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Staphylococcus aureus has emerged as one of the most common community-

acquired bacterial infections, with significant morbidity and mortality. Emergence of 

multidrug resistant strains worldwide, combined with limited treatment options demand 

novel approaches to further elucidate host-pathogen interactions, and especially host 

responses to infection. To this end, we leveraged systems biology approaches to better 

characterize the status of the host immune system during S. aureus infection ex vivo and 

in vitro.  

The transcriptional profiles of PBMC and whole blood from patients with 
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community-acquired S. aureus infection were characterized by microarray analysis, and 

leukocyte population frequencies were measured by polychromatic flow cytometry. To 

refine our understanding of inflammatory networks involved, an in vitro system of 

antigen-presenting cell stimulation with various pathogens, including S. aureus as well as 

other bacteria and viruses, and their components, was used to identify early inflammatory 

programs induced in innate immune cells. To reduce the dimension and complexity of the 

data generated, we developed modular frameworks to analyze and interpret the 

fingerprints obtained from both the ex vivo and in vitro studies.  

Overall, the blood transcriptional response to S. aureus infection was 

characterized by over-expression of innate immunity and hematopoiesis transcriptional 

programs, and under-expression of adaptive immunity programs. Flow cytometry and 

standard cell blood count (CBC) revealed an increase in absolute numbers of circulating 

monocytes, neutrophils and antigen-presenting cells, including dendritic cells and B cells, 

combined with a decrease in central memory T cells. To identify transcriptional 

correlates of clinical heterogeneity, we obtained individual fingerprints and derived the 

molecular distance to health, a numerical score of transcriptional perturbation for each 

patient. Patient-by-patient analysis without a priori knowledge of clinical diagnoses 

identified four major transcriptional clusters based on inflammation, erythropoiesis and 

interferon-induced profiles. Clinical presentation, bacterial dissemination and time 

between hospitalization and blood sampling were identified as major factors influencing 

the signature. The framework obtained from in vitro stimulation of monocyte-derived DC 

helped us refine the characterization of inflammatory programs activated during S. aureus 
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infection. In addition to inflammatory antibacterial programs, S. aureus induced a subset 

of interferon response modules, also observed in viral infections and autoimmunity, as 

well as a specific set of modules linked to cell compartmentalization and lipid 

biosynthesis.   

Systems biology approaches provide a global and comprehensive assessment of 

host responses to acute bacterial infections, bringing a new understanding of disease 

pathogenesis and underlying patient heterogeneity. 
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CHAPTER ONE: INTRODUCTION 

 

 

Overview 

 The work presented herein relies on systems biology approaches to characterize 

the human immune response to the gram-positive bacterium Staphylococcus aureus (S. 

aureus). Using microarrays and polychromatic flow cytometry combined with data 

dimensionality-reducing analytical approaches, I first characterized the peripheral blood 

mononuclear cells (PBMC) of pediatric patients with acute S. aureus infection. In a 

second ex vivo study, I analyzed the whole blood immunological status of a new set of 

patients with S. aureus infection, focusing on how transcriptional patterns correlate with 

the heterogeneity of clinical presentations. Finally, to better understand the early 

transcriptional profiles elicited in innate immune cells by S. aureus, I extended my ex 

vivo observations to an in vitro system of antigen-presenting cells challenged with S. 

aureus and other pathogens. 

 

Detection of pathogens by innate immune receptors 

The innate immune system represents the first line of defense against invading 

pathogens such as viruses, bacteria, fungi and parasites. To induce specific protective 

host responses, innate immune cells including granulocytes, monocytes, macrophages, 
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dendritic cells, and B cells discriminate between these signals/pathogens through 

different families of phylogenetically-conserved innate receptors. These receptors detect 

pathogen-associated molecular patterns (PAMPs)1 and are collectively referred to as 

pattern-recognition receptors (PRRs). They include membrane-bound receptors such as 

toll-like receptors (TLRs)2-5 and C-type lectin-like receptors (CLRs)6, and cytoplasmic 

receptors such as nucleotide-binding oligomerization domain (NOD)-like receptors 

(NLRs)7, and more recently characterized helicases8.   

 

Membrane-bound receptors: Toll-like receptors (TLRs)  

Discovered in the mid-1990s in Drosophila9, TLRs are type I trans-membrane 

proteins with a Toll/Interleukin 1 receptor (TIR) endodomain and an exodomain 

containing leucine-rich repeats (LRR) which contains PAMP-binding sites. Ten 

functionally active TLRs have been identified so far in humans10. They can be broadly 

categorized into extracellular TLRs (TLR1, 2, 4, 5 and 6) and intracellular TLRs (TLR3, 

7, 8 and 9). Extracellular TLRs recognize bacterial components, such as LPS (TLR4)11,12, 

peptidoglycan (TLR2)13, lipoteichoic acid (TLR2)14 and flagellin (TLR5)15. Intracellular 

TLRs on the other hand detect single and double-stranded nucleic acids from viruses and 

bacteria. TLR3 recognizes double-stranded RNA from reoviruses16, while TLR7 and 

TLR8 recognize single-stranded RNA from viruses such as respiratory syncytial virus, 

influenza A or human immunodeficiency virus (HIV)17,18. Finally, TLR9 recognizes CpG 

DNA motifs present in both viruses and bacteria19. The ligand for human TLR10 has not 

been identified yet. PAMP recognition by TLRs is summarized in Figure 1. 
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TLR expression varies significantly between leukocyte populations, thereby 

conferring them specific capacities to respond to various pathogens. For example, 

plasmacytoid dendritic cells (pDC) express high levels of TLR7 and produce large 

amounts of type I interferons upon viral single-stranded RNA sensing20. Conversely, 

myeloid dendritic cells (mDC) and macrophages express high levels of TLR2 and TLR4 

and induce pro-inflammatory responses in response to bacterial stimuli21. TLR8 is highly 

expressed in monocytes22. TLR2 has also been reported on T cells23, which allows them 

to respond to lipopeptides in an antigen-presenting-cell independent fashion.  

 

Membrane-bound receptors: C-type lectin-like receptors (CLRs) 

C-type lectin-like receptors (CLRs) represent the second major family of known 

membrane-bound PRRs. These include the mannose receptor MMR24, DEC20525, DC-

SIGN26, BDCA227, Dectin-128, DCIR29, Lox-130, Langerin31, MINCLE32 and ASGPR33. In 

addition to their role in leukocyte trafficking and APC-T cell interactions, CLRs can 

detect and take up antigen in lysosomal compartments for processing and presentation by 

APCs6. CLRs recognize mannose, fucose and glucan carbohydrates through their Ca2+ -

dependent carbohydrate-recognition domains (CRDs)6,34, which allow them to detect a 

variety of pathogens. DC-SIGN detects mycobacteria, HIV-135, Candida albicans, and 

Leishmania. Langerin detects Mycobacterium leprae and HIV-1. The beta-glucan 

receptor Dectin-1 binds and internalizes fungi36.  

In contrast to TLRs, CLRs do not seem to discriminate between self and non-self, 

and can also recognize carbohydrate residues on self-glycoproteins to induce self-
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tolerance6. In addition, recent observations suggest that CLRs can directly activate 

downstream signaling cascades upon glycan detection through Syk and Raf1-dependent 

pathways37. Similarly to TLRs, CLR expression on the surface of antigen-presenting cells 

varies. Langerin is mainly expressed on Langerhans cells (LC)31 and a dermal DC subset. 

MINCLE seems to be specific to macrophages32. BDCA-2 is restricted to pDC27, while 

DCIR seems to be preferentially expressed in CD14+ CD34-derived, dermal dendritic 

cells6 and T cells upon HIV-1 infection.38 While MMR and DC-SIGN are abundantly 

expressed on the surface of immature monocyte-derived DC, they are not readily detected 

on the surface of fresh blood DC or LC6. Intense efforts are under way to harness the 

specificity of expression of CLRs on APC subsets to develop reagents for in vivo 

targeting of vaccines components37-39. 

Several studies suggest an important collaboration between TLRs and CLRs in 

the regulation of the innate response to pathogens. BDCA-2, which recognizes complex 

sugars such as asialo galactosyl-oligosaccharides40, modulates pDC responses to TLR9-

activating viral nucleic acids by inhibiting the production of type I interferons41. Dectin-1 

in combination with TLR2 or TLR4 is involved in the recognition of C. albicans42. DCIR 

internalization was shown to inhibit TLR8-mediated cytokine production in human 

monocyte-derived DC43. The synergy between PAMP receptors is only partially 

understood, and the study of positive and negative feedback interactions between the 

downstream signaling pathways involved will require approaches that can measure all 

these parameters quantitatively and qualitatively over time. 

Cytoplasmic Bacterial Receptors:  NOD-like receptors (NLRs)  
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TLRs and CLRs are membrane receptors that detect pathogens on the cell surface 

or engulfed in vacuoles such as the early and late endosomes. However, many pathogens 

can avoid or subvert these membrane detection mechanisms and spread to the cytosol. To 

detect and eliminate these threats once they crossed cell membranes, the innate immune 

system relies on two major families of cytoplasmic PRRs: NLRs and helicases. 

Mammalian NLRs comprise more than 20 members, which are characterized by 

a C-terminal leucine-rich repeat (LRR) domain, a central nucleotide binding NACHT 

domain and an N-terminal protein-protein interaction domain composed of either a 

caspase activation and recruitment domain (CARD) or a pyrin domain (PYD)44. They can 

be further divided into non-inflammasome-activating NLRs (Nod1, Nod2 and NLRX1) 

and inflammasome activating (NLRP1, NLRP3 and NAIP). 

Nod proteins belong to the NLR family and detect distinct bacterial 

peptidoglycan (PGN) structures. Nod1 detects meso-diaminopimelic acid (DAP)-

containing PGN45,46 which is more commonly found in gram-negative bacteria. Nod2 

detects muramyl dipeptide (MDP)47, which is common to gram-negative and gram-

positive bacteria. Upon antigen ligation, Nod1 and Nod2 propagate the signal through 

their CARD domain to RIP248 and activate NF-kappa B49,50. Nod1 is essential in the 

detection of and protection against the bacterium Helicobacter pylori51,52 and the parasite 

Trypanosoma cruzi53. Nod2 is involved in the detection of Mycobacterium tuberculosis54, 

Listeria monocytogenes55, Toxoplasma gondii56 and viral single-stranded RNA57. In 

addition to the Nods, NLRX1, which contains a CARD-related ‘X’ domain, is the only 

known NLR family member targeted to the mitochondria. There, it interacts with 
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mitochondrial anti-viral signaling protein (MAVS) to mediate antiviral responses58. 

NLRX1 was also shown to induce reactive oxygen species (ROS)59, which amplify 

proinflammatory responses against bacteria60.   

The second major NLR subfamily includes the NLRPs. NLRP1 and NLRP3 

signal through their PYD domain and activate the inflammasome61, which results in the 

processing and activation of proinflammatory cytokines IL1-beta and IL1862 by caspase 1 

(CASP1). Studies have shown that NLRP3 can be directly triggered by bacterial 

components such as MDP63, but also indirectly by danger signal such as ATP, toxins or 

intracellular potassium depletion64. Whole pathogen studies have shown that the NLRP3 

inflammasome can be triggered by the fungi Candida albicans and Saccharomyces 

cerevisiae65, the gram-positive bacteria Listeria monocytogenes and Staphylococcus 

aureus64 and the viruses Sendai virus, adenovirus and influenza66,67. The NLRP1 

inflammasome is involved in detection of Bacillus anthracis68 and MDP69, but its exact 

mechanism of activation remains elusive. 

The third major NLR subfamily includes IPAF and NAIP5. IPAF contains a 

CARD domain, through which it signals directly to CASP170. The IPAF inflammasome is 

primarily involved in the detection of gram-negative bacteria including Salmonella 

typhimurium71, Shigella flexneri72, Legionella pneumophila73, and Pseudomonas 

aeruginosa74,75. NAIP5, a structurally unique NLR with an N-terminal set of baculoviral 

inhibitor of apoptosis repeat (BIR) motifs, senses flagellin in a TLR5-independent 

fashion. NAIP5 is involved in the detection of Legionella pneumophila76-79.  

Cytoplasmic Viral Receptors: Helicases 
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NLRs are mainly intracellular bacterial detectors. Viruses also cross cell 

membranes and invade the cytosol, where they release nucleid acids. Viral PAMPs such 

as ssRNA, dsRNA and dsDNA are detected by a family of helicases known as RIG-I-like 

receptors (RLRs), including retinoic acid-inducible gene (RIG-I)80 and melanoma 

differentiation associated gene 5 (MDA5)81. These helicases induce signaling cascades 

involving interferon regulatory factors IRF3 and IRF7, leading to the production of type I 

interferon IFN-beta, which is a major component of the antiviral response82. 

RIG-I contains a DExD/H RNA helicase domain and two effector CARD 

domains on its amino-terminus. RIG-I was originally found to bind dsRNA (poly(I:C)) 

but not ssRNA (poly(A)) or dsDNA80. Subsequent studies showed that RIG-I can 

recognize single-stranded RNA molecules with a 5’-phosphates end83,84. Thus, RIG-I 

detects RNA from viruses of the paramyxovirus (e.g. measles virus) and orthomyxovirus 

(e.g. influenza virus) families.  

While MDA5 is structurally similar to RIG-I82, studies have shown that it is 

critical for the recognition of picornaviruses85,86 (e.g. enteroviruses, rhinoviruses), but not 

paramyxoviruses or influenza viruses. This specificify was explained by the absence of 

phosphorylation on the 5’ end of ssRNA from these viruses. In addition, two new 

helicases, DHX36 and DHX9, have been identified as dsDNA cytosolic sensors in pDC8, 

which consequently produce type I interferons through IRF7 in a TLR9-independent 

fashion.  

Complex connections between innate immune networks 
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In summary, the innate immune system has developed an array of membrane 

(Figure 1) and cytoplasmic (Figure 2) receptors with various ligand specificities, which, 

alone or in synergy, induce the activation of complex signaling cascades that result in the 

production of inflammatory mediators and the activation of adaptive immunity.  

Two major downstream transcriptional axes have been characterized in depth: i) 

the TRIF and IRF-mediated IFN signaling pathway, which leads to the production of type 

I & type III interferons, and the MyD88-mediated NF-kappa B signaling pathway, which 

leads to the production of inflammatory cytokines IL1-beta, IL6, IL8 and TNF-alpha. The 

IFN signaling pathway is known to play a major role in response to viral infection, while 

the NF-kappa B pathway seems to be essential for anti-bacterial activity and clearance of 

extra-cellular pathogens. 

There is growing evidence that these two signaling cascades are intertwined and 

may negatively regulate each other. This is supported by clinical observations that 

patients with secondary bacterial infection with S. aureus, usually following a flu 

episode, have a much worse prognosis than patients with S. aureus infection alone. In 

vivo studies have suggested a role of IFN-induced glucocorticoids in the dampening of 

the antibacterial response87. Furthermore, in vitro studies have revealed inhibition of 

inflammasome activation by type I IFNs in a STAT1-dependent mechanism, suggesting 

cell-intrinsic negative feedback88. As the complexity of these innate signaling networks 

gets unraveled, it is becoming increasingly difficult to predict the effects of enhancing or 

inhibiting these pathways on the biological system under study as a whole. In the last 

decade or so, new approaches have been developed that aim at characterizing systemic 

responses to specific conditions at the transcriptional, translational and epigenetic levels 
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in an unbiased fashion. Together, these approaches formed an emerging discipline known 

as systems biology.  
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Figure 1: Detection of PAMPs by toll-like receptors 
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Figure 2: Detection of PAMPs by cytosolic PRRs  



 

 
 

12 

Systems biology sheds light on the regulation of complex molecular networks in 

health and disease  

Considering the system as a whole 

In recent years, evidence has accumulated to suggest that the signaling cascades 

triggered by the various families of PRRs involved in response to infection interact to 

form complex regulatory networks, with multiple positive and negative feedback 

mechanisms. While essential to dissect specific signaling pathways and identify key 

molecules involved, traditional single knock-out approaches in animal models have 

proven limited to understand how these individual components integrate into the global 

immune response to infection in vivo in human. This complexity gave birth to the 

discipline of systems biology, which the Institute for Systems Biology (Seattle, WA) 

defines as “the study of an organism, viewed as an integrated and interacting network of 

genes, proteins and biochemical reactions which give rise to life”. Unlike traditional 

hypothesis-driven scientists, systems biologists use high-throughput technologies, such as 

microarray, deep-sequencing, Chromatin Immuno-Precipitation Sequencing (ChIP-SEQ), 

polychromatic flow cytometry and computational modeling to probe elements of a 

complex system in an unbiased fashion, generating hypotheses along the way.  

Emergence of high-throughput technologies to quantify nucleic acids 

In the late 1980s an early 1990s, investigators started developing RT-PCR-based 

approaches to quantify nucleid acids on a larger scale, with the goal of interrogating 

thousands of transcripts at a time. Among the first arrays available, spotted arrays were 
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obtained by dropping pre-synthesized cDNA oligonucleotides on filter papers or on 

miniaturized coated glass slides with a pin-spotting device89. Private companies such as 

Affymetrix started producing oligonucleotides microarrays on an industrial scale, using 

photolithographic synthesis, a process whereby 25-mer oligonucleotide sequences are 

built on the array using light-sensitive masking agents90. In contrast, Illumina developed 

“beadchip” arrays consisting of shorter cDNA probes attached to beads coated randomly 

in higher density on glass plates, which are cheaper to manufacture.  

Variations in mRNA transcript abundance between samples are detected 

differently based on the microarray type. Two-color microarrays rely on the mRNA from 

two samples to be color-coded with two different dyes (usually red and green) and 

recombined into one mixture, which is then hybridized on chips. Based on the abundance 

of a particular transcript in each sample, the detected color for a particular spot or 

transcript will vary. This pairwise comparison approach was well suited for small 

numbers of samples, but not scalable. With one-color microarrays, such as Affymetrix 

GeneChips or Illumina BeadArrays, which were used throughout this work, each sample 

requires its own hybridization, which allows the investigator to compare hundreds of 

samples at a time. However, only relative abundance of a particular transcript as 

compared to other transcripts from the same sample can be quantified. For this reason, 

microarray-based observations are often validated by truly quantitative assays such as 

quantitative PCR (qPCR)91. 

In the past 10 years, new technologies have emerged that combine the high-

throughput of microarrays with the absolute quantification readout and sensitivity of 

qPCR. These include the Nanostring92, that uses color-coded molecular barcodes that 
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hybridize to target mRNA transcripts, and the OpenArray, which is a high-throughput 

Taqman RT-PCR platform developed by Applied Biosystems. Additionally, sequencers 

that can not only quantify absolute mRNA expression but also interrogate a specific 

transcript’s splicing variants or identify single nucleotide polymorphisms (SNPs) in a 

single run in an increasingly cost-effective way are quickly replacing traditional 

microarray platforms. 

  

Application of microarrays to the analysis of innate response to pathogen in vitro 

With the cost of gene expression microarray experiments gradually dropping and 

their sensitivity and reproducibility increasing, their use increased for a broad range of 

clinical and basic research applications. While 55 publications reported the use of 

microarrays between 1995 and 1998, 5400 studies using microarrays were published in 

2005 alone93. A major application of microarrays is the identification of transcriptional 

programs induced in immune cells in response to pathogen and other stress stimuli, which 

was reviewed in details by Jenner and Young in 200594.  

Early studies identified interferon-induced genes in a human fibrosarcoma cell 

line95 and transcriptional responses to human cytomegalovirus (HCMV) in human 

fibroblasts96. Subsequent studies focused on the transcriptional profiles of human immune 

cells, including peripheral blood mononuclear cells (PBMC)97, whole blood98, 

neutrophils99,100, monocytes101,102, blood-sorted myeloid103 and plasmacytoid dendritic 

cells104, monocyte-derived dendritic cells (IL4/GM-CSF DC)105,106, macrophages106-108, 

epithelial109,110 and endothelial111,112 cells in response to a variety of bacterial, fungal and 
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viral pathogens including E. coli, S. enterica, S. aureus, S. pneumoniae, M. tuberculosis, 

N. gonorrhoeae, C. trachomatis, B. pertussis, C. albicans, Influenza A, Herpes implex 

virus (HSV), Hepatitis B and C, or human immunodeficiency virus (HIV). They 

identified common transcriptional responses, including IFN-induced genes (IFI family, 

OAS family, CXCL10), inflammation mediators (IL1, IL6, IL8, TNF-alpha), immune 

response activators and regulators in response to these pathogens.  

Comparison of responses to a single stimulus between different cell populations 

identified population-specific responses, largely dependent on their expression or PRRs, 

highlighting the diversity between innate immunity cells106. These cell-specific 

transcriptional programs are at the center of deconvolution studies, which aim at 

characterizing the cellular composition of heterogeneous tissues based on their combined 

mRNA fingerprint113. Conversely, studies comparing transcriptional responses of a single 

cell type to multiple stimuli helped characterize TLR-dependent and independent 

pathways involved in response to PAMPs. Transcriptional profiling further helped to 

understand how viruses and bacteria modulate host cell transcription to survive, expand 

and induce disease. 

More recently, systems biology approaches such as Nanostring combined with 

RNA interference have been used to identify transcriptional regulators of the 

IFN/antiviral and pro-inflammatory/antibacterial pathways in mouse bone-marrow-

derived dendritic cells114. These studies support the existence of complex feedback 

mechanisms between these pathways, and that type I IFN may inhibit pro-inflammatory 

responses, in particular inflammasome-mediated IL-1 release by innate immune cells88. 
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Ex vivo application of microarrays to understand human disease 

 While transcriptional profiles induced in various human cell populations after in 

vitro challenge with a variety of pathogens provide information about signaling cascades, 

cell-specific responses and immune system evasion mechanisms used by these pathogen, 

they are not representative of in vivo conditions. The use of microarrays to characterize 

patient transcriptional profiles ex vivo, when cells are lysed shortly after tissue sampling, 

has proven useful in the diagnosis, prognosis and understanding of disease pathogenesis 

in autoimmunity, cancer or infectious diseases. Transcriptional profiling studies in human 

are however limited by the difficulty to collect tissues such as the spleen, lymph nodes, 

liver or brain. Circulating leukocytes, while trafficking to and from the sites of infection 

and inflammation, represent an accessible source of molecular information, which can be 

assessed by genome-wide analysis of whole blood115.   

Blood transcriptional profiling has been used extensively to characterize 

autoimmune diseases. It identified the characteristic type I-IFN signature in systemic 

lupus erythematosus (SLE)116,117, and pinpointed the IL1-beta signature in systemic onset 

juvenile idiopathic arthritis (SoJIA)118, leading to diagnostic119,120 and therapeutic 

advances with the IL-1R blocker Anakinra. Other autoimmune and autoinflammatory 

diseases studied through blood or PBMC transcriptional fingerprinting include 

psoriasis121, type I122 and II123 diabetes, multiple sclerosis124, rheumatoid arthritis125, 

Sjogren’s syndrome126 and vasculitis127. These studies were recently reviewed by Pascual 

et al128 and Chaussabel et al115. 
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In the context of infectious diseases, blood transcriptional profiling has been used 

to characterize the interaction of pathogens with the immune system as well as the 

quantity and quality of the immune response elicited against them. Blood signatures have 

been described in the context of acute local infections, such as upper respiratory tract 

infections129, urinary tract infections and skin abscesses130, acute systemic infections, 

such as sepsis131,132 and influenza129, or chronic infections, such as tuberculosis133, HIV134-

137 or HCV138,139. Microarrays have been further used to discriminate between patients 

acutely infected with distinct classes of pathogens130, to separate responders and non-

responders to treatment in HCV infection139, and to predict disease outcome during acute 

febrile stage of dengue infection140. These studies in autoimmune and infectious diseases 

suggest that microarrays could potentially be used in the clinic for diagnosis, prognosis 

and prediction of response to specific treatments. 

 
Simplifying microarray readouts: analytical approaches to reduce data dimensionality 

A major issue in microarray analysis is the high dimensionality of the data 

generated, even from small studies. A study including 10 patients, 10 healthy controls 

and 5 time points per subject will generate approximately 5 million data points if 50,000 

transcripts are analyzed per sample. In addition, gene-centric microarray analyses, 

including clustering, and manual annotation of lists obtained through statistical filters (T-

test, ANOVA) tend to i) ignore transcripts that do not pass arbitrarily-set thresholds, or 

are less studied in the context of the biological question addressed; ii) suffer from 

elevated signal-to-noise ratio; iii) simply list genes associated with a phenotype without 

thorough understanding of the molecular mechanisms involved141. Thus, there is a need 
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for analytical approaches that reduce data dimensionality and facilitate the visualization 

and functional interpretation of these large datasets. 

 To address the issues stemming from individual gene analysis, several groups 

have developed methods that consider groups of genes, or modules, as the basic building 

blocks for transcriptional profiling. Different methods, summarized in Figure 3, have 

been used to derive these modules. Knowledge-based classification of genes into 

pathways is used in gene-set enrichment analysis (GSEA)142, to identify known pathways 

differentially regulated between conditions. This approach allows the detection of small 

changes occurring in functionally related transcripts, which are not detected using gene-

centric statitistical filters142,143. Another method to derive gene modules consists in 

identifying gene sets with similar behavior across a dataset of reference, without the bias 

of knowledge-based classification. Segal et al. applied this concept to develop the ‘cancer 

module map’ by identifying sets of genes coordinately regulated across a reference 

dataset of 1,975 microarrays spanning 22 tumor types144. These cancer modules allowed 

them to identify transcriptional commonalities and differences between different tumors. 

Following a similar unbiased data-driven approach, Chaussabel et al. developed 

the first set of PBMC transcriptional modules in immune-related diseases, compiling 

datasets spanning autoimmune diseases, infectious diseases and transplantation145. These 

modules were used in the context of SLE to define the global signature of the disease, to 

derive a multivariate transcriptional score of disease progression and to monitor the onset 

of SLE flares. They were subsequently applied to SoJIA146 and infectious diseases such 

as tuberculosis133 and septicemic melioidosis131. The work presented herein utilizes these 

modules, as well as 2 new sets of modules specifically designed for the analysis of whole 
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blood and dendritic cells transcriptomes, to systematically characterize the human 

immune transcriptional profiles induced ex vivo and in vitro by the gram-positive 

bacterium Staphylococcus aureus. 
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Adapted from Chaussabel et al., Immunity, 2008 and Segal et al., Nature Genetics, 2005 

Figure 3: Three approaches used for microarray analysis 

Left panel: gene-centric approach. This traditional method to identify transcripts 

differentially regulated between groups of samples involves statistical tests such as t-test 

for 2 samples or ANOVA for more than 2 samples as well as class prediction algorithms 

that identify genes lists that best discriminate between the tested groups. Center panel: 

knowledge-based module-centric approach. This approach consists in analyzing genes 

organized in groups (or modules) based on known pathways / interactions. This permits 

the identification of small changes between large groups of genes that would be missed 

with traditional gene-centric comparisons. Right panel: unbiased module-centric 

approach.  This method makes no assumption about known connectivity between 

transcripts. It first identifies clusters (modules) of transcripts co-regulated across a large 
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reference dataset using clustering algorithms such as the k-means algorithm. 

Comparisons between groups of interests are then carried on a module-by-module basis. 

The results of these comparisons are displayed with heatmaps or modular fingerprints 

that represent over or under-expression of each module for the condition/group 

represented.  
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Staphylococcus aureus: a re-emerging threat to humans 

A threat to the population 

First described in 1880 by Alexander Ogston147, Staphylococcus aureus (S. 

aureus) remains a leading cause of invasive bacterial infections worldwide, resulting in 

significant morbidity and mortality. An asymptomatic skin and nostril colonizer in up to 

30% of healthy individuals, S. aureus can become a dangerous pathogen when it breaches 

the physical skin and mucosal barriers. In the United States alone, an estimated 94,360 

cases of methicillin-resistant S. aureus (MRSA) were reported in 2005, leading to 18,650 

deaths148, which is greater than those caused by HIV infection. Additionally, the 

economic burden of S. aureus infections for hospitals in terms of increased length of stay 

and medication was estimated to be $14.5 billion in 2003149.  

 

Changing Epidemiology 

Originally susceptible to beta-lactam antibiotics such as penicillin150, S. aureus 

gradually developed resistance to most antibiotics available, probably through horizontal 

gene transfer151. Shortly after the introduction of penicillin in the clinic in 1940, penicillin 

resistant strains of the lineage phage 80/81 were isolated152. They produced beta-

lactamase, an enzyme that prevents the antimicrobial effect of these antibiotics by 

disrupting their beta-lactam ring. The introduction of methicillin, a beta-lactam antibiotic 

insensitive to beta-lactamases, on the market in 1960, aimed at targeting methicillin-

sensitive S. aureus (MSSA) strains. It was however followed within a year by the 
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isolation of the first methicillin-resistant S. aureus strains (MRSA)153. The increasing 

burden of MRSA infection in the next 30 years in hospital settings led to the use of 

vancomycin, the only available antibiotic reliably effective against MRSA. Not 

surprisingly, this led to the emergence of vancomycin-intermediate S. aureus (VISA)154 

in 1997 and vancomycin resistant S. aureus (VRSA) in 2003155. Similarly, the alternative 

use of the synthetic antibiotic linezolid led to the identification of the first outbreak of 

linezolid-resistant S. aureus (LRSA) in Spain in 2008156.  

Antibiotic resistance is not the only evolving feature in S. aureus epidemiology. 

Historically a nosocomial pathogen, mainly affecting surgical and immuno-compromised 

patients in hospital settings, S. aureus has recently emerged as a community-acquired 

(CA) threat and has become a major cause of bacterial infection in otherwise healthy 

children and adults157-161. While CA S. aureus infections were mostly caused by 

MSSA162, this distribution has changed in the United States in the past ten years, with the 

rapid spread of CA-MRSA strains USA400 followed by USA300162,163. The rapidity and 

extent of the spread of CA-MRSA worldwide, combined with high virulence leading to 

tissue-destructive infections such as necrotizing fasciitis164 and necrotizing pneumonia165 

has raised major concerns about the acquisition of antibiotic resistance by these 

community strains. 

 
  
Clinical presentations 

Patients with CA S. aureus infection present with a wide spectrum of clinical 

illness, ranging from mild soft tissue infections to invasive disease such as bacteremia166, 
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pneumonia, musculosqueletal infections167 (including osteomyelitis, suppurative arthritis 

and pyomyositis), endocarditis, meningitis, and disseminated disease, including sepsis 

and toxic shock syndrome. This ability of S. aureus to disseminate through the blood 

stream to multiple organs, including bones, joints, kidneys and lungs highlights the 

versatility of this bacterium and commands the development of an array of therapeutic 

treatments that target various infection foci. 

 

Interaction with the immune system 

S. aureus expresses an array of virulence factors that affect the host immune 

system in various ways. The single-layered wall of this gram-positive coccal bacterium is 

mainly composed of lipoteichoic acid (LTA) and peptidoglycan (PGN), which are 

detected by TLR2, CD14 or peptidoglycan recognition proteins (PGLYRPs)168 on the cell 

surface and NOD2 in the cytoplasm. Both structural components were shown to induce 

TNF-alpha, IL6 and IL10 production in human monocytes and T cells169. Monocytes 

additionally secrete the pro-inflammatory cytokines IL1 and IL8 in response to S. aureus 

wall components.  

S. aureus produces multiple toxins including nine staphylococcal enterotoxins 

SEA, SEB, SEC, SED, SEE, SEG, SEH, SEI and SEJ170,  toxic-shock syndrome toxin 

TSST-1171, which all behave as super-antigens by locking the MHC Class II / T cell 

receptor interface. Through this mechanism, they induce massive release of pro-

inflammatory cytokines by macrophages and T cells, leading to high fever, shock, 

capillary leak and multiorgan dysfunction172.  Additionally, most bacterial clones produce 
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alpha-haemolysin, which lyses epithelial cells, erythrocytes, fibroblasts and monocytes, 

leading to hypotension, thrombocytopenia and reduced oxygenation, all symptoms of 

sepsis173.  

Recent clones such as the prevalent MRSA USA300, as well as the penicillin-

resistant phage type 80/81 clone responsible for serious outbreaks in the 1950s produce 

Panton-Valentine leukocidin (PVL)174, which displays leukocyte-killing activity and may 

play a major role in necrotizing pneumonia175. Finally, the recently discovered alpha-type 

phenol-soluble modulins (PSMalphas), which are short peptides highly expressed in CA-

MRSA176, recruit and lyse neutrophils, thereby promoting the necrotic process and S. 

aureus pathogenesis.  

 
Current treatments 

Antibiotics remain the drug of choice against S. aureus. Penicillin is still used for 

beta-lactamase non-producing strains, although these are rarely observed nowadays. 

Semi-synthetic penicillins such as oxacillin or nafcillin are used for beta-lactamase-

producing strains. While vancomycin is the preferred agent against MRSA strains, its 

effects are limited by recurrent bacteremia during treatment177, potential 

nephrotoxicity178, and its relative ineffectiveness against bacterial pneumonia due to low 

lung penetration179. In such cases, more recent drugs such as linezolid or daptomycin can 

be alternatively used, with comparable efficacy. In addition to antimicrobial therapies, 

draining of suppurative sites and removal of accessible infection foci are common 

procedures to prevent further dissemination of infection.  
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To this day, there is no commercially available preventive vaccine against S. 

aureus and the presence of antistaphylococcal antibody titers in previously infected 

individuals do not seem to correlate with protection against subsequent reinfection180.  

Several anti-staphylococcal polyclonal and monoclonal antibodies are currently under 

development, but their efficacy remains to be determined. The rapidly changing 

epidemiology of S. aureus, including acquisition of drug resistance and novel virulence 

factors, combined with the complexity of host immune responses elicited through an 

array of PAMP receptors during infection, provide an adequate context for the use of 

systems biology to study S. aureus pathogenicity. 
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Goal, hypothesis and aims 

Goal 

The goal of the work presented herein is to apply systems biology approaches, 

including microarrays, polychromatic flow cytometry and data dimensionality-reducing 

analytical approaches to better characterize the human immune response to S. aureus 

infection, ex vivo and in vitro. 

 

Hypothesis 

I hypothesized that using systems biology approaches such as microarrays 

and polychromatic flow cytometry to study the transcriptional and phenotypical 

immunological status of circulating human leukocytes ex vivo and in vitro would 

help us better understand host-pathogen interactions during S. aureus infection. 

 

Aims 

Aim #1: To characterize the global transcriptional signature of peripheral blood 

mononuclear cells (PBMC) from pediatric patients with community-acquired S. aureus 

infection using gene and module-centric approaches, and correlate molecular profiles 

obtained with leukocyte subpopulations distribution as determined by polychromatic flow 

cytometry. 
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Aim #2: To expand the PBMC study to whole blood samples, and explore transcriptional 

correlates of clinical heterogeneity observed amongst patients using a new framework of 

modules designed for analysis of whole blood fingerprints. 

 

Aim #3: To develop an alternate analytical modular framework to study early 

transcriptional responses of antigen-presenting cells to infectious pathogens in vitro, and 

apply it to characterize the molecular fingerprint induced by S. aureus in vitro. 
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CHAPTER 2: METHODOLOGY 

Ethics Statement 

The studies described herein were conducted according to the principles 

expressed in the Declaration of Helsinki. The studies were approved by the Institutional 

Review Boards of the University of Texas Southwestern Medical Center and Children’s 

Medical Center of Dallas (IRB #0802-447) and Baylor Institute of Immunology Research 

(BIIR, IRB # 002-141). Informed consent was obtained from legal guardians and 

informed assent was obtained from patients 10 years of age and older prior to any study-

related procedure. 

 

Sample collection 

PBMC isolation 

Blood samples (3–8 mL) were collected in acid-citrate-dextrose tubes (ACD 

tubes, BD Vacutainer, Franklin Lakes, NJ) and delivered to the laboratory at room 

temperature for processing. Peripheral blood mononuclear cells (PBMCs) were isolated 

by density gradient centrifugation using Ficoll-hypaque technique and lysed in RLT 

reagent (Qiagen, Valencia, CA) with b-mercaptoethanol (BME) and stored at -80uC until 

processing. Samples were run in batches by the same laboratory team to ensure 

standardization of quality and handling of samples. Total RNA was isolated using the 

RNeasy Mini Kit (Qiagen, Valencia, CA) per the manufacturer’s instructions and RNA 

integrity was assessed using an Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA). 
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Patient Information and Classification 

PBMC study – Patient information 

Blood samples were collected from 77 pediatric patients, including 53 patients 

with S. aureus infection and age, gender and ethnicity-matched 24 healthy controls. 

Children with suspected or proven polymicrobial infections, underlying chronic disease, 

immunodeficiency, or those who received steroids or other immunomodulatory therapies 

were excluded. Control samples were obtained from healthy children undergoing elective 

surgical procedures and at healthy outpatient clinic visits. Nasopharyngeal viral cultures 

were obtained in both patients and controls to exclude viral co-infections. Children 

hospitalized with acute S. aureus infections were offered participation in the study after 

microbiologic confirmation of the diagnosis by standard bacterial culture of blood or 

tissue specimens. Patients were analyzed in 3 groups: training (20 S. aureus, 10 healthy 

controls), test (22 S. aureus, 10 healthy controls), and validation sets (11 S. aureus, 14 

healthy controls). The design of this study is summarized in Panel 1. 

 

Whole blood study – Patient Information 

Blood samples from 99 patients hospitalized with community-acquired S. aureus 

infection and 44 healthy controls were collected in tempus tubes (Applied Biosystems, 

PN 4342792). Patients represented the clinical spectrum of acute S. aureus infections, 

including skin and soft tissue abscesses, bacteremia, osteomyelitis, suppurative arthritis, 

pyomyositis, pneumonia with empyema, and disseminated disease. Patients with a 
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diagnosis of toxic shock syndrome, polymicrobial infections, or treated with 

corticosteroids in the preceding four weeks were excluded. Viral direct fluorescent 

antibody testing and/or culture of the nasopharynx were performed in all patients and 

healthy controls to exclude concomitant viral infections. Patient demographic data and 

clinical characteristics are summarized in Table 7 and Table 8. The median duration of 

hospitalization was ten days (range: 1-98 days). The median time from patient 

hospitalization to blood sample acquisition was five days (range: 1-35 days). 

 

Whole blood study – Patient classification 

The study cohort of 99 patients and 44 healthy controls was divided into 

independent training (40 patients, 22 healthy controls) and test sets (59 patients, 22 

healthy controls) (Table 10). Patients were categorized according to two schemes (Table 

11) based on assessment by an independent clinician who was blinded to the 

transcriptional data: i) by localization of infection, defined as local (n=10), invasive 

(n=74) or disseminated (n=13); ii) by clinical presentation, separating patients with skin 

and soft tissue abscesses with negative blood culture (n=10), patients with osteoarticular 

infections (n=56), and patients with pneumonia (n=11). 

 

Whole blood study – Draw index and hospitalization quarter 

This cross-sectional study included samples drawn at different days during 

hospitalization. To assess the influence of a sample’s acquisition time, we calculated the 

draw index, a numeric score between 0 and 1 calculated as the ratio of the blood draw 
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day over the duration of hospitalization. Accordingly, samples were assigned a 

hospitalization quarter (0 ≤ Quarter 1 < 0·25 ≤ Quarter 2 < 0·50 ≤ Quarter 3 < 0·75 ≤ 

Quarter 4). 

 

Bacterial Isolates 

Bacterial isolates from 63 patients were recovered from blood culture, synovial 

fluid, or abscesses. Single colonies were selected and sub-cultured. S. aureus was 

confirmed by nuclease PCR and isolates were tested for methicillin resistance by mecA 

PCR. SCCmec typing of MRSA isolates was performed by classifying the ccr and mec 

complexes181. agr locus typing was performed and genetic relatedness was determined by 

repetitive-element, sequence-based PCR (rep-PCR). Gene encoding of toxins was 

detected by traditional PCR181,182 (Figure 14, Table 9). 

 

Batch Correction 

To prevent batch effect between training and test sets, principal variance 

component analysis (PVCA) was conducted using JMP Genomics (SAS Institute, Cary, 

NC) to identify sources of batch effect. Cohort number accounted for 58% of the 

variability observed (Figure 15A) and scatter plot visualization (Figure 15B) with 

ellipsoids (Figure 15C) revealed strong segregation of samples based on cohort. The 

batch correction algorithm CombatR183 was used on the cohort variable to reduce its 

contribution to the global variance. The batch effect from the cohort was reduced to 

approximately 0% (Figure 15D, Figure 15E and Figure 15F). 
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Microarray procedures 

PBMC study - Affymetrix cRNA preparation  

From 2–5 micrograms of total RNA, double-stranded cDNA was generated as a 

template for single-round in vitro transcription with biotin-labeled nucleotides using the 

Affymetrix cDNA Synthesis and In Vitro Transcription kits (Affymetrix Inc., Santa 

Clara, CA). Biotinylated cRNA targets were then purified (Sample Cleanup Module, 

Affymetrix) and hybridized to the Affymetrix HG-U133A and B GeneChip arrays 

(Affymetrix Inc., Santa Clara, CA) according to the manufacturer’s standard protocols. 

 

PBMC study - Affymetrix gene chips 

Arrays were scanned using a laser confocal scanner (Agilent). Global gene 

expression analysis was carried out using the Affymetrix HG-U133A and U133B 

GeneChips. The HG-U133 set contains 44,760 probe sets representing. 39000 transcripts 

derived from 33,000 human genes. Raw signal intensity values were normalized to the 

mean intensity of all measurements per gene chip and scaled to a target intensity value of 

500 using the MAS 5.0 global scaling method to adjust for possible chip-to-chip 

variations in hybridization intensities (GeneChip Operating System version 1.0). Data 

were imported into GeneSpring software (version 7.3.1, Agilent) to perform the gene 

expression analyses, statistical testing, hierarchical clustering, and classification of 

samples. 
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PBMC study - cRNA preparation for Illlumina Hu6v2 beadchips 

Double-stranded cDNA was obtained from 200 ng of total RNA and after in vitro 

transcription underwent amplification and labeling steps according to the manufacturer’s 

instructions. 1.5 mg of amplified biotin-labeled cRNA was hybridized to the Illumina 

Sentrix Hu6 BeadChips according to the sample labeling procedure recommended by 

Illumina. (Ambion, Inc, Austin, TX). 

 

PBMC study - Illumina Hu6v2 Beadchips 

The Sentrix Hu6 BeadChips consist of 50mer oligonucleotide probes attached to 

3-mm beads within microwells on the surface of the glass slide representing 48,687 

probes. Slides were scanned on Illumina BeadStation 500 and Beadstudio software was 

used to assess fluorescent hybridization signals. 

 
 
Whole blood study – cRNA preparation for Illumina Hu6v3 beadchips 

Total RNA was isolated from the whole blood lysed in Tempus tubes using the 

MagMAXTM-96 Blood RNA Isolation Kit (Applied Biosystems, Foster City, CA) 

according to the manufacturer's instructions. Following extraction, an Agilent 2100 

Bioanalyzer (Agilent, Palo Alto, CA) was used to measure RNA Integrity Numbers 

(RIN), and samples with RIN values greater than seven were retained for further 

processing. RNA concentration was measured using a Nanodrop 1000 (Nanodrop 
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Technologies, Wilmington, DE). Following RNA extraction and quality control analysis, 

Globin mRNA was depleted from total RNA using the GLOBINclearTM-Human 96-well 

format kit (Ambion, Austin, TX). This was followed by another round of RIN and 

concentration determinations for quality control purposes. 250 ng of RNA from all 

samples passing quality control were amplified and labeled using the Illumina TotalPrep-

96 RNA amplification kit (Ambion, Austin, TX). 750 ng of amplified labeled RNA were 

hybridized overnight to Illumina HT12 V3 beadchips (Illumina, San Diego, CA). 

Following hybridization, each chip was washed, blocked, stained, and scanned on an 

Illumina BeadStation 500 following the manufacturer’s protocols. The dataset described 

in this manuscript is deposited in the NCBI Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo, GEO Series accession number GSE30119).  

 

In vitro antigen-presenting cell study – cRNA preparation for Illumina Hu6v3 beadchips 

Total RNA was isolated from cell lysates using the RNeasy Mini-Kit (#74104, 

Qiagen) according to the manufacturer's instructions. Following extraction, an Agilent 

2100 Bioanalyzer (Agilent, Palo Alto, CA) was used to measure RNA Integrity Numbers 

(RIN) for each sample. All samples with RIN values greater than seven were retained for 

further processing. RNA concentration was measured using a Nanodrop 1000 (Nanodrop 

Technologies, Wilmington, DE). 250 ng of RNA from all samples passing quality control 

were amplified and labeled using the Illumina TotalPrep-96 RNA amplification kit 

(Ambion, Austin, TX). 750 ng of amplified labeled RNA were hybridized overnight to 

Illumina HT12 V3 beadchips (Illumina, San Diego, CA). Following hybridization, each 



 

 
 

36 

chip was washed, blocked, stained, and scanned on an Illumina BeadStation 500 

following the manufacturer’s protocols. 

 

Microarray data analysis 

PBMC study 

Using the GenespringTM software program (Agilent), the expression value for 

each transcript per individual subject’s sample was normalized to the median expression 

value of that transcript in samples from healthy controls. Class comparison analyses were 

performed on probe sets present in at least 75% of samples in each group (quality control 

(QC) probes). Non-parametric statistical testing (Wilcoxon-Mann-Whitney U-test; 

p<0.01 for class comparisons; p<0.05 for modular analyses with no multiple test 

corrections) was used to rank genes based on their ability to discriminate among pre-

specified groups of patients. Final lists of significantly changed genes used in class 

comparisons were filtered to include only those transcripts that showed a 1.25-fold or 

greater fold change in expression level relative to the control group. Hierarchical 

clustering was applied to order genes according to expression levels. The list of the top-

ranked genes from the S. aureus biosignature was created by ranking genes with the 

highest fold change difference and the most significantly different genes (by p value) 

between healthy controls and patients with infection.  

For the cross microarray platform validation part of the analysis we performed a 

two-step procedure. First, we examined the genes that defined the S. aureus biosignature 
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obtained on the test and training set of subjects analyzed on the Affymetrix platform in a 

new set of 18 subjects (validation set) and run on the lllumina microarray platform. 

Transcript sequences from RefSeq were used to perfectly match corresponding valid gene 

probe sets on each platform; Affymetrix probe set data encoded by Mage-ML files in 

XML format were matched by GenBank accession numbers and reference sequence 

transcripts to the Illumina manifest probe mapping file 

(http://www.switchtoi.com/probemapping.ilmn) allowing for mapping of the significant 

Affymetrix gene probes to their corresponding gene probes on the Illumina platform. In 

the second step of the analysis, the Illumina gene list was applied to an independent 

validation set of subjects using an unsupervised scheme that allowed clustering of 

samples based solely on intrinsic gene expression levels. 

 

Modular analysis 

Rationale 

Traditional microarray analysis usually involves the comparison of two or more 

study groups, generating large lists of transcripts that are significantly differentially 

expressed between groups based on arbitrarily defined thresholds. This results in 

significant amount of noise and can affect data interpretation and biomarker 

discovery184,185. The modular approach aims at identifying sets of coordinately expressed 

transcripts across hundreds of condition, and treating each of these sets as a functional 

unit of transcription, thereby reducing the dimensionality of the data.  
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PBMC modular analysis framework development 

A detailed account of this module-based data mining analysis strategy has been 

reported elsewhere145. In summary, a reference dataset of PBMC samples spanning 8 

immunogical conditions including was selected.  This unsupervised method identified 28 

transcriptional modules formed by genes coordinately expressed across multiple disease 

data sets, thus allowing functional interpretation of the microarray data into biologically 

useful information, using these modular subunits rather than considering all transcripts. 

 

Whole blood modular analysis framework development 

This analysis strategy has been described elsewhere145. A set of 62 transcriptional 

modules derived from 410 whole blood gene expression profiles was applied to the whole 

blood dataset described herein. Modules were annotated with Ingenuity Pathway 

Analysis (IPA) (Ingenuity Systems, Redwood City, CA), Pubmed, iHOP, and Novartis 

Gene Atlas (http://biogps.gnf.org) databases. Module transcript content and annotations 

are available online  

(http://www.biir.net/public_wikis/module_annotation/V2_Trial_8_Modules).  

 
Antigen-presenting cell modular analysis framework development 

The module construction process is summarized in Figure 29. Six independent 

datasets (Table 19) generated on the Illumina v3 platform were used as input and 

combined into a single 353 samples dataset. Each dataset’s batch-corrected expression 
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data was processed and clustered independently. First, all probes that were not detected in 

any of the 353 samples (Illumina detection p-value > 0.01) were removed, leaving 22,916 

probes present at least once. All raw signals were then scaled such that all values less 

than 10 were set to 10. Then, each sample was normalized to the median of its own 

donor’s cRPMI expression (control median). For each probe, if the difference between 

the sample and its control median was at least 100 and the ratio of (sample/control 

median) is at least 1.5, then the signal was set to 1 (over-expressed). If the difference 

between the sample and its control median was at least 100 and the ratio of 

(sample/control median) is less than or equal to 0.67, then the signal was set to -1 (under-

expressed). Otherwise, the signal was set to 0 (no change).  The dataset was then 

summarized so that for each probe, each stimulus group was represented by a single 

score. The group scored a 1 if all samples in the group were 1. It scored a -1 if all samples 

in the group were -1. Otherwise, the group scored a 0. Each dataset was then clustered. 

Probes were clustered together if and only if the pattern of -1/0/1 across all stimulus 

groups was a perfect match. 

 Taking the six sets of clusters as input, we constructed a weighted co-cluster 

graph, a probe by probe matrix where the value of each cell (the weight, between 0 and 6) 

was set to the number of times probei and probej were found in the same cluster. The goal 

was to extract sets of probes that are most frequently clustered together, proceeding from 

the most stringent requirements to the least. To accomplish this, we employed an iterative 

algorithm. To begin, the maximum clique threshold was initialized to the number of input 

cluster sets (6) and a minimum seed size was chosen (10). The outer loop begun by 

creating an unweighted graph through application of the maximum clique threshold to the 
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weighted co-cluster graph such that a probe pair, or edge, was represented in the 

unweighted graph if and only if the corresponding weight in the co-cluster graph equaled 

or exceeded this threshold.  

 The inner loop started. The maximum clique, which is the largest set of probes 

such that all pairs of probes in the set are connected in the unweighted graph, was 

isolated.  If the size of the probe set is smaller than the minimum seed size, the inner loop 

ended, the threshold was reduced by one, and the outer loop restarted. Otherwise, the 

probe set was at least as large as the minimum seed size and forms a module. It was 

removed from both graphs and named in accordance with the iterations in which it was 

found (i.e. a module extracted in the first iteration of the outer loop and the second 

iteration of the inner loop is designated M1.2). The inner loop then begun again with the 

reduced graphs. Each clique identified formed a module. Once all cliques with size 

greater or equal to 10 were extracted, the algorithm ended. 

 

Module annotations / interpretation 

 Modules were annotated with Ingenuity Pathway Analysis (IPA) (Ingenuity 

Systems, Redwood City, CA), Literature Lab (Acumenta, Boston, MA), Pubmed and 

iHOP databases. Annotated modules contained multiple genes with similar function, 

cellular localization, or membership in known biologic pathways. Furthermore, the 

Novartis Gene Atlas (http://biogps.gnf.org) was queried for modules containing genes 

with expression limited to particular cell populations. Those modules without known 

shared characteristics between member genes were not annotated. 
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Flow Cytometry 

PBMCs were isolated by density gradient centrifugation using Ficoll-hypaque 

technique from blood samples (3–8 mL) collected in ACD tubes. One million PBMCs 

were washed and incubated with conjugated antibodies for 15 minutes at room 

temperature, in dark conditions according to multi-color staining panels described below. 

Cells were washed with phosphate buffer and then fixed with 2% paraformaldehyde. 

Samples were run on a BD LSRII flow cytometer (BD BioScience, San Jose, CA); 

50,000 events were acquired with the BD FACSDivaTM software according to the 

lymphocyte gate and analyzed using FlowJoTM software (Tree Star, Inc). Multicolor 

staining panels included: B cell panel: CD19 (ECD, Beckman-Coulter), CD20 (Pe-Cy5, 

BD Pharmingen), CD24 (PE, BD Pharmingen), CD27 (APC, BD Pharmingen), CD38 

(Pe-Cy7, BD Biosciences) and IgD (FITC, SouthernBiotech). T cell panel: CD3 

(Alexa700, BD Pharmingen), CD4 (Pacific Blue, Invitrogen), CD8 (APC-Cy7, BD 

Pharmingen), CD45RA (ECD, Beckman- Coulter), CD62L (Pe-Cy5, BD Pharmingen), 

CCR7 (Pe-Cy7, BD Pharmingen). Monocyte panel: CD14 (Pacific Blue, BD 

Pharmingen), CD16 (APC, Invitrogen), CD40 (PE, BD Pharmingen), CD86 (FITC, BD 

Pharmingen), HLA-DR (APC-Cy7, BD Pharmingen) and CD62L (ECD, Beckman-

Coulter). Isotype controls: IgG1 (FITC, BD Biosciences), IgG1 (PE, BD Biosciences), 

IgG1 (ECD, Beckman-Coulter), IgG1 (Pe-Cy5, BD Biosciences), IgG1 (Pe-Cy7, BD 

Biosciences), IgG1 (APC, BD Biosciences), IgG1 (Alexa 700, BD Biosciences), IgG1 

(APC-Cy7, BD Biosciences), IgG1 (Pacific Blue, Invitrogen). Cell populations were 
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analyzed based on the following markers: B cells: CD19; Naive B cells: CD19+/CD20+, 

IgD+, CD27-; Memory B cells: CD19+/CD20+/IgD+&-/CD27+; Plasma cells: 

CD19+/CD20-/CD27+&++/CD38++; Transitional B cells: 

CD19+/CD20+/CD24++/CD38++; Pre-germinal center B cells: 

CD19+/CD20+/CD27+/CD38++; T cells: Naive T cells: CD3+/CD4+ or 

CD8+/CD45RA+/CCR7+; Central memory T cells: CD3+/CD4+ or CD8+/CD45RA-

/CCR7+; Effector memory T cells: CD3+/CD4+ or CD8+/CD45RA-/CCR7-; CD8+ 

terminally differentiated T cells: CD3+/CD8+/CD45RA+/CCR7-. 

 

Monocyte-derived dendritic cell activation in vitro 

Monocyte-derived dendritic cell cultures 

Monocytes were obtained from frozen fraction 5 from healthy donor apheresis. 

Cells were thawed for one minute in a 37°C water bath and resuspended in 1x phosphate 

buffered saline (PBS). Cells were spun at 350g for 7 minutes, washed with 1x PBS, 

counted, washed again, and resuspended in PBS / 2% Fetal Bovine Serum (FBS) / 1mM 

EDTA at 5x107 cells/mL. Monocytes were then enriched using the EasySep Human 

Monocyte Enrichment Without CD16 Depletion Kit (#19058, StemCell Technologies) 

according to the manufacturer’s protocol. Once enriched, cells were counted and 

resuspended in serum-free CellGenix DC medium (#2005, CellGenix, Germany) / 1% 

Penicillin/Streptomycin at 1x106 cells/mL. GM-CSF was added for all DC subsets at 100 

ng/mL. For IL-4 DC, recombinant IL-4 was added at 50 ng/mL and cells were fed a full 
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dose of GM-CSF and IL-4 at day 2 and day 4 of a 6-day culture. For IFN-alpha DC, IFN-

alpha was added at 500U/mL, and cells were fed a full dose of GM-CSF and IFN-alpha at 

day 1 of a 3-day culture. For IL-15 DC, IL-15 was added at 100ng/mL, and cells were fed 

a full dose of GM-CSF and IL-15 at day 1 and day 3 of a 5-day culture. Cell suspensions 

were injected into 72mL sterile culture bags (#2PF-0072-AC, AFC, Gaithersburg, MD) 

with a 50mL syringe and bags were closed with injection ports. Feeding of the cells 

during the culture was done with a 1mL syringe through the injection ports. Cells were 

cultured in an incubator at 37°C, 5% CO2. 

 

Monocyte-derived dendritic cell activation 

At the end of cell cultures, cells were collected, washed in 1x PBS and 

resuspended in complete RPMI at 1x106 cells/mL. For the 353 samples reference dataset, 

all stimulations were conducted in 1.5mL polypropylene Eppendorf tubes in a total 

volume of either 1mL (1x106 cells) or 500uL (5x105 cells). All stimuli used are 

summarized in Table 20. At the end of the 6h stimulation period, cells were spun at 350g 

for 7 minutes, washed with 1x PBS, spun again and lysed in 600uL (1x106 cells) or 

350uL (5x105) of RLT buffer (#79216, Qiagen). Cell lysates were stored at -80°C until 

extraction. 
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CHAPTER 3: EX VIVO ANALYSIS OF PBMC FROM PATIENTS WITH 

INVASIVE STAPHYLOCOCCUS AUREUS INFECTIONS  

Introduction 

 When I joined the Ramilo laboratory in March 2007, the study on PBMC 

transcriptional profiles of patients with S. aureus infection had been recently 

initiated by Dr. Monica Ardura, who led the work presented in this chapter. The 

first goal of this study was to identify a conserved signature of S. aureus infection 

in peripheral blood mononuclear cells that could discriminate patients from 

healthy controls. The second goal was to conduct multicolor flow cytometry to 

compare the distribution of blood leukocyte populations in patients and healthy 

controls. Finally, we wanted to correlate PBMC transcriptional profiles to cell 

counts obtained by flow cytometry, to predict cell subpopulations contribution to 

the global fingerprint. 

 

Patient Characteristics 

Over a period of four years, samples from 53 previously healthy patients 

hospitalized with invasive S. aureus infections and 24 healthy control subjects were 

analyzed. Patients were chosen representing the clinical spectrum of acute severe S. 

aureus disease including bacteremia, osteomyelitis, suppurative arthritis, pyomyositis, 

and pneumonia with empyema. Patients with a diagnosis of staphylococcal toxic shock 
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syndrome or polymicrobial infections were excluded. Patient demographic data, clinical 

characteristics, analysis group, and microarray platform are summarized in Table 1. 

There were no statistical differences between the S. aureus-infected patients and their 

respective healthy controls with regards to age, sex, or race in the training and test sets 

(Table 2). Patients were enrolled only after a bacteriologic diagnosis was established; the 

median time from patient hospitalization to procurement of study blood sample was 4 

days [IQ range 3–8 days]. Viral direct fluorescent antibody testing or culture of the 

nasopharynx was obtained on 68 subjects (88%, 46 patients, 22 controls) and did not 

reveal the presence of a concomitant viral infection.  

Patients with culture-proven invasive S. aureus infections were divided into three 

groups for analysis: training, test, and validation sets. The training set of subjects 

composed of 20 children with invasive S. aureus infections (median age 7.5 years; 11 

methicillin-resistant S. aureus, MRSA, and 9 methicillin-susceptible S. aureus, MSSA) 

and 10 healthy controls (median age 6 years) matched for age, sex, and race, was initially 

analyzed to identify the gene expression profile in patient PBMCs. As expected, 

statistical differences in laboratory parameters were observed between groups. S. aureus 

patients displayed higher total peripheral white blood cell count and percent neutrophil 

count, but lower percent lymphocyte count and hematocrit values in patients (Table 2). 

The test set included an independent group of 22 patients with S. aureus infection 

(median age 7 years; 8 MSSA, 14 MRSA) and 10 healthy controls (median age 6 years) 

and was used to validate the gene expression profile in PBMCs from S. aureus-infected 

patients. As in the training set, there were differences in laboratory values between 

patients and healthy controls (Table 2). A third independent group of 25 subjects was 
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included to validate our initial findings using (1) a second microarray platform (Illumina) 

and (2) flow cytometry. This validation set was comprised of 11 patients with S. aureus 

infection (median age 8 years; 5 MSSA, 6 MRSA) and 13 healthy controls (median age 9 

years). PBMCs from 23 subjects were evaluated by flow cytometry to determine the 

relative abundance of different immune cell populations. Simultaneous flow cytometry 

evaluation and gene expression analysis was conducted with the same PBMC samples in 

18 (9 with S. aureus infection and 9 healthy controls, matched for age, sex, race) of these 

23 subjects. There were no statistical differences in antimicrobial therapy, or 

demographic and laboratory data between the training, test, and validation sets (Table 3). 

 

Results 

The PBMC signature from S. aureus patients is distinct from that of healthy controls 

Statistical group comparison (Mann-Whitney, p<0.01) was applied to the list of 

transcripts present in the training set, revealing 3,168 genes differentially expressed 

between S. aureus-infected patients and healthy controls. The list was further filtered to 

include those transcripts with a 1.25-fold or greater change in expression level relative to 

the healthy control group, yielding a total of 3,067 transcripts. Hierarchical clustering 

was applied in order to visualize the transcriptional pattern (Figure 4A). For purposes of 

validation, the 3,067 transcripts list comprising the gene expression profile in PBMC of 

S. aureus-infected patients was then evaluated in an independent test set of 22 new 

patients. The samples were organized into a condition tree utilizing the 3,067 genes 
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obtained from the training set, and correctly classified 31 of 32 samples as either healthy 

or S. aureus infection based on the gene expression patterns (Figure 4B). 

Genes represented in the expression profile in PBMCs from S. aureus-infected 

patients were then ranked according to differences in both fold-change and significance 

in gene expression levels (p<0.05) compared with healthy controls. The top 50 genes that 

were significantly over-expressed in patients with S. aureus infection versus healthy 

controls are shown in Table 4. Over-expressed genes included those with microbicidal 

functions (lactotransferrin, alpha-defensins 1 and 4, bactericidal/permeability-increasing 

protein), involved in coagulation (thrombomodulin), hemoglobin synthesis (hemoglobin 

D and G), pro-inflammatory and immune-related genes related to cellular growth, 

proliferation, and apoptosis pathways (ADM, ARG1, CLU, EGR1, IL8, HBEGF, 

ITGA2B, MMP9) and those involved in cell to cell signaling such as CEACAM6 and 

CEACAM8. 

 

Module-level analysis reveals over-expression of innate and under-expression of 

adaptive immune response transcripts 

To better characterize the biological significance of the gene expression profiles 

seen in the PBMCs of patients with S. aureus infections, gene expression levels between 

patients and healthy controls were mapped using a modular analysis framework that we 

previously described145. A key to the functional interpretation of each PBMC 

transcriptional module is detailed in Appendix A.   
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Gene expression levels were compared between patients and healthy controls on 

a module-by-module basis. The percentage of genes with a significant change (Mann-

Whitney p<0.05) within each module are graphically displayed on a module map, with 

over-expressed genes represented in red and under-expressed genes in blue (Figure 5A, 

upper panel). Following the approach described previously with the class comparisons 

analysis, module analysis was applied initially to the training set of patients. Patients with 

S. aureus infection demonstrated significant over-expression of genes in modules related 

to innate immunity including myeloid lineage (M1.5, M2.6), neutrophil (M2.2), and 

inflammation (M3.2, M3.3) modules and under-expression of genes regulating adaptive 

immunity such as B cell module M1.3, cytotoxic cell module M2.1, and T cell specific 

module M2.8. 

Significantly over-expressed genes included those in modules M1.5 and M2.6 

(Myeloid lineage), containing transcripts related to myeloid cells, which are involved in 

bacterial pathogen recognition such as TLR2 and CD14, IL10 signaling (CD32, BLVRA) 

and leukocyte extravasation signaling (CTNNA1, NCF2, PECAM1, ITGB2), also in 

M2.6 genes related to the inflammatory response (calgranulin B, NFKB inhibitor, TNF 

superfamily members, and metalloproteinase inhibitors); in M2.2 (Neutrophils) genes 

encoding innate molecules including LTF, DEFA 1 and 4, BPI, CEACAM 8; in modules 

M3.2 and M3.3 (Inflammation I and II) genes involved in inflammatory and endothelial 

cell processes. Significant genes found over-expressed in M3.2 (Inflammation II) 

included those involved in coagulation (THBD), endovascular inflammation, TLR 

signaling (IRAK 3, Ly96), and transcriptional regulation (zinc finger proteins) while 

M3.3 included genes encoding antigens to scavenger receptor proteins (CD36), 
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coagulation (factor V), and lysosomal functions (LAMP2). Patients also displayed over-

expression of module M2.3 (Erythrocytes), containing transcripts related to hemoglobin 

(hemoglobin alpha and gamma, erythrocyte membrane protein, erythroid factors), and 

module M3.5 (Undetermined) including hemoglobin alpha and gamma proteins. 

Conversely, there was significant under-expression of transcripts related to the 

adaptive immune response including B cells (M1.3, with genes encoding cell surface 

molecules CD19, CD22, CD72, CD79 or involved in immunoglobulin production), T 

cells (M2.8, including CD6, CD96, ITK), cytotoxic cells (M2.1, including KLR 

subfamilies, Granulysin, Granzyme B) and genes encoding TNF family members. 

Module M1.8 (Undetermined) included under-expression of factors involved in DNA 

replication and transcription (zinc finger protein genes) and cytokines (IL16); significant 

under-expressed genes in M3.8 (Undetermined) also included multiple zinc finger 

proteins and TNF receptor-associated factors (TRAF5). 

The transcript list forming the signature of S. aureus infection was then analyzed 

in the test set of patients and the initial findings were validated by module analysis. Both 

the gene probes and the percentage of over or under-expressed genes per module in 

patients with S. aureus infection in the test set matched those observed in the training set 

of patients, confirming the qualitative and quantitative consistency of the PBMC 

transcriptional signature in patients with S. aureus infection (Figure 5A, lower panel). 

 

Confirming the robustness of the signature across microarray platforms 
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Twenty-five additional subjects were enrolled to further validate the PBMC gene 

expression profile of S. aureus-infected patients by confirming its reproducibility across 

microarray platforms. This validation set included 11 patients with invasive S. aureus 

infections and 14 age and sex-matched healthy controls. Transcript sequences from 

RefSeq were used to match corresponding valid gene probe sets on each platform. This 

allowed mapping of the 3,067 significant genes comprising the gene expression profile of 

PBMC of S. aureus-infected patients based on the Affymetrix gene probes to their 

corresponding 1,521 gene probes on the Illumina platform. This 1,521 gene list was then 

applied to the independent validation set of 9 patients and 9 controls using an 

unsupervised scheme that allowed clustering of samples based solely on intrinsic gene 

expression levels (Figure 5B). Despite technical differences between the two platforms, 

all 9 patients with S. aureus infection clustered together (red horizontal bar) based on 

similarities in PBMC gene expression patterns alone. 

Module level analyses of the 1,521 gene probes on the Illumina platform demonstrated 

similarities between the Affymetrix and the Illumina data. As illustrated in Figure 5B, 16 

of 19 modules yielded concordant results in both the Illumina and Affymetrix platforms. 

Only modules M1.4, M3.5, and M3.6 did not show significant differences in Illumina and 

may be a result of representation of less gene probes in those modules. Correlation 

analyses of the average normalized values among the differentially expressed genes for 

each given module between both platforms was statistically significant (Spearman 

R=0.76, p=0.002). Thus, both unsupervised hierarchical clustering and modular analyses 

confirmed the robustness of the gene expression profile in PBMC of S. aureus-infected 
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patients across both the Affymetrix and Illumina BeadChip microarray platforms in 

distinct groups of subjects. 

 

Decreased number of central memory CD4+ and CD8+ T cells in patients with S. aureus 

infections 

To understand how the changes in blood transcriptional profiles in patients with 

S. aureus infection relate to changes in the distribution of circulating leukocyte 

subpopulations, detailed flow cytometry phenotyping was conducted both in PBMCs 

from a subset of patients with S. aureus (n=11) and appropriate age-matched healthy 

controls (n=13).  

As illustrated in Figure 6, there were no significant differences in the total 

number of B cells and T cells between patients with S. aureus infection and healthy 

controls (p<0.05) with the number of subjects considered (n=11). Given the significant 

under-expression of genes related to these cell populations observed in the modular 

analysis (M1.3, M2.1, M2.8), further detailed flow analysis was performed in each 

lymphocyte compartment. Characterization of B cell subpopulations (Figure 7) revealed 

no significant differences in the absolute number of naive (CD19+/CD20+, IgD+, CD27-

), memory (CD19+/ CD20+/IgD+&-/CD27+), and plasma cells (CD19+/CD20-/ 

CD27+&++/CD38++) between patients and healthy controls (Figure 4). Transitional B 

cells (CD19+/ CD20+/CD24++/CD38++) were increased in patients compared with 

healthy controls (p =0.04); there was also a trend (p=0.06) toward increased numbers of 
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pre-germinal B cells (CD19+/CD20+/CD27+/CD38++) in patients versus control 

subjects. 

We then analyzed both CD4+ and CD8+ T cell compartments, focusing on 

subpopulations of naive and memory cells based on the expression of CD45RA, CD62L, 

and CCR7 as previously described186. As illustrated in Figure 8, there were no differences 

in absolute numbers of naive CD4+ T cells and effector memory CD4+ T cells between 

patients and healthy controls. However, the absolute number of central memory CD4+ T 

cell was significantly reduced in S. aureus patients compared with controls (p = 0.003). 

The same observation was made for the CD8+ T cell compartment, with no differences 

between S. aureus patients and controls in the number of naive, effector memory, and 

terminally differentiated CD8+ T cells (Figure 9), but a significant decrease in central 

memory CD8+ T cells in S. aureus patients (p = 0.005). Thus, PBMCs of patients with 

invasive S. aureus infections demonstrate a significant reduction in the numbers of 

circulating central memory T cells in both CD4+ and CD8+ compartments. 

 

Antigen-presenting cells expansion in patients with acute S. aureus infection 

As shown in Figure 6, there was a significant increase in the median total number 

of monocytes in PBMCs of S. aureus patients when compared to healthy controls (p = 

0.002). Detailed characterization of CD14+ subpopulations displayed a significant 

increase in absolute number of circulating monocytes expressing activation markers such 

as CD86, CD40, HLA-DR, and CD62L homing lymphocyte molecule in patients with S. 

aureus infection compared with controls (Figure 10A). Reanalysis of the CD14+ 
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subpopulations was performed after removing outlier patients (patients 908, 952, and 

960) in each subpopulation; S. aureus patients still demonstrated statistically significant 

increased numbers of CD14+ HLADR+ (p = 0.023), CD14+ CD40+ (p = 0.0076), 

CD14+ CD62L+ (p =0.0062), and CD14+86+ (p = 0.0062) when compared to healthy 

controls.  

Based on the CD16 expression, circulating monocytes can be divided into 

functionally distinct subpopulations: CD14+CD16- monocytes and CD14+16+ 

monocytes. Patients with S. aureus infection showed a significant expansion of both 

CD14+16- (p = 0.0021) and CD14+16+ (p= 0.0175) monocytes compared with healthy 

controls (Figure 10B). These differences remained significant even when outliers were 

removed (CD14+16-, p = 0.0076; CD14+16-, p = 0.0324).  

We subsequently expanded the flow cytometry study to 23 patients with S. 

aureus infection and compared them to 13 healthy controls. With these larger numbers, 

we additionally identified significant increases in circulating B cells, pDC and mDC 

(Figure 11A). All subpopulations of B cells but plasma cells were significantly increased 

(Figure 11B). Thus, PBMCs of patients with invasive S. aureus infections demonstrate a 

significant increase in the numbers of circulating antigen-presenting cells, including 

monocytes, pDC, mDC and B cells. It is interesting to notice that the microarray 

signature revealed a down-regulation of the B cell module. A potential explanation could 

be that the large expansion in circulating myeloid cells may cover the more subtle 

expansion in circulating B cells at the RNA level. 

 

Gene expression levels correlate with specific immune cell populations 
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To further characterize the relationship between the gene expression profiles in 

PBMCs of patients with S. aureus infections and the changes of the different immune cell 

populations, analyses were conducted on a group of patients (n=9) and healthy controls 

(n=9) in whom simultaneous gene expression and flow cytometry analyses were 

performed. To this end, the per module PBMC average gene expression obtained from 

patients with S. aureus infection relative to the healthy controls, were run on the Illumina 

platform and correlated with the absolute number of immune cells in each subject as 

measured by flow cytometry (Table 5). The most significant statistical correlations 

observed in patients with S. aureus infections were between the total number of CD14+ 

monocytes and CD14+ monocyte subpopulations and several gene expression modules 

(Figure 12). Absolute number of CD14+ monocytes significantly positively correlated 

with myeloid cell (M1.5 and M2.6), neutrophil (M2.2), and inflammation II (M3.3) 

modules (Spearman R>0.8, p<0.006). Total CD14+ monocyte cell numbers inversely 

correlated with the modules encoding genes for ribosomal proteins (M2.4) and T cells 

(M2.8). The number of CD14+16- cells positively correlated with M2.6 (Myeloid 

lineage); CD14+16+ cells correlated with myeloid lineage modules (M1.5 and M2.6), 

neutrophils (M2.2), and inflammation (M3.3). The absolute number of CD14+CD162 

and CD14+CD16+ cells inversely correlated with the ribosomal proteins (M2.4) and T 

cells (M2.8) modules. Further correlations performed in the monocyte compartment of 

CD14+CD62L+, CD14+ HLA-DR+, CD14+CD40+, and CD14+CD86+ revealed 

significant positive correlations between these subpopulations and the myeloid lineage 

module M2.6 and inverse correlations with ribosomal proteins (M2.6) and T cells (M2.8) 

modules (Figure 13). Gene expression levels in modules related to neutrophils (M2.2) 
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and inflammation (M3.3) positively correlated with CD14+CD62L+, CD14+ HLADR+, 

CD14+CD40+, and CD14+CD86+ cell numbers. With respect to the T cell compartment, 

the number of total CD4+ T cells inversely correlated with myeloid lineage (M1.5 and 

M2.6) and inflammation (M3.3) modules (p = 0.0361) (Table 5). Numbers of naive 

CD4+ T cells positively correlated with the modules related to ribosomal proteins (M2.4) 

and T cells (M3.8), while inversely correlating with the M2.6 (Myeloid) and 

inflammation (M3.2 and M3.3) modules. The number of CD4+ T central memory cells 

(TCM) correlated inversely with myeloid lineage (M1.5 and M2.6), neutrophil (M2.2), 

and inflammation (M3.3) modules, but positively with the ribosomal protein (M2.4), T 

cell (M2.8), and interferon (M3.1) modules. CD8+ T central memory cell numbers 

correlated inversely with myeloid modules (M1.5 and M2.6) and inflammation (M3.3) 

modules; conversely, CD8+ T effector memory cells correlated positively with cytotoxic 

cell module (M2.1) and undetermined (M1.8 and M3.7) modules. There were no 

significant correlations between modular gene expression levels and CD4+ T effector 

memory, CD8+ naive, and CD8+ terminally differentiated T cells. There were no 

significant correlations between the total number of CD19+ B cells or B cell 

subpopulations such as naive B cells, memory B cells, transitional B cells, pre-germinal 

center B cells, and plasma cells B cell and modular gene expression patterns (Table 6).  
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Panel 1: Design for the study on transcriptional profile of PBMC from patients with 

S. aureus infection 
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Figure 4: Gene expression biosignature in PBMCs from S. aureus patients and 

healthy controls.  

A. Statistical group comparisons between 10 healthy subjects and 20 patients with acute 

S. aureus infections yielded 3,067 genes expressed at statistically different levels (Mann-

Whitney p<0.01 and 1.25 fold change) between the two groups. Significant genes were 

organized by hierarchical clustering to reveal differential expression, each row 

representing a single gene and each column an individual subject. Transformed 

expression levels are indicated by color scale: red representing relatively high and blue 

relatively low gene expression compared to the median expression for each gene across 

all patients compared to healthy controls. B. The same 3,067 genes list was used to 

perform a condition tree on 22 new subjects with S. aureus infections and correctly 

grouped 21 of the 22 patients based solely on gene expression.  
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Figure 5: Module analysis identifies a specific fingerprint in the PBMCs of S. 

aureus-infected patients. 

A. Gene expression levels were compared between patients with S. aureus infections and 

healthy controls on a module-by-module basis. Colored spot represent the percentage 

(color intensity) of significantly over-expressed (red) or under-expressed (blue) 

transcripts (p<0.05, Mann Whitney) within a module in patients with S. aureus 

infections; blank modules demonstrate no significant differences between groups 

(p>0.05). Information is displayed on a grid, with the coordinates corresponding to one of 

28 modules with the key (upper right panel) representing the functional interpretation of 

modules. Nineteen modules are shown to be significantly different between healthy 
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subjects and patients with S. aureus infection in the training set (A., upper module map). 

The same gene list applied to the independent test set of patients reveals a similar 

fingerprint (A, lower module map). B. Transcript sequences (RefSeq) were used to map 

the corresponding 3,067 significant gene probe sets comprising the gene expression 

profile of PBMC in patients with S. aureus infection on the Affymetrix platform to their 

corresponding 1,521 gene probes on the Illumina platform (B, far left panel) and tested in 

new S. aureus patients (n = 9) and controls (n = 9). C. Comparison of module analysis in 

Affymetrix (top map) and Illumina (bottom map). D. Correlation analyses (Spearman) 

between the average gene expression levels per module in each platform were performed. 
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Figure 6: Peripheral blood monocytes are significantly expanded in patients with 

invasive S. aureus infections. 

PBMCs obtained from age-matched healthy donors (n = 13) and patients with S. aureus 

infection (n = 11) were analyzed by flow cytometry for the expression of CD19 (left 

panel), CD3 (middle), and CD14 (right) markers. Results are expressed as absolute 

number of cells per mL of blood. Bars represent median values. Mann-Whitney test was 

applied for statistical analysis. 
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Figure 7: Analysis of B cell subpopulations in patients with S. aureus infection 

PBMCs obtained from age-matched healthy donors (n = 13) and patients with S. aureus 

infection (n = 11) were stained by multicolor panel staining according to the expression 

of specific B cell markers. Results are expressed as absolute number of cells per mL of 

blood. Bars represent median values. Mann-Whitney test was applied for statistical 

analysis. 
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Figure 8: Decreased central memory CD4+ T cells in patients with S. aureus 

infection 

PBMCs obtained from age-matched healthy controls (n = 13) and patients with S. aureus 

infection (n = 11) were stained with CD3, CD4, CCR7, CD45RA, and CD62L antibodies 

and analyzed by flow cytometry. CD4 T cell subsets are labeled as (A) central memory T 

cells (TCM), (B) naive T cells, and (C) effector memory T cells (TEM). A. Flow 

cytometry plots of CD4 T cell subsets in a representative S. aureus patient and healthy 

control. CD62L expression is shown for each CD4 T cell subset. B. Dot-plots displaying 

the numbers of CD4 T cells and CD4 T cell subsets expressed as absolute number of cells 

per mL of blood. Horizontal lines represent median values. Statistical analysis was 

performed using a Mann-Whitney test. 

  



 

 
 

63 

 
 

Figure 9: Decreased central memory CD8+ T cells in patients with S. aureus 

infection. 

PBMCs obtained from patients with S. aureus infection (n = 11) and age-matched healthy 

controls (n = 13) were stained with CD3, CD8, CCR7, CD45RA, and CD62L antibodies 

and analyzed by flow cytometry. CD 8 T cell subsets are labeled as: (A) central memory 

T cells (TCM); (B) naıve T cells, (C) effector memory T cells (TEM), and (D) terminally 

differentiated effector T cells (TEM). A. Flow cytometry plots show CD8 T cell subsets 

in a representative S. aureus patient and healthy control. CD62L expression is shown for 

each CD8 T cell subset. B. Dot plots displaying the numbers of CD8 T cells and CD8 T 

cell subsets. Results are expressed as absolute number of cells per mL of blood. 
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Horizontal lines represent median values. Statistical analysis was performed using a 

Mann-Whitney test.  
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Figure 10: Increased numbers of activated CD16-monocytes and inflammatory 

CD16+ monocytes in S. aureus patients. 

PBMCs obtained from patients with S. aureus infections (n=11) and age-matched healthy 

controls (n=13) were stained with HLA DR, CD40, CD62L, CD16, and CD86 antibodies 

and analyzed by flow cytometry. A. Graphs show the absolute monocyte cell numbers.  

Results are expressed as absolute number of cells per mL of blood. Horizontal lines 

represent median values. Statistical analysis was performed using a Mann-Whitney test. 

B. Cytometry plots showing PBMC gated on CD14+ cells, for a representative S. aureus 

patient (907) and healthy control (933). C. Dot plots displaying the absolute number of 

circulating CD14++ CD16- and CD14+ CD16+ monocytes in S. aureus patients versus 

healthy controls. 
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Figure 11: Increase circulating APC in patients with S. aureus infections 

A. Radar chart displaying the average fold change in absolute cell population count in 

patients (red area) versus healthy controls (green area). Data are normalized to the 
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average of healthy controls. B. Radar charts displaying subpopulation fold change in 

patients for monocytes, B cells, CD4+ and CD8+ T cells. Red asterisks highlight 

significantly increased or decreased populations (p<0.05). 

  



 

 
 

68 

 

Figure 12: Significant correlations between monocyte subpopulation counts and 

specific modules. 

Correlation analyses were performed between the significant modules comprising the 

gene expression profile of PBMCs from S. aureus-infected patients and monocyte 

populations.  Graphs represent the correlation (Spearman) between the normalized 

average gene expression [log] significantly changed (Mann Whitney p<0.05) in the 

PBMCs of patients with S. aureus infection relative to the median gene expression of 

PBMCs in healthy controls in each significant module (y axis) and the corresponding 

absolute cell count by subpopulations per mL of blood in S. aureus-infected patients (x 

axis). 
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Figure 13: Significant correlations between activated CD14+ monocyte counts and 

specific modules. 
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Graphs represent correlations (Spearman) between average gene expression [log] 

significantly changed (Mann Whitney p<0.05) in the PBMCs of patients with S. aureus 

infection relative to the median gene expression of PBMCs in healthy controls in each 

significant module (y axis) and the corresponding activation marker-specific absolute cell 

count per mL of blood in S. aureus-infected patients (x axis).  
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Subject  Age 
(yrs) Ethnicity Gender Condition Pathogen Analysis Set Platform 

3N 6 H M Control Healthy Training/Test A 
5 10 H M Osteomyelitis MSSA Training A 

7N 1.6 B F Control Healthy Training/Test A 
8N 10 B M Control Healthy Training/Test A 

11N 4 B F Control Healthy Training/Test A 
23N 7 H F Control Healthy Training/Test A 
24 3 B M Bacteremia, Osteomyelitis, Myositis MRSA Test A 

24N 3 W M Control Healthy Training/Test A 
30 15 B M Bacteremia MRSA Test A 
40 13 W M Bacteremia, Osteomyelitis MSSA Training A 

43 7 B M Bacteremia, Osteomyelitis, SArthritis, 
Pyomyositis, Emboli MRSA Test A 

62 2 W M Osteomyelitis, Pyomyositis MRSA Training A 
66 0.25 B F Pneumonia MRSA Test A 
67 7 W F Bacteremia, Osteomyelitis MRSA Training A 
88 0.92 H M Bacteremia, Osteomyelitis, Pneumonia, Emboli MRSA Test A 
90 0.67 B M Bacteremia, SArthritis MSSA Test A 

109 0.67 H F Bacteremia, SST Abscess MRSA Training A 
150 9 B F Bacteremia, Osteomyelitis, SArthritis, Myositis MRSA Test A 
179 12 W M Bacteremia, Endocarditis, Emboli MSSA Training A 
205 7 H M Bacteremia, Pneumonia, SST Abscess MRSA Test A 

208 10 W F Bacteremia, Osteomyelitis, CNS abscess, 
Pneumonia, Emboli MRSA Test A 

216 10 H F Bacteremia, Osteomyelitis MRSA Training A 
220 11 H M Bacteremia, Osteomyelitis MSSA Test A 
221 6 B F Bacteremia, Osteomyelitis MRSA Training A 
224 10 W M Bacteremia, Osteomyelitis MSSA Test A 
230 20 B M Bacteremia, Endocarditis, SST Abscess MRSA Test A 
241 0.92 B F Bacteremia, Osteomyelitis, Pneumonia MRSA Training A 
242 1.2 B M Bacteremia, Osteomyelitis, Pyomyositis MRSA Test A 
258 8 W F Bacteremia, Osteomyelitis, Cellulitis MSSA Training A 
262 13 H M Bacteremia, SST Abscess MRSA Training A 

264 13 B M Bacteremia, Osteomyelitis, SArthritis, SST 
Abscess, Myositis, Emboli MSSA Test A 

271 13 B M Osteomyelitis, pyomyositis MSSA Training A 
294 12 B F Control Healthy Training/Test A 
301 8 W M Control Healthy Training/Test A 
303 6 W F Control Healthy Training/Test A 
304 6 W M Control Healthy Training/Test A 
305 4 H F Bacteremia, Osteomyelitis, SArthritis MSSA Training A 
308 12 B F Bacteremia, Pneumonia, Pyomyositis, SST Ab MSSA Training A 

328 0.38 B F Bacteremia, Osteomyelitis, Pneumonia, SST 
Abscess MSSA Test A 

329 0.58 O F Bacteremia, Lymphadenitis MRSA Training A 
330 11 B F Bacteremia, Pneumonia MRSA Test A 
354 2 H F Bacteremia, Osteomyelitis MRSA Training A 
366 11 B F Osteomyelitis, SST Abscess MRSA Test A 
369 14 B M Bacteremia, SArthritis, SST Abscess, Emboli MRSA Test A 
372 14 W M Bacteremia, Osteomyelitis, Myositis MRSA Test A 
412 1.75 W M Bacteremia, SArthritis MSSA Test A 
418 8 H F Osteomyelitis MSSA Training A 
423 8 W M Bacteremia, Osteomyelitis, Pyomyositis MSSA Training A 
434 5 W M Osteomyelitis, Pyomyositis MSSA Test A 
440 0.5 B M Bacteremia, Osteomyelitis, Pneumonia, Emboli MRSA Training A 

450 0.83 B M Bacteremia, Osteomyelitis, SArthritis, 
Pyomyositis MSSA Test A 

451 4 H M Bacteremia, Osteomyelitis, SArthritis, MRSA Training A 
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Pyomyositis, Emboli 

894 8 W F Osteomyelitis, SST Abscess MSSA Validation, 
FACS I 

903 13 W F Control Healthy Validation, 
FACS I 

904 16 W F Control Healthy FACS I 
905 16 W F Control Healthy FACS I 
907 1.3 H F Bacteremia MRSA FACS I 

908 8 B M Bacteremia, Pleural effusion, Pyomyositis, SST 
Abscess, Emboli MSSA FACS I 

909 6 H F Bacteremia, Osteomyelitis, SArthritis, 
Pneumonia MRSA Validation, 

FACS I 

910 5 B M Osteomyelitis, SArthritis MSSA Validation, 
FACS I 

922 3 H F Control Healthy FACS I 
926 3 H M Control Healthy FACS I 

927 2 H M Control Healthy Validation, 
FACS I 

929 11 O F Control Healthy Validation, 
FACS I 

930 8 O M Control Healthy Validation I 
931 12 W F Control Healthy FACS I 

933 9 W M Control Healthy Validation, 
FACS I 

935 9 W F Control Healthy Validation, 
FACS I 

939 8 W M Control Healthy Validation, 
FACS I 

940 7 W M Control Healthy Validation, 
FACS I 

941 9 W F Control Healthy Validation, 
FACS I 

943 9 W M Osteomyelitis, SArthritis, Pyomyositis MRSA Validation, 
FACS I 

944 6 B F Bacteremia, Osteomyelitis, SArthritis, 
Pyomyositis MRSA Validation, 

FACS I 

949 11 W M Bacteremia, Osteomyelitis, SArthritis MSSA Validation I 

952 15 B M Bacteremia, Osteomyelitis, Pneumonia MRSA Validation, 
FACS I 

954 13 W M Bacteremia, Osteomyelitis, Pyomyositis MSSA Validation, 
FACS I 

960 3 H M Pneumonia MRSA Validation, 
FACS I 

 

H=Hispanic, W=White, B=Black, O=Other; M=Male, F=Female; SST Ab=Skin/soft tissue 

abscess, SArthritis=Suppurative arthritis, CNS=central nervous system; MSSA=methicillin-

susceptible Staphylococcus aureus, MRSA=methicillin-resistant Staphylococcus aureus; Platform: 

A=Affymetrix U133 A&B; I=Illumina Sentrix Hu6 BeadChips 

Table 1: PBMC study - Subjects characteristics. 



 

 
 

73 

 

 

Table 2: Demographic and laboratory characteristics of patients and controls in 

training and test sets. 

  

 TRAINING SET TEST SET 
Parameter Patients Controls pa Patients Controls pa 

Age (years) 7.5  
[2-11] 

6 
 [3.5-9] 0.86 7  

[1-12] 
6  

[3.5-9] 0.93 

Race 5B,8H,6W,1O 4B,2H,4W 1 14B,3H,5W 4B,2H,4W 0.25 

Gender 9M:11F 5M:5F 0.57 16M:6F 5M:5F 0.45 

WBC (103/mm3) 8.9  
[7.5-17.4] 

7.2  
[5.2-8.2] 0.03 11  

[7.7-16] 
7.2  

[5.2-8.2] 0.009 

Neutrophils (%) 60  
[48-73] 

43  
[27-50] 0.007 61  

[40-66] 
43  

[27-50] 0.022 

Lymphocytes (%) 24  
[13-38] 

47  
[39-55] 0.002 24  

[12.7-47] 
47  

[39-55] 0.038 

Monocytes (%) 8  
[7-11] 

7  
[6-10] 0.37 9  

[6.3-12.5] 
7  

[6-10] 0.38 

Hematocrit (%) 31.6  
[29.8-36] 

37.7  
[34.9-40] 0.007 30  

[27-33.9] 
37.7  

[34.9-40] 0.002 

Platelets (103/mm3) 382  
[297-459] 

310  
[264-329] 0.07 353  

[273-445] 
310  

[264-329] 0.373 

CRP (mg/dL) 6.65  
[2.1-16.5] 

0.4  
[0.4-0.7] <0.001 7.4  

[2.3-16.9] 
0.4  

[0.4-0.7] 0.001 



 

 
 

74 

S. aureus patients Training Set Test Set Validation Set p-valuea 

Age (years) 7.5 [2-11] 7 [1-12] 8 [5-11] 0.82 
Race 5B,8H,6W,1O 14B,3H,5W 4B,3H,4W 0.08 
Gender 9M:11F 16M:6F 7M:4F 1 
WBC 
(thousand/mm3) 8.9 [7.5-17.4] 11 [7.7-16] 8.5 [5.7-15.5] 0.52 
Neutrophils (%) 60 [48-73] 61 [37-66] 55 [45-71] 0.73 
Lymphocytes (%) 24 [13-38.3] 24 [12.7-47.5] 29 [19.5-44.5] 0.70 
Monocytes (%) 8 [7-11] 9 [6.3-12.5] 7 [3.5-11.5] 0.58 
Hematocrit  (%) 31.6 [29.8-36.2] 30 [27.2-33.9] 32 [29-34.1] 0.08 
Platelets 
(thousand/mm3) 382 [297-459] 353 [273-445] 364 [313-473] 0.61 
ESR (mm/hr) 70 [34-98] 46 [36-72] 72 [46-87] 0.28 
CRP (mg/dL) 6.7 [2.1-16.5] 7.4 [2.4-16.9] 7.7 [3.7-21.3] 0.69 

 

Median values [25-75% range]; B=Black, H=Hispanic, W= White, O=Other; M=Male, F=Female; 

CRP=C-reactive protein; a p values calculated within each individual subject set and respective to 

matched controls (Kruskal-Wallis) 

 

Table 3: Demographic and laboratory characteristics of patients in training, test 

and validation sets. 
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Rank Common 
Name Description Fold 

Change Significance 

1 LTF Lactotransferrin 46.3 2.90E-05 
2 CEACAM8 Carcinoembryonic antigen-related cell adhesion molecule 8 32.0 5.20E-05 
3  Transcribed locus 32.9 2.90E-05 
4 IL8 Interleukin 8 21.6 7.50E-05 
5 HBG1 Hemoglobin, gamma A 21.5 7.05E-04 
6 DEFA4 Defensin, alpha 4, corticostatin 20.6 7.50E-05 
7 DEFA1 Defensin, alpha 1, myeloid-related sequence 17.0 4.30E-05 
8 HBG2 Hemoglobin, gamma G 15.8 1.54E-03 
9 LCN2 Lipocalin 2 (oncogene 24p3) 13.7 9.00E-05 

10 HBD Hemoglobin, delta 13.3 4.32E-04 
11 ARG1 Arginase, liver 14.4 3.66E-04 
12 BPI Bactericidal/permeability-increasing protein 12.8 1.29E-04 
13 HPR Haptoglobin-related protein 12.2 1.55E-04 
14 S100P S100 calcium binding protein P 11.6 5.20E-05 
15 THBD Thrombomodulin 9.0 3.09E-04 
16 ADM Adrenomedullin 8.7 2.00E-05 
17 CA1 Carbonic anhydrase I 8.6 4.32E-04 
18 ERAF Erythroid associated factor 7.9 1.55E-04 
19 MSCP Mitochondrial solute carrier protein 7.6 4.30E-05 
20 MYL9 Myosin, light polypeptide 9, regulatory 7.5 5.10E-04 
21 MMP9 Matrix metalloproteinase 9 7.0 5.80E-03 
22 RETN Resistin 6.9 1.08E-04 
23 ANXA3 Annexin A3 6.5 7.05E-04 
24 CEACAM6  5.9 2.40E-03 
25 MGAM Maltase-glucoamylase (alpha-glucosidase) 5.8 4.32E-04 
26 PBEF1 Pre-B-cell colony enhancing factor 1 5.6 1.54E-03 
27 CYP4F3 Cytochrome P450, family 4, subfamily F, polypeptide 3 5.5 4.32E-04 
28 PBEF Pre-B-cell colony enhancing factor 1 5.4 6.00E-04 
29 ITGA2B Integrin, alpha 2b  5.2 8.27E-04 
30 HP Haptoglobin 5.1 3.50E-05 
31 SNCA Synuclein, alpha (non A4 component of amyloid precursor) 4.9 1.60E-05 
32 FCGR3A Fc fragment of IgG, low affinity IIIb, receptor for (CD16) 4.9 2.90E-05 
33 EGR1 Early growth response 1 4.4 3.20E-03 
34 LOC199675 Hypothetical protein LOC199675 4.4 3.09E-04 
35 SOCS3 Suppressor of Cytokine Signaling 3 4.3 1.30E-05 
36 EREG Epiregulin 4.2 2.07E-03 
37 DTR Heparin-binding EGF-like growth factor 4.1 2.40E-03 
38 TCN1 Transcobalamin I  4.0 7.28E-03 
39 MS4A3 Membrane-spanning 4-domains, subfamily A, member 3  4.0 2.78E-03 
40 GLUL Glutamate-ammonia ligase (glutamine synthase) 3.9 3.66E-04 
41  FP15737 3.9 6.20E-05 
42 FLJ31978 Hypothetical protein FLJ31978 3.9 2.61E-04 
43 CLU Clusterin  3.7 8.27E-04 
44 MAD 

 

MAX dimerization protein 1 3.7 1.60E-05 
45 H1F0 H1 histone family, member 0 3.7 4.30E-05 
46 FCGR1A Fc fragment of IgG, high affinity Ia, receptor for (CD64) 3.7 2.90E-05 
47 SOCS3 Suppressor of cytokine signaling 3 3.7 1.30E-05 
48 MS4A4A Membrane-spanning 4-domains, subfamily A, member 4 3.6 1.79E-03 
49 PBEF Pre-B-cell colony enhancing factor 1 3.6 1.55E-04 
50 ORF1-FL49 Putative nuclear protein ORF1-FL49 3.6 1.55E-04 

 

Table 4: Top-50 over-expressed genes in invasive S. aureus infections. 
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FACS Cell 
Marker Module 

Assigned 
Immune 
Function 

Correlation 
(Spearman) p-value 

CD19 none    
CD3 none    
CD4 M1.5 Myeloid -0.683 0.0361 

 M2.6 Myeloid -0.650 0.05 
 M3.3 Inflammation II -0.683 0.0361 

CD8 M3.1 Interferon 0.65  
NK none    

CD14 M1.3 B cells -0.633 0.0583 
 M1.5 Myeloid 0.85 <0.001 
 M2.2 Neutrophils 0.8 0.006 
 M2.4 Ribosomal -0.95 <0.001 
 M2.6 Myeloid 0.933 <0.001 
 M2.8 T cells -0.95 <0.001 
 M3.3 Inflammation II 0.9 <0.001 

 

Table 5: Correlation between gene expression levels and absolute number of 

immune cells in patients with S. aureus infections. 
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FACS Cell 
Marker 

Module Assigned Immune 
Function 

Correlation 
(Spearman) 

p-value 

CD4, naïve M2.4 Ribosomal 0.683 0.036 
 M2.6 Myeloid -0.65 0.05 
 M2.8 T cells 0.683 0.036 
 M3.2 Inflammation I -0.65 0.05 
 M3.3 Inflammation II -0.7 0.03 
CD4 TCM M1.5 Myeloid -0.783 0.009 
 M2.2 Neutrophils -0.667 0.043 
 M2.4 Ribosomal 0.65 0.05 
 M2.6 Myeloid -0.717 0.025 
 M2.8 T cells 0.65 0.05 
 M3.1 Interferon 0.7 0.03 
 M3.3 Inflammation II -0.8 0.006 
CD4 TEM   none  
CD8, naïve   none  
CD 8 TCM M1.5 Myeloid -0.767 0.012 
 M2.6 Myeloid -0.683 0.036 
 M3.3 Inflammation II -0.783 0.009 
CD8 TEM M1.8 Undetermined 0.65 0.05 
 M2.1 Cytotoxic cells 0.667 0.043 
 M3.7 Undertermined 0.683 0.036 
CD8-terminally 
differentiated 

  none  

B cells, naïve   none  
Memory B   none  
Transitional B   none  
Pre-germinal B   none  
Plasma B   none  

 
FACS= fluorescence-activated cell sorting; TCM= central memory T cell; TEM = 
effector memory T cell 
 
Table 6 – Correlations of B and T cell subsets with transcriptional modules  
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CHAPTER 4: EX VIVO ANALYSIS OF WHOLE BLOOD FROM PATIENTS 

WITH COMMUNITY-ACQUIRED STAPHYLOCOCCUS AUREUS INFECTIONS 

Introduction 

The analysis of PBMC from patients with community-acquired S. aureus 

infection helped us identify a disease fingerprint common to all patients. Furthermore, we 

were able to correlate transcriptional changes with changes in frequency of circulating 

leukocytes subpopulations, including monocytes. Additionally, we observed the decrease 

in central memory T cells, which may be relocating to the peripheral lymphoid tissues to 

activate effector T cell and/or B cell responses against S. aureus. This study has however 

several limitations. 1) As transcriptional profiling of PBMC requires immediate 

manipulation of fresh blood samples, it is not easily applicable to large-scale inter-

institutional clinical studies. 2) Neutrophil and erythrocyte depletion from PBMC results 

in the loss of important information for the systemic characterization of these 

infections187, as these cells play an essential role in the defense against blood borne 

pathogen. 3) As we focused on common transcriptional changes induced by S. aureus, we 

did not investigate heterogeneous elements of the signature, nor their clinical correlates.  

To address these remaining questions, we conducted a new study in which we 

collected whole blood samples in TempusTM tubes (Applied Biosystems, CA) from 99 

pediatric patients with community-acquired S. aureus infection and 44 healthy controls. 

Again, the patients displayed a wide spectrum of clinical presentations, including skin 

and soft tissues abscesses without bacteremia, osteomyelitis, suppurative arthritis, 
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pneumonia and disseminated disease affecting multiple loci. After validating in whole 

blood the observations made in PBMC regarding the common transcriptional elements 

induced by S. aureus, we investigated the blood transcriptional correlates of clinical 

heterogeneity using two different approaches. First, patients were clustered based on 

transcriptional profiles without a priori knowledge of clinical diagnoses, and statistical 

analyses were carried on to identify clinical correlates. In a second phase of the analysis  

patients were grouped according to extent of bacterial dissemination, and clinical 

presentation and analyses were performed to identify transcriptional correlates. The 

design of this study is summarized in Panel 2. We measured transcriptional responses 

both qualitatively, using a modular analytical framework specifically developed for 

whole blood, and quantitatively, using the molecular distance to health (MDTH), and 

transcriptional score of global signature perturbation. 

 
Results 

S. aureus induces a distinct whole blood transcriptional signature 

99 patients and 44 healthy controls were assigned to independent training and test 

sets. The training set included 40 patients with S. aureus infection and 22 healthy controls 

matched for age, sex and race (Table 10). Statistical group comparison yielded 1,422 

differentially regulated transcripts. Hierarchical clustering of these transcripts grouped 

them according to similarities in gene expression patterns (Figure 16A). This signature 

was validated in the independent test set of 59 patients and 22 healthy controls (Figure 

16B). Hierarchical clustering of the 1,422 transcripts from the training set grouped 52 out 
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of 59 patients from the test set together. The seven patients who clustered with controls 

presented were closer to recovery and discharge, as defined by the mean draw index (0·68 

vs. 0·53 for all other patients). 

 
S. aureus induces innate immunity and suppresses adaptive immunity transcripts 

We used a preexisting analytical framework of 62 transcriptional modules that 

group together genes with shared expression pattern across independent blood 

transcriptional datasets145. Module maps were derived independently for the training 

(Figure 16C) and test sets (Figure 16D), using their respective healthy control group as 

reference. A module annotation legend is provided (Figure 16E). Patients with acute S. 

aureus infection demonstrated significant over-expression of modules linked to the 

myeloid lineage (M3.2, M4.6, M4.13, M4.14 and M6.6), and inflammation (M4.2, M5.1 

and M6.13) confirming our earlier findings in PBMC. Furthermore, patients displayed 

over-expression of modules linked to the coagulation cascade (M1.1), hematopoietic 

precursors (M3.3 and M5.3), and neutrophils (M5.15). Conversely, they demonstrated 

significant under-expression of modules linked to T cells (M4.1, M6.15 and M6.19), 

cytotoxicity/NK cells (M3.6 and M4.15), B cells (M4.10), and lymphoid lineage (M4.7 

and M6.9). Transcript composition of these modules is summarized online 

(http://www.biir.net/public_wikis/module_annotation/V2_Trial_8_Modules) and in 

Appendix B. These findings were confirmed in the test set as shown by significant 

correlation of module expression between training and test sets (Figure 16F, p<0·0001, 

Spearman r = 0·94). 
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Heterogeneity in the blood signature 

As the clinical presentations of individual patients were diverse (Table 11), we 

hypothesized that this diversity might be reflected in their blood transcriptional signature. 

Because the training and test sets yielded similar modular fingerprints (Figure 16F), they 

were merged into one dataset for subsequent analysis. To assess the magnitude of 

individual transcriptional perturbations, the molecular distance to health, or MDTH (a 

score measuring the global change of the transcriptional profile as compared to the 

median of healthy controls131,133), was calculated for each individual subject. Patients 

displayed a median MDTH significantly higher than that of healthy controls (Figure 17A, 

p<0·001). Variability was observed from patient to patient, and 25 of them displayed 

MDTH within healthy range (3-259). These patients were flagged as transcriptionally 

quiescent (TQ) and separated from transcriptionally active patients (n=74). Unsupervised 

hierarchical clustering of the 10,972 transcripts expressed in at least one of the 143 

subjects grouped these quiescent patients with healthy controls (Figure 17B).  

To assess the qualitative heterogeneity of active patients, individual modular 

fingerprints were derived and k-means clustering was used to further identify modular 

expression patterns. Four major patient clusters (C1 to C4) were identified (Figure 17C, 

Figure 17D) using the “jump method”188 (Figure 18). Group module expression was 

derived for each cluster (Figure 17D, Figure 19). Cluster C1 included 13 patients with a 

high mean MDTH (3,003) and strong over-expression of myeloid (M3.2, M4.6, M4.13, 

M6.6) and inflammation (M4.2, M5.1, M6.13) modules. Cluster C2 comprised 31 

patients with a signature qualitatively similar to C1, but quantitatively dimmer as 
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supported by the lower mean MDTH (973). Cluster C3 regrouped 12 patients with high 

MDTH (2,395) and low inflammatory signature, but over-expression of modules linked 

to erythropoiesis (M2.3, M3.1, M4.4, M6.18) and hematopoiesis (M5.3). C1 and C3 both 

displayed significant down-regulation of transcripts linked to B and T cells (Figure 20). 

Gene level analysis (Figure 21A) combined with PANTHER189 ontology ranking 

(http://www.pantherdb.org) supported this observation as heme biosynthesis (Figure 21B) 

and porphyrin metabolism (Figure 21C) were the most enriched pathways in C3 versus 

C1. The top 100 transcripts differentially expressed between C1 and C3 are displayed in 

Table 12 and Figure 21D. Finally, cluster C4 regrouped 18 patients with low mean 

MDTH (699). Interestingly, 11 of them displayed an IFN signature, although only one 

patient had concomitant CMV infection detected by viral culture.  

The median values for different clinical findings and laboratory parameters were 

calculated for each cluster (Figure 17E, Table 13). Cluster C1 displayed a lower draw 

index, indicating that blood samples were collected at an earlier stage of hospitalization. 

Patients from C1 had a longer duration of hospitalization than other patients. 

Additionally, patients from C1 had significantly higher CRP, WBC, neutrophil and 

monocyte counts. Thus, these routine laboratory markers of inflammation corroborated 

the over-expression of myeloid and inflammatory modules.  

The C3 erythropoietic signature overlapped with transcripts from CD71+ early 

erythroid precursors190 (Figure 21E). The C3 patients showed decreased hemoglobin, 

hematocrit, and MCHC (Figure 21F, Table 13), suggesting an anemic state that might 

trigger erythropoiesis as indicated by the signature. 
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Finally, we analyzed how infection site, clinical presentation, and bacterial strain 

were distributed among clusters (Figure 17F, Table 14). Cluster C1 contained most 

patients with severe infection and disseminated disease, and a higher proportion of 

patients with pneumonia. Clusters C4 and TQ included most patients with skin and soft 

tissue abscesses, confirming the association between low MDTH and mild presentation. 

 
Bacterial isolates 

To determine whether heterogeneity in bacterial virulence factors was associated 

with clustering patterns, the isolates from 63 patients were characterized. The great 

majority (87%) of isolates tested were PVL-positive. Both clusters C1 and C3 displayed a 

higher percentage of MRSA isolates (100% and 91·7%) than the overall mean (67%), 

suggesting that MRSA might induce a stronger host response. No difference in other 

bacterial characteristics such as agr locus type or genetic relatedness was observed 

between the four clusters (Table 15). 

 

Elements of the molecular signature correlate with clinical parameters 

We then asked whether patient’s molecular profiles correlated with clinical 

laboratory parameters commonly used to assess clinical evolution (Table 16). The MDTH 

positively correlated with neutrophil count, white blood cell count, C-reactive protein, 

band neutrophil count, red blood cell distribution width, and monocyte count. MDTH 

inversely correlated with relative lymphocyte count, draw index, red blood cell count, 

hemoglobin concentration, mean corpuscular hemoglobin concentration, and hematocrit. 
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Correlations were then assessed on a module-by-module basis (Figure 22A). 

Inflammatory modules positively correlated with neutrophil counts, CRP and WBC while 

modules linked to adaptive immunity negatively correlated with these parameters. Two 

modules annotated as hematopoiesis (M3.3) and cell cycle (M6.11) correlated with 

absolute band (immature neutrophils) count. Significant correlations between clinical 

nodes and molecular nodes are summarized as a network (Figure 22B). 

 

Blood draw index, infection dissemination and clinical presentation influence the 

fingerprint 

Clinical and molecular correlates can be linked by grouping patients based on 

prior knowledge of clinical features, and assessing molecular differences between these 

groups. To this end, supervised analysis was conducted to compare transcriptional 

signatures according to: 1) time in the course of the infection as defined by draw index 

quarters; 2) infection site; 3) types of invasive clinical presentations. Five myeloid 

lineage-related modules were differentially regulated from quarter to quarter (Figure 

23A). The MDTH also displayed a decreasing trend (Figure 23B) that was paralleled by 

the decrease in CRP (Figure 23C).  

MDTH increased as the infection became more disseminated (Figure 23D), 

which was most evident during the first half of the hospitalization period (Figure 24A). 

Dissemination of infection was paralleled by decreased RBC, hemoglobin and 

hematocrit, and increased RDW, ESR, CRP and duration of hospitalization (Table 17). 

Finally, patients with pneumonia had a higher median MDTH, median WBC, neutrophil 
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and monocyte counts than patients with osteoarticular infections (Figure 23E, Figure 

24B, Figure 25A, and Table 18). 

 

Patients with osteoarticular infections display transcripts linked to blood coagulation 

To assess transcriptional differences between patients with distinct clinical 

presentations, nine patients with osteoarticular infection were compared to nine patients 

with pneumonia and both groups were matched for MDTH (Figure 25B). 18 healthy 

controls (nine from each training and test sets) were used as reference.  Module 

fingerprints identified over-expression of the coagulation cascade (M1.1) and platelet 

adhesion (M6.14) in osteoarticular infection but not in pneumonia (Figure 26A). From 

the 385 genes differently expressed (Figure 26B), PANTHER analysis for pathway 

enrichment (Figure 26C) identified blood coagulation as the most significant pathway in 

genes over-expressed in osteoarticular infection, and cholesterol biosynthesis in genes 

over-expressed in pneumonia. Thus, patients hospitalized with different clinical 

syndromes display distinct transcriptional profiles despite the fact that the infections were 

caused by the same bacterial pathogen.  

 

We also determined whether specific S. aureus strains were associated with 

certain clinical manifestations, but we did not observe significant correlations between 

bacterial isolates (Table 15) and clinical presentation. 
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Panel 2: Whole blood study design 
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Whole blood was obtained for 99 patients and 44 healthy controls. Subjects were split 

into independent training and test set to identify and validate a global whole blood 

signature of S. aureus infection. Patients were subsequently recombined into a single 

group and transcriptional correlates of clinical heterogeneity were identified by two 

different methods: 1) Patient modular fingerprints were clustered without a priori 

knowledge of clinical classification and distribution of clinical observations were tested 

between transcriptional clusters. 2) Patients were first grouped according to clinical 

phenotype and statistical tests were conducted between these groups to identify modules 

and transcripts differentially regulated.  
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Figure 14: Characterization of the 63 cultured bacterial isolates. 

A. Pie charts representing distribution of methicillin resistance, agr locus type and genetic 

relatedness for the 63 cultured bacterial isolates. B. Bar chart representing the percentage 

of cultured isolates positive for the measured toxins. 
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Figure 15: Batch correction for the two cohorts of patients used as training and test 

sets. 

A. Pie chart of individual parameter’s percent contribution to variance from principal 

variance component analysis (PVCA) before CombatR correction. B. Scatter plot 

representing the segregation of sample by cohort before CombatR correction. C. 

Elliptical fit of scatter plot data from B. D. Pie chart of individual parameter’s percent 

contribution to variance from PVCA after CombatR correction for cohort. E. Scatter plot 

representing the segregation of sample by cohort after CombatR correction. F. Elliptical 

fit of scatter plot data from E.  
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Figure 16: The S. aureus infection whole blood transcriptional signature is 

characterized by over-expression of myeloid lineage transcripts and under-

expression of lymphoid lineage transcripts.  

A. Statistical group comparison between 22 healthy subjects and 40 patients with acute S. 

aureus infection (non-parametric test, α=0·01, Benjamini-Hochberg multiple testing 

correction, 1·25 fold change) yielded 1,422 differentially expressed transcripts . 
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Transcripts were organized by hierarchical clustering (Spearman) according to 

similarities in expression profiles. Each row represents a transcript and each column an 

individual subject. Normalized log ratio levels are indicated by red (over-expressed) or 

blue (under-expressed), as compared to the median of healthy controls. B. The same 

1,422 transcript list and hierarchical clustering were applied to an independent test set of 

22 healthy controls and 59 patients with acute S. aureus infection. Sample hierarchical 

clustering (Spearman) was performed on the 1,422 transcript list in the test set. C. 

Average modular transcriptional fingerprrint for S. aureus patients as compared to 

healthy controls in the training set. D. Average modular transcriptional profile for S. 

aureus patients as compared to healthy controls in the test set. E. Module functional 

annotations legend. F. Scatter plot comparing module expression between training (x-

axis) and test (y-axis) sets. Spearman correlation was applied. 
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Figure 17: Individual analysis identifies heterogeneous components of the blood 

signature to S. aureus. 

A. Column scatter plot representing the distribution of individual molecular distance to 

health (MDTH) in healthy controls and S. aureus patients. The list of all transcripts 

composing the modules was used as reference to calculate individual MDTH (***: 

p<0·001, Mann-Whitney). Horizontal bars represent the group median. Patients with 

MDTH within healthy range (n=25) were categorized as transcriptionally quiescent (TQ) 

and represented in grey. B. Unsupervised hierarchical clustering of the 10,972 transcripts 

expressed  in at least one of the 143 samples (2-fold normalized, 100 difference in raw 

data)  from the combined training and test sets. C. The modular signature was derived for 

individual transcriptionally active patients (n=74) as compared to the median of the 

healthy control group for the corresponding patient set (training or test). Four major 

clusters (C1 through C4) of patients were obtained by K-means clustering and 

reorganized into a single heatmap, with modules in rows and patients in columns. 

Molecular distance to health for individual samples is represented as a line chart on top of 

the heatmap. D. Zoom on modules with specific over-expression patterns across the four 

clusters. E. MDTH and clinical lab measurements distribution by cluster. Five or six-

group non-parametric ANOVA (Kruskal-Wallis) with Dunn’s post-hoc test was applied. 

(*: p<0·05, **: p<0·01, ***: p<0·001). F. Bar charts representing the percent distribution 

of infection localization, clinical presentation and bacterial strain for the five clusters of 

patients identified. 
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Figure 18: Determination of the best number of K-means clusters from individual 

patient module expression.  

An appropriate K was chosen for clustering this dataset using an information theoretic 

approach called the "jump method". First, the data was clustered for all K 1 to 5, 

inclusive. A. The distortion of each clustering was calculated. In this instance, we chose 

to approximate the covariance matrix with the identity matrix so the distortion is simply 

the mean squared error. B. Next, the transformed distortion for each K is calculated by 

raising the distortion to a power of -(# of dimensions / 2). C. Finally, the Jump at each K 

is calculated as follows: Jump_K = TransformedDistortion_K - 

TransformedDistortion_K-1. The maximum Jump is used to select K, in this case, K = 4. 
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Figure 19: Module signature per cluster of patients. 

Module signature was derived for each cluster of molecularly active patients (C1 to C4) 

and the group of molecularly quiescent (MQ) patients as compared to the combined 44 

healthy controls. 
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Figure 20: Cluster of under-expressed modules in the 74 molecularly active patients 

with S. aureus infection. 
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Figure 21: Cluster C3 displays an erythropoiesis signature.  

A. Heatmap representing the 680 transcripts differentially expressed between clusters C1 

and C3. Statistical comparison between C1 and C3 yielded 680 differentially expressed 
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transcripts (non-parametric test,  α=0·01, Benjamini-Hochberg multiple testing 

correction, 2x fold change). Of these, 246 transcripts were over-expressed in C1 and 434 

transcripts were over-expressed in C3. B. Area chart representing pathways significantly 

enriched (p<0·05) in the two gene lists identified in A according to PANTHER 

(http://www.pantherdb.org). C. Area chart representing biological processes significantly 

enriched (p<0·01) in the two gene lists identified in A according to PANTHER. D. 

Heatmap representing the top 100 transcripts over or under-expressed in C3 versus C1.  

E. Heatmap representing the expression of 87 transcripts specifically expressed in CD71+ 

erythroid precursors in the four patient clusters. F. Scatter plot of various CBC 

measurements for patients organized by transcriptionally active clusters C1 through C4 

and transcriptionally quiescent (TQ) patients. The green rectangle represents the range of 

values for healthy children (two months to 18 years) recorded at Childrens Hospital, 

Dallas. 
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Figure 22: Specific module subsets correlate with laboratory results. 

A. Heatmap representing correlation (Spearman R) between module percent expression 

in columns and continuous laboratory parameters in rows. Hierarchical clustering 

(Euclidian distance) was applied in both dimensions. B. Connection network representing 

correlation between molecular nodes (modules) in blue and clinical nodes (laboratory 

parameters) in green. Spearman R correlation greater than 0·3 are represented. 
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Figure 23: Patient signature varies with blood draw index, dissemination and 

clinical presentation. 

A. Patients were organized in four quarters Q1 through Q4 based on blood draw index 

(ratio draw day/hospitalization duration). A low draw index signifies proximity to 

admission while a high draw index signifies proximity to discharge. Transcripts 

differently expressed between the four draw index quarters were selected by non-

parametric ANOVA (Kruskal-Wallis, p<0·01, Benjamini-Hochberg false discovery rate) 
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and represented as a heatmap (red, yellow, blue). The same statistical filter was applied at 

the module level (red, white, blue heatmap below). Individual MDTH was represented 

above as a line chart. B. Column scatter plot of individual MDTH per blood draw index 

quartile. Horizontal bars represent group median. Non-parametric ANOVA (Kruskal-

Wallis) with Dunn’s post-hoc test was applied. C. Non-linear regression model (one-

phase decay) of MDTH (left Y-axis) and CRP (right Y-axis) as a function of blood draw 

index. D. Column scatter plot of individual MDTH per infection localization group. E. 

Column scatter plot of individual MDTH per clinical presentation group. Horizontal bars  

represent the median value for each group. Non-parametric ANOVA (Kruskal-Wallis) 

with Dunn’s post-hoc test was applied between patient groups. 
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Figure 24: S. aureus patient molecular distance to health varies with infection 

localization, clinical presentation and blood draw index. 

A. MDTH as a function of blood draw index for patients grouped by disease localization. 

B. MDTH as a function of blood draw index for patients grouped by disease presentation. 

A non-linear regression statistical model (one-phase decay) was applied. 
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Figure 25: Selection of osteoarticular infection and pneumonia patients for 

comparison. 

A. Scatter plot of neutrophil counts for patients grouped by clinical presentation. 

Horizontal bars represent the median value for each group. Non-parametric ANOVA 

(Kruskal-Wallis) with Dunn’s post-hoc test was applied. B. Column scatter plot of 

individual MDTH for patients selected for comparison. Horizontal bars represent the 

median value for each group. Non-parametric test (Mann-Whitney) was applied between 

the two groups of patients.   
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Figure 26: The osteoarticular infection signature displays increased blood 

coagulation. 

We compared the transcriptional signatures from patients with pneumonia and patients 

with osteoarticular infections. To properly balance osteoarticular and pneumonia groups, 

patients with pneumonia with a draw index less than 0·75 (nine patients) were selected 

(active disease). nine patients with osteoarticular infection were selected with matching 

MDTH so that global quantitative signature was equivalent between the two groups. Nine 

healthy controls were selected from the training and nine from the test set (18 healthy 
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controls in total) as reference. A. Top left panel: mean module map for the nine patients 

with osteoarticular infections compared to the 18 healthy controls. Bottom left panel: 

mean module map for the 9 patients with staphylococcal pneumonia compared to the 18 

healthy controls. Top right panel: substraction map of osteoarticular infections minus 

pneumonia. Only differences greater than 40% are represented. Bottom right panel: 

Annotation legend for modules identified. B. Heatmap representing genes differentially 

expressed (T-Test, 0·05, no correction) between osteoarticular infections and pneumonia 

(hierarchical clustering, Pearson). 190 genes were upregulated 1·5-fold or more in 

osteoarticular infections versus pneumonia and healthy controls. 190 genes were 

upregulated 1·5-fold or more in pneumonia versus osteoarticular infections and healthy 

controls. C. Area chart representing PANTHER comparison for pathway enrichment 

between the two lists from C. 
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Subject # Age 
(Yrs) Race Sex Disease Clinical Presentation Localization Strain 
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C1_H1181 5 H M Healthy                               Healthy n/a 
C1_H1183 6 H F Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C1_H1239 8 H M Healthy                               Healthy n/a 
C1_H1242 15 H F Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C1_H1245 18 H M Healthy                               Healthy n/a 
C1_H127 13 AA F Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C1_H153 8 H F Healthy                               Healthy n/a 
C1_H205 5 H M Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C1_H213 4 C F Healthy                               Healthy n/a 
C1_H220 8 O M Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C1_H226 7 C M Healthy                               Healthy n/a 
C1_H229 7 C M Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C1_H231 11 AA F Healthy                               Healthy n/a 
C1_H240 4 H M Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C1_H241 7 H F Healthy                               Healthy n/a 
C1_H275 10 H F Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C1_H287 10 AA M Healthy                               Healthy n/a 
C1_H288 6 AA F Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C1_H289 5 AA M Healthy                               Healthy n/a 
C1_H332 7 C M Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C1_H646 4 AA F Healthy                               Healthy n/a 
C1_H996 5 H M Healthy                               Healthy n/a 
C1_SA1033 12 C M S. aureus                               Unclassified MRSA 
C1_SA1056 3 AA M S. aureus     

 
  

 
      

 
  

 
  

 
    Invasive MRSA 

C1_SA1066 9 AA M S. aureus                               Invasive MSSA 
C1_SA1069 2 H F S. aureus     

 
      

 
      

 
  

 
    Invasive MRSA 

C1_SA1070 15 C M S. aureus                               Invasive MSSA 
C1_SA1075 12 AA F S. aureus     

 
      

 
  

 
  

 
  

 
    Invasive MRSA 

C1_SA1078 8 H F S. aureus                               Invasive MSSA 
C1_SA1081 11 AA M S. aureus             

 
  

 
  

 
  

 
    Invasive MRSA 

C1_SA1083 11 H M S. aureus                               Invasive MRSA 
C1_SA1109 10 H F S. aureus         

 
  

 
  

 
  

 
  

 
    Invasive MRSA 

C1_SA1115 0.66 AA M S. aureus                               Invasive MRSA 
C1_SA1117 1.1 AA M S. aureus             

 
      

 
  

 
    Invasive MSSA 

C1_SA1118 8 H F S. aureus                               Invasive MRSA 
C1_SA1122 5 AA F S. aureus         

 
  

 
  

 
  

 
  

 
    Invasive MRSA 

C1_SA1141 2 AA M S. aureus                               Invasive MRSA 
C1_SA1142 6 H F S. aureus         

 
  

 
  

 
  

 
  

 
    Invasive MSSA 

C1_SA1152 1.66 AA F S. aureus                               Invasive MSSA 
C1_SA1154 10 AA F S. aureus     

 
      

 
  

 
  

 
  

 
    Invasive MSSA 

C1_SA1155 11 AA M S. aureus                               Disseminated MSSA 
C1_SA1204 8 AA F S. aureus     

 
  

 
  

 
      

 
  

 
    Invasive MRSA 

C1_SA1228 13 C M S. aureus                               Invasive MSSA 
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C1_SA1257 0.15 AA F S. aureus     
 

  
 

  
 

      
 

        Disseminated MRSA 
C1_SA1263 0.66 C F S. aureus                               Invasive MRSA 
C1_SA1267 1.1 H F S. aureus     

 
  

 
      

 
  

 
  

 
    Invasive MRSA 

C1_SA1276 7 AA F S. aureus                               Invasive MRSA 
C1_SA617 11 C F S. aureus     

 
  

 
  

 
  

 
  

 
  

 
    Invasive MSSA 

C1_SA619 17 H M S. aureus                               Invasive MSSA 
C1_SA632 4 H F S. aureus     

 
  

 
  

 
  

 
  

 
  

 
    Disseminated MRSA 

C1_SA633 6 AA M S. aureus                               Invasive MRSA 
C1_SA907 1.33 H F S. aureus     

 
  

 
  

 
  

 
  

 
  

 
    Unclassified MRSA 

C1_SA908 8.5 AA M S. aureus                               Disseminated MSSA 
C1_SA909 6 H F S. aureus             

 
  

 
      

 
    Disseminated MRSA 

C1_SA943 9 C M S. aureus                               Invasive MRSA 
C1_SA944 6 AA F S. aureus         

 
  

 
      

 
  

 
    Invasive MRSA 

C1_SA949 11 C M S. aureus                               Invasive MRSA 
C1_SA952 15 AA M S. aureus     

 
  

 
      

 
      

 
    Invasive MRSA 

C1_SA953 5 AA M S. aureus                               Invasive MRSA 
C1_SA954 13 C M S. aureus     

 
      

 
  

 
  

 
  

 
    Invasive MRSA 

C1_SA960 3 H M S. aureus                               Invasive MRSA 
C1_SA999 10 C F S. aureus                               Invasive MRSA 

                       

Table 7: Whole blood study: training set subject characteristics 
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Subject # Age 
(Yrs) Race Sex Disease Clinical Presentation Localization Strain 
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C2_H1053 0.54 C F Healthy                               Healthy n/a 
C2_H1191 2.2 H F Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C2_H1244 2.2 H M Healthy                               Healthy n/a 
C2_H1260 2.1 H M Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C2_H1261 0.17 H M Healthy                               Healthy n/a 
C2_H1278 0.75 C F Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C2_H1284 0.5 H F Healthy                               Healthy n/a 
C2_H1285 0.5 O F Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C2_H1299 1 AA M Healthy                               Healthy n/a 
C2_H1321 4 H F Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C2_H1353 7 H M Healthy                               Healthy n/a 
C2_H1354 7 H F Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C2_H1355 5 H F Healthy                               Healthy n/a 
C2_H1357 14 H M Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C2_H1358 9 H M Healthy                               Healthy n/a 
C2_H1359 11 H M Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C2_H2003.1 1.42 H F Healthy                               Healthy n/a 
C2_H924 3 O F Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C2_H934 7 C F Healthy                               Healthy n/a 
C2_H936 3 C M Healthy     

 
  

 
  

 
  

 
  

 
  

 
    Healthy n/a 

C2_H938 9 C M Healthy                               Healthy n/a 
C2_H939 8 C M Healthy                               Healthy n/a 
C2_SA1006 1.83 AA M S. aureus                               Invasive MRSA 
C2_SA1007 0.66 AA M S. aureus     

 
      

 
  

 
  

 
  

 
    Invasive MRSA 

C2_SA1009 0.58 H M S. aureus                               Disseminated MRSA 
C2_SA1024 0.16 AA M S. aureus     

 
      

 
      

 
  

 
    Invasive MRSA 

C2_SA1030 11 C M S. aureus                               Invasive MRSA 
C2_SA1032 11 C M S. aureus     

 
      

 
      

 
  

 
    Invasive MRSA 

C2_SA1076 9 O F S. aureus                               Invasive MRSA 
C2_SA1083A 11 H M S. aureus     

 
      

 
  

 
  

 
  

 
    Invasive MRSA 

C2_SA1137 15 H F S. aureus                               Local MRSA 
C2_SA1176 3.5 AA M S. aureus     

 
      

 
      

 
  

 
    Invasive MRSA 

C2_SA1184 1.16 H M S. aureus                               Invasive MSSA 
C2_SA1189 10 H F S. aureus         

 
  

 
  

 
  

 
  

 
    Invasive MSSA 

C2_SA1232 6 O M S. aureus                               Local MRSA 
C2_SA1287 12 C M S. aureus             

 
  

 
  

 
  

 
    Disseminated MRSA 

C2_SA1306 1.5 C F S. aureus                               Invasive MSSA 
C2_SA1309 11 C M S. aureus     

 
  

 
  

 
      

 
  

 
    Invasive MRSA 

C2_SA1313 8 C M S. aureus                               Invasive MRSA 
C2_SA1323 16 C M S. aureus     

 
  

 
  

 
      

 
  

 
    Invasive MSSA 

C2_SA1324 8 AA F S. aureus                               Invasive MRSA 
C2_SA1335 15 C F S. aureus             

 
          

 
    Disseminated MRSA 

C2_SA1351 2 H F S. aureus                               Invasive MRSA 
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C2_SA493 14 O M S. aureus     
 

  
 

  
 

  
 

  
 

  
 

    Invasive MSSA 
C2_SA537 9 O F S. aureus                               Invasive MSSA 
C2_SA566 14.5 H M S. aureus     

 
  

 
  

 
  

 
  

 
  

 
    Invasive MRSA 

C2_SA573 14.5 H M S. aureus                               Invasive MRSA 
C2_SA598 0.25 AA F S. aureus     

 
      

 
      

 
  

 
    Invasive MRSA 

C2_SA614 12.7 O F S. aureus                               Invasive MRSA 
C2_SA623 2.5 H F S. aureus     

 
  

 
  

 
  

 
  

 
  

 
    Invasive MSSA 

C2_SA626 5 AA M S. aureus                               Disseminated MRSA 
C2_SA634 6.5 AA M S. aureus     

 
  

 
  

 
      

 
  

 
    Invasive MRSA 

C2_SA649 9 C F S. aureus                               Invasive MSSA 
C2_SA657 8 AA F S. aureus     

 
      

 
      

 
  

 
    Invasive MRSA 

C2_SA704 6 H M S. aureus                               Invasive MSSA 
C2_SA756 2 H F S. aureus     

 
      

 
  

 
  

 
  

 
    Local MRSA 

C2_SA769 1.33 O M S. aureus                               Local MSSA 
C2_SA796 1.58 AA M S. aureus     

 
  

 
      

 
      

 
    Disseminated MRSA 

C2_SA807 1.58 AA M S. aureus                               Disseminated MRSA 
C2_SA811 3 O M S. aureus         

 
  

 
  

 
  

 
  

 
    Invasive MSSA 

C2_SA815 1.83 AA M S. aureus                               Disseminated MRSA 
C2_SA824 0.06 C M S. aureus     

 
  

 
      

 
  

 
  

 
    Invasive MSSA 

C2_SA844 11 C F S. aureus                               Invasive MSSA 
C2_SA847 1.5 AA F S. aureus     

 
      

 
      

 
  

 
    Invasive MRSA 

C2_SA849 1.08 H F S. aureus                               Invasive MRSA 
C2_SA850 7 H F S. aureus     

 
      

 
      

 
  

 
    Invasive MSSA 

C2_SA855 7.5 AA F S. aureus                               Invasive MRSA 
C2_SA857 4.5 H F S. aureus     

 
      

 
      

 
  

 
    Local MRSA 

C2_SA858 13 C M S. aureus                               Invasive MSSA 
C2_SA859 14 H M S. aureus     

 
      

 
      

 
  

 
    Local MRSA 

C2_SA862 15 AA F S. aureus                               Invasive MRSA 
C2_SA864 5 H M S. aureus             

 
  

 
  

 
        Invasive MRSA 

C2_SA890 1.5 H F S. aureus                               Invasive MSSA 
C2_SA891 2.5 AA M S. aureus     

 
      

 
  

 
  

 
  

 
    Local MSSA 

C2_SA897 10 C F S. aureus                               Local MRSA 
C2_SA906 5 C M S. aureus                     

 
        Disseminated MRSA 

C2_SA910 5 AA M S. aureus                               Invasive MSSA 
C2_SA919 14 AA F S. aureus     

 
      

 
      

 
  

 
    Local MRSA 

C2_SA945 7 H M S. aureus                               Local MRSA 
C2_SA985 5 C M S. aureus     

 
      

 
  

 
  

 
  

 
    Invasive MRSA 

C2_SA992 10 AA F S. aureus                               Invasive MRSA 

                       

Table 8: Whole blood study: test set subject characteristics 
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Patient ID Set Cluster Isolate  
# 

Strain  
(mecA) SSCmec agr  

type 
rep 

PCR 
PV
L TSST SEA SEB SEC SEH  SEG ETA ETB 

C1_SA1083 Training C2 1 MRSA IV I 300 +                 
C2_SA634 Test C3 3 MRSA IV I 300 + 

        C2_SA649 Test C2 4 MSSA n/a III 200 + + + +   + +     
C2_SA906 Test C1 5 MRSA IV I 300 + 

        C2_SA493 Test C4 6 MSSA n/a II 300             +     
C2_SA945 Test TQ 7 MRSA IV I 300 + 

        C2_SA857 Test TQ 8 MRSA IV I 300 +                 
C2_SA864 Test C1 9 MRSA IV I 300 + 

        C1_SA619 Training C2 12 MSSA n/a II 300             + +   
C2_SA614 Test C1 14 MRSA IV I 300 + 

        C2_SA815 Test C3 18 MRSA IV I 300 +                 
C1_SA633 Training C2 21 MRSA IV I 300 + 

        C2_SA897 Test C2 25 MRSA IV I 300 +                 
C2_SA859 Test C4 26 MRSA IV I 300 + 

        C2_SA849 Test C1 27 MRSA IV I 500 +                 
C2_SA626 Test C1 31 MRSA IV I 300 + 

        C2_SA657 Test C2 37 MRSA IV I 300 +                 
C2_SA598 Test C4 40 MRSA IV I 500 + 

        C2_SA573 Test TQ 41 MRSA IV I 500 +                 
C1_SA632 Training C2 45 MRSA IV I 300 + 

        C2_SA855 Test C4 51 MRSA IV I 300 +                 
C1_SA1066 Training C4 60 MSSA n/a I 500 + 

        C1_SA953 Training C4 62 MRSA IV I 300 +                 
C1_SA617 Training TQ 63 MSSA n/a I 500   

        C2_SA847 Test C4 71 MRSA IV I 300 +                 
C2_SA756 Test C4 79 MRSA IV I 300 + 

 
+ + 

 
+ + 

  C1_SA908 Training C2 83 MSSA n/a I 300 +                 
C1_SA909 Training C4 85 MRSA IV I 500 + 

        C1_SA952 Training C1 90 MRSA IV I 300 +                 
C1_SA1070 Training TQ 92 MSSA n/a II 500   

        C1_SA1115 Training TQ 93 MRSA IV I 500 +                 
C1_SA907 Training TQ 94 MRSA IV I 300 + 

        C1_SA1069 Training TQ 96 MRSA IV I 300 +                 
C1_SA1118 Training C2 98 MRSA IV I 300 + 

        C1_SA943 Training C2 101 MRSA IV I 300 +                 
C1_SA999 Training C3 103 MRSA IV I 500 + 

        C1_SA1075 Training TQ 104 MRSA IV I 500 +                 
C1_SA1056 Training C3 108 MRSA IV I 300 + 

        C1_SA1122 Training TQ 111 MRSA IV I 300 +                 
C2_SA992 Test C3 113 MRSA IV I 300 + 

        C1_SA960 Training C1 115 MRSA IV I 300 +   + +   + +     
C1_SA944 Training C4 117 MRSA IV I 300 + 

        C2_SA910 Test C4 118 MSSA n/a I 400             +     
C1_SA1033 Training C4 120 MRSA IV I 700 + 

     
+ 

  C2_SA1083_A Test C1 121 MRSA - - -                   
C2_SA1076 Test C4 122 MRSA IV III 1100 + 

     
+ 

  C2_SA1024 Test C3 124 MRSA IV I 300 +                 
C2_SA1007 Test C1 125 MRSA IV I 300 + 
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C1_SA949 Training C2 126 MRSA IV I 300 +                 
C1_SA954 Training C2 127 MSSA n/a II 400   

        C1_SA1228 Training C2 128 MSSA n/a III 200     +       +     
C1_SA1154 Training C3 129 MSSA n/a I 300 + 

        C2_SA1176 Test C2 131 MRSA IV I 300 +                 
C1_SA1155 Training C2 132 MSSA n/a I 300 + 

        C1_SA1141 Training TQ 133 MRSA IV III 700 +   +   + +       
C2_SA1009 Test C2 134 MRSA IV I 500 + 

        C2_SA1030 Test C1 135 MRSA IV I 300 +                 
C1_SA1081 Training TQ 137 MRSA IV I 300 + 

  
+ 

     C1_SA1257 Training C2 138 MRSA IV I 300 +                 
C2_SA1184 Test C2 140 MSSA n/a I 300 + 

        C2_SA1232 Test TQ 141 MRSA IV I 300 +                 
C1_SA1117 Training TQ 142 MSSA n/a I 300 + 

        C2_SA1006 Test C4 143 MRSA IV I 500 +                 

                 TQ: Transcriptionally Quiescent 
               

Table 9: Characterization of Bacterial Isolates from 63 Patients  
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Parameter TRAINING SET       TEST SET     

  Patients Controls pa   Patients Controls pa 

Count 40 22   59 22  
Age (years) 8.00 [0.15-17] 7.0 [4-18] 0.865   6.50 [0.06-16] 3 [0.17-14.00] 0.03 

Race 19AA,12H,9C 6AA,11H,4C,1O 0.156  19AA,18H,15C,7O 1AA,13H,6C,2O 0.018 

Gender 20M,20F 12M,10F 0.795   34M,25F 11M,11F 0.805 

WBC (103/mm3) 9.3 [4.1-28.1] 6.8[3.40-12.6] 0.006  10.10[3.20-33.3] 9.1 [4.20-16.0] 0.065 

Neutrophils (%) 52.0 [15-87] 50.7 [34.7-59.8] 0.536   55.00[12.0-84] 35.0 [10.0-55.00] <0.001 

Neutrophils (103/mm3) 5.20 [1.16-22.4] 3.58[1.46-6.94] 0.025   5.63[0.74-18.1] 3.0 [0.84-7.76] <0.001 

Lymphocytes (%) 28.50 [5-67] 37.0 [29.4-53.8] 0.073   33.00 [5.00-72.0] 55.0[33.2-81.0] <0.001 

Lymphocytes (103/mm3) 2.70[0.93-11.0] 2.72 [1.29-4.36] 0.721  3.42 [0.44-13.3] 5.3 [1.44-11.2] 0.016 

Monocytes (%) 7.50[1-21] 7.30[5.00-10.6] 0.775   8.0 [2-17] 5.6 [2.00-9.0] 0.096 

Monocytes (103/mm3) 0.83 [0.08-3.40] 0.48 [0.19-0.72] 0.036   0.75 [0.14-3.49] 0.44 [0.30-0.98] 0.01 

RBC (106/mm3) 3.92 [2.6-4.7] 3.90[3.40-4.03] 0.507   4.05 [1.27-5.65] no data   

Hemoglobin 10.5 [7.3-13.7] 8.80[7.90-11.40] 0.1   10.60 [3.4-13.7] 12.60*   

Hematocrit (%) 31.70 [22.1-38.6] 27.25[25.90-33.30] 0.13   31.70[11.1-40.3] 36.6*   

MCV (um3) 80.90 [70.7-88.9] 73.50[67.00-86.00] 0.083   81.00 [56.8-97.6] no data   

MCH (pg) 27.30 [22.9-29.8] 23.75[20.40-29.30] 0.03   27.00 [17.9-33.4] no data   

MCHC (g/dL) 33.6 [31-35.7] 32.05[30.40-34.20] 0.015   33.5 [30.6-35.9] no data   

RDW (%) 13.40[11.8-19.4] 12.75[11.50-14.90] 0.337   13.30 [11.6-17.6] no data   

MPV 9.30 [7.7-15] 7.80[6.50-10.00] 0.009   9.50 [7.8-12.4] no data   

Platelets (103/mm3) 412 [83-880] 261.00[214.00-288.00] 0.005   414.00 [136-833] 335.00*   

ESR 67.00 [15-142] no data     68.00 [8 - 135] no data   

CRP (mg/dL) 5.95 [0.1-37.4] no data     4.30 [0.1-42.8] no data   

Hospitalization Duration 11.00 [5-98] n/a     9.00 [1-53.00] n/a   

Draw Day 5.00 [2-16] n/a     5.00 [1-35] n/a   

Draw Index 0.43 [0.04-1] n/a     0.50 [0.08-1] n/a   

Onset Day 4 [1-30] n/a     3 [1-21] n/a   

Onset Index 0.64 [0.098-1] n/a     0.70 [0.14-1] n/a   

        
Median values [min-max range]; AA = African-American, C = Caucasian, H = Hispanic, O = Other; M = Male, F = Female;  
WBC = White Blood Count; RBC = Red Blood Cell count; MCV = Mean Corpuscular Volume; MCH = Mean Corpuscular 
Hemoglobin; MCHC = Mean Corpuscular Hemoglobin Concentration; RDW = Red blood cell Distribution Width; MPV = Mean 
Platelet Volume; ESR = Erythrocyte Sedimentation Rate; CRP = C-reactive Protein; 
* only 1 sample 

       Statistics: for categorical variables, Fisher's exact test is used; for continuous variables, Mann-Whitney 
test is used. 

  
         

Table 10: Demographic and laboratory characteristics of patients and healthy 
controls in training and test sets  
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    Definition Training 
(n=40) 

Test 
(n=59) 

Total 
(n=99) 

L
oc

al
iz

at
io

n 

Local SST abscess or cellulitis 0 (0%) 10 (16.9%) 10 (10%) 

Invasive Bacteremia, pneumonia, osteomyelitis, 
meningitis 33 (82.5%) 41 (69.5%) 74 (74.8%) 

Disseminated Bacteremia + 2 sites of infection 5 (12.5%) 8 (13.6%) 13 (13%) 

Unclassified   2 (5%) 0 (0%) 2 (2%) 

C
lin

ic
al

 
 P

re
se

nt
at

io
n 

SST Abscess Skin abscess, no bacteremia 0 (0%) 10 (16.9%) 10 (10%) 

Osteoarticular Bacteremia and osteomyelitis or 
suppurative arthritis 29 (72.5%) 27 (45.8%) 56 (56.6%) 

Pneumonia   6 (15%) 5 (8.5%) 11 (11.1%) 

Unclassified   5 (12.5%) 17 (28.8%) 23 (23.2%) 

 

Table 11: Infection localization and clinical presentation distribution for training 
and test sets 
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  Up in C1 vs. C3 Up in C3 vs. C1 

# Symbol Fold  
Change Genbank Symbol Fold  

Change Genbank 

1 NAIP 5.7 NM_004536.2 KRT1 29.3 NM_006121.3 
2 SERPINA1 5.4 NM_000295.3 IFIT1L 25.2 NM_001010987.1 
3 CR1 4.6 NM_000651.4 TMOD1 24.1 NM_003275.2 
4 SLC2A11 4.5 NM_001024938.1 ALAS2 22.6 NM_001037967.1 
5 SERPINA1 4.0 NM_001002236.1 HEMGN 20.9 NM_197978.1 
6 KREMEN1 4.0 NM_001039571.1 HBD 18.7 NM_000519.3 
7 METTL7B 3.9 NM_152637.1 FECH 18.6 NM_000140.2 
8 LOC400793 3.9 XM_930558.1 SLC4A1 18.2 NM_000342.2 
9 CR1 3.8 NM_000651.4 CA1 18.1 NM_001738.1 
10 LOC728519 3.8 XM_001127632.1 BPGM 17.7 NM_001724.3 
11 LOC648984 3.8 XM_938063.1 HEMGN 17.7 NM_018437.3 
12 SOCS3 3.8 NM_003955.3 GYPB 17.4 NM_002100.3 
13 OPLAH 3.7 NM_017570.2 GYPE 15.7 NM_002102.3 
14 SLC11A1 3.6 NM_000578.2 FECH 15.2 NM_001012515.1 
15 TDRD9 3.6 NM_153046.1 SELENBP1 14.7 NM_003944.2 
16 TDRD9 3.5 NM_153046.1 LOC389599 14.3 XM_001131588.1 
17 BTNL9 3.5 NM_152547.3 IFI27 13.6 NM_005532.3 
18 MGAM 3.5 NM_004668.1 TNS1 13.5 NM_022648.3 
19 LOC642684 3.5 XM_926137.1 OR2W3 13.4 NM_001001957.2 
20 MCTP2 3.4 NM_018349.2 ITLN1 13.0 NM_017625.2 
21 ITGAX 3.4 XM_001127869.1 FBXO7 13.0 NM_001033024.1 
22 LOC642103 3.4 XM_936233.1 BCL2L1 12.9 NM_138578.1 
23 DERL2 3.4 NM_016041.3 EPB42 12.8 NM_000119.1 
24 C19orf59 3.4 NM_174918.2 SLC14A1 12.6 NM_015865.2 
25 BCAT1 3.3 NM_005504.4 ALS2CR2 12.5 NM_018571.5 
26 TNNI2 3.3 NM_003282.2 HBZ 12.5 NM_005332.2 
27 MGST1 3.3 NM_020300.3 RUNDC3A 11.8 NM_006695.3 
28 GPR97 3.3 NM_170776.3 SNCA 11.5 NM_000345.2 
29 LOC153561 3.2 NM_207331.2 TRIM10 10.9 NM_052828.1 
30 MS4A4A 3.2 NM_148975.1 40610 10.3 NM_001002265.1 
31 FUT7 3.2 NM_004479.2 ALAS2 10.3 NM_001037968.1 
32 COL7A1 3.2 NM_000094.2 SLC6A8 10.1 NM_005629.1 
33 IL18R1 3.1 NM_003855.2 PRDX2 10.0 NM_181738.1 
34 GRB10 3.1 NM_005311.3 40610 10.0 NM_145021.4 
35 PNPLA1 3.1 NM_173676.1 KLF1 9.7 NM_006563.2 
36 SLC24A4 3.1 NM_153648.2 ERAF 9.7 NM_016633.2 
37 COL4A3BP 3.1 NM_005713.1 ARL4A 9.6 NM_001037164.1 
38 MAP3K3 3.1 NM_203351.1 HMG2L1 9.5 NM_005487.3 
39 SSH1 3.1 NM_018984.2 GMPR 9.5 NM_006877.2 
40 IL1R2 3.1 NM_173343.1 VWCE 9.5 NM_152718.2 
41 ST14 3.1 NM_021978.2 KEL 9.5 NM_000420.2 
42 TLR5 3.0 NM_003268.4 BPGM 9.2 NM_001724.3 
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43 GPR97 3.0 NM_170776.3 C14orf45 9.2 NM_025057.1 
44 APOB48R 3.0 NM_018690.2 SLC6A10P 9.1 NR_003083.2 
45 MANSC1 3.0 NM_018050.2 RSAD2 9.0 NM_080657.4 
46 FKBP5 3.0 NM_004117.2 TRIM10 8.9 NM_006778.2 
47 GPR141 3.0 NM_181791.1 TTC25 8.8 NM_031421.2 
48 DNAJC3 3.0 NM_006260.2 DPM2 8.8 NM_003863.2 
49 PAQR6 2.9 NM_198406.1 TRIM58 8.8 NM_015431.3 
50 CR1 2.9 NM_000573.3 MYL4 8.8 NM_002476.2 

 

Table 12: Top 50 over-expressed genes in C1 vs. C3 (left) and C3 vs. C1 (right) 
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Table 13: Clinical parameters for patients grouped by transcriptional clusters 
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   C1 (n=13) C2 
(n=31) 

C3 
(n=12) 

C4 
(n=18) 

TQ  
(n=25) Total  

Fisher's Exact Test 

 

   

Table 
Probability 

(P) 
Pr <= P  

 

L
oc

al
iz

at
io

n 

Local 0 (0) 2 (6.5) 0 (0) 3 (16.7) 5 (20) 10 

1.82E-08 0.04 
 

 
Invasive 9 (69.2) 22 (71) 11 (91.7) 13 (72.2) 19 (76) 74 

 

 
Disseminated 4 (30.8) 7 (22.6) 1 (8.3) 1 (5.6) 0 (0) 13 

 

 
Unclassified 0 (0) 0 (0) 0 (0) 1 (5.6) 1 (4) 2 

 

 

C
lin

ic
al

 
 P

re
se

nt
at

io
n SST Abscess 0 (0) 2 (6.5) 0 (0) 3 (16.7) 5 (20) 10 

1.79E-11 0.0079 
 

 
Osteoarticular 4 (30.8) 17 (54.8) 7 (58.3) 9 (50) 18 (72) 55 

 

 
Pneumonia 5 (38.5) 4 (12.9) 1 (8.3) 0 (0) 1 (4) 11 

 
 Unclassified 4 (30.8) 8 (25.8) 4 (33.3) 6 (33.3) 1 (4) 23  

 St
ra

in
 MSSA 0 (0) 13 (41.9) 1 (8.3) 5 (27.8) 11 (44) 30 

4.60E-06 0.0073  

 
MRSA 13 (100) 18 (58.1) 11 (91.7) 13 (72.2) 14 (56) 69 

 
 

*percents are represented in parenthesis 
       

 
* TQ: Transcriptionally Quiescent 

         

Table 14: Disease localization, clinical presentation and strain distribution by 
cluster 
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Table 15: Distribution of bacterial isolate characteristics by infection localization, 
clinical presentation and cluster 
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  Parameter # of XY 
Pairs 

Spearman 
r 

p-value  
(two-tailed)  

  
Neutrophils (/uL) 87 0.61 < 0.0001 

 
  

Neutrophil % 87 0.49 < 0.0001 
 

  
WBC 93 0.48 < 0.0001 

 
  

CRP (mg/dL) 87 0.43 < 0.0001 
 

  
Bands 49 0.33 0.0205 

 
  

RDW (%) 92 0.30 0.0035 
 

  
Monocytes(/uL) 87 0.24 0.0229 

 
  

MCV (um3) 92 0.16 0.1277 
 

  
MPV (um3) 90 0.13 0.2169 

 
  

ESR 68 0.13 0.2942 
 

  
Basophils (/uL) 42 0.13 0.4169 

 
  

Eosinophils (/uL) 72 0.11 0.339 
 

  
Platelets (1000/mm3) 92 0.02 0.8824 

 
  

MCH (pg) 92 0.00 0.9741 
 

  
Monocytes % 87 -0.10 0.3708 

 
  

Basophils % 42 -0.12 0.4614 
 

  
Lymphocytes (uL) 87 -0.21 0.0521 

 
  

Eosinophils % 72 -0.23 0.0542 
 

  
Hematocrit  (%) 92 -0.24 0.022 

 
  

MCHC (g/dL) 92 -0.26 0.0123 
 

  
Hemoglobin (g/dL) 92 -0.27 0.0092 

 
  

RBC (106/mm3) 92 -0.28 0.0068 
 

  
Onset Index 96 -0.35 0.0004 

 
  

Draw Index 99 -0.39 < 0.0001 
 

  
Lymphocyte % 87 -0.60 < 0.0001 

 

  

WBC: white blood cell count; CRP: C-reactive protein; RDW: red blood cell distribution 
width; MCV: mean corpuscular volume; MPV: mean platelet volume; ESR: erythrocyte 
sedimentation rate; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular 
hemoglobin concentration; RBC: red blood cell count;              
 
                                                                                                                                                                   

 Table 16: Spearman correlations between MDTH and clinical parameters 
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 Local Invasive Disseminated Kruskal-Wallis Test 

 Median Min Max Median Min Max Median Min Max Chi 
Square 

Pr >  
Chi-Square 

WBC (/ µL) 10100 4800 16700 9550 3400 33300 15850 3200 24400 3.52 0.172 

Neutrophils (%) 51.35 12 64 54 12 84 59 37 87 2.85 0.241 

Neutrophils (/uL) 4913.3 1212 10688 5225.6 735 22400 8177 1792 18056 4.06 0.131 

Lymphocyte (%) 37.8 21 72 33 5 71 24 5 46 8.01 0.018 

Lymphocytes (uL) 3821.7 2040 7272 3080 442 13320 2726 896 4641 3.86 0.145 

Monocytes (%) 6.95 3 13.7 8 2 17 9 1 21 0.56 0.757 

Monocytes (/uL) 624.8 303 2004 777.6 136 3486 809.6 81 3402 1.70 0.428 

RBC (106/mm3) 4.4 3.71 5.65 3.9 1.27 5.16 3.86 2.6 4.47 10.02 0.007 

Hemoglobin (g/dL) 12.25 10.1 13.4 10.4 3.4 13.7 10.85 7.5 12 10.74 0.005 

Hematocrit (%) 35.05 32.1 40.3 30.7 11.1 39.7 32 22.1 36.3 11.27 0.004 

MCV (um3) 80.8 56.8 97.6 80.8 70.7 93.7 83.55 76.2 91.2 3.49 0.175 

MCH (pg) 27.95 17.9 33.4 27 22.9 31.6 28.6 25.5 30 6.01 0.050 

MCHC (g/dL) 34.3 31.5 35.9 33.4 30.6 35.7 33.6 32.5 34.9 3.69 0.158 

RDW (%) 12.6 12.2 16.9 13.4 11.6 19.4 13.95 12.6 15.6 6.29 0.043 

MPV (um3) 9.8 8.8 12.4 9.3 7.7 11.4 9.8 8.8 15 5.50 0.064 

Platelets  (1000/mm3) 331.5 191 419 440 83 880 391 136 578 10.02 0.007 

ESR 37.5 8 76 71 15 142 69.5 17.3 123 10.09 0.006 

CRP (mg/dL) 2.2 0.1 10.8 5.95 0.1 42.8 20.6 2.3 31.6 8.82 0.012 

Hospitalization Duration 3 1 9 9.5 5 98 21 13 56 35.88 <.0001 

Draw Day 3 1 6 5.5 1 16 7 1 35 10.60 0.005 

Draw Index 1 0.6 1 0.49 0.06 1 0.27 0.04 0.66 23.43 <.0001 

Onset to Draw 6 4 9 10 4 37 11 3 35 12.21 0.002 

Onset Index 1 0.75 1 0.66 0.1 1 0.38 0.11 0.61 29.59 <.0001 

 

 

Table 17: Clinical parameters for patients grouped by infection localization  
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 Osteoarticular Pneumonia Mann-Whitney Test 

 Median Min Max Median Min Max Z Two-sided 
Pr > |Z| 

WBC (/ µL) 9200 3400 21600 22100 5100 28100 3.83 0.0001 
Neutrophils (%) 52 15 87 64 37 84 1.28 0.2005 
Neutrophils (/uL) 5040 1066 18144 13786 2448 22400 3.43 0.0006 
Lymphocyte (%) 34 6 71 22.5 5 39 -1.94 0.0522 
Lymphocytes (uL) 2810.1 442 9333 3840 1400 10959 0.98 0.3293 
Monocytes (%) 7 2 16.2 7 3 13 -0.29 0.7682 
Monocytes (/uL) 738 136 1896 1172 357 3315 2.39 0.0168 
RBC (106/mm3) 3.78 1.27 5.16 4.05 2.37 4.39 0.49 0.6257 
Hemoglobin (g/dL) 10.4 3.4 13.7 10.5 7.3 12.4 0.39 0.6934 
Hematocrit (%) 30.55 11.1 39.7 31.8 22.2 36.3 0.70 0.4816 
MCV (um3) 80.75 70.7 89 81 74.5 93.7 0.50 0.6191 
MCH (pg) 27.15 22.9 30.5 27 24.6 31.6 -0.07 0.9476 
MCHC (g/dL) 33.5 30.6 35.7 33 31.3 34.6 -1.18 0.2366 
RDW (%) 13.3 11.6 19.4 13.7 12 17.6 1.10 0.272 
MPV (um3) 9.3 7.7 11.4 9.5 8.4 10.5 0.16 0.8708 
Platelets  (1000/mm3) 448 83 830 398 136 880 -0.06 0.9551 
ESR 85.5 15 142 54 44 75 -2.08 0.0378 
CRP (mg/dL) 4.9 0.1 42.1 13.9 0.4 27.8 1.27 0.2043 
Hospitalization Duration 10 5 98 11 6 24 0.07 0.945 
Draw Day 6 2 16 4 1 12 -0.75 0.451 
Draw Index 0.44 0.06 1 0.27 0.08 1 -0.85 0.394 
Onset to Draw 10 4 37 9 6 18 -0.47 0.6419 
Onset Index 0.64 0.1 1 0.62 0.27 1 -0.47 0.6371 

 

Table 18: Clinical parameters for patients grouped by clinical presentation  
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CHAPTER 5: DEVELOPMENT OF A MODULAR FRAMEWORK FOR THE 

ANALYSIS OF ANTIGEN-PRESENTING CELL TRANSCRIPTIONAL 

RESPONSES TO PATHOGEN IN VITRO 

 

Introduction 

The analysis of PBMC and whole blood transcriptional programs in patients with 

S. aureus infections helped us identify a global signature of infection characterized by 

significant enrichment in transcripts linked to innate immunity. This pro-inflammatory 

signature correlated with increased numbers of circulating myeloid cells, including 

neutrophils, monocytes and dendritic cells, as detected by correlations with complete 

blood count and flow cytometry measurements. Patient-by-patient modular fingerprinting 

also revealed a significant degree of qualitative and quantitative transcriptional 

heterogeneity between patients, which we could associate with the dissemination of 

infection, the type of clinical presentation, and the time in the course of the infection.  

The modular analytical framework approach helped us interpret the ex vivo blood 

fingerprint from hundreds of patients by reducing data dimensionality from 48,000 

transcripts per sample to 28 modules for PBMC and 62 modules for whole blood. 

Because these modules were derived from heterogeneous cell populations with very 

distinct transcriptional programs, they lead to a cell-centric interpretation of the data. 

Thus, in S. aureus infection, the signature is characterized by over-expression of the 
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neutrophil, myeloid and hematopoietic cell modules, and an under-expression of the T 

and B cell modules. Innate and adaptive immune cells however sense and respond to 

pathogens through different pathways, based on the receptors involved in sensing threats, 

as discussed in introduction. The high coverage / low resolution picture provided by 

PBMC and whole blood modules limits our interpretation of cell-intrinsic mechanisms of 

response to infection.  

To increase the resolution of our analysis on these innate pathways while 

leveraging the complexity-reducing capacity of the modular approach, I developed a new 

analytical framework, built in the context of in vitro-activated myeloid cells. In this 

highly controllable experimental set up with limited tissue heterogeneity, monocyte-

derived dendritic cells cultured in the presence of various inflammatory cytokines, were 

subsequently activated for 6 hours with an array of innate immune stimuli targeting 

TLRs, cytoplasmic receptors and cytokine receptors. Microarrays were obtained and this 

large dataset was used as reference to generate a new set of innate immunity modules. I 

characterized these modules using both knowledge-based and data-driven approaches. I 

then applied this framework to compare the transcriptional responses induced in 

monocyte-derived dendritic cells by Staphylococcus aureus (gram-positive bacterium), 

Salmonella enterica (gram-negative bacterium) and Influenza virus (H1N1).     
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Results 

Development of a modular framework of the analysis of antigen-presenting cells 

transcriptional networks 

In order to study transcriptional networks induced in antigen-presenting cells in 

response to innate stimuli, we generated a 353 sample microarray dataset (Table 19) from 

monocyte-derived IL-4 DC, IFN-alpha DC and IL-15 DC activated for 6 hours in vitro 

with stimuli designed to target various PRR and their downstream signaling cascades 

(Table 20). These three cytokines mimic various inflammatory conditions and result in 

antigen-presenting cells with distinct functional phenotypes. IL-4 provides a Th2-like 

environment conducive to the induction of B cell responses and defense against extra-

cellular pathogen. IFN-alpha on the other end is used to mimic viral infection conditions, 

and is thought to favor the induction of Th1 and CD8+ cytotoxic T cell responses. 

Finally, IL-15 is thought to confer Langerhans-like phenotype to monocyte-derived DC. 

We stimulated cells with TLR2, TLR3, TLR4, TLR5, TLR7, TLR8, TLR9, RIG-

I, NOD2, IFNA Receptor, TNF Receptor, IL-1 Receptor, IL-10 Receptor, IL-15 Receptor 

and IL-21 Receptor ligands. We also stimulated cells with whole live viruses, including 4 

strains of H1N1 Influenza (H1N1 A/Brisbane/59/2007, H1N1 A/California/04/2009, 

H1N1 A/Netherlands/602/2009, H1N1 A/PR/8/34), and 2 strains of Human 

Immunodeficiency Virus (HIV LAV and HIV JRCSF). Additionally, we stimulated cells 

with two influenza vaccines (Influenza Virus Vaccine Fluzone 2009-2010, and Influenza 

A H1N1 2009 Monovalent Vaccine, Sanofi). Finally, we stimulated cells with heat-killed 

bacteria, including 2 gram-negative pathogens (E. coli and P. gingivalis) and 2 gram-
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positive pathogens (S. aureus and L. monocytogenes). The 6-hour transcriptional profile 

of these stimulated DC was characterized by microarray. Figure 27 summarizes the 

development of the DC modular framework.  

This reference dataset was actually composed of samples from 6 different 

experiments run over the course of 3 years (Table 19). While the platform remained the 

same during this time (Illumina HT12-v3 bead arrays), significant batch effect was 

observed between datasets, as observed by principal variance component analysis 

(PVCA). This screening method allows the identification of prominent sources of 

variability (biological or technical) within microarray datasets.  In this case, 46.9% of the 

total variance was attributed to a sample’s dataset of origin (Figure 28A). This was 

highlighted by elliptical fit of the scatter plot by dataset number (Figure 28B), where 2 

datasets clearly segregated away from the 4 other ones. Following the batch effect 

correction method employed in the ex vivo whole blood study (Chapter 4), we applied 

CombatR to the DC in vitro reference dataset to correct for batch effect. This reduced the 

variance due to dataset number to 0% (Figure 28C), removing the pre-correction 

segregation on the elliptical fit of the PCA scatter plot (Figure 28D).  

After batch correction, the 353-sample reference dataset was filtered for 

transcripts absent in all samples, as defined by the Illumina signal detection p-value. This 

yielded 22,916 out of about 48,000 transcripts present in at least one samples, leaving 

approximately 8.1 million data points to study. A module extraction algorithm adapted 

from the one described originally for PBMC was applied to this batch-corrected dataset. 

The algorithm is described in details in the methodology section as well as in Figure 29.  
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Briefly, the algorithm first normalizes each sample to its medium RPMI control 

within each of the 6 original datasets considered. It then scores the expression of each 

transcript for each activation condition, assigning 1 for over-expression, -1 for under-

expression and 0 for no change, as compared to the corresponding RPMI-activated 

control. Clusters of transcripts are then identified within each of the 6 original datasets. 

The algorithm then builds a matrix that identifies how many times each pair of transcripts 

co-cluster over these 6 datasets (a score between 0 and 6 is thus assigned to each possible 

transcript pair). Finally, a network is built, connecting transcripts according to the score 

obtained in the matrix, and the algorithm goes recursively through the network to identify 

groups of transcripts most strongly connected. Once a group is identified, it is defined as 

a module, the transcripts are removed from the list, and the network is rebuilt for further 

iteration.  This approach yielded 180 modules subsequently treated as single 

transcriptional units, thereby reducing the number of data points to analyze to 63,540.  

 

Functional characterization of modules 

Knowledge-based annotations are limited by: i) the bias of the available 

literature; ii) the bias of the interpreter; iii) the incomplete understanding of the role 

molecules play in a system. In order to provide an unsupervised data-driven functional 

interpretation of modules, I classified them according to their level of expression 

following DC activation with innate immune stimuli.  

To this end, hierarchical clustering of modules based on expression across these 

stimuli was conducted (Figure 30). Two major groups of modules first separated: 44 
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modules that were globally over-expressed in response to stimulation, and 136 modules 

that were under-expressed in response to most stimuli. The 44 over-expressed modules 

(Appendix C) could be further partitioned into 2 sub-groups based on their response to 

viral stimuli (viruses, nucleid acids) and bacterial stimuli (heat-killed bacteria, bacterial 

cell wall components) (Figure 31). The modules associated with interferon and antiviral 

responses clustered together and were over-expressed in response to TLR3 (Poly I:C, Flu 

viruses), TLR4 (LPS, HKEC), TLR7 (R837, R848, CL097), TLR8 (R848, CL097), RIG:I 

(Poly I:C LMW-Lyovec) and IFN-alphaR (IFN-alpha) stimuli. The inflammatory and 

antibacterial response modules formed a second cluster, with over-expression in response 

to bacterial stimuli and pro-inflammatory cytokines such as IL-1-beta and TNF-alpha.  

 In addition to identifying clusters of modules with transcriptional and functional 

connections, this data-driven categorization approach permitted us to assess the signaling 

quality and quantity of the various stimuli under study. Poly I:C, IFN-alpha and Poly I:C 

LMW-Lyovec only induced interferon response modules. Conversely, gram-positive 

stimuli (HKSA, HKLM) and pro-inflammatory cytokines (IL-1beta, TNF-alpha) only 

induced inflammatory response modules. Gram-negative stimuli induced both interferon 

and inflammatory response modules. Flu viruses and vaccines induced the interferon 

response modules and a subset of inflammatory response modules. Finally, stimuli such 

as CpG, HIV, IL10, IL-15 and IL-21 induced little transcriptional activity in monocyte-

derived DC after 6h activation.   

 

The DC development environment influences transcriptional responses to stimuli 
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To assess the influence of the development environment on monocyte-derived 

DC, monocytes were cultured in the presence of three distinct cytokines, IL-4, IFN-alpha 

and IL-15. PCA analysis of all 353 samples revealed strong segregation by cell 

population, IFN-alpha DC and IL-4 DC showed the most different patterns (Figure 32A). 

To simplify the analysis and because the IL-15 DC activation dataset was incomplete, I 

focused on the IL-4 DC versus IFN-alpha DC comparison. Module fingerprinting of IFN-

alpha and IL-4 DC revealed increased baseline expression of anti-bacterial (M5.52, 

M6.56) and inflammatory response modules (M6.27, M.6.56) in IL-4 DC and increased 

cell maturation in IFN-alpha DC (Figure 32B). Statistical transcript-level analysis yielded 

1,136 differentially expressed transcripts between the two populations (Figure 32C). 

Ingenuity Pathway Analysis (IPA) identified enrichment of pathways related to anti-

bacterial response in IL-4 DC (complement system, coagulation system, recognition of 

bacteria) while IFN-alpha DC were enriched for antigen presentation, DC maturation and 

NK cells crosstalk pathways (Figure 32D).  Transcriptional profiling of PAMP receptor 

baseline expression identified increased expression of bacterial detectors TLR2, TLR4, 

TLR5, CD14, NOD2 in IL-4 DC (Figure 32E), highlighting their anti-bacterial potential. 

We then compared the modular fingerprint of each DC population after 6-hour 

challenge with innate stimuli (Figure 33A). Significant differences were observed in 

response to Poly I:C, IFN-alpha, R837, MDP and flagellin (Figure 33B). IL-4 DC 

showed reduced signature in response to Poly I:C and R837. Conversely, IFN-alpha DC 

responded poorly to IFN-alpha, flagellin, IL-1b and MDP stimulation. More subtle 

differences between cell subsets were also observed, with IL4 DC not displaying over-

expression of a subset of IFN-related modules (M6.12, M6.15, M6.21, M6.61, M6.66) in 
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response to live flu viruses (Figure 33). These observations support the use of this 

modular framework to characterize the functional capacity of myeloid cell subsets in 

response to innate stimuli.  

 

Heterogeneous transcriptional responses to whole pathogens 

 After using well-defined artificial PAMP ligands to characterize the module 

response to stimulation in a data-driven fashion, I applied this analytical framework to 

study the in vitro DC population response to activation with three clinically relevant  

pathogens: a virus (Influenza H1N1), a gram-negative bacterium (heat-killed Salmonella 

enterica, HKSE) and a gram-positive bacterium (heat-killed Staphylococcus aureus, 

HKSA). Transcriptional profiles were obtained longitudinally for both IFN-alpha and IL-

4 DC, at 1, 2, 6, 12 and 24 hours after stimulation. 

 To better understand the modular fingerprints induced by these different 

pathogens, I first determined which modules could be specifically induced by one, two or 

all three pathogens in the two DC populations at the 6h time point (Figure 34). The 

pathogen-specific module selection process is detailed in Figure 34A and Figure 34B. 

Overall, flu mostly induced IFN response modules, while HKSA induced inflammatory 

and anti-bacterial modules (Figure 34C). The gram-negative HKSE was able to induce 

both responses, as expected from the TLR4 capability to signal both through MyD88 

(inflammation) and TRIF (interferon).   

 Interestingly, only a few modules were specific for a single pathogen, 

highlighting the capacity of distinct infectious agents to elicit a broad array of 
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transcriptional responses. Only M6.37 (CXCL5, STAT3), a module linked to neutrophil 

chemottraction, was specifically induced by the gram-positive HKSA in IL4 DC. 

Similarly, only the gram-negative HKSE was able to induce the maturation module 

M5.54 (CD86) in IFN-alpha DC. The specific IFN response modules M5.53 and M6.61 

(UNC93B1, CCL13) induced by flu but not HKSE in IFN-alpha DC also suggest 

separation of the IFN response through multiple pathways. 

 As suggested by their baseline transcriptional phenotype, IL-4 DC showed 

limited response to flu, with only 6 modules induced by the virus, as opposed to 18 

modules induced in IFN-alpha DC. Considering the absence of response of IL-4 DC to 

Poly I:C and R837 (Figure 33B), it is likely that these programs are elicited through 

TLR3 and/or TLR7.  

 
Heterogeneous kinetics of response to viruses and bacteria 

 So far, the analysis of DC transcriptional profiles in response to innate stimuli 

focused on the 6-hour time point. To gain a better understanding of the kinetics of 

module expression, I obtained the transcriptional profiles from IFN-alpha and IL-4 DC in 

response to H1N1, HKSE and HKSA at 1h, 2h, 6h, 12h and 24h (Figure 35A). Filtering 

of the 44 modules over-expressed identified 40 modules that were over-expressed 

(>=30%) in at least one experimental condition.  

Hierarchical clustering of these modules (Figure 35B) clearly separated 

inflammatory / anti-bacterial modules and interferon / anti-viral modules. Differences in 

kinetics between pathogen were observed. Bacterial pathogens were able to induce 

modular fingerprints as early as 1 hour in both IL-4 and IFN-alpha DC (M5.11, M5.49), 
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while no module was detected before the 6h time point in response to flu activation in 

either DC population. While we cannot exclude an inoculum or dose effect, this delay in 

response to viral pathogens is likely due to the need for internalization for detection, 

while bacterial pathogens can be readily sensed by cell surface receptors.  

While IFN-alpha and IL-4 DC displayed very similar transcriptional kinetics in 

response to HKSE and HKSA, they responded differently to flu. The virus induced a 

strong IFN response in IFN-alpha DC, which developed between 2h and 6h, and was 

sustained up until 24h. No effect of the virus on anti-bacterial programs was observed in 

IFN-alpha DC. In IL-4 DC, flu not only induced a weaker IFN response, but also strongly 

down-regulated inflammatory and anti-bacterial modules, this being most evident at 12h. 

This observation supports the ability of viruses to alter anti-bacterial programs through 

cell-intrinsic mechanisms, which may be relevant in the context of secondary bacterial 

infections, following flu-like infection.  

To better understand the temporal distribution of module activity, I identified 

major modular kinetic patterns for a single pathogen in IL-4 DC. I chose HKSE, because 

it could activate both IFN and inflammatory responses, and because these responses were 

similar in both DC populations. A clustering approach known as the self-organizing tree 

algorithm (SOTA)191 identified 11 patterns of transcription over time (Figure 36A). The 

patterns obtained are represented in Figure 36B and cluster composition is summarized in 

Table 21. The earliest responses observed, as early as 1 hour after activation, involved 

modules from the clusters in the first row of Figure 36B. These included inflammatory 

response modules M5.11, M6.51 and M6.16, containing transcripts such as IL1A, IL1B, 

TNF, IL6, IL8, IL15 and NFKB, as well as IFN response modules M4.14, M5.49, M5.29, 
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M5.61 and M6.52, containing transcripts such as IRF1, IFITs, CXCL10, DHX58 and 

DDX60. The second wave of activation, detectable after 2 hours, includes modules 

related to maturation (M5.54), T cell activation (M3.4, M4.24), anti-bacterial response 

(M6.67, M5.52, M6.28) and regulation of inflammation (M5.16, M5.23, M6.43). Finally, 

clusters #1, #4 and #5 were activated later, starting after 2 hours, and contained modules 

linked to DC maturation (M5.50, M6.25), T cell activation (M6.8), and regulation of 

apoptosis (M6.30). 

   
Application of DC modules to ex vivo whole blood samples in human disease 

 This modular framework was developed from in vitro monocyte-derived DC 

datasets, and applied so far to further decorticate early transcriptional responses of these 

cells to infectious pathogens in vitro. I then asked whether this analytical tool could be 

used in whole blood ex vivo samples to refine our understanding of inflammatory 

pathways involved in disease pathogenesis. I selected samples from 8 diseases, including 

viral infections (Influenza A, acute HIV, RSV), bacterial infections (S. aureus, 

melioidosis caused by the gram-negative bacterium Burkholderia pseudomallei, acute 

tuberculosis) and autoimmune diseases (SLE and SoJIA). The sample distribution is 

summarized in Table 22.  

 DC module fingerprints were obtained for each disease, using their respective 

group of healthy controls as reference. The 44 modules that display over-expression in 

response to in vitro stimuli were then filtered to retain 35 modules induced (>=30%) in at 

least one of the disease conditions. Hierarchical clustering of these modules revealed 

common and specific innate signals induced in these diseases (Figure 37). Of interest, 
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most diseases (but S. aureus) displayed over-expression of a subset of IFN response 

modules (M5.29, M4.14, M5.50, M6.52, M4.15, M5.61, M6.26). A second group of IFN 

modules were only induced in flu, HIV and SLE (M5.57, M5.53, M5.33, M6.12, M6.17), 

highlighting the further partitioning of the IFN/antiviral response. Some modules were 

only induced in a single disease, such as M6.35 (IFN-alphas) in flu, M4.20 

(inflammation) in RSV, M5.16 (regulation of inflammation) in SoJIA, or M6.30 

(regulation of apoptosis) in HIV infection.  

Clustering of disease inflammatory profiles revealed degrees of similarity 

between conditions. Not unexpectedly, the bacteria B. mallei and S. aureus clustered 

together, although the gram-negative pathogen could induce a broader IFN response. The 

acute viral infections cause by influenza and HIV displayed similar profiles, and 

clustered with SLE. RSV however, did not resemble other viral fingerprints and was the 

only condition with absent IRF1 (M5.49) or UNC93B (M6.61) induction. Interestingly, 

the IL-1-mediated rheumatoid disease SoJIA, clustered with tuberculosis, and with 

monocyte-derived activated DC activated with MDP (data not shown), suggesting the 

involvement of NOD2 in disease pathogenesis.  

 

Increased frequency of compartmentalization and lipid metabolism transcripts in S. 

aureus patients 

Finally, I selected all modules over-expressed in S. aureus infection, and asked 

whether these patients displayed a specific signature when compared to the seven other 

diseases considered. 30 modules were selected (≥30%) and hierarchical clustering was 
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conducted (Figure 38, ex vivo panel). The clustering pattern revealed 3 major groups of 

modules: i) a set of 6 IFN modules, over-expressed in all diseases (lower cluster); ii) a 

group of 9 modules linked to inflammatory and antibacterial responses, induced in 

“bacterial” diseases (S. aureus, Tuberculosis, Melioidosis) and SoJIA (middle cluster); 

iii) A group of 15 modules (upper cluster) that are specifically over-expressed in the 

blood of patients with S. aureus infection but not other diseases. These modules were 

highly enriched in transcripts linked to either cellular compartmentalization (endocytosis, 

phagocytosis, vesicle trafficking) or lipid metabolism. These S.aureus-specific modules 

were not part of the 44 ones that are consistently over-expressed in response to in vitro 

stimuli, and were not over-expressed in vitro in IL4 DC in response to TLR ligands and 

HKSA (Figure 38, in vitro panel). They seem to represent elements of S. aureus 

pathogenesis that are not reflected in our in vitro DC model.  
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Figure 27: Development of a modular analytical framework to study dendritic cell 

transcriptional profiles  
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A. Analytical framework development workflow. Human monocytes obtained from 

healthy donor apheresis frozen fraction 5 were first differentiated in vitro in IL-4 DC, 

IFN-alpha DC or IL-15 DC. After culture, cells were activated for 6 hours with a variety 

of innate immune stimuli, including TLR ligands, cytokines, vaccines, viruses and heat-

killed bacteria. A reference microarray dataset was generated and a computer algorithm 

identified 180 transcriptional modules. Module expression for each of the stimuli in each 

DC population was assessed on an individual basis, and fingerprints were derived. 

Modules were then annotated using both knowledge-based and data-driven approaches. 

B. Generation of three subsets of monocyte-derived DC. C. Activation of DC by various 

stimuli and generation of a reference microarray dataset. D. Module extraction and 

fingerprinting of stimuli-induced DC signatures. E. Example of modular expression 

patterns across the 353 reference samples.  
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Figure 28: Reference dataset batch correction.  

A. Pie-chart representing the results of principal variance component analysis (PVCA) 

including 5 parameters: activation, dataset, cell population, chip number and donor. 

Percents are represented. B. Elliptical fit of scatter plot representing the segregation of 

samples by dataset before CombatR correction. C. Pie-chart representing the results of 

PVCA after CombatR correction for the dataset parameter. D. Elliptical fit of scatter plot 

representing the segregation of samples by dataset after CombatR correction. 
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Figure 29: Module construction algorithm.  

The details of the algorithm are available in the methods section.  
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Figure 30: Hierarchical clustering of 180 modules according to their response to 

innate stimuli.  

Module expression was obtained for each of the 36 stimuli considered in this study. 

Hierarchical clustering (Pearson correlation) was conducted for modules and stimuli. 

Stimuli were colored according to their category (nucleic acid, virus, vaccine, bacterial 

cell wall component, gram-positive bacteria, gram-negative bacteria, cytokine, other or 

control) 
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Figure 31: 44 modules over-expressed in response to innate stimuli. DC fingerprint in 

response to innate stimuli after 6h stimulation.  
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Figure 32: Baseline differences between IFNa DC and IL-4 DC 

A. Principal component analysis of the 353 reference samples colored by cell population. 

B. Top 10 modules differentially expressed between IFNa and IL-4 DC. IFNa DC are 

used as reference. C. Heatmap representing the hierarchical clustering of 1,136 

transcripts differentially regulated between IFNa and IL-4 DC activated with RPMI 
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medium for 6h (Welch t-test, p-value cutoff 0.01, Benjamini-Hochberg false discovery 

rate, 3x up/down). D. Top 10 enriched pathways amongst genes over-expressed in IFNa 

DC (green) and IL-4 DC (yellow) identified by Ingenuity Pathway Analysis. E. Bar 

charts representing the log10 raw expression value of selected PAMPs in IFN-

alpha (green) and IL-4 DC (yellow) at baseline. 
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Figure 33: IFNa and IL-4 DC respond differently to viral and bacterial stimuli 
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A. Modular fingerprints of IFNa and IL-4 DC in response to innate immune 

stimuli. Modules greater or equal to 30% or less than or equal to -30% are 

represented. B. Scatter plots of module expression data in IL-4 DC (x-axis) and 

IFNa DC (y-axis) highlighting differences in response to bacterial and viral 

stimuli between the two cell populations.  
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Figure 34: Identification of pathogen-specific 6h modular fingerprints in IFNa DC 

and IL-4 DC 
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A. Schema representing the color-schemes associated with module specificity by 

single or combinations of pathogens. B. Table detailing the threshold values 

selected to classify modules. C. Pathogen-specific modular fingerprint for IFNa 

DC (average of 3 donors). D. Pathogen-specific modular fingerprint for IL-4 DC 

(average of 3 donors). 
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Figure 35: Heterogeneous transcriptional kinetics of IFN-alpha and IL-4 DC in 

response to pathogen 
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A. Description of the in vitro DC infection time course experiment. IFN-alpha and IL-4 

DC from 3 different donors were generated and activated in vitro for 1h, 2h, 6h, 12h or 

24h with flu (H1N1), HKSE or HKSA. B. Modular fingerprints for each DC population, 

organized by pathogen and ordered by increasing time point. Data represents the average 

of 3 donors. Each sample is normalized to its own media control (same donor, same cell 

population, same time point). 
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Figure 36: Kinetic profiles in HKSE-activated IL-4 DC 

A. Self-organizing tree algorithm (SOTA) dendrogram representing the 11 longitudinal 

transcriptional profiles identified amongst modules over-expressed in at least one of the 

pathogen-activated DC time points. B. Line charts representing all modules (grey) for 

each profile. The average profile is represented in red. 
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Figure 37: Application of DC modules to ex vivo whole blood datasets 
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Hierarchical clustering of DC modular fingerprints (Pearson) extracted from whole blood 

datasets from 6 infectious diseases (gram-negative sepsis melioidosis, community-

acquired S. aureus, acute tuberculosis, influenza A, acute HIV, RSV) and 2 autoimmune 

diseases (SLE and SoJIA). Each disease group was normalized to its own healthy control 

group. The 35 modules displayed are over-expressed (>=30%) in at least one of the 

conditions.   
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Figure 38: Lipid metabolism and endocytosis modules are over-expressed in patients 

with S. aureus infection 

Hierarchical clustering (Pearson) of the 30 modules over-expressed (expression ≥ 30%)in 

the blood of patients with S. aureus infection and compared with the ex vivo whole blood 

signatures from other disease groups and in vitro signatures of IL4 DC stimulated for 6 

hours with TLR ligands and heat-killed S. aureus (HKSA).     
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Table 19: Reference datasets used for the generation of antigen-presenting cell 

modules  
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Table 20: DC stimuli summary 
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Table 21: DC time course SOTA results by cluster 
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Dataset Pathogenesis Patient 
Count 

Healthy 
Control Count Platform 

Influenza A Virus 21 14 Illumina HT12 V3 
HIV Virus 28 35 Illumina HT12 V3 
RSV Virus 52 14 Illumina HT12 V3 

S. aureus Gram+ 
Bacteria 99 44 Illumina HT12 V3 

Burkholderia Gram- 
Bacteria 18 5 Illumina HT12 V3 

Acute Tuberculosis Mycobacteria 23 11 Illumina HT12 V3 
SLE Autoimmune 55 14 Illumina HT12 V3 
SoJIA Autoimmune 62 23 Illumina HT12 V3 

 

Table 22: Whole blood disease dataset summary 
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CHAPTER 6: DISCUSSION & CONCLUSIONS 

 

Summary 

 The work presented herein relied on the use of systems biology approaches to 

study the status of the host immune system in response to S. aureus infection. To this 

end, the transcriptional profiles of PBMC and whole blood from patients with 

community-acquired S. aureus infection were characterized by microarray and and 

leukocyte population frequencies assessed by polychromatic flow cytometry.  

Furthermore, an in vitro system of antigen-presenting cell stimulation with various 

pathogens, including S. aureus as well as other bacteria and viruses, was used to identify 

early inflammatory programs induced in innate immune cells in response to infection.  As 

these high-throughput comprehensive approaches generate large amounts of data, I relied 

on a collection of modular frameworks to analyze and interpret the ex vivo and in vitro 

fingerprints obtained. This approach first led us to identify the global signature of S. 

aureus infection in PBMC and correlate it with frequencies of circulating leukocyte 

populations. I then expanded these observations in whole blood, focusing on 

transcriptional correlates of clinical heterogeneity. Finally, I developed an in vitro APC 

analytical framework based on the response of monocyte-derived DC to a variety of 

pathogens and simpler stimuli, to identify the different components of the inflammatory 

response in infection.    
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Transcriptional profiles of PBMC from patients with S. aureus infection 

The versatility of S. aureus has allowed emergence of highly resistant and 

virulent bacterial strains in the community172. Its pathogenicity is in part due to its 

repertoire of virulence factors and proclivity for tissue and endovascular invasion, 

destruction, and dissemination while simultaneously evading multiple components of the 

innate immune system and secreting immunomodulatory proteins that compromise both 

humoral and cell-mediated immunity172,192,193. Little is known about the relationship 

between the human host and S. aureus during invasive infections, which lead us to carry 

out the studies presented herein. We applied a systems biology approach utilizing both 

gene expression microarray profiling and corresponding flow cytometry analyses to 

assess the host immune status during infection.  

By conducting several different step-wise analyses, the gene expression profile of 

patients with invasive S. aureus infections was defined and its robustness validated 

among distinct patient populations and across microarray platforms. Modular analysis 

demonstrated significant activation of host genes related to the innate immune response 

with increased expression of genes related to inflammatory processes and cells of the 

myeloid lineage and significant under-expression of genes related to the adaptive immune 

response. Although the over-expression of the innate immune response genes was not 

unexpected193,194, the striking and consistent decreased expression of B and T cell-related 

genes was less anticipated. 

There is limited and conflicting information regarding the numbers of 

lymphocyte populations in patients with acute S. aureus infections195-197. In one study, 
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patients with S. aureus and S. pneumoniae sepsis showed significantly decreased 

numbers of CD4+ and CD8+ T cells, and NK cells198, while in another, patients with 

MRSA superantigen-associated glomerulonephritis showed increased numbers of DR+ 

CD4+ and CD8+ T cells and NK cells198. Flow cytometry analyses were performed in our 

study subjects to better understand whether the changes observed in the gene expression 

patterns simply reflected alterations in immune cell numbers. Despite significant under-

expression of T and B cell-related genes observed in our patients with S. aureus 

infections, there were no differences in the absolute numbers of total B and T cells 

between infected patients and healthy controls in the PBMC study. At that time no 

consistent significant differences were seen between patients and controls across B cell 

subpopulations evaluated, however possible trends in transitional and pre-germinal B 

cells prompted us to increase our sample size. With subsequent addition of 14 patients, 

we detected a small yet significant increase in all circulating B cell populations 

(including transitional, naïve, and memory B cells), with the exception of plasma cells.  

Detailed analysis of the T cell sub-populations revealed decreased numbers of 

both central memory CD4+ T cells and CD8+ T cells, but no difference in the other T 

cell subsets in patients with S. aureus infection. Central memory T cells have been shown 

to have a high proliferative potential and to demonstrate in vivo persistence199,200. Our 

results demonstrated a decreased number of central memory T cells, suggesting a 

possible reorganization of the circulating T cell compartment that could also explain the 

reduced expression of T cell-related genes. With increased expression of CCR7 and 

CD62L, central memory T cells are programmed to preferentially migrate to lymphoid 

tissues to interact with other T and B cells in establishing a repertoire of effector 
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functions against the invading pathogen186. One possible explanation then, for the 

significant reduction in the numbers of circulating central memory T cells seen in our 

subjects with S. aureus infection may be central memory T cell homing to these 

secondary lymph organs. S. aureus expresses factors that promote its immune evasion 

and could also elicit this cellular imbalance. In vitro observations have demonstrated a 

shift from central memory to effector memory T cells in the presence of S. aureus 

enterotoxin186. Secretion of other superantigens by S. aureus, such as Map/Eap (MHC 

Class II analogous protein/extracellular adherence protein), bind to T cell receptors and 

directly thwart T cell responses by reducing T cell proliferation, altering effector 

functions, and stimulating apoptosis192. 

Alternatively, the under-expression of T cell genes may be due to an increase in 

other cell populations. Indeed, the monocyte compartment was expanded in average by 4- 

fold in patients with S. aureus infection and correlated with gene expression levels, 

providing a cellular correlate to the increased expression of innate immune genes in 

PBMC. Based on CD16 expression, circulating monocytes can be divided into 

functionally distinct subpopulations CD14+CD16- and CD14+16+ monocytes, which 

may have distinct roles in the innate immune response201. In S. aureus patients, there was 

a significant expansion of both monocyte subsets. Furthermore, the high levels of 

expression of genes generally associated with neutrophil functions, such as defensins, 

lactotransferrins, CAMP, and elastase, as seen in PBMC module M2.2, may originate 

from the CD14+16+ (CD62L-) monocytes subset, as has been previously described201. 

Although significant numbers of neutrophils are not generally present in PBMCs, low-

density neutrophils have been demonstrated and accounted for over-expression of 
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neutrophil genes in patients with SLE116. Despite using similar technical approaches, we 

were not able to detect neither these low-density immature neutrophils nor high-density 

neutrophils that could result from contamination in our samples. Studies with purified 

cell subsets will be necessary to understand the distinct transcriptional contribution from 

each population. 

 
Transcriptional profiles of whole blood from patients with S. aureus infection 

While the PBMC study allowed us to identify a signature of S. aureus infection 

common to all patients, it has several shortcomings. First, the transcriptional profiling of 

PBMC requires real time manipulation of fresh blood samples and is therefore not 

practical for large-scale studies and clinical applications. Second, cells depleted from 

PBMC such as neutrophils, which play a major role in the defense against S. aureus, 

might provide important information for the systemic characterization of these 

infections187. Finally, our initial study focused on defining molecular profiles common to 

all patients, and did not address signature heterogeneity in the context of clinical disease 

variability. 

To address these issues, we conducted a new study of whole blood transcriptional 

patterns in a new cohort of 99 pediatric patients with acute community-acquired S. aureus 

infections. The heterogeneity of clinical presentation, the acute nature of these infections, 

the complex treatment regimen and the delayed characterization of the pathogen rendered 

the study design and analysis of patient immune status during staphylococcal infections 

challenging. Using whole blood transcriptional profiling, we have identified both 
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conserved and heterogeneous elements of the signature that correlate with time elapsed 

since hospital entry, dissemination and clinical presentation.  

Supporting the observations from the PBMC study, the whole blood signature 

was characterized by significant over-expression of transcripts linked to the myeloid 

lineage and inflammation, and under-expression of transcripts linked to the lymphoid 

lineage. This reflects the large expansion of circulating neutrophils and monocytes during 

the acute phase of infection as detected in patient’s routine hemograms. Additionally, a 

family of transcripts linked to hematopoiesis and erythropoiesis were over-expressed is a 

subgroup of patients, perhaps due to an increased release of hematopoietic precursors 

from the bone marrow during acute infection202. We did not observe consistent changes 

in transcripts linked to the interferon response, suggesting that circulating leukocytes do 

not mediate response to S. aureus infection through this pathway, as was observed during 

active pulmonary tuberculosis133. It is however noticeable that 15 out of 99 patients 

displayed over-expression of the three IFN modules. All these patients but one tested 

negative for concomitant viral infections. While it is possible that this represents a 

signature of recently cleared viral infection, it could also reflect an activation of the IFN 

pathway to counter arrest the bacteria-induced pro-inflammatory milieu203.  

Currently, there is no established laboratory marker to objectively define the 

clinical disease severity in patients with S. aureus infections or to monitor the spread of 

the infection to multiple organs167. Transcriptional profiling highlighted global 

quantitative differences between patients with local or disseminated disease, supporting 

the potential role of microarrays and the associated quantitative MDTH in monitoring the 

spread of infection. We were also able to connect/correlate “molecular nodes” (modules) 



 

 
 

164 

with “clinical nodes” (laboratory parameters), suggesting that the patient’s transcriptional 

score for one or several modules could be used as an additional measure of hematopoiesis 

and systemic immune status during acute bacterial infections. Future studies should focus 

on the predictive value of these approaches in identifying patients at risk of infection 

dissemination, to adapt treatment accordingly. 

The heterogeneity of clinical presentation led us to analyze signatures on an 

individual basis. We approached this analysis from two angles. The traditional approach 

consisted in grouping patients according to clinical diagnoses, based on a classification 

defined by an independent clinician, and conduct statistical tests between clinically-

defined groups of patients. The other approach consisted in identifying groups of patients 

based on molecular profiles, without a priori knowledge of clinical classification. Both 

approaches identified groups (or clusters) of patients with various inflammation, blood 

cell distribution and infection stage. Molecular heterogeneity was observed both 

quantitatively (MDTH measurements) and qualitatively (clustering of patients and 

modules). The major transcriptional patterns identified included a pro-inflammatory 

myeloid signature, linked to blood draw early in the course of the diseases, high 

circulating neutrophil and monocyte counts and elevated CRP (C1). A second 

transcriptional pattern was characterized by an erythropoiesis signature with reduced 

myeloid components (C3). This erythropoiesis signature was observed by others in 

systemic onset juvenile idiopathic arthritis (SOJIA)190 and was proposed to reflect the 

expansion of immature precursor cells and ineffective erythropoiesis. The latter results in 

accumulation of iron204 in tissues, which has implications for bacterial survival. 

Alternatively, increased erythropoiesis may reflect increased tissue hypoxia in this group 
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of patients. Interestingly, a recent study suggested that erythropoietin (EPO) inhibits NF-

kB and TNFa-mediated pro-inflammatory pathways205. This observation could explain 

why patients from C3 displayed limited pro-inflammatory signature. Again, this could 

represent a bacterial survival mechanism, whereby increased erythropoiesis would 

prevent the development of an adequate pro-inflammatory response and subsequent 

bacterial clearance.  

Finally, we compared two distinct clinical presentations, pneumonia and 

osteoarticular infections, and found that patients with osteoarticular infections displayed 

over-expression of transcripts linked to blood coagulation. This supports previous studies 

demonstrating increased systemic coagulation in patients with musculoskeletal infections 

and their increased risk of developing deep venous thrombosis (DVT) and more severe 

pulmonary emboli206-208. Blood microarray profiling could thus serve as an additional 

readout of coagulation state and inform physicians about potential need for anti-coagulant 

treatment. Additionally patients with pneumonia displayed over-expression of genes 

involved in cholesterol synthesis, which has recently been described to be involved in 

neutrophil recruitment to the lung209. While it is difficult to differentiate an active process 

from a side-effect of immune activation, tracking cholesterol-related transcriptional 

programs in whole blood during acute pulmonary infection may be of interest to 

infectious disease clinicians as a potential biomarker to track systemic inflammation 

onset and resolution. 

Patients were recruited at different stages of hospitalization and the acute, intense 

nature of these infections may result in major changes in blood transcriptional signature 

over the course of infection. We addressed this issue by assessing how draw index and 
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disease onset index influenced the intensity of the signature. It confirmed that global 

signature intensity decreases as patients get closer to discharge independently of the 

localization of the infection or clinical presentation, suggesting that microrarray profiling 

reflects well the evolution of patient status during acute bacterial infections. Further 

longitudinal studies will be required to assess the predictive value of blood signatures 

regarding disease course and and clinical heterogeneity. Overall, blood transcriptional 

profiling stands as an all-in-one additional tool for clinicians and scientists to analyze the 

qualitative and quantitative systemic status of the host immune response/ immune system 

of patients with acute S. aureus infection. 

 
 
Transcriptional profiles of antigen-presenting cells activated by pathogen in vitro 

 The ex vivo studies in PBMC and whole blood highlighted the induction of innate 

inflammatory pathways in the leukocytes of patients with S. aureus infection. Increased 

frequencies of antigen-presenting cells, including mDC, pDC and most circulating B cell 

populations measured by flow cytometry during the PBMC study prompted us to develop 

an in vitro model of APC stimulation with S. aureus and other pathogens. To do so, we 

generated dendritic cells in vitro, derived from healthy donor monocytes cultured in the 

presence of GM-CSF and either of three cytokines (IL-4, IFNa and IL-15), to mimic 

various inflammatory conditions. These DC were subsequently stimulated for 6 hours 

with a variety of artificial ligands or whole pathogens targeting an array of innate 

immune receptors, and transcriptional profiles were measured by microarray. To analyze 

the large amount of data generated this way, I leveraged the module framework 
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technology used in both PBMC and whole blood studies to develop a new set of 

inflammatory DC modules.  I annotated the modules using a combination of knowledge-

driven and data driven approaches. I then applied this framework to compare the 

responses of IL-4 and IFNa DC to flu (H1N1 Brisbane), Salmonella enterica or 

Staphylococcus aureus in vitro. Finally, I applied this framework to ex vivo whole blood 

fingerprints from patients with various infectious or autoimmune diseases to further 

delineate inflammatory networks involved. 

 The extension of ex vivo whole blood analysis into an in vitro model of antigen-

presenting cell activation provided several additional benefits. The modular frameworks 

developed for PBMC and whole blood contained modules that represented very distinct 

leukocyte populations (T cells, plasma cells, myeloid cells, NK cells), or broad immune 

mechanisms (inflammation, IFN response), without much precision on the specific 

pathways involved. Interpretation of circulating leukocyte fingerprints with these 

frameworks resulted in signatures highly influenced by changes in cell population 

frequencies, as could be observed in both ex vivo S. aureus studies, with myeloid and 

inflammatory modules over-expressed. The development of modules from relatively 

homogeneous monocyte-derived DC populations stimulated in vitro resulted on the other 

hand in a collection of modules focused on dynamic cell-intrinsic innate immunity 

pathways, which provided additional breakdown of inflammatory and interferon 

responses.  

 The DC framework is an analytical tool with an array of potential applications, 

including: i) the enrichment of molecules involved in innate responses through module 

connectivity; ii) the characterization of pathogen components signaling pathways; iii) the 
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phenotyping of APC subsets at baseline or in response to in vitro stimulation; iv) the 

characterization of disease inflammatory components in circulating leukocytes. The 

application of this framework to whole blood transcriptional profiles from infectious and 

autoimmune diseases identified clear DC module fingerprints.  It is important to 

understand that these profiles cannot at this stage be attributed to a specific cell 

population in the blood, such as myeloid or plasmacytoid DC. The modules were 

obtained from monocyte-derived DC profiles, so it is likely that most circulating myeloid 

cells, including monocytes, blood DC but also neutrophils, could display changes in DC 

module fingerprints. It was previously observed that the interferon signature detected in 

the blood of patients with acute tuberculosis (which is also detected with the DC 

modules) mostly comes from neutrophils133. Future studies should explore the behavior 

of these transcriptional modules in sorted cell populations, in healthy and disease states. 

 To build the DC modules, I chose 6-hour as the reference time point, because it is 

late enough to detect the bulk of primary transcriptional responses, and early enough to 

avoid the confounding secondary transcriptional responses arising from positive and 

negative feedback loops. Huang et al105, who previously performed in vitro DC 

transcriptional kinetics, distinguished three waves of transcription (early, middle and late 

phases). Each wave is additionally split in genes that are either sustained or transient. By 

6 hours, only the early phase has reached its peak. The middle and late phase peak out 

around 12 and 18 hours respectively. Developing the modules using a 6-hour reference 

time point may thus have filtered out transcripts that are either induced early on and 

transiently (between 0 and 4h), as well as all transcripts appearing later than 6 hours. It is 

therefore important to understand the context of development of these frameworks and 
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consider non-selected transcripts during analysis. Future work should focus on 

developing frameworks that take into account kinetics of transcription. 

 Adapting an analytical framework developed from DC generated in vitro from 

human monocytes to the study of inflammatory components of whole blood 

transcriptional profiles may seem counterintuitive at first. As mDC and pDC are present 

at low frequencies in whole blood, their contribution to the global blood signature will 

under most conditions be masked by larger populations including monocytes, neutrophils 

or T cells. There is however growing evidence that under certain in vivo inflammatory 

conditions, monocytes can mature into antigen-presenting cells with DC phenotype210,211. 

Furthermore, healthy monocytes cultured with serum from SLE, a disease with a strong 

type I interferon component, were previously shown to mature into DC212. In this context, 

the maturation of monocyte in vitro in the presence of IFNa or IL-4 can be likened to in 

vivo antiviral or SLE-like and Th2 like conditions respectively. The in vitro DC modules 

may thus serve as a good readout of in vivo monocyte activation during various 

inflammatory conditions.  

 In this context, the application of the DC modules to whole blood datasets from 

patients with infectious and autoimmune diseases helped us further decorticate the 

inflammatory programs involved in pathogenesis. We identified subgroups of IFN 

responses, with different disease specificities. Additionally, we identified a group of 

modules linked to lipid metabolism and cellular compartmentalization that was specific 

to S. aureus patients, and was not part of the 44 modules over-expressed by some or most 

in vitro innate stimuli. This supports the observed outcome of in vitro infection of 

adipocyte-like cell lines by S. aureus, which inhibits cellular lipidosis and induces the 
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release of inflammatory adipokines by infected cells213. Interestingly, this transcriptional 

program is absent in patients with melioidosis caused by the gam-negative bacteria B. 

mallei. We cannot exclude that this inflammatory program is common to gram-positive 

bacteria, which warrants the further examination of whole blood transcriptional profiles 

in other gram-positive infections such as listeriosis, or Streptococcal pneumonia and 

meningitis. 

 

Perspectives 

 The work presented herein relies on the use of microarrays to measure 

transcriptional changes in blood leukocytes to better characterize the host immune 

response to S. aureus infection. We identified a common signature of infection, both in 

PBMC and whole blood, as well as heterogeneous transcriptional programs that 

correlated with the time of blood sampling, the extent of dissemination and the site of 

infection (joint versus lung). As the collection of longitudinal samples in pediatric 

cohorts in these acute bacterial infections is challenging, the analysis was conducted 

cross-sectionally. All samples were collected after patients were initially treated, which 

raises questions about the effect of treatment on transcriptional fingerprint obtained. 

Future studies should aim at collecting blood longitudinally, starting at the time of 

admission and until discharge. Analysis of follow-up samples after discharge may also be 

of interest, as the signature was not extinguished in all patients on the day of discharge.  

 One characteristic of S. aureus infections is their capacity to start locally, under 

the form of skin abscesses, and disseminate through the blood stream to cause life-
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threatening disease. Because our study design did not permit it, we did not assess the 

capacity of microarrays to predict dissemination of infection, which may be of interest to 

clinicians in the treatment of patients. Furthermore, the sole clinical outcome in our 

studies was recovery and discharge, so we were not able to associate signatures with 

other (worse) outcomes. Future studies should address the capacity of blood microarrays 

to determine length of stay and clinical outcomes based on the type and frequency of 

treatment dispensed.     

  While the microarray technology will probably not become a generic assay in 

clinical practice, as it still requires extensive time between data collection and 

interpretation, and as it is quickly being replaced by more comprehensive assays such as 

sequencing, which provides absolute mRNA quantitation as well as additional genetic 

and epigenetic information, I believe it provides a good proof-of-principle for these all-

in-one assays. The dimension and complexity of the data generated by these technologies 

requires systems biologists to develop tools that facilitate their interpretation by people 

that are not specially trained for it. The modular frameworks presented herein are an 

attempt to answer this need, by providing a simple snapshot of the status of the immune 

system during disease, or in vitro stimulation. Additionally, these fingerprints can be 

complemented by molecular scores such as the MDTH that informs the analyst about the 

extent of transcriptional perturbations on an individual basis. From global disease 

fingerprints, we now need to better understand how these analytical tools can explain 

disease heterogeneity and further understand pathogenesis. Comparing ex vivo profiles to 

in vitro stimulation assays may help identify signaling pathways involved as well as the 

nature of the stimuli responsible for onset and continuation of disease.  Further studies 
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will be required to better characterize the modules obtained, including their major 

upstream regulators and their functional significance at the systemic level. This will lead 

to a better understanding of mechanisms involved in disease pathogenesis, a faster 

identification of biomarkers and therapeutic targets, and hopefully more effective 

treatments for immune-mediated diseases.  
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Appendix A – Functional interpretation of PBMC transcriptional modules 

 
Module 

I.D. 
Probes 
Count Keyword Selection Assessment 

M 1.1 76 
Ig, Immunoglobulin, 
Bone, Marrow, PreB, 

IgM,Mu. 

Plasma cells. Includes genes coding for 
Immunoglobulin chains (e.g. IGHM, IGJ, IGLL1, 
IGKC, IGHD) and the plasma cell marker CD38. 

M 1.2 130 
Platelet, Adhesion, 

Aggregation, Endothelial, 
Vascular 

Platelets. Includes genes coding for platelet 
glycoproteins (ITGA2B, ITGB3, GP6, GP1A/B), and 
platelet-derived immune mediators such as PPPB 
(pro-platelet basic protein) and PF4 (platelet factor 
4). 

M 1.3 80 Immunoreceptor , BCR, 
B-cell, IgG 

B-cells. Includes genes coding for B-cell surface 
markers (CD72, CD79A/B, CD19, CD22) and other 
B-cell associated molecules: Early B-cell factor 
(EBF), B-cell linker (BLNK) and B lymphoid 
tyrosine kinase (BLK). 

M 1.4 132 
Replication, Repression, 

Repair, CREB, 
Lymphoid, TNF-alpha 

Undetermined. This set includes regulators and 
targets of cAMP signaling pathway (JUND, ATF4, 
CREM, PDE4, NR4A2, VIL2), as well as repressors 
of TNF-alpha mediated NF-kappa B activation 
(CYLD, ASK, TNFAIP3). 

M 1.5 142 
Monocytes, Dendritic, 
MHC, Costimulatory, 

TLR4, MYD88 

Myeloid lineage. Includes molecules expressed by 
cells of the myeloid lineage (CD86, CD163, 
FCGR2A), some of which being involved in 
pathogen recognition (CD14, TLR2, MYD88). This 
set also includes TNF family members (TNFR2, 
BAFF). 

M 1.6 141 Zinc, Finger, P53, RAS 

Undetermined. This set includes genes coding for 
signaling molecules, e.g. the zinc finger containing 
inhibitor of activated STAT (PIAS1 and PIAS2), or 
the nuclear factor of activated T-cells NFATC3. 

M 1.7 129 Ribosome, Translational, 
40S, 60S, HLA 

MHC/Ribosomal proteins. Almost exclusively 
formed by genes coding MHC class I molecules 
(HLA-A,B,C,G,E)+ Beta 2-microglobulin (B2M) or 
Ribosomal proteins (RPLs, RPSs). 

M 1.8 154 
Metabolism, 

Biosynthesis, Replication, 
Helicase 

Undetermined. Includes genes encoding metabolic 
enzymes (GLS, NSF1, NAT1) and factors involved 
in DNA replication (PURA, TERF2, EIF2S1). 

M 2.1 95 
NK, Killer, Cytolytic, 

CD8, Cell-mediated, T-
cell, CTL, IFN-g 

Cytotoxic cells. Includes cytotoxic T-cells amd NK-
cells surface markers (CD8A, CD2, CD160, NKG7, 
KLRs), cytolytic molecules (granzyme, perforin, 
granulysin), chemokines (CCL5, XCL1) and 
CTL/NK-cell associated molecules (CTSW). 

M 2.2 49 
Granulocytes, 

Neutrophils, Defense, 
Myeloid, Marrow 

Neutrophils. This set includes innate molecules that 
are found in neutrophil granules (Lactotransferrin: 
LTF, defensin: DEAF1, Bacterial Permeability 
Increasing protein: BPI, Cathelicidin antimicrobial 
protein: CAMP). 
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M 2.3 148 
Erythrocytes, Red, 
Anemia, Globin, 

Hemoglobin 

Erythrocytes. Includes hemoglobin genes (HGBs) 
and other erythrocyte-associated genes (erythrocytic 
alkirin:ANK1, Glycophorin C: GYPC, 
hydroxymethylbilane synthase: HMBS, erythroid 
associated factor: ERAF). 

M 2.4 133 
Ribonucleoprotei n, 60S, 

nucleolus, Assembly, 
Elongation 

Ribosomal proteins. Including genes encoding 
ribosomal proteins (RPLs, RPSs), Eukaryotic 
Translation Elongation factor family members 
(EEFs) and Nucleolar proteins (NPM1, NOAL2, 
NAP1L1). 

M 2.5 315 
Adenoma, Interstitial, 

Mesenchyme, Dendrite, 
Motor 

Undetermined. This module includes genes 
encoding immune-related (CD40, CD80, CXCL12, 
IFNA5, IL4R) as well as cytoskeleton-related 
molecules (Myosin, Dedicator of Cytokenesis, 
Syndecan 2, Plexin C1, Distrobrevin). 

M 2.6 165 
Granulocytes, 

Monocytes, Myeloid, 
ERK, Necrosis 

Myeloid lineage. Includes genes expressed in 
myeloid lineage cells (IGTB2/CD18, Lymphotoxin 
beta receptor, Myeloid related proteins 8/14 Formyl 
peptide receptor 1), such as Monocytes and 
Neutrophils. 

M 2.7 71 No keywords extracted. 

Undetermined. This module is largely composed of 
transcripts with no known function. Only 20 genes 
associated with literature, including a member of the 
chemokine-like factor superfamily (CKLFSF8). 

M 2.8 141 
Lymphoma, T-cell, CD4, 

CD8, TCR, Thymus, 
Lymphoid, IL2 

T-cells. Includes T-cell surface markers (CD5, CD6, 
CD7, CD26, CD28, CD96) and molecules expressed 
by lymphoid lineage cells (lymphotoxin beta, IL2-
inducible T-cell kinase, TCF7, T-cell differentiation 
protein mal, GATA3, STAT5B). 

M 2.9 159 
ERK, Transactivation, 
Cytoskeletal, MAPK, 

JNK 

Undetermined. Includes genes encoding molecules 
that associate to the cytoskeleton (Actin related 
protein 2/3, MAPK1, MAP3K1, RAB5A). Also 
present are T-cell expressed genes (FAS, 
ITGA4/CD49D, ZNF1A1). 

M 2.10 106 
Myeloid, Macrophage, 

Dendritic, Inflammatory, 
Interleukin 

Undetermined. Includes genes encoding for 
Immune-related cell surface molecules (CD36, 
CD86, LILRB), cytokines (IL15) and molecules 
involved in signaling pathways (FYB, TICAM2-Toll-
like receptor pathway). 

M 2.11 176 
Replication, Repress, 

RAS, Autophosphoryla 
tion, Oncogenic 

Undetermined. Includes kinases (UHMK1, 
CSNK1G1, CDK6, WNK1, TAOK1, CALM2, 
PRKCI, ITPKB, SRPK2, STK17B, DYRK2, 
PIK3R1, STK4, CLK4, PKN2) and RAS family 
members (G3BP, RAB14, RASA2, RAP2A, KRAS). 

M 3.1 122 
ISRE, Influenza, 

Antiviral, IFN-gamma, 
IFN-alpha, Interferon 

Interferon-inducible. This set includes interferon-
inducible genes: antiviral molecules (OAS1/2/3/L, 
GBP1, G1P2, EIF2AK2/PKR, MX1, PML), 
chemokines (CXCL10/IP-10), signaling molecules 
(STAT1, STAt2, IRF7, ISGF3G). 

M 3.2 322 
TGF-beta, TNF, 

Inflammatory, Apoptotic, 
Lipopolysacchari de 

Inflammation I. Includes genes encoding molecules 
involved in inflammatory processes (e.g. IL8, 
ICAM1, C5R1, CD44, PLAUR, IL1A, CXCL16), 
and regulators of apoptosis (MCL1, FOXO3A, 
RARA, BCL3/6/2A1, GADD45B). 
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M 3.3 276 
Inflammatory, Defense, 
Lysosomal, Oxidative, 

LPS 

Inflammation II. Includes molecules inducing or 
inducible by inflammation (IL18, ALOX5, ANPEP, 
AOAH, HMOX1, SERPINB1), as well as lysosomal 
enzymes (PPT1, CTSB/S, NEU1, ASAH1, LAMP2, 
CAST). 

M 3.4 325 Ligase, Kinase, KIP1, 
Ubiquitin, Chaperone 

Undetermined. Includes protein phosphatases 
(PPP1R12A, PTPRC, PPP1CB, PPM1B) and 
phosphoinositide 3kinase (PI3K) family members 
(PIK3CA, PIK32A, PIP5K3). 

M 3.5 22 No keyword extracted 
Undetermined. Composed of only a small number of 
transcripts. Includes hemoglobin genes (HBA1, 
HBA2, HBB). 

M 3.6 288 Ribosomal, T-cell, Beta-
catenin 

Undetermined. This set includes mitochondrial 
ribosomal proteins (MRPLs, MRPs), mitochondrial 
elongations factors (GFM1/2), Sortin Nexins 
(SN1/6/14) as well as lysosomal ATPases 
(ATP6V1C/D). 

M 3.7 301 Spliceosome, 
Methylation, Ubiquitin 

Undetermined. Includes genes encoding proteasome 
subunits (PSMA2/5, PSMB5/8); ubiquitin protein 
ligases HIP2, STUB1, as well as components of 
ubiqutin ligase complexes (SUGT1). 

M 3.8 284 CDC, TCR, CREB, 
Glycosylase 

Undetermined. Includes genes encoding enzymes: 
aminomethyltransferase, arginyltransferase, 
asparagines synthetase, diacylglycerol kinase, 
inositol phosphatases, methyltransferases, 
helicases… 

M 3.9 260 
Chromatin, Checkpoint, 

Replication, 
Transactivation 

Undetermined. Includes genes encoding kinases 
(IBTK, PRKRIR, PRKDC, PRKCI) and 
phosphatases (e.g. PTPLB, PPP2CB/3CB, PTPRC, 
MTM1, MTMR2). 
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Appendix B – Functional interpretation of whole blood transcriptional modules 

Module 
I.D. 

Probes 
Count Annotation Key Transcripts 

M1.1 92 Coagulation / Platelets F13A1, CLEC1B, ALOX12, VWF, PPBP, 
PF4V1, ITGA2B 

M1.2 36 Interferon Response CXCL10, DDX60, IFI44, IFI44L, IFIT1, IFIT3, 
IFITM3, OAS1, OAS2, OAS3, OASL, OTOF 

M2.3 75 Erythrocyte 
Development 

ALAS2, ERAF, GYPB, GYPE, HBD, RHAG 

M3.1 89 Erythrocyte 
Development 

GYPC, HBG1, HBG2, HBQ1, KEL, VWCE, 
SPTA1 

M3.2 148 Myeloid Lineage TLR4, TLR6, TLR8, SERPINA1, SIGLEC5, 
S100A9, IL1RAP, IL1RN, ITGAM, LILRA3, F5. 
CEACAM4, AQP9 

M3.3 49 Hematopoiesis / Cell 
Cycle 

CDC2, CDC20, CDCA5, CKS2 

M3.4 62 Interferon Response DDX58, DHX58, IFI35, IFIT2, IFIT5, IRF7, 
INDO, OAS2, STAT1, STAT2, GBP1, GBP3-6 

M3.5 149 Protein Synthesis Transcription factors, translation factors, 
ubiquitination, ribosomal proteins 

M3.6 54 Cytotoxicity / NK Cells CD8A, GNLY, GZMA, GZMH< GZMM, IFNG, 
KIR3DL2, KLRC3, KLRD1, NCR3, NKG7, 
PRF1 

M4.1 68 T Cells CD3E, CD28, CD40LG, IL4R, ICOS, TCF7, 
TRAT1 

M4.2 52 Inflammation IRAK3, IL1R2, IL18R1, IL18RAP, CASP5, 
OSM, PGLYRP1, OPLAH, MMP9, TLR5 

M4.3 74 Protein Synthesis Ribosomal proteins and predicted ribosomal 
proteins 

M4.4 78 Erythrocyte 
Development 

ERMAP, GYPC 

M4.5 86 Protein Synthesis Ribosomal proteins, translation elongation factors, 
ubiquitination 

M4.6 116 Myeloid Lineage STAT3, STAT5B, CLIC1, CKLF, CD97 
M4.7 98 Lymphoid Lineage Molecules enriched in T cell and B cells 

according to BioGPS 
M4.10 35 B Cells CD19, CD79A, CD79B, BANK1, BLK, EBF1, 

VPREB3 
M4.11 20 Plasma Cells CD38, IGJ, TNFRSF17 
M4.13 82 Myeloid Lineage IL13RA1, IL1B, IL8RA, IL8RB, P2RY13, NCF4, 

TLR6 
M4.14 62 Myeloid Lineage CD33, CD1D, CD36, CD86 
M4.15 45 Cytotoxicity / NK Cells CD2, CD27, ITK, LCK, LY9, PRKCH, PRKCQ 
M5.1 244 Inflammation GRN, DUSP18, SERPINB8, TOLLIP 
M5.3 101 Hematopoiesis EIFs, JUND, ubiquitination 
M5.9 84 Protein Synthesis Ribosomal proteins 
M5.12 63 Interferon Response IFI16, IRF9, TAP1, TAP2, SP100, SP110, SP140, 

TRIM5, TRIM25, TRIM38, TRIM56, UNC93B1 
M5.15 24 Neutrophils AZU1, BPI, CAMP, CEACAM6, CEACAM8, 

CTSG, DEFA4, ELA2, LTF, MPO, RETN, OLR1 
M6.6 53 Myeloid Lineage CD14, CD300C, IL4R, CTSD 
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M6.7 76 Lymphoid Lineage CD47, transcripts enriched in B and T cells 
M6.9 38 Lymphoid Lineage LAX1, ribosomal proteins 
M6.11 18 Cell Cycle CDC25A, CDCA3, CENPE, KIFs, NUF2 
M6.12 70 Protein Synthesis Translation factors, ribosomal proteins 
M6.13 47 Inflammation LILRA2, LILRB3, LAMP2, FCER1G, PILRA, 

PLAUR, SERPINB1, SIGLEC9 
M6.14 40 Coagulation / Platelets CD9, CD151, THBS1 
M6.15 36 T Cells CD8B, T cell receptor-like sequences 
M6.18 18 Erythrocyte 

Development 
GYPA, HEMGN, RHD, SPTB, TSPAN7, CTSE 

M6.19 33 T Cells IL21R, IL23A 
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Appendix C – Functional interpretation of 44 over-expressed DC modules 

 

Green squares represent over-expression of the module by at least 30% in response to the 
corresponding stimulus in dendritic cells (populations averaged).  
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