	Ttc34
SNORA70B	FAM218A	Gmpr	Ttc39b
SNTB1	FAM21B	Gnal	Ubash3b
SNX13	FAM3C	Gnb4	Ube2e1
SORL1	FAM43A	Gna13	Ublcp1
SOX11	FAM46B	Gna4	Unc5d
SOX4	FAM47E	Golm1	Upp2
SOX9	FAM60A	Gpc1	Usp28
SPARCI 1	FAM65B	Gpc3	Usp53
SPIN4	FAM69A	Gpd1	Ultp14h
SPNS2	FAM69C	Gpd7 Gpd2	Vamn1
SPOPI	FAM76A	Gpr101	Vrk1
SPP2	FAM78B	Gpr115	Venil
SPRV2	FAM81A	Gpr12	Vetm2a
SPC	FAM83D	Cor122	War5A
5110	1710000	upi 100	VVul J+

SRPX	FAM83G	Gpr139	Wnt5a
SRRM3	FAM84B	Gpr153	Zbtb16
SRRT	FAM86DP	Gpr165	Zbtb7c
ST3GAL3	FAM86HP	Gpr22	Zbtb8a
ST3GAL4	FARP1	Gpr4	Zfhx2
ST8SIA2	FAT3	Gpr45	Zfp385b
STAB2	FBLIM1	Gpr56	Zfp467
STAC	EBI N1	Gpr63	Zfp536
STK3	FBI N2	Gpr68	Z10000
STOX2	FBLNZ	Gprasp2	2197020
SUPV3L1	FRN2	Gpraspz Gpsm1	
	FBXL17	Gpx2	
	EBX027	Graan	
	EBX028	Grasp Crb10	
		GIDIO	
	T BX032	GII02	
IDRD12	FCGRZA	Gridzip	
TERT4P2	FCGRI	Grikt	
TENMI	FCHUI	Grik3	
IENM2	FCRL6	Grik4	
TEP1	FCRLB	Grik5	
TERF1	FDFT1	Grin2d	
TGFBR2	FERMT2	Grip2	
THBS1	FEZF2	Grk5	
THRB-AS1	FGF1	Grm4	
TIMP4	FGF13	Grm8	
TLX3	FGFBP2	Grtp1	
TM2D3	FGFBP3	Gtf2ird1	
TMCC1	FGFR2	Gyg	
TMEM114	FGFR4	Hap1	
TMEM132E	FGFRL1	HapIn4	
TMEM165	FHDC1	Hcn4	
TMEM30C	FHL1	Hdc	
TMLHE-AS1	FHL2	Heg1	
TMTC2	FHL3	Heph	
TNK2	FHOD1	Hfe2	
TPK1	FIBIN	Hipk2	
TPRG1	FJX1	Hivep2	
TPTE	FKBP11	Hk1	
TRABD2A	FLJ16779	Hkdc1	
TRAPPC5	FLJ35024	Hmqb3	
TRAPPC8	FLJ42875	Hmacs2	
TREM2	FLJ46906	Hn1	
TRHDE-AS1	FLNC	Homer3	
TRIM44	FLVCR2	Hpca	
TRIM48	FMN2	Hpcal4	
TRIM49B	FMNL2	Hpdl	
TRPM1	FMNI 3	Hrasis	
TRPM3	FNBP1	Hrh1	
TRPS1	FNDC5	Hrk	
TSSC1	FOS	He3et2	
TTC28	FOSI 1	Ho2otA	
TTR	FOSI 2	Ho2ot5	
TTTV02	FOX 11	H060t0	
TTTV2P	FOXN3	Htatin?	
TYNOCO	FOXN3-AS1	H+r1h	
	EUVU3		
UBE2H	FUXU3	Htr2C	

UBE2MP1	FOXP1	Htr3a	
UBXN10	FRAT1	Htr4	
UGT2B4	FRAT2	Htr6	
UNC5C	FREM2	Htr7	
UPK3BL	FRMD3	Htra3	
UTRN	FRMD4A	Icam5	
VENTXP7	FRRS1L	Id4	
VPREB1	FRYL	Idh2	
WISP2	FXYD7	Ifi203	
WNT2B	GAB1	lfngr2	
WWC1	GABBR1	lgfbp4	
WWC2	GABBR2	Igfbpl1	
WWOX	GABPB2	lgsf1	
XIRP2	GABRB2	lgsf10	
XPNPEP1	GABRG3	ll13ra1	
XRCC6P5	GABRQ	<i>II16</i>	
XYLT1	GAD1	ll17rd	
YIPF7	GAD2	ll1f9	
ZBTB40	GADD45A	1134	
ZBTB7A	GADD45GIP1	ll4ra	
ZC3H6	GALC	Impact	
ZCWPW2	GALK1	Inadl	
ZFAT-AS1	GALNT15	Inf2	
ZFHX4	GALNT18	Inhba	
ZIC3	GALNT4	Ingg5i	
ZIC4	GALNT5	Insm1	
ZKSCAN2	GAP43	laca	
ZNF141	GAPDH	lagap2	
ZNF146	GARNL3	lasec2	
ZNF226	GATA6	Isl1	
ZNF366	GATM	IsIr2	
ZNF385D	GATS	Isoc1	
ZNF397	GBE1	Itga11	
ZNF407	GBP1	Itaa7	
ZNF462	GBP3	Itga8	
ZNF507	GBX2	Itabl1	
ZNF557	GCH1	Itih3	
ZNF620	GCNT1	Itih5	
ZNF645	GDNF	ltpkb	
ZNF706	GDPD1	ltpr3	
ZNF716	GEM	lvd	
ZNF733P	GFAP	Jph1	
ZNF735	GFPT2	Jph3	
ZNF827	GFRA1	Jph4	
ZNF891	GGACT	Junb	
	GGT1	Kalrn	
	GGT8P	Kank4	
	GJA1	Kazn	
	GJB2	Kcna4	
	GLCCI1	Kcnab2	
	GLG1	Kcnc3	
	GLIS3	Kcnd2	
	GLRB	КспаЗ	
	GNAL	Kcnh2	
	GNAO1	Kcnh3	
	GNG3	Kenh6	
		Nonno	

	GNG7	Kcnip1	
	GNL3	Kcnj12	
	GOLGA8B	Kcnj4	
	GPC2	Kcnj6	
	GPC6	Kcnk4	
	GPD1L	Kcnmb2	
	GPER	Kcnmb4	
	GPM6B	Kcnn3	
	GPNMB	Kcnq5	
	GPR137B	Kcns2	
	GPR139	Kcnt1	
	GPR155	Kcnv1	
	GPR158	Kctd17	
	GPR176	Kctd4	
	GPR19	Kctd6	
	GPR50	Khdrbs3	
	GPR88	Kif23	
	GPRC5B	Kif9	
	GPRIN1	Kit	
	GPX3	Klf10	
	GRAMD3	Klhdc8a	
	GRB10	Klhdc8b	
	GREM1	Klhl13	
	GRHL3	KIhl2	
	GRIA1	KIhl40	
	GRIA2	Klk10	
	GRIA4	KIk8	
	GRIK1	Krt73	
	GRIK4	Lama1	
	GRIN2A	Lama3	
	GRIN2B	Lancl1	
	GRIN2D	Lancl2	
	GRM7	Large	
	GRPR	Ldb2	
	GSTM1	Lfng	
	GSTM2	Lqi1	
	GSTO1	Lhfpl3	
	GSTO2	Lhfpl5	
	GSX2	Lhx8	
	GTF2E1	Lhx9	
	GTF2E2	Limd2	
	GTF2F2	Lin28b	
	GUCY1B3	Lin7a	
	GXYLT2	Lin7b	
	GYG2	Lingo1	
	GYPC	Linao2	
	H19	Lingo3	
	H1F0	Lipa	
	HAP1	Lmo3	
	HAS2	Lmo4	
	HAS2-AS1	Lmo7	
	HAS3	Lphn2	
	HBEGF	Lol	
	HCP5	Lrauk	
	HDAC9	Lrp11	
	HELLS	Lrp12	
	-		

	HEPACAM	Lrrc1	
	HEPH	Lrrc17	
	HERC3	Lrrc23	
	HERPUD1	Lrrc36	
	HES2	Lrrc4	
	HEY1	Lrrc48	
	HEY2	Lrrc9	
	HGF	Lrrn2	
	HGS	Lrrtm3	
	HIBADH	Lsm11	
	HIF1A	Ltk	
	HIST1H2AE	Lurap11	
	HIST1H2BC	Luzp2	
	HIST1H2BD	Ly6e	
	HIST1H2BG	Lynx1	
	HIST1H2BH	Lypd1	
	HIST1H4H	Lzts1	
	HIVEP1	Mab21l1	
	HIVEP3	Madd	
	HK2	Magi1	
	HLA-B	Man1a	
	HLA-C	Map2k1	
	HLA-DMA	Map3k1	
	HLA-DMB	Map3k19	
	HLA-DOA	Mapk1	
	HLA-DOB	Mapk10	
	HLA-DPA1	Mapk15	
	HLA-DPB1	March3	
	HLA-DQA1	Mast3	
	HLA-DQA2	Mat2b	
	HLA-DQB1	Matk	
	HLA-DRA	Mboat7	
	HLA-DRB1	Mchr1	
	HLA-DRB5	Mctp1	
	HLA-DRB6	Mctp2	
	HLA-E	Mcur1	
	HLA-F	Mdga1	
	HLA-H	Mdh1b	
	HLA-L	Me3	
	HMGA1	Mef2a	
	HMGA2	Meg3	
	HMGN5	Megf11	
	HNF4G	Megf6	
	HNMT	Meig1	
	HOMER2	Meis1	
	HOPX	Meis2	
	HPCAL1	Mertk	
	HPRT1	Met	
	HPSE	Mfsd4	
	HR	Mgst1	
	HS3ST1	Mgst3	
	HS3ST3B1	Mical2	
	HS3ST4	Mid2	
	HS6ST1	Mir22hg	
	HS6ST2	Mir3070b	
	HSD17B11	Mis18a	

HSD3B7	MIc1	
HSPA12A	Mlip	
HSPA2	Milt11	
HTR1F	Mmd	
HUNK	Mmp15	
ICK	Mmp17	
ICOSLG	Mndal	
ID4	Mns1	
IDO1	Mob3b	
IER2	Мрр3	
IER3	Mrap2	
IF144	Mrgpre	
IFI44L	Msi2	
IFIT2	Msra	
IFITM1	Msrb2	
IFNAR1	Mt2	
IGF2	Mtfp1	
IGFBP3	Mtmr12	
IGFBP5	Mtss1	
IGFBP6	Mttp	
IGFBP7	Musk	
IGFBPL1	Myadm	
IGIP	Mybl1	
IGLON5	Mycbpap	
IGSF11	Myh7	
IGSF9	Mylk	
IL11	Myo10	
IL13RA2	N28178	
IL18BP	N4bp2	
IL1RAP	Nab2	
IL27RA	Nabp1	
IL32	Nap1l5	
IL33	Napb	
IL4R	Nav3	
INHBB	Nbeal2	
INO80C	Nck2	
INPP5D	Nckap1	
IPCEF1	Ndn	
IPO13	Ndnf	
IQCK	Ndrg3	
IQGAP1	Nebl	
IQSEC2	Necab1	
IRF1	Nefl	
IRS1	Nek10	
IRX3	Nell2	
ISLR2	Neto1	
ITGA2	Neu2	
ITGA3	Neurl1b	
ITGA5	Nfib	
ITGAV	Nfix	
ITGB4	Nfkbie	
ITGB5	Ngb	
ITK	Ngf	
ITM2B	Nhs	
ΙΤΡΚΒ	Nid1	
ITPR2	Nin	

ITPR3	Ninl	
ITPRIPL2	Nkd2	
JAKMIP2-AS1	Nkx2-1	
JAM2	Nog	
JMJD7	Nos1ap	
JPH1	Notch4	
JRK	Nova1	
JUN	Npas1	
JUNB	Npas2	
JUP	Npdc1	
KAT2B	Nptx1	
KBTBD7	Nptx2	
KCNA3	Nptxr	
KCNA6	Npy	
KCNE4	Npy1r	
KCNF1	Npy2r	
KCNJ10	Nr2f1	
 KCNJ2	Nr3c2	
KCNJ4	Nr4a1	
 KCNJ8	Nr4a3	
KCNK10	Nrcam	
KCNMA1	Nrg1	
KCNMB1	Nrg3	
KCNN2	Nrgn	
KCNN4	Nrip2	
KCNQ3	Nrip3	
KCNQ5	Nrn1	
KCTD9	Nrp1	
KDR	Nrsn1	
KHDRBS3	Nrsn2	
KIAA0040	Nrxn1	
KIAA0368	Nsf	
KIAA0754	Nsmf	
KIAA1107	Nt5dc3	
KIAA1161	Ntn4	
KIAA1199	Ntng1	
KIAA1211L	Ntng2	
KIAA1217	Ntrk1	
KIAA1244	Ntrk2	
KIAA1407	Nts	
KIAA1524	Numbl	
KIAA1549L	Nwd1	
KIAA1598	Nxn	
KIAA1755	Nxph1	
KIAA1919	Nynrin	
KIF20B	Ociad2	
KIF26B	Ogfrl1	
KIFAP3	Olfm1	
KIFC3	Olfml2b	
KIRREL3	Onecut2	
KLF14	Oprd1	
KLF15	Orai2	
KLF2	Osbpl9	
KLF5	Osr1	
KLHL29	Otof	
KLHL35	Otos	

KLHL36	P2rx5	
KLHL4	Pag1	
KNDC1	Palmd	
KNSTRN	Papln	
KREMEN1	Parp1	
KRT18	Parp6	
KRT80	Pax6	
L3HYPDH	Pbx3	
L3MBTL1	Pcdh1	
L3MBTL3	Pcdh15	
L3MBTL4	Pcdh18	
LAMA1	Pcdh20	
LAMB1	Pcdhgb6	
LAMB2	Pcdhgb7	
LAMP5	Pcdhgc4	
LCAT	Pcgf5	
LDB2	Pclo	
LDHA	Pcnxl2	
LEF1	Pcsk2	
LEPREL1	Pcsk6	
LFNG	Pde1a	
LGALS1	Pde1c	
LGALS12	Pde3a	
LGALS3	Pde9a	
LGALS8	Pdgfra	
LGI1	Pdxk	
LGI2	Peg10	
LGR4	Peg3	
LHFPL3	Pfkl	
LIF	Pgap1	
LIMCH1	Pgbd5	
LIMD2	Pgf	
LIMK2	Pgm2l1	
LIMS2	Pgm5	
LINC00338	Pgrmc1	
LINC00341	Phactr2	
LINC00488	Phex	
LINC00839	Phf20	
LIPG	Phospho1	
LIX1	Phyhip	
LMCD1	Pik3r2	
LMCD1-AS1	Pip4k2c	
LMF1	Pip5k1a	
LMNA	Pip5k1c	
LMO2	Pipox	
LMO3	Pitpnm3	
LMO4	Pkm	
LMOD1	Pkp2	
LNX1	Plcb4	
LOC100093631	Plcd4	
LOC100127888	Plch1	
LOC100130557	Plch2	
LOC100130691	Plcxd1	
LOC100130987	Pld5	
LOC100131067	Pld6	
LOC100134868	Plekha6	

	LOC100289495	Plekha7	
	LOC100505695	Plekha5	
	LOC100506124	Plk2	
	LOC100506178	Pls3	
	LOC100506343	Plxna1	
	LOC100506385	Plxna3	
	LOC100506421	Plxna4	
	LOC100506990	Pm20d1	
	LOC100507194	Pnck	
	LOC100507577	Pnma3	
	LOC100527964	Pnoc	
	LOC100996291	Pop5	
	LOC155060	Popdc3	
	LOC283070	Por	
	LOC284998	Porcn	
	LOC338799	Postn	
	LOC389023	Pou3f1	
	LOC642852	Ppfia2	
	LOC643355	Ppfia3	
	LOC653160	Poil6	
	LOC654433	Ppm1h	
	LOC728392	Ppp1cc	
	LOC728431	Ppp1r1a	
	LOC728463	Ppp1r32	
	LOC728730	Ppp3ca	
	LOC728743	Ppp3cb	
	LOC729683	Ppp3r1	
	1 0C729970	Prdm16	
	LOC730101	Prdx4	
	LOC730183	Prickle2	
	LOX	Prkab2	
	LOXL1	Prkach	
	LOXL1-AS1	Prkag2	
	LOXL4	Prkar2b	
	LPAR1	Prkca	
	LPAR2	Prkcd	
	LPAR4	Prkce	
	LPAR6	Prkca	
	I PCAT2	Prka2	
	I PHN2	Prokr2	
	LPIN1	Prrt2	
	LPIN2	Prrt3	
	LPL	Prss35	
	LPPR4	Prtn3	
	LPPR5	Psd	
	L BCH1	Ptch1	
	LRFN1	Ptrh2	
	L RIG1	Ptchd1	
	LRIG3	Ptafrn	
	I RP12	Ptre?	
	1 RP2	Ptk2h	
	I RP4	Ptn	
	I RP8	Ptndc1	
	L BBC15	Ptpn5	
	L BBC3B	Ptoro	
	I RRCAC	Γ ιμι e Dtprt	
	L111040	Fipit	1

LRRC56	Pvrl3	
LRRC73	Pvrl4	
LRRC8C	Pxdn	
LRRCC1	Qpct	
LRRTM2	R3hdm4	
LRRTM3	Rab15	
LRRTM4	Rab3d	
LSP1	Rab3ip	
LTBP2	Rab6b	
LTBP3	Rabgap1/	
LUZP2	Radil	
LY6H	Rap1gap2	
LYN	Rapgef3	
LYNX1	Rapgef5	
LYPD6B	Rapgefl1	
LYST	Rara	
MAEL	Rarres2	
MAFB	Rasa4	
MAGEL2	Rasal1	
MAGI2	Rasaef1a	
MAGI2-AS3	Rasarp1	
MALT1	Rasl11a	
MAML3	Basl11b	
MAMLD1	Basst9	
MAOB	Baver2	
MAP1B	Bbfox1	
MAP1LC3A	Bbfox3	
MAP1LC3C	Bbm20	
MAP2K3	Bbms1	
MAP2K5	Bbms3	
MAP3K3	Bcan3	
MAP3K5	Bcn1	
MAP3K6	Bec8	
MAP7D1	Bem2	
 MAPK8IP1	Besn18	
 MAPKAPK3	Bet	
 MARCH2	Bftn1	
 MABCH4	Baaa4	
 MARK1	Ras10	
 MARVELD3	Bas11	
 MASP1	Bas14	
MAST4	Ras17	
 MB21D2	Bas2	
MBNI 1-AS1	Ras22	
 MBOAT1	Rae3	
 MC1B	Ras4	
 MCHB1	Bas7bn	
MCTP1	Back	
MCTP2	Rael1	
MDFI	Rhnn1	
MES	Dimboo	
MED101		
MED 12L	Dimo?	
MEGEQ	טפווווח פוויס	
MEQP1	Ditor	
METAD1	riipi Dmat	
IVIE I AP I	HMSt	

	METRNL	Rnf112	
	METTL7A	Rnf144b	
	METTL7B	Rnf152	
	MFAP2	Rnf165	
	MFAP3L	Rnf182	
	MFAP4	Rnf19a	
	MFAP5	Rnf207	
	MFI2	Robo1	
	MFRP	Robo2	
	MGARP	Roadi	
	MGLL	Rprml	
	MGST1	Rps6ka2	
	ΜΙΑΤ	Rps6kl1	
	MICA	Rrad	
	MICAL2	Rspo1	
	MID1	Rspo2	
	MIF	Rspo3	
	MIF4GD	Rtn4r	
	MIPEPP3	Rtn4rl1	
	MIR210HG	Runx1t1	
	MITF	Runx2	
	MLC1	S100a10	
	MLLT11	Sall3	
	MMACHC	Samd14	
	MMP15	Samd4	
	MMP17	Sarm1	
	MN1	Scarf2	
	MOB3B	Scan	
	МОК	Schin1	
	MORC4	Scn1b	
	MORN1	Scn8a	
	MOXD1	Scn9a	
	MPC1	Scrt2	
	MPP3	Scx	
	MBAP2	Sdc2	
	MBAS	Sdchp	
	MREG	Sel113	
	MBOH8	Sema3a	
	MBPL3	Sema3e	
	MSH5-SAPCD1	Sema3f	
	MSN	Sema4g	
	MT1X	Sema7a	
	MT2A	Senn1	
	MT3	Sent3	
	MTEP1	Sent9	
	MTHED2	Serw1	
	MTM1	Serninaan	
	MTSS1	Sorpinb9	
	MTSS11	Serpino?	
	MTTP	Soons	
	MTLIS1	Stano	
	MIRC	Silp2 Scom1	
	MYI1	Shaharla	
	MXRAS	Shabar	
	MVC	SIIJUUD	
	MVCI 1	SIIJYIZ Shorti	
	INITOLI	513111	

MYL12A	Shisa6	
MYLK	Sidt1	
MYO10	Sipa1l3	
MYO19	Six3	
MYO1B	Six3os1	
MYO1E	Skida1	
MYO5B	Skil	
MYO7A	Slc10a4	
MYOF	Slc17a6	
MZT1	Slc17a7	
N4BP2L1	Slc17a8	
NABP1	Slc1a3	
NACC2	Slc20a2	
NADKD1	Slc22a3	
NAPEPLD	Slc24a2	
NAT8L	Slc24a4	
NAV1	Slc25a13	
NAV2	Slc25a22	
NBEAL2	Slc25a29	
NCAM1	Slc25a34	
NCAM2	Slc26a4	
NCAPG	Slc2a6	
NCEH1	Slc2a9	
NCKAP5	Slc32a1	
NCMAP	Slc35f1	
NCR3LG1	Slc35g2	
NDRG1	Slc37a1	
NDRG2	Slc38a1	
NDUFA9	Slc38a5	
NDUFAF2	Slc44a5	
NEDD4	Slc4a7	
NEFH	Slc6a1	
NEGR1	Slc6a11	
NEK11	Slc6a15	
NF2	Slc6a7	
NFASC	Slc7a11	
NFATC1	Slc7a14	
NFE2L2	Slc7a3	
NFIA	Slc7a4	
NFKBIA	Slc7a8	
NGEF	Slc8a2	
NGFR	Slc8a3	
NID1	Slc9a2	
NIM1	Slc9a4	
NIN	Slc9a5	
NIPSNAP1	Slc9a6	
NKAIN1	Slco2a1	
NKAIN4	Slit3	
NKD1	Slitrk3	
NKX6-2	Slitrk5	
NLGN3	Slitrk6	
NLGN4X	Smoc1	
NMB	Smoc2	
NMNAT2	Smpd3	
NMRK1	Sms	
NNMT	Snap25	

NOMO2	Snap91	
NOS1	Snca	
NOS1AP	Sncg	
NOXA1	Snn	
NPAS3	Snph	
NPS	Sntb1	
NPTXR	Snx8	
NR2F1	Socs2	
NR3C1	Sorcs1	
NR4A1	Sort1	
NRARP	Sox1	
NRG2	Sox13	
NRGN	Sox2	
NRP1	Sp9	
NRP2	Spata13	
NRSN1	Spata18	
NSG1	Spata2l	
NT5DC3	Spats2l	
NT5E	Spef2	
NTM	Speq	
NTSR1	Sphkap	
NUPR1	Spint1	
NXPE3	Spock1	
NXPH1	Spon1	
NXPH3	Spp1	
OAF	Spred2	
OCIAD2	Sprn	
OCLN	Sptb	
ODC1	Sptbn2	
OGDHL	Srebf1	
OGFRL1	Srgap1	
OLFM1	Srl	
OLFML2A	Ssh1	
OLFML2B	Sspo	
OLFML3	Sstr3	
OLIG1	Ssx2ip	
OLIG2	St18	
OMG	St3gal5	
ORC1	St6galnac5	
OSBP2	Stac	
OSBPL3	Stard5	
OSBPL5	Stat5b	
OTX2	Stim2	
P2RX6	Strn4	
P2RX7	Stx1a	
P4HA2	Stxbp5	
PABPC3	Stxhn5l	
PABPC5	Sult4a1	
PACRG	Susd2	
PADI3	Sv2h	
PAG1	Sv2c	
PAK3	Svce2	
PAK6	Syn1	
PALM2	Svn2	
PAPI N	Svna	
PAPSS2	Syndia1	
, /11 002	Synaigh	L

	PAQR3	Synj1	
	PAQR6	Synm	
	PAQR8	Svnpo	
	PAQR9	Synpr	
	PAR-SN	Svt1	
	PARD6A	Syt13	
	PARM1	Svt3	
	PARP12	Tacr1	
	PAWR	Tanc1	
	PAX6	Tbata	
	PCDH1	Tbc1d8b	
	PCDH10	Tbl1x	
	PCDH18	Tbr1	
	PCDH19	Tcerq1I	
	PCDH7	Tcf4	
	PCDH8	Tcfl5	
	PCDH9	Tcte1	
	PCDHA4	Tdrd5	
	PCDHAC1	Tec	
	PCDHGA3	Tecpr1	
	PCDHGC3	Tenm1	
	PCDHGC5	Tenm3	
	PCED1B	Tesc	
	PCK1	Tex40	
	PCP4	Tex9	
	PDE1C	Thbs2	
	PDE2A	Thbs4	
	PDF3A	Them6	
	PDE4B	Thra	
	PDE6B	Thrb	
	PDE8A	Thrsp	
	PDE8B	Thsd4	
	PDGFB	Timn?	
	PDGFRA	Tle1	
	PDGFRL	Tm4sf1	
	PDIA5	Ттсо5	
	PDK1	Tmem130	
	PDLIM3	Tmem132c	
	PDLIM4	Tmem132e	
	PDP1	Tmem144	
	PDPN	Tmem151b	
	PDZD2	Tmem158	
	PEG10	Tmem163	
	PEG3	Tmem178	
	PERP	Tmem198	
	PFDN1	Tmem212	
	PEKEB2	Tmem232	
	PFKP	Tmem252	
	PGBD5	Tmem255a	
	PHKG1	Tmpm19	
	PHI DA1	Tmom/7	
	PHI DA2	Tmem501	
	PHI DR2	Tmem67	
	PIF702	Ттето1	
	PIK3C2R	Tmie	
	PIK2D2		
	1 11/01/0	THISDIU	

PIM3	Tnfaip3	
PIRT	Tnfaip8l1	
PITPNM2	Tnfaip8l3	
PITPNM3	Tnfrsf25	
PKIB	Tnks1bp1	
PKM	Tomm34	
PLA2G4A	Тох	
PLA2G5	Tox2	
PLAC9	Tpd52l1	
PLAU	Τρορ3	
PLAUR	Tprkb	
PLB1	Trhde	
PLCB4	Trim2	
PLCE1	Trim66	
PLCH1	Trnp1	
PLCI 2	Tro	
PI D5	Trpc3	
PLEKHA1	Trnc4	
PLEKHA7		
PLEKHF1	Trns1	
PLEKHG4B	Tshz2	
PI FKHG5	Tspan13	
PI FKHH2	Tspan17	
 PL IN2	Tspan18	
 PLIN3	Tspan5	
 PI K1	Tto 39a	
 PI K2	Ttl	
 PLIP	Ttll3	
PLOD2	Ttill8	
PLP1	Tuba4a	
PLS1	Tuba8	
PLSCR4	Tyro3	
PLXDC2	Liba7	
PLXNA2	Ubash3b	
PI XNA4	l lhe?a?	
PLXNB3	Ubxn10	
PMAIP1	Ubxn11	
PMFPA1	Unc13b	
 PMI		
 PMP2	Linc5a	
PNCK		
 PNP	Usn12	
PNPLA3	Usn13	
POC1B	Usn29	
ΡΟΠΧΙ	Usp35	
POLQ	Usn51	
POLR1E	Usp6nl	
POLR3G	Ust	
POMT2	Vat1	
POP1	Vat1l	
POPDC3	Vill	
POSTN	Vps37b	
POU2F3	Vstm2l	
PPAP2B	Vwa5h1	
PPAP2C	Vwc2l	
PPAPDC1A	Wasf1	
		1

PPARD	Wbscr17	
PPARGC1A	Wdr6	
PPL	Whrn	
PPP1R14B	Wipf3	
PPP1R14C	Wnt7b	
PPP1R18	Xkr6	
PPP1R1C	Xpr1	
PPP1R2	Ypel1	
PPP1R3B	Ywhah	
PPP1R3E	Zbtb18	
PPP2R5A	Zbtb7c	
PRAF2	Zbtb8b	
PRDM1	Zcchc12	
PRDM16	Zdbf2	
PRDX1	Zeb2	
PRELID2	Zfhx3	
PREP	Zfhx4	
PRICKLE1	Zfp189	
PRICKLE2	Zfp275	
PRICKLE4	Zfp365	
PRKAR2A	Zfp423	
PRKAR2B	Zfp46	
PRKCD	Zfp503	
PRKCE	Zfp521	
PRKCZ	Zfp697	
PRKG1	Zfp783	
PROCA1	Zfp811	
PROCR	Zfp92	
PRODH	Zfp941	
PROKR1	Zfpm2	
PROM1	Zfvve28	
PROX1	Zic1	
PRR16	Zic2	
PRRX1	Zic3	
PRSS23	Zic4	
PSD3	Zim1	
PSMA6	Zkscan16	
PSRC1	Zkscan7	
PSTPIP2	Zmat2	
PTCHD1		
PTCHD2		
PTGDS		
PTGES		
PTGR1		
PTGS1		
PTHLH		
PTK2		
PTN		
PTP4A3		
PTPDC1		
PTPN3		
PTPN9		
PTPRF		
PTPRF		
PTPRN		
PTPRT		
	1	1

	PTPRU	
	PTPRZ1	
	PUSL1	
	PVRL1	
	PXMP4	
	PXN	
	PYGB	
	OPCT	
	BAB11FIP1	
	BAB13	
	BAB30	
	BAB34	
	BAB38	
	BAB3B	
	RAB3II 1	
	BAD51D	
	BADII	
	RAI14	
	BAL VI	
	RAMP1	
	RAP1GAP	
	BAP1GAP2	
	BAPGEE4	
	BAPGEE5	
	RABBES3	
	BASD2	
	BASEE	
	BASGBE2	
	RASGRP1	
	RASGRP2	
	RASL11B	
	RASSF10	
	RASSF8	
	RBM24	
	RBMS2	
	RBPMS	
	RCAN2	
	RCBTB2	
	RCL1	
	RCOR2	
	RDM1	
	REEP1	
	RELL1	
	RENBP	
	RFFL	
	RFTN2	
	RGMA	
	RGMB	
	RGR	
	RGS10	
	RGS11	
	RGS16	
	RGS3	
	RGS4	
	RGS5	
	RGS7BP	

	RGS8	
	RHBDL1	
	RHOU	
	RHPN1	
	RHPN2	
	RIBC1	
	RIN1	
	RIPK2	
	RNASE4	
	RND1	
	RND2	
	RNF112	
	RNF128	
	RNF13	
	RNF157	
	RNF157-AS1	
	RNF217	
	RNF34	
	ROBO2	
	ROBO3	
	RORB	
	RPE65	
	RPH3A	
	RPL22L1	
	RPL37A	
	RPP25	
	RPS6KA1	
	RPS6KA5	
	RPS6KL1	
	RRAD	
	RRAS2	
	RRS1	
	RSPH4A	
	RTDR1	
	RTN1	
	RTN2	
	RIN4R	
	RXRA	
	RXRB	
	RYR3	
	S100A10	
	STUDATO	
	S100A2	
	S100A3	
	S100A4	
	STOUAD	
	5100D \$1000	
	017N1 QALL1	
	SALLI	
	SAIVID4A SAMDO	
	SAIVIDS	
	SAFUDZ QAT1	
	SCG2	
	SCG3	
	SCG5	

SCGN		
SCN1A		
SCN3A		
SCN4B		
SCN9A		
SCNN1B		
SCNN1D		
 SCPEP1		
SCBG1		
 SCUBE1		
 SCUBE2		
 SDC1		
SDHAP2		
 SDK1		
 SDK2		
 SEL113		
 SEL FNBP1		
 SELENDI		
 SEMA4B		
SEM454		
 SEM45B		
 SEMA6A		
SEMAG		
SEMAGD		
SEMAJO		
SEMG1		
SEND3_EIE/A1		
SEPP1		
 SEPSECS		
SEPT6		
 SEPT7		
SERHI 2		
 SERINC2		
 SERPINA3		
 SERPINB8		
SERPINE1		
SERPINE2		
SERPING1		
SERTADA		
SENTAD4		
SE76		
SERP1		
SET2D2		
SGK1		
SGSM1		
SH2B3		
SH3BGBL 3		
SHARDE		
SH3BP5-491		
SHACI 2		
SH3PYD2A		
SHIGFADZA		
SHROOM		
SIFAT SIDATI 0		
SIFAILZ QVII		
SKIL	1	

	SLC10A4	
	SLC13A5	
	SLC15A3	
	SLC18A1	
	SLC18B1	
	SLC1A1	
	SLC1A3	
	SLC1A4	
	SLC24A3	
	SLC25A27	
	SLC25A33	
	SLC26A2	
	SLC2A1	
	SLC2A10	
	SLC2A5	
	SLC2A8	
	SLC31A2	
	SLC32A1	
	SLC35E4	
	SLC35F2	
	SLC37A1	
	SLC38A1	
	SLC39A10	
	SLC39A14	
	SLC43A3	
	SLC47A2	
	SLC48A1	
	SLC4A10	
	SLC4A4	
	SLCGAD	
	SLCOAS	
	SLC7411	
	SLC7A5	
	SI C9A3B1	
	SI C9A7	
	SI C9A9	
	SI CO1C1	
	SI CO4A1	
	SLIT2	
	SLITRK2	
	SMAD7	
	SMAGP	
	SMAP2	
	SMARCA2	
	SMARCD2	
	SMOC1	
	SMOC2	
	SMOX	
	SMS	
	SMTN	
	SMURF2	
	SMYD3	
	SNAI2	
	SNCAIP	
	SNHG8	

SNORA76	
SNTB1	
SNTG1	
SNX10	
SOBP	
SOCS1	
SOGA2	
SOGA3	
SORBS1	
SORL1	
SORT1	
SOWAHC	
SOX1	
SOX13	
SOX2	
SOX21	
SOX3	
SOX5	
SOX6	
SOX9	
SP100	
SP140L	
SPARCL1	
SPATA13	
SPATA6	
SPC25	
SPEF2	
SPHK1	
SPOCD1	
SPOCK2	
SPP1	
SPRED3	
SPRY2	
SPSB1	
SPSB2	
SQRDL	
SRCIN1	
SRGAP1	
SRPX	
SSC5D	
SSFA2	
SSPN	
SSR3	
SST	
ST3GAL5	
ST6GAL1	
ST6GAL2	
ST7	
ST7-AS1	
ST8SIA1	
ST8SIA2	
ST8SIA3	
ST8SIA4	
STAC2	
STAMBPL1	
STAP2	

	STARD13	
	STARD4	
	STARD8	
	STAT2	
	STC1	
	STC2	
	STEAP3	
	STK10	
	STK17A	
	STK17B	
	STK39	
	STON1-GTF2A1L	
	STOX1	
	STPG1	
	STRA6	
	STX1A	
	STX3	
	STXBP5L	
	SULF1	
	SULF2	
1	SULT1C4	
	SUSD5	
	SUV420H2	
	SYCE1L	
	SYNE1	
	SYNE3	
	SYNJ2	
	SYNM	
	SYNPO	
	SYNPR	
	SYT11	
	SYT12	
	SYT17	
	SYT6	
	SYTL2	
	TAB3	
	TACC1	
	TAF4B	
	TAGLN2	
	TAGLN3	
	TALDO1	
	TAOK3	
	TAPT1	
	TBC1D12	
	TCEAL7	
	TCEANC	
	TCN2	
	TDP1	
	TENC1	
	TENM1	
	TENM2	
	TESC	
	TEX2	
	TFEB	
	TFPI	
	TGFB2	

TGFBI		
TGFBR2		
TGIF1		
TGIF2		
THBS2		
THBS3		
THBS4		
THSD1		
TIAM1		
TIE1		
TIMP3		
TIMP4		
TINCR		
TLCD2		
TLE6		
TLN2		
TLR3		
TM4SF1		
TM4SF18		
TMCC3		
TMCO4		
TMED10		
TMED8		
TMEFF2		
TMEM108		
TMEM117		
TMEM132C		
TMEM132E		
TMEM154		
TMEM161B-AS1		
TMEM169		
TMEM170A		
TMEM170B		
TMEM173		
TMEM178A		
TMEM178B		
TMEM2		
TMEM200A		
TMEM205		
TMEM217		
TMEM229B		
TMEM231		
TMEM243		
TMEM255A		
TMEM27		
TMEM45A		
TMEM47		
TMEM51		
TMEM55A		
TMEM86A		
TMEM9B-AS1		
TMSB10		
TMTC1		
TMTC2		
TNC		
TNFAIP2		
· · · · · · · -	I	
	TNFAIP3	
----------	------------	------
	TNFRSF11B	
	TNFSF4	
	TNRC18	
	TNS1	
	TOMM34	
	TOX2	
	TP53I11	
	TPBG	
	TPCN1	
	TPD52L1	
	ТРМТ	
	TPP1	
	TPT1-AS1	
	TRABD2B	
	TRAM1L1	
	TRAM2	
ļ ļ	TRERF1	
	TRH	
ļ ļ	TRIB1	
ļ	TRIL	
	TRIM14	
	TRIM35	
	TRIM46	
	TRIP13	
	TRMT6	
	TRNP1	
	TRPM8	
	TSKU	
	TSPAN12	
	ISPAN13	
	TSPAN7	
	TTC21A	
	TUDATO	
	TUBAIC	
	TUBA8	
	TWE2	
<u> </u>		
	1100808000	
	UNC93R1	
	UPP1	
<u> </u>	USP53	
	USP54	
	UST	
<u> </u>	UTRN	
	VAMP1	

	VAMP5	
	VARS2	
	VASH2	
	VASN	
	VAT1L	
	VAV3	
	VCAM1	
	VEGFA	
	VEPH1	
	VGF	
	VGLL3	
	VIPR1	
	VSIG10L	
	VSNL1	
	VSTM2L	
	WASF3	
	WBP5	
	WBSCR17	
	WDFY3-AS2	
	WDR78	
	WEE1	
	WIPF3	
	WLS	
	WNK4	
	WNT7B	
	WWC2	
	XYLB	
	XYLT1	
	YPEL2	
	YRDC	
	ZBTB47	
	ZBTB7C	
	ZCCHC12	
	ZCCHC24	
	ZDHHC13	
	ZDHHC21	
	ZDHHC22	
	ZFAND6	
	ZFHX4-AS1	
	ZFP36	
	ZFP69	
	ZFPM2	
	ZIC3	
	ZMAT1	
	ZNF185	
	ZNF33B	
	ZNF34	
	ZNF37BP	
	ZNF385D	
	ZNF423	
	ZNF436	
	ZNF469	
	ZNF483	
	ZNF589	
	ZNF665	
	ZNF672	

ZNF774	
ZNF781	
ZNF782	
ZNF789	
ZNRF2	

Table 2.2. Overlaps between <i>Foxp1^{+/-}</i> and <i>Foxp2^{+/-}</i> STR target genes and D1+ and D2+ MSNs genes.										
	<i>Foxp2</i> ⁺∕⁻S1	R overlaps			Foxp1⁺ [≁] S	TR overlaps				
Upre	gulated	Downre	gulated	Upreg	ulated	Downr	egulated			
Drd1/ <i>Foxp2</i> [≁]	Drd2/ <i>Foxp2</i> *∕-	Drd1/ <i>Foxp2</i> ⁺∕-	Drd2/ <i>Foxp2</i> ⁺∕-	Drd1/ <i>Foxp1</i> ⁺∕-	Drd2/ <i>Foxp1</i> ⁺∕-	Drd1/ <i>Foxp1</i> */-	Drd2/ <i>Foxp1</i> ⁺′⁻			
ATL3	1700019D03RIK	8430427H17RIK	4933432103RIK	ADARB2	ATP1B1	AMZ1	1700001O22RIK			
C1QL3	ADK	ARHGAP29	CLASP2	ANKRD29	FAM155A	DDIT4L	ARG2			
CBLN1	ANKRD12	CACNG1	DGCR6	BC048546	FAM19A2	DMKN	DACH1			
ССК	C230085N15RIK	CASP3	FAM20C	BHLHE22	GM13629	FAM105A	DBP			
CMBL	CDC14A	FOXP2	FST	CALB2	HSPA1A	FANCB	GNB5			
CPLX3	CNIH3	FZD3	GPR6	CBLN4	HTR7	NEK2	GPRIN3			
DDHD1	ERLEC1	GEMIN5	ID4	CRH	NELL1	RYR1	GPX6			
DSP	FAM173A	GPR26	MYH14	CRTAC1	NTNG1	SEC14L1	HPCA			
EBF1	NCAPH2	IGFBP4	NTNG1	EFR3A	PRKAR2A	SERPINB1B	HRH3			
EFR3A	PDCD4	KCNS2	PLXDC1	FGF12	RALYL		KCNIP2			
EYA1	QK	MAN1A	RIOK1	GNAI1	UNC5D		KCNK2			
FHL2	RABGAP1L	NCAM2	RIT2	GNG4			KLHL1			
GNG2	SLITRK6	PCDH20	RPS9	HSPA12A			NGEF			
KCNJ3	SMPD4	RASSF3	SLC1A1	ID2			NR4A1			
MAPK11	TAOK3	RPS6KA5	SLC41A1	KCNJ3			NUCB2			
МҮНЗ	TMSB4X	RYR1	SYNPO2	LINGO2			PMEPA1			
NAPB	ZCCHC7	SEC14L1	TBRG4	NRP2			RCN1			
NCALD			TCF3	NRXN1			RHOBTB2			
NEUROD2			ZHX3	PCDH20			SYT6			
NEUROD6				PKP2			VRK1			
NOV				PLCXD2						
NR4A2				PPM1L						
NRG3				RASGRF2						
NRN1				SLC17A6						
NRXN1				TTC39B						
OLFM1				VSNL1						
PAK7				VSTM2A						
PPP1R12B										
PRDM8										
PRSS12										
PSMB10										
RAI14										
RSPO2										
RTN4RL2										
SATB2										
SCYL3										
SFXN1										
SH3GL2										
TBR1										
USP14										
VIP										
VSNL1										
ZFP318										
ZFPM2										

Table 2.3. GO categories of hNP ChIP-seq and RNA-seq datasets.											
RNA	-seq		Chl	P-seq		RNA-seq/Chl	P-seq o\	overlaps			
GO term	Gene count	Benjamini p-value	GO term	Gene count	Benjamini p-value	GO term	Gene count	Benjamini p-value			
plasma membrane	537	2.70E-19	synapse	24	1.40E-02	synapse	10	1.30E-02			
plasma membrane part	345	6.60E-17	cytoskeleton	56	9.20E-02	cell adhesion	12	4.70E-01			
cell adhesion	128	6.00E-09	cell projection part	15	2.70E-01	biological adhesion	12	2.70E-01			
biological adhesion	128	3.30E-09	actin binding	18	9.80E-01	carbohydrate biosynthetic process	5	4.70E-01			
cell junction	103	4.10E-09	growth factor binding	9	8.90E-01	response to heat	4	4.80E-01			
calcium ion binding	151	6.80E-08	cell projection	30	4.30E-01	dystrophin-associated glycoprotein complex	3	2.30E-01			
synapse	78	8.80E-09	axon	11	4.00E-01	rhythmic process	5	5.10E-01			
regulation of cell proliferation	133	2.10E-07	dystrophin- associated glycoprotein complex	4	3.70E-01	heart development	6	5.00E-01			
enzyme linked receptor protein signaling pathway	71	1.10E-06	dendrite	11	3.50E-01	muscle contraction	5	6.20E-01			
extracellular region part	155	2.60E-07	intracellular non- membrane-bounded organelle	85	3.60E-01	response to temperature stimulus	4	6.20E-01			
extracellular matrix	72	3.60E-07	non-membrane- bounded organelle	85	3.60E-01	cell fraction	13	3.70E-01			
cell morphogenesis involved in differentiation	55	4.40E-06	metal ion binding	131	9.10E-01	muscle system process	5	6.50E-01			
cell morphogenesis	71	4.50E-06	cation binding	132	8.40E-01	response to abiotic stimulus	7	6.20E-01			
neuron projection	71	5.10E-07	calmodulin binding	10	8.00E-01	glycogen metabolic process	3	6.80E-01			

response to hormone stimulus	72	6.00E-06	nerve terminal	5	4.10E-01	lung development	4	6.50E-01
response to endogenous stimulus	77	6.40E-06	ion binding	133	7.80E-01	glucan metabolic process	3	6.30E-01
response to organic substance	118	5.90E-06	cytoskeletal protein binding	23	7.60E-01	cellular glucan metabolic process	3	6.30E-01
proteinaceous extracellular matrix	67	8.70E-07	protein domain specific binding	17	7.20E-01	sarcomere	4	4.30E-01
neuron differentiation	81	7.50E-06	dendritic spine	5	4.00E-01	respiratory tube development	4	6.20E-01
integral to plasma membrane	179	1.50E-06	low-density lipoprotein binding	4	7.20E-01	memory	3	6.40E-01
intrinsic to plasma membrane	182	1.50E-06	asymmetric synapse	3	4.60E-01	synaptic transmission	6	6.30E-01
regulation of cell motion	45	2.10E-05	4 iron, 4 sulfur cluster binding	4	8.40E-01	respiratory system development	4	6.10E-01
negative regulation of cell communication	53	2.30E-05	insulin-like growth factor binding	4	8.40E-01	cell junction	8	4.20E-01
negative regulation of signal transduction	49	2.20E-05	receptor complex	8	5.60E-01	polysaccharide metabolic process	4	6.10E-01
regulation of cell migration	41	2.20E-05	intrinsic to Golgi membrane	5	5.30E-01	learning or memory	4	6.10E-01
neuron projection development	54	2.20E-05	integral to plasma membrane	42	5.10E-01	gonad development	4	6.00E-01
insoluble fraction	133	5.90E-06	neuron projection	16	4.90E-01	regulation of system process	6	6.00E-01
regulation of locomotion	44	3.40E-05	insulin receptor substrate binding	3	8.70E-01	cell surface receptor linked signal transduction	17	5.80E-01
cell projection organization	69	3.30E-05	cell surface	16	5.10E-01	energy reserve metabolic process	3	5.70E-01
neuron development	65	3.20E-05	phosphoinositide 3- kinase complex	3	5.10E-01	myofibril	4	4.00E-01

cellular component morphogenesis	72	5.80E-05	plasma membrane part	70	5.20E-01	polysaccharide biosynthetic process	3	5.80E-01
response to wounding	89	6.60E-05	intrinsic to plasma membrane	42	5.10E-01	contractile fiber part	4	3.70E-01
cell fraction	161	1.60E-05	cell junction	21	5.30E-01	response to drug	5	6.00E-01
cell surface	67	1.50E-05	glutamate receptor activity	4	9.30E-01	membrane fraction	10	3.60E-01
regulation of phosphorus metabolic process	83	7.40E-05	axon part	5	5.40E-01	Z disc	3	3.40E-01
regulation of phosphate metabolic process	83	7.40E-05				tube development	5	6.00E-01
extracellular region	269	1.50E-05				regulation of systemic arterial blood pressure by endothelin	2	5.90E-01
neuron projection morphogenesis	46	7.60E-05				reproductive structure development	4	5.90E-01
synapse part	52	1.80E-05				contractile fiber	4	3.20E-01
positive regulation of developmental process	55	9.30E-05				development of primary sexual characteristics	4	5.80E-01
regulation of phosphorylation	80	9.50E-05				insoluble fraction	10	3.30E-01
cell motion	81	1.00E-04				cellular polysaccharide metabolic process	3	6.10E-01
positive regulation of cell proliferation	73	1.00E-04				peptide metabolic process	3	6.10E-01
transmembrane receptor protein tyrosine kinase signaling pathway	47	1.10E-04				cell-cell signaling	8	6.20E-01
membrane fraction	126	2.50E-05				regulation of synaptic transmission	4	6.10E-01
intracellular signaling cascade	174	1.10E-04				transmission of nerve impulse	6	6.00E-01

positive regulation of transferase activity	49	1.30E-04		response to mechanical stimulus	3	6.00E-01
extrinsic to membrane	85	3.90E-05		neuron projection	6	3.40E-01
positive regulation of cell differentiation	47	1.90E-04		plasma membrane	28	3.20E-01
regulation of system process	58	1.90E-04		cell fate commitment	4	6.00E-01
vasculature development	50	1.90E-04		negative regulation of transcription, DNA- dependent	6	5.90E-01
cell morphogenesis involved in neuron differentiation	44	1.90E-04		leukocyte migration	3	5.80E-01
MHC protein complex	20	5.00E-05		postsynaptic membrane	4	3.10E-01
blood vessel development	49	2.10E-04		negative regulation of RNA metabolic process	6	5.90E-01
positive regulation of kinase activity	47	2.10E-04		learning	3	6.00E-01
extracellular structure organization	37	2.20E-04		regulation of transmission of nerve impulse	4	6.00E-01
blood vessel morphogenesis	44	2.20E-04		sex differentiation	4	6.10E-01
negative regulation of response to stimulus	27	2.30E-04		regulation of neurological system process	4	6.20E-01
cell projection	110	6.30E-05		negative regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	7	6.20E-01
regulation of response to external stimulus	36	3.10E-04		skeletal muscle tissue development	3	6.20E-01
negative regulation of cell proliferation	64	3.00E-04		skeletal muscle organ development	3	6.20E-01

MHC class II receptor activity	11	1.90E-03		ovulation cycle	3	6.20E-01
cell-cell signaling	94	3.30E-04		negative regulation of nitrogen compound metabolic process	7	6.20E-01
cytoskeletal protein binding	82	1.40E-03				
extracellular matrix part	30	1.10E-04				
behavior	77	5.10E-04				
regeneration	21	5.10E-04				
wound healing	40	5.30E-04				
response to extracellular stimulus	44	5.70E-04				
axonogenesis	40	6.60E-04				
regulation of transferase activity	64	7.10E-04				
axon guidance	27	7.10E-04				
regulation of kinase activity	62	7.00E-04				
regulation of neurological system process	34	7.20E-04				
positive regulation of protein kinase activity	44	7.20E-04				
cell projection morphogenesis	47	7.20E-04				
antigen processing and presentation	23	7.10E-04				

calmodulin binding	32	3.00E-03			
postsynaptic membrane	32	2.60E-04			
response to oxygen levels	32	8.20E-04			
angiogenesis	33	8.40E-04			
response to steroid hormone stimulus	39	1.20E-03			
transmission of nerve impulse	60	1.30E-03			
cell migration	50	1.60E-03			
regulation of protein kinase activity	59	1.60E-03			
basolateral plasma membrane	41	7.00E-04			
cell part morphogenesis	47	2.00E-03			
protein amino acid phosphorylation	98	2.00E-03			
tube development	42	2.20E-03			
antigen processing and presentation of peptide or polysaccharide antigen via MHC class II	13	2.20E-03			
external side of plasma membrane	36	8.00E-04			
regulation of synaptic transmission	30	2.40E-03			

response to drug	41	3.00E-03			
cell motility	53	3.00E-03			
localization of cell	53	3.00E-03			
axon	34	1.10E-03			
transmembrane receptor protein tyrosine kinase activity	19	1.20E-02			
regulation of cell morphogenesis	29	3.00E-03			
learning or memory	26	3.00E-03			
positive regulation of locomotion	24	2.90E-03			
protein kinase cascade	61	2.90E-03			
protein dimerization activity	82	1.10E-02			
response to mechanical stimulus	17	3.20E-03			
cellular response to hormone stimulus	29	3.70E-03			
response to nutrient	30	3.70E-03			
regulation of transmission of nerve impulse	31	3.70E-03			
MHC class II protein complex	12	1.50E-03			
response to hypoxia	29	4.10E-03			

MAPKKK cascade	36	4.20E-03			
PDZ domain binding	15	1.80E-02			
regulation of cell adhesion	29	5.90E-03			
actin binding	54	1.90E-02			
response to glucocorticoid stimulus	20	6.70E-03			
extracellular matrix organization	24	6.70E-03			
response to vitamin	18	7.00E-03			
positive regulation of cell motion	23	7.20E-03			
response to corticosteroid stimulus	21	7.10E-03			
growth factor binding	24	2.10E-02			
response to inorganic substance	38	7.70E-03			
positive regulation of multicellular organismal process	43	8.40E-03			
antigen processing and presentation of peptide antigen	11	8.80E-03			
chemical homeostasis	76	9.00E-03			
anchored to membrane	41	3.80E-03			
respiratory system development	24	1.10E-02			

skeletal system development	52	1.20E-02			
phosphate metabolic process	128	1.30E-02			
phosphorus metabolic process	128	1.30E-02			
positive regulation of cell migration	21	1.30E-02			
vesicle	97	5.50E-03			
regulation of smooth muscle cell proliferation	14	1.40E-02			
synaptic transmission	49	1.40E-02			
growth	34	1.50E-02			
cytoplasmic vesicle	93	7.00E-03			
lung development	22	2.00E-02			
placenta development	16	2.00E-02			
response to abiotic stimulus	57	2.00E-02			
response to molecule of bacterial origin	20	2.10E-02			
cAMP metabolic process	9	2.00E-02			
organ regeneration	10	2.10E-02			
anchoring junction	33	9.40E-03			

response to insulin stimulus	22	2.10E-02			
activation of protein kinase activity	24	2.10E-02			
muscle organ development	37	2.30E-02			
extracellular space	97	1.10E-02			
intrinsic to membrane	613	1.00E-02			
response to nutrient levels	35	2.60E-02			
regulation of cell development	36	2.60E-02			
cell-cell adhesion	45	2.60E-02			
respiratory tube development	22	2.60E-02			
cell-cell junction	35	1.20E-02			
urogenital system development	23	3.00E-02			
positive regulation of immune system process	40	3.00E-02			
positive regulation of catalytic activity	74	3.00E-02			
response to peptide hormone stimulus	29	3.00E-02			
adherens junction	30	1.30E-02			
multicellular organismal response to stress	12	3.30E-02			

negative regulation of cell differentiation	37	3.20E-02			
regulation of myeloid cell differentiation	17	3.20E-02			
positive regulation of cell communication	51	3.30E-02			
membrane-bounded vesicle	82	1.50E-02			
response to lipopolysaccharide	18	3.40E-02			
regulation of MAP kinase activity	27	3.50E-02			
cellular chemical homeostasis	57	3.50E-02			
regulation of membrane potential	26	3.60E-02			
regulation of behavior	13	3.80E-02			
cellular ion homeostasis	56	3.90E-02			
rhythmic process	25	4.00E-02			
regulation of protein amino acid phosphorylation	31	4.00E-02			
ion homeostasis	60	4.20E-02			
response to cytokine stimulus	18	4.20E-02			
cellular amino acid derivative metabolic process	30	4.20E-02			
negative regulation of tissue remodeling	6	4.50E-02			

vasculogenesis	12	4.40E-02			
positive regulation of cell adhesion	15	4.70E-02			
ionotropic glutamate receptor complex	7	2.40E-02			
postsynaptic density	17	2.50E-02			
presynaptic membrane	10	2.40E-02			
actin cytoskeleton	44	2.40E-02			
cell-substrate junction	23	2.40E-02			
basement membrane	18	2.40E-02			
cell-substrate adherens junction	22	2.60E-02			
cytoplasmic membrane-bounded vesicle	78	2.60E-02			
cytoplasmic vesicle part	33	2.70E-02			
receptor complex	23	3.40E-02			
internal side of plasma membrane	49	3.30E-02			
focal adhesion	21	3.30E-02			
cell soma	30	3.30E-02			
perinuclear region of cytoplasm	45	4.10E-02			

REFERENCES FOR CHAPTER TWO

- Ade KK, Wan Y, Chen M, Gloss B, Calakos N (2011) An Improved BAC Transgenic Fluorescent Reporter Line for Sensitive and Specific Identification of Striatonigral Medium Spiny Neurons. Frontiers in systems neuroscience 5:32.
- Agmon A, Connors BW (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41:365-379.
- Anders S, Pyl PT, Huber W (2014) HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics.
- Bacon C, Rappold GA (2012) The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Human genetics.
- Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C, Gluch C, Monyer H, Rappold GA (2014) Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Molecular psychiatry.
- Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289-300.
- Centonze D, Rossi S, Mercaldo V, Napoli I, Ciotti MT, De Chiara V, Musella A, Prosperetti C, Calabresi P, Bernardi G, Bagni C (2008) Abnormal striatal GABA transmission in the mouse model for the fragile X syndrome. Biological psychiatry 63:963-973.
- Chien WH, Gau SS, Chen CH, Tsai WC, Wu YY, Chen PH, Shang CY, Chen CH (2013) Increased gene expression of FOXP1 in patients with autism spectrum disorders. Molecular autism 4:23.
- Curry T, Egeto P, Wang H, Podnos A, Wasserman D, Yeomans J (2013) Dopamine receptor D2 deficiency reduces mouse pup ultrasonic vocalizations and maternal responsiveness. Genes, brain, and behavior 12:397-404.
- Darnell JC, Klann E (2013) The translation of translational control by FMRP: therapeutic targets for FXS. Nature neuroscience 16:1530-1536.
- Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, Stone EF, Chen C, Fak JJ, Chi SW, Licatalosi DD, Richter JD, Darnell RB (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146:247-261.
- Deacon RM (2006) Assessing nest building in mice. Nat Protoc 1:1117-1119.
- Ellegood J et al. (2015) Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Molecular psychiatry 20:118-125.
- Enard W et al. (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961-971.
- Feng X, Ippolito GC, Tian L, Wiehagen K, Oh S, Sambandam A, Willen J, Bunte RM, Maika SD, Harriss JV, Caton AJ, Bhandoola A, Tucker PW, Hu H (2010) Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development. Blood 115:510-518.
- Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA (2003) Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. The Journal of comparative neurology 460:266-279.
- Fisher SE, Scharff C (2009) FOXP2 as a molecular window into speech and language. Trends in genetics : TIG 25:166-177.
- Foeger NC, Norris AJ, Wren LM, Nerbonne JM (2012) Augmentation of Kv4.2-encoded currents by accessory dipeptidyl peptidase 6 and 10 subunits reflects selective cell surface Kv4.2 protein stabilization. The Journal of biological chemistry 287:9640-9650.

- French CA, Jin X, Campbell TG, Gerfen E, Groszer M, Fisher SE, Costa RM (2012) An aetiological Foxp2 mutation causes aberrant striatal activity and alters plasticity during skill learning. Mol Psychiatry 17:1077-1085.
- Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307-315.
- Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annual review of neuroscience 34:441-466.
- Geschwind DH, State MW (2015) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol.
- Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917-925.
- Grant LM, Richter F, Miller JE, White SA, Fox CM, Zhu C, Chesselet MF, Ciucci MR (2014) Vocalization deficits in mice over-expressing alpha-synuclein, a model of pre-manifest Parkinson's disease. Behavioral neuroscience 128:110-121.
- Gross C, Yao X, Pong DL, Jeromin A, Bassell GJ (2011) Fragile X mental retardation protein regulates protein expression and mRNA translation of the potassium channel Kv4.2. The Journal of neuroscience : the official journal of the Society for Neuroscience 31:5693-5698.
- Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suarez-Farinas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135:738-748.
- Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cisregulatory elements required for macrophage and B cell identities. Molecular cell 38:576-589.
- Hernandez RN, Feinberg RL, Vaurio R, Passanante NM, Thompson RE, Kaufmann WE (2009) Autism spectrum disorder in fragile X syndrome: a longitudinal evaluation. American journal of medical genetics Part A 149A:1125-1137.
- Hisaoka T, Nakamura Y, Senba E, Morikawa Y (2010) The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience 166:551-563.
- Holy TE, Guo Z (2005) Ultrasonic songs of male mice. PLoS biology 3:e386.
- Hu H, Wang B, Borde M, Nardone J, Maika S, Allred L, Tucker PW, Rao A (2006) Foxp1 is an essential transcriptional regulator of B cell development. Nature immunology 7:819-826.
- Hu Z, Chang YC, Wang Y, Huang CL, Liu Y, Tian F, Granger B, Delisi C (2013) VisANT 4.0: Integrative network platform to connect genes, drugs, diseases and therapies. Nucleic acids research 41:W225-231.
- lossifov I et al. (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515:216-221.
- Kaestner KH, Knochel W, Martinez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes & development 14:142-146.
- Kang HJ et al. (2011) Spatio-temporal transcriptome of the human brain. Nature 478:483-489.
- Kim J, Wei DS, Hoffman DA (2005) Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones. J Physiol 569:41-57.
- Klassen T, Davis C, Goldman A, Burgess D, Chen T, Wheeler D, McPherson J, Bourquin T, Lewis L, Villasana D, Morgan M, Muzny D, Gibbs R, Noebels J (2011) Exome sequencing of ion

channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell 145:1036-1048.

- Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao F, Peng S, Preuss TM, Wohlschlegel JA, Geschwind DH (2009) Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 462:213-217.
- Konopka G, Wexler E, Rosen E, Mukamel Z, Osborn GE, Chen L, Lu D, Gao F, Gao K, Lowe JK, Geschwind DH (2012) Modeling the functional genomics of autism using human neurons. Molecular psychiatry 17:202-214.
- Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma'ayan A (2010) ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26:2438-2444.
- Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics 9:559.
- Langfelder P, Luo R, Oldham MC, Horvath S (2011) Is my network module preserved and reproducible? PLoS Comput Biol 7:e1001057.
- Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biology 10.
- Lee H, Lin MC, Kornblum HI, Papazian DM, Nelson SF (2014) Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Human molecular genetics 23:3481-3489.
- Lein ES et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168-176.
- Li S, Weidenfeld J, Morrisey EE (2004) Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Molecular and cellular biology 24:809-822.
- Li S, Wang Y, Zhang Y, Lu MM, DeMayo FJ, Dekker JD, Tucker PW, Morrisey EE (2012) Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development 139:2500-2509.
- Maloney SE, Rieger MA, Dougherty JD (2013) Identifying essential cell types and circuits in autism spectrum disorders. Int Rev Neurobiol 113:61-96.
- Marshall CR et al. (2008) Structural variation of chromosomes in autism spectrum disorder. American journal of human genetics 82:477-488.
- Maze I, Chaudhury D, Dietz DM, Von Schimmelmann M, Kennedy PJ, Lobo MK, Sillivan SE, Miller ML, Bagot RC, Sun H, Turecki G, Neve RL, Hurd YL, Shen L, Han MH, Schaefer A, Nestler EJ (2014) G9a influences neuronal subtype specification in striatum. Nature neuroscience 17:533-539.
- Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods 5.
- Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, Geschwind DH (2008) Functional organization of the transcriptome in human brain. Nature neuroscience 11:1271-1282.
- Ouwenga RL, Dougherty J (2015) Fmrp targets or not: long, highly brain-expressed genes tend to be implicated in autism and brain disorders. Molecular autism 6:16.
- Parikshak NN, Gandal MJ, Geschwind DH (2015) Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nature reviews Genetics 16:441-458.

- Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, Horvath S, Geschwind DH (2013) Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155:1008-1021.
- Pietropaolo S, Delage P, Cayzac S, Crusio WE, Cho YH (2011) Sex-dependent changes in social behaviors in motor pre-symptomatic R6/1 mice. PloS one 6:e19965.
- Pollard KS, Dudoit S, Laan MJ (2005) Multiple testing procedures: R multtest package and applications to genomics. N.Y.: Springer.
- Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139-140.
- Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ, Martin JE (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8:711-713.
- Rousso DL, Pearson CA, Gaber ZB, Miquelajauregui A, Li S, Portera-Cailliau C, Morrisey EE, Novitch BG (2012) Foxp-mediated suppression of N-cadherin regulates neuroepithelial character and progenitor maintenance in the CNS. Neuron 74:314-330.
- Roy S, Watkins N, Heck D (2012) Comprehensive analysis of ultrasonic vocalizations in a mouse model of fragile X syndrome reveals limited, call type specific deficits. PloS one 7:e44816.
- Salmon-Divon M, Dvinge H, Tammoja K, Bertone P (2010) PeakAnalyzer: genome-wide annotation of chromatin binding and modification loci. BMC bioinformatics 11:415.
- Scattoni ML, Crawley J, Ricceri L (2009) Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neuroscience and biobehavioral reviews 33:508-515.
- Shu W, Lu MM, Zhang Y, Tucker PW, Zhou D, Morrisey EE (2007) Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development 134:1991-2000.
- Shu W, Cho JY, Jiang Y, Zhang M, Weisz D, Elder GA, Schmeidler J, De Gasperi R, Sosa MA, Rabidou D, Santucci AC, Perl D, Morrisey E, Buxbaum JD (2005) Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proceedings of the National Academy of Sciences of the United States of America 102:9643-9648.
- Sia GM, Clem RL, Huganir RL (2013) The human language-associated gene SRPX2 regulates synapse formation and vocalization in mice. Science 342:987-991.
- Spiteri E, Konopka G, Coppola G, Bomar J, Oldham M, Ou J, Vernes SC, Fisher SE, Ren B, Geschwind DH (2007) Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. American journal of human genetics 81:1144-1157.
- State MW, Sestan N (2012) Neuroscience. The emerging biology of autism spectrum disorders. Science 337:1301-1303.
- Stein JL, de la Torre-Ubieta L, Tian Y, Parikshak NN, Hernandez IA, Marchetto MC, Baker DK, Lu D, Hinman CR, Lowe JK, Wexler EM, Muotri AR, Gage FH, Kosik KS, Geschwind DH (2014) A quantitative framework to evaluate modeling of cortical development by neural stem cells. Neuron 83:69-86.
- Stroud JC, Wu Y, Bates DL, Han A, Nowick K, Paabo S, Tong H, Chen L (2006) Structure of the forkhead domain of FOXP2 bound to DNA. Structure 14:159-166.
- Tang B, Becanovic K, Desplats PA, Spencer B, Hill AM, Connolly C, Masliah E, Leavitt BR, Thomas EA (2012) Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease. Hum Mol Genet 21:3097-3111.
- Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA (2004) Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. The Journal of neuroscience : the official journal of the Society for Neuroscience 24:3152-3163.

- Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105-1111.
- Vernes SC, Oliver PL, Spiteri E, Lockstone HE, Puliyadi R, Taylor JM, Ho J, Mombereau C, Brewer A, Lowy E, Nicod J, Groszer M, Baban D, Sahgal N, Cazier JB, Ragoussis J, Davies KE, Geschwind DH, Fisher SE (2011) Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS genetics 7:e1002145.
- Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474:380-384.
- Wang B, Lin D, Li C, Tucker P (2003) Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. The Journal of biological chemistry 278:24259-24268.
- Wang B, Weidenfeld J, Lu MM, Maika S, Kuziel WA, Morrisey EE, Tucker PW (2004) Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development 131:4477-4487.
- Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184-2185.
- Xu X, Wells AB, O'Brien DR, Nehorai A, Dougherty JD (2014) Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. The Journal of neuroscience : the official journal of the Society for Neuroscience 34:1420-1431.
- Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17.
- Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome biology 9:R137.

CHAPTER THREE:

FOXP1 IN FOREBRAIN PYRAMIDAL NEURONS CONTROLS GENE EXPRESSION REQUIRED FOR SPATIAL LEARNING AND SYNAPTIC ACTIVITY

Adapted From: **Araujo, D.J.**, Toriumi, K., Escamilla, C.O., Kulkarni, A., Anderson, A.G., Harper, M., Usui, N., Ellegood, J., Lerch, J.P., Birnbaum, S.G., Tucker, H.O., Powell, C.M., and Konopka, G. Foxp1 in forebrain pyramidal neurons controls gene expression required for spatial learning and synaptic plasticity. **Re-submitted to** *The Journal of Neuroscience* for peer-review.

ABSTRACT

Genetic perturbations of the transcription factor *Forkhead Box P1* (*FOXP1*) are causative for severe forms of autism spectrum disorder that are often comorbid with intellectual disability. Recent work has begun to reveal an important role for FoxP1 in brain development, but the brain-region-specific contributions of Foxp1 to autism and intellectual disability phenotypes have yet to be fully determined. Here, we describe *Foxp1* conditional knockout (*Foxp1^{cKO}*) mice with loss of Foxp1 in the pyramidal neurons of the neocortex and the CA1/CA2 subfields of the hippocampus. *Foxp1^{cKO}* mice exhibit behavioral phenotypes that are of potential relevance to autism spectrum disorder including hyperactivity, increased anxiety, communication impairments, and decreased sociability. In addition, *Foxp1^{cKO}* mice have gross deficits in learning and memory tasks of relevance to intellectual disability. Using a genome-wide approach, we identified differentially expressed genes in the hippocampus of *Foxp1^{cKO}* mice

associated with synaptic function and development. Furthermore, using magnetic resonance imaging, we uncovered a significant reduction in the volumes of both the entire hippocampus as well as individual hippocampal subfields of *Foxp1^{cKO}* mice. Finally, we observed reduced maintenance of long-term potentiation in area CA1 of the hippocampus in these mutant mice. Together, these data suggest that proper expression of Foxp1 in the pyramidal neurons of the forebrain is important for regulating gene expression pathways that contribute to specific behaviors reminiscent of those seen in autism and intellectual disability. In particular, Foxp1 regulation of gene expression appears to be crucial for normal hippocampal development, CA1 physiology, and spatial learning.

INTRODUCTION

Autism spectrum disorder (ASD) is often comorbid with intellectual disability (ID) (Geschwind and State, 2015; de la Torre-Ubieta et al., 2016). Delineating the brain circuits that contribute to distinct ASD and ID symptoms could be a major first step towards improved treatments for these disorders. ASD has a strong genetic component (Geschwind and State, 2015; de la Torre-Ubieta et al., 2016) that is shared in part with ID (Vissers et al., 2016). Numerous transcription factors coordinate the expression patterns of ASD- and ID-risk genes during early brain development (State and Sestan, 2012; de la Torre-Ubieta et al., 2016). Therefore, investigating the role of ASD- and ID-rielevant transcription factors in a brain-region-specific manner could reveal circuit-based pathways that contribute to discrete behavioral phenotypes in the two disorders.

Heterozygous mutations and deletions in the transcription factor *FOXP1* are causative for ASD and ID (Bacon and Rappold, 2012; Le Fevre et al., 2013; Lozano et al., 2015; Vissers et al., 2016). Additionally, *FOXP1* has been classified as a high-confidence ASD- and ID-risk gene in several recent, large-scale sequencing studies (lossifov et al., 2014; Sanders et al., 2015; Stessman et al., 2017). FOXP1 is a member of the Forkhead Box (FOX) transcription factor family, which is denoted by a unique nomenclature (uppercase for primates, title case for rodents, and mixed case for all other species or collection of species) (Kaestner et al., 2000).

Within the forebrain, Foxp1 expression is largely restricted to the pyramidal neurons of the neocortex and the CA1/CA2 hippocampal subfields as well the medium spiny neurons of the striatum (Ferland et al., 2003; Tamura et al., 2004; Hisaoka et al., 2010). Conditional-full-brain loss of *Foxp1* results in altered social behaviors, impaired learning and memory, and developmental aberrations in the striatum (Bacon et al., 2014). Neocortical knockdown of *Foxp1* disrupts neuronal migration and axon formation but the resultant behavioral phenotypes have not been assessed (Li et al., 2015). Finally, using a patient-relevant heterozygous *Foxp1* knockout mouse we have shown that Foxp1 regulates distinct, regional transcriptional profiles in the brain and that loss of *Foxp1* expression in the striatum strongly correlates with deficits in ultrasonic vocalization production (Araujo et al., 2015). While these studies have begun to shed light on the function of Foxp1 to ASD and ID phenotypes remain to be determined. Addressing this question is important, given that many changes to the anatomy,

transcriptional profiles, and physiology of the neocortex and hippocampus are observed in ASD and ID brains (Chen et al., 2015).

To investigate the regional contributions of Foxp1 expression to ASD- and IDrelevant phenotypes, we used an Emx1.Cre mouse line (Gorski et al., 2002) to generate a *Foxp1* conditional knockout (*Foxp1^{cKO}*) mouse with loss of Foxp1 in the pyramidal neurons of the neocortex and the hippocampus. In this study, we integrate behavioral profiling, electrophysiology, magnetic resonance imaging (MRI) analyses, and genomics. We show that loss of Foxp1 in the neocortex and hippocampus is sufficient to produce ASD- and ID-relevant behaviors such as hyperactivity, communication deficits, decreased sociability, and impaired spatial learning and memory. Additionally, we show that the ID-like learning and memory deficits observed in Foxp1^{cKO} mice are likely due to alterations in hippocampal function, as behaviors involving broader cortical circuits are unaffected. Using RNA-sequencing (RNA-seq), we correlate these behavioral phenotypes to specific changes in the transcriptome of the Foxp1^{cKO} hippocampus. We also employ MRI to demonstrate that loss of forebrain Foxp1 expression leads to decreased hippocampal volumes. Finally, based on the genomic and morphological data, we assayed the electrophysiological properties of the Foxp1^{cKO} hippocampus and found reduced CA1-dependent LTP maintenance. As a whole, our data suggest that certain behavioral consequences of *Foxp1* loss can be attributed to disrupted gene networks within distinct regions of the brain. Therefore, these data could lead to improved treatments for specific ASD and ID symptoms.

MATERIALS AND METHODS

Mice

Homozygous-floxed *Foxp1* (*Foxp1^{flox/flox}*) mice (Feng et al., 2010) were backcrossed with C57BL/6J mice for at least 10 generations to obtain congenic animals. Mice hemizygous for Cre recombinase expression under the control of the *Emx1* promoter (*Emx1.Cre^{+/-}* mice) (Gong et al., 2003) were purchased from Jackson Laboratories (strain # 005628) and are congenic for the C57BL/6J background. Experimental animals were generated by crossing male *Emx1.Cre^{+/-};Foxp1^{flox/flox}* mice with female *Foxp1^{flox/flox}* mice. Mice were kept in the animal facilities of UT Southwestern Medical Center under a 12-hour light-dark cycle and all behavioral testing occurred during the light cycle with the experimenter blind to genotype. Unless otherwise specified, all mice were given *ad libitum* access to food and water. All mouse studies were approved by the UT Southwestern Institutional Animal Care and Use Committee.

Immunoblotting

Regional brain lysates from adult (>8 week) male mice were prepared and used in immunoblotting experiments as previously described (Araujo et al., 2015).

Tissue Preparation

For immunohistochemistry, adult female and male mice were anesthetized with 80 – 100 mg/Kg Euthasol (UT Southwestern Medical Center Animal Resources Center Veterinary Drug Services), perfused with PBS containing 10 U/mL heparin (Sigma)

followed by fixative (4% PFA in PBS), and then immediately decapitated. Whole brains were removed and incubated in fixative for 24 hours at 4°C and then incubated in 30% sucrose (made in PBS with 0.02% sodium azide) for 24-48 hours at 4°C. Afterwards, brains were sectioned at 35-40 um on an SM2000 R sliding microtome (Leica). Sections were then stored in PBS containing 0.02% sodium azide until used in immunohistochemistry.

For magnetic resonance imaging, adult male mice were anesthetized with 80 – 100 mg/Kg Euthasol, perfused with PBS (without Ca²⁺ and Mg²⁺) containing 10 U/mL heparin and 2mM ProHance (Bracco Diagnostics), and then fixative (4% PFA in PBS without Ca²⁺ and Mg²⁺) containing 2mM ProHance. Afterwards, animals were immediately decapitated and the cartilaginous nose tip, eyes, skin, lower jar, ears, and zygomatic bones were removed. Brains (encased in the remaining skull structures) were then incubated in fixative containing 2mM ProHance and 0.02% sodium azide for 24 hours at 4°C and subsequently transferred to PBS (without Ca²⁺ and Mg²⁺) containing 2mM ProHance at 4°C.

Immunohistochemistry

Floating immunohistochemistry was performed according to standard procedures. Briefly, at room temperature, sections were first washed with TBS. Next, they were incubated with 3% hydrogen peroxide for 30 minutes, washed with TBS, treated with 0.3 M glycine for 30 minutes, and washed again with TBS. Sections were then incubated with primary antibodies diluted in TBS-T (0.4% Triton X-100) containing 1% bovine

serum albumin (BSA) and 3% normal donkey serum (NDS) overnight at 4°C. Next, sections were washed in TBS-T, incubated with secondary antibodies diluted in TBS-T containing 1% BSA and 3% NDS for 1 hour at room temperature, and then mounted onto microscope slides. Finally, slides were washed with TBS-T and allowed to dry overnight at room temperature, mounted with ProLong Diamond Antifade Mountant with DAPI (Thermo) and a coverslip, and allowed to set overnight at room temperature. Slides were imaged using a LSM 710 Confocal Microscope (Zeiss) connected to a computer running ZEN 2012 Software (Zeiss).

Magnetic Resonance Imaging

A multi-channel 7.0 Tesla MRI scanner (Agilent) was used to image the brains within skulls. 16 custom-built solenoid coils were used to image the brains in parallel (Bock et al., 2005; Lerch et al., 2011). A T2-weighted 3D Fast Spin Echo (FSE) sequence was used for the acquisition of the anatomical images. Parameters for the FSE sequence: TR of 350 milliseconds, and TEs of 12 milliseconds per echo for 6 echoes, two averages, field of view of 20 x 20 x 25 mm³ and a matrix size of 504 x 504 x 630 giving an image with 40 um isotropic resolution. K-space was acquired with a cylindrical acquisition (Nieman et al., 2005). Total imaging time was 14 hours. To visualize and compare any changes in the mouse brains the images are linearly (6 parameter followed a 12 parameter) and non-linearly registered together. All scans were then resampled with the appropriate transform and averaged to create a population atlas representing the average anatomy of the study sample. The result of the registration is

to have all scans deformed into alignment with each other in an unbiased fashion. This allows for the analysis of the deformations needed to take each individual mouse's anatomy into this final atlas space, the goal being to model how the deformation fields relate to genotype (Nieman et al., 2006; Lerch et al., 2008). The Jacobian determinants of the deformation fields are then calculated as measures of volume at each voxel. Significant volume changes can then be calculated by warping a pre-existing classified MRI atlas onto the population atlas, which allows for the volume of 159 segmented structures encompassing cortical lobes, large white matter structures (i.e. corpus callosum), ventricles, cerebellum, brain stem, and olfactory bulbs to be assessed in all brains. This atlas is a combination of 3 separate atlases (Dorr et al., 2008; Ullmann et al., 2013; Steadman et al., 2014). In addition to the regional assessment, these images can be examined on a voxel-wise basis in order to localize the differences found within regions or across the brain. Multiple comparisons in this study were controlled for using the False Discovery Rate (Genovese et al., 2002).

Antibodies

The following antibodies were used for immunoblotting (IB) or immunohistochemistry (IHC): anti-Foxp1 ((Spiteri et al., 2007) (rabbit; 1:5000 (IB), 1:1000 (IHC))) and anti-GAPDH (mouse, Millipore; 1:5000 (IB)).

RNA Processing

RNA purification was performed on tissues dissected from P47 male mice and littermate controls as previously described (Araujo et al., 2015).

qPCR

qPCR was performed as previously described (Araujo et al., 2015). All primer sequences are available upon request.

RNA-seq Library Preparation

RNA-seq library preparation was performed according to previously published methods (Takahashi et al., 2015). Briefly, mRNA was isolated from 2 ug of total RNA (at RIN values \geq 8.9) harvested from adult tissues via poly(A) selection. 15 PCR cycles were used for cDNA amplification. Pooled libraries, each at a final concentration of 2 nM, were sequenced on a NextSeq 500 sequencer (Illumina) by the McDermott Sequencing Core at UT Southwestern Medical Center to generate single-end 75 bp reads.

RNA-seq Data Analysis

Raw reads were first filtered for phred quality and adapters using FASTQC (Andrews, 2010) and Trimmomatic (Bolger et al., 2014). Filtered reads were then aligned to the reference mouse genome mm10 (https://genome.ucsc.edu) using STAR (Dobin et al., 2013) aligner. Uniquely mapped reads were used to obtain the gene counts using HTSeq package (Anders et al., 2015), and the read counts were normalized using the CPM (counts per million) method implemented in the edgeR package (Robinson et al.,

2010; McCarthy et al., 2012). For further analysis, we performed a sample-specific CPM filtering, considering genes with CPM values of 1.0 in all replicates for treatments or controls. DESeq (Anders and Huber, 2010; Love et al., 2014) was used to detect the differentially expressed genes (DEGs). We applied a filter of an adjusted p-value of \leq 0.005 and absolute log fold change of \geq 0.3 to identify DEGs.

DEG Gene Ontology Analysis

Gene Ontology (GO) analysis of the significant DEGs was carried out using ToppGene (https://toppgene.cchmc.org) and GO terms were reduced using REVIGO (Supek et al., 2011). GO categories were considered significant if they contained at least three genes and if they had a Benjamini and Hochberg corrected p-value, q-value, \leq 0.05.

Weighted Gene Co-expression Network Analysis

Weighted gene co-expression network analysis (WGCNA) was carried out on 16 total RNA-seq samples (8 neocortical samples (4 control, 4 $Foxp1^{cKO}$) and 8 hippocampal samples (4 control, 4 $Foxp1^{cKO}$)). R package for WGCNA (Langfelder and Horvath, 2008) was used to build gene co-expression network using filtered CPM data (CPM >= 1 across all replicates of a condition). A signed network was constructed using *blockwiseModules* function of the WGCNA R package. A value of 10 was chosen as *Beta* with highest scale-free R square (R² = 0.8). For other parameters, we used *corType* = pearson, *maxBlockSize* = 15000, *reassignThreshold* = 1x10⁻⁶, *mergeCutHeight* = 0.1, *deepSplit* = 4, and *detectCutHeight* = 0.999. Visualization of

network plots were created using Cytoscape v3.4.0 (Shannon et al., 2003), representing the top 500 edges based on ranked weights.

Hippocampal Electrophysiology

An experimenter blind to genotype performed all electrophysiology studies. Juvenile (6-7 week old) male mice were anesthetized briefly with isoflurane (Baxter Healthcare Corporation) and rapidly decapitated to remove the brain, which was then submerged in ice-cold ACSF containing the following (in mM): 75 sucrose, 87 NaCl, 3 KCl, 1.25 NaH₂PO₄, 7 MgSO₄, 26 NaHCO₃, 20 dextrose, and 0.5 CaCl₂. Acute coronal hippocampal slices were cut 350 um thick using a VT 1000 S vibrating microtome (Leica). To reduce recurrent excitation of CA3 neurons, a cut was made between CA3 and CA1. Slices were allowed to recover at 34°C for 15 minutes in normal ACSF containing (in mM): 124 NaCl, 5 KCl, 1.25 NaH₂PO₄, 2 MgCl₂, 26 NaHCO₃, 10 dextrose, and 1 CaCl₂. Recovery continued for 45 minutes as slices were gradually cooled to room temperature for holding prior to recording. All solutions were pH 7.4 and saturated with 95% O₂/%5 CO₂.

All recordings were performed at $33^{\circ}C \pm 0.5^{\circ}C$ in ACSF containing (in mM): 124 NaCl, 5 KCl, 1.25 NaH₂PO₄, 1 MgCl₂, 26 NaHCO₃, 10 dextrose, and 2 CaCl₂ saturated with 95% O₂/5% CO₂, and all data were collected using Clampex (pClamp Software Suite 10.2; Molecular Devices). Recordings were filtered at 1kHz and digitized at 10 kHz. CA3-CA1 synapses were stimulated by a 100 μ s biphasic pulse through custommade nickel dichromate electrodes (A-M Systems) placed 400-500 um laterally from the

recording electrode and kept constant within this range for all experiments. Stimulation was controlled using a model 2200 stimulus isolator (A-M Systems). The recording electrode (1-3 MΩ) was filled with normal ACSF and placed in the stratum radiatum using a SZX7 dissecting microscope (Olympus) at 35X magnification. Sample size for all extracellular field recordings represents number of slices tested with two-four slices used per mouse. Response size was determined by fitting a straight line to the initial slope (10–40%) of the field EPSP (fEPSP) using automated analysis in Clampfit (pClamp Software Suite 10.2; Molecular Devices). For LTP, the stimulus intensity was set to generate ~50% of the maximum fEPSP, as determined by the I/O curve. LTP was induced with 2 trains of 100 Hz stimulation for 1 second separated by 1 minute. A 20-minute baseline was recorded before LTP induction and followed by at least 60 min of 0.05 Hz stimulation every 20 seconds.

Novel Cage Activity Test

Adult male and female mice were individually moved from their home cages into clean, plastic (18 cm x 28 cm) cages with minimal bedding. Each cage was then placed into a dark Plexiglas box. Movement was measured with Photobeam Activity System-Home Cage software (San Diego Instruments) for 2 hours for each mouse. The number of beam breaks were recorded every 5 minutes.

Open Field Test

The open field assay was performed on adult male and female mice as previously described (Araujo et al., 2015).

Ultrasonic Vocalizations

Ultrasonic vocalizations produced by adult male mice were assessed in a mating paradigm modified from previously published methods (Holy and Guo, 2005). Briefly, male mice were singly paired with age-matched C57BL/6J female mice for 1 week. Afterwards, female mice were removed from the cages and the males were singlyhoused for 1 week. The next day (the test day), the male mice were allowed to habituate to the testing environment for 15 minutes. During habituation, food hoppers were removed and the cage lids were replaced with Styrofoam lids containing UltraSoundGate condenser microphones (Avisoft Bioacoustics) positioned at a fixed height. The condenser microphones were connected to UltraSoundGate416H hardware (Avisoft Bioacoustics) hooked up to a computer running Avisoft RECORDER software (Avisoft Bioacoustics). Next, habituated, age-matched C57BL/6J female mice were randomly placed into a cage containing a male. The resultant male songs were recorded for 3 minutes. No female was used in more than 2 recording sessions per day. Analyses of ultrasonic vocalization features were carried out as previously described (Araujo et al., 2015). Call duration reflects the average length of calls (in milliseconds), mean frequency denotes the average frequency of calls (in kilohertz), frequency range is the average difference between the maximum and minimum frequency at which calls are produced (in kilohertz), the fraction of calls with frequency jumps represents the

ratio of calls with and without frequency breaks, and the average slope of the call reflects modulation of call frequency over time (in hertz/milliseconds).

Social Interaction Test

Adult female and male mice were individually placed in an open field environment (44 cm x 44 cm, with walls 30 cm high) in a dimly lit room and allowed to explore for 5 minutes. Inside the open field arena, a small plastic chamber (the interaction box, 8.5 cm x 4.5 cm) was placed along one wall of the arena. After 5 minutes, the test mouse was removed and a novel, unfamiliar mouse (same sex and strain as the test mouse) was placed into the interaction box. Small holes in the interaction box allow the mice to see, hear and smell each other. The test mouse was returned to the open field environment and allowed to explore for another 5 minutes. The test mouse was monitored from above by a video camera connected to a computer running Ethovision 3.0 (Noldus). Both the amount of time the test mouse spent in the interaction zone immediately adjacent to the interaction chamber (within 8 cm) and the time spent in the four corners of the arena (9 cm x 9 cm each) were recorded.

Nesting Behavior

Nesting behavior was gauged in adult male and female mice as previously described (Araujo et al., 2015).

Fear Conditioning

Fear conditioning was conducted on adult female and male animals using boxes containing a grid metal floor attached to a scrambled shock generator. Mice were individually trained by placing them into the box for 2 minutes and giving them 3 separate tone-shock pairings (30s white noise, a 2 second, 0.5 mA shock, and 1 minute intervals between pairings). Context recall was assessed 24 hours later by placing the mice back into the original box and recording freezing for 5 minutes. Cue recall was assessed two days after training by placing the mice in the boxes altered with a plastic floor, an inverted roof, and a vanilla scent. Freezing was then measured for 3 minutes followed by the presentation of the white noise cue and measuring freezing for an additional 3 minutes with Video Freeze software (Med Associates).

Morris Water Maze

The Morris water maze was conducted on adult male mice using a 1.2 m diameter circular pool filled with opaque, tempera-paint dyed 23°C water. Stark visual cues were placed around the room containing the pool. Within the pool, a 10-cm circular plexiglass escape platform was submerged in one of the quadrants 1 cm below the water's surface. For training, mice were placed into the pool in one of four starting locations (north, south, east, or west, with the order being randomly determined) and allowed to swim until they located the escape platform. Upon finding the platform, mice were permitted to rest for 5 seconds before being removed. If they did not locate the platform within 60 seconds, mice were manually guided to the platform and given 5 seconds of rest before being removed. Mice received four training trials per day for 10 days and
were placed in temporary cages between the training trials of a particular day. On day 12, after a day of rest on day 11, a probe test was performed in which mice were allowed to swim in the pool for 60 seconds, with the escape platform removed. The movements of the animals were recorded by a video camera centered above the pool and tracked using ANY-Maze software (Stoelting). The latency to reach the escape platform was quantified for each mouse during the 10-day training period. For the probe test, the number of original platform crosses was analyzed for each mouse.

T-maze

The T-maze was constructed from gray polyvinyl, with the main array 40 cm long, the side arms 33 cm long, the walls 18.5 cm high, and the alleys 10 cm wide (Actimetrics). Before commencing any testing, adult female and male mice were subjected to food restriction until their body weight reached 85% of baseline. Then, for habituation to the T-maze, each mouse was placed into the apparatus, with all of the doors open and a food pellet (20 mg, Bio-Serv) placed in a cup at the end of each arm. This was carried out in four sessions, each 10-minutes long, for 2 days. After this habituation period, each mouse was used in ten test trials per day for 10 consecutive days. For the testing phase, each trial was composed of two different runs: the sample run and the test run. In the sample run, the pellet reward was placed randomly at one end of the arms, and the other arm was closed off. A mouse was then placed at the start position and allowed to travel freely to the end of the arm and consume the pellet. Immediately after consuming the pellet, the mouse was placed back in the start position, which was

closed off. While the mouse was isolated in the start position, the blocked arm was opened and the entire apparatus was wiped with 10% ethanol to remove olfactory cues. A food pellet was then placed in the arm opposite from the one containing the reward in the sample run. After a 30 second delay, the test run was started. In the test run, each mouse was allowed to travel to either arm. If the mouse chose the opposite arm that was rewarded in the sample run (a correct choice), it was allowed to consume the pellet. If the mouse chose the same arm as in the sample run (an incorrect choice), it was blocked in the arm for 30 seconds as punishment. Spatial working memory was evaluated by the average success rate for each day.

Set-shifting Task

With minor modifications, the set-shifting test was conducted as previously described (Cho et al., 2015). Before testing began, adult male and female mice were subjected to food restriction until their body weight reached 85% of baseline. Afterwards, animals were individually housed and then presented with two bowls in their home cage, until they began digging in one bowl. Each of these bowls contained a different odor and a different digging medium, and the odor-medium combinations were altered and counterbalanced from trial to trial. The digging media were white calcium sand and pine wood shavings, mixed with an odorant (ground garlic, or clove, 0.01% by volume) and peanut butter chip powder (0.1% by volume). The reward, a 5-10 mg piece of a peanut butter chip, was buried in the medium in both of the food bowls.

Testing began once mice reached their target weight. The testing procedure consisted of three phases (training, initial association, and rule-shift), with each phase lasting 1 day for a total of 3 consecutive days. On day 1 (the training day), mice were given ten consecutive trials in which they were allowed to dig amongst two bowls containing two different mediums, in order to learn that they could reliably find a food reward in only one of the bowls. On day 2 (the initial association day), mice learned that a specific cue (an odor or medium) predicted the presence of food reward, by being presented with different odor-medium combinations (which were switched and counterbalanced) during each trial. This predictive cue remained constant over the whole day, with each mouse being randomly assigned their own cue. On day 3 (the rule-shift day), the dimension (odor or medium) signaling the reward was changed. If the initial association paired a specific odor with the food reward, then the rule-shift phase paired a certain digging medium with reward and the mice needed to learn this new rule to obtain a reward.

In the initial association and the rule shift phases, the mice were considered to have learned the association between stimulus and reward if they made ten consecutive, correct choices. The phase ended when they met this criterion. When the mice made a correct choice on a trial, they were allowed to consume the food reward before the next trial. Between trials, mice were transferred from their home cage to a holding cage while new bowls were set up. After making an error on a trial, the mice were transferred to the holding cage for 1 minute as punishment. Additionally, in the rule-shift phase, two types of error were analyzed; perseverative errors, when a choice

was consistent with the rule of the initial association phase, and random errors, when a choice was inconsistent with both the rules of the initial association and the rule-shift phases.

Experimental Design and Statistical Analysis

All experiments reported in this study were designed to examine genotype-based effects between *Foxp1^{cKO}* and littermate control mice. Effects on Foxp1 protein levels in the brain (Fig. 3.1A-C) were examined using adult (≥8 week old) male mice (3 mice/genotype). Effects on activity in a novel cage activity test (Fig. 3.2A,B) were tested using adult female and male mice (7-9 mice/genotype). Effects on activity and anxiety in an open field assay (Fig. 3.2C,D) were examined in adult male and female mice (8 mice/genotype). Adult male mice (12-15 mice/genotype) were used to test genotypebased effects on USV song production (Fig. 3.3A-F). Genotype-effects on nest building (Fig. 3.3G,H) were assessed in adult male and female mice (7-8 mice/genotype). Effects on sociability (Fig. 3.3I) were determined using adult female and male mice (12-16 mice/genotype). Adult male mice (10-12 mice/genotype) were used to evaluate effects on performance in the Morris water maze (Fig. 3.4A-C). Effects on performance in an alternating T-maze (Fig. 3.4D-F) were tested utilizing adult male and female mice (10 mice/genotype). Effects on performance in a fear conditioning test (Fig. 3.5A,B) were determined using adult female and male mice (12-16 mice/genotype). Adult male and female mice (9-10 mice/genotype) were used to examine effects on performance in a set-shifting task (Fig. 3.5C,D). Adult male mice (10 mice/genotype) were used to

determine the effects of genotype of relative regional brain volumes (Fig. 3.6A,B). Effects on hippocampal electrophysiological properties (Fig 3.8A-C) were determined using juvenile (6-7 week old) male mice (15-20 recordings/genotype). Effects on gene expression via qPCR (Figs. 3.7F, 8E) were tested using adult male mice (3/genotype). Except as noted for genomic analyses, Student's *t*-tests (2-tailed, type 2) were carried out for analyses of data in Figs. 3.1B, 2B,C,D, 3A,B,C,D,E,F,H,I, 4C,D,F, 5B, 6B, 7F, 8B,E and two-way ANOVAs (all with a Sidak's multiple comparison test) were carried out for analyses of data in Figs. 3.2A, 4A,E, 4A,C,D, and 5C. FDR was utilized for Fig. 3.6B. P-values were calculated using Prism 7 (GraphPad) and significance was assigned to values \leq 0.05. More detailed statistical information can be found in the Results section for each figure.

GEO Accession Information

The NCBI GEO accession number for the RNA-seq data reported in this study is GSE97181.

RESULTS

Foxp1 is expressed within the pyramidal neurons of the neocortex and the CA1/CA2 hippocampal subfields (Ferland et al., 2003; Hisaoka et al., 2010). However, the distinct ASD and ID-related behavioral phenotypes governed by Foxp1 within these regions are undetermined. To examine the neocortical and hippocampal contributions of Foxp1 to ASD and ID-relevant behaviors, we characterized *Foxp1* conditional knockout

 $(Emx1.Cre^{+/-};Foxp1^{flox/flox})$ mice (hereafter called $Foxp1^{cKO}$ mice) in comparison to littermate control ($Foxp1^{flox/flox}$) mice.

There are four murine isoforms of Foxp1 and two of them (Foxp1A and Foxp1D) are highly expressed within the mouse brain (Wang et al., 2003; Araujo et al., 2015). Consistent with the forebrain expression pattern of Cre recombinase under the Emx1 locus (Gorski et al., 2002), *Foxp1^{cKO}* mice displayed near total loss of Foxp1 protein isoforms A and D in the neocortex (CTX) and hippocampus (HIP) (Fig. 3.1A,B; Student's t-test; CTX: F_(2,2)=4.21, **p=0.002; HIP: F_(2,2)=9.59 ***p=0.0002). As a negative control, we demonstrated that Foxp1 protein expression is preserved in the striatum (STR) of these animals (Fig. 3.1A,B; Student's t-test, F_(2.2)=2.67, p=0.7). In concordance with these results, we observed that Foxp1 expression is ablated in the projection neurons of the neocortex and the CA1/CA2 hippocampal subfields of *Foxp1^{cKO}* mice (Fig. 3.1C). Because neuroglia and interneurons do not express Foxp1 (Hisaoka et al., 2010; Precious et al., 2016), we believe that this decrease in protein levels is due to a loss of *Foxp1* specifically in forebrain pyramidal neurons. Adult Foxp1^{cKO} mice are viable, superficially healthy, and exhibit no differences in body weight (Student's t-test, $F_{(14,14)}=2.45$, p=0.96, n=15 mice/genotype). Thus, these animals represent a model with which to examine the neocortical and hippocampal-based contributions of Foxp1 to ASD and ID-relevant phenotypes.

Symptoms common between ASD and ID include hyperactivity and anxiety (van Steensel et al., 2011; Ageranioti-Belanger et al., 2012; Leitner, 2014; de la Torre-Ubieta et al., 2016). Therefore, we first assessed the baseline activity of adult (\geq 8 weeks old)

Foxp1^{cKO} mice. *Foxp1^{cKO}* mice exhibit sustained, increased activity over a two-hour period in a novel-cage (Fig. 3.2A; two-way ANOVA; genotype effect: $F_{(1,336)}=163.6$, ****p<0.0001; time effect: $F_{(23,336)}=22.44$, p<0.0001; interaction effect: $F_{(23,336)}=2.2$, p=0.001; and Fig. 3.2B; Student's t-test, $F_{(6,8)}=3.6$, **p=0.002). Additionally, in an open field assay *Foxp1^{cKO}* mice cover more distance (Fig. 3.2C; Student's t-test, $F_{(7,7)}=2.62$, *p=0.02) and spend less time in the center of the arena with a corresponding increase in time spent around the border of the arena (Fig. 3.2D; Student's t-test; time in center: $F_{(7,7)}=2.79$, *p=0.02; time in border: $F_{(7,7)}=2.7$, *p=0.02). Together, these findings suggest a phenotype of hyperactivity and increased anxiety in *Foxp1^{cKO}* mice, which are symptoms common to both ASD and ID.

As decreased social communication is one of the core features of ASD (Fakhoury, 2015; de la Torre-Ubieta et al., 2016; Park et al., 2016), we examined both the social and communicative behaviors of $Foxp1^{cKO}$ mice. The ultrasonic vocalizations (USVs) produced by adult male mice in response to the presence of female mice are a well-characterized form of mouse communication (Holy and Guo, 2005; Portfors and Perkel, 2014). We therefore assayed the USVs (known as "songs") produced by adult male *Foxp1^{cKO}* mice during courtship encounters with age-matched females. *Foxp1^{cKO}* mice produce fewer numbers of songs (Fig. 3.3A; Student's t-test, $F_{(14,12)}$ =1.12, **p=0.002). Additionally, the songs of *Foxp1^{cKO}* mice were shorter (Fig. 3.3B; Student's t-test, $F_{(12,13)}$ =3.75, *p=0.01), covered a smaller frequency range (Fig. 3.3D; Student's t-test, $F_{(12,13)}$ =1.94, *p=0.02), and were less complex as revealed by both a reduction in the number of songs with frequency jumps (Fig. 3.3E; Student's t-test, $F_{(12,14)}$ =1.73,

*p=0.02) and an alteration in the average call slope (Fig. 3.3F; Student's t-test, $F_{(13,12)}=1.72$, ***p=0.0003). Notably, the mean frequency of Foxp1^{cKO} songs was not altered (Fig. 3.3C; Student's t-test, $F_{(13,12)}=1.52$, p=0.45). (See the Materials and Methods section for details on call parameters.) We then tested nest building in Foxp1^{cKO} mice because it is an important behavior for communal animals such as rodents (Deacon, 2006; Silverman et al., 2010). Foxp1^{cKO} animals consistently produce low quality nests and in most cases never interact with the provided nesting material (Fig. 3.3G,H; Student's t-test, F_(6.7)=2.29, ****p<0.0001). In a social interaction paradigm, *Foxp1^{cKO}* mice exhibited a social-retreat phenotype as indicated by their decreased time in the interaction zone (Fig. 3.3I; Student's t-test, F_(15,11)=1.91, **p<0.01) and their increased time in the corners of the testing arena (Fig. 3.3I, Student's t-test, $F_{(15, 11)}=2.68$, ***p<0.001). The increased preference for the corners of the sociability apparatus suggests that the decreased social interaction displayed by Foxp1^{cKO} mice was not simply due to hyperactivity. Taken together, our results indicate that neocortical and hippocampal loss of Foxp1 protein expression is sufficient to lead to ASD-relevant deficits in communication and sociability.

Because both ASD patients and patients with *FOXP1* haploinsufficiency frequently present with ID (Le Fevre et al., 2013; Geschwind and State, 2015; Lozano et al., 2015; de la Torre-Ubieta et al., 2016), we next examined the learning and memory capabilities of *Foxp1^{cKO}* mice. Over the course of 10 days of training in the Morris water maze, *Foxp1^{cKO}* mice never learn to find the submerged platform (Fig. 3.4A; two-way ANOVA; genotype effect: $F_{(1,200)}$ =199.6, ****p<0.0001; training day effect: $F_{(9,200)}$ =6.98,

p<0.0001; interaction effect: F_(9,200)=3.25, p=0.001), indicating poor spatial learning (Vorhees and Williams, 2006). Additionally, on a probe day 48 hours after the last day of training, *Foxp1^{cKO}* mice make fewer numbers of platform crosses (Fig. 3.4B,C; Student's t-test, F_(11.9)=2.78, **p=0.002). This was result was not unexpected, given that the Foxp1^{cKO} mice showed no demonstrable learning. These deficits were not due to problems in visual acuity because Foxp1^{cKO} mice are able to escape the maze just as quickly as control littermates on a visual probe day (Fig. 3.4D; Student's t-test, $F_{(11,9)}$ =3.88, p=0.34). Moreover, these deficits are not due to changes in swim speeds, as *Foxp1^{cKO}* mice show no differences in their average swimming velocity during training (two way-ANOVA, genotype effect: $F_{(1,120)}=3.35$ p=0.07). In a T-maze, Foxp1^{cKO} mice do no better than chance during the course of a 10-day training period (Fig. 3.4E; two-way ANOVA; genotype effect: F_(1,170)=123.6, ****p<0.0001; training day effect: F_(9,170)=0.59, p=0.81; interaction effect: $F_{(9,170)}=1.11$, p=0.36; and Fig. 3.4F; Student's t-test, $F_{(8,9)}=1.3$, ****p<0.0001) implying deficits in spatial working memory in these animals (Shoji et al., 2012). Learning in the Morris water maze and the T-maze both rely on hippocampal function (Vorhees and Williams, 2006; Shoji et al., 2012; Yamamoto et al., 2014) and thus these results support altered hippocampal mechanisms in *Foxp1^{cKO}* animals.

We next asked whether the decreased performance of *Foxp1^{cKO}* mice in learning and memory tasks is due to impairment in broad circuits or if it is restricted to hippocampal-based spatial memory. We first employed cue/contextual fear conditioning, as it involves hippocampal, neocortical, and amygdala-based circuits in associative learning and memory (Puzzo et al., 2014; Tovote et al., 2015). We observed no differences in the fear response of Foxp1^{cKO} mice, as measured by their performance in a cue-dependent fear learning paradigm (Fig. 3.5A; two-way ANOVA; genotype effect: $F_{(1.52)}=1.23$, p=0.27; tone effect: $F_{(1.52)}=242$, p<0.0001; interaction effect: $F_{(1.52)}=0.44$, p=0.51). We also observed no differences in a context-dependent fear learning paradigm (Fig. 3.5B; Student's t-test, $F_{(11,15)}=2.63$, p=0.12). Foxp1^{cKO} mice are able to hear the conditioned stimulus (the tone before the shock), as they demonstrated no differences in freezing when presented with the stimulus during training (p=0.77, twoway ANOVA). Foxp1^{cKO} mice are also able to perceive the unconditioned stimulus (the shock itself) just as well as their littermate controls, because they showed no difference in the stimulus strengths needed to induce jumping, flinching, or vocalizing (Student's ttest; jumping: $F_{(11,15)}=1.44$, p=0.53; flinching: $F_{(11,15)}=1.51$, p=0.40; vocalizing: $F_{(11,15)}=2.0$, p=0.45). Given that contextual fear conditioning is heavily dependent on hippocampal function (Puzzo et al., 2014; Tovote et al., 2015), the intact contextdependent fear conditioning we observed in *Foxp1^{cKO}* mice was surprising. This pointed to a specific deficit in complex hippocampal-based spatial tasks. To test this hypothesis, we examined the performance of *Foxp1^{cKO}* animals in a set-shifting paradigm, which is a complex task that is largely reliant on prefrontal neocortical function (Cho et al., 2015; Heisler et al., 2015). We saw no differences in the behavior of *Foxp1^{cKO}* mice compared to controls during the set-shifting task, as measured by the number of trials needed to reach criterion for training or the number of errors made during testing (Fig. 3.5C; twoway ANOVA; genotype effect: $F_{(1,9)}=0.219$, p=0.65; test phase effect: $F_{(1,9)}=14.74$, p=0.004; interaction effect: $F_{(1,9)}$ =1.05, p=0.33; and Fig. 3.5D; two-way ANOVA; genotype effect: $F_{(1,18)}=0.65$, p=0.43; error type effect: $F_{(1,18)}=33.51$, p<0.0001; interaction effect: $F_{(1,18)}=0.11$, p=0.74). Together, these results indicate that the learning and memory deficits seen in *Foxp1^{cKO}* mice are restricted to complex, spatial, hippocampal-based processes.

The behavioral deficits we observed in *Foxp1^{cKO}* mice are associated with many molecular mechanisms in the hippocampus (Lynch, 2004; Kumar, 2011). To determine the processes governing the behavioral phenotypes in *Foxp1^{cKO}* mice, we ascertained transcriptional changes due to Foxp1 loss by carrying out RNA-seg on tissue samples from the neocortex and hippocampus of both *Foxp1^{cKO}* mice and littermate controls. Differentially expressed genes (DEGs) were identified by applying an adjusted p-value of ≤0.005 and an absolute log fold change of ≥0.3 (see GEO Accession Information in Methods). By clustering the same number of top DEGs (based on fold change) in both the neocortex and hippocampus we found transcriptional signatures (gene clusters) that differentiated the two brain regions by genotype (Fig. 3.6A; Table 3.1). Additionally, these upregulated and downregulated gene clusters are enriched for specific gene ontology (GO) categories (https://toppgene.cchmc.org) (Fig. 3.6A; Extended Data Table 3.6-1). For the hippocampus, these GO categories include terms such as reduced long potentiation, abnormal synaptic transmission, abnormal term and learning/memory/conditioning, (Fig. 3.6A; Benjamini and Hochberg corrected p-value, q value; reduced long term potentiation, g=5.09x10⁻⁴; abnormal synaptic transmission, g=5.64x10⁻⁴, *abnormal learning/memory/conditioning*, g=8.57x10⁻⁴).

To characterize the relevance of *Foxp1^{cKO}* hippocampal and neocortical DEGs with regards to ASD pathophysiology, we overlapped these lists with those genes included on the Simons Foundation Autism Research Initiative (SFARI) website (843 genes) (https://sfari.org/resources/sfari-gene). The SFARI gene list represents ASD-risk genes that have been manually curated from the scientific literature. We found that both the neocortical and hippocampal Foxp1^{cKO} DEGs significantly overlap with the ASD SFARI genes (Fig. 3.6B; hypergeometric test; overlap between Foxp1^{cKO} CTX and SFARI ASD genes, $p=2.8 \times 10^{-7}$; overlap between *Foxp1^{cKO}* HIP and SFARI ASD genes, p=3.8x10⁻⁹; Table 3.2). When we excluded ASD SFARI genes from categories 5 and 6 (hypothesized and not supported) from this analysis, we obtained a similar result (hypergeometric test; 17 genes (p=0.003) for Foxp1^{cKO} hippocampal DEGs and 49 genes (p=0.0002) for *Foxp1^{cKO}* neocortical DEGs). Finally, accounting for directional consistency, we found a significant overlap between the Foxp1^{cKO} neocortical and hippocampal DEG datasets (Fig. 3.6B; hypergeometric test, overlap between Foxp1^{cKO} HIP and $Foxp1^{cKO}$ CTX genes, p=4.7x10⁻³¹). The genes included in this overlap are enriched for GO categories such as potassium channel activity (Benjamini and Hochberg corrected p-value, g value, g=3.3x10⁻³) and calcium ion transmembrane transporter activity (Benjamini and Hochberg corrected p-value, g value, g=2.6x10⁻²). Combined with our previous report (Araujo et al., 2015), these data suggest that while Foxp1 regulates distinct targets within different neuronal populations, it has an overall role in regulating the expression of ASD-risk genes and ion receptor genes throughout the brain.

Next, to understand the role of Foxp1 specifically within the hippocampus, we compared the transcriptional targets in the hippocampus of the Foxp1^{cKO} mice with DEGs we previously identified in a whole-body heterozygous Foxp1 knockout (Foxp1^{+/-}) mouse (Araujo et al., 2015). We were unable to compare neocortical data as there were no DEGs in the neocortex of the heterozygous *Foxp1* mice (Araujo et al., 2015). When we applied the same DEG cutoffs to these two datasets, we found a significant overlap of directionally consistent hippocampal target genes in these two *Foxp1* mouse models (Fig. 3.6C; hypergeometric test, $p=1.8 \times 10^{-22}$; Table 3.3). This overlap represents ~20% of the $Foxp1^{cKO}$ DEGs, but only ~9% of the $Foxp1^{+/-}$ DEGs. That a relatively small proportion of *Foxp1^{+/-}* hippocampal DEGs overlap with the DEGs in the *Foxp1^{cKO}* mouse hippocampus is an important finding, as the only major behavioral phenotype seen in *Foxp1^{+/-}* mice was an alteration in USV production and we therefore did not observe any spatial learning and memory deficits in the $Foxp1^{+/-}$ mice (Araujo et al., 2015). Taken together, these results indicate that complete and partial loss of *Foxp1* produce unique alterations in signaling pathways in the hippocampus. Moreover, these data suggest that the non-overlapping genes in the *Foxp1^{cKO}* hippocampus are likely important for the observed learning and memory deficits seen in *Foxp1^{cKO}* mice.

Next, we sought to determine the extent to which *Foxp1^{cKO}* hippocampal DEGs affect signaling processes involved in hippocampal neuron identity. Specifically, we hoped to see if loss of *Foxp1* perturbs the expression of genes specific to CA1 pyramidal neurons. To accomplish this, we overlapped the *Foxp1^{cKO}* hippocampal DEGs with CA1-specific genes identified by single-cell sequencing of the mouse CA1

(Zeisel et al., 2015). We found a significant overlap between these two gene expression datasets (Fig. 3.6D; hypergeometric test, $p=1.7x10^{-15}$; Table 3.4; Extended Data Table 3.6-2). The relatively small size of this overlap (~15% of the *Foxp1^{cKO}* hippocampal DEGs) is most likely due to the fact that our RNA-seq data captured direct and indirect (as well as cell-autonomous and non-cell-autonomous) gene expression changes due to loss of *Foxp1* in both CA1 and CA2 neurons throughout the entirety of the hippocampus.

We then employed weighted gene co-expression network analysis (WGCNA) to further prioritize $Foxp1^{cKO}$ hippocampal DEGs with respect to ASD and ID (Langfelder and Horvath, 2008). WGCNA allows for the identification of networks (or modules) of genes with high co-expression. Three modules were genotype-specific (Fig. 3.6E; Extended Data Figure 3.6-1). One module (the "Dark Green" module), was hippocampus-specific (Fig. 3.6E) and contained several ASD-SFARI genes such as *Cadm2, Prkcb, Scn8a,* and *Syne1*. The Dark Green module also contained *Fmr1*, which when disrupted in humans leads to Fragile-X syndrome (Hernandez et al., 2009). Finally, a number of $Foxp1^{cKO}$ hippocampal DEGs that overlapped with each of the relevant gene lists discussed above (SFARI ASD genes and/or $Foxp1^{cKO}$ neocortical DEGs and/or $Foxp1^{eKO}$ hippocampal DEGs) were chosen at random and confirmed in independent $Foxp1^{cKO}$ hippocampal Samples via qPCR (Fig. 3.6F; Student's t-test, p<0.05 for all genes). In summary, these genomic data identify transcriptional programs downstream of Foxp1 that may drive the regulation of hippocampal function.

The genomic data indicated a role for Foxp1 in the regulation of both neocortical and hippocampal development (Fig. 3.6A,D). To assess neuroanatomical alterations due to forebrain *Foxp1* loss that could explain the observed phenotypes, we analyzed the brains of *Foxp1^{cKO}* mice via magnetic resonance imaging (MRI), which has been used on other ASD mouse models (Ellegood et al., 2015). We chose to focus our analyses on relative regional volumes (normalized to total volumes) as the there was a significant decrease in the overall volume of *Foxp1^{cKO}* mouse brains (-12%, p<0.0001, Student's t-test and FDR<1%). In summary, we found reductions and increases in the relative volumes of numerous brain regions in *Foxp1^{cKO}* mice (Fig 3.7A,B; p<0.05, Student's t-test, and FDR<0.05, for all regions; Extended Data Table 3.7-1). Brain regions with decreased relative volumes constituted neuronal populations expressing Emx1 (including many neocortical areas) or white matter tracts originating from populations expressing *Emx1* (Fig. 3.7A,B; Extended Data Table 3.7-1). Interestingly, the most affected region (in terms of percent decrease) was the hippocampus (Fig. 3.7B). Moreover, hippocampal subfields and parahippocampal regions such as the dentate gyrus, stratum granulosum, and the pre-para subiculum were also significantly reduced in volume (Fig. 3.7A,B; Extended Data Table 3.7-1). Brain regions with increased relative volumes mostly constituted cerebellar nuclei, cerebellar white matter tracts, and subcortical nuclei (Fig. 3.7A; Extended Data Table 3.7-1). Taken as a whole, these data demonstrate that loss of Foxp1 expression in the forebrain leads to alterations in regional volumes throughout the brain, with hippocampal structures being drastically affected.

The significant decrease in hippocampal volumes exhibited by Foxp1^{cKO} mice suggested alterations in the functional properties of this region (Fig. 3.7A,B). Additionally, plasticity in general and long-term potentiation (LTP) in particular were GO categories enriched in *Foxp1^{cKO}* HIP DEGs (Fig. 3.6A). LTP is a well-studied process by which excitatory synapses are strengthened in response to neuronal stimulation (Lynch, 2004; Kumar, 2011). Hippocampal LTP mediated by projections from CA3 pyramidal neurons to CA1 pyramidal neurons (Schaffer-collateral projections) is thought to underlie the encoding of spatial memory (Lynch, 2004; Kumar, 2011). Thus, we chose to examine hippocampal LTP in Foxp1^{cKO} mice. Given that Foxp1 expression in the hippocampus is restricted to CA1/2 pyramidal neurons (Ferland et al., 2003), we recorded LTP in area CA1 in response to Schaffer collateral stimulation in Foxp1^{cKO} mice. While the initial magnitude of CA1 LTP was normal in *Foxp1^{cKO}* mice (arrows in Fig. 3.8A), the mean magnitude of LTP during the last 10 minutes of stimulation was significantly reduced (Fig. 3.8A,B; Student's t-test, $F_{(19,14)}=2.16$, ****p<0.0001), indicative of impaired plasticity maintenance. This result was not due to differential baseline synaptic transmission in the *Foxp1^{cKO}* mice, as we found no difference in the fEPSP slope relative to current stimulation intensity (Fig. 3.8C; two-way ANOVA; genotype effect: F_(1,236)=0.23, p=0.63; time effect: F_(7,236)=11.97, p<0.0001; interaction effect: F_(7,236)=0.04, p>0.99). To characterize the *Foxp1^{cKO}* hippocampal RNA-seq data with regards to genes involved in LTP maintenance, we overlapped our gene list with a dataset generated from microarrays performed on tetanized rodent hippocampal slices (Ryan et al., 2012). These two datasets significantly overlapped (Fig. 3.8D;

hypergeometric test, p= 2.32×10^{-4} ; Table 3.4). We tested all 12 of these overlapping genes (which included *Foxp1*) via qPCR and we were able to confirm differential expression for 9 of them in independent *Foxp1^{cKO}* hippocampal samples (Fig. 3.8E; Student's t-test, p<0.05 for all genes except *Ccnd1*, *Dusp5*, and *Sorcs3*). Of the 12 genes overlapping between the LTP-maintenance dataset and the *Foxp1^{cKO}* hippocampus dataset, 7 (*Ccnd1*, *Dsp*, *Gnb4*, *Grin3a*, *Rasd1*, *Runx1t1*, and *Sorcs3*) are not included in the *Foxp1^{t+/-}* hippocampus dataset (Araujo et al., 2015). These 7 genes therefore represent mechanisms that are uniquely disrupted in the *Foxp1^{cKO}* hippocampus and which could explain the physiological and behavioral phenotypes displayed by *Foxp1^{cKO}* mice. Indeed, several of these genes (*Rasd1*, *Gnb4*, and *Grin3a*) have been directly implicated in hippocampal-based learning and memory (de Quervain and Papassotiropoulos, 2006; Vilches et al., 2014; Carlson et al., 2016). These data suggest that control of genes involved in hippocampal LTP maintenance is disrupted in *Foxp1^{cKO}* mice.

DISCUSSION

Elucidating molecular mechanisms important for learning and memory is an ambitious undertaking, especially in terms of connecting these mechanisms to disorders such as ASD and ID. Numerous genes have been linked to an increased risk for both of these disorders and this suggests common mechanisms between them (Santini and Klann, 2014; Plummer et al., 2016). However, only a few of these genes have been categorized as high-confidence risk genes (lossifov et al., 2014; Sanders et al., 2015; de la Torre-Ubieta et al., 2016; Mullins et al., 2016; Vissers et al., 2016; Stessman et al., 2017). *FOXP1* is among this list of high-confidence ASD-risk genes (lossifov et al., 2014; Sanders et al., 2015; Vissers et al., 2016; Stessman et al., 2017), yet relatively little is known about the function of FOXP1 in the brain. We previously demonstrated that an ASD- and ID-patient-relevant haploinsufficient *Foxp1* mouse model exhibits vocalization deficits with alterations in striatal function and gene expression (Araujo et al., 2015). In addition, a mouse model with complete loss of *Foxp1* in the brain demonstrates a number of behavioral deficits and functional alterations in several brain regions (Bacon et al., 2014). Thus, these previously published data do not address the requirement for Foxp1 in specific brain regions and how such a requirement might be important for specific ASD- and ID-relevant phenotypes.

To investigate the functional role of Foxp1 in a brain-region-specific manner, we generated $Foxp1^{cKO}$ mice with complete loss of Foxp1 in the hippocampus and neocortex (Fig. 3.1A,B). We observe a number of striking behavioral deficits in these mice, most notably altered social interactions (Fig. 3.3I) and an almost total absence of spatial learning (Fig. 3.4A-F). Because the neural circuits for social behaviors are not fully understood, and because the hippocampus has been studied in depth for its relationship to learning and memory, we chose to focus on the potential role of Foxp1 in hippocampal-based functions in $Foxp1^{cKO}$ mice. Importantly, the majority of documented patients with ASD-causing mutations in FOXP1 also have a diagnosis of ID (Le Fevre et al., 2013; Lozano et al., 2015; Vissers et al., 2016), making a mechanistic study of Foxp1 function in the hippocampus disease-relevant.

Foxp1^{cKO} mice possess deficits in spatial learning, as they perform poorly in both the alternating T-maze and the Morris water maze (Fig. 3.4A-F). Conversely. Foxp1^{cKO} mice have intact learning in contextual fear conditioning (Fig. 3.5A,B). Such results are seemingly in conflict with one another. However, when performed prior to testing, lesions of the hippocampus impair learning in the Morris water maze but preserve contextual fear conditioning in mice (Cho et al., 1999). Indeed, other mouse models of neuropsychiatric disorders have also shown that these two processes can be dissociated (Kubota et al., 2001; Huynh et al., 2009). Another explanation could be that hippocampal function in *Foxp1^{cKO}* mice is sufficient to allow for the association of discrete, easily recognizable elements of the contextual-conditioning environment and the unconditioned stimulus (Maren, 2001). Finally, these conflicting results could be explained by the simple idea that *Foxp1^{cKO}* mice might not be able to meet the cognitive load necessary for complex spatial tasks but that they are able to meet the cognitive load required for fear-based tasks, which involve more salient conditioning. The amygdala is critically involved in cue-based fear learning (Puzzo et al., 2014; Tovote et al., 2015) and there is limited expression of Foxp1 in the amygdala (Ferland et al., 2003). However, the intact cue-dependent fear conditioning in *Foxp1^{cKO}* mice (Fig. 3.5A,B) suggests that the role the hippocampal-amygdala circuit plays in this task is spared with loss of Foxp1.

The intact set-shifting learning we observed in *Foxp1^{cKO}* mice (Fig. 3.5C,D) suggests that while Foxp1 expression is almost completely absent in the neocortex of these animals, this expression loss does not affect other, broader types of learning.

Additionally, the spared shifting learning in *Foxp1^{cKO}* mice (Fig. 3.5C,D) could represent compensation by subcortical circuits in which *Foxp1* expression is preserved. Regardless, these results need to be interpreted carefully, as we cannot fully rule out other learning defects due to neocortical loss of *Foxp1* that were not tested in this study. Together, our results suggest that *Foxp1^{cKO}* mice exhibit a specific deficit in complex, hippocampal-based spatial tasks.

Mice with full-brain loss of *Foxp1* also display hyperactivity, impaired spatial learning, and impaired social behaviors (Bacon et al., 2014). Conversely, unlike the results presented here (Fig. 3.8A,B), hippocampal neuron excitability is reduced and hippocampal LTP is unaltered in full-brain *Foxp1* knockout mice (Bacon et al., 2014). However, the study on full-brain *Foxp1* knockout mice employed a weaker protocol for LTP induction (Bacon et al., 2014) and thus it is possible that such a protocol may not have recruited the same plasticity-maintenance mechanisms recruited in our study.

The *Foxp1^{cKO}* hippocampus dataset possessed fewer DEGs than the *Foxp1^{+/-}* hippocampus RNA-seq dataset (Fig. 3.6C). This result was surprising to us because we expected complete loss of *Foxp1* to yield greater disruptions to the hippocampus transcriptome than *Foxp1* haploinsufficiency. The larger number of hippocampal DEGs observed in *Foxp1^{+/-}* mice could be explained by improper signaling to the hippocampus from subcortical regions that also experience reduced *Foxp1* levels. Using available single cell RNA-seq data (Zeisel et al., 2015), we find that *Foxp1^{cKO}* hippocampal DEGs are most significantly enriched for genes expressed in CA1 and *Foxp1^{cKO}* neocortical DEGs are most significantly enriched for genes expressed in pyramidal neurons of

somatosensory cortex (S1) (Extended Data Table 3.6-2). Therefore, our data suggest that loss of *Foxp1* leads to disruptions in the expression of genes important for cellular identity in both brain regions. The DEGs that result from loss of *Foxp1* in the hippocampus also indicate changes in pathways known to be important in hippocampal LTP, synaptic signaling, and spatial memory (Fig. 3.6A). We observed no differences in the basal synaptic transmission in the *Foxp1^{cKO}* mouse hippocampus (Fig. 3.8C), suggesting that the diminished LTP-responses we recorded in the *Foxp1^{cKO}* CA1 region (Fig. 3.8A,B) are due to dysregulation of downstream signaling networks and not alterations to the character of the synaptic input itself (Kotaleski and Blackwell, 2010). This is supported by the finding that our *Foxp1^{cKO}* hippocampal RNA-seq dataset significantly overlapped with a hippocampal-maintenance gene list (Fig. 3.8D) (Ryan et al., 2012).

Future studies that directly test the involvement of genes regulated by Foxp1 in LTP-maintenance would be compelling, especially since synaptic signaling has a widely appreciated role in explaining the etiology of ASD and ID (Santini and Klann, 2014). However, it is unclear whether restoration of any one downstream gene (or combination of genes) would be sufficient to rescue both the physiological and behavioral deficits seen in $Foxp1^{cKO}$ mice. Conversely, the generation of additional brain-region-specific Foxp1 knockout mice will address whether the expression of Foxp1 in the hippocampus is required for the observed behavioral deficits. Moreover, Foxp1 expression in the striatum is intact in the $Foxp1^{cKO}$ mice detailed here (Fig. 3.1A,B), yet there are robust striatal deficits in heterozygous Foxp1 knockout mice (Araujo et al., 2015) and brain-

wide *Foxp1* knockout mice (Bacon et al., 2014). Thus, a *Foxp1* knockout mouse that primarily targets the striatum will be important for understanding the contributions of Foxp1 to the complex behavioral phenotypes associated with ASD and ID.

In summary, this study is an important step towards completing our understanding of the region-specific roles of FoxP1 within the brain. Since *FOXP1* is among the most salient ASD- and ID-genes, any knowledge of FOXP1 function should contribute to our understanding of ASD and ID pathophysiology. In-depth knowledge of the basic mechanisms of brain development and function, as it pertains to certain neurodevelopmental disease-relevant genes such as *FOXP1*, will be critical to designing effective therapeutics for the resultant conditions.

FIGURES FOR CHAPTER THREE

Figure 3.1. Generation of *Foxp1^{cKO}* **mice.** (A) Representative immunoblot displaying reduced Foxp1 protein levels in the neocortex (CTX) and hippocampus (HIP), but not the striatum (STR), of *Foxp1^{cKO}* mice, compared to littermate control mice. GAPDH is a loading control. (B) Quantification of Foxp1 expression in adult *Foxp1^{cKO}* mouse brains. Data are represented as means (\pm SEM). n=3 control mice, 3 *Foxp1^{cKO}* mice. **p=0.002; ***p=0.0002, Student's t-test, compared to control levels normalized to GAPDH. (C) Representative immunohistochemistry images showing that Foxp1 protein (white) expression is ablated in the projection neurons of the CTX, the CA1/CA2 subfields of the HIP, but preserved in the STR, of *Foxp1^{cKO}* mice. cc = corpus callosum, DG = dentate gyrus, CPu = caudate/putamen. Scale bars represent 100 um.

Figure 3.2. *Foxp1^{eKO}* mice display hyperactivity and anxiety-like behaviors. (A,B) *Foxp1^{eKO}* mice are hyperactive, as indicated by their increased activity in a novel cage environment. (A) *Foxp1^{eKO}* mice display sustained, increased activity in a novel cage. Data are represented as means (\pm SEM). n=9 control mice, 7 *Foxp1^{eKO}* mice. p<0.0001, two-way ANOVA, compared between genotypes. (B) As measured by their average activity over the course of two hours, *Foxp1^{eKO}* mice are hyperactive. Data are represented as means (\pm SEM). n=9 control mice, 7 *Foxp1^{eKO}* mice. **p=0.002, Student's t-test, compared between genotypes. (C) *Foxp1^{eKO}* mice are hyperactive, as determined by their total distance moved in the open field test. Data are represented as means (\pm SEM). n=8 control animals, 8 *Foxp1^{eKO}* animals. *p=0.02, Student's t-test, compared between genotypes. (D) *Foxp1^{eKO}* mice are anxious, as determined by the amount of time they spend in the center of the open field apparatus. Data are represented as means (\pm SEM). n=8 control animals, 8 *Foxp1^{cKO}* animals. *p=0.02, Student's t-test, compared between genotypes.

Figure 3.3. Impaired social communication in *Foxp1^{cKO}* mice. (A) Adult *Foxp1^{cKO}* male mice produce fewer total numbers of USV songs in a mating paradigm. Data are represented as means (\pm SEM). n=13 control mice and 15 *Foxp1^{cKO}* mice. **p=0.0019, Student's t-test, compared between genotypes. (B) *Foxp1^{cKO}* mice exhibit a significant reduction in their mean call duration. Data are represented as means (\pm SEM). n=13 controls mice, 14 *Foxp1^{cKO}* mice. *p=0.011, Student's t-test, compared between genotypes. (C) *Foxp1^{cKO}* mice show no differences in their mean call frequencies. Data are represented as means (\pm SEM). n=13 controls mice, 14

Foxp1^{cKO} mice. p=0.45, Student's t-test, compared between genotypes. (D) Adult *Foxp1^{cKO}* male mice produce USV with smaller frequency ranges. Data are represented as means (± SEM). n=13 control mice and 14 *Foxp1^{cKO}* mice. *p=0.019, Student's t-test, compared between genotypes. (E) *Foxp1^{cKO}* mice produce a smaller fraction of USVs with frequency jumps. Data are represented as means (± SEM). n=13 controls mice, 15 Foxp1^{cKO} mice. *p=0.025, Student's t-test, compared between genotypes. (F) Foxp1^{cKO} mice show a significant difference in the average slope of their songs. Data are represented as means (± SEM). n=13 controls mice. 14 Foxp1^{cKO} mice. ***p=0.0003, Student's t-test, compared between genotypes. (G) Representative photographs of the nests produced by littermate control and Foxp1^{cKO} mice. (H) Foxp1^{cKO} produce poor quality nests. Data are represented as means (± SEM). n=8 control mice, 7 Foxp1^{cKO} animals. ****p<0.0001, Student's t-test, compared between genotypes. (I) Foxp1^{cKO} mice are less social than their littermate controls, as determined by the decreased time they spend interacting with a sex-matched conspecific (time in interaction zone). Data are represented as means (± SEM). n=16 control mice, 12 Foxp1^{cKO} mice. **p<0.01, ***p<0.001, Student's t-test, compared between genotypes.

Figure 3.4. *Foxp1^{cKO}* mice display impairments in spatial learning. (A) $Foxp1^{cKO}$ mice display poor learning via their escape latency in the training phase of the Morris water maze (MWM). Data are represented as means (± SEM). n=12 control animals, 10 $Foxp1^{cKO}$ animals. p<0.0001, two-way ANOVA, compared between genotypes. (B,C) $Foxp1^{cKO}$ show poor memory via the number of platform crosses they make during the MWM spatial probe. (B) Representative trace of swimming paths taken by $Foxp1^{cKO}$ and control littermate mice on a spatial probe day. Roman numerals designate different quadrants. The original location of the hidden platform crosses made by $Foxp1^{cKO}$ and control mice on a spatial probe day. Data are represented as means (± SEM). n=12 control animals, 10 $Foxp1^{cKO}$ animals. **p=0.002, Student's t-test, compared between genotypes. (D) $Foxp1^{cKO}$ mice display no difference in their ability to locate a raised

platform during a visual probe day in the MWM. Data are represented as means (\pm SEM). n=12 control animals, 10 *Foxp1^{cKO}* animals. p=0.34, Student's t-test, compared between genotypes. (E) *Foxp1^{cKO}* mice demonstrate poor learning and memory, as measured by their percentage of successful trials during training in the T-maze. Dashed line represents success based on chance. Data are represented as means (\pm SEM). n=10 control animals, 9 *Foxp1^{cKO}* animals. p<0.0001, two-way ANOVA, compared between genotypes. (F) As measured by their average performance during training, *Foxp1^{cKO}* mice display impaired learning in the T-maze. Data are represented as means (\pm SEM). n=10 control mice, 10 *Foxp1^{cKO}* mice. ****p<0.0001, Student's t-test, compared between genotypes. The main effects for genotype and postnatal day, and their interactions, are presented within panels A and E.

Figure 3.5. *Foxp1^{cKO}* mice do not display generalized learning and memory deficits. (A,B) *Foxp1^{cKO}* mice show no deficiencies in associative fear-memory tasks, as displayed by their performance in both the (A) cue and (B) context-dependent portions of a fear conditioning (FC) paradigm. Data are represented as means (\pm SEM). n=16 control mice, 12 *Foxp1^{cKO}* mice. p=0.27, two-way ANOVA compared between genotypes (A), p=0.12, Student's t-test compared between genotypes (B). (C,D) *Foxp1^{cKO}* show no deficits in cognitive flexibility, as measured by (C) the number of trials they need to reach criterion during both the initial association (IA) or the rule-shift (RS) portion of training for the set-shifting task (SST) or (D) the number of perseverative (Pers) or random (Rand) errors they make in the RS portion of the SST. Data are

represented as means (\pm SEM). n=10 control, 9 *Foxp1^{cKO}* mice. p=0.65 (C), and p=0.43 (D), two-way ANOVA, compared between genotypes.

Figure 3.6. Altered transcriptional programs in $Foxp1^{cKO}$ brains. (A) Heatmap showing that based on the differentially expressed genes (DEGs) of either region, the neocortex (CTX) and hippocampus (HIP) segregate by genotype ($Foxp1^{cKO}$ (cKO) and control (CTL)). Significantly enriched gene ontology (GO) terms

(https://toppgene.cchmc.org; GO enrichment is the negative log of a Benjamini and Hochberg corrected p-value, q-value) associated with groups of genes are highlighted next to their respective DEG clusters. (B) Significant overlaps between DEGs in Foxp1^{cKO} mouse CTX and HIP, and ASD-associated genes (SFARI ASD genes; https://sfari.org/resources/sfari-gene). 92 genes overlapped between *Foxp1^{cKO}* CTX and SFARI ASD genes (p=2.8x10⁻⁷; hypergeometric test), and 31 genes overlapped between *Foxp1^{cKO}* HIP and SFARI ASD genes (p=3.8x10⁻⁹; hypergeometric test). (C) Significant overlaps between *Foxp1^{cKO}* HIP DEGs and heterozygous *Foxp1* knockout (Foxp1^{+/-}) HIP DEGs (Araujo et al., 2015). The Foxp1^{+/-} HIP dataset was filtered using the same cutoffs for identifying DEGs (an adjusted p-value of ≤0.005 and an absolute log fold change of ≥ 0.3) that were applied to the Foxp1^{cKO} datasets. 49 genes overlapped between $Foxp1^{+/-}$ HIP and $Foxp1^{cKO}$ HIP (p=1.8x10⁻²²; hypergeometric test). (D) Significant overlaps between *Foxp1^{cKO}* HIP DEGs and CA1 pyramidal neuron single-cell sequencing data (Zeisel et al., 2015). 36 genes overlapped between Foxp1^{cKO} HIP and Zeisel CA1 data (p=1.7x10⁻¹⁵; hypergeometric test). (E) Visualization of the top 500 connections in the hippocampus-specific Dark Green module. ASD SFARI genes are highlighted in orange. (F) Confirmation of salient gene targets in independent Foxp1^{cKO} hippocampal samples using qPCR. Data are represented as means (\pm SEM). n=3 control mice, 3 Foxp1^{cKO} mice. With the exception of Ccnd1, Dusp5, and Sorcs3, all qPCR values are significant at p<0.05 (Student's t-test, compared to control levels, normalized to beta-actin).

Figure 3.7. Altered regional brain volumes in *Foxp1^{cKO}* **mice.** (A) Fly-through of representative coronal slices of the $Foxp1^{cKO}$ brain highlighting average, relative differences in regions with larger (red) or smaller (blue) volumes. (B) Representation of the average, relative volume decreases in several of the most significantly affected (in terms of percent decreases from control (100%) levels) hippocampal and neocortical areas in the $Foxp1^{cKO}$ mouse brain. Dashed line represents control levels. Data are represented as means (± SEM). All values are significant at p<0.05, Student's t-test,

and FDR<0.05. Cg = cingulate cortex, FrA = frontal association cortex, MO = medial orbital cortex, Pre-PAR = pre-para subiculum, and V2MM = secondary visual cortex-mediomedial area.

Figure 3.8. Altered hippocampal synaptic plasticity in *Foxp1^{eKO}* mice. (A,B) In response to high-frequency stimulation (HFS), there is no difference in the initial magnitude of LTP in *Foxp1^{eKO}* CA1 neurons (A), but there is a difference in the LTP response during the last 10 minutes of stimulation (B). Data are represented as means (\pm SEM). n = 15 control recordings, 20 *Foxp1^{eKO}* recordings, Student's t-test, compared between genotypes. (C) Basal synaptic transmission is unchanged between *Foxp1^{eKO}* and littermate control mice as measured by input/output curves comparing stimulus intensity to fEPSP slope in CA1 pyramidal neurons. Data are represented as means (\pm SEM). n=15 control recordings, 19 *Foxp1^{eKO}* recordings. p=0.63, two-way ANOVA, compared between genotypes. (D) Significant overlaps between *Foxp1^{eKO}* HIP DEGs and LTP-maintenance DEGs (Ryan et al., 2012). 12 genes overlapped between
Foxp1^{cKO} HIP and LTP-maintenance dataset (p= 2.32×10^{-4} ; hypergeometric test). (E) Confirmation of genes that overlap between the *Foxp1^{cKO}* hippocampal dataset and LTP-maintenance genes in independent *Foxp1^{cKO}* hippocampal samples, using qPCR. Red bars indicate RNA-seq-based log₂-fold changes in expression. Colored bars represent the category of gene (SFARI ASD, and/or *Foxp1^{cKO}* neocortex, and/or *Foxp1^{+/-}* hippocampus) that these *Foxp1^{cKO}* hippocampal DEGs overlap with. Data are represented as means (± SEM). n=3 control mice, 3 *Foxp1^{cKO}* mice. All qPCR values are significant at p<0.05 (Student's t-test, compared to control levels, normalized to beta-actin).

Extended Data Figure 3.6-1. *Foxp1^{cKO}* genotype-specific WGCNA modules. (A) Visualization of the top 500 connections in the Green Yellow module. (B) Visualization of the top 500 connections in the Light Cyan module.

TABLES FOR CHAPTER THREE

Table 3.1. DEC	Table 3.1. DEGs in the <i>Foxp1^{cKO}</i> neocortex and hippocampus.					
	Hippocampus DEGs			Neocortex DEGs		
Gene ID	Log2 Fold Change	P-Value (adj.)	Gene ID	Log2 Fold Change	P-Value (adj.)	
1700024P16Rik	-3.06E+00	5.57E-26	1110032F04Rik	-5.35E-01	2.91E-04	
2810459M11Rik	7.05E-01	2.26E-03	1190002N15Rik	-3.54E-01	3.07E-04	
3110035E14Rik	-4.76E-01	2.18E-05	1700019D03Rik	-5.35E-01	1.17E-03	
Adamtsl1	1.29E+00	4.51E-11	2700081015Rik	4.33E-01	3.14E-03	
Adcv1	-4.38E-01	1.64E-03	2810459M11Rik	6.30E-01	1.80E-03	
Adra2a	1.32E+00	1.66E-12	3110035E14Rik	-4.90E-01	1.21E-11	
Adrbk2	4.47E-01	2.06E-03	4932411E22Rik	1.10E+00	9.83E-04	
Akap13	-5.53E-01	1.01E-05	A730017C20Rik	4.30E-01	3.76E-03	
Aldh1a1	-8.95E-01	1.03E-07	A830010M20Rik	-3.02E-01	1.69E-04	
Ankrd33b	-4.80E-01	1.14E-03	Abca2	-3.35E-01	1.83E-03	
Ankrd6	5.24E-01	4.62E-04	Abcb1a	-3.97E-01	2.27E-03	
Ar	-6.09E-01	1.91E-06	Abcd2	-8.83E-01	8.85E-25	
Arhgap12	-7.18E-01	1.44E-08	Abracl	-1.02E+00	5.05E-08	
Arhgap26	-4.68E-01	2.18E-04	Ackr1	5.05E-01	2.99E-03	
Arhgef6	5.92E-01	1.07E-04	Acot11	-6.23E-01	1.09E-05	
Arpc2	-4.07E-01	3.73E-03	Acsl5	-5.98E-01	9.04E-10	
Arpp21	4.24E-01	2.03E-04	Acsl6	-3.60E-01	2.83E-06	
Asap2	-4.90E-01	4.24E-03	Actn1	4.34E-01	8.75E-06	
Atp2b1	-5.06E-01	7.25E-05	Acvr2a	4.67E-01	5.35E-08	
Atp2b4	5.90E-01	2.32E-04	Adam23	-5.35E-01	6.95E-13	
, Bace2	1.41E+00	2.86E-05	Adamts2	9.57E-01	3.35E-04	
Bmp3	8.16E-01	2.70E-04	Adcv2	-3.38E-01	1.95E-04	
Bmpr1b	4.55E-01	1.41E-03	Adcy8	5.71E-01	3.70E-04	
Brinp1	-4.53E-01	9.27E-04	Adcyap1	5.31E-01	2.03E-04	
Btbd3	-4.34E-01	2.49E-03	Adcyap1r1	4.19E-01	1.20E-05	
Btg2	8.82E-01	9.00E-04	Adgrf5	-3.58E-01	2.12E-03	
C4b	9.02E-01	2.09E-05	Adgrg2	2.07E+00	2.80E-07	
Cabp7	-9.67E-01	5.65E-11	Adgrg6	-1.00E+00	1.65E-04	
Cacna1e	-3.97E-01	2.40E-03	Adi1	-5.03E-01	1.22E-03	
Cadm2	-4.26E-01	2.80E-03	Adipor2	-5.09E-01	4.33E-06	
Cadps	-3.84E-01	4.84E-03	Adora1	-5.81E-01	4.63E-14	
Calb1	4.25E-01	2.93E-03	Adra1b	-1.02E+00	1.22E-06	
Calb2	2.51E+00	1.99E-62	Adra2a	7.61E-01	6.28E-05	
Camk1d	-4.96E-01	1.14E-04	Adssl1	-9.30E-01	1.23E-04	
Camk2b	-4.04E-01	2.17E-03	Afap1l1	-6.06E-01	4.22E-04	
Camk2d	5.03E-01	3.74E-03	Agfg2	4.75E-01	6.99E-04	
Car10	5.48E-01	2.28E-03	Ahnak	-4.05E-01	1.75E-05	
Car12	6.78E-01	5.03E-08	AI593442	-4.11E-01	1.73E-08	
Ccbe1	-5.98E-01	9.42E-04	Aifm3	-5.36E-01	1.41E-04	
Ccnd1	-5.49E-01	6.53E-05	Ajap1	5.65E-01	8.18E-07	
Cd24a	1.02E+00	1.55E-11	Ak5	4.21E-01	1.45E-06	
Cd36	2.62E+00	3.80E-24	Akap12	-5.92E-01	3.78E-06	
Cd44	1.37E+00	9.74E-11	Aldh1a1	-1.16E+00	3.88E-21	
Cdh12	-8.70E-01	6.90E-08	Alox12b	2.00E+00	7.29E-10	
Cdh8	-4.42E-01	2.75E-03	Angpt1	6.83E-01	1.90E-04	
Cdhr1	8.09E-01	1.64E-03	Ank1	-7.97E-01	1.86E-12	
Cds1	-4.51E-01	3.62E-03	Ankrd29	-4.25E-01	2.11E-04	
Chgb	-5.43E-01	2.65E-06	Ankrd34c	-5.52E-01	3.08E-06	
Chrm3	-1.04E+00	4.80E-12	Ankrd40	-3.33E-01	3.64E-04	
Chst2	-4.34E-01	2.35E-03	Ankrd45	-3.16E-01	2.77E-03	

Clvs2	-6.59E-01	5.24E-06	Ankrd6	5.89E-01	3.85E-07
Cntnap2	-4.24E-01	1.40E-03	Ankrd63	1.14E+00	1.69E-15
Cntnap5c	-6.72E-01	1.85E-03	Ankub1	-1.60E+00	1.89E-04
Coch	1.03E+00	2.24E-06	Anln	-8.58E-01	1.55E-11
Col11a1	-9.60E-01	4.99E-09	Ano4	-6.49E-01	1.71E-05
Col12a1	7.74E-01	1.01E-03	Ap1s1	3.95E-01	4.58E-04
Col5a1	1.10E+00	2.19E-07	Ap3m2	-3.30E-01	6.46E-04
Col5a2	7.66E-01	2.00E-03	, Apaf1	5.83E-01	2.95E-03
Cpne4	-5 19E-01	4 90E-05	ApIn	-7 47E-01	2.67E-07
Cpne7	4 46F-01	2 22E-03	Apod	-4 99E-01	3.34E-06
Crim1	-4.61E-01	2 53E-04	Aran2	-4 73E-01	2.68E-09
Crvaa	5 94E±00	2.00E 04	Arc	-5 11E-01	3 37E-06
Ctaf	7.85E-01	1.88E-03	Arhaan33	7 35E-01	1 35E-12
Dcn	6.63E-01	2.81E-05	Arhgapee	-9.33E-01	0.25E-12
Dakh	6 70E 01	6.34E 10	Arbaan6	1 345+00	9.23E-12
Dgkb	-0.79E-01	0.34E-10	Arhgef25	1.34E+00	4.00E-20
Dyka	-0.88E-01	0.40E-03	Arigei25	-0.10E-01	2.00E-09
Doo2o	-4.75E-01	4.09E-04	ArlAo	5.31E-01	1.59E-05
Ducza	5.71E-01	3.00E-07	An4a	5.50E-01	3.00E-09
Dia i	5.7 IE-01	4.36E-05	Arpp 19	-4.22E-01	4.20E-09
Dip2	-6.59E-01	2.45E-07	Arpp21	5.09E-01	1.01E-13
Dsp	-9.09E-01	7.63E-10	Arrac2	-9.97E-01	1.43E-03
Dusp5	-1.07E+00	2.86E-05	Arsj	1.70E+00	6.69E-07
Dzip1	-4.45E-01	9.18E-04	Asah2	-5.28E-01	1.40E-04
Elovi4	-4.59E-01	7.17E-04	Asap2	-4.63E-01	1.06E-05
Endod1	-4.92E-01	3.07E-03	Asb11	-1.09E+00	2.46E-03
Enpp2	3.17E-01	3.74E-03	Aspa	-9.98E-01	1.93E-08
Epha4	-4.45E-01	1.40E-03	Astn1	3.77E-01	8.24E-07
Epha6	-7.11E-01	6.62E-07	Astn2	-9.86E-01	2.58E-13
Epha7	-4.58E-01	2.15E-03	Atad2	-4.66E-01	3.36E-03
Etv1	5.96E-01	3.03E-06	Atp10a	-8.19E-01	2.59E-05
Fgf10	-6.30E-01	3.74E-03	Atp1b3	-3.05E-01	3.20E-03
Fibcd1	-8.98E-01	2.19E-07	Atp2b2	-4.37E-01	1.43E-10
Fibin	1.57E+00	5.58E-10	Atp2b4	9.66E-01	9.50E-46
Fmn1	-5.85E-01	8.20E-04	Atp6ap1I	9.20E-01	1.36E-05
Fndc5	-5.30E-01	2.14E-03	Auts2	3.88E-01	6.21E-06
Fos	9.77E-01	4.11E-03	AW551984	1.22E+00	7.21E-05
Foxp1	-9.92E-01	2.29E-16	B230217C12Rik	-4.22E-01	4.01E-05
Foxp2	6.22E-01	7.19E-05	B3galt5	-8.17E-01	7.11E-10
Frrs1l	-4.07E-01	1.80E-03	B3gat1	4.74E-01	4.78E-10
Gabra5	-5.39E-01	1.02E-05	B3gat2	9.46E-01	8.31E-15
Glt8d2	-1.01E+00	3.54E-05	B4galt3	4.73E-01	4.25E-03
Gm2115	-9.81E-01	5.29E-16	Bace1	3.48E-01	3.92E-04
Gm765	3.26E+00	1.07E-06	Baz1a	1.15E+00	2.87E-06
Gnb4	5.23E-01	4.03E-03	BC030499	4.57E-01	5.74E-04
Gpr161	-7.48E-01	3.35E-08	Bcas1	-8.82E-01	3.89E-25
Gpr22	-4.15E-01	4.10E-03	Bcat1	-4.88E-01	2.75E-06
Gpr68	-1.00E+00	2.03E-04	Bcr	3.12E-01	2.97E-03
Gpr88	3.90E-01	3.51E-06	Bdnf	5.09E-01	1.79E-06
Grem1	-1.19E+00	2.09E-07	Bend6	-4.60E-01	3.35E-09
Grin2a	-4.48E-01	1.24E-03	Bex1	4.97E-01	1.27E-04
Grin3a	5.74E-01	6.11E-04	Bex4	6.47E-01	4.19E-03
Hectd2	-5.64E-01	4.57E-05	Bhlhb9	3.17E-01	2.43E-03
Homer2	-1.30E+00	1.36E-31	Bhlhe22	9.86E-01	6.35E-29
Нрса	-6.86E-01	4.41E-09	Bhlhe40	4.02E-01	7.35E-06
Hpcal1	7.57E-01	3.02E-03	Blnk	-9.61E-01	4.43E-05
Hrk	1.19E+00	4.73E-24	Bmp2	-1.17E+00	3.47E-07

Hs3st4	-4.90E-01	1.57E-03	Bmp3	4.58E-01	6.41E-06
Hspa1b	7.33E-01	3.09E-04	Bmper	-8.42E-01	1.43E-03
Htr4	-7.33E-01	7.58E-04	Btg2	1.27E+00	6.93E-14
Hunk	-7.52E-01	7.01E-05	C1ql3	4.06E-01	5.82E-06
ll1r1	-9.31E-01	2.84E-07	C2cd2l	5.45E-01	2.45E-08
lqgap2	-9.07E-01	7.57E-15	C2cd4c	8.18E-01	2.45E-03
Itabl1	1.22E+00	1.36E-14	C77370	5.54E-01	1.56E-11
ltpr1	-5 46F-01	4 32F-06	Cabp1	-4 59E-01	6 25E-06
Kcnab2	-8 37E-01	4 19E-13	Cacna1a	-3 16E-01	2.53E-04
Kcnd2	-5 73E-01	6.05E-06	Cacna1c	371E-01	5.88E-05
Kcna1	7 70E-01	1 16E-04	Cacna1i	-7 49E-01	7.00E-00
Kcna3	1.025+00	8.45E-07	Cacnb4	-4.45E-01	2 18E-10
Kcnh7	-9 18E-01	3.05E-17	Cacho?	-3 27E-01	9.87E-05
Kcna3	-4 79E-01	2.80E-04	Cachg2	6 19E-01	3.31E-00
Keng5	5 82E 01	6 12E 07	Cadm1	3 33E 01	1.60E.05
Kirrol3	-5:82E-01	0.122-07	Cadm3	3:332-01	0.00E-05
Kihit A	1.645+00	2.20E-03	Cadns	3.18E-01	9.20E-03
Kor1	1.04E+00	0.47E-09	Cadps Cadps2	-4.42E-01	1.10E-00
Lot	-0.23E-01	5.04E-05	Caupsz	-5.73E-01	
LCI	-1.16E+00	2.13E-09	Calp1	8.55E-01	2.30E-33
LIIX9	-4.94E-01	9.56E-04	CallT	5.31E-01	5.35E-13
LIII	-4.61E-01	1.64E-03	Carrik20	7.95E-01	1.55E-25
LIII04	4.45E-01	1.39E-03	Carrik2g	-5.49E-01	3.66E-12
Lpi	-1.37E+00	9.81E-31	Camk4	-5.29E-01	2.10E-14
Lrp8	4.40E-01	7.55E-04	Camkv	4.28E-01	9.06E-07
Lrrc10b	-7.90E-01	1.39E-03	Camta1	-3.46E-01	3.43E-06
Lsm11	-8.92E-01	4.69E-10	Capn2	-3.37E-01	3.03E-03
Lynx1	-5.83E-01	9.30E-06	Car8	-5.73E-01	1.61E-04
Man1a	-6.56E-01	8.00E-08	Casp3	5.68E-01	7.14E-04
Mapk10	-4.04E-01	2.39E-03	Cbfa2t3	6.25E-01	2.56E-07
Matn2	-6.77E-01	1.06E-05	Cbln2	-7.72E-01	2.96E-11
Mc4r	-1.36E+00	1.32E-04	Cbln4	-8.11E-01	2.36E-09
Mef2c	4.70E-01	9.34E-04	Ccdc141	-4.10E-01	3.26E-03
Meis2	3.40E-01	2.49E-03	Ccdc71l	4.25E-01	4.88E-03
Mfge8	6.23E-01	1.33E-03	Cckbr	5.45E-01	1.04E-06
Mmd	-5.08E-01	1.47E-05	Ccnd1	3.86E-01	4.19E-04
Mndal	6.16E-01	1.17E-03	Ccnd2	4.09E-01	4.27E-07
Myo1b	4.84E-01	3.24E-03	Ccng1	-4.15E-01	1.53E-07
Myo5b	-4.22E-01	2.16E-03	Ccni	-4.42E-01	2.46E-08
Ncald	-5.32E-01	6.62E-07	Cd200	3.60E-01	1.13E-04
Ncdn	-4.93E-01	6.67E-05	Cdc37l1	-3.73E-01	3.16E-04
Ndst3	-4.58E-01	1.61E-03	Cdh12	-4.85E-01	5.17E-07
Ndst4	-1.50E+00	1.48E-28	Cdh13	7.50E-01	1.80E-18
Necab1	9.73E-01	2.33E-20	Cdh19	-8.03E-01	7.96E-09
Nectin1	4.94E-01	3.24E-03	Cdh20	-6.67E-01	5.93E-05
Negr1	5.56E-01	1.44E-05	Cdh4	5.50E-01	1.73E-04
Neto1	-5.55E-01	1.65E-06	Cdhr1	1.94E+00	1.82E-13
Neurod6	-5.23E-01	1.44E-05	Cdk16	-3.23E-01	2.35E-04
Nnat	4.52E-01	4.14E-03	Cdkn1c	6.57E-01	9.14E-04
Nov	6.05E-01	1.45E-05	Cdr2	-1.10E+00	1.45E-06
Npr1	1.19E+00	2.67E-04	Celf3	4.00E-01	8.89E-04
Ntng1	-8.01E-01	2.62E-08	Cep290	-3.82E-01	2.32E-04
Olfml2b	-6.61E-01	8.74E-04	Chga	-5.92E-01	2.06E-07
Osbpl6	-4.62E-01	7.88E-04	Chl1	5.57E-01	2.96E-15
Pcdh20	-4.55E-01	2.96E-04	Chml	-5.89E-01	2.43E-06
Pcp4	3.87E-01	4.07E-03	Chn2	-7.16E-01	6.92E-12
Pcsk2	-5.03E-01	2.09E-05	Chrm2	-6.87E-01	1.41E-08

Pdyn	5.98E-01	9.80E-04	Ckb	-3.71E-01	6.95E-05
Peak1	-4.49E-01	1.16E-03	Cldn11	-6.91E-01	5.50E-16
Penk	6.23E-01	5.58E-10	Clec18a	1.10E+00	4.18E-03
Pgr	-4.68E-01	2.61E-03	Clic4	-4.35E-01	1.58E-05
Phf20	-4.34E-01	1.08E-03	Clstn2	-4.98E-01	8.93E-09
Pirt	-2.33E+00	4.66E-05	Cmpk2	-5.78E-01	1.51E-04
Pkd2l1	3.57E+00	3.40E-24	Cnih3	-5.02E-01	2.75E-04
Pla2g16	5.45E-01	2.24E-05	Cnnm1	4.03E-01	2.86E-06
Plagl1	-6.40E-01	1.37E-08	Cnp	-5.87E-01	1.04E-11
Plin4	-1.13E+00	3.78E-03	Cntn2	-3.95E-01	2.31E-04
Plk2	-5.93E-01	1.16E-06	Cntn6	7.71E-01	1.04E-11
Plpp6	-4.84E-01	9.50E-04	Cntnap1	-4.17E-01	8.30E-06
Plxna1	-5.30E-01	6.96E-05	Cntnap3	8.72E-01	2.31E-06
Plxnc1	5.95E-01	2.01E-05	Col11a1	4.77E-01	6.83E-04
Pou3f1	-1.46E+00	1.45E-19	Col15a1	-1.15E+00	4.53E-04
Ppm1e	-5.99E-01	1.22E-07	Col23a1	1.17E+00	4.44E-09
Ppp1r1b	4.47E-01	7.07E-04	Col25a1	-6.40E-01	4.39E-11
Prkar2b	4.97E-01	2.51E-04	Col5a1	1.01E+00	8.79E-15
Prkca	-4.98E-01	1.11E-04	Col5a2	1.00E+00	1.67E-04
Prkcd	-8.42E-01	1.33E-03	Col6a1	4.16E-01	9.51E-04
Prkcg	-4.06E-01	1.64E-03	Col6a2	8.60E-01	3.05E-04
Prss35	-1.03E+00	4.83E-06	Col8a1	-8.76E-01	8.89E-04
Psat1	6.06E-01	4.13E-07	Comt	7.26E-01	7.11E-19
Ptgs2	-7.76E-01	2.28E-07	Coro6	-7.74E-01	1.18E-08
Ptpn14	8.15E-01	6.05E-06	Cpeb2	-3.00E-01	1.00E-03
Rai14	7.42E-01	4.96E-04	Cplx1	-5.91E-01	8.70E-15
Rapgef2	-4.32E-01	9.80E-04	Срт	-6.64E-01	6.50E-04
Rasd1	-1.28E+00	1.29E-10	Cpne4	4.56E-01	2.20E-07
Rasgrp1	-4.57E-01	7.08E-04	Cpne6	1.19E+00	2.47E-26
Rasl11b	-7.11E-01	9.50E-04	Cpne7	8.69E-01	2.86E-05
Rspo3	9.13E-01	5.14E-06	Crispld1	9.18E-01	9.91E-10
Runx1t1	3.79E-01	4.41E-03	Cryab	-7.04E-01	7.49E-07
Ryr2	-4.75E-01	7.30E-05	Csgalnact1	3.87E-01	7.13E-04
Sacs	-4.55E-01	1.40E-03	Csmd3	3.20E-01	3.97E-03
Scn7a	8.95E-01	3.04E-05	Csrp1	-4.36E-01	4.26E-06
Scn9a	7.44E-01	2.35E-03	Ctif	-3.47E-01	2.67E-03
Sdk2	5.84E-01	1.17E-03	Ctnna1	-3.72E-01	1.19E-03
Sel1l3	-5.46E-01	2.16E-03	Ctsb	-3.50E-01	1.73E-05
Sema3d	6.98E-01	1.91E-06	Cux2	3.64E-01	3.11E-05
Sema3e	-1.11E+00	1.02E-22	Cwh43	-1.04E+00	5.71E-04
Sfrp1	7.49E-01	7.88E-04	Cxcl12	4.19E-01	9.74E-06
Shisa2	1.04E+00	3.11E-04	Cxxc4	-4.95E-01	7.78E-08
Shisa6	-6.93E-01	1.86E-08	Cyld	5.17E-01	2.91E-12
Skida1	-7.18E-01	3.46E-04	Cyp26b1	-1.01E+00	2.24E-03
Slc17a6	-5.29E-01	1.75E-05	Cyp39a1	-1.45E+00	1.35E-05
Slc24a2	-5.23E-01	5.04E-05	Cyr61	1.08E+00	2.75E-04
Slc2a1	-5.92E-01	1.06E-04	D17Wsu92e	-3.59E-01	4.16E-05
Slc35f1	5.63E-01	8.48E-06	D1Ertd622e	-6.25E-01	3.34E-12
Sic4a10	3.76E-01	3.49E-03	D8Ertd82e	7.79E-01	1.73E-09
SIc5a7	7.08E-01	1.92E-04	Daam2	-4.17E-01	4.00E-05
SIc7a11	4.30E-01	6.82E-04	Dach1	7.64E-01	6.94E-04
SIc9a2	-1.89E+00	8.22E-32	Dagla	-4.08E-01	6.46E-04
SIC9a4	-2.54E+00	3.98E-42	Dapk1	3.21E-01	5.01E-04
Slitrk4	-4.49E-01	8.20E-04	Ubpht2	6.04E-01	1.06E-12
Smtn	1.70E+00	1.82E-08	Dcaf6	3.17E-01	4.72E-04
Sorcs3	-6.54E-01	1.92E-06	Dcat7	4.78E-01	1.08E-08

Spink8	-1.45E+00	1.29E-03	Dcbld2	-3.59E-01	1.48E-03
Stac	-2.62E+00	2.09E-05	Ddit4l	-1.11E+00	1.59E-17
Stxbp5l	-4.70E-01	3.02E-03	Ddn	5.62E-01	9.34E-17
Sult1a1	-8.81E-01	4.23E-03	Deptor	-1.70E+00	9.18E-58
Syndig1I	1.09E+00	1.73E-13	Dgkb	3.35E-01	1.45E-05
Tac1	5.07E-01	3.07E-03	Dgkg	8.70E-01	6.46E-16
Tcerg1l	9.22E-01	1.25E-06	Diaph1	4.53E-01	1.09E-05
Tead1	4.09E-01	1.56E-03	Diras2	-3.41E-01	2.73E-05
Timp2	5.89E-01	2.34E-05	Dkk3	-5.78E-01	1.82E-13
Tmem255a	5.50E-01	4.20E-03	Dkkl1	-1.53E+00	1.24E-06
Tmem72	9.93E-01	1.92E-09	Dmp1	-8.64E-01	1.95E-03
Tnc	7 11F-01	4 77E-03	, Dnah14	1.25E+00	2.98E-06
Tox3	9.08E-01	4.13E-07	Dnah6	1.66E+00	2.05E-07
Trhde	-6.89E-01	1.16E-06	Dnajb1	4.82E-01	2.15E-04
Trpc4	-4.50E-01	4.91E-03	, Dnajc21	-5.63E-01	2.61E-09
Tshz3	8 19F-01	8 77E-05	Doc2b	1.33E+00	1.97E-20
Ttr	4 80F-01	4 87E-06	Dock5	-8 42F-01	4 67E-05
Ust	-5 32E-01	1 23E-03	Dpp4	-1 07E+00	3 37E-06
Vat1/	5 37F-01	3 63E-05	Dpv19l1	-5.81F-01	3 77E-11
Vall3	1 86E+00	1 28E-21	Dpv19l3	7 83E-01	3 25E-15
Wbscr17	-6 18E-01	2 86F-06	Dpvsl3	3 79E-01	6 41F-04
Wipf3	-7.89E-01	1.64E-11	Drd1	6.45E-01	3.90E-07
Zbtb16	-5 37E-01	8 43E-05	Drd2	1 02E+00	1 47E-03
Zdhhc2	-5 13E-01	8.53E-04	Dst	-3 87F-01	5.97E-08
Zfp804a	-5 65E-01	2 34E-05	Dusp18	6 98F-01	5.88E-12
	0.002 01	2.0.2.00	Dusp3	-4 55F-01	2 60F-09
			, Dusp4	1.12E+00	1.68E-06
			, Dzip1	-4 02F-01	3 55E-05
			E330009J07Rik	-3 01F-01	1 21F-03
			Ebf2	1 35E+00	7 68F-04
			Efcab1	1.08E+00	9.89E-09
			Efhd2	-4.64E-01	1.19E-06
			Efr3a	-3.51E-01	2.16E-05
			Egr2	1.66E+00	8.07E-22
			Eif5a2	-3.99E-01	2.88E-05
			Elavl4	-5.08E-01	1.13E-11
			Ell2	-5.86E-01	1.14E-09
			Enc1	3.95E-01	1.27E-07
			Endod1	-3.60E-01	4.12E-04
			Epb41	-6.67E-01	1.11E-13
			Epdr1	-3.67E-01	5.81E-04
			Erbin	-3.74E-01	2.92E-05
			Ermn	-8.15E-01	1.89E-19
			Esr1	2.16E+00	5.35E-23
			Esrrg	-7.82E-01	4.00E-14
			Etnppl	-7.82E-01	6.21E-09
			Evc2	6.88E-01	1.02E-04
			Exd2	3.30E-01	2.68E-03
			Exoc6b	-3.26E-01	4.96E-04
			Extl3	-4.70E-01	3.55E-07
			Ezr	-3.34E-01	1.78E-03
			Fa2h	-6.14E-01	1.48E-03
			Fam101b	7.01E-01	1.32E-04
			Fam107a	-5.77E-01	1.18E-15
			Fam124a	4.63E-01	3.63E-04
			Fam126a	5.78E-01	1.07E-05

Fam13c	3.32E-01	5.00E-04
Fam149a	3.79E-01	2.63E-03
Fam19a1	7.92E-01	3.00E-16
Fam3c	-3.71E-01	8.24E-05
Fam43a	-9.32E-01	1.52E-04
Fam65b	3.66E-01	3.20E-03
Fap	-1.02E+00	5.44E-05
Fat3	-5.01E-01	3.01E-11
Fat4	6 30E-01	8 10F-06
Fbxo10	6.10E-01	5.14E-05
Fbxo32	-1 17E+00	5 31F-19
Fad4	3 11F-01	2 44F-03
Fqf10	8.59E-01	1.96E-06
Fafr3	-4 35F-01	1 17E-03
Fhad1	-1 11E+00	5.97E-06
Fhod3	-4 95E-01	2.00E-06
Filin1	6.41E-01	2.32E-03
Flrt3	4.40F-01	7.61F-05
Fmn1	-7 04F-01	4 90F-12
Fndc5	-6 18F-01	2 12F-09
Endc9	1 45E+00	4 86E-04
Fos	6 12E-01	1 56E-04
Fosh	7 53E-01	1 13E-04
Foxn3	-6.61F-01	7 15E-06
Foxo3	-3 19E-01	1.89E-03
Foxp1	-1.36E+00	1.38E-67
Fras1	-5 59E-01	3.34E-05
Frrs1	-3.09E-01	2 56E-05
Fst	1 55E+00	3 74F-26
Fstl4	-3 99F-01	4 72F-03
Fxvd6	8 00F-01	2 55E-09
Fzd4	-5.81F-01	1 35E-04
Gaa	3.91E-01	1.40E-03
Gabra2	4.27E-01	3.53E-08
Gabra5	-7.80E-01	3.32E-16
Galntl6	-5.23E-01	1.35E-05
Gap43	4.24E-01	7.09E-08
Gatm	-4.11E-01	3.36E-05
Gbp4	1.02E+00	2.92E-03
Gbp9	8.05E-01	1.72E-04
Gcnt4	-5.43E-01	1.77E-04
Gda	4.38E-01	8.13E-10
Gfra2	-1.36E+00	5.55E-41
Git1	-3.27E-01	4.05E-04
Gjb6	-6.23E-01	9.42E-09
Gjc3	-7.20E-01	6.30E-13
Glp2r	1.82E+00	2.79E-08
Glra3	2.31E+00	6.49E-141
Glt8d2	-1.04E+00	1.93E-11
Glul	-3.26E-01	1.60E-05
Gm16485	-9.47E-01	4.44E-17
Gm19410	3.95E-01	3.09E-04
Gm38393	-4.34E-01	7.45E-06
Gm765	1.54E+00	7.61E-32
Gnb4	9.49E-01	2.25E-22
Gng2	3.48E-01	4.67E-06

Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system		Gng4	3.49E-01	3.22E-03
Image: Section of the sectio		Gng7	3.57E-01	1.04E-03
Image: Second		Gpc3	9.95E-01	2.45E-03
Image: Second		Gpc4	8.73E-01	1.49E-05
Image: space of the set of the s		Gpcpd1	-4.38E-01	5.84E-08
Image: Second		Gpr158	-3.72E-01	2.15E-06
Image: space of the system Gpr89 4.48E-01 3.48E-05 Gpr50 -4.04E.01 5.21E-37 Gpr50 -4.04E.01 2.63E-04 Gpr50 -4.04E.01 9.91E-11 Gpr50 -4.04E.01 9.21E-11 Gpr50 -4.04E.01 5.46E-01 9.91E-11 Gpr50 -4.04E.01 1.57E-04 Grin3 3.12E-01 3.14E-05 - <t< td=""><th></th><td>Gpr37</td><td>-6.65E-01</td><td>2.10E-07</td></t<>		Gpr37	-6.65E-01	2.10E-07
Bit State Gpr8B 921E-01 5.21E-37 Grotsb -4.04E-01 2.63E-04 9.07E-51 Grotb -4.04E-01 9.07E-11 5.77E-05 Grin2 5.02E-01 1.57E-04 Grin3 5.12E-01 3.14E-05 Grin3 5.04E-01 5.04E-01 Grin3 5.04E-01 5.04E-03 Grin3 5.04E-01 5.04E-03 Grin3 5.04E-01 5.04E-03 Grin3 5.04E-01 5.04E-03 Grin3 3.08E-01 7.87E-07 Grin4 8.78E-01 5.21E-04 Gasta 8.78E-01 5.21E-04 Gasta 8.78E-01 5.28E-04 Guy/13 1.02E+00 8.82E-49 Guy/13 1.02E+00 8.82E-49 Guy/13 1.02E+00 8.78E-01 Haph2 9.06E-01 8.78E-01 Haph2 9.06E-01 8.78E-01 Haph4 -4.38E-01 1.51E-21 Haph4 -4.38E-01 1.51E-01		Gpr85	4.43E-01	3.49E-05
Gprofb 4.04E-01 2.83E-01 Gpin1 5.94E-01 9.01E-11 Gib10 4.35E-01 5.07E-01 Giran2 5.02E-01 1.57E-04 Giran3 5.40E-01 5.07E-01 Giran3 5.40E-01 5.07E-01 Giran3 5.40E-01 5.04E-01 Girn3 5.40E-01 5.04E-01 Girn3 5.40E-01 5.07E-07 Girn4 3.98E-01 7.07E-07 Girp 1.96E+00 2.54E-12 Girp2 4.29E-01 5.21E-04 Girp4 5.07E-01 5.27E-04 Girp4 1.02E+00 8.82E-49 Gucy183 4.31E-01 3.51E-21 Gucy183 4.31E-01 3.51E-21 Haph4 8.42E-01 3.51E-21 Haph4 8.42E-01 3.51E-21 Haph4 8.42E-01 3.51E-21 Haph4 8.42E-01 1.43E-03 Haph4 8.42E-01 1.43E-03 Haph4 8.42E-01		Gpr88	9.21F-01	5.21E-37
Opin1 Spate-11 spite-11 0 0 4.35E-01 5.17E-05 0 0 0.35E-01 3.14E-05 0 0 0.35E-01 3.14E-05 0 0 0.30E-01 5.40E-01 5.40E-01 0 0.375 3.56E-01 1.10E-04 0 0.375 3.56E-01 7.67E-07 0 0.375 0.56E-01 5.27E-07 0 0.375 0.56E-01 5.27E-07 0 0.378E-01 1.24E-08 5.27E-07 0 0.3284 9.77E-01 1.24E-08 0 0.3284 9.77E-01 1.24E-08 0 0.3284 9.37E-01 1.24E-08 0 0.3284 9.37E-01 1.24E-08 0 0.3284 9.37E-01 1.28E-08 0 0.3284 9.37E-01 1.38E-03 1 1.43E-01 3.55E-01 1.38E-03 1 1.43E-01 3.55E-01 1.43E-03		Gprc5b	-4.04E-01	2.63E-04
Gh10 4.35E-11 5.17E-05 Grem2 5.02E-01 1.57E-04 Grem3 3.12E-01 3.14E-05 Grin3a 5.40E-01 5.40E-08 Grin7a 5.40E-01 5.40E-08 Grin7a 3.50E-01 1.10E-04 Grin7 3.50E-01 1.10E-04 Grm5 3.50E-01 7.67E-07 Grin7 1.50E+00 2.54E+12 Grin7 5.06E-01 5.77E-07 Grin7 5.06E-01 5.77E-07 Grin7 3.50E-01 1.24E-08 Grin7 3.50E-01 5.21E-04 Gay12 4.29E-01 5.22E-01 Gucy133 1.02E+00 8.82E-49 Gucy143 4.31E-01 3.52E-08 Hap1 4.51E-01 3.52E-01 Hap1 4.51E-01 3.51E-01 Hap1 4.51E-01 1.51E-01 Hap1 4.51E-01 1.51E-01 Hap1 4.31E-01 1.30E-08 Hap2 3.28E-01 1		Gprin1	5.94F-01	9.91F-11
Grem2 5.02E-01 1.57E-04 Gin30 3.12E-01 3.14E-05 Gin33 5.40E-01 5.40E-06 Gin134 5.40E-01 5.40E-08 Gin13 3.96E-01 1.10E-04 Gin72 -1.38E+00 5.86E-13 Gin72 -1.38E+00 5.86E-13 Gin72 -1.38E+00 5.86E-13 Gin72 4.28E-01 5.21E-04 Gisp12 4.29E-01 5.21E-04 Gisp24 4.29E-01 5.21E-04 Gisp14 8.75E-01 1.24E-08 Gisp14 8.75E-01 2.25E-12 Hap1 8.57E-01 2.25E-12 HaphA -9.06E-01 8.76E-04 HaphA -9.06E-01 1.86E-10 HaphA -9.06E-01 1.48E-03 HaphA -9.06E-01 1.48E-03 HaphA -9.28E-01 1.31E-03 HaphA -9.28E-01 1.48E-03 HaphA -9.28E-01 1.06E-04 HapA -9.28E-01 <th></th> <td>Grb10</td> <td>4 35F-01</td> <td>5 17E-05</td>		Grb10	4 35F-01	5 17E-05
Gris3 3.12E-01 3.14E-06 Gin3a 5.40E-01 5.40E-08 Grm1 3.96E-01 1.10E-04 Grm2 -1.38E-00 5.86E-13 Grm5 3.86E-01 7.67E-07 Grm5 3.86E-01 5.77E-07 G8p1 5.10E-01 5.77E-07 G8p2 4.29E-01 5.21E-04 G8p4 8.73E-01 2.25E-12 G8p4 8.73E-01 2.25E-12 G8p4 4.31E-01 3.52E-08 Hap1n2 9.00E-01 8.76E-04 Hap1n2 9.00E-01 8.76E-04 Hap1n2 9.00E-01 1.88E-10 Hap1n2 9.29E-01 1.48E-03 Hap1n2 9.29E-01 1.48E-03 Hab2 3.29E-01 1.31E-03<		Grem2	5 02F-01	1.57E-04
Operation Operating Operating <thoperating< th=""> <thoperating< th=""> <tho< td=""><th></th><td>Gria3</td><td>3 12F-01</td><td>3 14E-05</td></tho<></thoperating<></thoperating<>		Gria3	3 12F-01	3 14E-05
Grm1 $3.96E-01$ $1.10E-04$ $Grm2$ $-1.38E+00$ $5.66E-13$ $Grm5$ $3.86E-01$ $7.67E-07$ Gp $1.96E+00$ $2.54E+12$ $Ggpl$ $1.96E+00$ $2.54E+12$ $Gapt2$ $4.29E-01$ $5.21E-04$ $Gapt2$ $4.29E-01$ $5.21E-04$ $Guy/1a3$ $1.02E+00$ $8.82E-49$ $Guy/1a3$ $4.31E-01$ $3.28E-08$ $Hap1$ $8.57E-01$ $2.28E+12$ $Guy/1b3$ $4.31E-01$ $3.28E-08$ $Hap1$ $8.57E-01$ $2.28E+12$ $Hap1$ $8.57E-01$ $2.28E+12$ $Hap1$ $8.57E-01$ $2.28E+12$ $Hap1$ $8.57E-01$ $8.7E-04$ $Hap1$ $8.57E-01$ $8.7E-04$ $Hap1$ $8.57E-01$ $8.7E-04$ $Hap1$ $8.57E-01$ $8.7E-04$ $Hap1$ $4.38E-01$ $3.51E-21$ $Hap1$ $4.31E-01$ $1.07E-04$ $Heox1$ $4.32E-01$ <		Grin3a	5 40F-01	5 40E-08
Gim2 -1.38E400 5.86E-13 Gim2 -1.38E400 5.86E-13 Gim3 3.86E-01 7.67E-07 Gapt2 4.99E-01 5.77E-07 Gapt2 4.29E-01 5.21E-04 Gapt2 4.29E-01 5.21E-04 Gata4 8.73E-01 1.24E-08 Guvy183 4.01E-00 8.82E-49 Guvy183 4.31E-01 3.82E-08 Hap1 8.57E-01 2.25E-12 Hap1 8.57E-01 3.5E-20 Hap1 8.57E-01 5.5E-01 Hap1 9.5E-01 1.43E-03 Hap1 8.3E-01 1.5E-04 Hap2 3.0E-01 1.54E-07 Hab2 3.0E-01 1.54E-03 Hab2 3.0E-01 1.56E-04 He6x1 -3.0E-01 1.0E-03		Grm1	3.96E-01	1 10F-04
Image: Second		Grm2	-1.38E+00	5.86E-13
Grp $1.96E+00$ $2.54E+12$ Image: Constraint of the second se		Grm5	3 68F-01	7.67F-07
Bit Product Bit Product Bit Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Product Image: State Prod		Grn	1 96F±00	2.54F-12
Stage Stage Stage Stage Stage Image: Stage <td< td=""><th></th><td>Gsall</td><td>5 10F_01</td><td>5 77E_07</td></td<>		Gsall	5 10F_01	5 77E_07
$4.24 \le 10^{11}$ $5.21 \le 0.4$ Gatad $6.73 \le 0.1$ $1.24 \le 0.6$ Gucy1a3 $1.02 \ge 100$ $8.82 \le 49$ Gucy1a3 $1.02 \ge 100$ $8.82 \le 49$ Gucy1b3 $4.31 \le 0.1$ $3.52 \le 0.8$ Hapln $8.57 \le 0.1$ $2.25 \le 1.2$ Hapln2 $-9.06 \le 0.1$ $8.76 \le -0.4$ Hapln4 $-8.84 \le 0.1$ $3.51 \le 2.1$ Hapln4 $-8.84 \le 0.1$ $3.51 \le 2.1$ Hapln4 $-8.84 \le 0.1$ $3.51 \le 2.1$ Hapln4 $-4.28 \le 0.1$ $1.43 \le 0.3$ Hapln2 $-9.06 \le 0.1$ $1.43 \le 0.3$ Hapln4 $-8.84 \le 0.1$ $3.51 \le 2.1$ Hapln2 $-9.06 \le 0.1$ $1.43 \le 0.3$ Hapln4 $-4.32 \le 0.1$ 1.31 ± 0.3 Hapln4 $-8.32 \le 0.1$ $1.10 \le 0.4$ Hapln2 $-5.61 \le 0.1$ $1.10 \le 0.4$ Hapln2 $-5.61 \le 0.1$ $1.50 \le 0.6$ Hapln4 $-6.32 \ge 0.1$ $1.25 \ge 0.4$ Hapln2 -1.16 ± 0.0 $7.65 \in -14$		Gent2	4 20F_01	5.21E-0/
Bit Start Bit Start Bit Start Bit Start Bit Start Image: Start Image: St		Gsta4	8 73E-01	1.21E-04
Guy Rb Alterot Gold Fib Image: Construction of the second secon		Gucy1a3	1.02E+00	8.82E-40
Hapin 4.51201 3.522100 Hapin 6.57201 2.52212 Hapin2 $9.06E-01$ $8.76E-04$ Hapin4 $-8.84E-01$ $3.51E-21$ Hann $-4.79E-01$ $1.68E+10$ Hann $-4.79E-01$ $1.68E+10$ Hann $-4.79E-01$ $1.31E-03$ Hax $-4.12E-01$ $1.31E-03$ Hax $-4.12E-01$ $1.31E-03$ Hax $-4.12E-01$ $1.554E-07$ Heg1 $-5.16E-01$ $5.54E-07$ Hax $-4.13E-01$ $1.50E-08$ HH $-4.13E-01$ $1.50E-08$ HH $-4.13E-01$ $1.50E-08$ HH $-4.13E-01$ $1.27E-04$ HH $-4.13E-01$ $1.27E-04$ HH2 $6.32E-01$ $1.27E-04$ HH2 $6.32E-01$ $1.79E-08$ HH2 $-3.25E-01$ $1.79E-08$ H438512 $3.15E-01$ $4.88E-03$ H4592111 $-2.36E+00$ $1.73E-06$ <		Gucy1b3	4.21E.01	2.52E.09
Imp Dot $L2LE12$ Image $Hapin2$ $9.06E-01$ $8.76E-04$ Image $Hapin4$ $8.84E01$ $3.51E-21$ Image $Han1$ $4.79E-01$ $1.68E+10$ Image $HaldaG$ $3.29E-01$ $1.43E-03$ Image Hdx $4.12E-01$ $1.31E-03$ Image $Hecwt1$ $3.01E-01$ $1.10E-04$ Image $-5.16E-01$ $5.54E-07$ Image $-5.16E-01$ $5.54E-07$ Image $-5.16E-01$ $5.54E-07$ Image $-5.16E-01$ $5.54E-07$ Image $-5.16E-01$ $1.50E-08$ Image $-6.32E-01$ $1.27E-04$ Image $Hh2$ $-6.32E-01$ $1.70E-08$ Image $Hh32$ $-7.36E-01$ $9.06E-07$ Image $Hs5st2$ $-1.16E+00$ $4.78E-18$ Image $Hh23$ $-7.36E-01$ $1.70E-05$ Image $Hs5st2$ $-3.15E-01$ $4.88E-03$ <t< td=""><th></th><td>Han1</td><td>4.51E-01</td><td>0.02E-00</td></t<>		Han1	4.51E-01	0.02E-00
Implify Implify <thimplify< th=""> <thimplify< th=""> <th< td=""><th></th><td>Hapl</td><td>-0.06E-01</td><td>8.76E-04</td></th<></thimplify<></thimplify<>		Hapl	-0.06E-01	8.76E-04
Implify Tright H Tright H Tright H Tright H Tright H Tright H Image: Heat H H H 1.88E-10 1.88E-10 Image: Heat H H 1.47E-01 1.88E-10 1.88E-10 Image: Heat H H 1.11E-03 1.11E-03 1.11E-03 Image: Heat H H 3.01E-01 1.11E-03 1.10E-04 Image: Heat H H 3.01E-01 1.56E-07 9.84E-05 Image: H H 1.11E+00 7.65E-14 1.50E-08 Image: H H 1.11E+00 7.65E-14 1.50E-08 Image: H H 1.11E+00 7.65E-14 1.50E-08 Image: H H 6.32E-01 1.27E-04 1.50E-08 Image: H H 6.32E-01 1.72E-04 1.50E-08 Image: H H 6.32E-01 1.72E-04 1.55E-01 7.55E-14 Image: H H S.52E-01 1.75E-08 1.55E-01 1.75E-08 Image: H H H </td <th></th> <td>Hapin2</td> <td>9.84E.01</td> <td>0.70E-04</td>		Hapin2	9.84E.01	0.70E-04
Image: Second		Hcn1	4 70E 01	1.69E 10
IndexIndexIndexIndex Hdx $4.12E \cdot 01$ $1.31E \cdot 03$ Index $Hew 1$ $3.01E \cdot 01$ $1.10E \cdot 04$ Index $Hew 1$ $3.01E \cdot 01$ $1.554E \cdot 07$ Index $Heg1$ $5.16E \cdot 01$ $5.54E \cdot 07$ Index $Hip 2$ $3.92E \cdot 01$ $9.84E \cdot 05$ Index Hif $4.13E \cdot 01$ $1.50E \cdot 08$ Index Hif $4.13E \cdot 01$ $1.50E \cdot 08$ Index Hif $4.13E \cdot 01$ $1.50E \cdot 08$ Index Hhf $4.13E \cdot 01$ $1.50E \cdot 08$ Index Hhf $6.32E \cdot 01$ $1.27E \cdot 04$ Index Hhf $6.51E \cdot 01$ $7.09E \cdot 08$ Index Hhf $6.51E \cdot 01$ $7.09E \cdot 08$ Index $Hsst2$ $1.16E \cdot 00$ $4.78E \cdot 18$ Index $Hsst2$ $3.15E \cdot 01$ $1.70E \cdot 08$ Index $Hspal1$ $-2.36E \cdot 00$ $1.75E \cdot 08$ Index $Hspal2$ $5.52E \cdot 01$ $1.70E \cdot 05$ Index $Hspal4$ $-3.25E \cdot 01$ $1.73E \cdot 05$ Index $Hspal4$ $-3.25E \cdot 01$ $1.73E \cdot 05$ Index $Htr2$ $-6.49E \cdot 01$ $1.04E \cdot 05$ Index $Htr2$ $1.17E \cdot 00$ $2.07E \cdot 26$ Index $Htr2$ $1.17E \cdot 00$ $2.07E \cdot 26$ Index $Htr2$ $1.17E \cdot 00$ $2.28E \cdot 05$ IndexIndex $Htr2$ $1.38E \cdot 01$ IndexIndex $1.32E \cdot 05$ IndexIntrap $-6.64E \cdot 01$ $7.49E \cdot 12$		Hdac9	-4.79E-01	1.08E-10
Instruction Instruction Instruction Image: Second Secon		Hdx	-4 12E-01	1.45E-03
Image: Second		Hecw1	-3.01E-01	1.01E-00
Image Image Image Image Image Ima		Heal	-5 16E-01	5.54E-07
Image Image <th< td=""><th></th><td>Hink2</td><td>-3.92E-01</td><td>9.84E-05</td></th<>		Hink2	-3.92E-01	9.84E-05
Image Image <th< td=""><th></th><td>HIf</td><td>-4 13E-01</td><td>1 50E-08</td></th<>		HIf	-4 13E-01	1 50E-08
Hh2 6.32E-01 1.27E-04 Hh3 -7.36E-01 9.06E-07 Hh3 -7.36E-01 9.06E-07 Hh3 -7.36E-01 9.06E-07 Hh4 6.51E-01 7.09E-08 Hh5 Hh5 3.15E-01 4.88E-03 H56512 3.15E-01 4.88E-03 4.88E-03 H56512 3.15E-01 1.70E-05 1.70E-05 H5921 -5.2E-01 1.70E-05 1.70E-05 H5924 -3.25E-01 1.70E-05 1.70E-05 H171 -8.95E-01 8.62E-05 8.62E-05 H172 1.17E+00 2.07E-26 1.17E+00 2.07E-26 H172 1.17E+00 2.07E-26 1.17E+00 3.28E-34 H172 1.17E+00 3.28E-34 1.83E-07 H171 1.35E+00 3.28E-34 1.83E-07 H171 1.83E-01 1.83E-07 1.83E-07 H171 1.82E-01 1.83E-07 1.83E-07 H171 1.83E-01 1.83E-07 1.83		Hr	-1 11E+00	7.65E-14
Image Image <th< td=""><th></th><td>Hrh2</td><td>6.32E-01</td><td>1 27F-04</td></th<>		Hrh2	6.32E-01	1 27F-04
Hrk 6.51E-01 7.09E-08 Hrk 6.51E-01 7.09E-08 Hs3st2 -1.16E+00 4.78E-18 Hs6st2 3.15E-01 4.88E-03 Hsbp111 -2.36E+00 1.75E-08 Hsbp2 5.52E-01 1.70E-05 Hspa2 5.52E-01 1.73E-05 Hspa4 -3.25E-01 1.73E-05 Htr1f -8.95E-01 8.62E-05 Htr2a -6.49E-01 1.04E-05 Htr2a -6.49E-01 1.04E-05 Htr2a -6.49E-01 9.52E-06 Htr2a -6.49E-01 9.52E-06 Htr3 -4.28E-01 9.52E-06 Htra1 -4.28E-01 9.52E-06 Htr31 -4.28E-01 1.83E-07 Htr31 -4.28E-01 1.83E-07 Htr31 -9.08E-01 </td <th></th> <td>Hrh3</td> <td>-7 36E-01</td> <td>9.06F-07</td>		Hrh3	-7 36E-01	9.06F-07
History History History History		Hrk	6.51E-01	7 09F-08
Hs6st2 3.15E-01 4.88E-03 Hsbp111 -2.36E+00 1.75E-08 Hspa2 5.52E-01 1.70E-05 Hspa41 -3.25E-01 1.73E-05 Hspa41 -3.25E-01 1.73E-05 Htr1f -8.95E-01 8.62E-05 Htr2a -6.49E-01 1.04E-05 Htr2a -6.49E-01 7.62E-05 Htr3 -4.28E-01 9.52E-06 Htr3 -4.28E-01 9.52E-06 Htr3 -4.28E-01 1.83E-07 Htr3 -4.28E-01 2.93E-05 Htr3 -4.28E-01 2.93E-05 H1rap -6.64E-		Hs3st2	-1.16E+00	4.78E-18
Hsbp111 -2.36E+00 1.75E-08 Hsp2 5.52E-01 1.70E-05 Hsp2 5.52E-01 1.73E-05 Hsp41 -3.25E-01 1.73E-05 Hsp41 -3.25E-01 1.73E-05 Hsp41 -3.25E-01 1.73E-05 Htr11 -8.95E-01 8.62E-05 Htr2 -6.49E-01 1.04E-05 Htr2 1.17E+00 2.07E-26 Htr2 1.17E+00 2.07E-26 Htr2 1.17E+00 2.07E-26 Htr3 -4.28E-01 9.52E-06 Htr3 -4.28E-01 9.52E-06 Htr3 1.35E+00 3.28E-34 Htr3 1.32E-03 1.132E-03 Htr3 1.17E 9.69E-01 2.93E-05 Htr3 1.17E 9.08E-01 3.43E-03 Htr4 <th></th> <td>Hs6st2</td> <td>3.15E-01</td> <td>4.88E-03</td>		Hs6st2	3.15E-01	4.88E-03
Hspa2 5.52E-01 1.70E-05 Image: Mark and Mark		Hsbp1l1	-2.36E+00	1.75E-08
Hspa4l -3.25E-01 1.73E-05 Htr1f -8.95E-01 8.62E-05 Htr2a -6.49E-01 1.04E-05 Htr2a -6.49E-01 1.04E-05 Htr2c 1.17E+00 2.07E-26 Htr2 Htr2c 1.17E+00 2.07E-26 Htr2 Htr2 1.17E+00 2.07E-26 Htr2 Htr2 1.17E+00 2.07E-26 Htr3 -4.28E-01 9.52E-06 9.52E-06 Htra1 -4.28E-01 9.52E-06 9.52E-06 Htra1 1.35E+00 3.28E-34 9.52E-06 Htra1 -9.69E-01 2.93E-05 1.83E-07 Htr3 Htr3 -9.69E-01 2.93E-05 Htr3 H1rap -6.64E-01 7.49E-12 H1rap11 3.43E-01 1.32E-03 1.32E-03 H1rap12 -9.08E-01 3.43E-05 1.343E-05 H183 -7.43E-01 2.76E-10 1.432-05 H182 H182 3.86E-01 7.39E-07		Hspa2	5.52E-01	1.70E-05
Htt -8.95E-01 8.62E-05 Htr2a -6.49E-01 1.04E-05 Htr2a -6.49E-01 1.04E-05 Htr2c 1.17E+00 2.07E-26 Htr7 7.78E-01 7.62E-05 Htra1 -4.28E-01 9.52E-06 Htra1 1.35E+00 3.28E-34 Htra1 1.35E+00 3.28E-34 Htra1 -9.69E-01 2.93E-05 Htra1 -9.69E-01 2.93E-05 Htra1 -9.69E-01 2.93E-05 Htra1 -9.69E-01 2.93E-05 Htra1 -9.08E-01 3.43E-03 H11rapl -6.64E-01 1.32E-03 H11rapl2 -9.08E-01 3.43E-05 H133 -7.43E-01 2.76E-10 Hdr2 3.86E-01 7.39E-07		Hspa4l	-3.25E-01	1.73E-05
Htr2a -6.49E-01 1.04E-05 Htr2c 1.17E+00 2.07E-26 Htr2c 1.17E+00 2.07E-26 Htr2 Htr2 7.78E-01 7.62E-05 Htr2 Htr2 9.52E-06 9.52E-06 Htr2 I.17E+00 3.28E-34 9.52E-06 Image: Htr2 Image: Htr2 1.35E+00 3.28E-34 Image: Htr2 Image: Htr2 1.83E-07 1.83E-07 Image: Htr2 Image: Htr2 Image: Htr2 1.32E-03 Image: Htr2 Image: Htr2 Image: Htr2 1.343E-05 Image: Htr2 Image: Htr2 Image: Htr2 1.343E-05 Image: Htr2 Image: Htr2 Image: Htr2 1.32E-03 Image: Htr2 Image: Htr2 Image: Htr2 Image: Htr2 Image: Htr2 Image: Htr2 Image: Htr2 <th></th> <td>Htr1f</td> <td>-8.95E-01</td> <td>8.62E-05</td>		Htr1f	-8.95E-01	8.62E-05
Htr2c 1.17E+00 2.07E-26 Image: Market Mark		Htr2a	-6.49E-01	1.04E-05
Htr7 7.78E-01 7.62E-05 Htra1 -4.28E-01 9.52E-06 Image: Htra1 1.35E+00 3.28E-34 Image: Htra1 1.35E+00 2.93E-05 Image: Htra1 1.132E+03 1.32E+03 Image: Htra1 1.33 -7.43E+01 3.43E+05 Image: Htra1 Image: Htra1 1.338E+01 2.76E+10 Image: Htra1 Image: Htra1 3.86E+01 7.39E+07		Htr2c	1.17E+00	2.07E-26
Htra1 -4.28E-01 9.52E-06 Image: Ima		Htr7	7.78E-01	7.62E-05
Image: left left left left left left left left		Htra1	-4.28E-01	9.52E-06
Image: Note of the image: No		lgfn1	1.35E+00	3.28E-34
III r1 -9.69E-01 2.93E-05 III rap -6.64E-01 7.49E-12 III rapI 3.43E-01 1.32E-03 III rapI 9.08E-01 3.43E-05 III rapI 9.08E-01 3.43E-05 III rapI 9.08E-01 3.43E-05 III rapI 9.08E-01 3.43E-05 III rapI 1133 -7.43E-01 2.76E-10 III rapI 11dr2 3.86E-01 7.39E-07		lkzf4	6.38E-01	1.83E-07
IIIrap -6.64E-01 7.49E-12 IIIrapI1 3.43E-01 1.32E-03 IIIrapI2 -9.08E-01 3.43E-05 IIIrapI2 -9.08E-01 2.76E-10 IIIrapI2 3.86E-01 7.39E-07		ll1r1	-9.69E-01	2.93E-05
III rapl1 3.43E-01 1.32E-03 III rapl2 -9.08E-01 3.43E-05 III rapl2 -7.43E-01 2.76E-10 III rapl2 3.86E-01 7.39E-07		ll1rap	-6.64E-01	7.49E-12
III rapl2 -9.08E-01 3.43E-05 III III33 -7.43E-01 2.76E-10 IIII IIII IIII 1.83 -7.39E-01 IIIII IIIII IIIII 1.86E-01 7.39E-07		ll1rapl1	3.43E-01	1.32E-03
III33 -7.43E-01 2.76E-10 IIII10 IIIII10 IIII10 7.39E-07		ll1rapl2	-9.08E-01	3.43E-05
<i>Ildr2</i> 3.86E-01 7.39E-07		1133	-7.43E-01	2.76E-10
		Ildr2	3.86E-01	7.39E-07

	Ina	-3.84E-01	3.89E-07
	Inf2	-7.63E-01	8.06E-12
	Inpp4b	4.82E-01	3.62E-03
	Inpp5j	-5.27E-01	4.11E-03
	lqsec1	-4.57E-01	3.97E-09
	lqsec3	-4.82E-01	5.56E-07
	Itga4	1.60E+00	2.71E-69
	ltga8	8.60E-01	2.52E-08
	ltih3	-6 88F-01	4 08F-03
	Itm2c	3.99E-01	3.18E-06
	ltpr1	-3 46F-01	2 76F-06
	, Jade3	6.05E-01	5 54E-05
	Jdp2	-6.57E-01	1.73E-05
	Jph4	4 94F-01	7 89F-11
	Junb	6 79E-01	9.85E-06
	Kazn	-5 20F-01	4 63E-07
	Kcna1	-7 71F-01	1 49F-22
	Kcna2	-5 38F-01	6.61F-15
	Kcnab2	-3 63F-01	1.23E-05
	Kcnab3	-1 64F+00	1 85F-42
	Kcnc1	-3 50F-01	1.61E-04
	Kcnc3	-7 78F-01	9 28F-18
	Kcnd3	3 25E-01	8.07E-04
	Kcnf1	5 39E-01	2 80F-08
	Kcng1	6.53E-01	6.41E-05
	Kcng3	7.28E-01	1.91E-03
	Kcna4	-1 78F+00	9 11F-07
	Kcnh5	-6 85F-01	7 18F-09
	Kcnh7	-5.21E-01	6.13E-14
	Kcnip4	3.79E-01	7.45E-06
	Kcnj10	-8.86E-01	1.21E-32
	Kcnk2	-3.63E-01	2.12E-03
	Kcnmb4	-5.66E-01	2.87E-04
	Kcnn3	5.06E-01	5.69E-05
	Kcnq5	-3.91E-01	1.94E-06
	Kctd4	5.77E-01	2.77E-07
	Kif13b	-6.40E-01	5.20E-05
	Kif26b	6.35E-01	2.72E-04
	Kirrel3	5.70E-01	1.83E-05
	Kit	3.91E-01	4.25E-03
	Klc2	-4.02E-01	1.84E-04
	Klf16	6.60E-01	3.26E-05
	Klf9	-4.76E-01	3.07E-11
	Klhdc7a	-8.93E-01	8.72E-07
	Klhl13	5.06E-01	2.75E-05
	Kndc1	-3.64E-01	6.94E-04
	Krt222	-3.85E-01	1.33E-04
	Krt77	1.77E+00	1.03E-09
	Krt9	9.12E-01	1.39E-03
	Ку	-1.92E+00	1.23E-05
	L1cam	4.00E-01	4.20E-06
	Lamb1	5.65E-01	4.73E-03
	Lamc2	-7.45E-01	9.80E-04
	Lamp5	5.06E-01	1.19E-10
	Ldlrad4	-4.65E-01	4.65E-04
	Lgi2	-6.26E-01	3.32E-13

Infp 4.005-01 2.74E-06 Llfp3 0.25E-01 0.77E-09 Llfp3 0.25E-01 0.27E-09 Laxi 3.35E-01 1.22E-03 Laxi 3.35E-01 1.22E-03 Lm03 3.05E-01 4.41E-01 0.67E-07 Lpari 4.59E-01 9.71E-04 3.08E-03 Lpari 4.59E-01 9.71E-04 3.08E-03 Lpari -3.07E-01 3.08E-03 3.08E-03 Lpari -3.67E-01 3.08E-03 3.08E-03 Lloge1 3.08E-03 0.15E-04 3.08E-03 Lloge4 0.08E-01 4.77E-03 3.08E-03 Lloge4 3.08E-01 0.15E-04 3.08E-03 Lloge4 0.16763 3.39E-01 1.20E-17 Lloge4 Lloge4 5.33E-01 2.06E-10 Lloge4 Lloge1 3.39E-01 1.42E-03 Lloge1 1.32E-01 1.20E-17 1.44E-04 Lloge1 1.33E-01 1.32E-03 1.42E-04		Lgi3	-5.24E-01	3.01E-04
Image Image State State <th< td=""><th></th><td>Lhfp</td><td>-6.90E-01</td><td>2.74E-06</td></th<>		Lhfp	-6.90E-01	2.74E-06
Image: Section of the sectio		Lhfpl3	6.25E-01	8.77E-09
Image: Section of the sectio		Lingo2	5.64E-01	2.41E-06
Image Lmage 3.05E-01 4.46E-04 Image Image Image 9.07E-07 Image Image Image 9.07E-07 Image Image 3.00E-01 9.07E-07 Image Image 3.00E-01 3.00E-01 3.00E-01 Image Image 1.02E-01 9.00E-01 9.00E-01 Image Image Image 9.00E-01 9.00E-01 9.00E-01 Image Image Image 9.00E-01 9.0E-01 9.0E-01 9.		Lix1	3.35E-01	1.22E-03
Image Lino? 4.41E-01 9.67E-07 Image Lipatt -3.70E-01 3.09E-07 Image Lipit -3.70E-01 3.09E-07 Image Lipit -3.67E-01 3.09E-07 Image Lipit -5.67E-01 3.09E-01 4.77E-03 Image Linc10b 9.38E-01 4.22E-05		Lmo3	3.05E-01	4.46E-04
Image: Second		Lmo7	4.41E-01	9.67E-07
Image: Section of the sectio		Lpar1	-4.59E-01	9.71E-04
Lpl 1.587E-00 3.27E-60 Lrpap1 3.06E-01 4.77E-03 Lrpap1 3.06E-01 4.77E-03 Lrrc10b 9.38E-01 9.15E-04 Lrrc55 4.30E-01 7.28E-13 Lrrc56 -3.39E-01 4.22E-05 Lrrc58 -5.33E-01 2.20E-10 Lrrc58 -5.33E-01 2.20E-10 Lrrc58 -5.33E-01 2.20E-10 Lrrc58 -5.33E-01 2.20E-10 Lrrc58 -5.33E-01 1.20E-17 Lrrc58 -5.33E-01 1.20E-17 Lrrc1 -5.33E-01 1.40E-06 Lrrc1 -5.33E-01 1.40E-06 Lyp1 -5.33E-01 1.40E-06 Lyp21 -8.32E-01 1.20E-01 Lyp3 -3.13E-01 1.20E-03 Map3 3.		Lpgat1	-3.70E-01	3.08E-07
Luch1 5.67E-01 3.08E-01 Lrap1 3.08E-01 4.77E-03 Lrac10b 9.38E-01 9.15E-04 Lrac58 4.8.10E-01 7.28E-13 Lrac58 -3.39E-01 2.08E-10 Lrac58 -3.39E-01 2.08E-10 Lrac78 -3.34E-01 2.08E-10 Lrm1 -3.42E-01 1.26H-3 Lrm3 -4.10E-01 1.71E-05 Lrm4 8.21E-01 1.20E-17 Lsm11 -5.33E-01 7.35E-12 Lwm 5.33E-01 7.35E-12 Lwm 5.33E-01 1.48E-04 Lyph 9.79E-01 2.95E-09 Lyph1 -7.35E-01 9.49E-22 Lyp11 -7.35E-01 1.72E-22 Lyp11 -7.35E-01 1.72E-22 Lyp11 -8.66E-01 1.77E-22 Lyp11 -8.66E-01 2.72F-08 Mag -6.42E-01 2.56E-25 Mag13 -7.36E-01 2.56E-25 Mag24 -3.32E-01		Lpl	1.58E+00	3.27E-60
Image: Second system Lipapi 1 3.08E-01 4.77E-03 Image: Second system Linc55 -4.10E-01 7.28E-13 Image: Second system Linc58 -4.10E-01 7.28E-13 Image: Second system Linc58 -5.38E-01 4.22E-05 Image: Second system Linc3 -4.10E-01 1.27E-01 Image: Second system Linc3 -4.10E-01 1.27E-01 Image: Second system Linc1 -5.33E-01 1.48E-04 Image: Linc11 -5.33E-01 1.48E-04 1.48E-04 Image: Linc11 -5.33E-01 1.28E-03 2.98E-03 Image: Linc11 -5.33E-01 1.28E-03 2.98E-03 Image: Linc11 -4.98E-01 1.17E-22 2.98E-03 Image: Linc11 -4.98E-01 1.27E-22 2.98E-03 2.98E-03 Image: Linc11 <t< td=""><th></th><td>Lrch1</td><td>-5.67E-01</td><td>3.03E-03</td></t<>		Lrch1	-5.67E-01	3.03E-03
Image: Second		Lrpap1	3.08E-01	4.77E-03
Image: Second		Lrrc10b	9.38E-01	9.15E-04
Image Lrrs8b -3.38E-01 4.22E-05 Lrrs8b -5.88E-01 2.08E-10 2.08E-10 Lrrn1 -3.42E-01 2.64E-03 Lrrn3 -4.10E-01 1.71E-05 Lrrn4 8.21E-01 1.20E-17 Lrrn4 8.21E-01 1.49E-06 Lrrn4 8.21E-01 1.49E-06 Lup1 -5.33E-01 1.48E-04 Lup1 -5.33E-01 1.48E-04 Lyrk1 -7.95E-01 9.49E-22 Lyrk1 -7.95E-01 9.49E-22 Lyrk1 -8.06E-01 1.77E-22 Lyrk1 -8.06E-01 1.77E-22 Lyrk1 -8.06E-01 1.10E-08 Lyrk1 -8.06E-01 1.20E-03 Lyrk1 -8.06E-01 1.20E-03 Lyrk1 -8.06E-01 2.66E-25 Lyrk1 -8.06E-01 2.66E-25 Lyrk1 -8.06E-01 2.66E-25 Lyrk1 -8.06E-01 2.66E-25 Lyrk2 -8.26E-01 2.66E-25		Lrrc55	-8.10E-01	7.28E-13
Image Lrack 5-83E-01 2.06E-10 Lmn1 -3.42E-01 2.64E-03 1.71E-05 Lmn3 -4.10E-01 1.71E-05 1.20E-17 Lmn4 8.21E-01 1.20E-17 1.34E-04 Lmn1 -5.33E-01 7.53E-12 1.48E-04 Lup1 -5.33E-01 7.53E-12 2.55E-01 Lm1 -5.33E-01 7.53E-12 2.55E-01 Lup1 -7.35E-01 2.95E-03 2.95E-03 Lyx1 -7.35E-01 9.49E-22 2.55E-03 Lyx1 -7.35E-01 1.29E-03 1.17E-25 Lyx1 -7.35E-01 1.29E-03 1.29E-03 Lyx1 -7.35E-01 1.29E-03 2.56E-25 Mag -6.42E-01 2.79E-08 2.56E-25 Mal -7.96E-01 2.56E-25 2.56E-25 Mal2 -3.32E-01 4.28E-06 4.28E-06 Ma2 -3.26E-01 2.56E-25 2.56E-25 Mal2 -3.26E-01 2.56E-25 2.56E-25		Lrrc58	-3.39E-01	4.22E-05
Image Lm1 $3.42E01$ $2.64E-03$ Image Lm3 $4.10E-01$ $1.71E-05$ Image Lm11 $6.33E-01$ $1.20E-17$ Image Lm11 $6.33E-01$ $1.48E-06$ Image Lm11 $6.33E-01$ $1.48E-06$ Image Lm1 $7.33E-01$ $1.48E-04$ Image Lynn1 $7.95E-01$ $2.96E-09$ Image Lynn1 $7.95E-01$ $2.96E-09$ Image $1.ypd1$ $8.68E-01$ $1.77E-22$ Image $1.ypd1$ $8.68E-01$ $1.77E-22$ Image $4.2E-01$ $2.79E-08$ $3.32E-01$ $2.6E-25$ Image Mag2 $3.28E-01$ $2.58E-25$ $3.32E-01$ $2.6E-25$ Image Mag2 $3.28E-01$ $4.01E-01$ $5.41E-04$ Image Mark1 $4.01E-01$ $5.41E-04$ Image $3.02E-01$ $4.28E-06$ Image $3.02E-01$ $4.36E-01$ $2.91E-03$		Lrrc8c	-5.83E-01	2.06E-10
Image Image <thimage< th=""> Image <th< td=""><th></th><td>Lrrn1</td><td>-3.42E-01</td><td>2.64E-03</td></th<></thimage<>		Lrrn1	-3.42E-01	2.64E-03
Image Lrmm4 8.21E-01 1.20E-17 Lam11 -5.39E-01 1.49E-06 1.49E-06 Lump1 -5.33E-01 1.49E-06 1.53E-12 Lam 5.33E-01 1.48E-04 1.48E-04 Lyn1 -7.39E-01 2.95E-09 2.95E-09 Lyn21 -7.95E-01 9.49E-22 9.49E-22 Lyn21 -7.95E-01 9.49E-22 9.49E-22 Lyn21 -8.66E-01 1.77E-22 9.49E-22 Lyn31 -3.33E-01 1.29E-03 1.29E-03 Lyn31 -3.33E-01 1.29E-03 1.05E-04 Mag3 -3.2EE-01 2.61E-04 2.61E-04 Mag3 -3.2EE-01 2.61E-04 1.05E-06 Mal2 -3.52E-01 4.28E-06 1.80E-04 Mal2 -3.52E-01 2.61E-04 1.36E-04 Map34 1.06E-00 1.80E-05 1.80E-05 Map43 1.06E-00 1.80E-04 Map54 Map54 4.40E-01 2.41E-06 Map64		Lrrn3	-4.10E-01	1.71E-05
Image: style		Lrrtm4	8.21E-01	1.20E-17
Image: Second		Lsm11	-5.93E-01	1.49E-06
Lxn $5.33E-01$ $1.48E-04$ Lybh $9.79E-01$ $2.95E-09$ Lyxt $-7.95E-01$ $9.49E-22$ Lyxt $-7.95E-01$ $9.49E-22$ Lyxt $3.13E-01$ $1.29E-03$ Lyst $3.13E-01$ $1.29E-03$ Lyst $3.13E-01$ $1.29E-03$ Lyst $3.32E-01$ $2.79E-08$ Magi $6.42E-01$ $2.79E-08$ Magi $3.26E-01$ $2.61E-04$ Magi $-7.96E-01$ $2.56E-25$ Mall $-7.96E-01$ $2.56E-25$ Mall $-7.96E-01$ $2.56E-25$ Mall $-7.96E-01$ $2.96E-03$ Mall $-7.96E-01$ $2.96E-03$ Man2a1 $-4.01E-01$ $5.41E-04$ Manea $-3.00E-01$ $1.30E-04$ Mapk3 $7.60E-01$ $4.39E-14$ Mapk3 $7.60E-01$ $4.38E-14$ Mapk4 $4.46E-01$ $2.41E-06$ Mapk4 $4.46E-01$ $7.75E-14$		Luzp1	-5.33E-01	7.53E-12
Lyth 9.79E-01 2.95E-09 Lyxt1 -7.95E-01 9.49E-22 Lyxt1 -7.95E-01 9.49E-22 Lyxt1 -3.13E-01 1.29E-03 Lyxt1 -3.13E-01 1.29E-03 Lyxt1 4.80E-01 1.10E-06 Mag -6.42E-01 2.79E-08 Mal -7.96E-01 2.56E-25 Mal -7.96E-01 2.56E-25 Mal -3.82E-01 4.28E-06 Mal -3.82E-01 2.90E-03 Man2a1 -4.01E-01 5.41E-04 Man2a1 -4.01E-01 1.36E-04 Man2a1 -4.01E-01 1.36E-04 Mapk3 1.00E+00 1.30E-05 Mapk3 1.00E-10 1.36E-04 Mapk4 4.46E-01 2.41E-06 Mapk6 -3.82E-01 4.26E-05 Mapk6 -3.82E-01 4.26E-05 March4 9.31E-01 6.12E-10 Mapk6 -3.82E-01 4.66E-15 Marck1 9.63E-15		Lxn	5.33E-01	1.48E-04
Lyn1 -7.95E-01 9.49E-22 Lypd1 8.66E-01 1.77E-22 Lyst -3.13E-01 1.29E-03 Lzts1 4.80E-01 1.10E-06 Mag -6.42E-01 2.79E-08 Magi 3.26E-01 2.66E-25 Mal -7.96E-01 2.56E-26 Mal -7.96E-01 2.56E-25 Man2a1 -4.01E-01 5.41E-04 Man2a1 -4.01E-01 2.90E-03 Map8x19 1.06E+00 1.80E-05 Map8x3 7.60E-01 4.39E-14 Map8x3 7.60E-01 4.39E-14 Map8x4 4.46E-01 2.41E-06 Mapk6 -3.62E-01 4.63E-15 March1 6.66E-01 7.75E-14 March2 9.31E-01 <		Ly6h	9.79E-01	2.95E-09
Lypd1 8.66E-01 1.77E-22 Lyst -3.13E-01 1.29E-03 Ltst1 4.80E-01 1.10E-06 Mag -6.42E-01 2.79E-08 Magi3 3.26E-01 2.61E-04 Magi3 3.26E-01 2.61E-04 Mal -7.96E-01 2.56E-25 Mal -7.96E-01 2.56E-25 Mal -7.96E-01 2.66E-25 Mal -7.96E-01 2.66E-25 Mal -7.96E-01 2.66E-25 Mal -7.96E-01 2.90E-03 Map2 -3.52E-01 4.28E-06 Map8x19 1.06E+00 1.80E-04 Map8x19 1.06E+01 2.41E-06 Map43 7.60E-01 4.39E-14 Mapk4 4.46E-01 2.41E-06 Mapk6 -3.62E-01 4.28E-05 March1 6.86E-01 7.75E-14 Marck3 5.52E-01 4.63E-15 Marck3 9.63E-01 6.03E-07 Marck3 9.63E-01 <t< td=""><th></th><td>Lynx1</td><td>-7.95E-01</td><td>9.49E-22</td></t<>		Lynx1	-7.95E-01	9.49E-22
Lyst $3.13E-01$ $1.29E-03$ Lzts1 $4.80E-01$ $1.10E-06$ Mag $6.42E-01$ $2.79E-08$ Mag/3 $3.26E-01$ $2.61E-04$ Mal $-7.96E-01$ $2.56E-25$ Mal $-7.96E-01$ $2.90E-03$ Mar2a1 $-4.01E-01$ $5.41E-04$ Manea $-3.00E-01$ $2.90E-03$ Map3x19 $1.06E+00$ $1.36E-04$ Map8 $3.12E-01$ $1.36E-04$ Map8 $7.60E-01$ $4.28E-05$ Map6 $-3.62E-01$ $4.28E-05$ March1 $6.68E-01$ $7.75E-14$ March1 $6.68E-01$ $1.76E-07$ March4 $9.31E-01$ $6.12E-10$ Marck1 $9.68E-01$ $1.76E-07$ Marck1 $9.68E-01$ $1.76E-07$ </td <th></th> <td>Lypd1</td> <td>8.66E-01</td> <td>1.77E-22</td>		Lypd1	8.66E-01	1.77E-22
Lzts1 $4.80E-01$ $1.10E-06$ Mag $6.42E-01$ $2.79E-08$ Magi3 $3.26E-01$ $2.61E-04$ Mal $7.96E-01$ $2.56E+25$ Mal $7.96E-01$ $2.56E+25$ Mal $Mal2$ $3.52E-01$ $4.28E+06$ Man21 $4.01E-01$ $5.41E+04$ Man21 $4.01E+01$ $5.41E+04$ Man24 $4.01E+01$ $5.41E+04$ Manea $3.00E+01$ $2.90E+03$ Manea $3.00E+01$ $2.90E+03$ Maps3 $7.60E+01$ $1.80E+04$ Maps3 $7.60E+01$ $1.38E+04$ Mapk3 $7.60E+01$ $4.39E+14$ Mapk4 $4.46E-01$ $2.41E+06$ Mapk4 $4.46E-01$ $2.41E+06$ Mapk6 $-3.62E+01$ $4.63E+01$ March1 $6.68E+01$ $7.75E+14$ March2 $5.52E-01$ $4.63E+15$ March3 $9.63E+01$ $6.12E+10$ March3 $9.63E+01$		Lyst	-3.13E-01	1.29E-03
Mag -6.42E-01 2.79E-08 Maji3 3.26E-01 2.61E-04 Mal -7.96E-01 2.56E-25 Mai2 -3.52E-01 4.28E-06 Mal2 -3.52E-01 4.28E-06 Mal2 -3.52E-01 4.28E-06 Man2a1 -4.01E-01 5.41E-04 Mapa -3.00E-01 2.90E-03 Mapa -3.00E-01 2.90E-03 Mapk19 1.06E+00 1.80E-05 Mapk37 7.60E-01 4.39E-14 Mapk3 7.60E-01 4.39E-14 Mapk4 4.46E-01 2.41E-06 Mapk6 -3.62E-01 4.28E-05 March4 9.31E-01 6.12E-10 March4 9.31E-01 6.12E-10 Marck8 5.52E-01 4.63E-15 Marck8 5.52E-01 4.63E-15 Marck81 5.66E-01 1.76E-07 Marck81 5.66E-01 1.76E-07 Marck91 5.66E-01 1.87E-30 Marck91 5.66E-01 <th></th> <td>Lzts1</td> <td>4.80E-01</td> <td>1.10E-06</td>		Lzts1	4.80E-01	1.10E-06
Magi3 3.26E-01 2.61E-04 Mal -7.96E-01 2.56E-25 Mal2 -3.52E-01 4.28E-06 Man2a1 -4.01E-01 5.41E-04 Man2a1 -4.01E-01 5.41E-04 Man2a1 -4.01E-01 5.41E-04 Man2a1 -4.01E-01 1.80E-05 Mapk3 7.60E-01 2.90E-03 Mapb3 3.12E-01 1.36E-04 Mapk3 7.60E-01 4.39E-14 Mapk3 7.60E-01 2.41E-06 Mapk4 4.46E-01 2.41E-06 Mapk6 -3.62E-01 4.26E-05 March1 6.68E-01 7.75E-14 March1 6.68E-01 7.75E-14 Marck3 5.52E-01 4.63E-15 Marck3 9.63E-01 6.03E-07 Marck31 9.66E-01 1.76E-07 Marck31 9.63E-01 1.87E-30 Mbp -8.03E-01 1.87E-30 Mbp -8.03E-01 1.37E-30 Mbp -8.03E-01		Mag	-6.42E-01	2.79E-08
Mail -7.96E-01 2.56E-25 Mail -3.52E-01 4.28E-06 Man2a1 -4.01E-01 5.41E-04 Manea -3.00E-01 2.90E-03 Manea -3.00E-01 2.90E-03 Manea -3.00E-01 2.90E-03 Mapsh19 1.06E+00 1.80E-05 Map3x19 1.06E+00 1.30E-04 Mapk3 7.60E-01 4.39E-14 Mapk4 4.46E-01 2.41E-06 Mapk6 -3.62E-01 4.26E-05 March1 6.68E-01 7.75E-14 March2 9.31E-01 6.12E-10 March3 9.63E-01 1.76E-07 March4 9.31E-01 6.03E-07 Marcks1 5.66E-01 1.76E-07 Marcks1 5.66E-01 1.76E-07 Mash2 9.63E-01 6.03E-07 Marck1 9.63E-01 1.41E-03 Mb2/d2 -5.24E-01 8.46E-04 Mb2/d2 -5.24E-01 1.87E-30 Mb2/d2 -5		Magi3	3.26E-01	2.61E-04
Mal2 -3.52E-01 4.28E-06 Man2a1 -4.01E-01 5.41E-04 Man2a1 -4.01E-01 5.41E-04 Man2a1 -4.01E-01 5.41E-04 Mapa1 1.06E+00 1.80E-05 Map3k19 1.06E+00 1.36E-04 Mapk3 7.60E-01 4.39E-14 Mapk3 7.60E-01 4.39E-14 Mapk4 4.46E-01 2.41E-06 Mapk6 -3.62E-01 4.26E-05 Mark6 -3.62E-01 4.26E-05 March1 6.68E-01 7.75E-14 March2 March3 5.62E-01 4.63E-15 Marck3 5.52E-01 4.63E-15 6.03E-07 Marck3 9.63E-01 1.76E-07 1.16E-07 Mb2 Mb21d2 -5.24E-01 8.46E-04 Mb2 Mb21d2 -5.24E-01 1.41E-03 Mb2 Mb21d2 -7.51E-01 1.14E-03 Mb2 Mb2 -7.51E-01 1.14E-03 Mb2 Mcdag -5.80E-01		Mal	-7.96E-01	2.56E-25
Man2a1 -4.01E-01 5.41E-04 Manea -3.00E-01 2.90E-03 Map3k19 1.06E+00 1.80E-05 Map3 3.12E-01 1.36E-04 Map4 4.46E-01 2.41E-06 Mapk3 7.60E-01 4.39E-14 Mapk3 7.60E-01 4.39E-14 Mapk4 4.46E-01 2.41E-06 Mapk6 -3.62E-01 4.26E-05 March1 6.68E-01 7.75E-14 March2 9.31E-01 6.12E-10 March3 9.63E-01 4.63E-15 March4 9.31E-01 6.03E-07 Marcks1 5.66E-01 1.76E-07 Marck1 5.66E-01 1.76E-07 Mb21d2 -5.24E-01 8.46E-04 Mb21d2 -5.24E-01 1.41E-03 Mc2 -7.51E-01 1.41E-03 Mdga1 1.06E+00 8.32E-09 Mc42 -7.51E-01 1.41E-03 Mc42 -7.51E-01 3.18E-06 Mc42 3.10E-01		Mal2	-3.52E-01	4.28E-06
Manea -3.00E-01 2.90E-03 Map3k19 1.06E+00 1.80E-05 Map9 3.12E-01 1.36E-04 Map43 7.60E-01 4.39E-14 Mapk3 7.60E-01 2.41E-06 Mapk4 4.46E-01 2.41E-06 Mapk6 -3.62E-01 4.26E-05 March1 6.68E-01 7.75E-14 March2 9.31E-01 6.12E-10 Marck4 9.31E-01 6.12E-10 Marck4 9.31E-01 6.03E-07 Marck8 5.52E-01 4.63E-15 Marck8 5.52E-01 8.46E-04 Marck9 9.63E-01 1.76E-07 Marck9 9.63E-01 1.41E-03 Marck9 3.23E-01 1.41E-03 Mbp0 -8.03E-01 1.87E-30 Mbp0 -8.03E-01 1.31E-06 Mdga1 1.06E+00 8.32E-09 Medag -5.30E-01 3.12E-06 Medag -5.30E-01 3.29E-05 Med2a 3.10E-01 <th></th> <td>Man2a1</td> <td>-4.01E-01</td> <td>5.41E-04</td>		Man2a1	-4.01E-01	5.41E-04
Image Map3k19 1.06E+00 1.80E-05 Map9 3.12E-01 1.36E-04 Mapk3 7.60E-01 4.39E-14 Mapk4 4.46E-01 2.41E-06 Mapk6 -3.62E-01 4.26E-05 Mapk6 -3.62E-01 4.26E-05 March1 6.68E-01 7.75E-14 March2 March4 9.31E-01 6.12E-10 March3 5.52E-01 4.63E-15 Marck3 5.52E-01 4.63E-15 Marcks1 5.66E-01 1.76E-07 Marck31 9.63E-01 6.03E-07 Mb21d2 -5.24E-01 8.46E-04 Mb21d2 3.23E-01 1.41E-03 Mb21d2 3.23E-01 1.47E-03 Mbp -8.03E-01 1.87E-30 Mc2 -7.51E-01 1.14E-03 Mdga1 1.06E+00 8.32E-09 Medag -5.80E-01 3.18E-06 Medag -5.80E-01 3.28E-04 Medag -5.80E-01 3.28E-05 <tr< td=""><th></th><td>Manea</td><td>-3.00E-01</td><td>2.90E-03</td></tr<>		Manea	-3.00E-01	2.90E-03
Map9 3.12E-01 1.36E-04 Mapk3 7.60E-01 4.39E-14 Mapk4 4.46E-01 2.41E-06 Mapk6 -3.62E-01 4.26E-05 March1 6.68E-01 7.75E-14 March1 6.68E-01 7.75E-14 March1 6.68E-01 7.75E-14 March2 March3 5.52E-01 4.63E-15 Marck3 5.52E-01 4.63E-15 6.03E-07 Marck31 9.63E-01 1.76E-07 6.03E-07 Marck31 9.63E-01 1.76E-07 8.46E-04 Mb21d2 -5.24E-01 8.46E-04 8.46E-04 Mb2id2 -5.24E-01 1.41E-03 1.41E-03 Mbp -8.03E-01 1.14E-03 1.87E-30 Mcd2 -7.51E-01 1.14E-03 1.82E-06 Mcd2 -5.30E-01 3.28E-09 3.28E-09 Mcdag -5.80E-01 3.28E-06 3.28E-09 Medag -5.80E-01 3.28E-06 5.22E-04 Medag -5.80E-01<		Map3k19	1.06E+00	1.80E-05
Mapk3 7.60E-01 4.39E-14 Mapk4 4.46E-01 2.41E-06 Mapk6 -3.62E-01 4.26E-05 March1 6.68E-01 7.75E-14 March2 9.31E-01 6.12E-10 Marck3 5.52E-01 4.63E-15 Marck3 5.52E-01 4.63E-16 Marck3 5.52E-01 8.68E-04 Mas1 9.63E-01 1.76E-07 Mas1 9.63E-01 1.41E-03 Mb21d2 -5.24E-01 8.46E-04 Mb21d2 -5.24E-01 1.41E-03 Mbp -8.03E-01 1.87E-30 Mcda2 3.23E-01 1.41E-03 Mcda3 -5.80E-01 3.18E-06 Mdga1 1.06E+00 8.32E-09 Medag -5.80E-01 3.18E-06 Medag -5.80E-01 <th></th> <td>Мар9</td> <td>3.12E-01</td> <td>1.36E-04</td>		Мар9	3.12E-01	1.36E-04
Mapk4 4.46E-01 2.41E-06 Mapk6 -3.62E-01 4.26E-05 March1 6.68E-01 7.75E-14 March1 6.68E-01 7.75E-14 March2 9.31E-01 6.12E-10 March3 5.52E-01 4.63E-15 March3 5.52E-01 4.63E-15 March3 9.63E-01 1.76E-07 March3 9.63E-01 6.03E-07 Mas1 9.63E-01 8.46E-04 Mb21d2 -5.24E-01 8.46E-04 Mb21d2 -5.24E-01 1.41E-03 Mblac2 3.23E-01 1.41E-03 Mbp -8.03E-01 1.87E-30 Mdga1 1.06E+00 8.32E-09 Mdga1 1.06E+00 8.32E-09 Medag -5.80E-01 3.18E-06 Med2c 3.10E-01 3.29E-05 Met2c 3.10E-01 3.29E-05 Met2c 3.10E-01 5.22E-04 Met2d -3.78E-01 5.22E-04 Mgl -4.98E-01		Mapk3	7.60E-01	4.39E-14
Mapk6 -3.62E-01 4.26E-05 March1 6.68E-01 7.75E-14 March1 6.68E-01 7.75E-14 March4 9.31E-01 6.12E-10 Marck3 5.52E-01 4.63E-15 Marck3 5.52E-01 4.63E-15 Marck3 9.63E-01 1.76E-07 Marck3 9.63E-01 6.03E-07 Marck3 9.63E-01 6.03E-07 Marck3 9.63E-01 8.46E-04 Mb21d2 -5.24E-01 8.46E-04 Mblac2 3.23E-01 1.41E-03 Mbp -8.03E-01 1.87E-30 Mcf2 -7.51E-01 1.14E-03 Mdga1 1.06E+00 8.32E-09 Medag -5.80E-01 3.18E-06 Medag -5.80E-01 3.18E-06 Met% -3.78E-01 2.91E-04 Met% -3.78E-01 5.22E-04 Met% 4.35E-01 5.06E-09 Mink1 3.06E-01 5.06E-09 Mink1 3.06E-01		Mapk4	4.46E-01	2.41E-06
March1 6.68E-01 7.75E-14 March4 9.31E-01 6.12E-10 Marcks 5.52E-01 4.63E-15 Marcks1 5.66E-01 1.76E-07 Marcks1 5.66E-01 1.76E-07 Marcks1 9.63E-01 6.03E-07 Marcks1 9.63E-01 6.03E-07 Mb21d2 -5.24E-01 8.46E-04 Mblac2 3.23E-01 1.41E-03 Mblac2 3.23E-01 1.41E-03 Mbp -8.03E-01 1.87E-30 Mdga1 1.06E+00 8.32E-09 Mdga1 1.06E+00 8.32E-09 Medag -5.80E-01 3.18E-06 Medag -5.80E-01 3.29E-05 Metk -3.78E-01 2.91E-04 Metk -3.78E-01 5.22E-04 Metk -3.78E-01 5.22E-04 Metk 3.06E-01 5.06E-09 Molp Mak1 3.06E-01 5.04E-04 Molp -8.84E-01 5.06E-09 Molp		Mapk6	-3.62E-01	4.26E-05
March4 9.31E-01 6.12E-10 Marcks 5.52E-01 4.63E-15 Marcks11 5.66E-01 1.76E-07 Marcks11 9.63E-01 6.03E-07 Mas1 9.63E-01 6.03E-07 Macks11 9.63E-01 6.03E-07 Mas1 9.63E-01 8.46E-04 Mb21d2 -5.24E-01 8.46E-04 Mblac2 3.23E-01 1.41E-03 Mbp -8.03E-01 1.87E-30 Mcl2 -7.51E-01 1.14E-03 Mdga1 1.06E+00 8.32E-09 Medag -5.80E-01 3.18E-06 Medag -5.80E-01 3.18E-06 Mef2c 3.10E-01 3.29E-05 Mertk -3.78E-01 2.91E-04 Mertk -3.78E-01 5.22E-04 Mgl8 4.35E-01 5.22E-04 Mgl -4.98E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36 Mobp -6.53E-01		March1	6.68E-01	7.75E-14
Image: Marches 5.52E-01 4.63E-15 Marches/1 5.66E-01 1.76E-07 Marches/1 5.66E-01 1.76E-07 Mas1 9.63E-01 6.03E-07 Mb21d2 -5.24E-01 8.46E-04 Mb21d2 -5.24E-01 1.41E-03 Mblac2 3.23E-01 1.41E-03 Mbp -8.03E-01 1.87E-30 Mcf2 -7.51E-01 1.14E-03 Mdga1 1.06E+00 8.32E-09 Medag -5.80E-01 3.18E-06 Mef2c 3.10E-01 3.29E-05 Mertk -3.78E-01 2.91E-04 Mertk -3.78E-01 5.06E-09 Mink1 3.06E-01 5.06E-09 Mobp -4.98E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36		March4	9.31E-01	6.12E-10
Marcks/1 5.66E-01 1.76E-07 Mas1 9.63E-01 6.03E-07 Mas1 9.63E-01 6.03E-07 Mas1 9.63E-01 8.46E-04 Mbla2 -5.24E-01 8.46E-04 Mbla2 3.23E-01 1.41E-03 Mbla2 3.23E-01 1.87E-30 Mbla2 -7.51E-01 1.14E-03 Mcf2 -7.51E-01 1.14E-03 Mdga1 1.06E+00 8.32E-09 Medag -5.80E-01 3.18E-06 Medag -5.80E-01 3.29E-05 Meth2 3.10E-01 3.29E-05 Meth2 -3.78E-01 2.91E-04 Meth2 -3.78E-01 5.22E-04 Mige8 4.35E-01 5.22E-04 Mige Mige1 -4.98E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36 Mog -6.53E-01 1.83E-06		Marcks	5.52E-01	4.63E-15
Mas1 9.63E-01 6.03E-07 Mb21d2 -5.24E-01 8.46E-04 Mblac2 3.23E-01 1.41E-03 Mbp -8.03E-01 1.87E-30 Mbp -8.03E-01 1.14E-03 Mbp -7.51E-01 1.14E-03 Mcf2 3.10E-01 3.29E-05 Mcf4 -5.80E-01 3.29E-05 Mcf4 -3.78E-01 2.91E-04 Mcf88 4.35E-01 5.22E-04 Mgll -4.98E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.		Marcksl1	5.66E-01	1.76E-07
Image: Mark and		Mas1	9.63E-01	6.03E-07
Mblac2 3.23E-01 1.41E-03 Mbp -8.03E-01 1.87E-30 Mcf2 -7.51E-01 1.14E-03 Mcf2 -7.51E-01 3.18E-06 Mcf2 -5.80E-01 3.18E-06 Medag -5.80E-01 3.29E-05 Mef2c 3.10E-01 3.29E-05 Mef2c 3.10E-01 3.29E-05 Mef2c 3.10E-01 2.91E-04 Mefge8 4.35E-01 5.22E-04 Mfge8 4.35E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36 Mog -6.53E-01 1.83E-06		Mb21d2	-5.24E-01	8.46E-04
Mbp -8.03E-01 1.87E-30 Mcf2 -7.51E-01 1.14E-03 Mcf2 -7.51E-01 1.14E-03 Mdga1 1.06E+00 8.32E-09 Medag -5.80E-01 3.18E-06 Mef2c 3.10E-01 3.29E-05 Mef2c 3.10E-01 2.91E-04 Meg8 4.35E-01 5.22E-04 Mgll -4.98E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36 Mog -6.53E-01 1.83E-06		Mblac2	3.23E-01	1.41E-03
Mcf2 -7.51E-01 1.14E-03 Mdga1 1.06E+00 8.32E-09 Medag -5.80E-01 3.18E-06 Mef2c 3.10E-01 3.29E-05 Mef2c 3.10E-01 3.29E-05 Mef2c 3.78E-01 2.91E-04 Meg8 4.35E-01 5.22E-04 Mef2c Mgll -4.98E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36 Mog -6.53E-01 1.83E-06		Mbp	-8.03E-01	1.87E-30
Mdga1 1.06E+00 8.32E-09 Medag -5.80E-01 3.18E-06 Mef2c 3.10E-01 3.29E-05 Mef2c 3.78E-01 2.91E-04 Mefge8 4.35E-01 5.22E-04 Mentk -3.06E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36 Mog -6.53E-01 1.83E-06		Mcf2	-7.51E-01	1.14E-03
Medag -5.80E-01 3.18E-06 Mef2c 3.10E-01 3.29E-05 Mertk -3.78E-01 2.91E-04 Mertk -3.78E-01 5.22E-04 Mertk -4.98E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36 Mog -6.53E-01 1.83E-06		Mdga1	1.06E+00	8.32E-09
Mef2c 3.10E-01 3.29E-05 Mertk -3.78E-01 2.91E-04 Mertk -3.78E-01 2.91E-04 Mertk -3.78E-01 5.22E-04 Mertk -4.98E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36 Mog -6.53E-01 1.83E-06		Medag	-5.80E-01	3.18E-06
Mertk -3.78E-01 2.91E-04 Mfge8 4.35E-01 5.22E-04 Mfge8 4.35E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36 Mog -6.53E-01 1.83E-06		Mef2c	3.10E-01	3.29E-05
Mfge8 4.35E-01 5.22E-04 Mfge8 4.35E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36 Mog -6.53E-01 1.83E-06		Mertk	-3.78E-01	2.91E-04
Mgll -4.98E-01 5.06E-09 Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36 Mog -6.53E-01 1.83E-06		Mfge8	4.35E-01	5.22E-04
Mink1 3.06E-01 7.04E-04 Mobp -8.84E-01 6.21E-36 Mog -6.53E-01 1.83E-06		Mgll	-4.98E-01	5.06E-09
Mobp -8.84E-01 6.21E-36 Mog -6.53E-01 1.83E-06		Mink1	3.06E-01	7.04E-04
Mog -6.53E-01 1.83E-06		Mobp	-8.84E-01	6.21E-36
		Mog	-6.53E-01	1.83E-06

	Moxd1	9.44E-01	1.92E-05
	Mtus1	-5.40E-01	2.75E-06
	Mybl1	-5.87E-01	1.63E-03
	Myl4	-2.14E+00	1.58E-18
	Муо5а	-3.92E-01	2.52E-08
	Myo5b	6.84E-01	8.20E-07
	Naaa	5.64E-01	4.08E-03
	Nat8l	-4.09E-01	2.29E-06
	Nbeal1	-3.38E-01	9.51E-04
	Ncam2	-6.76E-01	4.35E-17
	Ndrg1	-6.28E-01	9.67E-10
	Ndst4	1.41E+00	7.37E-18
	Nebl	-3.46E-01	1.55E-04
	Necab1	4.02E-01	5.59E-08
	Necab2	9.73E-01	4.50E-07
	Nectin1	6.24E-01	5.59E-08
	Nectin3	4.98E-01	2.40E-07
	Nefh	-1.11E+00	7.61E-32
	Nefl	-3.94E-01	1.40E-07
	Nefm	-8.56E-01	2.76E-31
	Nell2	4.93E-01	5.36E-11
	Net1	-7.12E-01	1.11E-12
	Neurl1a	3.90E-01	1.95E-03
	Neurl1b	6.59E-01	1.06E-09
	Neurod1	4.31E-01	3.41E-04
	Nfic	-6.91E-01	6.39E-15
	Nfkbia	-4.29E-01	9.16E-04
	Ngb	2.46E+00	3.43E-04
	Nkain2	3.42E-01	2.11E-03
	Nlgn3	3.14E-01	5.07E-04
	Nnat	1.10E+00	2.54E-23
	Nol4l	3.53E-01	1.09E-03
	Nos1	9.11E-01	6.38E-19
	Nos1ap	-4.32E-01	2.93E-04
	Nov	1.27E+00	3.27E-68
	Npnt	-9.80E-01	8.99E-17
	Nptxr	4.01E-01	4.39E-08
	Nr2f2	5.40E-01	4.79E-05
	Nr3c2	4.29E-01	9.28E-05
	Nr4a2	1.19E+00	5.27E-47
	Nr4a3	7.21E-01	5.61E-14
	Nrarp	5.33E-01	9.62E-04
	Nrgn	-3.48E-01	5.18E-06
	Nrn1	-6.93E-01	1.44E-20
	Nrp2	8.72E-01	9.08E-15
	Nrsn1	-5.71E-01	6.18E-15
	Nsg2	5.62E-01	7.06E-15
	Nsmaf	-3.49E-01	3.45E-03
	Nt5c3	-3.75E-01	1.39E-03
	Ntrk3	3.33E-01	2.33E-05
	Nudt4	-7.07E-01	4.65E-20
	Nwd2	7.93E-01	1.61E-21
	Olfr78	-2.62E+00	4.18E-16
	Onecut2	-7.44E-01	6.16E-05
	Oprk1	8.10E-01	3.68E-11
	Osbp2	-4.98E-01	2.95E-07

	Osbpl1a	-3.18E-01	2.68E-05
	Osbpl3	-1.01E+00	3.44E-25
	Otud1	5.11E-01	5.37E-05
	Otud7b	-3.85E-01	4.36E-04
	Oxr1	-3.91E-01	1.48E-07
	Oxtr	1.27E+00	2.57E-10
	Pacsin2	-4.25E-01	3.90E-03
	Pak1	-4.13E-01	9.42E-09
	Pak6	5.78E-01	3.99E-06
	Palmd	7.80E-01	1.64E-15
	Pam	4.20E-01	1.39E-07
	Pappa2	-1.02E+00	2.14E-03
	Papss2	5.80E-01	1.57E-04
	Paqr4	-7.23E-01	6.00E-07
	Paqr8	-3.77E-01	7.05E-06
	Parm1	-3.09E-01	3.25E-03
	Parva	-5.14E-01	1.82E-08
	Pcdh1	3.04E-01	4.82E-03
	Pcdh15	3.94E-01	4.50E-05
	Pcdh19	7.16E-01	8.35E-15
	Pcdh20	5.04E-01	2.53E-06
	Pcdh7	-6.04E-01	2.31E-18
	Pcdh8	1.23E+00	2.54E-15
	Pclo	-3.24E-01	6.06E-06
	Pcp4	-4.04E-01	5.89E-07
	Pdcd4	3.83E-01	7.26E-06
	Pde10a	5.87E-01	6.18E-13
	Pde1a	-3.02E-01	2.50E-04
	Pde1b	3.86E-01	6.64E-04
	Pde2a	5.27E-01	6.04E-11
	Pde4a	-5.19E-01	1.65E-08
	Pde5a	-5.67E-01	6.55E-05
	Pde8a	-6.40E-01	4.11E-05
	Pdgfc	6.32E-01	3.91E-03
	Pdzd4	4.36E-01	4.90E-06
	Pdzrn3	3.50E-01	4.15E-03
	Pea15a	4.99E-01	6.02E-12
	Peak1	6.88E-01	8.16E-14
	Penk	1.02E+00	2.49E-28
	Pex5l	-4.47E-01	3.15E-08
	Pgr	-7.71E-01	1.69E-16
	Pgrmc1	4.82E-01	1.58E-10
	Phactr2	5.27E-01	1.40E-07
	Pik3ca	-3.22E-01	2.55E-04
	Pip4k2a	-4.07E-01	4.22E-06
	Pip5k1c	-3.66E-01	1.10E-05
	Pitpnc1	-5.42E-01	1.75E-10
	Pkd2l1	5.24E+00	5.58E-20
	Plcxd2	-7.03E-01	4.01E-19
	Pld5	-1.04E+00	2.06E-07
	Plekha2	-6.41E-01	3.76E-05
	Plekhb1	-6.01E-01	1.62E-11
	Plekhg1	-4.81E-01	3.63E-04
	Plekhh1	-8.06E-01	3.33E-09
	Plin4	-2.10E+00	1.58E-10
	Plk2	4.95E-01	5.34E-10

	Plp1	-7.05E-01	6.97E-24
	Plppr1	1.03E+00	1.47E-05
	Plppr3	6.73E-01	4.40E-03
	Plppr4	3.53E-01	1.91E-06
	Plxdc1	-9.45E-01	7.93E-05
	Plxnc1	4.46E-01	3.12E-06
	Pmp22	-9.09E-01	7.80E-10
	Pnck	1.02E+00	2.78E-06
	Pnma2	4 45E-01	7 20F-06
	Pnmal2	6.73E-01	8.28E-17
	Pnrc2	3 46F-01	7 30F-04
	Postn	-1.35E+00	8 40F-08
	Pou3f1	-7 95E-01	2 14F-07
	Pou6f2	-1 04E+00	1 04F-05
	Pparoc1a	-3 15E-01	1.01E-03
	Ppat	4 58E-01	4 10E-04
	Pofia2	3 94F-01	7 23E-07
	Pofibo1	3 18F-01	2,99F-03
	Ppin5k1	-3 52F-01	2.96F-04
	Ppip5k2	-5 63F-01	6.57E-09
	Ppm11	-6 11F-01	9.31F-17
	Ppp1r16b	-5.61E-01	9 59F-11
	Ppp1r1b	4 38F-01	2 60F-04
	Ppp1r36	1 61E+00	1.91E-03
	Ppp2r3a	-3 48F-01	4 23E-04
	Prelp	6 44F-01	3 64F-03
	Prex1	3.68E-01	2 00F-04
	Prkcb	-4 32F-01	1 20F-09
	Prkcz	-3.09E-01	3.69E-04
	Prkg1	5.84E-01	3.18E-04
	Prkg2	1.02E+00	7.58E-18
	Prr16	-1.57E+00	5.51E-20
	Prr18	-7.83E-01	8.59E-08
	Prr5l	-9.60E-01	2.65E-04
	Prrg1	-1.00E+00	2.80E-08
	Prss23	-1.30E+00	9.49E-22
	Psme4	-3.46E-01	3.05E-04
	Ptgfrn	-1.19E+00	8.51E-25
	Ptgs2	6.46E-01	1.14E-07
	Ptk2b	3.68E-01	2.01E-06
	Ptpn14	1.09E+00	9.19E-10
	Ptpn4	-3.30E-01	1.86E-05
	Ptprb	-3.82E-01	3.70E-04
	Ptprd	-3.99E-01	4.47E-08
	Ptprm	-4.22E-01	6.64E-04
	Ptpro	1.10E+00	8.55E-21
	Pvalb	-1.15E+00	1.98E-19
	Pygl	1.26E+00	3.63E-04
	Pygm	-6.70E-01	2.50E-04
	Qdpr	-6.37E-01	9.33E-08
	Qk	-3.62E-01	2.07E-06
	Qrfpr	2.02E+00	2.18E-12
	R3hdm1	-3.63E-01	7.27E-07
	R3hdm2	-4.15E-01	2.90E-08
	Ralgps2	3.38E-01	1.90E-03
	Rap1gds1	-3.57E-01	2.96E-06

	Rapgef4	-7.51E-01	2.88E-27
	Rapgefl1	3.03E-01	3.45E-03
	Rasgef1a	4.19E-01	1.73E-08
	Rasgef1c	6.49E-01	1.73E-04
	Rassf3	-5.19E-01	9.76E-06
	Rassf4	-9.26E-01	1.56E-03
	Rbfox3	-3.34E-01	1.41E-05
	Rbm24	5.17E-01	1.91E-05
	Rcan2	-4.07E-01	1.06E-07
	Rcn1	1.07E+00	1.47E-15
	Reln	5.25E-01	1.55E-08
	Rfx3	7.63E-01	3.80E-22
	Rgl1	3.14E-01	1.62E-03
	Rgs12	6.23E-01	4.33E-06
	Rgs14	7.67E-01	6.09E-06
	Rgs2	6.50E-01	9.19E-10
	Rgs4	-3.69E-01	2.38E-07
	Rgs5	-3.31E-01	1.07E-04
	Rgs9	6.60E-01	1.77E-06
	Rimklb	4.82E-01	4.20E-06
	Rims3	-7.30E-01	1.13E-15
	Rin1	5.13E-01	2.48E-04
	Rin2	-6.90E-01	3.52E-08
	Robo3	-5.47E-01	2.46E-03
	Rorb	-9.70E-01	6.41E-35
	Rps6ka2	6.18E-01	1.01E-06
	Rreb1	6.61E-01	8 14F-08
	Rsph4a	1 10E+00	4 20F-05
	, Rxfp2	-1.99E+00	2.44E-07
	, Rxrq	1.12E+00	4.43E-05
	Rvr3	3.21E-01	4.84E-03
	S100b	-4.25E-01	2.78E-05
	Sacs	-3.93E-01	2.18E-07
	Sall2	4.32E-01	1.94E-03
	Samd14	8.33E-01	1.38E-03
	Samd3	1.91E+00	6.82E-09
	Samd4	-3.98E-01	7.63E-04
	Satb1	-3.84E-01	1.97E-06
	Scai	-3.11E-01	1.56E-04
	Sccpdh	-3.65E-01	2.07E-03
	, Scd1	-7.02E-01	9.43E-20
	Scn1a	-9.49E-01	6.46E-41
	Scn1b	-3.30E-01	5.38E-04
	Scn3a	3.82E-01	9.78E-05
	Scn3b	7.34E-01	1.74E-19
	Scn4b	-4.78E-01	7.48E-06
	Scn5a	2.03E+00	4.66E-03
	Scrt1	-8.44E-01	1.25E-17
	Scube1	-6.08E-01	8.93E-09
	Sdc2	3.28E-01	3.04E-03
	Sdc3	3.98F-01	2.04F-05
	Sdc4	-4 58F-01	8.81F-05
	Sdpr	-6.19F-01	1.22F-04
	Sema3a	8.60F-01	1.95F-23
	Sema3c	-7 81F-01	1.50F-14
	Sema7a	-7 88F-01	1 05F-15
1		7.002 01	1.002 10

	Sepp1	-3.02E-01	2.34E-04
	Sept4	-5.45E-01	2.34E-07
	Sept6	-3.07E-01	3.16E-03
	Sertad4	-6.93E-01	1.95E-05
	Sertm1	9.22E-01	1.83E-13
	Setd7	-4.90E-01	8.75E-11
	Sfrp1	5.49E-01	3.45E-03
	Sgk1	-6.14E-01	8.52E-11
	Sgpp2	-1.09E+00	1.04E-11
	Sh3bgrl2	-5.61E-01	3.36E-05
	Sh3d19	5.72E-01	1.44E-05
	Sh3kbp1	3.29E-01	2.46E-03
	Sh3rf2	1.65E+00	2.91E-08
	Shisa7	4.61E-01	2.42E-08
	Sipa1l2	-7.16E-01	9.13E-08
	Six3	9.91E-01	2.57E-03
	Slc12a2	-4.33E-01	6.96E-07
	Slc16a2	6.32E-01	1.25E-09
	Slc16a6	-5.75E-01	7.74E-05
	Slc17a6	4.69E-01	6.18E-05
	Slc22a3	2.05E+00	1.45E-07
	Slc24a2	-6.36E-01	1.14E-21
	Slc29a4	1.86E+00	5.46E-04
	Slc2a1	-6.37E-01	7.59E-12
	Slc2a3	3.28E-01	1.00E-03
	Slc30a1	3.78E-01	1.23E-03
	Slc30a10	5.93E-01	1.83E-05
	Slc35f4	-7.57E-01	1.77E-05
	Slc36a4	-3.45E-01	1.26E-03
	Slc38a2	-5.79E-01	4.60E-13
	Slc39a12	-4.30E-01	2.31E-04
	Slc44a1	-3.79E-01	1.31E-04
	Slc44a5	6.26E-01	2.08E-04
	Slc7a11	3.98E-01	1.83E-05
	Slit2	-3.30E-01	4.62E-03
	Smad3	6.65E-01	4.64E-11
	Smarca1	4.03E-01	1.86E-05
	Smarca2	4.48E-01	9.91E-10
	Smim3	-9.01E-01	3.04E-03
	Smoc2	1.14E+00	1.32E-09
	Smtn	1.21E+00	2.12E-03
	Snap25	-4.41E-01	9.07E-11
	Sobp	3.41E-01	2.70E-05
	Socs2	-4.57E-01	2.95E-03
	Sorcs1	-8.53E-01	9.55E-19
	Sorcs2	6.25E-01	2.46E-05
	Sorcs3	7.89E-01	2.23E-18
	Sorl1	-4.98E-01	2.72E-12
	Sowaha	7.73E-01	1.01E-19
	Sox11	6.79E-01	2.52E-12
	Sox4	3.73E-01	4.87E-04
	Sox9	4.50E-01	3.36E-04
	Spock1	-3.83E-01	3.53E-07
	Spock3	3.71E-01	1.41E-05
	Sptssb	-1.75E+00	6.92E-05
	Ssbp2	3.04E-01	3.55E-03

	5	St6gal2	-3.23E-01	1.69E-04
		Stac2	-1.02E+00	3.20E-21
		Steap2	-7.88E-01	2.10E-10
		Stk32c	4.32E-01	1.00E-03
		Stk39	-3.15E-01	3.32E-03
		Stxbp6	5.16E-01	1.04E-11
		Sulf2	-9.20E-01	3.10E-22
	S	Sult1a1	-7.59E-01	9.98E-04
	S	Sult4a1	-3 74F-01	2 19F-05
		Susd5	-8.10E-01	4.43E-04
		Svndia1	-4 98F-01	4 34F-03
	S	Svndia1l	1.39E+00	3 76F-18
		Svni2	4 78F-01	9.04F-07
		Svnpr	6 09E-01	8 75E-11
		Svt16	3.85E-01	3 13E-05
		Svt17	9.63E-01	1 77E-20
		Svt2	-1 10E+00	1.50E-23
+		Tac1	5 74F-01	1.92F-04
+ +		Tanc1	-6 76F-01	4.98F-07
+		Tbc1d4	-5 41F-01	1.01E-03
		Tdo2	1 68E+00	2.61E-03
		Tenm3	3 39F-01	1 42F-03
		Tfcp2l1	-8 05F-01	8 19F-05
		Tafa	5 52E-01	8.41F-04
		Thra	5 17E-01	1.36F-11
		Tiam1	3 43E-01	2 15E-04
		Timp2	5.02E-01	3.38E-10
		Tle3	4 96E-01	9 75E-05
		Tlr7	-8.41E-01	6.52E-04
		Tmeff1	-3.71E-01	9.28E-05
	Tr	mem130	3.12E-01	4.18E-03
	Tn	nem132e	1.12E+00	3.90E-03
	Tn	nem150c	3.96E-01	2.71E-03
	Tr	mem158	4.32E-01	3.96E-05
	Tn	nem184c	-3.21E-01	1.98E-04
	Tn	nem229a	-4.30E-01	3.37E-06
	Tn	nem255a	1.36E+00	1.45E-24
	Т	mem44	-3.25E-01	3.13E-03
	Tr	mem88b	-7.86E-01	3.32E-13
		Tmtc4	4.91E-01	3.52E-03
		Tns1	-4.79E-01	1.52E-04
		Тох	-7.19E-01	1.99E-08
		Тох3	8.58E-01	1.23E-08
		Trafd1	5.12E-01	1.91E-03
	T	rp53i11	9.54E-01	1.24E-13
	Tr	rp53inp1	-4.88E-01	1.94E-05
	Tr	rp53inp2	-4.67E-01	5.97E-08
		Тгрс3	-9.50E-01	6.92E-09
		Trpc6	8.65E-01	1.11E-09
	Т	sc22d3	-7.42E-01	2.67E-13
		Tshz1	-3.40E-01	2.46E-03
	1	Tspan2	-7.67E-01	3.56E-23
	7	Tspan5	-4.34E-01	1.14E-07
		Ttc19	-3.39E-01	3.39E-04
	· · · ·	Ttc39b	-6.12E-01	1.17E-14
		Ttll5	-4.36E-01	7.14E-04

	Ttr	5.40E-01	2.75E-04
	Tubb2a	3.41E-01	2.74E-03
	Ube2e3	4.19E-01	2.40E-04
	Ublcp1	-4.25E-01	8.68E-04
	Ubxn2a	-4.50E-01	1.61E-06
	Ugt8a	-6.03E-01	1.02E-10
	Unc5c	-3.31E-01	1.60E-03
	Usp11	4.96E-01	6.77E-07
	Usp27x	6.70E-01	7.77E-05
	Usp54	-4.91E-01	7.82E-07
	Vamp1	-9.38E-01	6.61E-22
	Vat1l	9.06E-01	4.67E-18
	Vgf	3.63E-01	1.26E-03
	Vgll3	-1.73E+00	1.79E-06
	Vmp1	-3.85E-01	4.39E-05
	Vwc2l	7.29E-01	1.23E-05
	Wdr6	9.63E-01	1.01E-12
	Wfs1	1.16E+00	6.97E-24
	Whrn	-1.01E+00	7.09E-08
	Xdh	-1.24E+00	4.31E-05
	Ypel1	6.03E-01	8.91E-04
	Zbtb16	-7.10E-01	1.54E-14
	Zbtb46	7.40E-01	4.10E-06
	Zcchc12	7.88E-01	1.21E-08
	Zcchc24	-4.17E-01	1.10E-04
	Zdhhc15	5.40E-01	3.34E-04
	Zdhhc2	-7.14E-01	1.86E-14
	Zfp365	-3.24E-01	1.96E-05
	Zfp385a	-5.86E-01	1.81E-03
	Zfp385b	-5.26E-01	2.54E-07
	Zfp462	3.19E-01	2.71E-03
	Zfp57	5.32E-01	2.94E-03
	Zfp618	8.13E-01	3.73E-03
	Zfp697	4.73E-01	5.07E-06
	Zfp831	6.41E-01	1.57E-09
	Zkscan16	4.89E-01	8.25E-05
	Zmat4	-1.18E+00	2.60E-38
	Zmiz2	-3.95E-01	1.23E-04
	Zmym3	3.49E-01	9.74E-04
	Zscan18	5.06E-01	3.41E-03

	Up-regulated	d <i>Foxp1^{cKO}</i> D	EGs	Down-regulated <i>Foxp1^{cKO}</i> DEGs			
SFARI/CTX	SFARI/HIP	CTX/HIP	SFARI/CTX/HIP	SFARI/CTX	SFARI/HIP	CTX/HIP	SFARI/CTX/HIP
Arhgap33	C4b	2810459M11Rik	Drd1	1190002N15Rik	Ar	3110035E14Rik	Foxp1
Auts2	Cd44	Adra2a	Kirrel3	Astn2	Brinp1	Aldh1a1	Slc24a2
Bdnf	Foxp2	Ankrd6	Mef2c	Atp10a	Cacna1e	Asap2	Zbtb16
C77370	Mndal	Arpp21	Ppp1r1b	Atp2b2	Cadm2	Cadps	
Cacna1c	Scn7a	Atp2b4		Bcas1	Cdh8	Cdh12	
Cadm1	Slc4a10	Bmp3		Cacna1a	Chrm3	Dkk3	
Cntn6		Btg2		Cacna1i	Cntnap2	Dzip1	
Cntnap3		Calb1		Cadps2	Cntnap5c	Endod1	
Dapk1		Camk2d		Camk4	Epha6	Fmn1	
Drd2		Cdhr1		Camta1	Grin2a	Fndc5	
Egr2		Col5a1		Cep290	Kcnd2	Frrs1l	
Esr1		Col5a2		Dagla	Kcnq3	Gabra5	
Gap43		Cpne7		Dpp4	Lpl	Glt8d2	
Gda		Fos		Dst	Mc4r	ll1r1	
Gpr85		Gm765		Efr3a	Ntng1	ltpr1	
Grm1		Gnb4		Exoc6b	Ptgs2	Kcnab2	
Grm5		Gpr88		Gatm	Rasd1	Kcnh7	
Htr7		Grin3a		Gpr37	Zfp804a	Kcnq5	
ll1rapl1		Hrk		Hcn1		Lsm11	
Itga4		Kcng1		Htr2a		Lynx1	
Kit		Kcng3		ll1rapl2		Pgr	
Lamb1		Mfge8		Kcnj10		Plin4	
Lpl		Necab1		Kif13b		Pou3f1	
Mapk3		Nectin1		Klc2		Sacs	
Nlgn3		Nnat		Mal		Slc2a1	
Nos1		Nov		Nefl		Sult1a1	
Nr3c2		Penk		Nos1ap		Zdhhc2	
Nrp2		Pkd2l1		Pde4a			
Ntrk3		Plxnc1		Prkcb			
Oxtr		Ptpn14		Ptprb			
Pcdh15		Sfrp1		Pvalb			
Pcdh19		Slc7a11		Rapgef4			
Pcdh8		Smtn		Rims3			
Pdzd4		Syndig11		Scn1a			
Prex1		Tac1		Snap25			
Ptgs2		Timp2		Stk39			
Reln		Tmem255a		Zfp385b			
Rps6ka2		Тох3					
Scn5a		Ttr					
Sdc2		Vat1l					
Sh3kbp1							
Slc29a4							
Smarca2							
Syt17							

ĺ	Tdo2				
	Thra				
	Trpc6				
	Zfp462				

Table 3.3. Overlaps between <i>Foxp1^{cKO}</i> HIP and <i>Foxp1^{+/-}</i> HIP DEGs.					
Up-re	gulated DEGs	Down-regulated DEGs			
<i>Foxp1^{+/-}</i> HIP DEGs	<i>Foxp1^{+/-}</i> HIP <i>/Foxp1^{cKO}</i> HIP	<i>Foxp1^{+/-}</i> HIP DEGs	<i>Foxp1^{+/-}</i> HIP <i>/Foxp1^{cKO}</i> HIP		
1700048O20Rik	Adra2a	1700017B05Rik	1700024P16Rik		
4932411E22Rik	Atp2b4	1700024P16Rik	Akap13		
5430417L22Rik	Calb2	2900026A02Rik	Camk1d		
6430573F11Rik	Camk2d	4933426M11Rik	Camk2b		
9430021M05Rik	Kcng3	6030419C18Rik	Ccbe1		
A230065H16Rik	Meis2	9230009102Rik	Chgb		
Abat	Necab1	9630033F20Rik	Chrm3		
Adcy7	Prkar2b	A330070K13Rik	Cpne4		
Adcyap1r1	Scn9a	Aak1	Dusp5		
Adra2a	Slc35f1	Acap3	Epha4		
Agbl5	Tcerg1l	Acot3	Foxp1		
Ahi1	Timp2	Acsl5	Gabra5		
Amotl1	Tmem255a	Adam11	Gpr22		
Angptl4		Adamts3	Нрса		
Ankrd34b		Adamts8	Hs3st4		
Ankrd34c		Adora1	Htr4		
Ankrd55		AI115009	Kcnq5		
Ankrd63		Ak5	Lpl		
Ankrd66		Akap13	Lsm11		
Ano1		Amigo2	Lynx1		
Ano2		Amph	Mmd		
Apold1		Anxa11	Neto1		
Arhgap36		Ap2a2	Olfml2b		
Arhgap6		Arc	Pcdh20		
Atp2b4		Arg2	Pcsk2		
Atp6ap1I		Arhgef17	Plk2		
Atp6v1c2		Arhgef25	Prkca		
AW551984		Arhgef26	Prkcg		
Baiap3		Asb11	Prss35		
BC005764		Asph	Rasgrp1		
BC089491		Bcl11a	Rasl11b		
Bex1		Bsn	Sema3e		
C130060K24Rik		Cabp1	Slc24a2		
C130074G19Rik		Cacna2d3	Stxbp5l		
Cacna1g		Cacnb3	Wbscr17		
Cacna2d2		Camk1d	Wipf3		
Cacng5		Camk2a			
Calb2		Camk2b			
Camk2d		Camk4			
Cbln1		Camta2			
Cdc42ep3		Ccbe1			
Cdh13		Ccdc3			
Cdh18		Cd109			
Cdh22		Cdc40			

Cdh4	Cdk14
Cdh6	Cdkl2
Cdh7	Chgb
Chn2	Chn1
Chrdl1	Chrm3
Chrm2	Chrna7
Cit	Cidea
Cited1	Cldn22
Clic4	Cldn26
Col15a1	CImp
Col23a1	Clstn2
Col25a1	Cnksr2
Col26a1	Col6a1
Ctxn3	Cpeb1
Cxxc4	Cplx2
Ddo	Cpne4
Dlec1	Cpne6
Dlk1	Crls1
Dlx1	Crmp1
Dlx2	Crym
Dlx6	Ctxn1
Dnah1	Cyp26b1
Dnah7b	Dnm1
Dnm3	Dock9
Doc2g	Dusp5
Dpp10	Dusp6
Drd3	Eepd1
E030019B06Rik	Enc1
Ebf3	Enox2
Ece2	Epdr1
Ecel1	Epha4
Ednrb	Erc2
Efna5	Exph5
Eps8	Faah
Exoc3l4	Fam13c
F2rl2	Fam19a1
Fam107a	Fam212b
Fam196b	Fbxl16
Fam65b	Fgf5
Farp1	Fhl2
Fgd5	Filip1
Fgf1	Firt3
Fgf3	Foxg1
Fnbp1l	Foxp1
Fndc9	Frzb
Fzd1	Gabra5
Gaa	Gadd45b
Gabra3	Gal3st3

Gabrg1	Garem	
Gabrg3	Golm1	
Gad1	Gpc1	
Gad2	Gpr22	
Gal	Gpr45	
Galnt13	Grik4	
Gap43	HapIn4	
Gfra1	Homer3	
Gfra2	Нрса	
Ghr	Hs3st4	
Glp1r	Htr3a	
Glra2	Htr4	
Glra3	Htr6	
Gm14204	lgfbp4	
Gm514	1116	
Gm5607	1134	
Gng4	Islr2	
Gpc3	ltga7	
Gpr101	ltgbl1	
Gpr133	lyd	
Gpr153	Kcnmb4	
Gpr165	Kcnq5	
Gpr4	Kcnv1	
Gprasp2	Khdrbs3	
Gpx3	Klf10	
Grb10	Klhl2	
Grid2	Klhl40	
Grid2ip	Klk10	
Grik3	Krt73	
Grin2d	Large	
Grip2	Lingo1	
Grk5	Lmo3	
Grm4	Lmo4	
Grm8	Lpl	
Grtp1	Lrrn2	
Hap1	Lsm11	
Hfe2	Ly6e	
Hrasls	Lynx1	
Hs3st2	Mctp1	
Hs6st2	Mcur1	
ld4	Mir22hg	
lafbpl1	Mmd	
	Mmp17	
ll4ra	εααΜ	
Isl1	Msra	
ltih3	Msrb2	
Itpr3	Mtmr12	
Kank4	Nanh	

Kcng3	Ndrg3	
Kcnh6	Nefl	
Kcnip1	Neto1	
Kcnn3	Nkd2	
Kcnt1	Nptx1	
Klhdc8a	Npy2r	
Lama3	Nr3c2	
Lhfpl3	Nr4a1	
Lin28b	Nr4a3	
Lrrc1	Nrgn	
Lrrtm3	Nrip3	
Luzp2	Nsmf	
Lzts1	Nt5dc3	
Mab2111	Numbl	
Magi1	Ociad2	
Man1a	Ogfrl1	
Mctp2	Olfm1	
Megf6	Olfml2b	
Meis2	Osr1	
Met	Otos	
Myh7	Pcdh20	
Myo10	Pcsk2	
Nap1l5	Pde1a	
Ndnf	Pfkl	
Necab1	Pgbd5	
Ngb	Pgm2l1	
Nhs	Pip4k2c	
Notch4	Pip5k1c	
Nova1	Pkp2	
Nrsn2	Plch2	
Ntng1	Plk2	
Nts	Ppp1r1a	
Otof	Prickle2	
Pcdh15	Prkca	
Pde3a	Prkce	
Pde9a	Prkcg	
Peg10	Prrt2	
Peg3	Prss35	
Pgap1	Ptk2b	
Pipox	Pvrl3	
Pitpnm3	Pvrl4	
Plcb4	R3hdm4	
Plch1	Rab15	
Pld5	Rab3d	
Plekha7	Rapgef5	
Pnoc	Rasgrp1	
Prdm16	Rasl11a	
Prkar2b	Rasl11b	

Prkg2		Raver2	
Prokr2		Rem2	
Ptch1		Rgs14	
Ptch2		Rnf112	
Ptchd1		Rnf182	
Ptgfrn		Rprml	
Rapgef3		Scn1b	
Rasa4		Sema3e	
Rbms1		Sepw1	
Rbms3		Serpina3n	
Rcan3		Sh3gl2	
Rec8		Slc17a8	
Resp18		Slc24a2	
Ret		Slc25a22	
Rgag4		Slc2a6	
Rims3		Slc4a7	
Rnf144b		Slc6a15	
Rps6ka2		Slc7a4	
Rrad		Slc7a8	
Sall3		Sms	
Scarf2		Snap25	
Scn9a		Snca	
Sesn3		Sort1	
Sfrp2		Speg	
Slc10a4		Spock1	
Slc17a6		Sprn	
Slc1a3		Srl	
Slc22a3		St6galnac5	
Slc25a34		Stim2	
Slc32a1		Stx1a	
Slc35f1		Stxbp5l	
Slc6a11		Sv2b	
Slc7a3		Syce2	
Slc8a3		Syn1	
Slitrk6		Syn2	
Sorcs1		Syndig1	
Sox1		Tesc	
Sp9		Tmem151b	
Spint1		Tmem178	
Spp1		Tmem252	
Srgap1		Tmem59I	
Stac		Tnfaip8l3	
Sv2c		Trnp1	
Synm		Tt/	
Tcerg1l		Tuba8	
Tcfl5		Unc5a	
Tec		Unc5c	
Thrb		Wasf1	
	•		

Thrsp	Wbscr17
Timp2	Wipf3
Tmem130	Ywhah
Tmem158	Zbtb18
Tmem163	Zfp189
Tmem255a	
Tmem91	
Tmie	
Tmsb10	
Тох	
Tox2	
Tpd52l1	
Тгрс3	
Trpc7	
Unc13c	
Usp13	
Usp29	
Usp51	
Vat1	
Vill	
Vstm2l	
Vwc2l	
Wdr6	
Whrn	
Zbtb7c	
Zcchc12	
Zdbf2	
Zfhx3	
Zfp423	
Zfp503	
Zfp521	
Zfp92	
Zic1	
Zic2	
Zic3	
Zic4	
Zim1	

Table 3.4. Overlaps between <i>Foxp1</i> ^{****} HIP DEGs and other datasets.							
Overlaps with Zeis	el et al., Science, 2015	Overlaps with Ryan et al., PLoS ONE, 2012					
Up-regulated overlaps	Down-regulated overlaps	Up-regulated overlaps	Down-regulated overlaps				
Dcn	Ar	Camk2d	Ccnd1				
Etv1	Arpc2	Gnb4	Dsp				
ltgbl1	Asap2	Grin3a	Dusp5				
Plxnc1	Cacna1e	Runx1t1	Foxp1				
Runx1t1	Cadm2		Lynx1				
	Cds1		Prkca				
	Epha6		Rasd1				
	Fgf10		Sorcs3				
	Gabra5						
	Gpr161						
	Grem1						
	Grin2a						
	Hectd2						
	Htr4						
	Hunk						
	Kcnq3						
	Ksr1						
	Lct						
	Matn2						
	Mc4r						
	Ndst3						
	Ndst4						
	Ntng1						
	Osbpl6						
	Plxna1						
	Pou3f1						
	Slc9a2						
	Slc9a4						
	Spink8						
	Wbscr17						
	Wipf3						

Extended Data Table 3.6-1. Representative *Foxp1^{cKO}* neocortex and hippocampus DEG REVIGO GO categories.

Foxp1 ^{cKO} DEGs	Neocortex								
	Category ID	Name	p-value	q-value FDR (B&H)					
	MP:0002062	abnormal associative learning	1.69E-14	7.11E-11					
	MP:0002206	abnormal CNS synaptic transmission	1.93E-13	3.23E-10					
Up-regulated categories	MP:0003635	abnormal synaptic transmission	2.51E-13	3.23E-10					
	MP:0002063	abnormal learning/memory/conditioning	3.61E-13	3.23E-10					
	MP:0014114	abnormal cognition 3.8		3.23E-10					
	MP:0003633	abnormal nervous system physiology 7.49E-1		5.25E-10					
	MP:0001462	abnormal avoidance learning behavior 1.87E-11		1.12E-08					
	MP:0002572	abnormal emotion/affect behavior 4.20		2.21E-08					
	MP:0002065	abnormal fear/anxiety-related behavior 2.		1.10E-07					
	MP:0002799	abnormal passive avoidance behavior	1.31E-08	5.49E-06					
	GO:0022008	neurogenesis	2.62E-13	1.25E-09					
	GO:0048666	neuron development	9.35E-13	1.83E-09					
	GO:0048699	generation of neurons	1.15E-12	1.83E-09					
	GO:0031175	neuron projection development	6.26E-12	7.49E-09					
Down- regulated categories	GO:0007272	ensheathment of neurons	1.43E-11	1.14E-08					
	GO:0008366	axon ensheathment	1.43E-11	1.14E-08					
	GO:0030182	neuron differentiation	2.93E-11	2.00E-08					
	GO:0098916	anterograde trans-synaptic signaling 6.16E		2.95E-08					
	GO:0099537	trans-synaptic signaling	6.16E-11	2.95E-08					
	GO:0007268	chemical synaptic transmission	6.16E-11	2.95E-08					
Forn1 ^{cKO} DEGs	Hippocampus								
TOXPT DEUS	Category ID	Name	p-value	q-value FDR (B&H)					
	GO:0009628	response to abiotic stimulus	7.06E-09	1.19E-05					
	GO:0007610	behavior	7.74E-09	1.19E-05					
	GO:0044708	single-organism behavior	2.55E-07	2.61E-04					
Up-regulated categories	GO:0050877	neurological system process	4.56E-07	3.50E-04					
	GO:0010562	positive regulation of phosphorus metabolic process	8.45E-07	4.33E-04					
	GO:0045937	positive regulation of phosphate metabolic process	8.45E-07	4.33E-04					
	GO:0007611	learning or memory	1.30E-06	5.69E-04					
	GO:0022008	neurogenesis	1.73E-06	5.77E-04					
	GO:0030182	neuron differentiation	1.76E-06	5.77E-04					
	GO:0007612	learning	1.88E-06	5.77E-04					
MP:0003633 abnormal nervous system physiology 5.11E				5.09E-04					
	MP:0001469	abnormal contextual conditioning behavior	6.21E-07	5.09E-04					

Down- regulated categories	MP:0002062	abnormal associative learning	6.34E-07	5.09E-04
	MP:0001473	reduced long term potentiation	7.58E-07	5.09E-04
	MP:0003635	abnormal synaptic transmission	1.05E-06	5.64E-04
	MP:0002063	abnormal learning/memory/conditioning	2.18E-06	8.57E-04
	MP:0014114	abnormal cognition	2.23E-06	8.57E-04
	MP:0001468	abnormal temporal memory	3.56E-06	1.19E-03
	MP:0002696	decreased circulating glucagon level	3.97E-06	1.19E-03
	MP:0002206	abnormal CNS synaptic transmission	6.36E-06	1.71E-03

Extended Data Table 3.6-2. Overlaps between <i>Foxp1^{the}</i> DEGs and cell-type-specific genes.							
Cell-type-specific gene lists (Zeisel et al., 2015)		<i>Foxp1^{ско}</i> CTX DEGs					
		Total		Up-regulated		Down-regulated	
		874		418		456	
Cell type	Genes	Overlap	p-value	Overlap	p-value	Overlap	p-value
Astrocytes	240	15	5.83E-01	3	9.79E-01	12	1.09E-01
CA1	409	51	3.77E-06	40	8.56E-11	11	8.13E-01
Endothelial	353	25	3.35E-01	10	6.48E-01	15	2.07E-01
Ependymal	484	20	9.89E-01	17	3.20E-01	3	9.99E-01
Interneurons	365	43	8.35E-05	28	8.42E-06	15	2.44E-01
Microglia	436	10	9.99E-01	4	9.99E-01	6	9.97E-01
Mural cells	155	7	8.77E-01	3	8.59E-01	4	7.68E-01
Oligodendrocytes	453	50	1.20E-04	4	9.99E-01	46	1.67E-11
S1	294	60	5.90E-16	20	7.70E-04	40	3.29E-14
		Foxp1 ^{cKO} HIP DEGs					
Cell-type-specific ge (Zeisel et al. 20	ene lists 15)	Total		Up-regulated		Down-regulated	
		243		99		144	
Cell type	Genes	Overlap	p-value	Overlap	p-value	Overlap	p-value
Astrocytes	240	4	6.24E-01	2	5.24E-01	2	7.25E-01
CA1	409	36	1.66E-15	5	1.77E-01	31	2.93E-18
Endothelial	353	3	9.53E-01	1	9.26E-01	2	8.91E-01
Ependymal	484	9	4.99E-01	8	2.40E-02	1	9.94E-01
Interneurons	365	13	1.42E-02	10	3.10E-04	3	7.46E-01
Microglia	436	1	9.99E-01	1	9.60E-01	0	1.00
Mural cells	155	2	7.68E-01	1	6.79E-01	1	8.09E-01
Oligodendrocytes	453	3	9.88E-01	2	8.46E-01	1	9.92E-01
S1	294	14	8.37E-04	10	5.46E-05	4	3.78E-01

Extended Data Table 3.7-1. Top 20 increases and decreases to regional brain volumes in <i>Foxp1^{cKO}</i> mice.								
Areas with decreased volumes			Areas with increased volumes					
Brain Area	% Diff	FDR	Brain Area	% Diff	FDR			
Hippocampus	-13.88	1.64E-05	Trunk of lobules 6 & 8 - white matter	14.98	1.68E-03			
Cingulate cortex - area 32	-13.63	2.13E-04	Paraflocculus PFL	14.48	1.94E-03			
Secondary visual cortex - mediomedial area	-12.68	4.63E-04	Paramedian lobule	14.28	7.10E-03			
Stria terminalis	-12.24	2.63E-06	Lobule 8 - white matter	13.63	1.50E-02			
Dentate gyrus	-11.65	1.53E-03	Paraflocculus - white matter	13.01	3.46E-03			
Secondary visual cortex - mediolateral area	-11.39	2.13E-04	Lateral olfactory tract	12.89	4.35E-04			
Internal capsule	-11.01	2.63E-06	Copula - white matter	12.83	1.03E-02			
Corpus callosum	-10.99	2.40E-05	Lobule 6 - declive	12.60	4.34E-03			
Medial orbital cortex	-10.98	1.34E-03	Lobule 7 - tuber or folium	12.48	9.67E-03			
Frontal association cortex	-10.88	7.18E-05	Ventral tegmental decussation	12.03	4.63E-04			
Stratum granulosum	-10.36	2.64E-03	Subependymale zone/rhinocele	11.63	2.40E-05			
Primary visual cortex - monocular area	-10.03	2.63E-03	Lobules 4 & 5 - culmen ventral and dorsal	11.61	2.63E-03			
Prepara subiculum	-9.79	4.56E-02	Posterior commissure	11.39	2.13E-04			
Cingulate cortex - area 29b	-9.24	4.54E-02	Anterior lobule - white matter	11.31	2.63E-03			
Primary visual cortex	-9.14	7.31E-03	Crus 2 - white matter	11.20	2.63E-03			
Primary somatosensory cortex - forelimb region	-8.84	9.85E-04	Lobule 3 - white matter	11.15	1.85E-02			
Primary auditory cortex	-8.70	1.76E-02	Lobule 3 - central lobule dorsal	11.08	2.11E-02			
Primary visual cortex - binocular area	-8.69	8.21E-04	Anterior lobule - lobules 4 & 5	10.95	3.00E-03			
Primary somatosensory cortex - hindlimb region	-8.33	5.84E-04	Lobules 4 & 5 - white matter	10.79	3.45E-03			
Cingulate cortex area 24b	-8.28	6.19E-03	Lobules 6 & 7 - white matter	10.56	6.19E-03			

REFERENCES FOR CHAPTER THREE

- Ageranioti-Belanger S, Brunet S, D'Anjou G, Tellier G, Boivin J, Gauthier M (2012) Behaviour disorders in children with an intellectual disability. Paediatr Child Health 17:84-88.
- Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome biology 11:R106.
- Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166-169.
- Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. In.
- Araujo DJ, Anderson AG, Berto S, Runnels W, Harper M, Ammanuel S, Rieger MA, Huang HC, Rajkovich K, Loerwald KW, Dekker JD, Tucker HO, Dougherty JD, Gibson JR, Konopka G (2015) FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes & development 29:2081-2096.
- Bacon C, Rappold GA (2012) The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Human genetics 131:1687-1698.
- Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C, Gluch C, Monyer H, Rappold GA (2014) Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Molecular psychiatry.
- Bock NA, Nieman BJ, Bishop JB, Mark Henkelman R (2005) In vivo multiple-mouse MRI at 7 Tesla. Magnetic resonance in medicine 54:1311-1316.
- Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.
- Carlson GC, Lin RE, Chen Y, Brookshire BR, White RS, Lucki I, Siegel SJ, Kim SF (2016) Dexras1 a unique ras-GTPase interacts with NMDA receptor activity and provides a novel dissociation between anxiety, working memory and sensory gating. Neuroscience 322:408-415.
- Chen JA, Penagarikano O, Belgard TG, Swarup V, Geschwind DH (2015) The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol 10:111-144.
- Cho KK, Hoch R, Lee AT, Patel T, Rubenstein JL, Sohal VS (2015) Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6(+/-) mice. Neuron 85:1332-1343.
- Cho YH, Friedman E, Silva AJ (1999) Ibotenate lesions of the hippocampus impair spatial learning but not contextual fear conditioning in mice. Behavioural brain research 98:77-87.
- de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH (2016) Advancing the understanding of autism disease mechanisms through genetics. Nat Med 22:345-361.
- de Quervain DJ, Papassotiropoulos A (2006) Identification of a genetic cluster influencing memory performance and hippocampal activity in humans. Proceedings of the National Academy of Sciences of the United States of America 103:4270-4274.
- Deacon RM (2006) Assessing nest building in mice. Nat Protoc 1:1117-1119.
- Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15-21.
- Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM (2008) High resolution threedimensional brain atlas using an average magnetic resonance image of 40 adult C57BI/6J mice. NeuroImage 42:60-69.
- Ellegood J et al. (2015) Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Molecular psychiatry 20:118-125.

- Fakhoury M (2015) Autistic spectrum disorders: A review of clinical features, theories and diagnosis. Int J Dev Neurosci 43:70-77.
- Feng X, Ippolito GC, Tian L, Wiehagen K, Oh S, Sambandam A, Willen J, Bunte RM, Maika SD, Harriss JV, Caton AJ, Bhandoola A, Tucker PW, Hu H (2010) Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development. Blood 115:510-518.
- Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA (2003) Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. The Journal of comparative neurology 460:266-279.
- Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15:870-878.
- Geschwind DH, State MW (2015) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol.
- Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917-925.
- Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JL, Jones KR (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:6309-6314.
- Heisler JM, Morales J, Donegan JJ, Jett JD, Redus L, O'Connor JC (2015) The attentional set shifting task: a measure of cognitive flexibility in mice. J Vis Exp.
- Hernandez RN, Feinberg RL, Vaurio R, Passanante NM, Thompson RE, Kaufmann WE (2009) Autism spectrum disorder in fragile X syndrome: a longitudinal evaluation. American journal of medical genetics Part A 149A:1125-1137.
- Hisaoka T, Nakamura Y, Senba E, Morikawa Y (2010) The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience 166:551-563.
- Holy TE, Guo Z (2005) Ultrasonic songs of male mice. PLoS biology 3:e386.
- Huynh DP, Maalouf M, Silva AJ, Schweizer FE, Pulst SM (2009) Dissociated fear and spatial learning in mice with deficiency of ataxin-2. PloS one 4:e6235.
- lossifov I et al. (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515:216-221.
- Kaestner KH, Knochel W, Martinez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes & development 14:142-146.
- Kotaleski JH, Blackwell KT (2010) Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nature reviews Neuroscience 11:239-251.
- Kubota M, Murakoshi T, Saegusa H, Kazuno A, Zong S, Hu Q, Noda T, Tanabe T (2001) Intact LTP and fear memory but impaired spatial memory in mice lacking Ca(v)2.3 (alpha(IE)) channel. Biochem Biophys Res Commun 282:242-248.
- Kumar A (2011) Long-Term Potentiation at CA3-CA1 Hippocampal Synapses with Special Emphasis on Aging, Disease, and Stress. Front Aging Neurosci 3:7.
- Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics 9:559.
- Le Fevre AK, Taylor S, Malek NH, Horn D, Carr CW, Abdul-Rahman OA, O'Donnell S, Burgess T, Shaw M, Gecz J, Bain N, Fagan K, Hunter MF (2013) FOXP1 mutations cause intellectual disability and a recognizable phenotype. American journal of medical genetics Part A 161A:3166-3175.

- Leitner Y (2014) The co-occurrence of autism and attention deficit hyperactivity disorder in children what do we know? Front Hum Neurosci 8:268.
- Lerch JP, Sled JG, Henkelman RM (2011) MRI phenotyping of genetically altered mice. Methods Mol Biol 711:349-361.
- Lerch JP, Carroll JB, Spring S, Bertram LN, Schwab C, Hayden MR, Henkelman RM (2008) Automated deformation analysis in the YAC128 Huntington disease mouse model. NeuroImage 39:32-39.
- Li X, Xiao J, Frohlich H, Tu X, Li L, Xu Y, Cao H, Qu J, Rappold GA, Chen JG (2015) Foxp1 regulates cortical radial migration and neuronal morphogenesis in developing cerebral cortex. PloS one 10:e0127671.
- Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 15:550.
- Lozano R, Vino A, Lozano C, Fisher SE, Deriziotis P (2015) A de novo FOXP1 variant in a patient with autism, intellectual disability and severe speech and language impairment. European journal of human genetics : EJHG 23:1702-1707.
- Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87-136.
- Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annual review of neuroscience 24:897-931.
- McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic acids research 40:4288-4297.
- Mullins C, Fishell G, Tsien RW (2016) Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops. Neuron 89:1131-1156.
- Nieman BJ, Flenniken AM, Adamson SL, Henkelman RM, Sled JG (2006) Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography. Physiological genomics 24:154-162.
- Nieman BJ, Bock NA, Bishop J, Sled JG, Josette Chen X, Mark Henkelman R (2005) Fast spinecho for multiple mouse magnetic resonance phenotyping. Magn Reson Med 54:532-537.
- Park HR, Lee JM, Moon HE, Lee DS, Kim BN, Kim J, Kim DG, Paek SH (2016) A Short Review on the Current Understanding of Autism Spectrum Disorders. Exp Neurobiol 25:1-13.
- Plummer JT, Gordon AJ, Levitt P (2016) The Genetic Intersection of Neurodevelopmental Disorders and Shared Medical Comorbidities Relations that Translate from Bench to Bedside. Front Psychiatry 7:142.
- Portfors CV, Perkel DJ (2014) The role of ultrasonic vocalizations in mouse communication. Current opinion in neurobiology 28:115-120.
- Precious SV, Kelly CM, Reddington AE, Vinh NN, Stickland RC, Pekarik V, Scherf C, Jeyasingham R, Glasbey J, Holeiter M, Jones L, Taylor MV, Rosser AE (2016) FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation. Exp Neurol 282:9-18.
- Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O (2014) Behavioral assays with mouse models of Alzheimer's disease: practical considerations and guidelines. Biochem Pharmacol 88:450-467.
- Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139-140.
- Ryan MM, Ryan B, Kyrke-Smith M, Logan B, Tate WP, Abraham WC, Williams JM (2012) Temporal profiling of gene networks associated with the late phase of long-term potentiation in vivo. PloS one 7:e40538.
- Sanders SJ et al. (2015) Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 87:1215-1233.

- Santini E, Klann E (2014) Reciprocal signaling between translational control pathways and synaptic proteins in autism spectrum disorders. Science signaling 7:re10.
- Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13:2498-2504.
- Shoji H, Hagihara H, Takao K, Hattori S, Miyakawa T (2012) T-maze forced alternation and leftright discrimination tasks for assessing working and reference memory in mice. J Vis Exp.
- Silverman JL, Yang M, Lord C, Crawley JN (2010) Behavioural phenotyping assays for mouse models of autism. Nature reviews Neuroscience 11:490-502.
- Spiteri E, Konopka G, Coppola G, Bomar J, Oldham M, Ou J, Vernes SC, Fisher SE, Ren B, Geschwind DH (2007) Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. American journal of human genetics 81:1144-1157.
- State MW, Sestan N (2012) Neuroscience. The emerging biology of autism spectrum disorders. Science 337:1301-1303.
- Steadman PE, Ellegood J, Szulc KU, Turnbull DH, Joyner AL, Henkelman RM, Lerch JP (2014) Genetic effects on cerebellar structure across mouse models of autism using a magnetic resonance imaging atlas. Autism Res 7:124-137.
- Stessman HA et al. (2017) Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nature genetics.
- Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one 6:e21800.
- Takahashi JS, Kumar V, Nakashe P, Koike N, Huang HC, Green CB, Kim TK (2015) ChIP-seq and RNA-seq methods to study circadian control of transcription in mammals. Methods Enzymol 551:285-321.
- Tamura S, Morikawa Y, Iwanishi H, Hisaoka T, Senba E (2004) Foxp1 gene expression in projection neurons of the mouse striatum. Neuroscience 124:261-267.
- Tovote P, Fadok JP, Luthi A (2015) Neuronal circuits for fear and anxiety. Nature reviews Neuroscience 16:317-331.
- Ullmann JF, Watson C, Janke AL, Kurniawan ND, Reutens DC (2013) A segmentation protocol and MRI atlas of the C57BL/6J mouse neocortex. NeuroImage 78:196-203.
- van Steensel FJ, Bogels SM, Perrin S (2011) Anxiety disorders in children and adolescents with autistic spectrum disorders: a meta-analysis. Clin Child Fam Psychol Rev 14:302-317.
- Vilches N, Spichiger C, Mendez N, Abarzua-Catalan L, Galdames HA, Hazlerigg DG, Richter HG, Torres-Farfan C (2014) Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring. PloS one 9:e91313.
- Vissers LE, Gilissen C, Veltman JA (2016) Genetic studies in intellectual disability and related disorders. Nature reviews Genetics 17:9-18.
- Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848-858.
- Wang B, Lin D, Li C, Tucker P (2003) Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. The Journal of biological chemistry 278:24259-24268.
- Yamamoto J, Suh J, Takeuchi D, Tonegawa S (2014) Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell 157:845-857.
- Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J,

Linnarsson S (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138-1142.
CHAPTER FOUR:

CONCLUSIONS AND FUTURE DIRECTIONS

OVERVIEW

Autism spectrum disorder (ASD) and intellectual disability (ID) are conditions with complex presentations and equally complex genetic architectures. Many genes implicated in ASD and ID are expressed during early brain development, a time-point thought to be critical in the pathogenesis of these disorders. Various transcription factors coordinate the expression of such genes. Therefore, discerning the brain-regionspecific gene targets governed by transcription factors associated with ASD and ID could provide comprehensive and novel insights into the mechanisms responsible for these two disorders. FOXP1 is a transcription factor that is enriched throughout the developing and mature brain and which has been recently identified as a highconfidence ASD- and ID-risk gene. This dissertation improves our understanding of the role that FoxP1 plays within the brain. Through my work, I demonstrate that Foxp1 controls distinct gene expression profiles in different brain regions and that Foxp1 and Foxp2 share gene targets within the striatum. I reveal an evolutionarily conserved function for FoxP1 in coordinating the expression of genes involved in striatal identity. I am the first to show that heterozygous loss of Foxp1 differentially affects the physiological properties of medium spiny neurons (MSNs). I am also the first to show that *Foxp1* expression is necessary for proper ultrasonic vocalization (USV) production. Additionally, I have revealed that ablation of *Foxp1* specifically in the neocortex and

hippocampus is sufficient to produce behaviors reminiscent of ASD and ID such as hyperactivity, impaired communication, diminished social interactions, and learning and memory deficits. Finally, I have demonstrated that Foxp1 functions in regulating both hippocampal development and CA1-based long-term potentiation (LTP) maintenance. Taken together, these data point to a model in which reduced *Foxp1* levels compromise particular mechanisms in distinct neuronal subtypes and that, when disrupted together, these processes result in a recognizable ASD- and ID-like phenotype. This final chapter discusses additional unpublished data that I have collected, the implications of these data when integrated with my findings in Chapter 1 and Chapter 2, and suggestions for future experiments.

MATERIALS AND METHODS

AAV-injections

Stereotaxic injections were performed by the Neuro-Models Facility at UT Southwestern Medical Center. For injections, mice were anesthetized with isoflurane (4% induction, 2% maintenance) in a 70%/30% mix of nitrous oxide and oxygen. Afterwards, 0.5 or 1 uL of an AAV2-GFP virus (UNC Vector Core) (3.4×10^9 viral genomes/uL) were injected bilaterally (with the right hemisphere receiving 1 uL and the left hemisphere receiving 0.5 uL), aiming at the CA1 region of the hippocampus (AP -2.1, ML +/-1.5, DV -1.4). The virus was delivered at a rate of 0.1 uL/minute (for 5 or 10 minutes/injection, depending on the hemisphere), followed by 5 minutes of rest before the needle was removed. To

ensure sufficient AAV2 infection of the hippocampus, mice were given a 2-week period before their brains were harvested for use in floating immunohistochemistry.

Tissue Preparation

For both floating immunohistochemistry and Nissl staining, adult female and male mice were anesthetized with 80 - 100 mg/Kg Euthasol (UT Southwestern Medical Center Animal Resources Center Veterinary Drug Services), perfused with PBS containing 10 U/mL heparin (Sigma) followed by fixative (4% PFA in PBS), and then immediately decapitated. Whole brains were removed and incubated in fixative for 24 hours at 4°C and then incubated in 30% sucrose (made in PBS with 0.02% sodium azide) for 24 – 48 hours at 4°C. Afterwards, brains were sectioned at 20 um on an SM2000 R sliding microtome (Leica). Sections were then stored in PBS containing 0.02% sodium azide until use in floating immunohistochemistry (**Chapter 2**) or Nissl staining.

Nissl Staining

Brain sections stored in PBS were mounted onto slides and allowed to dry for 24 - 48 hours. Sections were then rehydrated in PBS and then dehydrated with a series of immersions in ethanol at increasing concentrations: 70% ethanol for 3 minutes, 95% ethanol for 3 minutes, and then two separate immersions in 100% ethanol for 5 minutes each. Afterwards, sections were defatted with xylene for 5 minutes. The sections were then rehydrated by immersing them in the ethanol solutions, in the reverse order (3 minutes/treatment), followed by immersion in ddH₂O for 2 minutes. Sections were then

stained with 0.1% cresyl violet for 4 minutes. Subsequently, sections were washed in ddH₂O for 2 minutes and then again dehydrated with ethanol. The sections were then treated with Citrisolv (Thermo) for 5 minutes and then immediately covered with DPX mounting medium and allowed to dry overnight.

Hippocampal CA1 Cell Density Estimations

The Cavalieri volume estimation method (MicroBrightField) was used to estimate the density of the CA1/CA2 pyramidal cell layer. The CA1/CA2 region throughout both hippocampal formations (from approximately Bregma -1.400 mm to Bregma -2.700 mm) was visualized using the bright field setting on a BX51 microscope (Olympus) connected to a computer running Stereo Investigator 11.03 software (MicroBrightField). Afterwards, markers were placed (using a grid spacing of 50 um and a section evaluation interval of 10) over these regions. Total volumes were then determined using the built-in software estimator. All volume estimations possessed a Gundersen coefficient of error <0.10.

Electro-convulsive Stimulation

For each day of testing, approximately 15 minutes prior to electro-convulsive stimulation (ECS), ocular anesthesia (proparacaine 0.5% solution) (Henry Schein) was applied to the eyes of each mouse. Afterwards, each mouse received a series of ECS shocks via specialized ocular electrodes that made direct contact with the cornea. ECS was delivered at 4mA to every mouse on day 1 using an 7801 ECT Unit (UGO Basile), and

then the amperage was raised each day by 1mA until every mouse experienced a maximal seizure. The other ECS parameters were kept constant: 60Hz, 0.4ms pulse width, 0.2s total duration of shock. Afterwards, the electrodes were immediately removed and the mice were placed into a clean cage until visual signs of seizure stopped. The amperages that elicited both minimal and maximal seizures were recorded for each mouse. A minimal seizure involved loss of posture (mice fall over) and bilateral limb clonus (limbs on both sides spasm uncontrollably). A maximal seizure was defined by loss of posture, rigid straightening of the body, and bilateral tonic extension of hind limbs (hind limbs are extended and rigid). Most mice died upon experiencing a maximal seizure. However, if a mouse survived a maximal seizure, it was immediately sacrificed at the end of the test day. At the end of each testing day, mice were monitored for 30 minutes to ensure that they fully recovered and then given ophthalmic antibiotic eye drops (triple antibiotic containing bacitracin, neomycin, and polymyxin B (Bausch and Lomb) to prevent potential eye infections.

CHAPTER 2 – FOXP1 ORCHESTRATION OF ASD RELEVANT SINGNALING PATHWAYS IN THE STRIATUM

Discussion

Previous work has begun to shed light on the pathways governed by Foxp1 in the brain, with particular attention paid to the striatum (Tang et al., 2012; Bacon et al., 2014). However, whether Foxp1 controls specific gene targets in distinct brain regions, the level of conservation of these targets between murine and human neurons, and the

behavioral consequences of disrupting these particular mechanisms have yet to be determined. To answer these questions, we have utilized high-throughput sequencing techniques on human neural progenitors as well as patient-relevant Foxp1^{+/-} mouse brains. We present data suggesting that Foxp1 orchestrates transcriptomes that are exclusive to the hippocampus and the striatum. Additionally, we demonstrate that Foxp1 and Foxp2 control unique gene targets in D_1 and D_2 receptor positive (D_1/D_2+) MSN subtypes. Specifically, Foxp2 appears to preferentially regulate genes in D_1 + MSNs while Foxp1 appears to have a broader role in regulating genes in both subtypes. We also present evidence that heterozygous deletion of Foxp1 differentially impacts the intrinsic excitability of D_1 + and D_2 + MSNs. Indeed, loss of *Foxp1* led to a significant increase in D_2 + MSN excitability and a trend towards a decrease in D_1 + MSN excitability. We also show data indicating that Foxp1 influences the production of isolation-based postnatal USVs. Finally, we show evidence that Foxp1 has an evolutionarily conserved role in the control of genes involved in MSN identity. In summary, these data signify that loss of *Foxp1* may alter striatal-identity genes in a manner that upsets the balance of D_1 + and D_2 + MSN output that diminishes USV production (Figure 4.1). However, the data supporting this hypothesis are correlative in nature and further experimentation is needed to demonstrate causality.

Remaining Questions and Future Directions

Is Foxp1 expression in striatal neurons necessary and sufficient for proper USV production? Motivated by the strong expression of FoxP2 in MSNs (Ferland et al., 2003;

Frohlich et al., 2017), researchers have established the striatum as a critical region in the generation of vocalizations across species (Fisher and Scharff, 2009; Frohlich et al., 2017). Given that Foxp1 is able to heterodimerize with Foxp2 in the striatum (Frohlich et al., 2017), and that we have shown these two transcription factors share targets in this brain region, it is reasonable to assume that reduction of *Foxp1* specifically in the striatum is responsible for impaired USV production. What follows are two experiments that could demonstrate this conclusively.

I recommend rescuing the USV phenotype in *Foxp1^{+/-}* mouse pups with virallymediated expression of *Foxp1* in the striatum. Similar experiments have been carried out in mouse models of FXS and Parkinson's disease (Gombash et al., 2013; Gholizadeh et al., 2014). To accomplish this, injections of lentiviral-mediated *Foxp1* expression constructs could be directed at the postnatal day 0 (P0) *Foxp1^{+/-}* mouse striatum. Well-established methods exist for this type of procedure (Osten et al., 2006; Davidson et al., 2010). Alternatively, HSV-1-mediated *Foxp1* expression constructs could be used for a greater infection spread (Berges et al., 2007). Afterwards, standard USV recordings of early postnatal mouse pups in a maternal-separation paradigm could be carried out to demonstrate that the behavioral phenotype has been rescued. As a control, it will be necessary to show that this treatment also results in wild-type Foxp1 levels exclusively in the striatum. Because the neocortex has been implicated in controlling the usage of call types (Hammerschmidt et al., 2015), it may be that rescuing striatal expression of *Foxp1* is sufficient to restore call numbers but not call features.

As an alternative to this experiment, I recommend examining the USVs of early postnatal mouse pups with deletion of *Foxp1* in MSNs. This could be accomplished by using commercially obtainable *Drd1a.Cre* and *Drd2.Cre* animals from the NIH MMRRC at UC Davis (strain numbers 030989-UCD and 032108-UCD, respectively) in combination with the *Foxp1^{flox/flox}* mice detailed previously (**Chapter 3**) (Feng et al., 2010). Additionally, the availability of *Drd1a.Cre* and *Drd2.Cre* lines means that one could also investigate that the contributions of MSN subtypes to this behavior. Resolving these questions could lead to better pharmacological regimens in the management of the speech and language impairments seen in ASD and ID.

Is it possible to disentangle the gene targets between Foxp1 and Foxp2 heterodimers and Foxp1 and Foxp2 homodimers? Dimerization (either heterodimerization or homodimerization) is required for Foxp1 and Foxp2 to bind to DNA and properly regulate gene expression (Li et al., 2004; Lalmansingh et al., 2012; Sin et al., 2015; Mendoza and Scharff, 2017). Different homodimer and heterodimer combinations of Foxp1 and Foxp2 possess different regulatory capabilities (Sin et al., 2015). Moreover, my work has shown that Foxp1 and Foxp2 regulate common targets within the striatum. Still, disentangling the specific genes targeted by Foxp1 and Foxp2 heterodimers versus homodimers of Foxp1 and Foxp2 remains a challenge. This is because disrupting the capacity of Foxp1 to heterodimerize with Foxp2 will also inhibit Foxp1 from forming homodimers (Li et al., 2004; Frohlich et al., 2017). Until this technical limitation is overcome, the individual gene targets of Foxp1 and Foxp2 homodimers and heterodimers will remain unknown.

CHAPTER 3 – FOXP1 IN FOREBRAIN PYRAMIDAL NEURONS CONTROLS GENE EXPRESSION REQUIRED FOR SPATIAL LEARNING AND SYNAPTIC PLASTICITY

Discussion

Conditional, brain-specific homozygous loss of *Foxp1* leads to abnormal hippocampal and striatal morphology, altered striatal transcriptomes, and ASD-related behaviors (Bacon et al., 2014). Moreover, neocortical knock-down of *Foxp1* generates improper neocortical patterning but the resultant behavioral phenotypes have not been investigated (Li et al., 2015). Therefore, to understand if Foxp1 contributes to ASD- and ID-relevant behaviors in a brain-region-specific manner, we characterized mice with homozygous deletion of *Foxp1* exclusively in the pyramidal neurons of the neocortex and hippocampus. We show that these mice (called Foxp1^{cKO} mice) exhibit ASD-like behaviors such as hyperactivity, anxiety, impaired communication, and decreased sociability. We also show that *Foxp1^{cKO}* mice display ID-like behavioral phenotypes such as impaired spatial learning and memory. However, we also demonstrate that cognitive tasks reliant on broader circuits are unaffected. Correlated with these findings, we show that Foxp1 mediates the expression of genes involved in hippocampal synaptic plasticity. Finally, we present evidence that suggests transcriptional dysregulation in the *Foxp1^{cKO}* hippocampus leads to reduced hippocampal volumes as well as reduced longterm potentiation (LTP) maintenance in the CA1 pyramidal neurons of *Foxp1^{cKO}* mice. Taken together, these data support the idea that loss of *Foxp1* specifically in forebrain pyramidal neurons is sufficient to phenocopy many of the hallmark features of ASD and ID. Additionally, these data suggest that *Foxp1* loss in the hippocampus diminishes CA1-mediated LTP maintenance via disruptions in signaling networks downstream of synaptic input (**Figure 4.2**). Because generalized cognitive tasks are unimpaired in this mouse model, it is possible that preservation of Foxp1 in other brain regions is sufficient to spare non-spatial forms of learning and memory. Furthermore, it remains difficult to identify the exact contributions of either hippocampal and neocortical *Foxp1* to the described phenotypes. Thus, more experimentation will be needed to tackle these problems.

Remaining Questions and Future Directions

Can we disentangle the contributions of neocortical and hippocampal Foxp1 to the behavioral phenotypes of $Foxp1^{cKO}$ mice? Changes to the gene expression patterns, morphology, and physiology of the neocortex and hippocampus are typical of ASD and ID brains (Chen et al., 2015). In agreement with these observations, disruptions to overall neocortical development have been linked to the generation of impaired sociability and repetitive behaviors in ASD mouse models (Fang et al., 2014; Caubit et al., 2016). However, *Foxp1* is expressed throughout the neocortex and this region has been shown to influence many behavioral processes. In contrast, the hippocampus has a well-established role in spatial learning and memory. Therefore, we chose to focus on the spatial and learning impairments of $Foxp1^{cKO}$ mice. Still, in order to definitively connect loss of hippocampal *Foxp1* in this region. This could be accomplished by injecting

virally-mediated expression constructs in the early postnatal hippocampus and assessing behaviors in adulthood (Davidson et al., 2010; Wang et al., 2013). Similar to the experiments described above, the P0 hippocampus could be targeted with AAV-mediated expression constructs for *Foxp1*. Animals could then be examined in either the T-maze or the Morris water maze, as detailed in our methods (**Chapter 3**).

We observed reduced CA1-dependent LTP maintenance in Foxp1^{cKO} mice, which correlated with an enrichment of genes involved in the maintenance phase of LTP in our *Foxp1^{cKO}* hippocampal dataset. Because we also detected no differences in basal synaptic plasticity, these data suggest that loss of *Foxp1* in CA1 pyramidal neurons leads to a disruption of signaling networks downstream of synaptic input. In order to test this hypothesis, I recommend rescuing the expression levels of DEGs involved in LTP maintenance, in the hippocampus of *Foxp1^{cKO}* mice. Of the 12 genes that overlapped between the *Foxp1^{cKO}* DEG list and an LTP-maintenance gene list, 7 were not included in the Foxp1^{+/-} hippocampal DEG list. Of the 7 LTP-maintenance-phase DEGs exclusive to the *Foxp1^{cKO}* hippocampus, 5 were confirmed via qPCR (*Dsp*, *Gnb4*, *Grin3a*, *Rasd1*, Runx1t1). Therefore, these 5 DEGs represent salient targets for expression-based rescue experiments with the methods detailed above. However, negative results from rescue experiments targeting any one differentially expressed LTP-maintenance gene would need to be interpreted carefully, as it is possible that normal expression of the entire hippocampal transcriptome is necessary for normal CA1-based LTP.

As stated earlier, the intact basal synaptic plasticity seen in the CA1 of $Foxp1^{cKO}$ mice suggests that differences in LTP-maintenance are not due to deficiencies in

synaptic input (i.e., synapse number, the amplitude of signals released, etc.). However, it will ultimately be necessary to test this idea. I attempted to test one aspect of this hypothesis by examining the spine density of apical dendrites of GFP-labeled CA1 neurons in $Foxp1^{cKO}$ mice. However, this experiment was hindered by a high background of GFP expression (due to widespread viral infection) in the stratum radiatum (where CA3 pyramidal neurons synapse onto CA1 neurons). Consequently, while the initial segments of CA1 apical dendrites could be identified (**Figure 4.3**), the spine-containing dendritic tufts in the stratum radiatum could not. Therefore, in order to successfully complete this experiment, I recommend diluting the viral stocks and/or reducing the injected volume.

If successful, the aforementioned experiments would beg the question of whether or not any behavior presented by $Foxp1^{cKO}$ mice could be tied to neocortical Foxp1. Interestingly, $Foxp1^{cKO}$ pups possess marked alterations to their postnatal USVs (**Figure 4.4**), when used in recording methods detailed previously (**Chapter 2**). This result, along with the corresponding deficit in $Foxp1^{cKO}$ adult USV production (**Chapter 3**), was surprising to us because we originally expected these animals to serve as a negative control for this behavior (expression of Foxp1 in the striatum is preserved in $Foxp1^{cKO}$ mice). As both early postnatal pups and adults, $Foxp1^{cKO}$ mice not only produce fewer numbers of calls, they also produce calls that are shorter, less complex, and which cover a smaller frequency range (**Chapter 3**; **Figure 4.4**). A circuit connecting projection neurons from the motor cortex to the dorsal striatum has been proposed to control this behavior in mice (Arriaga et al., 2012; Arriaga and Jarvis,

2013). Thus, again, deficiencies in USV production by *Foxp1^{cKO}* mice could be rescued with virally-mediated expression of *Foxp1* within the postnatal motor cortex. A major caveat to this proposition is the finding that many USV parameters are not affected after the developmental ablation of the entire neocortex (Hammerschmidt et al., 2015). However, that ablation of the neocortex doesn't affect USV production could be explained by a model in which the striatum regulates the generation of calls while the neocortex integrates sensory information important for determining when it is proper to produce calls. This idea is consistent with the hypothesis that postnatal USVs are produced in response to sensory cues that come with being separated from the nest (Scattoni et al., 2009; Portfors and Perkel, 2014). Finally, determining if the expression of *Foxp1* in other brain regions can affect performance of non-spatial tasks could be confronted by employing the *Drd1a/Drd2.Cre* animals mentioned previously.

The fact that both $Foxp1^{cKO}$ mouse pups and $Foxp1^{cKO}$ adult mice present with the same deficits in USV production is striking. This observation is consistent with the idea that mouse vocalizations are innate behaviors under strict control by corticalstriatal circuits involved in motor coordination (Portfors and Perkel, 2014). Additionally, these data suggest that proper expression of Foxp1 in cortical-striatal may have a role in governing other motor behaviors. To test this hypothesis, I assessed the performance of adult $Foxp1^{cKO}$ mice in an accelerating rotarod test and a grip-strength test (methods detailed in **Chapter 2**). $Foxp1^{cKO}$ mice display reduced performance on an accelerating rotarod, as indicated by their decreased latency to fall, as well as reduced forelimb grip strength (**Figure 4.5**). This diminished performance in both an accelerating rotarod and

a grip-strength test could indicate that reduced *Foxp1* expression in the neocortex leads to either a reduction in proper signaling from the motor cortices to the spinal cord, abnormal striatal development due to a lack of normal input from the neocortex, or both. Testing these ideas via expression-based rescue or knock-down experiments would be extremely interesting, given that Foxp1 has been associated with Huntington's disease, which is also typified by improper motor coordination (Tang et al., 2012).

Are the behaviors caused by loss of forebrain Foxp1 developmental in origin? The endurance of a USV phenotype from early prenatal stages into adulthood in $Foxp1^{oKO}$ mice indicates that the other behavioral phenotypes of $Foxp1^{cKO}$ mice may also arise during early development. In accordance with this hypothesis, we have found a significant overlap of gene targets between P7 and adult $Foxp1^{cKO}$ neocortical and hippocampal RNA-sequencing datasets (**Figure 4.6; Table 4.1**). Additional evidence supporting this idea comes from the finding that P7 $Foxp1^{cKO}$ mouse pups display several of the same alterations in regional brain volumes seen in adult $Foxp1^{cKO}$ mice (**Figure 4.7; Table 4.2**). Thus, I recommend testing this notion with a tamoxifeninducible *Cre* expression system (Feil et al., 2009). By inducing *Cre* expression at early postnatal and/or adult time points (via $Emx1.Cre-ER^{T2}$ mice – Jackson Laboratories strain # 027784), future experiments could determine if Foxp1 plays a developmental or operational role in orchestrating $Foxp1^{cKO}$ mouse phenotypes.

Experiments with an inducible *Emx1.Cre* mouse model could also answer whether Foxp1 operationally or developmentally regulates the neuroanatomical phenotypes seen in $Foxp1^{cKO}$ mice. Indeed, it could address the role of Foxp1 in

regulating the reduced CA1/2 pyramidal neuron density seen in both adult full-brain *Foxp1* knockout mice (Bacon et al., 2014) and adult $Foxp1^{cKO}$ mice (**Figure 4.8**). Lastly, this finding that $Foxp1^{cKO}$ pyramidal neurons of the CA1/2 region take up a larger volume is seemingly in conflict with the reduced $Foxp1^{cKO}$ hippocampal volumes revealed by MRI. However, our MRI experiments measured the total volume of the hippocampus whereas the stereology results detailed here only reflect the reduced compactness of pyramidal neurons in the CA1/2 region. Thus, while the CA1/2 pyramidal neuron layer takes up a larger volume, this likely reflects a laminarization deficit within a hippocampus that is reduced in size overall.

Are the phenotypes exhibited by $Foxp1^{cKO}$ mice dose-dependent? $Foxp1^{+/c}$ mice did not exhibit any observable deficits in spatial learning and memory (**Chapter 2**). Therefore, it is reasonable to predict that heterozygous $Foxp1^{cKO}$ mice (referred to as $Foxp1^{cKOHET}$ mice) would also not exhibit any learning and memory phenotypes, given that only one Foxp1 allele is deleted in a restricted portion of the brain in these animals. To test this hypothesis, I examined the spatial learning and memory capabilities of adult $Foxp1^{cKOHET}$ mice in the Morris water maze. While $Foxp1^{cKOHET}$ mice display a delayed learning curve in the training portion of the maze, their learning did not differ significantly from littermate controls (**Figure 4.9**). Moreover, the number of platform crosses made by $Foxp1^{cKOHET}$ mice during a probe day 48 hours after training also did not differ significantly (**Figure 4.9**). Thus, it would appear that the spatial learning and memory capabilities of $Foxp1^{cKOHET}$ mice in a novel cage activity test. Interestingly, $Foxp1^{cKOHET}$ mice are slightly hypoactive (**Figure 4.9**). This suggests that affecting *Foxp1* expression in the neocortex and hippocampus is able to both increase and decrease levels of locomotor activity. Still, further testing is needed to yield greater confidence in these results due to the small sample size of $Foxp1^{cKOHET}$ mice used. This is especially true when one considers the variability of the $Foxp1^{cKOHET}$ data in the Morris water maze. With a larger sample size, the delayed learning curve exhibited by $Foxp1^{cKOHET}$ mice in the Morris water maze may become statistically significant. This is evidenced by the statistical significance seen in the novel cage activity, which utilized an even smaller number of $Foxp1^{cKOHET}$ mice.

It appears that *Foxp1* dosage affects the manifestation of neuroanatomical changes. This was determined by examining relative volume changes in distinct brain regions of adult *Foxp1^{+/-}* mice using MRI. Specifically, *Foxp1^{+/-}* mice possess both fewer and less severe regional volume changes than those seen in *Foxp1^{cKO}* mice (**Figure 4.10**). Indeed, the vast majority of the brain regions affected in *Foxp1^{cKO}* mice (the hippocampus, the dentate gyrus, the frontal association cortex, etc.) are spared in *Foxp1^{+/-}* mice (**Figure 4.10**). There are a few relative volume changes in common between these two mouse models (affecting the internal capsule, the pre-para subiculum, the stratum granulosum, etc.) which suggests that *Foxp1* is especially critical in regulating the development of these regions. Taken together, these data indicate that loss of *Foxp1* affects the maturation of the brain in a dose-dependent manner.

At least one paper has found increased *FOXP1* levels to be correlated with a risk for ASD (Chien et al., 2013). While this increased expression of *FOXP1* was observed

in patient-derived lymphoblastoid cell lines, it suggests that *FOXP1* haploinsufficiency may not be able to explain the complete role of *FOXP1* in ASD and ID pathogenesis (Chien et al., 2013). Indeed, the production of ASD by increased levels of *FOXP1* could be explained with a model in which perturbing *FOXP1* levels affects the same gene networks within the brain, which in turn leads to similar behavioral consequences (**Chapter 2**) (**Figure 4.1**).

Are Foxp1 mutant mice models of ASD and ID in general? Hundreds of genes are linked to ASD and ID, but no single genetic mutation yields every symptom associated with the two disorders. For example, while epilepsy is a common symptom shared between ASD and ID (McGrother et al., 2006; Fakhoury, 2015), most *FOXP1* haploinsufficient patients do not regularly present with epilepsy or seizures in general (**Chapter 1**). This observation has been phenocopied in *Foxp1^{cKO}* mice which, even with complete loss of *Foxp1* in the neocortex and hippocampus, show no special vulnerability to either maximal or minimal seizures when exposed to electro-convulsive stimulation (**Figure 4.11**). Therefore, results such as this should solidify the understanding that when studying either ASD and ID, we are dealing with a constellation of disorders and not a single condition.

FINAL REMARKS

This dissertation advances our knowledge on the pathways directed by FoxP1 within the brain. First, I took advantage of a whole-body *Foxp1* heterozygous knockout mouse to determine the transcriptional program regulated by Foxp1 in the striatum. I also showed that disrupting this program is correlated with certain behavioral phenotypes

reminiscent of those seen in ASD. Second, I characterized a mouse with complete loss of *Foxp1* in the neocortex and hippocampus to show that Foxp1 contributes to ASDand ID-relevant behaviors in a brain-region-specific manner. However, as is characteristic of science, these efforts have generated novel and exciting questions that remain to be answered. In the end, it is my hope that the work entailed in this dissertation will eventually lead to meaningful improvements in the lives of those confronting ASD and ID.

FIGURES FOR CHAPTER FOUR

Figure 4.1. Model connecting reduced striatal *Foxp1* expression to altered USVs.

Our data suggest that reduced *Foxp1* levels in the striatum leads to increased D2+ medium spiny neuron (MSN) excitability. In turn, this upsets the balance between D1+ and D2+ MSNs and leads to alterations in the generation of behaviors under striatal control such as ultrasonic vocalizations (USVs).

Figure 4.2. Model connecting hippocampal *Foxp1* expression loss to impaired **spatial learning and memory.** Our data indicate that loss of *Foxp1* in CA1 hippocampal neurons leads to improper expression of genes involved in the maintenance phase of CA1-dependent long-term potentiation (LTP). This is followed by diminished encoding of spatial learning and memory engrams in the hippocampus.

Figure 4.3. Labeling of CA1 pyramidal neuron apical dendrites. Representative image of the initial segment of a GFP-filled (white) apical dendrite from a CA1 pyramidal neuron. While apical dendrites could be individually identified, their spine-containing tufts could not, due to high GFP background in the stratum radiatum. Images were taken at 40X, using a LSM880 laser scanning microscope (Zeiss) connected to a computer running Zeiss software.

Figure 4.4. Impaired USV production displayed by $Foxp1^{cKO}$ mouse pups. (A) Representative immunoblot displaying reduced Foxp1 protein levels in the neocortex (CTX) and hippocampus (HIP), but not the striatum (STR), of postnatal day 7 (P7) $Foxp1^{cKO}$ mouse pups, compared to littermate control pups. GAPDH is a loading control. (B) Quantification of Foxp1 expression in P7 $Foxp1^{cKO}$ brains. Data are

represented as means (± SEM). n=3 control mice, 3 Foxp1^{cKO} mice. **p=0.004; ***p=0.0004, Student's t-test, compared to control levels normalized to GAPDH. (C) Foxp1^{cKO} mouse pups exhibit fewer total numbers of USVs, as a trend across all days. Data are represented as means (± SEM). n=51 control pups and 52 Foxp1^{cKO} pups. p<0.0001, two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. (D) *Foxp1^{cKO}* mouse pups exhibit a significant reduction in their mean call duration, as a trend across all days. Data are represented as means (± SEM). n=45-51 controls pups, 50-52 *Foxp1^{cKO}* pups. p<0.0001, two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. (E) *Foxp1^{cKO}* mouse pups show no differences in mean call frequency. Data are represented as means (± SEM). n=45-51 controls pups, 50-52 Foxp1^{cKO} pups. p=0.98, two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. (F) Foxp1^{cKO} mouse pups exhibit calls with a smaller average frequency range, as a trend across all days. Data are represented as means (± SEM). n=45-51 controls pups, 50-52 Foxp1^{cKO} pups. p<0.0001, two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. (G) Foxp1^{cKO} mouse pups display reduction in the fraction of calls with frequency jumps that they produce, as a trend across all days. Data are represented as means (\pm SEM). n=45-51 controls pups, 50-52 Foxp1^{cKO} pups. p=0.0016, two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. (H) Foxp1^{cKO} mouse pups present with no significant difference in the average slope of their calls, as a trend across all days. n=45-51 controls pups, 50-52 Foxp1^{cKO} pups. p=0.72, two-way ANOVA with a Sidak multiple comparison test,

compared between genotypes. The main effects for genotype and postnatal day, and the interactions between these two variables, are reported within each panel.

Figure 4.5. Reduced performance by *Foxp1^{cKO}* mice in an accelerating rotarod and

grip strength test. (**A**) $Foxp1^{cKO}$ mice exhibit deficits in motor coordination as measured by their decreased latency to fall during an accelerating rotarod test. Data are represented as means (± SEM). n=6 control mice, 7 $Foxp1^{cKO}$ mice. p<0.0001, two-way ANOVA with a Sidak multiple comparison test, compared between genotypes. (**B**, **C**) $Foxp1^{cKO}$ mice exhibit significant deficits in the grip strength of their fore limbs (**B**) but not their hind limbs (**C**). Data represented as means (± SEM). n=6 control mice, 7 $Foxp1^{cKO}$ mice. *p=0.049, Student's t-test, compared between genotypes).

Figure 4.6. Overlaps between P7 and adult $Foxp1^{cKO}$ neocortical and hippocampal DEGs. (A) Significant overlap between the differentially expressed genes (DEGs) of P7 and adult (P47) $Foxp1^{cKO}$ mice in the neocortex. The same cutoffs for identifying DEGs (an adjusted p-value of ≤ 0.005 and an absolute log fold change of ≥ 0.3) were applied to both datasets. 158 directionally consistent DEGs overlapped between the P7 and P47 datasets (p=3.2x10⁻⁹⁴; hypergeometric test). (B) Significant overlap between the differentially expressed DEGs of P7 and adult $Foxp1^{cKO}$ mice in the hippocampus. 30 directionally consistent DEGs overlapped between the P7 and P47 datasets (p=4.3x10⁻³⁷; hypergeometric test).

A

В

	Control		Foxp1cKO						
Brain regions	Mean	SD	Mean	SD	%Diff	Effect	P-value	FDR	
hippocampus	4.64	0.12	4.16	0.10	-10.43	-3.89	8.83E-14	4.94E-12	***
dentate gyrus of hippocampus	0.67	0.02	0.62	0.02	-7.58	-2.84	2.02E-09	5.66E-08	***
corpus callosum	3.16	0.07	3.01	0.05	-4.66	-2.07	1.06E-07	1.98E-06	***
cerebral cortex parieto temporal lobe	20.52	0.32	19.86	0.35	-3.17	-2.01	4.92E-06	6.15E-05	***
cerebral cortex frontal lobe	8.80	0.14	8.58	0.19	-2.55	-1.63	6.56E-04	2.45E-03	***
lateral olfactory tract	0.09	0.00	0.10	0.00	4.25	1.37	1.61E-03	4.74E-03	**
fornix	0.19	0.01	0.20	0.01	4.52	1.60	3.43E-04	1.71E-03	***
cerebral aqueduct	0.03	0.00	0.04	0.00	4.61	0.97	1.24E-02	2.57E-02	*
posterior commissure	0.00	0.00	0.01	0.00	5.21	2.01	3.80E-04	1.71E-03	***
lateral septum	1.06	0.03	1.11	0.03	5.40	2.05	5.49E-06	6.15E-05	***

Figure 4.7 Regional brain volumes in P7 *Foxp1^{cKO}* **mice.** (A) Fly-through of representative coronal brain slices of magnetic resonance images highlighting the relative volume differences in areas that are larger (in red) or smaller (in blue) in $Foxp1^{cKO}$ mice compared to controls (FDR<0.05). (B) Table of the brain regions with robust *Emx1* expression that demonstrate significantly altered volumes in *Foxp1^{cKO}*

mice at P7. Data are represented as means (with SD). n=15 control mouse pups, and 18 $Foxp1^{cKO}$ mouse pups. All regions are significant, with p<0.05, Student's test (*p<0.05, **p<0.01, ***p<0.001) and FDR<0.05, compared between genotypes. Modified from Usui et al., submitted to *Genes and Development*, 2017.

Figure 4.8. *Foxp1^{cKO}* mice possess decreased CA1/2 pyramidal neuron density. (A) Representative image of Cresyl violet staining (dark grey) performed on adult coronal slices displaying reduced pyramidal neuron density in the CA1/2 area of the hippocampus. Scale bar represents 100 um. DG=dentate gyrus (B) Quantification of the decreased density of pyramidal neurons in CA1/CA2 hippocampal subfield of $Foxp1^{cKO}$ mice, as measured by the increased volume of space they occupy. Data are represented as means (± SEM). n=6 control sections, 6 $Foxp1^{cKO}$ sections. *p=0.022, Student's t-test, compared between genotypes.

Figure 4.9 General activity and spatial learning phenotypes of $Foxp1^{cKOHET}$ mice. (A) $Foxp1^{cKOHET}$ mice display normal learning via their escape latency in the training phase of the Morris water maze (MWM). Data are represented as means (± SEM). n=12 control animals, 5 $Foxp1^{cKOHET}$, 10 $Foxp1^{cKO}$ animals. p=0.25, two-way ANOVA, compared between $Foxp1^{cKOHET}$ and control mice. (B) $Foxp1^{cKOHET}$ mice show normal memory via the number of platform crosses they make during the MWM spatial probe.

Data are represented as means (\pm SEM). n=12 control animals, 5 *Foxp1^{cKOHET}*, 10 *Foxp1^{cKO}* animals. p=0.26, one-way ANOVA, compared between *Foxp1^{cKOHET}* and control mice. **p=0.005, one-way ANOVA, compared between *Foxp1^{cKOHET}* and control mice. (C,D) *Foxp1^{cKOHET}* mice are slightly hypoactive, as indicated by their decreased activity in a novel cage environment. (C) *Foxp1^{cKOHET}* mice display sustained, decreased activity in a novel cage. Data are represented as means (\pm SEM). n=9 control mice, 4 *Foxp1^{cKOHET}*, 7 *Foxp1^{cKO}* mice. p=0.005, two-way ANOVA, compared between *Foxp1^{cKOHET}* and control mice. (D) As measured by their average activity over the course of two hours, *Foxp1^{cKOHET}* mice are slightly, but not significantly, hypoactive. Data are represented as means (\pm SEM). n=9 control mice. p=0.64, one-way ANOVA, compared between *Foxp1^{cKOHET}* and control mice.

Figure 4.10. Relative regional volume changes in the *Foxp1*^{+/-} **mouse brain.** (A) Flythrough of representative coronal images of the *Foxp1*^{+/-} brain highlighting average, relative differences in regions with larger (red) or smaller (blue) volumes. (B) Representation of the average, relative volume decreases in all of the significantly affected (in terms of percent differences) areas in the *Foxp1*^{+/-} mouse brain. Dashed line represents wild-type (WT) levels (100%). Data are represented as means (± SEM). All values are significant at p<0.05, Student's t-test, and FDR<0.10.

Figure 4.11. *Foxp1^{cKO}* mice are not especially vulnerable to seizure induction. (A,B) The amperage needed to generate maximal seizures in *Foxp1^{cKO}* mice is not significantly different, as measured by a survival curve in response to daily 1mA increases in amperage (A) or the average amperage needed to produce a maximal seizure (B). (C,D) The amperage needed to generate minimal seizures in *Foxp1^{cKO}* mice is not significantly different, as measured by a survival curve in response to daily 1mA

increases in amperage (C) or the average amperage needed to produce a minimal seizure (D). (A,C) Data are represented as survival curves. n=15 control mice, 15 $Foxp1^{cKO}$ mice. p=0.75 (A), and p=0.73 (C), Gehan-Breslow-Wilcoxon chi-square test, compared between genotypes. (B, D) Data are represented as means (± SEM). n=15 control mice, 15 $Foxp1^{cKO}$ mice. p>0.999 (B), p=0.65 (D), Student's t-test, compared between genotypes.

TABLES FOR	CHAPTER	FOUR
------------	---------	------

Table 4.1. DEGs in the P7 <i>Foxp1^{cKO}</i> neocortex and hippocampus.							
P7 <i>Foxp1^{cKO}</i> CTX DEGs			P7 <i>Foxp1^{cKO}</i> HIP DEGs				
Gene ID	log2FoldChange	p-value (adj)	Gene ID	log2FoldChange	p-value (adj)		
2900026A02Rik	-3.69E-01	4.83E-05	Adgrl2	1.91E-03	5.76E-01		
6430573F11Rik	-6.79E-01	7.55E-08	Alcam	2.24E-03	3.93E-01		
Abca9	4.05E-01	3.88E-04	Atp2b1	2.42E-05	3.37E-01		
Abcd2	-6.00E-01	1.75E-12	B3galt2	2.54E-03	6.15E-01		
Acvr2a	3.50E-01	1.16E-08	Bcl11b	1.51E-08	6.06E-01		
Adamts2	6.40E-01	1.13E-03	Bhlhe22	3.32E-05	5.14E-01		
Adamts20	-4.01E-01	1.05E-04	Cadm2	5.79E-13	5.84E-01		
Adcy2	-5.30E-01	8.18E-12	Calb1	2.90E-03	5.87E-01		
Adcyap1	7.13E-01	3.51E-14	Camk1d	2.33E-04	5.30E-01		
Adgra3	-3.76E-01	1.24E-04	Cdh8	3.18E-03	6.24E-01		
Adgrb1	-6.77E-01	4.26E-17	Chl1	1.30E-11	5.01E-01		
Adgrg2	4.91E-01	7.91E-04	Cntn4	2.47E-03	1.03E+00		
Adora1	-3.08E-01	3.30E-06	Dcn	3.96E-04	8.17E-01		
AF529169	-3.37E-01	9.86E-05	Ddx3y	2.61E-04	8.35E-01		
Ak5	3.97E-01	1.91E-07	Edil3	2.01E-03	5.25E-01		
Akap9	3.05E-01	2.07E-08	Enpp2	8.49E-04	4.55E-01		
Aldh1a3	8.82E-01	6.92E-08	Fibin	1.30E-06	2.99E+00		
Ankrd6	3.89E-01	3.05E-04	Fn1	3.06E-04	6.72E-01		
Antxr2	7.09E-01	3.51E-04	Foxp1	1.41E-70	2.08E+00		
Arhgap42	-3.96E-01	7.66E-04	Gabra2	2.07E-05	5.21E-01		
Arhgap44	-3.80E-01	5.22E-06	Gpr26	2.02E-03	5.79E-01		
Arntl	-4.38E-01	4.80E-05	Grin3a	2.47E-03	4.53E-01		
Asic2	3.97E-01	5.55E-05	Homer2	1.99E-04	6.11E-01		
Astn2	-8.00E-01	9.50E-12	Hrk	1.10E-03	8.05E-01		
Atp1a1	-4.76E-01	1.34E-14	Inpp5f	6.53E-05	4.23E-01		
Atp2b2	-4.08E-01	6.70E-13	lqgap2	2.90E-03	8.34E-01		
Atp2b4	5.27E-01	8.59E-23	Kcnd2	2.14E-06	6.43E-01		
Atp8b1	6.08E-01	2.91E-03	Kcnq3	2.24E-03	3.76E-01		
B3galt1	-4.79E-01	2.56E-14	Kcnv1	6.73E-04	8.41E-01		
Bace2	-1.04E+00	5.99E-05	Ldb2	3.73E-04	7.62E-01		
Bcl6b	4.44E-01	3.10E-03	Lpl	5.25E-50	1.34E+00		
Bhlhe22	5.70E-01	4.45E-24	, Mmd	4.67E-03	3.89E-01		
Bmp2	5.84E-01	3.08E-06	Mndal	2.98E-03	8.84E-01		
Boc	-6.13E-01	3.07E-04	Mobp	3.15E-07	2.28E+00		
Brinp1	-3.00E-01	1.47E-06	Ndrg1	2.64E-04	8.13E-01		
---------	-----------	----------	---------	----------	----------		
Btbd11	5.78E-01	2.28E-07	Ndst4	2.65E-20	2.48E+00		
C1ql3	5.12E-01	1.36E-06	Necab1	8.35E-07	6.33E-01		
C77080	-8.38E-01	4.77E-03	Negr1	3.17E-06	4.94E-01		
Cacnb2	-4.25E-01	9.19E-05	Neurod1	1.22E-10	6.49E-01		
Cadm1	3.65E-01	6.82E-11	Nfib	3.83E-04	3.21E-01		
Cadm2	-3.20E-01	1.76E-08	Nr4a2	2.86E-03	4.92E-01		
Cadps	-4.19E-01	6.17E-12	Nrp2	4.67E-03	3.84E-01		
Cadps2	-8.09E-01	7.56E-27	Nts	2.12E-04	1.08E+00		
Calb1	4.39E-01	1.98E-08	Pcdh7	3.22E-04	4.65E-01		
Calb2	9.17E-01	2.24E-13	Pcsk2	1.51E-08	9.62E-01		
Camk2a	-4.98E-01	1.80E-18	Pde1a	2.90E-03	4.10E-01		
Camk2n1	-5.18E-01	1.86E-20	Penk	2.61E-04	2.26E+00		
Ccbe1	4.51E-01	1.08E-07	Pgm2l1	8.49E-06	3.69E-01		
Cd44	-8.66E-01	8.66E-16	Plp1	1.55E-09	1.31E+00		
Cdh12	-4.78E-01	2.04E-10	Plxnc1	4.67E-03	5.09E-01		
Cdh13	5.01E-01	3.30E-19	Pou3f1	1.08E-04	9.80E-01		
Cdh4	6.24E-01	3.88E-15	Rasgrp1	2.52E-10	7.69E-01		
Cdh8	-4.10E-01	2.94E-10	Scg2	6.32E-06	6.92E-01		
Cdhr1	6.60E-01	4.34E-07	Sema3e	5.99E-04	7.29E-01		
Cdk6	4.36E-01	1.89E-06	Shisa6	1.60E-08	6.33E-01		
Cdkn1a	3.59E-01	1.34E-04	Slc17a6	1.36E-03	6.66E-01		
Cdkn1c	3.98E-01	8.10E-04	Sptbn2	6.06E-05	5.44E-01		
Cend1	-3.07E-01	1.05E-04	Ssx2ip	1.71E-03	5.18E-01		
Cep135	-4.43E-01	4.03E-04	Ttr	1.92E-06	3.68E-01		
Chgb	-4.72E-01	4.00E-16	Vgll3	2.27E-03	1.74E+00		
Chrm2	-7.27E-01	4.80E-09					
Chst2	3.48E-01	2.00E-08					
Clec7a	1.13E+00	1.22E-03					
Clrn1	1.14E+00	1.39E-04					
Clstn2	-4.80E-01	1.29E-13					
Cnih3	-3.70E-01	6.91E-04					
Cntn3	-3.72E-01	1.80E-06					
Coch	-7.02E-01	2.22E-09					
Col11a1	4.24E-01	7.14E-07					
Col4a3	-1.63E+00	8.72E-05					
Col4a4	-7.17E-01	2.36E-03					
Col8a1	-7.32E-01	2.16E-11					
Cplx1	-4.79E-01	6.96E-11					

Cplx3	-8.12E-01	4.47E-06		
Cpne2	3.58E-01	8.96E-04		
Cpne4	5.32E-01	5.84E-19		
Cpne7	7.88E-01	3.70E-12		
Cryab	-8.47E-01	7.17E-08		
Cxxc4	-3.56E-01	1.06E-08		
Cyp26b1	-1.35E+00	1.32E-15		
Dbpht2	3.84E-01	7.29E-10		
Dcbld2	-3.88E-01	2.37E-07		
Dcc	-5.62E-01	4.43E-06		
Deptor	-5.04E-01	1.79E-03		
Dgkb	-4.60E-01	3.66E-09		
Dgkk	4.39E-01	3.13E-04		
Diaph3	-7.64E-01	8.67E-05		
Diras2	-3.42E-01	7.19E-08		
Dkk3	-4.11E-01	1.08E-08		
Dmrtb1	9.33E-01	2.93E-03		
Dnah5	3.24E-01	3.15E-03		
Dnah8	1.09E+00	3.34E-10		
Doc2b	4.00E-01	2.45E-08		
Dock5	-1.03E+00	1.00E-14		
Dok5	3.48E-01	1.14E-04		
Dpy19l1	-3.20E-01	1.14E-03		
Drp2	-4.53E-01	2.19E-09		
Ebf2	1.29E+00	2.83E-06		
Efna5	4.83E-01	1.07E-11		
Efnb2	3.21E-01	1.31E-06		
Epb41l4a	5.99E-01	5.57E-07		
Epha7	-3.44E-01	7.14E-07		
Esr1	6.31E-01	9.58E-04		
Esrrg	-7.97E-01	1.37E-16		
Etv1	-3.94E-01	7.08E-08		
Etv6	5.87E-01	8.84E-14		
Exph5	9.71E-01	4.57E-04		
F2r	5.75E-01	1.75E-08		
Fam101b	3.68E-01	4.83E-05		
Fam126a	3.32E-01	1.24E-06		
Fam149a	3.67E-01	1.02E-05		
Fam184a	3.41E-01	4.23E-03		

Fam189a1	-7.35E-01	4.98E-13		
Fam212b	-4.29E-01	3.29E-03		
Fat3	-3.20E-01	6.40E-07		
Fbxo32	-9.08E-01	1.30E-07		
Fcrl5	2.96E+00	7.94E-04		
Fezf2	-3.83E-01	2.47E-04		
Fgf10	8.62E-01	4.82E-18		
Fgfr2	4.10E-01	8.33E-06		
FIrt3	6.63E-01	3.02E-21		
Fndc5	-4.50E-01	5.21E-05		
Fosl2	-4.73E-01	2.39E-05		
Foxo1	-6.63E-01	2.82E-16		
Foxp1	-1.64E+00	2.33E-180		
Fras1	-3.90E-01	1.78E-04		
Frmpd3	-4.78E-01	1.82E-03		
Frmpd4	-3.98E-01	2.24E-08		
Frzb	4.57E-01	3.46E-03		
Fst	1.23E+00	9.04E-13		
Fxyd7	-5.64E-01	4.96E-04		
Gabrg3	-3.68E-01	1.50E-06		
Galntl6	-3.67E-01	2.31E-05		
Gatm	5.46E-01	5.84E-19		
Gfra2	-6.23E-01	7.04E-09		
Gjd2	4.68E-01	6.78E-05		
Glis3	1.15E+00	9.38E-18		
Glp2r	-1.77E+00	4.54E-13		
Glra3	1.31E+00	1.37E-56		
Gm11639	8.37E-01	2.24E-16		
Gm16485	-6.03E-01	6.59E-04		
Gm765	2.54E+00	7.40E-10		
Gpc3	5.64E-01	1.01E-05		
Gpcpd1	-3.17E-01	3.57E-07		
Gpnmb	1.16E+00	4.00E-06		
Gpr158	-6.38E-01	1.34E-14		
Gpr161	3.19E-01	1.85E-05		
Gpr85	3.64E-01	8.22E-09		
Gprin3	-5.08E-01	2.03E-12		
Greb1l	5.06E-01	2.36E-04		
Grem2	5.58E-01	6.33E-10		

Grid2	-3.76E-01	2.24E-04		
Grm1	5.85E-01	4.61E-13		
Grm2	-7.64E-01	3.42E-07		
Grm3	-3.18E-01	1.56E-05		
Hap1	4.85E-01	6.60E-04		
Hcn1	-3.71E-01	2.50E-08		
Hdac9	4.18E-01	1.81E-09		
Herc3	-3.16E-01	7.97E-06		
HIf	-3.17E-01	2.37E-05		
Hnmt	-4.61E-01	3.79E-05		
Нрса	-4.90E-01	3.04E-12		
Hpgd	1.04E+00	6.28E-10		
Hr	-6.49E-01	3.07E-05		
Hrasls	-7.58E-01	2.24E-04		
Hs3st2	-8.94E-01	1.26E-16		
Hs3st4	-4.08E-01	1.62E-07		
Hs3st5	-5.09E-01	1.24E-03		
Hsd11b1	-9.63E-01	2.92E-05		
Htr7	7.54E-01	3.25E-12		
ld2	7.28E-01	1.22E-38		
ld4	3.01E-01	4.05E-03		
lgfbp5	3.90E-01	1.85E-12		
lgsf10	3.63E-01	4.83E-03		
ll1rap	-6.24E-01	1.01E-10		
ll1rapl2	-7.45E-01	7.76E-10		
Inhbb	-7.11E-01	6.83E-07		
lpcef1	-3.74E-01	2.82E-08		
ltgb3	-1.03E+00	5.07E-10		
Jade1	-4.71E-01	8.00E-07		
Kcnh5	-9.69E-01	3.91E-17		
Kcnj10	-3.50E-01	3.73E-07		
Kcnj3	-3.04E-01	3.14E-05		
Kcnj9	-7.59E-01	4.31E-13		
Kcnk2	-3.57E-01	3.81E-05		
Kcnq5	-3.30E-01	2.28E-07		
Kcnt2	-3.60E-01	6.81E-07		
Khdrbs2	4.33E-01	2.46E-05		
Kirrel3	4.97E-01	1.36E-08		
Klf9	-3.67E-01	2.36E-09		

Klhl1	7.50E-01	3.03E-20		
Kihi4	4.11E-01	1.44E-05		
Lbh	-3.82E-01	2.89E-04		
Lclat1	-3.13E-01	2.65E-04		
Lgi2	-5.24E-01	1.32E-15		
Lhfp	-6.83E-01	6.77E-13		
Lhx2	4.59E-01	6.08E-09		
Limch1	3.60E-01	6.84E-09		
Lmo3	-3.09E-01	8.09E-06		
Lmo7	3.32E-01	6.23E-07		
Lmod3	-1.25E+00	4.87E-04		
LpI	-3.02E-01	3.25E-06		
Lynx1	-7.66E-01	4.17E-11		
Lypd6	-5.75E-01	3.27E-09		
Lypd6b	-4.06E-01	1.27E-03		
March1	4.16E-01	1.63E-12		
Masp1	-9.77E-01	1.26E-07		
Mb21d2	-8.01E-01	1.36E-14		
Mc4r	1.58E+00	2.56E-21		
Mdga1	3.41E-01	1.78E-05		
Mex3a	3.14E-01	4.73E-06		
Mgat5	3.17E-01	2.36E-06		
Mical2	-4.27E-01	1.85E-09		
Mmp17	-3.75E-01	2.91E-03		
Ncam2	-6.60E-01	1.82E-27		
Nebl	-3.21E-01	1.38E-04		
Nedd9	3.35E-01	4.95E-03		
Nefh	-8.36E-01	1.31E-08		
Nefl	-6.70E-01	2.28E-30		
Nefm	-7.67E-01	5.23E-34		
Neurod1	6.80E-01	1.74E-22		
Ngef	-6.63E-01	6.31E-12		
Nipal3	3.20E-01	4.87E-03		
Nov	7.50E-01	2.81E-40		
Npr3	3.36E-01	1.75E-03		
Npy1r	3.65E-01	4.80E-04		
Nr1d1	-4.37E-01	2.93E-03		
Nr2f2	4.07E-01	4.23E-08		
Nr4a2	3.38E-01	8.11E-07		

Nrip1	4.94E-01	9.41E-19		
Nrp2	3.29E-01	7.20E-05		
Nrsn1	-4.20E-01	2.50E-08		
Ntsr1	6.47E-01	2.12E-11		
Nudt4	-6.41E-01	2.56E-31		
Osbpl3	-8.05E-01	7.47E-20		
Ostn	-2.91E+00	7.31E-09		
Oxtr	7.92E-01	1.85E-09		
Parm1	-5.40E-01	3.83E-08		
Pax6	4.41E-01	4.75E-03		
Pcdh8	7.04E-01	2.03E-10		
Pcdh9	-3.01E-01	3.58E-07		
Pde1a	3.70E-01	2.87E-08		
Pdzrn3	3.69E-01	1.75E-06		
Peg10	4.69E-01	8.90E-07		
Penk	8.94E-01	1.36E-09		
Pex5l	-7.08E-01	4.88E-20		
Pgr	-5.76E-01	1.39E-06		
Piezo2	6.70E-01	1.69E-03		
Pitpnc1	-4.46E-01	2.84E-13		
Plagl1	7.01E-01	1.51E-19		
Plb1	-1.77E+00	2.92E-13		
Plcxd2	-5.82E-01	2.14E-24		
Plcxd3	3.80E-01	1.31E-03		
Pld5	-1.38E+00	1.61E-05		
Plxnc1	3.51E-01	2.36E-07		
Plxnd1	-6.46E-01	3.90E-18		
Postn	-4.81E-01	6.34E-05		
Ppargc1a	-3.80E-01	1.62E-07		
Ppat	3.73E-01	4.82E-05		
Ppfibp1	4.00E-01	1.15E-09		
Ppm1k	-4.12E-01	1.20E-05		
Ppm1l	-4.61E-01	1.36E-14		
Prdm8	3.48E-01	5.43E-07		
Prex1	4.30E-01	6.87E-09		
Prickle1	-4.25E-01	4.08E-07		
Prkcg	-4.82E-01	1.65E-12		
Prox1	3.12E-01	2.30E-03		
Ptgfrn	-4.98E-01	3.43E-11		

Ptprn2	-3.24E-01	2.31E-05		
Ptpru	7.97E-01	9.04E-13		
Rap1gds1	-3.02E-01	2.23E-06		
Rasgrp1	-5.43E-01	1.84E-16		
Rasl11b	-6.24E-01	9.19E-05		
Rbm24	3.91E-01	8.72E-05		
Rcn1	5.19E-01	9.86E-12		
Rfx3	6.35E-01	8.09E-31		
Rgs9bp	-1.65E+00	1.92E-10		
Rhpn2	1.01E+00	8.62E-04		
Rnf152	-5.54E-01	4.77E-16		
Rora	-1.02E+00	5.77E-43		
Rorb	-1.60E+00	5.52E-143		
Rprm	-1.07E+00	1.66E-26		
Rps6ka2	4.27E-01	9.39E-05		
Rreb1	-5.05E-01	3.29E-03		
Rsad1	-3.55E-01	3.14E-03		
Rxfp1	-3.51E-01	2.93E-08		
Rxfp2	-2.24E+00	2.16E-11		
Ryr2	-3.87E-01	9.63E-10		
Scd1	-3.38E-01	1.91E-06		
Scrt1	-4.41E-01	4.48E-05		
Scube1	-8.30E-01	5.46E-19		
Sema3a	5.47E-01	9.49E-18		
Sema7a	-6.24E-01	4.77E-16		
Sfrp2	5.52E-01	2.25E-03		
Sh3pxd2a	3.21E-01	2.65E-03		
Shc4	4.80E-01	1.55E-03		
Shisa3	1.35E+00	1.96E-11		
Shisa6	-6.84E-01	1.40E-22		
Slc16a2	6.25E-01	1.28E-22		
Slc17a6	3.50E-01	7.89E-08		
Slc17a7	-3.87E-01	2.81E-09		
Slc17a8	-3.36E-01	2.89E-03		
Slc24a2	-6.63E-01	3.76E-28		
Slc2a13	-4.67E-01	7.00E-10		
Slc30a3	-1.64E+00	4.10E-10		
Slc6a7	-6.10E-01	6.78E-08		
Slc9a7	-5.00E-01	6.90E-04		

Slit2	-4.20E-01	2.66E-06		
Smarca2	3.85E-01	1.58E-11		
Snap25	-3.17E-01	1.71E-08		
Snx7	-3.42E-01	2.26E-05		
Sorcs1	-8.61E-01	6.78E-38		
Sorcs3	-3.46E-01	3.67E-03		
Sorl1	-4.81E-01	8.11E-13		
Sox11	4.18E-01	1.41E-15		
Spon1	-4.24E-01	2.61E-07		
Spp1	1.26E+00	3.43E-40		
St8sia2	3.47E-01	1.19E-08		
St8sia5	-6.18E-01	2.78E-03		
Stac	7.35E-01	6.04E-05		
Stxbp6	3.32E-01	6.16E-07		
Sulf2	-5.56E-01	1.01E-17		
Susd5	-1.05E+00	6.27E-11		
Syndig1	-8.75E-01	1.82E-09		
Syne1	-3.07E-01	3.32E-06		
Synj2	5.35E-01	1.22E-06		
Synm	3.07E-01	1.45E-05		
Syt17	8.42E-01	1.02E-12		
Tbata	-1.39E+00	2.86E-03		
Tcf24	1.48E+00	4.99E-04		
Tcf7l2	1.04E+00	1.89E-14		
Tes	4.57E-01	3.74E-03		
Tgfbr1	-4.04E-01	1.47E-07		
Thbs3	5.31E-01	4.43E-04		
Tmem132d	-4.97E-01	4.53E-04		
Tmem255a	8.27E-01	4.02E-10		
Tmtc1	-3.32E-01	1.06E-05		
Tnc	4.02E-01	8.80E-10		
Tnfrsf11a	-6.24E-01	1.34E-04		
Тох	-3.06E-01	4.52E-03		
Тох3	5.28E-01	3.29E-06		
Trpa1	-8.76E-01	1.86E-13		
Trpc3	-4.71E-01	5.42E-05		
Trpc4	-3.25E-01	3.44E-04		
Trpc5	-4.12E-01	1.34E-04		
Trpm3	-4.17E-01	2.23E-10		

Tshr	4.74E-01	7.56E-04		
Tuba4a	-4.09E-01	3.22E-06		
Unc5d	-3.15E-01	1.09E-05		
Vcan	4.91E-01	3.60E-21		
Vgll3	-1.32E+00	3.69E-07		
Vit	7.53E-01	1.99E-05		
Vstm2l	-7.50E-01	2.49E-07		
Vwc2l	4.83E-01	7.21E-09		
Whrn	-1.04E+00	3.21E-09		
Wnt4	5.71E-01	6.11E-05		
Wscd1	5.19E-01	3.29E-05		
Zfp385b	-5.02E-01	4.02E-07		
Zic1	5.62E-01	5.59E-10		
Zmat4	-4.62E-01	3.68E-04		

Table 4.2. Relative regional brain volumes in P7 <i>Foxp1^{cKO}</i> mice.									
Brain region	Со	ntrol	Foxp1 ^{cKO}		Statistics		6		
	Mean	SD	Mean	SD	%Diff	p-value	FDR		
amygdala	3.41	5.76E-02	3.49	6.02E-02	2.34	5.26E-04	2.10E-03		
arbor vita of cerebellum	0.01	2.92E-04	0.01	3.53E-04	3.78	1.58E-02	3.05E-02		
basal forebrain	1.44	3.80E-02	1.50	3.15E-02	4.43	9.91E-06	9.25E-05		
cerebellar cortex	6.95	2.62E-01	7.35	2.83E-01	5.75	2.23E-04	1.39E-03		
cerebral aqueduct	0.03	1.64E-03	0.04	1.78E-03	4.61	1.24E-02	2.57E-02		
cerebral cortex frontal lobe	8.80	1.37E-01	8.58	1.92E-01	-2.55	6.56E-04	2.45E-03		
cerebral cortex occipital lobe	1.63	7.59E-02	1.70	5.65E-02	3.86	1.03E-02	2.22E-02		
cerebral cortex parieto temporal lobe	20.52	3.25E-01	19.86	3.48E-01	-3.17	4.92E-06	6.15E-05		
cerebral peduncle	0.14	3.54E-03	0.14	3.19E-03	-2.74	2.70E-03	6.86E-03		
colliculus inferior	1.35	5.23E-02	1.41	5.86E-02	4.08	8.11E-03	1.82E-02		
colliculus superior	2.67	7.75E-02	2.83	1.07E-01	6.16	2.41E-05	1.93E-04		
corpus callosum	3.16	7.12E-02	3.01	5.18E-02	-4.66	1.06E-07	1.98E-06		
dentate gyrus of hippocampus	0.67	1.79E-02	0.62	1.70E-02	-7.58	2.02E-09	5.66E-08		
fasciculus retroflexus	0.04	1.31E-03	0.04	9.97E-04	3.47	2.59E-03	6.86E-03		
fornix	0.19	5.30E-03	0.20	6.57E-03	4.52	3.43E-04	1.71E-03		
fourth ventricle	0.14	7.19E-03	0.14	6.45E-03	3.71	3.79E-02	6.64E-02		
fundus of striatum	0.08	3.02E-03	0.09	3.13E-03	3.61	8.01E-03	1.82E-02		
hippocampus	4.64	1.24E-01	4.16	9.55E-02	-10.43	8.83E-14	4.94E-12		
hypothalamus	3.75	7.69E-02	3.86	8.02E-02	2.91	3.96E-04	1.71E-03		
lateral olfactory tract	0.09	2.95E-03	0.10	3.63E-03	4.25	1.61E-03	4.74E-03		
lateral septum	1.06	2.78E-02	1.11	3.13E-02	5.40	5.49E-06	6.15E-05		
medial septum	0.17	6.85E-03	0.18	5.84E-03	5.88	6.44E-05	4.51E-04		
midbrain	4.65	8.87E-02	4.82	1.46E-01	3.73	3.37E-04	1.71E-03		
nucleus accumbens	0.83	2.18E-02	0.85	2.19E-02	3.04	2.39E-03	6.69E-03		
olfactory tubercle	0.82	2.63E-02	0.85	2.49E-02	4.11	7.02E-04	2.46E-03		
periaqueductal grey	1.03	2.83E-02	1.07	3.90E-02	3.61	4.30E-03	1.05E-02		
pons	4.01	9.28E-02	4.10	1.14E-01	2.33	1.58E-02	3.05E-02		
posterior commissure	0.00	1.26E-04	0.01	2.16E-04	5.21	3.80E-04	1.71E-03		
stria medullaris	0.09	2.32E-03	0.10	3.05E-03	3.67	1.18E-03	3.67E-03		
superior olivary complex	0.18	6.27E-03	0.19	6.24E-03	2.51	4.28E-02	7.27E-02		
third ventricle	0.39	1.40E-02	0.40	9.65E-03	2.49	2.54E-02	4.58E-02		
medial preoptic area	0.08	4.01E-03	0.09	3.10E-03	5.44	1.04E-03	3.41E-03		
paraventricular hypothalamic nucleus	0.03	1.02E-03	0.03	8.40E-04	3.09	1.65E-02	3.09E-02		

REFERENCES FOR CHAPTER FOUR

- Arriaga G, Jarvis ED (2013) Mouse vocal communication system: are ultrasounds learned or innate? Brain and language 124:96-116.
- Arriaga G, Zhou EP, Jarvis ED (2012) Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds. PloS one 7:e46610.
- Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C, Gluch C, Monyer H, Rappold GA (2014) Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Molecular psychiatry.
- Berges BK, Wolfe JH, Fraser NW (2007) Transduction of brain by herpes simplex virus vectors. Mol Ther 15:20-29.
- Caubit X et al. (2016) TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons. Nature genetics 48:1359-1369.
- Chen JA, Penagarikano O, Belgard TG, Swarup V, Geschwind DH (2015) The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol 10:111-144.
- Chien WH, Gau SS, Chen CH, Tsai WC, Wu YY, Chen PH, Shang CY, Chen CH (2013) Increased gene expression of FOXP1 in patients with autism spectrum disorders. Molecular autism 4:23.
- Davidson S, Truong H, Nakagawa Y, Giesler GJ, Jr. (2010) A microinjection technique for targeting regions of embryonic and neonatal mouse brain in vivo. Brain research 1307:43-52.
- Fakhoury M (2015) Autistic spectrum disorders: A review of clinical features, theories and diagnosis. Int J Dev Neurosci 43:70-77.
- Fang WQ, Chen WW, Jiang L, Liu K, Yung WH, Fu AK, Ip NY (2014) Overproduction of upperlayer neurons in the neocortex leads to autism-like features in mice. Cell Rep 9:1635-1643.
- Feil S, Valtcheva N, Feil R (2009) Inducible Cre mice. Methods Mol Biol 530:343-363.
- Feng X, Ippolito GC, Tian L, Wiehagen K, Oh S, Sambandam A, Willen J, Bunte RM, Maika SD, Harriss JV, Caton AJ, Bhandoola A, Tucker PW, Hu H (2010) Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development. Blood 115:510-518.
- Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA (2003) Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. The Journal of comparative neurology 460:266-279.
- Fisher SE, Scharff C (2009) FOXP2 as a molecular window into speech and language. Trends in genetics : TIG 25:166-177.
- Frohlich H, Rafiullah R, Schmitt N, Abele S, Rappold GA (2017) Foxp1 expression is essential for sex-specific murine neonatal ultrasonic vocalization. Human molecular genetics 26:1511-1521.
- Gholizadeh S, Arsenault J, Xuan IC, Pacey LK, Hampson DR (2014) Reduced phenotypic severity following adeno-associated virus-mediated Fmr1 gene delivery in fragile X mice. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 39:3100-3111.
- Gombash SE, Manfredsson FP, Kemp CJ, Kuhn NC, Fleming SM, Egan AE, Grant LM, Ciucci MR, MacKeigan JP, Sortwell CE (2013) Morphological and behavioral impact of AAV2/5mediated overexpression of human wildtype alpha-synuclein in the rat nigrostriatal system. PloS one 8:e81426.

Hammerschmidt K, Whelan G, Eichele G, Fischer J (2015) Mice lacking the cerebral cortex develop normal song: insights into the foundations of vocal learning. Sci Rep 5:8808.

- Lalmansingh AS, Karmakar S, Jin Y, Nagaich AK (2012) Multiple modes of chromatin remodeling by Forkhead box proteins. Biochim Biophys Acta 1819:707-715.
- Li S, Weidenfeld J, Morrisey EE (2004) Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Molecular and cellular biology 24:809-822.
- Li X, Xiao J, Frohlich H, Tu X, Li L, Xu Y, Cao H, Qu J, Rappold GA, Chen JG (2015) Foxp1 regulates cortical radial migration and neuronal morphogenesis in developing cerebral cortex. PloS one 10:e0127671.
- McGrother CW, Bhaumik S, Thorp CF, Hauck A, Branford D, Watson JM (2006) Epilepsy in adults with intellectual disabilities: prevalence, associations and service implications. Seizure 15:376-386.
- Mendoza E, Scharff C (2017) Protein-Protein Interaction Among the FoxP Family Members and their Regulation of Two Target Genes, VLDLR and CNTNAP2 in the Zebra Finch Song System. Front Mol Neurosci 10:112.
- Osten P, Dittgen T, Licznerski P (2006) Lentivirus-Based Genetic Manipulations in Neurons In Vivo. In: The Dynamic Synapse: Molecular Methods in Ionotropic Receptor Biology (Kittler JT, Moss SJ, eds). Boca Raton (FL).
- Portfors CV, Perkel DJ (2014) The role of ultrasonic vocalizations in mouse communication. Current opinion in neurobiology 28:115-120.
- Scattoni ML, Crawley J, Ricceri L (2009) Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neuroscience and biobehavioral reviews 33:508-515.
- Sin C, Li H, Crawford DA (2015) Transcriptional regulation by FOXP1, FOXP2, and FOXP4 dimerization. J Mol Neurosci 55:437-448.
- Tang B, Becanovic K, Desplats PA, Spencer B, Hill AM, Connolly C, Masliah E, Leavitt BR, Thomas EA (2012) Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS; implications for transcriptional dysregulation in Huntington disease. Human molecular genetics.
- Wang XD, Su YA, Wagner KV, Avrabos C, Scharf SH, Hartmann J, Wolf M, Liebl C, Kuhne C, Wurst W, Holsboer F, Eder M, Deussing JM, Muller MB, Schmidt MV (2013) Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss. Nature neuroscience 16:706-713.

VITAE

Daniel John Araujo ("D.J.") matriculated into St. Mary's University (StMU) of San Antonio, TX, in 2007. However, it wasn't until Daniel met his college mentor Dr. Timothy Raabe that he considered pursuing a career in scientific research. With Dr. Raabe's encouragement, Daniel participated in the Summer Undergraduate Research Fellowship (SURF) Program at UT Southwestern Medical Center (UTSW) in Dallas, TX, in the summer of 2009. In the SURF Program, Daniel worked in the laboratory of Dr. Adrian Rothenfluh and subsequently became hooked on research. Daniel graduated from StMU in the spring of 2011 and entered the Graduate School of Biomedical Sciences at UTSW that fall. Since then, Daniel has focused on studying the genetic underpinnings of autism in the laboratory of Dr. Genevieve Konopka. Upon graduation from UTSW, Daniel will join the laboratory of Dr. Kairo Saijo at UC Berkeley as a postdoctoral investigator. In Dr. Saijo's laboratory, Daniel will examine the role of endocannabinoid signaling in neuroinflammatory disorders.