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Protein function prediction is one of the most important problems in the field of 

computational biology. The most reliable method to predict protein function is to detect 

homologs. Homologous proteins tend to possess conserved sequence motifs, the same structure 

folds, and similar functional sites. Current sequence-based homology search methods are still 

unable to detect many similarities evident from protein spatial structures. We present a new 

method, COMPADRE, to assess the relationship between the query sequence and a hit in the 

database by considering the similarity between the query and hit’s known homologs. This 

method markedly boosts the homology detection precision rate. 

Successful homology-based protein function prediction is also determined by accurate 

alignment between a protein sequence and its homolog. Alignment errors are the main bottleneck 

for homology modeling when the query is distantly related to the template. Alignment methods 

often misalign secondary structural elements by a few residues. We present a refinement method, 

SFESA, to improve pairwise sequence alignments by evaluating alignment variants generated by 

local shifts of template-defined secondary structures. 

The potential values of these methods for structure/function predictions are illustrated by 

the detection of homology between evolutionary distant yet structurally similar protein domains. 
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I. INTRODUCTION 

Knowing protein functions is the key to understanding the nature of the protein 

universe and in essence, biology (Bork, Dandekar et al. 1998). In the field of 

computational biology, prediction of protein function is one of the most essential 

problems (Baker and Sali 2001). Being different than expensive and time-consuming 

experimental methods to solve structures, e.g., crystallography (Ealick 2000) or NMR 

spectroscopy (Tyszka, Fraser et al. 2005), computational structure/function prediction 

methods can economically and efficiently provide biologists with functional hypotheses 

about their proteins of interest. In recent years, protein function detection is becoming 

more and more important because of the massive amounts of protein sequence data 

accumulated by advanced genome sequencing technology (Barnhart 1989) as well 

experimentally determined protein structures in the PDB database (Berman, Battistuz et 

al. 2002). 

Currently, the most reliable method to predict protein function is to detect 

homologous proteins (Daga, Patel et al. 2010). Homologous proteins are proteins with a 

common ancestor that usually possess conserved sequence motifs, the same structure 

folds, and similar functional sites (Doolittle 1981). High sequence similarity alone or 

combined sequence-structure similarity is often used to establish homologous 

relationships between proteins. Distinctive structure features, similar structural folds, 

conserved sequence motifs and functional sites are often used to further support or verify 

the inference of homology (Floudas 2007).  
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When a confident homolog is found below a significant cutoff, alignment 

construction between homologous proteins can further help functional site prediction or 

structure modeling (Ginalski 2006). From our recent observation of protein sequence 

alignments, some errors are prone to occur for short secondary structure alignments. They 

may have a relatively high similarity score but should not be aligned together according 

to their structure alignment reference. Thus, alignment errors remain as one of the main 

bottlenecks in homology modeling and function prediction.  

Generally speaking, accurate homology-based protein function prediction is 

determined by two factors (Marti-Renom, Stuart et al. 2000). The first factor is whether 

the correct homolog can be identified (the accuracy level of the homology detection 

method). The second factor is whether the correct alignment can be constructed between 

the protein sequence and its homolog (the accuracy level of the alignment method).  

We will discuss these two topics in the following sections. 

 

HOMOLOGY DETECTION AND SIMILARITY SEARCH 

Detecting protein sequence homology to known folds offers the most successful 

and practically useful strategy to predict protein function (Baker and Sali 2001). As we 

discussed above, homologous proteins usually possess conserved sequence motifs and 

share similar structures and functions, but may only have subtle overall sequence 

similarities. Even very distant homologs can provide reasonable templates for modeling 

protein sequence targets without closely related structures (Kryshtafovych, Moult et al. 
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2014). Although significant progress has been attained in this direction, remote sequence 

similarity is still far from satisfaction (Huang, Mao et al. 2014). 

In the history of homology detection method development, BLAST (Basic Local 

Alignment Search Tool) (Altschul, Gish et al. 1990) is the first method proposed to 

compare protein sequence similarity by using protein sequence alignment. Also, it is still 

one of the most widely utilized similarity search programs, which performs very well for 

proteins with high sequence identity. After BLAST, PSI-BLAST (Position Specific 

Iteration BLAST) (Altschul, Madden et al. 1997) was developed. For a protein sequence 

(query), PSI-BLAST can find homologous sequences in the search database using not 

only the query sequence information but also its homologous proteins. The position 

specific matrix, or profile, used in PSI-BLAST represents the query and its homologs by 

a similar set of sequence patterns that includes insertions and deletions. Such work was 

later followed by methods for profile-profile comparison (Rychlewski, Jaroszewski et al. 

2000, Sadreyev and Grishin 2003, Soding 2005, Madera 2008, Margelevicius and 

Venclovas 2010, Remmert, Biegert et al. 2012), aimed at detecting similarities between 

distant families. As examples, COMPASS (Sadreyev and Grishin 2003) and HHSearch 

(Soding 2005) represent the state-of-the-art for profile-profile comparisons methods. In 

order to more accurately search for sequence similarity, PROCAIN (Wang, Sadreyev et 

al. 2009) was proposed to incorporate similarity in secondary structure, positional 

conservation, and sequence motifs into profile–profile scoring.  

Besides using profile-based sequence information, a novel direction to further 

improve sequence-based homology search is to incorporate non-sequence information. In 

a typical homology search aimed at protein structure and function prediction, a sequence 
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or family of interest is compared to a database of proteins with known structures. This 

knowledge allows confident establishment of evolutionary links within the database. In 

computer science, networks of relationships between database subjects have been 

successfully used to improve the quality of search methods, most notably web searchers 

(Brin and Page 1988). In Chapter II and III of this thesis, we show that knowledge of the 

protein database homology network dramatically increases the accuracy of sequence-

based search. 

 

PROREIN SEQUECNE ALIGNMENT 

For a protein sequence (query), a homolog (template) can be found by using 

profile similarity search. In order to predict functional sites or model the three-

dimensional structure of a protein sequence, the next important step is to construct an 

accurate alignment between the query and template (Marti-Renom, Stuart et al. 2000, 

Ginalski 2006).  

Earlier work focused on dynamic programming recursion in the construction of a 

global or local alignment. Heuristic methods such as FASTA and CLUSTALW (Lipman 

and Pearson 1985, Thompson, Higgins et al. 1994) were developed to significantly 

increase the speed of alignment. Subsequently, sequence profiles (Krogh, Brown et al. 

1994) were introduced to construct more accurate alignments by using sequence-profile 

and profile-profile comparison. These comparisons improved pairwise alignments by 

scoring the similarity between sequence positions in protein families. In addition to pure 

sequence methods, 3D structural information is valuable for alignment construction 
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because protein structures tend to evolve more slowly than protein sequences (Chothia 

and Lesk 1986, Illergard, Ardell et al. 2009).  

Although much work has been done in this field, alignments are still not 

sufficiently accurate for sequences with low similarity (Kryshtafovych, Moult et al. 

2014). Automatic aligners such as PROMALS (Pei and Grishin 2007) frequently 

misalign alignment blocks by a few residues. Better alignment solutions can frequently 

be found among a limited set of local shifts of alignment blocks (moving residues in the 

query relative to the template). This observation motivated us to develop a pairwise 

alignment refinement method, SFESA, which generates candidate alignment variants for 

each alignment block by shifting the query region. In addition, residue contact based 

information can complement sequence information to better distinguish among shifted 

alignments. The details of alignment improvement will be discussed in Chapter IV and V. 
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II. USING HOMOLOGY RELATIONS WITHIN A DATABASE 

MARKEDLY BOOSTS PROTEIN SEQUENCE SIMILARITY SEARCH 

 

Inference of homology from protein sequences provides an essential tool for 

analyzing protein structure, function, and evolution. Current sequence-based homology 

search methods are still unable to detect many similarities evident from protein spatial 

structures. In computer science a search engine can be improved by considering networks 

of known relationships within the search database. Here, we apply this idea to protein 

sequence-based homology search and show that it dramatically enhances the search 

accuracy. Our new method, COMPADRE, assesses the relationship between the query 

sequence and a hit in the database by considering the similarity between the query and 

hit’s known homologs. This approach increases detection quality, boosting the precision 

rate from 18% to 83% at half-coverage of all database homologs. The increased precision 

rate allows detection of a large fraction of new protein structural relationships, thus 

providing structure and function predictions for previously uncharacterized proteins. Our 

results suggest that this general approach is applicable to a wide variety of methods for 

detection of biological similarities.  

In the field of protein structure prediction, identifying homology to known folds 

offers the most successful and practically useful strategy to provide protein spatial 

structure models. For protein sequence targets without closely related structures, even 

very distant homologs can provide reasonable templates for modeling. Despite significant 

progress in the field, remote sequence similarity search is far from perfection and fresh 
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ideas are needed to extend detection limits. In computer science, the concept of utilizing 

internal relations within a database to improve similarity search was key to the success of 

search engines such as Google. Here, we show that similar consideration of the homology 

network within a protein database of structure templates can dramatically improve the 

accuracy of homology search. 
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INTRODUCTION 

Prediction of protein structure and function by sequence homology is among the 

most important problems in computational biology of proteins, perhaps next after the 

grand problem of de novo protein folding. The existing gap between the number of 

known protein sequences and the number of experimentally determined 3D structures is 

bound to grow with more genomes sequenced by high-throughput technologies(Koboldt, 

Steinberg et al. 2013, Mardis 2013). Currently, the most reliable and effective way to 

predict the structure of an uncharacterized protein is to find a sequence homolog with 

available structural information(Gribskov, McLachlan et al. 1987, Huang, Mao et al. 

2014). The chance of finding such a template for a given protein sequence is increasing 

as sequence space is becoming more extensively covered by 3D structures(Zhang, 

Hubner et al. 2006). However, there is, and will be for a long time, a significant fraction 

of proteins for which finding experimentally characterized sequence homologs is 

challenging or impossible. The structures of many such proteins, when solved, reveal 

their remote homology to previously known structures that are undetectable by current 

sequence-based homology search methods(Kryshtafovych, Moult et al. 2014). Therefore, 

the quality of sequence-based homology search remains key for accurate structure 

prediction, as consistently confirmed by multiple rounds of the Critical Assessment of 

protein Structure Prediction (CASP)(Kryshtafovych, Fidelis et al. 2014). 

In the last several years, methods for sequence similarity search have been greatly 

improved by the analysis of sequence patterns reflecting evolutionary, structural, and 

functional constraints in protein families. Introduction of numerical profiles(Gribskov, 

McLachlan et al. 1987) and hidden Markov models (HMM)(Eddy 1998) has allowed 
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comparing a sequence to a multiple sequence alignment (MSA)(Altschul, Madden et al. 

1997, Eddy 1998, Karplus, Barrett et al. 1999). Such work was later followed by methods 

for profile-profile(Rychlewski, Jaroszewski et al. 2000, Sadreyev and Grishin 2003, 

Margelevicius and Venclovas 2010) and HMM-HMM(Soding 2005, Madera 2008, 

Remmert, Biegert et al. 2012) comparison, aimed at detecting similarities between distant 

families. In addition to the residue substitution preferences at sequence positions, MSA 

can reveal highly informative patterns of inter-dependence between amino acid content at 

different positions, in the form of MSA motifs and secondary structure 

predictions(Ginalski, Pas et al. 2003, Soding 2005, Wang, Sadreyev et al. 2009). 

Is it possible to further improve sequence-based homology search by considering 

non-sequence information? In a typical homology search aimed at 3D structure 

prediction, a sequence or family of interest is compared to a database of proteins with 

known structures. This knowledge allows confident establishment of evolutionary links 

within the database. In computer science, networks of relationships between database 

subjects have been successfully used to improve the quality of search methods, most 

notably web searchers (Brin and Page 1988). Here, we show that knowledge of the 

protein database homology network dramatically increases the accuracy of sequence-

based search. 

To capitalize on this idea, we modified PROCAIN(Wang, Sadreyev et al. 2009), 

our sensitive method for sequence profile similarity search, by considering the template’s 

homologs within the database (Figure II-1). We designed the new similarity measure of 

COMPADRE as a linear combination of the original score for the given template with the 

scores for a set of its homologs identified by structure, function, and sequence. Consistent 
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similarity of these homologs to the query elevates the original score, which can increase 

the significance of a marginal sequence-based similarity to a level above detection 

threshold. On the other hand, a favorable score for a spurious hit becomes less significant 

if the set of its homologs is consistently dissimilar from the query. Therefore, the new 

measure improves both sensitivity and specificity of homology detection.  
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RESULTS 

Defining close and remote template homology networks 

To establish the network of homologous relationships in the structure database, 

we defined homologous and non-homologous pairs in a set of 5116 representative 

structural domains (also known as templates) from the Structural Classification of 

Proteins (SCOP) database(Andreeva, Howorth et al. 2008). Because a good homology 

search method should rank homologs according to their distance from the query as well 

as discriminate homologs from non-homologs, we considered homologous relationships 

between protein pairs at two different levels. The first level represents “close homologs”, 

and was defined as domain pairs assigned to the same superfamily in SCOP. These 

templates are typically closely related to each other by 3D structure, tend to share 

similarities in sequence and function, and should be ranked higher than more remote 

homologs. The second level represents “all homologs”, and includes more distantly 

homologous protein pairs. To define “all homologs”, the SCOP classification was 

supplemented with a Support Vector Machine (SVM) classifier(Qi, Sadreyev et al. 2007) 

that uses a number of sequence and structure similarity scores to establish homology (see 

Methods in Supporting Information for details). This SVM classifier finds similarities 

between domain pairs that are most likely evolutionarily related and would be meaningful 

templates for 3D structure modeling.  

 

Establishing a scoring scheme by using homology networks in the search database 
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The original PROCAIN E-values reflecting the sequence-based similarity 

between the query and templates were first log-transformed into similarity scores 0s  (see 

Methods for details). The closest query homolog can often be identified as the top hit by 

this direct score. To further improve PROCAIN scoring, similarity scores on a particular 

template ( T
S0 ) were boosted by the similarity scores of the template’s homologs ( H

S0 ) 

according to the following equation: 

 H
STw

T
STwS 0)1(01      (1) 

where T
S0  and H

S0  are the similarity scores 0s  for the given template and for a set H of its 

structure-based homologs within a certain evolutionary distance from the template, 

respectively. The H
S0  similarity score can be calculated using either the close homolog 

level (Hclose) or the all homolog level (Hall) described above. wT is a weight optimized for 

the performance (wT = 0.8).  

Additional information about the query’s top hit may help detecting the query’s 

homologs in the database. Indeed, we find (Figure II-2, Table II-1 and II-2) that 

performance can be additionally improved by transforming the measure in Eq (1) to boost 

scores for the templates that are homologous to the top hit and to reduce scores for non-

homologous templates: 

)β*α(2 1top1  ShSS      (2) 

where 1S is the measure defined by Eq (1), α and β are optimized parameters, and htop 

depends on the homology of the template to the top hit that has the highest PROCAIN 
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score: htop = 1 if the template is homologous to the top hit, htop = -1 if it is confidently 

non-homologous, and htop = 0 if the homology is unclear (see Methods in Supporting 

Information for details).  

 

The choice of homology networks lead to different homology detection performances  

The choice of homolog set H in Eq (1) and Eq (2) has a dramatic influence on the 

method’s behavior. Including scores for all template’s homologs (Hall) results in a wider 

sampling of protein space around the template and thus should provide more 

representative information for homolog/non-homolog discrimination. Such a wide 

sample, however, may lead to a scrambled ranking among detected homologs, with the 

closest ones being placed below the more distant. For a query’s close homologs, the 

strong direct similarity signal from the first scoring term of Eq (1) may be diluted by the 

contribution of a diverse set of template’s homologs from the second scoring term of Eq 

(1). Restricting the set’s diversity to close homologs (Hclose) should improve the ranking 

of close homologs, but may limit the sensitivity of detection at remote homology levels. 

Therefore, the size of homolog set H may require adjustment for different evolutionary 

distances between query and template.  

Indeed, applying different sets H (Hall or Hclose) to generate 1S  and 2s  results in a 

very different performance of the new scoring scheme. We used receiver operator 

characteristic (ROC) curves to evaluate the homology detection performance of Eq (2) 

for all query homologs designated as true positives (Figure II-3a) and for only close 

homologs designated as true positives (Figure II-3b). A ROC curve plots true positive 
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numbers against false positive numbers at various E-value thresholds. Both plots (Figure 

II-3a and Figure II-3b) include the curves for several published sequence-based 

searchers: the popular PSI-BLAST method (Schaffer, Aravind et al. 2001), 

PROCAIN(Wang, Sadreyev et al. 2009), and a comparable state-of-the-art method 

HHSearch(Soding 2005) (see Methods for details). These plots are shown together with 

those produced by our new scoring scheme using two definitions of H. When 

contribution from all template homologs (Hall) is allowed in determining S1 and S2, the 

quality of homolog/non-homolog discrimination is dramatically higher than in other 

methods (Figure II-3a, Table II-1 and II-3). However, when the contribution is limited to 

close homologs (Hclose), the discrimination between homologs and non-homologs 

becomes worse, especially for more distant homologs, in the area further from the plot’s 

origin (Figure II-3a, Table II-1 and II-3). The situation is opposite when only close 

homology detection is evaluated (Figure II-3b, Table II-3 and II-4). Inclusion of all 

template homologs (Hall) in determining S1 and S2 of Eq (2) results in extremely poor 

identification of close homologs, suggesting that more distant relationships are often 

erroneously assigned higher significance. Limiting the set H to the close homology level 

(Hclose) leads to an accurate close homology detection far surpassing the original 

PROCAIN performance (Figure II-3b, Table II-3 and II-4).  

 

Improvement of homology detection is consistent among protein classes  

The effects observed performance improvement resulting from eq. (1-2) and its 

strong dependence on the range of template homologs entering eq. (1) might potentially 
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be confined to one or a few specific query types that strongly affect overall ROC curve. 

To assess the universality of these effects, we evaluate the performance separately for 

subsets of queries from individual major domain classes: all-alpha, all-beta, alpha/beta, 

and alpha+beta, according to SCOP. These effects are consistent among all major protein 

secondary structure classes (Figure II-4, II-5, II-6 and II-7). 

 

Improvement of COMPADRE scoring scheme by the choice of homology network 

The results shown in Figure II-3 suggest that in order to improve both the 

detection of remote homology and the ranking by evolutionary distance to the query, we 

can adjust the contribution from more distant homologs in Eqs (1-2) according to the 

template’s distance from the query. Both goals may be achieved if set H is kept relatively 

narrow for close query-template relationships (the left part of orange curve in Figure II-

3a, b), and the input from remote template homologs is added only for templates more 

distant from the query (the right part of brown curve in Figure II-3a, b). We construct a 

combined scoring function for such an adjustment:  

rc
c

cc
c SSwSSwS

2222
*))(1(*)(3     (3) 

where c
S

2  and r
S2  are determined by Eq (2) with different definitions of set H: only close 

homologs (Hclose) for c
S

2  and all database homologs (Hall) for r
S2 . The weight wc is a 

variable depending on score c
S

2  as a measure of closeness of template to query. For high 

c
S

2  values (closely similar to the query, when c
S

2  is above an upper boundary )2(
2
c

S ) this 
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weight is set to 1, so that the final score includes only the score of close homologs of a 

template ( c
SS

23  ), whereas for low c
S

2
 values (distantly similar to the query, when c

S
2
 is 

less than a lower boundary )1(
2
c

S ) the weight is set to 0 so that the score includes only the 

score for all template homologs ( r
SS

23  ). For the intermediate values of c
S

2
( )1(

2
c

S < c
S

2
< )2(

2
c

S

), the weight monotonically grows from 0 to 1, to gradually mix c
S

2
 with r

S2 . After testing 

several functions, we find that exponential dependency of wc on c
S

2
  (Figure II-8) 

provides the best performance (see Methods for details).  

While consideration of a template’s homologs in Eqs (1-3) can boost scores of 

marginally detectable homologs, it can also reduce the significance of original PROCAIN 

E-values for highly confident homologs. Thus, we construct a second combined scoring 

function: 

ppp SEwSEwS *))(ln1(*)(ln4 333     (4) 

where 3s  is determined by Eq (3) and sp is the score obtained from the original 

PROCAIN E-value Ep using the Gumbel extreme value distribution (EVD)(Gumbel 

1935), which approximates a distribution of sequence similarity scores of random 

comparisons(Altschul, Gish et al. 1990, Karlin and Altschul 1990, Dembo 1994, 

Altschul, Madden et al. 1997). Since it was introduced in sequence analysis by 

BLAST(Altschul, Gish et al. 1990), this distribution has been widely used to estimate 

statistical significance of sequence and profile similarity scores (i.e., to compute E-value 

from a score) in many applications(Altschul, Madden et al. 1997, Sadreyev, Tang et al. 

2007, Wang, Sadreyev et al. 2009). Karlin and co-authors(Karlin and Altschul 1990, 
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Dembo 1994) estimated parameters of EVD and suggested a formula to transform a 

sequence score to E-value. E-values can be back-transformed to scores using this 

approximation. The weight w3 is a function of lnEp, the logarithm of the PROCAIN E-

value. For low lnEp values (highly confident PROCAIN hits, when lnEp is less than a 

lower boundary lnEp
(1)

) this weight is set to 0, so that the final score is only determined 

by the original PROCAIN score (s4 =sp), whereas for high lnEp values (marginal 

PROCAIN hits, when lnEp is above an upper boundary lnEp
(2)

) this weight is set to 1 so 

that the final score s4 is equal to the new score 3s . For the intermediate values of lnEp 

(lnEp
 (1)

 ≤ lnEp ≤ lnEp
 (2)

), the weight monotonically increases from 0 to 1, to gradually 

mix s3 with sp. Testing several functions, we find that exponential dependency of w3 on 

lnEp (Figure II-9) gives the best performance (see Methods for details). Based on the 

score 4s  for a given template, statistical significance of the detected similarity is provided 

in the form of E-value estimated by transforming the score using the EVD approximation.  

The final scoring function 4s  offers best performance both in remote homology 

detection and in ranking by evolutionary distance to a query. Performance of the resulting 

measure is compared to several methods in Figure II-10a, b and II-11. The inclusion of 

all templates’ homologs (Hall) in the set H leads to highly sensitive and accurate retrieval 

of homology relationships (Figure II-10a, Table II-1 and II-3). At the same time, using a 

restricted set H for shorter ranges of query-template distance (only close homologs 

(Hclose)) leads to the correct placement of the close query homologs above others (Figure 

II-10b, Table II-2 and II-4). One of the most important characteristics of this scoring 

scheme is precision rate, i.e., the expected proportion of true positives among top hits. As 
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shown in Table II-3, the scoring function 4s  achieves the precision rate of 83% at half-

coverage of all homologs, more than quadruple that of the original PROCAIN rate of 

18%. Thus, the combined measure 4s  by far exceeds the current state-of-the-art 

performance levels in both capturing remote protein relationships and ranking homologs 

consistently with evolutionary distance. We refer to the resulting detection method as 

COMPADRE, for COmparison of Multiple Protein sequence Alignments using Database 

RElationships. 

 

Comparison to structure similarity score 

 A more detailed analysis of the COMPADRE results suggests that it accurately 

captures a large fraction of structural similarities that are only weakly reflected in 

sequence, and at the same time highlights the similarity of local functional motifs that 

may be missed by an automatic structure comparison method. As an illustration, Figure 

II-12 shows the comparison of protein groupings based on COMPADRE E-value and on 

the structural similarity measured by DALI(Holm and Sander 1993) Z-score. We use 

1313 representative protein domains from the α/β class in our database to perform 

hierarchical clustering by all-to-all COMPADRE scores (logarithm of COMPADRE E-

values) (Figure II-12a) and by DALI Z-scores (Figure II-12b). The resulting matrices of 

scores for domain pairs are represented as colored maps, with the scores used for 

grouping shown above diagonal and the corresponding scores by the other method shown 

below diagonal.  
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These groupings provide several notable observations. First, there is a strong 

general correlation in clustering by both scores, including the identity of major protein 

groups such as TIM-barrels, Rossmann fold, and SAM-dependent methyltransferases 

(Figure II-12a, b). Second, as expected, a fraction of structure-based relationships still 

remains undetected by sequence. These relationships include both similarities outside 

major clusters (off-diagonal area of the matrices, Figure II-12b) and links within clusters. 

For example, TIM-barrels have uniformly high DALI Z-scores, whereas the coverage by 

COMPADRE scores is more fragmented (Figure II-12a, b). Third, COMPADRE 

produces several clusters of pronounced similarity that stand out from the background 

(red in Figure II-12a) but are not produced by DALI. These clusters correspond to local 

functional sequence motifs whose presence is less obvious from structure comparison 

alone. The most notable example is P-loop nucleoside triphosphatases that are accurately 

placed together by COMPADRE but split apart by structure similarity (Figure II-12a). As 

another example, COMPADRE grouping within the TIM-barrel fold highlights a 

superfamily of (trans)glycosidases that share similar phosphate-binding sites, which is 

challenging for DALI-based clustering (Figure II-12a). 

 

Detecting more homologs at the SCOP superfamily level 

Compared to the original PROCAIN scoring, COMPADRE detects more 

homologs at the SCOP superfamily level. As an example, in bacterial lysozyme (PDB ID 

1jfxA, SCOP family 1, 4-beta-N-acetylmuraminidase, Figure II-13a), the last α/β unit of 

1jfx is atypical for TIM barrel folds: it has an antiparallel hairpin replacing the typical 
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parallel α/β units. A typical TIM barrel structure (PDB ID 1bqcA) is shown in Figure II-

13b. Due to this alteration, it is difficult for PROCAIN to detect homologs of 1jfx and the 

PROCAIN E-values for 1jfx vs. other TIM barrel examples are high. The exception is an 

N-terminal domain of endolysin (PDB ID 2j8gA, domain 2) and an uncharacterized 

bacterial protein (PDB ID 1sfsA), which are in the same SCOP family 1, 4-beta-N-

acetylmuraminidase. A scatter plot of E-value vs. Dali Z-score shows COMPADRE E-

values shifted lower to significant E-values (e-values = 0.005 line displayed in Figure II-

13c), while keeping roughly the same ranking as PROCAIN. SCOP classifies all of these 

structures (dots in Figure II-13c) in the same superfamily: (Trans) Glycosidases and they 

catalyze reactions with similar chemistry; suggesting they should be homologous. 

PROCAIN only detects two closest sequences at the SCOP family level (2j8gA and 

1sfsA) with a significant E-value, while COMPADRE detects all of the most distant 

structures with significant E-values. 

 

Detecting homology relationship for a newly resolved structure 

For the inference of structure, function, and evolution of a given uncharacterized 

protein, COMPADRE improves the opportunity for detection of experimentally 

characterized homologs. As another example, the Zinc-finger antiviral protein (ZAP) is a 

host factor that specifically inhibits the replication of certain viruses, such as HIV-1(Zhu, 

Chen et al. 2011). The N-terminal part of ZAP is the major functional region that binds 

target RNA and recruits the mRNA degradation machinery. The structure of the N-

terminal region of ZAP was determined recently(Chen, Xu et al. 2012) (NZAP225, PDB 
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ID 3u9gA), consisting of an uncharacterized top “cockpit” layer (1-65aa) and four 

connected zinc-fingers (66-225aa). Figure II-14 shows how the confidence of an 

originally marginal sequence similarity can be verified for the uncharacterized top 

“cockpit” domain by using our COMPADRE method. For the query sequence of first 65 

residues from NZAP225, no confident homology to proteins with known 3D structure 

can be detected by direct query-template sequence comparisons. PSI-BLAST search in 

NCBI nr database converges after three iterations with no hits of known structures, 

whereas all HHpred and PROCAIN hits in structural databases are outside the 

significance threshold (best probability of 82.4% for HHpred and best E-value of 76.1 for 

PROCAIN). COMPADRE, however, is able to assign significant E-values to the 

similarities between the N-terminal domain of the query and multiple DNA-binding 

helix-turn-helix (HTH) domains, with the top E-value as low as 2e-3 (Figure II-14). 

Detected similarity to HTH (Figure II-14b) suggests that the first 65 residue domain of 

ZAP may also play an important role in recognizing target viral RNA. Sequence 

alignment to the template (Figure II-14a) points to specific residues that may be involved 

in RNA recognition and binding, providing potential targets for mutagenesis studies. 
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DISCUSSION 

Comparison with threading methods RaptorX and MUSTER 

The RaptorX (Peng and Xu 2011) and the MUSTER (Wu and Zhang 2008) 

packages are downloaded from their respective websites. In the RaptorX suite, 

CNFsearch (Ma, Peng et al. 2012) is used to detect homologs for queries. As suggested 

by the authors of these packages, to attain the best performance, we run them on 

databases provided by the authors. To speed up the experiments, 100 domains are 

randomly selected from 16083 ECOD (Cheng, Schaeffer et al. 2014) domain 

representatives (20% sequence identity cutoff). These domains are used as queries for 

RaptorX and MUSTER. Top 100 templates are generated for each domain by RaptorX 

and MUSTER. Since the templates databases used by RaptorX, MUSTER and 

COMPADRE are different, for each template found by RaptorX and MUSTER, we find a 

close homolog in ECOD database (all domains, not just representatives) by BLAST (E-

value cutoff = 1e-03). All domains in ECOD database are clustered by CD-hit (Li and 

Godzik 2006), and one representative domain is selected for each cluster. This 

representative is used instead of any domain in its cluster. Any two domains in the same 

Homology group of ECOD are defined as “close homologs”. “All homologs” are defined 

by an SVM classifier based on structure and sequence similarity scores. For RaptorX, 

there are 5426 query and template pairs in which the template can be mapped to the 

ECOD database. We sort them by the E-values given by RaptorX and by COMPADRE 

scores to produce ROC curves (Figure II-15). For MUSTER, there are 5228 pairs in 

which the template can be mapped to the ECOD database. We sort them by the Z-scores 

given by MUSTER and by COMPADRE scores to plot the ROC curves (Figure II-16). 
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COMPADRE outperforms RaptorX and MUSTER on close homologs and on all 

homologs. 

 

Performance of COMPADRE depends on the balance of weighting scores of close and all 

homologs of the template 

In equation (3) to calculate 3s , the weight wc( c
S

2
) for close homolog score is 

defined as follows (Figure II-8): wc = 0 if c
S

2
 < )1(

2
c

S , wc = 1 if c
S

2
 > )2(

2
c

S , and wc = a + 

be
γSc

 if  )1(
2
c

S ≤ sc ≤  )2(
2
c

S , where )1(
2
c

S  = 33.95, )2(
2
c

S  = 111.5, and γ=0.08; a, b can be 

derived from boundary conditions at )1(
2
c

S  and )2(
2
c

S . Here, we illustrate how the 

parameters influence the performance (Figure II-17). γ determines the shape of the wc 

weighting function. Close homolog score and all homolog score are combined in range [

)1(
2
c

S , )2(
2
c

S ]. )2(
2
c

S is the boundary that only close homolog score is used if c
S

2
 > )2(

2
c

S . 

Therefore, )2(
2
c

S  is important for ordering high-scoring top hits exclusively based on close 

homolog score. Since there are two criteria (discrimination of homologs from non-

homologs and assignment of closest sequence relationships as top ranks), there is a 

tradeoff to choose parameters to optimize both (the red curve is plotted by the parameters 

used in COMPADRE).  

In equation (4) to calculate 4s , the weight of 3s  is defined as follows: w3 = 0 if 

lnEp < lnEp
(1)

, w3 = 1 if lnEp > lnEp
(2)

,  and w3 = a + be
γlnEp 

 if  lnEp
 (1)

 ≤ lnEp ≤ lnEp
 (2)

, 

where lnEp
(1)

 = -50, lnEp
(2)

 = -15, and γ= -0.5; a, b are derived from boundary conditions 

at lnEp
(1)

 and lnEp
 (2)

. We illustrate how the parameters influence the performance (Figure 
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II-18). γ determines the shape of the w3 weighting function. 3s and the PROCAIN score sp  

are combined in the range [lnEp
 (1)

 , lnEp
 (2)

]. lnEp
 (1)

 is the boundary that only PROCAIN 

score is used if lnEp < lnEp
 (1)

. Therefore, lnEp
 (1)

 is important for ordering the top hits 

(with low e-values) exclusively based on PROCAIN score. lnEp
(1) 

and lnEp
(2)

, and γ all 

have an impact on the overall behavior of ROC curves (the red curve is based on default 

settings of COMPADRE) (Figure II-18).  
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CONCLUSION 

Our findings show that defined homology relationships within the search database 

contain essential information for the improvement of sequence-based homology search. 

Although this concept is not new to computer science in general, to our knowledge, it has 

not been successfully applied to protein sequence searches before. Our method, 

COMPADRE, shows a dramatic increase in the performance of sequence search 

compared to current methods that are based on traditional query-template similarity 

measures. The new approach detects a large fraction of structural protein relationships 

and allows for new predictions of structure and function in previously uncharacterized 

proteins. Furthermore, our results suggest that this approach may be applicable to a wide 

variety of methods for the detection of biological similarities.  
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MATERIALS AND METHODS 

Protein databases 

As a search database, we use the set of 5116 PSI-BLAST MSAs of homologs for 

version 1.75 SCOP domain representatives with less than 20% sequence identity that was 

constructed and extensively used as a part of a previously described benchmarking 

system. For each protein, multiple sequence alignment of homologs detected in NCBI nr 

database with default settings is generated by PSI-BLAST. These alignments are used for 

comparisons by PROCAIN and other profile-based methods. PROCAIN is a sequence 

profile search method that, in addition to sequences, incorporates similarity in secondary 

structure, positional conservation, and sequence motifs into profile–profile scoring. When 

combined with an improved estimation of statistical significance of hits, this scoring 

results in better performance compared to other methods(Brin and Page 1988). 

 

Definition of Hall homolgy network 

True and false positive definition combines expert assignments of superfamilies 

by SCOP and our automated SVM classifier based on multiple scores for sequence and 

structure similarity of the two proteins, applied as previously described. These homology 

assignments reduce the number domain relationships classified in SCOP as unclear when 

the two domains share a SCOP fold but belong to different superfamilies. In brief, we 

constructed a classifier that combines multiple sequence- and structure-based similarity 

scores and trained it on a SCOP subset of 1000 pairs that belong to different SCOP 
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classes and are labeled as negative for SVM training, and 1000 pairs that belong to the 

same SCOP superfamilies and are labeled positive. The five features of the resulting 

classifier are as follows: DALI Z-score, FAST score, coverage of FAST alignment, 

GDT_TS of TM alignment, and BLOSUM score of DALI alignment.  

The resulting SVM makes a binary classification of domain pairs into the 

categories of homologous and non-homologous. However, there is a number of domain 

pairs that share short regions of similarity but are poor global structural templates for 

each other (for example, Rossmann-type folds vs. TIM barrels). Forcing such cases to 

either of two categories might bias the evaluation protocol. Therefore, following others 

(Soding 2005), we use the third category of ‘unclear’ relations and establish the 

corresponding lower and higher thresholds of SVM score to define the three areas: non-

homologous, unclear and homologous, with unclear pairs comprising ~10% of all pairs. 

Two proteins are classified as homologous if they share a SCOP superfamily or 

have a high SVM score. They are classified non-homologous if do not share a 

superfamily and have a low SVM score. Relationships between domains from different 

superfamilies with intermediate SVM score are classified as unclear. We successfully 

tested and applied the resulting classification to the evaluation of various methods for 

remote homology detection. 

 

Assessment 
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ROC (receiver operating characteristic) curve was used to measure performance 

in both settings: the domain pairs defined as “all homology” are designated as true 

positives for assessing the power of distinguishing the homologs from non-homologs; the 

“close homology” pairs are designated as true positives in order to assess the power of 

placing the homologs according to evolutionary distance. The ROC curve plots the true 

positive numbers against the false positive numbers for different cutoff points of E-

values. 

The following statistics were used to compare performance with other methods. 

We defined the ROC value as      
 

 
 

  

 

 
   , where ti is the number of true positives 

corresponding to the i-th false positive found, up to n that is the specified number of top 

false positives. T is the overall number of true positives in the database. ROC values and 

their error estimates are calculated as previously described.  

Another essential characteristic for a user is the degree of contamination with 

false positives (FP), or a proportion of true positives (TP) that is expected in a given list 

of top hits. Tables 3 and 4 include precision rates (fractions of true positives among top 

hits: precision rate = TP/(TP+FP)) for different levels of sensitivity (detected fraction of 

all homologs: sensitivity = TP/(TP+FN), FN is the number of false negatives). At the 

sensitivity level of 50% (half of all dataset homologs detected), the precision rate of the 

new COMPADRE scoring more than triples the original rate of PROCAIN (Table II-3). 

 

Scoring functions 
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Scores T
S0  and H

S0  in eq (1) are derived as s0 = - (logE /Ec) where E is the original 

PROCAIN E-value and logEc = 6.0. In equation (3), in order to mix score contributions 

from the closer template homologs ( c
S

2
) and all homologs ( rs2 ), rs2  is rescaled so that its 

values are comparable to that of c
S

2
 in the area of mixing: 
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where 
)1(

2

cs  = 33.95 and 
)2(

2

cs = 111.5 are lower and upper bounds of c
S

2
 in the mixing 

area, 
)1(

2

rs = 333.9 and 
)2(

2

rs = 1998 are lower and upper bounds of rs2  in the mixing area. 

The weight of c
S

2
 is defined as follows: wc = 0 if c

S
2
<

)1(

2

cs  , wc = 1 if c
S

2
>

)2(

2

cs , and wc = a 

+ be
γSc 

if 
)1(

2

cs ≤ c
S

2
 ≤ 

)2(

2

cs (Figure II-8). In equation (4), in order to mix original ProCAIn 

results and our boosting score, lnEp
(1)

 = -50 and lnEp
(2)

 = -15 are lower and upper bounds 

of  in the mixing area. The weight of Sc is defined as follows: wn = 0 if lnEp  < lnEp
(1)

, wn 

= 1 if lnEp  > lnEp
(2)

,  and wn = a + be
ƳlnEp 

if  lnEp
 (1)

 ≤ lnEp ≤  lnEp
 (2)

 (Figure II-15). E-

values were calculated from the resulting scores based on EVD approximation of total 

score distributions.  
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Figure II-1. The context of template’s relationships within the database is used to modify 

the original score ( T
S0 ) for sequence-based similarity between query and template. The 

modified measure is a linear combination of T
S0  and scores ( HS0

) for the similarity 

between query and template’s homologs. 
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Figure II-2. Performance of similarity measures that include query similarity to 

template’s homologs (eq. (1)) alone and combined with the reward for template’s 

homology to the original top query’s hit (eq. (1-2)). ROC plots are shown for two 

schemes, with equation (1) based on the sets of closer template’s homologs and on all 

pre-determined homologs in the database. These schemes are compared to PSI-BLAST, 

HHSearch, and PROCAIN. (a) Evaluation of homolog/non-homolog discrimination (any 

pair of pre-determined homologs is considered a true positive). (b) Evaluation of ranking 

close homologs (only pairs sharing the same superfamily are considered as true 

positives). 
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Figure II-3. Detection quality depends on the range of template’s homologs included in 

the similarity scoring. ROC plots for (a) discrimination between homologs and non-

homologs and (b) retrieval of closer homologs (relationships outside SCOP superfamily 

are considered false positives). The scoring based on the inclusion of only closer template 

homologs Hclose (orange) is compared to the unrestricted inclusion of all homologs Hall 

(brown). 
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Figure II-4. Detection quality for queries from all-alpha class. (a) Discrimination between 

homologs and non-homologs. (b) Retrieval of closer homologs. 
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Figure II-5. Detection quality for queries from all-beta class. (a) Discrimination between 

homologs and non-homologs. (b) Retrieval of closer homologs. 
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Figure II-6. Detection quality for queries from alpha/beta class. (a) Discrimination 

between homologs and non-homologs. (b) Retrieval of closer homologs. 
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Figure II-7. Detection quality for queries from alpha+beta class. (a) Discrimination 

between homologs and non-homologs. (b) Retrieval of closer homologs. 
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Figure II-8. Dependency of weight for the contribution of closer template homologs c
S

2
. 

For closer query-template distances (high c
S

2
), the weight is set to unit. For remote 

templates, the weight is set to zero. In the intermediate range, the weight grows 

exponentially with c
S

2
 (see also main text). 
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Figure II-9. Dependency of weight for the boosting score lnEp. For high confident 

ProCAIn results (low lnEp), the weight is set to zero. For low confident ProCAIn results 

(high lnEp), the weight is set to unit. In the intermediate range, the weight grows 

exponentially with lnEp (see also main text). 
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Figure II-10. Performance of combined similarity measure implemented in COMPADRE 

method. As illustrated by the ROC plots (red), the score both accurately discriminates 

homologs from non-homologs (a) and assigns top ranks to closest sequence relationships 

(b). 
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Figure II-11. Performance of COMPADRE, HHsearch and PROCAIN measured by 

average ROC curves.  As illustrated by the curves, COMPADRE score both discriminates 

homologs from non-homologs (a) and assigns top ranks to closest sequence relationships 

(b) better than the other two methods. 
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Figure II-12. Protein groupings according to sequence-based similarity scoring by 

COMPADRE compared to structure-based scoring by DALI. Scores for pairs of 1000 

representative domains of α/β class are shown in color. Each panel compares sequence- 

and structure-based scores, with the score used for clustering shown above diagonal. 

Major protein groups are labeled on the side. Scale bars show color coding for DALI Z-

score and decimal logarithm of COMPADRE E-value. (a) Grouping by COMPADRE 

score. (b) Grouping by DALI Z-score. Similarity between the groupings suggests that 

COMPADRE is able to accurately retrieve the majority of structural relationships, 

although a number of remote similarities still remain a challenge. In some cases, 

sequence comparison is able to better highlight important local motifs resulting in 

functionally relevant grouping, with P-loop hydrolases as the most notable example. 
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Figure II-13. Detection of more homologs at the SCOP superfamily level. PROCAIN 

only detects the closest sequence at the SCOP family level (PDB ID 1sfsA) with a 

significant E-value, while COMPADRE detects all but 8 of the most distant structures 

with significant E-values.  (a) Structure of an atypical TIM barrel fold (PDB ID 1jfxA), 

which has an antiparallel hairpin replacing the typical parallel α/β unit (magenta), with 

aligned portion colored. (b) Structure of a typical TIM barrel fold (PDB ID 1bqcA), with 

aligned portion colored. (c) The scatter plot shows Dali Z-score vs. E-values of 

COMPADRE (red dots) and PROCAIN (blue dots) for 1jfx and all other same SCOP 

superfamily structures (e-values = 0.005 line displayed).  
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Figure II-14. Confident detection of homology relationship for a newly resolved 

structure. COMPADRE finds a significant similarity between the top “cockpit” layer of 

N-terminal ZAP protein and a ‘DNA-binding helix-turn-helix (HTH) domain, suggesting 

structural fold and specific mode of RNA binding. (a) COMPADRE result, including the 

alignment of sequences and predicted secondary structures for the query (top) and the hit 

(bottom). The actual secondary structure of the template is shown as colored arrows 

below the alignment. (b) Hit structure (PDB ID 1t3cC) superimposed to the target 

structure (PDB ID 3u9gA, 1-65aa), with aligned portion colored. 
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Figure II-15. Comparison of COMPADRE and RaptorX by ROC curves. For the top 

templates of randomly selected 100 domains, COMPADRE can both better discriminate 

homologs from non-homologs (a) and assign top ranks to closest sequence relationships 

(b) than RaptorX. 
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Figure II-16. Comparison of COMPADRE and MUSTER by ROC curves. For the top 

templates of the randomly selected 100 domains, COMPADRE can both better 

discriminate homologs from non-homologs (a) and assign top ranks to closest sequence 

relationships (b) than MUSTER. 
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Figure II-17. Performance of COMPADRE evaluated by ROC curves under different 

parameter settings in equation (3) (defined in the main text). As illustrated by the ROC 

plots, it is a tradeoff to select parameters to meet the two criteria: discriminating 

homologs from non-homologs (a) and assigning top ranks to closest sequence 

relationships (b). 
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Figure II-18. Performance of COMPADRE evaluated by ROC curves under different 

parameter settings in equation (4) (defined in the main text). Two criteria are used: 

discriminating homologs from non-homologs (a) and assigning top ranks to closest 

sequence relationships (b). 
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Method ROC(25580) ROC(255800) ROC(1015772) 

PSI_BLAST 0.0334 +/- 5e-05 0.0552 +/- 4e-05 0.0906 +/- 5e-05 

HHSearch 0.1215 +/- 1e-04 0.1686 +/- 7e-05 0.2303 +/- 4e-05 

PROCAIN 0.1689 +/- 2e-04 0.2949 +/- 7e-05 0.4069 +/- 3e-05 

Close homologs, eq (1) 0.1290 +/- 3e-04 0.2658 +/- 6e-05 0.4132 +/- 3e-05 

Close homologs, eq (1-2) 0.1676 +/- 3e-04 0.2860 +/- 7e-05 0.4210 +/- 3e-05 

All homologs, eq (1) 0.2348 +/- 2e-04 0.4073 +/- 6e-05 0.5915 +/- 3e-05 

All homologs, eq (1-2) 0.3542 +/- 2e-04 0.6083 +/- 6e-05 0.7538 +/- 3e-05 

COMPADRE 0.3702 +/- 2e-04 0.6082 +/- 6e-05 0.7532 +/- 3e-05 

Table II-1. ROC values for the discrimination between homologs and non-homologs. 

Receiver operating characteristics (ROC) for different search methods, calculated for 

three numbers of top false positives: the mean of 5 top false positives per query (25580 

false positives total); the mean of 50 top false positives per query (255800 false positives 

total), and the point where PROCAIN retrieves half of all true positives in the dataset 

(1015772 false positives total). The total number of true positives in the set is T= 461222. 

Methods are denoted the same way as in Figure II-1, II-2 and II-10. 
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Method ROC(25580) ROC(63995) ROC(255800) 

PSI_BLAST 0.1499 +/- 2e-04 0.1711 +/- 1e-04 0.2102 +/- 8e-05 

HHSearch 0.4062 +/- 6e-04 0.4561 +/- 3e-04 0.5141 +/- 1e-04 

PROCAIN 0.3784 +/- 6e-04 0.4375 +/- 4e-04 0.5278 +/- 2e-04 

Close homologs, eq (1) 0.4039 +/- 5e-04 0.4720 +/- 4e-04 0.6332 +/- 4e-04 

Close homologs, eq (1-2) 0.6009+/- 6e-04 0.6731 +/- 5e-04 0.8051 +/- 3e-04 

All homologs, eq (1) 0.0629 +/- 4e-04 0.1300 +/- 4e-04 0.2630 +/- 3e-04 

All homologs, eq (1-2) 0.0723 +/- 5e-04 0.1547 +/- 5e-04 0.3351 +/- 4e-04 

COMPADRE 0.5104 +/- 3e-04 0.5267 +/- 1e-04 0.5653 +/- 1e-04 

Table II-2. ROC values for the detection of closer homologs (SCOP superfamily level). 

Receiver operating characteristics (ROC) for different search methods, calculated for 

three numbers of top false positives: the mean of 5 top false positives per query (25580 

false positives total); the mean of 50 top false positives per query (255800 false positives 

total), and the point where PROCAIN retrieves half of all true positives (proteins sharing 

the same superfamily) in the dataset (63995 false positives total). The total number of 

true positives in the set is T= 84286. Methods are denoted the same way as in Figure II-1, 

II-2 and II-10. 
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Method \ Sensitivity(%) 1 10 25 50 75 

PSI_BLAST 99.74 7.22 3.48 2.57 2.19 

HHSearch 100.00 96.64 15.94 5.03 2.95 

PROCAIN 99.96 97.94 68.41 18.50 5.80 

Close homologs, eq (1) 100.00 91.72 55.24 22.72 7.66 

Close homologs, eq (1-2) 100.00 99.61 65.25 23.00 7.69 

All homologs, eq (1) 99.74 98.72 89.80 49.82 23.16 

All homologs, eq (1-2) 99.76 99.73 98.67 83.30 53.58 

COMPADRE 100.00 99.81 99.14 83.33 53.24 

Table II-3. Precision rates for the discrimination between homologs and non-homologs. 

Precision rates (%) are calculated for several levels of sensitivity from 1% to 75%. The 

total number of true positives in the set is T= TP+FN = 461222. Methods are denoted the 

same way as in Figure II-1, II-2 and II-10. 
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Method \ Sensitivity(%) 1 10 25 50 75 

PSI_BLAST 98.94 91.55 6.46 0.81 0.47 

HHSearch 97.12 97.10 93.66 42.51 1.21 

PROCAIN 100.00 97.64 92.68 39.71 3.91 

Close homologs, eq (1) 100.00 100.00 98.72 52.07 22.36 

Close homologs, eq (1-2) 100.00 100.00 98.72 95.49 51.76 

All homologs, eq (1) 25.19 29.06 19.48 8.23 5.47 

All homologs, eq (1-2) 25.65 32.55 26.41 14.81 10.31 

COMPADRE 100.00 100.00 98.69 94.18 10.42 

Table II-4. Precision rates for the detection of closer homologs (SCOP superfamily level). 

Precision rates (%) are calculated for several levels of sensitivity from 1% to 75%. The 

total number of true positives in the set is T= TP+FN = 84286. Methods are denoted the 

same way as in Figure II-1, II-2 and II-10. 
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III. COMAPDRE WEB SERVER FOR PROTEIN SEQUENCE 

SIMILARITY SEARCH 

 

Accurate detection of biologically meaningful similarities between protein 

sequences facilitates biomedical research by suggesting hypotheses for experimentation. 

We recently developed COMPADRE, a sequence profile-based method that uses known 

homology networks within a protein sequence database to enhance homology inference. 

Here, we present the COMPADRE web server that searches against a weekly updated 

database of the evolutionary classification of protein domains (ECOD) using a query 

sequence or multiple sequence alignment (MSA). Thus, users gain access to proteins with 

newly released spatial structures. By using homology relationships within the ECOD-

based database, COMPADRE improves the performance of sequence search compared 

with traditional query-template similarity approaches. The output is similar to PSI-

BLAST: a list of homologs ranked by E-value and followed by query-template 

alignments. In addition, 3D structures for several best hits are shown to interactively 

visualize their similarity. The COMPADRE web server is available at 

http://prodata.swmed.edu/compadre 
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INTRODUCTION 

Advances in next-generation sequencing over the last decade have resulted in a 

vast growth of available protein sequences. Efficient and accurate interpretation of the 

sequence data is a significant challenge, and assignment of structural and functional 

annotations to proteins is far from being straightforward (Koboldt, Steinberg et al. 2013, 

Mardis 2013). Experimental methods, such as X-ray crystallography and NMR, are time-

consuming and expensive. An efficient shortcut to inferring the spatial structure and 

molecular function of an uncharacterized protein is to computationally recognize its 

homologs using a sequence profile search (Gribskov, McLachlan et al. 1987, Baker and 

Sali 2001). As protein structures accumulate in the Protein Data Bank (PDB) (Berman, 

Westbrook et al. 2000), the chance of finding a homolog for an uncharacterized protein is 

also increasing (Zhang, Hubner et al. 2006). However, it is still difficult to confidently 

detect biologically meaningful similarity between sequences with less than ∼20% identity 

(Soding and Remmert 2011). Hence, the key to success is to increase the sensitivity of 

homology detection methods, because many proteins have only distant relatives with 

experimentally determined 3D structures (Huang, Mao et al. 2014). 

Much effort has been spent to improve sequence-based homology detection.  

Earlier work focused on dynamic programming-based alignment methods (Needleman 

and Wunsch 1970, Smith and Waterman 1981) and related heuristic algorithms (Altschul, 

Gish et al. 1990, Pearson 1990). Subsequently, introduction of numeric sequence profiles 

and hidden Markov models (HMMs) (Eddy 1998) allowed comparison of a single 

sequence against multiple sequence alignments (MSAs) (Altschul, Madden et al. 1997, 

Eddy 1998, Karplus, Barrett et al. 1999). Furthermore, profile-profile (Sadreyev and 
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Grishin 2003, Margelevicius and Venclovas 2010) and HMM-HMM (Soding 2005, 

Madera 2008) comparisons improve homology search by finding the similarities at 

sequence positions in protein families. Recently, we developed a homology detection tool 

called COMPADRE (Comparison of Multiple Protein sequence Alignments using 

Database RElationships) (Tong, Sadreyev et al. 2015) that uses known homology 

relationships within a database. COMPADRE can dramatically improve protein sequence 

similarity search and outperform most state-of-art methods, such as PSI-BLAST 

(Altschul, Madden et al. 1997), PROCAIN (Wang, Sadreyev et al. 2009) and HHSearch 

(Soding 2005). 

Besides algorithm development, the coverage of protein structure space in the 

search database has a profound impact on homology detection accuracy. A frequently 

updated search database will increase the probability of finding homologs for a query that 

is more confidently related to recently released protein structures. Currently, the HHpred 

server provides a PDB search database with synchronized updates. However, most other 

current methods (Sadreyev and Grishin 2003, Wang, Sadreyev et al. 2009, Ma, Wang et 

al. 2014) rely on infrequently updated databases. For example, the structure search 

databases used in COMPASS (Sadreyev and Grishin 2003) and PROCAIN (Wang, 

Sadreyev et al. 2009) are extracted from SCOP (Andreeva, Howorth et al. 2008), which is 

updated irregularly. Therefore, it is important to have a homology detection server based 

on an advanced algorithm and with a continually updated search database. 

Here, we introduce the new version of the COMPADRE web server for homology 

detection with a continually and automatically updated search database. Compared with 

the previous version of COMPADRE that relied on the SCOP (Andreeva, Howorth et al. 
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2008) ASTRAL (Chandonia, Hon et al. 2004) 1.75 database, the new version adds the 

Evolutionary Classification of protein Domains (Cheng, Schaeffer et al. 2014) (ECOD) 

database that updates weekly. ECOD is a database that primarily groups domains by 

evolutionary relationships and consistently classifies weekly releases of PDB structures. 

The new version of COMPADRE with the ECOD database increases detection accuracy 

when compared to the current state-of-art methods. Moreover, such improvement allows 

discovery of new remote homologs that may have been missed in the ECOD database, 

thus helping to improve it. Therefore, COMPADRE with continual updates is a tool to 

complement the homology relationships defined in the ECOD database. Given a query 

sequence, the COMPADRE web server searches for homologs against the up-to-date 

ECOD database making use of relationships defined in ECOD and relationships predicted 

by an SVM classifier (Qi, Sadreyev et al. 2007). The web server is available at 

http://prodata.swmed.edu/compadre. 
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RESULTS AND DISCUSSION 

Improvement of COMPADRE with ECOD search database 

We tested COMPADRE on ECOD database version 56 (09/05/2014) that 

classifies 366,159 domains with available 3D structures. 20% sequence identity filtering 

of these domains resulted in 16,083 representatives for the COMPADRE search database. 

Two homology levels were recognized within this search database: “close homology” 

was defined as domain pairs classified in the same H-group (homology level) in ECOD 

and the level of “all homology” was defined by adding more distant homologs 

determined by the SVM classifier (see Materials and methods). 

COMPADRE scoring schemes using two homology network definitions (all 

template homologs and only close template homologs) were compared to COMPADRE 

with combined scoring from both networks and two other methods PSI-BLAST and 

PROCAIN (Figure III-1). The inclusion of all template homologs leads to the most 

sensitive retrieval of all homologous relationships, but closer homologs may not be 

ranked above distant homologs. Limiting the template’s homology to only close 

homologs can accurately place more closely related homologs above remote homologs in 

the ranked list; however, more distant homologs are not detected. To achieve optimal 

performance on both criteria, close homolog scores (Sc) and all homolog scores (Sr) were 

linearly combined with a weight depending on Sc (see Material and Methods). The final 

mixed COMPADRE score is best both in remote homology detection and in ranking by 

evolutionary distance to the query (Figure III-1).  
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COMPADRE outperforms other methods in terms of ROC value (Tables III-1 and 

III-2) and precision rate (Tables III-3 and III-4). ROC values reflect the performance of 

different scoring systems at various cutoffs of false positives. The COMPADRE scoring 

largely surpasses the other two scoring methods at all false positive thresholds. At the 

sensitivity level of 50% (half of all dataset homologs detected), the precision rate 

increases from 16% of PROCAIN ranking to 73% of COMPADRE ranking when all 

homologs are considered as true positives (Table III-3). A similar trend (the precision rate 

increases from 7% of PROCAIN to 97% of COMPADRE) is observed when only close 

homologs are assigned as true positives (Table III-4). 

 

The pipeline for continual update 

Followed by the weekly update of the ECOD database, COMPADRE will update 

its search database and find four boundaries for mixing close and all homolog scores 

accordingly (Figure III-2). In brief, after selecting domain representatives with sequence 

identity <20% from the ECOD database, the original all-to-all similarity scores are 

calculated by PROCAIN. Then, close homologs and all homologs are found in the 

updated search database and the close homolog (Sc) and all homolog scores (Sr) are 

computed (see Materials and Methods). Then, the ranks of boundary scores are estimated 

and four boundaries are found in the sorted lists of Sc and Sr. This pipeline is run after 

each weekly update of ECOD database. 

Because PROCAIN similarity scores need to be calculated for all domain pairs in 

the updated search database, it is the rate-limiting step of the update pipeline. However, 

when compared with the previous version of the ECOD database, usually only a very 
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small number of domains are added to the search database, on the order of 1-3% of the 

total domain count. Therefore, we conduct two types of updates: a time-consuming 

complete update to recalculate all PROCAIN scores that will be run every one or two 

months, and a weekly simplified version, which calculates PROCAIN scores for the 

newly added domains, while using the PROCAIN scores of other domains in the last 

complete update. This two-tier update procedure balances the precision of homology 

detection and the speed of continual updates. 

 

The COMPADRE web server 

COMPADRE is a tool to detect homology for a given query sequence or 

alignment. Since its search database is updated weekly, following the ECOD database 

update, the COMPADRE web server allows recognizing homology to the most recently 

released spatial structures. 

Users can input or upload a protein sequence or alignment as query and choose a 

protein database to search: the SCOP or the ECOD databases. The SCOP database 

consists of 5116 protein domains selected from SCOP ASTRAL 1.75, and the ECOD 

database is composed of domain representatives from the latest ECOD version. Input 

searching options include parameters for running PSI-BLAST, such as iteration number 

and E-value threshold and parameters for further processing of the resulting alignments 

of detected homologs. Output formatting options include the E-value cutoff to truncate 

the hit list (expected E-value cutoff), significant E-value threshold and the maximal 

number of alignments that the user wants to be shown in the result webpage.  
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The user can access the results via the web browser window from which the input 

is submitted, or choose to receive an html link to the results by email after the search is 

finished. The results webpage is composed of two parts. The first part is a list of hits split 

into two sections: one shows the hits with E-value better than the significant threshold 

and another contains the hits with E-value worse than the significant threshold but better 

than the expected E-value cutoff. For each hit, its rank, domain ID in the SCOP or ECOD 

database, molecule name in the PDB file, SCOP or ECOD classification, COMPADRE 

score and corresponding E-value are given. The second part of the results gives 

alignments between the query and each hit. The sequence alignments between the query 

and each template are generated by PROMALS (Pei and Grishin 2007) that produces 

alignments superior to those of PROCAIN. For the top scoring hits, besides the alignment 

and the links to relevant databases (e.g., ECOD, PDB etc.), a JSmol panel is included to 

interactively display the C-alpha trace of the template to facilitate visualization of 

structural similarities. 

In addition, a search box is added to the main webpage of ECOD database to 

direct ECOD users to COMPDARE search. The sequence similarity found by 

COMPADRE can be used to compliment the ECOD classification and detect possible 

homologs missed in ECOD. 

 

COMPADRE uniquely detects remote sequence similarities 

By exploiting the homology network within the search database, COMPADRE 

increases the probability of finding remote homologs of the query. BWI-2c is a trypsin 

inhibitor isolated from buckwheat seeds that consists of a helix-loop-helix motif (Oparin, 
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Mineev et al. 2012). It is characterized by a pattern of cystine residues C
1
X3C

2
XnC

3
X3C

4
, 

and its two helices are linked via two disulfide bonds C
1
-C

4
 and C

2
-C

3
. When the 

sequence of BWI-2c was submitted to the COMPADRE server searching against the 

ECOD database, crambin (PDB: 3NIR) can be detected with an E-value of 1e-5, while 

the original PROCAIN E-value to crambin was above one (Figure III-3a). Crambin is a 

member of thionins, a family of antimicrobial factors in plant (Florack and Stiekema 

1994). Thionins typically have four disulfide bonds, while one of them is missing in 

crambins. The thionin helical hairpin can be aligned well with BWI-2c both in sequence 

and structure (Figure III-3), matching their cysteine patterns C
1
X3C

2
XnC

3
X3C

4
. Other 

sequence search methods, for example PSI-BLAST (Altschul, Madden et al. 1997) and 

HHpred (Soding 2005), failed to detect this remote relationship with either BWI-2c or 

thionin as query. BWI-2c has another homolog with available structure, Luffin P1, which 

is a small ribosome-inactivating protein (Ng, Yang et al. 2011) obtained from gourd 

seeds. Additionally, there are several other plant peptides that are structurally similar to 

BWI-2c and Luffin P1 (Oparin, Mineev et al. 2012), such as trypsin inhibitor VhTI 

(Conners, Konarev et al. 2007) and antimicrobial peptide EcAMP1 (Nolde, Vassilevski et 

al. 2011). The similarity found by COMPADRE suggests a unified superfamily missed in 

the current version of ECOD and a common origin of these plant defense peptides. Thus, 

COMPADRE is capable of detecting biologically interesting similarities not found by 

other sequence-based methods and missed in ECOD. 
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CONCLUSION 

Recently, we developed COMPADRE, a method that uses known homology 

network within a database to enhance protein homology detection. Here, a continually 

updatable web server based on this method (http://prodata.swmed.edu/compadre) is 

developed to detect homologs for a query sequence or alignment provided by users. The 

new search database composed of ECOD domain representatives is updated weekly 

following ECOD updates. Such an up-to-date search database allows detecting homology 

to proteins with recently released spatial structures. 
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MATERIALS AND METHODS 

Overview of the COMPADRE homology detection method  

Recently, we developed the COMPADRE method, which detects homology based 

on a similarity measure that combines the original PROCAIN score for the given 

template and the PROCAIN scores for a set of its homologs (Tong, Sadreyev et al. 2015). 

PROCAIN (Wang, Sadreyev et al. 2009) is a sequence profile search method that, in 

addition to sequences, incorporates similarity in secondary structure, positional 

conservation, and sequence motifs into profile–profile scoring. Consistent similarities 

between a template’s homologs and the query will boost the original score. As a result, 

the significance of a marginal sequence similarity score can be raised over the detection 

threshold. On the other hand, false positives with low scores for their homologs will 

become less significant.  

The details of incorporating the original PROCAIN similarity scores and the 

scores between template and template’s homologs, as well as combining two different 

homology-based scores have been published previously (Tong, Sadreyev et al. 2015). 

Here, only specific modifications related to database updates are given. The major 

challenge of the update is to generate a new search database weekly following the ECOD 

update and to choose the appropriate cutoffs for mixing various homology based scores 

automatically. 

 

Database representative selection and homology network definition 
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The new search database consists of domain representatives with sequence 

identity <20% from the ECOD database. For domains in the same ECOD F-group 

(Family level), we generated pairwise TM-align (Zhang and Skolnick 2005) structure 

alignments of all domain pairs and kept domains with sequence identity <20% based on 

TM-align alignments.  

Distinct from other sequence-based homology search methods, COMPADRE 

utilizes the homology networks within the search database to improve the discriminating 

power of the similarity score. Thus, to offer optimal performance, it is essential to update 

the homology networks regularly, e.g., to couple it with ECOD updates. Two levels of 

homology are defined in COMPADRE: close homology and all homology. “Close 

homology” covers domain pairs classified in the same H-group (homology level) in 

ECOD (Cheng, Schaeffer et al. 2014). These domain pairs are closely related to each 

other and tend to have similar 3D structures, functions and sequences. They should 

appear before relatively remote homologs in the search result if ranked by evolutionary 

distance. The second level of “all homology” includes more distantly related domain 

pairs. "All homology" is defined by an SVM classifier (Qi, Sadreyev et al. 2007) 

constructed to complement ECOD classification. The TM-score quantifying structural 

similarity (Zhang and Skolnick 2005) and the BLOSUM62 score (Qi, Sadreyev et al. 

2007) calculated on TM-align structure alignments to quantify sequence similarity are 

used as input features. The training dataset consists of an ECOD subset of 1000 pairs 

labeled as negative (i.e., not-homologous) that belong to different ECOD X-groups, and 

1000 pairs labeled as positive (i.e., homologous) that belong to the same ECOD H-group. 



 

 

64 

The SVM classifier can help recognize subtle evolutionary similarities between domain 

pairs.   

Using these definitions of two homology levels, COMPADRE can generate two 

new similarity scores by combining the original scores for the template and the scores 

between the query and the template’s homologs. The close homolog score (Sc) is 

produced by combining the scores of the template’s close homologs, and the all homolog 

score (Sr) is produced by combining the scores of the template’s all homologs. 

 

Performance assessment 

We used two criteria to assess the performance of homology detection methods 

(Tong, Sadreyev et al. 2015). One better discriminates between homologs and non-

homologs (i.e. placing homologs of the query above non-homologous sequences). The 

other ranks homologs according to their evolutionary distances from the query, so that 

closer relatives of the query appear as top hits. A ROC (receiver operating characteristic) 

curve measured performance in both settings. The domain pairs defined as “all 

homology” represent true positives for assessing the power of distinguishing the 

homologs from non-homologs, and the “close homology” pairs represent true positives 

for assessing the power of placing the homologs according to evolutionary distance. The 

ROC curve plots the true positive numbers against the false positive numbers for 

different cutoff points of E-values. 

The following statistics were used to compare performance with other methods. 

We defined the ROC value as      
 

 
 

  

 

 
   , where ti is the number of true positives 
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corresponding to the i-th false positive found, up to n that is the specified number of top 

false positives. T is the overall number of true positives in the database (Fawcett 2006). 

An essential characteristic for a user is the degree of contamination with false positives 

(FP), or a proportion of true positives (TP) that is expected in the list of top hits. 

Precision rates (fractions of true positives among top hits: precision rate = TP/(TP+FP)) 

for different levels of sensitivity (fraction of detected homologs: sensitivity = 

TP/(TP+FN), FN is the number of false negatives) were calculated for comparison.   

 

Automatic choice of homology networks 

The choice of homology network has an impact on the performance of 

COMPADRE. The inclusion of all homologs will sample more broadly in protein 

universe and result in better discrimination of homologs from non-homologs. However, 

such a wide sample of the template’s homologs will dilute the direct signals from close 

homologs and could scramble the ranking by placing close homologs further down in the 

ranked list. On the other hand, using only close homologs can better discriminate close 

homologs from remote homologs and non-homologs, but may limit the sensitivity of 

remote homology detection.  

Per Eq(3) in Tong et al. (Tong, Sadreyev et al. 2015), the solution is to mix the 

scores from both homology networks with proportions depending on the similarity 

between a query and template. The weight wc in Eq(3) is a variable depending on  

(close homolog score) as a measure of closeness between query and template. Using an 

upper boundary ( ) and a lower boundary ( ), we define the contribution only from 
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close homology (wc =1 if > ) or only from all homology (wc =0 if < ). For the 

intermediate values of ( < < ), we mix  with (all homolog score) using 

the weight wc exponentially dependent on . To mix the two scores ( and ) 

generated by different homology networks, we need to choose the upper and lower 

boundaries of both  and , and match the scales of the two scores and  using the 

following equation:  

 

where  and  are lower and upper bounds of  in the mixing area, and 

are lower and upper bounds of  in the mixing area. 

In the previous COMPADRE version, the four boundaries ( , ,  and 

) were selected manually by trial and error to optimize COMPADRE performance. 

However, an automatic method is required to find these four boundaries for continual 

database updates. We found there is a linear relationship between the ranks of hits with 

scores near the boundaries (e.g., the ranks of hits with the scores closest to and 

in the sorted  list and the ranks of hits with the scores closest to and in the 

sorted  list) and squared number of sequences in the search database (Supplementary 

Figure III-4). Thus, the boundaries for mixing can be found in the sorted score list based 

on the calculated ranks, i.e., from the number of sequences we compute expected rank of 

a boundary score and take a score for the hit with this rank as the boundary score. 
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Figure III-1. Detection performance depends on the range of template’s homologs 

included in the similarity scoring. ROC plots for (a) discrimination between homologs 

and non-homologs and (b) retrieval of closer homologs (relationships outside ECOD 

homology group are considered false positives) are shown. Performance of the combined 

similarity measure implemented in COMPADRE method (red) is compared with 

performance of the scoring based on inclusion of only close template homologs (orange, 

“Close homologs”) and inclusion of all homologs (brown, “All homologs”), as well as 

PSI-BLAST (blue) and PROCAIN (black) methods. 
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Figure III-2. Pipeline of COMPADRE update following ECOD database update. 
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Figure III-3. An example showing remote sequence similarity detected by COMPADRE 

utilizing homology network. (a) COMPADRE results with BWI-2c sequence as query. 

Aligned cysteines are colored orange, and cyan positions usually form a disulfe bond in 

thionins other than crambins (hit: 3NIR). The two aligned helices are indicated by 

rounded rectangles under the alignment. (b) Structural superposition of BWI-2c (PDB: 

2LQX, purple) and beta-hordothionin (PDB: 1WUW, cyan) by TM-align with two pairs 

of disulfide bond aligned. 
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.

 

 

 

Figure III-4. Relationships between ranking number in the sorted list and database size. 
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Method ROC(80,415) ROC(804,150) ROC(56,397,442) 

PSI-BLAST 0.0103 +/- 5e-06 0.0175 +/- 1e-06 0.1644 +/- 2e-08 

PROCAIN 0.0265 +/- 2e-06 0.0504 +/- 4e-07 0.3322 +/- 2e-08 

Close homologs 0.0878 +/- 2e-06 0.1231 +/- 4e-07 0.3861 +/- 2e-08 

All homologs 0.0418 +/- 1e-06 0.1661 +/- 3e-07 0.6100 +/- 3e-08 

COMPADRE 0.1001 +/- 1e-06 0.1983 +/- 3e-07 0.6062 +/- 4e-08 

 

Table III-1. ROC values for the discrimination between homologs and non-homologs. 

Receiver operating characteristics (ROC) values with standard deviations for different 

search methods, calculated for three numbers of top false positives: the mean of 5 top 

false positives per query (80,415 false positives in total); the mean of 50 top false 

positives per query (804,150 false positives in total), and the point where PROCAIN 

retrieves half of all true positives in the dataset (56,397,442 false positives in total). The 

total number of true positives in the set is T= 15,645,053. Methods are denoted the same 

way as in Figure III-1. 
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Method ROC(80,415) ROC(804,150) ROC(13,806,119) 

PSI-BLAST 0.0470 +/- 2e-05 0.0678 +/- 9e-06 0.1368 +/- 1e-06 

PROCAIN 0.1411 +/- 2e-05 0.2265 +/- 5e-06 0.4081 +/- 1e-06 

Close homologs 0.4899 +/- 7e-06 0.6637 +/- 5e-06 0.8660 +/- 1e-06 

All homologs 0.0013 +/- 2e-05 0.0621 +/- 4e-06 0.5712 +/- 1e-06 

COMPADRE 0.4867 +/- 1e-05 0.5613 +/- 8e-06 0.7001 +/- 1e-06 

 

Table III-2. ROC values for the detection of close homologs (ECOD H-group level). 

Receiver operating characteristics (ROC) values with standard deviations for different 

search methods, calculated for three numbers of top false positives: the mean of 5 top 

false positives per query (80,415 false positives in total); the mean of 50 top false 

positives per query (804,150 false positives in total), and the point where PROCAIN 

retrieves half of all true positives (domains in the same ECOD H-group) in the dataset 

(13,806,119 false positives in total). The total number of true positives in the set is T= 

2,255,581. Methods are denoted the same way as in Figure III-1.  
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Method  

Sensitivity (%) 

1 10 25 50 75 

PSI-BLAST 54.45 9.70 7.86 7.38 6.61 

PROCAIN 99.52 43.35 21.32 16.31 9.38 

Close homologs 100.00 95.66 32.12 20.38 11.53 

All homologs 92.26 92.66 82.04 72.74 25.39 

COMPADRE 100.00 97.73 84.33 73.49 25.46 

 

Table III-3. Precision rates for the discrimination between homologs and non-homologs. 

Precision rates (%) are calculated for several levels of sensitivity from 1% to 75%. The 

total number of true positives in the set is T= TP+FN = 15,645,053. Methods are denoted 

the same way as in Figure III-1. 
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Method 

Sensitivity (%) 

1 10 25 50 75 

PSI-BLAST 95.44 9.39 2.10 1.28 1.01 

PROCAIN 97.28 96.18 51.33 7.55 2.59 

Close homologs 100.00 99.99 99.29 97.53 61.16 

All homologs 18.96 25.02 24.67 21.77 13.93 

COMPADRE 100.00 99.99 99.27 97.51 16.70 

 

Table III-4. Precision rates for the detection of close homologs (ECOD H-group level). 

Precision rates (%) are calculated for several levels of sensitivity from 1% to 75%. The 

total number of true positives in the set is T= TP+FN = 2,255,581. Methods are denoted 

the same way as in Figure III-1. 
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IV. REFINEMENT BY SHIFTING SECONDARY STRUCTURE 

ELEMENTS IMPROVES SEQUENCE ALIGNMENTS 

 

Constructing a model of a query protein based on its alignment to a homolog with 

experimentally determined spatial structure (the template) is still the most reliable 

approach to structure prediction. Alignment errors are the main bottleneck for homology 

modeling when the query is distantly related to the template. Alignment methods often 

misalign secondary structural elements by a few residues. Therefore, better alignment 

solutions can be found within a limited set of local shifts of secondary structures. We 

present a refinement method to improve pairwise sequence alignments by evaluating 

alignment variants generated by local shifts of template-defined secondary structures. 

Our method SFESA is based on a novel scoring function that combines the profile-based 

sequence score and the structure score derived from residue contacts in a template. Such 

a combined score frequently selects a better alignment variant among a set of candidate 

alignments generated by local shifts and leads to overall increase in alignment accuracy. 

Evaluation of several benchmarks shows that our refinement method significantly 

improves alignments made by automatic methods such as PROMALS, HHpred and 

CNFpred. 
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INTRODUCTION 

Prediction of protein three-dimensional (3D) structures from amino acid 

sequences is important for biologists to study proteins lacking experimental structures 

and is one of the key problems in computational biology (Baker and Sali 2001). With the 

accumulation of experimentally determined protein structures in the PDB database 

(Berman, Westbrook et al. 2000), homology modeling (also known as template-based 

modeling) is the most reliable approach to protein structure prediction (Baker and Sali 

2001, Zhang 2008). The 3D structure for a given query sequence can be modeled by 

aligning the query to one or several protein templates with known structures (Schwede, 

Kopp et al. 2003, Eswar, Webb et al. 2006). The model quality relies heavily on the 

quality of the pairwise or multiple sequence alignment (MSA) between the query and the 

templates (Sali, Potterton et al. 1995, Petsko 2006, Peng and Xu 2011). Currently, most 

MSA methods use a progressive approach that builds up an MSA by aligning the most 

similar two sequences as a pre-aligned group first and gradually adding more distant 

sequences or other pre-aligned groups. At each step of progressive alignment, a pairwise 

alignment method is used to align two sequences, a sequence and a pre-aligned group, or 

two pre-aligned groups. Thus, pairwise alignment is an integral component in most MSA 

methods (Notredame, Higgins et al. 2000, O'Sullivan, Suhre et al. 2004, Do, 

Mahabhashyam et al. 2005, Pei and Grishin 2007, Pei, Kim et al. 2008). An accurate 

pairwise alignment between the query and the template is essential regardless of whether 

one or multiple templates are used for homology modeling. 

Although pairwise alignment construction has been extensively researched, 

alignments are still not sufficiently accurate for sequences with low similarity (Rost 
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1999). For example, the latest significant advance, CNFpred (Ma, Peng et al. 2012), only 

has Q-score of 52.4 for the MUSTER benchmark (Wu and Zhang 2008) (13.0% average 

sequence identity by MUSTER’s own reference). A number of approaches have been 

developed for the task. Earlier work focused on dynamic programming recursion in 

construction of a global or local alignment (Needleman and Wunsch 1970, Smith and 

Waterman 1981). Heuristic methods such as FASTA and BLAST (Lipman and Pearson 

1985, Altschul, Gish et al. 1990) were developed to significantly increase the speed of 

alignment. Subsequently, sequence profiles and hidden Markov models (HMMs) (Krogh, 

Brown et al. 1994) were introduced for comparison of a single sequence and an MSA. 

Furthermore, profile-profile (Yona and Levitt 2002, Mittelman, Sadreyev et al. 2003, 

Sadreyev and Grishin 2003, Jaroszewski, Rychlewski et al. 2005) and HMM-HMM 

(Soding 2005, Pei and Grishin 2007, Pei, Kim et al. 2008) comparisons improved 

pairwise alignments by scoring the similarity between sequence positions in protein 

families. In addition to pure sequence methods, 3D structural information is valuable for 

alignment construction because protein structures tend to evolve more slowly than 

protein sequences (Chothia and Lesk 1986, Illergard, Ardell et al. 2009). 3D-COFFEE 

(O'Sullivan, Suhre et al. 2004) as well as PROMALS3D (Pei, Kim et al. 2008) use 

alignment constraints derived from known 3D structures and do not use structure energy-

based scoring to explicitly compare a structure to a sequence without 3D structure.  

Scoring of observed and predicted structural properties, such as secondary structure, 

solvent accessibility, residue depth, residue contacts and backbone torsion angles, was 

included in a number of alignment methods (Shi, Blundell et al. 2001, McGuffin and 

Jones 2003, Zhou and Zhou 2005, Wu and Zhang 2008, Zhang, Liu et al. 2008, Wang, 
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Sadreyev et al. 2009, Yang, Faraggi et al. 2011, Ma, Peng et al. 2012). Information 

extracted from structure-based alignments of homologous proteins was used to derive 

amino acid substitution matrices (Prlic, Domingues et al. 2000, Shi, Blundell et al. 2001, 

Qiu and Elber 2006) or position-specific scoring matrices (PSSMs) (Luthy, Bowie et al. 

1992, Kelley, MacCallum et al. 2000). 3D profile is a position-dependent 20xn scoring 

matrix derived from protein structures. Such profiles were used to improve sequence-

structure alignment (Luthy, Bowie et al. 1992, Kelley, MacCallum et al. 2000). 

Moreover, a 400x400 contact-mutation matrix was proposed to improve sequence 

alignment by using the contacts in template (Kleinjung, Romein et al. 2004, Dong, Lin et 

al. 2005). However, how to efficiently and effectively use structural (especially energy-

based) information to improve pairwise alignment remains an open question in the field 

(Pettitt, McGuffin et al. 2005).   

Query-template alignment quality is poor when the query is distantly related to 

the template, and alignment errors remain the main bottleneck in homology modeling 

(Huang, Mao et al. 2014, Kryshtafovych, Moult et al. 2014). Inevitable shortcomings in 

each alignment strategy lead to alignment errors. Application of a refinement algorithm 

to a given alignment can correct such errors. Refinement methods have been used to 

improve structure-based alignments and progressively constructed MSA (Gotoh 1996, 

Katoh, Misawa et al. 2002, Thompson, Thierry et al. 2003, Chakrabarti, Lanczycki et al. 

2006, Kim, Tai et al. 2009). MSA refinement was often conducted by iteratively dividing 

an MSA into two sub-alignments and realigning them. However, one obvious drawback 

of these methods is that no additional information (such as structural information) was 

added to the iterative refinement. 
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A template structure can be viewed as regular secondary structure elements 

(SSEs, i.e., α-helices and β-strands) (Kabsch and Sander 1983, Richards and Kundrot 

1988) alternating with loops (such as turns and coils) connecting these SSEs. SSEs are 

typically more conserved (Huang, Pei et al. 2013) and accurate alignments between SSEs 

are essential, whereas loops tend to be more evolutionarily plastic and difficult to align. 

In a given alignment, we define an “alignment block” as the residues in an SSE in the 

template and their aligned residues in the query. Automatic aligners such as PROMALS 

(Pei and Grishin 2007) frequently misalign alignment blocks by a few residues . Better 

alignment solutions can frequently be found among a limited set of local shifts of 

alignment blocks (moving residues in the query relative to the template). This 

observation motivated us to develop a pairwise alignment refinement method, SFESA, 

which generates candidate alignment variants for each alignment block by shifting the 

query region. We developed a scoring function to judge whether an alignment variant is 

likely to be more accurate than the original alignment. Our scoring function combines a 

profile-based sequence score and a novel structural contact-based score derived from 

residue contacts in template. This combined score was often able to select the best 

alignment solution among a set of candidates and lead to overall increase in alignment 

accuracy. Our approach improves alignments generated by a number of methods such as 

PROMALS (Pei and Grishin 2007), HHpred (Soding 2005) and CNFpred (Ma, Peng et 

al. 2012) on several benchmarks that include both reference-dependent and reference-

independent assessment. 
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RESULTS 

An overview of the SFESA method for pairwise alignment refinement 

SFESA is a post-processing tool that can be applied to any pairwise alignment 

between a query and a template with known spatial structure. It increases alignment 

quality by locally shifting residues in alignment blocks defined by template SSEs. First, 

SFESA recognizes alignment blocks in an existing alignment. Each alignment block 

corresponds to residues in one SSE of the template and their aligned residues in the 

query. Then, proceeding from N-terminus to C-terminus, SFESA determines if each 

alignment block should be changed to one of the alignment variants generated by local 

shifts. Our analysis of PROMALS alignments revealed that SSEs are often misaligned by 

several residues. Thus, a better alignment solution can be found within a limited set of 

local shifts of SSEs (Figure IV-1). 

SFESA generates N (up to 18) alignment variants (Figure IV-2C) by shifting 

query residues in alignment blocks locally (see MATERIALS and METHODS). Then, 

both profile-based sequence score (including scoring of secondary structure similarity) 

and contact-based structure score of aligned residue pairs of the original alignment block 

and all alignment variants are calculated. We found that a two-filter strategy offers the 

best performance. The first filter detects alignment variants with a higher combined score 

I (Scomb_I) than the original alignment block. If the original alignment block has the best 

Scomb_I, SFESA keeps it and move to the next alignment block. Otherwise, the alignment 

variant with the highest Scomb_I is selected and passed to the second filter. The second 

filter compares the selected alignment variant and the original alignment block by using a 



 

 

81 

different combined score. This combined score is either combined score II (Scomb_II) or 

the SVM score (SSVM) (see MATERIALS AND METHODS). If the selected alignment 

variant has a higher Scomb_II or SSVM, SFESA accepts the alignment variant. Otherwise, 

SFESA keeps the original alignment block. This refinement procedure is performed for 

each block in the alignment, starting from the N-terminal block and moving towards the 

C-terminus.  

Here we report results of four modes for SFESA (see MATERIALS AND 

METHODS for details): SFESA (O) uses up to 8 variants generated by ±4 shifts that 

keep the gap patterns in the original alignment block and the Miyazawa-Jernigan (MJ) 

contact matrix for structure score calculation; SFESA (O+G) uses up to 18 variants by 

considering gap shifts  and the MJ contact matrix; SFESA (O+G+M) uses our newly 

derived contact matrix in addition to gap processing; SFESA (O+G+M+S) differs from 

SFESA (O+G+M) in that the SSVM  instead of Scomb_II is used in second filter. 

 

Parameter optimization 

Using an in-house dataset of 1675 remote homologous domain pairs (see 

MATERIALS AND METHODS), we optimized the parameters of four SFESA modes: 

SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S). Best 

parameters were found for each mode separately. The Q-score and GDT-TS of the 

original PROMALS are 62.3 and 0.464, respectively. Each of these SFESA modes 

improve PROMALS alignments in both reference-dependent (Q-score of DALI) and 

reference-independent (GDT-TS) assessments. Even the basic mode SFESA (O) that 
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locally shifts up to ±4 residue positions can increase the average DALI Q-score by 2.0 

(from 62.3 to 64.3) and the GDT-TS score by 0.008 (from 0.464 to 0.472). By shifting 

gaps in the original alignment blocks, the mode that considers 18 alignment variants, 

SFESA (O+G), can increase Q-score by 3.0 (from 62.3 to 65.3) and GDT-TS by 0.012 

(from 0.464 to 0.476). Our new contact matrix, used in SFESA (O+G+M), further 

increases the alignment quality compared to the MJ matrix. The Q-score and GDT-TS 

improvement over the original PROMALS are 3.6 (from 62.3 to 65.9) and 0.014 (from 

0.464 to 0.478), respectively. Finally, SFESA (O+G+M+S), using SSVM in the second 

filter instead of Scomb_II, increases 3.7 in Q-score (from 62.3 to 66.0)  and 0.014 (from 

0.464 to 0.478) in GDT-TS. The comparison of numbers of improved and deteriorated 

alignments also shows that all SFESA modes can improve the original alignments 

generated by PROMALS (Figure IV-3). 

The above results are based on the entire training dataset. To address the 

possibility of overfitting in parameter training, we divided the training dataset into four 

subsets based on the four SCOP classes: class a (all α proteins), class b (all β proteins), 

class c (α and β proteins (a/b)) and class d (α and β proteins (a+b)) (Figure IV-4). We 

trained the SFESA (O+G+M) parameters (including our new contact energy matrix) on 

the SCOP class b alignments and tested these parameters on the four subsets separately. 

Similarly, we trained the parameters on the SCOP class c alignments. There was no 

significant drop in Q-score on the class b when using parameters trained on class c (the 

purple column in Figure IV-4 class b) compared to using parameters trained on class b 

(the green column in Figure IV-4 class b) or using parameters derived from all data (the 

red column in Figure IV-4 class b). The average Q-scores of class b using parameters 
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trained on class b, class c and all data are 59.5, 59.3 and 59.4, respectively. Similar 

results were observed on class c, with no significant Q-score difference between using the 

parameters trained on the class b (the green column in Figure IV-4 class c) and using the 

parameters trained on the class c (the purple column in Figure IV-4 class c). Overtraining 

was not a major issue even in our very stringent, class-specific cross-validation scheme. 

Furthermore, we analyzed the distribution of improved and deteriorated alignment 

block numbers in one alignment (SFESA (O+G+M+S) vs. PROMALS; DALI as a 

reference) for our training dataset. We found that SFESA sometimes improved several 

alignment blocks in one alignment, while mostly deteriorating none or only one 

alignment block (Figure IV-5A). Among 1675 alignments in our training dataset, there 

are 562 alignments with one improved alignment block while 292 alignments contain 

only one deteriorated alignment block. There are 268 alignments with two improved 

alignment blocks while 55 alignments contain two deteriorated alignment blocks. The 

total number of alignments with more than two improved alignment blocks is 121. In 

contrast, only 6 alignments contain more than two deteriorated alignment blocks. 

 

Tests on the MUSTER benchmark 

The MUSTER benchmark consists of 300 protein pairs (Wu and Zhang 2008). It 

is a more challenging benchmark with an average DALI Q-score of 51.6 for PROMALS 

alignments compared to 62.3 of our inhouse dataset. We used a number of structure-

based alignment methods as a reference: DALI (Holm and Sander 1998), TMalign 

(Zhang and Skolnick 2005), Matt (Menke, Berger et al. 2008), MUSTER (Wu and Zhang 
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2008) and DeepAlign (Wang, Ma et al. 2013). SFESA (O+G+M) and SFESA 

(O+G+M+S) applied to PROMALS alignments outperform other methods (Table IV-1), 

regardless of the reference alignments used. SFESA can at most increase 2.6, 2.1, 2.6, 2.5 

and 2.2 in Q-score compared with original PROMALS method when either Dali, 

TMalign, Matt, Muster or DeepAlign is used as a reference. In terms of Q-score based on 

DALI reference, all SFESA modes are statistically better than the original PROMALS 

based on the Wilcoxon signed-rank test (p-value less than 0.005, Table IV-2). When 

applied to alignments generated by HHpred and CNFpred, SFESA also shows improved 

alignment quality in terms of DALI Q-score, although the improvement is smaller (Table 

IV-1). Based on the alignment block level and aligned position level comparisons (Table 

IV-3, IV-4, IV-5, IV-6, IV-7 and IV-8), all SFESA modes generate more improved 

alignment blocks as well as aligned residue pairs than the deteriorated ones when 

compared with the original PROMALS. The similar trends can be observed in most 

SFESA modes applied on HHpred and CNFpred (Table IV-3, IV-4, IV-5, IV-6, IV-7 and 

IV-8).  

SFESA (O+G+M+S) significantly improves PROMALS alignments on the 

MUSTER benchmark, making 138 alignments better and degrading 49 alignments 

(Figure IV-6A). In a more detailed comparison, we counted the number of the alignments 

SFESA improves over PROMALS and the number of alignments PROMALS is 

descended by SFESA at different Q-score difference cutoffs (Figure IV-6B). SFESA 

(O+G+M+S) improves PROMALS by at least 5 Q-score on 90 alignments and degrades 

by this margin on 23 alignments (Figure IV-6B). SFESA (O+G+M+S) also improved 

CNFpred alignments on this benchmark (Figure IV-6C) with 111 better alignments and 
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49 worse alignments. SFESA (O+G+M+S) improves CNFpred by at least 5 in Q-score on 

48 alignments and failed by this margin on 26 alignments (Figure IV-6D).  

Besides the above reference-dependent assessments, reference-independent 

average TM-score of query models built by MODELLER (Sali, Potterton et al. 1995) 

also shows that SFESA can improve PROMALS, HHpred and CNFpred alignments 

(Table IV-1, last column). SFESA (O+G+M+S) applied to PROMALS (Table IV-1, last 

column) offers the best performance. 

Based on the analysis of the improved and deteriorated alignment block numbers 

in one alignment (SFESA (O+G+M+S) vs. PROMALS; DALI as a reference) for this 

dataset (Figure IV-5B), we also found that SFESA sometimes improved several 

alignment blocks in one alignment and mostly deteriorated none or only one alignment 

block. Among 300 alignments in the MUSTER benchmark, there are 83 alignments with 

one improved alignment block while 59 alignments contain only one deteriorated 

alignment block. There are 39 alignments with two improved alignment blocks while 11 

alignments contain two deteriorated alignment blocks. The total number of the 

alignments with more than two improved alignment blocks is 26. In contrast, only 3 

alignments contain more than two deteriorated alignment blocks. 

 

Tests on the SALIGN benchmark 

The SALIGN benchmark consists of 200 protein pairs. Although it has a similar 

DALI Q-score of 61.4 on PROMALS alignments compared to 62.3 of our inhouse 
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dataset, this benchmark is very challenging because proteins in each pair have very 

different lengths. SFESA applied to PROMALS shows maximal improvement compared 

to that applied to HHpred and CNFpred (Table IV-9). SFESA improves PROMALS Q-

scores by 2.5, 1.9, 2.1 and 2.5 when using either DALI, TMalign, Matt or DeepAlign as a 

reference. For these references, SFESA shows 0.7, 0.5, 0.5 and 0.5 increases for HHpred 

and 0.6, 0.5, 0.4 and 0.2 for CNFpred. The reference-independent evaluation (Table IV-9, 

the last column) shows a similar trend that SFESA has the maximal improvement on 

PROMALS. The improvement on the SALIGN benchmark is less than that on the 

MUSTER benchmark, especially for the CNFpred with DALI as a reference 

(improvement of 1.2 Q-score in MUSTER and 0.6 Q-score in SALIGN). Nevertheless, 

alignments refined in all SFESA modes are statistically better than PROMALS based on 

the Wilcoxon signed-rank test (p-value less than 0.005, Table IV-10) in terms of Q-score 

based on DALI reference. SFESA modes except SFESA (O) are statistically better than 

HHpred, despite of an increase of less than 1.0 Q-score on HHpred (Table IV-10). For 

CNFpred, the Wilcoxon signed-rank test shows statistically significant improvement in 

SFESA (O), SFESA (O+G) and SFESA (O+G+M+S) (Table IV-10) in terms of Q-score. 

The alignment block level and aligned position level comparisons show that the number 

of improved alignment blocks or aligned residue pairs is larger than the number of 

deteriorated ones for all SFESA modes applied on PROMALS and most SFESA modes 

applied on HHpred and CNFpred (Table IV-11, IV-12, IV-13, IV-14 and IV-15). 

Among 200 alignments in the SALIGN benchmark (SFESA(O+G+M+S) vs. 

PROMALS; DALI as a reference), there are 68 alignments with one improved alignment 

block while 55 alignments contain only one deteriorated alignment block (Figure IV-5C). 
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35 alignments contain two improved alignment blocks while 10 alignments contain two 

deteriorated alignment blocks (Figure IV-5C). In addition, the total number of the 

alignments with more than two improved alignment blocks is 24 while only 2 alignments 

contain more than two deteriorated alignment blocks (Figure IV-5C). Thus SFESA 

refinement improves many alignment blocks without introducing many incorrectly 

aligned blocks. 

 

Tests on the SABmark benchmark 

We separately tested on SABmark’s two datasets (Van Walle, Lasters et al. 2005): 

the “superfamilies” set and the “twilight zone” set. The “superfamilies” set has an 

average Q-score of 71.1 for PROMALS alignments. On the “superfamilies” set SFESA 

improved 1.0, 0.7 and 1.3 for PROMALS, HHpred and CNFpred, respectively (Table IV-

16). The “twilight zone” set is a more difficult benchmark than the “superfamilies” set 

with an average Q-score of only 46.2 for the PROMALS alignments. On the “twilight 

zone” set SFESA improved Q-score for PROMALS, HHpred and CNFpred by 1.9, 0.7 

and 0.9, respectively (Table IV-16). Reference-independent average TM-scores of query 

models built by MODELLER displayed similar trends (Table IV-16).  In terms of Q-

score based on SABmark’s own reference, all SFESA modes in “twilight zone” set as 

well as SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S) in “superfamilies” 

set are statistically better than the original PROMALS based on the Wilcoxon signed-

rank test (p-value less than 0.005, Table IV-17). Based on the alignment block and 

aligned position level comparisons, all SFESA modes surpassed the original PROMALS. 
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In terms of Q-score, TM-score and alignment block/aligned position level, most SFESA 

modes improved HHpred and CNFpred, but not as much as PROMALS (Table IV-16, 

IV-18, IV-19, IV-20 and IV-21). 

Based on the analysis of the improved and deteriorated alignment block numbers 

in one alignment (SFESA (O+G+M+S) vs. PROMALS; compared with SABmark’s own 

reference) for “twilight zone” set (Figure IV-7, 209 alignments totally), there are 45 

alignments with one improved alignment block while 21 alignments contain one 

deteriorated alignment block. And there are 8 alignments containing more than one 

improved alignment blocks in contrast to 5 alignments containing more than one 

deteriorated alignment blocks. The same analysis on “superfamilies” set (Figure IV-8, 

425 alignments totally) shows a similar trend. There are 71 alignments with one 

improved alignment block while 37 alignments contain one deteriorated alignment block. 

And there are 16 alignments containing more than one improved alignment blocks while 

6 alignments have more than one deteriorated alignment blocks in each alignment. Thus 

SFESA improves quality of several alignment blocks while avoiding deterioration of 

many alignment blocks in one alignment. 

 

Tests on the PREFAB benchmark 

The PREFAB benchmark (Edgar 2004) contains 1682 protein pairs and is less 

difficult compared to the previous three benchmarks, with a PROMALS Q-score of 80.3. 

PREFAB reference alignments (Edgar 2004) are based on a consensus of FSSP (Holm 

and Sander 1998) structural alignment and CE alignment (Stoyanova, Nicholls et al. 
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2004). SFESA (O+G+M+S) can increase the Q-score of PROMALS (80.3) and CNFpred 

(80.5) to 81.3 (Table IV-22, the first column). 

In addition, we divided the PREFAB alignments into four equal-sized subsets by 

sequence identity (Table IV-22). The average sequence identities of the four subsets are 

6.8%, 14.9%, 23.1% and 48.4%. In “set1” and “set2” subsets with the lower sequence 

identity (6.8% and 14.9%), we observed the most prominent improvement of more than 

1.0 Q-score unit over PROMALS, HHpred and CNFpred. In the other two less difficult 

subsets (“set3” and “set4”, Table IV-22), SFESA improvement is less dramatic. 

According to the Wilcoxon signed-rank test, there are statistically significant 

improvement in “set1” and “set2” (Table IV-23) in terms of Q-score based on PREFAB’s 

own reference. We also observed more improvement in “set1” and “set2” compared with 

“set3” and “set4” based on alignment block and aligned position comparisons (Table IV-

24, IV-25, IV-26, IV-27 and IV-28). 

Based on the analysis of the improved and deteriorated alignment block numbers 

in one alignment (SFESA (O+G+M+S) vs. PROMALS; PREFAB’s own reference) for 

this dataset (Figure IV-9, IV-10, IV-11, IV-12 and IV-13), we also found that SFESA 

sometimes improved several alignment blocks in an alignment and mostly deteriorated 

none or only one alignment block. Among 1682 alignments in the PREFAB benchmark, 

there are 390 alignments with one improved alignment block, while 249 alignments 

contain only one deteriorated alignment block. And there are 90 alignments containing 

one improved alignment blocks while 36 alignments contain two deteriorated alignment 

blocks in each alignment. In addition, 21 alignments are found to have at least two 
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improved alignment blocks, and 17 alignments contain more than two deteriorated 

alignment blocks. 

 

Examples of alignments improved by SFESA 

Here, we discuss four examples of alignments improved using SFESA. In the 

first, and very challenging, example (Figure IV-14A), SFESA refined the PROMALS 

alignment of two SCOP domains from the same superfamily (d.129.3): d2ffsa1 (query) 

and d2qpva1 (template). The PROMALS alignment of these domains consists of eight 

alignment blocks. All eight blocks are misaligned by PROMALS, and the Q-score (with 

the DALI alignment as reference) is only 3.2 (4 out of 125 aligned positions correctly 

aligned). SFESA changed the alignment in five blocks (S1, S5, S6, S7 and H1) and 

improved three of them (S1, S7 and H1), resulting in a Q-score of 39.2 (49 out of 125 

aligned positions correctly aligned). We observed that both sequence score and structure 

score contribute to the selection of a better alignment variant. For example, the S1 

alignment block in the original PROMALS alignment has a SFESA sequence score of -

1.8 and a structure score of 6.0, which increased to 1.8 and 11.4, respectively, in the 

SFESA alignment.  

The second example shows a case with the Q-score increase (1.7) close to the 

average Q-score difference (the DALI alignment as reference) (Figure IV-14B). The two 

SCOP domains d1c7qa_ (query) and d1iata_ (template) are from the same SCOP 

superfamily (c.80.1). Both of them are phosphoglucose isomerases but are from different 

organisms. The PROMALS alignment of these domains consists of 22 alignment blocks 
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(13 helices and 9 strands). The original PROMALS alignment has a Q-score of 72.4 

when compared with the DALI alignment (296 out of 409 aligned positions correctly 

aligned). SFESA changed the alignment in one block (S5) and improved this strand, 

resulting in a Q-score increase of 1.7 (7 out of 409 aligned positions were corrected by 

SFESA).  

Besides these improved alignments, there are a few alignments with accuracy 

decrease. The third example shows an alignment with accuracy dropping more than 20 Q-

score units (Figure IV-14C). These two SCOP domains d1j8yf1 (query) and d1vmaa1 

(template) are from the same SCOP superfamily (a.24.13, Domain of the SRP/SRP 

receptor G-proteins). SFESA incorrectly refined one of the four blocks corresponding to 

alpha-helices (H4) and led to a decrease of Q-score from 78.7 (48 out of 61 aligned 

positions correctly aligned) to 52.5 (32 out of 61 aligned positions correctly aligned) 

when compared with the DALI alignment. We observed a large increase of sequence 

score (from -1.32 to 4.13) after shifting +3 residues. On the other hand, the original 

alignment block and the +3 alignment variant have the similar structure score (original: 

0.96, +3 variant: 0.94). Thus, +3 alignment variant has the highest combined score 1 

among the original alignment block and 8 alignment variants, and this variant has a 

higher combined score 2 when compared with the original alignment block. As a result, 

SFESA incorrectly refined the alignment block by +3 shifting. The procedure of +3 

shifting in SFESA introduced additional gaps to the right side of the template element 

(Figure IV-14C). However, no gap penalty is used in SFESA, as our scoring is restricted 

to the alignment block. From the structure similarity perspective, the C-terminal helix 

(H4) has a relatively large RMSD (2.81Å) based on DALI alignment compared with 
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other three helices (H1: 2.21Å, H2: 1.47Å and H3: 1.97Å), suggesting that elements 

showing large structural deviations between target and template are prone to mistakes by 

SFESA.  

Prediction of active site residues is one of the key goals in alignment construction. 

Misaligned active site residues can lead to faulty experimental design. The last example 

shows (Figure IV-15) that SFESA can correct a misaligned active site residue in the 

alignment of two SCOP domains d1h97a_ (query) and d1tu9a_ (template). Both protein 

domains are from the SCOP globin family: d1h97a_ is a trematode hemoglobin (Pesce, 

Dewilde et al. 2001), and d1tu9a_ is a globin-like hypothetical bacterial protein 

(unpublished). HIS76 in the template and HIS98 in the query are the active site residues 

(heme-binding) and they occupy structurally equivalent positions according to the DALI 

alignment. However, in PROMALS alignment, HIS76 in the template is misaligned to 

LYS96 in the query (Figure IV-15). All SFESA modes succeed in recognizing the 

misaligned alignment block and correcting it by a shift of -2 (Figure IV-15).  
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DISCUSSION AND CONCLUSION 

SFESA can refine and improve existing alignments  

For divergent sequences, alignments generated by automatic methods are error-

prone despite significant research efforts. Alignment errors are still the major reason for 

poor quality of homology models. Alignment refinement is a promising addition to 

existing alignment methods. Alignment methods often misalign secondary structures by a 

few residues, and more accurate solutions can be found within a limited set of local shifts 

of SSEs (Figure IV-1). SFESA aims to refine pairwise alignments by locally shifting 

alignment blocks defined by template SSEs to correct misaligned blocks.  

Alignment errors are frequently caused by incorrect placement of gaps. The 

simplest SFESA (O) mode keeps original gap patterns while shifting SSEs. This 

approach generates up to 8 alignment variants for an alignment block. Considering that 

gaps rarely occur within SSEs, we implemented the SFESA (O+G) mode in which all 

gaps in an alignment block are moved to one side of the block. This gap shifting 

approach allows generation of up to 18 alignment variants. Our results show that SFESA 

(O+G) improves alignments more than SFESA (O).  

A limitation of the SFESA approach is that shifting involves only residues within 

an alignment block and its adjacent loops. Residues in other alignment blocks are not 

allowed to move into the current alignment block. Therefore, SFESA will not correct 

blocks with residues misaligned to non-equivalent SSEs. However, such errors frequently 

occur in alignments of proteins with very different lengths, e.g., those in the SALIGN 

benchmark. Thus, SFESA shows less improvement on SALIGN alignments compared to 
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the other benchmarks. Alternative methods need to be developed to deal with non-local 

alignment errors. 

 

The advantages of contact energy matrix and two-filter strategy used in SFESA  

In addition to the profile-based sequence score, we included a contact-based 

structure score. A residue-residue contact is defined as a residue pair within a distance 

cutoff. In the template, a residue’s contacts contribute to its structural environment. The 

correctly aligned equivalent residues in the query should pack more favorably in such a 

structural environment than incorrectly aligned residues. Thus, the estimated contact 

energy is an essential source of structural information and could be used as a scoring 

function for alignment evaluation. Unlike position-specific profile scores used in 

programs such as PSI-BLAST and HHpred, pairwise contact scores, in the form of two-

body interactions, are difficult to incorporate into a polynomial-time algorithm (e.g. 

dynamic programming) to find the optimal alignment, since the interaction partners for a 

position are not known before the alignment is obtained. Thus, heuristic methods are 

needed to deal with this NP-hard problem (Lathrop 1994), such as linear programming 

(Xu, Li et al. 2003, Ma, Wang et al. 2013), branch and bound (Horton 1996, Horton 

2001) and dead end elimination (Lukashin and Rosa 1999). However, our task is to refine 

an existing alignment. Using the existing alignment, contacts for a position in the query 

can be deduced from those contacts defined in its aligned position in the template and the 

query-template alignment. The resulting contact score is a positional score like the 
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profile-based sequence score. If the initial alignment is generally accurate, with only a 

few blocks misaligned, such a deduction works well.  

We tested a number of contact energy matrices to derive the contact-based 

structure score. Firstly, we used Miyazawa and Jernigan (MJ) (Miyazawa and Jernigan 

1999) contact energy matrix in SFESA (O) and SFESA (O+G). This matrix was designed 

for threading improved alignments. Secondly, we designed secondary structure-

dependent contact energy matrices (data not shown), but they did not lead to additional 

improvement. Thirdly, we tested four body contact potentials (Feng, Kloczkowski et al. 

2007), and  they also did not give promising results. These more complex matrices were 

not designed for the alignment refinement task. Since our task is to select the most 

accurate alignment among a set of alignment variants generated by local shifts, we finally 

computed a new contact energy matrix specific for this task by log-odds scoring that 

compares contacts deduced from the correctly aligned positions to those deduced from 

the incorrectly aligned positions. Using the new contact energy matrix, SFESA (O+G+M) 

outperformed SFESA (O+G) using the MJ matrix. Another direction to improve contact 

energy is to explore the definition of contacts. MJ contacts are limited to one fixed 

distance (6.5Å) between centers of side chains. We tested several definitions of contacts 

to deduce our contact energy matrix. The best definition was a fixed distance (6.5Å) 

between any side chain atoms of two residues. A number of distance-based potentials 

such as DFIRE (Zhang, Liu et al. 2004), DOPE (Shen and Sali 2006) and EPAD energy 

(Zhao and Xu 2012) have been proposed, and some of them consider side chain 

orientation-dependent terms (Yang and Zhou 2008, Zhou and Skolnick 2011). Many of 

these potentials are all-atom based, and their application to alignment refinement would 
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require constructing structure models at the atomic level. A simple coarse-grained 

residue-contact energy matrix we used may be more appropriate for alignment scoring 

than atomic-level energy potentials, because atomic details of contacts may differ greatly 

between distant homologs, while residues could still be in similar environments and the 

residue-residue contacts for homologous positions are largely preserved in the structures 

of the template and the query.  

SFESA uses a combination of profile-based sequence score and contact-based 

structure score to maximize the chance that the correct alignment variant is selected. 

First, we tested a one-filter strategy by choosing the variant with the best combination 

score after weight optimization. However, this strategy resulted in many false positives, 

i.e., the alignment variant with the best score has, on average, fewer correctly aligned 

positions. In practice, we found that a two-filter strategy performs better. The first filter is 

to inspect if there are any alignment variants with a higher combined score I. If not, the 

original alignment block is kept. Otherwise the alignment variant with the highest 

combination score is selected and passed into the second filter. If this variant has a higher 

combination score II than the original alignment block, the alignment variant is accepted. 

Otherwise the original alignment block is kept. The optimal weights for sequence vs. 

structure score are different in the two filtering steps. More weight is placed on the 

sequence score in the first filtering step, but the opposite is true for the second step.  

 

SFESA performance is influenced by residue contacts 
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We observed that contact-based structural information can improve alignment, but 

it has limitations. We found that this structure scoring works well when there are 

sufficient contacts in the template as well as sufficient corresponding aligned residues in 

the query. However, if an SSE is involved in too few contacts (e.g. exposed edge β-

strands) the remaining contacts are insufficient to define a complete structural 

environment and SFESA is less effective. To probe the effects of contact number and 

secondary structure type, we divided alignment blocks in our inhouse dataset into three 

categories: helix, edge strand (with hydrogen bonds on only one side) and non-edge 

strand (with hydrogen bonds on two sides) (Table IV-29. Edge strands have fewer 

contacts (average contact number is 12.2) than non-edge strands (average contact number 

is 25.7). Indeed, SFESA is more likely to succeed in correctly shifting non-edge strands 

(3.0 success/failure rate) than edge strands (1.5 success/failure rate) (Table IV-29). The 

helices have an average contact number of 23.7 and have a 1.8 success/failure rate. 

Moreover, success/failure rate positively correlates with the increase of contact number 

for SSEs in each of the three categories. For example, helices with less than 11 contacts 

have a 0.8 success/failure rate while helices with more than 36 contacts have a 9.8 

success/failure rate. The same general trend is also observed in edge strands and non-

edge strands. Thus, SFESA performs better when there are more contacts in an alignment 

block.  
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MATERIALS AND METHODS 

Generation of alignment variants 

We partition a pairwise alignment into alignment blocks according to template 

SSEs defined by the program PALSSE (Majumdar, Krishna et al. 2005). Short secondary 

structures (α-helices less than 8 residues and β-strands less than 4 residues) are not 

considered and are treated as loop regions. Each alignment block is defined as the 

residues in one template SSE and their aligned residues in the query. Eight additional 

alignment variants can be generated for one alignment block by shifting the original 

alignment in the block up to ±4 residues (Figure IV-2A). We use +K shift to refer to the 

alignment variant that shifts the query in the alignment block toward the C-terminus by K 

residues. Residues in the neighboring loop regions can be placed inside an alignment 

block after the shift (e.g., residue “F” in the query in +1 shift in Figure IV-2A). Similarly, 

negative shift numbers refer to shifting the query towards the N-terminus. SFESA does 

not allow residues in neighboring alignment blocks to shift. For example, in the +4 shift, 

the neighboring residue “V” is the last one shifted into the alignment block (Figure IV-

2A), while the residues neighboring but belonging to a different SSE (such as residue 

“H” in Figure IV-2A) are not allowed to shift. 

When there are no gaps in the original alignment block, SFESA can generate 8 

alignment variants according to above procedure. If gaps are present in the query and/or 

template in the alignment block, there are two gap processing strategies. The first one is 

to keep the gap pattern in the original alignment block when shifting ±K (up to 4) 
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residues, resulting in 8 alignment variants. This strategy is used in SFESA (O) mode 

(described below).  

The second gap treatment strategy is to preprocess gaps before shifting ±K (up to 

4) residues. As gaps rarely occur in the middle of SSEs, we move the gaps to the same 

side (left or right) without interrupting the SSEs. Residues in an alignment block can be 

pushed to leftmost or rightmost while all gaps are put to the opposite side, resulting in 

two alignment variants (left and right, Figure IV-2B). Each of these two alignment 

variants is then used as a starting point to generate 8 additional alignment variants by ±4 

shifting while keeping the modified gap patterns. Therefore, if gaps exist in the original 

alignment, SFESA with gap shifting can generate up to 18 (1+8+1+8) alignment variants. 

This strategy is used in SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S) 

(described below). 

 

Profile-based sequence score 

Profiles are generated from multiple sequence alignments (MSAs) generated from 

three PSI-BLAST (Altschul, Madden et al. 1997) iterations. Score for the similarity of 

residue content in MSA columns is measured by the formula originally implemented in 

the COMPASS method (Sadreyev and Grishin 2003). 
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where 
1

in and 
2

in  are effective numbers of residue type i in the query column 1 and 

template column 2, 
1

iQ   and 
2

iQ  are estimated residue frequencies of the two compared 

columns, and ip  is the background residue frequency. Parameters 1c  and 2c  are 

calculated as: 
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SFESA further incorporates secondary structure (SS) information into the 

sequence score. For query, SS is predicted by PSIPRED (Jones 1999); for template, SS 

information in DSSP (Kabsch and Sander 1983) is used. A three-by-three secondary 

structure substitution matrix is derived from the structural alignment FAST (Zhu and 

Weng 2005) (considered as query aligned to template) of protein domains from ASTRAL 

compendium (Chandonia, Hon et al. 2004) based on SCOP 1.75 (Murzin, Brenner et al. 

1995) (see Training dataset below). For each residues pair, the SS score ssS   and seqS  are 

combined to get the new sequence score '

seq
S  as:  

ssssseq SwSS
seq

'
                                                          (4) 

where ssw  is the constant weight for the secondary structure score term and is set to 0.06 

in our study. 
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Contact-based structure score  

A residue contact is defined as a residue pair within a distance cutoff. In the 

template of one alignment, the residue contacts can be identified using the known 

structure of the template. Correctly aligned equivalent residues in the query should have 

similar structural environment as in the template. Based on a residue-residue contact 

energy matrix, e.g., the one derived by Miyazawa and Jernigan (Miyazawa and Jernigan 

1999), the total contact energies of query residues in an alignment block can be inferred 

from the query-template alignment and the contacts defined by the template structure 

(Figure IV-16, explained below). Our contact-based structure score, corresponding to the 

negative of the inferred contact energies of the query, should reflect the fitness of the 

query residues in the structural environment defined by the template structure. Our 

hypothesis is that an alignment variant with a higher inferred contact energy score is 

likely to be more accurate.  

In Figure IV-16, i  is one residue in an SSE of template, and
1j ,

2j , …, nj  are the 

contact residues of i based on the template structure. According to the alignment, l  is the 

residue in the query aligned to i , and 
1k , 

2k , …, nk  in the query are aligned to 
1j , 

2j , …,

nj , respectively. Thus, the contact residues of l are inferred to be 
1k , 

2k , …, nk . The 

inferred structure score for residue l  based on the alignment and the template contact 

definitions is:  
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n

m

klcontact m
elS

1

,)(                                                         (5) 

where 
mkle , is the pairwise contact energy for residues l  and mk in the query. 

The total structure score of the alignment block is the sum of the contact energy 

scores for all the query residues.  


l

contactstr lSS )(                                                          (6) 

When a profile is used instead of a sequence, the structure score '

strS  is the 

average of all contact energies of equivalent residues in homologs of query (including the 

query itself): 





N

a

strstr aS
N

S
1

' )(
1

                                                         (7) 

where N  is the total number of homologs of the query in the PSI-BLAST multiple 

sequence alignment, and )(aSstr is the structure score calculated by Eq(6) for the 

homologous sequence a . 

Two contact energy matrices are explored. One is the Miyazawa-Jernigan contact 

energy matrix with contacts defined as residue pairs with side chain centers less than 

6.5Å. The other matrix is a new contact energy matrix trained on PROMALS alignments. 

For each alignment, each alignment block is allowed to shift ±4 residues (eight variants), 

and then the best-scoring variant  (showing the best agreement with DALI reference 

(Holm and Sander 1996), that is, the variant having the most number of common aligned 
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positions with DALI alignment) among the original alignment and the eight variants 

(nine total) is selected based on  and the other eight variants (alignment variants or the 

original alignment) are considered as background. The contact energy is formulated as 

follows: 

C
d

b
e

ij

ij

ij  )
8

ln(                                                       (8) 

where ijb is the occurrence of aligned residue pair of i  and j  in the best-scoring 

alignment; ijd is the occurrence of aligned residue pair of i  and j  in background 

alignments; C is a constant ( C  = 0.25). The cutoff for contact definition is 6.5Å between 

any side chain atoms of two residues. 

 

Evaluation of the original alignment and alignment variants for an alignment block 

Two filtering steps to evaluate the combined (sequence and structure) score are 

used to determine whether the original alignment block is kept or replaced by one of the 

alignment variants (Figure IV-2C). "Original alignment block" refers to blocks prior to 

refinement by SFESA. In the first filtering step, if the best-scoring alignment variant has 

a higher score (Scomb_I) than the original alignment block, this variant will be selected and 

passed to the second filter. Otherwise, SFESA keeps the original alignment block. In the 

second filtering step, the selected alignment variant (with the best Scomb_I) is again 

compared to the original alignment block by using a different score: Scomb_II or Ssvm. If the 

selected alignment variant also has a better Scomb_II or Ssvm than the original alignment 
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block, this alignment variant will replace the original alignment block. Otherwise, the 

original alignment block is kept. 

Scomb_I and Scomb_II are linear combinations of sequence score and structure score 

with different weights: 

'

1

'

1comb_I )1(S strseq SwSw                                            (9) 

'

2

'

2comb_II )1(S strseq SwSw                                           (10) 

where '

seqS is the sequence score combined with secondary structure score (Eq(4)) and 

'

strS is the contact-based structure score with consideration of query homologs (Eq(7)). 

SFESA has four modes (described below). w1 and w2 are optimized to be 0.8 and 0.1 in 

SFESA (O), 0.4 and 0.1 in SFESA (O+G), and 0.12 and 0.02 in SFESA (O+G+M). In 

SFESA (O+G+M+S), w1 is optimized to be 0.12. Ssvm used in second filter of SFESA 

(O+G+M+S) is a score generated by a SVM classifier described below. 

 

The SVM score 

A support vector machine (SVM), implicitly mapping its inputs into high-

dimensional feature space, is widely used in binary classification (Cortes 1995). In our 

strategy, if any alignment variant passes the first filter (with the top Scomb_I compared to 

all other variants and the original alignment block), the second filter is a two-category 

classification problem – either accepting this selected alignment variant or keeping the 
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original alignment block. Besides Scomb_II, an SVM was trained in the second filter to aid 

this decision. Ten features were used in such an SVM binary classifier. Two features are 

binary representatives for secondary structure type: helix as (1, 0) and strand as (0, 1). 

Four features represent the scores of the original alignment block: seqS , ssS , '

strS  and rsaS , 

and another four corresponding features are used for the selected alignment variant. 

Similarly to ssS , rsaS  is based on a three-by-three relative solvent accessibility (rsa) 

substitution matrix derived from FAST (Zhu and Weng 2005) structural alignments of 

SCOP domains. Notably, for query, three categories of neural network-predicted rsa 

values (with PSI-BLAST PSSMs as input) (Huang, Pei et al. 2013) were used based on 

three equal-sized bins; for template, the real rsa values calculated by NACCESS 

(Hubbard and Thornton 1993) are used to generated three categories based on three 

equal-sized bins. Two-fold cross validation was used in our SVM training. The linear, 

polynomial and radial basis functions were tried as kernels. The linear model was found 

to be optimal. The criterion to accept the alignment variant is set to SVM score above -

0.6 for optimal performance of alignment accuracy. 

 

Training dataset 

The training dataset consists of protein domain pairs with sequence identity less 

than 20% from the ASTRAL compendium (Chandonia, Hon et al. 2004) based on SCOP 

1.75 (Murzin, Brenner et al. 1995). All domain pairs with COMPADRE e-value less than 

1e-30 were used. For all domain pairs, we generated DALI structure alignments. Then, 

we discarded domain pairs with GDT-TS score (Zemla 2003) less than 0.5 in DALI 
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alignment. We also included at most 10 domains from any individual SCOP superfamily, 

and ensured that each domain is present no more than twice in domain pairs. The final 

training dataset consists of 1675 domain pairs with 2305 protein domains. We generated 

PROMALS alignments for these domain pairs and deduced 16347 alignment blocks in 

these alignments. There are 3061 incorrectly aligned alignment blocks (at least one 

residue misaligned compared to DALI reference alignment) in PROMALS alignments. 

The parameters of ssw in Eq (4), C in Eq (8), 1w , 2w  in Eq (9) and Eq (10) and all SVM 

parameters were trained on this dataset. The assessment of alignment quality is Q-score 

(alignment quality score, described below) compared with reference DALI alignment and 

reference-independent GDT-TS score (Zemla, Venclovas et al. 1999).  

 

Testing benchmarks 

We used the following four public datasets to test the method: 

1. The MUSTER benchmark (Wu and Zhang 2008). This dataset consists of 110 

ProSUP protein pairs (Lackner, Koppensteiner et al. 2000) and 190 pairs selected by the 

Zhang group with TM-score (Zhang and Skolnick 2005) > 0.5. 

2. The SALIGN benchmark (Marti-Renom, Madhusudhan et al. 2004). This 

dataset has 200 protein pairs with about 20% sequence identity, and these pairs have on 

average about 65 structurally equivalent residues with RMSD < 3.5Å. Proteins in each 

pair have very different lengths. 
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3. The SABmark benchmark (Van Walle, Lasters et al. 2005). This benchmark is 

designed for testing multiple sequence alignments (MSAs). SABmark dataset (version 

1.65) has two benchmark sets: the “twilight zone” set has 209 groups of SCOP fold-level 

domains with very low similarity, whereas the “superfamilies” set has 425 groups of 

same-superfamily domains. We randomly selected one domain pair from each group to 

test our pairwise alignment refinement method. 

4. The PREFAB benchmark (version 4.0) (Edgar 2004). This dataset contains 

1682 alignments, and it provides its own reference that is based on the consensus of FSSP 

structure alignment (Holm and Sander 1998) and CE alignment (Stoyanova, Nicholls et 

al. 2004).  

For these four benchmarks, we applied our refinement method to PROMALS 

alignments, as well as alignments generated by two profile-based and structure-aided 

methods: HHpred (Soding, Biegert et al. 2005) and CNFpred (Ma, Peng et al. 2012). 

Here, HHpred was used in the global alignment mode as its local alignment mode often 

results in short alignments and shows lower alignment accuracy than global alignments 

(Table IV-30, IV-31, IV-32 and IV-33).  

The evaluation criteria include: 

1.  Reference-dependent evaluation. (1) Q-score is the fraction of correctly 

aligned residue pairs in a test alignment among all aligned residue pairs in a reference 

alignment. In this paper, the range of Q-score is from 0 to 100 (e.g. 100 means 100% 

agreement with reference). The reference alignments were constructed by several 

structure alignment methods: DALI (Holm and Sander 1996), TM-align (Zhang and 
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Skolnick 2005), Matt (Menke, Berger et al. 2008) and Deepalign (Wang, Ma et al. 2013). 

(2) The number of alignment blocks improved and deteriorated in different benchmarks 

after refinement by different SFESA modes. Above-mentioned structural alignment 

methods are used as references. One alignment block is considered as an improved block 

when the correctly aligned residue pair number (compared with reference) in the block is 

increased. One alignment block with less correctly aligned residue pairs (compared with 

reference) is treated as a deteriorated block. (3) The number of aligned positions 

improved and deteriorated in different benchmarks after refinement by different SFESA 

modes. Abovementioned structural alignment methods are used as references. This 

number provides the residue position-level alignment accuracy comparison. 

2. Reference-independent score. Alignment-based GDT-TS (Zemla, Venclovas et 

al. 1999) score and TM-score (Zhang and Skolnick 2005) were used in our study to 

evaluate alignment quality. GDT-TS score is based on the number of structurally 

equivalent pairs of C-alpha atoms that are within specified distance cutoffs (1Å, 2Å, 4Å 

and 8Å) based on the sequence-independent superpositions of two protein structure. TM-

score is a simpler template modeling score, which evaluates the similarity of two protein 

structures in a single superposition by weighting the close atom pairs stronger than the 

distant matches. For TM-score, a 3D model was built for the query protein by 

MODELLER (Sali, Potterton et al. 1995) based on its alignment to the template, and 

subsequently the score between the query model and the experimental structure was 

computed. 
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Figure IV-1. Distribution of shifting numbers that resulted in improved alignment quality 

in alignment blocks. Those alignment blocks for which correct aligned positions (Dali as 

a reference) cannot be increased by shifts are not included. The shifting number n means 

that the query block in the alignment block is shifted by n residue positions. Positive 

numbers mean that the shifting is towards C-terminus, while negative numbers mean that 

the shifting is towards N-terminus. 
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Figure IV-2. An overview of the SFESA method. (A) For each alignment block, SFESA 

generates up to ±4 variants by shifting (marked as -1, -2, -3, -4, +1, +2, +3, and +4). The 

pink boxes show the SSEs recognized from template structure and the blue boxes are 

corresponding regions in the query aligned to such SSEs. Residues and gaps in one 

corresponding blue and pink boxes compose an alignment block. The corresponding 

black lines provide the boundaries between which sequence and structure scores are 

calculated for each aligned residue pairs. (B) If gap shifting is considered, two variants 

(left and right) are generated by putting gaps on the same side (left or right) before 

generating the above 8 variants. (C). Flowchart of the SFESA method. 
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Figure IV-3. Tests on our training dataset. (A) DALI Q-score comparison of PROMALS 

and SFESA for different SFESA modes. The columns in blue, red and green represent the 

numbers of alignments that DALI Q-Score of SFESA is less than, the same as, and more 

than PROMALS, respectively. SFESA (O) improved 617 alignments generated by 

PROMALS while making 215 alignments worse. SFESA (O+G) improved 847 

PROMALS alignments and made 292 alignments worse. The number of improved 

SFESA (O+G+M) alignments is 904 while PROMALS is better than SFESA (O+G+M) 

on 268 alignments. SFESA (O+G+M+S) produced 875 higher quality alignments than 

PROMALS and 199 worse alignments. SFESA (O+G+M+S) performance is quite similar 

to SFESA (O+G+M) but is more likely to have an equivalent Q-score with the original 

PROMALS alignment (601 alignments in SFESA (O+G+M+S) and 503 alignments in 

SFESA (O+G+M)), thus being more conservative compared with SFESA (O+G+M). (B) 

Scatter plot of SFESA (O+G+M+S) Q-score vs. PROMALS Q-score for 1675 alignments 

in the training dataset. Each point is one domain pair.  
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Figure IV-4. Tests on our training subsets divided by four SCOP classes. DALI Q-score 

is compared in different subsets: 275 class a alignments (all α proteins), 352 class b 

alignments (all β proteins), 455 class c alignments (α and β proteins (α/β)) and 515 class 

d alignments (α and β proteins (α+β)). The blue column represents the performance of 

PROMALS alignments. The red column shows the SFESA (O+G+M) results with 

parameters derived from all data (1675 alignments). The green and purple columns are 

the SFESA (O+G+M) results trained on class b and class c, respectively. The error bars 

(standard error of the mean) are showed. 
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Figure IV-5. Alignment block-level evaluation of SFESA performance on different 

datasets. (A) Evaluation on our training dataset (1675 alignments). (B) Evaluation on the 

MUSTER benchmark (300 alignments). (C) Evaluation on the SALIGN benchmark (200 

alignments). SFESA (O+G+M+S) is used to refine alignments generated by PROMALS 

and Dali structure alignment is used as the reference. The blue column represents the 

number of alignments in which a certain number of aligned blocks were improved by 

SFESA. The red column represents the number of alignments in which a certain number 

of aligned blocks were deteriorated by SFESA. Columns of the “0” in the x-axis show the 

number of alignments where none of the alignment blocks were improved (blue) by 

SFESA and the number of alignments where none of the alignment blocks were 

deteriorated (red) by SFESA. The number of alignment cases in each category and the 

percentage is shown above each column.  
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Figure IV-6. DALI Q-score for the MUSTER benchmark. (A) Scatter plot of SFESA 

(O+G+M+S) Q-score (applied to PROMALS) vs. PROMALS Q-score. Each point 

represents one domain pair. (B) The number of alignments that SFESA is better than 

PROMALS in Q-score and the number of alignments that PROMALS is better than 

SFESA at different Q-score difference cutoffs. (C) Scatter plot of SFESA (O+G+M+S) 

Q-score (applied to CNFpred) vs. CNFpred Q-score. (D) The number of the alignments 

that SFESA is better than CNFpred in Q-score and the number of the alignments that 

CNFpred is better than SFESA at different Q-score difference cutoffs. 
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Figure IV-7. Element-level evaluation of SFESA performance on the SABMARK 

twilight dataset. SFESA (O+G+M+S) is used and SABmark’s own reference is used. The 

blue column represents the number of alignments in which a certain number of aligned 

blocks were improved by SFESA. The red column represents the number of alignments 

in which a certain number of aligned blocks were deteriorated by SFESA. Columns of the 

“0” in the x-axis show the number of alignments where none of the alignment blocks 

were improved (blue) by SFESA and the number of alignments where none of the 

alignment blocks were deteriorated (red) by SFESA. The number of alignment cases in 

each category and the percentage is shown above each column.  
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Figure IV-8. Alignment block-level evaluation of SFESA performance on the 

SABMARK superfamily dataset. SFESA (O+G+M+S) is used and SABmark’s own 

reference is used. The blue column represents the number of alignments in which a 

certain number of aligned blocks were improved by SFESA. The red column represents 

the number of alignments in which a certain number of aligned blocks were deteriorated 

by SFESA. Columns of the “0” in the x-axis show the number of alignments where none 

of the alignment blocks were improved (blue) by SFESA and the number of alignments 

where none of the alignment blocks were deteriorated (red) by SFESA. The number of 

alignment cases in each category and the percentage is shown above each column.  
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Figure IV-9. Alignment block-level evaluation of SFESA performance on the PREFAB 

dataset. SFESA (O+G+M+S) is used and PREFAB’s own reference is used. The blue 

column represents the number of alignments in which a certain number of aligned blocks 

were improved by SFESA. The red column represents the number of alignments in which 

a certain number of aligned blocks were deteriorated by SFESA. Columns of the “0” in 

the x-axis show the number of alignments where none of the alignment blocks were 

improved (blue) by SFESA and the number of alignments where none of the alignment 

blocks were deteriorated (red) by SFESA. The number of alignment cases in each 

category and the percentage is shown above each column. 
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Figure IV-10. Alignment block-level evaluation of SFESA performance on the PREFAB 

“set1”. SFESA (O+G+M+S) is used and PREFAB’s own reference is used. The blue 

column represents the number of alignments in which a certain number of aligned blocks 

were improved by SFESA. The red column represents the number of alignments in which 

a certain number of aligned blocks were deteriorated by SFESA. Columns of the “0” in 

the x-axis show the number of alignments where none of the alignment blocks were 

improved (blue) by SFESA and the number of alignments where none of the alignment 

blocks were deteriorated (red) by SFESA. The number of alignment cases in each 

category and the percentage is shown above each column. 
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Figure IV-11. Alignment block-level evaluation of SFESA performance on the PREFAB 

“set2”. SFESA (O+G+M+S) is used and PREFAB’s own reference is used. The blue 

column represents the number of alignments in which a certain number of aligned blocks 

were improved by SFESA. The red column represents the number of alignments in which 

a certain number of aligned blocks were deteriorated by SFESA. Columns of the “0” in 

the x-axis show the number of alignments where none of the alignment blocks were 

improved (blue) by SFESA and the number of alignments where none of the alignment 

blocks were deteriorated (red) by SFESA. The number of alignment cases in each 

category and the percentage is shown above each column. 
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Figure IV-12. Alignment block-level evaluation of SFESA performance on the PREFAB 

“set3”. SFESA (O+G+M+S) is used and PREFAB’s own reference is used. The blue 

column represents the number of alignments in which a certain number of aligned blocks 

were improved by SFESA. The red column represents the number of alignments in which 

a certain number of aligned blocks were deteriorated by SFESA. Columns of the “0” in 

the x-axis show the number of alignments where none of the alignment blocks were 

improved (blue) by SFESA and the number of alignments where none of the alignment 

blocks were deteriorated (red) by SFESA. The number of alignment cases in each 

category and the percentage is shown above each column. 
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Figure IV-13. Alignment block-level evaluation of SFESA performance on the PREFAB 

“set4”. SFESA (O+G+M+S) is used and PREFAB’s own reference is used. The blue 

column represents the number of alignments in which a certain number of aligned blocks 

were improved by SFESA. The red column represents the number of alignments in which 

a certain number of aligned blocks were deteriorated by SFESA. Columns of the “0” in 

the x-axis show the number of alignments where none of the alignment blocks were 

improved (blue) by SFESA and the number of alignments where none of the alignment 

blocks were deteriorated (red) by SFESA. The number of alignment cases in each 

category and the percentage is shown above each column. 
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Figure IV-14. Three examples of SFESA refinement. (A) The alignments between 

d2ffsa1 (query) and d2qpva1 (template) generated by PROMALS and SFESA (O+G) + 

PROMALS. (B) The partial alignments between d1c7qa_ (query) and d1iata_ (template) 

generated by PROMALS and SFESA (O) + PROMALS. (C) The alignments between 

d1j8yf1 (query) and d1vmaa1 (template) generated by PROMALS and SFESA (O) + 

PROMALS. The pink boxes show the SSEs recognized from template and the blue boxes 

are those regions in the query aligned to such SSEs. Each corresponding blue and pink 

regions is an alignment block. The asterisk between two aligned residues indicates this 

aligned residue pair is in agreement with DALI alignment (reference). 
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Figure IV-15. An example of SFESA correction of a misaligned active site residue. (A). 

Superposition of d1h97a_ (query) and d1tu9a_ (template) based on the DALI structure 

alignment (reference). The blue (query) and pink (template) α-helical regions indicate the 

alignment block. The histidine residues are the active site residues in contact with hemes 

(shown in lines). LYS96 and HIS98 in the query are incorrectly aligned to HIS76 and 

ARG78in the template in the PROMALS alignment, respectively. The sidechains of these 

residues are shown in sticks.  (B). Alignments of DALI (reference), PROMALS and 

SFESA in this region. All SFESA modes can generate such alignment refinement. 

  



 

 

125 

 

Figure IV-16. The template contact residue pairs are transferred to the query by original 

alignment to calculate structure score for the original alignment block and alignment 

variants. The blue and red filled circles represent residues in query and template, 

respectively. The dashed lines connect aligned residue pairs in the original alignment. 

Residue i is in contact with residues j1, j2, j3… jn based on template structure. Residue I in 

the query is aligned with i and is inferred to be in contact with residues k1, k2, k3… kn that 

are aligned to j1, j2, j3… jn. The contact-based score for residue l is calculated by Eq (5). 

In the case of +1 shift, residue l-1 is aligned to residue i, and the inferred contacts are 

between residue l-1 and k1, k2, k3… kn (shown as dashed lines).  
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Methods 

Reference-dependent (Q-score)  Reference-

independent 

(TM-score) Dali TMalign Matt 
MUSTE

R 

Deep 

Align 

 

PROMALS 51.6 48.1 49.5 51.5 53.5  0.515 

SFESA (O)+PROMALS 53.4 49.6 51.5 53.2 55.0  0.521 

SFESA (O+G)+PROMALS 53.6 49.6 51.6 53.4 55.1  0.522 

SFESA (O+G+M)+PROMALS 54.2 50.2 52.1 54.0 55.3  0.523 

SFESA (O+G+M+S)+PROMALS 54.2 50.0 52.0 53.8 55.7  0.525 

 
               

 

       

HHpred 49.3 45.3 46.7 49.0 49.7  0.490 

SFESA (O)+HHpred 49.2 45.2 46.8 48.8 49.8  0.490 

SFESA (O+G)+HHpred 49.4 45.2 47.0 49.1 50.0  0.491 

SFESA (O+G+M)+HHpred 49.4 45.1 47.2 49.0 49.7  0.490 

SFESA (O+G+M+S)+HHpred 49.6 45.3 47.3 49.1 49.9  0.491 

 
               

 

       

CNFpred 51.5 48.2 49.2 52.4 53.7  0.511 

SFESA (O)+CNFpred 52.0 48.3 49.9 52.5 54.0  0.511 

SFESA (O+G)+CNFpred 52.2 48.4 50.1 52.5 54.1  0.512 

SFESA (O+G+M)+CNFpred 52.6 48.7 50.4 52.9 54.0  0.512 

SFESA (O+G+M+S)+CNFpred 52.7 49.0 50.7 53.3 54.8  0.515 

 

Table IV-1. Test on MUSTER database. Columns 2-6 indicate five different structure 

alignment methods to generate reference alignments (Reference-dependent evaluation). 

Column 7 indicates the average of query model’s TM-score built by Modeller 

(Reference-independent evaluation). Bold indicates the best performance in the 

subsection. Bold with underscore indicates the overall best performance in one column. 

Average Q-score and TM-score are reported. 
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Method/(p-value) PROMALS 

SFESA(O)+PROMALS 3.90E-08 

SFESA(O+G)+PROMALS 2.50E-06 

SFESA(O+G+M)+PROMALS 6.70E-09 

SFESA(O+G+M+S)+PROMALS 0 

  Method/(p-value) HHpred 

SFESA(O)+HHpred 0.36 

SFESA(O+G)+HHpred 0.094 

SFESA(O+G+M)+HHpred 0.1 

SFESA(O+G+M+S)+HHpred 0.034 

  Method/(p-value) CNFpred 

SFESA(O)+CNFpred 0.064 

SFESA(O+G)+CNFpred 0.064 

SFESA(O+G+M)+CNFpred 0.0034 

SFESA(O+G+M+S)+CNFpred 0.00024 

 

Table IV-2. Statistically significant Q-score improvement of SFESA on PROMALS, 

HHpred and CNFpred (Dali as a reference). All SFESA modes by using different 

parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) 

are compared with three existing alignment methods on MUSTER dataset. P-values are 

calculated based on the paired Wilcoxon signed-rank test. P-values below 0.05 are 

marked green and below 0.005 are marked pink. 
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 3159 151 56 164 1246 404 41806 

SFESA (O+G)+PROMALS 2678 283 172 397 2015 972 40469 

SFESA (O+G+M)+PROMALS 2577 326 201 426 2363 1186 39907 

SFESA (O+G+M+S)+PROMALS 2997 253 90 190 1844 636 40976 

        
SFESA (O)+HHpred 2990 17 25 51 119 160 43177 

SFESA (O+G)+HHpred 2588 156 103 236 524 459 42473 

SFESA (O+G+M)+HHpred 2340 251 184 308 1009 923 41524 

SFESA (O+G+M+S)+HHpred 2706 162 91 124 649 520 42287 

        
SFESA (O)+CNFpred 3011 81 52 90 646 394 42416 

SFESA (O+G)+CNFpred 2395 255 189 395 1420 1092 40944 

SFESA (O+G+M)+CNFpred 2367 291 188 388 1664 1167 40625 

SFESA (O+G+M+S)+CNFpred 2821 183 83 147 1103 534 41819 

 

Table IV-3. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred (Dali as a reference). All SFESA modes by using 

different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA 

(O+G+M+S)) are compared with three existing alignment methods on MUSTER dataset. 
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 3159 139 65 167 1130 442 44221 

SFESA (O+G)+PROMALS 2678 269 177 406 1852 1035 42906 

SFESA (O+G+M)+PROMALS 2577 316 200 437 2186 1226 42381 

SFESA (O+G+M+S)+PROMALS 2997 232 97 204 1633 706 43454 

        SFESA (O)+HHpred 2990 16 26 51 97 148 45548 

SFESA (O+G)+HHpred 2588 137 109 249 455 434 44904 

SFESA (O+G+M)+HHpred 2340 231 197 315 906 940 43947 

SFESA (O+G+M+S)+HHpred 2706 139 98 140 567 526 44700 

        SFESA (O)+CNFpred 3011 72 54 97 548 427 44818 

SFESA (O+G)+CNFpred 2395 240 194 405 1257 1107 43429 

SFESA (O+G+M)+CNFpred 2367 271 206 390 1433 1170 43190 

SFESA (O+G+M+S)+CNFpred 2821 167 82 164 976 541 44276 

 

Table IV-4. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred (TMalign as reference). All SFESA modes by 

using different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA 

(O+G+M+S)) are compared with three existing alignment methods on MUSTER dataset. 
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 3159 145 53 173 1176 330 40278 

SFESA (O+G)+PROMALS 2678 271 150 431 1816 837 39131 

SFESA (O+G+M)+PROMALS 2577 311 178 464 2146 1079 38559 

SFESA (O+G+M+S)+PROMALS 2997 239 85 209 1656 577 39551 

        SFESA (O)+HHpred 2990 20 19 54 130 107 41547 

SFESA (O+G)+HHpred 2588 146 95 254 520 394 40870 

SFESA (O+G+M)+HHpred 2340 225 171 347 974 819 39991 

SFESA (O+G+M+S)+HHpred 2706 155 80 142 684 456 40644 

        SFESA (O)+CNFpred 3011 76 42 105 587 291 40906 

SFESA (O+G)+CNFpred 2395 230 170 439 1331 964 39489 

SFESA (O+G+M)+CNFpred 2367 253 174 440 1496 1033 39255 

SFESA (O+G+M+S)+CNFpred 2821 168 71 174 1104 446 40234 

 

Table IV-5. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred (Matt as reference). All SFESA modes by using 

different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA 

(O+G+M+S)) are compared with three existing alignment methods on MUSTER dataset.   
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 3159 135 58 178 1098 386 40230 

SFESA (O+G)+PROMALS 2678 257 161 434 1776 911 39027 

SFESA (O+G+M)+PROMALS 2577 299 181 473 2076 1084 38554 

SFESA (O+G+M+S)+PROMALS 2997 231 87 215 1615 644 39455 

        SFESA (O)+HHpred 2990 16 25 52 96 154 41464 

SFESA (O+G)+HHpred 2588 132 90 273 437 399 40878 

SFESA (O+G+M)+HHpred 2340 218 174 351 837 849 40028 

SFESA (O+G+M+S)+HHpred 2706 136 87 154 540 487 40687 

        SFESA (O)+CNFpred 3011 68 55 100 511 425 40778 

SFESA (O+G)+CNFpred 2395 226 185 428 1203 1093 39418 

SFESA (O+G+M)+CNFpred 2367 251 195 421 1363 1127 39224 

SFESA (O+G+M+S)+CNFpred 2821 163 76 174 965 515 40234 

 

Table IV-6. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred (MUSTER as reference). All SFESA modes by 

using different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA 

(O+G+M+S)) are compared with three existing alignment methods on MUSTER dataset. 
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 3159 145 68 158 1196 461 42743 

SFESA (O+G)+PROMALS 2678 286 188 378 1997 1090 41313 

SFESA (O+G+M)+PROMALS 2577 314 233 406 2291 1385 40724 

SFESA (O+G+M+S)+PROMALS 2997 244 108 181 1800 729 41871 

        SFESA (O)+HHpred 2990 21 22 50 144 140 44116 

SFESA (O+G)+HHpred 2588 160 110 225 576 444 43380 

SFESA (O+G+M)+HHpred 2340 240 214 289 1044 1058 42298 

SFESA (O+G+M+S)+HHpred 2706 149 107 121 653 587 43160 

        SFESA (O)+CNFpred 3011 79 57 87 629 434 43337 

SFESA (O+G)+CNFpred 2395 270 196 373 1500 1200 41700 

SFESA (O+G+M)+CNFpred 2367 280 221 366 1578 1383 41439 

SFESA (O+G+M+S)+CNFpred 2821 182 80 151 1112 544 42744 

 

Table IV-7. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred (Deepalign as reference). All SFESA modes by 

using different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA 

(O+G+M+S)) are compared with three existing alignment methods on MUSTER dataset.  
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Domain 1 Domain 2 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

1aba__ 1gp1A_ 7 0 0 0 0 0 80 

1acf__ 1pne__ 8 2 0 0 3 0 119 

1afi__ 1aps__ 4 0 1 0 1 10 52 

1agjA_ 1elg__ 12 1 0 2 7 0 178 

1agqD_ 1tgj__ 7 0 0 0 0 0 87 

1aizB_ 1rcy__ 9 0 0 0 0 0 102 

1apmE_ 1erk__ 16 0 2 0 0 16 249 

1apmE_ 1irk__ 11 2 2 0 22 13 219 

1ash__ 1binA_ 7 0 0 0 0 0 135 

1ash__ 1bvd__ 6 0 0 0 0 0 139 

1ash__ 1cpcA_ 4 1 1 1 7 11 95 

1ax4A_ 1cl1A_ 18 2 0 1 26 2 266 

1bbhB_ 1nbbB_ 4 0 0 0 0 0 126 

1bbpD_ 1hbq__ 11 2 0 0 14 0 139 

1bcpL_ 1prtB_ 7 0 1 0 0 8 76 

1bdiA_ 2dri__ 20 0 1 0 0 8 252 

1bdmB_ 6ldh__ 18 2 0 1 14 3 288 

1bfmA_ 1tafB_ 3 0 0 0 0 0 66 

1binA_ 1bvd__ 6 0 0 0 0 0 138 

1binA_ 2hbg__ 7 0 0 0 0 0 135 

1brz__ 1gps__ 4 0 0 0 0 0 44 

1btn__ 1dynB_ 7 1 0 0 1 0 89 

1btn__ 1irsA_ 6 1 0 0 1 0 85 

1btn__ 1mai__ 7 1 0 1 6 0 82 

1bvd__ 2hbg__ 7 0 0 0 0 0 138 

1cewI_ 1molA_ 4 0 1 0 0 1 80 

1cewI_ 1ounA_ 4 0 1 0 0 13 64 

1cnv__ 1nar__ 14 2 0 2 25 2 219 

1cpcA_ 1colA_ 5 0 1 1 0 8 106 

1cpcA_ 1cpcB_ 9 0 0 0 0 0 159 

1cpcA_ 2hbg__ 7 0 0 0 0 0 122 

1ctj__ 1cxc__ 7 0 0 0 0 0 75 

1ctj__ 2mtaC_ 3 1 0 0 12 0 73 

1dat__ 1afrF_ 5 1 0 0 10 1 141 

1dat__ 1ryt__ 4 1 0 1 2 0 148 

1dat__ 1xikA_ 5 1 0 1 30 0 117 

1den__ 1tcp__ 2 1 0 0 8 0 38 

1dhkA_ 1bag__ 25 0 0 0 0 0 394 

1dynB_ 1irsA_ 6 1 0 1 7 0 86 
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1dynB_ 1mai__ 8 1 0 0 6 0 78 

1eaf__ 3cla__ 13 0 1 1 0 3 173 

1eceA_ 1edg__ 19 1 0 0 18 1 261 

1ecmB_ 1csmB_ 3 0 0 0 0 0 92 

1ecpA_ 1ula__ 16 1 0 0 6 0 217 

1elg__ 1havA_ 17 1 0 2 4 1 169 

1elg__ 2alp__ 12 3 0 1 9 0 147 

1erk__ 1irk__ 15 1 0 0 7 0 241 

1esl__ 1lit__ 9 1 0 0 4 0 110 

1eur__ 2sim__ 23 4 0 2 34 3 287 

1fecA_ 1nhq__ 29 2 0 0 10 0 389 

1fmb__ 1smeB_ 10 0 1 0 0 1 100 

1fna__ 1mspA_ 7 0 0 1 0 0 71 

1gsa__ 1bncA_ 19 2 0 3 20 1 219 

1gsa__ 1iow__ 18 3 0 0 28 3 217 

1gtqA_ 1gtpA_ 5 1 1 0 10 1 81 

1hce__ 1i1b__ 9 1 1 1 9 2 104 

1hce__ 4fgf__ 10 2 0 0 12 2 97 

1hfc__ 1iag__ 9 1 0 0 19 0 112 

1hrdA_ 1lehA_ 22 1 0 0 9 3 314 

1i1b__ 4fgf__ 9 2 1 0 14 7 98 

1idk__ 1air__ 41 0 0 1 0 0 268 

1iow__ 1bncA_ 22 2 0 0 7 0 245 

1irsA_ 1mai__ 4 2 3 0 15 29 42 

1kpcD_ 1hxqB_ 7 0 0 0 0 0 99 

1lea__ 1ruoB_ 3 1 0 0 6 0 54 

1lpe__ 1nbbB_ 4 0 0 0 0 0 103 

1lpe__ 1vltA_ 4 0 0 0 0 0 111 

1ltiD_ 1bcpL_ 6 0 1 0 0 5 79 

1ltiD_ 1prtB_ 7 0 2 0 0 18 63 

1ltiD_ 1tiiD_ 7 0 1 0 0 10 85 

1ndh__ 1fnb__ 17 1 0 1 1 0 228 

1ndh__ 2pia__ 13 1 0 0 5 0 208 

1nulA_ 1hgxA_ 12 1 0 1 10 0 116 

1ounA_ 1std__ 4 2 0 1 7 0 113 

1pgs__ 1phm__ 13 0 0 5 0 0 207 

1phd__ 2hpdB_ 21 3 1 0 9 1 358 

1plq__ 2polA_ 17 2 0 0 8 0 213 

1pot__ 1sbp__ 18 4 0 0 32 0 235 

1ptvA_ 1ytn__ 14 0 0 0 0 0 246 

1qpaA_ 2cyp__ 17 0 0 0 0 0 262 

1ris__ 1spbP_ 4 0 2 0 0 9 53 

1rmg__ 1bhe__ 49 3 0 0 11 2 308 
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1ryt__ 1afrF_ 8 0 0 1 0 0 137 

1ryt__ 1xikA_ 7 0 0 0 0 0 146 

1ryt__ 1xsm__ 5 0 0 0 0 0 140 

1sbp__ 2abh__ 18 0 0 0 0 0 221 

1spbP_ 1nueA_ 4 0 1 0 0 8 52 

1ste__ 2tssA_ 17 0 0 0 0 0 183 

1tafA_ 1bfmA_ 3 0 0 0 0 0 66 

1tafA_ 1tafB_ 3 0 0 0 0 0 63 

1tdj__ 2tysB_ 21 1 1 0 3 1 305 

1tiiD_ 3ullA_ 6 0 0 1 0 0 75 

1ulo__ 2ayh__ 11 0 1 1 0 5 122 

1vltA_ 1nbbB_ 4 0 0 0 0 0 99 

1wba__ 1i1b__ 7 5 0 1 41 0 79 

1wba__ 4fgf__ 9 1 0 2 7 0 104 

1xikA_ 1afrF_ 14 0 0 1 0 0 224 

1xikA_ 1xsm__ 10 0 0 0 0 0 274 

1xsm__ 1afrF_ 10 0 0 3 0 0 237 

2alp__ 1havA_ 16 1 0 0 3 0 149 

2bltB_ 3pte__ 20 0 0 0 0 0 305 

2gmfB_ 1rcb__ 5 0 0 0 0 0 91 

2hfh__ 1hstA_ 5 0 0 0 0 0 67 

2hhmA_ 1spiD_ 16 3 0 1 17 0 202 

2lefA_ 1hma__ 4 0 0 0 0 0 66 

2pia__ 1fnb__ 15 1 2 0 2 5 208 

2pii__ 1aps__ 4 0 0 1 0 0 70 

3nll__ 1qrdB_ 9 0 0 0 0 0 131 

3ullA_ 1bcpL_ 5 0 0 0 0 0 80 

193l__ 153l__ 7 0 0 0 0 0 95 

1p53A3 1fna__ 3 1 0 2 6 0 59 

1tig__ 1pavA_ 4 0 0 0 0 0 58 

1vkfA_ 1i0dA_ 11 0 0 5 0 0 141 

1rwhA1 1r76A_ 11 0 0 1 0 0 159 

1fseA_ 1rr7A_ 3 0 0 0 0 0 41 

1k5jA_ 2bbvA_ 4 0 0 2 0 0 75 

1ul7A_ 1t17A_ 5 0 1 0 0 3 72 

1te4A_ 1hz4A_ 4 0 0 3 0 0 100 

1nznA_ 1b89A_ 4 0 0 1 0 0 85 

1rliA_ 1g2iA_ 11 1 0 0 1 0 91 

1m3uA_ 1nqkA_ 13 3 0 0 19 0 150 

1xvhA1 1r8iA_ 3 0 0 0 0 0 60 

1xmbA1 1rxyA_ 10 1 0 2 8 1 155 

1dqgA_ 1avaC_ 7 0 0 3 0 0 108 

1egjA_ 1ollA1 8 0 1 0 0 10 66 
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1jigA_ 1nogA_ 4 0 0 0 0 0 100 

1h1nA_ 1r3sA_ 11 0 3 1 0 16 219 

2tpsA_ 1a0cA_ 9 0 0 5 0 0 186 

1wmhA_ 1t0yA_ 6 1 0 0 7 0 62 

1qopA_ 1tv8A_ 15 0 1 0 0 1 167 

1y6dA_ 1jogA_ 6 0 0 0 0 0 82 

2ila__ 1avaC_ 7 2 0 1 14 0 107 

1t9fA_ 1md6A_ 11 1 0 1 7 1 118 

1p6rA_ 1gxqA_ 4 2 0 0 12 0 50 

1vhwA_ 1vheA2 11 0 0 3 0 0 157 

2plc__ 1odzA_ 14 0 0 1 0 0 192 

1gzgA_ 1eokA_ 11 0 0 3 0 0 184 

1ukuA_ 1nu4A_ 4 1 0 2 5 2 67 

1ep3A_ 1uuqA_ 19 1 1 1 4 7 199 

1p1xA_ 1k77A_ 18 1 1 0 6 5 181 

1pii_2 1fcqA_ 8 0 1 0 0 7 142 

1dcfA_ 1fyeA_ 7 3 0 0 18 0 71 

1u8sA2 1s99A_ 4 0 0 1 0 0 69 

1lucA_ 1ujpA_ 9 0 0 6 0 0 194 

1qfoA_ 1rowA_ 7 1 0 1 5 0 78 

1vhnA_ 1qnrA_ 20 0 1 2 0 2 189 

1oeyJ_ 1v5oA_ 4 1 0 0 2 0 68 

1pfbA_ 1vie__ 5 0 0 1 0 0 43 

1m5wA_ 1ur4A_ 11 3 1 0 25 4 182 

1dcfA_ 1l9xA_ 10 0 1 1 0 9 95 

1pii_2 1f8mA_ 14 0 1 0 0 6 159 

2pth__ 1vheA2 6 0 2 2 0 24 98 

1ukuA_ 1utaA_ 3 2 0 1 20 0 48 

1ub3A_ 1qopA_ 13 3 1 0 23 8 142 

1vk8A_ 1y0hA_ 4 1 0 1 10 0 67 

1k66A_ 1n57A_ 7 1 1 2 6 8 99 

1uwdA_ 1josA_ 4 0 0 1 0 0 73 

1u8sA2 1ulrA_ 5 1 0 0 7 0 64 

1j6oA_ 1jfxA_ 10 0 0 3 0 0 156 

1urrA_ 1tr0A_ 3 0 0 3 0 0 71 

1jfxA_ 1rhcA_ 10 2 1 0 12 6 144 

1u8sA2 1itpA_ 6 0 0 0 0 0 69 

1izcA_ 1r30A_ 17 2 0 1 22 7 156 

1ix2A_ 1owwA_ 6 0 0 1 0 0 80 

1bbzA_ 1jb0E_ 2 0 0 0 0 0 48 

1nbcA_ 1ayoA_ 9 2 0 0 18 0 83 

1roaA_ 1oh0A_ 3 0 1 1 0 11 66 

1wmhB_ 1xd3B_ 4 0 1 0 0 8 60 
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1h05A_ 1ydgA_ 8 1 0 0 13 0 94 

1f0zA_ 1v2yA_ 6 0 0 0 0 0 60 

1j27A_ 1q8bA_ 6 0 1 1 0 7 72 

1u1jA2 2ebn__ 15 0 1 2 0 2 195 

1eceA_ 1d8wA_ 12 0 1 2 0 17 209 

1sj1A_ 1u8sA1 5 0 1 0 0 2 53 

1od6A_ 1mjhA_ 6 1 0 1 15 0 92 

1rhcA_ 1eokA_ 15 0 1 0 0 2 197 

1knmA_ 1j0sA_ 8 3 0 0 15 0 97 

1ukuA_ 1vmbA_ 6 0 0 1 0 0 81 

1ujpA_ 1i1wA_ 13 2 1 1 12 10 168 

1j27A_ 1s99A_ 4 0 1 1 0 7 65 

1jixA_ 1a8i__ 22 0 0 1 0 0 296 

1pjaA_ 1lzlA_ 11 0 0 1 0 0 183 

1bkb_2 1qzgA_ 5 0 0 0 0 0 53 

1ntvA_ 1ntyA2 7 1 0 1 16 0 80 

1ptmA_ 1u7nA_ 13 0 0 1 0 0 233 

1mi8A_ 1at0__ 13 0 0 0 0 0 131 

1pjqA1 1qycA_ 8 1 0 0 6 0 95 

1h70A_ 1g61A_ 8 5 2 2 30 17 132 

1efdN_ 1pszA_ 13 2 1 1 13 6 178 

1xtpA_ 1o54A_ 15 1 0 0 1 0 148 

1t4hA_ 1nw1A_ 15 1 0 1 4 3 151 

1sacA_ 1y4wA1 16 0 0 1 0 0 126 

1gv9A_ 2sli_1 15 1 0 2 7 0 128 

1j97A_ 1rlmA_ 14 0 0 1 0 0 135 

1bjaA_ 1jgsA_ 7 0 0 0 0 0 84 

1gklA_ 1brt__ 11 1 1 1 10 3 165 

1fjjA_ 1qouA_ 9 1 0 0 5 0 111 

1it2A_ 1allA_ 6 2 0 0 28 0 90 

1xpjA_ 1qyiA_ 8 0 0 1 0 0 99 

1a78A_ 1s2bA_ 15 0 0 1 0 0 113 

1k2eA_ 1vk6A2 7 1 0 1 12 0 101 

1oeyA_ 1c9fA_ 4 1 0 1 1 0 56 

1qx2A_ 1s6jA_ 4 0 0 0 0 0 56 

1rqjA_ 1di1A_ 8 1 2 1 2 34 183 

1s1qA_ 1jatA_ 6 1 0 1 9 0 94 

1wfzA_ 1mzgA_ 5 1 0 0 13 0 83 

1c4rA_ 1oq1A_ 10 0 1 1 0 4 126 

1e5kA_ 1i52A_ 10 3 0 1 18 0 157 

1mek__ 1lu4A_ 8 0 0 1 0 0 92 

1tjoA_ 1mtyD_ 6 0 0 0 0 0 145 

1f3yA_ 1vk6A2 9 0 0 0 0 0 120 
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1m2dA_ 1wouA_ 4 1 0 1 8 0 63 

1xbbA_ 1nd4A_ 13 2 0 0 16 0 148 

1m6sA_ 1eg5A_ 17 4 1 0 25 4 275 

1npsA_ 1f53A_ 7 0 0 0 0 0 63 

1ll2A_ 1h7eA_ 13 0 0 1 0 0 163 

1h70A_ 1vkpA_ 13 3 3 2 20 11 201 

1xg8A_ 2trxA_ 7 1 0 0 7 0 77 

1dlwA_ 1h97A_ 5 0 0 0 0 0 102 

1wdkA2 1txgA1 9 3 0 1 18 0 135 

1eg5A_ 2dkb__ 21 2 0 0 10 0 301 

1dlwA_ 1it2A_ 6 1 0 0 3 0 95 

1grj_2 1fd9A_ 5 1 0 0 6 0 51 

1rjdA_ 1ri5A_ 16 1 0 1 7 0 197 

1ogmX2 1oflA_ 38 0 0 2 0 0 270 

1mdoA_ 1m6sA_ 18 2 2 0 15 20 258 

1d2fA_ 1s0aA_ 17 6 1 0 48 5 255 

1lsuA_ 1rkxA_ 10 1 0 0 8 0 113 

1js3A_ 1fg7A_ 16 1 0 1 7 0 300 

1kyhA_ 1ub0A_ 17 1 0 0 5 0 188 

1wf6A_ 1cdzA_ 7 0 0 0 0 0 93 

1wmgA_ 3ygsP_ 6 0 0 0 0 0 72 

1gcwB_ 1jboA_ 6 0 1 0 0 15 102 

1qx2A_ 1y1xA_ 4 0 0 0 0 0 66 

1vj5A2 1tca__ 12 0 0 1 0 0 192 

1y0uA_ 1stzA1 4 1 0 0 4 0 53 

1keaA_ 1ornA_ 12 0 0 0 0 0 207 

1h6yA_ 1jhjA_ 9 2 1 0 20 5 89 

1nkiA_ 1u6lA_ 10 2 0 2 8 0 98 

1ajsA_ 1ohwA_ 15 2 1 3 12 7 309 

1e87A_ 1o7bT_ 6 0 1 0 0 3 67 

1q6wA_ 1mkaA_ 4 1 1 1 2 6 98 

1hekA_ 1ecwA_ 4 1 0 0 16 0 79 

1txdA2 1wguA_ 8 1 0 0 9 0 89 

1eh2__ 1uhnA_ 4 0 1 0 0 3 71 

1a3k__ 1umzA_ 10 0 0 1 0 0 125 

1v70A_ 1eybA_ 7 2 0 0 11 0 83 

1cpy__ 1vj5A2 16 0 2 0 0 20 233 

1or4A_ 1xg0C_ 8 0 0 0 0 0 126 

1omzA_ 1qg8A_ 15 3 0 0 21 1 166 

1qz9A_ 1ax4A_ 18 5 0 2 44 4 279 

1tvgA_ 1umhA_ 5 2 1 0 13 5 83 

1xc2A1 1txgA1 8 4 0 0 33 3 104 

1p9aG_ 1jl5A_ 29 0 0 2 0 0 189 
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1is3A_ 1kqrA_ 7 0 0 3 0 0 101 

1snyA_ 1vjpA1 7 2 0 4 24 0 140 

1wi9A_ 1j75A_ 4 0 1 0 0 1 53 

1qlwA_ 1b6g__ 13 2 0 0 13 0 180 

2cpgA_ 1bazA_ 2 0 0 0 0 0 43 

1cvl__ 1mnaA_ 11 1 0 0 10 0 181 

1xtpA_ 1i9gA_ 14 1 0 1 1 0 151 

1nkgA2 1k42A_ 8 1 0 1 9 0 104 

1a78A_ 1gv9A_ 10 1 0 2 6 0 121 

1rljA_ 1oboA_ 8 1 0 0 7 0 110 

1imjA_ 1din__ 12 1 0 0 6 0 183 

1rrqA2 1q33A_ 7 1 0 0 16 0 94 

1jigA_ 1t0qB_ 6 0 0 0 0 0 140 

1rrqA2 1k2eA_ 9 2 0 0 18 0 94 

1sjwA_ 1q40A_ 5 0 0 1 0 0 105 

1h8bA_ 1uhnA_ 4 0 0 0 0 0 62 

1fg7A_ 1ax4A_ 21 4 0 0 39 6 261 

1iqzA_ 7fd1A_ 4 1 0 0 5 1 51 

1jg1A_ 1i9gA_ 12 0 0 2 0 0 145 

1uliB_ 1oh0A_ 8 0 0 3 0 0 116 

1s0aA_ 1vp4A_ 17 3 1 0 19 1 302 

1nvmB1 1xg5A_ 7 1 1 1 14 4 109 

1esc__ 1vjgA_ 10 0 0 0 0 0 183 

1dgnA_ 1wh4A_ 6 1 0 0 8 0 77 

1guiA_ 1h6yA_ 10 2 0 0 18 2 106 

1a3k__ 1c4rA_ 8 2 1 1 6 8 106 

1ne9A2 1p0hA_ 8 2 0 1 20 0 123 

1mkp__ 1wchA_ 9 1 0 0 3 1 131 

1h80A_ 1k5cA_ 32 3 1 0 19 4 239 

1sjwA_ 1hkxA_ 9 0 0 0 0 0 109 

1k75A_ 1a4sA_ 24 1 1 2 7 9 261 

1s0aA_ 1m6sA_ 21 1 0 0 14 0 295 

1rh6A_ 1j9iA_ 5 0 0 0 0 0 47 

1ca1_2 1lox_2 9 0 0 0 0 0 105 

1s3jA_ 1bjaA_ 6 0 0 0 0 0 82 

1js3A_ 1c7nA_ 25 0 1 0 0 2 337 

1mnaA_ 1vj5A2 12 3 0 0 33 2 170 

1m8zA_ 1jdhA_ 22 0 0 2 0 0 292 

1vk4A_ 1vi9A_ 14 0 0 0 0 0 216 

1senA_ 1a8l_1 7 0 0 1 0 0 84 

1p5tA_ 1wi1A_ 2 1 0 1 14 0 67 

1rttA_ 1sqsA_ 10 2 0 0 15 0 141 

1od5A2 1x7nA_ 10 2 0 1 11 2 104 
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1ohwA_ 1svvA_ 15 1 2 2 7 4 282 

1ttzA_ 1t1vA_ 6 0 0 0 0 0 71 

1n1jB_ 1tzyB_ 3 0 0 0 0 0 77 

 

Table IV-8. The alignment block-level and aligned position-level comparison for each 

alignment of SFESA (O+G+M+S) applied on PROMALS on the MUSTER dataset (Dali 

as a reference).  

  



 

 

141 

 

Methods 
Reference-dependent (Q-score)  Reference-

independent 

(TM-score) DALI TMalign Matt DeepAlign  

PROMALS 61.4 59.5 60.2 62.6  0.582 

SFESA (O)+PROMALS 62.7 60.5 61.2 63.9  0.585 

SFESA (O+G)+PROMALS 63.4 61.0 61.9 64.6  0.588 

SFESA (O+G+M)+PROMALS 63.7 61.1 62.2 64.8  0.589 

SFESA (O+G+M+S)+PROMALS 63.9 61.4 62.3 65.1  0.589 

 
    

  

HHpred 63.0 60.6 62.7 64.4  0.589 

SFESA (O)+HHpred 63.1 60.6 62.7 64.4  0.590 

SFESA (O+G)+HHpred 63.1 60.6 62.7 64.5  0.590 

SFESA (O+G+M)+HHpred 63.7 61.1 63.2 64.9  0.592 

SFESA (O+G+M+S)+HHpred 63.5 61.1 63.2 64.8  0.592 

 
    

  

CNFpred 64.7 62.2 62.6 66.3  0.595 

SFESA (O)+CNFpred 65.1 62.5 62.6 66.4  0.596 

SFESA (O+G)+CNFpred 65.3 62.7 62.5 66.4  0.598 

SFESA (O+G+M)+CNFpred 64.8 62.2 62.6 66.0  0.595 

SFESA (O+G+M+S)+CNFpred 65.2 62.7 63.0 66.5  0.598 

 

Table IV-9. Test on SALIGN database. Columns 2-5 indicate five different structure 

alignment methods to generate reference alignments (Reference-dependent evaluation). 

Column 6 indicates the average of query model’s TM-score built by Modeller 

(Reference-independent evaluation). Bold indicates the best performance in the 

subsection. Bold with underscore indicates the overall best performance in one column. 

Average Q-score and TM-score are reported.  
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method/(p-value) PROMALS 

SFESA(O)+PROMALS 3.40E-08 

SFESA(O+G)+PROMALS 0 

SFESA(O+G+M)+PROMALS 0 

SFESA(O+G+M+S)+PROMALS 0 

  method/(p-value) HHpred 

SFESA(O)+HHpred 0.19 

SFESA(O+G)+HHpred 0.035 

SFESA(O+G+M)+HHpred 3.60E-04 

SFESA(O+G+M+S)+HHpred 0.0026 

  method/(p-value) CNFpred 

SFESA(O)+CNFpred 0.031 

SFESA(O+G)+CNFpred 0.018 

SFESA(O+G+M)+CNFpred 0.086 

SFESA(O+G+M+S)+CNFpred 0.0026 

 

Table IV-10. Statistically significant Q-score improvement of SFESA on PROMALS, 

HHpred and CNFpred (Dali as a reference). All SFESA options by using different 

parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) 

are compared with three existing alignment methods on SALIGN dataset. P-values are 

calculated based on the paired Wilcoxon signed-rank test. P-values below 0.05 are 

marked green and below 0.005 are marked pink. 
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 3275 122 47 104 985 352 45502 

SFESA (O+G)+PROMALS 2900 242 133 273 1652 701 44486 

SFESA (O+G+M)+PROMALS 2801 278 159 310 1957 848 44034 

SFESA (O+G+M+S)+PROMALS 3113 226 81 128 1622 453 44764 

        SFESA (O)+HHpred 3323 30 16 27 205 131 46503 

SFESA (O+G)+HHpred 2932 162 132 170 573 460 45806 

SFESA (O+G+M)+HHpred 2726 247 172 251 1053 667 45119 

SFESA (O+G+M+S)+HHpred 3020 166 103 107 733 436 45670 

        SFESA (O)+CNFpred 3277 63 44 74 518 348 45973 

SFESA (O+G)+CNFpred 2794 222 165 277 1219 1012 44608 

SFESA (O+G+M)+CNFpred 2691 235 201 331 1197 1150 44492 

SFESA (O+G+M+S)+CNFpred 3038 169 102 149 915 630 45294 

 

Table IV-11. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred (Dali as a reference). All SFESA modes by using 

different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA 

(O+G+M+S)) are compared with three existing alignment methods on the SALIGN 

dataset.   
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 3275 118 54 101 978 449 47348 

SFESA (O+G)+PROMALS 2900 229 144 275 1625 819 46331 

SFESA (O+G+M)+PROMALS 2801 261 185 301 1881 1003 45891 

SFESA (O+G+M+S)+PROMALS 3113 215 94 126 1571 556 46648 

        SFESA (O)+HHpred 3323 24 25 24 165 182 48428 

SFESA (O+G)+HHpred 2932 148 136 180 548 492 47735 

SFESA (O+G+M)+HHpred 2726 231 174 265 976 711 47088 

SFESA (O+G+M+S)+HHpred 3020 160 95 121 697 449 47629 

        SFESA (O)+CNFpred 3277 67 46 68 531 349 47895 

SFESA (O+G)+CNFpred 2794 227 177 260 1253 1027 46495 

SFESA (O+G+M)+CNFpred 2691 230 218 319 1206 1184 46385 

SFESA (O+G+M+S)+CNFpred 3038 170 108 142 945 641 47189 

 

Table IV-12. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred (TMalign as reference). All SFESA modes by 

using different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA 

(O+G+M+S)) are compared with three existing alignment methods on the SALIGN 

dataset.   
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 3275 113 50 110 902 411 44340 

SFESA (O+G)+PROMALS 2900 233 128 287 1524 730 43399 

SFESA (O+G+M)+PROMALS 2801 262 155 330 1774 836 43043 

SFESA (O+G+M+S)+PROMALS 3113 210 87 138 1458 468 43727 

        SFESA (O)+HHpred 3323 25 22 26 173 168 45312 

SFESA (O+G)+HHpred 2932 153 125 186 514 474 44665 

SFESA (O+G+M)+HHpred 2726 227 162 281 919 653 44081 

SFESA (O+G+M+S)+HHpred 3020 160 92 124 674 411 44568 

        SFESA (O)+CNFpred 3277 60 45 76 448 425 44780 

SFESA (O+G)+CNFpred 2794 204 158 302 986 999 43668 

SFESA (O+G+M)+CNFpred 2691 215 184 368 1054 1095 43504 

SFESA (O+G+M+S)+CNFpred 3038 157 97 166 825 625 44203 

 

Table IV-13. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred (Matt as reference). All SFESA modes by using 

different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA 

(O+G+M+S)) are compared with three existing alignment methods on the SALIGN 

dataset.   
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 3275 128 54 91 1062 432 46381 

SFESA (O+G)+PROMALS 2900 260 132 256 1804 825 45246 

SFESA (O+G+M)+PROMALS 2801 286 171 290 2059 1006 44810 

SFESA (O+G+M+S)+PROMALS 3113 230 88 117 1720 536 45619 

        SFESA (O)+HHpred 3323 28 20 25 189 172 47514 

SFESA (O+G)+HHpred 2932 165 124 175 596 525 46754 

SFESA (O+G+M)+HHpred 2726 247 177 246 1060 797 46018 

SFESA (O+G+M+S)+HHpred 3020 163 105 108 747 513 46615 

        SFESA (O)+CNFpred 3277 68 49 64 521 438 46916 

SFESA (O+G)+CNFpred 2794 227 175 262 1258 1199 45418 

SFESA (O+G+M)+CNFpred 2691 232 212 323 1207 1341 45327 

SFESA (O+G+M+S)+CNFpred 3038 167 110 143 919 746 46210 

 

Table IV-14. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred (Deepalign as reference). All SFESA modes by 

using different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA 

(O+G+M+S)) are compared with three existing alignment methods on the SALIGN 

dataset. 
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Domain 

1 

Domain 

2 

Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

1qfeA_ 1rlcL_ 14 0 0 2 0 0 206 

3adkA_ 1nstA_ 6 2 0 2 25 3 130 

1barA_ 1xyfA_ 11 1 0 2 1 0 110 

1f6yA_ 1reqA_ 12 3 0 0 11 0 202 

1dioA_ 1qfeA_ 14 0 0 0 0 0 208 

1ez3A_ 1fewA_ 2 0 1 0 0 1 120 

1dioA_ 1d9eA_ 18 0 0 3 0 0 209 

1qfeA_ 1dxeA_ 14 1 0 0 16 0 164 

1qfeA_ 1aldA_ 9 0 0 4 0 0 199 

1nsjA_ 1reqA_ 11 0 0 1 0 0 188 

1qfeA_ 1nsjA_ 11 2 2 0 15 19 142 

1dxeA_ 1f61A_ 14 1 1 0 5 5 189 

2asrA_ 1occC_ 4 0 0 0 0 0 126 

1fioA_ 3c98B_ 6 0 0 0 0 0 177 

1cb8A_ 1qazA_ 9 1 0 1 17 0 228 

1qfeA_ 1f6yA_ 13 1 1 2 6 1 187 

1nal1_ 1qtwA_ 13 0 1 2 0 7 190 

1rpxA_ 1dioA_ 14 1 0 0 6 0 178 

1dtyA_ 1b9hA_ 20 2 2 0 14 9 269 

1czfA_ 1tspA_ 44 0 1 4 0 6 274 

1bs2A_ 1a8hA_ 16 2 0 0 38 0 324 

1dorB_ 1nal1_ 11 4 1 1 25 1 170 

1piiA_ 1dxeA_ 11 1 0 2 12 1 176 

1aw1B_ 1dosA_ 12 1 2 0 4 4 205 

1fq0A_ 1qrqA_ 17 2 1 0 10 1 176 

1nsjA_ 2reqB_ 13 0 0 1 0 0 185 

5rubB_ 1thfD_ 12 2 0 1 10 0 171 

1cqqA_ 1cu1A_ 12 0 0 4 0 0 135 

1dxeA_ 1rpxA_ 12 1 1 0 6 1 181 

1wkdA_ 1qfeA_ 14 2 1 0 19 11 175 

2mnrA_ 1dorB_ 18 0 0 3 0 0 189 

1ak1A_ 1qgoA_ 13 1 1 0 5 4 225 

1de5A_ 1a0cA_ 19 2 0 3 13 1 306 

1fq0A_ 1pscA_ 15 0 0 3 0 0 183 

1daeA_ 1nipA_ 9 2 1 1 10 3 165 

1a80A_ 1fq0A_ 14 0 1 0 0 5 177 

1nal1_ 1fq0A_ 12 2 1 0 13 7 158 

1qhtA_ 1noyA_ 22 0 0 0 0 0 282 

1nal1_ 1ezwA_ 16 1 0 2 9 0 183 
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1dxeA_ 1fq0A_ 12 3 1 0 20 4 152 

2ercA_ 1eizA_ 11 1 0 0 7 6 131 

1nal1_ 1aw1B_ 8 2 1 3 26 9 150 

1mpfA_ 1a0tP_ 20 0 0 0 0 0 282 

2thiA_ 1anfA_ 25 1 0 0 6 0 308 

1aw1B_ 1f6yA_ 10 1 2 3 6 5 174 

1cu1A_ 7lprA_ 16 0 0 3 0 0 137 

1fohB_ 1qq2A_ 9 0 0 1 0 0 140 

1dfoA_ 1b9hA_ 19 5 1 0 40 7 268 

1vjsA_ 1bvzA_ 25 4 0 0 33 1 339 

1fq0A_ 2tpsA_ 13 1 0 0 8 0 183 

1igsA_ 1ad1B_ 10 3 3 0 30 19 125 

1udrB_ 1qo0D_ 7 1 0 0 9 4 102 

1b9hA_ 1qgnA_ 17 4 0 3 23 0 274 

4kbpB_ 1qhwA_ 14 0 3 1 0 17 230 

2tpsA_ 1nal1_ 12 2 1 1 17 7 157 

1nksF_ 1nipA_ 11 1 0 0 12 0 136 

1ad1B_ 1qr7B_ 8 5 1 2 40 10 156 

1noyA_ 1tgoA_ 22 2 0 1 9 0 173 

1qgxA_ 1fpkA_ 14 3 0 2 16 0 223 

1cj0A_ 1b9hA_ 18 4 0 1 26 1 286 

1ftsA_ 1daeA_ 8 4 0 1 39 4 126 

1eokA_ 1d2kA_ 14 1 2 0 9 6 219 

1dfoA_ 1bs0A_ 21 4 1 1 28 3 298 

1dfoA_ 1elqA_ 15 6 1 0 46 8 268 

1qgnA_ 1dfoA_ 22 1 1 0 7 3 276 

1dqyA_ 1broA_ 13 1 0 2 11 0 189 

1fofA_ 1skfA_ 18 0 0 0 0 0 196 

1d2fB_ 1cj0A_ 22 3 0 0 26 0 293 

1nzyA_ 1tyfB_ 12 1 1 0 1 1 146 

1qlwA_ 1auoA_ 11 2 0 1 9 6 171 

1aw1B_ 1fq0A_ 13 0 2 0 0 7 169 

1edtA_ 1ctnA_ 15 0 1 1 0 1 234 

1chmA_ 1xgmA_ 17 0 0 0 0 0 209 

1b5lA_ 1evsA_ 4 0 0 0 0 0 127 

1c3qA_ 1bx4A_ 14 2 0 1 9 0 198 

1aw1B_ 1aldA_ 6 1 1 3 6 17 182 

1c0aA_ 12asA_ 16 1 0 0 13 0 251 

1ad1B_ 1dioA_ 14 0 0 2 0 0 211 

1b9hA_ 1bs0A_ 22 2 0 0 15 0 289 

1b3uA_ 1ibrB_ 16 0 0 2 0 0 351 

1judA_ 1fezA_ 13 0 0 2 0 0 138 

1a9nA_ 1d0bA_ 7 0 0 0 0 0 123 
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1d9eA_ 1fq0A_ 13 2 0 1 20 2 162 

1igsA_ 1fq0A_ 11 3 1 0 19 9 157 

1amoA_ 4nllA_ 8 1 0 1 9 1 126 

1plqA_ 1dmlA_ 13 4 1 2 32 11 187 

1ad1B_ 2tpsA_ 13 0 1 0 0 7 168 

1n5wC_ 1fiqB_ 19 1 0 0 7 0 267 

1galA_ 3coxA_ 27 2 0 2 14 1 385 

1cj0A_ 1qgnA_ 20 2 1 1 20 2 263 

2hrvA_ 1cu1A_ 8 0 0 3 0 0 115 

1b54A_ 1qu4D_ 15 1 0 0 12 0 184 

1ahuA_ 1f0xA_ 30 0 0 0 0 0 419 

1eutA_ 1czvA_ 14 1 0 0 6 0 128 

1dubA_ 1tyfB_ 13 1 0 0 1 0 135 

1rkdA_ 1c3qA_ 17 1 0 0 5 2 198 

1ez0C_ 1ad3A_ 31 1 0 1 11 1 404 

1vptA_ 1eizA_ 8 1 1 2 7 2 146 

2tmdA_ 1f6mA_ 24 0 0 1 0 0 257 

1ohvA_ 2gsaA_ 22 1 0 0 12 0 370 

1cqqA_ 2hrvA_ 12 1 1 1 6 10 114 

1d9eA_ 1de5A_ 11 0 0 3 0 0 206 

1ad1B_ 1qfeA_ 12 2 0 1 21 0 174 

1qu4D_ 1sftB_ 18 4 2 0 20 5 256 

1aj6A_ 1b62A_ 10 2 0 1 16 0 146 

1qrrA_ 1a4uA_ 11 2 1 0 20 3 182 

1itgA_ 1bcoA_ 9 1 0 1 5 1 130 

3adkA_ 1gkyA_ 12 3 0 0 22 3 127 

1havA_ 2hrvA_ 11 2 0 1 5 0 128 

1qu0A_ 1c4rE_ 13 1 1 0 5 2 155 

3minA_ 1mioB_ 27 0 0 0 0 0 406 

1bciA_ 2isdA_ 5 2 1 0 18 12 86 

1taqA_ 1a76A_ 17 1 0 0 5 0 228 

1ldcA_ 1dorB_ 17 2 0 1 17 4 213 

1eizA_ 2admA_ 9 2 1 0 17 3 130 

2pueA_ 1bykA_ 18 1 0 0 1 0 252 

1chmA_ 1matA_ 20 0 0 0 0 0 220 

1ciuA_ 1vjsA_ 31 3 1 0 28 2 345 

1dcnB_ 1c3cA_ 19 0 0 0 0 0 380 

1rptA_ 1ihpA_ 16 1 0 0 12 1 280 

12asA_ 1b8aA_ 16 2 0 1 15 1 259 

1smpA_ 1kuhA_ 7 0 0 0 0 0 122 

1xgmA_ 1a16A_ 12 1 1 0 6 2 197 

1d9eA_ 1nsjA_ 13 1 0 1 12 0 167 

1dm0L_ 1tcsA_ 15 1 0 0 1 0 214 
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1qr7B_ 1d9eA_ 19 0 1 0 0 2 241 

1gnwA_ 1eemA_ 10 0 1 0 0 1 190 

1dpeA_ 1rkmA_ 32 1 0 0 9 0 460 

1ar1B_ 1fftB_ 12 1 0 0 1 0 211 

1ttpB_ 1oasA_ 18 0 1 0 0 2 291 

1nal1_ 1thfD_ 13 1 1 1 1 8 186 

1ag8A_ 1ez0C_ 31 3 0 0 10 5 425 

1qgiA_ 1chkA_ 12 0 0 1 0 0 215 

1cqxA_ 1qfjA_ 16 0 1 0 0 1 129 

1dilA_ 1eutA_ 20 4 0 1 35 1 292 

1ad1B_ 1d9eA_ 12 2 2 2 6 9 196 

1d0bA_ 1yrgA_ 23 0 0 0 0 0 153 

1c3cA_ 1fuoA_ 16 0 1 0 0 8 366 

1dfjI_ 1yrgA_ 28 0 0 3 0 0 313 

1tdjA_ 1oasA_ 19 0 0 0 0 0 294 

1eemA_ 1gsdB_ 10 0 1 1 0 13 183 

1havA_ 1cqqA_ 16 0 0 1 0 0 170 

1uokA_ 1ciuA_ 29 1 0 1 9 0 394 

1lrvA_ 1b3uA_ 16 0 0 0 0 0 214 

1dgdA_ 1ohvA_ 22 2 0 0 15 1 382 

1bw9A_ 3mw9A_ 23 1 0 0 8 0 318 

1occC_ 1fftC_ 5 0 0 0 0 0 177 

1xelA_ 1db3A_ 15 1 0 1 4 0 286 

1bqgA_ 1fhuA_ 19 1 1 0 1 1 269 

1matA_ 1bn5A_ 17 2 0 1 9 0 227 

1ahnA_ 1amoA_ 10 0 0 0 0 0 145 

1fblA_ 1kuhA_ 5 2 0 0 6 0 114 

1dfjI_ 1d0bA_ 9 0 0 0 0 0 182 

1daaA_ 1et0A_ 20 2 0 0 15 0 234 

1imaA_ 1qgxA_ 17 2 0 2 10 0 241 

1ciuA_ 2aaaA_ 23 3 1 0 19 11 409 

1db3A_ 1bxkA_ 17 2 1 0 8 1 282 

1whsB_ 1ivyA_ 8 0 0 0 0 0 147 

1ovaA_ 1sekA_ 22 3 0 0 21 1 337 

1eurA_ 1sllA_ 22 1 2 0 6 6 327 

7ahlA_ 1pvlA_ 18 0 0 0 0 0 233 

1gpmA_ 1qdlB_ 16 1 1 0 8 2 176 

1whsB_ 1cpyA_ 9 0 0 0 0 0 142 

1ipsB_ 1dcsA_ 14 1 0 0 1 0 243 

1b5fA_ 1fknA_ 17 1 0 0 10 0 217 

1darA_ 1dpfA_ 11 0 0 2 0 0 146 

2rebA_ 1cr2A_ 10 3 2 0 13 23 147 

1tlfC_ 2pueA_ 19 0 1 0 0 13 259 
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1dxyA_ 1psdA_ 22 0 0 0 0 0 311 

1psdA_ 1gdhA_ 20 1 0 0 7 0 301 

4tf4B_ 1nbcA_ 12 0 0 0 0 0 132 

1lyaD_ 1fknA_ 19 0 1 0 0 1 228 

1xffB_ 1ct9A_ 16 1 0 0 4 0 178 

1fiqC_ 1vlbA_ 36 1 0 0 10 0 695 

1ac5A_ 1cpyA_ 24 1 0 1 7 0 393 

2shpA_ 1yptA_ 12 1 0 1 17 2 223 

1iovA_ 1ehiA_ 19 1 0 0 12 0 289 

4mhtA_ 1dctA_ 18 0 0 0 0 0 276 

1reqA_ 1cb7A_ 11 0 0 0 0 0 129 

1cpyA_ 1ivyA_ 24 2 1 0 21 1 356 

2plcA_ 2isdA_ 15 0 1 0 0 4 207 

1d2kA_ 1ctnA_ 24 1 0 0 2 0 353 

1xgmA_ 1matA_ 18 0 1 0 0 1 229 

1ag8A_ 1euhA_ 35 0 0 0 0 0 466 

1whsA_ 1cpyA_ 14 1 0 1 13 0 224 

1ahsB_ 1bvp4_ 11 0 0 0 0 0 125 

1au1B_ 1b5lA_ 4 1 0 0 1 0 143 

1agrE_ 1emuA_ 8 0 0 0 0 0 124 

1atiA_ 1qf6A_ 25 1 1 0 6 1 349 

1ahuA_ 1diiA_ 30 0 0 0 0 0 511 

1hrdA_ 1gtmA_ 26 1 0 0 11 0 399 

1ciyA_ 1dlcA_ 31 1 1 0 1 1 553 

1kobB_ 1a06A_ 14 1 0 0 2 1 260 

1froA_ 1fa6B_ 10 0 0 0 0 0 124 

1etuA_ 1darA_ 13 0 1 0 0 8 144 

1tcsA_ 3rtjA_ 19 0 0 0 0 0 240 

1larA_ 1ptyA_ 16 1 0 1 4 0 272 

1vlbA_ 1n5wA_ 11 0 0 1 1 1 155 

1vlbA_ 1fiqA_ 9 1 0 0 1 0 149 

1eepA_ 1dorB_ 19 1 0 0 13 0 223 

 

Table IV-15. The alignment block-level and aligned position-level comparison for each 

alignment of SFESA (O+G+M+S) applied on PROMALS on the SALIGN dataset (Dali 

as a reference). 
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Methods 

On subsets 

Reference-dependent  

(Q-score) 
 

Reference-independent  

(TM-score) 

SABmark_TWI SABmark_SUP  SABmark_TWI SABmark_SUP 

PROMALS 46.2 71.1  0.413 0.583 

SFESA (O)+PROMALS 47.3 71.3  0.416 0.585 

SFESA (O+G)+PROMALS 48.0 71.8  0.416 0.585 

SFESA (O+G+M)+PROMALS 47.9 71.9  0.416 0.586 

SFESA (O+G+M+S)+PROMALS 48.1 72.1  0.416 0.587 

 
  

   

HHpred 40.7 68.9  0.371 0.570 

SFESA (O)+HHpred 40.6 69.0  0.371 0.570 

SFESA (O+G)+HHpred 41.3 69.1  0.372 0.571 

SFESA (O+G+M)+HHpred  41.4 69.6  0.372 0.571 

SFESA (O+G+M+S)+HHpred 41.3 69.4  0.373 0.571 

 
  

   

CNFpred 41.5 66.1  0.368 0.543 

SFESA (O)+CNFpred 41.6 66.4  0.367 0.545 

SFESA (O+G)+CNFpred 42.3 67.0  0.370 0.545 

SFESA (O+G+M)+CNFpred 42.4 67.4  0.371 0.545 

SFESA (O+G+M+S)+CNFpred 42.2 66.9  0.370 0.545 

 

Table IV-16. Test on SABmark database. Columns 2-3 indicate the alignment Q-score 

based on their reference on two subsets of the SABmark benchmark: “twilight zone” and 

“superfamilies” respectively (Reference-dependent evaluation). Columns 4-5 indicate the 

average of query model’s TM-score built by Modeller on two subsets of the SABmark 

benchmark: “twilight zone” and “superfamilies” respectively (Reference-independent 

evaluation). Bold indicates the best performance in the subsection. Bold with underscore 

indicates the overall best performance in one column.  
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Method/(p-value) SABmark_twi SABmark_sup 

SFESA(O)+PROMALS 4.39e-04 0.15 

SFESA(O+G)+PROMALS 3.07e-03 1.28e-03 

SFESA(O+G+M)+PROMALS 2.35e-03 3.33e-04 

SFESA(O+G+M+S)+PROMALS 2.30e-04 1.43e-06 

 

 

 Method/(p-value) HHpred HHpred 

SFESA(O)+HHpred 0.18 0.48 

SFESA(O+G)+HHpred 3.79e-02 0.099 

SFESA(O+G+M)+HHpred 1.37e-02 1.41e-04 

SFESA(O+G+M+S)+HHpred 1.11e-02 3.74e-05 

 

 

 Method/(p-value) CNFpred CNFpred 

SFESA(O)+CNFpred 0.43 3.29e-02 

SFESA(O+G)+CNFpred 0.068 4.25e-04 

SFESA(O+G+M)+CNFpred 3.67e-02 2.38e-06 

SFESA(O+G+M+S)+CNFpred 2.74e-02 1.57e-05 

 

Table IV-17. Statistically significant Q-Score improvement of SFESA on PROMALS, 

HHpred and CNFpred (SABMARK as reference). All SFESA modes by using different 

parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) 

are compared with three existing alignment methods on SABMARK dataset. P-values are 

calculated based on the paired Wilcoxon signed-rank. P-values below 0.05 are marked 

green and below 0.005 are marked pink. 

  



 

 

154 

Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 1629 31 16 68 242 74 13199 

SFESA (O+G)+PROMALS 1367 75 53 249 558 329 12628 

SFESA (O+G+M)+PROMALS 1344 79 57 264 562 321 12632 

SFESA (O+G+M+S)+PROMALS 1512 61 32 139 432 180 12903 

        SFESA (O)+HHpred 1293 2 7 18 11 25 13479 

SFESA (O+G)+HHpred 1137 36 23 124 150 79 13286 

SFESA (O+G+M)+HHpred 1089 55 25 151 202 113 13200 

SFESA (O+G+M+S)+HHpred 1202 35 15 68 154 60 13301 

        SFESA (O)+CNFpred 1152 15 17 39 131 100 13284 

SFESA (O+G)+CNFpred 924 71 41 187 391 281 12843 

SFESA (O+G+M)+CNFpred 903 73 39 208 370 238 12907 

SFESA (O+G+M+S)+CNFpred 1035 49 23 116 283 176 13056 

 

Table IV-18. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters 

(SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared 

with three existing alignment methods on the SABMARK “twilight zone” subset.   
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Domain 

1 

Domain 

2 

Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

1h97a_ 1jboa_ 6 0 1 0 0 3 103 

1lrza1 1seta1 2 0 0 0 0 0 49 

1c52__ 1e29a_ 6 0 0 0 0 0 54 

1bjaa_ 1jhga_ 4 1 0 0 14 0 38 

1nvma1 1oaia_ 3 0 0 0 0 0 39 

1g4da_ 1nd9a_ 4 1 0 0 13 0 13 

1hcia4 1jnra1 3 0 0 0 0 0 61 

1gjta_ 1k1xa1 4 0 0 0 0 0 39 

1erd__ 2erl__ 3 0 0 0 0 0 24 

1ail__ 1fyja_ 2 0 0 0 0 0 42 

1k99a_ 1qrva_ 4 0 0 0 0 0 54 

1kx5d_ 1n1jb_ 3 0 1 0 0 1 61 

1eexg_ 1om2a_ 3 0 0 1 0 0 0 

1he1a_ 2liga_ 3 0 0 1 0 0 65 

1mxra_ 1noga_ 5 0 0 0 0 0 73 

1hzia_ 1lki__ 3 0 0 1 0 0 70 

1f4la1 1ivsa2 7 0 0 0 0 0 86 

1dv5a_ 1l0ia_ 4 0 0 0 0 0 60 

1is2a1 1jqia1 6 0 0 0 0 0 84 

1joya_ 1nkd__ 1 0 0 1 0 0 0 

1ic8a2 1vpwa1 4 0 0 0 0 0 41 

1a0aa_ 1mdya_ 2 0 0 0 0 0 40 

1dqea_ 2cbla1 5 0 0 0 0 0 54 

1bkra_ 1h67a_ 5 0 0 0 0 0 71 

1baza_ 2cpga_ 2 0 0 0 0 0 29 

1k0ma1 1k3ya1 7 0 0 0 0 0 90 

1bmta1 1khda1 4 0 0 0 0 0 53 

1hs7a_ 1lvfa_ 3 0 0 0 0 0 76 

1de4c1 2cbla2 3 0 1 0 0 17 40 

1bea__ 1fk5a_ 4 0 0 1 0 0 47 

1b4fa_ 1cuk_2 4 1 0 0 9 0 46 

1ed1a_ 1mn8a_ 4 0 0 1 0 0 56 

1l9la_ 1n69a_ 4 0 0 0 0 0 30 

1g7da_ 1m2vb1 3 0 0 1 0 0 50 

1h4ld_ 1jkw_2 4 0 0 2 0 0 59 

1d2zb_ 1n3ka_ 5 0 0 0 0 0 67 

1jr3a1 1jr3d1 6 0 0 0 0 0 75 

1ko9a1 1ngna_ 6 0 0 0 0 0 87 

1f0ya1 1n1ea1 4 0 0 1 0 0 43 
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1lf6a1 1qaza_ 7 1 0 1 17 0 103 

1pbwa_ 1wer__ 8 0 0 1 0 0 48 

1h6ka1 1ld8a_ 10 0 0 2 0 0 64 

1lwba_ 1poc__ 5 0 0 0 0 0 28 

1e79i_ 1tbge_ 1 0 0 0 0 0 0 

1ft5a_ 3caoa_ 5 0 0 0 0 0 19 

1ji1a1 1jmxa4 9 0 0 3 0 0 47 

1e5ba_ 1h6fa_ 6 0 0 2 0 0 57 

1f86a_ 1qhoa2 4 0 0 4 0 0 58 

1jzga_ 1kzqa1 9 0 0 0 0 0 72 

1dcea2 1qpxa2 5 2 1 0 17 2 46 

1bhu__ 1c01a_ 4 0 0 1 0 0 45 

1jz8a3 1xnaa_ 10 0 1 0 0 1 83 

1ahsa_ 1flca1 6 0 0 3 0 0 51 

1dmza_ 1g6ga_ 11 0 0 0 0 0 89 

1n1ta1 2nlra_ 12 0 0 4 0 0 90 

1jz8a4 1n7oa3 11 1 1 2 5 9 117 

1fqta_ 1o7na1 12 0 0 0 0 0 82 

1i1ja_ 1vie__ 6 0 0 0 0 0 41 

1auua_ 1p3ha_ 3 0 0 3 0 0 30 

1kwaa_ 1mfga_ 7 1 0 0 8 0 64 

1d3ba_ 1mgqa_ 9 0 0 0 0 0 62 

1i40a_ 1o7ia_ 6 1 0 2 7 0 48 

1bfg__ 1hcd__ 10 2 0 0 14 1 78 

1a8p_1 1n08a_ 7 1 0 0 2 0 64 

1flma_ 1i0ra_ 10 0 1 0 0 1 64 

1befa_ 1hava_ 15 1 0 0 8 0 101 

1eu1a1 1g8ka1 10 0 0 1 0 0 87 

1k5db_ 1mixa2 6 0 1 0 0 2 64 

1ifc__ 1qfta_ 6 1 1 3 6 8 59 

1ei5a2 1jmxa5 6 0 0 1 0 0 65 

1e8ua_ 1k32a2 14 1 0 8 8 0 36 

1fwxa2 1k32a3 25 0 0 2 0 0 135 

1g5aa1 1gjwa1 5 1 1 0 3 8 42 

1goia1 1pina1 2 0 0 1 0 0 11 

1i5pa2 1vmoa_ 11 0 0 2 0 0 89 

1daba_ 1k4za_ 18 0 0 2 0 0 29 

1qrea_ 3tdt__ 22 0 0 3 0 0 100 

1gy9a_ 1ig0a1 9 0 0 1 0 0 65 

1bdo__ 1k8ma_ 7 1 0 0 5 0 57 

1euwa_ 4ubpb_ 5 0 0 0 0 0 27 

1itua_ 1kbla1 17 0 0 2 0 0 71 

1hxha_ 1ooea_ 12 1 0 0 6 0 174 
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1gtea3 1m6ia2 9 0 0 1 0 0 83 

1h16a_ 1hk8a_ 24 0 0 1 0 0 0 

1kid__ 1l5ja2 16 0 0 2 0 0 65 

1a4ya_ 1igra1 14 0 0 1 0 0 61 

1on3a1 1tyfa_ 9 1 1 0 1 9 96 

1cdza_ 1l0ba1 8 0 0 0 0 0 43 

1oe4a_ 3euga_ 8 0 2 0 0 26 94 

1fjgb_ 1m2fa_ 6 0 3 0 0 13 75 

1ep3b2 1fdr_2 9 0 0 0 0 0 98 

1k92a1 1n2ea_ 9 1 1 0 8 6 95 

1b6ra2 1iow_1 6 0 1 0 0 6 62 

1poxa1 1pvda1 12 0 0 0 0 0 110 

1oi2a1 1tuba1 8 0 0 2 0 0 86 

1keka1 1qgda1 11 1 1 0 11 6 105 

1e6ca_ 1khta_ 11 1 0 0 6 0 127 

1eaf__ 1l5aa1 9 0 0 0 0 0 94 

1iiba_ 1jf8a_ 4 2 0 0 14 0 61 

1d5ra2 1fpza_ 14 0 0 0 0 0 126 

1knga_ 1qmha1 4 2 0 0 17 0 47 

1keka3 1qgda3 9 1 0 0 4 0 87 

1gyta1 1hjza_ 9 1 0 0 5 0 107 

1crza2 1ex2a_ 7 1 0 1 4 0 57 

1dmua_ 1fiua_ 14 0 0 0 0 0 66 

1dt9a1 1j54a_ 6 0 0 1 0 0 80 

1a2za_ 1lam_2 10 0 0 1 0 0 122 

1c1da2 1lu9a2 5 0 0 1 0 0 68 

1fsga_ 1g2qa_ 14 0 0 1 0 0 89 

1atza_ 1m1xb2 11 0 1 1 0 8 115 

1af7_2 1nw3a_ 12 0 0 0 0 0 86 

1c4ka2 1elua_ 21 1 0 1 21 0 180 

1hm9a2 1i52a_ 13 2 0 1 14 0 162 

1ju3a2 3tgl__ 14 0 1 1 0 1 52 

1duvg1 1jfla2 7 1 0 0 7 0 63 

1j6na_ 1qopb_ 18 2 0 0 9 0 223 

1k2yx2 1kfia2 6 0 1 0 0 1 55 

1n2za_ 1qgoa_ 12 1 0 2 6 0 70 

2liv__ 8abp__ 16 1 2 5 4 6 98 

1a8e__ 3thia_ 17 0 0 0 0 0 59 

1hnja2 1ox0a2 9 0 0 0 0 0 98 

1aln_1 1aln_2 9 0 0 0 0 0 59 

1i0va_ 1lnia_ 4 0 1 0 0 6 40 

153l__ 1qgia_ 5 0 0 2 0 0 85 

1gx3a_ 2cb5a_ 13 0 0 1 0 0 0 
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1fr2b_ 1ql0a_ 6 0 0 2 0 0 29 

1d9na_ 1gcca_ 3 0 0 1 0 0 21 

1guqa2 1l9va1 8 0 1 0 0 6 58 

1pkp_1 1ueka1 6 0 0 1 0 0 53 

1f52a1 1l5pa_ 6 0 0 0 0 0 28 

1c0pa2 1ju2a2 6 0 0 0 0 0 68 

1gy7a_ 1oaca2 4 0 0 1 0 0 51 

1hdmb2 1jfma_ 6 1 0 0 2 0 57 

1jnda2 1pina2 5 0 0 1 0 0 16 

1kw3b1 1lqpa_ 10 0 0 0 0 0 40 

1lo7a_ 1mkaa_ 5 1 0 1 1 0 92 

1brwa3 1n62b1 7 0 0 1 0 0 42 

1buoa_ 1t1da_ 6 1 0 1 6 0 43 

1kn0a_ 1qu6a2 2 1 1 0 9 5 47 

1dtja_ 1k1ga_ 6 0 0 0 0 0 53 

1egaa2 1fjgc1 5 0 0 0 0 0 68 

1h0hb_ 1nxia_ 5 1 0 0 16 0 14 

1fjgd_ 1h3fa2 6 1 0 1 5 0 49 

1f7ua3 1iq0a3 8 0 0 0 0 0 58 

1hc7a3 1nj8a2 5 0 0 0 0 0 49 

1n6za_ 1xxaa_ 6 0 0 0 0 0 62 

1jj2f_ 1tuba2 5 0 0 0 0 0 56 

1gyxa_ 1otfa_ 4 0 0 0 0 0 47 

1cf2o2 1p1ja2 5 1 0 0 10 0 47 

1mo9a3 3grs_3 8 1 0 0 6 0 86 

1l2ma_ 1m55a_ 7 0 0 1 0 0 71 

1ast__ 1jaka2 9 0 2 0 0 14 54 

1lkka_ 2plda_ 5 1 0 1 1 0 68 

1dq3a3 1dq3a4 5 1 0 0 3 0 65 

1b66a_ 1uox_1 5 0 0 0 0 0 77 

12asa_ 1seta2 12 0 1 2 0 2 132 

1iyka2 1qsma_ 8 1 0 0 11 0 112 

1d4xg_ 1m4ja_ 7 0 0 3 0 0 88 

1h8ma_ 1n9la_ 3 2 0 0 19 0 38 

1hzta_ 1k2ea_ 13 0 0 0 0 0 99 

1byqa_ 1ei1a2 11 1 0 0 9 0 108 

1g61a_ 1h70a_ 10 0 0 6 0 0 91 

1f46a_ 1ytba1 6 1 0 1 4 0 66 

1b77a2 1iz5a2 8 2 0 0 15 0 70 

1rl6a1 1rl6a2 8 0 0 0 0 0 59 

1ckma2 1kbla3 11 0 0 1 0 0 61 

1f0xa2 1n62c2 10 1 0 1 6 0 107 

1f7la_ 1qr0a1 7 1 0 0 1 0 53 
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1gdoa_ 1ofda3 16 0 0 1 0 0 68 

1e5da2 1k07a_ 16 1 0 0 9 0 164 

1ii7a_ 1nnwa_ 15 0 0 2 0 0 141 

1b8pa2 1ceqa2 11 1 0 0 4 1 130 

1a26_2 1ikpa2 10 0 0 1 0 0 80 

1chua3 1kssa3 8 0 0 0 0 0 72 

1g1ta1 1prtb2 5 1 0 1 9 0 42 

1hhsa_ 1l3sa2 17 0 0 4 0 0 0 

1feza_ 1k1ea_ 11 0 0 0 0 0 108 

1ikpa3 1k3ka_ 7 0 0 1 0 0 0 

1p4ta_ 2mpra_ 9 0 0 1 0 0 15 

1i2ua_ 1lpba2 2 0 0 1 0 0 6 

1kbaa_ 3ebx__ 5 0 0 0 0 0 49 

1tocr1 1tocr2 2 1 0 0 8 0 17 

1ewsa_ 1ijva_ 3 0 0 0 0 0 23 

1hkya_ 1i8na_ 5 0 2 1 0 11 42 

1i71a_ 1l6ja4 4 0 0 0 0 0 9 

1iw4a_ 4sgbi_ 3 0 0 0 0 0 10 

1aoca_ 1hcnb_ 4 0 0 1 0 0 30 

1ly2a1 1quba1 5 0 0 0 0 0 48 

1exta1 1oqdk_ 3 0 0 0 0 0 9 

1o9aa2 1tpg_2 5 0 0 0 0 0 40 

1iuaa_ 2hipa_ 5 0 0 0 0 0 37 

1fu9a_ 2glia2 1 0 0 0 0 0 19 

1d66a1 1zmec1 2 0 0 0 0 0 27 

1fjgn_ 1k3xa3 3 0 0 1 0 0 0 

1dsva_ 1eska_ 2 0 0 0 0 0 17 

1yua_2 1zaka2 1 0 0 0 0 0 0 

1fbva4 1n87a_ 5 0 0 0 0 0 42 

1jjda_ 4mt2__ 1 0 0 0 0 0 0 

1e53a_ 1kbea_ 3 0 0 0 0 0 36 

1ezva2 1ezvb1 11 0 0 1 0 0 131 

1gjja1 1h1js_ 2 0 0 0 0 0 35 

1jyoa_ 1l2wi_ 2 0 0 2 0 0 0 

1k82a1 1mu5a1 4 0 0 0 0 0 69 

1jaja_ 1knya2 6 0 0 1 0 0 54 

1c0va_ 1fftb2 1 0 0 2 0 0 0 

1kqfc_ 1nekd_ 4 0 0 0 0 0 72 

1ocrk_ 1ocrm_ 2 0 0 0 0 0 16 

1dzla_ 1hx6a1 9 0 0 2 0 0 76 

1go3e2 1owta_ 4 1 0 0 5 0 36 
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Table IV-19. The alignment block-level and aligned position-level comparison for each 

alignment of SFESA (O+G+M+S) applied on PROMALS on the SABMARK twilight 

dataset. 
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 3959 38 35 98 287 202 40063 

SFESA (O+G)+PROMALS 3555 131 95 349 789 491 39272 

SFESA (O+G+M)+PROMALS 3510 144 109 367 879 519 39154 

SFESA (O+G+M+S)+PROMALS 3781 109 49 191 755 275 39522 

        SFESA (O)+HHpred 3748 10 11 43 79 79 40394 

SFESA (O+G)+HHpred 3467 73 48 224 256 167 40129 

SFESA (O+G+M)+HHpred 3335 134 67 276 519 228 39805 

SFESA (O+G+M+S)+HHpred 3591 78 27 116 323 94 40135 

        SFESA (O)+CNFpred 3385 35 29 71 294 182 40076 

SFESA (O+G)+CNFpred 2880 185 97 358 834 497 39221 

SFESA (O+G+M)+CNFpred 2857 195 97 371 863 420 39269 

SFESA (O+G+M+S)+CNFpred 3146 137 48 189 676 297 39579 

 

Table IV-20. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters 

(SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared 

with three existing alignment methods on the SABMARK “superfamily” subset.   
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Domain 1 
Domain 

2 

Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

1b8da_ 1la6a_ 6 0 1 0 0 2 114 

1gtea1 1nekb1 5 1 0 0 11 0 57 

1gh6a_ 1xbl__ 3 0 0 0 0 0 42 

1eiya1 1ivsa1 3 0 0 0 0 0 53 

1ap6a1 1bsma1 2 0 0 0 0 0 65 

1ql3a_ 1ycc__ 6 0 0 0 0 0 91 

1e3oc1 1ig7a_ 3 0 0 0 0 0 45 

1mgta1 1sfe_1 4 0 0 0 0 0 75 

1c20a_ 1ig6a_ 6 0 0 0 0 0 59 

1jgsa_ 1p4xa2 7 0 0 0 0 0 103 

1a04a1 1fsea_ 4 0 0 0 0 0 58 

1f4ia_ 1otra_ 3 0 0 0 0 0 39 

1fjgm_ 1k3xa1 3 0 0 0 0 0 53 

1d4ua1 1g4da_ 4 0 0 1 0 0 50 

1cuna1 2spca_ 2 0 0 0 0 0 51 

1kf6a1 1qlaa1 8 0 0 0 0 0 107 

1gab__ 1gjta_ 3 0 0 0 0 0 35 

1erd__ 1hd6a_ 3 0 0 0 0 0 28 

1h4ra1 1mixa1 4 0 0 0 0 0 74 

1a32__ 1fyja_ 2 0 0 0 0 0 38 

1i11a_ 1k99a_ 4 0 0 0 0 0 52 

1kx5c_ 1n1jb_ 4 0 0 0 0 0 64 

1cpq__ 1jafa_ 4 0 0 0 0 0 110 

1cgme_ 1ei7a_ 9 0 0 0 0 0 84 

1is2a2 1jqia1 5 0 0 2 0 0 77 

1o9ra_ 1qgha_ 5 0 0 0 0 0 129 

1i1rb_ 1m4ra_ 4 1 0 0 19 0 48 

1ffya1 1li5a1 4 0 0 0 0 0 43 

1af8__ 1dnya_ 4 0 0 0 0 0 50 

1d1da1 1qrjb1 4 0 0 0 0 0 61 

1fts_1 1ls1a1 4 0 0 0 0 0 59 

1eqfa1 1eqfa2 6 0 0 0 0 0 105 

1lmb3_ 1ner__ 4 0 0 0 0 0 55 

1an4a_ 1mdya_ 2 0 0 0 0 0 28 

1m31a_ 1wdcc_ 6 0 0 0 0 0 60 

1aoa_2 1mb8a2 5 0 0 0 0 0 87 

1cmba_ 1irqa_ 1 0 1 0 0 10 31 

1duga1 1f2ea1 5 0 0 0 0 0 109 

1o17a1 2tpt_1 4 0 0 0 0 0 64 
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1ez3a_ 1lvfa_ 2 0 0 1 0 0 77 

1bea__ 1l6ha_ 4 0 0 1 0 0 43 

1owfa_ 1owfb_ 8 0 0 0 0 0 62 

1fo4a1 1hlra1 4 0 0 0 0 0 61 

1b4fa_ 1dxsa_ 5 0 0 0 0 0 45 

1cuk_2 1dgsa1 4 0 0 0 0 0 62 

1a77_1 1bgxt1 4 0 0 0 0 0 27 

1a6s__ 1mn8a_ 4 0 0 0 0 0 49 

1l9la_ 1m12a_ 4 0 0 1 0 0 60 

1axn__ 1n00a_ 18 0 0 0 0 0 292 

1e79a1 1fx0a1 6 0 0 0 0 0 75 

1em9a_ 2eiaa2 5 0 0 0 0 0 102 

1aisb2 1vola1 5 0 0 0 0 0 87 

1d2za_ 1dgna_ 4 1 0 1 10 2 61 

1jr3a1 1jr3d1 6 0 0 0 0 0 75 

1f5xa_ 1ki1b1 10 0 0 0 0 0 94 

1cmza_ 1omwa1 7 0 0 0 0 0 106 

1mn2__ 1mwva1 18 0 0 0 0 0 160 

1mpga1 2abk__ 9 0 0 0 0 0 132 

1np7a1 1qnf_1 10 0 0 0 0 0 227 

1mv8a1 1pgja1 3 1 0 0 10 0 64 

1fp3a_ 1g9ga_ 21 0 0 3 0 0 141 

1j0ma1 1n7oa1 18 0 0 0 0 0 294 

1c3d__ 1ld8b_ 15 0 0 0 0 0 197 

1a59__ 1ioma_ 19 0 0 0 0 0 299 

1e9xa_ 1n6ba_ 24 1 0 0 16 0 213 

1qhba_ 1vns__ 17 0 0 0 0 0 0 

1pbwa_ 1wer__ 8 0 0 1 0 0 48 

1h6ka1 1n8va_ 5 0 0 0 0 0 43 

1awcb_ 1ycsb1 8 0 0 0 0 0 106 

1a17__ 1iyga_ 7 0 0 0 0 0 94 

1dvpa1 1elka_ 8 0 0 0 0 0 82 

1n83a_ 2prga_ 11 1 0 0 5 0 202 

1ak0__ 1ca1_1 9 1 0 0 17 0 126 

1kxpd2 1n5ua3 9 0 0 0 0 0 163 

1hy0a_ 1jswa_ 18 0 0 0 0 0 271 

1g4ia_ 1lfja_ 5 0 0 0 0 0 110 

1dxrc_ 3cyr__ 4 0 0 0 0 0 0 

1b88a_ 1jmaa_ 5 1 0 2 11 0 73 

1cfb_2 1n6va2 4 2 0 1 16 0 51 

1jz8a1 1jz8a2 6 0 0 1 0 0 64 

1f13a2 1f13a3 7 1 0 0 3 0 74 

1l3wa3 1l3wa4 7 0 0 0 0 0 91 
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1akp__ 1j48a_ 9 1 0 0 1 0 103 

1do5a_ 1ej8a_ 9 0 0 0 0 0 89 

1gyva_ 1kyfa1 9 0 0 0 0 0 90 

1cwva2 1cwva4 6 0 0 2 0 0 44 

1e5ba_ 1g1ka_ 6 0 0 1 0 0 60 

1amx__ 1n67a2 8 3 1 0 20 2 69 

1bvoa_ 1h6fa_ 9 1 0 2 4 0 81 

1pama2 1qhoa2 6 1 0 0 1 0 93 

1eo9a_ 1eo9b_ 11 0 0 0 0 0 120 

1aoza2 1kv7a2 11 1 0 0 9 0 97 

1dsya_ 1k5wa_ 7 1 0 1 1 0 109 

1k2fa_ 1lb6a_ 5 0 0 4 0 0 92 

1bhu__ 1h4ax1 5 0 0 1 0 0 49 

1pgs_1 1phm_2 7 0 0 1 0 0 72 

1hx6a2 1ruxa2 9 0 0 1 0 0 92 

1gmea_ 1shsa_ 8 0 0 0 0 0 61 

1kgya_ 1of4a_ 12 0 0 0 0 0 89 

1ahsa_ 1qhda2 8 1 0 1 10 0 56 

1h7za_ 1kkea1 4 0 0 0 0 0 10 

1kxga_ 2tnfa_ 10 1 0 0 12 0 108 

1f1sa3 1j0ma2 6 0 1 2 0 1 54 

1g6ga_ 1gxca_ 11 0 0 0 0 0 91 

1kit_2 3btaa1 10 0 0 2 0 0 111 

1fqta_ 1rfs__ 11 1 0 2 8 1 71 

1bia_2 1igqa_ 3 0 1 0 0 3 29 

1jo8a_ 1neb__ 6 0 0 0 0 0 48 

1vie__ 2ahjb_ 5 1 0 1 2 0 43 

1jj2s_ 1m1ga2 6 0 0 0 0 0 43 

1aono_ 1g31a_ 4 0 0 0 0 0 58 

1ihja_ 1ntea_ 6 0 0 0 0 0 76 

1d3ba_ 1h641_ 9 0 0 0 0 0 65 

1enfa1 3chbd_ 5 1 0 1 6 0 53 

1br9__ 1jb3a_ 9 0 1 1 0 4 73 

1fgua2 1gm5a2 8 0 0 0 0 0 70 

1e9ga_ 2prd__ 12 0 0 0 0 0 141 

1guta_ 1h9ma2 6 0 0 0 0 0 59 

1nuna_ 1qqla_ 12 0 0 0 0 0 121 

1ggpb1 1m2tb2 12 1 0 0 5 0 100 

1epwa2 1eyla_ 12 0 0 0 0 0 128 

1dfca2 1hcd__ 11 0 0 0 0 0 83 

1f60a1 1n0ua1 8 1 0 0 2 0 72 

1exma2 1f60a2 8 0 0 0 0 0 55 

1flma_ 1i0ra_ 10 0 1 0 0 1 64 
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1ekbb_ 1rfna_ 20 0 0 0 0 0 210 

1e79a2 1fx0b2 5 0 0 1 0 0 50 

1idaa_ 1lf2a_ 8 2 0 1 8 0 66 

1ffya2 1h3na2 12 0 0 2 0 0 117 

1cz4a1 1h0ha1 9 1 0 0 10 0 54 

1h4ra2 1mixa2 7 1 0 0 1 0 81 

1a49a1 1e0ta1 10 0 0 0 0 0 71 

1ggla_ 1koia_ 5 1 0 3 10 0 70 

1a33__ 1lopa_ 19 0 0 0 0 0 124 

1itva_ 1pex__ 16 1 0 0 9 0 158 

1eur__ 2bat__ 13 0 2 6 0 11 104 

1nr0a2 1p22a2 23 2 2 2 15 3 220 

1e43a1 1ji2a2 4 3 0 1 15 1 59 

1o6wa2 1pina1 3 0 0 0 0 0 26 

1jd0a_ 1kopa_ 14 0 1 0 0 2 178 

1ciy_2 1i5pa2 6 0 1 3 0 10 99 

1jpc__ 1kj1d_ 12 0 0 0 0 0 77 

1k5ca_ 1qcxa_ 30 2 0 4 7 0 174 

1lxa__ 1qrea_ 25 0 0 2 0 0 0 

1ep0a_ 2phla1 14 1 1 0 2 10 68 

1gp6a_ 1odma_ 16 0 0 1 0 0 125 

1i5za2 1rgs_2 11 0 0 0 0 0 99 

1dd2a_ 1htp__ 6 0 0 2 3 3 51 

1dv1a1 1e2wa2 2 0 0 3 0 0 34 

1gpr__ 2gpr__ 15 0 0 0 0 0 132 

1e9ya1 1ejxb_ 7 0 0 0 0 0 84 

1euwa_ 1ogha_ 13 0 0 0 0 0 94 

1lyxa_ 1n55a_ 14 0 0 1 0 0 200 

1a53__ 1eixa_ 10 2 1 1 15 15 145 

1ep3a_ 1oyb__ 19 0 0 0 0 0 160 

1j96a_ 1lqaa_ 20 1 0 0 5 0 237 

1iexa1 7taa_2 15 0 0 1 0 0 139 

1bf6a_ 1k6wa2 20 0 0 2 0 0 206 

1n8fa_ 1o0ya_ 12 1 0 3 11 0 122 

1jpma1 2mnr_1 17 0 0 0 0 0 184 

1dxea_ 1f8ma_ 17 0 0 0 0 0 157 

1a0ca_ 1qtwa_ 13 1 0 1 10 6 227 

1ezwa_ 1lucb_ 22 0 0 1 0 0 164 

2plc__ 2ptd__ 15 0 0 0 0 0 101 

1ccwb_ 7reqa1 16 0 1 1 0 5 269 

1kewa_ 1qg6a_ 10 3 1 0 11 2 134 

1feca2 1lvl_2 9 0 0 1 0 0 103 

1dysa_ 1tml__ 18 1 0 0 12 2 176 
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1h16a_ 1hk8a_ 24 0 0 1 0 0 0 

1fqva2 1io0a_ 10 0 0 1 0 0 130 

1a9na_ 1p9ag_ 14 0 0 0 0 0 92 

1nzya_ 1on3a1 11 1 1 0 5 12 121 

1dgtb3 1l0ba1 7 0 0 0 0 0 39 

1c2ya_ 1ejba_ 9 0 0 0 0 0 131 

1laue_ 1oe4a_ 13 0 2 0 0 22 111 

1m2fa_ 1tmy__ 10 0 0 0 0 0 84 

1e5da1 2fcr__ 9 1 0 0 7 0 118 

1bmta2 7reqb2 10 0 0 0 0 0 97 

1esc__ 1k7ca_ 15 1 0 0 1 0 88 

1gqoa_ 1j2ya_ 9 0 0 0 0 0 132 

1pe0a_ 1qdlb_ 12 1 0 0 8 0 103 

1que_2 2cnd_2 11 0 0 0 0 0 102 

1coza_ 1f7ua2 8 0 1 0 0 1 97 

1j20a1 1jmva_ 7 0 1 1 0 5 88 

1dnpa2 1qnf_2 10 0 0 0 0 0 131 

1gsoa2 2hgsa1 6 1 0 2 4 0 68 

1d4oa_ 1m2ka_ 11 0 0 1 0 0 118 

1ofua1 1tuba1 12 1 0 0 8 0 153 

1im5a_ 1yaca_ 12 0 0 0 0 0 135 

1keka2 1ovma2 12 0 0 0 0 0 112 

1f60a3 1jj7a_ 8 0 0 2 0 0 46 

1p8ja2 1thm__ 12 2 2 0 8 9 223 

1c3pa_ 1d3va_ 12 1 1 0 4 13 144 

1eaf__ 1nocb_ 13 0 0 1 0 0 155 

1jf8a_ 1phr__ 7 0 0 0 0 0 119 

1d5ra2 1lara2 11 0 0 0 0 0 126 

1e0ca1 1rhs_1 10 0 0 0 0 0 66 

1a8l_2 1erv__ 8 0 0 0 0 0 83 

1dtwb2 1itza3 10 0 0 0 0 0 107 

1a3wa3 1a49a3 9 0 0 0 0 0 86 

1gyta1 1hjza_ 9 1 0 0 5 0 107 

1hc7a1 1nj8a1 7 0 0 1 0 0 123 

1f1za2 1fiua_ 7 0 0 1 0 0 55 

1ekja_ 1g5ca_ 10 0 0 0 0 0 100 

1bu6o1 1czan2 7 0 0 3 0 0 44 

1j54a_ 1jl1a_ 8 0 0 1 0 0 33 

1fjgk_ 1ilya_ 4 1 1 0 7 3 37 

1b8oa_ 1k9sa_ 14 1 0 0 15 0 155 

1loka_ 1m4la_ 11 0 0 1 0 0 137 

1c1da2 1nyta2 7 0 0 2 0 0 70 

1h2ea_ 3pgm__ 11 0 0 1 0 0 161 
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1i5ea_ 1qb7a_ 14 0 1 0 0 3 124 

1ijba_ 1m1xb2 13 0 0 0 0 0 147 

1jg1a_ 1jqea_ 10 0 0 0 0 0 109 

1jf9a_ 1tpla_ 21 2 0 1 13 0 201 

1gx4a_ 1hv9a2 12 1 2 4 9 10 115 

1ju3a2 1ku0a_ 13 0 0 1 0 0 116 

1df7a_ 1vdra_ 12 0 0 1 0 0 133 

1o14a_ 1rkd__ 17 3 0 0 19 0 137 

1e19a_ 1gs5a_ 21 0 0 1 0 0 147 

1e4bp_ 1k0wa_ 14 0 1 0 0 1 158 

1ed8a_ 1k7ha_ 23 0 1 1 0 3 288 

1lwda_ 1xaa__ 19 1 0 1 1 0 205 

1a1s_2 1ml4a2 10 0 0 0 0 0 143 

1b74a1 1b74a2 6 1 0 1 3 2 55 

1j6na_ 1tdj_1 19 0 0 0 0 0 266 

1c7qa_ 1iata_ 24 0 0 2 0 0 236 

1g8ka2 1tmo_2 29 0 1 1 0 4 201 

1a4sa_ 1ez0a_ 32 1 1 0 19 2 340 

1k2yx1 3pmga3 9 0 0 0 0 0 56 

16pk__ 1hdia_ 31 0 0 1 0 0 350 

1f0ka_ 1jixa_ 17 0 0 4 0 0 0 

1nnsa_ 4pgaa_ 23 0 0 0 0 0 289 

1hrka_ 1qgoa_ 14 0 1 0 0 2 195 

1n2za_ 1psza_ 16 0 0 0 0 0 137 

1jyea_ 2liv__ 18 1 0 1 10 0 93 

1amf__ 1wdna_ 18 0 0 2 0 0 105 

1hzpa1 1mzja2 11 0 0 0 0 0 91 

1aln_2 1uaqa_ 5 1 1 0 4 6 57 

1a2pa_ 1i0va_ 6 0 0 1 0 0 47 

1gd6a_ 1qgia_ 5 0 0 0 0 0 77 

1qmya_ 2cb5a_ 9 0 1 1 0 6 71 

1e7la2 1fr2b_ 5 0 0 0 0 0 21 

1agi__ 1rnfa_ 10 0 0 0 0 0 88 

1j9oa_ 1qg7a_ 4 0 0 0 0 0 37 

1e0ba_ 1knaa_ 4 1 0 0 2 0 44 

1kjka_ 1qk9a_ 3 1 0 0 4 0 30 

1jj2l_ 1n88a_ 3 0 0 2 0 0 51 

1guqa2 1kpf__ 7 0 0 0 0 0 67 

1ei1a1 1kkha1 10 0 0 1 0 0 80 

1l7ya_ 1mg8a_ 4 1 0 0 6 0 60 

1d4ba_ 1f2ri_ 7 0 0 0 0 0 46 

1f0za_ 1fm0d_ 5 0 0 1 0 0 44 

1hlra2 1krha3 5 0 0 1 0 0 67 
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1bmlc3 1qqra_ 7 0 0 0 0 0 43 

1an8_2 3tss_2 8 0 0 0 0 0 96 

1c0pa2 1mxta2 3 0 1 1 0 17 45 

1cewi_ 1mola_ 5 0 0 0 0 0 69 

1ksia2 1oaca2 6 0 0 0 0 0 69 

1gy6a_ 1ocva_ 7 2 1 1 31 7 63 

1jfma_ 3frua2 12 0 0 0 0 0 131 

1c4zd_ 1j7da_ 7 1 0 0 7 0 93 

1dzoa_ 1oqva_ 5 0 0 0 0 0 33 

1j6ya_ 1jnsa_ 8 0 0 0 0 0 76 

1goia3 1hjxa2 7 0 0 0 0 0 60 

1ecsa_ 1lqpa_ 9 0 0 0 0 0 100 

1c8ua2 1lo7a_ 6 1 0 0 9 0 74 

1csei_ 1lw6i_ 7 0 0 0 0 0 57 

1fo4a3 1hlra3 9 0 0 0 0 0 96 

1qapa2 1qpoa2 8 0 0 0 0 0 101 

1t1da_ 3kvt__ 8 0 0 0 0 0 74 

1efub2 1efub4 5 0 0 0 0 0 56 

1bsma2 1ma1a2 8 0 0 0 0 0 111 

1di2a_ 1kn0a_ 3 1 0 0 10 0 46 

1k1ga_ 2fmr__ 5 0 0 0 0 0 51 

1hh2p2 1k0ra2 5 0 0 0 0 0 74 

1onea2 2mnr_2 7 0 0 2 0 0 93 

1jnrb_ 7fd1a_ 8 0 0 0 0 0 41 

1aye_2 1jqga2 7 0 0 0 0 0 77 

1i1ga2 1lq9a_ 3 1 1 1 7 1 42 

1nzaa_ 1p1la_ 9 0 0 0 0 0 77 

1ehwa_ 1nhkl_ 9 0 0 0 0 0 131 

1owxa_ 1qm9a2 6 0 0 0 0 0 46 

1dar_4 1n0ua4 4 0 0 2 0 0 35 

1aw0__ 1fe0a_ 6 0 0 0 0 0 63 

1phza1 1psda3 4 2 0 0 21 0 41 

1h72c2 1kvka2 8 0 1 0 0 1 107 

1e6yb2 1hbnb2 12 0 0 0 0 0 49 

1dj0a1 1k8wa4 8 0 0 0 0 0 55 

1dm9a_ 1jh3a_ 5 0 0 1 0 0 57 

1eh1a_ 1is1a_ 10 0 0 0 0 0 182 

1bwvs_ 1gk8i_ 6 0 0 0 0 0 66 

1dzfa2 1eika_ 4 0 0 0 0 0 14 

1qd9a_ 1ufya_ 4 0 1 1 0 8 61 

1ofua2 1tubb2 6 1 0 0 9 0 70 

1ck9a_ 1e7ka_ 8 0 0 0 0 0 83 

1hfoa_ 1otga_ 6 0 0 0 0 0 96 
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1dih_2 1mb4a2 5 0 0 1 0 0 62 

1dxla3 3lada3 8 0 0 0 0 0 123 

1fo4a4 1jroa3 8 0 0 0 0 0 81 

1l2ma_ 1tbd__ 5 1 0 0 1 0 78 

1nox__ 1vfra_ 12 0 0 0 0 0 166 

1c7ka_ 1eb6a_ 5 0 0 1 0 0 66 

1jaka2 1qba_4 10 0 0 0 0 0 69 

1a81a2 1mil__ 9 1 0 0 5 1 79 

1k1ca_ 1pch__ 7 0 0 0 0 0 80 

1dq3a3 1dq3a4 5 1 0 0 3 0 65 

1b66a_ 1b9la_ 6 0 0 0 0 0 71 

12asa_ 1jjca_ 14 1 0 0 5 0 152 

1iyka2 1ufha_ 8 1 0 0 3 0 121 

1jhwa3 1m4ja_ 5 0 2 0 0 9 63 

1acf__ 1ypra_ 10 0 0 1 0 0 108 

1mc0a2 1mkma2 6 2 1 0 19 5 80 

1ew0a_ 1ll8a_ 8 0 0 0 0 0 87 

1a6ja_ 1hynp_ 12 0 0 0 0 0 103 

1k2ea_ 1ktga_ 9 1 0 1 3 1 106 

1bkpa_ 1tis__ 17 0 0 0 0 0 236 

1cxya_ 1kbia2 7 0 0 0 0 0 58 

1byqa_ 1l0oa_ 6 0 0 0 0 0 76 

1iqqa_ 1ucaa_ 12 0 0 0 0 0 164 

1g61a_ 1jdw__ 14 4 0 1 26 1 85 

1az9_2 1o0xa_ 16 0 0 0 0 0 190 

1f52a2 1qh4a2 11 0 0 1 0 0 117 

1ko9a2 1ytba1 7 1 0 0 6 0 54 

1kfia4 3pmga4 10 0 0 0 0 0 71 

1icxa_ 1jssa_ 7 0 0 3 0 0 116 

1mxa_3 1qm4a2 3 0 1 1 0 9 43 

1iz5a1 2pola3 8 1 1 0 7 2 89 

1fo4a5 1n62b2 32 1 0 2 2 0 441 

1ckv__ 1g10a_ 10 0 0 0 0 0 41 

1jj2e2 1rl6a1 6 1 0 0 4 0 54 

1iow_2 1kbla3 12 0 0 1 0 0 113 

1blxa_ 1j7la_ 15 0 0 0 0 0 126 

1diqa2 1f0xa2 14 1 0 0 7 0 153 

1f7la_ 1qr0a2 7 0 0 1 0 0 65 

1gph12 1j2pa_ 11 0 0 2 0 0 89 

1e5da2 1jjea_ 16 1 0 1 11 0 163 

1jk7a_ 1utea_ 14 1 0 1 6 0 117 

1b8pa2 1ez4a2 11 0 0 1 3 3 155 

1ggpa_ 1qi7a_ 15 0 0 0 0 0 191 
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1giqa1 1qs1a2 13 0 0 0 0 0 169 

1jnra3 1neka3 6 0 0 0 0 0 97 

1jwib_ 1jzna_ 11 0 0 0 0 0 95 

1fzcb1 1fzda_ 11 0 0 0 0 0 158 

1k9oi_ 1lj5a_ 22 0 0 1 0 0 192 

1ei5a3 1es5a_ 15 2 0 0 15 0 129 

1cf9a2 1gwea_ 25 0 0 0 0 0 440 

1jqia2 3mdda2 14 0 0 0 0 0 202 

1lbva_ 2hhma_ 20 0 0 0 0 0 195 

1jiha_ 1tgoa2 16 0 0 4 0 0 67 

1daaa_ 1iyea_ 19 1 0 0 9 0 230 

1qq5a_ 1zrn__ 14 0 0 0 0 0 182 

1oaoa_ 1oaoc_ 13 0 0 2 0 0 0 

1a87__ 1cola_ 10 0 0 0 0 0 139 

1ciy_3 1i5pa3 9 0 0 0 0 0 182 

1f16a_ 1k3ka_ 9 0 0 0 0 0 78 

1lgha_ 1lghb_ 1 0 0 0 0 0 0 

1mm4a_ 1qj8a_ 8 0 0 0 0 0 79 

1by5a_ 2mpra_ 18 0 0 5 0 0 76 

1mmc__ 9wgaa2 3 0 0 0 0 0 23 

1dl0a_ 1eit__ 2 0 0 0 0 0 27 

1jxca_ 1npia_ 3 0 0 0 0 0 30 

1igra3 1ivoa4 1 0 0 1 0 0 0 

1imt_1 1lpba1 2 0 0 0 0 0 15 

1cvua2 1urk_1 4 0 0 0 0 0 18 

1dec__ 1skz_2 0 0 0 0 0 0 17 

1hc9a_ 3ebx__ 5 0 0 0 0 0 49 

1aapa_ 1bik_1 3 0 0 0 0 0 53 

1d6ba_ 1kj6a_ 2 0 1 0 0 2 15 

1bhta1 1i8na_ 6 0 0 1 0 0 60 

1d2ja_ 1k7ba_ 2 0 0 0 0 0 32 

1bhp__ 1ejga_ 4 0 0 0 0 0 45 

1h8pa2 2hpqp_ 2 0 0 0 0 0 26 

1pce__ 1sgpi_ 4 0 0 0 0 0 36 

1hi7a_ 2pspa2 3 0 0 0 0 0 41 

1jpya_ 1lxia_ 5 0 1 0 0 3 38 

1g40a2 1gkna1 5 0 0 0 0 0 37 

1n4ya_ 2ech__ 4 0 0 0 0 0 3 

1eaic_ 1hx2a_ 4 0 0 0 0 0 42 

1jmab1 1oqek_ 2 0 0 0 0 0 11 

1o9aa2 1tpg_2 5 0 0 0 0 0 40 

1hpi__ 2hipa_ 5 0 0 0 0 0 49 

2glia4 5znf__ 3 0 0 0 0 0 23 
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1d66a1 1zmec1 2 0 0 0 0 0 27 

1ibia2 1lata_ 3 0 0 0 0 0 26 

1a6bb_ 1dsva_ 2 0 0 0 0 0 17 

1aky_2 1zin_2 4 0 0 0 0 0 14 

1i50i1 1yua_1 1 0 0 2 0 0 24 

1h7va_ 1rb9__ 7 0 0 0 0 0 27 

1jj22_ 1nvha_ 5 0 0 0 0 0 9 

1iyma_ 1jm7a_ 5 0 0 2 0 0 0 

1dmc__ 1jjda_ 0 0 0 2 0 0 5 

1kbea_ 1ptq__ 6 0 0 0 0 0 42 

1dvpa2 1fp0a1 1 0 0 1 0 0 22 

1e31a_ 1qbha_ 9 0 0 0 0 0 39 

1a8p_1 2pia_1 7 0 0 0 0 0 79 

1ezva1 1l0lb1 13 0 0 0 0 0 189 

1gjja1 1jeia_ 2 0 0 0 0 0 35 

1ifwa_ 1jgna_ 6 0 0 0 0 0 42 

1h3za_ 1oi1a2 3 1 0 0 6 0 35 

1je3a_ 1pava_ 4 0 0 0 0 0 50 

1h3qa_ 1h8ma_ 7 0 0 1 0 0 102 

1nj1a2 1nj8a2 6 0 0 0 0 0 43 

1jeqa1 1kcfa1 2 0 0 0 0 0 19 

1ayl_2 1ii2a2 14 0 0 0 0 0 154 

1kvna_ 1lnga_ 5 0 0 0 0 0 74 

1jz8a4 1nsza_ 24 1 0 5 6 0 96 

1clc_2 1edqa1 7 1 0 1 9 0 46 

1f5aa4 1fa0a4 9 0 0 0 0 0 82 

1e12a_ 1h2sa_ 9 0 0 0 0 0 92 

1k4cc_ 1orsc_ 4 0 0 1 0 0 43 

1kf6c_ 1nekd_ 3 0 0 1 0 0 34 

1fftc_ 1ocrc_ 5 0 0 0 0 0 129 

1m56b2 1ocrb2 2 0 0 0 0 0 83 

1dxrm_ 1qovl_ 9 0 0 0 0 0 217 

1ee8a2 1nnja2 11 0 0 0 0 0 103 

1m9sa3 1m9sa4 8 0 0 0 0 0 57 

1h3ia2 1n3ja_ 12 0 0 0 0 0 59 

1ihma_ 1k5ma_ 12 0 1 0 0 5 113 

1c8da_ 1gff2_ 7 0 0 3 0 0 0 

1dzla_ 1vpsa_ 11 0 0 0 0 0 105 

1a34a_ 1stma_ 8 0 0 0 0 0 75 

1ku3a_ 1l0oc_ 3 0 0 0 0 0 39 

1g8fa1 1iq8a3 8 0 0 1 0 0 47 

1iw7f3 1or7a2 5 0 0 0 0 0 69 
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Table IV-21. The alignment block-level and aligned position-level comparison for each 

alignment of SFESA (O+G+M+S) applied on PROMALS on the SABMARK 

superfamily dataset. 
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Method 
All 

(1682/23.0) 

Set 1 

(420/6.8) 

Set 2 

(421/14.9) 

Set 3 

(420/23.1) 

Set 4 

(421/48.4) 

PROMALS 80.3 56.7 80.2 90.0 94.2 

SFESA (O)+PROMALS 80.4 57.4 80.5 89.9 93.8 

SFESA (O+G)+PROMALS 80.1 57.6 80.3 89.4 93.2 

SFESA (O+G+M)+PROMALS 80.3 57.3 81.1 89.7 93.1 

SFESA (O+G+M+S)+PROMALS 81.3 58.7 81.7 90.5 94.1 

 

                         

HHpred 78.0 46.6 80.2 90.3 94.7 

SFESA (O)+HHpred 78.0 46.7 80.2 90.3 94.7 

SFESA (O+G)+HHpred 78.3 47.2 80.6 90.5 94.9 

SFESA (O+G+M)+HHpred 78.6 47.8 81.3 90.6 94.8 

SFESA (O+G+M+S)+HHpred 78.6 47.7 81.1 90.6 94.9 

 

                         

CNFpred 80.5 56.3 81.7 89.6 94.5 

SFESA (O)+CNFpred 81.0 57.1 82.1 90.2 94.6 

SFESA (O+G)+CNFpred 81.2 57.3 82.3 90.3 94.7 

SFESA (O+G+M)+CNFpred 81.2 57.2 82.8 90.3 94.6 

SFESA (O+G+M+S)+CNFpred 81.3 57.5 82.8 90.4 94.6 

 

Table IV-22. Test on PREFAB database. Average Q-score is reported. The total 1682 

PREFAB alignments are divided to four semi-equal-sized sets according to sequence 

identity of the PROMALS alignment. The number of alignments and the average 

sequence identity are in parenthesis beneath the set names. Bold indicates the best 

performance in the subsection. Bold with underscore indicates the overall best 

performance in one column. 
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All  

(1682/23.0) 

Set 1  

(420/6.8) 

Set 2 

(421/14.9) 

Set 3 

(420/23.1) 

Set 4 

(421/48.4) 

Method/(p-value) PROMALS PROMALS PROMALS PROMALS PROMALS 

SFESA(O)+PROMALS 0.016 9.39e-03 3.37e-02 0.14 
8.31e-03 

(worse) 

SFESA(O+G)+PROMALS 0.13 3.98e-03 0.1 0.44 
1.16e-03 

(worse) 

SFESA(O+G+M)+PROMALS 0.058 3.56e-02 5.45e-04 0.29 
2.59e-05 

(worse) 

SFESA(O+G+M+S)+PROMALS 0 7.93e-09 0 6.99e-05 0.46 

 

    

 Method/(p-value) HHpred HHpred HHpred HHpred HHpred 

SFESA(O)+HHpred 0.45 0.41 0.21 0.15 0.34 

SFESA(O+G)+HHpred 0 3.20e-04 5.77e-04 1.94e-04 1.14e-02 

SFESA(O+G+M)+HHpred 0 7.74e-07 4.00e-09 3.75e-04 0.15 

SFESA(O+G+M+S)+HHpred 0 2.61e-09 0 2.03e-06 6.23e-03 

 

    

 Method/(p-value) CNFpred CNFpred CNFpred CNFpred CNFpred 

SFESA(O)+CNFpred 3.8e-09 1.68e-03 3.15e-03 1.32e-06 2.62e-03 

SFESA(O+G)+CNFpred 0 9.34e-04 3.10e-04 0 9.27e-09 

SFESA(O+G+M)+CNFpred 0 2.03e-02 1.92e-06 1.36e-08 1.29e-03 

SFESA(O+G+M+S)+CNFpred 0 1.98e-04 3.18e-07 0 3.60e-06 

 

Table IV-23. Statistically significant Q-Score improvement of SFESA on PROMALS, 

HHpred and CNFpred (PREFAB as reference). All SFESA modes by using different 

parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) 

are compared with three existing alignment methods on PREFAB dataset. P-values are 

calculated based on the paired Wilcoxon signed-rank. P-values below 0.05 are marked 

green and below 0.005 are marked pink.  
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 20856 389 403 560 2972 3145 259032 

SFESA (O+G)+PROMALS 19905 632 714 957 4189 5148 255812 

SFESA (O+G+M)+PROMALS 18962 872 942 1432 5450 6449 253250 

SFESA (O+G+M+S)+PROMALS 20496 640 386 686 4109 2427 258613 

        SFESA (O)+HHpred 20722 47 60 139 300 273 264576 

SFESA (O+G)+HHpred 19537 497 305 629 1749 1057 262343 

SFESA (O+G+M)+HHpred 18492 858 518 1100 3182 1954 260013 

SFESA (O+G+M+S)+HHpred 19688 577 232 471 2177 946 262026 

        SFESA (O)+CNFpred 20619 272 160 309 2093 1114 261942 

SFESA (O+G)+CNFpred 19440 768 346 806 3179 1923 260047 

SFESA (O+G+M)+CNFpred 18221 1165 611 1363 4473 3240 257436 

SFESA (O+G+M+S)+CNFpred 19549 836 308 667 3367 1862 259920 

 

Table IV-24. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters 

(SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared 

with three existing alignment methods on the PREFAB dataset (all).   
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 4596 135 113 390 1019 761 37519 

SFESA (O+G)+PROMALS 4155 207 186 686 1436 1108 36755 

SFESA (O+G+M)+PROMALS 3655 276 274 1029 1911 1706 35682 

SFESA (O+G+M+S)+PROMALS 4403 211 121 499 1475 721 37103 

        SFESA (O)+HHpred 3961 21 30 99 137 122 39040 

SFESA (O+G)+HHpred 3466 146 93 406 580 319 38400 

SFESA (O+G+M)+HHpred 3015 233 142 721 965 502 37832 

SFESA (O+G+M+S)+HHpred 3598 160 64 289 656 237 38406 

        SFESA (O)+CNFpred 4150 93 77 220 741 467 38091 

SFESA (O+G)+CNFpred 3673 203 133 531 1068 712 37519 

SFESA (O+G+M)+CNFpred 3156 289 219 876 1477 1177 36645 

SFESA (O+G+M+S)+CNFpred 3796 218 115 411 1167 701 37431 

 

Table IV-25. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters 

(SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared 

with three existing alignment methods on the PREFAB “Set 1” subset.   
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 4467 116 109 122 863 880 54791 

SFESA (O+G)+PROMALS 4262 177 193 182 1228 1412 53894 

SFESA (O+G+M)+PROMALS 4076 263 229 246 1705 1518 53311 

SFESA (O+G+M+S)+PROMALS 4401 191 101 121 1268 567 54699 

        SFESA (O)+HHpred 4665 12 20 23 71 96 56367 

SFESA (O+G)+HHpred 4342 150 93 135 546 360 55628 

SFESA (O+G+M)+HHpred 4060 278 146 236 1148 604 54782 

SFESA (O+G+M+S)+HHpred 4354 189 71 106 795 318 55421 

        SFESA (O)+CNFpred 4518 79 40 54 599 301 55634 

SFESA (O+G)+CNFpred 4241 207 96 147 933 602 54999 

SFESA (O+G+M)+CNFpred 3951 329 154 257 1385 836 54313 

SFESA (O+G+M+S)+CNFpred 4255 225 76 135 1031 499 55004 

 

Table IV-26. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters 

(SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared 

with three existing alignment methods on the PREFAB “Set 2” subset.  
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 5648 91 90 33 727 741 79542 

SFESA (O+G)+PROMALS 5488 155 162 57 993 1304 78713 

SFESA (O+G+M)+PROMALS 5339 213 210 100 1217 1494 78299 

SFESA (O+G+M+S)+PROMALS 5586 148 84 44 896 633 79481 

        SFESA (O)+HHpred 5811 11 7 13 56 34 80920 

SFESA (O+G)+HHpred 5620 113 55 54 368 223 80419 

SFESA (O+G+M)+HHpred 5428 204 118 92 642 457 79911 

SFESA (O+G+M+S)+HHpred 5616 133 51 42 428 214 80368 

        SFESA (O)+CNFpred 5706 77 33 24 602 280 80128 

SFESA (O+G)+CNFpred 5488 208 65 79 818 425 79767 

SFESA (O+G+M)+CNFpred 5252 328 130 130 1076 736 79198 

SFESA (O+G+M+S)+CNFpred 5480 240 62 58 819 395 79796 

 

Table IV-27. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters 

(SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared 

with three existing alignment methods on the PREFAB “Set 3” subset.   
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Methods 
Unshifted 

Blocks 

Shifted 

Blocks 

(SFESA> 

Original) 

Shifted 

Blocks 

(SFESA< 

Original) 

Shifted 

Blocks 

(SFESA= 

Original) 

Aligned 

Positions 

(SFESA> 

Original) 

Aligned 

Positions 

(SFESA< 

Original) 

Aligned 

Positions 

(SFESA= 

Original) 

SFESA (O)+PROMALS 6145 47 91 15 363 763 87180 

SFESA (O+G)+PROMALS 6000 93 173 32 532 1324 86450 

SFESA (O+G+M)+PROMALS 5892 120 229 57 617 1731 85958 

SFESA (O+G+M+S)+PROMALS 6106 90 80 22 470 506 87330 

        SFESA (O)+HHpred 6285 3 3 4 36 21 88249 

SFESA (O+G)+HHpred 6109 88 64 34 255 155 87896 

SFESA (O+G+M)+HHpred 5989 143 112 51 427 391 87488 

SFESA (O+G+M+S)+HHpred 6120 95 46 34 298 177 87831 

        SFESA (O)+CNFpred 6245 23 10 11 151 66 88089 

SFESA (O+G)+CNFpred 6038 150 52 49 360 184 87762 

SFESA (O+G+M)+CNFpred 5862 219 108 100 535 491 87280 

SFESA (O+G+M+S)+CNFpred 6018 153 55 63 350 267 87689 

 

Table IV-28. The alignment block-level and aligned position-level comparison of SFESA 

on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters 

(SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared 

with three existing alignment methods on the PREFAB “Set 4” subset.   
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Blocks 

Categories 

Total block  

number 

Succeeded block  

number 

(SFESA>PROMALS) 

Failed block 

 number  

(SFESA<PROMALS) 

Success/Failure  

rate 

All 16347 1000 495 2.0 

Helix 5778 328 181 1.8 

Edge Strand 4439 283 185 1.5 

Nonedge Strand 6130 389 129 3.0 

Helix Category 

(Average Contact 

number = 23.7) 

    

0-11 1013 46 61 0.8 

12-17 1105 83 34 2.4 

18-21 775 46 28 1.6 

22-27 972 59 28 2.1 

28-36 1009 55 26 2.1 

36-114 904 39 4 9.8 

Edge Strand Category (Average Contact 

number = 12.2) 

   

0-5 866 29 53 0.5 

6-8 641 37 33 1.1 

9-11 723 46 33 1.4 

12-15 898 74 29 2.6 

16-19 624 47 22 2.1 

20-46 687 50 15 3.3 

Nonedge Strand Category (Average 

Contact number = 25.7) 

   

0-16 1053 63 39 1.6 

16-21 1026 81 21 3.9 

22-25 1032 77 25 3.1 

26-30 1145 71 12 5.9 

31-35 935 48 19 2.5 

36-77 939 49 13 3.8 

 

Table IV-29. SFESA (O+G+M) success/failure rate depends on SSE types and contact 

numbers on of alignment blocks. Edge strands are those strands that have backbone-to-

backbone hydrogen bonding interactions (defined by DSSP) on only one side. For each 

SSE type, data is divided into equal-size bins based on contact numbers (see last three 

sub tables). 
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Methods 

Reference-dependent (Q-score)  Reference-

independent 

(TM-score) Dali TMalign Matt MUSTER 
Deep 

Align 

 

HHpred (Local) 44.0 40.5 42.2 44.1 43.9  0.414 

HHpred (Global) 49.3 45.3 46.7 49.0 49.7  0.490 

 

Table IV-30. HHpred local and global mode performance on the MUSTER dataset. 

Columns 2-6 indicate five different structure alignment methods to generate reference 

alignments (Reference-dependent evaluation). Column 7 indicates the average of query 

model’s TM-score built by Modeller (Reference-independent evaluation). 
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Methods 
Reference-dependent (Q-score)  Reference-

independent 

(TM-score) Dali TMalign Matt DeepAlign  

HHpred (Local) 58.9 56.7 59.0 60.2  0.528 

HHpred (Global) 63.0 60.6 62.7 64.4  0.589 

 

Table IV-31. HHpred local and global mode performance on the SALIGN dataset. 

Columns 2-5 indicate five different structure alignment methods to generate reference 

alignments (Reference-dependent evaluation). Column 6 indicates the average of query 

model’s TM-score built by Modeller (Reference-independent evaluation). 
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Methods 

On subsets 

Reference-dependent  

(Q-score) 
 

Reference-independent  

(TM-score) 

SABmark_TWI SABmark_SUP  SABmark_TWI SABmark_SUP 

HHpred (Local) 37.1 65.5  0.316 0.528 

HHpred (Global) 40.7 68.9  0.371 0.570 

 

Table IV-32. HHpred local and global mode performance on the SABMARK dataset. 

Columns 2-3 indicate the alignment Q-score based on their reference on two subsets of 

the SABmark benchmark: “twilight zone” and “superfamilies” respectively (Reference-

dependent evaluation). Columns 4-5 indicate the average of query model’s TM-score 

built by Modeller on two subsets of the SABmark benchmark: “twilight zone” and 

“superfamilies” respectively (Reference-independent evaluation). 
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Methods 
All 

(1682/23.0) 

Set 1 

(420/6.8) 

Set 2 

(421/14.9) 

Set 3 

(420/23.1) 

Set 4 

(421/48.4) 

HHpred (Local) 75.8 42.8 76.9 89.2 94.2 

HHpred (Global) 78.0 46.6 80.2 90.3 94.7 

 

Table IV-33. HHpred local and global mode performance on the PREFAB dataset. 

Average Q-score is reported. The total 1682 PREFAB alignments are divided to four 

semi-equal-sized sets according to sequence identity of the PROMALS alignment. The 

number of alignments and the average sequence identity are in parenthesis beneath the set 

names. 
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V. SFESA WEB SERVER FOR PAIRWISE ALIGNMENT REFINEMENT 

BY SECONDARY STRUCTURE SHIFTS  

 

Protein sequence alignment is essential for a variety of tasks such as homology 

modeling and active site prediction. Alignment errors remain the main cause of low-

quality structure models. A bioinformatics tool to refine alignments is needed to make 

protein alignments more accurate. We developed the SFESA web server to refine 

pairwise protein sequence alignments. Compared to the previous version of SFESA, 

which required a set of 3D coordinates for a protein, the new server will search a 

sequence database for the closest homolog with an available 3D structure to be used as a 

template. For each alignment block defined by secondary structure elements in the 

template, SFESA evaluates alignment variants generated by local shifts and selects the 

best-scoring alignment variant. A scoring function that combines the sequence score of 

profile-profile comparison and the structure score of template-derived contact energy is 

used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are 

more accurate than those produced by current advanced alignment methods such as 

HHpred and CNFpred. In addition, SFESA also improves alignments generated by other 

software. SFESA is a web-based tool for alignment refinement, designed for researchers 

to compute, refine, and evaluate pairwise alignments with a combined sequence and 

structure scoring of alignment blocks. To our knowledge, the SFESA web server is the 

only tool that refines alignments by evaluating local shifts of secondary structure 

elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa. 

http://prodata.swmed.edu/sfesa
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INTRODUCTION 

Homology modeling that constructs a structural model of a "query" protein based 

on its similarity to a homologous protein with known 3-dimensional structure (the 

"template") remains the most reliable method of structure prediction. In most homology 

modeling methods, an essential step requires the input or construction of a pairwise 

sequence alignment between the query and the template, from which structurally 

equivalent residue pairs are deduced. Pairwise alignment is also the foundation for most 

multiple sequence alignment (MSA) methods. For example, the progressive method for 

MSA construction assembles a multiple sequence alignment by a series of pairwise 

alignments of sequences or pre-aligned groups (Feng and Doolittle 1987). 

Early methods of pairwise protein alignments apply dynamic programming 

algorithms that rely on general substitution matrices of amino acid residues and pre-

defined gap penalties (Needleman and Wunsch 1970, Smith and Waterman 1981). 

Heuristic pairwise alignment tools such as BLAST (Altschul, Gish et al. 1990) excel in 

speed and are suitable for sequence database searches. Numerical sequence profiles have 

been designed to incorporate information of homologous proteins to help aligning 

divergent sequences. PSI-BLAST (Altschul, Madden et al. 1997) and HMMER (Eddy 

1998) are examples of sequence-profile comparison methods that are generally more 

accurate than methods of sequence-sequence comparison. The subsequent development 

of profile-profile comparison methods (Rychlewski, Jaroszewski et al. 2000, Yona and 

Levitt 2002, Sadreyev and Grishin 2003, Gniewek, Kolinski et al. 2012) further enhanced 

alignment quality and the ability to detect homologous relationships. In addition to amino 

acid sequence profiles, predicted structural information, e.g., secondary structure and 
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solvent accessibility, was also included in various alignment methods (Soding 2005, Pei 

and Grishin 2007, Ma, Peng et al. 2012). Three-dimensional structure information has 

been used in alignment construction methods in various ways, such as those based on 

structure-dependent profiles (Bowie, Luthy et al. 1991, Kelley, MacCallum et al. 2000) 

and a Monte Carlo-based alignment method that samples a set of moves of gapless 

alignment stretches and scores based on a template contact map (Gniewek, Kolinski et al. 

2014).  

Despite continuous method development in the alignment field, obtaining high-

quality alignments for distantly related proteins remains a challenge. Alignment errors are 

still the main cause for the low quality of models built by homology. One common type 

of alignment error is the local misalignment, often by only a few residues, of secondary 

structure elements (α-helices and β-strands). Such errors often reflect the periodic nature 

of regular secondary structures. For example, many α-helices can be shifted by three or 

four residues while still maintaining a similar pattern of hydrophobic residues and polar 

residues. Therefore, one possible direction for refining an alignment lies in the generation 

of alignment variants by locally shifting secondary structure elements and evaluating the 

sequence and structure fitness of these alignment variants to determine which one is more 

likely to be correct.  

Here we describe the SFESA web server, which refines pairwise protein 

alignments by evaluating alignment variants resulting from locally shifting secondary 

structure elements. The SFESA web server enables researchers to compute, refine, and 

evaluate pairwise alignments with a combined sequence and structure scoring of 

alignment blocks. The previous version of SFESA required the upload of a predefined 
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template structure. In contrast, the new web server allows for a template to be specified 

by its PDB and chain identifiers. Furthermore, if no structure is provided, the SFESA 

server will search the database of sequences with experimentally determined 3D 

structures for the closest template, and this will then be used in the alignment refinement. 

The server facilitates further analysis of alignments at the level of secondary structure, 

providing detailed results of sequence and structure scores for local shifts of secondary 

structure elements. To our knowledge, the SFESA web server is the only online tool that 

refines alignments by evaluating local shifts of secondary structure elements. 
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RESULTS 

The SFESA web server 

The SFESA web server is a tool for constructing, refining, and evaluating 

pairwise protein alignments (Figure V-1). The workflow of the server is shown in Figure 

V-1. Compared to the previously reported version of SFESA (Tong, Pei et al. 2015), in 

which a user must provide a structure for the template sequence, the updated server will 

search against our inhouse protein structure database to find the closest (to either 

sequence) homolog with available 3D structure to improve the alignment.  

Users can input or upload sequences for the query and template either as a 

pairwise alignment or as two unaligned sequences in FASTA format. If two unaligned 

sequences are provided, the server uses PROMALS (Pei and Grishin 2007) to 

automatically construct a pairwise alignment. Input of a 3-dimensional structure (in pdb 

format) with high sequence similarity to the template is optional but recommended. A 

user can input a PDB identifier and a chain identifier, instead of a coordinate set, to 

directly use the structure from the RCSB PDB database (Berman, Westbrook et al. 2000). 

If no structure is provided for the template, the server uses BLAST (Altschul, Madden et 

al. 1997) to automatically search for homologs for either the query or template in a 

database of representative spatial structures and selects the best hit as the homologous 

structure, used as a template for structure score calculation.  

Four SFESA alignment refinement modes are available in the web server: SFESA 

(O) uses up to 8 variants generated by ±4 shifts that keep the gap patterns of the original 

alignment block and the Miyazawa-Jernigan (MJ) (Miyazawa and Jernigan 1999) contact 
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matrix for structure score calculation; SFESA (O+G) uses up to 18 variants by 

considering gap shifts and the MJ contact matrix; and SFESA (O+G+M) (default) uses a 

newly derived contact matrix in addition to gap processing; SFESA (O+G+M+S) differs 

from SFESA (O+G+M) in that an SVM-derived score is used in the second filtering step 

instead of Scomb_II. 

Several parameters are provided. One parameter is the sequence identity threshold 

between the template sequence and its homolog with a known 3D structure. SFESA 

refinement is applied only when the sequence identity between the template and its 

structure homolog is higher than the threshold (default = 0.5). Another parameter is the 

maximal number of residue positions to shift (default = 4, i.e., shifts are applied from −4 

to +4 positions). Increasing this parameter generates more alignment variants, but also 

increases the probability that a wrong variant is accepted. The third parameter is the 

threshold for the fraction of non-gapped residue pairs above which an alignment block is 

used in the refinement process (default = 0.5). We also provide parameters for running 

and processing PSI-BLAST (Altschul, Madden et al. 1997) results to generate the 

sequence profile used for the sequence score calculation, such as the number of iterations, 

the e-value inclusion cutoff, and a sequence identity cutoff to remove divergent hits.   

The output page of the SFESA web server includes the starting alignment (the 

input alignment or in the case of the input of unaligned sequences, the automatically 

generated PROMALS alignment), the refined alignment, and the refinement details for 

each evaluated alignment block. Figure V-2 shows one example of the output page. The 

first part of the output page (Figure V-2A) contains the starting alignment and the refined 

alignment with colored alignment blocks. PSIPRED (Jones 1999) predicts secondary 
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structure elements of the query and secondary structure elements of the template based on 

PALSSE (Majumdar, Krishna et al. 2005) and DSSP (Kabsch and Sander 1983), and 

these predicted elements are shown above the query sequence and below the template 

sequence, respectively. Evaluated alignment blocks are depicted in red and orange for α-

helices and blue and dark green for β-strands to distinguish them. In the SFESA-refined 

alignment, the modified alignment blocks are marked with underscores.  

The second part of the output page (Figure V-2B) is a table summarizing the 

refinement results of the evaluated alignment blocks, numbered from the N-terminus to 

the C-terminus. Each row in the table provides the element start and end position 

numbers in the template, the element secondary structure type, the original alignment 

block, the shift result, and the refined alignment block. The shift result column shows 

Gap Mode and Shift Number. Gap Mode can be “Left” (gap pattern preprocessed by 

moving residues all the way to the left), “Right” (gap pattern preprocessed by moving 

residues all the way to the right), or “Original” (no gap preprocessing). Shift Number (in 

brackets) is the number of positions the residues in the query are shifted by, relative to 

the template. The “+” and “-” signs in Shift Number denote that the query residues in the 

alignment block are shifted towards the C-terminus or the N-terminus, respectively. If no 

alignment variant was accepted for an alignment block (i.e., the original refinement 

retained), “No shift” is shown in the shift result column and “-” is shown in the column of 

Refined Alignment Block. The third part of the output page contains tables with scoring 

details for the alignment variants. A table is provided for each alignment block evaluated 

by SFESA and presents each alignment variant and its sequence score, structure score, 

and combined scores I and II. Figure V-2C provides an example for alignment block 
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number 4. The residues in the original alignment block are colored blue and pink for the 

query and the template, respectively. The scoring details for alignment variants may help 

users manually evaluate and select alternative alignments. 

 

An example of an alignment improved by the SFESA server 

In the example shown in Figure V-2, the input consisted of two SCOP domains, 

d1ja1a3 (query) and d2piaa2 (template), and the 3D structure of the template. SFESA 

used PROMALS to obtain the starting alignment, which was refined to generate the 

refined alignment with the default option SFESA (O+G+M). Out of the seven alignment 

blocks evaluated by SFESA, five alignment blocks were kept without shifts and two 

alignment blocks were modified according to SFESA refinement scores (Figure V-2B). 

Both of these modified alignment blocks are in better agreement with the Dali structural 

alignment (Holm and Sander 1996) of the query and the template compared to the 

original alignment blocks. We generated structure models for the query based on the 

starting alignment (Figure V-2D, left panel) and the refined alignment (Figure V-2D, 

right panel). Both models (in light grey and red ribbons) were superimposed upon the real 

structure of the query (in dark grey and green ribbons). The GDT-TS scores (Zemla 

2003) for models generated from the starting alignment and the refined alignment are 

57.7 and 67.1, respectively. The query secondary structure element in the fourth 

evaluated alignment block is highlighted in both structure superpositions (green for the 

real structure and red for the model). This element, misaligned by two residues in the 

starting alignment (Figure V-2D, left panel), has been corrected in the refined alignment 
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(Figure V-2D, right panel). As a result, the RMSD for this secondary structure element 

between the model and the real structure improved from 5.3Å for the model generated by 

the starting alignment to 2.0Å for the model generated by the refined alignment. 
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DISCUSSION 

Despite many significant research efforts, it is still challenging to correctly align 

weakly similar but homologous protein sequences. Alignment errors remain the main 

reason for the poor quality of homology models. Refining the alignments generated by 

automatic methods is a promising approach for increasing alignment quality. We found 

that secondary structure elements are often misaligned by only a few residues and that 

more accurate solutions can be identified within a limited set of local shifts of secondary 

structure elements. Therefore, we developed the SFESA method in order to refine 

alignments by evaluating the alignment variants generated by local shifts of template-

defined secondary structures.  

In the SFESA scoring system, both a profile-based sequence score and a novel 

contact-based structure score of the aligned residue pairs in the original alignment block 

and the alignment variants are calculated. Thus, an insufficient number of contacts can 

limit the quality of the alignment refinement. We found that structure scoring works well 

when there are sufficient contacts in the template as well as sufficient corresponding 

aligned residues in the query (Tong, Pei et al. 2015). However, if a secondary structure 

element is involved in too few contacts (e.g. exposed edge β-strands), the remaining 

contacts are insufficient to define a complete structural environment. SFESA is less 

effective in these cases. This observation suggests that dedicated efforts on misaligned 

blocks with insufficient contacts are required to improve alignments further. 
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CONCLUSION 

SFESA is a web-based tool to compute, refine, and evaluate pairwise alignments 

with a combined sequence and structure scoring of alignment blocks. Taking a pairwise 

alignment as input, the SFESA web server searches against an in-house database of 

protein spatial structures to find the closest homolog of either sequence. It then refines 

the pairwise alignment by combining the sequence profile similarity and residue-residue 

contact information that were obtained from the homolog with the structure. Finally, it 

facilitates further analysis of the alignment results at the level of secondary structure, 

providing details about scoring for all shifts of secondary structure elements. 
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MATERIALS AND METHODS 

Recently we developed SFESA (Tong, Pei et al. 2015), a method that refines 

pairwise protein sequence alignment by evaluating alignment variants generated from 

local shifts of secondary structure elements. SFESA first delineates alignment blocks 

from a starting pairwise protein alignment. Each alignment block corresponds to a regular 

secondary structural element (α-helix or β-strand as delineated by PALSSE (Majumdar, 

Krishna et al. 2005)) in the template and the corresponding aligned region in the query. 

For each alignment block, SFESA generates a set of alignment variants by locally 

shifting query residues relative to template residues. Then, both a profile-based sequence 

score and a contact-based structure score of the aligned residue pairs in the original 

alignment block and the alignment variants are calculated. We have shown that the best-

scoring alignment variant has the highest probability of being correct, e.g., showing the 

best agreement with the structure-based alignment. 

SFESA uses two local shifting strategies to generate alignment variants with 

different treatments of gaps in the original alignment block. In the first strategy, up to 8 

alignment variants are generated by shifting query residues up to four positions left or 

right relative to the template while maintaining the gap pattern in the original alignment 

block. However, we observed that gaps rarely occur in the middle of secondary structure 

elements in structure-based alignments. Therefore, in the second strategy, SFESA 

preprocesses the gap pattern in the original alignment block by eliminating gaps in the 

middle of the secondary structure elements. To achieve this, residues of an alignment 

block in both the query and template are shifted all the way to the left or right while all 

gaps are placed on the opposite side. Two preprocessed alignment blocks are generated: 
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one by shifting residues to the left and filling the right side with gaps and the other by 

shifting residues to the right and filling the left side with gaps. Each of these two 

alignment variants is then used as a starting point to generate 8 additional alignment 

variants by ±4 shifts while keeping the modified gap patterns. This procedure gives rise 

to up to 18 (1+8+1+8) unique alignment variants .  

For the sequence score, we use the profile-profile COMPASS score (Sadreyev 

and Grishin 2003). Sequence profiles are generated from PSI-BLAST multiple sequence 

alignments (Altschul, Madden et al. 1997). For the structure score, we define residue 

contacts based on the structure of the template. A residue contact is defined as a residue 

pair within a distance cutoff. In the template of an alignment, the residue contacts can be 

identified using the known structure of the template. We then evaluate the contact energy 

of corresponding contact residue pairs in the query that are inferred from query-template 

alignment. For example, if residue i in the template makes contact with residues j, k, and 

m in the template structure (i.e., contact pairs are (i, j), (i, k), and (i, m)), and the 

corresponding aligned residues for i, j, k, and m in the query are i', j’, k’, and m’, 

respectively, then the inferred contact pairs in the query are (i’, j’), (i’, k’), and (i’, m’). 

The structure score for the aligned residue pair i and i’ is CE(i', j’) + CE(i', k’) + CE(i', 

m’), reflecting the structural fitness of the inferred query contact residue pairs. Here, CE 

is a matrix of the contact energy for residue pairs. We used two contact energy matrices: 

one is derived by Miyazawa and Jernigan (Miyazawa and Jernigan 1999) with contacts 

defined as residue pairs with side chain centers less than 6.5Å, and the other is developed 

by us to best discriminate correct alignment variants from incorrect alignment variants . 
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Regarding our derived contact matrix, the cutoff for contact definition is 6.5Å between 

any side chain atoms of two residues.  

In practice, the SFESA method uses a two-filter strategy to compare the scores of 

the original alignment block and the alignment variants and determines whether the 

original alignment block should be kept or changed to one of the alignment variants. The 

first filter checks if there are any alignment variants with a higher combined score I 

(Scomb_I, a linear combination of sequence score and structure score) than the original 

alignment block. If none of the alignment variants has a Scomb_I higher than the original 

alignment block, SFESA rejects all the alignment variants and keeps the original 

alignment block. Otherwise, the alignment variant with the highest Scomb_I is selected and 

passed to the second filter. In the second filter, SFESA uses combined score II (Scomb_II, a 

linear combination of sequence score and structure score) or an SVM score (SSVM) to 

compare the selected alignment variant and the original alignment block. If the selected 

alignment variant still has a higher Scomb_II or SSVM, SFESA will accept this alignment 

variant. Otherwise, SFESA keeps the original alignment block. The weights of the 

sequence score and structure score in Scomb_I and Scomb_II are optimized separately. SSVM is 

a score reported by a support vector machine (SVM) that was trained to differentiate 

correct alignment variants from incorrect alignment variants by using a number of 

features including a COMPASS-based sequence score (Sadreyev and Grishin 2003), a 

contact-based structure score, a solvent accessibility score and a secondary structure 

score. The solvent accessibility score is based on a three-by-three relative solvent 

accessibility substitution matrix derived from FAST (Zhu and Weng 2005) structural 

alignments of SCOP (Andreeva, Howorth et al. 2008) domains. Similarly, the secondary 
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structure score is based on a three-by-three secondary structure substitution matrix 

derived from FAST (Zhu and Weng 2005) structural alignments of SCOP (Andreeva, 

Howorth et al. 2008) domains. The secondary structure is predicted by PSIPRED (Jones 

1999) for the query; the secondary structure information in DSSP (Kabsch and Sander 

1983) is used for the template. For each alignment block, starting from the N-terminus 

and proceeding to the C-terminus, SFESA decides whether to keep the original alignment 

block or to accept one of the alignment variants. 
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Figure V-1. Flowchart of the SFESA web server. The sequence that is found to be closest 

to the provided structure or the structure database is assigned as the Template (T). The 

other sequence is assigned as the Query (Q). 
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Figure V-2. An example showing the output of the SFESA server and its ability to 

improve the alignment. (A) Output from the starting alignment and SFESA-refined 

alignment with secondary structure and colored alignment block. Predicted secondary 

structures for the query and the real secondary structures for the template are shown 

("H"-Helix, "S"-Strand and "C"- Coil). “Number” shows the position number of the 

residue above the query and below the template, respectively.  “Cm1" and "Cm2" 

represent the positional differences between the refined alignment and starting alignment. 

"Cm1" shows the sign of the query residue shifting ("+": query residue shifted towards C-

terminal; "-": query residue shifted towards N-terminal) while "Cm2" shows the query 

residue shift number. If the query residue is aligned to a gap in both the starting and 

refined alignments, "Cm1" is left blank and "Cm2" shows the gap character "-". If the 

query residue is aligned to one residue in the starting alignment but aligned to a gap in 

the refined alignment, "Cm1" is left blank and "Cm2" shows "*". If a template residue is 

-helix 

alignment blocks are shown alternately -strand alignment blocks are 

shown alternately in blue and dark green. The refined alignment blocks are marked with 

underscores. (B) A table summarizing refinement results for the evaluated alignment 

blocks. The alignment block number is ordered from N-terminus to C-terminus. The sixth 

column indicates the refinement results of this alignment block. If refined, a format of 

"Gap mode [shift number]" is shown. Rows of the refined alignment blocks are colored 

red. (C) One example of the scoring details of shifts for alignment block number 4. This 

(A).Starting alignment and refined alignment 
Starting Alignment 
PSIPRED : CCC-CCCCCCEEEEECCCCHHHHHHHHHHHHHHHHCCCCCCCEEEEEEEECCCCCCCHHHHHHHHHHCCCCCEEEEEEECCC 

Number  :          10        20        30        40        50        60        70        80        (C). Scoring details of shifts in alignment block number 4  
Query   : RLP-FKSTTPVIMVGPGTGIAPFMGFIQERAWLREQGKEVGETLLYYGCRRSDEDYLYREELARFHKDGALTQLNVAFSREQ 

Template: EFPLDKRAKSFILVAGGIGITPMLSMARQLRAEG-----LRSFRLYYLTRDP-EGTAFFDELTSDEWRS-DVKIHHDHGDPT 

Number  :         10        20        30             40         50        60         70      

PALSSE  : CCCCCCCCEEEEEEEEHHHHHHHHHHHHHHHHHH-----CEEEEEEEEEEEC-CCCCCCCCCCCCCCCC-EEEEEEEECCCC 

DSSP    : CCCCCCCCCEEEEEEEHHHHHHHHHHHHHHHHHC-----CCEEEEEEEECCH-HHCCCHHHHHCCCCCC-CEEEEECCCCCC 

 

PSIPRED : CCCCHHHHHHHHHHHHHHHHHHCCCCEEEEECCCCCHHHHHHHHHHHHHHHCCCCCHHHHHHHHHHHHHCCCEEEECCC  

Number  :        90       100       110       120       130       140       150       160  

Query   : AHKVYVQHLLKRDREHLWKLIHEGGAHIYVAGDARNMAKDVQNTFYDIVAEFGPMEHTQAVDYVKKLMTKGRYSLNVWS  

Template: -KAFDFWSVFEKS---------KPAQHVYCCGP--------QALMDTVRDMTGHWPSGTV-------------HFE---  

Number  :     80                 90               100       110                    120  

PALSSE  : -CCCHHHHHHHHH---------CCEEEEEEEEH--------HHHHHHHHHHHHCCCCCEE-------------EEE---  

DSSP    : -CCCCHHHHHCCC---------CCCEEEEEECC--------HHHHHHHHHHCCCCCCCCE-------------EEC--- 

 

Refined Alignment by SFESA (O+G+M) 
PSIPRED : CCC-CCCCCCEEEEECCCCHHHHHHHHHHHHHHHHCCCCCCCEEEEEEEECCCCCCCHHHHHHHHHHCCCCCEEEEEEEC-- 

Number  :          10        20        30        40        50        60        70           

Query   : RLP-FKSTTPVIMVGPGTGIAPFMGFIQERAWLREQGKEVGETLLYYGCRRSDEDYLYREELARFHKDGALTQLNVAFSR-- 

Cm1     :                                                                         --------   

Cm2     : 000 000000000000000000000000000000-----0000000000000-0000000000000000-**22222222   

Template: EFPLDKRAKSFILVAGGIGITPMLSMARQLRAEG-----LRSFRLYYLTRDP-EGTAFFDELTSDEWRS---DVKIHHDHGD 

Number  :         10        20        30             40         50        60           70    

PALSSE  : CCCCCCCCEEEEEEEEHHHHHHHHHHHHHHHHHH-----CEEEEEEEEEEEC-CCCCCCCCCCCCCCCC---EEEEEEEECC 

DSSP    : CCCCCCCCCEEEEEEEHHHHHHHHHHHHHHHHHC-----CCEEEEEEEECCH-HHCCCHHHHHCCCCCC---CEEEEECCCC 

 

PSIPRED : CCCCCCHHHHHHHHHHHHHHHHHHCCCCEEEEECCCCCHHHHHHHHHH-HHHHHCCCCCHHHHHHHHHHHHHCCCEEEECCC  

Number  :80        90       100       110       120        130       140       150       160  

Query   : EQAHKVYVQHLLKRDREHLWKLIHEGGAHIYVAGDARNMAKDVQNTFY-DIVAEFGPMEHTQAVDYVKKLMTKGRYSLNVWS  

Cm1     :                                            +++++                                    

Cm2     : 00-000000000000---------0000000000*########77777 *******0000000-------------000---  

Template: PT-KAFDFWSVFEKS---------KPAQHVYCCG-PQALMDTVRDMTG--------HWPSGTV-------------HFE---  

Number  :       80                 90        100       110                            120  

PALSSE  : CC-CCCHHHHHHHHH---------CCEEEEEEEE-HHHHHHHHHHHHH--------CCCCCEE-------------EEE---  

DSSP    : CC-CCCCHHHHHCCC---------CCCEEEEEEC-CHHHHHHHHHHCC--------CCCCCCE-------------EEC--- 

 

(B). A summary table of refinement results for evaluated alignment blocks                  (D) 
 

 

Gap  

Mode 

Shift 

Number 
Unique? Alignment Variant 

Sequence 

Score 

Structure 

Score 

Combined 

Score I 

Combined 

Score II 

Original  -4 Yes 
ALTQLNVAFSREQ----A  

-----DVKIHHDHGDPT-  
0.5110 0.7999 0.7653 0.7940 

Original  -3 Yes 
GALTQLNVAFSRE---QA  

S----DVKIHHDHGDPT-  
0.0422 0.8231 0.7294 0.8074 

Original  -2 Yes 
DGALTQLNVAFSR--EQA  

RS---DVKIHHDHGDPT-  
1.7973 0.8078 0.9265 0.8276 

Original  -1 Yes 
KDGALTQLNVAFS-REQA  

WRS--DVKIHHDHGDPT-  
-0.9663 0.6966 0.4970 0.6634 

Original  0 Yes 
HKDGALTQLNVAFSREQA  

EWRS-DVKIHHDHGDPT-  
0.1343 0.7539 0.6795 0.7414 

Original  1 Yes 
FHKDGALTQLNVAFSREQ  

DEWRSDVKIHHDH-GDPT  
-0.6102 0.7326 0.5715 0.7057 

Original  2 Yes 
FHKD-GALTQLNVAFSRE  

DEWRSDVKIHHDH--GDP  
-0.8445 0.6599 0.4793 0.6298 

Original  3 Yes 
FHK--DGALTQLNVAFSR  

DEWRSDVKIHHDH---GD  
-0.9510 0.6068 0.4200 0.5757 

Original  4 Yes 
FH---KDGALTQLNVAFS  

DEWRSDVKIHHDH----G  
-1.5960 0.5539 0.2958 0.5109 

Alignment 

Block  

Number 

Template  

Start 

Template 

End 

Secondary  

Structure 

 Type 

Original Alignment Block 

Shift result 

(Gap Mode  

[Shift Number]) 

Refined  

Alignment Block 

1 9 16 Strand 
TPVIMVGP  

KSFILVAG 
No Shift - 

2 17 34 Helix 
GTGIAPFMGFIQERAWLR  

GIGITPMLSMARQLRAEG  
No Shift - 

3 36 46 Strand 
GETLLYYGCRR  

RSFRLYYLTRD 
No Shift - 

4 64 71 Strand 
LTQLNVAF  

DVKIHHDH 
Original [-2] 

QLNVAFSR  

DVKIHHDH 

5 79 87 Helix 
YVQHLLKRD  

DFWSVFEKS 
No Shift - 

6 90 97 Strand 
GAHIYVAG  

AQHVYCCG 
No Shift - 

7 98 110 Helix 
DARNMAKDVQNTFYDIVAEFG  

P--------QALMDTVRDMTG 
Left  [-1] 

ARNMAKDVQNTFY  

PQALMDTVRDMTG 
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table contains the original alignment block and all alignment variants. The first column in 

the table is gap mode. There are three gap modes if there are gaps in this alignment block: 

Original (no change of the original alignment block), Left (residues in alignment blocks 

can be aligned all the way to the left while all gaps are put to the opposite side before 

shifting) and Right (residues in alignment blocks can be aligned all the way to the right 

while all gaps are put to the opposite side before shifting). The second column is the shift 

number. The third column indicates if such a variant is a unique one or the same as a 

variant shown previously. The fourth column shows the alignment variants with extended 

residues in both ends. The residues in the original alignment block are colored blue 

(query) and pink (template). The last four columns show the sequence score, structure 

score, combined score I and combined score II of each alignment variant. The row 

colored red corresponds to the alignment variant that is the final choice in the refined 

alignment. (D). Structure superpositions of query structure models (light grey ribbon) and 

query real structure (dark grey ribbon). Structure models were generated by MODELLER 

based on the starting alignment (left panel) and the SFESA-refined alignment (right 

panel). The strand (“QLNYAFSR”) in alignment block number 4 is highlighted. This 

strand is shown in red and green in the structure model and the real structure, 

respectively. Blue spheres and yellow spheres mark the N-terminal boundary (“Q”) and 

the C-terminal boundary (“R”), respectively. 
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VI. CONCLUDING REMARKS 

Protein function prediction is one of most essential topics in the field of 

computational biology but still an ongoing quest for computational biologist. Currently, 

homology detection is still the most reliable method to predict protein function. After a 

homolog is recognized, the alignment construction between the protein sequence and its 

homologs is important to predict functional sites and modeling structure.  Although many 

methods are developed within recent many years, it is a very challenging task to search 

sequence similarity or align protein sequences accurately.  

The work described in this dissertation can be viewed on the perspective of 

finding more accurate homologous proteins and constructing more accurate alignment 

between protein sequence and its homolog. 

In Chapter II, a new homology detection method, COMPADRE, assesses the 

relationship between the query sequence and a hit in the database by considering the 

similarity between the query and hit’s known homologs. This approach increases 

detection quality, boosting the precision rate from 18% to 83% at half-coverage of all 

database homologs. The increased precision rate allows detection of a large fraction of 

new protein structural relationships, thus providing structure and function predictions for 

previously uncharacterized proteins. Our results suggest that this general approach is 

applicable to a wide variety of methods for detection of biological similarities. In Chapter 

III, a continually updatable web server based on this method 

(http://prodata.swmed.edu/compadre) was developed to detect homologs for the query 

sequence or alignment provided by users. Besides protein representatives from SCOP 
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database, a new search database composed of ECOD domain representatives can be 

updated weekly following ECOD updates. Such an up-to-date search database allows 

detecting homology of recently released protein structures. 

In Chapter IV, we developed a pairwise alignment refinement method, SFESA, 

which generates candidate alignment variants for each alignment block by shifting the 

query region. We also designed a scoring function to judge whether an alignment variant 

is likely to be more accurate than the original alignment. Our scoring function combines a 

profile-based sequence score and a novel structural contact-based score derived from 

residue contacts in template. Our results prove the new contact-based score to be of 

ability to help protein sequence and homolog alignment. Our approach improves 

alignments generated by a number of state-of-the-art methods on several benchmarks that 

include both reference-dependent and reference-independent assessment. In Chapter V, 

We developed the SFESA web server to refine pairwise protein sequence alignments. It is 

a web-based tool for alignment refinement, designed for researchers to compute, refine, 

and evaluate pairwise alignments with a combined sequence and structure scoring of 

alignment blocks. SFESA can refine the input of pairwise protein alignment or 

construct alignment for the input of two unaligned protein sequences (one is treat as 

query, while the another is treated as template). For each alignment block defined by 

secondary structure elements in the template, SFESA evaluates alignment variants 

generated by local shifts and selects the best-scoring alignment variant. The SFESA web 

server is available at http://prodata.swmed.edu/sfesa. 

 

http://prodata.swmed.edu/sfesa
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