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Part I:  Small interfering RNAs (siRNAs) have revolutionized our ability to study the 

effects of altering the expression of single genes in mammalian (and other) cells through 

targeted knockdown of gene expression. In the past, there were a set of rules designed to 

develop siRNA which worked efficiently in most cases. There was further refinement 
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performed in these rules in some modern research analyses which attempted to address the 

question of what most closely determines siRNA functionality. I have designed and 

implemented a new software tool siRNA Information Resource (‘sIR’) that incorporates the 

most recent refinements in the design algorithm in order to provide fast and efficient siRNA 

design. sIR is a web-based computational tool which takes these existing rules for designing 

synthetic siRNAs and puts them in a software architecture that allows the researcher to 

design siRNAs for every gene. It also provides a database containing information about 

already developed siRNA and thus allows the researcher to access the siRNA information 

database consisting of siRNA information from literature and various other sources. This will 

ultimately help in future siRNA related discoveries. It also includes a scoring system which 

helps in rational selection of efficient siRNA. sIR was successfully validated using already 

designed and developed target siRNA sequences. 

 

Part II:  One of the major problems in using chemotherapy to treat cancer is whether 

patients, whose tumors do not respond to one drug, would respond to another.  Thus, it would 

be very useful if one could rationally select the appropriate chemotherapy for each patient’s 

tumor.  We are asking is whether tumor gene “expression signatures” detected by microarray 

analysis could identify a set of genes correlating with sensitivity or resistance to a particular 

drug. A large panel of breast cancer cell lines was tested with cisplatin, paclitaxel, 

vinorelbine, doxorubicin and gemcitabine, in vitro using a colorimetric assay to determine 

the concentration of drug that gives 50% growth inhibition (IC50).  Gene expression profiles 

were also performed using Affymetrix chips and the two data sets were merged.  It was 
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found that a panel of ~100 genes were significantly up regulated (4 fold or more) for each 

drug in resistant cells. As an alternative approach, Pearson correlations between each gene 

expression data and each drug IC50 across all cell lines analyzed were determined. A 

positive correlation for a pair of gene and drug indicates the gene may be associated with 

resistance to the drug whereas a negative correlation would associate that gene with 

sensitivity to the drug. Some of these genes might be associated with the drug mechanism of 

action. We conclude that gene expression signatures do exist for individual breast tumor cell 

chemosensitivity and these could be of clinical significance.    
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CHAPTER 1 

Introduction 
 

               

              In the new millennium, bio-computational tools have emerged as valuable 

resources for experimental design and analysis of the enormous amount of data available 

after completion of the human genome project. The main purpose of these tools is to obtain 

faster results, while minimizing human errors. The effort in this thesis is to develop such 

tools as well as to conduct research using these tools. This thesis is composed of two parts. 

The first part addresses the development of a computational tool called “siRNA Information 

Resource”, to develop a small interfering RNA (siRNA) design. It also provides a database 

consisting of siRNA information to facilitate genetic manipulation of human cells. The 

second part involves participation in developing microarray based gene expression 

signatures for in vitro drug sensitivity and resistance of breast cancer cell lines. It includes 

development of the relevant computational tools to facilitate experimental design and 

analysis.   

 

               This chapter introduces the basic concepts involved in each of these projects. The 

subsequent chapters describe these research and development projects in detail. 
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1.1  RNAi Mechanism 

 

               Within a very short time, “RNA interference”   (RNAi) has become an important 

technique that has gained wide acceptance and use by the scientific community. RNAi is 

popularly used as a method to investigate gene function in a variety of organisms [1]. 

Dissection of signaling pathways and study of cell growth and division are also applications 

of RNAi in cancer biology. 

 

         RNAi can be described as a process, in which double stranded RNA 

(dsRNA),   is   known   to   induce    posttranscriptional     gene    silencing.   

Posttranscriptional gene silencing results in a decrease in the steady state level of a specific 

messenger RNA (mRNA) through sequence-specific degradation of the transcribed mRNA, 

without changing the target gene transcription rate [2]. This can lead to a reduced expression 

of the target gene, also known as a “knock down”.  RNAi   is    present in most of the 

eukaryotes [3].  Small interfering RNA or “siRNA” refers to synthetic small interfering 

RNAs constructed as dsRNA which can be transfected into cells to specifically silence the 

expression of mRNAs to which they are complementary.  

   

      Specific mRNA degradation can be thought of as a natural function of RNAi as it 

can prevent transposon and virus replication. RNAi  can protect the genome against invasion 
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by mobile genetic elements such as transposons and viruses, which   produce unnatural RNA 

or dsRNA in the host cell when they become active [2]. 

   

               When long double stranded RNA is introduced into a cell, it enters a cellular 

pathway known as the RNAi pathway. This long double stranded RNA is first processed 

into double stranded small interfering RNA approximately 21-23 nucleotides in length by an 

RNase III-family enzyme called Dicer. This is known as the “Initiation” step. Then, the 

siRNAs assemble into endoribonuclease-containing complexes known as RNA-induced 

silencing complexes (RISCs), unwinding in the process. These activated RISCs are then 

guided by the siRNA to complementary RNA molecules. Then the “Effector” step takes 

place, which involves cleavage and destruction of the cognate RNA. This process is depicted 

in Figure1.1.1 [4]. 
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Figure 1.1.1: Induction of post-transcriptional gene silencing with the introduction of 
dsRNA [4]. This figure depicts the two step process of “Initiation” and “Effector” phase of 
RNAi mechanism. In the “Initiation” step, the small interfering RNAs (siRNAs) are formed 
by an enzyme called Dicer. Then, the complexes known as RNA-induced silencing 
complexes (RISCs) are formed. These RISCs are then guided by the siRNA to 
complementary RNA molecules. In the “Effector” step cleavage and destruction of the 
cognate RNA occurs. 
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1.1.1 Application in Cancer Biology 

 

              RNAi technology has proven its usefulness in systematically deciphering the 

functions and interactions of thousands of genes. This can be a very useful tool for cancer 

research [5]. 

 

      Most human cancers are characterized by abnormal gene expression, some of 

which are important in the initiation or progression of disease [6]. It may be of therapeutic 

importance to silence these aberrant genes or bring down their expression to a significantly 

lower level. Since targeting of gene expression is very specific using siRNA; it may be 

possible to develop more specific and thus less toxic cancer therapies.  

 

                 There have been studies where siRNA has been used to obtain dose-dependent 

inhibition of a gene expression in human colon cancer cells. Higher TS (thymidylate 

synthase) expression was found to increase drug resistance to TS-targeted compounds. 

siRNA developed against human TS mRNA resulted in a dose dependent inhibition of TS 

expression but had no effect on the expression of alpha-tubulin or topoisomerase I [7]. This 

study supports the target specific behavior of siRNA.    

 

                          In another study, gemcitabine-induced cytotoxity, both in vitro and in vivo was 

increased by suppressing the expression of Focal adhesion kinase (FAK) using siRNA. It 

was also observed that FAK siRNA did not affect cellular proliferation or apoptosis in the 
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absence of gemcitabine. FAK siRNA treatment suppressed Akt gene activity, which may 

contribute to its chemosensitizing effect [8]. This shows that the siRNA mechanism can be 

used in potential therapeutic studies and as a research tool to evaluate gene function. 

  

       RNAi mechanism has been used to study the function of polo-like kinase-

1(PLK1) in breast cancer, lung cancer, and cervical cancer. It has also shown that Brk 

(PTK6), a non-receptor protein tyrosine kinase, potentially functions as an ‘adapter’ by 

playing a role in proliferation of breast carcinoma cells. RNAi has also helped in studying 

responses of UCH-L1 (Neuronal ubiquitn C-terminal hydrolase) and E2F1 in lung cancer 

cell lines [9, 10, 11, and 12].  

  

              All these studies prove that RNAi is a very important research tool to study 

individual gene functions as well as has therapeutic importance in cancer research.  

 

1.2 Introduction to siRNA Information Resource. 

 

siRNA Information Resource (‘sIR’) is a “web-based” computational tool that aids in 

designing the target sequence for siRNA, as well as provides a database containing useful 

information about already developed siRNAs. 

 

There are established rules for designing the most effective siRNAs but these 

methods all require “hand and eye” computation.  The goal of this project was to automate 
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this process and ultimately pre-calculate siRNAs for all known human genes. Also it will be 

very useful to have all the pre-existing information on siRNA in one place. This will allow 

the researcher to access the siRNA information resource and will ultimately help in future 

siRNA related research. 

 

sIR uses various available information from genetic databases such as Refseq [13], 

SOURCE [14], NCBI [15] as well as BLAST [16] alignment software to facilitate the 

siRNA design algorithm.  

 

It also uses modern databases such as PostgreSQL [17] and modern as well as 

traditional scripting languages such as Perl [18], Bioperl [19], PHP [20], HTML, JAVA etc. 

to implement the siRNA target designer algorithm. 

 

The basic architecture of siRNA Information Resource (sIR) is depicted in Figure 1.2.1. 
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Figure 1.2.1: Overview of siRNA Information Resource (‘sIR’). The block diagram 
above shows that sIR essentially consists of siRNA target designer, which designs siRNA 
and BLASTs the result automatically, and database of siRNA designs which consist of 
experimentally validated siRNAs. 

 

 

 

siRNA Information Resource (‘sIR’) mainly consists of two modes:  

a. siRNA target designer 

b. siRNA resource.  

 

  The siRNA target designer determines the target siRNA depending on the user 

chosen parameters or default parameters.  It also follows a logical choice of parameters. 

sIR

Target designer Database (Resource of
siRNA designs)

Experimentally validated 
siRNAs

Target siRNA

Customized BLAST

sIR

Target designer Database (Resource of
siRNA designs)

Experimentally validated 
siRNAs

Target siRNA

Customized BLAST
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Then it performs custom BLAST on the user selected target sequence against the human 

genomic database provided by NCBI.  

 

 The database or siRNA resource mode allows the researcher to search for existing 

and developed siRNAs. The subsequent chapters will include detailed information on each 

of these modes. 

 

1.3 Chemosensitivity and Gene expression profiles of Breast cancer cells.  

 

           Breast cancer is the currently the second leading cause of cancer deaths in women 

(after lung cancer) and is the most common cancer among women [21]. Traditional as well 

as modern chemotherapeutic agents with novel mechanism of action such as cisplatin, 

paclitaxel, docetaxel, vinorelbine, gemcitabine, doxorubicin etc. are used for the treatment 

of breast cancer tumors. 

 

         Tumor response to these chemotherapeutic agents varies from one patient to 

another.  One of the major problems in using chemotherapy is whether patients, whose 

tumors do not respond to one drug or combination of drugs, would respond to another.  It 

would be very useful if oncologists were able to select ahead of time the chemotherapy that 

would be most effective for each individual patient’s tumor. 
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         This can be done by testing in vitro chemosensitivity of a breast tumor or by using 

promising modern techniques such as microarray gene expression profile.  Gene expression 

profiling has several advantages over in vitro chemosensitivity testing. This will be 

explained in detail in subsequent chapters. One of the major goals of this project is to 

correlate in vitro sensitivity or resistance to particular gene expression profiles. This should 

help determine existing genetic signatures that may be predictive for future prospective 

studies.  

 

       A collection of computational tools was developed in order to store raw data, 

facilitate analysis as well as to set up experiments. These tools were mainly developed using 

Microsoft Excel and Visual Basic macros.   
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CHAPTER 2 

Objectives 
 

sIR was mainly developed for two purposes: 

1. To develop and implement siRNA target design. 

2. To provide a database consisting of information available on experimentally tested 

siRNAs. 

 

               In the past, there were a set of rules designed to develop siRNA [22]. These design 

rules worked efficiently in most of the cases. There was further refinement performed in 

these rules in some recent research papers [23, 24, 25].   The research was trying to address 

the question of what most closely determines siRNA functionality. sIR tries to incorporate 

the most recent refinements in the design algorithm in order to provide a efficient siRNA 

design. Moreover, since it automatically designs these target siRNAs, it saves a lot of time. 

sIR target designer can also be used as a research tool to find better siRNA designs as it 

allows the user to try user-defined patterns.  

 

 

 

 



12 

2.1  Features of siRNA Information Resource. 

 

This section describes important features of this software.  

    sIR is a “Web-based” computational tool. Hence it is easy to access and use. It can 

be accessed at the following URL: 

 http://biotools.swmed.edu/siRNA 

 It can design 23nt (nucleotide) siRNA from mRNA sequence and the pattern 

selection of 23nt sequence is adaptable to any future changes in the siRNA design 

methods. 

 Input can be in the form of actual sequence data or the accession number of the 

Refseq database. 

 The user can choose to design using standard parameters such percentage GC 

content, user defined pattern, avoiding nucleotide runs etc. The user can also avoid 

nucleotide runs or choose open reading frame (ORF). Here GC content refers to the 

percentage of the bases G or C in a sequence. 

 There is a scoring system associated with the design of individual siRNA target 

sequences. This can help in choosing better siRNAs. 

  Resource database:  This provides information on developed and existing siRNAs. It 

includes both functional as well as non functional siRNA sequences. The database 

also stores and displays images relevant to the developed siRNA such as western 

blots, RTPCR etc.  
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 Accession finder: Allows the user to find an accession number with a gene name 

alias as input. 

 The user can choose the target designer output and BLAST it locally. 

 It provides a customized BLAST output, which helps in the quick interpretation of 

the BLAST output. 

 It provides a variety of databases to BLAST the target siRNA sequences against. It 

filters the BLAST output to display sequence homology greater than 75%. 

 It also gives a choice to restrict BLAST output with user defined homology. 

 Updating of the resource database is possible through a password protected form. 

 Images can be uploaded into the database using the update form. 
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CHAPTER 3 

Materials and Methods 
 

3.1 Computational Tools.         

                

The siRNA Information Resource was built on a Linux based server. Its 

configuration and hardware details are mentioned in the Appendix. The databases involved 

were implemented locally to speed up the process. PHP and Perl (CGI) scripts were written 

to communicate with databases from the web pages. These scripts were able to retrieve data 

from the database as well as update the database using a web interface. 

 

                Database applications were performed using PostgreSQL database. PostgreSQL is 

one of the most advanced database servers available. Some of the important features of the 

PostgreSQL include unique data types, object-relational database, multiple procedural 

languages, extensibility, referential integrity, user defined data types etc. PostgreSQL is an 

open source database; hence it is available for free [17]. PostgreSQL can be used from most 

of the major programming languages such as C, C++, Perl, Python, Java, Tcl and PHP [20]. 

Thus PostgreSQL was chosen for implementing the database application. Other scripting 

languages such as Perl and Bioperl were used to implement the siRNA target designer 

algorithm. Perl is especially popular for its string operations as well as other bioinformatics 

applications. Bioperl is a collection of Perl modules that facilitate the development of Perl 

scripts for bioinformatics applications [19]. Bioperl was mainly used to parse BLAST output 
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in this application. PHP is a general-purpose programming language and is mostly used for 

building dynamic web pages. PHP and HTML scripts along with CGI module in Perl were 

used to create web pages.  

 

             As mentioned earlier, the siRNA Information Resource consists of two modes; 

target design mode and siRNA resource (database) mode. These modes are explained in 

detail in the subsequent sections. 

 

3.2 Target Design mode                   

      3.2.1    Block diagram 

  

The block diagram below, gives the general overview of the target design mode. The 

various blocks in the input section of the block diagram show the various types of inputs 

accepted by the target design algorithm and various blocks in the output section describe the 

output and output post-processing. The researcher can use a sequence or accession number 

as input parameter. If user does not have either of the information then the accession number 

can be retrieved using a locally downloaded “SOURCE” database with gene aliases as input. 

If the user enters a sequence as input, it can be directly taken by the algorithm and 

processed, but if an accession number is used as input, then the program automatically 

queries the “RefSeq” database and retrieves the sequence for further processing. The output 

of this mode is in the form of target sequences. User can choose one or more of these 

sequences to BLAST against Unigene (Human or Mouse) or Human Genomic databases.  
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Figure 3.2.1.1 Block diagram of siRNA target designer. 

 

3.2.2 Input to siRNA target designer 

 

              As mentioned earlier, the input to the siRNA target designer can be a plain text 

sequence or accession number. This input can be entered in a text box provided on the main 

form of siRNA information resource.  The next figure is a snap shot of the siRNA 

Information Resource form. The Help page can activated by clicking on the links provided 

on the main form. 

 



17 

 

 

Figure 3.2.2.1: Snapshot of siRNA Information resource form. 

 

              If the user does not have either of the information, then the “Find Accession” option 

on the menu bar of siRNA Information Resource can be used. The next figure depicts the 

snapshot of the webpage used to find the accession number. 
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Figure 3.2.2.2  Snapshot of Accession number finder form. 

 

               The user can enter gene alias name in the text box provided on the page above and 

the accession number can be retrieved. The next figure shows the accession numbers 

retrieved with “telomerase” as the input. The user can then choose the appropriate accession 

number depending on the description and use it as an input. 
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Figure 3.2.2.3: Output of the accession finder with ‘Telomerase’ as an example input. 

 

3.2.3 Adjusting parameters 

 

               The researcher can choose from various parameters to optimize the siRNA design. 

The parameters are as follows: 

Pattern: User can choose a user defined pattern for siRNA design. The main form has 23 

scroll bars to choose a pattern. Each scroll bar has the following 7 choices.  

1. A -- Adenine   

2. G -- Guanine  

3.  C -- Cytosine     

4.  T – Thymine 

5.  N -- Any nucleotide (A, T, G or C).  

6. Y-- Pyrimidine (C or T).   

7.  R -- Purine (A or G).  

The default for pattern is “AAN (19) TT”. 
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If the user defined pattern or default pattern is not found by the program, then it follows a 

logic built in the algorithm to find most commonly used patterns in a hierarchical manner. 

 

GC content: User can choose the GC content using two scroll bars which limits the pattern 

selection to a GC content in that range. The default range for GC content is between 30% 

and 70%. 

 

Avoid 4 or more nucleotide runs: Sometimes researchers prefer to avoid four or more 

nucleotide runs together in a siRNA sequence. This can be done by choosing appropriate 

radio button given on the form. The default for this parameter is “Yes”. 

 

Choose ORF: This radio button is used to select an open reading frame (ORF) in an mRNA 

sequence before looking for patterns. The default for this parameter is “Yes”. This will be 

explained in detail in subsequent sections. 

 

Apply scoring system: This check box is used to apply an optional scoring system while 

filtering target sequences for the output depending upon the input parameters. This scoring 

system will help the user to determine best possible siRNA. This scoring system is explained 

in detail in subsequent sections. 
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3.2.4 Target designer algorithm  

 

               The target designer algorithm takes the input as well as various parameters from 

the input form and screens the mRNA sequence for target sequences with input parameters. 

The next figure demonstrates the flowchart and basic logic of the algorithm. If the radio 

button for ORF is chosen, then the program pre-processes the input sequence by choosing an 

open reading frame 50nt below the 5’ end of mRNA and 50nt above the 3’ end of mRNA. 

Then it chooses appropriate target sequences using a user defined pattern. If a user defined 

pattern is not found, then it looks for the following patterns in an hierarchical order [44], 

where the number ‘n’ in parenthesis after a character means that character repeating ‘n’ 

number of times.  

a. AAN (19) TT   

b. AAN (21) 

c. NAN (19) TT 

d. NAN (21) 

               If none of these patterns are found, then it prompts the user to change the input 

parameters. After a pattern is found, it filters the target sequences according to the GC 

content range given by user or default. It also scores the target sequences individually and 

sorts the target sequences in the  descending order of the score. After the user has chosen 

target sequences to BLAST against the user chosen database, it gives a customized BLAST 

output displaying BLAST results with homology greater than 75%. 
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The figure 3.2.4.1 is a flowchart depicting the flow of logic in the algorithm used in the 

program. 
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Figure 3.2.4.1:  Flow chart depicting the algorithm of siRNA target designer mode. 
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3.2.5 Scoring system  

 

               The relationship between siRNA sequence and RNAi effect was extensively 

analyzed in many of the recent studies. Most of the studies have shown that the RNAi effect 

is a function of siRNA sequence. It was also shown that presence of certain bases in a 

particular position, contributes more to the efficiency than other bases. Also, all the 

positions of a target sequence do not contribute equally to target recognition. The main goal 

of scoring individual target sequences was to come up with a rational design which has high 

probability of success. In order to achieve this goal, different rules in various research 

papers were compiled together to form a scoring system [22, 23, 24, 25]. 

 

               It was found that the penultimate nucleotide of the antisense siRNA which is 

complementary to position 2 of 23nt target sequence should always be complementary to the 

targeted sequence. Mostly for simplification of chemical synthesis TT is used. Hence it 

increases the chances of having an efficient siRNA if the position 2 of the target sequence is 

‘A’. It was also found that moderately low amount of GC content contributes to efficiency. 

Hence, GC content between 30% and 55% was considered to be good for the design. Some 

research studies have shown that the presence of G/C content at the 5’ end of the siRNA 

target sequence improves efficiency, whereas some studies have shown that there is no 

correlation between them [23, 25]. Most of the analyses have shown that, the presence of at 

least five A/U’s at the 3’ end of the sense strand increases the efficiency of the siRNA. 

Apart from these rules, there have been analyses based on individual positions of the siRNA 
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target sequence. Presence of ‘A’  at position 19 , presence of ‘A’ at position 3 and presence 

of ‘U’ at position 10 of the sense strand are known to positively effect the siRNA efficiency, 

whereas the presence of ‘G’ or ‘C’ at position 19 and presence of  ‘G’ at position 13 are 

known to negatively effect the siRNA efficiency [23]. 

 

Based on the above, a scoring system was developed. Its logical flow chart is shown in the 

figure 3.2.5.1. 
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Figure 3.2.5.1 : Flowchart of scoring system for siRNA target sequences in sIR. 
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3.2.6    Output of siRNA target designer     

 

               After the program has filtered target sequences and calculated scores for them 

individually, it displays the result in a tabular format along with GG content value, pattern, 

score and remarks. The ‘Remarks’ column in the table is used to specify if more than four 

nucleotide runs were found in the target sequence. The ‘Pattern’ column in the table is used 

to specify the pattern used to filter target sequences. There are also individual checkboxes 

provided with target sequences so that user can choose sequences to BLAST. User can sort 

the data using “Sort using Score” button. The program sorts the target sequences in the 

descending order of score, highest being the best score. The user can also choose from the 

following databases to BLAST the target sequences against:  

a. Human Genomic. 

b. Human Unigene. 

c. Mouse Unigene. 

 

The figure 3.2.6.1 is a snapshot of the output of siRNA target finder with example input as 

accession number ‘NM_000068’. 
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Figure: 3.2.6.1 Output of siRNA target finder for example accession number 
‘NM_000068’. The figure displays the input parameters used for this program along with 
the date and time information at which the output was calculated. It also provides a choice 
for database which can be used to BLAST the sequence against. 
 

 

 

               Each of the individual target sequences displayed in the above figure can be 

clicked to view information on the target sequence which includes position in mRNA, sense 

strand and antisense strand. 
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3.2.7   BLAST  

      

 The sequences chosen from the list of target siRNAs (Figure 3.2.6.1) are then 

BLASTed against the user selected database. This BLAST is performed locally on the 

server. The program then gives a customized BLAST output in easily readable tabular 

format.  The program also filters BLAST output depending on the percent of homology 

found and displays the BLAST results where homology was found to be greater than 75%. 

Figure 3.2.7.1 depicts the BLAST output for sequence “AACTCCTTCATCCAAGTCTGGTT” and 

the database “Human Unigene”.  

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

 

 

Figure 3.2.7.1: Customized BLAST output. The ouput displays the input target 
information along with the date and time of the calculation details. The output also provides 
clickable links to Genbank data as well as UniGene (http://www.ncbi.nlm.nih.gov/ ) data to 
retrieve the individual sequence information.  
 

3.3 Open source database 

 

               Another mode of siRNA Information Resource is “siRNA Resource” mode where 

a database is provided with already developed siRNA information. This database helps the 

researcher to find a list of already developed and tested siRNAs. This list includes the 

siRNA sequences which have worked as well as the ones which failed to work. The database 
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also has clickable images of the siRNA tests for some of the siRNAs. This is very helpful as 

it can prevent the user from designing and testing failed siRNAs as well as provide 

information on working siRNAs.  The block diagram shown in the next figure shows the 

basic architecture of ‘Resource’ database. 

 

 Figure 3.3.1:  Basic architecture of siRNA “Resource” database. 

 

               As shown above, the input to the form can be a target gene name or the user can 

choose “All” option to display the whole database. The siRNA database is a PostgreSQL 

database. This database has a collection of developed and tested siRNAs along with their 

information. It also consists of information on working efficiency of the siRNA, relevant 

pictures (if any) along with publishing details. This database is then queried with the target 

gene name and the resultant output is displayed in a tabular format. User can click on the 

links with figures to get more details on the siRNA. The next figure shows the input form 

for accessing this database. This web page can be reached using the menu bar on the siRNA 

Information Resource web page by clicking on the “Resource” tab.  

Target Gene 
Name or ‘All’ 

(Input) 

siRNA database 
“Resource” 

Developed and 
tested siRNA 

(Output) 

Update siRNA database 
(Password protected) 
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Figure 3.3.2:  Snap shot of siRNA resource database input form. 

 

The output for target gene name “Cav” for caveolin   is depicted in figure 3.3.3 (a). 
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(a) 
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(b) 

Figure 3.3.3: (a) Output of the siRNA database for query “CAV”. The links can be 
clicked to view siRNA figures. (b) Figure for Caveolin knock down efficiency (mRNA). 
This figure opens in a new browser window. 
 

3.3.1 Update siRNA database. 

 

                It is very important to update the database with new siRNA information as well as 

figures. Hence, a webpage for updating siRNA database is provided and is password 

protected to maintain the authenticity of the data. The input form for updating the database 

is shown in the next figure. 
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Figure 3.3.1.1: Snapshot of siRNA database update form. The first five fields are 
mandatory. Relevant figures can be uploaded in the database using the upload tool provided 
with the form. 
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               The first five fields, namely siRNA name, Target gene name, Target siRNA 

sequence, sense strand sequence and anti-sense strand sequence are the required fields. 

Other fields such as percent GC content, Designer name, Figures, efficiency comments, 

reference are optional. Efficiency comments can contain details about the working 

efficiency of the siRNA sequence. It can be either Good, Average, Poor or in the form of 

percentage values. If the sequence is published then respective journals can be referenced in 

the ‘Reference’ section. 
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CHAPTER 4 

Implementation 
 

           This chapter covers the details on the software implementation of various 

modules and objects explained in chapter 3. Subsequent sections will explain the various 

databases and applications implemented in this software.      

   

4.1 Databases          

   4.1.1 RefSeq  

              

  The Reference Sequence (RefSeq) database was downloaded and made available 

for this application locally on the server. RefSeq provides a biologically non-redundant 

collection of DNA, RNA, and Protein sequences. Each RefSeq entry represents a naturally 

occurring molecule of an organism. RefSeqs are processed information and not a primary 

piece of research data itself as are Genbank records [13]. RefSeq was mainly used for 

retrieving mRNA sequences given ‘Accession numbers’ as input. Since designing siRNA 

deals with mRNA sequence, ‘refmRNA’ database consisting of only mRNA (Accession 

prefix ‘NM_’) sequences was used.  

 

               This database was implemented using PostgreSQL database and the sequences 

were retrieved from the database using SQL queries. A perl DBI module was used in CGI 
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script in order to communicate with the database using a CGI script. DBI module provides a 

consistent interface for database applications [18].   

    

      4.1.2 SOURCE   

      

           SOURCE is a web based database and it pools information together from various 

sources. Its report includes information on aliases, functional description, annotations etc. 

SOURCE collects information from various sources such as Online Mendelian Inheritance 

in Man (OMIM), SwissProt, LocusLink, UniGene, GenBank, PubMed as well as many 

others [14]. Source database was made available locally using the ‘Batch SOURCE’ mode, 

where gene aliases of a batch of accession numbers were downloaded. The SOURCE data 

was used to obtain various gene alias names with accession numbers as input. The program 

retrieves gene accession number with gene alias name as input. This is very helpful, if the 

user does not have both the sequence information and accession number information.  

 

               This database was implemented using PostgreSQL database. A PHP script was 

used to connect to the database as well as to produce dynamic web pages with the results.  

 

4.13 UniGene 

 

                   The main goal of UniGene database is to produce an organized view of the 

transcriptome. UniGene attempts to partition Genbank sequences into a non-redundant set of 
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gene-oriented clusters. The sequences in each of these cluster contains sequences that 

represent a unique gene [26]. One can avoid redundancies using UniGene database as it 

consist of only gene and expressed sequence tag (EST) sequences. When a researcher 

designs siRNA target sequence, it is quite useful to perform BLAST against UniGene 

database as a preliminary step. This will give an initial idea about homology of target 

sequence with other known genes in the UniGene database.  

 

               The sIR software provides both human as well as mouse UniGene databases as 

options to BLAST the target siRNA sequence against. It uses a CGI script with Bioperl to 

access the database and perform the BLAST operation.  

 

4.1.4  Human Genomic database 

 

               Human Genomic database was downloaded from the NCBI database resource 

and made available locally on the server. It consists of data obtained from the sequencing of 

the human genome from 23 pairs of chromosomes. This database is much bigger than 

Unigene database and consists of additional information as compared to Unigene database. 

Some researchers may be interested in testing the siRNA sequences for homology against 

human genomic database. Hence, this database was provided as one of the options to 

BLAST siRNA target sequences against. sIR uses a CGI script with Bioperl to access the 

database and perform the BLAST operation.  
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4.2  Implementation of target design mode.  

 

               Implementation of target design mode can be divided into two stages. The first 

stage is to design siRNA target sequences using input parameters and the second stage is to 

produce customized BLAST output on user chosen target sequences.  

 

               Perl with CGI module was used to implement the first stage. Perl is a very 

popular tool for string operations. Various modules or separate programs were written 

individually to calculate GC content, avoid nucleotide runs, check the sequence, and sort the 

output according to score. DBI module was used to connect to PostgreSQL database with 

the CGI script.    

 

               BLAST is a short form for Basic Local Alignment Search Tool [16]. BLAST 

was performed locally using NCBI BLAST program.  BLAST tool consists of various 

programs such as BLASTN, BLASTP, BLASTX, TBLASTN, and TBLASTX. BLASTN is 

used to compare nucleotide sequences to one another. All other programs are used for 

protein sequences. In this application, Bioperl was used to call ‘BLASTALL’ function, 

which performs BLAST operation. Since only nucleotides were involved, the ‘BLASTN’ 

program for nucleotide BLAST was used. The BLAST program implemented in this 

software takes the user selected target siRNA sequence and performs BLAST against the 

user selected database. Again, Bioperl and Perl were used to parse the BLAST output to 
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provide a customized BLAST output. This BLAST output consists of details on BLAST hit 

name, Genbank ID (if any), description, identities, score and alignment. Only the BLAST 

results with more than 75% homology (> 16bp/21bp) are displayed.   

     

 

4.3  Implementation of siRNA Information database: Open source database. 

 

               siRNA database consists of information on target gene, siRNA target sequence, 

sense and anti-sense strands, GC content, designer, efficiency of siRNA, relevant figures, 

journal publication etc. Implementation of this database can be divided into two parts. The 

first part was to create the database and retrieve the information and the second part was to 

update the database with new information using a user friendly input form. 

 

               PostgreSQL was used to implement the database. It is easier to manage images 

and data if they are stored in the database as objects. BLOBs (Binary Large Object) method 

was implemented to store image files as objects in the database. A BLOB is stored as an 

object in the database and not in the table itself. Every BLOB has a unique identifier or 

object id which is stored in the table of the database [20]. 

 

                The database items were retrieved using a PHP script which is very useful for 

creating dynamic web pages. A special PHP script with image headers was used to view 
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images in the database in a new web browser window. Database rows could be selectively 

retrieved using target gene name or completely retrieved using ‘ALL’ option.  

             

    The database could be updated using an update form. This form is password 

protected and has restricted access. When the researcher enters the information in the form 

and submits it, a PHP script with SQL query runs in the background, which updates the 

database with new entry. Images can be uploaded using the image upload tool. The uploaded 

images are first uploaded to the server and then imported into the database creating a unique 

object ID for them each time they are uploaded. This object’s ID is then stored in the 

database.  
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CHAPTER 5 

Discussion, Results and Validation 
 
 
 
5.1       Discussion 

 

  siRNA (short interfering RNA) is known to induce post-transcriptional gene 

silencing by a process called RNAi (RNA interference). It is known to cause sequence 

specific degradation of mRNA. RNAi technology has proven its usefulness in many fields 

such as cancer, gene therapeutics, functional genomics etc.  

 

    There have been many recent studies to determine the relationship between 

specific siRNA sequences and the RNAi effect [22, 23, 24, 25].  It was found that the 

efficiency of siRNA is a function of target sequences and its content. It was also found that 

all the positions of siRNA do not contribute equally to the target recognition [24]. Hence, 

having a scoring system that can predict siRNA efficiency to some extent can be very 

useful. Although, the scoring system used in this application is based on the analysis of the 

siRNA sequence and its potency [22, 23], it may not accurately predict the siRNA activity. 

It can only help the process of siRNA design.  
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5.2  Reproducibility of existing siRNA target sequences. 

 

               In order to test the validity of the software, a database of 107 tested siRNA target 

sequences was used. These siRNA sequences were collected from various laboratories in 

University of Texas at Southwestern Medical Center (UTSW) as well as from published 

papers. Out of these 107 siRNA sequences, 83 were functional and 24 were not functional as 

documented by the principal investigators.   

 

              The validation was performed in a two step process: 

1.  First, all the mRNA sequences or accession numbers of the siRNAs in the database 

were tested in the software to see if the software was able to design these siRNA 

target sequences. The software was able to design these target sequences with 

appropriate input parameters. 

2.  Next, scores were calculated for each of these siRNA sequences using the scoring  

system described in chapter 3. It was found that after sorting the results of siRNA 

target designer using the score, approximately 70% of the functional siRNAs in the 

database had a score of more than 60 and approximately 65 % of the non functional 

siRNAs in the database had a score of less than 40. This is demonstrated in the 

Figure 5.2.1.  
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Table 5.2.1 shows the scores obtained by siRNA target sequence (‘Functional’ as 

well as ‘Non functional’).  It should be noted that the total number of ‘functional’ siRNAs 

(83) was much greater than the total number of ‘non functional’ siRNAs (24).  

 

 

Score Functional siRNAs Non  functional  siRNAs 
10 0 2 
20 1 2 
30 2 5 
40 11 6 
50 14 4 
60 20 4 
70 14 1 
80 14 0 
90 6 0 
100 1 0 

Total 83 24 
 

 

Table 5.2.1:Scores obtained by siRNA target sequence (‘Functional’ as well as ‘Non 
functional’). This table clearly shows that approximately 70% of the working siRNA have 
scores greater than 60 where as approximately 65% of the not working siRNA have scores 
less than 40. 
 

 

This is also demonstrated in the graphical format in Figure 5.2.1. 
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Distribution of functional and non functional siRNAs over a range of score.
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Figure 5.2.1: Distribution of tested and ‘Functional’ and ‘Non functional’ siRNAs.  
This figure is a plot of number of siRNAs against scores obtained by those siRNAs.  It can 
be observed in the figure that the distribution of ‘functional’ siRNAs is prominent for scores 
greater than 60 and the distribution of ‘non functional’ siRNAs is prominent for scores less 
than 40.  
  

There was approximate efficiency data available for 61 siRNAs (Both functional as well as 

non functional). Average score was calculated for siRNA sequences with similar efficiency.  

 

 

 

 

Table 5.2.2 shows these values. 



50 

Percentage 
efficiency 

Average score at that 
efficiency 

<40% 40.43 
<60% 57.14 
<80% 65.38 
<100% 67.06 

 

Table 5.2.2: Percentage efficiency and average score at that percentage efficiency. 

This can be demonstrated using a graphical plot given in the Figure 5.2.2. 
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Figure 5.2.2: correlation between average score and percent efficiency of siRNA sequences. 
This figure shows that there is some amount of correlation (correlation = 0.87) between 
average score and percent efficiency of siRNA sequences. 
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5.3      Conclusion 

 

               RNAi technology is a popular research methodology to decode various 

functions of genes. It is very important to have computational tools to perform the task of 

designing the best possible siRNAs as well as to store them, in an effort to facilitate 

research. It is very important to have all the available siRNAs in one place for future 

reference.  

 

 sIR was able to show its capability to design siRNA as well to provide a database 

consisting of already developed and tested siRNAs.  

  This software tool was able to provide a web based interface that is user friendly 

and easily accessible. 

  It was able to provide a customized BLAST output in an easily readable and 

interpretable format.  

 BLAST operation could be performed against a variety of databases provided by 

the software.  

 Scoring system of this software may predict the siRNA activity completely, but it 

can be helpful in designing better siRNA sequences. 

 The sIR software was validated successfully using working and tested siRNA 

target sequences.  
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CHAPTER 6 

Maintenance and Future work. 
 

6.1 Maintenance of sIR (siRNA Information Resource). 

 

               The databases used in this application are locally downloaded. Hence, these 

databases have to be updated at least once in month to ensure that the most recent changes 

are included in the database. This job will be performed by system administrator of the 

server on which these programs are available. 

 

6.2 Future work. 

 

Batch processing of siRNA target sequences:  

               siRNA design tool is able to receive one accession number or one sequence 

information at one time. This is quite adequate most of the times. However, because of its 

growing popularity; the researchers may want to find siRNA target sequences for more than 

one gene at a time. This can be accomplished by adding a batch processing feature to this 

software, where a batch of accession numbers can be given as input and output can be 

emailed to the researcher after completion of the process. 
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Part II: CHAPTER 7 

Gene expression profiles and Chemosensitivity data of breast 
cancer cell lines. 

 

7.1 Objectives and application: 

   

               As mentioned earlier, one of the major problems in using chemotherapy to treat 

cancer is whether patients, whose tumors do not respond to one drug or a combination of 

drugs, would respond to another.  Hence, one of the long term objectives of this research is 

to be able to rationally select the chemotherapy for each patient’s tumor that would be the 

most effective.  

 

               In the past, there have been extensive studies to determine if the in vitro sensitivity 

or resistance of tumor cells from a patient is able to predict their response in vivo [27].  

Although contentious, it appears there is some correlation [28].  Based on this, some in vitro 

drug responses have been tried, but tumor cells should be exposed to chemotherapeutic 

agent in conditions similar to those in human body determined by pharmacokinetic 

parameters [29].  It will be beneficial to find out if there is any other method to accurately 

predict the drug responses in a patient.  
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               Single gene mutation or mRNA and protein expression in tumor cells were also 

used to predict the response to chemotherapy. It was found that there was an association in 

some studies [30, 31] whereas no association was found in others [29, 32-34].  This can be 

argued based on the possibility that the failure to predict by these methods may be because 

drug sensitivity of tumor cells could be determined by many genes instead of one gene that 

influence overall sensitivity.   

 

                One potential approach to resolve the apparent discordant findings is to examine if 

tumor cell line “gene expression signatures” detected by microarray analysis prior to 

treatment could identify a set of genes correlating with sensitivity or resistance to a 

particular drug.  

 

Gene expression profiles have several potential advantages: 

 - It is possible to perform profiles using small samples from clinically available   

     specimens. 

 - Multiple genes are examined at the same time 

 - Expression profiles can be done in a short time.  

 

              Hence, it would be beneficial if one is able to sample a patient’s tumor before 

treatment, perform gene expression profiling and from this profile predict the sensitivity and 

resistance of that individual tumor to various chemotherapy agents. 
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Therefore, the objectives of this study were as follows: 

1. To perform chemosensitivity tests on a large number of breast cancer cell lines with 

agents commonly used in the treatment of breast cancer.  

2. Perform microarray analysis on the same tumor cell lines. 

3. Determine if a correlation between in vitro sensitivity or resistance and gene 

expression profiles exist. 

 

This information would be useful to start clinical trials. 

 

            Also in this process, large amounts of data were produced. Hence, it was 

practical to develop a collection of computational tools to facilitate this research. This also 

became one of the objectives of this project. This set of tools will be used for similar studies 

in the future. 
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CHAPTER 8 

Materials and Methods 
 

8.1      Cell lines.   

 

               Chemosensitivity tests as well as gene expression profiles were performed on 

17 breast cancer cell lines. The cell lines used were:  HCC1143, HCC1395, HCC1419, 

HCC1428, HCC 1569, HCC1806, HCC1937, HCC1954, HCC2688, HCC3153, HTB122, 

HTB126, HTB131, HTB22 (MCF7), HTB24, HTB25, HTB26 (MDA-MB 231).  

 

               These cell lines were mainly developed at the University of Texas at 

Southwestern Medical Center, from primary tumors. The cell lines used for this study were 

of an adherent nature. All cell lines were maintained in RPMI-1640 (Invitrogen, Carlsbad, 

CA) supplemented with 10% fetal bovine serum and incubated in 5% CO2 at 37˚C in a 

humidified atmosphere. 

 

8.2  Chemotherapeutic drugs. 

 

               Five anti-cancer drugs commonly used in the treatment of breast cancer tumors 

were used for this study. They include the DNA-damaging agents cisplatin and gemcitabine, 

the anthracycline antibiotic doxorubicin and the anti-microtubule agents paclitaxel and 

vinorelbine. 
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Cisplatin:  Cisplatin is an inorganic complex formed by an atom of platinum surrounded by 

chlorine and ammonia atoms in the cis position of a horizontal plane. Intracellularly, water 

displaces the chloride to form highly reactive charged platinum complexes. These 

complexes inhibit DNA replication through covalent binding, leading to intrastrand, 

interstrand, and protein cross-linking of DNA. Experimental and clinical data suggest that 

cisplatin enhances radiation therapy effects. Figure 8.2.1(a) shows the chemical structure of 

cisplatin. 

 

Paclitaxel:   Paclitaxel is known to prevent cell division process by promoting disassembly 

of microtubules - cytoskeletal structures that assemble and divide throughout the life of a 

cell.  At the start of cell division, a large number of microtubules are formed, and as cell 

division comes to an end, these microtubules are normally broken down. However, 

paclitaxel prevents microtubules from breaking down. In the presence of this drug, cancer 

cells, which attempt to divide frequently, cease to grow and divide as they become clogged 

with microtubules [35].  The chemical structure of paclitaxel is shown in figure 8.2.1(b). 

 

Gemcitabine:  Gemcitabine exhibits cell cycle specificity, primarily killing cells undergoing 

DNA synthesis (S-phase) and also blocking the progression of cells through the G1/S-phase 

boundary. The chemical structure of gemcitabine is shown in figure 8.2.1(c). 
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Vinorelbine (Vinorelbine Tartrate):  Vinorelbine is a Vinca alkaloid that interferes with 

microtubule assembly. The anti-tumor activity of vinorelbine is thought to be due to 

primarily inhibition of mitosis at metaphase through its interaction with tubulin. It may also 

interfere with:  

a. amino acid, cyclic AMP, and glutathione metabolism.  

b.  calmodulin-dependent calcium transport ATPase activity . 

c.  cellular respiration . 

d. nucleic acid and lipid biosynthesis. 

The chemical structure of vinorelbine is shown in figure 8.2.1(d). 

 

Doxorubicin: Doxorubicin is a cytotoxic anthracycline antibiotic isolated from cultures of 

Streptomyces peucetius var. caesius.  It binds to nucleic acids, presumably by specific 

intercalation of the planar anthracycline nucleus with the DNA double helix. The chemical 

structure of doxorubicin is shown in figure 8.2.1(e). 
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         (a)                                                             (b) 

    

(c)       (d) 

 

      (e) 

 

 

Figure 8.2.1:  Chemical structures of the drugs involved in the chemosensitivity tests. This 
figure shows chemical structures of the drugs involved in the chemosensitivity tests.  
(a)Cisplatin (b) Paclitaxel (c) Gemcitabine (d) Vinorelbine (e) Doxorubicin.  
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Table 8.2.1 below gives details about the drug concentration, molecular weight, storage 

conditions, stock solutions etc of the drug used. It also gives details about the 4-fold 

dilutions of the drug with culture medium and the final concentration of the drugs. 

 

Drug M.W Storage  Stock solution 
concentrations 

Working 
concentrations 

Final 
concentrations 

Cisplatin 
 
 
 

300.05 Room 
temperature 

N/A  (Freshly 
prepared) 

0.12 µM  to 
2,000 µM 

0.06 µM  to 
1,000 µM 

Paclitaxel 
 
 
 

853.93 Room 
temperature 

8000nM (Diluted 
in PBS) 

0.12 nM to   
2,000 nM 

0.06 nM to   
1,000 nM 

Gemcitabine 
 
 
 

299.50 Room 
temperature 

N/A  (Freshly 
prepared) 

0.24 nM to   
4,000 nM 

0.12 nM to   
2,000 nM 

Vinorelbine 
 
 
 

1079.12 3 - 4◦ F 8000nM (Diluted 
in PBS) 

0.12 nM to   
2,000 nM 

0.06 nM to   
1,000 nM 

Doxorubicin 
 
 
 

579.99 3 - 4◦ F N/A  (Freshly 
prepared) 

0.74 nM to 
12,000 nM 

0.37 nM to   
6,000 nM 

 

Table 8.2.1: Information on drugs. This table describes molecular weight (M.W), storage 
conditions of the respective drugs. The ‘stock solution concentrations’ column shows the 
concentration of drug diluted in PBS to create a stock solution. N/A (not applicable) means 
that the drug was freshly prepared. The ‘working concentrations’ column signifies the 
concentrations used in 4 – fold dilution with culture media during the experiments. The 
‘final concentration’ column gives the actual value of concentrations of the drug after 
dilution in each well of the 96-well plates used for chemosensitivity experiments. 
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8.3  Chemosensitivity data.       

 

              Chemosensitivity of cell lines were determined using the MTT (Colorimetric) assay  

kit (Chemicon International, Temecula, CA).  

 

               MTT, chemically known as 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium 

bromide, is a water-soluble yellow dye which can be readily taken up by viable cells and 

reduced by the action of mitochondrial dehydrogenases. The product of this reduction 

process is a water-insoluble blue formazon that can be dissolved in an isopropanol (0.04 N 

HCl) solution. Formazan production is directly proportional to the number of viable cells 

over the range of 200 to 50,000 cells per well [36]. Hence MTT can be used to determine 

optimal cell density and chemosensitivity is determined from the reduction of cell number; 

due to the inhibition of growth, with increasing drug concentration.      

 

               Since the growth rate of every cell line varies, it was important to find the optimal 

number of cells per well required to plate. Hence, as a pre-processing technique, “Plating 

Assays” were performed before performing the actual “Chemosensitivity Assays”.  

 

               Plating Assays:   In order to perform plating assays, different number of cells per 

well were plated and incubated for 5 days. At the end of the incubation period, colorimetric 

assay was performed in order to determine the cell growth. The initial cell density with 
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optimal optical density reading and linear growth at the end of the 5th day was chosen as the 

initial optimal cell number of cells/well. The protocol below describes this process in detail: 

 

Protocol for Plating Assay: 

Day 0: Preparing cell suspension and plating the cells. 

Day 5: Harvest of cells and MTT assay. 

a. Cells were grown in a 100 mm dish or T-75 flasks and kept in a sub-confluent state.  

b.  Day0:  Cells were trypnisinized with 1~2ml of trypsin/EDTA solution, and incubated 

at 37◦ C until cells float in the dish. Approximately, 8~9 ml of media was added and 

the cell suspension was collected.  

c.   The number of cells in 1 mL of medium was counted using a cell counter  

            device (Beckman Coulter Z1 particle counter). 

d.   Five serial dilutions of cells in media were prepared (e.g.: 4 x 104, 2 x 104   , 1 x  

           104, 0.5 x 104 , 0.25 x 104). 

e.   100µl of a cell suspension (with appropriate dilutions) was plated in a 96 well plate. 

f.   The plate was incubated in a humidified incubator in 5% carbon dioxide for 5 days at 

37◦ C. 

g.  Day5:  10µl of MTT solution was added to each well.  

h.  The plate was then incubated for 4~5 hours. 

i.  The cells were viewed periodically under a microscope for presence of formazon 

formation. When the purple precipitate was clearly visible, media was removed with 
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a multi-channel aspirator, and then 100 µl of Isopropanol (0.04 N, HCl) solution was 

added to each well. 

j.   The absorbance was then measured on a micro-plate reader (EL312, Bio-Tek 

Instruments, Inc.) with a test wavelength of 570 nm and a reference wavelength of 

750 nm.  

k.   The average values were determined from 6 replicate wells after the 2 extreme 

values were excluded. Absorbance against number of cells per well was then plotted. 

l.   The number of cells to use in further experiments was determined from the linear 

portion of the plot that yielded an absorbance of 0.2-0.9. 

 

 The analysis part, after getting the raw data from plate reader can be performed using a 

Microsoft Excel program called “Optimal cell density calculator”, specially designed to 

analyze and store the data obtained from plating assays. 

 

Protocol for Chemosensitivity assay: 

1. Cells were grown in a 100 mm dish or T-75 flasks and kept in a sub-confluent state. 

                  2.  Day 0:  Cells were trypnisinized with 1~2ml of trypsin/EDTA solution, and incubated at 

37◦ C until cells float in the dish. Approximately, 8~9 ml of media was added and the 

cell suspension was collected. 

3.  The number of cells in 1 mL of medium was counted using a cell counter  

      device (Beckman Coulter Z1 particle counter).. 
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     4.   The cell suspension was dispensed with appropriate cell density calculated using the data 

from plating   assays. 

5. After repeated pipetting, 50 µl of cell suspension was plated in a 96 well plate.  

6. The cells were allowed to adhere approximately 24 hours in the incubator. 

7. Day 1:  4 fold range dilutions of drugs were prepared. For stock solutions, drugs were 

diluted with PBS and filtered using a 0.45 µm sterile filter. For working drug solutions, 

drugs were diluted with complete medium just before use. 

8. Fifty µl of appropriate concentration drug solution was added to 96 well plates except for 

the control. Fifty µl of medium was added to the control.  

9. The plate was incubated in a humidified incubator in 5% carbon dioxide for 4 days  at 

37◦ C. 

10. Day5:  Ten µl of MTT solution was added to each well. 

11. The plate was then incubated for 4~5 hours. 

      12. The cells were viewed periodically under a microscope for presence of formazon 

formation. When the purple precipitate was clearly visible, media was removed with a 

multi-channel aspirator, and then 100 µl of Isopropanol (0.04 N, HCl) solution was 

added to each well. 

13. The absorbance was then measured on a micro-plate reader (EL312, Bio-Tek 

Instruments, Inc.) with a test wavelength of 570 nm and a reference wavelength of 750 

nm. 

      14. The average values were determined from 6 replicate wells after the 2 extreme values 

were excluded. Absorbance was plotted against number of cells per well. 
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15.  Percentage of each value against control value was calculated. 

16. A graph of absorbance percentage (Y-axis) against drug concentration (X-axis) was 

plotted. 

17. The IC50 concentration was determined as the drug concentration required to reduce the 

absorbance percentage (cell number) to 50%. 

                

 The analysis part, after getting the raw data from plate reader was performed using a 

Microsoft Excel program called “MTT database”, specially designed to analyze and store 

the data obtained from chemosensitivity assays. 

 

8.4  Gene expression profiles.    

 

               Gene expression profiles were evaluated using Affymetrix cDNA microarray 

(U133A and B chips). For this process, RNA was extracted from the cell lines on which 

chemosensitivity tests were to be performed. RNA was prepared using the RNeasy Midi kit 

(Qiagen, Valencia, CA).  Extracted RNA was analyzed for quality using agarose-

formaldehyde gels or using the RNA 6000 Nano kit (Agilent Technologies, Palo Alto, CA) 

with Agilent Bioanalyzer software.  The HG-U133B chip from Affymetrix has 22,283 genes 

(13,794 Unigene clusters) and the HG-U133A chip has 22,645 genes (17179 Unigene 

clusters). Five micrograms of total RNA was used in a single round of amplification. The 

Affymetrix protocol starts with cDNA synthesis, using a poly (T) primer with a T7 

promoter. The double stranded cDNA generated is then used to prime the synthesis of cRNA 
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using biotinylated ribonucleotides (UTP and CTP). After the labeled cRNA is synthesized it 

is fragmented and hybridized to the GeneChip at 45 C for 16 hours in a rotary incubator. 

After hybridization the analyte solution is removed and the array is washed and stained with 

Streptavidin Phycoerythrin in the Affymetrix GeneChip fluidics station.  After washing, the 

array is scanned (Agilent GeneArray Scanner) and the data extracted with the MicroArray 

Suite 5.0 software (Affymetrix) which also provides scaling and other data normalization 

prior to analysis. 

 

               Affymetrix data was analyzed using in-house MATRIX (MicroArray 

TRansformation In eXcel) 1.24 [37]. First, the samples to be analyzed were divided into two 

groups, one consisting of samples resistant to the drug, and the other consisting of samples 

sensitive to the drug.  These groups were formed on the basis of the chemosensitivity tests. 

Log ratios were calculated using the log ratio mode of the software. All signals for gene 

duplicates were pooled by averaging and the resulting data was normalized so that all 

samples had the same median. In the calculation of these log ratios, a threshold of 100 for 

the expression signals was used to avoid spurious differential expression due to background. 

As an alternative comparison between affymetrix expression data and IC50 values, Pearson 

correlations between log-transformed affymetrix signals for each gene and log transformed 

IC50 values for each drug was calculated across all cell lines. Thus correlation between gene 

expression data and chemosensitivity data was determined.  These results are explained in 

chapter 10. Scatter plots were obtained where each spot on the plot represented a gene and 

their coordinates represent the expression level being compared in each group. The cut-off 
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for expression change was chosen as 4-fold or more. Clustering analysis was performed for 

both samples as well as genes using this software. 

  

8.5       Computational tools. 

 

               In order to analyze drug sensitivity data as well as the gene expression data, several 

computational tools developed in-house were used. The chemosensitivity data was analyzed 

and stored using “MTT database 1.10” program [38]. This program stores MTT assay data 

in a database format, displays charts, calculates IC50 values for each assay. It also 

automatically summarizes and updates the data in different table formats. The gene 

expression data was analyzed using “MATRIX 1.2.4”. This software imports microarray 

gene expression data and performs several analyses including clustering, scatter plots, log 

ratios, color displays, sample averaging, correlations etc. The plating assay data was stored 

and analyzed using “Optimal cell density calculator” program developed as a part of this 

project. The experimental setup was made easier using “Drug Information and Calculator” 

program developed as a part of this project. The last two programs are explained in detail in 

the next chapter. 
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CHAPTER 9 

Development of drug sensitivity tools 
   

9.1    Block Diagram 

 

               A set of computational tools were developed in order to analyze chemosensitivity 

data as well as to perform chemosensitivity experiments. The block diagram below gives an 

overview of the tools developed. 

 

 

Figure: 9.1.1 Overview of the drug sensitivity computational tools. The figure above 
shows the computational tools used for storing data, setup experiments as well as to analyze 
the data. 
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Database: The databases are Microsoft Excel database. There are mainly two types of 

databases, one for storing drug information, and other for storing raw MTT data.  

 

Drug Information database: It is an Excel database and it consists of information on the 

various drugs used for drug sensitivity tests. It consists of information such as molecular 

weight, chemical structure, mechanism of action, solubility and concentrations.  

 

MTT (raw) data: It is very important to store the raw MTT data from the plate reader for 

future reference. Two separate Excel databases were created in order to store this 

information for chemosensitivity tests as well as for plating assays. Along with the raw data, 

they consist of information on cell line, drug, respective plots etc. 

   

Experimental setup: An Excel program called “Drug Information and calculator” was 

developed to pre-calculate drug and solvent information before every chemosensitivity 

experiment. This program is explained in detail in the next section. 

 

Analysis: Microsoft Excel programs were developed to analyze the raw MTT data and 

summarize their results. “MTT Database 1.10” program was developed to calculate the IC50 

values from the MTT data. “Optimal Cell Density Calculator 4.0” was developed to 

calculate the optimal number of cells/well required to plate for chemosensitivity 

experiments. This program is explained in detail in the next section. 
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9.2       Optimal cell density and drug concentration calculator and database. 

9.2.1  Optimal cell density calculator. 

     

This program was especially developed to automatically process and store the data 

obtained from MTT assay. This program was developed using Microsoft Excel (Visual 

Basic).  Its main objective was to calculate the optimal number of cells to be plated for 

chemosensitivity experiments.  

This program consists of three sheets: 

1. Plating Assay sheet. 

2. List of optimal cell density. 

3. Summary sheet. 

 

Plating assay sheet: This is the main database sheet where the raw data is stored along with 

absorbance plots and result. It consists of a form which takes inputs from the user and 

delivers the output result. The user can import the raw file using “Import” button. The user 

can choose the cell line from the list of cell lines provided with the scroll bar option. Finally, 

the user needs to enter the information about the highest concentration of cells/well plated. 

The “Plot and Calculate” button gives the desired result. Figure 9.2.1.1 shows a screenshot 

of this sheet. 
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Figure 9.2.1.1:  Optimal Cell Density Calculator Form. 

   

The program automatically calculates the 5 serial dilutions, given the highest concentration 

of cells per well plated. For example, if the user enters 4 x 104 as the highest concentration, 

the program automatically calculates the concentrations in the other columns as 2 x104, 1 

x104, 0.5x104 and 0.25x104 respectively. 

 

  The average value of the absorbance in each column is determined from 6 replicate 

wells after excluding two extreme wells. The program then plots this absorbance against 

number of cells per well. 

   

The program then looks for a linear region in the plot. This is determined by calculating 

slope of the curve between various points. The linear region is the region where difference 

between two consecutive slopes is minimum. The slope between any two points A1 and A2 

is calculated using the following formula: 

 

    
Slope (A1, A2) = (Ya1 – Ya2) 
                            -------------- 
       (Xa1 – Xa2). 



72 

Where, X and Y are the coordinates of points A1 and A2. This is  explained using the curve 

shown in figure 9.2.1.2. 

 

Figure 9.2.1.2:  Linear range logic. The program calculates slope between all the 
consecutive points namely a1, a2, a3, a4 and a5. Then it calculates the difference between 
slopes. The points which show minimum difference between slopes define the linear range.  
Slope (a2, a3) – slope (a3, a4) = minimum. Therefore, the curve is considered linear between 
a2 and a4. 
 

 

 

               Finally, the result box displays the approximate linear range where the optimal cell 

density per well can be chosen. The sheet also stores raw MTT data along with the plot and 

results. When the user wants to import another data file, the database sheet automatically 

appends the new data and graph below the latest data. This way the user can store the results 

of all the plating assays in one sheet for future reference. The program also automatically 

updates the summary page. Figure 9.2.1.3 shows the database and plot layout of the optimal 

cell density calculator program. 

 

a1  

a2  

a3   
a4    a5    
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List of optimal cell density: This is a reference sheet and it consists of information on the 

optimal cell densities of both Lung as well as Breast cancer cell lines, used in the past. 

 

Summary sheet: This sheet is automatically updated with experiment ID as well as the cell 

line; every time the user uses this program to calculate optimal cell density. The user can 

decide on the final number of cells per well chosen from the resultant range and can 

manually enter this information in the last column. 

 

 

 

Figure 9.2.1.3: The screen shot of optical cell density calculator database. This figure 
shows the typical layout of plots as well as the raw MTT data. 
 

 

Requirements to use this program: 

1. This program was designed and tested on a PC with Microsoft Excel on Windows  
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      XP machine.  It will not work on a Macintosh. 

2. Macros must be enabled to use this program.  

3. The input file can be either a text file or Microsoft excel file. 

4. The arrangement of cells per well in the 96 plate should as shown in figure 9.2.1.4. 

The first and seventh column should be blank. The 2nd, 3rd, 4th, 5th and 6th columns 

should have cell densities in the increasing order of number of cells per well in 2-

fold serial dilutions. This should be repeated for columns 8th, 9th, 10th, 11th and 12th 

respectively. 

 

 

 

Figure 9.2.1.4:  Plating Assay layout. This figure shows the experimental setup compatible 
with the program, for plating assay in a 96 well plate. Different colors indicate the different 
number of cells/well plated in that particular column. 
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9.2.2 Drug Information and Concentration Calculator: 

 

               This program was designed to automatically calculate the solvent and drug 

quantity needed to achieve required concentration to make the experimental setup easier. It 

was developed using Microsoft Excel (Visual Basic). Information on all the drugs involved 

in this study is also included as a feature.  This program is also able to add a new drug and 

drug information for future studies.  

It consists of 3 modes: 

1. Calculator mode. 

2. Drug Information database sheet. 

3. “Add new drug” mode. 

 

Calculator mode:  It optimally calculates the quantity of drug and solvent to be added for all 

the chemosensitivity tests, given the number of plates as input. The user can choose the drug 

as well as enter the number of plates required for the chemosensitivity tests. When the user 

activates the “Calculate” button, the output is displayed in the 2 boxes named solvent and 

drug giving solvent quantity as well as drug quantity respectively. The program uses the 

information previously stored in the “Drug Information Sheet” to calculate the stock 

solution information. This information can be modified by the user at any point of time. 

Stock solution and dilution concentration for the particular drug (entered previously into the 

database) are also displayed on the worksheet for reference.   
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The formula used for calculation is as follows: 

C1 x V1 = C2 x V2 

Where C1=Initial concentration of drug, V1=Initial volume of drug, C2=Final concentration 

of drug, V2=Final volume of drug solution (solvent +drug), C1= number of moles= (mass in 

liters /Molecular weight) 

Drug solution: V1     and   Solvent Solution: V2-V1. 

A screenshot of “Drug Information and Calculator” is shown in the figure 9.2.2.1 

. 

 

Figure 9.2.2.1:  Drug Information and Concentration Calculator 

 

Drug Information database sheet: This sheet contains information on the drug, its 

mechanism of action, structure, molecular weight, storage and stability information as well 

as concentration details. This sheet can be updated by the user anytime. Also new drug 

information can be added in this sheet using the “Add new drug” option.  
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Add New Drug mode:  This mode provides the facility to add a new drug, to be used along 

with the calculator. The program allows the user to automatically append the new drug 

information to the existing database. When the “Add New Drug” button is activated, the 

user sees the screen shown in figure 9.2.2.2. The program prompts the user for new drug 

name. 

 

 

Figure 9.2.2.2: “Add New Drug” mode of Drug Information and Concentration 
Calculator. “Add New Drug” mode, prompts the user to enter the name of a new drug. 
Then the program guides the user to a space allocated for the new drug information to be 
stored. After this process, the “Calculator” mode is ready to calculate stock solution for this 
new drug. 
 

 

 

Requirements to use this program: 

1. This program was designed and tested on a PC with Microsoft Excel on Windows  

      XP machine.  It will not work on a Macintosh. 

2. Macros must be enabled to use this program.  
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CHAPTER 10 

Results, Discussion and Conclusion. 
 

10.1  Results and Discussion. 

 

               Chemosensitivity was analyzed using MTT assays and Gene expression data was 

obtained using Affymetrix.  Several observations were made during this study. The IC50 

values of each drug varied greatly from one cell line to another (100 to 1000 fold), 

confirming that there were different phenotypes, sensitive and resistant cell lines. This is 

demonstrated in Figure 10.1.1.  

  

Figure 10.1.1: Sensitivity of Breast Cancer Lines to Vinorelbine. This figure shows a 
wide range of different IC50 values in breast cancer cell lines (HTB122 and HTB22) for 
drug Vinorelbine, depicting different phenotypes, sensitive and resistant cell lines. 

1500 fold 
difference in IC50 

HTB122  
 IC50 =214.64 nM 

HTB22 (MCF7) 
IC50 = 0.14 nM 
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                 In order to classify cell lines into different phenotypes for further analysis, the 

IC50 values of all the cell lines were plotted on a logarithmic scale for the respective 

drugs. This is shown in the next figure. 

 

 

 

Figure: 10.1.2 This figure represents the different logarithmic scale variations of IC50 
values for various cell lines. IC50’s of Cisplatin differed by 10-50 fold, IC50’s of 
Gemcitabine differed by 10-100 fold, while those of doxorubicin, paclitaxel and vinorelbine 
varied by over 1,000 fold for breast cancer cell lines. For breast cancer cell lines IC50’s of 
cisplatin and paclitaxel IC50s varied by up to 1,000 fold. 
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   The next table shows the numerical readings and their classification into resistant and 

sensitive phenotypes. “Red” represents resistant cell lines and “Green” represents sensitive 

cell lines. 

 

Cell Line Average SD Average SD Average SD Average SD Average SD
HCC1143 6.61 4.84 1092.44 421.85 6.08 6.23 0.29 0.15
HCC1395 0.55 0.01 0.14 0.04 22.71 9.05 7.61 0.57 0.92 0.4
HCC1419 12.15 6.55 338.55 146.82 315.45 126.69 526.72 414.61 9.83 5.87
HCC1428 17.46 8.77 215.52 155.39 540.3 502.99 0.66 0.23 0.46 0.14
HCC1569 3.43 2.88 34.41 20.07 59.25 0.41 2.62 0.82
HCC1806 2.05 1.99 80.46 12.6 22.47 1.15 0.07 1.51 0.57
HCC1937 0.31 0.25 335.3 515.27 205.38 132.95 2.9 1.62 1.59 0.93
HCC1954 4.14 3.23 56.52 79.3
HCC2688 0.4 0.61 27.92 17.71 1405.65 807.17 0.59 0.14 0.61 0.27
HCC3153 1.44 1 745.85 185.16 0.23 0.03 0.04 0.01
HTB122 1.2 0.68 250.53 31.07 76.84 9.92 1.72 0.16 144.87 124.78
HTB126 12.65 9.94 2356.49 1159.62 10.71 6.21
HTB131 5.43 200.91 36.12 13.97 0.18 0.06 0.01
HTB22 (MC 13.05 10.12 3083.81 1938.32 1390.24 892.08 2.62 1.16 0.15 0.01
HTB24 1.36 1.28 500.8 858.25 0.12 0.12 0.12
HTB25 4.37 1.33 2.66 1.95
HTB26 (MD 4.06 2.83 67.36 49.07 37.61 17.08 3.22 1.17 2.22 0.84

IC50s  VinorelbineIC50s  Cisplatin IC50s  Doxorubicin IC50s  Gemcitabine IC50s  Paclitaxel

 

 

 

Table 10.1.1:  In Vitro drug sensitivity and resistance phenotypes for the breast cancer 
line panel across different drugs. The figure shows the average IC50 values obtained by 
treating different breast cancer cell lines with various chemotherapy agents along with 
standard deviation (SD) values.  
  

 

 

              The expression intensity data was compared between the resistant and sensitive cell 

lines for every gene.  About 100 to 200 genes were upregulated by 4-fold or higher, and 50 

to 200 genes were downregulated by 1/4-fold or lower in resistant cell lines when compared 
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with gene expression in sensitive cell lines. This can be observed in Figure 10.1.3 (a, b, c, d 

and e).  The genes that are upregulated in resistant groups are therefore potential drug 

resistance genes and the genes that show downregulation are potential drug sensitivity 

genes.  
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Figure 10.1.3 (a) 
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Figure 10.1.3(b) 
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Figure 10.1.3 (c) 
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Figure 10.1.3 (d) 
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Figure 10.1.3 (e) 
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Figure 10.1.3 (a, b, c, d, e): Scatter plots of gene expressions in resistant and sensitive 
cell lines. Here each spot is representative of a gene on the array and its coordinates 
represent the expression levels of the two groups being compared.(a) 124 genes are 
significantly (4 fold or more) up-regulated for and 158 genes are significantly down-
regulated in cisplatin resistant cell lines when compared with gene expression in sensitive 
cell lines.  (b) 127 genes are significantly up-regulated for and 60 genes are significantly 
down-regulated in doxorubicin resistant cell lines when compared with gene expression in 
sensitive cell lines.  (c) 134 genes are significantly up-regulated for and 111 genes are 
significantly down-regulated in gemcitabine resistant cell lines when compared with gene 
expression in sensitive cell lines. (d) 135 genes are significantly up-regulated for and 96 
genes are significantly down-regulated in paclitaxel resistant cell lines when compared with 
gene expression in sensitive cell lines. (e)  181 genes are significantly up-regulated for and 
139 genes are significantly down-regulated in vinorelbine resistant cell lines when compared 
with gene expression in sensitive cell lines.   
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                   As an alternative approach, and to further narrow down these lists of genes, a 

correlation table was constructed that displayed Pearson correlations between each gene 

expression data and each drug IC50 across all cell lines analyzed, as previously described.   

 

LOC257152 
expression 25.55 9.28 33.22 27.33 15.51 23.76 16.48 17.76 8.09 11.81 19.01 18.90 21.04 23.25 15.44

0.40 1.10 0.40-0.40 0.16 1.12 0.13Cisplatin log 
IC50s

0.82 -0.26 1.08 1.24 0.54 0.31 -0.51 0.62
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Figure 10.1.4: Correlations between Microarray Data and Drug Assays.    

Pearson Correlation (r) 
= 0.75 
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           This figure shows that there is a range of correlations between microarray data and 

chemosensitivity data. A positive correlation for a pair of gene and drug indicates the gene 

may be associated with resistance to the drug whereas a negative correlation would associate 

that gene with sensitivity to the drug.  A range of correlations (-0.8 to 0.78) was found for all 

such pairs. 

           

   Clustering analysis was performed on this correlation data. The drugs with similar 

mechanism of action clustered together. DNA damaging agents cisplatin, doxorubicin and 

gemcitabine clustered together whereas anti-microtubule agents paclitaxel and vinorelbine 

clustered together. This is shown in figure 10.1.5. 
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Figure 10.1.5 Clustering of correlation data suggests that sensitivities to the different 
drugs are associated with unique gene expression profiles. The drugs with similar 
mechanism of action e.g.: paclitaxel, vinorelbine and cisplatin, doxorubicin, gemcitabine 
have clustered together. 
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  In order to select genes more precisely, significant correlations (|r| >= 0.5) were 

compared with genes that were found differentially regulated by the first method (Figure: 

10.1.3). Genes were selected and classified into two groups, namely, resistant and sensitive 

based on the correlation (|r| >= 0.5) between gene expression data and IC50 data and 

differential regulation (4 fold or more) (Fig. 10.1.6 a, b, c, d and e and Table 10.1.2).   
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Figure 10.1.6 (a) Groups of genes for cisplatin. 
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Figure 10.1.6 (b)  Groups of genes for gemcitabine. 
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Figure 10.1.6 (c) Groups of genes for paclitaxel 
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Figure 10.1.6 (d) Groups of genes for vinorelbine. 
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Figure 10.1.6(e): Groups of genes for doxorubicin. 

Figure 10.1.6 (a, b, c, d and e): Gene Signatures Associated with Sensitivity or 
Resistance to Breast Cancer. This figure represents genes with significant correlation of |r| 
> 0.5 and |Log2 (R/S)| > 2.0 (a) 27 genes correlating with resistance and 42 genes 
correlating with sensitivity for cisplatin. (b) 49 genes correlating with resistance and 31 
genes correlating with sensitivity for gemcitabine(c) 8 genes correlating with resistance and 
6 genes correlating with sensitivity for paclitaxel (d) 6 genes correlating with resistance and 
6 genes correlating with sensitivity for vinorelbine (e) 7 genes correlating with resistance 
and 15 genes correlating with sensitivity for Doxorubicin. (‘S’ stands for sensitive group and 
‘R’ stands for resistant group). The color display in the above figure shows higher 
expressions with dark colors and lower expression with lighter colors. 
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             The table below lists the number of genes found, after considering significant 

correlation between drug sensitivity and gene expression data and differential expression 

data of 4 – fold or more. It also lists the number of common genes found in 2 or more drugs 

whose mechanism of action was common. 

 

Drugs 

Number of genes for 

Sensitivity 

Number of genes for     

Resistance 

Cisplatin 42 27 

Doxorubicin 15 7 

Gemcitabine 31 49 

Paclitaxel 6 8 

Vinorelbine 6 6 

Cisplatin + Doxorubicin 3 1 

Gemcitabine + Doxorubicin 2 1 

Cisplatin + Gemcitabine 1 8 

Cisplatin + Gemcitabine + Doxorubicin 0 0 

Vinorelbine + paclitaxel 0 2 

 

Table 10.1.2: Number of genes associated with breast cancer sensitivity or resistance to 
one or more drugs(drugs with common mechanism of action). 
 
 
              Many of the genes classified as resistant and sensitive may have common pathways. 

This information is very useful for future studies. Although, drug resistant mechanisms and 
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all of the involved genes still remain unrevealed, it was found that the expression of as many 

as 100 genes were significantly increased or decreased in resistant compared to sensitive 

breast tumor cell lines.  It will be important to define which genes play a direct role in 

determining chemosensitivity or resistance. One approach would be to use RNAi to silence 

the gene expression of significantly involved gene and studying the chemosensitivity 

behavior of the cell line after silencing of this expression.  Another approach would be to 

identify genes upregulated in common to two or more sets of cell lines resistant to different 

drugs.  This may be interesting, because a set of gene expressions were commonly elevated 

in a set of cell lines resistant to drugs whose mechanisms of action is in common.  They are 

thought to be good candidate genes for future studies. This information can be very useful 

before starting clinical trials. 
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10.2     Conclusions 

 

 This study demonstrated that there were distinct chemosensitivity phenotypes of 

breast cancer cell lines, sensitive and resistant. 

 The breast cancer cell lines varied by 100-1,000 folds in their sensitivity to the 

various drugs.   

 A breast tumor sensitive or resistant to one drug often had a different profile to 

another drug 

 Expressions of a set of genes were commonly elevated in a set of cell lines resistant 

to drugs whose mechanism of action is common.  

 Some of these genes might be associated with the drug mechanism of action, and 

they are good candidate genes for the future mechanistic studies. 

 Thus we conclude that gene expression signatures do exist for individual Breast 

Cancer cell chemosensitivity and these be tested in clinical trials. 
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Appendix  

Hardware configuration 

 

The software program runs on a UNIX based server. The processor type is a 1.2 Ghz 

Pentium with 500MB of RAM. 

 

Program files and organization 

Target designer mode: 

File name 

(Language) 

Purpose Location (Computer) 

index.htm Input web page /biotools.swmed.edu/web

/siRNA 

alias.html Accession Finder. Retrieves 

accession number given gene alias. 

/biotools.swmed.edu/web

/siRNA 

index_instructions.h

tm 

Instructions to use the tool. /biotools.swmed.edu/web

/siRNA 

FAQ.htm Help File. (Frequently asked 

questions about the tool). 

/biotools.swmed.edu/web

/siRNA 

siRNA_Information

_Resource_Disclai

mer.html 

Disclaimer /biotools.swmed.edu/web

/siRNA 
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sirna.cgi To design target sequences /biotools.swmed.edu/cgi-

bin/siRNA 

blast1.cgi Perform BLAST operations /biotools.swmed.edu/cgi-

bin/siRNA 

aa.cgi Displays Sense, Anti-sense and 

position information 

/biotools.swmed.edu/cgi-

bin/siRNA 

refseq Consists of Refseq database PostgreSQL database in 

refmrna database. 

Gene_aliases Consists of Source database PostgreSQL database in 

sirna database. 

 

 

Database (‘Resource’) Mode: 

/index_sirna_info_r

esource.html 

Input web page for resource mode. /biotools.swmed.edu/web

/siRNA 

sirnaresource.php To retrieve all the records of the 

database 

/biotools.swmed.edu/web

/siRNA 

sirnaresource_genen

ame.php 

To retrieve the records of the 

database with target gene name as 

input. 

/biotools.swmed.edu/web

/siRNA 
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new_sirna_info.php Input web page for new 

information. (Password protected). 

/biotools.swmed.edu/web

/siRNA 

 

detail.php File to view mRNA images in 

database. 

/biotools.swmed.edu/web

/siRNA 

detail1.php File to view protein images in 

database. 

/biotools.swmed.edu/web

/siRNA 

sirna_source Consists of siRNA database PostgreSQL database in 

sirna database. 
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