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Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related fatalities in 

the US. This is due in part to a lack of highly  effective therapies for advanced cases, 

and this is of special concern as most NSCLC  cases are not diagnosed until they are in 

an advanced, later stage. Recent successes in developing genotypically-targeted 

therapies with potency only in a well-defined subpopulation of tumors suggests that 

identifying targeted therapies for additional common NSCLC genotypes will improve 

patient survival. 

In this study I utilized a library of inhibitors to microRNAs, a class of post-transcriptional 

gene regulators, to identify  novel synthetic lethal miRNA inhibition:molecular mechanism 

interactions in NSCLC. I accomplished this by  screening a panel of 13 NSCLC and 

immortalized normal lung epithelium (HBEC) cell lines in two phases to identify miRNA 

inhibitors with selective toxicity  in the NSCLC cell lines that were also benign in an 

HBEC cell line. Two inhibitors, the miR-92a and miR-1226* inhibitors, met these criteria. 

I then collected toxicity data in an expanded panel of 29 total cell lines. This expanded 

toxicity  data was used to identify p53 loss as a molecular mechanism correlated with 

vii



sensitivity to the miR-92a and miR-1226* inhibitors in NSCLC cell lines. This was 

recapitulated by demonstrating sensitivity  after knockdown of p53 in the previously 

resistant HBEC30KT cell line. I determined that the inhibitors were toxic in a very 

sequence-specific manner and that they down-regulated the miR-17~92 polycistron. 

Down-regulation of the polycistron was toxic in a context-specific manner, and the 

down-regulation of the miR-17~92 cluster in sensitive cell lines mimicked activation of a 

1α, 25-dihydroxyvitamin D3 response in NSCLC  cell lines in a manner consistent with 

sensitivity to the miR-92a inhibitor. 

The results of this investigation demonstrate that the screening approach utilized in this 

study was capable of identifying a synthetic lethal miRNA inhibition:molecular 

mechanism interaction, and that I was then able to use a genetically  defined model of 

the mechanism to identify a relevant mechanism of action for the toxic inhibitors.
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Chapter 1: microRNAs and cancer

1.1 Lung Cancer

1.1.1 Lung Cancer, A Historic Perspective

As a class, lung cancer describes tumors that originate in the lung. While lung cancer is 

the third most prevalent primary tumor site across all genders in the U.S. behind 

prostate and breast, it accounts for the most cancer related fatalities in the U.S., with a 

rate greater than prostate and breast combined [1]. In 2013, an estimated 228,000 new 

cases and 159,000 deaths will be attributed to lung cancer [2]. The prognosis for lung 

cancer is poor, with an overall five-year survival rate across all genders and races of 

approximately 16%, a small increase from 12% in the late 1970s [2].

However, if survival is categorized by the tumor’s progression at the time of discovery, 

one sees that if the tumor is localized at discovery the five-year survival rate increases 

to 52%, if the tumor is regional the rate is 25% and if the tumor is in a distant stage the 

rate decreases to 4% [2]. This suggests two things: That early-stage lung cancers are 

much easier to treat successfully, and that the overwhelming majority of tumors are 

discovered in later, more advanced stages. Furthermore, this suggests that both early 

detection methods and treatment modalities for advanced stage tumors have yet to 

advance far enough to make significant impact on survival by either accelerating 

detection or increasing efficacy against late-stage lung cancers.
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Tobacco use, in particular cigarette smoking, is understood to be the cause of the 

overwhelming majority of lung cancer incidents of any kind, accounting for 90% of cases 

[3]. The connection between tobacco usage and lung cancer is not a new one, as 

evidenced by its prominent appearance in the U.S. Surgeon General’s report of 1964 [4] 

and the delayed but synchronized relationship between cigarette consumption and lung 

cancer incidents in American males shown (Figure 1.1).
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Figure 1.1 - Correlation between smoking and lung cancer in American males. Left 
vertical axis, in green, is cigarettes smoked per person per year. Right axis, in red, is 
lung cancer attributed fatalities in men per 100,000 people. Adapted from NIH published 
graphic, and http://en.wikipedia.org/wiki/File:Cancer_smoking_lung_cancer_correlation_from_NIH.svg.
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1.1.2 Non-Small Cell Lung Cancer: Prevalence, mortality and first line therapy

Lung cancer is divided into two primary subgroups: Small cell (SCLC) and non-small 

cell lung cancer (NSCLC). SCLC is the far more clinically aggressive, with only 5-10% 

of patients surviving to five years, it accounts for a minority of cases at 15% [5]. The 

remaining 85% of cases are roughly identified as one of three histological subtypes of 

NSCLC, squamous cell carcinoma, large cell carcinoma and adenocarcinoma, with 

adenocarcinoma the most prevalent.

The same realities of progression and prognosis mentioned previously  apply to NSCLC, 

with only 35% of NSCLC  cases identified at Stage I or II, and a five-year overall survival 

in the single digits and approaching zero in advanced Stage III and Stage IV tumors [6]. 

This is due, in large part, to the efficacy of surgical resection on localized, early stage 

tumors; however, resectable tumors account for only 20% of all NSCLC tumors [5]. 

Even in cases where the tumor is successfully removed the five year survival rate is 

between 30-60% in patients who receive no follow-up  therapy after surgery, with tumors 

formed beyond the thoracic cavity the major cause of recurrence-related deaths [7].

Most NSCLC patients receive some form of chemotherapy as part of their treatment, 

whether as an adjuvant therapy in the case of surgical resections, or as a first line 

response in non-resectable tumors [8-10]. The most common approach is to link a 

platinum-containing DNA crosslinker such as cisplatin or carboplatin with an anti-mitotic 

agent [8,11]. These anti-mitotic agents are compounds that interfere with the ability of 
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cells to proliferate and survive outside of normal regulatory signals. Taxanes (paclitaxel, 

docetaxel) and vinca alkaloids (vinorelbine, vincristine, vinblastine) target microtubules 

and either hyper-stabilize (taxanes) or destabilize (vinca alkaloids) microtubules. 

Nucleoside analogues, such as gemcitabine, and topoisomerase inhibitors like 

irinotecan prevent successful DNA replication. In 1995 the first definitive evidence of 

doublet (platinum-containing drug + anti-mitotic drug) therapy improving survival was 

published, and although the combinations of doublets tested in the clinic in vast, the 

improvement in survival is minimal, perhaps as low as 3-5% over five years [5,8].

1.1.3 The Genetic Landscape of NSCLC

At its origin cancer is essentially  a genetic disorder, with lesions in a context-specific 

combination of pro-tumor oncogenes and anti-tumor tumor suppressor genes conferring 

a normal, regulated cell with the ability to divide freely and create the conditions for its 

proliferation and survival. After several decades of identifying the origins of various 

cancers by the cancer biology field, in 2000 Hanahan and Weinberg successfully 

distilled much of the work to date into the six hallmarks of cancer: Self-sufficiency  in 

growth signal, insensitivity to anti-growth signals, evading apoptosis, limitless replicative 

potential, sustained angiogenesis and tissue evasion and metastasis [12]. Essentially, 

cancer is a stepwise progression from a normal, well-regulated cell that responds to 

growth and anti-growth signals to a heterogenous collection of cells that has acquired 

each of the aforementioned hallmarks [12]. 
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Historically, cancer genetics consisted primarily of identifying genes whose activation 

promoted tumor growth(oncogenes), and genes whose impairment created an 

environment that permitted tumor growth (tumor suppressors). With regard to 

oncogenes, the 1976 report from Varmus and Bishop demonstrated that the DNA from 

an identified oncogene, src, was present in normal, untransformed cells [13]. This 

established that oncogenes exist in normal DNA as proto-oncogenes and that the gain 

of a hyper-activating modification to a proto-oncogene is necessary  before tumor 

promoting actions such as aberrant proliferation and growth occur. In fact, many of the 

classical oncogenes identified in the past decades function in this manner. RAS, EGFR 

and PI3K require mutations and potentially amplification for oncogenic activity, and MYC 

is amplified in many tumor types [14-16]. Tumor suppressors repress or inhibit 

processes such as cell cycle progression and DNA damage response. The two classical 

tumor suppressor genes, Retinoblastoma (Rb) and p53, were shown to frequently lose 

their canonical functions by mutation or loss during tumor progression [17-19]. 

Identifying specific genes acting as the throttle (oncogenes) or brakes (tumor 

suppressors) in tumor formation and progression allowed for the identification of specific 

mechanisms involved in tumor formation and survival. The functions of the classical 

oncogenes and tumor suppressors such as KRAS, p53, Rb and MYC informed much of 

the structure and substance of the aforementioned “Hallmarks of cancer.” [12] While 

enumeration of the essential characteristics of cancer biology was a key step  towards 

directed cancer research with the goal of developing more rational therapeutics, one 
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key area it did not fully address was the classification of tumors in a manner that could 

improve the granularity of research and improve outcomes.

Todd Golub and Eric Lander, in their seminal 1999 report on the utility  of unbiased gene 

expression profiling in cancer class discovery  and prediction state the following on the 

importance of classifying tumors in improving treatment [20]:

The challenge of cancer treatment has been to target specific therapies to 
pathogenetically distinct tumor types, to maximize efficacy and minimize 
toxicity. . . Tumors with similar histopathological appearance can follow 
significantly different clinical courses and show different responses to therapy. . . 
For many more tumors, important subclasses are likely  to exist but have yet to be 
defined by molecular markers. For example, prostate cancers of identical grade 
can have widely variable clinical courses, from indolence over decades to 
explosive growth causing rapid patient death. Cancer classification has been 
difficult in part because it has historically relied on specific biological insights, 
rather than systematic and unbiased approaches for recognizing tumor subtypes.

The publication of the human genome in 2004 was a key event enabling the sort of 

“systematic and unbiased approaches” to understanding tumor biology asked for in 

1999 [21]. The new approaches to gaining insights into tumor biology took several 

different forms. Sequence-level information for the majority of transcripts in the genome 

allowed for higher coverage gene expression microarrays and gene-based classifiers 

for additional tumor types as well as for subtypes of histologically-similar tumors [22-25]. 

Comprehensive small interfering RNA (siRNA) libraries were created based on the 

published genome sequences and allowed investigators to perform genomewide 

forward genetic screens and identify phenomena such as synthetic lethal combinations 

of single gene depletions and chemosensitization in a model of NSCLC [26].
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As cancer is at its essence a genetic reprogramming event that transforms normal cells 

into malignant and rapidly growing cells, the identification of somatic mutations in tumor 

types beyond the known oncogenes and tumor suppressors benefitted from the 

genomics era. Although truly unbiased approaches to mutation discovery were 

technically unfeasible due to the cost and resource intensity of full genome sequencing 

until the advent of “next generation” sequencing technologies in the late 2000s, several 

efforts proceeded to move beyond the suite of known cancer-related genes. One of the 

broadest efforts resulted in the Catalogue Of Somatic Mutations In Cancer (COSMIC) 

database and web  site. Initially released in 2004 as a depot for 10,647 published 

mutations in HRAS, KRAS, NRAS and BRAF found in 57,444 tumors, COSMIC now 

(v64) combines published mutational information with tumor resequencing efforts and 

contains 913,166 mutations identified in 847,698 tumors across 24,394 genes [27-29].

Ding et al., in 2008, created an expanded map of lung adenocarcinoma’s mutational 

landscape [30]. Ding et al. surveyed the coding regions of 623 candidate genes 

including known oncogenes and tumor suppressors, protein kinases and genes in 

known regions of copy number aberration. They identified 1,013 non-synonymous 

mutations across the 188 primary lung adenocarcinoma tumors evaluated [30]. After 

integrating their identified somatic mutations with copy  number and gene expression 

data for a superset of primary lung adenocarcinoma tumors they were able to identify 

several pathways that were enriched for genetic aberrations, including the MAPK 

pathway, where they saw at least one mutation in 132 of the tumors assessed [30]. Ding 

et al. demonstrated that thousands of of mutations in a panel of several hundred genes 
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could be reduced, with the assistance of gene expression and copy number analysis, to 

a handful of critical cellular pathways (Figure 1.2). Beyond providing a meaningful 

insight into the biology underlying lung adenocarcinoma Ding et al. demonstrated a 

biological basis for the identification of targeted therapeutic approaches to the treatment 

of lung adenocarcinomas: While there is substantial heterogeneity  in genetic mutations 

or aberrations at the gene level, there is substantial homogeneity in the pathways these 

aberrations disrupt. 

Studies such as Ding et al.’s identification of key genetic events in lung adenocarcinoma 

have initiated a gradual transition in tumor classification from histologically-based 

classification to classification based on oncogenic drivers and genetic signatures [31]. 

Pao and Girard, in their 2011 review, describe the traditional classification of lung 

cancers as binning into either Adenocarcinoma, Squamous or Large-cell NSCLC. After 

the importance of oncogenic drivers and oncogene addiction in NSCLC biology were 

understood, a shift began towards classifying tumors by known oncogenic drivers, with 

KRAS the first major driver identified in NSCLC [31-33]. Distinctions between KRAS-

mutant and KRAS-wild-type NSCLC cases began in the late 1980s, and as genetic 

methods and databases improved other oncogenic drivers were identified including 

EGFR, EML4-ALK, HER2, BRAF, MET, MAP2K1, AKT1 and PIK3CA [31]. Although 

there do appear to be diminishing returns at this point in time for identifying new 

oncogenic drivers in NSCLC and the prevalence of those new drivers, but the currently 

known ones do account for more than 50% of NSCLC cases [31].
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As the technologies and expertise required to identify key genes, pathways and 

processes grew so did the depth of understanding of each of the “hallmarks” described 

in 2000. In addition to the fleshing out of the previously mentioned hallmarks, a 2011 

revisit of the Hallmarks of Cancer by the same authors proposed four new points of 

emphasis in cancer biology, two emerging hallmarks, deregulating cellular energetics 

and avoiding immune detection, and two enabling characteristics, genome instability 

and mutation and tumor-promoting inflammation [34]. These new hallmarks are involved 

in the pathogenesis of at least some cancers, while the enabling characteristics facilitate 

the acquisition of the hallmarks necessary for tumor formation and survival [34]. These 

new traits emphasize a classic pattern observed in biomedical research: new questions 

always arise to fill the place of those sufficiently “answered,” and often new lines of 

investigation are driven by methodological advances.
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Ding, L. et al. Somatic mutations affect key
pathways in lung adenocarcinoma. 
Nature 455, 1069–1075 (2008).

Figure 1.2 - Genetic aberrations in key pathways in lung adenocarcinoma. 
Diagram of common genetic lesions in lung adenocarcinomas. Red coloring indicates 
gain of functions and hyperactivity in lung adenocarcinomas, blue represents loss of 
function or inhibitory interactions. Intensity of color is relative to the frequency of 
aberrations observed.
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1.1.4 Targeted Therapeutic Approaches in NSCLC

Several genetically  targeted therapeutic regimens have found success in the clinic, 

most notably for tumors with an EML4-ALK fusion protein, and for mutant EGFR. These 

targeted therapies are used in combination with a genetic test for the presence of a 

prognostic genetic lesion and therefore sacrifice broad applicability for high potency in 

the targeted subgroup. Two small molecule inhibitors of EGFR signaling, erlotinib  and 

gefitinib, were recognized as EGFR antagonists, and early attempts at employment as a 

cancer therapy focused on treating cancers with high frequencies of EGFR-dependent 

tumors. While in vitro work showed high affinity  for the compounds to the EGF receptor, 

early clinical trials did not demonstrate compelling response rates or improved overall 

survival [35]. However, these studies did not enroll patients based on EGFR status, and 

a later study noted that 13 of 14 patients who responded to gefitinib had a mutation in 

the tyrosine kinase domain of EGFR, and these mutations were not observed in non-

responders [35,36]. This observation that mutational status of a tumor was an improved 

indicator of response to a targeted therapy than expression alone underscored the 

importance of identifying oncongenic “drivers” for relevant deployment of targeted 

therapies. While erlotinib  and gefitinib were able, when properly targeted, to improve 

patient outcomes, they  also highlighted one major pitfall of targeted therapeutic 

approaches: resistance. The median time to recurrence after EGFR TKI treatment was 

reported at 12 months, and analysis of resistant tumors showed that the majority of 

EGFR-TKI resistant tumors developed either a second, inactivating mutation in EGFR, 

or activation of a compensating receptor tyrosine kinase MET [37,38]. 
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Therefore, while targeted therapeutic approaches have demonstrated efficacy in tumors 

harboring lesions predicting sensitivity, it is important to remember that tumors are rarely 

a homogenous cellular population and can adapt to selective pressures such as 

chemotherapy rapidly. A 2011 report from Navin et al. demonstrated that a single-cell 

sequencing method that generated copy number profiles of individual cells from solid 

breast tumors could allow for the derivation of the tumor’s phylogeny  [39,40]. The 

authors’ analysis led them to conclude that tumors, at least the two they studied, 

adhered to a “punctuated clonal evolution” model of tumor evolution where tumor 

population branches are distinct from their common ancestor and without detectable 

intermediates [40]. This understanding of intratumor heterogeneity challenges the notion 

of treating a tumor as it is one homogenous object, although this phylogenetic analysis 

is insufficient for determining how different populations will respond to a common 

treatment.

Mass cytometry is a recently  described method for sorting and profiling the state of 

single cells in a mixture of cells [41]. Mass cytometry is conceptually identical to flow 

cytometry, where cellular proteins are labeled with fluorescent antibodies and quantified 

one cell at a time; however, mass cytometry circumvents the issue of fluorescence 

emission spectrum overlap by labeling the antibodies with mass-based tags. This, in 

combination with a mass spectrometer as a detector, allows for multiplexing of 50 or 

more probes in one assay, versus 6 to 15 in classic flow cytometry [41,42]. This added 

depth allows for both highly granular classification of complex mixtures of cells (the 

hematopoetic system is a favorite model) and the concurrent interrogation of the state of 
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many intracellular signaling molecules. Of course, this depends on a prior knowledge of 

how to define subpopulations, but when that is possible very powerful investigations of 

the response of specific subpopulations to an insult or treatment in relation to the whole 

are possible [41,42]. Investigations of these sort on heterogeneous tumors that can be 

sub-classified have immediate relevance to drug discovery studies, and perhaps to 

identifying sensitive and resistant tumor components before or during treatment.

In light of this, understanding mechanisms of resistance to targeted therapies will allow 

for targeted therapeutic regimens that preemptively target resistance mechanisms and 

hopefully decrease recurrence or prolong the disease-free interval. Newly developed 

high content, single-cell assays such as single cell deep sequencing and mass 

cytometry should play  a critical part in deconvoluting tumor heterogeneity and allow for 

the identification, just-in-case or just-in-time, of cells refractory to targeted therapeutic 

treatment.

1.2 microRNAs in Cancer

1.2.1 miRNAs emerge as important post-transcriptional regulators

In 1993 Lee et al. reported what, in retrospect, would be recognized as the first 

identified microRNA (miRNA) when they observed that in C. elegans the lin-4 gene 

negatively regulated LIN-14 during normal larval development [43]. Lee et al. further 

observed that lin-4 did not produce any  protein, that the two RNA transcripts they 

identified were only  22 nt and 61 nt in length and that the 3’ untranslated region (3’ 

UTR) of LIN-14 contained a repeated sequence complimentary  to lin-4 [43]. The authors 
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observed that lin-4 was a ~22 nucleotide (nt) RNA that post-transcriptionally down-

regulates target genes through a sequence-driven interaction with the target gene’s 

3‘UTR [44-49]. 

The next miRNA identified, let-7, was also in C. elegans. Loss of let-7 was found to 

cause larval cell fates in adult cells, and ectopic let-7 expression in larval cells induced 

adult fates [50]. Just as was the case with lin-4, let-7 was a 21 nucleotide RNA that 

regulated genes with complimentarity sites in the 3’ UTR [50]. Additionally, let-7 was 

highly conserved and found in nearly all bilaterally symmetric animals, suggesting 

similar small-RNA mediated gene regulation may be present in other organisms [51]. In 

2001 Hutvágner et al. demonstrated that lin-4 and let-7 small temporal RNAs were 

generated through the previously identified RNAi pathway, and that the enzyme DICER 

was required for both processes [52]. After identifying several highly evolutionarily 

conserved small RNAs and a conserved processing pathway there was enough 

information and motivation to begin identifying miRNAs en masse. Using the four-part 

criteria of expression of a ~22 nt mature RNA, location in an intergenic sequence, high 

DNA sequence conversation between C. elegans and C. briggsae and a ~65 nt stem-

loop precursor, a group was able to identify 15 new small RNAs, which they now called 

microRNAs, in C. elegans and predicted that there may in fact be hundreds more of 

these genes present [47]. Additional concurrent cloning and informatics based 

approaches quickly brought the number of identified miRNAs to over 100 [45,46].
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1.2.2 miRNA biogenesis and mechanism of action

The genesis and processing of miRNAs happens through a mechanism highly 

conserved from unicellular organisms through most plants and animals [49]. miRNAs 

begin as primary transcripts (pri-miRNAs) transcribed by RNA polymerase II in the 

nucleus [45,46,49,53]. miRNA genes are found in several configurations throughout the 

genome: some are found as solitary  genes, some are part of a cluster of miRNAs that 

are transcribed together, and some miRNAs exist in or as introns between the coding 

regions of a host gene [49,54,55]. After transcription the miRNA forms a stem-loop 

structure ~60-70 nt in length called the pre-miRNA which is then cut out of the pri-

miRNA by the nuclear RNase III Drosha [56,57]. The stem-loop pre-miRNAs are then 

exported from the nucleus into the cytoplasm for further processing in an Exportin-5 

mediated process [58]. Once in the cytoplasm the RNase Dicer transforms the pre-

miRNA into a ~22 nt double-stranded RNA [59]. During loading into a RNA-induced 

silencing complex with an Argonaute protein, typically Argonaute 2, as the catalytic 

component, typically  the strand of the miRNA duplex with the weaker 5’ pairing is loaded 

into the RISC [60-67].

Once a guide strand is loaded into the RISC  the RNA-protein complex associates with, 

and typically decrease target mRNA levels through transcript destabilization or cleavage 

[68]. Determination of miRNA target genes is still a process full of vagaries, but 

occurrence of conserved miRNA target sites in the 3‘UTR of target mRNAs is very 

consistent [69]. Perfect complimentarity between bases 2-7 as measured from the 5’ 

end of the miRNA, known as the “seed” region, and the target mRNA was identified by 
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several groups as a consistently important element in accurate prediction of miRNA 

targets [69-73]. The ambiguity of miRNA target prediction beyond these common 

features led to the creation of many algorithms, all with unique perspectives on the 

salient features of miRNA:mRNA interaction. Although the degree of overlap between 

the predictions the various algorithms generate for a miRNA is very  high, when there is 

disagreement it is often due to factors such as the weighting of sequence conservation 

of a target site, the treatment of the target nucleotide opposite the first miRNA 

nucleotide and thermodynamics were sources of much of the variation between different 

algorithms [69].

The appeal of creating a customized target prediction method speaks to a critical allure 

and frustration of today’s miRNA biology. Namely, the ambiguity inherent in 

miRNA:mRNA interaction affords an investigator substantial freedom to find their 

narrative of interest in a list of possible biology. An unfortunate trend in reports on 

miRNA biology involves citing one of the aforementioned target prediction programs, 

almost universally  TargetScan, as a “bioinformatic analysis” that consists of little more 

than identifying a gene of interest somewhere on the list of predicted targets to 

construct a single miRNA-single gene story. While assays exist to support these 

hypotheses, the nature of miRNA targeting suggests a one-to-many or many-to-many 

relationship between miRNAs and mRNAs, with a strong dependence on the 

stoichiometry  of the miRNA and mRNAs of interest. In short, miRNA regulation of 

biological processes is highly dependent on the gene expression context in the system 

of interest.
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 1.2.3 miRNAs Involvement in Lung Cancer

The importance of miRNA dysregulation in cancer appeared soon after the identification 

of miRNAs as a key class of posttranscriptional regulators. Since Calin et al. identified 

frequent deletions of miR-15 and miR-16 in chronic lymphocyte leukemia in 2002 

miRNAs have been implicated in the control of nearly all of the aforementioned 

“hallmarks of cancer” [74]. Additionally, in 2009 Kumar et al. demonstrated that Dicer1, 

the enzyme that trims a pre-miRNA hairpin into a mature duplex, is a haploinsufficient 

tumor suppressor, and that hemizygous loss of Dicer in these tumors resulted in general 

down-regulation of tumor miRNAs in a KRAS-driven mouse model of lung cancer [75]. 

Kumar et al. also observed a high frequency  of hemizygous DICER1 deletion in many 

common human tumor types. In tandem, these results demonstrate that miRNAs play  a 

crucial role in the maintenance of a cellular homeostasis that keeps cell survival and 

proliferation under control. Figure 1.3, although not a comprehensive diagram of 

miRNA involvement in cancer, is meant to demonstrate the broad relevance of miRNA 

regulation in tumor initiation, progression, and survival. Additionally, the function of 

specific miRNAs is very context-dependent; a miRNA can function as a tumor 

suppressor in one context and as an oncomiR in another. Here I will concentrate on 

miRNAs relevant in the context of lung cancer.

Several large scale studies of human tumors and tumor-derived cell lines identified 

miR-21 as one of the most frequently up-regulated miRNAs in tumor biology. 

Impressively, one study observed miR-21 up-regulation versus normal adjacent tissue in 
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540 combined lung, breast, stomach, prostate, colon, and pancreatic tumors [76]. 

Additional studies identified its up-regulation in glioblastoma, head and neck carcinoma, 

ovarian cancer, B cell lymphoma, hepatocellular carcinoma and cervical carcinoma cell 

lines and tumors [77-84]. In lung cancer, miR-21’s expression can be driven by  the Ras/

MAPK/ERK signaling pathway, and miR-21 then inhibits negative regulators of that 

signaling pathway as well as inhibiting several anti-apoptotic genes [77].

In an example of miRNA control of growth factor response in NSCLC, miR-128b has 

been shown to down-regulate the Epidermal Growth Factor (EGFR) receptor in NSCLC 

cell lines [85]. EGFR is a known hotspot for activating mutations in NSCLC, and LOH of 

miR-128b is shown to correlate with survival in a small sample of Gefitinib-treated East 

Asian NSCLC  patients [85]. This is a somewhat confusing result as one would expect 

low EGFR, and therefore potentially high miR-128b levels to be a pro-survival condition; 

however, survival was measured post-Gefitinib  treatment, and one could expect that 

only tumors with high levels of oncogenic EGFR would respond to the EGFR-targeted 

Gefitinib.

The miR-15/16 family of miRNAs has been shown to control the activity of several 

different cancer-related pathways in a context-dependent manner. miR-15/16 

expression is inversely  correlated with the expression of the anti-apoptotic B cell 

lymphoma 2 (BCL2) protein in CLL, a direct target of miR-15/16, and that introduction of 

miR-15/16 induced apoptosis in a CLL cell line [86]. In the NSCLC context both miR-15 

and miR-16 are frequently down-regulated in tumors and cell lines, and that miR-15/16 
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was inversely correlated with CCND1, but not BCL2, expression in the tumors [87]. 

miR-15/16 was also observed to induce cell cycle arrest, not apoptosis, in a Rb-

dependent manner in two NSCLC cell lines [87]. Importantly, the observation that 

miR-15/16 can exhibit anti-tumor effects by manipulating different pathways in different 

tumor types demonstrates the complexity and substantial layering of miRNA regulatory 

activity, especially in a case like this where a known target of miR-15/16, BCL2, does 

not appear to respond to miR-15/16 loss in NSCLC. 

The miR-34 family of miRNAs is deleted or down-regulated in several tumor types. The 

miR-34a locus is deleted in many tumors, and miR-34b and miR-34c are both deleted in 

many breast carcinomas and significantly  reduced in NSCLC  [88-90]. Interestingly, the 

expression of miR-34 family members is highly  correlated with p53 expression in 

tumors, and many p53-regulated genes are targets of the miR-34 family, including 

BCL2, CDK4, CDK6 and CCNE2 [88,91,92]. The loss of miR-34 protects tumors from 

cell cycle arrest and apoptosis, and introduction of miR-34 in lung adenocarcinoma cell 

lines was shown to induce apoptosis and G1-arrest [93]. Interestingly, miR-34b  over-

expression sensitized a p53 wild-type NSCLC cell line, A549, to radiation, but not the 

p53-null NSCLC cell line H1299 [93].

The let-7 miRNA family of miRNAs is known to regulate several key  genes in lung 

cancer survival and progression. In 2005 Johnson et al. demonstrated that let-7 could 

directly regulate RAS in C. elegans [94]. KRAS, one of the human homologues of the C. 

elegans RAS gene, is a known oncogene that is frequently  amplified or up-regulated in 
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NSCLC. Johnson et al. observed down-regulation of let-7 in lung tumors as well as an 

anti-correlation between let-7 presence and Ras protein in lung tumor tissue [94]. A later 

study also identified SNPs in a let-7 target site in the KRAS 3’ UTR that increased lung 

cancer risk and KRAS expression in tumors, further establishing the importance of the 

let-7/KRAS relationship  in NSCLC  [95]. let-7 was then shown to modulate protein 

abundance of HMGA2, and that introduction of a let-7 resistant HMGA2 was able to 

rescue let-7 mediated decreases in proliferation [96]. HMGA2 is a transcription factor 

shown to be over-expressed in 90% of lung cancers and whose presence in the nucleus 

is associated with high cell proliferation and poor survival [96]. It is unclear how this 

observation of the anti-proliferative effects of let-7 relates to the aforementioned let-7 

regulation of KRAS in NSCLC, although a later report on KRAS addiction in NSCLC 

observes that the cell lines employed here may not require KRAS activity for their 

survival [22].

The miR-200 family  of miRNAs was established as a key regulator of the epithelial to 

mesenchymal transition (EMT) in many cancers, including ovarian, breast and lung 

cancer [97-100]. The transition of tumor cells from an epithelial to a mesenchymal 

program is of great interest as mesenchymal cells are more prone to invading 

surrounding tissues and generating metastatic lesions. These events almost universally 

correlate with poorer prognosis for patients with solid tumors in part because surgical 

resection becomes far more difficult as the number of tumors and their invasion of 

surrounding tissues increases. miR-200 is a negative regulator of EMT in lung cancer: 

decreased miR-200 was observed after EMT induction, and ectopic miR-200 expression 
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could abrogate EMT and invasion [97]. miR-200’s reversible role in EMT regulation is 

due in large part to its targeting of E-cadherin transcriptional inhibitors ZEB1 and ZEB2. 

miR-200 down-regulation of ZEB1 and ZEB2 increases E-cadherin, an epithelial marker, 

and inhibition of miR-200 decreases E-cadherin and increases the expression of the 

mesenchymal marker vimentin [99]. Impressively, the miR-200/ZEB/EMT axis has been 

consistently  shown to be the primary  mechanism of miR-200 regulation of EMT across 

many solid, invasive tumors [97-101]. These findings provide a useful insight into the 

control of EMT and the involvement of miRNAs in that process. It additionally provides 

an avenue for addressing the challenge of halting the metastatic and invasive activity of 

an aggressive tumor. A combination of a EMT reversal through miR-200 restoration and 

induction of tumor cell death could improve outcomes in invasive tumors. One report 

showed that miR-200b  could reduce metastasis and invasion in a murine model of 

hepatocellular carcinoma; however, portions of the E-cadherin promoter were 

methylated in the mesenchymal cells and a supplemental DNA methyltransferase was 

required in order to reduce invasion and metastasis [102]. Such a therapeutic approach 

may be beneficial as part of an adjuvant therapeutic approach to limit the formation of 

recurrent metastatic tumors, although an additional cytotoxic agent would still be 

required if metastases were already present.

Another area where miRNA have shown involvement in NSCLC  is in chemosensitivity. 

miR-337-3p is a miRNA that is expressed highly in a fetal lung fibroblast cell line, 

detectable in HBEC  cells, and generally lower/undetectable in NSCLC cell lines [103]. 

While over-expression of the miRNA alone was insufficient for toxicity in a NSCLC cell 
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line, miR-337-3p sensitized the cells to treatment with paclitaxel, a common first-line 

therapy in NSCLC, and caused G2/M arrest [103]. Identification of STAT3 as an in silico 

and in vitro target whose presence correlated with taxane sensitivity in NSCLC  raises 

the interesting possibility of miRNA manipulation in a combinatorial treatment with an 

existing first-line therapeutic for treatment in a manner which requires less of both 

agents, although it remains unclear how potent the synergy between miR-337-3p  and 

taxanes is in normal tissues.

These findings demonstrate that miRNAs are key components in pathways that 

maintain controlled cellular growth and localization NSCLC, such as miR-34 in p53 

response and miR-200 in EMT. Additionally, other miRNAs, such as miR-21 and let-7, 

are up or down regulated in NSCLC  cell lines or tumors versus normal controls in a 

manner that allows for dysregulation of cellular growth and evasion of cell death. As 

many of these miRNA-related cancer phenotypes involved increasing or decreasing 

mature miRNA levels relative to normal adjacent tissues, there exists the potential that 

miRNA “restoration” may be of therapeutic benefit in NSCLC  tumors where miRNA 

dysregulation is involved.
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Figure 1.3 - miRNA involvement in the hallmarks of cancer. Arrows pointing to 
miRNAs indicate up-regulation in the given hallmark, bars indicate down-regulation. 
Corresponding arrows or bars pointing to genes in the outer circle indicate the result of 
that miRNA perturbation on gene expression.
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 1.2.4 miRNA manipulation as a therapeutic approach

miRNA-based therapeutics have been sought after for almost as long as miRNAs have 

been relevant to cancer biology. This is at least in part because gain- and loss-of 

function manipulations can be accomplished with similar approaches. The most 

clinically relevant approaches currently  under development are based on 

oligonucleotide chemistries. Gain of tumor suppressor miRNA function can be achieved 

with chemically  modified, double-stranded RNA oligonucleotides that act as miRNA 

mimics [104]. Single-stranded Locked Nucleic Acid (LNA) or modified RNA 

oligonucleotide inhibitors of oncomiRs can be employed to deplete miRNAs necessary 

for tumor survival [105-107].

There are two major success stories with regard to successful delivery of 

oligonucleotide-based miRNA mimics. Two tumor suppressors miR-34a and let-7 have 

been developed as anti-tumor therapies in various mouse models of NSCLC. In 2010 

Wiggins et. al. demonstrated successful intratumoral and systemic delivery of a mimic to 

miR-34a, a previously  identified tumor suppressor miRNA in NSCLC, to A549 and H460 

NSCLC xenograft tumors [104]. miR-34a. Wiggins et. al. utilized a neutral lipid emulsion 

to facilitate the cellular uptake of the the oligos into the xenograft tumors without 

observing any meaningful immune response in the mice after treatment [104]. A related 

group, Trang et. al., used a similar approach to deliver let-7b mimics by intratumoral 

injection to H460 xenograft tumors and observed an inhibition of tumor growth after 

treatment [108]. 
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In a 2011 follow-up  report Trang et. al. set out to determine whether the combination of 

double-stranded miRNA mimics and neutral lipid emulsion would be sufficient to impact 

tumor growth in native murine lung tumors. They  observed a decrease in tumor burden 

in the lungs of LSL-K-ras G12D after 8 days of treatment with either an let-7b or 

miR-34a mimic [109]. They also delivered a benign miR-124 mimic by the same method 

and saw it delivered to liver, lung and heart tissues, as well as substantial amounts of 

miR-124 in blood; however, these measurements were made 10 minutes after injection 

and do not give any indication of the long-term stability  or accumulation of the miRNA 

mimics in any tissues [109]. While Trang, Wiggins et. al. demonstrated some success in 

terms of delivering a therapeutically viable dose of a miRNA mimic to various mouse 

models of lung cancer, extremely  high mimic dosages were required to inhibit tumor 

growth. The costs of treating human patients using methods similar to those employed 

here will be prohibitive until advances in delivery methods allow for higher efficiency in 

cellular uptake and more precise delivery of miRNA mimic-based therapies.

In addition to the therapeutic restoration of miRNA function mentioned above, there is 

increasing interest in the repression of oncogenic miRNAs whose presence or up-

regulation promote tumor survival. Similar to therapeutic miRNA mimics the most 

promising approaches to in vivo miRNA inhibition involve oligonucleotide-based 

approaches. Anti-miRNA oligos are typically single-stranded oligos consisting of 

modified RNA or DNA bases [110]. Modifications such as LNA, 2’-O-Me, 2’-O-MOE 

serve to increase the stability, affinity and uptake of the oligos in vivo [110]. In 2005 
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Krutzfeldt et al. communicated the first successful case of oligo-based miRNA inhibition 

in mammals by tail vain injection of an “antagomir” to miR-16 in mice [105]. Antagomirs 

are 2’-O-Me - modified RNAs with a 3’ cholesterol tag to enhance delivery efficiency 

[105]. While Krutzfeldt et al. did not attempt to inhibit tumor growth or target any 

particular tissues they did demonstrate functional delivery of miR-16 and miR122 

inhibitors to all the mouse tissues they assayed [105]. As with the miRNA mimics, the 

dosages of inhibitor used here were prohibitively expensive for a human therapy, 

although delivery was achieved without an additional packaging reagent [105].

In 2010 two reports, one each from Ma et al. and Anand et al., demonstrated the 

successful delivery of therapeutically relevant amounts of anti-miRNA compounds to 

tumors. Ma et al. used the previously described antagomir technology to inhibit tumor 

metastasis in a mouse mammary cancer model [106]. By delivering a miR-10b inhibitor 

to a highly metastatic breast cancer cell line xenograft beginning 48 hours post 

implantation Ma et al. were able to dramatically reduce the metastatic activity  of the 

tumor [106]. However, the miR-10b  inhibitor had no noticeable impact on growth of the 

primary tumor, only the degree of metastasis [106]. Whether this inhibition of metastasis 

would have any real impact on patient prognosis at the time of diagnosis when 

metastasis may already be widespread remains to be seen, although the potential for a 

potent antimetastatic agent in combination with surgical resection of a well defined 

primary tumor is promising. 
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In their 2010 report, Anand et al. targeted the miR-132/p120RasGAP/angiogenesis axis 

to decrease tumor burden in an orthotopic xenograft mouse model of human breast 

carcinoma. Anand et al. observed that miR-132 was up-regulated in human tumors 

versus normal endothelium, and that increasing expression of miR-132 in normal 

endothelium increased proliferation and tube-forming capacity  [111]. They were then 

able to decelerate tumor growth and de-repress p120RasGAP using lipid nanoparticle-

associated, 2’-O-Me modified anti-miR-132 oligos delivered to the orthotopic xenograft 

breast cancer tumors [111]. Using CD31 as a marker for vasculature, they showed a 

concurrent decrease in vasculature after anti-miR-132 delivery. However, tumor burden 

was decreased by only ~50% by the end of the study, and had not leveled off at that 

time, and it is unclear whether that is a reflection on the tumor’s dependence on 

vascularization, or on the degree of vascular down-regulation achieved with the delivery 

system employed.

One interesting development in therapeutic miRNA inhibition in cancer treatment 

involves the targeted inhibition of families of miRNAs with a shared seed sequence. In 

2011 Obad et al. explored the ability  of 8-mer, fully  LNA substituted oligos to inhibit 

miRNAs with a common seed sequence [112]. Obad et al. showed a successful proof of 

concept study with a “tiny  LNA” inhibitor of miR-21 demonstrating de-repression of 

miR-21 targets by several methods only  after delivery of a seed-targeted tiny LNA [112]. 

Obad et al. then used two different miRNA family-target tiny LNAs, one to the 

miR-221/222 family, and one to the let-7 family, and were able to demonstrate de-

repression of luciferase constructs containing target sites for each family member 
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miRNA using a single family-specific oligo in vitro [112]. Next, they demonstrated that 

the tiny LNAs can be delivered to both orthotopic xenograft tumor models and normal 

tissues by delivering a tiny miR-21 inhibitor to the tumor and a tiny  miR-122 inhibitor to 

the liver. However, they did not demonstrate any therapeutic benefit to miR-21 inhibition 

by a tiny LNA in the tumor model, and it is unclear how its potency relates to a classical, 

full-length miR-21 inhibitor.

While therapeutic manipulation of miRNAs in tumors has been heavily  pursued over the 

past several years, with many reports of success in model organisms, several barriers 

remain between the current state of the art and a viable therapy. Currently, the synthesis 

of the modified oligos necessary for in vivo delivery  is very expensive; one conservative 

dose of an LNA miRNA inhibitor for an average American male would cost 

approximately  $150,000 for the oligo alone. There are two practical ways to reduce this 

figure to a realistic level: Decreasing the cost of the agent, and lowering the effective 

dose of the therapeutic agent. Much effort is being invested in the latter option, 

especially  in terms of designing higher efficiency packaging molecules, although it will 

take time to achieve the orders of magnitude gains in efficiency necessary  to make 

these interventions effective. An alternative approach worth added investigation involves 

finding synergistic interactions between gain or loss of a miRNA and an established 

antineoplastic compound, such as that reported between miR-337-3p and taxane 

sensitivity [103]. 
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Chapter 2: Identifying conditionally toxic miRNA 
inhibition in NSCLC

2.1 Introduction

Lung cancer is the leading cause of cancer-related fatalities in the US, accounting for an 

estimated 159,480 deaths in 2013 [2]. Lung cancer can be divided into two major 

subtypes, small-cell and non-small-cell lung cancer (NSCLC), with the latter accounting 

for approximately 85% of all bronchiogenic carcinomas [2]. One subtype of NSCLC, 

adenocarcinoma, is the most common form of lung cancer, and has been shown to 

have a well-defined genetic background, with elevated mutation rates and copy number 

aberration in specific oncogenes and tumor suppressors such as KRAS and TP53 [30]. 

The existence of defined genetic abnormalities in NSCLC  has allowed for the 

development of targeted therapeutic approaches to NSCLC treatment, where the 

current five-year survival rate remains around 15%. Targeted therapies sacrifice breadth 

of treatable tumors for high efficacy in the presence of a specific biomarker for response 

to the treatment. In particular, therapies targeting tumors with mutations in the 

Epidermal Growth Factor Receptor (EGFR) gene or an EML4/ALK fusion gene have 

been clinically successful as first-line therapies [35,113-115]. However, only 25-35% of 

NSCLC tumors are targeted by the EGFR and EML4/ALK targeted therapies.

microRNAs (miRNAs) are a class of post-transcriptional regulators of gene expression: 

In a sequence-defined process mediated by the RNA Induced Silencing Complex 

(RISC), the highly conserved ~22 nucleotide RNAs down-regulate their target mRNAs 
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by associating with the 3’ untranslated region (3’ UTR) of their target mRNAs [49,68,69]. 

miRNA loci are found across the genome as either individual loci or as part of a 

polycistron, a group  of miRNAs found on a shared primary transcript. Specific miRNAs 

have been implicated in many developmental processes, as well as cancer 

development, progression and chemosensitivity  [16,77,90,103,116]. miRNAs can 

function as both tumor-promoters (oncomiRs) or tumor suppressors in various tumor 

types, and some miRNAs can play the role of either oncomiR or tumor-suppressor 

miRNA depending on the tumor type [117]. miRNAs are readily manipulated via genetic 

or oligonucleotide-based approaches both in vitro and in vivo, and miRNA gain or loss 

of function has been demonstrated to have substantial effects on tumor initiation and 

progression in in vivo tumor models [77,104,118]. Locked Nucleic Acid (LNA)-based 

oligonucleotides complementary to the sequence of a mature miRNA have 

demonstrated efficacy as therapeutic miRNA inhibitors [105,118,119] in both primate 

and murine in vivo cancer models due to their high target affinity and delivery to many 

tissue types without any packaging or carrier [105,118,119].

I was interested in using libraries of LNA-based miRNA inhibitors to identify  synthetic 

lethal inhibitor:genotype interactions in NSCLC. Here I used a two phased screening 

approach to identify miRNA inhibitors with selective toxicity across a genetically diverse 

collection of NSCLC cell lines. I was then able to use the genetic diversity of the cell 

lines in tandem with mutational and transcriptional profiles of each cell line to identify a 

molecular mechanism, p53 loss, that correlated with miRNA inhibitor toxicity.
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2.2 Results

2.2.1 A miRNA inhibitor screen converges on a specific selective toxicity in 

NSCLC cell lines.

In order to identify miRNA inhibitors with genotype-driven selective toxicity in NSCLC, I 

implemented a two phased miRNA inhibitor screen (Figure 2.2.1A). I employed a 

comprehensive library of miRNA inhibitors with 919 single-stranded competitive 

inhibitors targeting 870 of the known human miRNAs as of miRbase v.14. The DNA/

LNA hybrid inhibitors competitively bind to mature miRNAs and prevent miRNA loading 

into the RISC [120].

Two histologically similar yet genetically distinct NSCLC cell lines, H358 and H1993, 

were selected for comprehensive screening in Phase I. This was done to avoid 

differential response to an inhibitor based on the tumor’s histological subtype. Both cell 

lines were derived from lung adenocarcinomas; however, only H358 harbors a known 

oncogenic KRAS allele [121]. I confirmed a differential response to KRAS depletion by 

introduced a small interfering RNA pool (siRNA) targeting KRAS by transient 

transfection into both cell lines. H358 was sensitive to the depletion of KRAS, while 

there was no difference in cell survival of H1993 after KRAS depletion versus control, 

confirming that while histologically similar the two cell lines can generate divergent 

responses to a specific perturbation (Figure 2.2.1A).
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I observed a variety  of cell viability responses to individual miRNA inhibitors between 

the two cell lines (Figure 2.2.1B). Specifically, I identified several miRNA inhibitors with 

high toxicity  across both cell lines, as well as many other miRNAs with less potent but 

more selective toxicity  in H358 versus H1993 (Figure 2.2.1B). 35 (3.79%) inhibitors 

decreased viability to below 50% of control in H358, and 11 (1.19%) in H1993. All 11 of 

the inhibitors decreasing viability below 50% in H1993 also decreased viability  below 

50% in H358. In order to identify  inhibitors with selective, but not broad or idiosyncratic 

toxicity  in NSCLC  cell lines I selected 13 candidate inhibitors for additional profiling 

across an panel of 12 NSCLC and one human bronchial epithelial (HBEC) cell lines 

(Figure 2.2.1B, Table 2.2.1). Criteria for selection for the second phase included 

preferential toxicity in H358 versus H1993, differential expression between H358 and 

H1993, as well as over-representation of particular miRNA families in the toxic regions 

of the inhibitor response distribution (Figure 2.2.1B).

I observed three response patterns across the cell line panel: broad-spectrum toxicity 

across most or all cell lines, selective toxicity across subsets of the panel, or 

idiosyncratic toxicity in just one of the cell lines (Figure 2.2.1C). However, as my interest 

was in miRNA inhibitors with selective toxicity  in specific classes of NSCLC I excluded 

broadly toxic inhibitors. Additionally, I excluded inhibitors with toxicity in the HBEC30KT 

cell line, as that indicated potential toxicity in non-transformed tissues and a diminished 

therapeutic window. Based on the selective toxicity of the hsa-miR-92a inhibitor, I chose 

the miR-92a inhibitor for profiling across an additional 13 cell lines, for a total of 28 cell 

lines (Figure 2.2.1D, Table 2.2.1). I observed a highly variable cell viability response to 
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the miR-92a inhibitor; there was no dichotomization of response to the miR-92a inhibitor 

into clearly defined sensitive and resistant groups (Figure 2.2.1D). This suggests that 

genetic factors predicting sensitivity to the miR-92a inhibitor may be continuously 

variable as well, versus a binary event such as the presence or absence of an 

activating/inactivating mutation. 

miR-92a is a component of the miR-17~92 polycistron, a cluster of co-transcribed 

miRNAs that is frequently up-regulated in many solid tumors including those breast, 

colon, lung, pancreas, prostate, and stomach-derived tumors [76,122,123]. Up-

regulation of this cluster of miRNAs was shown to promote proliferation in lung cancer 

cell lines [16]. miR-92a is also a member of the miR-25 seed family  of miRNAs which 

includes miR-25, miR-32, miR-92a, miR-92b, miR-363 and miR-367 (Figure 2.2.2A). I 

did not observe toxicity of a similar magnitude to the miR-92a inhibitor from any 

inhibitors of either the miR-25 seed family of miRNAs (Figure 2.2.2B) or the miR-17~92 

polycistron (Figure 2.2.2C), suggesting that the observed decrease in cell viability  is 

highly specific to the activity of the miR-92a inhibitor.

The assay used in the primary  screen, culturing relatively low numbers of cells in small-

diameter wells with luminescent ATP quantification as a proxy for viability  allowed us to 

identify differences in viability between cell lines as a function of treatment. However, 

because of the low cellular density, the assay was not a reliable discriminator between 

cytostatic and cytotoxic effects. I was therefore interested in identifying signals of 

cellular toxicity and apoptosis in sensitive cells. Using a luminescent assay for known 
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apoptotic markers activated Caspase 3/7 I observed a significant increase in apoptotic 

markers in the miR-92a sensitive cell line (H358) and not H1993 (Figure 2.2.1E). This 

suggests that the observed decrease in cell viability in response to the miR-92a inhibitor 

is due to a toxic response that induces apoptosis.

Interestingly, I observed that the screen appeared to converge on a very specific 

vulnerability in NSCLC. The two selectively toxic miRNA inhibitors, the miR-92a and 

miR-1226* inhibitors, appeared to converge on a specific vulnerability  in NSCLC, as the 

toxicities of the two inhibitors were significantly correlated across the panel of cell lines 

(Figure 2.2.1F). Additionally, these inhibitors are identical by sequence at ten positions, 

including a “CAGGCC” motif at or near the 5’ end of each oligo (Figure 2.2.1G). This 

suggests that while I did not observe any highly specifically potent miRNA inhibitors in 

Phase I, I did identify  a specific vulnerability in NSCLC  cell lines that was perturbed by 

multiple miRNA inhibitors in the context of this screen.
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Figure 2.2.1 - A miRNA inhibitor screen identifies several distinct toxicity patterns 
across NSCLC cell lines. A)  Crystal violet staining in H358 and H1993 cells for cell 
viability 7 days post transfection with an siRNA pool to knock down KRAS. Schematic 
represents screen layout. B)  Scatter plot of the 923 miRNA inhibitors in the inhibitor 
library  used in the first phase of the screen. Each dot represents the Z-scores of the 
row-normalized cell viability in the two cell lines assayed, with H358 on the x-axis and 
H1993 on the y-axis. Dashed lines represent the median Z-score in each cell line. 
Labeled red dots are inhibitors selected for the second phase of the screen. C) Phase II 
results for inhibitors typical of the cell viability patterns observed in Phase I. miR-92a, 
miR-1228 and miR-877*  results are percent viable cells relative to negative control as 
determined by CellTiter-GLO. The dashed red line indicates 50% viable cells. The red 
colored bars identify the representative normal cell line, HBEC30KT. Error bars 
represent one standard deviation. D) Same as in C), with a total of 28 cell lines assayed 
for toxicity after transient transfection of 50 nM miR-92a inhibitor versus a control 
inhibitor. E) Selective activation of Caspase 3/7 72h post-transient transfection with the 
miR-92a inhibitor or control in H358 cells, versus H1993 cells. Results are the mean of 
3 replicates. Error bars represent standard deviation. Significance was calculated by 
Student’s two-tailed t-test. F)  Correlation of cell viability in 28 NSCLC  cell lines after 
miR-92a inhibitor or miR-1226*  inhibitor treatment. Each red dot represents one cell 
line, dashed line represents a line of best fit. Correlation and p-value determined by 
Pearson correlation test. G) Sequence alignment of the miR-92a and miR-1226* 
inhibitors, from 5’ (L) to 3’ (R). Positions of sequence identity are bolded.
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Figure 2.2.2 - Activity of miR-92a related inhibitors. A)  Sequence comparison of the 
miR-25 miRNA family. The shared seed sequence is highlighted in red. B)  Phase I 
toxicity  of individual inhibitors of the miR-25 family of miRNAs. Values are the mean of 3 
replicates in the labeled cell line, error bars are standard deviation. C) Phase I toxicity  of 
individual inhibitors of the miR-17~92 cluster of miRNAs. Values are the mean of 3 
replicates in the labeled cell line, error bars are standard deviation.
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Cell Line Tumor Type Tumor Subtype Age Race Gender TP53 Status

NCI-H358 Lung Adenocarcinoma NA Caucasian M Deletion

NCI-H2009 Lung Adenocarcinoma 68 Caucasian F Mutant

NCI-H2122 Lung Adenocarcinoma 46 Caucasian F Mutant

NCI-H441 Lung Adenocarcinoma 33 Unknown M Mutant

NCI-H460 Lung Large Cell NA Unknown M Wild-Type

HCC4017 Lung Large Cell 62 Caucasian F Mutation

HCC44 Lung Adenocarcinoma 54 Caucasian F Mutation

NCI-H2073 Lung Adenocarcinoma 47 Caucasian F Mutation

HCC366 Lung Adenosquamous 80 Unknown F Mutation

HCC95 Lung Squamous 65 Caucasian M WT

NCI-H1975 Lung Adenocarcinoma NA Unknown F Mutation

NCI-H1993 Lung Adenocarcinoma 47 Caucasian F Mutation

A549 Lung Adenocarcinoma 58 Caucasian M WT

Calu-1 Lung Muco-epidermoid carcinoma 47 Caucasian M Deletion

Calu-6 Lung Adenocarcinoma 61 Caucasian F Mutation

NCI-H1299 Lung Large Cell Neuroendocrine 43 Caucasian M HD

NCI-H1355 Lung Adenocarcinoma 53 Caucasian M Mutation

NCI-H157 Lung Squamous 59 Caucasian M Mutation

NCI-H2087 Lung Adenocarcinoma 69 Caucasian M Mutation

NCI-H2347 Lung Adenocarcinoma 54 Caucasian F Mutation

NCI-H322 Lung Adenocarcinoma 52 Caucasian M Mutation

HCC1195 Lung Adenocarcinoma (mixed) 47 Black M Unknown

HCC15 Lung Squamous 55 Black M Mutation

HCC193 Lung Adenocarcinoma 71 Caucasian F Mutation

HCC78 Lung Adenocarcinoma 55 Caucasian M Mutation

HCC827 Lung Adenocarcinoma (BAC features) 38 Caucasian F Mutation

HBEC13-KT NA Immortalized Normal 65 Unknown M NA

HBEC3-KT NA Immortalized Normal 65 Unknown F NA

HBEC30-KT NA Immortalized Normal 62 Caucasian F NA

Table 2.2.1 - Cell Lines Used. Table naming cell lines employed in this study with selected 
annotation data including tumor type, patient age at tissue collection, race, gender and TP53 
mutational status.
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2.2.2 miR-877* is an H358-idiosyncratically toxic miRNA that may be important in 

NSCLC.

In addition to the broadly toxic and selectively toxic inhibitors previously discussed, I 

identified one highly idiosyncratic miRNA inhibitor, the inhibitor for miR-877* (Figure 

2.2.1C). While it reduced cell viability by 80% in H358, I could not identify any other cell 

lines in the expanded panel of 28 cell lines where viability was below 50% of control 

after miR-877* inhibitor treatment (Figure 2.2.3A). While this finding excluded miR-877* 

from follow-up  as a candidate miRNA inhibitor for identifying genotype-specific 

vulnerabilities, I was intrigued by two observations. First, there appeared to be a 

correlation between expression of miR-877* and the toxicity  of the miR-877* inhibitor 

(Figure 2.2.3B). Additionally, high miR-877*  is correlated with poor prognosis in 

adjuvant-treated NSCLC patients, as determined by Ignatio Wistuba and collaborators 

(Figure 2.2.3C). Interestingly the differences in survival between miR-877* high and low 

patients was not significant in non-adjuvant treated patients (Figure 2.2.3C). These 

observations led me to assess the activity of this inhibitor in our NSCLC cell lines.

However, I made the surprising observation that, by  qRT-PCR, miR-877* appeared to 

increase several orders of magnitude after miR-877* treatment using my standard 

protocol (Figure 2.2.4A, B). This was the case in three cell lines, and the effect was 

specific to the LNA-based Exiqon inhibitor. I used high-resolution acrylamide/TBE gel 

electrophoresis to qualitatively  asses the presence of the miR-877* qPCR product in 

treated cells after a 36 hour treatment. The results of this assay confirmed that there 
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was in fact an increase in the miR-877*  qPCR product in sensitive and resistant cells 

treated with the Exiqon miR-877* inhibitor (Figure 2.2.4C). 

Still confused by this finding I repeated the standard reverse transcription and 

quantitative PCR process using either water or two concentrations of the resuspended 

miR-877* inhibitor as input. The purpose of this setup was to identify if the miR-877* 

inhibitor, as a short, single stranded LNA/DNA hybrid oligo, could act as a substrate for 

the probe oligo of the TaqMan miRNA assay. The TaqMan miRNA assay is a two-step 

process where a stem-loop hairpin primer is annealed to the target miRNA and reverse 

transcribed into a cDNA with the mature miRNA sequence and a universal primer 

sequence. The qPCR portion of the assay  involves two primers, one targeted at the 

universal primer sequence and one miRNA-specific primer, as well as a detection probe 

in between the two primer sites. Surprisingly, I observed that, with or without the reverse 

transcriptase enzyme present for the RT step, the miR-877* inhibitor was amplified in a 

dose-dependent manner in the qPCR reaction (Figure 2.2.4D). Given the GC-rich 3’ 

region of the mature miRNA, I believe that the affinity of the hydrolysis probe for the 5’ 

end of the miRNA inhibitor is sufficient for polymerase landing and cleavage and release 

of the fluorophore from the miR-877*  detection probe. Decreasing the affinity of the 

probe for the inhibitor by creating mismatched versions of the miR-877*  inhibitor would 

allow for confirmation of this phenomenon. In total, this emphasizes that the small size 

of miRNAs can lead to concessions in detection assays that can result in 

counterintuitive results in the presence of miRNA mimics or miRNA-like molecules. 
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However, this is the only  case of a LNA/DNA miRNA inhibitor acting as a cDNA template 

in a qRT-PCR reaction I have observed.

My last investigation of the miR-877*  locus was an attempt to identify  relevant target 

genes of miR-877*. This was more challenging than for a typical mIRNA, as this locus is 

not found in the gold standard TargetScan database, nor is there any literature on 

predicted targets of that particular miRNA. Therefore, I used the intersection of two 

different miRNA target prediction algorithms that contain results for this locus, miRmate 

and PicTar, to identify potentially relevant target genes. I identified three genes, 

SLC12A9, RAD54L2 and DEAF1 that were high-scoring predicted targets by both 

methods (Figure 2.2.5A). When I attempted to identify de-repression of target mRNAs 

by qRT-PCR, there was no coherent up-regulation of targets to greater than two-fold of 

the initial levels in the sensitive cell line H358; at 36 hours SLC12A9 is up by 

approximately two-fold, but this is diminished after 72 hours (Figure 2.2.5B). 

Additionally, in the set of identified mRNA targets of the miR-877* inhibitor, SLC12A9 

was one of the most abundant across the panel of cell lines and the other two targets 

assayed, RAD54L2 and DEAF1 were of relatively low abundance, suggesting that there 

may be some range to de-repress these mRNAs in the proper context, or that these 

genes are in a repressed or inactivated state in NSCLC (Figure 2.2.5C).

Without sensitivity to the miR-877*  inhibitor in more than one NSCLC  cell line I did not 

have the power to generate other leads by interrogation of genetic profiles of the cell 

lines as to the biological impact of this potentially interesting but definitely  persnickety 
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miRNA inhibitor. While evidence exists in the form of patient survival data for the 

importance of this miRNA in NSCLC I decided to focus my energy on other miRNA 

inhibitors that afforded us more dynamic range to identify genetic markers correlated 

with toxicity  that would lead me closer to understanding the biology of the miRNA’s 

activity. However, we observed a significant difference in survival between low-miR-877* 

and high-miR-877* expressors in NSCLC, but this was only observed in adjuvant 

treated patients (Figure 2.2.3C). This suggests that while I observed miR-877* 

exhibiting toxicity  on its own in H358, its relevance in the broader NSCLC  context may 

have to do with tumor response to adjuvant chemotherapy. Further work will be required 

to identify the full relevance of miR-877* in NSCLC and its impact on survival in 

adjuvant-treated tumors.

" 43



Figure 2.2.3 - miR-877* in NSCLC. A) miR-877* inhibitor toxicity across NSCLC cell 
lines. B) Correlation between miR-877* abundance and toxicity  in NSCLC cell lines. 
Correlation determined by Spearman rank correlation. C) Kaplan-Meier survival analysis 
for miR-877*  in lung adenocarcinoma. Left panel is adjuvant treated patients, right panel 
is non-adjuvant treated.
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Figure 2.2.4 - Functional analysis of the miR-877* inhibitor is hindered by qRT-
PCR detection of the miRNA inhibitor. A)  qRT-PCR for miR-877*  after treatment with 
LNA or RNA miR-877*  inhibitors. Values are fold change relative to a chemistry-
matched negative control oligo. Bars = mean, error = s.d., n=3. B) Short-term miR-877* 
treatment in a sensitive cell line. qRT-PCR data generated and plotted as in A. Black 
bars are 50 nM negative control treated, red bars are 50 nM miR-877* treated. C) High-
resolution acrylamide gel of miR-877* qPCR products from A. E = Exiqon inhibitor, D = 
Dharmacon inhibitor. Arrow marks band of interest D) Acrylamide gel as in C. RTase = 
Reverse Transcriptase. 
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Figure 2.2.5 - Functional analysis of the miR-877* inhibitor predicted targets A) 
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predicted miR-877* target gene expression in NSCLC cell lines. Scale, from lowest to 
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2.2.3 p53 levels anti-correlate with miR-92a inhibitor toxicity, and loss of p53 

sensitizes a resistant cell line to the miR-92a inhibitor.

Therapeutic approaches in NSCLC that involve genotype-based targeting have shown 

promising returns, particularly for those using EGFR or EML-ALK4 status as a 

biomarker for treatment [114,124]. I therefore wanted to identify a genetic predictor of 

the miR-92a inhibitor’s toxicity  (Figure 2.2.1D) by identifying correlations between the 

inhibitor’s toxicity and genetic lesions in the NSCLC cell lines.

After interrogating the mutational status and gene expression of known oncogenes and 

tumor suppressors in NSCLC for correlates with miR-92a inhibitor toxicity I observed 

that TP53 mRNA levels were anti-correlated with the toxicity of the miR-92a inhibitor: 

cell lines with low TP53 had more robust toxic responses to the inhibitor (Figure 2.2.6A). 

Neither cell line used in the first phase of the screen contained an intact, wild-type TP53 

locus (Table 2.2.1). H358, the sensitive cell line from the first phase of the screen, had 

the lowest observed TP53 expression of any of the cell lines in the panel (Figure 

2.2.6A). 

Recent studies have demonstrated that mutant p53 alleles can create either gain or loss 

of function reprogramming of p53 protein [125,126].  Using reverse phase protein arrays 

to quantify p53 protein abundance in the cell lines, I interrogated the correlation with 

miR-92a toxicity (Figure 2.2.6B) and observed that the correlation between toxicity and 

p53 protein was nearly identical to that observed in the mRNA data, and the relative 

placement of H358 and H1993 p53/TP53 abundance in the panel of cell lines was 
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consistent between the data sets (Figures 2.2.6A, 2.2.6B). Through immunoblotting for 

p53 in the cell lines used in the first phase of the screen after transient transfection of 

either a control miRNA inhibitor or the miR-92a inhibitor I did not detect p53 in H358 and 

found abundant p53 in H1993, indicating that a total loss of p53 may be a miR-92a 

inhibitor-sensitizing event in NSCLC (Figure 2.2.6C). As p53 is an important responder 

to cellular stress, I decided to assess what, if any, effect the LNA inhibitors had on 

cellular levels of p53 [127-129]. After transient transfection of the miR-92a inhibitor or a 

negative control, I did not observe any chemistry or sequence dependent changes in 

p53 abundance in either a sensitive or resistant cell line 72 hours post treatment (Figure 

2.2.6C). 

After identifying that low TP53 mRNA and low p53 protein correlate with miR-92a 

inhibitor toxicity in NSCLC, I employed a genetically controlled model of p53 loss in 

bronchial epithelium to address the necessity or sufficiency of p53 loss in this cellular 

context with regards to the inhibitor’s toxicity. A CDK4, hTERT immortalized human 

bronchial epithelial cell line, HBEC30KT, was modified [130] to constitutively produce 

short hairpin RNA (shRNAs) to TP53, creating a knockdown of p53. The immortalized 

an untransformed HBEC30KT cell line was used as a representative normal lung tissue 

cell line in Phase II of the screen, and, as expected, did not respond to the miR-92a 

inhibitor (Figure 2.2.1C). The knockdown of p53 in HBEC30KT was sufficient to render 

the previously resistant cell line sensitive to the miR-92a inhibitor, confirming our 

previous observation that a loss of p53 protein is a miR-92a inhibitor-sensitizing event in 

tissues derived from the lung epithelium (Figure 2.2.6D).
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Figure 2.2.6 - Loss of p53 sensitizes lung epithelium-derived cells to miR-92a- 
induced toxicity. A) Scatter plot of TP53 mRNA quantity versus cell viability  after 
transient transfection of 50 nM of miR-92a. Presented as percent viable cells relative to 
a negative control LNA. Each point represents one cell line, with the Phase I cell lines 
labeled. Viability was measured 144h after miR-92a transfection. The black line of best 
fit was determined by linear regression. R2 and p-value were determined by Pearson 
correlation test. B)  Correlation of cell viability  144h after transfection with 50 nM 
miR-92a inhibitor with p53 protein abundance, as determined by Reverse Phase Protein 
Array (RPPA). Each point represents once cell line, with the Phase I cell lines labeled. 
R2 and p-value determined by Pearson correlation test. Black line is the line of best fit 
as determined by linear regression. C) Immunoblot for p53 in H358 and H1993 cell lines 
72h after a 50 nM transfection of either a negative control LNA ((-)) or the miR-92a 
inhibitor (92a). D) Viability of HBEC30KT and HBEC30KT-shTP53 72h after transfection 
with 50 nM of either a negative control LNA ((-) inh.), the miR-92a inhibitor or the 
miR-1226* inhibitor. Error bars represent standard deviation, and p-values were 
determined by two tailed, unpaired Student’s t-test.
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2.2.4 Depletion of hsa-miR-92a is insufficient to induce toxicity in p53-depleted 

cell lines, but is sequence-specific.

One of the persistent caveats of any experimental approach involving short 

oligonucleotides is phenotypes caused by sequence-based, off-target effects [110]. One 

approach to determining the specificity of a given oligo involves using oligos with an 

alternative chemistry to see if the oligo reproduces the knockdown and phenotype 

observed. I employed double-hairpin RNA based miRNA inhibitors (Dharmacon 

miRidian miRNA inhibitors) to address this question due to their sequence composition 

and physical structure. I observed successful knockdown of the mature hsa-miR-92a 

locus by miR-92a inhibitors designed with either the LNA or RNA hairpin chemistries in 

both of the cell lines used in the first phase of the screen (Figure 2.2.7A-D). However, 

the RNA hairpin miR-92a inhibitor did not reproduce the toxicity of the LNA inhibitor in 

H358 cells (Figure 2.2.7E), and did not demonstrate any toxicity versus a control in 

H1993 cells (Figure 2.2.7F). As expected based on their correlated toxicities, the 

miR-1226* inhibitors replicated the phenotypes observed with the miR-92a inhibitors in 

both the sensitive and resistant cell line (Figures 2.2.7E, 2.2.7F).

To better establish the sequence dependence of the toxicity of the LNA-based miRNA 

inhibitors, I designed sequence-modified variants of the miR-92a and miR-1226*  oligos, 

either scrambling the oligo while maintaining the nucleotide frequency or introducing 

evenly  spaced mismatches across the length of the oligos (Table 2.2.2). I determined 

that the toxicity  of the miR-92a & miR-1226* inhibitors was highly sequence specific. 
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After transient transfection with equal concentrations of either the toxic miR-92a or 

miR-1226* inhibitors, or one of the sequence modified variants, none of the sequence-

modified oligos phenocopied the toxic oligos (Figure 2.2.7G). As expected, I did not 

observe a toxic phenotype with any oligo in H1993 cells (Figure 2.2.7F). This finding 

that toxicity of the miR-92a and miR-1226*  oligos is specific to the initially designed 

sequence was recapitulated in the HBEC30KT model, with HBEC30KT-shTP53 

sensitive only to the original miR-92a and miR-1226*  oligos (Figure 2.2.7I) and 

HBEC30KT insensitive to the the toxic oligos and all of their derivatives (Figure 2.2.7J). 

I was motivated by the presence of two different inhibitors that recapitulated the same 

p53-attenuated toxicity in NSCLC, as well as the highly sequence-specific nature of the 

toxicity, to identify the target of the miRNA inhibitor relevant to the phenotype.
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Figure 2.2.7 - Potency and toxicity of the miR-92a and miR-1226* inhibitors is 
sequence-specific. A) - D)  qRT-PCR quantification of hsa-miR-92a in H358 and H1993 
72h post transfection with either a negative control oligo ((-) INH) or a miR-92a inhibitor 
(92a INH). A and C  were transfected with Exiqon LNA inhibitors, B and D were 
transfected with Dharmacon miRNA inhibitors. Bars represent the mean of 3 qRT-PCR 
replicates, error bars represent one standard deviation. Fold change is relative to 
negative control transfection in each panel. E) and F)  Cell viability  in H358 and H1993, 
respectively, 144h after transfection with 50 nM of negative control oligo, miR-92a 
inhibitor, or miR-1226* inhibitor. Labels on the x-axis identify the chemistry of the oligo 
pair, Exiqon or Dharmacon, assayed. Bars represent the mean of three replicates, error 
bars are s.d. Percent viable cells is relative to the negative control transfection in each 
case. G - J) Cell viability  in H358, H1993, HBEC30KT-shTP53, and HBEC30KT, 
respectively, 144h after transfection with either a control oligo ((-) INH), or a toxic or 
sequence-modified version of the miR-92a and miR-1226* inhibitors as described in 
Table 2.2.2. Bars represent the mean of 3 qRT-PCR replicates, error bars are s.d. Fold 
change is relative to negative control transfection in each panel.

  

Oligo Name Sequence (5' -> 3')
miR-92a inhibitor CAGGCCGGGACAAGTGCAAT
miR-92a scr. GGCTAACAGCGCTAGAACGG
miR-92a mm CAGCCCGCGACTAGTCCAAT
miR-1226* inhibitor
miR-1226* scr
miR-1226* mm

CCAGGCCTGCATGCCCTCA
ACCACCGCGATCCGTGCTC
CCACGCCAGCATGCCGTCA

Table 2.2.2 - Sequences of sequence-modified LNA oligonucleotides. Names and 
sequences of sequence-modified variants of the miR-92a and miR-1226* LNA oligos.

" 53



2.2.5 The miR-92a inhibitor can deplete the miR-17~92 primary transcript, as well 

as mature miRNAs from the miR-17~92 polycistron.

The miR-17~92 polycistron is a cluster of miRNAs with a shared origin on the same 

primary transcript (Figure 2.2.8A). This multi-miRNA cluster is dysregulated in many 

cancers -both amplification and over-expression are observed - in lung cancers, and 

ectopic expression of miR-17~92 increases proliferation in lung epithelium-derived cells 

[16,131]. Recent reports suggest a relationship  between p53 and the miR-17~92 

cluster; under hypoxic conditions p53 can transcriptionally  repress miR-17~92 

transcription [132]. Additionally, loss of the miR-17~92 cluster phenocopies Dicer1 loss 

and is synthetic lethal with p53 and Rb in a mouse model of retinoblastoma, 

demonstrating a p53/miR-17~92 relationship in a tumor context [133].

In order to capture changes in the presence of the primary transcript of miR-17~92 I 

analyzed total RNA from miR-92a-sensitive and -resistant cells by qRT-PCR. Cells were 

transiently  transfected for 72 hours with either control oligos or miR-92a inhibitors. 

Using the single stranded LNA inhibitors (Exiqon), I first observed a decrease in 

miR-17~92 primary transcript at two different positions on the transcript in H358 (Figure 

2.2.8B). The Dharmacon RNA hairpin inhibitor to miR-92a, which can successfully 

knockdown mature hsa-miR-92a in the same cell line, showed no effect on the primary 

transcript (Figure 2.2.9C). Treatment with the miR-1226*  inhibitor, which does not 

deplete mature miR-92a in H358 (Figure 2.2.9B), also led to depletion of the miR-17~92 

primary transcript (Figure 2.2.9A). When I performed the same assay in a resistant cell 

line, H1993, I also observed a significant down-regulation of the miR-17~92 primary 
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transcript (Figure 2.2.8C). I observed the similar responses in both the sensitive 

HBEC30KT-shTP53 and the miR-92a inhibitor-resistant HBEC30KT, with significant 

decreases in miR-17~92 as detected at both locations on the primary transcript (Figures 

2.2.8D, 2.2.8E). Consistent with previous reports demonstrating up-regulation of 

miR-17~92 in NSCLC, after comparing the relative abundance of the miR-17~92 

primary transcript between tumor and normal cell lines I observe both significantly more 

miR-17~92 in tumor cells versus normal cells, and that sensitive cell lines had more 

abundant miR-17~92 than resistant cell lines (Figure 2.2.8F, 2.2.8G) [16]. These data 

demonstrate that the depletion of the miR-17~92 transcript is specific to the LNA-based 

inhibitor, consistent across sensitive and resistant cell lines, and can be reproduced by 

a miRNA inhibitor with a highly correlated toxicity to miR-92a. 

I then assayed total RNA from four cell lines, H358, H1993, HBEC30KT and 

HBEC30KT-shTP53 for the abundance of the major mature miRNA loci from the 

miR-17~92 cluster (Figures 2.2.8H-K). When comparing mature miRNA abundance in 

cells transiently transfected with the miR-92a inhibitor versus the mismatched control I 

observed depletion of three mature miRNAs: hsa-miR-18a, hsa-miR-20 and hsa-

miR-92a (Figure 2.2.8H-K). The miR-92a locus demonstrated the most complete 

knockdown in all cases. Mature miRNAs can have half-lives of hours to days in vivo; 

and variation in the cellular stability of other mature miRNA on the miR-17~92 locus may 

account for differences in relative abundance of mature miRNAs after transfection 

[134,135]. In the miR-92a resistant NSCLC  cell line H1993 the only miRNAs observed 

to be depleted were hsa-miR-19a and hsa-miR-92a.
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A similar pattern of mature miRNA depletion was observed in the HBEC30KT cell lines. 

Only  hsa-miR-92a was depleted in the resistant HBEC30-KT (Figure 2.2.8K). All 

miRNAs on the miR-17~92 cluster were down regulated approximately two-fold in 

HBEC30KT-shTP53 (Figure 2.2.8J). The general trend of mature miRNA down 

regulation in sensitive cell lines is consistent across both tumor and and HBEC cell line 

model and consistent with the relationship  between miR-92a toxicity and p53 

abundance. 
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Figure 2.2.8 - The miR-92a inhibitor disturbs the abundance of both the primary 
transcript and individual miRNAs from the miR-17~92a polycistron. A)  Illustration 
of the miR-17~92a polycistron on human chromosome 13q. B)  qRT-PCR for the primary 
transcript (pri-miRNA) of the miR-17~92a polycistron in H358 at two locations: one in 
the miR-18a locus (18-pri) and one in the miR-92a-1 locus (92a-1-pri). RNA was 
collected 72h post transfection with either a negative control oligo or the miR-92a 
inhibitor. Bars represent the mean of 3 qRT-PCR replicates, error bars are s.d. Fold 
change is relative to negative control transfection in each panel. C)  As in B, in H1993. D 
& E) qRT-PCR for the miR-17~92 primary transcript in HBEC30KT-shTP53 and 
HBEC30KT, respectively, after treatment with a 92a mismatch oligo, or the miR-92a 
inhibitor. F)  Relative abundance of pri-miR-18 across cell lines. CT values are 
normalized to loading control and then to H358. G) As in F, for the detection of pri-
miR-92. H-K) qRT-PCR of mature miRNAs from the miR-17~92a polycistron 72h post 
transfection with either the mismatched Exiqon miR-92a oligo or the unmodified Exiqon 
miR-92a oligo in H358, H1993, HBEC30KT-shTP53 or HBEC30KT, respectively. Bars 
represent the mean of 3 qRT-PCR replicates, error bars are s.d. Fold change is relative 
to negative control transfection for each miRNA. p-values determined by Student’s t test 
as described in methods, **  represents p < 0.01, *** represents p<0.001, **** represents 
p<0.0001.
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Bars are mean of 3 replicates, error bars represent s.d. C) As in A, with the Dharmacon 
RNA inhibitor of miR-92a. D) As in C, save for treatment in the H1993 cell line.
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2.2.6 The miR-92a inhibitor de-represses the miR-17~92 targetome in a context-

dependent manner.

After observing the disruption of normal presence and processing of the miR-17~92 

cluster and noting that high relative expression alone was insufficient for toxicity, I 

obtained transcriptional profiling data in a defined model of p53 loss in lung epithelium. 

The HBEC30KT model allowed us to investigate the effect of miR-92a transfection 

versus the mismatched control with a controlled difference in p53 abundance and 

function. I transiently transfected HBEC30KT and HBEC30KT-shTP53 with 50 nM of the 

miR-92a LNA inhibitor or its mismatched control for 48 hours and then collected RNA for 

microarray analysis.

In order to identify patterns of genetic reprogramming in cells after perturbation I first 

identified genes with a two-fold change in expression in the following conditions: 

mismatch-treated HBEC30KT-shTP53 versus mismatch treated HBEC30KT, miR-92a 

inhibitor-treated HBEC30KT versus mismatch-treated HBEC30KT, and miR-92a 

inhibitor-treated HBEC30KT-shTP53 versus mismatch-treated HBEC30KT-shTP53. 

These conditions allowed for the identification of inherent differences in the cell lines 

after p53 knockdown (mismatch-treated HBEC30KT-shTP53 versus mismatch treated 

HBEC30KT) as well as differential responses of a resistant and sensitive cell line to the 

miR-92a inhibitor (miR-92a inhibitor-treated HBEC30KT versus mismatch-treated 

HBEC30KT, and miR-92a inhibitor-treated HBEC30KT-shTP53 versus mismatch-treated 

HBEC30KT-shTP53, respectively). I observed that the magnitude of differential 

expression was higher after p53 loss than between the miR-92a inhibitor and mismatch 
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transfected conditions in either cell line (Figure 2.2.10A). The number of genes 

differentially expressed after p53 loss was 5,542, 12-fold higher than in HBEC30KT after 

miR-92a inhibitor treatment, and 6-fold higher than in HBEC30KT-shTP53 after miR-92a 

inhibitor treatment (Figure 2.2.10A). The relative frequency of up-regulation and down-

regulation were similar in the two non-toxic conditions observed (mismatch-treated 

HBEC30KT-shTP53 versus mismatch treated HBEC30KT and miR-92a inhibitor-treated 

HBEC30KT versus mismatch-treated HBEC30KT) with 47.4% of differentially expressed 

genes up-regulated after p53 loss and 50.6% up-regulated in HBEC30KT after miR-92a 

inhibitor treatment (Figure 2.2.10B). Interestingly, in the miR-92a sensitive HBEC30KT-

shTP53 there is an asymmetric response to the treatment, with 62.5% of genes up-

regulated after treatment, a 11.9% shift from the observation in HBEC30KT (Figure 

2.2.10B). When observing the behavior of genes up-regulated after miR-92a inhibitor 

treatment in HBEC30KT-shTP53 I observed that after p53 loss 75.5% of these 

transcripts either maintained their cellular abundance or decreased in abundance, 

suggesting that their maintenance or repression may be involved in survival of the cells 

after p53 knockdown (Figure 2.2.10B).

Based on the previous observation that the miR-92a inhibitor can deplete the 

miR-17~92 cluster I was interested in identifying whether or not I could observe a 

corresponding up-regulation of genes in the miR-17~92 target space. I therefore 

repeated the analysis of 2-fold up- and down-regulated genes using the subset of genes 

that are high confidence targets of the miR-17~92 cluster; these were determined using 

the 75th percentile of the TargetScan 6.2 context score as a cutoff [70]. The magnitude 
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of gene regulation observed after miR-92a treatment versus p53 knockdown was 

consistent with our observations in the superset of all genes tested on the microarray, 

with 530 genes differentially expressed after p53 knockdown, which was 20-fold higher 

than miR-92a inhibitor treated HBEC30KT and 8-fold higher than miR-92a inhibitor 

treated HBEC30KT-shTP53 (Figure 2.2.10C, Figure 2.2.10A). Additionally, the p53 

knockdown and miR-92a treatment of HBEC30KT again showed similar frequencies of 

up- and down-regulated genes at 41.5% and 38.5%, respectively, of differentially 

expressed genes being up-regulated (Figure 2.2.10D). In contrast to this the miR-92a 

inhibitor-sensitive cell line, HBEC30KT-shTP53, displayed an asymmetric up-regulation 

of differentially  expressed genes with 71.4% of differentially expressed genes in the 

miR-17~92 targetome increasing in expression (Figure 2.2.10D). Additionally, 74% of 

the genes up-regulated after miR-92a inhibitor treatment in HBEC30KT-shTP53 were 

either maintained or down-regulated after p53 loss (Figure 2.2.10D). These 

observations demonstrate that asymmetric gene up-regulation after treatment or gene 

knock-down is an event specific to the the sensitive HBEC30KT-shTP53, and this up-

regulation is observed both in the set of all differentially expressed genes and in the 

high-confidence miR-17~92 targetome.

Having observed an up-regulation of gene expression after miR-92a transfection in 

HBEC30KT-shTP53 cells in both the superset of all genes and the subset of high 

confidence miR-17~92 target genes I attempted to identify patterns of gene regulation 

consistent with de-repression of the miR-17~92 targetome. The miR-17~92 cluster 

members hsa-miR-17, hsa-miR-19 and hsa-miR-92 were identified as significantly 
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inhibited upstream regulators in HBEC30KT-shTP53 after miR-92a inhibitor treatment 

by the “Upstream Regulators” analysis module of IPA (Ingenuity® Systems, 

www.ingenuity.com). (Table 2.2.4). Accounting for shared seed sequences of members 

of the miR-17~92 cluster (miR-17 and miR-20, miR-19a and miR-19b) the three 

miRNAs identified as upstream regulators account for every major mature miRNA on 

the cluster except for hsa-miR-18a. Additionally, the three miRNAs had negative 

activation z-scores which indicates that known downstream targets of an upstream 

regulator were expressed in a manner consistent with inhibition of the upstream 

regulator, supporting the previous observation of a de-repression of miR-17~92 

targetome gene expression (Table 2.2.4, Figure 2.2.10D). When the up- and down-

regulated targets of the miR-17~92 miRNA families are plotted with their relationship to 

the miRNAs, as well as with the expected and actual direction of regulation described, a 

mixed response is observed in HBEC30KT. Based on their Upstream Regulator 

activation z-scores the miR-17 and miR-19 families appear activated, while the miR-92a 

family appears inhibited (Figure 2.2.10E). In contrast, inhibition of the miRNA upstream 

regulators was consistent in HBEC30KT-shTP53 and of a greater magnitude than that 

observed in HBEC30KT (Figure 2.2.10F). The distinct effects on miR-17~92 target 

genes in the two cell lines suggests that the suite of target genes under active 

regulation by  the miRNAs are distinct as well. The preference for gene up-regulation 

after depletion of this cluster suggests that its miRNAs may cooperatively play a role in 

promoting cellular survival after p53 loss in the bronchial epithelium.
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Figure 2.2.10 - Transcriptional profiling of HBEC30KT and HBEC30KT-shTP53 
identifies a de-repression event driven by target  genes of the miR-17~92 
polycistron. A) Quantification of the number of genes increasing or decreasing greater 
than two-fold in the conditions tested. Samples transfected with the 92a mismatch oligo 
are labeled "mm," samples transfected with the miR-92a inhibitor are labeled "92a." 
HBEC30 = HBEC30KT, HBEC30p = HBEC30KT-shTP53, ratios are as described in the 
respective figures. B) Percentage representation of the values in A. ∆shTP53 break-out 
represents the behavior of genes in each group in the “HBEC30p 92a/HBEC30p  mm” 
column after knockdown of TP53. C) As in A, using the subset of genes identified by 
TargetScan as a target of a miRNA on the miR-17~92a cluster with a target score above 
the 75th percentile. D) Percentage representation of values in C, as in B. E, F) Relative 
expression of miR-17~92 target genes in HBEC30KT & HBEC30KT-shTP53, 
respectively. Target genes identified as part of a miRNA regulatory network for 
miR-17/20, miR-19a/19b  or miR-92a by Ingenuity Pathway Analysis. Fold change is 
relative to mismatch-treated control cells.

" 65



2.2.7 Inflammation-related pathways are up-regulated in HBEC30KT cells after p53 

knockdown.

Part of the p53-mediated response to cellular stress involves transcriptional regulation 

of target genes. I observed that about 12% of the probes assayed by microarray 

responded greater than two-fold to the loss of p53 in HBEC30KT, without a preference 

for up  or down regulation (Figure 2.2.10A). I then identified coherent genetic responses 

in this set of p53-reprogrammed genes. Via the “Upstream Regulators” analysis 

previously described an inflammation-like response was observed in the HBEC30KT-

shTP53 cells. This observation comes from an analysis of the top  20 upstream 

regulators identified, where six of the regulators were identified as cytokines (TNF, 

IFNG, IL1B, OSM, IFNL1 and IFNA2), and all six were consistently  identified as 

activated after p53 loss (Table 2.2.3). Two additional upstream regulators with known 

roles in inflammation and immune response, lipopolysaccharide and TLR3, were 

identified as activated upstream regulators (Table 2.2.3). The NFκB complex was also 

identified as an activated upstream regulator (Table 2.2.3). NFκB functions as a central 

hub of inflammation signaling, where many inflammation-related signaling pathways 

function through NFκB, and has a known antagonistic relationship with p53 [128,129].
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Table 2.2.3 - Twenty most significant upstream regulators in HBEC30KT - shTP53 
versus HBEC30KT. As identified by Ingenuity Pathway Analysis of genes with two fold 
changes between conditions. Positive activation z-scores indicate predicted activation of 
the upstream regulator, negative z-scores predict inhibition of the upstream regulator.

Upstream Regulator Molecule Type Activation z-score p-value of overlap
TNF cytokine 7.142 1.11E-36
NKX2-3 transcription regulator -5.01 1.20E-33
TGFB1 growth factor -2.105 1.19E-32
IFNG cytokine 8.079 1.28E-32
lipopolysaccharide chemical drug 7.366 1.44E-32
beta-estradiol chemical - endogenous mammalian 1.271 4.86E-25
ERBB2 kinase 1.86 1.49E-23
IL1B cytokine 5.818 3.34E-22
TP53 transcription regulator -3.853 5.76E-22
tretinoin chemical - endogenous mammalian 0.696 7.04E-22
MAPK1 kinase -4.712 1.38E-21
NFkB (complex) complex 6.007 6.29E-21
TLR3 transmembrane receptor 5.119 1.22E-20
OSM cytokine 4.083 1.80E-20
HRAS enzyme 2.454 3.43E-20
IFNL1 cytokine 6.573 8.06E-20
dexamethasone chemical drug -6.854 1.50E-19
MAP3K7 kinase 1.672 5.39E-19
Cg complex 1.14 6.68E-19
IFNA2 cytokine 6.286 1.74E-18

Upstream Regulator Molecule Type Activation z-score p-value of overlap
miR-17-5p (and other miRNAs w/seed AAAGUGC) mature microRNA -1.385 1.74E-15
miR-291a-3p (and other miRNAs w/seed AAGUGCU) mature microRNA -0.111 6.06E-11
miR-19b-3p (and other miRNAs w/seed GUGCAAA) mature microRNA -1.723 1.57E-10
1-alpha, 25-dihydroxy vitamin D3 chemical drug 2.791 4.53E-07
miR-92a-3p (and other miRNAs w/seed AUUGCAC) mature microRNA -1.367 8.39E-06
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2.2.8 The down-regulation of the miR-17~92 cluster mimics a cellular 1α, 25-

dihydroxyvitamin D3 response in the absence of p53.

The previously described consistent inhibition of mature miRNAs in the miR-17~92 

cluster after p53 loss directed me towards identifying activated upstream regulators in 

the miR-17~92 targetome data set, as they would be activated at the same time the 

miR-17~92 target space was being up-regulated. The most significant upstream 

regulator identified in the miR-17~92 targetome in HBEC30KT-shTP53 after miR-92a 

inhibitor transfection was for 1α, 25-dihydroxyvitamin D3 (Table 2.2.4). 1α, 25-

dihydroxyvitamin D3 is the biologically active form of Vitamin D3, a fat-soluble 

secosteroid synthesized in the body, and is a key regulator of calcium and phosphorous 

regulation, as well as an immune modulator and regulator of cellular proliferation and 

differentiation [136-139]. 1α, 25-dihydroxyvitamin D3 or its analogs have shown efficacy 

in reducing the proliferation of, and inducing apoptosis in, cancer cells [140-142]. Two 

members of the cytochrome P450 superfamily, CYP27B1 and CYP24A1, are the rate-

limiting regulators of 1α, 25-dihydroxyvitamin D3 synthesis and degradation [142]. 

CYP27B1 is the rate limiting enzyme in 1α, 25-dihydroxyvitamin D3 synthesis, and 

CYP24A1 is the rate-limiting enzyme in the catabolization of 1α, 25-dihydroxyvitamin D3 

after cellular import [142].

After establishing that in the set of genes consisting of the high-confidence miR-17~92 

targetome, inhibition of the miR-17~92 cluster corresponded with a genetic response 
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consistent with 1α, 25-dihydroxyvitamin D3 activity I then plotted the hsa-miR-17, hsa-

miR-19 and hsa-miR-92 target genes on the transcriptional network of 1α, 25-

dihydroxyvitamin D3 and observed an overlap between the miR-17~92 targetome and 

the 1α, 25-dihydroxyvitamin D3 response network. I observed changes in gene 

expression consistent with activation of 1α, 25-dihydroxyvitamin D3 signaling after 

miR-92a inhibitor transfection (Figure 2.2.11A). I also observed significant changes in 

the 1α, 25-dihydroxyvitamin D3 metabolic and catabolic pathway components both 

between the HBEC30KT and HBEC30KT-shTP53 cell lines, and after miR-92a inhibitor 

treatment. Both CYP27B1 and CYP24A1 increased in the miR-92a inhibitor sensitive 

cell line (HBEC30KT-shTP53) versus the miR-92a inhibitor insensitive cell line 

(HBEC30KT) (Figures 2.2.11B, 2.2.11C). CYP24A1, the enzyme that directly  effects the 

intracellular half-life of 1α, 25-dihydroxyvitamin D3, is decreased to basal levels post-

miR-92a inhibitor treatment in HBEC30KT-shTP53 cells (Figure 2.2.11C). 

The concurrent increase in both the synthesis and degradation machinery for 1α, 25-

dihydroxyvitamin D3 in the HBEC30KT cell lines points to a symmetric adaptation after 

p53 loss to mitigate cellular 1α, 25-dihydroxyvitamin D3 response. Increased 1α, 25-

dihydroxyvitamin D3 can induce CYP24A1 transcription in a Vitamin D Receptor (VDR) 

mediated manner [142,143]. This is consistent with the up-regulation of both the Vitamin 

D3 synthesis enzyme CYP27B1 and the metabolic enzyme CYP24A1 I observed in 

HBEC30KT-shTP53.
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Having employed the HBEC30KT pair of cell lines to identify  the transcriptional changes 

observed in sensitive and resistant cells between two well-defined cell lines, I next 

wanted to ascertain the relevance of 1α, 25-dihydroxyvitamin D3 in malignant, 

oncogenically  transformed cells. I returned to our original miR-92a sensitive and 

resistant cell lines, H358 and H1993, and assayed their response to increasing 

concentrations of 1α, 25-dihydroxyvitamin D3. I observed that the miR-92a sensitive cell 

line, H358, was significantly  less viable after treatment with either 10 or 100 nM 1α, 25-

dihydroxyvitamin D3 than the miR-92a resistant cell line H1993 (Figure 2.2.12A). This 

result, in combination of our observation of a 1α, 25-dihydroxyvitamin D3-like 

transcriptional response after miR-92a inhibitor treatment in sensitive cells (Figure 

2.2.10F) demonstrates that the miR-92a inhibitor mimics the cellular response to 1α, 25-

dihydroxyvitamin D3.
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Table 2.2.4 - Five most significant upstream regulators in high-confidence 
miR-17~92 target genes HBEC30KT-shTP53.  As identified by Ingenuity  Pathway 
Analysis of genes with two fold changes in expression after transfection of the miR-92a 
inhibitor versus the mismatched control. Target genes were filtered on the 75th 
percentile of the TargetScan context score. Positive activation z-scores indicate 
predicted activation of the upstream regulator, negative z-scores predict inhibition of the 
upstream regulator.

Upstream Regulator Molecule Type Activation z-score p-value of overlap
TNF cytokine 7.142 1.11E-36
NKX2-3 transcription regulator -5.01 1.20E-33
TGFB1 growth factor -2.105 1.19E-32
IFNG cytokine 8.079 1.28E-32
lipopolysaccharide chemical drug 7.366 1.44E-32
beta-estradiol chemical - endogenous mammalian 1.271 4.86E-25
ERBB2 kinase 1.86 1.49E-23
IL1B cytokine 5.818 3.34E-22
TP53 transcription regulator -3.853 5.76E-22
tretinoin chemical - endogenous mammalian 0.696 7.04E-22
MAPK1 kinase -4.712 1.38E-21
NFkB (complex) complex 6.007 6.29E-21
TLR3 transmembrane receptor 5.119 1.22E-20
OSM cytokine 4.083 1.80E-20
HRAS enzyme 2.454 3.43E-20
IFNL1 cytokine 6.573 8.06E-20
dexamethasone chemical drug -6.854 1.50E-19
MAP3K7 kinase 1.672 5.39E-19
Cg complex 1.14 6.68E-19
IFNA2 cytokine 6.286 1.74E-18

Upstream Regulator Molecule Type Activation z-score p-value of overlap
miR-17-5p (and other miRNAs w/seed AAAGUGC) mature microRNA -1.385 1.74E-15
miR-291a-3p (and other miRNAs w/seed AAGUGCU) mature microRNA -0.111 6.06E-11
miR-19b-3p (and other miRNAs w/seed GUGCAAA) mature microRNA -1.723 1.57E-10
1-alpha, 25-dihydroxy vitamin D3 chemical drug 2.791 4.53E-07
miR-92a-3p (and other miRNAs w/seed AUUGCAC) mature microRNA -1.367 8.39E-06
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Figure 2.2.11 - 1α, 25-dihydroxyvitamin D3 signaling is enhanced after depletion of 
the miR-17~92 cluster. A)  Intersection of the high-confidence miR-17~92 targetome 
and 1α, 25-dihydroxyvitamin D3 signaling pathway. Red colored values represent 
increased expression after miR-92a inhibitor treatment in HBEC30KT-shTP53, green 
values represent decreased expression. Fold change values are listed underneath each 
item. Blue colored items are predicted to be inhibited upstream regulators, orange 
values are predicted to be activated. Orange and blue lines represent the same 
directionality  for regulator:gene relationships, yellow lines represent observations 
incoherent with expected activity. B)  Quantification of CYP27B1 expression in all 
conditions tested. Bars represent mean intensity observed over three mRNA expression 
arrays. C)  Quantification of CYP24A1 expression in all conditions tested. Bars represent 
mean intensity observed over three mRNA expression arrays. 
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Figure 2.2.12 - 1α, 25-dihydroxyvitamin D3 response in NSCLC. A) Cell viability of 
H358 and H1993 72h after 1α, 25-dihydroxyvitamin D3 treatment. bars represent the 
mean viability  across three replicates, bars represent s.d. **  = p < 0.01. B) Kaplan-Meier 
overall survival analysis for CYP24A1 in lung adenocarcinoma patients. Blue line 
represents survival in samples in the upper quartile of CYP24A1 expression, and the 
black line represents samples in the lower quartile of CYP24A1 expression. Dotted 
vertical lines represent the median survival in the respective classes. C) Kaplan-Meier 
cancer-free survival analysis for CYP24A1 in lung adenocarcinoma patients. Blue line 
represents survival in samples in the upper quartile of CYP24A1 expression, and the 
black line represents samples in the lower quartile of CYP24A1 expression. Dotted 
vertical lines represent the median survival in the respective classes.
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2.2.9 CYP24A1 is correlated with poor prognosis in lung adenocarcinomas

After establishing the connection between 1α, 25-dihydroxyvitamin D3 response and 

miR-92a response in NSCLC cell lines I analyzed primary lung adenocarcinoma tumors 

for associations between 1α, 25-dihydroxyvitamin D3 processing competency, as 

measured by CYP24A1 abundance in tumors, and patient survival in lung 

adenocarcinomas (AC). Across 182 AC tumors I noted that high expressers of 

CYP24A1, as defined by expression levels above the 75th percentile, demonstrated 

significantly poorer overall and cancer-free survival than low expressers, defined as the 

25th percentile and below (Figures 2.2.12B, 2.2.12C). Median overall survival was 

improved by 1.3 years in the low CYP24A1 expressers (Figure 2.2.12B), and cancer-

free survival improved by 0.863 years between the same groups (Figure 2.2.12C). 

These observations affirm previous observations that high CYP24A1 correlates with 

poor survival in AC, and that 1α, 25-dihydroxyvitamin D3 may have a preventative or 

palliative function in lung adenocarcinoma, and reaffirms our observation that the 

miR-92a inhibitor mimics the toxicity  of a compound with a demonstrated beneficial 

effect in NSCLC [144,145].
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and 1α, 25-dihydroxyvitamin D3 in NSCLC cellular growth and survival.
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2.3 Discussion

Here I demonstrated that a miRNA inhibitor screen can identify  inhibitors with selective 

toxicity  across a panel of genetically diverse NSCLC cell lines. I then showed that the 

toxicity  of the selectively toxic inhibitors anti-correlated with p53 abundance in these cell 

lines, that the knockdown of p53 in a resistant cell line was sufficient to sensitize it to the 

miR-92a inhibitor, and that the miRNA inhibitor for miR-92a acts in a sequence-specific 

manner to induce toxicity. I then observed that toxicity required activity beyond 

knockdown of the mature miR-92a product, and that this additional activity of down-

regulating the miR-17~92 cluster resulted in a substantial up-regulation of the 

miR-17~92 targetome in a p53-depleted context-dependent manner. This up-regulation 

of the miR-17~92 targetome mimicked the 1α, 25-dihydroxyvitamin D3 transcriptional 

response in a manner that was predicted by 1α, 25-dihydroxyvitamin D3-induced toxicity 

(Figure 2.2.13).

By performing our primary screen in a pair of NSCLC cell lines with similar histological 

characteristics but with a distinct response to a specific treatment, KRAS depletion, I 

were able to identify  miRNA inhibitors with several distinct patterns of toxicity across a 

panel of diverse NSCLC cell lines. In particular, I observed that the screen converged 

on one specific vulnerability, as two inhibitors I identified with selective toxicity in NSCLC 

cell lines but not in HBEC30KT, representative of normal lung bronchial epithelium. in 

fact displayed highly correlated toxicities. I were then able to identify p53 loss as a 

molecular mechanism that conferred sensitivity to the toxicity of the miR-92a and 
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miR-1226* inhibitors in NSCLC. The identification of a molecular mechanism also 

allowed us to employ a genetically-defined model system: the HBEC30KT cell line with 

wild-type p53 and with a constitutive knockdown of p53. I utilized this system to assess 

the changes in gene expression after p53 loss, to assess how those changes 

correspond to the availability  of the miR-17~92 targetome, and identify the pathways 

and processes may be reprogrammed in response to p53 loss or miR-92a treatment in 

the sensitive and resistant contexts. 

Surprisingly, the primary screen did not identify any miRNA inhibitors of this chemistry 

with high extreme potency in only one of the cell lines used in the first phase of the 

screen; the most toxic inhibitors were toxic in both cell lines. As previously  discussed, 

lung adenocarcinomas tend to arise from perturbations in a limited set cellular 

processes and pathways, in contrast to a disease like serous ovarian carcinoma where 

few high-frequency mutations or copy number aberrations are observed [30,146]. The 

similar genetic reprogramming of the two lung adenocarcinoma cell lines used in the 

first phase of the screen may explain why I did not observe many inhibitors with 

dichotomous toxicity in our screen, as opposed to a miRNA mimic screen performed in 

serous ovarian carcinoma cell lines where many of the hits were highly  idiosyncratic 

[Shields et al., 2013, in preparation].

The concept of specifically dysregulating a miRNA cluster with one compound in a 

manner that mimics a response to a different compound is an intriguing observation. On 

the one hand, it demonstrates the power of a miRNA-based genetic screen to identify 
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unexpected and novel vulnerabilities in cancer biology. This observation also 

demonstrates the importance of cellular context in miRNA activity: in the HBEC30KT 

model of p53 loss de-repression of the miR-17~92 targetome is only observed after the 

loss of p53. 

In order for inhibition of one or several miRNAs to have a functional impact on the 

expression of the miRNAs’ potential target genes two criteria need to be met. First, the 

gene(s) must be expressed and under miRNA regulation. Second, the inhibited 

miRNA(s) must be the key regulatory miRNA(s); there may exist redundant layers of 

miRNA activity  on down-regulated genes that may not be overcome by the removal of a 

single miRNA. This is in contrast to miRNA gain-of-function studies where one miRNA 

can repress many miRNAs in a seed sequence-driven manner presumably  without any 

influence from other cellular miRNAs.

miRNA:mRNA interaction sites are highly conserved across species, and the 

explanation offered for this is that miRNAs and their targets have evolved symmetrically 

in order to maintain homeostasis of regulatory circuits, suggesting that selective 

pressures may have led to the maintenance of the miR-17~92 polycistron as one single 

functional unit. Similar mechanisms have been observed for post-transcriptional miRNA 

regulation. mRNA transcripts that can act as post-transcriptional miRNA “sponges” were 

recently identified as systemic/network-based miRNA regulators [147]. Previous work 

has shown that the miR-17~92 cluster and its homolog cluster miR-106b~93 can act 

cooperatively  to inhibit or activate multiple pathway members, such as p21 and Bim as 
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members of the TGFβ  response pathway in gastric cancers [122]. This is consistent 

with our observation that multiple components of the miR-17~92 cluster cooperate to 

regulate a 1α, 25-dihydroxyvitamin D3-like response in a p53-depleted context.

Specifically down-regulating a functionally interconnected miRNA regulatory  network 

presents an opportunity to perturb  a suite of related genes in order to achieve a desired 

outcome. However, the mechanism for the inhibitor:primary  transcript interaction is yet 

to be determined, as the current knowledge of miRNA processing does not include 

nuclear export before Drosha processing, which would be necessary for canonical 

RISC-mediated knockdown. LNA-based antisense oligos have demonstrated potency 

both in vitro and in vivo in terms of effectively silencing longer mRNA transcripts, and 

our observation of miR-17~92 primary  transcript depletion could be through an RISC-

independent, antisense-like mechanism [148-150]. Conversely, the reports 

demonstrating that small RNAs and small RNA duplexes can modulate gene 

transcription by Agronaute-mediated interactions with RNA transcripts suggests an 

additional mechanism for small RNA mediated effects in the nucleus [151].

p53 aberrations are a common occurrence, present in up  to 70-90% of tumors, 

depending on tumor type. Although the aberrations can take many forms including gains 

(and loss) of function, low p53 levels were clearly identified as a predictor of miR-92a 

inhibitor toxicity. The quantitative response of NSCLC cell lines to the miR-92a inhibitor 

in relation to p53 loss, coupled with the dramatic sensitization observed in HBEC30KT 

after p53 knockdown strongly suggests that the loss of p53 function is the event of 
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interest in our phenotype. As p53 mutation and loss are some of the most common 

genetic events in tumor biology, identifying a compound with antineoplastic effects in a 

low-p53 context represents a potential avenue towards p53-directed therapeutic 

interventions. Although there are currently no therapies targeted at loss of p53 

regulation, and testing for a true loss-of-function of p53 activity in tumor cells may not be 

as straightforward as mutational profiling for other oncogenes or tumor suppressors that 

can only be activated or inactivated, the high frequency of p53 lesions in cancer makes 

it a strong candidate for therapeutic targeting.

While the benefits of 1α, 25-dihydroxyvitamin D3 in lung cancer prevention and 

treatment are established, the ability of the miR-17~92 cluster to mimic 1α, 25-

dihydroxyvitamin D3 response in a p53-depleted context is a novel finding with 

therapeutic implications. The presence of hypercalcemia at therapeutic doses of 1α, 25-

dihydroxyvitamin D3 has limited its potential as an antineoplastic intervention. 

Here I have described a mechanism for identifying miRNA-based interactions that can 

mimic the effect of a compound with known positive effects in cancer models. This 

approach has the potential to allow for the leveraging of the biological characterization 

of other small molecules with known therapeutic potential in model systems but poor 

clinical performance into miRNA and genetic therapeutic approaches that perturb the 

components of the drug’s response necessary for a therapeutic effect without 

modulating the clinically deleterious nodes.
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2.4 Methods and Materials

Cell Lines Cell lines beginning with “H” were established at the National Cancer 

Institute. Cell lines beginning with “HCC” and the immortalized human bronchial 

epithelial cells (HBECs) were established by the Hamon Center for Therapeutic 

Oncology Research at UT Southwestern Medical Center. All cancer cell lines, except for 

the HBECs and HCC4017, were grown in RPMI-1640 medium (Life Technologies, 

Rockville, MD) supplemented with 5% fetal bovine serum (Atlanta Biologicals, 

Lawrenceville, GA). HBECs and HCC4017 were grown in ACL-4 medium supplemented 

with 2% serum [152,153]. All cell lines were grown in a humidified atmosphere with 5% 

CO2 at 37˚C.

Reagents and Materials miRNA mimics siRNA oligos and miRidian miRNA inhibitors 

were obtained from Dharmacon (Chicago, IL). The miRCURY LNA™ microRNA Inhibitor 

Library  - Human v12.0, was obtained from Exiqon (Denmark). Custom miRNA inhibitors 

for miR-92a, miR-1226* and their derivatives were also synthesized by Exiqon. The 

anti-rabbit antibody for p53 was acquired from Santa Cruz Biotechnology (Dallas, 

Texas) and the anti-mouse β-Tubulin antibody was acquired from Sigma Aldrich (St. 

Louis, MO). 1α, 25-dihydroxyvitamin D3 was acquired from Sigma Aldrich (St. Louis, 

MO).

miRNA Inhibitor Screen & Analysis Cells were plated in 96-well format and reverse 

transfected with oligos for 72 hours and then supplemented with additional growth 
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media, followed by  incubation for additional 72 hours. Cells, media, diluted 

Lipofectamine® RNAiMAX (Life Technologies) transfection reagent and diluted oligos 

were dispensed by MultiDrop  Combi reagent dispenser (Thermo Scientific). Oligos were 

diluted to a final concentration of 50 nM, mixed and incubated according to the 

manufacturer’s protocol with an appropriate quantity  of diluted Lipofectamine® 

RNAiMAX (Life Technologies) transfection reagent before mixing with a single-cell 

suspension of the cell line of interest. Cell viability was determined using the CellTiter-

Glo® Luminescent Cell Viability  Assay  (Promega). Luminescence was quantified on a 

PerkinElmer EnVision plate reader (Waltham, MA). Raw luminescence values were then 

used to generate row-median normalized cell viability  ratios using R [154]. The 

Bioconductor package “cellHTS2” [155] was further used to generate z-scores based on 

the normalized cell viability values.

Cell Viability Assay Cells were plated in 96-well format and, if necessary, transfected 

with oligos for 72 hours and then supplemented with additional growth media or growth 

media supplemented with 1α, 25-dihydroxyvitamin D3, followed by incubation for 

additional 72 hours. Oligos were diluted for a final concentration of 50 nM, mixed and 

incubated according to the manufacturer’s protocol with an appropriate quantity of 

diluted Lipofectamine® RNAiMAX (Life Technologies) transfection reagent before 

mixing with a single-cell suspension of the cell line of interest. Cell viability was 

determined using the CellTiter-Glo® Luminescent Cell Viability  Assay (Promega). 

Luminescence was quantified on a BMG LabTech PheraStar FS (Ortenberg, Germany) 

and analyzed in GraphPad Prism 6 (La Jolla, CA).
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Quantitative Real-Time PCR Total RNA was prepared using the Ambion mirVana™ 

miRNA Isolation Kit (Life Technologies, Foster City, CA) 72 hours post transfection with 

50 nM oligo. mRNA and miRNA levels were assessed by qRT-PCR using an ABI PRISM 

7900 Sequence Detection System using predesigned TaqMan® primer and probe sets 

(Life Technologies, Foster City, CA). Reverse transcription and real-time PCR were 

performed according to the manufacturer’s protocols and with equal quantities of total 

RNA input. RNU19 expression was used as a control for normalization of cDNA loading 

for miRNA assays, ACTB or GAPDH was used as a loading control for pri-miRNA and 

gene expression assays. Threshold cycle times (Ct) were obtained and relative gene 

expression was calculated using the comparative cycle time method.

Protein Analysis Samples were lysed in an SDS-TRIS lysis buffer. Protein 

concentration was determined using the Pierce BCA assay from Thermo Fisher 

(Rockford, IL), and equal quantities of cell lysate were electrophoretically resolved by 

SDS-PAGE. The protein was then transferred to PVDF membranes via the Bio-Rad 

Trans-Blot® Turbo™ Transfer System (Hercules, CA). Membranes were blocked with 

the LiCor Biosciences blocking buffer (Lincoln, NE) and probed with the previously 

described antibodies. Bound antibodies were detected with fluorophore-conjugated goat 

anti-mouse and goat anti-rabbit secondary antibodies (LiCor Biosciences), and 

visualized by an Odyssey® Infrared Scanner (LiCor Biosciences) and analyzed with the 

Image Studio software (LiCor Biosciences). 
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Acrylamide Gel DNA Electrophoresis Acrylamide gels were cast at 12% acrylamide in 

1x Tris Borate EDTA (TBE) buffer using 10% (w/v) ammonium persulfate (APS). Gels 

were run in 1x TBE buffer at 30 mA for 70 minutes. Nucleic acids were stained by 

incubation with SYBR® Gold Nucleic Acid Gel Stain (Life Technologies, Foster City, CA) 

according to the manufacturer’s protocol and bands were visualized using a 300 nm 

transilluminator.

Microarray Analysis HBEC30KT and HBEC30KT-shTP53 cells were reverse 

transfected with 50 nM miR-92a mismatch or miR-92a inhibitor and plated in triplicate in 

6-well plates. 48h post transfection total RNA was prepared using the Ambion 

mirVana™ miRNA Isolation Kit (Life Technologies, Foster City, CA). Total RNA was 

quality  checked by Bio-Rad Experion (Bio-Rad, Hercules, CA). RNA was then 

processed and transcriptionally profiled on the Illumina HumanHT-12 v4 Expression 

BeadChip (Illumina, San Diego, CA) by the UT Southwestern Cancer Core (Dallas, TX) 

using standard methods. Briefly, The Ambion TotalPrep  for Illumina (Life Technologies, 

Foster City, CA) kit was used to generate biotin-labeled cRNA, which was then 

denatured and hybridized to the arrays. After CY3-Streptavidin staining slides were 

scanned on an Illumina HiScan and signal intensities were summarized using 

GenomeStudio (Illumina). Background subtraction and quantile normalization were 

performed using the MBCB algorithm [156]. The post-normalization mean of the three 

replicates was used in all downstream analyses. miRNA target filtering was performed 

in R. Identification of upstream regulators in the expression data sets was performed 

using IPA (http://www.ingenuity.com).
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Statistical Analysis Correlations were determined by Pearson correlation test, except 

for the miR-877*  correlation which was determined by Spearman rank correlation. p-

values determined by  two-tailed, unpaired Student’s t-test with p < 0.05 used as a 

standard cutoff for significance. Analyses were performed in GraphPad Prism (La Jolla, 

CA).

Reverse-Phase Protein Array (RPPA) RPPA was performed as previously described 

[103]. Briefly, equal amounts of filtered cell lysates were arrayed in triplicate on 

ONCYTE AVID™ nitrocellulose film slides (Grace Bio-Labs, Bend, Oregon), blocked 

and incubated with primary antibody at 4℃ overnight. Slides were then washed and 

incubated with biotinylated secondary antibodies (Vector Laboratories, Burlingame, CA) 

for 30 min followed by blotting with Qdot 655–streptavidin conjugate (Life Technologies) 

for 30 min. Slides were scanned with a ProScanArray Microarray Scanner 

(PerkinElmer). Protein expression levels were quantified using MicroVigene™ (Vigene 

Tech, Carlisle, MA) software and normalized for differences in protein loading using 

Sypro Ruby™ (Life Technologies) protein stain signals obtained on a separate slide 

printed in the same batch.

Survival Analysis 182 lung adenocarcinoma tumor samples were collected, processed 

and summarized as described in [157]. Briefly, 10-20 μm thick serial sections of 

surgically resected NSCLC specimens were obtained using a Leica cryostat and 

homogenized using an Omni TH homogenizer (Omni International, Kennesaw, GA, 
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USA). Total RNA was isolated using TRIzol Reagent (Life Technologies). For microRNA 

profiling, the samples were labeled using the miRNA Complete Labeling and Hyb Kit, 

and hybridized to Agilent Human miRNA microarray version 3 chips (Agilent 

Technologies), which contains probes for 866 human and 89 human viral microRNAs 

based on miRBase v12.0 (http://microrna.sanger.ac.uk). miRNA expression levels were 

extracted using the Feature Extraction software (Agilent Technologies) and processed 

with the bioconductor package AgiMicroRna to correct for background, remove control 

and un-detectable sequences, normalize and summarize the data.  Samples were then 

sorted by CYP24A1 expression and the high and low quartiles were then compared by 

the Gehan-Breslow-Wilcoxon test in GraphPad Prism 6 (La Jolla, CA).
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Chapter 3: Additional and Ongoing Projects

3.1 KRAS Dependence in NSCLC Cell Lines

 3.1.1 Introduction

Constitutively activating KRAS mutations are one of the most prevalent and most potent 

oncogenic mutations in NSCLC [15]. Amplifications and/or activating mutations in 

codons 12, 13 or 61 occur in approximately  38% of lung adenocarcinomas, with a 

higher frequency  in smokers versus never-smokers [15,30]. KRAS is a member of the 

Ras family of small GTPases oncogenes including HRAS and NRAS that, when 

activated, promote cell growth and survival primarily  though the RAS/MEK/ERK and 

PI3K/AKT/mTOR signaling pathways [15,158]. Activating KRAS mutations prevent a 

transition to the inactive, GDP-bound state, and therefore activated KRAS continually 

sends pro-growth and pro-survival signals regardless of the presence of growth factors 

typically  required for KRAS activation. This is especially evident in the case of EGFR 

tyrosine kinase inhibitors (TKIs), which inhibit the activity of constitutively active EGFR, 

an important growth factor receptor upstream of KRAS. NSCLC tumors harboring an 

activating KRAS mutation are almost entirely refractory to EGFR TKIs, presumably 

because EGFR-mediated activation of KRAS is no longer required once KRAS acquires 

an activating mutation [15].

While the high prevalence of KRAS mutations in NSCLC and even higher prevalences 

in other solid tumors such as pancreatic adenocarcinoma where nearly 90% of tumors 

contain activating KRAS mutations, KRAS has been a popular and rational molecule of 
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interest for the development of targeted therapies [159]. An early approach to inhibiting 

activated Ras proteins in cancer involved disrupting the post-translational modification, 

farnesylation, that allows Ras proteins to localize at the biologically  active site at the cell 

membrane [159]. However, while some farnesyltransferase inhibitors showed activity 

against Ras proteins, and HRAS in particular, complications arose from the emergence 

of a secondary modification pathway, geranylgeranylation, that was sufficient to restore 

the biological localization and activity of Ras [159]. As there are many other proteins 

that require these modifications for normal cellular function, combined inhibition of 

farnesyltransferase and geranylgeranyltransferase activity was incredibly toxic [159]. 

More recent approaches to therapeutic targeting of Ras-driven tumors involve combined 

inhibition of parallel downstream pathways of Ras activity (PI3K & ERK inhibition), 

finding synthetic lethal interactions with KRAS-driven tumors, and identifying the 

relationship  between KRAS activating mutations and tumor dependence on KRAS 

signaling [22,160-162].

Of particular interest to me was the 2009 report from Singh et al. where the authors first 

identified that tumor-derived cell lines harboring canonical KRAS mutations can respond 

variably to KRAS knockdown in cell culture [22]. They then stratified these KRAS-

mutant cell lines into “KRAS Dependent” and “KRAS Independent” cell lines, and were 

then able to identify a gene expression signature that could, with a high degree of 

specificity, predict the KRAS-dependence of a cell line. The value added by this work is 

the understanding that not all KRAS mutations are equal, and that for the purposes of 

developing and deploying KRAS-targeted therapeutic approaches it may be imperative 
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to understand not only if a tumor has an oncogenic KRAS allele, but also whether that 

allele is relevant to that tumor’s survival.

3.1.2 KRAS-mutant NSCLC Cell Lines Respond Paradoxically To EGFR TKI 

Inhibitors

After identifying KRAS-mutational status as the differentiating factor I would interrogate 

with the miRNA inhibitor library and screen described in Chapter 2, the question of 

which cell lines should be used in the primary screen arose. Certainly, one cell line 

should have a known activating KRAS mutation, and the other should not. However, I 

wanted to ensure that the cell line I chose as representative of KRAS-mutant NSCLC 

was in fact a good representative. Gefitinib is an EGFR TKI and is frequently  used to 

treat EGFR-mutant NSCLC tumors, and KRAS-mutant NSCLC  are known to be highly 

refractory  to gefitinib  treatment [15,163,164]. I chose two candidate cell lines based on 

KRAS mutational status and generated a gefitinib  response curve for the KRAS-mutant 

H1155 and wild-type H1437.

Interestingly, the mutant cell line was slightly more sensitive to gefitinib than the wild-

type cell line, with an observed EC50 of 10.22 μM in H1155 versus an EC50 of 49.90 μM 

in H1437 (Figure 3.1.1). Although neither cell line would be considered truly sensitive to 

gefitinib, this result led me to ask if I could identify better, and more representative cell 

lines of the KRAS-mutant and wild-type classes.
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Figure 3.1.1 - Dose response curves after 72h of gefitinib treatment. A KRAS- 
mutant NSCLC cell line, H1155 and a wild-type cell line, H1437, were treated with 
gefitinib  for 72 hours before viability was measured by luminescent ATP assay. Solid 
vertical lines represent the calculated EC50 for the color-matched cell line, and the 
dashed lines represent the calculated 95% confidence interval of the EC50.
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 3.1.3 A Gene Expression Signature Identifies KRAS-dependent NSCLC Cell Lines

As previously described, a 2009 report from Singh et al. communicated that a gene 

expression signature could be used to classify KRAS-mutant cell lines as either dependent 

or independent of their KRAS mutation [22]. Dependent cell lines were defined as cell lines 

where cell viability was reduced by greater than 50% after RNAi-mediated knockdown 

of KRAS versus a control. Instead of individually testing all the available KRAS-mutant 

cell lines with KRAS RNAi, I applied the gene expression signature from the 

aforementioned report to first classify the mutant cell lines as dependent or 

independent. 

Using the gene expression profiles of the NSCLC cell lines generated by John D. Minna 

lab I was able to classify KRAS-mutant NSCLC cell lines as KRAS-dependent or 

independent with only one misclassification, A549, based on the data reported in Singh 

et al. (Figure 3.1.2) [22]. Interestingly, when I included immortalized normal lung 

epithelium cells they were strongly  clustered with the KRAS-dependent cell lines, which 

is consistent with the observation that KRAS-dependent cell lines appeared more 

epithelial than the KRAS-independent cell lines (Figure 3.1.2) [22].

In order to experimentally verify my findings I chose two cell lines one KRAS-dependent 

and one KRAS-independent cell line for treatment with an siRNA pool to KRAS and 

assess the impact of KRAS knockdown on survival (Figure 3.1.3). I saw that the 

predicted KRAS-dependent cell line, H358, responded as expected to KRAS 
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knockdown with a 50% decrease in viability, whereas the KRAS-mutant-but-

independent cell line, H157, did not respond as robustly to KRAS knockdown (Figure 

3.1.3).

As the goal of this study was to identify a suitable, representative KRAS-driven NSCLC 

cell line and a KRAS-agnostic second NSCLC  cell line, I then chose a KRAS-wild type 

cell line, H1993, and assessed its response to KRAS depletion in comparison to the 

mutant and dependent cell line H358. The aim was to find a pair of cell lines where only 

the KRAS-mutant and dependent cell line was the only  one that responded to KRAS 

depletion. I observed that, again, only  H358 responded to KRAS knockdown, and I was 

also observed significant and similar knockdown of KRAS mRNA in both cell lines 

(Figure 3.1.4). Therefore, I proceeded to begin the screen in Chapter 2 with H358 and 

H1993 as the two genetically distinct but histologically related cell lines.
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Figure 3.1.2 - Gene expression signature of KRAS dependence in NSCLC cell 
lines. Heat map of genes in the KRAS dependence gene expression signature. Color 
scale is, from lowest to highest, deep  blue to dark red. Dividing line is the boarder 
between the KRAS independent cluster, top, and the KRAS dependent cluster, bottom. 
Cell line names label each row, gene names for each probe label each column.
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Figure 3.1.3 - Knockdown of KRAS in an KRAS-dependent and KRAS-
independent cell line. A)  Cell viability of H358 six days after KRAS knockdown or 
mock transfection control. Bars are the mean of 3 replicates, error bars represent s.d. 
B) As in A, in the KRAS-independent H157 cell line.
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Figure 3.1.4 - Response to KRAS depletion in the two primary screen cell lines. 
Top, Cell viability  after mock or siKRAS treatment for 6 days. Black bars represent 
results in H358, clear bars represent H1993 results. Bottom, qRT-PCR for KRAS 72 
hours after treatment with a negative control oligo pool or siKRAS oligos. Fold change in 
H358, bottom left, and H1993, bottom right, relative to control treated. ***  = p < 0.001, 
determined by Student’s t-test.
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 3.1.4 Conclusions

After identifying the variable response of KRAS-mutant NSCLC cell lines to 

perturbations of KRAS signaling pathways, I was able to use an existing expression 

signature for KRAS dependence to confirm and pre-classify NSCLC cell lines as either 

KRAS dependent or independent. As KRAS biology is of great interest and importance 

in cancer biology, it will be important for ongoing research into the activity of mutant 

KRAS to identify  the necessity of KRAS in the tumors or cell lines of interest, as 

associations observed in situations where KRAS is not required may be a result of other 

biologies.

Unfortunately, the results of the miRNA inhibitor screen did not yield the insights into 

miRNA dependency in KRAS-driven NSCLC  that I anticipated. After I identified miRNA 

inhibitors with selective toxicity in the NSCLC  cell line panel, none of the inhibitors had 

toxicity patterns that mapped coherently to either KRAS mutational status or 

dependence. This result is likely a consequence of a study underpowered for this 

particular phenotype with only one data point in each class. It is also possible that 

miRNA loss of function may not be a critical event in the maintenance of KRAS-driven 

oncogenesis in NSCLC, although previous work suggests that the requirement of 

miRNAs in KRAS-driven NSCLC is very miRNA-specific [75].
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3.1.5 Methods and Materials

Cell Culture & Transfections Tumor cell lines were grown in RPMI-1640 medium (Life 

Technologies, Foster City, CA) supplemented with 5% fetal bovine serum (Atlanta Biologicals, 

Lawrenceville, GA). HBECs and SAECs were grown in KSFM medium (Life Technologies, 

Foster City, CA). All cell lines were grown in a humidified atmosphere with 5% CO2 at 37˚C. 

Transfections were performed by as described in Chapter 2. Dharmacon siKRAS OnTarget 

PLUS siRNA pool (Thermo Scientific, Pittsburgh, PA) was used for knockdown of KRAS at 

concentrations described in figures.

Hierarchical Clustering Analysis Affymetrix U133 genomic profiles of NSCLC and 

HBEC cell lines were graciously  supplied by Dr. John D. Minna. The gene expression 

signature for KRAS dependence was derived from the the previously mentioned study 

and translated to the arrays used by JDM [22]. Hierarchical clustering was performed 

using the “Hierarchical clustering” GenePattern module using the default settings, with 

column normalization [165]. Heat map images were then exported using the 

“Hierarchical cluster viewer” module.

Quantitative and Real-Time PCR - qRT-PCR assays were performed as described in 

Chapter 2.

Gefitinib Dose Responses Cells were plated in 96-well plates at an appropriate 

density to avoid confluence at the endpoint. After 72 hours Gefitinib  (LC Labs, Woburn, 

MA) was applied to cells in increasing concentrations to cells. Cells were allowed to 
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grow for 72 hours before cell viability was quantified by CellTiter-Glo® Luminescent Cell 

Viability Assay (Promega). Luminescence was quantified on a BMG LabTech PheraStar 

FS (Ortenberg, Germany).
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3.2 Big Data and Data Visualization In Modern Cancer Research

 3.2.1 Introduction

The scalability and power of newly developed methods for genetic analysis have 

radically transformed the scope of investigation in cancer research [166,167]. In a 

dramatic example of the impact of high-density, high-resolution genetic data on turning 

identified oncogenic driver mutations into targeted therapies is the development time of 

the EML4-ALK inhibitor crizotinib. One of the earliest examples of an approved targeted 

therapy, the BCR-ABL inhibitor Gleevec, took 41 years from identification of the 

Philadelphia chromosome to the launch of the inhibitor [166]. Crizotinib, on the other 

hand, went from repositioning an existing compound to Phase II trials in only three 

years [166]. While variation, methylation, copy number and expression profiling of 

tumors on the scale necessary for reasonable sample sizes for rarer events is 

technically feasible, several practical considerations prevent many researchers from 

generating their own comprehensive independent data sets: well annotated primary 

tumor tissues are a scarce and high-value resource, and data generation and analysis 

requires considerable investment in each technological platform.

The preferred solution to the aforementioned issued appears to have emerged in the 

form of national & international consortia modeled after the Human Genome Project 

where a collection of researchers all contribute their expertise & resources to generate a 

shared & ideally freely  accessible resource. A particularly  relevant example in the 

cancer genetics context is The Cancer Genome Atlas (TCGA). TCGA has collected 

genome-wide mutation, mRNA, miRNA, copy number and methylation profiles across 
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greater than twenty tumor types, with hundreds of tumors and matched or unmatched 

normal samples for each tumor type, and have made all non-identifying information 

freely available to all. However, while the ready availability of such stores of data can 

enable many insightful inquiries, new challenges arise in terms of collecting data, 

creating focused queries and conveying the results in an interpretable, meaningful 

manner.

 3.2.2 Circos, A Tool For Visualizing High-Density Genomic Data

Continuing improvements in the speed, quality, and accessibility of whole-genome 

analysis has brought with it the challenge of displaying the generated data in an 

informative and accessible manner. Existing conventions for conveying the results of 

experiments focused on a small, tractable number of individual observations do not 

scale to genome-wide resolution. Additionally, data visualizations based off of a 

standard, rectangular two-axis system do not allow for the display of spatial and 

composition relationships either within or outside of the dataset.

Recently, a new tool, Circos, has appeared to simplify the process of both conveying the 

salient features of genome-scale, multi-dimensional data sets [168]. Built in the readily 

accessible Perl language and based off of highly customizable & readable configuration 

files, Circos allows for the layering of multiple genome-wide data sets in a manner that 

can, for example, display regions of the genome where copy number aberrations 

correspond with changes in gene expression, or where genetic variation corresponds 

with expression changes. In addition to the programatic flexibility provided by Circos in 
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the types of plots that can be generated, and the programatic rules that can be applied 

to the display of data on those plots, the use of a circular, chromosome-based ideogram 

as the axis of reference [168]. Various plot types, including scatter plots, line graphs, 

histograms and tiles are then layered within the context of the circular, genomic axis, 

which additionally allows for the use of arc-like “ribbons” to display relationships 

between regions on the circular axis. Here I will display the results of a collaboration 

where this methodology was employed to bring added clarity to the analysis of genome-

wide data analysis.

This example is the result of a collaboration with Benjamin Shields, who wanted to 

identify genetic differences between two serous ovarian carcinoma cell lines, PEO1 and 

PEO4, derived longitudinally from the same patient. After collecting RNA-Seq, single 

nucleotide variation and copy number variation data on the two cell lines there were two 

challenges to address: viewing the data in a manner that added insight to the 

differences between the cell lines, and conveying the significance and magnitude of the 

collected data in a visually tractable manner (Figure 3.2.1). 

After several rounds of iteration a decision was made to move the karyotype (genomic 

position) from the outermost track to the middle of the circle, where it would still convey 

location, as well as serve as a divider between data types. The “PEO1/PEO4 mRNA” 

track had the highest data density, and was therefore placed on the largest radius track. 

Data on this track were log2 normalized RPKM+1 ratios. Cell-line specific color was 

used to both identify the cell line with higher expression via a colored background, as 
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well colored bars to identify  a greater than two-fold change between cell lines. A 

quantitative data track was not used for single nucleotide variants, as this is a binary 

presence/absence data call. Therefore, colored tick marks were used to identify  the 

presence of an SNV, and a neutral black was used to identify SNVs in common, and 

assumed to be inherited from the tumor’s cells of origin.

Copy number variations were perhaps the most difficult of the data sets to plot in a 

satisfying manner. Early attempts to display  these data tracks utilized a color scale to 

convey the magnitude of copy gain or loss in each cell line; however, this made 

distinguishing between gains and losses difficult without either losing the losses in to the 

white space or breaking the cell-line specific color scheme. Instead, the color scale for 

magnitude was eliminated and gains and losses were separated into independent 

tracks. While sacrificing the dynamic range of the copy number gains, the separation of 

gains and losses allows for a clear visualization of shared and independent regions of 

copy gain and loss across the genomes of the two cell lines. For example, the 

amplification of one arm of chromosome 8 in both cell lines is clear in this configuration, 

and a corresponding over-expression in PEO1 of the amplified region of the X 

chromosome in PEO1 was observed.

Here, the genome-wide visualization allowed for several insights. Copy number losses 

were far more prevalent in both cell lines than copy number gains and were widely 

distributed across the genomes of both cell lines. The configuration file used for 

generating this figure is available as Appendix B.
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Figure 3.2.1 - Circos plot of multiple genome-wide 
profiles of two related serous ovarian carcinoma cell 
lines. Data were generated by Benjamin Shields. Circos 
plot displays three data types, gene expression, copy 
number variation, and single nucleotide variation, from two 
serous ovarian carcinoma cell lines, PEO1 and PEO4, 
derived from a single patient. Consistent coloring is used 
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 3.2.3 Conclusions

After several iterations over the display of three genome-wide data profiles from two cell 

lines, a single figure was generated in a manner that conveyed the significance and 

importance of the generated data. Over the course of revision and refinement an 

appreciation for the challenge of displaying the dynamic range of a dataset developed. 

Some data forms, such as variation, can be sufficiently represented via a presence/

absence demarcation with consistent coloring a marker of cell line context. Ratios such 

as relative gene expression between a pair of cell lines allow for the use of a two-

dimensional axis and colored contexts to efficiently  convey the direction and magnitude 

of the delta. The copy number variation data set contained both magnitude, direction 

and contextual data, and this presented several challenges. A color scale for the 

magnitude of copy number change that did not include white, and therefore risk having 

low or intermediate values merge with the background color, was not feasible without 

deviating from the consistent cell line coloring throughout the rest of the figure. 

Therefore, it was decided to independently mark gains and losses such that loss and 

gains across one cell line could be easily differentiated, and that distinctions between 

cell lines would be clear. While this did necessitate a dismissal of copy number data 

beyond the gain or loss relative to a normal tissue control, the graphic does allow for 

clear discrimination of copy number gains and losses both in a cell line and across the 

pair of cell lines.
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3.3 SeedSync - A Method For Identifying miRNA Seed Co-occurrence

 3.3.1 Introduction

The process of miRNA regulation of mRNA targets is regulated on several levels, 

including availability  of individual miRNAs and mRNAs, sponge-like miRNA regulatory 

3’ UTRs, and shortening of 3’ UTRs in proliferating cells [147,169]. miRNAs with shared 

seed sequences from different genomic loci can have redundant roles in regulating the 

expression of specific target genes, as is the case with the miR-25/92a family of 

miRNAs [122].

After observing the significant correlation between the toxicities of the miR-92a and 

miR-1226*, I was interested in determining if their was an enrichment for the co-

occurrence of their seed sequences in the 3‘UTRs. This would suggest that just as 

miRNAs and miRNA target sites have evolved both in and across species in a highly 

conserved manner, 3’ UTRs may contain conserved pairings of miRNA target sites that 

allow for programmatic co-regulation of gene expression through multiple miRNAs 

independent of a sequence relationship.

 3.3.2 Methodology

The statement of the essential question I intended to address here is fairly 

straightforward: Do any pairs miRNA target motifs co-occur more frequently  than one 

would expect? My approach to this involves scanning annotated human 3’ UTRs and 

tallying every  case where a given pair of motifs co-occur. Instead of relying on the 

predictions of one of the myriad target prediction methods, I used the 7-mer motif 
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corresponding to the canonical seed sequence as the criteria for a miRNA target site. I 

then performed a search for each motif pair across all 3’ UTRs, and as previously 

mentioned, tallied up the frequency of co-occurrence (Figure 3.3.1). This was performed 

via a parallelized Perl script, “SeedSync”, with a FASTA 3’ UTR file and FASTA file of 

mature miRNAs as the input files (Appendix C1).

However, a solitary observation of the occurrence of miRNA target sites in a single is 

insufficient for a salient observation; a measure of the meaningfulness of the 

observation is required. In this case I chose to determine the significance of the 

observed results empirically: the target space I was investigating, 3’ UTRs, were 

randomized in a manner that preserved the nucleotide frequency of the original 3’ UTR 

(Appendix C2). 1000 shuffled 3’ UTR variants were then processed via SeedSync, and 

the output of these permutations was then collated into a single, flat file for downstream 

analysis and determination of significantly enriched motifs (Appendix C3). This allowed 

for the determination of an empirical p-value based on the frequency  of tallies greater 

than the co-occurrence in the biological 3’ UTR.
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Figure 3.3.1 - Schematic of SeedSync workflow. Diagram graphically  explaining the 
workflow for computational determination of the co-occurrence of two motifs in human 
3’ UTRs.
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 3.3.2 Results To Date

To date I have completed the analysis of the the hg19 human 3‘UTRs and 1,000 

permuted UTRs for 1,203,176 unique pairs of 7-mer motifs. The median co-occurrence 

of a 7-mer pair in the 39,434 3‘UTRs was 654 (1.6%) with a standard deviation of 496 

and minimum and maximum values of 0 and 6429, respectively (Figure 3.3.2 A). After 

calculating and tallying co-occurrence in permuted 3‘UTR collections I observed a 

surprising trend in the frequency of co-occurrence in the 1,000 permuted 3’ UTR 

collections. Specifically, 752,222 motif pairs had a co-occurrence frequency in the 

permuted 3’ UTRs of less than 50 (corresponding to an empirical p-value of 0.05), of 

which 736,013 had no observed co-occurrence values greater than the observed value 

(p  <= 0.001) (Figure 3.3.2 B). An additional 386,340 pairs exceeded the observed value 

in the permuted 3’ UTRs greater than 950 times (Figure 3.3.2 B). The motifs 

corresponding to miR-92a, ATTGCAC, and miR-1226*, TGAGGGC, were observed to 

co-occur in 413 3’ UTRs, with an empirical p-value of less than 0.001. The observed co-

occurrence is below the median of all motif pairs, and while the p-value suggests 

significance, I will describe why it is still difficult to determine whether or not this is a 

truly meaningful result.

These initial observations immediately suggests both that 7-mer co-occurrence may not 

be a random event, with certain miRNA pairs acting independently, and therefore having 

their motif co-occurrence be a very random event (high frequency of co-occurrence in 

the permuted data set) and others where the co-occurrence is not observed in the 
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permuted data set, suggesting that their co-occurrence suggests conserved co-

regulation of shared target genes. However, refinements to the SeedSync method may 

be required to bolster these observations. The high number of motif pairs with no motif 

co-occurrence greater than the observed value in the permuted set makes it impossible 

to identify a set of meaningful co-occurrence for follow-up by empirical p-value. This 

could be addressed by increasing the permutation count; however, the calculations for 

the set of 1,000 permuted 3‘UTR collections took approximately 12,000 hours of clock 

time to compute. Significant improvements to the speed and efficiency  of the algorithm 

in order to add a meaningful number of observations to this collection and would likely 

require a rewrite in a non-interpreted programming language such as C. Additional 

improvements include assessing the spacing between the observed motifs in order to 

rule out biologically implausible co-occurrence locations, as well as modeling the 

expected frequency of 7-mer occurrence in a sequence based on length and nucleotide 

frequency in a given sequence.
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Figure 3.3.2 - Summary results of SeedSync analysis of the actual and permuted 
human 3‘UTRs. A)  Frequency distribution of co-occurrence of 7-mer motifs in human 
3‘UTRs. B)  Frequency  distribution of co-occurrences observed in the 1,000 permuted 
3‘UTRs that exceeded the value observed in the true 3’ UTR set.

A

B
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 3.3.4 Future Work

After completing the additional work described above that will allow for the identification 

of significantly  enriched motif pairs, work will commence on identifying biological 

contexts where the co-regulation of 3’ UTRs by multiple miRNAs may be evident. The 

first step in this process will be observational and involve existing, freely available data 

sets containing both mRNA and miRNA profiles for the available samples. The TCGA 

has many data sets that fit these criteria. This is necessary as a first approach as it is 

unlikely that specific experiments have been published with miRNA and mRNA 

quantification after perturbation with two specific miRNAs of interest. By using large 

profile collections such as TCGA we can observe the relationship between mRNA 

abundance and high levels of a miRNA containing motif A, high levels of a miRNA motif 

B, or high levels of both miRNAs. I would expect to see the lowest gene expression in 

samples where both miRNAs were present at high levels, which would at least suggest 

that both miRNAs can regulate genes with 3’ UTRs containing motifs from both 

miRNAs. More compelling evidence for co-regulation at the biological process level 

would involve combining observational data as I just described with gene set analyses 

that would demonstrate that genes with co-occurring motifs in the 3’ UTR also share a 

common biological process.
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Chapter 4: Conclusions and Future Directions

4.1 Discussion

Over this course of study I have identified a novel miRNA activity  where the non-

canonical activity of LNA miRNA inhibitors to miR-92a and miR-1226* selectively induce 

cell death by mimicking a 1α, 25-dihydroxyvitamin D3 in a p53-depleted context. These 

inhibitors were identified via a miRNA inhibitor screen designed to identify oligos with 

selective toxicity between two histologically similar but genetically  distinct cell lines, and 

the screen converged on this specific phenotype, as I established by showing the 

significant correlation between the miR-92a and miR-1226* inhibitors’ toxicities. After 

observing a correlation between toxicity and low p53 mRNA and protein, I was able to 

show that loss of p53 in a resistant HBEC cell line was sufficient to sensitize the cells to 

the miR-92a inhibitor. Then, I observed that an RNA-based inhibitor did not reproduce 

the toxicity  the miR-92a & miR-1226*  inhibitors exhibited, and that the toxicity of the 

inhibitors was incredibly sequence specific. I then noticed that the single stranded 

miRNA inhibitors down-regulated the primary transcript and some of the mature 

miRNAs on the transcript, and that this effect was specific to the toxic inhibitors. 

Additionally, there was no threshold of primary transcript expression that conferred 

sensitivity to depletion. This suggested, and I confirmed by transcriptional profiling, that 

toxicity  associated with the repression of the miR-17~92 transcript is context specific. I 

was finally able to demonstrate that the sensitivity  to the miR-92a inhibitor predicted 

sensitivity of tumor cell lines to 1α, 25-dihydroxyvitamin D3, a compound where defects 
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in its cellular metabolism are associated with poor prognosis in NSCLC, and that the 

miR-92a inhibitor created a 1α, 25-dihydroxyvitamin D3-like response in sensitive cells.

The observation of a miRNA acting through a network of genes and in a context-

dependent manner reaffirms expectations from some of my early days studying miRNA 

biology. The quantity of predicted miRNA targets for any given miRNA strongly suggests 

both that many different regulatory interactions “can” occur, as well as suggesting that 

circumstances where a one miRNA/one gene/one phenotype model holds true in a 

biological context are minimal. Additionally, a miRNA cannot regulate a target that is not 

present, and a miRNA would need to exert a solitary  or dominant effect on an mRNA for 

its inhibition to have any meaningful impact on its abundance. These observations 

argue for additional systems-based approaches to understanding, testing, and 

conveying miRNA regulatory activity in vitro and in vivo.

Overall, even after the many years, investigations and dollars invested into the study of 

miRNAs there remains the potential for new and insightful observations. While the first 

miRNA mimic and inhibitor treatment based therapies are in development or clinical 

trials, the use of miRNA-based therapies as a component of combinatorial 

chemotherapies or in cases where adverse side effects prevent clinical use of a therapy 

remains largely unexplored. The results of this study demonstrate that the many-to-

many relationship between miRNAs and their targets will need to be accounted for 

when identifying combinatorial or therapeutic-like activity of miRNAs in cancers. This 

study also demonstrated the ability  of single-miRNA inhibition to identify miRNA losses 

" 114



synthetic lethal with specific genetic changes in a particular tumor type. With the 

majority of NSCLC cases still lacking effective, targeted therapies additional studies 

similar to the one performed here will continue to identify synthetic lethal miRNA 

inhibitions that lead to more or better targeted therapeutic avenues in NSCLC and other 

cancers.

4.2 Future Works

There are several avenues for investigation that I believe would add additional depth 

and context to the investigations presented here. As the long-term ambition for this 

investigation was identifying miRNAs with potential therapeutic potential, I am 

conducting orthotopic mouse xenograft experiments with the miR-92a inhibitor and 

H358 cells. I am allowing tumor xenografts seeded by  H358 cells to form in mouse 

flanks, and then administering the miR-92a inhibitor subcutaneously  in order to arrest or 

reverse tumor growth. Tumor size, miR-92a abundance and histological assays for cell 

death will be used as endpoint assays for this study. As one of the major roadblocks 

between 1α, 25-dihydroxyvitamin D3 and clinical relevance is hypercalcemia-related 

side effects at clinically  relevant doses, this may represent a way to take advantage of 

that vulnerability in NSCLC while avoiding the unwanted toxicity.

Related to the 1α, 25-dihydroxyvitamin D3 investigation, I have noticed that after 

treatment of the sensitive HBEC30-shTP53 with the miR-92a inhibitor much of the gene 

movement reflected what literature suggests is a keratinization/keratinocyte 

differentiation response. Keratinization is a process that is known to be driven by 1α, 
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25-dihydroxyvitamin D3 and I was surprised to see it occurring in the bronchial 

epithelium [139,170,171]. Preliminary observations show substantial increases in the 

expression of various keratins after miR-92a treatment, as well as a host of extracellular 

matrix-resident structural and secreted proteins that may be related to the keratinization 

and differentiation process. Keratinocytes act as a barrier to the outside world as both a 

physical barrier to pathogens and insults outside the body, as well as by secreting 

immune factors and initiating a cutaneous inflammation response when necessary, and 

the terminal step in the differentiation process is in fact programmed cell death [170]. 

Further investigation into the strength of this differentiation signal in the lung epithelial 

lineage, and how it may become a vulnerability in neoplastic and malignant cells in that 

lineage would yield new insights on a potential point of vulnerability in NSCLC. This 

effort will require substantial investigations of sensitivity  to keratinization signals in lung 

epithelium and transformed NSCLC lines, as well as the role of p53 in inhibiting this 

response in lung epithelium. 

Finally, while I was able to demonstrate that down-regulation of the miR-17~92 

transcript by  a miR-92a inhibitor led to a de-repression of the miR-17~92 targetome in a 

context-dependent manner, there are still some questions of interest that could be 

addressed in future work. One relates to the two highly correlated miRNA inhibitors, 

miR-92a and miR-1226*. It would be an interesting study in the effect of sequence 

composition and motif structure to identify  both what the minimally required sequence is 

to achieve the observed toxicity, as well as what shared motif is driving the similarity of 

the phenotypes between the two inhibitors. This could be accomplished through 

" 116



meticulous manipulation of the oligo sequences. Additionally, if the methods progress to 

a point where the results could be cleanly interpreted it would be of interest to attempt to 

pull down the toxic oligos and identify the sequences to which the oligos are associated 

with. Results from this work could inform which motifs in the oligo are most important 

and inform the oligo study, and vice versa.
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Appendices

Appendix A - Identifying high-confidence miR-17~92 miRNA targets

TargetScan conserved target DB retrieved June, 2013. Written for R 3.0.1.

conserved.targets <- read.table("~/Desktop/HBEC30 GeneExpression_032013/
analysis/target counting//Conserved_Site_Context_Scores.txt", sep = "\t", 
header=TRUE)

mir1792 <- c("hsa-miR-17", "hsa-miR-18a", "hsa-miR-19a", "hsa-miR-20a", "hsa-
miR-19b", "hsa-miR-92a")

miRcluster.alltargets <- subset(conserved.targets, miRNA %in% mir1792)
miRcluster.alltargets.uniquegenes <- unique(miRcluster.alltargets
$Gene.Symbol)

miRcluster.alltargets.contextfilter75ile <- subset(miRcluster.alltargets, 
context..score.percentile >= 75)
miRcluster.alltargets.contextfilter75ile.uniquegenes <- 
unique(miRcluster.alltargets.contextfilter75ile$Gene.Symbol)

targets.df <- cbind(miRcluster.alltargets.uniquegenes, 
miRcluster.alltargets.contextfilter75ile.uniquegenes)

gx <- read.table("gx.txt", sep="\t", header=TRUE)

gx.alltargets <- subset(gx, Name %in% miRcluster.alltargets.uniquegenes)
gx.contextfilter75ile <- subset(gx, Name %in% 
miRcluster.alltargets.contextfilter75ile.uniquegenes)

write.table(gx.alltargets, file="gx.alltargets.txt", sep="\t")
write.table(gx.contextfilter75ile, file="gx.contextfiltered.txt", sep="\t")
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Appendix B - Circos Plot Code

Code for the generation of Figure 3.x .Data generated by Benjamin Shields. Code is run 
by feeding this configuration file to the Circos v0.63 perl program.

<<include etc/colors_fonts_patterns.conf>>

<<include ideogram.conf>>
<<include ticks.conf>>

<image>
<<include etc/image.conf>>
</image>

karyotype = data/karyotype/karyotype.human.hg18.ben.txt

chromosomes_units = 1000000
chromosomes = -hsY
chromosomes_display_default = yes

<plots>

#PEO1 SNP Track
<plot>

type  = tile
file  = /Users/rborkows/Desktop/circos.work ben v3.1/data/
peo1.private.snv

r1 = 1.40r
r0 = 1.35r

layers_overflow=collapse
layers = 2
margin = 0.01u
orientation = out

thickness = 15
padding = 5

stroke_thickness  = 2
stroke_color  = reds-9-seq-6
</plot>

#PEO4 SNP Track
<plot>

type  = tile
file  = /Users/rborkows/Desktop/circos.work ben v3.1/data/
peo4.private.snv

r1 = 1.32r
r0 = 1.27r

layers_overflow=collapse
layers = 2
margin = 0.01u
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orientation = out

thickness = 15
padding = 5

stroke_thickness  = 2
stroke_color  = blues-9-seq-6
</plot>

#Common SNP Track
<plot>

type  = tile
file  = /Users/rborkows/Desktop/circos.work ben v3.1/data/common.snv

r1 = 1.24r
r0 = 1.19r

layers_overflow=collapse
layers = 2
margin = 0.01u
orientation = out

thickness = 15
padding = 5

stroke_thickness  = 2
stroke_color  = black

</plot>

#PEO1 PEO4 Log2 RPKM+1 Ratio
<plot>

type  = histogram
file  = /Users/rborkows/Desktop/circos.work ben v3.1/data/log2ratio.txt

r1 = 1.65r
r0 = 1.5r
max = 8
min = -8

stroke_type = bin
thickness = 4
color = grey
fill_color = grey
extend_bin = yes
skip_run = yes

<backgrounds>
<background>
color  = grey
</background>

<background>
color  = grey
</background>
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<background>
color  = reds-9-seq-1
y0   = 0.5r
</background>

<background>
color  = blues-9-seq-1
y0   = 0.0r
y1   = 0.5r
</background>

</backgrounds>

<axes>
<axis>
spacing = 0.1r
color = lgrey
thickness = 2
</axis>
</axes>

<rules>
<rule>
condition  = var(value) < -1
fill_color  = blues-9-seq-6
color  = blues-9-seq-6
</rule>

<rule>
condition  = var(value) > 1
fill_color  = reds-9-seq-6
color  = reds-9-seq-6
</rule>

<rule>
condition  = var(value) > -1
color = grey
fill_color = grey
</rule>

<rule>
condition  = var(value) < 1
color = grey
fill_color = grey
</rule>

</rules>

</plot>

##PEO1, PEO4 Gains CNV
<plot>
type  = tile
file  = /Users/rborkows/Desktop/circos.work ben v3.1/data/peo1.cnv.gain

r1 = 0.90r
r0 = 0.85r
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layers = 3
margin = 0.02u
orientation = out
layers_overflow=collapse

thickness = 15
padding = 5

stroke_thickness  = 2
stroke_color  = reds-9-seq-6

</plot>

#PEO4 Gain CNV
<plot>
type  = tile
file  = /Users/rborkows/Desktop/circos.work ben v3.1/data/peo4.cnv.gain

r1 = 0.81r
r0 = 0.76r

layers = 3
margin = 0.02u
orientation = out
layers_overflow=collapse

thickness = 15
padding = 5

stroke_thickness  = 2
stroke_color  = blues-9-seq-6
</plot>

#PEO1, PEO4 Loss CNV
<plot>
type  = tile
file  = /Users/rborkows/Desktop/circos.work ben v3.1/data/peo1.cnv.loss

r1 = 0.70r
r0 = 0.60r

layers = 5
margin = 0.02u
orientation = out
layers_overflow=collapse

thickness = 15
padding = 5

stroke_thickness  = 2
stroke_color  = reds-9-seq-4

</plot>

#PEO4 Loss CNV
<plot>
type  = tile
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file  = /Users/rborkows/Desktop/circos.work ben v3.1/data/peo4.cnv.loss

r1 = 0.56r
r0 = 0.46r

layers = 5
margin = 0.02u
orientation = out
layers_overflow=collapse

thickness = 15
padding = 5

stroke_thickness  = 2
stroke_color  = blues-9-seq-4
</plot>

</plots>

<<include etc/housekeeping.conf>>
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Appendix C - SeedSync Data Processing and Analysis Code

1) Perl code for performing the SeedSync analysis. 

#!/usr/bin/perl -w

#SeedSync, a utility to identify motifs (miRNA seeds) occuring in the same 
UTR.
#syntax: seedsync.pl <FASTA sequence file> <FASTA mature miRNAs>

#MAKE SURE MOTIFS ARE IN ALL CAPS!

{ use Bio::SeqIO;
 use Math::Combinatorics;
 use Parallel::ForkManager;
 use List::MoreUtils qw(uniq);
 #use Statistics::Descriptive;
 #use Text::Match::FastAlternatives;
 use Time::HiRes qw(gettimeofday tv_interval); #get better than 1 second 
resolution
 
 $MAX_PROCESSES=8; #probably don't want this to be greater than the # of 
cores you have.
 
 #generate array of all possible miRNA seed combinations
 print "opening miRNA FASTA file...";
 $mirs = Bio::SeqIO->new(-file => "$ARGV[1]", -format => 'fasta');
 print "ok.\n";
 
 $record;
 @hsa_mir_SEQ;
 @hsa_mir_SEQ_temp;
 
 #slice out human seed sequences (bases 2-8)
 print "Pull out bases 2-n of miRNA sequence...";
 while( $record = $mirs->next_seq() ) {
 
 $seq=$record->seq;
 $id=$record->id;
 
 if($id =~ /hsa/) {
 $seed = substr $seq, 1, 7;
 #print "$seed\n";
 push(@hsa_mir_SEQ_temp, $seed);
 }
 }
 print "ok.\n Filtering duplicate seeds...\n";
 
 @hsa_mir_SEQ = uniq @hsa_mir_SEQ_temp;
 undef @hsa_mir_SEQ_temp;
 
 #array of all possible combinations 
 print "generating all possible combinations...\n";
 @combi = combine(2, @hsa_mir_SEQ);
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 print "\n$#combi generated, let's clean out identical pairs...\n";
 undef @hsa_mir_SEQ;
 
 #this will leave motif pairs that are identical n-mers. Weed these out!
 
 for $p (0 .. $#combi){
 if("$combi[$p][0]" ne "$combi[$p][1]"){
 @goodPair=($combi[$p][0],$combi[$p][1]);
 #print "$goodPair[0], $goodPair[1]\n";
 push(@combinations, [@goodPair]);
 }
 
 }
 
 undef @combi;
 
 print "\n$#combinations pairs remain.";

 #parse 3' UTR FASTA file
 
 $u;
 @recs;
 $utr_file = Bio::SeqIO->new(-file => "$ARGV[0]", -format => 'fasta' -
alphabet => 'dna');
 while( $u = $utr_file->next_seq() ){
 $string=$u->seq;
 push(@recs,$string);
 }
 undef $utr_file;
 $pm = new Parallel::ForkManager($MAX_PROCESSES);
 
 open(OUTFILE, ">seedpairs_numhits.test.txt");
 print OUTFILE "Motif 1\tMotif 2\tCount\n";
 
 #for $i (0 .. $#combinations){
 $tloop0 = [gettimeofday];
  for $i (0 .. 1000){ 
 # Forks and returns the pid for the child:
 
 $pm->start and next; # do the fork
 
  #Time each loop.
  $t0 = [gettimeofday];
  
 $motif1 = $combinations[$i][0];
 $motif2 = $combinations[$i][1];
 
 $count=0;
 
 print "processing motifs: $motif1\t$motif2\t";
 for $j ( 0 .. $#recs ) {
 
 $string = $recs[$j];
 #search for both motifs in one UTR
 if($string =~ /$motif1/ && $string =~ /$motif2/){
    $count++;
 }
 }
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 #list stats
  $t1 = [gettimeofday];
 print "$count\t";
  print tv_interval($t0,$t1);
  print "\n";
 print OUTFILE "$motif1\t$motif2\t$count\n";

 $pm->finish; # Terminates the child process
 }
 $pm->wait_all_children;
 
 $tloop1 = [gettimeofday];
 $looptime = tv_interval($tloop0,$tloop1);
 print "Total Loop time: $looptime\n";
 
 
 close OUTFILE;
 print "\nDone!\n";
}
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2) Perl code for generating shuffled 3’ UTRs.

#!/usr/bin/perl -w

#Shuffles all sequences in a FASTA file using Fisher-yates shuffle.
#Usage: perl seqshuffle.pl <FASTA file> <shuffle iterations>
#ex: 'seqshuffle.pl 3p_hsa_hg19 20' would create 20 shuffled variants of 
"3p_hsa_hg19"

{ use strict;
 
 use Bio::SeqIO;
 use Array::Shuffle qw(shuffle_array);
 use Parallel::ForkManager;
 
 our $MAX_PROCESSES=8;
 
 our $file = $ARGV[0];
 our $iterations = $ARGV[1];
 mkdir ("output") || die "Can't create output directory\n";
 
 our $pm = new Parallel::ForkManager($MAX_PROCESSES);
 
 for my $p (1 .. $iterations){
  
  my $filename = join(".", $file, $p);
  
  open(OUTFILE, ">output/$filename") || die "Can't create output 
file.\n";
  
  my $sequences = Bio::SeqIO->new(-file => $file, '-format' => 
'Fasta');
  
  print "$p\n";
  
  while( my $record = $sequences->next_seq() ) {
   
   $pm->start and next; # do the fork
 
  my $seq=$record->seq;
   my $id=$record->id;
   
   my @sequence = split("", $seq);
   shuffle_array(@sequence);
   my $shuffled = join("", @sequence);
   
   print OUTFILE ">$id\n$shuffled\n";
   
   $pm->finish;
  }
  $pm->wait_all_children;
  
  close OUTFILE;
 }
 
}
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3) Perl code for merging permutations into one flat-file for analysis.

#!/usr/bin/perl -w

{
 @motif1 = (); #ordered list from "Motif 1" column in permutation 1 results. 
Motif 2 follows $
 @motif2 = ();
 %lookupHash = ();

 #Read in file1 to populate the list of records
 $file1 = "";
 open (DATA, "<seedpairs_output.hg19_utr.1") || die "Can't open first file.";
 while (<DATA>) {
 $file1 .= $_;
 }
 close DATA;

 @records = split/\n/, $file1; #split file1 into one array element per line
 shift(@records); #drop hearder

 $counter = 0;
 print "\n File read okay. Populating lookup hash.";

 foreach $f (@records) {
 chomp ($f);
 @f_fields = split /\t/, $f;
 push(@motif1, $f_fields[0]);
 push(@motif2, $f_fields[1]);
 $lookupHash{$f_fields[0] . $f_fields[1]} = $counter-1; #add records to 
lookup hash w/ $
 $lookupHash{$f_fields[1] . $f_fields[0]} = $counter-1; #Counter-1 because of 
zero-inde$
 print "$f_fields[0] $f_fields[1]\t$lookupHash{$f_fields[0].$f_fields[1]}\n";
 }
  print "\n hashes populated. Aggregating file contents...";
 @counts = ();

 for ($i = 1; $i <= 1000; $i ++){
  
  $file = "";
  $filename = "seedpairs_output.hg19_utr.".$i;
  open (DATA, "<".$filename) || die "Can't open $filename";
  while (<DATA>) {
  $file .= $_;
  }
  close DATA;
  
  foreach $c (@file){
  chomp ($c);
  @c_fields = split /\t/, $c;
   $motifPos = $lookupHash{$c_fields[0].$c_fields[1]};
   $counts[$motifPos][$i] = $c_fields[2]; #Please don't blow 
up.
   print "Stored count: $counts[$motifPos][$i]";
  }
  
 }
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 print "\n aggregation complete, print output.";
 
 open (OUTFILE, ">merged_permutations.txt");
 
 print OUTFILE "Motif1\tMotif2\n";
 
 @filenames1000 = 1..1000;
 foreach $x (@filenames1000) {
 print OUTFILE "$x\t";
 }
 print OUTFILE "\n";
 
 
 for ($i = 0; $i <= $motif1; $i ++){
 print OUTFILE "$motif1[$i]\t$motif2[$i]";
 
 for($j = 0; $j <= $999; $j ++){

 print OUTFILE "\t$counts[$i][$j]";

 }

 

 print OUTFILE "\n";

 }

 

 close OUTFILE || die;

}
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