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Vi

Protein function prediction is one of the most important problems in the field of
computational biology. The most reliable method to predict protein function is to detect
homologs. Homologous proteins tend to possess conserved sequence motifs, the same structure
folds, and similar functional sites. Current sequence-based homology search methods are still
unable to detect many similarities evident from protein spatial structures. We present a new
method, COMPADRE, to assess the relationship between the query sequence and a hit in the
database by considering the similarity between the query and hit’s known homologs. This

method markedly boosts the homology detection precision rate.

Successful homology-based protein function prediction is also determined by accurate
alignment between a protein sequence and its homolog. Alignment errors are the main bottleneck
for homology modeling when the query is distantly related to the template. Alignment methods
often misalign secondary structural elements by a few residues. We present a refinement method,
SFESA, to improve pairwise sequence alignments by evaluating alignment variants generated by

local shifts of template-defined secondary structures.

The potential values of these methods for structure/function predictions are illustrated by

the detection of homology between evolutionary distant yet structurally similar protein domains.
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I. INTRODUCTION

Knowing protein functions is the key to understanding the nature of the protein
universe and in essence, biology (Bork, Dandekar et al. 1998). In the field of
computational biology, prediction of protein function is one of the most essential
problems (Baker and Sali 2001). Being different than expensive and time-consuming
experimental methods to solve structures, e.g., crystallography (Ealick 2000) or NMR
spectroscopy (Tyszka, Fraser et al. 2005), computational structure/function prediction
methods can economically and efficiently provide biologists with functional hypotheses
about their proteins of interest. In recent years, protein function detection is becoming
more and more important because of the massive amounts of protein sequence data
accumulated by advanced genome sequencing technology (Barnhart 1989) as well
experimentally determined protein structures in the PDB database (Berman, Battistuz et

al. 2002).

Currently, the most reliable method to predict protein function is to detect
homologous proteins (Daga, Patel et al. 2010). Homologous proteins are proteins with a
common ancestor that usually possess conserved sequence motifs, the same structure
folds, and similar functional sites (Doolittle 1981). High sequence similarity alone or
combined sequence-structure similarity is often used to establish homologous
relationships between proteins. Distinctive structure features, similar structural folds,
conserved sequence motifs and functional sites are often used to further support or verify

the inference of homology (Floudas 2007).



When a confident homolog is found below a significant cutoff, alignment
construction between homologous proteins can further help functional site prediction or
structure modeling (Ginalski 2006). From our recent observation of protein sequence
alignments, some errors are prone to occur for short secondary structure alignments. They
may have a relatively high similarity score but should not be aligned together according
to their structure alignment reference. Thus, alignment errors remain as one of the main

bottlenecks in homology modeling and function prediction.

Generally speaking, accurate homology-based protein function prediction is
determined by two factors (Marti-Renom, Stuart et al. 2000). The first factor is whether
the correct homolog can be identified (the accuracy level of the homology detection
method). The second factor is whether the correct alignment can be constructed between

the protein sequence and its homolog (the accuracy level of the alignment method).

We will discuss these two topics in the following sections.

HOMOLOGY DETECTION AND SIMILARITY SEARCH

Detecting protein sequence homology to known folds offers the most successful
and practically useful strategy to predict protein function (Baker and Sali 2001). As we
discussed above, homologous proteins usually possess conserved sequence motifs and
share similar structures and functions, but may only have subtle overall sequence
similarities. Even very distant homologs can provide reasonable templates for modeling

protein sequence targets without closely related structures (Kryshtafovych, Moult et al.



2014). Although significant progress has been attained in this direction, remote sequence

similarity is still far from satisfaction (Huang, Mao et al. 2014).

In the history of homology detection method development, BLAST (Basic Local
Alignment Search Tool) (Altschul, Gish et al. 1990) is the first method proposed to
compare protein sequence similarity by using protein sequence alignment. Also, it is still
one of the most widely utilized similarity search programs, which performs very well for
proteins with high sequence identity. After BLAST, PSI-BLAST (Position Specific
Iteration BLAST) (Altschul, Madden et al. 1997) was developed. For a protein sequence
(query), PSI-BLAST can find homologous sequences in the search database using not
only the query sequence information but also its homologous proteins. The position
specific matrix, or profile, used in PSI-BLAST represents the query and its homologs by
a similar set of sequence patterns that includes insertions and deletions. Such work was
later followed by methods for profile-profile comparison (Rychlewski, Jaroszewski et al.
2000, Sadreyev and Grishin 2003, Soding 2005, Madera 2008, Margelevicius and
Venclovas 2010, Remmert, Biegert et al. 2012), aimed at detecting similarities between
distant families. As examples, COMPASS (Sadreyev and Grishin 2003) and HHSearch
(Soding 2005) represent the state-of-the-art for profile-profile comparisons methods. In
order to more accurately search for sequence similarity, PROCAIN (Wang, Sadreyev et
al. 2009) was proposed to incorporate similarity in secondary structure, positional

conservation, and sequence motifs into profile—profile scoring.

Besides using profile-based sequence information, a novel direction to further
improve sequence-based homology search is to incorporate non-sequence information. In

a typical homology search aimed at protein structure and function prediction, a sequence



or family of interest is compared to a database of proteins with known structures. This
knowledge allows confident establishment of evolutionary links within the database. In
computer science, networks of relationships between database subjects have been
successfully used to improve the quality of search methods, most notably web searchers
(Brin and Page 1988). In Chapter Il and I11 of this thesis, we show that knowledge of the
protein database homology network dramatically increases the accuracy of sequence-

based search.

PROREIN SEQUECNE ALIGNMENT

For a protein sequence (query), a homolog (template) can be found by using
profile similarity search. In order to predict functional sites or model the three-
dimensional structure of a protein sequence, the next important step is to construct an
accurate alignment between the query and template (Marti-Renom, Stuart et al. 2000,

Ginalski 2006).

Earlier work focused on dynamic programming recursion in the construction of a
global or local alignment. Heuristic methods such as FASTA and CLUSTALW (Lipman
and Pearson 1985, Thompson, Higgins et al. 1994) were developed to significantly
increase the speed of alignment. Subsequently, sequence profiles (Krogh, Brown et al.
1994) were introduced to construct more accurate alignments by using sequence-profile
and profile-profile comparison. These comparisons improved pairwise alignments by
scoring the similarity between sequence positions in protein families. In addition to pure

sequence methods, 3D structural information is valuable for alignment construction



because protein structures tend to evolve more slowly than protein sequences (Chothia

and Lesk 1986, Illergard, Ardell et al. 2009).

Although much work has been done in this field, alignments are still not
sufficiently accurate for sequences with low similarity (Kryshtafovych, Moult et al.
2014). Automatic aligners such as PROMALS (Pei and Grishin 2007) frequently
misalign alignment blocks by a few residues. Better alignment solutions can frequently
be found among a limited set of local shifts of alignment blocks (moving residues in the
query relative to the template). This observation motivated us to develop a pairwise
alignment refinement method, SFESA, which generates candidate alignment variants for
each alignment block by shifting the query region. In addition, residue contact based
information can complement sequence information to better distinguish among shifted

alignments. The details of alignment improvement will be discussed in Chapter IV and V.



1. USING HOMOLOGY RELATIONS WITHIN A DATABASE

MARKEDLY BOOSTS PROTEIN SEQUENCE SIMILARITY SEARCH

Inference of homology from protein sequences provides an essential tool for
analyzing protein structure, function, and evolution. Current sequence-based homology
search methods are still unable to detect many similarities evident from protein spatial
structures. In computer science a search engine can be improved by considering networks
of known relationships within the search database. Here, we apply this idea to protein
sequence-based homology search and show that it dramatically enhances the search
accuracy. Our new method, COMPADRE, assesses the relationship between the query
sequence and a hit in the database by considering the similarity between the query and
hit’s known homologs. This approach increases detection quality, boosting the precision
rate from 18% to 83% at half-coverage of all database homologs. The increased precision
rate allows detection of a large fraction of new protein structural relationships, thus
providing structure and function predictions for previously uncharacterized proteins. Our
results suggest that this general approach is applicable to a wide variety of methods for

detection of biological similarities.

In the field of protein structure prediction, identifying homology to known folds
offers the most successful and practically useful strategy to provide protein spatial
structure models. For protein sequence targets without closely related structures, even
very distant homologs can provide reasonable templates for modeling. Despite significant

progress in the field, remote sequence similarity search is far from perfection and fresh



ideas are needed to extend detection limits. In computer science, the concept of utilizing
internal relations within a database to improve similarity search was key to the success of
search engines such as Google. Here, we show that similar consideration of the homology
network within a protein database of structure templates can dramatically improve the

accuracy of homology search.



INTRODUCTION

Prediction of protein structure and function by sequence homology is among the
most important problems in computational biology of proteins, perhaps next after the
grand problem of de novo protein folding. The existing gap between the number of
known protein sequences and the number of experimentally determined 3D structures is
bound to grow with more genomes sequenced by high-throughput technologies(Koboldt,
Steinberg et al. 2013, Mardis 2013). Currently, the most reliable and effective way to
predict the structure of an uncharacterized protein is to find a sequence homolog with
available structural information(Gribskov, McLachlan et al. 1987, Huang, Mao et al.
2014). The chance of finding such a template for a given protein sequence is increasing
as sequence space is becoming more extensively covered by 3D structures(Zhang,
Hubner et al. 2006). However, there is, and will be for a long time, a significant fraction
of proteins for which finding experimentally characterized sequence homologs is
challenging or impossible. The structures of many such proteins, when solved, reveal
their remote homology to previously known structures that are undetectable by current
sequence-based homology search methods(Kryshtafovych, Moult et al. 2014). Therefore,
the quality of sequence-based homology search remains key for accurate structure
prediction, as consistently confirmed by multiple rounds of the Critical Assessment of

protein Structure Prediction (CASP)(Kryshtafovych, Fidelis et al. 2014).

In the last several years, methods for sequence similarity search have been greatly
improved by the analysis of sequence patterns reflecting evolutionary, structural, and
functional constraints in protein families. Introduction of numerical profiles(Gribskov,

McLachlan et al. 1987) and hidden Markov models (HMM)(Eddy 1998) has allowed



comparing a sequence to a multiple sequence alignment (MSA)(Altschul, Madden et al.
1997, Eddy 1998, Karplus, Barrett et al. 1999). Such work was later followed by methods
for profile-profile(Rychlewski, Jaroszewski et al. 2000, Sadreyev and Grishin 2003,
Margelevicius and Venclovas 2010) and HMM-HMM(Soding 2005, Madera 2008,
Remmert, Biegert et al. 2012) comparison, aimed at detecting similarities between distant
families. In addition to the residue substitution preferences at sequence positions, MSA
can reveal highly informative patterns of inter-dependence between amino acid content at
different positions, in the form of MSA motifs and secondary structure

predictions(Ginalski, Pas et al. 2003, Soding 2005, Wang, Sadreyev et al. 2009).

Is it possible to further improve sequence-based homology search by considering
non-sequence information? In a typical homology search aimed at 3D structure
prediction, a sequence or family of interest is compared to a database of proteins with
known structures. This knowledge allows confident establishment of evolutionary links
within the database. In computer science, networks of relationships between database
subjects have been successfully used to improve the quality of search methods, most
notably web searchers (Brin and Page 1988). Here, we show that knowledge of the
protein database homology network dramatically increases the accuracy of sequence-

based search.

To capitalize on this idea, we modified PROCAIN(Wang, Sadreyev et al. 2009),
our sensitive method for sequence profile similarity search, by considering the template’s
homologs within the database (Figure 11-1). We designed the new similarity measure of
COMPADRE as a linear combination of the original score for the given template with the

scores for a set of its homologs identified by structure, function, and sequence. Consistent
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similarity of these homologs to the query elevates the original score, which can increase
the significance of a marginal sequence-based similarity to a level above detection
threshold. On the other hand, a favorable score for a spurious hit becomes less significant
if the set of its homologs is consistently dissimilar from the query. Therefore, the new

measure improves both sensitivity and specificity of homology detection.
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RESULTS

Defining close and remote template homology networks

To establish the network of homologous relationships in the structure database,
we defined homologous and non-homologous pairs in a set of 5116 representative
structural domains (also known as templates) from the Structural Classification of
Proteins (SCOP) database(Andreeva, Howorth et al. 2008). Because a good homology
search method should rank homologs according to their distance from the query as well
as discriminate homologs from non-homologs, we considered homologous relationships
between protein pairs at two different levels. The first level represents “close homologs”,
and was defined as domain pairs assigned to the same superfamily in SCOP. These
templates are typically closely related to each other by 3D structure, tend to share
similarities in sequence and function, and should be ranked higher than more remote
homologs. The second level represents “all homologs”, and includes more distantly
homologous protein pairs. To define “all homologs”, the SCOP classification was
supplemented with a Support Vector Machine (SVM) classifier(Qi, Sadreyev et al. 2007)
that uses a number of sequence and structure similarity scores to establish homology (see
Methods in Supporting Information for details). This SVM classifier finds similarities
between domain pairs that are most likely evolutionarily related and would be meaningful

templates for 3D structure modeling.

Establishing a scoring scheme by using homology networks in the search database
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The original PROCAIN E-values reflecting the sequence-based similarity
between the query and templates were first log-transformed into similarity scores s, (see
Methods for details). The closest query homolog can often be identified as the top hit by
this direct score. To further improve PROCAIN scoring, similarity scores on a particular
template (s{ ) were boosted by the similarity scores of the template’s homologs ( s§')

according to the following equation:

S =wrs +@-wp)z sy 1)

where s{ and s§' are the similarity scores s, for the given template and for a set H of its
structure-based homologs within a certain evolutionary distance from the template,
respectively. The s{! similarity score can be calculated using either the close homolog

level (Hciose) OF the all homolog level (Ha;) described above. wy is a weight optimized for

the performance (wr=0.8).

Additional information about the query’s top hit may help detecting the query’s
homologs in the database. Indeed, we find (Figure 11-2, Table 1lI-1 and [1-2) that
performance can be additionally improved by transforming the measure in Eq (1) to boost
scores for the templates that are homologous to the top hit and to reduce scores for non-

homologous templates:

Sp =S1 +hop(a* Sy +P) (2)

where s;is the measure defined by Eq (1), a and B are optimized parameters, and hiop

depends on the homology of the template to the top hit that has the highest PROCAIN
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score: hyp = 1 if the template is homologous to the top hit, hyp = -1 if it is confidently
non-homologous, and hyp = 0 if the homology is unclear (see Methods in Supporting

Information for details).

The choice of homology networks lead to different homology detection performances

The choice of homolog set H in Eq (1) and Eq (2) has a dramatic influence on the
method’s behavior. Including scores for all template’s homologs (Hay) results in a wider
sampling of protein space around the template and thus should provide more
representative information for homolog/non-homolog discrimination. Such a wide
sample, however, may lead to a scrambled ranking among detected homologs, with the
closest ones being placed below the more distant. For a query’s close homologs, the
strong direct similarity signal from the first scoring term of Eq (1) may be diluted by the
contribution of a diverse set of template’s homologs from the second scoring term of Eq
(1). Restricting the set’s diversity to close homologs (Hciose) Should improve the ranking
of close homologs, but may limit the sensitivity of detection at remote homology levels.
Therefore, the size of homolog set H may require adjustment for different evolutionary

distances between query and template.

Indeed, applying different sets H (Han or Hciose) t0 generate s, and s, results in a
very different performance of the new scoring scheme. We used receiver operator
characteristic (ROC) curves to evaluate the homology detection performance of Eq (2)
for all query homologs designated as true positives (Figure 11-3a) and for only close

homologs designated as true positives (Figure 11-3b). A ROC curve plots true positive
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numbers against false positive numbers at various E-value thresholds. Both plots (Figure
[1-3a and Figure 11-3b) include the curves for several published sequence-based
searchers: the popular PSI-BLAST method (Schaffer, Aravind et al. 2001),
PROCAIN(Wang, Sadreyev et al. 2009), and a comparable state-of-the-art method
HHSearch(Soding 2005) (see Methods for details). These plots are shown together with
those produced by our new scoring scheme using two definitions of H. When
contribution from all template homologs (Hay) is allowed in determining S; and S,, the
quality of homolog/non-homolog discrimination is dramatically higher than in other
methods (Figure 11-3a, Table I1-1 and 11-3). However, when the contribution is limited to
close homologs (Hcose), the discrimination between homologs and non-homologs
becomes worse, especially for more distant homologs, in the area further from the plot’s
origin (Figure 11-3a, Table 1I-1 and 11-3). The situation is opposite when only close
homology detection is evaluated (Figure I1-3b, Table [1-3 and 1I-4). Inclusion of all
template homologs (Hay) in determining S; and S, of Eq (2) results in extremely poor
identification of close homologs, suggesting that more distant relationships are often
erroneously assigned higher significance. Limiting the set H to the close homology level
(Hciose) leads to an accurate close homology detection far surpassing the original

PROCAIN performance (Figure 11-3b, Table 11-3 and 11-4).

Improvement of homology detection is consistent among protein classes

The effects observed performance improvement resulting from eq. (1-2) and its

strong dependence on the range of template homologs entering eq. (1) might potentially
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be confined to one or a few specific query types that strongly affect overall ROC curve.
To assess the universality of these effects, we evaluate the performance separately for
subsets of queries from individual major domain classes: all-alpha, all-beta, alpha/beta,
and alpha+beta, according to SCOP. These effects are consistent among all major protein

secondary structure classes (Figure 11-4, 11-5, 11-6 and 11-7).

Improvement of COMPADRE scoring scheme by the choice of homology network

The results shown in Figure 11-3 suggest that in order to improve both the
detection of remote homology and the ranking by evolutionary distance to the query, we
can adjust the contribution from more distant homologs in Eqgs (1-2) according to the
template’s distance from the query. Both goals may be achieved if set H is kept relatively
narrow for close query-template relationships (the left part of orange curve in Figure 1l-
3a, b), and the input from remote template homologs is added only for templates more
distant from the query (the right part of brown curve in Figure 11-3a, b). We construct a

combined scoring function for such an adjustment:

83 =Wc(83)*S3 +(L-wc(S5))*S; (3)

where s and sj are determined by Eq (2) with different definitions of set H: only close
homologs (Hciose) for s5 and all database homologs (Hai) for sj. The weight we is a
variable depending on score s as a measure of closeness of template to query. For high

ss values (closely similar to the query, when s is above an upper boundary s5@) this



16

weight is set to 1, so that the final score includes only the score of close homologs of a

template (s;=s), whereas for low s¢ values (distantly similar to the query, when s is
less than a lower boundary s5®) the weight is set to 0 so that the score includes only the
score for all template homologs (s;3=sj ). For the intermediate values of sS (si®<sg<ss®
), the weight monotonically grows from 0 to 1, to gradually mix s with s} . After testing
several functions, we find that exponential dependency of w. on s$ (Figure 11-8)

provides the best performance (see Methods for details).

While consideration of a template’s homologs in Eqs (1-3) can boost scores of
marginally detectable homologs, it can also reduce the significance of original PROCAIN
E-values for highly confident homologs. Thus, we construct a second combined scoring

function:

Sp=w3(INEp)*S3+@-w3(INEp))*Sp 4)

where s, is determined by Eq (3) and s, is the score obtained from the original

PROCAIN E-value E, using the Gumbel extreme value distribution (EVD)(Gumbel
1935), which approximates a distribution of sequence similarity scores of random
comparisons(Altschul, Gish et al. 1990, Karlin and Altschul 1990, Dembo 1994,
Altschul, Madden et al. 1997). Since it was introduced in sequence analysis by
BLAST (Altschul, Gish et al. 1990), this distribution has been widely used to estimate
statistical significance of sequence and profile similarity scores (i.e., to compute E-value
from a score) in many applications(Altschul, Madden et al. 1997, Sadreyev, Tang et al.

2007, Wang, Sadreyev et al. 2009). Karlin and co-authors(Karlin and Altschul 1990,
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Dembo 1994) estimated parameters of EVD and suggested a formula to transform a
sequence score to E-value. E-values can be back-transformed to scores using this
approximation. The weight wz is a function of InE,, the logarithm of the PROCAIN E-
value. For low InE, values (highly confident PROCAIN hits, when InE, is less than a
lower boundary InEp(l)) this weight is set to 0, so that the final score is only determined
by the original PROCAIN score (ss =sp), whereas for high InE, values (marginal
PROCAIN hits, when InE, is above an upper boundary InE,"®)) this weight is set to 1 so

that the final score s4 is equal to the new score s, . For the intermediate values of InE,

(InE, ™ < InE, < InE, @), the weight monotonically increases from 0 to 1, to gradually
mix sz with sp. Testing several functions, we find that exponential dependency of ws on

InE, (Figure 11-9) gives the best performance (see Methods for details). Based on the
score s, for a given template, statistical significance of the detected similarity is provided

in the form of E-value estimated by transforming the score using the EVD approximation.

The final scoring function s, offers best performance both in remote homology

detection and in ranking by evolutionary distance to a query. Performance of the resulting
measure is compared to several methods in Figure 11-10a, b and 11-11. The inclusion of
all templates’ homologs (Hay) in the set H leads to highly sensitive and accurate retrieval
of homology relationships (Figure I11-10a, Table 11-1 and 11-3). At the same time, using a
restricted set H for shorter ranges of query-template distance (only close homologs
(Hciose)) leads to the correct placement of the close query homologs above others (Figure
[1-10b, Table 11-2 and 1I-4). One of the most important characteristics of this scoring

scheme is precision rate, i.e., the expected proportion of true positives among top hits. As
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shown in Table 11-3, the scoring function s, achieves the precision rate of 83% at half-
coverage of all homologs, more than quadruple that of the original PROCAIN rate of
18%. Thus, the combined measure s, by far exceeds the current state-of-the-art

performance levels in both capturing remote protein relationships and ranking homologs
consistently with evolutionary distance. We refer to the resulting detection method as
COMPADRE, for COmparison of Multiple Protein sequence Alignments using Database

RElationships.

Comparison to structure similarity score

A more detailed analysis of the COMPADRE results suggests that it accurately
captures a large fraction of structural similarities that are only weakly reflected in
sequence, and at the same time highlights the similarity of local functional motifs that
may be missed by an automatic structure comparison method. As an illustration, Figure
I1-12 shows the comparison of protein groupings based on COMPADRE E-value and on
the structural similarity measured by DALI(Holm and Sander 1993) Z-score. We use
1313 representative protein domains from the o/ class in our database to perform
hierarchical clustering by all-to-all COMPADRE scores (logarithm of COMPADRE E-
values) (Figure 11-12a) and by DALI Z-scores (Figure 11-12b). The resulting matrices of
scores for domain pairs are represented as colored maps, with the scores used for
grouping shown above diagonal and the corresponding scores by the other method shown

below diagonal.
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These groupings provide several notable observations. First, there is a strong
general correlation in clustering by both scores, including the identity of major protein
groups such as TIM-barrels, Rossmann fold, and SAM-dependent methyltransferases
(Figure 11-12a, b). Second, as expected, a fraction of structure-based relationships still
remains undetected by sequence. These relationships include both similarities outside
major clusters (off-diagonal area of the matrices, Figure 11-12b) and links within clusters.
For example, TIM-barrels have uniformly high DALI Z-scores, whereas the coverage by
COMPADRE scores is more fragmented (Figure 11-12a, b). Third, COMPADRE
produces several clusters of pronounced similarity that stand out from the background
(red in Figure 11-12a) but are not produced by DALI. These clusters correspond to local
functional sequence motifs whose presence is less obvious from structure comparison
alone. The most notable example is P-loop nucleoside triphosphatases that are accurately
placed together by COMPADRE but split apart by structure similarity (Figure 11-12a). As
another example, COMPADRE grouping within the TIM-barrel fold highlights a
superfamily of (trans)glycosidases that share similar phosphate-binding sites, which is

challenging for DALI-based clustering (Figure 11-12a).

Detecting more homologs at the SCOP superfamily level

Compared to the original PROCAIN scoring, COMPADRE detects more
homologs at the SCOP superfamily level. As an example, in bacterial lysozyme (PDB ID
1jfxA, SCOP family 1, 4-beta-N-acetylmuraminidase, Figure 11-13a), the last o/p unit of

1jfx is atypical for TIM barrel folds: it has an antiparallel hairpin replacing the typical
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parallel o/f units. A typical TIM barrel structure (PDB ID 1bgcA) is shown in Figure I1-
13b. Due to this alteration, it is difficult for PROCAIN to detect homologs of 1jfx and the
PROCAIN E-values for 1jfx vs. other TIM barrel examples are high. The exception is an
N-terminal domain of endolysin (PDB ID 2j8gA, domain 2) and an uncharacterized
bacterial protein (PDB ID 1sfsA), which are in the same SCOP family 1, 4-beta-N-
acetylmuraminidase. A scatter plot of E-value vs. Dali Z-score shows COMPADRE E-
values shifted lower to significant E-values (e-values = 0.005 line displayed in Figure I1-
13c), while keeping roughly the same ranking as PROCAIN. SCOP classifies all of these
structures (dots in Figure 11-13c) in the same superfamily: (Trans) Glycosidases and they
catalyze reactions with similar chemistry; suggesting they should be homologous.
PROCAIN only detects two closest sequences at the SCOP family level (2j8gA and
1sfsA) with a significant E-value, while COMPADRE detects all of the most distant

structures with significant E-values.

Detecting homology relationship for a newly resolved structure

For the inference of structure, function, and evolution of a given uncharacterized
protein, COMPADRE improves the opportunity for detection of experimentally
characterized homologs. As another example, the Zinc-finger antiviral protein (ZAP) is a
host factor that specifically inhibits the replication of certain viruses, such as HIV-1(Zhu,
Chen et al. 2011). The N-terminal part of ZAP is the major functional region that binds
target RNA and recruits the mRNA degradation machinery. The structure of the N-

terminal region of ZAP was determined recently(Chen, Xu et al. 2012) (NZAP225, PDB
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ID 3u9gA), consisting of an uncharacterized top “cockpit” layer (1-65aa) and four
connected zinc-fingers (66-225aa). Figure 11-14 shows how the confidence of an
originally marginal sequence similarity can be verified for the uncharacterized top
“cockpit” domain by using our COMPADRE method. For the query sequence of first 65
residues from NZAP225, no confident homology to proteins with known 3D structure
can be detected by direct query-template sequence comparisons. PSI-BLAST search in
NCBI nr database converges after three iterations with no hits of known structures,
whereas all HHpred and PROCAIN hits in structural databases are outside the
significance threshold (best probability of 82.4% for HHpred and best E-value of 76.1 for
PROCAIN). COMPADRE, however, is able to assign significant E-values to the
similarities between the N-terminal domain of the query and multiple DNA-binding
helix-turn-helix (HTH) domains, with the top E-value as low as 2e-3 (Figure 11-14).
Detected similarity to HTH (Figure 11-14b) suggests that the first 65 residue domain of
ZAP may also play an important role in recognizing target viral RNA. Sequence
alignment to the template (Figure 11-14a) points to specific residues that may be involved

in RNA recognition and binding, providing potential targets for mutagenesis studies.
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DISCUSSION

Comparison with threading methods RaptorX and MUSTER

The RaptorX (Peng and Xu 2011) and the MUSTER (Wu and Zhang 2008)
packages are downloaded from their respective websites. In the RaptorX suite,
CNFsearch (Ma, Peng et al. 2012) is used to detect homologs for queries. As suggested
by the authors of these packages, to attain the best performance, we run them on
databases provided by the authors. To speed up the experiments, 100 domains are
randomly selected from 16083 ECOD (Cheng, Schaeffer et al. 2014) domain
representatives (20% sequence identity cutoff). These domains are used as queries for
RaptorX and MUSTER. Top 100 templates are generated for each domain by RaptorX
and MUSTER. Since the templates databases used by RaptorX, MUSTER and
COMPADRE are different, for each template found by RaptorX and MUSTER, we find a
close homolog in ECOD database (all domains, not just representatives) by BLAST (E-
value cutoff = 1e-03). All domains in ECOD database are clustered by CD-hit (Li and
Godzik 2006), and one representative domain is selected for each cluster. This
representative is used instead of any domain in its cluster. Any two domains in the same
Homology group of ECOD are defined as “close homologs”. “All homologs” are defined
by an SVM classifier based on structure and sequence similarity scores. For RaptorX,
there are 5426 query and template pairs in which the template can be mapped to the
ECOD database. We sort them by the E-values given by RaptorX and by COMPADRE
scores to produce ROC curves (Figure 11-15). For MUSTER, there are 5228 pairs in
which the template can be mapped to the ECOD database. We sort them by the Z-scores

given by MUSTER and by COMPADRE scores to plot the ROC curves (Figure 11-16).
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COMPADRE outperforms RaptorX and MUSTER on close homologs and on all

homologs.

Performance of COMPADRE depends on the balance of weighting scores of close and all

homologs of the template

In equation (3) to calculates,, the weight w¢(ss) for close homolog score is
defined as follows (Figure 11-8): we = 0 if s§ < s§®, we = 1 if s§ > s5@, and w, = a +
be’™ if si®< s, < s{@, where s¢® = 33.95, s¢@ = 111.5, and y=0.08; a, b can be
derived from boundary conditions at si® and s{@ . Here, we illustrate how the

parameters influence the performance (Figure 11-17). y determines the shape of the wq
weighting function. Close homolog score and all homolog score are combined in range [
ss®, 5@ 7. 5@ s the boundary that only close homolog score is used if s§ > s{® .
Therefore, s is important for ordering high-scoring top hits exclusively based on close
homolog score. Since there are two criteria (discrimination of homologs from non-
homologs and assignment of closest sequence relationships as top ranks), there is a

tradeoff to choose parameters to optimize both (the red curve is plotted by the parameters

used in COMPADRE).

In equation (4) to calculate s,, the weight of s, is defined as follows: wz = 0 if
InE, < InE,™, w3 = 1 if InE, > INE,?, and ws = a + be™™ if InE," < InE, < InE, @,
where InE,® = -50, InE,® = -15, and y=-0.5; a, b are derived from boundary conditions

at InE," and InE, ®. We illustrate how the parameters influence the performance (Figure
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11-18). y determines the shape of the w3 weighting function. s, and the PROCAIN score s,

are combined in the range [InE, ), InE, @]. InE, ™ is the boundary that only PROCAIN
score is used if InE, < InE, . Therefore, InE, ® is important for ordering the top hits
(with low e-values) exclusively based on PROCAIN score. InE,*” and InE,*®), and 7y all
have an impact on the overall behavior of ROC curves (the red curve is based on default

settings of COMPADRE) (Figure 11-18).
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CONCLUSION

Our findings show that defined homology relationships within the search database
contain essential information for the improvement of sequence-based homology search.
Although this concept is not new to computer science in general, to our knowledge, it has
not been successfully applied to protein sequence searches before. Our method,
COMPADRE, shows a dramatic increase in the performance of sequence search
compared to current methods that are based on traditional query-template similarity
measures. The new approach detects a large fraction of structural protein relationships
and allows for new predictions of structure and function in previously uncharacterized
proteins. Furthermore, our results suggest that this approach may be applicable to a wide

variety of methods for the detection of biological similarities.
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MATERIALS AND METHODS

Protein databases

As a search database, we use the set of 5116 PSI-BLAST MSAs of homologs for
version 1.75 SCOP domain representatives with less than 20% sequence identity that was
constructed and extensively used as a part of a previously described benchmarking
system. For each protein, multiple sequence alignment of homologs detected in NCBI nr
database with default settings is generated by PSI-BLAST. These alignments are used for
comparisons by PROCAIN and other profile-based methods. PROCAIN is a sequence
profile search method that, in addition to sequences, incorporates similarity in secondary
structure, positional conservation, and sequence motifs into profile—profile scoring. When
combined with an improved estimation of statistical significance of hits, this scoring

results in better performance compared to other methods(Brin and Page 1988).

Definition of Ha homolgy network

True and false positive definition combines expert assignments of superfamilies
by SCOP and our automated SVM classifier based on multiple scores for sequence and
structure similarity of the two proteins, applied as previously described. These homology
assignments reduce the number domain relationships classified in SCOP as unclear when
the two domains share a SCOP fold but belong to different superfamilies. In brief, we
constructed a classifier that combines multiple sequence- and structure-based similarity

scores and trained it on a SCOP subset of 1000 pairs that belong to different SCOP
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classes and are labeled as negative for SVM training, and 1000 pairs that belong to the
same SCOP superfamilies and are labeled positive. The five features of the resulting
classifier are as follows: DALI Z-score, FAST score, coverage of FAST alignment,

GDT_TS of TM alignment, and BLOSUM score of DALI alignment.

The resulting SVM makes a binary classification of domain pairs into the
categories of homologous and non-homologous. However, there is a number of domain
pairs that share short regions of similarity but are poor global structural templates for
each other (for example, Rossmann-type folds vs. TIM barrels). Forcing such cases to
either of two categories might bias the evaluation protocol. Therefore, following others
(Soding 2005), we use the third category of ‘unclear’ relations and establish the
corresponding lower and higher thresholds of SVM score to define the three areas: non-

homologous, unclear and homologous, with unclear pairs comprising ~10% of all pairs.

Two proteins are classified as homologous if they share a SCOP superfamily or
have a high SVM score. They are classified non-homologous if do not share a
superfamily and have a low SVM score. Relationships between domains from different
superfamilies with intermediate SVM score are classified as unclear. We successfully
tested and applied the resulting classification to the evaluation of various methods for

remote homology detection.

Assessment
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ROC (receiver operating characteristic) curve was used to measure performance
in both settings: the domain pairs defined as “all homology” are designated as true
positives for assessing the power of distinguishing the homologs from non-homologs; the
“close homology” pairs are designated as true positives in order to assess the power of
placing the homologs according to evolutionary distance. The ROC curve plots the true
positive numbers against the false positive numbers for different cutoff points of E-

values.

The following statistics were used to compare performance with other methods.
We defined the ROC value as ROC = % in=1t;i’ where t; is the number of true positives

corresponding to the i-th false positive found, up to n that is the specified number of top
false positives. T is the overall number of true positives in the database. ROC values and

their error estimates are calculated as previously described.

Another essential characteristic for a user is the degree of contamination with
false positives (FP), or a proportion of true positives (TP) that is expected in a given list
of top hits. Tables 3 and 4 include precision rates (fractions of true positives among top
hits: precision rate = TP/(TP+FP)) for different levels of sensitivity (detected fraction of
all homologs: sensitivity = TP/(TP+FN), FN is the number of false negatives). At the
sensitivity level of 50% (half of all dataset homologs detected), the precision rate of the

new COMPADRE scoring more than triples the original rate of PROCAIN (Table 11-3).

Scoring functions
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Scores s{ and s§! ineq (1) are derived as so = - (IogE /E.) where E is the original
PROCAIN E-value and logE; = 6.0. In equation (3), in order to mix score contributions
from the closer template homologs (s$) and all homologs (s,), s, is rescaled so that its
values are comparable to that of s in the area of mixing:

(spy=s5 + 27 552?(55:)({) )

2 2

where sg(l) = 33.95 and sg(z): 111.5 are lower and upper bounds of s in the mixing

area, s;(l) = 333.9 and 55(2) = 1998 are lower and upper bounds of s, in the mixing area.

c@®

The weight of sS is defined as follows: w; = 0 if s¢<s, o2

,We=1if ss>s; ", and w, = a

¢

+ be™if s§ < s¢ <

;_’(l) (Figure 11-8). In equation (4), in order to mix original ProCAIn

results and our boosting score, InE,"") = -50 and InE,® = -15 are lower and upper bounds
of in the mixing area. The weight of S is defined as follows: w, = 0 if InE, < InE,"), w,
= 1if InE, > InE,?, and w, = a + be™if InE,™ < InE, < InE,® (Figure 11-15). E-
values were calculated from the resulting scores based on EVD approximation of total

score distributions.
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8,= w;Sg +(1-W,) 28}

Figure 11-1. The context of template’s relationships within the database is used to modify
the original score (s{ ) for sequence-based similarity between query and template. The

modified measure is a linear combination of s§ and scores (ZSOH ) for the similarity

between query and template’s homologs.
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Figure 11-2. Performance of similarity measures that include query similarity to
template’s homologs (eq. (1)) alone and combined with the reward for template’s
homology to the original top query’s hit (eq. (1-2)). ROC plots are shown for two
schemes, with equation (1) based on the sets of closer template’s homologs and on all
pre-determined homologs in the database. These schemes are compared to PSI-BLAST,
HHSearch, and PROCAIN. (a) Evaluation of homolog/non-homolog discrimination (any
pair of pre-determined homologs is considered a true positive). (b) Evaluation of ranking
close homologs (only pairs sharing the same superfamily are considered as true

positives).
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Figure 11-3. Detection quality depends on the range of template’s homologs included in
the similarity scoring. ROC plots for (a) discrimination between homologs and non-
homologs and (b) retrieval of closer homologs (relationships outside SCOP superfamily
are considered false positives). The scoring based on the inclusion of only closer template
homologs Hciese (Orange) is compared to the unrestricted inclusion of all homologs Hay
(brown).
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Figure I1-4. Detection quality for queries from all-alpha class. (a) Discrimination between
homologs and non-homologs. (b) Retrieval of closer homologs.
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Figure 11-5. Detection quality for queries from all-beta class. (a) Discrimination between
homologs and non-homologs. (b) Retrieval of closer homologs.
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Figure 11-6. Detection quality for queries from alpha/beta class. (a) Discrimination
between homologs and non-homologs. (b) Retrieval of closer homologs.
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Figure 11-7. Detection quality for queries from alpha+beta class. (a) Discrimination
between homologs and non-homologs. (b) Retrieval of closer homologs.
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weight

score

Figure 11-8. Dependency of weight for the contribution of closer template homologs s .
For closer query-template distances (high s$), the weight is set to unit. For remote

templates, the weight is set to zero. In the intermediate range, the weight grows
exponentially with sS (see also main text).
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Figure 11-9. Dependency of weight for the boosting score InE,. For high confident
ProCAIn results (low InEp), the weight is set to zero. For low confident ProCAlIn results
(high InEp), the weight is set to unit. In the intermediate range, the weight grows
exponentially with InE, (see also main text).
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Figure 11-10. Performance of combined similarity measure implemented in COMPADRE
method. As illustrated by the ROC plots (red), the score both accurately discriminates
homologs from non-homologs (a) and assigns top ranks to closest sequence relationships

(b).
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Figure 11-11. Performance of COMPADRE, HHsearch and PROCAIN measured by
average ROC curves. As illustrated by the curves, COMPADRE score both discriminates
homologs from non-homologs (a) and assigns top ranks to closest sequence relationships
(b) better than the other two methods.
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Figure 11-12. Protein groupings according to sequence-based similarity scoring by
COMPADRE compared to structure-based scoring by DALI. Scores for pairs of 1000
representative domains of o/f class are shown in color. Each panel compares sequence-
and structure-based scores, with the score used for clustering shown above diagonal.
Major protein groups are labeled on the side. Scale bars show color coding for DALI Z-
score and decimal logarithm of COMPADRE E-value. (a) Grouping by COMPADRE
score. (b) Grouping by DALI Z-score. Similarity between the groupings suggests that
COMPADRE is able to accurately retrieve the majority of structural relationships,
although a number of remote similarities still remain a challenge. In some cases,
sequence comparison is able to better highlight important local motifs resulting in
functionally relevant grouping, with P-loop hydrolases as the most notable example.
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Figure 11-13. Detection of more homologs at the SCOP superfamily level. PROCAIN
only detects the closest sequence at the SCOP family level (PDB ID 1sfsA) with a
significant E-value, while COMPADRE detects all but 8 of the most distant structures
with significant E-values. (a) Structure of an atypical TIM barrel fold (PDB ID 1jfxA),
which has an antiparallel hairpin replacing the typical parallel o/ unit (magenta), with
aligned portion colored. (b) Structure of a typical TIM barrel fold (PDB ID 1bgcA), with
aligned portion colored. (c) The scatter plot shows Dali Z-score vs. E-values of
COMPADRE (red dots) and PROCAIN (blue dots) for 1jfx and all other same SCOP
superfamily structures (e-values = 0.005 line displayed).
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Figure 11-14. Confident detection of homology relationship for a newly resolved
structure. COMPADRE finds a significant similarity between the top “cockpit” layer of
N-terminal ZAP protein and a ‘DNA-binding helix-turn-helix (HTH) domain, suggesting
structural fold and specific mode of RNA binding. (a) COMPADRE result, including the
alignment of sequences and predicted secondary structures for the query (top) and the hit
(bottom). The actual secondary structure of the template is shown as colored arrows
below the alignment. (b) Hit structure (PDB ID 1t3cC) superimposed to the target
structure (PDB ID 3u9gA, 1-65aa), with aligned portion colored.
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Figure 11-15. Comparison of COMPADRE and RaptorX by ROC curves. For the top
templates of randomly selected 100 domains, COMPADRE can both better discriminate
homologs from non-homologs (a) and assign top ranks to closest sequence relationships
(b) than RaptorX.
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Figure 11-16. Comparison of COMPADRE and MUSTER by ROC curves. For the top
templates of the randomly selected 100 domains, COMPADRE can both better
discriminate homologs from non-homologs (a) and assign top ranks to closest sequence

relationships (b) than MUSTER.
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Figure 11-17. Performance of COMPADRE evaluated by ROC curves under different
parameter settings in equation (3) (defined in the main text). As illustrated by the ROC
plots, it is a tradeoff to select parameters to meet the two criteria: discriminating
homologs from non-homologs (a) and assigning top ranks to closest sequence
relationships (b).
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Figure 11-18. Performance of COMPADRE evaluated by ROC curves under different
parameter settings in equation (4) (defined in the main text). Two criteria are used:
discriminating homologs from non-homologs (a) and assigning top ranks to closest
sequence relationships (b).
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Method ROC(25580) | ROC(255800) | ROC(1015772)
PSI_BLAST 0.0334 +/- 5¢-05 | 0.0552 +/- 4¢-05 | 0.0906 +/- 5¢-05
HHSearch 0.1215 +/- 1e-04 | 0.1686 +/- 76-05 | 0.2303 +/- 4e-05
PROCAIN 0.1689 +/- 26-04 | 0.2949 +/- 7e-05 | 0.4069 +/- 3¢-05

Close homologs, eq (1)

0.1290 +/- 3e-04

0.2658 +/- 6e-05

0.4132 +/- 3e-05

Close homologs, eq (1-2)

0.1676 +/- 3e-04

0.2860 +/- 7e-05

0.4210 +/- 3e-05

All homologs, eq (1)

0.2348 +/- 2e-04

0.4073 +/- 6e-05

0.5915 +/- 3e-05

All homologs, eq (1-2)

0.3542 +/- 2e-04

0.6083 +/- 6e-05

0.7538 +/- 3e-05

COMPADRE

0.3702 +/- 2e-04

0.6082 +/- 6e-05

0.7532 +/- 3e-05

Table I1lI-1. ROC values for the discrimination between homologs and non-homologs.
Receiver operating characteristics (ROC) for different search methods, calculated for
three numbers of top false positives: the mean of 5 top false positives per query (25580
false positives total); the mean of 50 top false positives per query (255800 false positives
total), and the point where PROCAIN retrieves half of all true positives in the dataset
(1015772 false positives total). The total number of true positives in the set is T= 461222.
Methods are denoted the same way as in Figure 11-1, 11-2 and 11-10.
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Method ROC(25580) | ROC(63995) | ROC(255800)

PSI_BLAST 0.1499 +/- 26-04 | 0.1711 +/- 1e-04 | 0.2102 +/- 8¢-05
HHSearch 0.4062 +/- 6e-04 | 0.4561 +/- 3e-04 | 0.5141 +/- 1e-04
PROCAIN 0.3784 +/- 6e-04 | 0.4375 +/- 4e-04 | 0.5278 +/- 2¢-04

Close homologs, eq (1)

0.4039 +/- 5e-04

0.4720 +/- 4e-04

0.6332 +/- 4e-04

Close homologs, eq (1-2)

0.6009+/- 6e-04

0.6731 +/- 5e-04

0.8051 +/- 3e-04

All homologs, eq (1)

0.0629 +/- 4e-04

0.1300 +/- 4e-04

0.2630 +/- 3e-04

All homologs, eq (1-2)

0.0723 +/- 5e-04

0.1547 +/- 5e-04

0.3351 +/- 4e-04

COMPADRE

0.5104 +/- 3e-04

0.5267 +/- 1e-04

0.5653 +/- 1e-04

Table I1-2. ROC values for the detection of closer homologs (SCOP superfamily level).
Receiver operating characteristics (ROC) for different search methods, calculated for

three numbers of top false positives: the mean of 5 top false positives per query (25580
false positives total); the mean of 50 top false positives per query (255800 false positives
total), and the point where PROCAIN retrieves half of all true positives (proteins sharing
the same superfamily) in the dataset (63995 false positives total). The total number of
true positives in the set is T= 84286. Methods are denoted the same way as in Figure 11-1,

11-2 and 11-10.
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Method \ Sensitivity(%o) 1 10 25 50 75

PSI_BLAST 99.74 7.22 3.48 2.57 2.19
HHSearch 100.00 96.64 15.94 5.03 2.95
PROCAIN 99.96 97.94 68.41 18.50 5.80
Close homologs, eq (1) 100.00 91.72 55.24 22.72 7.66
Close homologs, eq (1-2) 100.00 99.61 65.25 23.00 7.69
All homologs, eq (1) 99.74 98.72 89.80 49.82 23.16
All homologs, eq (1-2) 99.76 99.73 98.67 83.30 53.58
COMPADRE 100.00 99.81 99.14 83.33 53.24

Table 11-3. Precision rates for the discrimination between homologs and non-homologs.
Precision rates (%) are calculated for several levels of sensitivity from 1% to 75%. The
total number of true positives in the set is T= TP+FN = 461222. Methods are denoted the

same way as in Figure 11-1, 11-2 and 11-10.
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Method \ Sensitivity(%bo) 1 10 25 50 75

PSI_BLAST 98.94 91.55 6.46 0.81 0.47
HHSearch 97.12 97.10 93.66 42.51 1.21
PROCAIN 100.00 97.64 92.68 39.71 3.91
Close homologs, eq (1) 100.00 100.00 98.72 52.07 22.36
Close homologs, eq (1-2) 100.00 100.00 98.72 95.49 51.76
All homologs, eq (1) 25.19 29.06 19.48 8.23 5.47
All homologs, eq (1-2) 25.65 32.55 26.41 14.81 10.31
COMPADRE 100.00 100.00 98.69 94.18 10.42

Table 11-4. Precision rates for the detection of closer homologs (SCOP superfamily level).
Precision rates (%) are calculated for several levels of sensitivity from 1% to 75%. The
total number of true positives in the set is T= TP+FN = 84286. Methods are denoted the

same way as in Figure 11-1, 11-2 and 11-10.
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I11. COMAPDRE WEB SERVER FOR PROTEIN SEQUENCE

SIMILARITY SEARCH

Accurate detection of biologically meaningful similarities between protein
sequences facilitates biomedical research by suggesting hypotheses for experimentation.
We recently developed COMPADRE, a sequence profile-based method that uses known
homology networks within a protein sequence database to enhance homology inference.
Here, we present the COMPADRE web server that searches against a weekly updated
database of the evolutionary classification of protein domains (ECOD) using a query
sequence or multiple sequence alignment (MSA). Thus, users gain access to proteins with
newly released spatial structures. By using homology relationships within the ECOD-
based database, COMPADRE improves the performance of sequence search compared
with traditional query-template similarity approaches. The output is similar to PSI-
BLAST: a list of homologs ranked by E-value and followed by query-template
alignments. In addition, 3D structures for several best hits are shown to interactively
visualize their similarity. The COMPADRE web server is available at

http://prodata.swmed.edu/compadre
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INTRODUCTION

Advances in next-generation sequencing over the last decade have resulted in a
vast growth of available protein sequences. Efficient and accurate interpretation of the
sequence data is a significant challenge, and assignment of structural and functional
annotations to proteins is far from being straightforward (Koboldt, Steinberg et al. 2013,
Mardis 2013). Experimental methods, such as X-ray crystallography and NMR, are time-
consuming and expensive. An efficient shortcut to inferring the spatial structure and
molecular function of an uncharacterized protein is to computationally recognize its
homologs using a sequence profile search (Gribskov, McLachlan et al. 1987, Baker and
Sali 2001). As protein structures accumulate in the Protein Data Bank (PDB) (Berman,
Westbrook et al. 2000), the chance of finding a homolog for an uncharacterized protein is
also increasing (Zhang, Hubner et al. 2006). However, it is still difficult to confidently
detect biologically meaningful similarity between sequences with less than ~20% identity
(Soding and Remmert 2011). Hence, the key to success is to increase the sensitivity of
homology detection methods, because many proteins have only distant relatives with
experimentally determined 3D structures (Huang, Mao et al. 2014).

Much effort has been spent to improve sequence-based homology detection.
Earlier work focused on dynamic programming-based alignment methods (Needleman
and Wunsch 1970, Smith and Waterman 1981) and related heuristic algorithms (Altschul,
Gish et al. 1990, Pearson 1990). Subsequently, introduction of numeric sequence profiles
and hidden Markov models (HMMs) (Eddy 1998) allowed comparison of a single
sequence against multiple sequence alignments (MSAs) (Altschul, Madden et al. 1997,

Eddy 1998, Karplus, Barrett et al. 1999). Furthermore, profile-profile (Sadreyev and
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Grishin 2003, Margelevicius and Venclovas 2010) and HMM-HMM (Soding 2005,
Madera 2008) comparisons improve homology search by finding the similarities at
sequence positions in protein families. Recently, we developed a homology detection tool
called COMPADRE (Comparison of Multiple Protein sequence Alignments using
Database RElationships) (Tong, Sadreyev et al. 2015) that uses known homology
relationships within a database. COMPADRE can dramatically improve protein sequence
similarity search and outperform most state-of-art methods, such as PSI-BLAST
(Altschul, Madden et al. 1997), PROCAIN (Wang, Sadreyev et al. 2009) and HHSearch
(Soding 2005).

Besides algorithm development, the coverage of protein structure space in the
search database has a profound impact on homology detection accuracy. A frequently
updated search database will increase the probability of finding homologs for a query that
is more confidently related to recently released protein structures. Currently, the HHpred
server provides a PDB search database with synchronized updates. However, most other
current methods (Sadreyev and Grishin 2003, Wang, Sadreyev et al. 2009, Ma, Wang et
al. 2014) rely on infrequently updated databases. For example, the structure search
databases used in COMPASS (Sadreyev and Grishin 2003) and PROCAIN (Wang,
Sadreyev et al. 2009) are extracted from SCOP (Andreeva, Howorth et al. 2008), which is
updated irregularly. Therefore, it is important to have a homology detection server based
on an advanced algorithm and with a continually updated search database.

Here, we introduce the new version of the COMPADRE web server for homology
detection with a continually and automatically updated search database. Compared with

the previous version of COMPADRE that relied on the SCOP (Andreeva, Howorth et al.
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2008) ASTRAL (Chandonia, Hon et al. 2004) 1.75 database, the new version adds the
Evolutionary Classification of protein Domains (Cheng, Schaeffer et al. 2014) (ECOD)
database that updates weekly. ECOD is a database that primarily groups domains by
evolutionary relationships and consistently classifies weekly releases of PDB structures.
The new version of COMPADRE with the ECOD database increases detection accuracy
when compared to the current state-of-art methods. Moreover, such improvement allows
discovery of new remote homologs that may have been missed in the ECOD database,
thus helping to improve it. Therefore, COMPADRE with continual updates is a tool to
complement the homology relationships defined in the ECOD database. Given a query
sequence, the COMPADRE web server searches for homologs against the up-to-date
ECOD database making use of relationships defined in ECOD and relationships predicted
by an SVM classifier (Qi, Sadreyev et al. 2007). The web server is available at

http://prodata.swmed.edu/compadre.
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RESULTS AND DISCUSSION

Improvement of COMPADRE with ECOD search database

We tested COMPADRE on ECOD database version 56 (09/05/2014) that
classifies 366,159 domains with available 3D structures. 20% sequence identity filtering
of these domains resulted in 16,083 representatives for the COMPADRE search database.
Two homology levels were recognized within this search database: “close homology”
was defined as domain pairs classified in the same H-group (homology level) in ECOD
and the level of “all homology” was defined by adding more distant homologs

determined by the SVM classifier (see Materials and methods).

COMPADRE scoring schemes using two homology network definitions (all
template homologs and only close template homologs) were compared to COMPADRE
with combined scoring from both networks and two other methods PSI-BLAST and
PROCAIN (Figure 111-1). The inclusion of all template homologs leads to the most
sensitive retrieval of all homologous relationships, but closer homologs may not be
ranked above distant homologs. Limiting the template’s homology to only close
homologs can accurately place more closely related homologs above remote homologs in
the ranked list; however, more distant homologs are not detected. To achieve optimal
performance on both criteria, close homolog scores (Sc) and all homolog scores (Sr) were
linearly combined with a weight depending on Sc (see Material and Methods). The final
mixed COMPADRE score is best both in remote homology detection and in ranking by

evolutionary distance to the query (Figure 111-1).
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COMPADRE outperforms other methods in terms of ROC value (Tables I111-1 and
[11-2) and precision rate (Tables 111-3 and 111-4). ROC values reflect the performance of
different scoring systems at various cutoffs of false positives. The COMPADRE scoring
largely surpasses the other two scoring methods at all false positive thresholds. At the
sensitivity level of 50% (half of all dataset homologs detected), the precision rate
increases from 16% of PROCAIN ranking to 73% of COMPADRE ranking when all
homologs are considered as true positives (Table 111-3). A similar trend (the precision rate
increases from 7% of PROCAIN to 97% of COMPADRE) is observed when only close

homologs are assigned as true positives (Table 111-4).

The pipeline for continual update

Followed by the weekly update of the ECOD database, COMPADRE will update
its search database and find four boundaries for mixing close and all homolog scores
accordingly (Figure 111-2). In brief, after selecting domain representatives with sequence
identity <20% from the ECOD database, the original all-to-all similarity scores are
calculated by PROCAIN. Then, close homologs and all homologs are found in the
updated search database and the close homolog (Sc) and all homolog scores (Sr) are
computed (see Materials and Methods). Then, the ranks of boundary scores are estimated
and four boundaries are found in the sorted lists of Sc and Sr. This pipeline is run after
each weekly update of ECOD database.

Because PROCAIN similarity scores need to be calculated for all domain pairs in
the updated search database, it is the rate-limiting step of the update pipeline. However,

when compared with the previous version of the ECOD database, usually only a very
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small number of domains are added to the search database, on the order of 1-3% of the
total domain count. Therefore, we conduct two types of updates: a time-consuming
complete update to recalculate all PROCAIN scores that will be run every one or two
months, and a weekly simplified version, which calculates PROCAIN scores for the
newly added domains, while using the PROCAIN scores of other domains in the last
complete update. This two-tier update procedure balances the precision of homology

detection and the speed of continual updates.

The COMPADRE web server

COMPADRE is a tool to detect homology for a given query sequence or
alignment. Since its search database is updated weekly, following the ECOD database
update, the COMPADRE web server allows recognizing homology to the most recently
released spatial structures.

Users can input or upload a protein sequence or alignment as query and choose a
protein database to search: the SCOP or the ECOD databases. The SCOP database
consists of 5116 protein domains selected from SCOP ASTRAL 1.75, and the ECOD
database is composed of domain representatives from the latest ECOD version. Input
searching options include parameters for running PSI-BLAST, such as iteration number
and E-value threshold and parameters for further processing of the resulting alignments
of detected homologs. Output formatting options include the E-value cutoff to truncate
the hit list (expected E-value cutoff), significant E-value threshold and the maximal

number of alignments that the user wants to be shown in the result webpage.



59

The user can access the results via the web browser window from which the input
is submitted, or choose to receive an html link to the results by email after the search is
finished. The results webpage is composed of two parts. The first part is a list of hits split
into two sections: one shows the hits with E-value better than the significant threshold
and another contains the hits with E-value worse than the significant threshold but better
than the expected E-value cutoff. For each hit, its rank, domain ID in the SCOP or ECOD
database, molecule name in the PDB file, SCOP or ECOD classification, COMPADRE
score and corresponding E-value are given. The second part of the results gives
alignments between the query and each hit. The sequence alignments between the query
and each template are generated by PROMALS (Pei and Grishin 2007) that produces
alignments superior to those of PROCAIN. For the top scoring hits, besides the alignment
and the links to relevant databases (e.g., ECOD, PDB etc.), a JSmol panel is included to
interactively display the C-alpha trace of the template to facilitate visualization of
structural similarities.

In addition, a search box is added to the main webpage of ECOD database to
direct ECOD users to COMPDARE search. The sequence similarity found by
COMPADRE can be used to compliment the ECOD classification and detect possible

homologs missed in ECOD.

COMPADRE uniquely detects remote sequence similarities

By exploiting the homology network within the search database, COMPADRE
increases the probability of finding remote homologs of the query. BWI-2c is a trypsin

inhibitor isolated from buckwheat seeds that consists of a helix-loop-helix motif (Oparin,
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Mineev et al. 2012). It is characterized by a pattern of cystine residues C*X3C?X,C*X3C*,
and its two helices are linked via two disulfide bonds C*-C* and C?-C® When the
sequence of BWI-2c was submitted to the COMPADRE server searching against the
ECOD database, crambin (PDB: 3NIR) can be detected with an E-value of 1e-5, while
the original PROCAIN E-value to crambin was above one (Figure 111-3a). Crambin is a
member of thionins, a family of antimicrobial factors in plant (Florack and Stiekema
1994). Thionins typically have four disulfide bonds, while one of them is missing in
crambins. The thionin helical hairpin can be aligned well with BWI-2c both in sequence
and structure (Figure 111-3), matching their cysteine patterns C*X3C?X,C*X3C*. Other
sequence search methods, for example PSI-BLAST (Altschul, Madden et al. 1997) and
HHpred (Soding 2005), failed to detect this remote relationship with either BWI-2c or
thionin as query. BWI-2c has another homolog with available structure, Luffin P1, which
is a small ribosome-inactivating protein (Ng, Yang et al. 2011) obtained from gourd
seeds. Additionally, there are several other plant peptides that are structurally similar to
BWI-2c and Luffin P1 (Oparin, Mineev et al. 2012), such as trypsin inhibitor VhTI
(Conners, Konarev et al. 2007) and antimicrobial peptide ECAMP1 (Nolde, Vassilevski et
al. 2011). The similarity found by COMPADRE suggests a unified superfamily missed in
the current version of ECOD and a common origin of these plant defense peptides. Thus,
COMPADRE is capable of detecting biologically interesting similarities not found by

other sequence-based methods and missed in ECOD.
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CONCLUSION

Recently, we developed COMPADRE, a method that uses known homology
network within a database to enhance protein homology detection. Here, a continually
updatable web server based on this method (http://prodata.swmed.edu/compadre) is
developed to detect homologs for a query sequence or alignment provided by users. The
new search database composed of ECOD domain representatives is updated weekly
following ECOD updates. Such an up-to-date search database allows detecting homology

to proteins with recently released spatial structures.
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MATERIALS AND METHODS

Overview of the COMPADRE homology detection method

Recently, we developed the COMPADRE method, which detects homology based
on a similarity measure that combines the original PROCAIN score for the given
template and the PROCAIN scores for a set of its homologs (Tong, Sadreyev et al. 2015).
PROCAIN (Wang, Sadreyev et al. 2009) is a sequence profile search method that, in
addition to sequences, incorporates similarity in secondary structure, positional
conservation, and sequence motifs into profile—profile scoring. Consistent similarities
between a template’s homologs and the query will boost the original score. As a result,
the significance of a marginal sequence similarity score can be raised over the detection
threshold. On the other hand, false positives with low scores for their homologs will
become less significant.

The details of incorporating the original PROCAIN similarity scores and the
scores between template and template’s homologs, as well as combining two different
homology-based scores have been published previously (Tong, Sadreyev et al. 2015).
Here, only specific modifications related to database updates are given. The major
challenge of the update is to generate a new search database weekly following the ECOD
update and to choose the appropriate cutoffs for mixing various homology based scores

automatically.

Database representative selection and homology network definition
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The new search database consists of domain representatives with sequence
identity <20% from the ECOD database. For domains in the same ECOD F-group
(Family level), we generated pairwise TM-align (Zhang and Skolnick 2005) structure
alignments of all domain pairs and kept domains with sequence identity <20% based on
TM-align alignments.

Distinct from other sequence-based homology search methods, COMPADRE
utilizes the homology networks within the search database to improve the discriminating
power of the similarity score. Thus, to offer optimal performance, it is essential to update
the homology networks regularly, e.g., to couple it with ECOD updates. Two levels of
homology are defined in COMPADRE: close homology and all homology. “Close
homology” covers domain pairs classified in the same H-group (homology level) in
ECOD (Cheng, Schaeffer et al. 2014). These domain pairs are closely related to each
other and tend to have similar 3D structures, functions and sequences. They should
appear before relatively remote homologs in the search result if ranked by evolutionary
distance. The second level of “all homology” includes more distantly related domain
pairs. "All homology"” is defined by an SVM classifier (Qi, Sadreyev et al. 2007)
constructed to complement ECOD classification. The TM-score quantifying structural
similarity (Zhang and Skolnick 2005) and the BLOSUM®62 score (Qi, Sadreyev et al.
2007) calculated on TM-align structure alignments to quantify sequence similarity are
used as input features. The training dataset consists of an ECOD subset of 1000 pairs
labeled as negative (i.e., not-homologous) that belong to different ECOD X-groups, and

1000 pairs labeled as positive (i.e., homologous) that belong to the same ECOD H-group.
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The SVM classifier can help recognize subtle evolutionary similarities between domain
pairs.

Using these definitions of two homology levels, COMPADRE can generate two
new similarity scores by combining the original scores for the template and the scores
between the query and the template’s homologs. The close homolog score (Sc) is
produced by combining the scores of the template’s close homologs, and the all homolog

score (Sr) is produced by combining the scores of the template’s all homologs.

Performance assessment

We used two criteria to assess the performance of homology detection methods
(Tong, Sadreyev et al. 2015). One better discriminates between homologs and non-
homologs (i.e. placing homologs of the query above non-homologous sequences). The
other ranks homologs according to their evolutionary distances from the query, so that
closer relatives of the query appear as top hits. A ROC (receiver operating characteristic)
curve measured performance in both settings. The domain pairs defined as “all
homology” represent true positives for assessing the power of distinguishing the
homologs from non-homologs, and the “close homology” pairs represent true positives
for assessing the power of placing the homologs according to evolutionary distance. The
ROC curve plots the true positive numbers against the false positive numbers for
different cutoff points of E-values.

The following statistics were used to compare performance with other methods.

We defined the ROC value as ROC = % {;1%, where t; is the number of true positives
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corresponding to the i-th false positive found, up to n that is the specified number of top
false positives. T is the overall number of true positives in the database (Fawcett 2006).
An essential characteristic for a user is the degree of contamination with false positives
(FP), or a proportion of true positives (TP) that is expected in the list of top hits.
Precision rates (fractions of true positives among top hits: precision rate = TP/(TP+FP))
for different levels of sensitivity (fraction of detected homologs: sensitivity =

TP/(TP+FN), FN is the number of false negatives) were calculated for comparison.

Automatic choice of homology networks

The choice of homology network has an impact on the performance of
COMPADRE. The inclusion of all homologs will sample more broadly in protein
universe and result in better discrimination of homologs from non-homologs. However,
such a wide sample of the template’s homologs will dilute the direct signals from close
homologs and could scramble the ranking by placing close homologs further down in the
ranked list. On the other hand, using only close homologs can better discriminate close
homologs from remote homologs and non-homologs, but may limit the sensitivity of
remote homology detection.

Per Eq(3) in Tong et al. (Tong, Sadreyev et al. 2015), the solution is to mix the
scores from both homology networks with proportions depending on the similarity

between a query and template. The weight w. in Eq(3) is a variable depending on s
(close homolog score) as a measure of closeness between query and template. Using an

upper boundary (s5) and a lower boundary (si®), we define the contribution only from



66

close homology (w. =1 if s¢>s5?) or only from all homology (w. =0 if s$ < s5®). For the
intermediate values of s§(s5®<s$<s5@), we mix s¢ with s§ (all homolog score) using
the weight w, exponentially dependent on s . To mix the two scores ( sSand s3)

generated by different homology networks, we need to choose the upper and lower

boundaries of both s5 and s$, and match the scales of the two scores s$and s; using the

following equation:

Dy ®
(Sr)u: Sc(l) + (S; _Szr )(S; _Sg )
2 2 (@2 O
2 S )
@ (2 . . @ r(2)
where S, and S, ~ are lower and upper bounds of s$ in the mixing area, S, and S,

are lower and upper bounds of S, in the mixing area.

In the previous COMPADRE version, the four boundaries (s;‘”, sg(z) , s;(l) and

szr(z) ) were selected manually by trial and error to optimize COMPADRE performance.

However, an automatic method is required to find these four boundaries for continual

database updates. We found there is a linear relationship between the ranks of hits with

c@

. . . 2
scores near the boundaries (e.g., the ranks of hits with the scores closest to S, o2

and S,

r@®

. . . . 2) .
in the sorted s$ list and the ranks of hits with the scores closest to s, @

and S, in the

sorted S, list) and squared number of sequences in the search database (Supplementary
Figure I11-4). Thus, the boundaries for mixing can be found in the sorted score list based
on the calculated ranks, i.e., from the number of sequences we compute expected rank of

a boundary score and take a score for the hit with this rank as the boundary score.
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Figure IlI-1. Detection performance depends on the range of template’s homologs
included in the similarity scoring. ROC plots for (a) discrimination between homologs
and non-homologs and (b) retrieval of closer homologs (relationships outside ECOD
homology group are considered false positives) are shown. Performance of the combined
similarity measure implemented in COMPADRE method (red) is compared with
performance of the scoring based on inclusion of only close template homologs (orange,
“Close homologs™) and inclusion of all homologs (brown, “All homologs”), as well as
PSI-BLAST (blue) and PROCAIN (black) methods.
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a

length=48 filtered length=48 Neff=7.875
Smith-Waterman score = 25 Original E-value = 1.92e+01
Hom-based score=4.57e+01 Hom-based E-value=1.16e-05

SS_predl | CCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC 40
QUERY 1 SEKPQQELEECQNVCRMKRWSTEMVHRCEKKCEEKFERQQ 40
CONSENSUS 1 1 SEKPQQELEECQNVCRMKRWSTEMVHRCEKKCEEKFERQQ 40
+ o+ + ++ 4+ + o+ + 4+ 4+ o+
CONSENSUS_2 2 SCCPSTTARNCYNTCRLPGTSRP-TAVCASLSGCKIISGS 40
e3nirAl 2 TCCPSIVARSNFNVCRLPGTPSE-ALICATYTGCIIIPGA 40
SS_pred2 2 CCCCCCCCCCCCCCCCCCCCCCC-CHHHHCCCCCEEECCC 40

— S —(—

Figure 111-3. An example showing remote sequence similarity detected by COMPADRE
utilizing homology network. (a) COMPADRE results with BWI-2c sequence as query.
Aligned cysteines are colored orange, and cyan positions usually form a disulfe bond in
thionins other than crambins (hit: 3NIR). The two aligned helices are indicated by
rounded rectangles under the alignment. (b) Structural superposition of BWI-2c (PDB:
2LQX, purple) and beta-hordothionin (PDB: 1IWUW, cyan) by TM-align with two pairs
of disulfide bond aligned.



Rank Ofm
S e(1)
2 2000000
1000000

0

/

/

¥ ol

0

o

100000000 200000000 300000000
Squared Domain numbers in
the database(N*

1400000

1200000

Rank of s
S o(2)

70

e

/'

—

0

"t

100000000 200000000 300000000
Squared Domain numbers in
the database(N?

Figure 111-4. Relationships between ranking number in the sorted list and database size.



71

Method ROC(80,415) | ROC(804,150) | ROC(56,397,442)
PSI-BLAST 0.0103 +/- 5e-06 | 0.0175 +/- 1e-06 | 0.1644 +/- 2e-08
PROCAIN 0.0265 +/- 26-06 | 0.0504 +/- 4e-07 | 0.3322 +/- 2¢-08

Close homologs

0.0878 +/- 2e-06

0.1231 +/- 4e-07

0.3861 +/- 2e-08

All homologs

0.0418 +/- 1e-06

0.1661 +/- 3e-07

0.6100 +/- 3e-08

COMPADRE

0.1001 +/- 1e-06

0.1983 +/- 3e-07

0.6062 +/- 4e-08

Table 111-1. ROC values for the discrimination between homologs and non-homologs.
Receiver operating characteristics (ROC) values with standard deviations for different
search methods, calculated for three numbers of top false positives: the mean of 5 top
false positives per query (80,415 false positives in total); the mean of 50 top false
positives per query (804,150 false positives in total), and the point where PROCAIN
retrieves half of all true positives in the dataset (56,397,442 false positives in total). The
total number of true positives in the set is T= 15,645,053. Methods are denoted the same

way as in Figure 111-1.
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Method ROC(80,415) | ROC(804,150) | ROC(13,806,119)
PSI-BLAST 0.0470 +/- 2-05 | 0.0678 +/- 9e-06 | 0.1368 +/- 1e-06
PROCAIN 0.1411 +/- 26-05 | 0.2265 +/- 5¢-06 | 0.4081 +/- 1e-06

Close homologs

0.4899 +/- 7e-06

0.6637 +/- 5e-06

0.8660 +/- 1e-06

All homologs

0.0013 +/- 2e-05

0.0621 +/- 4e-06

0.5712 +/- 1e-06

COMPADRE

0.4867 +/- 1e-05

0.5613 +/- 8e-06

0.7001 +/- 1e-06

Table I11-2. ROC values for the detection of close homologs (ECOD H-group level).
Receiver operating characteristics (ROC) values with standard deviations for different
search methods, calculated for three numbers of top false positives: the mean of 5 top
false positives per query (80,415 false positives in total); the mean of 50 top false
positives per query (804,150 false positives in total), and the point where PROCAIN
retrieves half of all true positives (domains in the same ECOD H-group) in the dataset
(13,806,119 false positives in total). The total number of true positives in the set is T=
2,255,581. Methods are denoted the same way as in Figure 111-1.
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Sensitivity (%)
Method 1 10 25 50 75
PSI-BLAST 54.45 9.70 7.86 7.38 6.61
PROCAIN 99.52 43.35 21.32 16.31 9.38
Close homologs 100.00 95.66 32.12 20.38 11.53
All homologs 92.26 92.66 82.04 72.74 25.39
COMPADRE 100.00 97.73 84.33 73.49 25.46

Table 111-3. Precision rates for the discrimination between homologs and non-homologs.
Precision rates (%) are calculated for several levels of sensitivity from 1% to 75%. The

total number of true positives in the set is T= TP+FN = 15,645,053. Methods are denoted
the same way as in Figure I11-1.
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Sensitivity (%)
Method 1 10 25 50 75
PSI-BLAST 95.44 9.39 2.10 1.28 1.01
PROCAIN 97.28 96.18 51.33 7.55 2.59
Close homologs 100.00 99.99 99.29 97.53 61.16
All homologs 18.96 25.02 24.67 21.77 13.93
COMPADRE 100.00 99.99 99.27 97.51 16.70

Table 111-4. Precision rates for the detection of close homologs (ECOD H-group level).
Precision rates (%) are calculated for several levels of sensitivity from 1% to 75%. The
total number of true positives in the set is T= TP+FN = 2,255,581. Methods are denoted
the same way as in Figure I11-1.
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IV. REFINEMENT BY SHIFTING SECONDARY STRUCTURE

ELEMENTS IMPROVES SEQUENCE ALIGNMENTS

Constructing a model of a query protein based on its alignment to a homolog with
experimentally determined spatial structure (the template) is still the most reliable
approach to structure prediction. Alignment errors are the main bottleneck for homology
modeling when the query is distantly related to the template. Alignment methods often
misalign secondary structural elements by a few residues. Therefore, better alignment
solutions can be found within a limited set of local shifts of secondary structures. We
present a refinement method to improve pairwise sequence alignments by evaluating
alignment variants generated by local shifts of template-defined secondary structures.
Our method SFESA is based on a novel scoring function that combines the profile-based
sequence score and the structure score derived from residue contacts in a template. Such
a combined score frequently selects a better alignment variant among a set of candidate
alignments generated by local shifts and leads to overall increase in alignment accuracy.
Evaluation of several benchmarks shows that our refinement method significantly
improves alignments made by automatic methods such as PROMALS, HHpred and

CNFpred.
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INTRODUCTION

Prediction of protein three-dimensional (3D) structures from amino acid
sequences is important for biologists to study proteins lacking experimental structures
and is one of the key problems in computational biology (Baker and Sali 2001). With the
accumulation of experimentally determined protein structures in the PDB database
(Berman, Westbrook et al. 2000), homology modeling (also known as template-based
modeling) is the most reliable approach to protein structure prediction (Baker and Sali
2001, Zhang 2008). The 3D structure for a given query sequence can be modeled by
aligning the query to one or several protein templates with known structures (Schwede,
Kopp et al. 2003, Eswar, Webb et al. 2006). The model quality relies heavily on the
quality of the pairwise or multiple sequence alignment (MSA) between the query and the
templates (Sali, Potterton et al. 1995, Petsko 2006, Peng and Xu 2011). Currently, most
MSA methods use a progressive approach that builds up an MSA by aligning the most
similar two sequences as a pre-aligned group first and gradually adding more distant
sequences or other pre-aligned groups. At each step of progressive alignment, a pairwise
alignment method is used to align two sequences, a sequence and a pre-aligned group, or
two pre-aligned groups. Thus, pairwise alignment is an integral component in most MSA
methods (Notredame, Higgins et al. 2000, O'Sullivan, Suhre et al. 2004, Do,
Mahabhashyam et al. 2005, Pei and Grishin 2007, Pei, Kim et al. 2008). An accurate
pairwise alignment between the query and the template is essential regardless of whether

one or multiple templates are used for homology modeling.

Although pairwise alignment construction has been extensively researched,

alignments are still not sufficiently accurate for sequences with low similarity (Rost
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1999). For example, the latest significant advance, CNFpred (Ma, Peng et al. 2012), only
has Q-score of 52.4 for the MUSTER benchmark (Wu and Zhang 2008) (13.0% average
sequence identity by MUSTER’s own reference). A number of approaches have been
developed for the task. Earlier work focused on dynamic programming recursion in
construction of a global or local alignment (Needleman and Wunsch 1970, Smith and
Waterman 1981). Heuristic methods such as FASTA and BLAST (Lipman and Pearson
1985, Altschul, Gish et al. 1990) were developed to significantly increase the speed of
alignment. Subsequently, sequence profiles and hidden Markov models (HMMs) (Krogh,
Brown et al. 1994) were introduced for comparison of a single sequence and an MSA.
Furthermore, profile-profile (YYona and Levitt 2002, Mittelman, Sadreyev et al. 2003,
Sadreyev and Grishin 2003, Jaroszewski, Rychlewski et al. 2005) and HMM-HMM
(Soding 2005, Pei and Grishin 2007, Pei, Kim et al. 2008) comparisons improved
pairwise alignments by scoring the similarity between sequence positions in protein
families. In addition to pure sequence methods, 3D structural information is valuable for
alignment construction because protein structures tend to evolve more slowly than
protein sequences (Chothia and Lesk 1986, Illergard, Ardell et al. 2009). 3D-COFFEE
(O'Sullivan, Suhre et al. 2004) as well as PROMALS3D (Pei, Kim et al. 2008) use
alignment constraints derived from known 3D structures and do not use structure energy-
based scoring to explicitly compare a structure to a sequence without 3D structure.
Scoring of observed and predicted structural properties, such as secondary structure,
solvent accessibility, residue depth, residue contacts and backbone torsion angles, was
included in a number of alignment methods (Shi, Blundell et al. 2001, McGuffin and

Jones 2003, Zhou and Zhou 2005, Wu and Zhang 2008, Zhang, Liu et al. 2008, Wang,
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Sadreyev et al. 2009, Yang, Faraggi et al. 2011, Ma, Peng et al. 2012). Information
extracted from structure-based alignments of homologous proteins was used to derive
amino acid substitution matrices (Prlic, Domingues et al. 2000, Shi, Blundell et al. 2001,
Qiu and Elber 2006) or position-specific scoring matrices (PSSMs) (Luthy, Bowie et al.
1992, Kelley, MacCallum et al. 2000). 3D profile is a position-dependent 20xn scoring
matrix derived from protein structures. Such profiles were used to improve sequence-
structure alignment (Luthy, Bowie et al. 1992, Kelley, MacCallum et al. 2000).
Moreover, a 400x400 contact-mutation matrix was proposed to improve sequence
alignment by using the contacts in template (Kleinjung, Romein et al. 2004, Dong, Lin et
al. 2005). However, how to efficiently and effectively use structural (especially energy-
based) information to improve pairwise alignment remains an open question in the field

(Pettitt, McGuffin et al. 2005).

Query-template alignment quality is poor when the query is distantly related to
the template, and alignment errors remain the main bottleneck in homology modeling
(Huang, Mao et al. 2014, Kryshtafovych, Moult et al. 2014). Inevitable shortcomings in
each alignment strategy lead to alignment errors. Application of a refinement algorithm
to a given alignment can correct such errors. Refinement methods have been used to
improve structure-based alignments and progressively constructed MSA (Gotoh 1996,
Katoh, Misawa et al. 2002, Thompson, Thierry et al. 2003, Chakrabarti, Lanczycki et al.
2006, Kim, Tai et al. 2009). MSA refinement was often conducted by iteratively dividing
an MSA into two sub-alignments and realigning them. However, one obvious drawback
of these methods is that no additional information (such as structural information) was

added to the iterative refinement.



79

A template structure can be viewed as regular secondary structure elements
(SSEs, i.e., a-helices and B-strands) (Kabsch and Sander 1983, Richards and Kundrot
1988) alternating with loops (such as turns and coils) connecting these SSEs. SSEs are
typically more conserved (Huang, Pei et al. 2013) and accurate alignments between SSEs
are essential, whereas loops tend to be more evolutionarily plastic and difficult to align.
In a given alignment, we define an “alignment block™ as the residues in an SSE in the
template and their aligned residues in the query. Automatic aligners such as PROMALS
(Pei and Grishin 2007) frequently misalign alignment blocks by a few residues . Better
alignment solutions can frequently be found among a limited set of local shifts of
alignment blocks (moving residues in the query relative to the template). This
observation motivated us to develop a pairwise alignment refinement method, SFESA,
which generates candidate alignment variants for each alignment block by shifting the
query region. We developed a scoring function to judge whether an alignment variant is
likely to be more accurate than the original alignment. Our scoring function combines a
profile-based sequence score and a novel structural contact-based score derived from
residue contacts in template. This combined score was often able to select the best
alignment solution among a set of candidates and lead to overall increase in alignment
accuracy. Our approach improves alignments generated by a number of methods such as
PROMALS (Pei and Grishin 2007), HHpred (Soding 2005) and CNFpred (Ma, Peng et
al. 2012) on several benchmarks that include both reference-dependent and reference-

independent assessment.
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RESULTS

An overview of the SFESA method for pairwise alignment refinement

SFESA is a post-processing tool that can be applied to any pairwise alignment
between a query and a template with known spatial structure. It increases alignment
quality by locally shifting residues in alignment blocks defined by template SSEs. First,
SFESA recognizes alignment blocks in an existing alignment. Each alignment block
corresponds to residues in one SSE of the template and their aligned residues in the
query. Then, proceeding from N-terminus to C-terminus, SFESA determines if each
alignment block should be changed to one of the alignment variants generated by local
shifts. Our analysis of PROMALS alignments revealed that SSEs are often misaligned by
several residues. Thus, a better alignment solution can be found within a limited set of

local shifts of SSEs (Figure IV-1).

SFESA generates N (up to 18) alignment variants (Figure IV-2C) by shifting
query residues in alignment blocks locally (see MATERIALS and METHODS). Then,
both profile-based sequence score (including scoring of secondary structure similarity)
and contact-based structure score of aligned residue pairs of the original alignment block
and all alignment variants are calculated. We found that a two-filter strategy offers the
best performance. The first filter detects alignment variants with a higher combined score
I (Scomb_1) than the original alignment block. If the original alignment block has the best
Scomb_1, SFESA keeps it and move to the next alignment block. Otherwise, the alignment
variant with the highest Scomp 1 IS selected and passed to the second filter. The second

filter compares the selected alignment variant and the original alignment block by using a
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different combined score. This combined score is either combined score 1l (Scomb 1) Or
the SVM score (Ssvm) (see MATERIALS AND METHODS). If the selected alignment
variant has a higher Scomp 11 Or Ssym, SFESA accepts the alignment variant. Otherwise,
SFESA keeps the original alignment block. This refinement procedure is performed for
each block in the alignment, starting from the N-terminal block and moving towards the

C-terminus.

Here we report results of four modes for SFESA (see MATERIALS AND
METHODS for details): SFESA (O) uses up to 8 variants generated by +4 shifts that
keep the gap patterns in the original alignment block and the Miyazawa-Jernigan (MJ)
contact matrix for structure score calculation; SFESA (O+G) uses up to 18 variants by
considering gap shifts and the MJ contact matrix; SFESA (O+G+M) uses our newly
derived contact matrix in addition to gap processing; SFESA (O+G+M+S) differs from

SFESA (O+G+M) in that the Sgym instead of Scomp_ii is used in second filter.

Parameter optimization

Using an in-house dataset of 1675 remote homologous domain pairs (See
MATERIALS AND METHODS), we optimized the parameters of four SFESA modes:
SFESA (0), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S). Best
parameters were found for each mode separately. The Q-score and GDT-TS of the
original PROMALS are 62.3 and 0.464, respectively. Each of these SFESA modes
improve PROMALS alignments in both reference-dependent (Q-score of DALI) and

reference-independent (GDT-TS) assessments. Even the basic mode SFESA (O) that
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locally shifts up to 4 residue positions can increase the average DALI Q-score by 2.0
(from 62.3 to 64.3) and the GDT-TS score by 0.008 (from 0.464 to 0.472). By shifting
gaps in the original alignment blocks, the mode that considers 18 alignment variants,
SFESA (O+G), can increase Q-score by 3.0 (from 62.3 to 65.3) and GDT-TS by 0.012
(from 0.464 to 0.476). Our new contact matrix, used in SFESA (O+G+M), further
increases the alignment quality compared to the MJ matrix. The Q-score and GDT-TS
improvement over the original PROMALS are 3.6 (from 62.3 to 65.9) and 0.014 (from
0.464 to 0.478), respectively. Finally, SFESA (O+G+M+S), using Ssym in the second
filter instead of Scomb 1, iNcreases 3.7 in Q-score (from 62.3 to 66.0) and 0.014 (from
0.464 to 0.478) in GDT-TS. The comparison of numbers of improved and deteriorated
alignments also shows that all SFESA modes can improve the original alignments

generated by PROMALS (Figure 1V-3).

The above results are based on the entire training dataset. To address the
possibility of overfitting in parameter training, we divided the training dataset into four
subsets based on the four SCOP classes: class a (all a proteins), class b (all B proteins),
class ¢ (o and B proteins (a/b)) and class d (o and B proteins (atb)) (Figure 1V-4). We
trained the SFESA (O+G+M) parameters (including our new contact energy matrix) on
the SCOP class b alignments and tested these parameters on the four subsets separately.
Similarly, we trained the parameters on the SCOP class ¢ alignments. There was no
significant drop in Q-score on the class b when using parameters trained on class ¢ (the
purple column in Figure 1V-4 class b) compared to using parameters trained on class b
(the green column in Figure 1V-4 class b) or using parameters derived from all data (the

red column in Figure IV-4 class b). The average Q-scores of class b using parameters
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trained on class b, class ¢ and all data are 59.5, 59.3 and 59.4, respectively. Similar
results were observed on class ¢, with no significant Q-score difference between using the
parameters trained on the class b (the green column in Figure 1V-4 class c) and using the
parameters trained on the class c (the purple column in Figure 1V-4 class c¢). Overtraining

was not a major issue even in our very stringent, class-specific cross-validation scheme.

Furthermore, we analyzed the distribution of improved and deteriorated alignment
block numbers in one alignment (SFESA (O+G+M+S) vs. PROMALS; DALI as a
reference) for our training dataset. We found that SFESA sometimes improved several
alignment blocks in one alignment, while mostly deteriorating none or only one
alignment block (Figure 1VV-5A). Among 1675 alignments in our training dataset, there
are 562 alignments with one improved alignment block while 292 alignments contain
only one deteriorated alignment block. There are 268 alignments with two improved
alignment blocks while 55 alignments contain two deteriorated alignment blocks. The
total number of alignments with more than two improved alignment blocks is 121. In

contrast, only 6 alignments contain more than two deteriorated alignment blocks.

Tests on the MUSTER benchmark

The MUSTER benchmark consists of 300 protein pairs (Wu and Zhang 2008). It
is a more challenging benchmark with an average DALI Q-score of 51.6 for PROMALS
alignments compared to 62.3 of our inhouse dataset. We used a number of structure-
based alignment methods as a reference: DALI (Holm and Sander 1998), TMalign

(Zhang and Skolnick 2005), Matt (Menke, Berger et al. 2008), MUSTER (Wu and Zhang
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2008) and DeepAlign (Wang, Ma et al. 2013). SFESA (O+G+M) and SFESA
(O+G+M+S) applied to PROMALS alignments outperform other methods (Table 1V-1),
regardless of the reference alignments used. SFESA can at most increase 2.6, 2.1, 2.6, 2.5
and 2.2 in Q-score compared with original PROMALS method when either Dali,
TMalign, Matt, Muster or DeepAlign is used as a reference. In terms of Q-score based on
DALI reference, all SFESA modes are statistically better than the original PROMALS
based on the Wilcoxon signed-rank test (p-value less than 0.005, Table 1V-2). When
applied to alignments generated by HHpred and CNFpred, SFESA also shows improved
alignment quality in terms of DALI Q-score, although the improvement is smaller (Table
IV-1). Based on the alignment block level and aligned position level comparisons (Table
IV-3, IV-4, IV-5, IV-6, IV-7 and IV-8), all SFESA modes generate more improved
alignment blocks as well as aligned residue pairs than the deteriorated ones when
compared with the original PROMALS. The similar trends can be observed in most
SFESA modes applied on HHpred and CNFpred (Table IV-3, IV-4, IV-5, IV-6, IV-7 and

IV-8).

SFESA (O+G+M+S) significantly improves PROMALS alignments on the
MUSTER benchmark, making 138 alignments better and degrading 49 alignments
(Figure IV-6A). In a more detailed comparison, we counted the number of the alignments
SFESA improves over PROMALS and the number of alignments PROMALS is
descended by SFESA at different Q-score difference cutoffs (Figure 1V-6B). SFESA
(O+G+M+S) improves PROMALS by at least 5 Q-score on 90 alignments and degrades
by this margin on 23 alignments (Figure 1V-6B). SFESA (O+G+M+S) also improved

CNFpred alignments on this benchmark (Figure IV-6C) with 111 better alignments and
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49 worse alignments. SFESA (O+G+M+S) improves CNFpred by at least 5 in Q-score on

48 alignments and failed by this margin on 26 alignments (Figure IV-6D).

Besides the above reference-dependent assessments, reference-independent
average TM-score of query models built by MODELLER (Sali, Potterton et al. 1995)
also shows that SFESA can improve PROMALS, HHpred and CNFpred alignments
(Table 1V-1, last column). SFESA (O+G+M+S) applied to PROMALS (Table 1V-1, last

column) offers the best performance.

Based on the analysis of the improved and deteriorated alignment block numbers
in one alignment (SFESA (O+G+M+S) vs. PROMALS; DALI as a reference) for this
dataset (Figure 1V-5B), we also found that SFESA sometimes improved several
alignment blocks in one alignment and mostly deteriorated none or only one alignment
block. Among 300 alignments in the MUSTER benchmark, there are 83 alignments with
one improved alignment block while 59 alignments contain only one deteriorated
alignment block. There are 39 alignments with two improved alignment blocks while 11
alignments contain two deteriorated alignment blocks. The total number of the
alignments with more than two improved alignment blocks is 26. In contrast, only 3

alignments contain more than two deteriorated alignment blocks.

Tests on the SALIGN benchmark

The SALIGN benchmark consists of 200 protein pairs. Although it has a similar

DALI Q-score of 61.4 on PROMALS alignments compared to 62.3 of our inhouse
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dataset, this benchmark is very challenging because proteins in each pair have very
different lengths. SFESA applied to PROMALS shows maximal improvement compared
to that applied to HHpred and CNFpred (Table 1V-9). SFESA improves PROMALS Q-
scores by 2.5, 1.9, 2.1 and 2.5 when using either DALI, TMalign, Matt or DeepAlign as a
reference. For these references, SFESA shows 0.7, 0.5, 0.5 and 0.5 increases for HHpred
and 0.6, 0.5, 0.4 and 0.2 for CNFpred. The reference-independent evaluation (Table 1V-9,
the last column) shows a similar trend that SFESA has the maximal improvement on
PROMALS. The improvement on the SALIGN benchmark is less than that on the
MUSTER benchmark, especially for the CNFpred with DALI as a reference
(improvement of 1.2 Q-score in MUSTER and 0.6 Q-score in SALIGN). Nevertheless,
alignments refined in all SFESA modes are statistically better than PROMALS based on
the Wilcoxon signed-rank test (p-value less than 0.005, Table 1V-10) in terms of Q-score
based on DALI reference. SFESA modes except SFESA (O) are statistically better than
HHpred, despite of an increase of less than 1.0 Q-score on HHpred (Table 1VV-10). For
CNFpred, the Wilcoxon signed-rank test shows statistically significant improvement in
SFESA (O), SFESA (O+G) and SFESA (O+G+M+S) (Table IV-10) in terms of Q-score.
The alignment block level and aligned position level comparisons show that the number
of improved alignment blocks or aligned residue pairs is larger than the number of
deteriorated ones for all SFESA modes applied on PROMALS and most SFESA modes

applied on HHpred and CNFpred (Table IV-11, IV-12, IV-13, IV-14 and 1V-15).

Among 200 alignments in the SALIGN benchmark (SFESA(O+G+M+S) vs.
PROMALS; DALLI as a reference), there are 68 alignments with one improved alignment

block while 55 alignments contain only one deteriorated alignment block (Figure IVV-5C).
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35 alignments contain two improved alignment blocks while 10 alignments contain two
deteriorated alignment blocks (Figure IV-5C). In addition, the total number of the
alignments with more than two improved alignment blocks is 24 while only 2 alignments
contain more than two deteriorated alignment blocks (Figure 1V-5C). Thus SFESA
refinement improves many alignment blocks without introducing many incorrectly

aligned blocks.

Tests on the SABmark benchmark

We separately tested on SABmark’s two datasets (Van Walle, Lasters et al. 2005):
the “superfamilies” set and the “twilight zone” set. The “superfamilies” set has an
average Q-score of 71.1 for PROMALS alignments. On the “superfamilies” set SFESA
improved 1.0, 0.7 and 1.3 for PROMALS, HHpred and CNFpred, respectively (Table IV-
16). The “twilight zone” set is a more difficult benchmark than the “superfamilies” set
with an average Q-score of only 46.2 for the PROMALS alignments. On the “twilight
zone” set SFESA improved Q-score for PROMALS, HHpred and CNFpred by 1.9, 0.7
and 0.9, respectively (Table 1V-16). Reference-independent average TM-scores of query
models built by MODELLER displayed similar trends (Table IV-16). In terms of Q-
score based on SABmark’s own reference, all SFESA modes in “twilight zone” set as
well as SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S) in “superfamilies”
set are statistically better than the original PROMALS based on the Wilcoxon signed-
rank test (p-value less than 0.005, Table IV-17). Based on the alignment block and

aligned position level comparisons, all SFESA modes surpassed the original PROMALS.
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In terms of Q-score, TM-score and alignment block/aligned position level, most SFESA
modes improved HHpred and CNFpred, but not as much as PROMALS (Table 1V-16,

IV-18, IV-19, IV-20 and IV-21).

Based on the analysis of the improved and deteriorated alignment block numbers
in one alignment (SFESA (O+G+M+S) vs. PROMALS; compared with SABmark’s own
reference) for “twilight zone” set (Figure IV-7, 209 alignments totally), there are 45
alignments with one improved alignment block while 21 alignments contain one
deteriorated alignment block. And there are 8 alignments containing more than one
improved alignment blocks in contrast to 5 alignments containing more than one
deteriorated alignment blocks. The same analysis on “superfamilies” set (Figure V-8,
425 alignments totally) shows a similar trend. There are 71 alignments with one
improved alignment block while 37 alignments contain one deteriorated alignment block.
And there are 16 alignments containing more than one improved alignment blocks while
6 alignments have more than one deteriorated alignment blocks in each alignment. Thus
SFESA improves quality of several alignment blocks while avoiding deterioration of

many alignment blocks in one alignment.

Tests on the PREFAB benchmark

The PREFAB benchmark (Edgar 2004) contains 1682 protein pairs and is less
difficult compared to the previous three benchmarks, with a PROMALS Q-score of 80.3.
PREFAB reference alignments (Edgar 2004) are based on a consensus of FSSP (Holm

and Sander 1998) structural alignment and CE alignment (Stoyanova, Nicholls et al.
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2004). SFESA (O+G+M+S) can increase the Q-score of PROMALS (80.3) and CNFpred

(80.5) to 81.3 (Table 1\V-22, the first column).

In addition, we divided the PREFAB alignments into four equal-sized subsets by
sequence identity (Table 1VV-22). The average sequence identities of the four subsets are
6.8%, 14.9%, 23.1% and 48.4%. In “setl” and “set2” subsets with the lower sequence
identity (6.8% and 14.9%), we observed the most prominent improvement of more than
1.0 Q-score unit over PROMALS, HHpred and CNFpred. In the other two less difficult
subsets (“set3” and “set4”, Table 1V-22), SFESA improvement is less dramatic.
According to the Wilcoxon signed-rank test, there are statistically significant
improvement in “set1” and “set2” (Table 1VV-23) in terms of Q-score based on PREFAB’s
own reference. We also observed more improvement in “setl” and “set2” compared with
“set3” and “set4” based on alignment block and aligned position comparisons (Table V-

24, 1V-25, IV-26, IV-27 and 1V-28).

Based on the analysis of the improved and deteriorated alignment block numbers
in one alignment (SFESA (O+G+M+S) vs. PROMALS; PREFAB’s own reference) for
this dataset (Figure 1V-9, 1V-10, 1V-11, 1V-12 and 1V-13), we also found that SFESA
sometimes improved several alignment blocks in an alignment and mostly deteriorated
none or only one alignment block. Among 1682 alignments in the PREFAB benchmark,
there are 390 alignments with one improved alignment block, while 249 alignments
contain only one deteriorated alignment block. And there are 90 alignments containing
one improved alignment blocks while 36 alignments contain two deteriorated alignment

blocks in each alignment. In addition, 21 alignments are found to have at least two
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improved alignment blocks, and 17 alignments contain more than two deteriorated

alignment blocks.

Examples of alignments improved by SFESA

Here, we discuss four examples of alignments improved using SFESA. In the
first, and very challenging, example (Figure 1V-14A), SFESA refined the PROMALS
alignment of two SCOP domains from the same superfamily (d.129.3): d2ffsal (query)
and d2gpval (template). The PROMALS alignment of these domains consists of eight
alignment blocks. All eight blocks are misaligned by PROMALS, and the Q-score (with
the DALI alignment as reference) is only 3.2 (4 out of 125 aligned positions correctly
aligned). SFESA changed the alignment in five blocks (S1, S5, S6, S7 and H1) and
improved three of them (S1, S7 and H1), resulting in a Q-score of 39.2 (49 out of 125
aligned positions correctly aligned). We observed that both sequence score and structure
score contribute to the selection of a better alignment variant. For example, the S1
alignment block in the original PROMALS alignment has a SFESA sequence score of -
1.8 and a structure score of 6.0, which increased to 1.8 and 11.4, respectively, in the

SFESA alignment.

The second example shows a case with the Q-score increase (1.7) close to the
average Q-score difference (the DALI alignment as reference) (Figure 1V-14B). The two
SCOP domains dilc7ga_ (query) and dliata_ (template) are from the same SCOP
superfamily (c.80.1). Both of them are phosphoglucose isomerases but are from different

organisms. The PROMALS alignment of these domains consists of 22 alignment blocks
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(13 helices and 9 strands). The original PROMALS alignment has a Q-score of 72.4
when compared with the DALI alignment (296 out of 409 aligned positions correctly
aligned). SFESA changed the alignment in one block (S5) and improved this strand,
resulting in a Q-score increase of 1.7 (7 out of 409 aligned positions were corrected by

SFESA).

Besides these improved alignments, there are a few alignments with accuracy
decrease. The third example shows an alignment with accuracy dropping more than 20 Q-
score units (Figure 1V-14C). These two SCOP domains d1j8yfl (query) and dlvmaal
(template) are from the same SCOP superfamily (a.24.13, Domain of the SRP/SRP
receptor G-proteins). SFESA incorrectly refined one of the four blocks corresponding to
alpha-helices (H4) and led to a decrease of Q-score from 78.7 (48 out of 61 aligned
positions correctly aligned) to 52.5 (32 out of 61 aligned positions correctly aligned)
when compared with the DALI alignment. We observed a large increase of sequence
score (from -1.32 to 4.13) after shifting +3 residues. On the other hand, the original
alignment block and the +3 alignment variant have the similar structure score (original:
0.96, +3 variant: 0.94). Thus, +3 alignment variant has the highest combined score 1
among the original alignment block and 8 alignment variants, and this variant has a
higher combined score 2 when compared with the original alignment block. As a result,
SFESA incorrectly refined the alignment block by +3 shifting. The procedure of +3
shifting in SFESA introduced additional gaps to the right side of the template element
(Figure 1V-14C). However, no gap penalty is used in SFESA, as our scoring is restricted
to the alignment block. From the structure similarity perspective, the C-terminal helix

(H4) has a relatively large RMSD (2.81A) based on DALI alignment compared with
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other three helices (H1: 2.21A, H2: 1.47A and H3: 1.97A), suggesting that elements
showing large structural deviations between target and template are prone to mistakes by

SFESA.

Prediction of active site residues is one of the key goals in alignment construction.
Misaligned active site residues can lead to faulty experimental design. The last example
shows (Figure 1V-15) that SFESA can correct a misaligned active site residue in the
alignment of two SCOP domains d1h97a_ (query) and d1tu9a_ (template). Both protein
domains are from the SCOP globin family: d1h97a_ is a trematode hemoglobin (Pesce,
Dewilde et al. 2001), and d1tu9a_ is a globin-like hypothetical bacterial protein
(unpublished). HIS76 in the template and HIS98 in the query are the active site residues
(heme-binding) and they occupy structurally equivalent positions according to the DALI
alignment. However, in PROMALS alignment, HIS76 in the template is misaligned to
LYS96 in the query (Figure 1V-15). All SFESA modes succeed in recognizing the

misaligned alignment block and correcting it by a shift of -2 (Figure 1V-15).



93

DISCUSSION AND CONCLUSION

SFESA can refine and improve existing alignments

For divergent sequences, alignments generated by automatic methods are error-
prone despite significant research efforts. Alignment errors are still the major reason for
poor quality of homology models. Alignment refinement is a promising addition to
existing alignment methods. Alignment methods often misalign secondary structures by a
few residues, and more accurate solutions can be found within a limited set of local shifts
of SSEs (Figure 1V-1). SFESA aims to refine pairwise alignments by locally shifting

alignment blocks defined by template SSEs to correct misaligned blocks.

Alignment errors are frequently caused by incorrect placement of gaps. The
simplest SFESA (O) mode keeps original gap patterns while shifting SSEs. This
approach generates up to 8 alignment variants for an alignment block. Considering that
gaps rarely occur within SSEs, we implemented the SFESA (O+G) mode in which all
gaps in an alignment block are moved to one side of the block. This gap shifting
approach allows generation of up to 18 alignment variants. Our results show that SFESA

(O+G) improves alignments more than SFESA (O).

A limitation of the SFESA approach is that shifting involves only residues within
an alignment block and its adjacent loops. Residues in other alignment blocks are not
allowed to move into the current alignment block. Therefore, SFESA will not correct
blocks with residues misaligned to non-equivalent SSEs. However, such errors frequently
occur in alignments of proteins with very different lengths, e.g., those in the SALIGN

benchmark. Thus, SFESA shows less improvement on SALIGN alignments compared to
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the other benchmarks. Alternative methods need to be developed to deal with non-local

alignment errors.

The advantages of contact energy matrix and two-filter strategy used in SFESA

In addition to the profile-based sequence score, we included a contact-based
structure score. A residue-residue contact is defined as a residue pair within a distance
cutoff. In the template, a residue’s contacts contribute to its structural environment. The
correctly aligned equivalent residues in the query should pack more favorably in such a
structural environment than incorrectly aligned residues. Thus, the estimated contact
energy is an essential source of structural information and could be used as a scoring
function for alignment evaluation. Unlike position-specific profile scores used in
programs such as PSI-BLAST and HHpred, pairwise contact scores, in the form of two-
body interactions, are difficult to incorporate into a polynomial-time algorithm (e.g.
dynamic programming) to find the optimal alignment, since the interaction partners for a
position are not known before the alignment is obtained. Thus, heuristic methods are
needed to deal with this NP-hard problem (Lathrop 1994), such as linear programming
(Xu, Li et al. 2003, Ma, Wang et al. 2013), branch and bound (Horton 1996, Horton
2001) and dead end elimination (Lukashin and Rosa 1999). However, our task is to refine
an existing alignment. Using the existing alignment, contacts for a position in the query
can be deduced from those contacts defined in its aligned position in the template and the

query-template alignment. The resulting contact score is a positional score like the
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profile-based sequence score. If the initial alignment is generally accurate, with only a

few blocks misaligned, such a deduction works well.

We tested a number of contact energy matrices to derive the contact-based
structure score. Firstly, we used Miyazawa and Jernigan (MJ) (Miyazawa and Jernigan
1999) contact energy matrix in SFESA (O) and SFESA (O+G). This matrix was designed
for threading improved alignments. Secondly, we designed secondary structure-
dependent contact energy matrices (data not shown), but they did not lead to additional
improvement. Thirdly, we tested four body contact potentials (Feng, Kloczkowski et al.
2007), and they also did not give promising results. These more complex matrices were
not designed for the alignment refinement task. Since our task is to select the most
accurate alignment among a set of alignment variants generated by local shifts, we finally
computed a new contact energy matrix specific for this task by log-odds scoring that
compares contacts deduced from the correctly aligned positions to those deduced from
the incorrectly aligned positions. Using the new contact energy matrix, SFESA (O+G+M)
outperformed SFESA (O+G) using the MJ matrix. Another direction to improve contact
energy is to explore the definition of contacts. MJ contacts are limited to one fixed
distance (6.5A) between centers of side chains. We tested several definitions of contacts
to deduce our contact energy matrix. The best definition was a fixed distance (6.5A)
between any side chain atoms of two residues. A number of distance-based potentials
such as DFIRE (Zhang, Liu et al. 2004), DOPE (Shen and Sali 2006) and EPAD energy
(Zhao and Xu 2012) have been proposed, and some of them consider side chain
orientation-dependent terms (Yang and Zhou 2008, Zhou and Skolnick 2011). Many of

these potentials are all-atom based, and their application to alignment refinement would
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require constructing structure models at the atomic level. A simple coarse-grained
residue-contact energy matrix we used may be more appropriate for alignment scoring
than atomic-level energy potentials, because atomic details of contacts may differ greatly
between distant homologs, while residues could still be in similar environments and the
residue-residue contacts for homologous positions are largely preserved in the structures

of the template and the query.

SFESA uses a combination of profile-based sequence score and contact-based
structure score to maximize the chance that the correct alignment variant is selected.
First, we tested a one-filter strategy by choosing the variant with the best combination
score after weight optimization. However, this strategy resulted in many false positives,
i.e., the alignment variant with the best score has, on average, fewer correctly aligned
positions. In practice, we found that a two-filter strategy performs better. The first filter is
to inspect if there are any alignment variants with a higher combined score 1. If not, the
original alignment block is kept. Otherwise the alignment variant with the highest
combination score is selected and passed into the second filter. If this variant has a higher
combination score 1l than the original alignment block, the alignment variant is accepted.
Otherwise the original alignment block is kept. The optimal weights for sequence vs.
structure score are different in the two filtering steps. More weight is placed on the

sequence score in the first filtering step, but the opposite is true for the second step.

SFESA performance is influenced by residue contacts
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We observed that contact-based structural information can improve alignment, but
it has limitations. We found that this structure scoring works well when there are
sufficient contacts in the template as well as sufficient corresponding aligned residues in
the query. However, if an SSE is involved in too few contacts (e.g. exposed edge -
strands) the remaining contacts are insufficient to define a complete structural
environment and SFESA is less effective. To probe the effects of contact number and
secondary structure type, we divided alignment blocks in our inhouse dataset into three
categories: helix, edge strand (with hydrogen bonds on only one side) and non-edge
strand (with hydrogen bonds on two sides) (Table IV-29. Edge strands have fewer
contacts (average contact number is 12.2) than non-edge strands (average contact number
is 25.7). Indeed, SFESA is more likely to succeed in correctly shifting non-edge strands
(3.0 success/failure rate) than edge strands (1.5 success/failure rate) (Table 1V-29). The
helices have an average contact number of 23.7 and have a 1.8 success/failure rate.
Moreover, success/failure rate positively correlates with the increase of contact number
for SSEs in each of the three categories. For example, helices with less than 11 contacts
have a 0.8 success/failure rate while helices with more than 36 contacts have a 9.8
success/failure rate. The same general trend is also observed in edge strands and non-
edge strands. Thus, SFESA performs better when there are more contacts in an alignment

block.
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MATERIALS AND METHODS

Generation of alignment variants

We partition a pairwise alignment into alignment blocks according to template
SSEs defined by the program PALSSE (Majumdar, Krishna et al. 2005). Short secondary
structures (a-helices less than 8 residues and B-strands less than 4 residues) are not
considered and are treated as loop regions. Each alignment block is defined as the
residues in one template SSE and their aligned residues in the query. Eight additional
alignment variants can be generated for one alignment block by shifting the original
alignment in the block up to +4 residues (Figure IV-2A). We use +K shift to refer to the
alignment variant that shifts the query in the alignment block toward the C-terminus by K
residues. Residues in the neighboring loop regions can be placed inside an alignment
block after the shift (e.g., residue “F” in the query in +1 shift in Figure IV-2A). Similarly,
negative shift numbers refer to shifting the query towards the N-terminus. SFESA does
not allow residues in neighboring alignment blocks to shift. For example, in the +4 shift,
the neighboring residue “V” is the last one shifted into the alignment block (Figure V-
2A), while the residues neighboring but belonging to a different SSE (such as residue

“H” in Figure IV-2A) are not allowed to shift.

When there are no gaps in the original alignment block, SFESA can generate 8
alignment variants according to above procedure. If gaps are present in the query and/or
template in the alignment block, there are two gap processing strategies. The first one is

to keep the gap pattern in the original alignment block when shifting £K (up to 4)
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residues, resulting in 8 alignment variants. This strategy is used in SFESA (O) mode

(described below).

The second gap treatment strategy is to preprocess gaps before shifting +K (up to
4) residues. As gaps rarely occur in the middle of SSEs, we move the gaps to the same
side (left or right) without interrupting the SSEs. Residues in an alignment block can be
pushed to leftmost or rightmost while all gaps are put to the opposite side, resulting in
two alignment variants (left and right, Figure 1V-2B). Each of these two alignment
variants is then used as a starting point to generate 8 additional alignment variants by +4
shifting while keeping the modified gap patterns. Therefore, if gaps exist in the original
alignment, SFESA with gap shifting can generate up to 18 (1+8+1+8) alignment variants.
This strategy is used in SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S)

(described below).

Profile-based sequence score

Profiles are generated from multiple sequence alignments (MSAS) generated from
three PSI-BLAST (Altschul, Madden et al. 1997) iterations. Score for the similarity of
residue content in MSA columns is measured by the formula originally implemented in

the COMPASS method (Sadreyev and Grishin 2003).

2 1
Seeq :clz nt In%wzz n? In% (1)
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where n'and n? are effective numbers of residue type i in the query column 1 and
template column 2, Q' and Q7 are estimated residue frequencies of the two compared

columns, and p, is the background residue frequency. Parameters c, and C, are

calculated as:

an -1
“= Znill+ an -2 @
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SFESA further incorporates secondary structure (SS) information into the
sequence score. For query, SS is predicted by PSIPRED (Jones 1999); for template, SS
information in DSSP (Kabsch and Sander 1983) is used. A three-by-three secondary
structure substitution matrix is derived from the structural alignment FAST (Zhu and
Weng 2005) (considered as query aligned to template) of protein domains from ASTRAL

compendium (Chandonia, Hon et al. 2004) based on SCOP 1.75 (Murzin, Brenner et al.

1995) (see Training dataset below). For each residues pair, the SS score S, and S, are

combined to get the new sequence score S'Seq as:

S =S +W,S 4)

seq ss™'ss

where W, is the constant weight for the secondary structure score term and is set to 0.06

in our study.
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Contact-based structure score

A residue contact is defined as a residue pair within a distance cutoff. In the
template of one alignment, the residue contacts can be identified using the known
structure of the template. Correctly aligned equivalent residues in the query should have
similar structural environment as in the template. Based on a residue-residue contact
energy matrix, e.g., the one derived by Miyazawa and Jernigan (Miyazawa and Jernigan
1999), the total contact energies of query residues in an alignment block can be inferred
from the query-template alignment and the contacts defined by the template structure
(Figure IV-16, explained below). Our contact-based structure score, corresponding to the
negative of the inferred contact energies of the query, should reflect the fitness of the
query residues in the structural environment defined by the template structure. Our
hypothesis is that an alignment variant with a higher inferred contact energy score is

likely to be more accurate.

In Figure IV-16, i is one residue in an SSE of template, and j,, j,, ..., j, are the

contact residues of i based on the template structure. According to the alignment, | is the

residue in the query aligned to i, and k,, k,, ...,K, in the query are aligned to j,, j,, ...,
j,» respectively. Thus, the contact residues of |are inferred to be k,, k,, ...,k,. The

inferred structure score for residue | based on the alignment and the template contact

definitions is:
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Scontact(l) = _Z eI,km (5)
m=1

where ¢, is the pairwise contact energy for residues | and k_ in the query.

The total structure score of the alignment block is the sum of the contact energy

scores for all the query residues.

Sstr = Zscontact(l) (6)

When a profile is used instead of a sequence, the structure score S, is the

average of all contact energies of equivalent residues in homologs of query (including the

query itself):
: 1y
Sstr = ststr (a) (7)
a=1

where N is the total number of homologs of the query in the PSI-BLAST multiple

sequence alignment, and S, (@) is the structure score calculated by Eq(6) for the

str

homologous sequence a.

Two contact energy matrices are explored. One is the Miyazawa-Jernigan contact
energy matrix with contacts defined as residue pairs with side chain centers less than
6.5A. The other matrix is a new contact energy matrix trained on PROMALS alignments.
For each alignment, each alignment block is allowed to shift +4 residues (eight variants),
and then the best-scoring variant (showing the best agreement with DALI reference

(Holm and Sander 1996), that is, the variant having the most number of common aligned
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positions with DALI alignment) among the original alignment and the eight variants
(nine total) is selected based on and the other eight variants (alignment variants or the
original alignment) are considered as background. The contact energy is formulated as

follows:

D
€ = In(dij /8)+C 8

where by is the occurrence of aligned residue pair of i and j in the best-scoring
alignment; d; is the occurrence of aligned residue pair of i and j in background

alignments; C is a constant (C = 0.25). The cutoff for contact definition is 6.5A between

any side chain atoms of two residues.

Evaluation of the original alignment and alignment variants for an alignment block

Two filtering steps to evaluate the combined (sequence and structure) score are
used to determine whether the original alignment block is kept or replaced by one of the
alignment variants (Figure 1VV-2C). "Original alignment block" refers to blocks prior to
refinement by SFESA. In the first filtering step, if the best-scoring alignment variant has
a higher score (Scomb_1) than the original alignment block, this variant will be selected and
passed to the second filter. Otherwise, SFESA keeps the original alignment block. In the
second filtering step, the selected alignment variant (with the best Scomp ;) IS again
compared to the original alignment block by using a different score: Scomp_n OF Ssym. If the

selected alignment variant also has a better Scomp 1 Or Seym than the original alignment
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block, this alignment variant will replace the original alignment block. Otherwise, the

original alignment block is kept.

Scomb_1 @and Scomp_n @re linear combinations of sequence score and structure score

with different weights:

= Wls' + (l_ Wl)Sstr 9)

seq

S

comb_|I

Scomb_ll = WZSseq + (1_ WZ)Sstr (10)

where S;eqis the sequence score combined with secondary structure score (Eq(4)) and

S, is the contact-based structure score with consideration of query homologs (Eq(7)).

str
SFESA has four modes (described below). w; and w; are optimized to be 0.8 and 0.1 in
SFESA (0), 0.4 and 0.1 in SFESA (O+G), and 0.12 and 0.02 in SFESA (O+G+M). In
SFESA (O+G+M+S), w; is optimized to be 0.12. Sgn, used in second filter of SFESA

(O+G+M+S) is a score generated by a SVM classifier described below.

The SVM score

A support vector machine (SVM), implicitly mapping its inputs into high-
dimensional feature space, is widely used in binary classification (Cortes 1995). In our
strategy, if any alignment variant passes the first filter (with the top Scoms, i cOmpared to
all other variants and the original alignment block), the second filter is a two-category

classification problem — either accepting this selected alignment variant or keeping the
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original alignment block. Besides Scomn 11, an SVM was trained in the second filter to aid
this decision. Ten features were used in such an SVM binary classifier. Two features are

binary representatives for secondary structure type: helix as (1, 0) and strand as (0, 1).

Four features represent the scores of the original alignment block: S, S,,,S, and S

ss 1 “str rsa’?
and another four corresponding features are used for the selected alignment variant.

Similarly to S, S, is based on a three-by-three relative solvent accessibility (rsa)

ss ! rsa

substitution matrix derived from FAST (Zhu and Weng 2005) structural alignments of
SCOP domains. Notably, for query, three categories of neural network-predicted rsa
values (with PSI-BLAST PSSMs as input) (Huang, Pei et al. 2013) were used based on
three equal-sized bins; for template, the real rsa values calculated by NACCESS
(Hubbard and Thornton 1993) are used to generated three categories based on three
equal-sized bins. Two-fold cross validation was used in our SVM training. The linear,
polynomial and radial basis functions were tried as kernels. The linear model was found
to be optimal. The criterion to accept the alignment variant is set to SVM score above -

0.6 for optimal performance of alignment accuracy.

Training dataset

The training dataset consists of protein domain pairs with sequence identity less
than 20% from the ASTRAL compendium (Chandonia, Hon et al. 2004) based on SCOP
1.75 (Murzin, Brenner et al. 1995). All domain pairs with COMPADRE e-value less than
1e-30 were used. For all domain pairs, we generated DALI structure alignments. Then,

we discarded domain pairs with GDT-TS score (Zemla 2003) less than 0.5 in DALI
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alignment. We also included at most 10 domains from any individual SCOP superfamily,
and ensured that each domain is present no more than twice in domain pairs. The final
training dataset consists of 1675 domain pairs with 2305 protein domains. We generated
PROMALS alignments for these domain pairs and deduced 16347 alignment blocks in
these alignments. There are 3061 incorrectly aligned alignment blocks (at least one

residue misaligned compared to DALI reference alignment) in PROMALS alignments.
The parameters of w in Eq (4), C in Eq (8), w,, W, in Eq (9) and Eq (10) and all SVM
parameters were trained on this dataset. The assessment of alignment quality is Q-score

(alignment quality score, described below) compared with reference DALI alignment and

reference-independent GDT-TS score (Zemla, Venclovas et al. 1999).

Testing benchmarks

We used the following four public datasets to test the method:

1. The MUSTER benchmark (Wu and Zhang 2008). This dataset consists of 110
ProSUP protein pairs (Lackner, Koppensteiner et al. 2000) and 190 pairs selected by the

Zhang group with TM-score (Zhang and Skolnick 2005) > 0.5.

2. The SALIGN benchmark (Marti-Renom, Madhusudhan et al. 2004). This
dataset has 200 protein pairs with about 20% sequence identity, and these pairs have on
average about 65 structurally equivalent residues with RMSD < 3.5A. Proteins in each

pair have very different lengths.
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3. The SABmark benchmark (VVan Walle, Lasters et al. 2005). This benchmark is
designed for testing multiple sequence alignments (MSAs). SABmark dataset (version
1.65) has two benchmark sets: the “twilight zone” set has 209 groups of SCOP fold-level
domains with very low similarity, whereas the “superfamilies” set has 425 groups of
same-superfamily domains. We randomly selected one domain pair from each group to

test our pairwise alignment refinement method.

4. The PREFAB benchmark (version 4.0) (Edgar 2004). This dataset contains
1682 alignments, and it provides its own reference that is based on the consensus of FSSP
structure alignment (Holm and Sander 1998) and CE alignment (Stoyanova, Nicholls et

al. 2004).

For these four benchmarks, we applied our refinement method to PROMALS
alignments, as well as alignments generated by two profile-based and structure-aided
methods: HHpred (Soding, Biegert et al. 2005) and CNFpred (Ma, Peng et al. 2012).
Here, HHpred was used in the global alignment mode as its local alignment mode often
results in short alignments and shows lower alignment accuracy than global alignments

(Table IV-30, IV-31, IV-32 and 1VV-33).

The evaluation criteria include:

1. Reference-dependent evaluation. (1) Q-score is the fraction of correctly
aligned residue pairs in a test alignment among all aligned residue pairs in a reference
alignment. In this paper, the range of Q-score is from 0 to 100 (e.g. 100 means 100%
agreement with reference). The reference alignments were constructed by several

structure alignment methods: DALI (Holm and Sander 1996), TM-align (Zhang and
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Skolnick 2005), Matt (Menke, Berger et al. 2008) and Deepalign (Wang, Ma et al. 2013).
(2) The number of alignment blocks improved and deteriorated in different benchmarks
after refinement by different SFESA modes. Above-mentioned structural alignment
methods are used as references. One alignment block is considered as an improved block
when the correctly aligned residue pair number (compared with reference) in the block is
increased. One alignment block with less correctly aligned residue pairs (compared with
reference) is treated as a deteriorated block. (3) The number of aligned positions
improved and deteriorated in different benchmarks after refinement by different SFESA
modes. Abovementioned structural alignment methods are used as references. This

number provides the residue position-level alignment accuracy comparison.

2. Reference-independent score. Alignment-based GDT-TS (Zemla, Venclovas et
al. 1999) score and TM-score (Zhang and Skolnick 2005) were used in our study to
evaluate alignment quality. GDT-TS score is based on the number of structurally
equivalent pairs of C-alpha atoms that are within specified distance cutoffs (1A, 2A, 4A
and 8A) based on the sequence-independent superpositions of two protein structure. TM-
score is a simpler template modeling score, which evaluates the similarity of two protein
structures in a single superposition by weighting the close atom pairs stronger than the
distant matches. For TM-score, a 3D model was built for the query protein by
MODELLER (Sali, Potterton et al. 1995) based on its alignment to the template, and
subsequently the score between the query model and the experimental structure was

computed.
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Figure IV-1. Distribution of shifting numbers that resulted in improved alignment quality
in alignment blocks. Those alignment blocks for which correct aligned positions (Dali as
a reference) cannot be increased by shifts are not included. The shifting number n means
that the query block in the alignment block is shifted by n residue positions. Positive
numbers mean that the shifting is towards C-terminus, while negative numbers mean that
the shifting is towards N-terminus.
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Figure IV-2. An overview of the SFESA method
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. (A) For each alignment block, SFESA

generates up to +4 variants by shifting (marked as -1, -2, -3, -4, +1, +2, +3, and +4). The
pink boxes show the SSEs recognized from template structure and the blue boxes are
corresponding regions in the query aligned to such SSEs. Residues and gaps in one
corresponding blue and pink boxes compose an alignment block. The corresponding
black lines provide the boundaries between which sequence and structure scores are
calculated for each aligned residue pairs. (B) If gap shifting is considered, two variants
(left and right) are generated by putting gaps on the same side (left or right) before
generating the above 8 variants. (C). Flowchart of the SFESA method.
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Figure 1\VV-3. Tests on our training dataset. (A) DALI Q-score comparison of PROMALS
and SFESA for different SFESA modes. The columns in blue, red and green represent the
numbers of alignments that DALI Q-Score of SFESA is less than, the same as, and more
than PROMALS, respectively. SFESA (O) improved 617 alignments generated by
PROMALS while making 215 alignments worse. SFESA (O+G) improved 847
PROMALS alignments and made 292 alignments worse. The number of improved
SFESA (O+G+M) alignments is 904 while PROMALS is better than SFESA (O+G+M)
on 268 alignments. SFESA (O+G+M+S) produced 875 higher quality alignments than
PROMALS and 199 worse alignments. SFESA (O+G+M+S) performance is quite similar
to SFESA (O+G+M) but is more likely to have an equivalent Q-score with the original
PROMALS alignment (601 alignments in SFESA (O+G+M+S) and 503 alignments in
SFESA (O+G+M)), thus being more conservative compared with SFESA (O+G+M). (B)
Scatter plot of SFESA (O+G+M+S) Q-score vs. PROMALS Q-score for 1675 alignments
in the training dataset. Each point is one domain pair.
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Figure IV-4. Tests on our training subsets divided by four SCOP classes. DALI Q-score
is compared in different subsets: 275 class a alignments (all a proteins), 352 class b
alignments (all B proteins), 455 class ¢ alignments (o and B proteins (0/p)) and 515 class
d alignments (o and B proteins (a+f)). The blue column represents the performance of
PROMALS alignments. The red column shows the SFESA (O+G+M) results with
parameters derived from all data (1675 alignments). The green and purple columns are
the SFESA (O+G+M) results trained on class b and class c, respectively. The error bars
(standard error of the mean) are showed.
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Figure IV-5. Alignment block-level evaluation of SFESA performance on different
datasets. (A) Evaluation on our training dataset (1675 alignments). (B) Evaluation on the
MUSTER benchmark (300 alignments). (C) Evaluation on the SALIGN benchmark (200
alignments). SFESA (O+G+M+S) is used to refine alignments generated by PROMALS
and Dali structure alignment is used as the reference. The blue column represents the
number of alignments in which a certain number of aligned blocks were improved by
SFESA. The red column represents the number of alignments in which a certain number
of aligned blocks were deteriorated by SFESA. Columns of the “0” in the x-axis show the
number of alignments where none of the alignment blocks were improved (blue) by
SFESA and the number of alignments where none of the alignment blocks were
deteriorated (red) by SFESA. The number of alignment cases in each category and the
percentage is shown above each column.
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Figure 1V-6. DALI Q-score for the MUSTER benchmark. (A) Scatter plot of SFESA
(O+G+M+S) Q-score (applied to PROMALS) vs. PROMALS Q-score. Each point
represents one domain pair. (B) The number of alignments that SFESA is better than
PROMALS in Q-score and the number of alignments that PROMALS is better than
SFESA at different Q-score difference cutoffs. (C) Scatter plot of SFESA (O+G+M+S)
Q-score (applied to CNFpred) vs. CNFpred Q-score. (D) The number of the alignments
that SFESA is better than CNFpred in Q-score and the number of the alignments that
CNFpred is better than SFESA at different Q-score difference cutoffs.
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Figure IV-7. Element-level evaluation of SFESA performance on the SABMARK
twilight dataset. SFESA (O+G+M+S) is used and SABmark’s own reference is used. The
blue column represents the number of alignments in which a certain number of aligned
blocks were improved by SFESA. The red column represents the number of alignments
in which a certain number of aligned blocks were deteriorated by SFESA. Columns of the
“0” in the x-axis show the number of alignments where none of the alignment blocks
were improved (blue) by SFESA and the number of alignments where none of the
alignment blocks were deteriorated (red) by SFESA. The number of alignment cases in
each category and the percentage is shown above each column.
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Figure 1V-8. Alignment block-level evaluation of SFESA performance on the
SABMARK superfamily dataset. SFESA (O+G+M+S) is used and SABmark’s own
reference is used. The blue column represents the number of alignments in which a
certain number of aligned blocks were improved by SFESA. The red column represents
the number of alignments in which a certain number of aligned blocks were deteriorated
by SFESA. Columns of the “0” in the x-axis show the number of alignments where none
of the alignment blocks were improved (blue) by SFESA and the number of alignments
where none of the alignment blocks were deteriorated (red) by SFESA. The number of
alignment cases in each category and the percentage is shown above each column.
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Figure IV-9. Alignment block-level evaluation of SFESA performance on the PREFAB
dataset. SFESA (O+G+M+S) is used and PREFAB’s own reference is used. The blue
column represents the number of alignments in which a certain number of aligned blocks
were improved by SFESA. The red column represents the number of alignments in which
a certain number of aligned blocks were deteriorated by SFESA. Columns of the “0” in
the x-axis show the number of alignments where none of the alignment blocks were
improved (blue) by SFESA and the number of alignments where none of the alignment
blocks were deteriorated (red) by SFESA. The number of alignment cases in each
category and the percentage is shown above each column.
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Figure IV-10. Alignment block-level evaluation of SFESA performance on the PREFAB
“setl”. SFESA (O+G+M+S) is used and PREFAB’s own reference is used. The blue
column represents the number of alignments in which a certain number of aligned blocks
were improved by SFESA. The red column represents the number of alignments in which
a certain number of aligned blocks were deteriorated by SFESA. Columns of the “0” in
the x-axis show the number of alignments where none of the alignment blocks were
improved (blue) by SFESA and the number of alignments where none of the alignment
blocks were deteriorated (red) by SFESA. The number of alignment cases in each
category and the percentage is shown above each column.
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Figure 1VV-11. Alignment block-level evaluation of SFESA performance on the PREFAB
“set2”. SFESA (O+G+M+S) is used and PREFAB’s own reference is used. The blue
column represents the number of alignments in which a certain number of aligned blocks
were improved by SFESA. The red column represents the number of alignments in which
a certain number of aligned blocks were deteriorated by SFESA. Columns of the “0” in
the x-axis show the number of alignments where none of the alignment blocks were
improved (blue) by SFESA and the number of alignments where none of the alignment
blocks were deteriorated (red) by SFESA. The number of alignment cases in each
category and the percentage is shown above each column.
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Figure 1VV-12. Alignment block-level evaluation of SFESA performance on the PREFAB
“set3”. SFESA (O+G+M+S) is used and PREFAB’s own reference is used. The blue
column represents the number of alignments in which a certain number of aligned blocks
were improved by SFESA. The red column represents the number of alignments in which
a certain number of aligned blocks were deteriorated by SFESA. Columns of the “0” in
the x-axis show the number of alignments where none of the alignment blocks were
improved (blue) by SFESA and the number of alignments where none of the alignment
blocks were deteriorated (red) by SFESA. The number of alignment cases in each
category and the percentage is shown above each column.
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Figure IV-13. Alignment block-level evaluation of SFESA performance on the PREFAB
“set4”. SFESA (O+G+M+S) is used and PREFAB’s own reference is used. The blue
column represents the number of alignments in which a certain number of aligned blocks
were improved by SFESA. The red column represents the number of alignments in which
a certain number of aligned blocks were deteriorated by SFESA. Columns of the “0” in
the x-axis show the number of alignments where none of the alignment blocks were
improved (blue) by SFESA and the number of alignments where none of the alignment
blocks were deteriorated (red) by SFESA. The number of alignment cases in each
category and the percentage is shown above each column.
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Figure IV-14. Three examples of SFESA refinement. (A) The alignments between
d2ffsal (query) and d2gpval (template) generated by PROMALS and SFESA (O+G) +
PROMALS. (B) The partial alignments between d1c7ga_ (query) and dliata_ (template)
generated by PROMALS and SFESA (O) + PROMALS. (C) The alignments between
d1j8yfl (query) and dlvmaal (template) generated by PROMALS and SFESA (O) +
PROMALS. The pink boxes show the SSEs recognized from template and the blue boxes
are those regions in the query aligned to such SSEs. Each corresponding blue and pink
regions is an alignment block. The asterisk between two aligned residues indicates this
aligned residue pair is in agreement with DALI alignment (reference).
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Figure IV-15. An example of SFESA correction of a misaligned active site residue. (A).
Superposition of d1h97a_ (query) and d1tu9a_ (template) based on the DALI structure
alignment (reference). The blue (query) and pink (template) a-helical regions indicate the
alignment block. The histidine residues are the active site residues in contact with hemes
(shown in lines). LYS96 and HIS98 in the query are incorrectly aligned to HIS76 and
ARG78in the template in the PROMALS alignment, respectively. The sidechains of these
residues are shown in sticks. (B). Alignments of DALI (reference), PROMALS and
SFESA in this region. All SFESA modes can generate such alignment refinement.
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Figure 1V-16. The template contact residue pairs are transferred to the query by original
alignment to calculate structure score for the original alignment block and alignment
variants. The blue and red filled circles represent residues in query and template,
respectively. The dashed lines connect aligned residue pairs in the original alignment.
Residue i is in contact with residues ji, jo, js... jn based on template structure. Residue I in
the query is aligned with i and is inferred to be in contact with residues ki, ka, ks... &, that
are aligned to ji, jo, js... jn. The contact-based score for residue | is calculated by Eq (5).
In the case of +1 shift, residue I-1 is aligned to residue i, and the inferred contacts are
between residue I-1 and ki, ko, ks... k& (shown as dashed lines).
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Reference-dependent (Q-score) _Reference-
Methods Dali TMalign Matt MUSTE AD\I(TSFr)m '(anpr_ngﬁ;t
PROMALS 51.6 48.1 49.5 51.5 53.5 0.515
SFESA (0)+PROMALS 53.4 49.6 51.5 53.2 55.0 0.521
SFESA (O+G)+PROMALS 53.6 49.6 51.6 53.4 55.1 0.522
SFESA (O+G+M)+PROMALS 54.2 50.2 52.1 54.0 55.3 0.523
SFESA (O+G+M+S)+PROMALS  54.2 50.0 52.0 53.8 55.7 0.525
HHpred 49.3 453 46.7 49.0 49.7 0.490
SFESA (O)+HHpred 49.2 45.2 46.8 48.8 49.8 0.490
SFESA (O+G)+HHpred 49.4 45.2 47.0 49.1 50.0 0.491
SFESA (O+G+M)+HHpred 49.4 45.1 47.2 49.0 49.7 0.490
SFESA (O+G+M+S)+HHpred 49.6 45.3 47.3 49.1 49.9 0.491
CNFpred 51.5 48.2 49.2 52.4 53.7 0.511
SFESA (0)+CNFpred 52.0 48.3 49.9 525 54.0 0.511
SFESA (O+G)+CNFpred 52.2 48.4 50.1 52.5 54.1 0.512
SFESA (O+G+M)+CNFpred 52.6 48.7 50.4 52.9 54.0 0.512
SFESA (O+G+M+S)+CNFpred 52.7 49.0 50.7 53.3 54.8 0.515

Table IV-1. Test on MUSTER database. Columns 2-6 indicate five different structure
alignment methods to generate reference alignments (Reference-dependent evaluation).
Column 7 indicates the average of query model’s TM-score built by Modeller
(Reference-independent evaluation). Bold indicates the best performance in the
subsection. Bold with underscore indicates the overall best performance in one column.

Average Q-score and TM-score are reported.



Method/(p-value) PROMALS
SFESA(O)+PROMALS 3.90E-08
SFESA(O+G)+PROMALS 2.50E-06
SFESA(O+G+M)+PROMALS 6.70E-09
SFESA(O+G+M+S)+PROMALS 0
Method/(p-value) HHpred
SFESA(O)+HHpred 0.36
SFESA(O+G)+HHpred 0.094
SFESA(O+G+M)+HHpred 0.1
SFESA(O+G+M+S)+HHpred 0.034
Method/(p-value) CNFpred
SFESA(O)+CNFpred 0.064
SFESA(O+G)+CNFpred 0.064
SFESA(O+G+M)+CNFpred 0.0034
SFESA(O+G+M+S)+CNFpred 0.00024
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Table 1V-2. Statistically significant Q-score improvement of SFESA on PROMALS,
HHpred and CNFpred (Dali as a reference). All SFESA modes by using different
parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S))
are compared with three existing alignment methods on MUSTER dataset. P-values are
calculated based on the paired Wilcoxon signed-rank test. P-values below 0.05 are
marked green and below 0.005 are marked pink.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0O)+PROMALS 3159 151 56 164 1246 404 41806
SFESA (O+G)+PROMALS 2678 283 172 397 2015 972 40469
SFESA (O+G+M)+PROMALS 2577 326 201 426 2363 1186 39907
SFESA (O+G+M+S)+PROMALS 2997 253 90 190 1844 636 40976
SFESA (O)+HHpred 2990 17 25 51 119 160 43177
SFESA (O+G)+HHpred 2588 156 103 236 524 459 42473
SFESA (O+G+M)+HHpred 2340 251 184 308 1009 923 41524
SFESA (O+G+M+S)+HHpred 2706 162 91 124 649 520 42287
SFESA (0O)+CNFpred 3011 81 52 90 646 394 42416
SFESA (O+G)+CNFpred 2395 255 189 395 1420 1092 40944
SFESA (O+G+M)+CNFpred 2367 291 188 388 1664 1167 40625
SFESA (0+G+M+S)+CNFpred 2821 183 83 147 1103 534 41819

Table 1VV-3. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred (Dali as a reference). All SFESA modes by using

different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA

(O+G+M+S)) are compared with three existing alignment methods on MUSTER dataset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 3159 139 65 167 1130 442 44221
SFESA (0O+G)+PROMALS 2678 269 177 406 1852 1035 42906
SFESA (O+G+M)+PROMALS 2577 316 200 437 2186 1226 42381
SFESA (0+G+M+S)+PROMALS 2997 232 97 204 1633 706 43454
SFESA (O)+HHpred 2990 16 26 51 97 148 45548
SFESA (O+G)+HHpred 2588 137 109 249 455 434 44904
SFESA (O+G+M)+HHpred 2340 231 197 315 906 940 43947
SFESA (O+G+M+S)+HHpred 2706 139 98 140 567 526 44700
SFESA (O)+CNFpred 3011 72 54 97 548 427 44818
SFESA (O+G)+CNFpred 2395 240 194 405 1257 1107 43429
SFESA (O+G+M)+CNFpred 2367 271 206 390 1433 1170 43190
SFESA (O+G+M+S)+CNFpred 2821 167 82 164 976 541 44276

Table 1V-4. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred (TMalign as reference). All SFESA modes by
using different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA
(O+G+M+S)) are compared with three existing alignment methods on MUSTER dataset.
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Shifted Shifted Shifted Aligned Aligned Aligned
Unshifted Blocks Blocks Blocks Positions  Positions  Positions

Methods Blocks (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=
Original) Original) Original) Original) Original) Original)
SFESA (O)+PROMALS 3159 145 53 173 1176 330 40278
SFESA (O+G)+PROMALS 2678 271 150 431 1816 837 39131
SFESA (O+G+M)+PROMALS 2577 311 178 464 2146 1079 38559
SFESA (O+G+M+S)+PROMALS 2997 239 85 209 1656 577 39551
SFESA (O)+HHpred 2990 20 19 54 130 107 41547
SFESA (0+G)+HHpred 2588 146 95 254 520 394 40870
SFESA (O+G+M)+HHpred 2340 225 171 347 974 819 39991
SFESA (O+G+M+S)+HHpred 2706 155 80 142 684 456 40644
SFESA (O)+CNFpred 3011 76 42 105 587 291 40906
SFESA (O+G)+CNFpred 2395 230 170 439 1331 964 39489
SFESA (O+G+M)+CNFpred 2367 253 174 440 1496 1033 39255
SFESA (O+G+M+S)+CNFpred 2821 168 71 174 1104 446 40234

Table 1V-5. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred (Matt as reference). All SFESA modes by using
different parameters (SFESA (O), SFESA (0O+G), SFESA (O+G+M) and SFESA
(O+G+M+S)) are compared with three existing alignment methods on MUSTER dataset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 3159 135 58 178 1098 386 40230
SFESA (0O+G)+PROMALS 2678 257 161 434 1776 911 39027
SFESA (O+G+M)+PROMALS 2577 299 181 473 2076 1084 38554
SFESA (O+G+M+S)+PROMALS 2997 231 87 215 1615 644 39455
SFESA (O)+HHpred 2990 16 25 52 96 154 41464
SFESA (0O+G)+HHpred 2588 132 90 273 437 399 40878
SFESA (O+G+M)+HHpred 2340 218 174 351 837 849 40028
SFESA (O+G+M+S)+HHpred 2706 136 87 154 540 487 40687
SFESA (0O)+CNFpred 3011 68 55 100 511 425 40778
SFESA (O+G)+CNFpred 2395 226 185 428 1203 1093 39418
SFESA (O+G+M)+CNFpred 2367 251 195 421 1363 1127 39224
SFESA (O+G+M+S)+CNFpred 2821 163 76 174 965 515 40234

Table 1V-6. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred (MUSTER as reference). All SFESA modes by
using different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA
(O+G+M+S)) are compared with three existing alignment methods on MUSTER dataset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 3159 145 68 158 1196 461 42743
SFESA (0O+G)+PROMALS 2678 286 188 378 1997 1090 41313
SFESA (O+G+M)+PROMALS 2577 314 233 406 2291 1385 40724
SFESA (O+G+M+S)+PROMALS 2997 244 108 181 1800 729 41871
SFESA (O)+HHpred 2990 21 22 50 144 140 44116
SFESA (0O+G)+HHpred 2588 160 110 225 576 444 43380
SFESA (O+G+M)+HHpred 2340 240 214 289 1044 1058 42298
SFESA (O+G+M+S)+HHpred 2706 149 107 121 653 587 43160
SFESA (0O)+CNFpred 3011 79 57 87 629 434 43337
SFESA (O+G)+CNFpred 2395 270 196 373 1500 1200 41700
SFESA (O+G+M)+CNFpred 2367 280 221 366 1578 1383 41439
SFESA (O+G+M+S)+CNFpred 2821 182 80 151 1112 544 42744

Table 1V-7. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred (Deepalign as reference). All SFESA modes by
using different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA
(O+G+M+S)) are compared with three existing alignment methods on MUSTER dataset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Unshifted Blocks Blocks Blocks Positions  Positions  Positions
Blocks (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=
Original) Original) Original) Original) Original) Original)

Domainl Domain 2

laba__ 1gplA_ 7 0 0 0 0 0 80
lacf lpne 8 2 0 0 3 0 119
lafi__ laps__ 4 0 1 0 1 10 52
lagjA lelg 12 1 0 2 7 0 178
laggD_  1tgj__ 0 0 0 0 0 87
laizB_ lrcy 9 0 0 0 0 0 102
lapmE_  lerk__ 16 0 2 0 0 16 249
lapmE_ 1lirk__ 11 2 2 0 22 13 219
lash__ 1binA_ 7 0 0 0 0 0 135
lash__ lbvd__ 6 0 0 0 0 0 139
lash__ 1cpcA_ 4 1 1 1 7 11 95
lax4A_  1cl1A_ 18 2 0 1 26 2 266
1bbhB_  1nbbB_ 4 0 0 0 0 0 126
1bbpD_  1hbg__ 11 2 0 0 14 0 139
lbcpL_  1prtB_ 7 0 1 0 0 8 76
1bdiA_  2dri__ 20 0 1 0 0 8 252
1bdmB_  6ldh__ 18 2 0 1 14 3 288
1bfmA_  1tafB_ 3 0 0 0 0 0 66
1binA_  1bvd__ 6 0 0 0 0 0 138
1binA_  2hbg__ 7 0 0 0 0 0 135
lbrz__ 1gps__ 4 0 0 0 0 0 44
1btn__ 1dynB_ 7 1 0 0 1 0 89
lbtn__ lirsA_ 6 1 0 0 1 0 85
1btn__ Imai__ 7 1 0 1 6 0 82
lbvd__  2hbg__ 7 0 0 0 0 0 138
lcewl 1molA_ 4 0 1 0 0 1 80
lcewl_ 1ounA_ 4 0 1 0 0 13 64
lenv_ lnar__ 14 2 0 2 25 2 219
l1cpcA_ 1colA_ 5 0 1 1 0 8 106
lcpcA lcpeB 9 0 0 0 0 0 159
lcpcA_  2hbg 7 0 0 0 0 0 122
letj__ lexe 7 0 0 0 0 0 75
letj_ 2mtaC_ 3 1 0 0 12 0 73
ldat lafrF_ 5 1 0 0 10 1 141
ldat Iryt 4 1 0 1 2 0 148
ldat IXikA 5 1 0 1 30 0 117
lden__ ltcp__ 2 1 0 0 8 0 38
1dhkA_  1bag__ 25 0 0 0 0 0 394
1dynB_  1lirsA_ 6 1 0 1 7 0 86
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Iryt lafrF_ 8 0 0 1 0 0 137
Iryt IXikA 7 0 0 0 0 0 146
Iryt Ixsm__ 5 0 0 0 0 0 140
1sbp__ 2abh__ 18 0 0 0 0 0 221
1spbP_ 1nueA_ 4 0 1 0 0 8 52
Iste 2tssA_ 17 0 0 0 0 0 183
1tafA_ 1bfmA_ 3 0 0 0 0 0 66
1tafA_ 1tafB_ 3 0 0 0 0 0 63
1tdj_ 2tysB_ 21 1 1 0 3 1 305
1tiiD_ 3ullA_ 6 0 0 1 0 0 75
lulo 2ayh 11 0 1 1 0 5 122
1VItA 1nbbB_ 4 0 0 0 0 0 99
lwba__  1lilb__ 7 5 0 1 41 0 79
lwba__  4fgf__ 9 1 0 2 7 0 104
IXikA _ lafrF_ 14 0 0 1 0 0 224
IXikA _ Ixsm__ 10 0 0 0 0 0 274
Ixsm__  lafrF_ 10 0 0 3 0 0 237
2alp__ lhavA _ 16 1 0 0 3 0 149
2bltB_ 3pte__ 20 0 0 0 0 0 305
2gmfB_ 1rcb__ 5 0 0 0 0 0 91
2hfh__ 1hstA_ 5 0 0 0 0 0 67
2hhmA_  1spiD_ 16 3 0 1 17 0 202
2lefA lhma__ 4 0 0 0 0 0 66
2pia__ 1fnb__ 15 1 2 0 2 5 208
2pii__ laps 4 0 0 1 0 0 70
3nll_ 1qrdB_ 9 0 0 0 0 0 131
3ullA_ 1bcpL_ 5 0 0 0 0 0 80
1931 1531 7 0 0 0 0 0 95
1p53A3  1fna__ 3 1 0 2 6 0 59
1tig_ 1pavA _ 4 0 0 0 0 0 58
1vkfA_  1i0dA_ 11 0 0 5 0 0 141
1IrwhAl  1r76A_ 11 0 0 1 0 0 159
1fseA 1rr7A_ 3 0 0 0 0 0 41
1k5jA  2bbvA 4 0 0 2 0 0 75
Wwl7A_ 1t17A_ 5 0 1 0 0 3 72
1tedA 1hz4A 4 0 0 3 0 0 100
InznA_  1b89A 4 0 0 1 0 0 85
1rliA_ 192iA 11 1 0 0 1 0 o1
Im3uA_  1ngkA_ 13 3 0 0 19 0 150
IxvhAl  1r8iA_ 3 0 0 0 0 0 60
IxmbAl  1rxyA 10 1 0 2 8 1 155
ldqgA_  lavaC_ 7 0 0 3 0 0 108
legjA_ 1ollAl 8 0 1 0 0 10 66
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ljigA 1nogA 4 0 0 0 0 0 100
1hinA_  1r3sA_ 11 0 3 1 0 16 219
2tpsA _ 1a0cA_ 9 0 0 5 0 0 186
lwmhA_  1tOyA_ 6 1 0 0 7 0 62
lgopA_  1tv8A 15 0 1 0 0 1 167
1y6dA_  1jogA_ 6 0 0 0 0 0 82
2ila__ lavaC_ 7 2 0 1 14 0 107
1t9fA 1md6A_ 11 1 0 1 7 1 118
1p6rA_ 1gxqA _ 4 2 0 0 12 0 50
lvhwA_ 1vheA2 11 0 0 3 0 0 157
2plc__ lodzA 14 0 0 1 0 0 192
1gzgA_  leokA_ 11 0 0 3 0 0 184
1ukuA_  1nudA_ 4 1 0 2 5 2 67
lep3A_  1uugA_ 19 1 1 1 4 7 199
1pIxA_  1K77A_ 18 1 1 0 6 5 181
1pii_2 1fcqA_ 8 0 1 0 0 7 142
l1dcfA_  1fyeA_ 7 3 0 0 18 0 71
1u8sA2  1s99A 4 0 0 1 0 0 69
llucA_ 1ujpA_ 9 0 0 6 0 0 194
1gfoA_ lrowA _ 7 1 0 1 5 0 78
lvhnA_  1gnrA_ 20 0 1 2 0 2 189
loeyd_ 1v50A 1 0 0 2 0 68
1pfbA_  1lvie__ 5 0 0 1 0 0 43
Im5wA_ 1urdA 11 3 1 0 25 4 182
l1dcfA_ 1I9xA_ 10 0 1 1 0 9 95
1pii_2 1f8mA _ 14 0 1 0 0 6 159
2pth__ 1vheA2 6 0 2 2 0 24 98
lukuA_ lutaA_ 3 2 0 1 20 0 48
1ub3A_  1qopA_ 13 3 1 0 23 8 142
1vk8A_ 1yOhA 4 1 0 1 10 0 67
1k66A_  1n57A_ 7 1 1 2 6 8 99
luwdA_  1josA 4 0 0 1 0 0 73
1u8sA2  1ulrA_ 5 1 0 0 7 0 64
1j60A_  1jfxA_ 10 0 0 3 0 0 156
lurrA_ 1trOA _ 3 0 0 3 0 0 71
1jfxA_ 1rhcA _ 10 2 1 0 12 6 144
1u8sA2  1litpA_ 6 0 0 0 0 0 69
lizcA 1r30A _ 17 2 0 1 22 7 156
lix2A_ 1owwA_ 6 0 0 1 0 0 80
1bbzA_ 1jbOE_ 2 0 0 0 0 0 48
InbcA_  layoA_ 9 2 0 0 18 0 83
lroaA_ 10h0A _ 3 0 1 1 0 11 66
lwmhB_  1xd3B_ 4 0 1 0 0 8 60
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Im2dA_ 1wouA _ 4 1 0 1 8 0 63
IxbbA_  1nd4A_ 13 2 0 0 16 0 148
1m6sA_  1legbA_ 17 4 1 0 25 4 275
InpsA_  1f53A_ 7 0 0 0 0 0 63
1112A_ 1h7eA_ 13 0 0 1 0 0 163
1h70A_  1vkpA_ 13 3 3 2 20 11 201
Ixg8A_ 2trxA _ 7 1 0 0 7 0 77
1diwA_  1h97A_ 5 0 0 0 0 0 102
1wdkA2  1txgAl 9 3 0 1 18 0 135
legbA_  2dkb__ 21 2 0 0 10 0 301
1dlwA_  lit2A_ 6 1 0 0 3 0 95
1grj_2 1fd9A_ 5 1 0 0 6 0 51
1rjdA_ 1ri5A_ 16 1 0 1 7 0 197
logmX2  1oflA_ 38 0 0 2 0 0 270
ImdoA_  1m6sA_ 18 2 2 0 15 20 258
1d2fA_  1s0aA_ 17 6 1 0 48 5 255
1IsuA_ 1rkxA_ 10 1 0 0 8 0 113
1js3A_ 1fg7A_ 16 1 0 1 7 0 300
1kyhA_  1ubOA_ 17 1 0 0 5 0 188
1wf6A_  1cdzA_ 7 0 0 0 0 0 93
IwmgA_ 3ygsP_ 6 0 0 0 0 0 72
l1gcwB_  1jboA_ 6 0 1 0 0 15 102
1gx2A_  1yIxA_ 4 0 0 0 0 0 66
1vj5A2 ltca__ 12 0 0 1 0 0 192
1yOuA_  1stzAl 4 1 0 0 4 0 53
lkeaA_  lornA_ 12 0 0 0 0 0 207
1h6yA_  1jhjA_ 9 2 1 0 20 5 89
InkiA_ 1u6lA_ 10 2 0 2 8 0 98
lajsA_ 1ohwA_ 15 2 1 3 12 7 309
1e87A_  107bT_ 6 0 1 0 0 3 67
1g6wWwA_  1mkaA_ 4 1 1 1 2 6 98
lhekA_ lecwA 4 1 0 0 16 0 79
1txdA2 1wguA_ 8 1 0 0 9 0 89
leh2 luhnA_ 4 0 1 0 0 3 71
la3k__ lumzA_ 10 0 0 1 0 0 125
1v70A_  leybA_ 7 2 0 0 11 0 83
lcpy__ 1vj5A2 16 0 2 0 0 20 233
lordA_  1xgOC_ 8 0 0 0 0 0 126
lomzA_  1qg8A_ 15 3 0 0 21 1 166
19z9A_  lax4A_ 18 5 0 2 44 4 279
1tvgA_ 1umhA_ 5 2 1 0 13 5 83
Ixc2Al  1txgAl 8 4 0 0 33 3 104
1p9aG_  1jI5A_ 29 0 0 2 0 0 189
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lohwA_ 1swA _ 15 1 2 2 7 4 282
1ttzA 1tlvA 6 0 0 0 0 0 71
1nljB 1tzyB 3 0 0 0 0 0 77

Table 1V-8. The alignment block-level and aligned position-level comparison for each
alignment of SFESA (O+G+M+S) applied on PROMALS on the MUSTER dataset (Dali
as a reference).
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Methods Reference-dependent (Q-score) ir?deggg]rliceer;t

DALI TMalign Matt DeepAlign (TM-score)
PROMALS 61.4 59.5 60.2 62.6 0.582
SFESA (O)+PROMALS 62.7 60.5 61.2 63.9 0.585
SFESA (O+G)+PROMALS 63.4 61.0 61.9 64.6 0.588
SFESA (O+G+M)+PROMALS 63.7 61.1 62.2 64.8 0.589
SFESA (O+G+M+S)+PROMALS 63.9 61.4 62.3 65.1 0.589
HHpred 63.0 60.6 62.7 64.4 0.589
SFESA (O)+HHpred 63.1 60.6 62.7 64.4 0.590
SFESA (O+G)+HHpred 63.1 60.6 62.7 64.5 0.590
SFESA (O+G+M)+HHpred 63.7 61.1 63.2 64.9 0.592
SFESA (O+G+M+S)+HHpred 63.5 61.1 63.2 64.8 0.592
CNFpred 64.7 62.2 62.6 66.3 0.595
SFESA (O)+CNFpred 65.1 62.5 62.6 66.4 0.596
SFESA (O+G)+CNFpred 65.3 62.7 62.5 66.4 0.598
SFESA (O+G+M)+CNFpred 64.8 62.2 62.6 66.0 0.595
SFESA (O+G+M+S)+CNFpred 65.2 62.7 63.0 66.5 0.598

Table IV-9. Test on SALIGN database. Columns 2-5 indicate five different structure
alignment methods to generate reference alignments (Reference-dependent evaluation).
Column 6 indicates the average of query model’s TM-score built by Modeller
(Reference-independent evaluation). Bold indicates the best performance in the
subsection. Bold with underscore indicates the overall best performance in one column.
Average Q-score and TM-score are reported.
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method/(p-value) PROMALS
SFESA(O)+PROMALS 3.40E-08
SFESA(O+G)+PROMALS 0
SFESA(O+G+M)+PROMALS 0
SFESA(O+G+M+S)+PROMALS 0
method/(p-value) HHpred
SFESA(O)+HHpred 0.19
SFESA(O+G)+HHpred 0.035
SFESA(O+G+M)+HHpred 3.60E-04
SFESA(O+G+M+S)+HHpred 0.0026
method/(p-value) CNFpred
SFESA(O)+CNFpred 0.031
SFESA(O+G)+CNFpred 0.018
SFESA(O+G+M)+CNFpred 0.086
SFESA(O+G+M+S)+CNFpred 0.0026

Table 1V-10. Statistically significant Q-score improvement of SFESA on PROMALS,
HHpred and CNFpred (Dali as a reference). All SFESA options by using different
parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S))
are compared with three existing alignment methods on SALIGN dataset. P-values are
calculated based on the paired Wilcoxon signed-rank test. P-values below 0.05 are
marked green and below 0.005 are marked pink.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 3275 122 47 104 985 352 45502
SFESA (0O+G)+PROMALS 2900 242 133 273 1652 701 44486
SFESA (O+G+M)+PROMALS 2801 278 159 310 1957 848 44034
SFESA (O+G+M+S)+PROMALS 3113 226 81 128 1622 453 44764
SFESA (O)+HHpred 3323 30 16 27 205 131 46503
SFESA (0O+G)+HHpred 2932 162 132 170 573 460 45806
SFESA (O+G+M)+HHpred 2726 247 172 251 1053 667 45119
SFESA (O+G+M+S)+HHpred 3020 166 103 107 733 436 45670
SFESA (0O)+CNFpred 3277 63 44 74 518 348 45973
SFESA (O+G)+CNFpred 2794 222 165 277 1219 1012 44608
SFESA (O+G+M)+CNFpred 2691 235 201 331 1197 1150 44492
SFESA (O+G+M+S)+CNFpred 3038 169 102 149 915 630 45294

Table 1\V-11. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred (Dali as a reference). All SFESA modes by using
different parameters (SFESA (O), SFESA (0O+G), SFESA (O+G+M) and SFESA
(O+G+M+S)) are compared with three existing alignment methods on the SALIGN

dataset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 3275 118 54 101 978 449 47348
SFESA (0O+G)+PROMALS 2900 229 144 275 1625 819 46331
SFESA (O+G+M)+PROMALS 2801 261 185 301 1881 1003 45891
SFESA (O+G+M+S)+PROMALS 3113 215 94 126 1571 556 46648
SFESA (O)+HHpred 3323 24 25 24 165 182 48428
SFESA (0O+G)+HHpred 2932 148 136 180 548 492 47735
SFESA (O+G+M)+HHpred 2726 231 174 265 976 711 47088
SFESA (O+G+M+S)+HHpred 3020 160 95 121 697 449 47629
SFESA (0O)+CNFpred 3277 67 46 68 531 349 47895
SFESA (O+G)+CNFpred 2794 227 177 260 1253 1027 46495
SFESA (O+G+M)+CNFpred 2691 230 218 319 1206 1184 46385
SFESA (O+G+M+S)+CNFpred 3038 170 108 142 945 641 47189

Table 1\V-12. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred (TMalign as reference). All SFESA modes by
using different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA
(O+G+M+S)) are compared with three existing alignment methods on the SALIGN

dataset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 3275 113 50 110 902 411 44340
SFESA (0O+G)+PROMALS 2900 233 128 287 1524 730 43399
SFESA (O+G+M)+PROMALS 2801 262 155 330 1774 836 43043
SFESA (O+G+M+S)+PROMALS 3113 210 87 138 1458 468 43727
SFESA (O)+HHpred 3323 25 22 26 173 168 45312
SFESA (0O+G)+HHpred 2932 153 125 186 514 474 44665
SFESA (O+G+M)+HHpred 2726 227 162 281 919 653 44081
SFESA (O+G+M+S)+HHpred 3020 160 92 124 674 411 44568
SFESA (0O)+CNFpred 3277 60 45 76 448 425 44780
SFESA (O+G)+CNFpred 2794 204 158 302 986 999 43668
SFESA (O+G+M)+CNFpred 2691 215 184 368 1054 1095 43504
SFESA (O+G+M+S)+CNFpred 3038 157 97 166 825 625 44203

Table 1\V-13. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred (Matt as reference). All SFESA modes by using
different parameters (SFESA (O), SFESA (0O+G), SFESA (O+G+M) and SFESA
(O+G+M+S)) are compared with three existing alignment methods on the SALIGN

dataset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 3275 128 54 91 1062 432 46381
SFESA (0O+G)+PROMALS 2900 260 132 256 1804 825 45246
SFESA (O+G+M)+PROMALS 2801 286 171 290 2059 1006 44810
SFESA (O+G+M+S)+PROMALS 3113 230 88 117 1720 536 45619
SFESA (O)+HHpred 3323 28 20 25 189 172 47514
SFESA (0O+G)+HHpred 2932 165 124 175 596 525 46754
SFESA (O+G+M)+HHpred 2726 247 177 246 1060 797 46018
SFESA (O+G+M+S)+HHpred 3020 163 105 108 747 513 46615
SFESA (0O)+CNFpred 3277 68 49 64 521 438 46916
SFESA (O+G)+CNFpred 2794 227 175 262 1258 1199 45418
SFESA (O+G+M)+CNFpred 2691 232 212 323 1207 1341 45327
SFESA (O+G+M+S)+CNFpred 3038 167 110 143 919 746 46210

Table 1V-14. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred (Deepalign as reference). All SFESA modes by
using different parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA
(O+G+M+S)) are compared with three existing alignment methods on the SALIGN

dataset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Domain  Domain  Unshifted Blocks Blocks Blocks Positions  Positions  Positions
1 2 Blocks (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=
Original)  Original) Original) Original) Original) Original)

lgfeA_ 1rlcL_ 14 0 0 2 0 0 206
3adkA_  1nstA_ 6 2 0 2 25 3 130
lbarA_ 1xyfA_ 11 1 0 2 1 0 110
1feyA_ lregA_ 12 3 0 0 11 0 202
1dioA_  1gfeA 14 0 0 0 0 0 208
lez3A  1fewA 2 0 1 0 0 1 120
1dioA_  1d9%A 18 0 0 3 0 0 209
1gfeA_  ldxeA_ 14 1 0 0 16 0 164
1gfeA_ 1laldA_ 9 0 0 4 0 0 199
InsjA_ 1regA_ 11 0 0 1 0 0 188
1gfeA_  1nsjA_ 11 2 2 0 15 19 142
ldxeA  1f61A 14 1 1 0 5 5 189
2asrA_ loccC_ 4 0 0 0 0 0 126
1fioA_  3c98B_ 6 0 0 0 0 0 177
1ch8A_  1lgazA 9 1 0 1 17 0 228
1gfeA_  1f6yA_ 13 1 1 2 6 1 187
lnall_ 1gtwA 13 0 1 2 0 7 190
1rpxA_ 1dioA_ 14 1 0 0 6 0 178
1dtyA_ 1b9hA 20 2 2 0 14 9 269
lczfA_ 1tspA_ 44 0 1 4 0 6 274
1bs2A  1a8hA_ 16 2 0 0 38 0 324
ldorB_  1nall_ 11 4 1 1 25 1 170
1piiA_  ldxeA_ 11 1 0 2 12 1 176
lawlB_ 1dosA _ 12 1 2 0 4 4 205
1fq0A_  1grgA_ 17 2 1 0 10 1 176
InsjA_ 2reqB_ 13 0 0 1 0 0 185
5rubB_ 1thfD_ 12 2 0 1 10 0 171
1cqgA_  1lculA_ 12 0 0 4 0 0 135
ldxeA_  1rpxA_ 12 1 1 0 6 1 181
1wkdA _ 1gfeA 14 2 1 0 19 11 175
2mnrA_ 1dorB_ 18 0 0 3 0 0 189
laklA_ 1ggoA 13 1 1 0 5 4 225
1de5A  1aOcA_ 19 2 0 3 13 1 306
1fq0A_  1pscA_ 15 0 0 3 0 0 183
ldaeA_  1nipA_ 9 2 1 1 10 3 165
1a80A_  1fg0A_ 14 0 1 0 0 5 177
lnall 1fq0A_ 12 2 1 0 13 7 158
1ghtA_  1noyA_ 22 0 0 0 0 0 282
lnall lezwA 16 1 0 2 9 0 183



ldxeA
2ercA_
lnall_
ImpfA_
2thiA_
lawlB_
1culA_
1fohB_
1dfoA
1vjsA_
1fq0A
1igsA_
ludrB_
1b9hA
4kbpB_
2tpsA_
InksF_
ladiB_
1lnoyA
1agxA_
1cjOA_
1ftsA_
leokA
1dfoA
1dfoA
lagnA_
1dgyA_
1fofA_
1d2fB_
lnzyA_
1glwA_
lawlB_
ledtA
1chmA_
1b5IA
1c3gA_
lawlB_
1c0aA _
ladlB_
1b9hA
1b3uA_
1judA_
1a9nA _

1fq0A
leizA _
lawlB
1a0tP_
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1feyA_
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lad1B_
1go0D _
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1ghwA _
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1qr7B_
1tgoA
1fpkA_
1b9hA _
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1d2KA
1bs0A _
lelgA
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1broA
1skfA
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1tyfB_
lauoA
1fq0A_
1ctnA
IXgmA_
levsA
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laldA
12asA
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librB_
1fezA_
1dObA_
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152
131
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125
102
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1d9%eA
ligsA_
lamoA _
1plgA_
ladlB_
1n5wC_
loalA
1cjOA_
2hrvA _
1b54A_
lahuA _
leutA
1dubA
1rkdA
1ez0C _
1vptA_
2tmdA_
lohvA _
1cqqA_
1d9eA_
ladlB_
1qu4D_
1aj6A_
1qrrA_
litgA
3adkA
lhavA_
1quOA_
3minA_
1bciA _
ltagA
1ldcA _
leizA_
2pueA_
lchmA _
1ciuA_
1ldcnB_
1rptA_
12asA
1smpA_
IxgmA_
1d9eA
1dmOL_

1fq0A
1fq0A _
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1sftB
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2isdA _
1a76A _
1dorB_
2admA _
1bykA
1matA
1vjsA_
1c3cA _
lihpA_
1b8aA
1kuhA _
1al6A
InsjA_
1tcsA
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162
157
126
187
168
267
385
263
115
184
419
128
135
198
404
146
257
370
114
206
174
256
146
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130
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128
155
406

86
228
213
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345
380
280
259
122
197
167
214
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1gr7B_  1d9eA_ 19 0 1 0 0 2 241
lgnwA_  leemA_ 10 0 1 0 0 1 190
ldpeA_  1rkmA_ 32 1 0 0 9 0 460
larlB_  1fftB_ 12 1 0 0 1 0 211
1ttpB_ loasA 18 0 1 0 0 2 291
lnall_ 1thfD_ 13 1 1 1 1 8 186
lag8A  1ez0C_ 31 3 0 0 10 5 425
1qgiA_  1chkA_ 12 0 0 1 0 0 215
legxA_ 1gfiA_ 16 0 1 0 0 1 129
1dilA_  leutA_ 20 4 0 1 35 1 292
ladlB_  1d9eA_ 12 2 2 2 6 9 196
1dObA_  1yrgA_ 23 0 0 0 0 0 153
1c3cA_  1fuoA_ 16 0 1 0 0 8 366
1dfjl_ 1yrgA_ 28 0 0 3 0 0 313
1tdjA_  loasA_ 19 0 0 0 0 0 294
leemA_  1gsdB_ 10 0 1 1 0 13 183
lhavA_  1cqgA_ 16 0 0 1 0 0 170
1uokA_  1ciuA_ 29 1 0 1 9 0 394
1lirvA_ 1b3uA_ 16 0 0 0 0 0 214
1dgdA_ 1lohvA_ 22 2 0 0 15 1 382
1bw9A_ 3mwoA _ 23 1 0 0 8 0 318
loccC_  1fftC_ 5 0 0 0 0 0 177
IxelA_  1db3A_ 15 1 0 1 4 0 286
1bggA_  1fhuA_ 19 1 1 0 1 1 269
ImatA_  1bn5A_ 17 2 0 1 9 0 227
lahnA_  lamoA_ 10 0 0 0 0 0 145
1fblA_  1kuhA_ 5 2 0 0 6 0 114
1dfjl_ 1dObA _ 9 0 0 0 0 0 182
ldaaA_  letOA_ 20 2 0 0 15 0 234
limaA_  1qgxA_ 17 2 0 2 10 0 241
1ciuA_  2aaaA_ 23 3 1 0 19 11 409
1db3A_  1bxkA_ 17 2 1 0 8 1 282
lwhsB_  livyA_ 8 0 0 0 0 0 147
lovaA_  1sekA_ 22 3 0 0 21 1 337
leurA_  1sllA_ 22 1 2 0 6 6 327
7ahlA_  1pvlA_ 18 0 0 0 0 0 233
1gpmA_ 1qdIB_ 16 1 1 0 8 2 176
lwhsB_  1cpyA_ 9 0 0 0 0 0 142
lipsB_  1dcsA_ 14 1 0 0 1 0 243
1b5fA_ 1fknA_ 17 1 0 0 10 0 217
ldarA_  1dpfA_ 11 0 0 2 0 0 146
2rebA_ 1cr2A_ 10 3 2 0 13 23 147
1tIfC_ 2pueA 19 0 1 0 0 13 259



1dxyA
1psdA_
4tf4B_
llyaD_
IxffB_
1fiqC_
lac5A
2shpA_
liovA _
4mhtA_
lregA
IcpyA_
2plcA _
1d2kA
IxgmA _
1lag8A_
1whsA
lahsB_
laulB_
lagrE_
latiA_
lahuA_
lhrdA
1ciyA_
1kobB _
1froA_
letuA
1tcsA
llarA_
1vibA _
1vibA
leepA_

1psdA
1gdhA_
InbcA_
1fknA_
1ct9A
1vibA _
IcpyA_
1yptA_
lehiA
1dctA_
1cbh7A_
livyA _
2isdA
1ctnA_
ImatA
leuhA_
TcpyA_
1bvpd
1b5IA
lemuA_
1qf6A_
1diiA_
1gtmA _
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1a06A _
1fa6B_
ldarA_
3rjA_
1ptyA
1n5wWA _
1figA_
1dorB_
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Table IV-15. The alignment block-level and aligned position-level comparison for each
alignment of SFESA (O+G+M+S) applied on PROMALS on the SALIGN dataset (Dali

as a reference).

311
301
132
228
178
695
393
223
289
276
129
356
207
353
229
466
224
125
143
124
349
511
399
553
260
124
144
240
272
155
149
223



152

Reference-dependent

Reference-independent

Methods (Q-score) (TM-score)
On subsets
SABmark_TWI SABmark SUP SABmark_TWI SABmark_SUP
PROMALS 46.2 71.1 0.413 0.583
SFESA (0)+PROMALS 47.3 713 0.416 0.585
SFESA (O+G)+PROMALS 48.0 718 0.416 0.585
SFESA (O+G+M)+PROMALS 47.9 719 0.416 0.586
SFESA (O+G+M+S)+PROMALS 48.1 72.1 0.416 0.587
HHpred 40.7 68.9 0.371 0.570
SFESA (O)+HHpred 40.6 69.0 0.371 0.570
SFESA (O+G)+HHpred 41.3 69.1 0.372 0.571
SFESA (O+G+M)+HHpred 414 69.6 0.372 0.571
SFESA (O+G+M+S)+HHpred 41.3 69.4 0.373 0571
CNFpred 41.5 66.1 0.368 0.543
SFESA (O)+CNFpred 41.6 66.4 0.367 0.545
SFESA (O+G)+CNFpred 42.3 67.0 0.370 0.545
SFESA (O+G+M)+CNFpred 42.4 67.4 0.371 0.545
SFESA (O+G+M+S)+CNFpred 42.2 66.9 0.370 0.545

Table 1V-16. Test on SABmark database. Columns 2-3 indicate the alignment Q-score
based on their reference on two subsets of the SABmark benchmark: “twilight zone” and
“superfamilies” respectively (Reference-dependent evaluation). Columns 4-5 indicate the
average of query model’s TM-score built by Modeller on two subsets of the SABmark
benchmark: “twilight zone” and “superfamilies” respectively (Reference-independent
evaluation). Bold indicates the best performance in the subsection. Bold with underscore
indicates the overall best performance in one column.



153

Method/(p-value) SABmark_twi SABmark_sup
SFESA(O)+PROMALS 4.39-04 0.15
SFESA(O+G)+PROMALS 3.07e-03 1.28e-03
SFESA(O+G+M)+PROMALS 2.35e-03 3.33e-04
SFESA(O+G+M+S)+PROMALS 2.30e-04 1.43e-06
Method/(p-value) HHpred HHpred
SFESA(O)+HHpred 0.18 0.48
SFESA(O+G)+HHpred 3.79e-02 0.099
SFESA(O+G+M)+HHpred 1.37e-02 1.41e-04
SFESA(O+G+M+S)+HHpred 1.11e-02 3.74e-05
Method/(p-value) CNFpred CNFpred
SFESA(O)+CNFpred 0.43 3.29e-02
SFESA(O+G)+CNFpred 0.068 4.25e-04
SFESA(O+G+M)+CNFpred 3.67e-02 2.38e-06
SFESA(O+G+M+S)+CNFpred 2.74e-02 1.57e-05

Table 1V-17. Statistically significant Q-Score improvement of SFESA on PROMALS,
HHpred and CNFpred (SABMARK as reference). All SFESA modes by using different
parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S))
are compared with three existing alignment methods on SABMARK dataset. P-values are
calculated based on the paired Wilcoxon signed-rank. P-values below 0.05 are marked
green and below 0.005 are marked pink.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 1629 31 16 68 242 74 13199
SFESA (0O+G)+PROMALS 1367 75 53 249 558 329 12628
SFESA (O+G+M)+PROMALS 1344 79 57 264 562 321 12632
SFESA (O+G+M+S)+PROMALS 1512 61 32 139 432 180 12903
SFESA (O)+HHpred 1293 2 7 18 11 25 13479
SFESA (0O+G)+HHpred 1137 36 23 124 150 79 13286
SFESA (O+G+M)+HHpred 1089 55 25 151 202 113 13200
SFESA (O+G+M+S)+HHpred 1202 35 15 68 154 60 13301
SFESA (0O)+CNFpred 1152 15 17 39 131 100 13284
SFESA (O+G)+CNFpred 924 71 41 187 391 281 12843
SFESA (O+G+M)+CNFpred 903 73 39 208 370 238 12907
SFESA (O+G+M+S)+CNFpred 1035 49 23 116 283 176 13056

Table 1\VV-18. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters
(SFESA (O), SFESA (0O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared

with three existing alignment methods on the SABMARK ““twilight zone” subset.
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Shifted Shifted Shifted Aligned  Aligned  Aligned

Domain  Domain Unshifted  Blocks Blocks Blocks  Positions Positions Positions
1 2 Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=
Original) Original) Original) Original) Original) Original)

1h97a_  1jboa_ 6 0 1 0 0 3 103
1lrzal 1setal 2 0 0 0 0 0 49
1c52_  1e29a_ 6 0 0 0 0 0 54
lbjaa_  1jhga_ 4 1 0 0 14 0 38
Invmal 1loaia_ 3 0 0 0 0 0 39
lg4da_  1nd9a_ 4 1 0 0 13 0 13
lhciad  1jnral 3 0 0 0 0 0 61
lgjta_ 1kixal 4 0 0 0 0 0 39
lerd_ 2erl__ 3 0 0 0 0 0 24
lail__ 1fyja_ 2 0 0 0 0 0 42
1k99a_  1qrva_ 4 0 0 0 0 0 54
1kx5d_  1nljb_ 3 0 1 0 0 1 61
leexg_  lom2a_ 3 0 0 1 0 0 0
lhela_  2liga_ 3 0 0 1 0 0 65
Imxra_  1noga_ 5 0 0 0 0 0 73
lhzia_  1lki__ 3 0 0 1 0 0 70
1f4lal livsa2 7 0 0 0 0 0 86
ldvba_  1l0ia_ 4 0 0 0 0 0 60
lis2al 1jgial 6 0 0 0 0 0 84
ljoya_  1nkd__ 1 0 0 1 0 0 0
licBa2  1lvpwal 4 0 0 0 0 0 41
lalaa_  1mdya_ 2 0 0 0 0 0 40
ldgea_  2chblal 5 0 0 0 0 0 54
lbkra_  1h67a_ 5 0 0 0 0 0 71
lbaza_  2cpga_ 2 0 0 0 0 0 29
1kOmal 1k3yal 7 0 0 0 0 0 90
lbmtal 1khdal 4 0 0 0 0 0 53
lhs7a_  1lvfa_ 3 0 0 0 0 0 76
lde4cl  2cbla2 3 0 1 0 0 17 40
lbea 1fkba_ 4 0 0 1 0 0 47
1b4fa_  1cuk_2 4 1 0 0 9 0 46
ledla.  1mn8a_ 4 0 0 1 0 0 56
119la_ 1n69a_ 4 0 0 0 0 0 30
1g7da_  1m2vbl 3 0 0 1 0 0 50
1h4ld . 1jkw 2 4 0 0 2 0 0 59
1d2zb_ 1n3ka_ 5 0 0 0 0 0 67
1jr3al 1jr3dl 6 0 0 0 0 0 75
1ko9al 1ngna_ 6 0 0 0 0 0 87
1fOyal  1nleal 4 0 0 1 0 0 43
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1lféal lgaza_ 7 1 0 1 17 0 103
lpbwa_  1wer__ 8 0 0 1 0 0 48
1h6kal 1ld8a_ 10 0 0 2 0 0 64
llwba_  1poc__ 5 0 0 0 0 0 28
1e79i_ 1tbge 1 0 0 0 0 0 0
1ftsa 3caoa_ 5 0 0 0 0 0 19
ljilal ljmxad 9 0 0 3 0 0 47
leSba_  1h6fa_ 6 0 0 2 0 0 57
1f86a_  1ghoa2 4 0 0 4 0 0 58
ljzga_  1kzgal 9 0 0 0 0 0 72
ldcea2  1gpxa2 5 2 1 0 17 2 46
l1bhu__  1cOla_ 4 0 0 1 0 0 45
1jz8a3 1xnaa_ 10 0 1 0 0 1 83
lahsa_  1flcal 6 0 0 3 0 0 51
ldmza_  1g6ga_ 11 0 0 0 0 0 89
Inltal  2nlra_ 12 0 0 4 0 0 90
1jz8a4  1n70a3 11 1 1 2 5 9 117
1fgta_ lo7nal 12 0 0 0 0 0 82
lilja_ lvie 6 0 0 0 0 0 41
lauua_  1p3ha_ 3 0 0 3 0 0 30
lkwaa_ 1mfga 7 1 0 0 8 0 64
1d3ba_  1mgga_ 9 0 0 0 0 0 62
li40a_  loT7ia_ 6 1 0 2 7 0 48
1bfg  1hcd__ 10 2 0 0 14 1 78
la8p_1 1n08a_ 7 1 0 0 2 0 64
1flma_  1liOra_ 10 0 1 0 0 1 64
lbefa_  lhava_ 15 1 0 0 8 0 101
leulal 1g8kal 10 0 0 1 0 0 87
1k5db_  1mixa2 6 0 1 0 0 2 64
lifc_ 1qgfta_ 6 1 1 3 6 8 59
lei5a2  1jmxab 6 0 0 1 0 0 65
leBua_  1k32a2 14 1 0 8 8 0 36
1fwxa2  1k32a3 25 0 0 2 0 0 135
1g5aal  1gjwal 5 1 1 0 3 8 42
lgoial  1pinal 2 0 0 1 0 0 11
liSpa2  1vmoa_ 11 0 0 2 0 0 89
ldaba_  1k4za_ 18 0 0 2 0 0 29
1qrea_  3tdt__ 22 0 0 3 0 0 100
1gy9a_  1ligOal 9 0 0 1 0 0 65
lbdo  1k8ma_ 7 1 0 0 5 0 57
leuwa_  4ubpb_ 5 0 0 0 0 0 27
litua_ 1kblal 17 0 0 2 0 0 71
lhxha_ looea 12 1 0 0 6 0 174



1gtea3
1lhl6a
lkid__
ladya_
lon3al
lcdza
loeda_
1fjgb_
lep3b2
1k92al
1b6ra2
1poxal
loi2al
1kekal
le6ca
leaf
liiba_
1d5ra2
1knga
1keka3
lgytal
1crza2
ldmua_
1dt9al
la2za
1clda2
1fsga_
latza
laf7_2
1c4ka2
1hm9a2
lju3a2
1duvgl
1j6na_
1k2yx2
1n2za_
2liv__
1la8e
lhnja2
lain_1
liOva_
1531
1gx3a_

1m6ia2
1hk8a_
115ja2
ligral
1tyfa
110bal
3euga_
Im2fa_
1fdr 2
1n2ea_
liow 1
1pvdal
1tubal
1qgdal
lkhta_
115aal
1jf8a_
1fpza_
1gmhal
1ggda3
lhjza_
lex2a_
1fiva_
1j54a_
llam 2
1lu9a2
1g2ga_
1mixb2
lnw3a_
lelua_
li52a_
3tgl__
1jfla2
1gopb_
1kfia2
1agoa_
8abp__
3thia_
lox0a2
lain_2
llnia_
lagia_
2ch5a
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65
61
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43
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52
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55
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1fr2b
1d9na_
lguga2
1pkp_1
1f52al
1cOpa2
1gy7a_
1hdmb2
ljnda2
1kw3bl
llo7a_
1brwa3
1buoa
1knOa_
ldtja_
legaa?
1hOhb_
1fjgd_
1f7ua3
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1cf202
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last
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lhzta
1byqa_
1g6la_
1f46a_
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1ckma?2
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119val
luekal
115pa_
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1pina2
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lqu6a2
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1fjgcl
Inxia_
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lig0a3
1nj8a2
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1tuba?
lotfa_
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3grs_3
1mb5a_
ljaka2
2plda_
1dg3a4
luox_1
1seta?
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29
21
58
53
28
68
51
57
16
40
92
42
43
47
53
68
14
49
58
49
62
56
47
47
86
71
54
68
65
77
132
112
88
38
99
108
91
66
70
59
61
107
53



1gdoa_
le5da2
lii7a_
1b8pa2
1a26_2
1chua3
lgltal
lhhsa_
1feza
likpa3
1p4ta_
li2ua_
1kbaa
1tocrl
lewsa
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1mubal
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68
164
141
130

80
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108
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49
17
23
42

10
30
48

40
37
19
27

17

42

36
131
35

69
54
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16
76
36
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Table 1V-19. The alignment block-level and aligned position-level comparison for each
alignment of SFESA (O+G+M+S) applied on PROMALS on the SABMARK twilight
dataset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 3959 38 35 98 287 202 40063
SFESA (0O+G)+PROMALS 3555 131 95 349 789 491 39272
SFESA (O+G+M)+PROMALS 3510 144 109 367 879 519 39154
SFESA (O+G+M+S)+PROMALS 3781 109 49 191 755 275 39522
SFESA (O)+HHpred 3748 10 11 43 79 79 40394
SFESA (0O+G)+HHpred 3467 73 48 224 256 167 40129
SFESA (O+G+M)+HHpred 3335 134 67 276 519 228 39805
SFESA (O+G+M+S)+HHpred 3591 78 27 116 323 94 40135
SFESA (0O)+CNFpred 3385 35 29 71 294 182 40076
SFESA (O+G)+CNFpred 2880 185 97 358 834 497 39221
SFESA (O+G+M)+CNFpred 2857 195 97 371 863 420 39269
SFESA (O+G+M+S)+CNFpred 3146 137 48 189 676 297 39579

Table 1\VV-20. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters
(SFESA (O), SFESA (0O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared
with three existing alignment methods on the SABMARK “superfamily” subset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Domain 1 Domain  Unshifted Blocks Blocks Blocks Positions  Positions  Positions
2 Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)

1b8da lla6a_ 6 0 1 0 0 2 114
1gteal 1nekbl 5 1 0 0 11 0 57
1gh6a_ Ixbl__ 3 0 0 0 0 0 42
leiyal livsal 3 0 0 0 0 0 53
lap6al 1bsmal 2 0 0 0 0 0 65
19l3a_ lycc 6 0 0 0 0 0 91
le3ocl lig7a_ 3 0 0 0 0 0 45
Imgtal 1sfe 1 4 0 0 0 0 0 75
1c20a_ lig6a_ 6 0 0 0 0 0 59
ljgsa_ 1p4xa2 7 0 0 0 0 0 103
la04al 1fsea_ 4 0 0 0 0 0 58
1fdia_ lotra_ 3 0 0 0 0 0 39
1fjgm_ 1k3xal 3 0 0 0 0 0 53
1d4ual 1g4da_ 4 0 0 1 0 0 50
lcunal 2spca_ 2 0 0 0 0 0 51
1kf6al 1glaal 8 0 0 0 0 0 107
lgab lgjta_ 3 0 0 0 0 0 35
lerd__ 1hd6a_ 3 0 0 0 0 0 28
lhdral I1mixal 4 0 0 0 0 0 74
1la32__ 1fyja_ 2 0 0 0 0 0 38
lilla_ 1k99a 4 0 0 0 0 0 52
1kx5c_ Inljb_ 4 0 0 0 0 0 64
lcpg__ ljafa_ 4 0 0 0 0 0 110
lcgme_ lei7a_ 9 0 0 0 0 0 84
lis2a2 1jgial 5 0 0 2 0 0 77
1lo9ra_ lggha_ 5 0 0 0 0 0 129
lilrb_ Imdra_ 4 1 0 0 19 0 48
1ffyal 1li5al 4 0 0 0 0 0 43
laf8__ ldnya_ 4 0 0 0 0 0 50
1dldal 1grjbl 4 0 0 0 0 0 61
1fts 1 llslal 4 0 0 0 0 0 59
leqgfal leqgfa2 6 0 0 0 0 0 105
1lmb3_  1lner__ 4 0 0 0 0 0 55
landa_ Imdya_ 2 0 0 0 0 0 28
1m3la_  lwdcc_ 6 0 0 0 0 0 60
laoa_2 1mb8a2 5 0 0 0 0 0 87
lcmba_  lirga_ 1 0 1 0 0 10 31
ldugal 1f2eal 5 0 0 0 0 0 109
lol7al 2tpt_1 4 0 0 0 0 0 64
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lez3a_ llvfa_ 2 0 0 1 0 0 77
lbea 116ha_ 4 0 0 1 0 0 43
lowfa_ lowfb_ 8 0 0 0 0 0 62
1fodal lhiral 4 0 0 0 0 0 61
1b4fa_ ldxsa 5 0 0 0 0 0 45
lcuk 2 1dgsal 4 0 0 0 0 0 62
1la77_1 1bgxtl 4 0 0 0 0 0 27
labs__ Imn8a_ 4 0 0 0 0 0 49
1191a_ 1ml2a_ 4 0 0 1 0 0 60
laxn__ 1n00a_ 18 0 0 0 0 0 292
le79al 1fx0al 6 0 0 0 0 0 75
lem9a_  2eiaa2 5 0 0 0 0 0 102
laish2 lvolal 5 0 0 0 0 0 87
1d2za_ ldgna_ 4 1 0 1 10 2 61
1jr3al 1jr3dl 6 0 0 0 0 0 75
1fSxa_ 1kilbl 10 0 0 0 0 0 94
lcmza_  lomwal 7 0 0 0 0 0 106
Imn2__  1mwval 18 0 0 0 0 0 160
Impgal 2abk 9 0 0 0 0 0 132
1np7al 1gnf_1 10 0 0 0 0 0 227
Imv8al  1pgjal 3 1 0 0 10 0 64
1fp3a_ 109ga_ 21 0 0 3 0 0 141
1j0mal 1n70al 18 0 0 0 0 0 294
1c3d__ 11d8b_ 15 0 0 0 0 0 197
1a59 lioma_ 19 0 0 0 0 0 299
le9xa 1n6ba_ 24 1 0 0 16 0 213
1ghba_ lvns 17 0 0 0 0 0 0
lpbwa_  lwer__ 8 0 0 1 0 0 48
1h6kal 1n8va_ 5 0 0 0 0 0 43
lawcb_  lycsbl 8 0 0 0 0 0 106
lal7__ liyga_ 7 0 0 0 0 0 94
ldvpal lelka_ 8 0 0 0 0 0 82
1n83a_ 2prga_ 11 1 0 0 5 0 202
lak0__ 1cal l 9 1 0 0 17 0 126
1kxpd2 1n5ua3 9 0 0 0 0 0 163
lhyOa ljswa_ 18 0 0 0 0 0 271
lgdia_ 1lfja_ 5 0 0 0 0 0 110
ldxrc_ 3cyr__ 4 0 0 0 0 0 0
1b88a_ ljmaa_ 5 1 0 2 11 0 73
1cfb_2 1n6va2 4 2 0 1 16 0 51
1jz8al 1jz8a2 6 0 0 1 0 0 64
1f13a2 1f13a3 7 1 0 0 3 0 74
113wa3 113wa4d 7 0 0 0 0 0 91
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lakp 1j48a_ 9 1 0 0 1 0 103
1do5a_ lej8a_ 9 0 0 0 0 0 89
lgyva_ 1kyfal 9 0 0 0 0 0 90
lcwva? lcwvad 6 0 0 2 0 0 44
le5ba_ lglka 6 0 0 1 0 0 60
lamx__  1n67a2 8 3 1 0 20 2 69
lbvoa 1h6fa_ 9 1 0 2 4 0 81
lpama2  1ghoa2 6 1 0 0 1 0 93
leo9a_ leo9b 11 0 0 0 0 0 120
laoza2 1kv7a2 11 1 0 0 9 0 97
ldsya 1k5wa_ 7 1 0 1 1 0 109
1k2fa_ 1lb6a_ 5 0 0 4 0 0 92
1bhu__  1hdaxl 5 0 0 1 0 0 49
1pgs 1 1phm_2 7 0 0 1 0 0 72
1hx6a2 lruxa2 9 0 0 1 0 0 92
lgmea_  1shsa_ 8 0 0 0 0 0 61
1kgya lofda_ 12 0 0 0 0 0 89
lahsa_ 1ghda2 8 1 0 1 10 0 56
1h7za_ 1kkeal 4 0 0 0 0 0 10
1kxga_ 2tnfa_ 10 1 0 0 12 0 108
1f1sa3 1j0ma2 6 0 1 2 0 1 54
1g6ga_ lgxca_ 11 0 0 0 0 0 91
1kit_2 3btaal 10 0 0 2 0 0 111
1fqta_ Irfs 11 1 0 2 8 1 71
1bia_2 ligga_ 3 0 1 0 0 3 29
1jo8a_ lneb 6 0 0 0 0 0 48
lvie 2ahjb_ 5 1 0 1 2 0 43
1jj2s_ 1mlga2 6 0 0 0 0 0 43
laono_ 1g3la_ 4 0 0 0 0 0 58
lihja_ Intea_ 6 0 0 0 0 0 76
1d3ba_ 1h641 9 0 0 0 0 0 65
lenfal 3chbd_ 5 1 0 1 6 0 53
1br9 1jb3a_ 9 0 1 1 0 4 73
1fgua2 1gmba2 8 0 0 0 0 0 70
1e9ga_ 2prd__ 12 0 0 0 0 0 141
lguta_ 1h9ma2 6 0 0 0 0 0 59
lnuna_ 1qqgla_ 12 0 0 0 0 0 121
1ggpbl 1m2th2 12 1 0 0 5 0 100
lepwa2  leyla_ 12 0 0 0 0 0 128
1dfca2 lhcd 11 0 0 0 0 0 83
1f60al 1nOual 8 1 0 0 2 0 72
lexma2  1f60a2 8 0 0 0 0 0 55
1flma_ liOra_ 10 0 1 0 0 1 64
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lekbb 1rfna_ 20 0 0 0 0 0 210
1e79a2 1fx0b2 5 0 0 1 0 0 50
lidaa_ 11f2a_ 8 2 0 1 8 0 66
1ffya2 1h3na2 12 0 0 2 0 0 117
1cz4al 1hOhal 9 1 0 0 10 0 54
1h4ra2 1mixa2 7 1 0 0 1 0 81
la49al leOtal 10 0 0 0 0 0 71
1ggla_ 1koia_ 5 1 0 3 10 0 70
1la33 llopa_ 19 0 0 0 0 0 124
litva_ lpex__ 16 1 0 0 9 0 158
leur 2bat__ 13 0 2 6 0 11 104
1nr0a2 1p22a2 23 2 2 2 15 3 220
le43al 1ji2a2 4 3 0 1 15 1 59
lo6wa2  1pinal 3 0 0 0 0 0 26
1jdOa_ 1kopa_ 14 0 1 0 0 2 178
lciy_2 1li5pa2 6 0 1 3 0 10 99
ljpc__ 1kjld_ 12 0 0 0 0 0 77
1kbca lgcxa_ 30 2 0 4 7 0 174
lixa 1grea_ 25 0 0 2 0 0 0
lepOa_ 2phlal 14 1 1 0 2 10 68
lgpba lodma_ 16 0 0 1 0 0 125
1i5za2 1rgs 2 11 0 0 0 0 0 99
1dd2a_ lhtp__ 6 0 0 2 3 3 51
ldvlal le2wa?2 2 0 0 3 0 0 34
lgpr 29pr__ 15 0 0 0 0 0 132
1e9yal lejxb_ 7 0 0 0 0 0 84
leuwa_  logha_ 13 0 0 0 0 0 94
llyxa_ 1n55a_ 14 0 0 1 0 0 200
1a53 leixa_ 10 2 1 1 15 15 145
lep3a_ loyb_ 19 0 0 0 0 0 160
1j96a_ 1llgaa_ 20 1 0 0 5 0 237
liexal Ttaa_2 15 0 0 1 0 0 139
1bf6a_ 1k6wa2 20 0 0 2 0 0 206
1n8fa_ 100ya_ 12 1 0 3 11 0 122
ljpmal 2mnr_1 17 0 0 0 0 0 184
ldxea_ 1f8ma_ 17 0 0 0 0 0 157
laOca_ 1qgtwa_ 13 1 0 1 10 6 227
lezwa_  1lluch_ 22 0 0 1 0 0 164
2plc__ 2ptd__ 15 0 0 0 0 0 101
lccwb_ 7reqgal 16 0 1 1 0 5 269
lkewa_  1lqg6a_ 10 3 1 0 11 2 134
1feca2 1lvl_2 9 0 0 1 0 0 103
ldysa_ itml__ 18 1 0 0 12 2 176
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1hl6a_ 1hk8a_ 24 0 0 1 0 0 0
1fqva2 lio0a_ 10 0 0 1 0 0 130
la9na_ 1p9ag_ 14 0 0 0 0 0 92
1nzya_ lon3al 11 1 1 0 5 12 121
1dgth3 110bal 7 0 0 0 0 0 39
1c2ya_ lejba_ 9 0 0 0 0 0 131
llaue loeda_ 13 0 2 0 0 22 111
1m2fa_  1tmy 10 0 0 0 0 0 84
le5dal 2fcr 9 1 0 0 7 0 118
1bmta2 7regb2 10 0 0 0 0 0 97
lesc 1k7ca_ 15 1 0 0 1 0 88
lgqoa_ lj2ya_ 9 0 0 0 0 0 132
1peOa_ 1qdib_ 12 1 0 0 8 0 103
lque_2 2cnd_2 11 0 0 0 0 0 102
lcoza 1f7ua2 8 0 1 0 0 1 97
1j20al ljmva_ 7 0 1 1 0 5 88
1dnpa2 1gnf 2 10 0 0 0 0 0 131
1gsoa2 2hgsal 6 1 0 2 4 0 68
1d4oa_ 1m2ka_ 11 0 0 1 0 0 118
lofual 1tubal 12 1 0 0 8 0 153
limba_ lyaca 12 0 0 0 0 0 135
1keka2 lovma2 12 0 0 0 0 0 112
1f60a3 1jj7a_ 8 0 0 2 0 0 46
1p8ja2 1thm__ 12 2 2 0 8 9 223
1c3pa_ 1d3va_ 12 1 1 0 4 13 144
leaf 1noch_ 13 0 0 1 0 0 155
1jf8a_ lphr__ 7 0 0 0 0 0 119
1d5ra2 1lara2 11 0 0 0 0 0 126
leOcal 1rhs_1 10 0 0 0 0 0 66
1a8l_2 lerv__ 8 0 0 0 0 0 83
1dtwb2 litza3 10 0 0 0 0 0 107
la3wa3  1ad9a3 9 0 0 0 0 0 86
1gytal lhjza_ 9 1 0 0 5 0 107
1hc7al 1nj8al 7 0 0 1 0 0 123
1f1za2 1fiva_ 7 0 0 1 0 0 55
lekja_ 1g5ca_ 10 0 0 0 0 0 100
1bu6ol 1czan2 7 0 0 3 0 0 44
1j54a_ 1jlla_ 8 0 0 1 0 0 33
1fjgk_ lilya_ 4 1 1 0 7 3 37
1b8oa_ 1k9sa_ 14 1 0 0 15 0 155
lloka_ 1mdla_ 11 0 0 1 0 0 137
1clda2 1nyta2 7 0 0 2 0 0 70
1h2ea_ 3pgm__ 11 0 0 1 0 0 161
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libea lgb7a_ 14 0 1 0 0 3 124
lijba_ 1m1xb2 13 0 0 0 0 0 147
ljgla_ ljgea 10 0 0 0 0 0 109
1jf9a_ 1tpla_ 21 2 0 1 13 0 201
lgxda_ 1hv9a2 12 1 2 4 9 10 115
1ju3a2 1kuOa_ 13 0 0 1 0 0 116
1df7a_ lvdra_ 12 0 0 1 0 0 133
lolda_ 1rkd__ 17 3 0 0 19 0 137
lel9 1gsba 21 0 0 1 0 0 147
ledbp_ 1kOwa_ 14 0 1 0 0 1 158
led8a_ 1k7ha_ 23 0 1 1 0 3 288
llwda_ 1xaa__ 19 1 0 1 1 0 205
lals 2 1ml4a2 10 0 0 0 0 0 143
1b74al 1b74a2 6 1 0 1 3 2 55
1j6na_ 1tdj 1 19 0 0 0 0 0 266
1c7qa_ liata_ 24 0 0 2 0 0 236
1g8ka2 1tmo_2 29 0 1 1 0 4 201
ladsa_ lez0a_ 32 1 1 0 19 2 340
1k2yx1 3pmga3 9 0 0 0 0 0 56
16pk__  1lhdia_ 31 0 0 1 0 0 350
1fOka_ ljixa_ 17 0 0 4 0 0 0
Innsa_ 4pgaa_ 23 0 0 0 0 0 289
lhrka 1ggoa_ 14 0 1 0 0 2 195
1n2za_ 1psza_ 16 0 0 0 0 0 137
ljyea_ 2liv__ 18 1 0 1 10 0 93
lamf__  lwdna_ 18 0 0 2 0 0 105
lhzpal 1mzja2 11 0 0 0 0 0 91
laln_2 luaga_ 5 1 1 0 4 6 57
la2pa_ liOva_ 6 0 0 1 0 0 47
lgd6a_ 1qgia_ 5 0 0 0 0 0 77
lgmya_ 2cb5a_ 9 0 1 1 0 6 71
le7la2 1fr2b_ 5 0 0 0 0 0 21
lagi Irnfa_ 10 0 0 0 0 0 88
1j90a_ 1qg7a_ 4 0 0 0 0 0 37
leOba lknaa_ 4 1 0 0 2 0 44
1kjka 1gk9a_ 3 1 0 0 4 0 30
1jj21_ 1n88a_ 3 0 0 2 0 0 51
lguqga2 1kpf 7 0 0 0 0 0 67
leilal 1kkhal 10 0 0 1 0 0 80
17ya_ 1mg8a_ 4 1 0 0 6 0 60
1d4ba_ 1f2ri_ 7 0 0 0 0 0 46
1f0za_ 1fm0d_ 5 0 0 1 0 0 44
1hlra2 1krha3 5 0 0 1 0 0 67
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1bmlc3 lggra_ 7 0 0 0 0 0 43
lan8 2 3tss_2 8 0 0 0 0 0 96
1cOpa2 Imxta2 3 0 1 1 0 17 45
lcewi_ 1mola_ 5 0 0 0 0 0 69
1ksia2 loaca2 6 0 0 0 0 0 69
lgy6a_ locva_ 7 2 1 1 31 7 63
ljfma_ 3frua2 12 0 0 0 0 0 131
1cdzd_ 1j7da_ 7 1 0 0 7 0 93
1dzoa_ logva 5 0 0 0 0 0 33
1j6ya_ 1jnsa_ 8 0 0 0 0 0 76
1goia3 1hjxa2 7 0 0 0 0 0 60
lecsa_ llgpa_ 9 0 0 0 0 0 100
1c8ua2 llo7a_ 6 1 0 0 9 0 74
lcsei_ 1Iw6i_ 7 0 0 0 0 0 57
1fo4a3 1hlra3 9 0 0 0 0 0 96
lgapa? 1gpoa2 8 0 0 0 0 0 101
1tlda_ 3kvt__ 8 0 0 0 0 0 74
lefub2 lefub4 5 0 0 0 0 0 56
1bsma2 1mala2 8 0 0 0 0 0 111
1di2a_ 1knOa_ 3 1 0 0 10 0 46
1klga_ 2fmr__ 5 0 0 0 0 0 51
1hh2p2 1kOra2 5 0 0 0 0 0 74
lonea2 2mnr_2 7 0 0 2 0 0 93
ljnrb_ 7fdla_ 8 0 0 0 0 0 41
laye 2 ljgga2 7 0 0 0 0 0 77
lilga2  1lg9a_ 3 1 1 1 7 1 42
1nzaa 1plla_ 9 0 0 0 0 0 77
lehwa_  1nhkl_ 9 0 0 0 0 0 131
lowxa_  1lgm9a2 6 0 0 0 0 0 46
ldar_4 1nOua4 4 0 0 2 0 0 35
law0__  1feOa_ 6 0 0 0 0 0 63
1phzal 1psda3 4 2 0 0 21 0 41
1h72c2 1kvka2 8 0 1 0 0 1 107
lebyb2 1hbnb2 12 0 0 0 0 0 49
1djOal 1k8wa4d 8 0 0 0 0 0 55
1dm9a_  1jh3a_ 0 0 1 0 0 57
lehla lisla_ 10 0 0 0 0 0 182
lbwvs  1gk8i_ 6 0 0 0 0 0 66
1dzfa2 leika_ 4 0 0 0 0 0 14
1gd9a_ lufya 4 0 1 1 0 8 61
lofua2 1tubb2 6 1 0 0 9 0 70
1ck9a_ le7ka_ 8 0 0 0 0 0 83
lhfoa lotga 6 0 0 0 0 0 96
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1dih_2 1mb4a2 5 0 0 1 0 0 62
1dxla3 3lada3 8 0 0 0 0 0 123
1fodad ljroa3 8 0 0 0 0 0 81
112ma_  1tbd__ 5 1 0 0 1 0 78
lnox__  1vfra_ 12 0 0 0 0 0 166
1c7ka_ leb6a_ 5 0 0 1 0 0 66
ljaka2 lgba_4 10 0 0 0 0 0 69
la8la2 Imil__ 9 1 0 0 5 1 79
1klca_ lpch 7 0 0 0 0 0 80
1dqg3a3 1dqg3a4 5 1 0 0 3 0 65
1b66a_ 1b9la_ 6 0 0 0 0 0 71
12asa_ ljjca_ 14 1 0 0 5 0 152
liyka2 lufha_ 8 1 0 0 3 0 121
ljhwa3 1mdja_ 5 0 2 0 0 9 63
lacf lypra_ 10 0 0 1 0 0 108
ImcO0a2  1mkma2 6 2 1 0 19 5 80
lewOa_  1li8a_ 8 0 0 0 0 0 87
la6ja_ lhynp_ 12 0 0 0 0 0 103
1k2ea_ 1ktga_ 9 1 0 1 3 1 106
1bkpa_ 1tis__ 17 0 0 0 0 0 236
lexya 1kbia2 7 0 0 0 0 0 58
lbyga_ 1100a_ 6 0 0 0 0 0 76
ligga_ lucaa_ 12 0 0 0 0 0 164
1g6la_ ljdw__ 14 4 0 1 26 1 85
laz9 2 1lo0xa_ 16 0 0 0 0 0 190
1f52a2 1gh4a2 11 0 0 1 0 0 117
1ko9a2 lytbal 7 1 0 0 6 0 54
1kfiad 3pmgas 10 0 0 0 0 0 71
licxa ljssa 7 0 0 3 0 0 116
Imxa_3  1lgmda2 3 0 1 1 0 9 43
lizbal 2pola3 8 1 1 0 7 2 89
1foda5 1n62b2 32 1 0 2 2 0 441
lckv__ 1g10a_ 10 0 0 0 0 0 41
1jj2e2 1rl6al 6 1 0 0 4 0 54
liow 2 1kbla3 12 0 0 1 0 0 113
1blxa_ 1j7la_ 15 0 0 0 0 0 126
1diga2 1fOxa2 14 1 0 0 7 0 153
1f7la_ 1gr0a2 7 0 0 1 0 0 65
1gph12 1j2pa_ 11 0 0 2 0 0 89
lebda2 ljjea_ 16 1 0 1 11 0 163
1jk7a_ lutea_ 14 1 0 1 6 0 117
1b8pa2 lez4a? 11 0 0 1 3 3 155
lggpa_ 1qi7a_ 15 0 0 0 0 0 191



170

lgigal 1gsla2 13 0 0 0 0 0 169
1jnra3 1neka3 6 0 0 0 0 0 97
ljwib_ ljzna_ 11 0 0 0 0 0 95
1fzcbl 1fzda_ 11 0 0 0 0 0 158
1k9oi_ 1lj5a_ 22 0 0 1 0 0 192
lei5a3 les5a_ 15 2 0 0 15 0 129
1cf9a2 lgwea_ 25 0 0 0 0 0 440
1jqia2 3mdda2 14 0 0 0 0 0 202
llbva_ 2hhma_ 20 0 0 0 0 0 195
ljiha_ 1tgoa2 16 0 0 4 0 0 67
ldaaa liyea 19 1 0 0 9 0 230
1qg5a_ lzrn__ 14 0 0 0 0 0 182
loaoa_ loaoc_ 13 0 0 2 0 0 0
1a87__  lcola_ 10 0 0 0 0 0 139
lciy 3 li5pa3 9 0 0 0 0 0 182
1fl16a_ 1k3ka_ 9 0 0 0 0 0 78
llgha_ llghb_ 1 0 0 0 0 0 0
Immda_ 1qj8a_ 8 0 0 0 0 0 79
lby5a 2mpra_ 18 0 0 5 0 0 76
Immc__  9wgaa2 3 0 0 0 0 0 23
1dl0a_ leit__ 2 0 0 0 0 0 27
1jxca_ 1npia_ 3 0 0 0 0 0 30
ligra3 livoad 1 0 0 1 0 0 0
limt_1 1lpbal 2 0 0 0 0 0 15
lcvua2 lurk 1 4 0 0 0 0 0 18
ldec__ 1skz_2 0 0 0 0 0 0 17
lhc9a_  3ebx__ 5 0 0 0 0 0 49
laapa_ 1bik 1 3 0 0 0 0 0 53
ld6éba_  1kj6a_ 2 0 1 0 0 2 15
1bhtal li8na_ 6 0 0 1 0 0 60
1d2ja_ 1k7ba_ 2 0 0 0 0 0 32
1bhp__  lejga_ 4 0 0 0 0 0 45
1h8pa2 2hpgp_ 2 0 0 0 0 0 26
lpce 1sgpi_ 4 0 0 0 0 0 36
1hi7a_ 2pspa2 3 0 0 0 0 0 41
ljpya_ 1lxia_ 5 0 1 0 0 3 38
1g40a2 1gknal 5 0 0 0 0 0 37
1ndya 2ech__ 4 0 0 0 0 0 3
leaic_ 1hx2a_ 4 0 0 0 0 0 42
ljmabl logek 2 0 0 0 0 0 11
109aa2 1tpg 2 5 0 0 0 0 0 40
lhpi__ 2hipa_ 5 0 0 0 0 0 49
2gliad 5znf 3 0 0 0 0 0 23
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1d66al 1zmecl 2 0 0 0 0 0 27
libia2 1lata_ 3 0 0 0 0 0 26
la6bb ldsva_ 2 0 0 0 0 0 17
laky 2 1zin_2 4 0 0 0 0 0 14
1i50i1 lyua 1 1 0 0 2 0 0 24
1h7va_ 1rb9 7 0 0 0 0 0 27
1jj22_ 1nvha_ 5 0 0 0 0 0 9
liyma_ 1jm7a_ 5 0 0 2 0 0 0
ldmc__  ljjda_ 0 0 0 2 0 0 5
1kbea_ Ipta__ 6 0 0 0 0 0 42
ldvpa2 1fpOal 1 0 0 1 0 0 22
le3la_ 1gbha_ 9 0 0 0 0 0 39
la8p_1 2pia_1 7 0 0 0 0 0 79
lezval 110Ib1 13 0 0 0 0 0 189
1gjjal ljeia_ 2 0 0 0 0 0 35
lifwa_ ljgna_ 6 0 0 0 0 0 42
1h3za_ loila2 3 1 0 0 6 0 35
lje3a_ 1pava_ 4 0 0 0 0 0 50
1h3ga_ 1h8ma_ 7 0 0 1 0 0 102
1njla2 1nj8a2 6 0 0 0 0 0 43
ljegal 1kcfal 2 0 0 0 0 0 19
layl 2 1lii2a2 14 0 0 0 0 0 154
1lkvna_ linga_ 5 0 0 0 0 0 74
1jz8a4 Insza_ 24 1 0 5 6 0 96
Iclc 2 ledgal 7 1 0 1 9 0 46
1f5aad 1fa0ad 9 0 0 0 0 0 82
lel2a 1h2sa_ 9 0 0 0 0 0 92
1kdcc_ lorsc_ 4 0 0 1 0 0 43
1kféc_ 1nekd_ 3 0 0 1 0 0 34
1fftc_ locrc_ 5 0 0 0 0 0 129
1m56b2  locrb2 2 0 0 0 0 0 83
ldxrm_  1lgovl_ 9 0 0 0 0 0 217
lee8a?2 1nnja2 11 0 0 0 0 0 103
Im9sa3  1m9sas 8 0 0 0 0 0 57
1h3ia2 1n3ja_ 12 0 0 0 0 0 59
lihma_ 1k5ma_ 12 0 1 0 0 5 113
1c8da_ 1gff2_ 7 0 0 3 0 0 0
ldzla_ lvpsa_ 11 0 0 0 0 0 105
la3da_ 1stma_ 8 0 0 0 0 0 75
1ku3a_ 1100c_ 3 0 0 0 0 0 39
1g8fal 1iq8a3 8 0 0 1 0 0 47
liw7f3 lor7a2 5 0 0 0 0 0 69
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Table IV-21. The alignment block-level and aligned position-level comparison for each
alignment of SFESA (O+G+M+S) applied on PROMALS on the SABMARK
superfamily dataset.
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Method Al Set 1 Set 2 Set 3 Set 4
(1682/23.0)  (420/6.8) (421/14.9)  (420/23.1)  (421/48.4)

PROMALS 80.3 56.7 80.2 90.0 94.2
SFESA (0)+PROMALS 80.4 57.4 80.5 89.9 93.8
SFESA (0+G)+PROMALS 80.1 57.6 80.3 89.4 93.2
SFESA (O+G+M)+PROMALS 80.3 57.3 81.1 89.7 93.1
SFESA (O+G+M+S)+PROMALS 813 58.7 81.7 90.5 94.1
HHpred 78.0 46.6 80.2 90.3 94.7
SFESA (O)+HHpred 78.0 46.7 80.2 90.3 94.7
SFESA (0+G)+HHpred 78.3 47.2 80.6 90.5 94.9
SFESA (O+G+M)+HHpred 78.6 47.8 81.3 906 94.8
SFESA (O+G+M+S)+HHpred 8.6 a1 8l.1 20.6 24.9
CNFpred 80.5 56.3 81.7 89.6 94.5
SFESA (O)+CNFpred 81.0 57.1 82.1 90.2 94.6
SFESA (O+G)+CNFpred 81.2 57.3 82.3 90.3 94.7
SFESA (O+G+M)+CNFpred 81.2 57.2 82.8 90.3 94.6
SFESA (O+G+M+S)+CNFpred 81.3 57.5 82.8 90.4 94.6

Table 1V-22. Test on PREFAB database. Average Q-score is reported. The total 1682
PREFAB alignments are divided to four semi-equal-sized sets according to sequence
identity of the PROMALS alignment. The number of alignments and the average
sequence identity are in parenthesis beneath the set names. Bold indicates the best
performance in the subsection. Bold with underscore indicates the overall best
performance in one column.
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All Set 1 Set 2 Set 3 Set 4
(1682/23.0) (420/6.8) (421/14.9) (420/23.1) (421/48.4)
Method/(p-value) PROMALS PROMALS PROMALS PROMALS PROMALS
SFESA(O)+PROMALS 0.016 039¢-03  3.37e-02 0.14 SEATE
(worse)
SFESA(O+G)+PROMALS 0.13 3.98¢-03 0.1 0.44 Lo 0
(worse)
SFESA(O+G+M)+PROMALS 0.058 356e-02  5.45e-04 0.29 2(\/\5/2?52;3
SFESA(O+G+M+S)+PROMALS 0 7.93e-09 0 6.99e-05 0.46
Method/(p-value) HHpred HHpred HHpred HHpred HHpred
SFESA(O)+HHpred 0.45 0.41 0.21 0.15 0.34
SFESA(O+G)+HHpred 0 3.20e-04 5.77e-04 1.94e-04 1.14e-02
SFESA(O+G+M)+HHpred 0 7.74e-07 4.00e-09 3.75e-04 0.15
SFESA(O+G+M+S)+HHpred 0 2.61e-09 0 2.03e-06 6.23e-03
Method/(p-value) CNFpred CNFpred CNFpred CNFpred CNFpred
SFESA(O)+CNFpred 3.8e-09 1.68e-03 3.15e-03 1.32e-06 2.62e-03
SFESA(O+G)+CNFpred 0 9.34e-04 3.10e-04 0 9.27e-09
SFESA(O+G+M)+CNFpred 0 2.03e-02 1.92e-06 1.36e-08 1.29e-03
SFESA(O+G+M+S)+CNFpred 0 1.98e-04 3.18e-07 0 3.60e-06

Table 1V-23. Statistically significant Q-Score improvement of SFESA on PROMALS,
HHpred and CNFpred (PREFAB as reference). All SFESA modes by using different
parameters (SFESA (O), SFESA (O+G), SFESA (O+G+M) and SFESA (O+G+M+S))
are compared with three existing alignment methods on PREFAB dataset. P-values are
calculated based on the paired Wilcoxon signed-rank. P-values below 0.05 are marked
green and below 0.005 are marked pink.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 20856 389 403 560 2972 3145 259032
SFESA (0O+G)+PROMALS 19905 632 714 957 4189 5148 255812
SFESA (O+G+M)+PROMALS 18962 872 942 1432 5450 6449 253250
SFESA (O+G+M+S)+PROMALS 20496 640 386 686 4109 2427 258613
SFESA (O)+HHpred 20722 47 60 139 300 273 264576
SFESA (0O+G)+HHpred 19537 497 305 629 1749 1057 262343
SFESA (O+G+M)+HHpred 18492 858 518 1100 3182 1954 260013
SFESA (O+G+M+S)+HHpred 19688 577 232 471 2177 946 262026
SFESA (0O)+CNFpred 20619 272 160 309 2093 1114 261942
SFESA (O+G)+CNFpred 19440 768 346 806 3179 1923 260047
SFESA (O+G+M)+CNFpred 18221 1165 611 1363 4473 3240 257436
SFESA (O+G+M+S)+CNFpred 19549 836 308 667 3367 1862 259920

Table 1V-24. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters
(SFESA (O), SFESA (0O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared
with three existing alignment methods on the PREFAB dataset (all).
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Shifted Shifted Shifted Aligned Aligned Aligned
Unshifted Blocks Blocks Blocks Positions  Positions  Positions

Methods Blocks (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=
Original) Original) Original) Original) Original) Original)
SFESA (O)+PROMALS 4596 135 113 390 1019 761 37519
SFESA (O+G)+PROMALS 4155 207 186 686 1436 1108 36755
SFESA (O+G+M)+PROMALS 3655 276 274 1029 1911 1706 35682
SFESA (O+G+M+S)+PROMALS 4403 211 121 499 1475 721 37103
SFESA (O)+HHpred 3961 21 30 99 137 122 39040
SFESA (O+G)+HHpred 3466 146 93 406 580 319 38400
SFESA (O+G+M)+HHpred 3015 233 142 721 965 502 37832
SFESA (O+G+M+S)+HHpred 3598 160 64 289 656 237 38406
SFESA (O)+CNFpred 4150 93 77 220 741 467 38091
SFESA (O+G)+CNFpred 3673 203 133 531 1068 712 37519
SFESA (O+G+M)+CNFpred 3156 289 219 876 1477 1177 36645
SFESA (O+G+M+S)+CNFpred 3796 218 115 411 1167 701 37431

Table 1\V-25. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters
(SFESA (O), SFESA (0O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared
with three existing alignment methods on the PREFAB “Set 1 subset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 4467 116 109 122 863 880 54791
SFESA (0O+G)+PROMALS 4262 177 193 182 1228 1412 53894
SFESA (O+G+M)+PROMALS 4076 263 229 246 1705 1518 53311
SFESA (O+G+M+S)+PROMALS 4401 191 101 121 1268 567 54699
SFESA (O)+HHpred 4665 12 20 23 71 96 56367
SFESA (0O+G)+HHpred 4342 150 93 135 546 360 55628
SFESA (O+G+M)+HHpred 4060 278 146 236 1148 604 54782
SFESA (O+G+M+S)+HHpred 4354 189 71 106 795 318 55421
SFESA (0O)+CNFpred 4518 79 40 54 599 301 55634
SFESA (O+G)+CNFpred 4241 207 96 147 933 602 54999
SFESA (O+G+M)+CNFpred 3951 329 154 257 1385 836 54313
SFESA (O+G+M+S)+CNFpred 4255 225 76 135 1031 499 55004

Table 1\V-26. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters
(SFESA (O), SFESA (0O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared

with three existing alignment methods on the PREFAB “Set 2” subset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 5648 91 90 33 727 741 79542
SFESA (O+G)+PROMALS 5488 155 162 57 993 1304 78713
SFESA (O+G+M)+PROMALS 5339 213 210 100 1217 1494 78299
SFESA (O+G+M+S)+PROMALS 5586 148 84 44 896 633 79481
SFESA (O)+HHpred 5811 11 7 13 56 34 80920
SFESA (0O+G)+HHpred 5620 113 55 54 368 223 80419
SFESA (O+G+M)+HHpred 5428 204 118 92 642 457 79911
SFESA (O+G+M+S)+HHpred 5616 133 51 42 428 214 80368
SFESA (0O)+CNFpred 5706 77 33 24 602 280 80128
SFESA (O+G)+CNFpred 5488 208 65 79 818 425 79767
SFESA (O+G+M)+CNFpred 5252 328 130 130 1076 736 79198
SFESA (O+G+M+S)+CNFpred 5480 240 62 58 819 395 79796

Table 1\V-27. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters
(SFESA (O), SFESA (0O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared

with three existing alignment methods on the PREFAB “Set 3” subset.
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Shifted Shifted Shifted Aligned Aligned Aligned

Methods Unshifted  Blocks Blocks Blocks Positions  Positions  Positions

Blocks  (SFESA> (SFESA< (SFESA= (SFESA> (SFESA< (SFESA=

Original) Original) Original) Original) Original) Original)
SFESA (0)+PROMALS 6145 47 91 15 363 763 87180
SFESA (0O+G)+PROMALS 6000 93 173 32 532 1324 86450
SFESA (O+G+M)+PROMALS 5892 120 229 57 617 1731 85958
SFESA (O+G+M+S)+PROMALS 6106 90 80 22 470 506 87330
SFESA (O)+HHpred 6285 3 3 4 36 21 88249
SFESA (0O+G)+HHpred 6109 88 64 34 255 155 87896
SFESA (O+G+M)+HHpred 5989 143 112 51 427 391 87488
SFESA (O+G+M+S)+HHpred 6120 95 46 34 298 177 87831
SFESA (0O)+CNFpred 6245 23 10 11 151 66 88089
SFESA (O+G)+CNFpred 6038 150 52 49 360 184 87762
SFESA (O+G+M)+CNFpred 5862 219 108 100 535 491 87280
SFESA (O+G+M+S)+CNFpred 6018 153 55 63 350 267 87689

Table 1\VV-28. The alignment block-level and aligned position-level comparison of SFESA
on PROMALS, HHpred and CNFpred. All SFESA modes by using different parameters
(SFESA (O), SFESA (0O+G), SFESA (O+G+M) and SFESA (O+G+M+S)) are compared

with three existing alignment methods on the PREFAB “Set 4” subset.



180

Blocks Total block Succeeded block Failed block Success/Failure
Categories number number number rate
(SFESA>PROMALS) (SFESA<PROMALYS)
All 16347 1000 495 2.0
Helix 5778 328 181 1.8
Edge Strand 4439 283 185 15
Nonedge Strand 6130 389 129 3.0
Helix Category
(Average Contact
number = 23.7)
0-11 1013 46 61 0.8
12-17 1105 83 34 2.4
18-21 775 46 28 1.6
22-27 972 59 28 2.1
28-36 1009 55 26 2.1
36-114 904 39 4 9.8
Edge Strand Category (Average Contact
number = 12.2)
0-5 866 29 53 0.5
6-8 641 37 33 11
9-11 723 46 33 14
12-15 898 74 29 2.6
16-19 624 47 22 2.1
20-46 687 50 15 3.3
Nonedge Strand Category (Average
Contact number = 25.7)
0-16 1053 63 39 1.6
16-21 1026 81 21 3.9
22-25 1032 77 25 3.1
26-30 1145 71 12 5.9
31-35 935 48 19 2.5
36-77 939 49 13 3.8

Table 1V-29. SFESA (O+G+M) success/failure rate depends on SSE types and contact
numbers on of alignment blocks. Edge strands are those strands that have backbone-to-
backbone hydrogen bonding interactions (defined by DSSP) on only one side. For each
SSE type, data is divided into equal-size bins based on contact numbers (see last three

sub tables).
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Reference-dependent (Q-score) Reference-
Methods ] ] Deep independent
Dali TMallgn Matt MUSTER Allgn (TM_score)
HHpred (Local) 44.0 40.5 42.2 44.1 43.9 0.414
HHpred (Global) 49.3 45.3 46.7 49.0 49.7 0.490

Table 1\V-30. HHpred local and global mode performance on the MUSTER dataset.
Columns 2-6 indicate five different structure alignment methods to generate reference
alignments (Reference-dependent evaluation). Column 7 indicates the average of query
model’s TM-score built by Modeller (Reference-independent evaluation).
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Reference-dependent (Q-score) _Reference-
Methods independent
Dali TMalign Matt DeepAlign (TM-score)
HHpred (Local) 58.9 56.7 59.0 60.2 0.528
HHpred (Global) 63.0 60.6 62.7 64.4 0.589

Table 1V-31. HHpred local and global mode performance on the SALIGN dataset.
Columns 2-5 indicate five different structure alignment methods to generate reference
alignments (Reference-dependent evaluation). Column 6 indicates the average of query
model’s TM-score built by Modeller (Reference-independent evaluation).
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Reference-dependent Reference-independent
Methods (Q-score) (TM-score)
On subsets
SABmark_TWI SABmark SUP SABmark_TWI SABmark_SUP
HHpred (Local) 37.1 65.5 0.316 0.528
HHpred (Global) 40.7 68.9 0.371 0.570

Table 1V-32. HHpred local and global mode performance on the SABMARK dataset.
Columns 2-3 indicate the alignment Q-score based on their reference on two subsets of
the SABmark benchmark: “twilight zone” and “superfamilies” respectively (Reference-
dependent evaluation). Columns 4-5 indicate the average of query model’s TM-score
built by Modeller on two subsets of the SABmark benchmark: “twilight zone” and
“superfamilies” respectively (Reference-independent evaluation).
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Methods All Setl Set 2 Set 3 Set 4
(1682/23.0) (420/6.8) (421/14.9) (420/23.1) (421/48.4)

HHpred (Local) 75.8 42.8 76.9 89.2 94.2

HHpred (Global) 78.0 46.6 80.2 90.3 94.7

Table 1V-33. HHpred local and global mode performance on the PREFAB dataset.
Average Q-score is reported. The total 1682 PREFAB alignments are divided to four
semi-equal-sized sets according to sequence identity of the PROMALS alignment. The

number of alignments and the average sequence identity are in parenthesis beneath the set
names.
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V. SFESA WEB SERVER FOR PAIRWISE ALIGNMENT REFINEMENT

BY SECONDARY STRUCTURE SHIFTS

Protein sequence alignment is essential for a variety of tasks such as homology
modeling and active site prediction. Alignment errors remain the main cause of low-
quality structure models. A bioinformatics tool to refine alignments is needed to make
protein alignments more accurate. We developed the SFESA web server to refine
pairwise protein sequence alignments. Compared to the previous version of SFESA,
which required a set of 3D coordinates for a protein, the new server will search a
sequence database for the closest homolog with an available 3D structure to be used as a
template. For each alignment block defined by secondary structure elements in the
template, SFESA evaluates alignment variants generated by local shifts and selects the
best-scoring alignment variant. A scoring function that combines the sequence score of
profile-profile comparison and the structure score of template-derived contact energy is
used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are
more accurate than those produced by current advanced alignment methods such as
HHpred and CNFpred. In addition, SFESA also improves alignments generated by other
software. SFESA is a web-based tool for alignment refinement, designed for researchers
to compute, refine, and evaluate pairwise alignments with a combined sequence and
structure scoring of alignment blocks. To our knowledge, the SFESA web server is the
only tool that refines alignments by evaluating local shifts of secondary structure

elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.



http://prodata.swmed.edu/sfesa
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INTRODUCTION

Homology modeling that constructs a structural model of a "query" protein based
on its similarity to a homologous protein with known 3-dimensional structure (the
"template™) remains the most reliable method of structure prediction. In most homology
modeling methods, an essential step requires the input or construction of a pairwise
sequence alignment between the query and the template, from which structurally
equivalent residue pairs are deduced. Pairwise alignment is also the foundation for most
multiple sequence alignment (MSA) methods. For example, the progressive method for
MSA construction assembles a multiple sequence alignment by a series of pairwise

alignments of sequences or pre-aligned groups (Feng and Doolittle 1987).

Early methods of pairwise protein alignments apply dynamic programming
algorithms that rely on general substitution matrices of amino acid residues and pre-
defined gap penalties (Needleman and Wunsch 1970, Smith and Waterman 1981).
Heuristic pairwise alignment tools such as BLAST (Altschul, Gish et al. 1990) excel in
speed and are suitable for sequence database searches. Numerical sequence profiles have
been designed to incorporate information of homologous proteins to help aligning
divergent sequences. PSI-BLAST (Altschul, Madden et al. 1997) and HMMER (Eddy
1998) are examples of sequence-profile comparison methods that are generally more
accurate than methods of sequence-sequence comparison. The subsequent development
of profile-profile comparison methods (Rychlewski, Jaroszewski et al. 2000, Yona and
Levitt 2002, Sadreyev and Grishin 2003, Gniewek, Kolinski et al. 2012) further enhanced
alignment quality and the ability to detect homologous relationships. In addition to amino

acid sequence profiles, predicted structural information, e.g., secondary structure and
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solvent accessibility, was also included in various alignment methods (Soding 2005, Pei
and Grishin 2007, Ma, Peng et al. 2012). Three-dimensional structure information has
been used in alignment construction methods in various ways, such as those based on
structure-dependent profiles (Bowie, Luthy et al. 1991, Kelley, MacCallum et al. 2000)
and a Monte Carlo-based alignment method that samples a set of moves of gapless
alignment stretches and scores based on a template contact map (Gniewek, Kolinski et al.

2014).

Despite continuous method development in the alignment field, obtaining high-
quality alignments for distantly related proteins remains a challenge. Alignment errors are
still the main cause for the low quality of models built by homology. One common type
of alignment error is the local misalignment, often by only a few residues, of secondary
structure elements (a-helices and f-strands). Such errors often reflect the periodic nature
of regular secondary structures. For example, many a-helices can be shifted by three or
four residues while still maintaining a similar pattern of hydrophobic residues and polar
residues. Therefore, one possible direction for refining an alignment lies in the generation
of alignment variants by locally shifting secondary structure elements and evaluating the
sequence and structure fitness of these alignment variants to determine which one is more

likely to be correct.

Here we describe the SFESA web server, which refines pairwise protein
alignments by evaluating alignment variants resulting from locally shifting secondary
structure elements. The SFESA web server enables researchers to compute, refine, and
evaluate pairwise alignments with a combined sequence and structure scoring of

alignment blocks. The previous version of SFESA required the upload of a predefined
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template structure. In contrast, the new web server allows for a template to be specified
by its PDB and chain identifiers. Furthermore, if no structure is provided, the SFESA
server will search the database of sequences with experimentally determined 3D
structures for the closest template, and this will then be used in the alignment refinement.
The server facilitates further analysis of alignments at the level of secondary structure,
providing detailed results of sequence and structure scores for local shifts of secondary
structure elements. To our knowledge, the SFESA web server is the only online tool that

refines alignments by evaluating local shifts of secondary structure elements.
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RESULTS

The SFESA web server

The SFESA web server is a tool for constructing, refining, and evaluating
pairwise protein alignments (Figure V-1). The workflow of the server is shown in Figure
V-1. Compared to the previously reported version of SFESA (Tong, Pei et al. 2015), in
which a user must provide a structure for the template sequence, the updated server will
search against our inhouse protein structure database to find the closest (to either

sequence) homolog with available 3D structure to improve the alignment.

Users can input or upload sequences for the query and template either as a
pairwise alignment or as two unaligned sequences in FASTA format. If two unaligned
sequences are provided, the server uses PROMALS (Pei and Grishin 2007) to
automatically construct a pairwise alignment. Input of a 3-dimensional structure (in pdb
format) with high sequence similarity to the template is optional but recommended. A
user can input a PDB identifier and a chain identifier, instead of a coordinate set, to
directly use the structure from the RCSB PDB database (Berman, Westbrook et al. 2000).
If no structure is provided for the template, the server uses BLAST (Altschul, Madden et
al. 1997) to automatically search for homologs for either the query or template in a
database of representative spatial structures and selects the best hit as the homologous

structure, used as a template for structure score calculation.

Four SFESA alignment refinement modes are available in the web server: SFESA
(O) uses up to 8 variants generated by +4 shifts that keep the gap patterns of the original

alignment block and the Miyazawa-Jernigan (MJ) (Miyazawa and Jernigan 1999) contact
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matrix for structure score calculation; SFESA (O+G) uses up to 18 variants by
considering gap shifts and the MJ contact matrix; and SFESA (O+G+M) (default) uses a
newly derived contact matrix in addition to gap processing; SFESA (O+G+M+S) differs
from SFESA (O+G+M) in that an SVM-derived score is used in the second filtering step

instead of Scomp_i-

Several parameters are provided. One parameter is the sequence identity threshold
between the template sequence and its homolog with a known 3D structure. SFESA
refinement is applied only when the sequence identity between the template and its
structure homolog is higher than the threshold (default = 0.5). Another parameter is the
maximal number of residue positions to shift (default = 4, i.e., shifts are applied from —4
to +4 positions). Increasing this parameter generates more alignment variants, but also
increases the probability that a wrong variant is accepted. The third parameter is the
threshold for the fraction of non-gapped residue pairs above which an alignment block is
used in the refinement process (default = 0.5). We also provide parameters for running
and processing PSI-BLAST (Altschul, Madden et al. 1997) results to generate the
sequence profile used for the sequence score calculation, such as the number of iterations,

the e-value inclusion cutoff, and a sequence identity cutoff to remove divergent hits.

The output page of the SFESA web server includes the starting alignment (the
input alignment or in the case of the input of unaligned sequences, the automatically
generated PROMALS alignment), the refined alignment, and the refinement details for
each evaluated alignment block. Figure V-2 shows one example of the output page. The
first part of the output page (Figure V-2A) contains the starting alignment and the refined

alignment with colored alignment blocks. PSIPRED (Jones 1999) predicts secondary
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structure elements of the query and secondary structure elements of the template based on
PALSSE (Majumdar, Krishna et al. 2005) and DSSP (Kabsch and Sander 1983), and
these predicted elements are shown above the query sequence and below the template
sequence, respectively. Evaluated alignment blocks are depicted in red and orange for a-
helices and blue and dark green for B-strands to distinguish them. In the SFESA-refined

alignment, the modified alignment blocks are marked with underscores.

The second part of the output page (Figure V-2B) is a table summarizing the
refinement results of the evaluated alignment blocks, numbered from the N-terminus to
the C-terminus. Each row in the table provides the element start and end position
numbers in the template, the element secondary structure type, the original alignment
block, the shift result, and the refined alignment block. The shift result column shows
Gap Mode and Shift Number. Gap Mode can be “Left” (gap pattern preprocessed by
moving residues all the way to the left), “Right” (gap pattern preprocessed by moving
residues all the way to the right), or “Original” (no gap preprocessing). Shift Number (in
brackets) is the number of positions the residues in the query are shifted by, relative to
the template. The “+” and “-” signs in Shift Number denote that the query residues in the
alignment block are shifted towards the C-terminus or the N-terminus, respectively. If no
alignment variant was accepted for an alignment block (i.e., the original refinement
retained), “No shift” is shown in the shift result column and “-” is shown in the column of
Refined Alignment Block. The third part of the output page contains tables with scoring
details for the alignment variants. A table is provided for each alignment block evaluated
by SFESA and presents each alignment variant and its sequence score, structure score,

and combined scores | and Il. Figure V-2C provides an example for alignment block
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number 4. The residues in the original alignment block are colored blue and pink for the
query and the template, respectively. The scoring details for alignment variants may help

users manually evaluate and select alternative alignments.

An example of an alignment improved by the SFESA server

In the example shown in Figure V-2, the input consisted of two SCOP domains,
dljala3 (query) and d2piaa2 (template), and the 3D structure of the template. SFESA
used PROMALS to obtain the starting alignment, which was refined to generate the
refined alignment with the default option SFESA (O+G+M). Out of the seven alignment
blocks evaluated by SFESA, five alignment blocks were kept without shifts and two
alignment blocks were modified according to SFESA refinement scores (Figure V-2B).
Both of these modified alignment blocks are in better agreement with the Dali structural
alignment (Holm and Sander 1996) of the query and the template compared to the
original alignment blocks. We generated structure models for the query based on the
starting alignment (Figure V-2D, left panel) and the refined alignment (Figure V-2D,
right panel). Both models (in light grey and red ribbons) were superimposed upon the real
structure of the query (in dark grey and green ribbons). The GDT-TS scores (Zemla
2003) for models generated from the starting alignment and the refined alignment are
57.7 and 67.1, respectively. The query secondary structure element in the fourth
evaluated alignment block is highlighted in both structure superpositions (green for the
real structure and red for the model). This element, misaligned by two residues in the

starting alignment (Figure V-2D, left panel), has been corrected in the refined alignment
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(Figure V-2D, right panel). As a result, the RMSD for this secondary structure element
between the model and the real structure improved from 5.3A for the model generated by

the starting alignment to 2.0A for the model generated by the refined alignment.
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DISCUSSION

Despite many significant research efforts, it is still challenging to correctly align
weakly similar but homologous protein sequences. Alignment errors remain the main
reason for the poor quality of homology models. Refining the alignments generated by
automatic methods is a promising approach for increasing alignment quality. We found
that secondary structure elements are often misaligned by only a few residues and that
more accurate solutions can be identified within a limited set of local shifts of secondary
structure elements. Therefore, we developed the SFESA method in order to refine
alignments by evaluating the alignment variants generated by local shifts of template-

defined secondary structures.

In the SFESA scoring system, both a profile-based sequence score and a novel
contact-based structure score of the aligned residue pairs in the original alignment block
and the alignment variants are calculated. Thus, an insufficient number of contacts can
limit the quality of the alignment refinement. We found that structure scoring works well
when there are sufficient contacts in the template as well as sufficient corresponding
aligned residues in the query (Tong, Pei et al. 2015). However, if a secondary structure
element is involved in too few contacts (e.g. exposed edge B-strands), the remaining
contacts are insufficient to define a complete structural environment. SFESA is less
effective in these cases. This observation suggests that dedicated efforts on misaligned

blocks with insufficient contacts are required to improve alignments further.
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CONCLUSION

SFESA is a web-based tool to compute, refine, and evaluate pairwise alignments
with a combined sequence and structure scoring of alignment blocks. Taking a pairwise
alignment as input, the SFESA web server searches against an in-house database of
protein spatial structures to find the closest homolog of either sequence. It then refines
the pairwise alignment by combining the sequence profile similarity and residue-residue
contact information that were obtained from the homolog with the structure. Finally, it
facilitates further analysis of the alignment results at the level of secondary structure,

providing details about scoring for all shifts of secondary structure elements.
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MATERIALS AND METHODS

Recently we developed SFESA (Tong, Pei et al. 2015), a method that refines
pairwise protein sequence alignment by evaluating alignment variants generated from
local shifts of secondary structure elements. SFESA first delineates alignment blocks
from a starting pairwise protein alignment. Each alignment block corresponds to a regular
secondary structural element (o-helix or B-strand as delineated by PALSSE (Majumdar,
Krishna et al. 2005)) in the template and the corresponding aligned region in the query.
For each alignment block, SFESA generates a set of alignment variants by locally
shifting query residues relative to template residues. Then, both a profile-based sequence
score and a contact-based structure score of the aligned residue pairs in the original
alignment block and the alignment variants are calculated. We have shown that the best-
scoring alignment variant has the highest probability of being correct, e.g., showing the

best agreement with the structure-based alignment.

SFESA uses two local shifting strategies to generate alignment variants with
different treatments of gaps in the original alignment block. In the first strategy, up to 8
alignment variants are generated by shifting query residues up to four positions left or
right relative to the template while maintaining the gap pattern in the original alignment
block. However, we observed that gaps rarely occur in the middle of secondary structure
elements in structure-based alignments. Therefore, in the second strategy, SFESA
preprocesses the gap pattern in the original alignment block by eliminating gaps in the
middle of the secondary structure elements. To achieve this, residues of an alignment
block in both the query and template are shifted all the way to the left or right while all

gaps are placed on the opposite side. Two preprocessed alignment blocks are generated:
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one by shifting residues to the left and filling the right side with gaps and the other by
shifting residues to the right and filling the left side with gaps. Each of these two
alignment variants is then used as a starting point to generate 8 additional alignment
variants by +4 shifts while keeping the modified gap patterns. This procedure gives rise

to up to 18 (1+8+1+8) unique alignment variants .

For the sequence score, we use the profile-profile COMPASS score (Sadreyev
and Grishin 2003). Sequence profiles are generated from PSI-BLAST multiple sequence
alignments (Altschul, Madden et al. 1997). For the structure score, we define residue
contacts based on the structure of the template. A residue contact is defined as a residue
pair within a distance cutoff. In the template of an alignment, the residue contacts can be
identified using the known structure of the template. We then evaluate the contact energy
of corresponding contact residue pairs in the query that are inferred from query-template
alignment. For example, if residue i in the template makes contact with residues j, k, and
m in the template structure (i.e., contact pairs are (i, j), (i, k), and (i, m)), and the
corresponding aligned residues for i, j, k, and m in the query are i', j’, k', and m’,
respectively, then the inferred contact pairs in the query are (i’, j), (i’, k), and (i’, m’).
The structure score for the aligned residue pair i and ;" is CE(i", ;) + CE(i", &) + CE(i',
m’), reflecting the structural fitness of the inferred query contact residue pairs. Here, CE
is a matrix of the contact energy for residue pairs. We used two contact energy matrices:
one is derived by Miyazawa and Jernigan (Miyazawa and Jernigan 1999) with contacts
defined as residue pairs with side chain centers less than 6.5A, and the other is developed

by us to best discriminate correct alignment variants from incorrect alignment variants .
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Regarding our derived contact matrix, the cutoff for contact definition is 6.5A between

any side chain atoms of two residues.

In practice, the SFESA method uses a two-filter strategy to compare the scores of
the original alignment block and the alignment variants and determines whether the
original alignment block should be kept or changed to one of the alignment variants. The
first filter checks if there are any alignment variants with a higher combined score |
(Scomb_1, @ linear combination of sequence score and structure score) than the original
alignment block. If none of the alignment variants has a Scomn 1 higher than the original
alignment block, SFESA rejects all the alignment variants and keeps the original
alignment block. Otherwise, the alignment variant with the highest Scomy 1 IS selected and
passed to the second filter. In the second filter, SFESA uses combined score Il (Scomp 11, @
linear combination of sequence score and structure score) or an SVM score (Ssym) to
compare the selected alignment variant and the original alignment block. If the selected
alignment variant still has a higher Scomn_i1 Or Ssvm, SFESA will accept this alignment
variant. Otherwise, SFESA keeps the original alignment block. The weights of the
sequence score and structure score in Scomp_1 and Scomp_i are optimized separately. Ssyw IS
a score reported by a support vector machine (SVM) that was trained to differentiate
correct alignment variants from incorrect alignment variants by using a number of
features including a COMPASS-based sequence score (Sadreyev and Grishin 2003), a
contact-based structure score, a solvent accessibility score and a secondary structure
score. The solvent accessibility score is based on a three-by-three relative solvent
accessibility substitution matrix derived from FAST (Zhu and Weng 2005) structural

alignments of SCOP (Andreeva, Howorth et al. 2008) domains. Similarly, the secondary
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structure score is based on a three-by-three secondary structure substitution matrix
derived from FAST (Zhu and Weng 2005) structural alignments of SCOP (Andreeva,
Howorth et al. 2008) domains. The secondary structure is predicted by PSIPRED (Jones
1999) for the query; the secondary structure information in DSSP (Kabsch and Sander
1983) is used for the template. For each alignment block, starting from the N-terminus
and proceeding to the C-terminus, SFESA decides whether to keep the original alignment

block or to accept one of the alignment variants.
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Figure V-1. Flowchart of the SFESA web server. The sequence that is found to be closest
to the provided structure or the structure database is assigned as the Template (T). The
other sequence is assigned as the Query (Q).
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Figure V-2. An example showing the output of the SFESA server and its ability to
improve the alignment. (A) Output from the starting alignment and SFESA-refined
alignment with secondary structure and colored alignment block. Predicted secondary
structures for the query and the real secondary structures for the template are shown
("H"-Helix, "S"-Strand and "C"- Coil). “Number” shows the position number of the
residue above the query and below the template, respectively. “Cml" and "Cm2"
represent the positional differences between the refined alignment and starting alignment.
"Cm1" shows the sign of the query residue shifting ("+": query residue shifted towards C-
terminal; "-": query residue shifted towards N-terminal) while "Cmz2" shows the query
residue shift number. If the query residue is aligned to a gap in both the starting and
refined alignments, "Cm1" is left blank and "Cmz2" shows the gap character "-". If the
query residue is aligned to one residue in the starting alignment but aligned to a gap in
the refined alignment, "Cm1" is left blank and "Cmz2" shows "*". If a template residue is
aligned to a gap in the starting alignment, both "Cm1" and "Cm2" are left blank. [1-helix
alignment blocks are shown alternately in red and orange. [1-strand alignment blocks are
shown alternately in blue and dark green. The refined alignment blocks are marked with
underscores. (B) A table summarizing refinement results for the evaluated alignment
blocks. The alignment block number is ordered from N-terminus to C-terminus. The sixth
column indicates the refinement results of this alignment block. If refined, a format of
"Gap mode [shift number]” is shown. Rows of the refined alignment blocks are colored
red. (C) One example of the scoring details of shifts for alignment block number 4. This
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table contains the original alignment block and all alignment variants. The first column in
the table is gap mode. There are three gap modes if there are gaps in this alignment block:
Original (no change of the original alignment block), Left (residues in alignment blocks
can be aligned all the way to the left while all gaps are put to the opposite side before
shifting) and Right (residues in alignment blocks can be aligned all the way to the right
while all gaps are put to the opposite side before shifting). The second column is the shift
number. The third column indicates if such a variant is a unique one or the same as a
variant shown previously. The fourth column shows the alignment variants with extended
residues in both ends. The residues in the original alignment block are colored blue
(query) and pink (template). The last four columns show the sequence score, structure
score, combined score | and combined score Il of each alignment variant. The row
colored red corresponds to the alignment variant that is the final choice in the refined
alignment. (D). Structure superpositions of query structure models (light grey ribbon) and
query real structure (dark grey ribbon). Structure models were generated by MODELLER
based on the starting alignment (left panel) and the SFESA-refined alignment (right
panel). The strand (“QLNYAFSR”) in alignment block number 4 is highlighted. This
strand is shown in red and green in the structure model and the real structure,
respectively. Blue spheres and yellow spheres mark the N-terminal boundary (“Q”) and
the C-terminal boundary (“R”), respectively.
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VI. CONCLUDING REMARKS

Protein function prediction is one of most essential topics in the field of
computational biology but still an ongoing quest for computational biologist. Currently,
homology detection is still the most reliable method to predict protein function. After a
homolog is recognized, the alignment construction between the protein sequence and its
homologs is important to predict functional sites and modeling structure. Although many
methods are developed within recent many years, it is a very challenging task to search

sequence similarity or align protein sequences accurately.

The work described in this dissertation can be viewed on the perspective of
finding more accurate homologous proteins and constructing more accurate alignment

between protein sequence and its homolog.

In Chapter 11, a new homology detection method, COMPADRE, assesses the
relationship between the query sequence and a hit in the database by considering the
similarity between the query and hit’s known homologs. This approach increases
detection quality, boosting the precision rate from 18% to 83% at half-coverage of all
database homologs. The increased precision rate allows detection of a large fraction of
new protein structural relationships, thus providing structure and function predictions for
previously uncharacterized proteins. Our results suggest that this general approach is
applicable to a wide variety of methods for detection of biological similarities. In Chapter
I, a continually updatable web server based on this method
(http://prodata.swmed.edu/compadre) was developed to detect homologs for the query

sequence or alignment provided by users. Besides protein representatives from SCOP
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database, a new search database composed of ECOD domain representatives can be
updated weekly following ECOD updates. Such an up-to-date search database allows

detecting homology of recently released protein structures.

In Chapter 1V, we developed a pairwise alignment refinement method, SFESA,
which generates candidate alignment variants for each alignment block by shifting the
query region. We also designed a scoring function to judge whether an alignment variant
is likely to be more accurate than the original alignment. Our scoring function combines a
profile-based sequence score and a novel structural contact-based score derived from
residue contacts in template. Our results prove the new contact-based score to be of
ability to help protein sequence and homolog alignment. Our approach improves
alignments generated by a number of state-of-the-art methods on several benchmarks that
include both reference-dependent and reference-independent assessment. In Chapter V,
We developed the SFESA web server to refine pairwise protein sequence alignments. It is
a web-based tool for alignment refinement, designed for researchers to compute, refine,
and evaluate pairwise alignments with a combined sequence and structure scoring of
alignment blocks. SFESA can refine the input of pairwise protein alignment or
construct alignment for the input of two unaligned protein sequences (one is treat as
query, while the another is treated as template). For each alignment block defined by
secondary structure elements in the template, SFESA evaluates alignment variants
generated by local shifts and selects the best-scoring alignment variant. The SFESA web

server is available at http://prodata.swmed.edu/sfesa.
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