

UTSouthwestern Impact of Sex on Outcomes of Chronic Total Occlusion Percutaneous Coronary Intervention: Insights from a Multicenter US Registry

Aya J. Alame, BA¹; Dimitri Karmpaliotis, MD²; Khaldoon Alaswad, MD³; Farouc A. Jaffer, MD, PhD⁴; Robert W. Yeh, MD⁵; R. Michael Wyman, MD⁶; Mitul Patel, MD⁷; John Bahadorani, MD⁷; William Lombardi, MD⁸; J. Aaron Grantham, MD⁹; David Kandzari, MD¹⁰; Nicholas Lembo, MD¹⁰; Jeffrey W. Moses, MD²; Ajay Kirtane, MD²; Catalin Toma, MD¹¹; Anthony Doing, MD¹²; James Choi, MD¹³; Barry Uretsky, MD¹⁴; Judit Karacsonyi, MD^{1,2}; Erica Resendes, MS¹; Aris Karatasakis, MD¹; Barbara A. Danek, MD¹; Bavana V. Rangan, BDS, MPH¹; Craig A. Thompson, MD, MMSc¹⁵; Subhash Banerjee, MD¹; Emmanouil S. Brilakis, MD, PhD^{1, 16}

¹VA North Texas Health Care System and UT Southwestern Medical Center, Dallas, TX, ²Columbia University, New York, NY, ³Henry Ford Hospital, Detroit, MI, ⁴Massachusetts General Hospital and Harvard Medical School, Boston, MA, ⁵Beth Israel Deaconess Medical Center, Boston, MA, ⁶Torrance Memorial Medical Center, Torrance, CA, ⁷VA San Diego Healthcare System and University of California San Diego, San Diego, ⁸University of Washington, Seattle, WA, ⁹St. Luke's Mid America Heart Institute, Kansas City, MO, ¹⁰Piedmont Heart Institute, Atlanta, GA, ¹¹University of Pittsburgh Medical Center Presbysterian, Pittsburgh, PA, ¹²Medical Center of the Rockies, Loveland, CO, ¹³Baylor Heart and Vascular Hospital, Dallas, TX, ¹⁴Central Arkansas Veterans Health System, ¹⁵Boston Scientific, Natick, MA, ¹⁶Minneapolis Heart Institute, Minneapolis, MN

Objectives

To examine the effect of sex on in-hospital outcomes of chronic total occlusion (CTO) percutaneous coronary intervention (PCI)

Methods

Study population

 1,718 consecutive patients who underwent 1,753 CTO PCIs between 2012 and 2016 at 14 experienced US centers

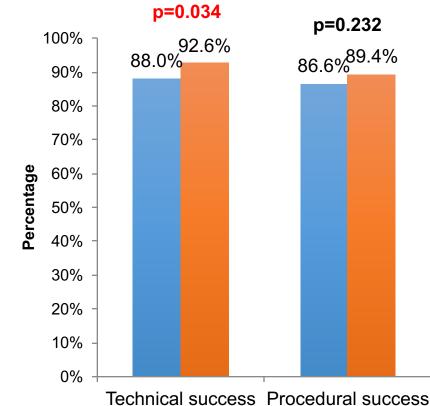
Analyses

- Continuous variables are presented as mean ± standard deviation or median (interquartile range) and were compared using the t-test, or Wilcoxon rank-sum test, as appropriate.
- Categorical data are reported as frequencies or percentages and compared using the chi-square test. All statistical analyses were performed with JMP 11.0 (SAS Institute; Cary, North Carolina).
- Two-sided p-values of 0.05 were considered statistically significant.

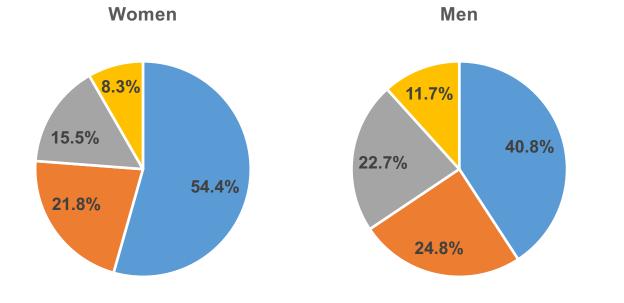
Results

Men composed 84.7% of the study population.

Table 1. Baseline clinical characteristics of the study patients, classified according to sex


Variable	Women (n=263)	Men (n=1455)	Ρ
Age (years) ^a	66.8 ± 11	65.0 ± 10	0.022
Body Mass Index (kg/m2) ^a	31.0 ± 7.1	30.5 ± 6.0	0.438
Diabetes Mellitus	48.8%	44.2%	0.164
Hypertension	91.2%	90.2%	0.624
Dyslipidemia (%)	95.4%	94.9%	0.720
Smoking (current)	28.1%	25.6%	0.395
Left Ventricular Ejection Fraction (%) ^a	53.9 ± 13	49.0 ± 14	<0.001
Family History of Coronary Artery Disease	27.9%	30.4%	0.529
Congestive Heart Failure	25.6%	29.3%	0.214
Prior Myocardial Infarction (%)	42.0%	43.8%	0.591
Prior Coronary Artery Bypass Graft Surgery	30.0%	36.4%	0.046
Prior Cerebrovascular Disease	11.1%	11.1%	0.969
Prior Peripheral Vascular Disease	18.5%	16.3%	0.370
Baseline Creatinine (mg/dL) ^b	0.9 (0.7,1.1)	1.1 (0.9,1.3)	<0.001

^a mean ± standard deviation; ^b median (interguartile range); CTO: chronic total occlusion


Table 2. Angiographic characteristics of the study patients, classified according to sex

Variable	Women (n=264)	Men (n=1489)	Ρ
CTO Target coronary artery			
Right coronary artery	60.5%	54.2%	0.050
Left anterior descending artery	24.3%	23.6%	0.058
Left circumflex artery	14.8%	21.7%	
Successful Crossing Strategy			
Antegrade wiring	54.4%	40.8%	
Retrograde	21.8%	24.8%	<0.001
Antegrade dissection and re-entry		00 70/	<0.001
(ADR)	15.5%	22.7%	
None	8.3%	11.7%	
First Crossing Strategy			
Antegrade wiring	75.0%	69.1%	0.105
Retrograde	17.1%	18.0%	0.105
ADR	7.9%	12.2%	
Retrograde crossing attempt	32.6%	40.1%	0.010
Japanese chronic total occlusion- score ^a	2.35 ± 1.3	2.54 ± 1.2	0.045
Tortuosity (moderate/severe)	28.8%	36.9%	0.016
In-stent restenosis	17.3%	14.8%	0.314
Proximal cap ambiguity	34.3%	30.9%	0.373
Prior failure to open CTO	21.0%	17.0%	0.137
Interventional Collaterals	58.7%	57.1%	0.704
Side branch at the proximal cap	42.4%	47.8%	0.189
Blunt/no stump	29.5%	33.3%	0.230
Vessel diameter (mm) ^b	2.8 (2.5, 3)	3.0 (2.5, 3)	0.469
Occlusion length (mm) ^b	28 (15, 40)	30 (20, 50)	0.297

Figure 1. Technical Success, Procedural Success, and MACE, grouped by sex

Figure 2. Successful crossing strategy classified according to sex

Antegrade wiring

Retrograde Antegrade dissection and re-entry (ADR)

None

Table 3. Procedural outcomes of the study patients, classified by sex

Variable	Women (n=264)	Men (n=1489)	Р
Technical Success	92.6%	88.0%	0.034
Procedural Success	89.4%	86.6%	0.232
Procedural time (min) ^b	120 (77, 173)	131 (90, 192)	0.032
Fluoroscopy time (min) ^b	40.5 (24, 73)	47.9 (30, 77)	0.019
Air kerma radiation dose (Gray) ^b	2.66 (1.5, 4.4)	3.37 (2.0, 5.3)	<0.001
Contrast volume ^b	250 (175, 335)	275 (200, 375	<0.001
MACE	3.40%	2.40%	0.348
Death	0.40%	0.60%	0.654
Acute myocardial infarction	0.38%	1.00%	0.322
Stroke	0.76%	0.13%	0.051
Pericardiocentesis	2.30%	0.60%	0.007

^a mean ± standard deviation; ^b median (interquartile range), CTO: chronic total occlusion; PCI: percutaneous coronary intervention: MACE: major adverse cardiac events

Conclusion

As compared with women, CTO PCI in men is associated with higher lesion complexity and lower technical success, but similar procedural success and similar incidence of major adverse cardiovascular events.

Disclosures:

which is supported by CTSA NIH Grant UL 1-RR024982.

Women

Men

p=0.348

2.4% 3.4%

Dr. Karmpaliotis: speaker bureau, Abbott Vascular, Medtronic, and Boston Scientific; Dr. Alaswad: consulting fees from Terumo and Boston Scientific; consultant, no financial, Abbott Laboratories.; Dr. Yeh: Career Development Award (1K23HL118138) from the National Heart, Lung, and Blood Institute.; Dr. Jaffer: consultant to Boston Scientific, Siemens, and Merck, nonfinancial research support from Abbott Vascular, research grant from National Institutes of Health (HL-R01-108229); Dr. Wyman: Honoraria/consulting/speaking fees from Boston Scientific, Abbott Vascular, Asahi; Dr. Lombardi: equity with Bridgepoint Medical; Dr. Grantham: Speaking fees, consulting, and honoraria from Boston Scientific, Asahi Intecc. Research grants from Boston Scientific, Asahi Intecc, Abbott Vascular, Medtronic; Dr. Kandzari: research/grant support, consulting honoraria from Boston Scientific and Medtronic Cardiovascular, research/grant support from Abbott; Dr. Lembo: speaker bureau: Medtronic, advisory board Abbott Vascular and Medtronic; Dr. Kirtane: Institutional research grants to Columbia University from Boston Scientific, Medtronic, Abbott Vascular, Abiomed, St. Jude Medical, Vascular Dynamics, Glaxo SmithKline, and Eli Lilly; Dr. Rangan: Research grants from InfraReDx, Inc., and The Spectranetics Corporation; Dr. Thompson: employee of Boston Scientific; Dr. Banerjee: research grants from Gilead and the Medicines Company, consultant/speaker honoraria from Covidien and Medtronic, ownership in MDCARE Global (spouse), intellectual property in HygeiaTel.; Dr. Brilakis: consulting/speaker honoraria from Abbott Vascular, Asahi, Boston Scientific, Elsevier, Somahlution, St Jude Medical, and Terumo, research support from Boston Scientific and InfraRedx, spouse is employee of Medtronic. All remaining authors have no relevant conflicts of interest. Study data were collected and managed using REDCap electronic data capture tools hosted at University of Texas Southwestern Medical Center,

