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Lung Cancer is a fatal disease with new diagnoses of more than 150,000 Americans 

every year. Although it has a relatively well-known etiology (e.g. smoking) and has been 

widely researched, clinical tools and markers for early diagnosis, prognostic prediction, and 

therapeutic interventions remain limited. Here, for the first time, I propose a novel 

translational approach for providing diagnostic, prognostic, mechanistic, and therapeutic 

information by studying of the expression of the nuclear receptor (NR) superfamily in lung 

cancer. Using quantitative real-time PCR, mRNA expression levels for the 48 members of 

the NR superfamily were profiled in 56 lung cell lines. Based on the resulting dataset, further 

analysis was performed to show the diagnostic and therapeutic potential of the NR profile 

using both an in vitro cell response assay and an in vivo mouse xenograft model with cognate 

ligand treatment for selected nuclear receptors. In addition, the NR profiles of  30 



 

microdissected and pair-matched patient tissue samples provided a subset of NRs showing 

dramatic differences in expression and subgroupings that demonstrate individual variations 

between the normal and corresponding tumor. Furthermore, I identified several individual 

NRs as well as a subgroup of NRs with prognostic power. The relevance of NRs to disease 

pathogenesis was then studied in genetically manipulated human bronchial epithelial cells 

(HBEC3) and in transgenic K-rasV12 mice, a well-known genetic model for lung 

adenocarcinoma. In the HBEC3 panel, the induced expression of peroxisome proliferator 

activating receptor gamma (PPARγ) in the parental HBEC3 introduced by oncogenic K-

rasV12 is decreased in a subset of tumorigenic clones derived from the parental cells. It 

appears to be strongly correlated to the expression of cylooxygenase 2 (COX2), which is 

shown to be decreased with PPARγ ligand treatment. In the transgenic model, I demonstrated 

that expression of a subgroup of NRs in wild type mice becomes altered in histologically 

normal tissues that harbor the K-ras mutation, and become further altered in tumor tissues of 

the mutant. This observation suggests that NR profiling also provides a valuable tool for 

understanding disease pathogenesis in lung cancer.  
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CHAPTER ONE 
Introduction 

 
 

 
 

1.1 Lung Cancer 

The term ‘Cancer’ is believed to originate from the Greek word meaning crab. The 

first use of the words ‘carcino’ and ‘carcinoma’ is credited to the Greek physician 

Hippocrates (460 ~ 370 B.C.), well known as the ‘Father of Medicine’. Hippocrates was the 

first to recognize the difference between benign and malignant tumors 

(http://www.cancer.org, ; http://www.rare-cancer.org). Although cancer has a very long 

history, it remains one of the major causes of disease-related deaths, even at present. 

Amazingly, one out of two men and one out of three women will be diagnosed with cancer 

over their lifetime in the United States (ACS, 2006). Since the discovery of the disease, 

surgery has been the primary course of action despite the development of newer therapies, 

i.e. chemotherapy, radiotherapy, and most recently, molecular targeted therapy. 

Approximately 15 organ sites dominate 80 % of all cancers. Tumors with the highest 

incidence include prostate cancer (33% for men) and breast cancer (31 % for women). 

However, both cancer types also show the highest five-year survival. On the other hand, 

overall mortality is highest for other types of cancers (13 to 15 % of five-year survival for 

both genders), while the disease incidence is relatively low compared to prostate and breast 

cancers.  
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Lung cancer-related deaths are estimated at 160,000/year including 90,000 men and 

71,000 women in the United States, 2006. A similar number of new patients are diagnosed 

every year. This statistic accounts for 31% of men and 26% of women in cancer-related 

deaths, making lung cancer the leading cause of cancer death which is secondly ranked next 

to deaths related to heart failure in the United States (ACS, 2006; Society, 2006). Although 

the campaigns to quit smoking have been effective in reducing the incidence rate in men to 

70 per 100,000, the rate is still increasing in women (40 per 100,000) (ACS, 2006). Along 

with smoking cessation efforts, the survival improvement has doubled over the last 30 years, 

due to several combined treatment strategies including surgery, radiotherapy, and 

chemotherapy. However, the five year survival rate of this disease is very low (~15%), 

compared to breast (75 - 88%) and prostate cancers (67 - 100 %) in the last 3 decades (ACS, 

2006). One of reasons for the high survival rate in both breast and prostate cancer is due to 

early detection. Therefore, to improve outcome for other cancers, new tools and molecular 

markers for early diagnosis are required together with the development of therapeutic, as well 

as chemoprevention strategies. 

 

1.1.1 Classification and Etiology 

Lung cancers develop in the respiratory epithelium, which includes bronchi,  

bronchioles, and alveoli. Distinct from mesothelioma and sarcoma (stromal tumors), lung 

tumors are divided into small cell lung carcinoma (SCLC, 18 %) originating from 

neuroendocrine cells and non-SCLC (73 %) both with epithelial cell origins (Minna, 2005). 
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The NSCLC is further subtyped histologically into adenocarcinoma, squamous cell 

carcinoma (SCC), large cell carcinoma and mixed types of tumors.  

 It is believed that this malignancy is directly or indirectly related to smoking (through 

environmental tobacco smoke, ETS) in more than 85 percent of patients with all types of 

lung neoplasms (Gazdar, 2003). In general, it is said that the relative risk in developing lung 

cancer is 13-fold higher in active smokers and 1.5-fold higher in indirect smokers compared 

to non-smokers. The term ‘cigarette pack-year’ represents the total amount of cigarettes in 

packs smoked per year and has been associated with lung cancer incidence rates. For 

instance, the risk for developing lung cancer is increased by 60 to 70-fold in the case of an 

active smoker smoking 2 packs of cigarettes a day for 20 years, compared with a non-smoker 

(Minna, 2005). Interestingly, women have 1.5-fold higher risk of developing lung cancer 

than men per given cigarette pack-year, implicating a gender difference in the susceptibility 

to the disease. Also, more than 50 % of lung tumors occur in ex-smokers, suggesting that 

lung cancer risk never returns to the non-smoker level even though the chance of the disease 

development is clearly decreased (Minna, 2005). This suggests that preneoplastic changes 

may be caused by nicotine and its derivative or smoke relevant carcinogens, which further 

lead to potential genetic or epigenetic alterations. Although human lung cancer is not 

genetically inherited, various studies characterizing this fatal disease support some 

acquisition of genetic or epigenetic abnormality attributed to smoking. It is speculated that 

chronic exposure to smoke-related carcinogens generates genetic or epigenetic changes 

through a multistep process that leads to the development of various lesions. The genetic 

abnormalities involve loss of tumor suppressors or oncogenic activation. Allelic loss of 
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several chromosomal regions including 3p21.3, 5q, 9p, 11q23.2 and 17p (p53) are known to 

be involved in lung cancer incidence. Extensive molecular studies identified individual tumor 

suppressor genes in the 3p21.3 chromosomal region of which loss of heterozygosity are 

observed in more than 90 % of both SCLC and NSCLCs. Alterations in cell cycle regulatory 

pathways such as G1 to S phase checkpoint (i.e. Rb-CDK4-Cyclin D1-p16 pathway) and a 

checkpoint of DNA damage (i.e. p53) are also known to be significantly involved in disease 

progression. For example, mutations in both tumor suppressor genes, RB and p53, occur in > 

90% in SCLC, while p53 mutations occur in > 50% and RB mutations are found in > 20% in 

NSCLC. Also, the activation of oncogenic K-ras is observed in more than 30 % of NSCLC, 

especially in adenocarcinoma, whereas it is found in less than 1% of SCLC. The importance 

of this oncogene has been shown in mouse genetic models expressing an activated form of K-

ras constitutively or inducibly, which autonomously develops lung adenocarcinoma. Other 

dominant oncogenic abnormalities include genetic amplification, rearrangement and 

transcriptional activation of the myc family. Overexpression of the anti-apoptotic regulator 

bcl-2, the growth signaling network Her2, and induced telomerase activity are significantly 

involved in lung cancer incidence. Moreover, mutations of the ras gene and c-myc 

amplification are associated with poor prognosis in NSCLC and SCLC, respectively. Overall, 

allelic loss of 3p prior to the occurrence of a 9p mutation represent the earliest events in 

hyperplasia which further proceed to carcinoma in situ and invasive cancer with p53 and ras 

mutations. Smoke or its related carcinogens induce epigenetic modification which is another 

way of regulating the expression of critical genes (i.e. tumor suppressors) or groups of genes. 

The epigenetic changes include non-inheritable genetic modifications, which have short-term 
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effects (i.e. posttranslational modifications on histones) and relatively long term effects (i.e. 

promoter methylation) on expression of genes critical for proliferation. Promoter 

hypermethylation occurs on the cytidine residues in CpG islands in the promoter region. 

Evidence for hypermethylation in lung cancer has been shown in the promoter regions of 

several genes with tumor suppressor function such as p16INK4a (Kim et al., 2005a; Kim et al., 

2006), RASSF1A (Kim et al., 2003), RARβ (Virmani et al., 2000) and FHIT (Kim et al., 

2006; Maruyama et al., 2004; Song et al., 2004). Thus, a number of pharmacological research 

has focused on developing inhibitors to antagonize DNA methyltransferase I (DNMTI) 

which would allow the re-expression of the potential tumor suppressor genes (Garcia-Manero 

et al., 2006; Suzuki et al., 2004). Decitabine (called 2'-deoxy-5-azacytidine) has been 

used in the clinics for late stage cancer patients (de Vos, 2005). Along with modulating 

methylation in the promoter region, research has focused on posttranslational modifications 

of histone proteins because histone remodeling is a prerequisite for transcriptional regulation. 

Santos-Rosa et al., recently summarized a large number of studies demonstrating that 

changes in expression, changes in activity, and mutation of histone modifying enzymes are 

strongly related to specific types of cancers(Santos-Rosa and Caldas, 2005). This regulation 

is controlled by histone modifications through acetylation by histone acetyl transferase and 

histone deacetylase (HDAC), phosphorylation by histone kinase, methylation by histone 

methyltransferase (HMT), ubiquitination, and sumoylation (Marmorstein, 2004; Santos-Rosa 

and Caldas, 2005; Shi and Gozani, 2005). Interestingly, the loss or reduction of CBP (a 

subtype of HAT acting as a coactivator) from in-frame deletion, homozygous deletion, or 

missense mutations is observed in lung cancer (Kishimoto et al., 2005). A promising recent 
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phase I/II trial using combinations of two different epigenetic modulators provides a 

clinically important potential in future therapeutic or chemopreventive approaches (Garcia-

Manero et al., 2006; Suzuki et al., 2004).  

 Along with genetic or epigenetic alterations, systemic changes such as hormonal 

dysregulation or changes in the expression of cell surface receptors by lung cancer cells also 

contribute to tumor proliferation. These include peptide hormones, gastrin-releasing peptide, 

neuropeptides (e.g. adrenocorticotropic hormone (ACTH), parathyroid hormone (PTH), 

AVP, calcitonin); autocrine loop, SCF/KIT, NDF/ERBB2; receptor mediated cell growth 

signals, opioid receptors, nicotine receptors, and EGF receptors (Minna, 2005). Together, 

these data suggest that the accumulation of genetic alterations or epigenetic modification by 

smoke and/or carcinogens is clearly causative in lung cancer. Further progression to invasive 

cancer occurs with changes in the tumor microenvironment and by the loss of hormonal 

balance. 

 

1.1.2 Diagnosis and Determining Tumor Stage 

Early detection is crucial in the treatment of lung cancer. The clinical tools for early 

diagnosis include the screening of persons at high risk (e.g. persons with high cigarette-pack 

year), followed by sign or symptom screening which, if any, must be accompanied by tissue 

diagnosis. Various methods are employed to obtain tumor tissues including bronchoscopy for 

bronchial biopsy, medianoscopy for node biopsy, fine-needle aspiration for (extra) thoracic 

tumor biopsy guided by computed tomography scan, and more. Next, the pathologist 

determines the diagnosis for the type of the malignancy and its subtype, which is, in the case 



7 

 

of NSCLC, further staged on the basis of documented information examined according to 

TNM (Tumor size; Nodule involvement; Metastasis) International Staging System for lung 

cancer (Table1.1). For SCLC, a simple two-stage system is available: 1) limited-stage disease 

for SCLC limited to one hemithorax and regional lymph nodes, 2) extensive stage disease for 

SCLC is beyond these boundaries. Regarding general procedures for staging, chest 

radiographs and CT scans are performed to determine tumor size and mediastinal nodal 

involvement, which should be histologically documented, after complete historical and 

physical examination. Positron emission tomography scans are performed to detect distant 

metastatic disease.  After tumor stage, various physiologic symptoms are considered for, so 

called, ‘physiologic staging’ which assesses a patient’s conditions to determine their 

tolerability to various anti-tumor treatments. The physiologic considerations provide the best 

option for treatment methods, resectability and operability, together with anatomical staging. 

In addition to the various clinical techniques in use for the early and accurate 

diagnosis of lung cancer, molecular approaches based on high-throughput analysis have 

become highlighted tools for translational research. For example, comparative genomic 

hybridization (CGH) arrays are available for identifying genomic rearrangements, (i.e. gene 

amplification, loss of heterozygosity in tumor samples. Global analysis of genetic signature 

changes using microarray analysis has become popular for targeting diagnostic and 

prognostic markers as well as for the therapeutic purpose of drug mining (Chen et al., 2007). 

In addition to whole genome wide screening, the customized arrays are also available that are 

specially designed to detect a subset of genes relevant to specific signaling pathways, i.e., 

kinase family (kinome), transcriptional family, or G protein-coupled receptor (GPCR). Along 
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with detection of genomic alterations and transcriptional changes, proteomic approaches 

have been taken using blood samples and sputum from patients to screen for protein markers 

or proteins with posttranslational modifications. Furthermore, proteomics has evolved into 

tissue microarray in which a series of microdissected tissue sections are mounted on plates 

for the purpose of simultaneous immunohistochemistry for several known markers. The 

combined utilization of technologies and various molecular tools is expected to improve 

clinical consequences.  However, several limitations still remain. The technological tools 

such as CT and PET are highly sensitive, but have a high false-positive rate (up to 40 % in 

case of CT scan). The increased error rate may be overcome with advanced molecular 

technologies (e.g. microarray), which can be further cross-confirmed with tissue microarray. 

In the clinical use of microarray data, biostatistics need to be improved to deal with the huge 

amount of data generated so that a subset of genes (i.e., metagene or principal component set 

of genes) can be extracted and applied for clinical purposes (diagnosis and prognosis). It has 

been a concern that microarray data is not as quantitative as first anticipated despite the 

strength that it identifies global genetic changes. Although much improved compared to early 

cDNA arrays, the reproducibility of microarray data is still a critical issue considering its cost 

for routine use. Therefore, recently, the application of quantitative real-time PCR assays in 

biological research has proved its potential in various respects including quantitation, 

reproducibility, sensitivity, selectivity, and high-throughput capacity. Therefore, it is 

predicted that the future diagnostic ability will be faster and more accurate through the 

development of various prognostic markers using molecular approaches.  
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1.1.3 Treatment Choice 

Upon diagnosis and staging of the lung tumor, treatment direction is determined. Due 

to the lack of sophisticated targeted therapy, surgical resection is the basic treatment most 

frequently used in various stages of NSCLCs; resection alone for early and localized tumors 

(IA, IB, IIA, IIB and some IIIA), combined treatment with neoadjuvant chemotherapy for 

some IIIA stages of disease (i.e., IIIA with minimal N2 involvement), combined with 

preoperative or postoperative radiotherapy for stage IIIA with T3 tumors. Primary choices 

for advanced IIIA (with evident N2 involvement) or some IIIB tumors are radiotherapy 

and/or chemotherapy with surgical resection for IIIA with advanced N2 involvement. In 

cases of stage IV and more advanced IIIB tumors, the treatment has more focus on pain and 

symptom relief using radiotherapy to local sites, chemotherapy or malignant pleural effusion. 

On the other hand, for SCLC, which is generally widespread, treatment is primarily by 

chemotherapy with or without radiotherapy due to the lack of operability. The 

chemotherapeutic drugs are devised mostly in combination selected from generic cytotoxic 

drugs that have been widely used in other types of cancers and known to target DNA 

replication and microtubule formation. The DNA-targeting agents include cisplatin (CDDP; 

cross-linking to DNA), doxorubicin (adriamycin; inhibiting topoisomerase II), gemcitabine 

(Gemzar; interrupting DNA replication as cytidine analog), etoposide (VP-16; acting on 

topoisomerase II), irinotecan (Camptosar; acting topoisomerase I) and pemetrexed 

(Alimta/Eli Lilly; inhibiting folate-dependent enzymes and blocking synthesis of thymidine 

and nucleotides). The drugs targeting microtubule formation include: vinorelbine 

(Navelbine; binding to the tubulin of mitotic microtubules), paclitaxel (Taxol) and 
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docetaxel (Taxotere; stabilizing polymerized microtubules) and peloruside A 

(RTA301/Reata) which has a similar mechanism to paclitaxel. Recent clinical outcomes 

using tyrosine kinase inhibitors targeting epidermal growth factor receptor (EGFR) reflect 

the importance of targeted therapy in lung cancer. Those inhibitors are gefitinib 

(Iressa/AstraZeneca) and Erlotinib (Tarceva/Genentech) which specifically antagonize 

the kinase activity of mutant EGFR. In addition, the monoclonal antibody cetuximab 

(Erbitux) which targets EGFR is currently being tested in the clinic in combination with the 

kinase inhibitors or the cytotoxic drugs. Various combined treatment protocols are effective 

at the beginning but become ineffective in time due to the proliferation of unresponsive 

tumors. It is interesting to note that the same treatment often results in drastically different 

responsiveness between individuals, suggesting that customized treatment may be needed. 

This resistance could be attributed to genes involved in multi-drug resistance (i.e., MDR), 

metabolism or pharmacology of the xenobiotics (i.e., further activate mechanism of 

xenobiotic metabolism in the refractory tumor), or mutation in the target molecule involved 

in tumors (i.e., second mutation in the mutant EGFR). The clinical observations in treatment 

definitely raise the issue for development of new target(s) or new therapeutic paradigms such 

as targeting residual cancer stem cells, if any, which are believed to be resistant tumors to the 

treatment due to the induced differentiation. Wouldn’t it be a promising therapeutic or 

chemopreventive paradigm if a network of genes as a whole could be controlled? Also, isn’t 

it possible for customized treatment? Recent cancer research has actively focused on 

diagnostic markers, which are multiple groups of genes rather than single genes, identified 
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from microarrays using bioinformatics tools (Chen et al., 2007; Potti et al., 2006). Similarly, 

the clinical trials to treat cancers are targeting multiple genes in combination.  

Several epidemiological studies have shed light on the potential of chemopreventive 

intervention for various types of cancers including lung cancer (Sinha et al., 2003). For 

example, curcumin, an ingredient in spicy curry, is thought to reduce the incidence of colon, 

prostate, and lung cancers in India (Aggarwal et al., 2005; Shishodia et al., 2003; Sinha et al., 

2003). Similarly, resveratrol, a phytoestrogen in red wine, has been shown to have anti-

tumorigenic effects in cancer cell culture and mouse mammary tumor models chemically 

induced with a phorbol ester (Kopp, 1998; Whitsett et al., 2006). In addition, retinoic acid 

has been clinically applied as a chemopreventive agent in various types of cancers (Abu et 

al., 2005; Benner et al., 1995). 

 

 

1.1.4 Mouse model 

The therapeutic potential of new drugs is routinely assessed using cancer cell lines, a 

useful screening system with high-throughput capacity. However, cell lines fail to predict 

systemic effects (e.g., pharmacokinetics) of such treatments. Thus, xenograft models using 

immunocompromised mice, SCID and nude, have been preferentially used in many of the 

lung cancer studies to represent a more physiologically relevant model. A carcinogen 

induced lung cancer mouse model has also been developed using NNK (4-

(methylnitrosamino)-1-(3-pyridyl)-butanone), a combination of highly tumorigenic nicotine 

derivatives. Although the NNK model is useful for understanding disease pathogenesis, it is 
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less useful for the evaluation of newly developed drugs because the mice develop mostly 

lung adenomas with rare cases of adenocarcinoma in situ, but never proceed to either 

NSCLC or SCLC, the most common types of human lung cancers. Since oncogenes or tumor 

suppressor mutations are involved in many lung cancers, genetic mouse models have been 

successfully developed based on these mutations for both types of lung tumors, NSCLC and 

SCLC. Lung tumors are autonomously developed by constitutive expression or inducible 

expression of oncogenic K-ras where the stop codon in a loxP-stop-loxP cassette is removed 

by cre recombinase expression. Meuwissen et al., generated an SCLC mouse model using 

cutting-edge genetic engineering technology where a “floxed” system is utilized for the 

conditional loss of both the Rb and p53 tumor suppressors through the addition of an 

adenovirus expressing cre (Ad-Cre) intrabronchially delivered. The phenotype shows 

remarkable similarity to human SCLC with regard to histology, immunohistochemical and 

metastatic behavior, and neuroendocrine features. To utilize the models as preclinical 

evaluation systems, it is important to know how the molecular signatures of the mouse 

models compare to human tumors with respect to disease progression. Molecular signatures 

crucial for disease progression using microarray analysis will be able to provide molecular 

targets for therapeutic and chemopreventive interventions.  

 

1.2 Nuclear Receptors 

 Nuclear Receptors (NR) represent one of largest transcription factor gene families 

consisting of 48 members in humans, 49 members in mouse, 20 members in Drosophila 

melanogaster, and more than 280 receptors in Caenorhabditis elegans. The generic structure 
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of NRs consists of a DNA binding domain (DBD) that determines target gene specificity, a 

ligand binding domain (LBD) determining ligand specificity, and two activation domains, 

AF1 on the N-terminal part and AF2 on the C-terminal region (Figure 1.4A).  Lipophilic 

ligands generally enter the nucleus by diffusing through the cytoplasmic and nuclear 

membranes, in some cases with the help of intracellular ligand binding proteins. In general, 

once ligand binds to the cognate receptor, a conformational change is induced that releases 

corepressor proteins and recruits coactivator proteins to the AF2 domain leading to 

transcriptional activation of target genes (Figure 1.4C). The DNA response elements, in 

general, are configured as direct repeats (DR), inverted repeats (IR), or everted repeats (ER) 

of a canonical hexad motif AGGTCA. The nomenclature is DR1 ~ DR6 or IR1 ~ IR6 based 

on the number of nucleotides in between the two hexanucleotide repeats. These response 

element configurations determine target gene specificities that are further defined when 

combined with tissue specific competent factors.  

 

 

1.2.1 Classifications of Nuclear Receptor Groups 

Based on discovery of physiological ligands and functions, the classification of the 

NR superfamily has been recently updated into the following subgroupings: (1) endocrine 

receptors; (2) adopted receptors; (3) orphan receptors, so named due to the lack of a known 

physiological ligand or functional role (Figure 1.4B). As a subset of endocrine receptors, the 

steroid receptors bind high-affinity (typically subnanomolar dissociation constants) endocrine 

ligands derived from a cholesterol backbone and are involved in maintaining various 
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physiologic processes: 1) androgen receptor (AR), progesterone receptor (PR) and estrogen 

receptors (ERα and ERβ)  for reproduction and sexual differentiation, 2) mineralocorticoid 

receptor (MR) for electrolyte balance, and 3) glucocorticoid receptor for carbohydrate 

metabolism and stress responses. Another subgroup of endocrine receptors within the steroid 

class includes retinoic acid receptors (α, β, γ), thyroid receptors (α, β) for body 

thermogenesis and the vitamin D receptor (VDR) for calcium homeostasis. Unlike the 

nuclear localization of most NRs, the steroid receptors but ERs are initially sequestered in the 

cytoplasm (and thus inactive) by binding heat shock proteins. Cognate ligand binding 

releases the receptors from the complex and allows for their translocation into the nucleus 

where the steroid receptors execute target gene activation via response elements in the 

promoter region. In the non-genomic mechanism of action, the cytoplasmic steroid receptors 

activate the MAPK kinase cascade (or vice versa), thus resulting in AP1 (jun/fos)-mediated 

transcriptional activation of certain genes.   

The second ‘adopted’ class of NRs have micromolar ligand binding affinities and 

includes three isoforms of retinoid X receptors (RXRα, β, γ), three isoforms of peroxisome 

proliferator activated receptors (PPARα, β, γ), two isoforms of liver X receptors (LXRα, β), 

farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane 

receptor (CAR). The physiological functions of NRs in this class involve xenobiotic sensors 

in the case of CAR and PXR, lipid sensors (i.e., fatty acid sensors) in the case of PPARs and 

cholesterol/bile acid sensors in the case of LXRs and FXR. However, the RXRs, as 

obligatory partner molecules for the other receptors, play an important role in contributing 

‘permissivity’ to the partner receptors, which will be further discussed in section 1.2.4.3. IN 
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spite of constant adoption of the orphan nuclear receptors by understanding their physiology, 

half of the mammalian receptors still remain orphans. The field is even less advanced in 

lower vertebrates. Only two receptors in Drosophila (ecdysone and E75 receptor) and, more 

recently, one receptor in C. elegans (DAF-12) have known ligands (de Rosny et al., 2006; 

Motola et al., 2006). The third class of orphan receptors include the remaining nuclear 

receptors for which physiological functions have not been clearly elucidated, although some 

potential ligands have been proposed for certain receptors, e.g., synthetic steroids for ERRs 

(α, β and γ), fatty acids for HNF-4 (α and γ), fatty acid and sterols for RORs (α, β and γ), 

and phospholipids for SF-1 and LRH-1. Clearly, research will continue for novel 

physiological functions and ligand identification, along with their potential coordination with 

higher-level physiological networks which will be further discussed in section 1.2.3. 

 

1.2.2 Paradigm Shifts in the Nuclear Receptor Field:  

        From Molecular Endocrinology through Reverse Endocrinology, toward   

       Transcriptional Physiology  

 Since the first evidence of the existence of a steroid hormone receptor was shown 

using radioactive estradiol, two decades passed before the GR was cloned in 1986. Further 

studies demonstrated the mechanism of action of lipophilic endocrine molecules is performed 

through receptor molecule residing in the nucleus. Newly developed techniques -- low 

stringency hybridization and domain swap, cell-based cotransfection assays, domain 

mapping -- successfully identified several nuclear receptors including TRα, TRβ, and MR, 

and further connected molecular biology to endocrinology, opening the ‘Molecular 
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Endocrinology’ era. Therefore, more orphan receptors were cloned since the first orphan 

estrogen-related receptor (Giguere et al., 1988). Adoption of the orphan retinoid X receptor 

(RXR) occurred upon discovery of 9-cis retinoic acid as a physiologic ligand and clearly 

demonstrated that these receptors would drive a new field of ‘ligand discovery’, leading to a 

new era of ‘Reverse Endocrinology’(Heyman et al., 1992; Mangelsdorf et al., 1992). 

Furthermore, the discovery of the RXR heterodimers and a core hexad motif ‘AGGTCA’ for 

the DNA binding domain (DBD) provided a clearer picture of how nuclear receptors act on 

the transcriptional regulation of downstream targets as well as an index to confirm the 

downstream targets. Thus, most receptors (about 40 nuclear receptors at that time) were 

reclassified according to the configuration rules (i.e., Direct Repeat, Inverted Repeat, and 

Everted Repeat) mentioned in section 1.2. The continuous adoption process of the orphans 

(i.e., PPARs, LXR, FXR, PXR, and CAR) further prospered reverse endocrinology and even 

expanded the field to various types of physiologies including fat, cholesterol/bile acid, 

xenobiotics, and diseases relevant to those physiologies. In addition, the configuration rule 

sorted the previously known target genes into groups under the transcriptional control of the 

same NR. This classification method further applied to newly identified target genes, leading 

to better understanding the molecular mechanisms for various physiologic pathways. In 

addition, coregulators, including chromatin remodeling complexes and epigenetic regulators 

(e.g., HDACs and HATs), tie up NRs into a bundle of “ Transcriptional Physiology” with 

NRs at the core. Thus, the question arises if it is possible to consider the NR superfamily as a 

whole for understanding the hierarchy of physiological regulatory networks at tissue or 

organismal scales. 
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1.2.3 Higher-level Functional Networks within the NR Superfamily 

 Much has been learned regarding physiological roles of certain NRs in particular 

types of tissues by identifying physiological ligands and downstream target genes. However, 

the communication between multiple receptors involved in a single or multiple tissues still 

remains to be understood. This complexity was elegantly addressed using a systems biology 

approach to obtain quantitative expression profiles of the NR superfamily in 39 tissues in two 

different mouse models, 129sv and C57BL6. Surprisingly, the analysis revealed two main 

clusters of NRs, reproduction and nutrient metabolism, suggesting that the hierarchical NR 

networks are coordinated in physiologic paradigms (Figure 1.7). In addition to the pattern of 

spatial expression, the temporal NR blueprint as a whole was mapped in four metabolically 

important tissues including muscle, liver, white adipose tissue and brown adipose tissue 

(Yang et al., 2006). Twenty-five of forty-nine mouse nuclear receptors display diurnal 

expression patterns. More interestingly, both thyroid receptor α and β follow dramatic 

circadian patterns of expression while thyroid hormones are generally maintained at a 

constant level (Yang et al., 2006). This observation strongly supports that more receptors are 

potentially involved in physiologic changes related to the circadian cycle (Yang et al., 2006). 

Collectively, it is clear that the so called first-dimensional understanding of physiology (e.g., 

lining up ‘receptor-ligand-target genes’ in a particular tissue type) has evolved to a second-

dimensional paradigm (e.g., fat regulation, in various tissues such as muscle, liver and 

adipose tissues), which suggests higher-order molecular coordination that includes ‘time’, 

thus leading to the complexity of body homeostasis. One elegant but simple way to 
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understand the megacoordination of multiple variations (for example, here nuclear receptors 

in space and time) is to utilize biostatistics and bioinformatics tools which provide an insight 

to the functional roles of the orphan receptors, as well as the coordinated roles of the 

clustered NRs under the same physiologic pathways or between different but relevant 

physiologies for harmonious regulation.  

 

1.2.4 NRs in Physiology and Disease 

 Since extensive research toward ligand discovery has adopted several orphan NRs, 

many distinct physiologic pathways have been elucidated. Included in those pathways are fat, 

cholesterol/bile acid, immune response, differentiation, development, circadian rhythm and 

xenobiotic metabolism. Two representative but distinctive physiologies – fat and 

cholesterol/bile acid metabolism – will be described in more detail in the following sections 

1.2.4.1 and 1.2.4.2. 

  

1.2.4.1 Fat Sensors: PPARs 

The PPAR isoforms (α, β and γ) exhibit distinct patterns of expression in different 

tissues, suggesting distinctive roles in different locations of the body for fatty acid 

metabolism (Rosen and Spiegelman, 2000). PPARγ, the first PPAR discovered in this 

subcategory, was shown to be required for development of adipose tissue in mice (Barak et 

al., 1999; Rosen and Spiegelman, 2000). In addition, PPARγ activation is sufficient to 

stimulate differentiation of fibroblasts into mature adipocytes (Tontonoz et al., 1994). The 

physiological role of this adipogenic receptor is believed to coordinate the storage of 
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triglyceride (TG) in adipose tissue, preventing accumulation of TG in peripheral tissues. 

Tissue-specific deletion of the receptor in muscle and adipose tissue results in insulin 

resistance while the liver-specific knock-out develops hyperinsulinemia (He et al., 2003; 

Hevener et al., 2003; Norris et al., 2003). The PPARγ ligand thiazolidinedione (TZD) 

increases insulin sensitivity, which further reduces hepatic gluconeogenesis and induces 

glucose uptake in muscle. In addition, the receptor-mediated modulation of adipokine 

secretion and adiponectin production from adipose tissue is also thought to contribute to the 

receptor’s insulin sensitizing function. Recent studies of the anti-inflammatory function of 

PPARγ will be discussed in chapter 4.  

PPARα is mainly expressed in liver and binds fibrates. PPARα responds to fasting by 

promoting fatty acid oxidation and production of ketone bodies to provide energy to 

peripheral tissues. PPARα null mice display a fatty liver phenotype with chronic high-fat 

feeding and hepatic lipid accumulation with overnight fasting which is accompanied by 

hypoglycemia and elevated serum free fatty acid levels (Kersten et al., 1999). Thus, fibrate 

has been used as an agent for hypertriglyceridemia treatment.  

Unlike the previous two PPARs (α and γ), PPARδ shows ubiquitous expression, 

suggesting more a systemic regulation of fatty acid homeostasis in the body. In fact, the 

function of PPARδ was shown to be relevant to high-fat diet-induced obesity in both tissue-

specific transgenic and tissue-specific null mouse models of the receptor. PPARδ activation 

promotes fatty acid oxidation in muscle and thermogenesis in brown adipose tissue. The 

tissue-specific function of PPARδ has been elucidated for heart. Mice in which PPARδ has 

been specifically deleted in cardiomyocytes develop cardiomyopathy (Cheng et al., 2004). 
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On the other hand, the so called ‘marathon mouse’ which has constitutive expression of 

PPARδ in skeletal muscle displays enhanced running endurance (Wang et al., 2004b). This 

enhanced PPARδ activity transformed skeletal muscle fiber composition from ‘fast-twitch’ 

muscle which has lower numbers of mitochondria and depends mostly on glucose as the 

major energy source, to ‘slow-twitch’ muscle, which is fatigue-resistant with more 

mitochondria and thus burns more fat as a major energy source. Collectively, the 

pharmacology will be of certain benefit for various high fat-related diseases such as heart 

disease, diabetes, metabolic syndrome, and even severe obesity.  

 

1.2.4.2 Cholesterol and Bile Acid Sensors: LXR and FXR, the Yin and Yang  

LXRα, LXRβ, and FXR, members in the adopted class, play crucial physiological 

roles in cholesterol and bile acid homeostasis. The work was initiated with identification of 

oxysterols (e.g., 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, 24(S), 25-

epoxycholesterol and 27-hydroxycholesterol) as physiological ligands of LXRs (Janowski et 

al., 1996; Lehmann et al., 1997). Further studies using genetic mouse models demonstrated 

that LXRα null and liver-specific knockout mice (data not published) show a severe 

phenotype of hepatic cholesteryl ester accumulation with high cholesterol feeding (Peet et al., 

1998a; Peet et al., 1998b). On the other hand, LXR activation reduces total body cholesterol 

content by decreasing cholesterol absorption, enhancing reverse cholesterol transport, and 

increasing cholesterol catabolism into bile acids. A series of genes involved in this pathway 

has been identified.  Contributing to cholesterol efflux and absorption, several ATP-cassette 

(ABC) binding transporters, including ABCA1, ABCG5, and ABCG8, are involved in the 
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reverse cholesterol transport mechanism to get rid of body cholesterol. ABCA1 plays a role 

in removal of peripheral lipid, cholesterol, and phospholipids from peripheral macrophages 

through apoA1-mediated efflux (Costet et al., 2000; Repa et al., 2000). The LXR-mediated 

expression of ABCG5 and 8 in the intestine lowers dietary cholesterol absorption, which 

contributes to lower body cholesterol (Berge et al., 2000; Repa et al., 2002). In addition to 

ABC transporters, several other genes relevant to decreasing body cholesterol are LXR target 

genes including ApoE in macrophages and adipose tissues, LPL in liver and macrophages, 

and human CETP (Laffitte et al., 2001; Luo and Tall, 2000; Zhang et al., 2001). In the 

molecular mechanism of cholesterol catabolism into bile acid (BA), LXR induces the 

expression of CYP7A1 (cytochrome P450 7alpha-hydroxylase), the rate-limiting enzyme in 

the classical pathway for bile acid production. Overproduced bile acids bind to the cognate 

receptor FXR, leading to SHP expression and reciprocal repression of CYP7A1 expression 

by complexing with the competence factor LRH-1 (Goodwin et al., 2000; Lu et al., 2000). 

However, the SHP-mediated repression mechanism still remains to be elucidated.  

BAs are important biodetergents that solubilize dietary lipids for absorption. The 

enterohepatic circulation system which involves liver, gallbladder, and small intestine, 

controls release time and reabsorption of bile acids; greater than 90% of bile acids are 

reabsorbed from small intestine into gallbladder. Recent studies provide information about an 

additional physiological regulation of fecal bile acid secretion between the enterohepatic 

networks. Upon feeding, diet-mediated CCK secretion from the small intestine induces bile 

acid secretion into small intestine where it activates FXR directly, which in turn induces 

fibroblast growth factor 15 (FGF15, an ortholog of human FGF19) expression. FGF15 
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originating from the intestine turns out to be involved in two aspects of bile acid regulation. 

First, it represses CYP7A1 expression via SHP, which becomes activated through 

phosphorylation by the FGF15 bound FGF receptor (FGFR4) in liver (Inagaki et al., 2005). 

Additionally, secreted FGF15 reaches and induces refilling the shrunken gallbladder to stop 

BA secretion into the intestine, a novel physiologic observation opposing CCK action (Choi 

et al., 2006). Mice lacking FGF15 display several phenotypes: increased hepatic CYP7A1 

expression and fecal bile acid secretion, and gallbladder emptying. Administration of 

recombinant FGF15 into null mice reversed the phenotypes to reduce CYP7A1 expression 

and restore gallbladder volume to the wild type level. 

 

1.2.4.3 Phantom Ligand Effect: Rexinoid Receptors Have Permissivity 

While the activity of NRs functioning as monomers and homodimers is primarily 

determined by the cognate ligand alone, RXR heterodimers exhibit their transcriptional 

activities with RXR bound to Rexinoid in a combined manner. Originally two papers 

independently reported the observation that the heterodimer complex containing RXR is able 

to activate target gene promoters of the partner receptors in the presence of the synthetic 

RXR ligand alone. This induces a conformational change of the second receptor and results 

in the dissociation of corepressors and recruitment of coactivators, a phenomenon termed the 

‘phantom ligand effect’ (Schulman et al., 1997; Willy and Mangelsdorf, 1997). RXR 

heterodimers displays allosteric coupling within the complex, which involves three modes of 

activation:  permissive, conditional, and non-permissive. Permissivity can be defined as a 

distinct feature of the partner NR, where the ligand-bound RXR activates genes with the 
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cognate response elements of the partner receptor. There is one representative example for 

each mode described (Shulman et al., 2004). In the first mode, LXR/RXR heterodimers 

display permissivity for both ligands, meaning that the complex can be activated by each 

receptor’s ligand alone or both ligands in a more than additive manner.  

In the non-permissive mode, RXR ligand is not involved in partner VDR activity with 

or without VDR ligand. Although the RXR ligand is not necessary, heterodimerization is 

necessary for VDR activation in this mode. In conditional permissivity, there is dependence 

on the presence of the partner receptor ligand to achieve full responses. In this example, the 

RXR ligand is involved in the activity of the complex to a lesser extent than permissive, but 

more than non-permissive action. To identify critical amino acid residues responsible for the 

allosteric communication, statistical coupling analysis (SCA) was developed. SCA is a 

method to assess if two amino acid residues have thermodynamically coevolved in two 

different positions. It uses statistical clustering analysis and a large scale of screening 

mutagenesis (Lockless and Ranganathan, 1999). In fact, amino acid residues important for 

permissivity were identified in both FXR and PPARα, nuclear receptors for which RXR 

exhibits the permissive mode of action. Mutation of the specific residues results in non-

permissivity for FXR and conditional permissivity for PPARα (Shulman et al., 2004). It has 

been proposed that the binding partners of RXR follow the conserved rule for recognizing 

potential response elements. Taken together, definition of these distinct mechanisms will lead 

to better understanding of finely tuned genetic control and allow development of drugs 

differentiating allosteric modes.  
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1.3 Cancer and Nuclear Receptors 

 Since the first demonstration that TRα (also known as c-erbA due to its homology 

with the viral oncogene v-erb) is related to cancer, more than 23,000 studies have been 

published regarding NR biology in cancer in the last two decades (Sap et al., 1986; 

Weinberger et al., 1986). Considering that NRs are involved in crucial physiological 

pathways such as response to diet, reproduction, immune defense and development, it is not 

surprising that almost every receptor, including certain orphans, is potentially relevant to 

various types of cancers. A few selected NRs including the androgen receptor (AR), estrogen 

receptor (ER), PPARγ, and VDR will be discussed as representative examples. These 

receptors are significantly relevant to 3 of the top 4 cancers: breast for ER, prostate for AR, 

colon for VDR and PPARγ with high incidence rates. Secondly, the chemotherapeutic 

interventions using drugs targeting those receptors are either in the clinic or in developmental 

stages.  

 

1.3.1 Androgen Receptor (AR) and Prostate Cancer 

Prostate cancers have the highest incidence rate in men in the United States and 

comprise 33 % of total United States cancer patients. Due to the existence of early detectable 

diagnostic maker, prostate specific antigen (PSA), which could partly contribute to such a 

high incidence rate, mortality is very low, with more than 90 % of five year survival rates 

(Figure 1.2). Treatment options for localized neoplasm is mostly dependent on surgery, 
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combined with irradiation. However, androgen-ablations have been the main option for 

prostate cancer treatments in the last 50 years for most unconfined prostate cancers, which 

are androgen-dependent but become independent of the hormonal therapy over time (Debes 

and Tindall, 2004). Androgen blockade includes flutamide, bicalutamide (casodex), 

nilutamide for anti-androgen, and luteinizing hormone releasing hormone (LHRH) analogs or 

antagonists. Although hormonal therapy works well at the beginning, the response becomes 

refractory due to various molecular changes classified into two main categories. First, AR 

mutation or amplification sensitizes tumorigenic cells to even small amounts of androgen, 

stimulating positive tumor growth even with anti-androgens. Mutations can also result in 

constitutively active forms of the AR. Second, due to acquired activation of other survival 

pathways such as functional loss of PTEN, overexpression of Bcl-2, or the autocrine action 

of neuropeptides, prostate cancers become androgen-independent. In this regard, several 

independent clinical publications report that combined chemotherapy, commonly including 

docetaxel, improved median survival as well as life quality of advanced, progressive, 

androgen-refractory prostate cancer patients (Chen and Petrylak, 2004; Petrylak et al., 2004; 

Tannock et al., 2004). These clinical data suggest that treatments for prostate cancers will be 

greatly enhanced if combined with, preceded by, or followed by AR-targeted therapies. 

 

1.3.2 Estrogen Receptor (ER) and Breast Cancer 

Breast cancers have the highest incidence rate in women, comprising more than 30% 

of total cancer patients in the United States. Mortality is very low due to relatively early 

detection and better treatment responses. Even with high five-year survival rates, the 
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causative factors still remain to be defined to understand the disease pathogenesis. Several 

genetic or epigenetic causes, e.g., myc, HER2 overexpression, p53 mutations, promoter 

methylation of p16ARF, etc., have been reported but are mostly known to be not inheritable 

except in the case of BRCA1 and BRCA2 mutations.  Germ line mutations in these two 

genes are reported to increase life-time risk of developing breast cancers, ovarian cancer or 

both by 50 to 85 % (Casey, 1997; Marcus et al., 1997).  

Diagnosis is determined on the basis of mammography and personal physical 

examination with symptoms, and further confirmed with tissue biopsies and histological 

analysis. Moreover, prognostic evaluation and treatment decisions are established on the 

basis of histological examination of the expression of estrogen and progesterone receptors, 

and more recently together with HER2, which is a membrane receptor for growth signals 

from outside cancer cells (Hortobagyi et al., 1998; Piccart-Gebhart et al., 2005). ER alpha 

expression occurs in 60 to 80% of primary tumors but becomes ER negative in distant, 

metastatic tumors. In general, there is poor prognosis for cases of breast cancer without any 

expression of the receptors and it becomes better in the order of expression of ER alone, ER 

plus PR, and both receptors together with HER2 because of more treatment options. 

Tamoxifen or other selective estrogen receptor modulators (SERMs) become the first-line of 

hormonal treatment, in combination with progestin in case of expression of both receptors, 

ERα and PR. In addition, vitamin D receptor is reported to be a beneficial prognostic marker 

together with ERα expression in breast cancer treatment (Hussain et al., 2003; Wietzke et al., 

2005). Herceptin, a monoclonal antibody against the HER2 receptor which blocks growth 

signaling, improves disease-free survival among advanced, HER2 positive women and is 
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believed to be a valuable alternative in case of refractory hormone-based therapy. Further 

understanding the pathogenesis using high-throughput molecular techniques, such as 

microarray and quantitative real-time PCR (qRT-PCR) assays in laser-captured breast tissues 

according to various stages of the disease, will give more targetable options.  Here, 

expression profiling of the NR superfamily as a whole using qRT-PCR has been surveyed in 

a panel of 35 breast cancer cell lines. The profile was further confirmed with the histological 

expression of ER and PR together with the microarray dataset.  

 

 
1.3.3 NRs and Colon Cancer 
 
 Colon cancer is the third most common cause of cancer-related deaths after lung 

cancer, prostate cancer for men, and breast cancer for women in the United States. The 

epidemiologic studies suggest that various factors, both environmental and genetic, are 

involved in colon cancer incidence. Some somatic mutations in genes involve oncogenic 

alterations in genes such as ras, c-myc, etc., and loss of tumor suppressors including familial 

adenomatous polyposis (FAP), Rb, p53, and deleted in colon cancer (DCC) (Link et al., 

2005; Majumdar et al., 2004; Mitchell, 1992). In addition, dietary factors are known to be 

involved in the disease incidence or progression. For example, a western diet including high-

fat content induces more secretion of primary bile acids which are further converted into 

secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA) which are very 

toxic and potential tumor promoters or co-carcinogens. Considering that BAs are 

physiological ligands for FXR, this receptor is expected to be relevant to colon tumorigenesis 

but needs to be further studied for its beneficial potential (Makishima et al., 1999; Parks et 
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al., 1999). As for beneficial dietary factors, calcium is relatively well-known for its 

protective role in colon cancer incidence and believed to be relevant to vitamin D metabolism 

involving VDR. VDR regulates calcium homeostasis in response to its physiological ligand 

1,25α dihydroxyvitamine–D3 and is known to have a protective role in skin cancer, and 

possibly in colon cancer as well. Interestingly, the secondary bile acid LCA is a physiological 

ligand for VDR which may sense the overproduced secondary BA and prevent or bypass its 

toxic effects by regulating genetic signature (Cesario et al., 2006; Jalving et al., 2005; 

Makishima et al., 2002). Likewise, PPARγ has been demonstrated to have a protective role 

against tumor incidence and positive therapeutic effects on established tumors in various 

preclinical models (Cesario et al., 2006; Jalving et al., 2005). Considering that PPARγ is 

involved in modulation of anti-inflammatory pathways and non-steroidal anti-inflammatory 

drugs (NSAID) have a significant negative correlation to colon cancer incidence, the 

beneficial effect of PPARγ activation in tumorigenesis is not surprising. Overall, finding 

more NRs responsive to dietary factors, together with understanding their biologic relevance, 

is believed to provide better options for translational applications to the clinic. 

 

1.3.4 Relevance of NRs to Lung Cancer 

 The relevance of GR to lung tissue was reported 10 years before its molecular 

cloning, although the physiological pathways had not been clearly elucidated (Ballard and 

Ballard, 1974; Ballard et al., 1974; Khuri and Lippman, 2000; Lippman et al., 1993; Wang et 

al., 2006d). Since then, various ligands, e.g, dexamethasone, for this receptor have been 

utilized to control unfavorable immune responses induced by transplantation or inflammation 
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potentially induced by chemotherapeutic treatments for the final stages of various types of 

cancers including lung cancers. Much has been studied for various NR involved in lung 

cancer. For example, treatment with the RAR ligand, all trans-retinoic acid (AtRA), has been 

proposed as a potential chemopreventive factor against lung cancer incidence (Khuri and 

Lippman, 2000; Lippman et al., 1993). In addition, treatment with the synthetic RXR ligand 

bexarotene was shown to reduce lung tumor progression by 50% in mouse genetic models 

haboring K-ras mutations (Wang et al., 2006). In response to AtRA or its derivative 

treatment, expression of one of the receptor subtypes, RARβ, has been shown to be a 

beneficial prognostic marker for lung cancer. Further studies regarding epigenetic regulation 

such as promoter methylation proposed that hypermethylation of one RARβ isoform, 

RARβ1, is involved in retinoid resistance in lung tumorigenesis (Hershberger et al., 2005; 

Nakagawa et al., 2005a; Nakagawa et al., 2005b; Petty et al., 2005; Stabile et al., 2005). 

Recently, estrogen receptors have been studied for their potential as therapeutic targets to 

treat lung cancer, in combination with EGFR inhibitors (Stabile et al., 2005; Hershberger et 

al., 2005).  More recently, VDR activation by ligands has been proposed as a beneficial 

marker against lung cancer metastasis (Nakagawa et al., 2005a; Nakagawa et al., 2005b). 

Obviously, the evidence suggests that changes in various NR activities are involved in lung 

tumorigenesis. Thus, I performed a systematic approach to investigate expression of all 

members of NR superfamily in several pathologically well-defined systems.  

  

1.4 Hypothesis and Specific Aims 
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 Since it is evident that certain NRs are individually involved in specific types of 

cancers and they are also known to modulate various physiologic pathways in a coordinated 

fashion, I hypothesized that quantitative expression profiling of the NR superfamily as a 

whole would provide a novel blueprint for therapeutic targets, diagnostic and prognostic 

evaluation, and eventually customized treatment in lung cancer. In addition, this approach 

would give an insight to understanding the disease pathogenesis. Thus, I set up four specific 

aims to assess this hypothesis. 

Aim 1. Generate NR expression profiles in a panel of lung samples 

Aim 2. Perform diagnostic and prognostic evaluation of the NR superfamily in a lung cancer 

model 

Aim 3. Validate functional aspects for the expression profile using in vitro and in vivo 

models 

Aim 4. Identify NRs relevant to the disease pathogenesis 

 

1.4.1 Aim 1: Generate NR Expression Profiles in a Panel of Lung Samples 

 To explore NR expression in various sets of lung samples, a full set of quantitative 

PCR primers and probes for the 48 members of the human NR superfamily were designed, 

validated, and used in the TaqMan® assay (HTTP://WWW.NURSA.ORG). Expression 

profiles of the 48 members of the family plus two isoforms, PPARδ2 and PPARγ2, were 

generated for these lung samples. In addition, microarray experiments were performed in a 

subset of lung samples to identify unique genetic signatures concordant with receptor 

expression. Included for this approach was a panel of lung cancer cell lines, primary human 
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lung tissues (tumors vs. corresponding normal tissues), a panel of immortalized human 

bronchial epithelial cells with or without oncogenic alterations, and the transgenic lung 

cancer mouse model expressing constitutively active K-rasV12.  

 

1.4.2 Aim 2: Perform Diagnostic and Prognostic Evaluation of the NR Superfamily in a Lung 

Cancer Model 

The NR expression profile was further interrogated using several bioinformatics tools 

to address answers for fundamental questions relevant to diagnosis, i.e., can the NR 

expression profile distinguish between tumor types? Can it differentiate the normal from the 

tumor? Then what receptor(s) is(are) involved ?  Can NRs be used as diagnostic markers? 

Bioinformatics tools included unsupervised, hierarchical cluster analysis and bootstrapping 

for statistical analysis of clustering accuracy. In addition to diagnostic evaluation, the 

analysis was performed to evaluate prognostic potential for patient survival. Using log-rank 

test,  multivariate Cox regression analysis, and principal component analysis (called 

metagene analysis), the NR profiles in patient tissues were further analyzed to identify any 

single NR or a subset of NRs (principal component) showing predictable power. 

Furthermore, a subset of NRs was identified as a predictive group for patient prognosis using 

risk score for individual patients. 

 

1.4.3 Aim 3: Validate Functional Aspects for the Expression Profile Using In Vitro and In 

Vivo Models 
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Along with diagnostic and prognostic potential, the expression profile was further 

investigated to determine if any NRs can be a therapeutic target for clinical application. 

Three receptors, AR, ERα and PPARγ, were chosen for preclinical study and several cell 

lines positively or negatively expressing each receptor were treated with cognate ligands and 

assayed for cell growth response. Furthermore, in vivo treatment of tumor was followed 

using a xenograft mouse model for in vivo evaluation of PPARγ.  

 

1.4.4 Aim 4: Identify NRs relevant to the disease pathogenesis 

 NRs were surveyed in pathogenic models relevant to the tumorigenic process. The 

pathogenic models included a series of immortalized human bronchial epithelial cells with or 

without oncogenic alterations and tumorigenic clones, and normal and corresponding tumor 

tissues from transgenic K-rasV12 mouse model. Further studies with representative NRs were 

performed for their relevance in disease progression. The NRs important for pathogenesis 

could be used as targets for chemoprevention. 
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2006 Estimated Cancer Cases in the USA

Men
720,280

Women
679,510 • 31%     Breast

• 12% Lung & bronchus

• 11% Colon & rectum

•   6% Uterine corpus

•   4% Non-Hodgkin
     lymphoma

•   4% Melanoma of skin

•   3% Thyroid

•   3% Ovary

•   2% Urinary bladder

•   2% Pancreas

• 22%      All other sites

Prostate                   33%

Lung & bronchus     13%

Colon & rectum        10%

Urinary bladder          6%

Melanoma of skin      5%

Non-Hodgkin             4%

  lymphoma

Kidney                       3%

Oral cavity                 3%

Leukemia                  3%

Pancreas                  2%

All other sites           18%

 
 
 
Figure 1.1 2006 Estimate of Cancer Deaths in the United States. More than Fifty 
percent of cancer cases are ranked into the top 4 cancers, lung, colon &rectum, 
prostate for men and breast for women. (Adapted by 2006, American Cancer Society, 
Inc) 
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Figure 1.1 2006 Estimate of Cancer Cases in the United States. More than Fifty percent 
of cancer cases are ranked into the top 4 cancers, lung, colon &rectum, prostate for men 
and breast for women. (Adapted by 2006, American Cancer Society, Inc) 

2006 Estimated Cancer Deaths in the USA

ONS=Other nervous system.
Source: American Cancer Society, 2006.

Men
291,270

Women
273,560 • 26% Lung & bronchus

• 15% Breast

• 10% Colon & rectum

•   6% Pancreas

•   6% Ovary

•   4% Leukemia

•   3% Non-Hodgkin
     lymphoma

•   3% Uterine corpus

•   2% Multiple myeloma

•   2% Brain/ONS

• 23%    All other sites

Lung & bronchus     31%

Colon & rectum       10%

Prostate                    9%

Pancreas                  6%

Leukemia                  4%

Liver & intrahepatic   4%
bile duct

Esophagus                4%

Non-Hodgkin             3%

lymphoma

Urinary bladder         3%

Kidney                       3%

All other sites           23%

 

Figure 1.2 2006 Estimate of Cancer Deaths in the United States. About Fifty percent of 
cancer deaths are attributed to the top 4 cancers, lung, colon &rectum, prostate for men 
and breast for women. (Adapted by 2006, American Cancer Society, Inc) 
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Figure 1.3 Five-year Survival Rate for Three Time Periods in the United States.  
Breast and Prostate cancers show remarkably increased survival in the last 3 time periods, 
while the rest of cancers, but lung and pancreas, show mild improvement regarding survival. 
(Adapted and Modified by 2006, American Cancer Society, Inc) 
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Table 1.1TNM (Tumor, Node, Metastasis) International Staging System for Lung 
Cancer (Referenced by 2005, HARRISON’s Principles of Internal Medicine, 15th 
Edn) 
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Figure 1.4 The Nuclear Receptor Superfamily 
(A) Schematic representation of a typical nuclear receptor. (B) Classification of nuclear 
receptors according to physiological ligands. (C) Representation of NR/RXR heterodimer 
activation. Ligand binding to the receptor (represented as triangle) causes dissociation of 
corepressors and recruitment of coactivators, including transcription of a target gene. 
(Modified from Chawla et al., 2001) 
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Figure 1.5 Anatomical Profiling of NR Superfamily.  
         (Referenced by Bookout et al, Cell 2006 and Yang et al., Cell 2006) 

 



39 

 

 
 
 
Figure 1.6 Three Activation Modes of RXR Heterodimers.  
Top: Both receptors present dual permissivity in the presence of a single ligand and 
more than additive activation with both ligands, respectively. Middle: Conditional 
permissivity is allowed in the presence of RXR ligand alone which leads to full 
activation with RAR ligand. Bottom: The RXR ligand does not affect activation of the 
partner receptor. Adapted from Sulman et al, Cell 2004. 
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Figure 1.7 Unsupervised Hierrarchical Cluster Analysis of Mouse NR Profiles.  
Matrix 1.28 software was utilized to generate the hierarchical clustering results for the 
49 nuclear receptor dataset that is normalized, quantitative real-time PCR values in a 
panel of 39 mouse tissues of two strains. The horizontal axis represents 39 mouse 
tissues in several subsets of clusters and the vertical axis for 49 NR sets in 
physiological relevant clusters. Adapted from Bookout et al, Cell 2006. 
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CHAPTER TWO 
Description of Primary Data 

 
 
 

2.1 Introduction  

 

Much has been learned concerning the physiological pathways of individual NRs. 

The most recent work utilized a systems biology approach to assess the anatomical 

expression profiles of NRs as a whole family and provided a seminal insight to the existence 

of a higher-level regulatory network, termed ′mega-network’ which maintains whole body 

homeostasis by balancing various physiological pathways (Bookout et al., 2006; Yang et al., 

2006). This novel viewpoint has not only a “space” component, but also “time” component 

(Yang et al., 2006). Thus, dysregulation of the mega-network of NRs leads to imbalanced 

physiologies, in space and/or time, and results in many acute or chronic diseases. This new 

paradigm for considering the NR superfamily as a whole, rather than single receptor or 

dominant factor, drove me to test its potential for translational application to lung cancer as 

the first disease model. TaqMan-based quantitative real-time PCR assays, which are highly 

quantitative, reproducible, and sensitive, were employed to accomplish this goal, along with 

high-throughput Affymetrix microarray experiments. An array of lung samples included a 

panel of 56 lung cell lines and 30 pairs of patient samples (tumor and pair-matched adjacent 

normal tissues) for preclinical diagnostic and therapeutic evaluation, and in vivo prognostic 

evaluation of NR profiles. In addition, the NR profile was produced for two pathogenic 

models: first, a series of immortalized HBECs, non-tumorigenic HBECs, and tumorigenic 
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HBECs with oncogenic alterations; secondly, a mouse lung cancer model with oncogenic K-

ras expression (Johnson et al., 2001; Ramirez et al., 2004; Sato et al., 2006). More detailed 

information about these samples are described in each of the following sections along with 

the primary dataset. 

 

2.2 Description of Samples and NR Profiles 

2.2.1 Expression of Nuclear Receptors in Lung Cell Lines 

To explore the NR expression in a panel of lung cells and patient tissues, a full set of 

quantitative PCR primers and probes were designed and validated for the 48 members of the 

human NR superfamily and used in the TaqMan® assay (Bookout et al., 2006; Ramirez et 

al., 2004; Sato et al., 2006). Included in a panel of 56 lung cell lines were five normal human 

bronchial epithelial cell lines, ten immortalized cell lines, fourteen SCLCs, and twenty-seven 

NSCLCs. The immortalized cell lines included two BEAS2B cell lines exogenously 

expressing SV40 T antigen, four human bronchial epithelial cell lines (HBEC) immortalized 

with cyclin-dependent kinase 4 (CDK4) and the catalytic subunit of human telomerase 

reverse transcriptase (hTERt), three HBECs with oncogenic K-rasV12, and one HBEC with 

human papilloma virus (HPV) E6/E7 oncoproteins, which was characterized in detail in 

previous studies (Ramirez et al., 2004; Sato et al., 2006). The expression profile of the 48 

NRs plus two isoforms, PPARδ2 and PPARγ2, is shown in alphabetical order in figure 2.1 

and further grouped by expression level into 3 main categories (Table 2.1). This analysis 

revealed a highly distinct but remarkably variant pattern of NR expression in different lung 

cancer cell lines. Some receptors show a highly predictable pattern of expression (e.g., 
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NSCLC vs. SCLC), whereas others display unpredictable and sparse but distinct expression,  

which may be indicative of individual lung cancer differentiation or differentiating type of 

lung tumors. Moreover, some NRs show neither significant changes nor expression at all 

across the entire panel. Additionally, global genetic signatures of 48 lung cell lines out of the 

56 were surveyed using affymetrix microarray chip which monitors 40,000 genes. Pearson 

correlation coefficients of the 48 NRs from the qRT-PCR assays were determined for all 

40,000 genes on the microarray and further sorted according to the calculated Pearson 

coefficients. An example for VDR is represented by sorting all genes against VDR in Figure 

2.2. This type of analysis revealed genetic signatures possibly under the same transcriptional 

control as the nuclear receptor and thus identified potential target genes for the specific NR. 

Considering the higher-level NR network, this bioinformatics approach may provide an 

insight to understanding physiological communication within a subset of NRs on how genetic 

signatures from individual receptors are integrated. In other words, the physiological 

correlation, whether positive or negative, between two nuclear receptors can be elucidated at 

genetic levels. Moreover, it will be interesting to apply this method to all transcription factor 

families and the integrative computational tools generated may help to produce virtual 

pathways that can be simply tested using an in vitro system.  

 

2.2.2 Human Bronchial Epithelial Cells (HBECs) 

Since certain NRs clearly showed differentiation of immortalized HBECs from lung 

cancer cell lines in section 3.2.1.1, I rationalized that these subsets of NRs are potentially 

involved in lung cancer disease progression. Thus, to more systemically identify NRs 
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potentially relevant to lung cancer pathogenesis, NR expression profiles were surveyed in a 

panel of immortalized HBECs previously generated by oncogenic alterations. The 

establishment of a series of isogenic HBECs with defined oncogenic changes is cartooned in 

figure 2.3. Primary bronchial epithelial cells that migrated from biopsied bronchus tissues 

were immortalized by CDK4 and hTERt, followed by further oncogenic manipulations. The 

cell lines either express K-rasv12, have p53 knocked-down, or harbor both changes (Ramirez 

et al., 2004; Sato et al., 2006). Clonogenic methods, such as soft agar and liquid colony 

formation assay, isolated several clones that were further tested for their tumorigenic 

potential and divided into non-tumorigenic (HBEC C6, C7, C8, and C9) and tumorigenic 

clones (HBEC C1 and HBEC C5) using a xenograft model. The tumorigenic clones 

developed two distinct but typical types of lung tumors, squamous cell carcinoma for the C1 

clone and adenocarcinoma for the C5 clone. In addition, these grown tumors were further 

reestablished as tumorigenic cell lines named C1 #658 and C5 #453. Now using these 

genetically defined systems, I profiled the expression of the 48 human NRs to dissect their 

physiological relevance in oncogene-induced pathogenesis as well as for nuclear receptors 

that could serve as targets for chemoprevention. Interestingly, the profile revealed distinct 

groups of expression, no expression, expressed but no change between clones, and 

differentiated expression with tumorigenecity or oncogenic alterations (Figure 2.4). Further 

biological studies are discussed in chapter 5.  

 

2.2.3 Patient Tissue Samples 
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Along with the potential of NRs as diagnostic and therapeutic targets in preclinical in 

vitro cell culture systems (Section 2.2.1) and xenograft models (Section 4.2.4), the prognostic 

power of the NR superfamily was assessed using a panel of primary lung tissue samples 

consisting of tumor and corresponding normal tissues obtained by microdissection from a 

panel of patients tissue samples (n=30) that were histologically characterized into 

adenocarcinoma (n=24) and squamous cell carcinoma (n=6). Demographic features are 

described in table 2.3. The expression profile of the 48 main NRs plus two specific isoforms, 

PPARδ2 and PPARγ2, is shown in figure 2.5, together with NR classification according to 

expression level (Table 2.2). The expression profile revealed a subset of NRs showing 

dramatic differences of expression in tumor vs. normal tissues across all patients (Figure 2.6). 

Five receptors, NGFIB3, PPARγ2, PR, RXRγ, and SHP, show decreased expression in tumor 

vs. normal tissues, suggesting potential roles of these receptors as anti-tumorigenic factors. In 

contrast, HNF4γ shows increased expression in tumor vs. normal tissues. This subset of NRs 

can be utilized as diagnostic markers and the HNF4γ can be a potential therapeutic target for 

treating lung cancer using gene therapy. In addition, certain NRs clearly showed distinct 

patterns of expression (e.g., increased or decreased expression in tumor vs. corresponding 

normal tissue) in a patient-dependent manner whereas others had no difference in expression 

for both pair-matched tissues across all patient samples (Figure 2.7). Included in the category 

of individual variation are AR, COUP-TFα, COUP-TFγ, GR, MR, LRH-1, LXRβ, NOR1, 

NURR1, PPARγ, RARα, RARβ, RARγ, RORβ, RORγ, RXRα, TRβ and VDR. Considering 

NRs as druggable targets, some of which already have been clinically targeted for certain 

types of cancers as previously mentioned in section 1.3, the treatment decision should be 
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carefully chosen for selecting target NRs. In fact, retrospectively, the therapeutic responses 

significantly vary in generic treatments using cytotoxic drugs, and even targeted therapy for 

various types of cancers, which, however, had been attributed to individual variations. Here, I 

propose a novel therapeutic paradigm, ‘tailored-drug treatment’, which customizes treatment 

options by screening the best NR or best set of NRs based upon individual variations.  

 

2.2.4 Tissue Samples from an Oncogenic K-rasV12 Mouse Model 

 Along with multiple NRs identified in a series of isogenic HBECs as having potential 

pathogenic relevance to oncogenic changes, a survey of NRs was executed in an oncogenic 

K-rasV12 mouse model, which was described in section 1.1.4. Lung tissues were obtained 

from groups of 4 month and 8 to 9 month old mice where each group had 10 wild types and 

10 mutants including both genders. All environmental conditions, including ‘diet’, were 

controlled. Furthermore, tumor tissues were carefully dissected-out, together with separate 

collections of pair-matched normal tissues. Histopathologic examination of all samples in the 

8 to 9 month old group revealed that tumors developed into adenocarcinoma showing typical 

gland formation (Figure 2.8). The NR profile of mouse lung tissues provided two interesting 

groups of NRs based on expression pattern. In one of these groups, 8 out of 50 NRs showed 

expression differences between tumor and pair-matched normal tissue in a individual mouse-

specific manner (Figure 2.9). Since NRs are well-known drug targets, these data implicate 

the use of NR profiling as a strategy for individualized treatment against lung cancer. In the 

other group, there was a dramatic difference between expression of normal tissue and tumors 

for 10 of the 50 NRs, which may provide potential diagnostic markers as well as therapeutic 
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targets. This genetic model for lung cancer is believed to be an important and valuable 

system to assess the potential of the screened NR in therapeutic intervention as well as 

chemoprevention. Further bioinformatics analysis will be discussed in section 5.2.4.  

 

2.3 Discussion 

 Since much has been studied concerning the significance of individual NRs in various 

physiologies and as potential drug targets by screening or developing ligands to modulate 

receptor function, here, I utilized high-throughput, quantitative real-time PCR methods to 

establish the expression profile of the 48 NR superfamily as a whole in various lung cancer 

models as the first disease target for translational research of the NR superfamily. To see if 

there are potential drug targets which can be used to treat, predict, and/or prevent the disease, 

I investigated the NR profile for various indices in several systems, such as diagnosis and 

therapeutic power in human lung cell lines, prognostic relevance in patient samples, and for 

chemoprevention in pathogenic models. The following chapters will provide more detailed 

discussion of the primary data using various functional, biostatistics, and bioinformatics 

tools. 

 

 

 

 

 

 



48 

 

 
 
Figure 2.1 Expression Profiles of the Nuclear Receptor Superfamily in Lung Cell Lines.  
Quantitative real-time PCR assay was performed for 50 NRs in 56 human lung cell lines. 
Relative expression values on the y-axis were obtained as described in chapter 7. The x-
axis represents cell names in various types of lung cells including SCLC, small cell lung 
cancer; NSCLC, non-SCLC; SCC, squamous cell carcinoma; LC, large cell carcinoma; 
BA; ME, mesothelioma. 
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Table 2.1 Classification of NR on Expression Level 

 
The expression profiles are grouped into high (~ 5), intermediate (0.01 ~ 0.1), and Low 
(less than 0.01) where the y-axis represents normalized value as described in methods. The 
asterisk (*) represents receptors in absence. 
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Figure 2.2. Global Change of Genetic Signatures on the VDR Expression.                      
Quantitative RT-PCR expression of the individual NRs is correlated to the whole gene 
expressions on Affymetrix chip in 48 lung cell lines. The horizontal axis represents 
NRs and the vertical axis stands for gene names on Affymetrix chip. The calculated 
Pearson correlation coefficients are sorted to the VDR and represented into color codes, 
red for positive and green for negative correlation values. 
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Figure 2.3.  Overall Schema for Generating Immortalized and Tumorigenic Bronchial 
Epithelial Cells. 
Human bronchial epithelial cells were collected from slice cultures of normal bronchial 
tissues from patients. Further genetic manipulations of HBECs include immortalization 
with CDK4 and hTERt and tumorigenesis with oncogenic alterations which are either 
introduction of oncogenic K-ras, p53 knock-down, or both. Abbreviations: CDK4, cyclin-
dependent kinase 4; hTERt, human telomerase catalytic subunit; pSuper-retro, siRNA 
vector; plenti-, lentiviral vector. 
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Figure 2.5 Expression Profiles of the Nuclear Receptor Superfamily in Patient 
Tissues. Quantitative real-time PCR assay was performed for 50 NRs in 30 pairs of 
human lung tissues. Relative expression values on the y-axis were obtained as 
described in chapter 7. The x-axis represents identification number of tissues 
according to the gender and in the order of survival length. 

Figure 2.4.  Expression Signature of the NR Superfamily in Various Pathologic 
Stages of HBECs. (A) Expression profiles of NRs in HBECs with different 
immortalization treatments. (B) Expression profiles of NRs in tumorigenic HBEC 
clones (C1 and C5). The profiles are classified into three groups including low or no 
expression, expressed but no difference, and expressed differently. 
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Table 2.2 Classification of NR Expression Level in Patient Samples 

 
The expression profiles are grouped into high (~ 1), intermediate (0.01 ~ 0.2), and 

Low (than 0.01) where the y-axis represents normalized value as described in methods. The 
asterisk (*) represents receptors in absence. 
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           Table 2.3 Demographic Features of Patient Samples 
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Figure 2.6 NRs Showing Dramatic Differences between Normal and Corresponding 
Tumor Tissues. The pair-matched samples displayed the normal tissues (white bar) and 
the corresponding tumor tissues (red bar). The y-axis represents the normalized value as 
described in chapter 7. 
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Figure 2.7 NRs showing Differential Pattern of Expression between Normal and 
Corresponding Tumor in a Patient Specific Manner.  
The pair-matched samples displayed the normal tissues (white bar) and the corresponding 
tumor tissues (red bar). The y-axis represents the normalized value as described in chapter 7. 
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(A)                   3693 wt Male                                          3786 K-rasV12 Male 

 
 
(B)   
K-rasV12 Male (4X)  

 
 
Figure 2.8 Histopathology of Mouse Lung Tumors.  
(A) Pictures represent lung organ in wildtype (top-left) and K-rasV12 mutant mouse (top-
right). (B) H&E staining results were represented from K-rasV12 lung tissues in different 
magnification.  
 

K-rasV12 Male (20X)
 

40X 
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Figure 2.9 Expression Profile of NR Superfamily in Oncogenic K-ras Mouse Model. 
Expression profiling of 49 mouse nuclear receptors in normal (white) and pair-matched 
tumor (red) tissues from 5 male mice was classified into 4 major groups, low 
expression, equal expression, random expression, and tumor specific expression.  
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CHAPTER THREE 
Results 

 
CLASSIFICATION AND PROGNOSIS 

 
3.1 Introduction 

 

Lung cancer is the leading cause of cancer related death in the United States. Even 

with well-known causative agents (e.g. smoke and smoke-related carcinogens), treatment 

options for the disease remain limited, and mostly depend on radiotherapy and surgical 

resection. Additionally, there has recently been successful targeted therapy in a minor 

percentage of cases using Iressa and Tarceva for targeting mutant EGFR. Otherwise, the last 

option is using combination of generic cytotoxic drugs (Bild et al., 2006; Potti et al., 2006; 

Thomas and Grandis, 2004). Although treatment with receptor tyrosine kinase inhibitors 

resulted in dramatic regression of advanced lung tumors in patients harboring mutant EGFR, 

patient responses vary significantly among affected populations. EGFR mutations are found 

at the highest frequencies in Asian non-smoking women, suggesting that further 

epidemiological factors are potentially involved in differential responses to the drug. 

Moreover, a second site mutation in EGFR results in refractory tumors against the drugs. 

Thus, other potential targets definitely need to be developed for therapeutic intervention. 

Also, the predictive value of current molecular markers has been limited. Using microarray 

approaches, a principal component set an, or so called ‘metagene’, was recently identified 

from a cohort training set and validated with a test set. The metagene set was shown strongly 

to predict lung tumor recurrence rate in the test set (Bild et al., 2006; Potti et al., 2006). In 
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this chapter, I will describe further analysis of the primary dataset of multiple NR profiles 

from various systems using bioinformatics and biostatistics tools. 

 

3.2 Results 

3.2.1 Diagnostic Potential of NR profiles in a Panel of Lung Cells  

Most lung cancer diagnosis is made by professional pathologists who were 

extensively trained in the clinic. However, although this histological approach is well-

established and accurate in most cases, more unbiased and objective diagnostic methods have 

been sought using cutting-edge technologies such as microarrays or serum proteomics to 

search for molecular diagnostic markers. Clearly microarray technology is a powerful tool to 

monitor global changes of genetic signatures of 30,000 genes at once and serum proteomics 

is a useful technology to identify various protein markers at a single time point. Nonetheless, 

the question that still remains is how to sort or handle large numbers of genes for therapeutic 

target validation as well as diagnostic markers. Similarly, the reproducibility and sensitivity 

of the proteomic approach is still of concern. Thus, keeping these issues in mind, I assessed 

the diagnostic potential of the NR profile in a panel of lung cell lines and a set of patient 

samples, as well as their prognostic relevance in a set of patient tissues. 

 

3.2.1.1 Can the NR Profile Differentiate Normal from Tumor Cells or Tumor Types? 

To investigate if the NR expression profile could be utilized to distinguish between 

tumor types, I performed hierarchical cluster analysis of the NR dataset using Matrix 1.29 

software, a multipurpose bioinformatics tool to analyze various types of array data and to 
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execute unsupervised clustering analysis. The analysis revealed that the NR profile 

differentiated NHBEC and immortalized HBECs from NSCLC, and NSCLC from SCLC, 

although a few SCLCs were dispersed into the NSCLC cluster (Figure 3.1). The clusters 

defined by profiling the 48 NRs closely resemble those obtained using 10K genes from the 

microarray studies (Figure 3.2A). Consistently, the NR dataset extracted from microarray 

studies showed similar patterns in the clustering results (Figure 3.2B).  Moreover, bootstrap 

analysis, a statistical tool that measures the clustering accuracy based on random shuffling of 

the NR order, shows statistical significance in the clustering accuracy of the NR dataset 

(Figure 3.3). This analysis suggests that there is strong predictable power of the NR profile 

for tumor typing. The next question was to see if there is any difference in the NR expression 

pattern between cell types. Since clear differences were observed in NR expression in normal 

vs. tumor cells, I defined what NR subsets are altered, and how NRs are involved in the 

pathogenic process. Thus, the NR expression values of individual cell lines normalized by 

the average of 5 normal HBEC  (NHBEC) values were formatted into a color-coded matrix 

(Figure 3.4). Although it is less dramatic than the cancer cells, the immortalized HBEC cell 

lines showed altered expression for certain receptors with a decreased expression when 

compared to the NHBECs. However, interestingly, the cancer cells show clearly altered 

expression of receptor levels. Introduction of either cellular or viral oncogenes did not seem 

to induce changes in NR expression to the extent seen in lung cancer cell lines, suggesting 

that other events are required for the deregulation of NR expression prerequisite for disease 

progression (Figure 3.4). Further cluster analysis revealed two major groups of receptors that 
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are highly relevant to reproduction (Cluster I) and nutrient metabolism (Cluster II), which is 

consistent with our previous observation (Bookout et al., 2006). 

 

3.2.1.2 Identification of a Subset of NRs with Diagnostic Power 

To evaluate if the expression pattern of a subgroup of NRs could predict major lung 

cancer histological types within the various cell lines, we performed exclusion analysis and 

found subsets of receptors specifically expressed in different cancer types. For example, 

peroxisome proliferator-activated receptor gamma (PPARγ) expression was exclusive to 

NSCLC, consistent with previous reports (Grommes et al., 2004; Kim et al., 2005b). Notably, 

mineralocorcoticoid receptor (MR) also shows a NSCLC pattern of expression. Also 

included are expression of estrogen-related receptor β (ERRβ); estrogen-related receptor γ 

(ERRγ), nerve growth factor induced gene B3 (NGFIB3), progesterone receptor; retinoic 

acid-related orphan receptor α (RORα), which cell showed significantly higher expression in 

SCLC compared to NSCLC. Moreover, receptors primarily expressed in SCLC include 

retinoid X receptor γ (RXRγ), steroidogenic factor 1 (SF-1), and short heterodimer partner 

(SHP). In contrast, retinoic acid receptor γ (RARγ), thyroid hormone receptor β (TRβ), and 

vitamin D receptor (VDR) show moderately or dramatically reduced expression in SCLC 

compared to NSCLC or HBECs (Figure 3.5). Collectively, these data define predictable 

groups of NRs that are potentially involved in lung tumor type-specific pathogenesis. To 

push the NR expression signature to the next level of predictive value, we analyzed 

differences in expression in squamous cell carcinoma (SCC) vs. adenocarcinoma (ADK) and 

found that a group of receptors, e.g., estrogen receptor α (ERα); hepatocyte nuclear factor 4 γ 
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(HNF4γ); liver receptor homolog-1 (LRH-1); MR; PPARγ2; PPARγ; retinoic acid-related 

orphan receptor γ (RORγ) showed significantly increased expression in ADK vs. SCC 

(Figure 3.6).  

Together, these data strongly support that the NR superfamily is one of the principal 

component marker sets that predicts lung cancer type (normal vs. NSCLC vs. SCLC) and 

thus may be useful in lung cancer diagnosis. 

 

3.2.2 Diagnostic Potential of NR profile in a Lung Cancer Patient Panel 

 Since the NR profile showed diagnostic power in the lung cell panel, we next sought 

to identify NRs that could be clinically utilized for diagnostic purposes. Likewise, the 

unsupervised clustering analysis was performed with tissue samples from patients to see if 

any unique pattern of clustering could be generated based on tumor types (ADK vs. SCC) or 

demographic features. Given the same genetic background between normal tissue and the 

corresponding tumor tissue, one expectation might have predicted there would be 30 pairs of 

individual clusters. Instead, however, this analysis revealed a nice separation of the normal 

tissue group from the tumor tissue group (Figure 3.7). This implicates that common genetic 

alterations were involved in the lung tumorigenic process. A further interpretation is that 

stem cells with preexisting alterations (e.g. cancer stem cells) develop tumors, an idea that is 

supported by recent identification of bronchial alveolar stem cells (BASCs) from lung a 

cancer mouse model (Kim et al., 2005).  Furthermore, to identify genetic changes on a whole 

genome scale, microarray experiments using Ilumina arrays were executed for 18 patient 

tissue samples, which consisted of 7 normal and 11 tumor tissues. The cluster analysis 
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revealed 794 genes (157 genes low but 637 genes high in normal tissues) that show more 

than a 2-fold difference between normal and tumor groups. Consistently, tumors were in a 

separate group from normal tissues (Figure 3.9). To investigate if a subset of NRs rather than 

single NR was responsible for the difference in expression signatures between tumor and 

normal groups, Pearson correlation coefficients for each receptor were calculated for all 

receptor combinations in both normal and tumor tissues. When the resulting axis of the 

unsupervised cluster of NRs from tumor samples was applied to the normal group, it revealed 

multiple sets of NRs that lost the correlation network in tumors, while half of the NRs were 

still in the same cluster (Figure 3.8). Thus, it is of interest to investigate if this NR set is 

relevant for stem cell maintenance or tumor differentiation. Next, I further analyzed 

differences in expression in squamous cell carcinoma (SCC) vs. adenocarcinoma (ADK) and 

found that a group of receptors, e.g., AR, COUP-TFβ, COUP-TFγ, ERα, ERRγ, FXR, MR, 

NGFIB3, NOR1, PPARγ2, Rev-erbβ, RORβ, RXRβ, RXRγ, SHP, TRα, show significantly 

increased expression in ADK vs. SCC (Figure 3.10). Interestingly, analyses of lung cell lines 

and patient tissues revealed all receptors that significantly differentiating ADK vs. SCC were 

highly expressed in ADK (Figure 3.6 and Figure 3.10). Given that expression of many NRs 

begins with differentiation of tumors or tumor cells in colon cancer, it would be interesting to 

see if SCC is less differentiated compared to ADK (Gupta et al., 2003; Horkko et al., 2006; 

Sarraf et al., 1998). In the classification of NRs in patient samples as previously displayed in 

section 2.2.2, HNF4γ, which is differentially expressed in tumor vs. pair-matched normal 

tissue, could become a common molecular target to treat most lung cancers using gene 

therapy as well as a diagnostic marker along with other five receptors. On the other hand, the 
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NR group showing individual variations is believed to be the best fit for ‘tailored drug-

design‘, which differentiates treatment options on the basis of the NR profile. Until clinically 

approved, using the same approach, the NR profile in mouse model shown in Figure 2.9 is 

useful for the same purpose, as well as for its potential evaluation of chemoprevention.  

 

3.2.3 Prognostic Relevance of NR Expression in Patient Samples 

 To identify NRs with prognostic power, we further interrogated the NR profile based 

on demographic features of the patients as depicted in Table 2.2. I used two independent 

biostatistical analyses, log rank test plotted as a Kaplan-Meier plot and a multivariate Cox 

regression model, which consider various factors that potentially influence survival based on 

the patient survival information. The NR profile was interrogated to identify a subset of NRs, 

if any, highly relevant to survival (Figure 3.11 and Table 2.2). The non-parametric analysis 

revealed multiple NRs, PR (p=0.0283), RORγ (p=0.0241) and SHP (p=0.0375), illustrated as 

Kaplan-Meier plots of two patient groups (one higher and one lower than the median NR 

value). The Cox regression model which included multiple covariates, e.g., age, gender, 

smoking history, histopathologic stage, recurrence, tumor type, were performed next for the 

entire 48 NR set. This semi-parametric analysis revealed that AR, PR, and RARβ are 

associated with a low hazard ratio (less than 1) and therefore a good prognosis for survival 

when highly expressed in the corresponding tumor, whereas PPARδ displayed a high hazard 

ratio (greater than 3), meaning a positive correlation to tumor progression (Table 3.1). 

Interestingly, none of the clinical factors appears to be significantly relevant to survival in the 

multivariate analysis. In addition to the log-rank test and Cox regression model focusing on 
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individual NR expression for patient survival, principal component analysis was used to 

identify NR subsets (i.e., metagene) that are most reflective of the entire dataset and their 

pathophysiological meaning still remains to be investigated (Figure 3.12). Note that both 

principal component sets (1 and 2) show no correlation to patient survival (Figure 3.12B). On 

the other hand, PC set 3 containing SF-1 and TLX, did correlated very well with survival as 

evidenced by Kaplan-Meier plots (Figure 3.12C). Importantly, neither TLX or SF-1 alone 

had this predictive power, emphasizing the utility of this type of analysis. Recently, Chen et 

al., published prognostic evaluation of a five-gene signature in clinical NSCLC samples. 

From microarray data analysis of 125 NSCLC tissue samples, risk scores were calculated for 

each of the five genes. Patient risk scores are a summation of risk scores from the individual 

five genes, which are a product of expression level and hazard ratio from univariate Cox 

regression model (Chen et al., 2007). We applied the same biostatistical analysis to the 

expression profile of the nuclear receptor superfamily. Strikingly, the first 10 nuclear 

receptors with high risk scores (or Z scores) revealed highly significant prognostic potential 

(Figure 3.13A), whereas the intermediate 10 NRs and the last 10 NRs showed no 

discriminating power for patient survival. Moreover, five NRs were identified from further 

multivariate Cox regression of the first 10 genes and shown to provide a prognostic power 

similar to all 10 NRs (Figure 3.13B).  

 

3.3 Discussion 

The NR atlas has been assessed for potential application to providing diagnostic and 

prognostic information in various systems including lung cell lines and patient tissue 
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samples. First, in the cluster analysis of histopathologically classified cell lines and patient 

tissue samples, the NR atlas revealed strong predictable power for distinguishing different 

tumor types and revealing the degree of carcerogenesis progression from normal tissues to 

tumors (Figure 3.1 and Figure 3.7). Interestingly, receptors with common regulatory rules 

appeared to be grouped together in the cluster analysis (Figure 3.1 and Figure 3.4). These 

data suggest that homeostatic dysregulation (e.g., in metabolic pathways) caused by 

malfunction of multiple NRs may result in chronic diseases like cancer. Furthermore, a clear 

segregation of normal tissues from tumor tissues in the cluster analysis supports the idea that 

a generation of lung cancer stem cells may result in part due to the failure of maintaining a 

physiological balance by a subset of NRs (Figure 3.7).  

Although NR profiling of lung cell lines and show patient tissues were able to classify  

tumor types, and normal from tumor tissue, the datasets from the lung cell lines were not 

similar to the patient tissue profiles. In other words, the expression profile from tissues must 

be performed independently for clinical application. Nevertheless, the cell line data does 

have enormous utility. Expression of certain NRs in the cell line clusters reflects the 

pathological progression of normal to immortalized, and were on to lung cancer (Figure 3.4).  

Multiple NRs (green colored in cluster II) involved in gain of immortality (after introducing 

CDK4 and hTERt). This subset tends to be similarly maintained even after oncogenic 

changes (e.g. human papilloma virus E6/E7, oncogenic K-ras, p53 knock-down), which 

resulted in moderate changes for some NRs in cluster I. Interestingly, BEAS2B cells 

harboring SV40T antigen displayed relatively advanced changes for a few NRs. However, 

the balance of NR expression was dramatically different in lung cancers (Figure 3.4). 
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Furthermore, amongst these NRs most predictive of tumor type – ERRβ, ERRγ, NGFIB3, 

PR, RORα, RXRγ, SF-1, and SHP for SCLC; and MR, PPARγ for NSCLC; and RARγ, TRβ 

and VDR for SCLC, it is of particular interest that both SHP and RXRγ are known to 

regulate the functions of other receptors by direct binding. SHP is an atypical nuclear 

receptor with no DNA binding domain, which negatively regulates the activity of other NRs 

(Lee et al., 1998; Lu et al., 2000; Seol et al., 1998). In contrast, RXRγ, one of three RXR 

subtypes that functions as an obligatory binding partner, is believed to positively regulate the 

activity of other NRs (Shulman et al., 2004; Shulman et al., 2005). It will be interesting to see 

if physiological malfunction of these two receptors has pathological relevance to SCLC 

development. The decreased expression of VDR in SCLC implicates a potential role to 

prevent SCLC development. The expression of PPARγ in NSCLC suggests that pathogenesis 

of this particular tumor type is relevant to fatty acid metabolism as well as to the anti-

inflammatory role of the PPARγ. Also, the combined treatment of a PPARγ agonist, 

pioglitazone, with an antagonist of MR, which is known to activate the inflammatory 

pathway by aldosterone binding, may be a worthwhile scheme to treat lung adenocarcinoma.  

Further analysis of NSCLC revealed groups of receptors differentially expressed 

between adenocarcinoma (ADK) and squamous cell carcinoma (SCC). Four of these 

receptors ERα, HNF4γ, LRH-1, and RORγ, may also be used for predicting the ADK 

phenotype. Interestingly, SCC specific-expression of NRs was not observed in either the 

panel of lung cell lines or patient samples, implicating that loss of functional activity of 

receptors might cause the development of the SCC phenotype. In addition, the ADK-specific 

NRs were not shared between the lung cell panel and tissue panel, suggesting again that the 
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lung cell lines, although still useful for preclinical evaluation, are not representative of 

patient tissues, which may be due in part to the heterogeneity and microenvironment of 

primary tumor tissues.  

In comparing the cluster analysis between tumor and normal tissues, three distinct 

subsets of NRs found in normal tissues were lost in the tumor samples. These subsets 

included NRs VDR, PPARδ, PPARδ2, PPARγ2, LXRα, RARα, RXRα and γ that play roles 

in nutrient metabolism and NURR1, NOR1, and NGFIB3 that are early-response members 

for numerous physiologic processes. This suggests that crosstalk within subgroups of NRs 

may play important roles in maintaining the normal phenotype of lung tissue. It will be 

crucial to investigate if similar changes or common critical changes of NR subsets occur in 

all adenocarcinomas from various tissues. This may provide insight into the identification of 

an unified pathological mechanism for cancer incidence, which could then be utilized for 

treatment and/or chemoprevention. On the other hand, the cohort of NRs that remain 

clustered in both normal and tumor tissues may be involved in maintaining cell survival. 

Thus, it may be interesting to investigate what physiological changes may occur if this group 

is disrupted. The pathologic process may be involved in loss of control not only by a single 

receptor but by a group of NRs that function as a network and play an important role in 

sustaining physiological homeostasis of lung tissues.  

Along with the pathologic relevance of NRs, further prognostic evaluation using 

biostatistics analysis (e.g., multivariate regression model) revealed multiple NRs of interest, 

including AR, PR, PPARδ, and RARβ, have significant relevance to patient survival. It is 

important to note that colleagues at Duke revealed no significant correlation of AR to lung 
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cancer prognosis when analyzed in a cohort of tumor tissues alone (data not shown). 

However, it turns out that AR expression is significantly correlated to patient survival when 

analyzed in pair-matched tissue samples that could exclude individual variation due to 

genetic background. Thus, our data represent a unique set that may have additional predictive 

power to other datasets from tumor-only samples. RARβ expression, consistent with 

previous studies for its positive prognostic value, displayed a low hazard ratio in tumor 

expression compared to other covariates. Likewise, PR expression, which is an already well-

known prognostic marker and even therapeutic target in breast cancer, also revealed a 

significantly low hazard ratio in tumors. Strikingly, PPARδ showed a high hazard ratio 

(meaning a high risk factor for lung cancer). It has been proposed that PPARδ is involved in 

tumor cell growth in cell culture systems (Fukumoto et al., 2005; Han et al., 2005; Wang et 

al., 2004a). Considering that PPARδ is involved in fat metabolism, it will be of interest to 

study if or how fatty acid metabolism is relevant to lung cancer incidence. Further 

identification of five NRs, including PPARδ, PR, HNF4α, VDR, and LXRα, from the risk 

score summation analysis, provides a novel set of NRs for prognostic purpose as well as 

therapeutic targets.  

Overall, a thorough analysis of the NR profile revealed striking potential for various 

aspects of translational research including diagnosis, prognosis, and even pathologic 

relevance. 

 

 



76 

 

 
 
Figure 3.1 Unsupervised Cluster Analysis of Nuclear Receptor Profile. 
Unsupervised clustering analysis for both 56 lung cell lines on horizontal axis and 47 
NRs on vertical axis. QPCR values are clustered using Matrix 1.29 software and color-
coded according to the expression level. Green colored group represents immortalized 
and normal human bronchial epithelial cells. Red colored group represents SCLCs, and 
blue for NSCLCs or ADK in the bottom panel. The scaled bar is relative log2 ratio value. 
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Figure 3.2 Unsupervised Cluster Analysis of 10,000 genes and the NR Superfamily from 
Affymetrix Microarray. (A) Hierarchical clustering of 47 NRs from the affymetrix 
Microarray data. The average values of multiple probes for each nuclear receptor in the 
microarray data were used for the clustering analysis. Note that probes specific for 
PPARδ2, PPARγ2, and Rev-erbα are not present on Affychip. (B) Unsupervised 
clustering analysis for both 48 lung cell lines on horizontal axis and genes on vertical 
axis. Approximately 10,000 genes filtered out of 47,000 genes on Affymetrix U133AB 
chip are utilized to perform the unsupervised clustering analysis both of genes and lung 
cell lines listed. A group of green represents NHBEC and immortalized bronchial 
epithelial cells, red for SCLCs, and blue for NSCLCs. 
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Figure 3.3 Statistical Significance of NR Superfamily for the Clustering Analysis. 
Bootstrap analysis was performed using a Python script was written using Python 
(http://www.python.org) for bootstrap analysis, a statistical method measuring clustering 
accuracy. Both 123 probes set of nuclear receptors and same number of randomly selected 
probe sets from the microarray data were tested for the clustering accuracy. The PyCluster, 
a python module implemented K-means method, is used for the clustering analysis. The x-
axis represents the accuracy of the clustering and the y-axis represents the frequency in the 
histogram plot. The bold line in box plot stands for the median value of the clustering 
accuracy. The statistical analysis using R package for both u-test and t-test reveals highly 
different between both bootstrap analyses (P< 2.2e-16) (http://www.r-project.org). 
(Top) Histogram of nuclear receptor probe sets (NR) and randomly subsampled   
     probe sets (RS). 
(Bottom) Box plot for median of clustering accuracy. 
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Figure 3.4 Pathologic Comparison of Nuclear Receptors from Normal to Immortalized, to 
Lung Cancer Cells. Color-coded signature for receptor expressions of the lung cancer or 
the immortalized cell lines normalized by the average value of each receptor in five 
normal epithelial cells. The horizontal axis shows the unsupervised clustering of 47 NRs 
and the vertical axis displays 56 lung cell lines on the pathological classification. NHBEC, 
normal human bronchial epithelial cell; HBEC UI, HBEC uninfected cells; SCLC, small 
cell lung carcinoma; SCC, squamous cell carcinoma; NSCLC, non-small cell lung 
carcinoma; ME, mesothelioma; BA, bronchioalveolar. Note that CAR, FXR, HNF4α are 
outliers due to low expression. The scaled bar represents log2 ratio of the normalized 
values by normal HBECs. 
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Figure 3.5 Identification of a Subset of NRs that differentiate SCLC from NSCLC. A 
subset of receptors is grouped in the Venn diagram to distinguish expression pattern on the 
statistical U-Test. The bottom panels display individual receptors identified from the above 
classification. The NRs are represented for SCLC with yellow, both normal/immortalized 
cells and NSCLCs with purple, and NSCLC with red. Note that CAR, FXR, HNF4α are 
outliers due to low expression. 
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Figure 3.6 NRs Differentiating Adenocarcinoma (ADK) from Squamous Cell Carcinoma 
(SCC). A Venn diagram shows distribution of NR expression between adenocarcinoma and 
squamous cell carcinoma. The bar graphs display mRNA expression of the individual receptor 
showing distinct pattern of expression according to the tumor types. A group of bar graphs 
with blue or red represents ADK or SCC, respectively. For statistical significance, statistical 
U-test was performed between the two groups. Note that CAR, ERRβ, ERRγ, FXR, HNF4α, 
PXR, RXRγ, SF-1, SHP and TLX are excluded due to low expression in these two groups of 
cell lines. 
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Figure 3.7 Unsupervised Cluster Analysis of Nuclear Receptor Profile. 
Unsupervised cluster analysis of patient tissues (horizontal axis) and 47 NRs (vertical 
axis). QPCR values were clustered using Matrix 1.29 software and color-coded 
according to expression level. Green represents immortalized and normal human 
bronchial epithelial cells. Red represents SCLCs, and blue for NSCLCs or ADK. The 
scale bar is relative log2 ratio value. 
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Figure 3.8 Comparison of Statistical Clustering Analysis between Normal and Tumor Tissues. 
Pearson correlation coefficient of one receptor to another in a panel of tissue samples was 
calculated and converted into color-codes, i.e., negative correlation in green and positive 
correlation in red between two receptors. The same order of NR axis from hierarchical cluster 
analysis in a set of tumor tissues (left) was applied to a set of normal tissues. Four receptors, 
CAR, ERRβ, PNR, and SF-1 were outliers due to low expression. The scaled bar represents 
Pearson correlation. 
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Figure 3.9 Expression Signatures of Normal and Tumor Tissues Using Ilumina Arrays. 
Genetic signatures in 18 lung tissue samples (11 normal and 7 tumor tissues) were 
surveyed using Ilumina microarrays. Further cluster analysis was performed for both 
samples (horizontal) and gene expression (vertical).  
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Figure 3.10 NRs Differentiating ADK and SCC in Patient Tissues. 
A Venn diagram shows distribution of NR expression between adenocarcinoma and 
squamous cell carcinoma. For statistical significance, statistical U-test was performed 
between the two groups. Note that CAR, ERRβ, ERRγ, FXR, HNF4α, PXR, RXRγ, SF-1, 
SHP and TLX are excluded due to low expression in these tissue samples. 
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Table 3.1 Nuclear Receptors Associated with Survival based on a Cox Regression Model. 
 

Nuclear Receptors ChiSquare

AR 0.0369 0.0010

PPAR! 0.0084 3.6990

PR 0.0314 <0.000009

RAR" 0.0205 0.0570  
 
For the parametric models, various clinical factors, i.e., age, gender, smoking history, 
cancer stage, recurrence status, histology together with NR expression level, are  
included as multiple covariates. NRs not significantly accounted: 
CAR, COUP-TFα, COUP-TFβ, COUP-TFγ, DAX-1, ERα, ERβ, ERRα, ERRβ, ERRγ, 
FXR, GCNF, GR, HNF4α, HNF4γ, LRH-1, LXRα, LXRβ, MR, NGFIB3, NOR1, 
NURR1, PNR, PPARα, PPARδ2, PPARγ, PPARγ2, PXR, RARα, RARγ, Rev-erbα, Rev-
erbβ, RORα, RORβ, RORγ, RXRα, RXRβ, RXRγ, SF-1, SHP, TLX, TR2, TR4, TRα, 
TRβ, VDR 
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Figure 3.11 Kaplan-Meier Plot of Patients and Nuclear Receptors Associated with the 
Survival.  
Survival plots of patients were displayed for PR, RORγ and SHP that were identified from 
long-rank test. Based on expression level, patients are median-splitted into two groups, high 
NR expressers and low NR expressers, followed by Kaplan-Meier plots for each receptor. 
In this analysis, the ratio of tumor value to corresponding normal value was used for each 
receptor. Circles in each group represent censored patients when the data were analyzed. 
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Figure 3.12. Metagene Analysis for Nuclear Receptor Superfamily. 
The metagene analysis was executed using the ratio of tumor value to corresponding 
normal value for each receptor. (A)Three representative principal component sets were 
displayed in table. (B) Log-rank test of two metagenes for patient survival. (C) Kaplan-
Meier plot for metagene 3 and individual receptor components.  
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Figure 3.13 Estimates of Patient Survival to the Ten and Five NR Signatures. 
Using the ratio of tumor value to corresponding normal value for each receptor, Z 
scores (or risk scores) of individual patients were calculated and the survival was 
represented on Kaplan-Meier plot by median-split. (A) Kaplan-Meier plots with ten NR 
signatures of highest 10 Z scores (left), intermediate 10 Z scores (middle), and lowest 
10 Z scores (Ramirez et al.). (B) Kaplan-Meier plots with five NR signatures. Top five 
NRs from multivariate Cox regression analysis of ten NRs with the highest Z scores 
(left figure in A) were used for patient survival. A table shows statistical significance 
and hazard ratio of the five genes.  
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CHAPTER FOUR 

Preclinical Functional Consequences of  
Therapeutically Relevant NRs 

 

 
 
 

 
 

4.1 Introduction 

Due to extensive biomedical research on various types of cancers, recent clinical 

trials have shed light on molecular targeted therapy increasing clinical potency and 

specificity. Some of these drugs are Gleevec® (STI-571 or imatinib), which targets receptor 

tyrosine kinase for gastrointestinal stromal tumor and certain kinds of chronic myeloid 

leukemia; Volcade® (bortwezomib, which blocks proteosome to treat multiple myeloma; and 

GenasenseTM (oblimersen), which is used to treat non-Hodgkin’s lymphoma and solid tumors 

by blocking Bcl-2 expression. Both Volcade® and GenasenseTM induce apoptotic cell death 

in treated cancers. In addition, Herceptin® (Trastuzmab), a humanized monoclonal antibody 

against Her2/neu is used in the treatment of breast cancer. Likewise, Iressa® and Tarceva®, 

inhibitors of the receptor tyrosine kinase EGFR, have recently shown dramatic clinical 

outcomes in some lung cancer patients. However, unlike the initial promising clinical 

outcome with the inhibitors, the recurrence with second site mutations in the EGFR resulted 

in a refractory response to the same drugs. Moreover, only 10 ~ 20% of all NSCLC patients 

show any response to these tyrosine kinase inhibitors (TKIs). Surely, as more targets become 
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available, the better the clinical outcome will be.  Extrapolating from the previous chapter 

dealing with the diagnostic and prognostic value of the entire NR atlas and NR subgroups, I 

next asked if receptors could be potential targets for therapeutic intervention. A subset of 

NRs including ERα, AR, and PPARγ were selected for further analysis because they have 

been extensively studied in various types of cancers such as breast, prostate, and colon 

cancers as discussed in section 1.3 (Allred and Kilgore, 2005; Joly-Pharaboz et al., 2000; Liu 

et al., 2002; Liu et al., 2003; Osipo et al., 2003; Umekita et al., 1996). Moreover, ligands for 

these receptors are available, and have been widely used in the clinic. Thus, various lung 

cancer cell lines selected for each receptor were preclinically evaluated for cell growth in 

response to ligand treatment and the therapeutic potential of PPARγ was further assessed in 

vivo using a mouse xenograft model.  

 

4.2 Results 

4.2.1 Androgen Receptor  

 Several human lung cancer cell lines expressing (e.g. H1184, H2122, H1993) or not 

expressing (e.g. H1299 and H2009) AR were examined for their cellular responses to the 

agonist dihydrotestosterone (DHT) (Figure 4.1). LnCaP, an AR positive prostate cancer cell 

line, was used as a positive control and showed consistent growth stimulation with DHT 

treatment at a physiological concentration (1 nM) as previously described (Okamoto et al., 

1997; Yang et al., 2005). Two AR negative lung cancer cell lines, H1299 and H2009, showed 

very little or no response to the agonist treatment as expected. H1184 cells, a SCLC line that 

has the highest expression of AR, showed significant growth-stimulation in a range from low 
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physiological (0.1 nM) to physiological nanomolar concentrations (10 nM) of DHT, but 

growth inhibition at a supraphysiological concentration (1 µM). In addition, H2122 cells 

showed growth stimulation to a similar extent as H1184 cells, but seemingly had no 

cytotoxic response at the same pharmacological concentration. Interestingly, H1993 cells 

showed a growth inhibitory response to DHT treatment at all concentrations. Overall, DHT 

treatment displayed receptor-dependent cell growth responses, although not necessarily 

growth stimulatory. 

 

4.2.2 Estrogen Receptor 

Two positive expressers, H2052 and HCC78, were treated either with the agonist 

17β-estradiol or with the antagonist ICI 182,780 for 3 consecutive days (Figure 4.2). 

Estradiol treatment at physiological concentrations (10 nM) caused a 30% increase in cell 

growth and 40% growth inhibition was seen with the pure anti-estrogen ICI 182,780 in 

H2052 cells. Note that estrogen receptor β (ERβ) is not expressed in these selected lung 

cancer cell lines. Breast cancer MCF-7 cells used as a positive control showed over 2-fold 

growth stimulation with 10 nM estradiol and approximately 50% growth inhibition with 1uM 

ICI 182,780 compared to the vehicle treatment. The difference in the magnitude of the 

growth response is possibly due to the approximately 50-fold higher expression of ERα in 

MCF-7 cells compared to H2052 cells (data not shown). HCC78 cells showed 30% growth 

inhibition at a physiological concentration of 17β-estradiol (10 nM) treatment, which is 

similar to the observation of AR-responsiveness in H1993 cells. However, there was no 

observed response to ICI 182, 780 at low concentrations. The analysis of the two steroid 
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receptors (e.g., AR and ERα) demonstrated that the mRNA expression reflects the functional 

activity shown in growth response in cell culture. 

 

4.2.3 Peroxisome Proliferator-Activating Receptor gamma (PPARγ) 

 The PPARγ-specific agonist troglitazone showed significant growth inhibition in a 

dose dependent manner in three high expressers (e.g. H2347, H1993, Calu-1) but no 

significant effects in three low expressers (e.g. H1770, HCC1195, H1299). PPARγ protein 

levels were confirmed by western blot analysis (Figure 4.3). Yang et al. previously showed 

that activation of PPARγ induces cell cycle arrest and apoptosis in human renal carcinoma 

cell lines due to decreased cyclin D1 expression (Yang et al., 2005). Thus, to see if growth 

inhibition could be mediated by cyclin D1 inhibition, we analyzed cyclin D1 expression in 

two cell lines, H1770 cells with low PPARγ expression and H2347 cells with high PAPRγ 

expression, treated with troglitazone and found decreased cyclin D1 expression specifically 

in H2347 cells. These data suggest that the decreased expression of cyclin D1 with 

troglitazone treatment is a PPARγ dependent cell growth inhibitory effect (Figure 4.3). Next, 

to validate the potential therapeutic effects of a PPARγ ligand in vivo, mouse xenografts were 

established by subcutaneous injection of two million H1770 or H2347 cells into the flank of 

immune-compromised nude mice. A dose of 25mg/kg of pioglitazone, a PPARγ agonist 

commercially available to treat Type II diabetes, was intraperitoneally administered four 

times a week for 5 weeks, starting 5 days after tumor cells were injected as described in the 

methods section. The pioglitazone treatment had no effect on H1299 tumor growth, and even 

seemingly promoted H1770 tumor growth in two out of four mice compared to the vehicle 
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treatment, consistent with the observation with in vitro troglitazone treatment. However, 

H2347 cells showed a clear inhibition of tumor growth with pioglitazone treatment compared 

to vehicle treatment, implicating the receptor dependent therapeutic potential of this PPARγ 

ligand for lung cancer treatment. Interestingly, the tumor-promoting effect of pioglitazone in 

receptor negative H1770 cells suggests that therapeutic application should be performed 

based on the expression of target receptor for treating lung cancer (Figure 4.4). 

 

4.2.4 Differential Gene Expression on Receptor Expression 

To further explore the molecular changes in lung cancer cell lines occurring 

according to expression of the steroid receptors and PPARγ, Affymetrix U133AB array 

experiments were performed in a large panel of 48 lung cell lines. Note that the culture 

condition for maintaining these lung cancer cell lines includes 0.1 nM of 17β-estradiol which 

is a physiologically relevant concentration (refer to growth response of MCF-7 in Figure 4.1) 

and 0.005 nM of testosterone that could induce the basal activity of AR in culture. Indeed, 

microarray data analyses show 210 genes expressed over 2-fold and 170 genes expressed 

under 2-fold in selected AR-positive cells (n=4) vs. negative cells (n=8) (Figure 4.1C), along 

with 295 genes expressed over 2-fold and 245 genes expressed under 2-fold for ERα-positive 

(n=5) and negative cells (n=23) (Figure 4.2C). Consistent with QPCR data, this analysis 

includes AR expression with over 2.6-fold in AR-positive cells (p < 0.05) and ERα with 3.3 

fold higher expression in ERα-positive cells (p < 0.05).  

Along with the survey of genetic signatures relative to steroid receptor expression, we 

executed similar array-based approaches for PPARγ expression that showed an exclusive 
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pattern of expression in NSCLC compared to the other cancer types. We identified 633 genes 

showing over 2-fold expression and 377 genes with 2-fold underexpression in lung cancer 

cell lines (n=5) highly expressing PPARγ vs. cell lines with low expression (n=5) (Figure 4.3 

inset). Consistently, PPARγ expression is increased more than 27-fold in the high expression 

group compared to low expression group.  

Moreover, genetic signatures were sorted according to Pearson correlation for the 

receptors, AR, ERα and PPARγ, to closely group genes showing a similar expression pattern 

to the receptor across the panel of cell lines tested. In a further test for statistical significance 

(p < 0.05) of the Pearson correlation, 195 genes (51 positively and 144 negatively correlated) 

out of 380 genes and 145 genes (75 positively and 70 negatively correlated) out of 539 genes 

were filtered for AR and ERα, respectively. Similarly, a total of 895 genes (568 positively 

and 327 negatively correlated) out of 1010 genes were filtered for PPARγ. It is reasonable to 

think that the genes statistically filtered are potentially under common control, even possibly 

direct target genes, of the nuclear receptor, suggesting the idea that this type of analysis 

potentially reveals a previously unidentified target gene or group of genes important in lung 

cancer pathogenesis. Despite the lack of known target genes for each receptor in lung tissues, 

this data interpretation is able to give insight into understanding lung cancer as a network of 

genes under the control of or in coordination by nuclear receptors.  

 

4.2.5 Genetic Signature Dependent on PPARγ Receptor and Ligand 

Since the same response of cells and xenografted tumor growth in response to ligand 

treatment have been attributed to receptor-dependence, the next step of my research was to 
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identify genetic signatures potentially responsible for the receptor-ligand-mediated tumor 

growth inhibition. Thus, I performed Affymetrix microarray experiments in two groups of 

PPARγ negative H1770 cells and positive H2347 cells. The treatment groups included 

vehicle control and 20hr and 48hr treatment with 3µM troglitazone (Figure 4.5). Three 

subsets of genes, showing both receptor and ligand-dependency, were identified by exclusion 

analysis that removes genes changing in a non-receptor and/or a non-ligand dependent 

manner. In addition, the list of genes was further sorted in a time dependent manner, 24hr 

and 48hr, to identify genes according to response patterns which are graphed on Figure 4.5. 

This analysis revealed a total of 2568 genes that are further subdivided into 1117 showing 

dramatically increased or decreased levels 20hr after treatment, 1026 genes continuously 

increased or decreased by 48hrs, and 425 genes commonly increased or decreased at both 

time points. I believe that further pathway analysis on a basis of molecular and biological 

annotations could reveal a sequence of genetic changes dependent on both PPARγ and its 

cognate ligand in lung cancer cells.    

 

4.3 Discussion 

Along with the validation of the diagnostic potential of the NR atlas, I further assayed 

cellular growth responses for a subset of NRs (AR, ERα, and PPARγ) to demonstrate the 

feasible utilization of NRs as therapeutic targets. Not surprisingly, only the cell lines 

expressing the receptor responded to cognate ligand treatment in cell proliferation assays. In 

addition, the observation of estrogen receptor-dependent growth inhibition upon treatment 

with ICI 182,780 provides pharmacological evidence that the quantitative mRNA profile of 
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NRs reflects functional activity of receptors selected in this study. Surprisingly, in the 

functional evaluation of lung cancer cell lines relative to steroid receptors with agonist 

treatment, I observed cell proliferation as well as growth inhibition (e.g. H1993 for AR and 

HCC78 for ERα) in a receptor-dependent manner, which was an unanticipated result. 

Consistently, several independent studies showed androgen-induced growth inhibition in AR 

positive cells derived from LnCaP, a well characterized prostate cancer cell for growth 

stimulation with DHT treatment, as well as in mouse xenograft model with the variant clones 

(Joly-Pharaboz et al., 2000; Umekita et al., 1996). Likewise, Osipo et al. showed intriguing 

observations in which several MCF-7 clones resistant to tamoxifen or raloxifene were 

sensitive to estradiol treatment in in vitro cell growth assays and mouse xenograft models 

(Liu et al., 2003; Osipo et al., 2003).  

Together with pharmacological validation of the therapeutic potential of steroid 

receptors, lung cancer cell lines highly expressing PPARγ showed inhibition of cell 

proliferation in a receptor-dependent manner in the presence of the ligand troglitazone. 

Consistently, several lines of evidence have suggested the therapeutic potential of PPARγ in 

various types of cancers including breast, colon, and lung cancer (Allred and Kilgore, 2005; 

Bren-Mattison et al., 2005; Keshamouni et al., 2004; Sasaki et al., 2002). Furthermore, I also 

observed decreased cyclin D1 expression in a PPARγ-dependent manner (Figure 4.4C), 

which is also observed in human renal carcinoma cell lines (Yang et al., 2005). In vivo 

treatment of tumors xenografted in nude mice further demonstrated that endogenous PPARγ 

expression could be a therapeutic target for lung cancer treatment. Interestingly, the 

observation of tumor promoting effect of both PPARγ ligands, i.e. in vitro cell proliferation 
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of H1770 with troglitazone treatment and induced growth of H1770 tumor with pioglitazone 

treatment in the xenograft, suggests significance of receptor-targeted therapy (Figure 4.4). 

Furthermore, the previous observation of PPARγ having tumor promoting effects in breast 

and prostate cancer mouse models suggests the therapeutic approaches using ligands may 

need to be assessed in a tissue-specific manner (Saez et al., 2003; Saez et al., 2004). Overall, 

these preclinical therapeutic evaluations using ligands for AR, ERα, and PPARγ, which have 

been widely applied in the clinic, strongly support the feasibility of using the approach for 

whole subclasses of nuclear receptors, rather than a single nuclear receptor, as molecular 

targets for therapeutic intervention to treat lung cancer.  

In analyzing the microarray data, groups of genes were listed showing more than 2-

fold higher expression in receptor-positive cells vs. negative cells. Further analysis for 

statistical significance eventually revealed 195 genes for AR, 145 genes for ERα, and 895 

genes for PPARγ. These genes are potentially under the same coordinated control by their 

respective receptor. It is interesting to note that three orphan nuclear receptors, NGFIB, 

NURR1, and COUP-TFβ were included with an average of 4.5-, 4.2-, and 3.3-fold 

overexpression, respectively, in AR-positive cells. It is reasonable to interpret a pro-

inflammatory role of NR4A group. Thus, NGFIB and NURR1 may contribute to the 

maintenance of lung cancer cell features along with increased AR expression. Upon 

considering COUP-TFβ as a generic transcriptional repressor, it will be interesting to identify 

target genes that could be potential tumor suppressors. Similarly, NOX5 and RAD18 were 

identified showing negative correlations, -0.83 and -0.87 with P < 0.05 respectively, with 9-

fold and 2.2-fold decreased expression in AR-positive cells. NOX5 is a subtype of NADPH 
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oxidase, which generates reactive oxygen species (ROS) which are believed to contribute to 

tumor cell proliferation. Some reports describe that hypoxic conditions in tumor 

microenvironment activates NADPH oxidases and androgen receptor activity, suggesting that 

coordinated regulation of both AR and NADPH oxidase activity may be critical for 

tumorigenesis (De Servi et al., 2005; Goyal et al., 2004; Mehta and Mehta, 2002; Nabha et 

al., 2005; Park et al., 2006). Further statistical significance test (P < 0.05) of the Pearson 

correlation revealed 75 genes positively- and 70 genes negatively-correlated to similarity of 

ERα expression pattern. Interestingly, PKC delta shows a 0.62 Pearson correlation to ERα 

with 2.7-fold overexpression in the receptor positive cells. PKCδ has been shown to be 

potentially involved in estrogen receptor α mediated cell proliferation in breast cancer, 

implicating coordinated regulation of PKCδ and ERα for tumor cell proliferation even 

though there is no clear evidence if PKCδ is a direct target of ERα (De Servi et al., 2005; 

Nabha et al., 2005).  

In addition, increased expression of VDR by 2.6-fold in ERα-positive cells has been 

shown to be significant in expression patterns across the cell lines tested. Although a 

functional relationship of ERα to VDR still remains to be understood, it was proposed that 

co-expression of VDR with ERα shows better prognosis with VDR ligand treatment in breast 

cancer (Mehta and Mehta, 2002).  

To identify groups of genes that manifest related cellular responses to troglitazone 

treatment, I also sorted genetic signatures of 1010 genes showing over 2-fold difference in 

their expression according to Pearson correlation to PPARγ. In this analysis, several subsets 

of genes potentially relevant to distinct signaling pathways were identified as follows: 
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transforming growth factor (TGF), Wnt, and insulin-like growth factor binding proteins. For 

example, TGF beta 1 (35-fold), TGFβRII (3-fold), TGFβ2 (8-fold), SMAD3 (3-fold), 

SMAD5 (2.1-fold) for TGFβ signaling and Dickkopf homolog 1 (DKK1, 28-fold), glycogen 

synthase kinase 3 beta (GSK3β, 2-fold), adenomatosis polyposis coli 2 (APC2, 2-fold) for 

the wnt signaling pathway showed increased expression with a positive correlation to PPARγ 

expression. The connection of PPARγ to both pathways was previously observed in an 

adipogenesis model and a colon cancer model (Choy and Derynck, 2003; Jansson et al., 

2005; Lee et al., 2005a; Lee et al., 2004b; Lee et al., 2005b). This observation implies that 

alteration of coordinated regulation of these pathways in epithelial cells could be involved in 

disease pathogenesis. Also, insulin-like growth factor binding proteins including IGFBP3 

(43-fold), IGFBP6 (4-fold), and IGFBP7 (101-fold) were also highly expressed along with 

PPARγ. IGFBPs, especially IGFBP3, are associated with a good prognosis for several types 

of cancer including lung cancer (Lee et al., 2004b). Interestingly, Hong et al. reported that 

the ratio of serum IGF-1/IGFBP3 was significantly lower in 84 patient samples after 3 

months treatment with 9-cis-retinoic acid, potentially due to higher level of IGFBP3 

expression accompanying a lower level of IGF-1 (Lee et al, 2005a; Lee et al., 2005b). These 

clinical data strongly suggest that combined treatment with PPARγ ligand and 9-cis-retinoic 

acid would be a valuable chemopreventive application to the clinic. It will be interesting to 

analyze the physiologic relationship between PPARγ, TGFβ signaling and IGFBP signaling. 

In addition, the analysis of microarray data from two lung cell lines, H1770 (PPARγ 

negative) and H2247 (PPARγ positive), with or without troglitazone treatment for 20hr or 

48hr revealed a large number of genes such as RARγ, BUB1, SMAD3, Caspase8, NcoR1, 
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NR2F6, SCD, and PDK4 that showed increased expression with PPARγ ligand treatment. A 

direct repeat 1 (DR1) cis-element is found in the promoter of PDK4 which is believed to be 

potential target of PPARδ in liver and heart. Interestingly, PDK4 was induced 4-fold at both 

20hrs and 48hrs after the PPARγ agonist troglitazone treatment in H2347 cells but not in 

H1770, which is PPARγ negative. Further, RARγ and NR2F6 were also induced about 20-

fold and 5-fold, respectively, in H2347 cells treated with the ligands at both time points. It 

will be of interest to investigate the biological relevance of those receptors in PPARγ-

dependent tumor cell growth inhibition.  

Other genes also are intriguing; for instance, SCD and PDK4 are known to be 

involved in both fatty acid and glucose metabolism. The genes down-regulated by the ligand 

treatment may be due to the induction of NcoR1 and NR2F6 both of which are known to 

repress gene expression. Thus, it will be crucial to determine if PPARγ bound with ligand is 

actively involved in repression of certain tumorigenic genes. A recent publication shows that 

sumoylation of PPARγ by rosiglitazone treatment actively represses iNOS mRNA expression 

by stabilizing corepressor complexes on the iNOS promoter. This provides insights to how 

PPAR may repress genes in lung cancer (Pascual et al., 2005). Thus, further molecular 

approaches, gain-of- and loss-of-function studies, for genes believed to be potentially 

regulated by PPARγ will provide a more detailed molecular pathway for disease progression. 

Moreover, surveys of global genetic signatures with microarray experiments in H1770 and 

H2347 tumors with or without pioglitazone treatment can be compared to the genetic 

signatures obtained from Figure 4.5, which will provide an insight into the systemic effects 

of drug treatment as well as the tumor microenvironment in vivo.  
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Figure 4.1 Pharmacological evaluation of androgen receptor in lung cancer cells.  
(A) Expression profile of androgen receptor in a panel of lung cells. Arrowheads 
indicate cell lines (black bar) selected for AR agonist DHT treatment.  
(B) Evaluation of AR for cell growth responses to DHT treatment. Relative % 
growth response was assessed as described in methods. ANOVA was performed for 
statistical analysis for the growth responses. The asterisks show statistical 
significance.  
(C) Unsupervised clustering analysis of both genetic signatures and lung cancer cells. 
A genetic signature of 380 genes showing more than 2-fold difference between AR 
positive and negative lung cancer cells was applied for unsupervised clustering 
analysis using Matrix 1.29 as described in methods. Groups represent AR-positive 
cells with black box and AR-negative cells with white box. An arrow indicates 
position of androgen receptor. 
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Figure 4.2 Pharmacological evaluation of estrogen receptor α in lung cancer cells.  
(A) Expression profile of estrogen receptor α in a panel of lung cells. Arrowheads 
indicate cell lines (black bar) selected for treatment of ERα ligands.  
(B) Evaluation of ERα for cell growth responses to ligands treatment. Relative % 
growth response was obtained as described in methods. The X-axis represents 
concentration of ligands treated. The open square () and closed square () 
represent growth response to agonist 17β-estradiol and antagonist ICI 182, 780, 
respectively. ANOVA was performed for statistical analysis for the growth responses. 
The asterisks show statistical significance. 
(C) Unsupervised clustering analysis for both genetic signatures and lung cancer 
cells. A genetic signature of total 540 genes showing more than 2-fold difference 
between ERα-positive and negative lung cancer cells was performed using same 
application as AR in figure 4. Groups highlighted represent ERα-positive cells with 
black box and ERα-negative cells with white. An arrow indicates position of 
estrogen receptor α. 
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Figure 4.3 Pharmacological evaluation of PPARγ in lung cancer cells.  
(A) Expression profile of PPARγ in a panel of lung cells. Arrowheads indicate cell lines (black 
bar) selected for treatment with PPARγ ligand troglitazone. (Inset) Unsupervised clustering 
analysis was performed for both genetic signatures and lung cancer cells. A genetic signature of 
total 1010 genes showing more than 2-fold difference between PPARγ-positive and negative lung 
cancer cells was performed using same application as steroid receptors in figure 4 and 5. Groups 
highlighted represent PPARγ-positive cells with black box and PPARγ-negative cells with white 
box. Each arrowhead indicates the selected lung cell lines according to the PPARγ expression. 
(B) Evaluation of PPARγ for cell growth responses to troglitazone treatment. Relative % growth 
response was obtained using MTT assay as described in methods. The X-axis represents 
concentration of troglitazone. The asterisks show statistical significance. 
(C) Western blot analysis was performed for PPARγ expression lung cancer cells selected. Cell 
lysates from differentiated 3T3L-1 adipocyte were used as a positive control for the receptor 
detection. (D) Cyclin D1 expression with troglitazone treatment. Western blot analysis was 
performed for cyclin D1, PPARγ1 and actin for sample loading as described in methods. 
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Figure 4.4 In vivo treatment of xenograft tumors with the PPARγ ligand pioglitazone. 
The H1770, H1299 and H2347 (2X106) cells were injected into the right flank of athymic 
nude mice, followed by the treatment with 25 mg/kg pioglitazone or vehicle control four 
times a week; open circle (), H1299 treated with the pioglitazone; filled circle (), 
H1299 treated with the vehicle; open square (), H2347 treated with the pioglitazone; 
filled square (), H2347 treated with the vehicle; open diamond(◊), H1770 treated with 
the pioglitazone; filled diamond (), H1770 treated with the vehicle. The tumor volumes 
were measured twice a week. The values represent mean tumor size (n = 4 per group) with 
standard error. Statistical analysis with student t-test using SPSS 11.5 software (SPSS 
Inc., Chicago, IL) revealed significant delay of tumor growth with pioglitazone treatment 
of H2347 tumor expressing PPARγ (P < 0.05). 
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Affymetrix chip expts (6 conditions)
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Figure 4.5 Identification of potential target genes of PPARγ in lung cancer cell lines.  
(A) A schematic representation on microarray experiment and procedure (in venn 
diagram) identifying potential target genes from the bioinformatics analysis of data. 
(Bottom) A list is shown for genes that are up-regulated or down-regulated with PPARγ 
activation. 
(B) Expression pattern of individual genes regulated by PPARγ activation in a time course 
after troglitazone treatment. The individual genes are plotted in a time-course (0hr, 20hr, 
48hr). The x-axis represents time after treatment with troglitazone and the y-axis stands 
for expression level normalized by the vehicle treatment in log2 ratio.  
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CHAPTER FIVE 
Understanding Lung Cancer Pathogenesis from the 

Viewpoint of Nuclear Receptors 
 
 

 
 

5.1 Introduction 

The nuclear receptor (NR) superfamily comprises 48 members, mostly ligand-

activated transcription factors, which share similar structures including two activation 

domains, AF1 and AF2, and a DNA binding domain (DBD) (Chawla et al., 2001). Although 

endogenous or natural ligands are not known for a subset of these transcription factors, called 

orphan receptors, extensive studies over the last two decades show their significance in 

development (Gu et al., 2005; Lu et al., 1997; Morriss-Kay and Ward, 1999), differentiation 

(Fu et al., 2005; Lee et al., 2004a) and physiology (Akashi and Takumi, 2005; Chawla et al., 

2001; Yin and Lazar, 2005; Yin et al., 2006). A dysregulation of NR pathways causes severe 

chronic diseases such as diabetes (Blaschke et al., 2006a; Ramachandran et al., 2006), 

atherosclerosis (Barish, 2006; Blaschke et al., 2006b; Lee and Plutzky, 2006; Moreno et al., 

2006; Rizzo and Fiorucci, 2006), and several types of cancer (Abu et al., 2005; Allred and 

Kilgore, 2005; Benner et al., 1995; Bren-Mattison et al., 2005; Mehta and Mehta, 2002; 

Nakagawa et al., 2005a; Wang et al., 2006d). Several lines of genetic and epigenetic 

evidence show that lung cancer incidence is increased by direct or second-hand smoke 

(Gazdar and Carbone, 2003; Minna et al., 2003; Zhu et al., 2003). Genetic screening in tumor 

specimens from lung cancer patients shows that genetic mutations occur in 30% of non-small 



109 

 

cell lung carcinomas (NSCLC) in the K-ras gene and 50% of small cell lung carcinomas 

(SCLC) in the p53 gene. Transgenic and knock-out mouse models for both oncogenes have 

demonstrated that the genetic mutations observed in lung cancer patients are critical for 

cancer progression (Johnson et al., 2001; Meuwissen et al., 2003). In addition, promoter 

silencing by methylation of the p16INK4a cell cycle regulator gene is found in 67% of 

adenocarcinomas (ADK) and 70% of squamous cell carcinomas (SCC) of lung tumors 

(Jarmalaite et al., 2003; Kim et al., 2001; Minna, 2005). Furthermore, recent studies 

identified additional chromosomal hot spots such as 5q, 11q23.2, along with the well-known 

tumor suppressor locus 3p21.3, which show genetic and epigenetic alterations in high-risk 

groups or cancer patients (Belinsky, 1998; Minna, 1993). Although this prevalence of genetic 

and epigenetic alterations is critical in lung cancer pathogenesis, the molecular mechanisms 

involved remain to be elucidated.  

A number of studies have shown the relevance of individual NRs to the onset, 

development, treatment, and chemoprevention of cancer. For instance, overexpression of the 

retinoic acid receptor alpha (RARα) due to a fusion with PML (RARα/PML) and estrogen 

receptor alpha (ERα) expression causes the onset of leukemia and the progression of breast 

cancer, respectively (Jordan, 2002; Jordan, 2004; Wang et al., 2006b; Yoo et al., 2006). 

Targeting ERα using the selective modulators tamoxifen or raloxifene and blockade or 

ablation of dihydrotestosterone (DHT), which is the strongest endogenous ligand for 

androgen receptor (AR), are well-known therapeutic strategies to treat breast and prostate 

cancers, respectively. In addition, retinoic acid, the ligand for retinoic acid receptors, has 

been proposed as a potential drug for chemoprevention for lung cancer which has the highest 
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incidence amongst all forms of cancers (Khuri and Lippman, 2000; Lippman et al., 1993). 

Since multiple NRs have potential relevance to cancer biology in a variety of tumors, I 

wanted to investigate how the NR superfamily is involved in lung tumor pathogenesis using 

in vitro and in vivo lung cancer models as depicted in section 2.2. NRs have distinct 

expression patterns, either overexpressed or underexpressed in the HBEC3 panel, caused by 

oncogenic manipulations. Further biological approaches will be discussed regarding the 

potential relevance of NRs in control of inflammatory pathways, which are widely believed 

to cause various chronic diseases, especially cancer incidence, in the following sections.  

 

5.2 Results 

5.2.1 Characterization of Immortalized Cells 

To identify the tumorigenic potential of HBEC3 by oncogenic alterations, a series of 

daughter cell lines were established with the following alterations 1) K-rasV12, 2) knockdown 

of p53, or 3) both changes together. The stable knockdown of p53 was confirmed for both 

mRNA and protein expression using quantitative real-time PCR and immunoblot analysis, 

respectively. In addition, the activity of stably introduced oncogenic K-rasV12 was assessed 

by measuring phosphorylation of MEK, a downstream target kinase of K-ras (Figure 5.1). 

More interestingly, these genetic changes clearly induced vacuole-like cellular morphological 

changes (Fig 5.1B). These data suggest that physiological changes have occurred in these 

cells.  

 

5.2.2 Identification of NRs with Potential Relevance to Lung Cancer Pathogenesis 
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To explore the physiological relevance of NRs in lung cancer pathogenesis, the 

mRNA expression level of all 48 members of the superfamily was profiled using quantitative 

real-time PCR in the genetically defined panel of immortalized human bronchial epithelial 

cells (HBEC3), as mentioned in section 2.2. Comparative analysis of the expression profile 

revealed that several NRs, including COUP-TFI, ERα, NGFIB3, PPARα, PPARδ, PPARδ2, 

PPARγ  RARβ, Rev-erbα, RORα, and RXRβ, showed a distinct expression patterns across 

these cell lines (Figure 5.2). The introduction of oncogenic K-rasV12 in either a WT or a p53 

knock-down background resulted in increased or decreased expression of the above receptors 

(Figure 5.2). Interestingly, all PPARs, except PPARγ2, were increased, strongly implicating 

that further post-immortalization processes, induced by oncogenic K-rasV12, may accompany 

changes in fatty acid metabolism. This profile strongly supports the notion that NR 

expression is involved in disease progression by both of these well-known oncogenes. 

Further analysis of the NR atlas in tumorigenic subclones revealed different patterns 

of NRs except COUP-TFI, RARβ, and PPARγ that are consistently induced in both non-

tumorigenic parental culture and tumorigenic clones. These data suggest that a sequential 

change of multiple NRs is necessary on transformation from an immortalized non-

tumorigenic stage to a tumorigenic stage. For instance, RARβ expression was expressed at 

relatively lower level in the non-tumorigenic parental stages but rebounded up to more than 

20-fold in the C5 tumor grown as a xenograft when normalized to HBEC3 immortalized with 

CDK4 and hTERt (Figure 5.2). Based on the evidence in the literature that RARβ expression 

is associated with anti-tumorigenic properties, it will be interesting to investigate whether or 

not the tumor shows differential response to the RAR agonist in tumorigenic progression 
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using this panel of immortalized HBECs (Toulouse et al., 2000; Zhu et al., 1996). On the 

other hand, the nuclear receptor COUP-TF I, generally known as repressor, displayed a 

continuous increase of expression when cells progressed from immortalized through 

tumorigenic stages. Thus, the next approach is to define the role of COUP-TFI by performing 

a variety of functional studies such as loss-of-function (e.g., siRNA) and gain-of-function 

approaches at both the in vitro cellular level and the in vivo xenograft level of tumorigenesis. 

PPARγ is of particular interest because this receptor has been extensively studied as a 

therapeutic target in various types of cancers. In addition, VDR protein showed decreased 

expression despite minor changes at the mRNA level, suggesting that posttranslational 

stability of this particular receptor is regulated by the combination of oncogenic introductions 

(Figure 5.5).  

 

5.2.3 PPARγ and VDR in Lung Cancer 

In this chapter, I mainly focus on anti-inflammatory molecular mechanisms of PPARγ 

which contributes to the anti-tumorigenic process, and show preliminary data for VDR. 

Consistent with the previous reports showing that COX2 expression is involved in 

inflammation as well as tumor progression (Lynch and Kim, 2005; Prueitt et al., 2007; 

Rodrigues et al., 2004; Singh et al., 2005; Witton et al., 2004), I observed dramatically 

increased expression of COX2 in the HBEC3 cells with oncogenic K-rasV12 (Figure 5.3). 

Interestingly, COX2 expression is coincident with PPARγ expression in HBEC3, as well as a 

panel of lung cells, strongly suggesting the relevance of the two proteins in disease 

progression. Given that the transcription factor PPARγ plays a significant role in anti-
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inflammation, it is conceivable that PPARγ activation possibly inhibits pro-inflammatory 

COX2 expression. Interestingly, troglitazone treatment inhibited expression of both COX2 

mRNA and protein. Expression of iNOS, another well-known pro-inflammatory factor, is 

negatively regulated by sumoylated PPARγ which stabilizes the corepressor complex 

(Pascual et al., 2005). Furthermore, cyclin D1 expression is decreased with troglitazone 

treatment only in HBEC3 cells with the dual oncogenic alterations, which is consistent with 

previous observations (Shao et al., 2002; Yang et al., 2005). These data support the idea that 

PPARγ potentially inhibits tumorigenesis by inhibiting COX-2 and cyclin D1 expression 

(Figure 5.3 bottom).  

To see if decreased expression of cyclin D1 by troglitazone treatment affects cell 

cycle progression, I assayed HBEC3 cell proliferation using the MTT assay. Interestingly, 

troglitazone treatment does not inhibit cell proliferation, even with the selective COX2 

inhibitor celecoxib (Figure 5.4). In addition, the observation of decreased expression of VDR 

consistently reflects a decreased response to 1,25α dihydroxyvitamine–D3 treatment in 

HBEC3 KTRLp53-/- cells, suggesting a receptor-dependent growth inhibition with cognate 

ligand treatment (Figure 5.5). Interestingly, treatment with VDR ligand in the presence of 

1µM of PPARγ agonist troglitazone sensitized both HBEC3s expressing oncogenic K-rasV12 

(HBEC3-KTR and HBEC3-KTRLp53-/-), supporting the above idea that PPARγ activation 

somehow counteracts the K-ras pathway (Figure 5.5). This sensitization seems not to be 

directly relevant to VDR because VDR expression is still low in the presence of troglitazone 

(Figure 5.5). Thus, it may be interesting to determine the physiological interplay between 

VDR and PPARγ in tumors.   
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5.2.4 PPARγ expression is lost in tumorigenic clones of HBEC3 cells 

Based on the result that both PPARγ and COX2 expressions were dramatically 

increased in both HBEC3s expressing oncogenic K-rasV12 (HBEC3-KTR and HBEC3-

KTRLp53-/-), I wanted to confirm the expression in xenograft tumors as well as in 

tumorigenic clones. Surprisingly, both mRNAs were reduced to similar or less levels than in 

HBEC3-KT, implicating that molecular dissection of the functional roles for both PPARγ and 

COX2 are critical to understanding lung cancer pathogenesis induced by oncogenic K-ras. In 

addition, we confirmed that both oncogenic alterations were well maintained in the 

immortalized cells (Figure 5.6). Interestingly, the C-5 tumorigenic clone showed even 

stronger oncogenic K-ras activity than the parental clone, together with a similar level of p53 

knockdown to the parental clone (Figure 5.6).  

 

5.2.5 Nuclear Receptors in Lung Cancer Mouse Model 

 Since the functional relevance of PPARγ with oncogenic alterations was observed in 

the HBEC model, along with identification of multiple NRs with manifest changes in mRNA 

expression, I further pursued the NR profile in a mouse lung cancer model which 

autonomously develops lung adenoma and adenocarcinoma due to constitutive expression of 

oncogenic K-rasV12. The NR profile in pair-matched lung samples revealed multiple groups 

showing distinct expression patterns, i.e., NRs with low expression, NRs expressed but no 

difference between normal and corresponding tumor tissues, differentiate expression between 

individual mice, and different expression between normal and tumor but common across all 
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mice, as shown in Figure 2.7 and 2.9. Along with the NR profile in age-matched wild type 

mouse lung samples, unsupervised hierarchical clustering analysis was applied to the dataset, 

which revealed nice segregation of the samples into wild type, normal, and tumor tissues 

(Figure 5.7). In addition to the generic classification above, the next question was whether 

any single NR or subset of NRs changed as the pathogenesis progressed. Strikingly, the 

normal expression of a subset of NRs is already disrupted even in histologically normal 

tissues from the K-rasV12 mouse, and shows severe loss of a cluster of NR expression (Figure 

5.8). This observation occurs in both genders, implying that NR expression changes can be 

utilized to detect earlier preneoplastic changes which may be difficult to assess by 

histological examination alone (Figure 5.8).  

 

5.3 Discussion 

For the last two decades, since the cloning of the glucocorticoid receptor, a growing 

number of studies have explored significant physiological roles for nuclear receptors, which 

includes energy balance, circadian rhythm, lipid homeostasis, reproduction, and immune 

response. Abnormal regulation of NRs can cause severe chronic diseases such as obesity, 

diabetes, metabolic syndrome X, immune dysregulations, and cancer (Joseph et al., 2004; Li 

et al., 2006; Mehta and Mehta, 2002; Nakagawa et al., 2005a; Saez et al., 2004; Tobin and 

Freedman, 2006; Wang et al., 2006a; Wang et al., 2006c; Zelcer and Tontonoz, 2006). Also, 

several lines of evidence are suggestive of the diagnostic and prognostic value of various 

receptors along with their therapeutic potential as targets in various types of cancer. For 

example, immunohistologic staining for estrogen receptor and progesterone receptor has 
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been a routine method not only for diagnostic and prognostic purposes, but also for 

determining the use og antagonists such as tamoxifen and raloxifene in breast cancer 

(Aggarwal et al., 2005). Other receptors such as AR, PPARγ, and CAR, have shown 

therapeutic potential in prostate cancer, colon cancer, and hepatocellular carcinoma, 

respectively (Aung et al., 2006; Botrugno et al., 2004; Chmelar et al., 2007; Knapp et al., 

2006; Li et al., 2006; Schroder et al., 2006; Vandoros et al., 2006; Yamamoto et al., 2004). In 

addition, recent studies have shown the involvement of the orphan receptors LRH-1 and 

PPARδ in breast and colon cancer (Aung et al., 2006; Botrugno et al., 2004). Retinoic acid, a 

vitamin A derivative which is a ligand for RAR and RXR, has been proposed for 

chemoprevention against lung cancer (Lippman et al., 1993; Wang et al., 2006d). 

Collectively, NRs play significant roles in pathogenesis and/or progression of cancer.  

To demonstrate the potential role of NRs in lung cancer pathogenesis, all 48 NRs 

were profiled using quantitative real-time PCR to assess mRNA levels in a panel of 

immortalized human bronchial epithelial cells which harbor oncogenic alterations (e.g., K-

rasv12, p53-/-, or both) as well as an in vivo mouse model from which tissue samples were 

obtained from wild type, and from normal and corresponding tumor of the oncogenic K-

rasV12 mouse model in both genders. In comparative analyses of the NR profile in both 

models, HBECs and the mouse model, certain discrepancies have been observed. Most 

receptors except PPARγ were included either in the non-tumorigenic or tumorigenic group, 

suggesting that different receptors could be differently involved in either immortalization or 

the tumorigenic process. Interestingly, the pattern of PPARγ expression, which was 

dramatically increased in immortalized cells, was reversed to even lower than the control 
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level (e.g., HBEC3-KT) in tumorigenic clones. Thus, further studies should include a 

xenograft mouse model of the tumorigenic clones stably expressing an inducible PPARγ, 

followed by treatment of the tumors with PPARγ agonist to demonstrate the anti-tumorigenic 

function of PPARγ, as well as a potential target for chemoprevention of cancer incidence. 

Second, only increased expression of LRH-1 in tumor appears in common between the 

tumorigenic clones and the mouse model. Although both systems induce tumor formation 

with oncogenic K-rasV12, cellular heterogeneity of tissue from the mouse model, including 

tumor microenvironmental factors and systemic effects can be attributed to this discrepancy. 

Different species may have different receptor sets generating similar physiological outcomes, 

even though individual receptors have similar functions in most cases. This is supported by 

the recent observation comparing the NR superfamily between mouse embryonic stem cells 

and human embryonic stem cells in various stages of embryoid body formation (data not 

shown). The same nuclear receptor pair showed unexpectedly low Pearson correlations but 

much higher correlation with other receptors, potentially suggesting that a higher network of 

a subset of NRs may be critical for controlling detailed physiological responses. Thus, since 

we determined what subgroups of NRs are correlated between these two species, I believe 

that it is possible to predict human physiological outcomes using mouse models.  

Consistent with the previous report showing that heterozygotes of LRH-1 transgenic 

mice are susceptible to tumorigenesis, the increased expression LRH-1 in both tumorigenic 

clones and mouse tumors normalized by corresponding normal tissues suggests a couple of 

questions (Botrugno, 2004; Mueller, 2006 ; Schoonjans, 2005). First, is LRH-1 necessary to 

induce lung tumorigenesis? Second, what are the potential targets of LRH-1? In analyzing 
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the subset of NRs, it will be interesting to uncover the biologic relation or molecular 

mechanism between the nuclear receptors or NR sets and to K-rasV12, further extending to 

other cell survival pathways or kinase pathways (e.g. EGFR) activated in most cancers.  

In further functional analysis with PPARγ and COX2 proteins, it will be interesting to 

perform tumor invasion assays using PPARγ agonists in combination with COX2 inhibitors. 

Given that both proteins are physiologically relevant to adipogenesis, it is of interest to know 

how tumorigenic processes are related to lipid metabolism. Overall, further biological studies 

of the NR subsets are needed to understand pathogenesis.  
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Figure 5.1 Characterization of immortalized human bronchial epithelial cells with oncogenic 
alterations. 
(A) Western blot and quantitative real-time PCR assays. The expression of oncogenic K-rasv12 is 
shown to be functionally active, which is shown by MEK phosphorylation. Both quantitative real-
time PCR and western blot assays confirmed knockdown of p53 in immortalized cell lines with 
stable knockdown of p53. The real-time PCR primer for p53 is listed in table 1. Actin is used as 
loading control. (B) Morphological change of the immortalized cell lines harboring both 
knockdown of p53 and oncogenic K-rasv12. Both oncogenic alterations induce cellular pathology 
accompanying the morphological change. As previously described, normal human bronchial 
epithelial cells are immortalized with CDK4 and hTERt, a catalytic subunit of human telomerase, 
and followed by further oncogenic alterations with either p53 knockdown by stable small 
interference RNA technique, introduction of oncogenic K-rasV12 using lentiviral system, or both. 
The immortalized cells are HBEC3 CDK4+hTERt+pSRZ+pLenti-LacZ, HBEC3 
CDK4+hTERt+pSRZ+K-rasv12, HBEC3 CDK4+hTERt+p53-/-+pLenti-LacZ, HBEC3 
CDK4+hTERt+p53-/-+K-ras, where pSRZ and pLenti-LacZ represent pSuper-retro-zeocin vector 
and lentiviral vector expressing lacZ, respectively. 
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Figure 5.2 Subsets of NRs Relevant to Tumorigenesis. 
(A) A subset of NRs is oncogenic dependent pattern of expression. (B) A subset of 
NRs is shown in a tumorigenic-specific pattern of expression. 
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Figure 5.3 Expression of PPARγ and COX-2 in HBEC3s with various oncogenic alterations.  
Quantitative mRNA expressions for PPARγ and COX-2 was examined with or without 
treatment of 1uM troglitazone, along with COX-2 protein expression. Numbers represent 
HBEC3 cells with different oncogenic alterations; 1, vector control; 2, K-rasV12; 3, p53 
knocked-down; 4, K-rasV12+ p53 knocked-down. 
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Figure 5.4 Cell Growth Response to the Treatment with Troglitazone or COX2 
Inhibitor Celecoxib. Growth response of HBEC3 cells with various types of genetic 
modification were measured using MTT assay after treatment with celecoxib in a dose-
dependent manner in the presence or absence of 1uM troglitazone. 
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Figure 5.5 Cell Growth Responses to the Treatment of Vitamin D Receptor (VDR) 
Ligand (1,25α dihydroxyvitamine D3). (Top) Growth response of HBEC3 cells 
with various types of genetic modification were measured using MTT assay after 
treatment with 1,25α dihydroxyvitamine D3 in a dose-dependent manner in the 
presence or absence of 1uM troglitazone. (Bottom) Western blot assay shows VDR 
protein expression in the HBEC3s treated with vehicle or 1uM troglitazone. 

 

 

 

 

 



124 

 

A 

 
B 

 
 
Figure 5.6 Characterization of tumorigenic clones. 
(A) Identification of genetic alterations in tumorigenic C-1 and C-5 clones. Quantitative 
real-time PCR assay shows stable knockdown of p53 in parental cells, and cultured C-5, 
and tumor C-5 (left panel). Western blot analysis shows p53 knockdown, and 
oncogenic K-rasV12 expression together with its activity by showing ERK 
phosphorylation in the same panel used for qRT-PCR of p53 (right panel).  
(B) Identification of both PPARγ and COX-2 expression in the tumorigenic C-5 clone 
and xenografted tumor. Quantitative real-time PCR assay shows mRNA expression for 
PPARγ (upper panel) and COX-2 (lower panel)among immortalized cells without 
oncogenic alterations, parental mass culture with dual oncogenic alterations, 
tumorigenic C-5 clone (cells) and xenograft C-5 tumor isolated from nude mice. 
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Figure 5.7 Unsupervised Cluster Analysis of NR profile in Mouse Lung Tissues. 
Expression profiling of the NR superfamily was performed in eight to nine month 
old mouse lung tissue samples obtained from wildtype and mutant K-rasV12 
transgenic mouse in which lung tissues were separated into normal and 
corresponding tumor tissues. Hierarchical clustering was applied to both samples 
and NR expression profile. M: male, F: Female. Each mouse sample has 
identification number together with N for normal and T for tumor. 
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Figure 5.8 Expression Signatures of NR with Disease Progression. 
Pearson based correlation coefficients between receptor pairs (vertical vs. horizontal 
axis) were calculated and applied to hierarchical cluster analysis in wildtype group (A, 
male; B, female). Both axes showing clustered receptor order in the wildtype group were 
applied to other tissue samples (i.e., K-ras/normal tissue and K-ras/tumor tissue) with 
color-code. 
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CHAPTER SIX 
PERSPECTIVES AND FUTURE DIRECTIONS 

 

 

 

 

6.1 Introduction 

 Here I proposed a novel, promising translational approach of utilizing expression 

profiling of the NR superfamily in lung cancer. Recently, anatomical and temporal profiling 

of the NR superfamily in mice gave insight to the existence of a higher-ordered mega-

network of NRs where finely-tuned balances may play a critical role in maintaining body 

homeostasis. Thus, as an obvious progression from the previous studies, the current study 

provides evidence for the NRs that are coordinately involved in these fatal diseases, as well 

as how NRs expression levels change during disease progression. Through large-scale 

screening of the NR superfamily, I believe that a new paradigm, i.e., quantitation of specific 

gene families, has emerged with direct translational applications in clinic. These studies 

included the well-coordinated organization of various data sources, i.e. qRT-PCR for high-

throughput expression analysis, biostatistics and bioinformatics analyses, and a statistically 

meaningful number of samples. Both biostatistics and bioinformatics tools derived secondary 

NR datasets such as expression patterns correlated to diagnosis or prognosis, from the 

primary profile data. After selecting receptors based on expression, ligands were used to 
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evaluate both in vitro and in vivo potential power in molecular-targeted therapy as well as 

individualized treatment. Thus, following further preclinical studies using xenograft models 

and the mouse lung cancer model, clinical trials will be planned to treat lung cancer patients 

in a variety of ways, single NR targeted therapy, combined NR targeted therapies, and 

combined treatment with other targeted drugs in clinic. In parallel, preclinical 

chemoprevention studies should be planned with the consideration that many NRs are 

relevant to dietary metabolism. More importantly, these various approaches are possible in a 

customized manner by differentiating individual variations in response to drugs. The notion 

of using the NR superfamily as a target for translational research is now expanding to other 

types of cancers. Here, I describe some preliminary data and functional assays in a breast cell 

line panel.  

 

6.2 Breast Cancer 

NR expression was profiled in a panel of 35 breast cell lines including four 

immortalized mammary epithelial cells and thirty-one breast cancer cell lines. The 

immortalized cells include pre-immortalized (HME50-5), spontaneously immortalized 

(HME50-5E), and immortalized cells with hTERt and/or CDK4. NR expression profiles of 

these breast cell lines displayed distinct but unique expression patterns for both receptors and 

cell lines (Figure 6.1). The quantitative mRNA expression of both estrogen receptor α and 

progesterone receptor, the most widely used steroid receptors for diagnosis and prognostic 

prediction of breast cancer in the clinic, for every breast cell line was compared to 

immunohistochemistry data documented when the patients were diagnosed. Convincingly, 



130 

 

the data are highly correlated to each other and this was further confirmed with the 

microarray data (Figure 6.2). In addition, the expression data for estrogen receptor α were 

functionally confirmed by treating multiple cell lines, including ERα-negative and positive 

cells, with 17β estradiol for 3 consecutive days. The data show growth response to estrogen 

treatment in a receptor dependent manner (Figure 6.3). Further comparative analysis using 

bioinformatics tools is required for more detailed interpretation. 

 

6.3. Future directions and Perspectives 

The NR profile in the breast cell panel seems to be highly informative for 

translational applications in the clinic and potentially may provide additional or alternative 

therapeutic targets other than ERα and PR. Along with preclinical studies in vitro and in 

vivo, the same approach will be taken with NR expression in breast cancer patient tissue 

samples as in lung cancer, and followed by design of clinical trials to test whether patients 

whose tumors have certain NR expression profiles will benefit from selected hormonal 

treatment/manipulation. It is of interest to investigate if NR expression can differentiate 

tumor types, and what specific groups of NRs are principal component sets for tumor typing. 

The spontaneously immortalized HME 50-5E showed increased expressions of PPARγ and 

COX2, which is similarly observed in immortalized bronchial epithelial cells (Figure 6.4 and 

Figure 5.3), suggesting that the pathogenic process of epithelial cells in both tissue types may 

involve PPARγ activation in which a detailed mechanism still remains to be determined. 

Consistent with our observation, it was recently reported that COX2 activation is 

significantly involved in late stages of immortalization (Crawford et al., 2004). By the same 
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token, I believe that it is crucial to investigate any single NR or subset of NRs significantly 

involved in common type of cancers (e.g. adenocarcinoma), originated from various tissues 

(lung, breast, colon, and prostate cancers), or metastatic cancers to multiple tissues. Given 

that therapeutic responses to certain targeted drugs vary or certain treated patients become 

refractory, it will be of particular interest to see if any NR set changes in expression before 

and after treatment in the same patient. The answer may provide insights on how the treated 

tumors become refractory or relapse, and thus how to direct the subsequent treatment 

schemes. On the basis that many targeted therapies include kinase pathways, currently in 

progress is profiling of the kinase family (termed ‘kinome’) for further correlations to the NR 

superfamily. Using both datasets, combined therapeutic approaches can possibly be planned 

in preclinical studies followed by clinical applications. 

In terms of the notion of cancer stem cells, in spite of controversy for its definition, 

and given that many NRs are involved in cellular differentiation, it is of interest to see if NRs 

are relevant to cancer stem cell physiology. Various known cancer stem cells or isolated stem 

cells from different tissues will be precious sources in which profiling the NR superfamily 

and further preclinical, biological research should be followed for the use of NRs as clinical 

targets.  

Furthermore, the connection to the microRNA (miRNA) field that current cancer 

research has been highlighting might be considered. In addition to NRs being involved in 

transcriptional regulation, thinking about the potential involvement of miRNAs controling 

posttranscriptional regulation of gene expression is reasonable for understanding higher-level 

cross-regulation. Using biostatistics analysis, surveying the correlation of individual NRs to 
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miRNAs in various normal tissues and further comparison in the same tissues with cancer 

will provide functionally relevant groups of miRNAs and NRs which are potentially cross-

targets of miRNAs for NRs or vice versa. Functional analysis based on molecular biology 

will lead to novel mechanisms of gene regulation involving both repression through miRNAs 

and direct activation by NR. Recalling the potential mega-network within the NR 

superfamily for integrated physiological outcomes, further bioinformatics approaches will 

lead to mechanisms of highly complicated, but finely regulated communication in gene 

regulation, termed ‘transcriptional physiology’. Although the NR superfamily plays central 

roles in many physiologic processes, further studies to profile expression of generic 

transcription factors as well as coregulators is extremely important to dissect physiological 

responses at the transcriptional level. The reconstitution of the expression profile using 

computational systems could be a valuable systems biology tool for virtual prediction of 

physiological responses according to stimulus even before preclinical studies. It is necessary 

to develop such systems for biologic approaches for simulation of the signaling atlas, which 

could be applied to pharmacologic approaches in biomedical research. 

Overall, the work presented here is a blueprint for the above perspectives to be 

applied and a cornerstone toward understanding the higher level of integrative biology 

combining transcriptional physiology and systems biology. 
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Figure 6.1 Expression Profile of the NR Superfamily in Breast Cancer Panel.  
(A) Included in a panel of 35 breast cell lines are four immortalized human mammary 
epithelial cells and thirty-one breast cancer cell lines. Expression profile of fifty NRs 
including two isoforms, PPARδ2 and PPARγ2, was surveyed using TaqMan-based 
quantitative real-time PCR assay. Y-axis represents NR expression relative to18S rRNA.  
(B) Cell lines are aligned in order as shown on x-axis in figure (A). First four cell lines are 
immortalized and the rest are breast cancer cell lines. 
 
 



134 

 

A 

 

 
 
B 

 

 
 
Figure 6.2 Expression Correlations of ERα and PR QPCR Expression with 
Immunohistochemistery and Affymetrix Microarray Data.  
QRT-PCR mRNA expression for both estrogen receptor α  (A) and progesterone receptor 
(B) is compared with Affymetrix Microarray and /or Immunohistochemistry. Y-axis 
represents relative mRNA expression of nuclear receptor to 18S rRNA. 
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Figure 6.3 Functional Evaluation of ERα Expression.  
A subset of breast cell lines expressing or not expressing ERα were treated 
with ligands and assayed for cell growth response. Final concentration of 
10nM for both ligands (17β-estradiol as an agonist and ICI 182,780 as an 
antagonist) was used for three consecutive days before cell counting with 
trypan blue exclusion. All relative % growths were represented by 
normalizing treated cells with ligands by same cells with vehicle treatment. 
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Figure 6.4 Expression of PPARγ and COX2 in HME 50-5 and HME 50-5E.  
Quantitative mRNA expression for PPARγ (A) and COX2(B) was examined 
in HME 50-5 and HME 50-5E cells. Northern blot assay shows mRNA 
expression of PPARγ in (A). Ct: cycle time. 
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CHAPTER SEVEN 

Materials and Methods 

 

 

 

 

7.1 Materials 

7.1.1 Lung Panel 

 Primary human bronchial epithelial cells (HBECs), immortalized HBECs, and 

tumorigenic clones are described in section 2.2.2 and schematized in figure 2.3. Note that 

successive clonogenic analysis established more immortalized but non-tumorigenic clones 

which are believed to be intermediate stages toward tumorigenic clones such as C1 and C5 

HBECs. Our lung cancer cell panel included five primary bronchial epithelial cell lines 

(under passage five) including normal bronchial epithelial cells (NHBEC) purchased from 

Clonetics, ten immortalized HBEC lines with CDK4 and hTERt in the presence or absence of 

various oncogenic alterations, and forty-one lung cancer cell lines. The lung cancer cell lines 

consist of fourteen SCLCs and twenty-seven NSCLCs, for which their identities were 

confirmed by DNA fingerprinting. All RNAs were extracted using Qiagen RNeasy Midi kit 

(Qiagen Sciences, MD), given unique identification codes, and used for both microarray and 

qRT-PCR experiments.  
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7.1.2 Patient Tissue Sample 

 Thirty primary tumors and corresponding normal tissues, comprising 23 

adenocarcinomas and 7 squamous cell carcinomas, were obtained and further processed for 

RNA under the approval of the Internal Review Board (IRB) at MD Anderson Cancer Center 

and IRB at UT Southwestern Medical Center, together with written informed consent for 

each subject. Sixteen patients were diagnosed with stage I disease, five patients with stage II 

disease, five patients with stage III disease, and four patients with stage IV disease. All 

tissues were stored at –80 C after being snap frozen. Cancerous regions were 

microdissected and RNAs were isolated using the Qiagen RNeasy Mini Kit (Qiagen 

Sciences, MD). 

 

7.1.3 Mouse Lung Cancer Model 

 To better understand the pathogenic relevance of the NR superfamily in an in vivo 

mouse model with constitutive expression of oncogenic K-rasV12 that spontaneously develops 

adenoma and adenocarcinoma at later stages, several groups of lung tissue samples from the 

mice fed the same diet were collected from both genders from early age (4 to 6 weeks), 

middle age (4 to 6 months), and old age (8 to 10 months) animals that had developed mostly 

adenocarcinoma. Each group consisted of five wild types and five mutants in both genders. 

All mutant samples were pair-matched and RNAs were prepared and analyzed for RNA 

quality control using the Agilent 2100 bioanalyzer (Quantum Analytics Inc., Foster city, 

California). 
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7.2 Methods 

Cell cultures, western blot assay and RNA extraction  

NHBEC, HBECs UI, and BEAS2B cells (American Type Culture Collection, Manassas, 

Virginia) were cultured in BGEM® medium (Cambrex Bio Science, Walkersville, Maryland) 

supplemented with the supplied nutrients according to the manufacturer’s instructions. 

HBECs were grown in keratinocyte-SFM (Invitrogen Corp., Grand Island, New York) with 

the supplements (e.g. EGF, pituary gland extract) supplied. Lung cancer cells were 

maintained in RPMI medium (Invitrogen corp., Grand Island, New York) medium with 5% 

or 10% heat-inactivated fetal bovine serum (ΔFBS) (Gemini Bio Products, Woodland, 

California). Note that the FBS in the culture continuously used contained 17β-estradiol and 

testosterone which were in the range of physiological concentration (0.1 ~ 1 nM). All 

genomic DNAs were fingerprinted to confirm the identity of each of the cell lines used in this 

study. Following standard protocols for western blot assay, a total of 50 µg of whole cell 

lysate was assayed with mouse monoclonal anti-PPARγ1 (Tanaka et al., 2002) to confirm 

PPARγ protein expression. For cyclin D1 detection, a total of 50 µg of whole cell lysate from 

H1770 and H2347 was assayed with mouse anti-cyclin D1 (Santa Cruz, sc-8396) antibody at 

three different time points: 0hr, 24hr and 48hr after 3 µM troglitazone treatment. Total RNAs 

were purified using Qiagen RNeasy Midi kit (Qiagen Sciences, MD) following the 

manufacturer’s instructions. The quality and concentration of each RNA was assessed using 

either ethidium bromide-stained agarose gels or the Agilent 2100 bioanalyzer (Quantum 

Analytics Inc., Foster city, California). 
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Reverse Transcription and Quantitative Real-time PCR assay  

All cDNAs were prepared for quantitative real-time PCR (TaqMan® method) as 

described (Bookout et al., 2006). Briefly, 2 µg of total RNA was DNAse-treated with 2 U of 

DNAse I in a final volume of 20 µl containing 4.2 µM MgCl2 . The reverse transcription 

reaction was performed in a 100 µL final volume, followed by the addition of 100 µL of 

DEPC-H2O. Human universal cDNA or tissue specific cDNA (e.g. retina for PNR and liver 

for SHP) was used to construct a standard curve of the following concentrations, no template 

control, 0.008, 0.04, 0.2, 1, 5, 25 ng for 18S and NTC, 0.016, 0.08, 0.4, 2.0, 10, 50 ng for 

each NR. These quantities are based on the RNA concentrations used for the RT reaction. A 

negative RT sample, a control for genomic DNA contamination, was also included for both 

18S and NR. For each sample, 10 ng of cDNA was assayed in triplicate wells of a 384-well 

plate. The final forward and reverse primer concentrations used were 75 nM for 18S rRNA 

and 300 nM for all of the NR primers. Primers for each mRNA were designed using Primer 

Express Software and were validated as previously described (Table 2.1 and 

http://www.NURSA.org). 

 

QPCR Data analysis  

The data was imported into Microsoft Excel and, first, calculated for PCR efficiency 

(e), e = 10[-1/slope] where the slope was obtained from the standard curve calculated by the 

SDS instrument for the endogenous 18S reference and target NR. Secondly, relative quantity 

was calculated by quantity = (e) –Ct. The calculated quantities were averaged (avg), and the 
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standard deviations (stdev) and coefficients of variation (CV=stdev/avg) were determined for 

the 18S and NR of each sample. Points which showed > 17% CV were considered outliers 

and removed. Then the normalized value for each NR expression was calculated using 

normalized value = NR quantity avg / 18s quantity avg. The standard deviation of the 

normalized value (S.D.) was calculated as S.D. = (normalized value) X {(CV of reference)2 + 

(CV of NR)2}1/2. The normalized values are represented as a bar graph. 

 

Microarray data analysis  

To investigate the signatures of potential target gene expression in the context of 

steroid receptors (e.g., AR, ERα) and PPARγ expression, microarray assays were performed 

using Affymetrix U133AB chips for 48 lung cell lines. Expression data were analyzed using 

unsupervised clustering method. Lung cancer cell lines employed for the correlation of 

receptors selected are as follows: a total of 12 lung cancer cell lines for AR, four positive cell 

lines (H2122, H1993, H460, H1184) and 8 negative cell lines (H2009, HCC827, HCC1195, 

H1607, H1299, H2882, HCC366, H289); a total of 28 cell lines for ERα, 5 positive cell lines 

(H1607, H1993, HCC78, H2052, HCC1195) and 23 negative cell lines (H1299, H157, 

H2882, H1819, H2087, H358, HCC44, H2887, HCC15, HCC366, HCC461, H146, H1672, 

H2107, H889, H289, H187, H82, H1963, H1184, H2171, HCC970, H2227); a total of 10 cell 

lines for PPARγ, 5 high-expressing cell lines (H1993, H2347, Calu-1, H2887, H2882) and 5 

low-expressing cell lines (HCC1195, H1770, H2227, H187, H1299). Matrix 1.29 software 

(developed by Dr. Luc Girard) or Eisen lab Tree software 

(http://rana.lbl.gov/EisenSoftware.htm) was used for unsupervised clustering analysis of 
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QPCR data of the NR expression and Affymetrix microarray data. In addition, Matrix 1.29 

was utilized to pull out groups of genes showing more than 2-fold differences between 

receptor positive and negative cell lines. Pearson correlations of each gene to each receptor 

expression level was calculated and followed by significance test for the correlation: 

P=TDIST(ABS(r/SQRT((1-r^2)/(n-2))),n-2,2) where r is Pearson correlation value and n is 

sample number tested. Genes successfully filtered-through (P < 0.05) were highlighted in 

yellow. 

 

Cell growth assay  

To assess the growth response to ligand treatments, cell lines MCF-7, HCC78, and 

H2052 which express ERα and H1299, H2009 which show no ERα, were selected for ERα 

evaluation and maintained in phenol-red free RPMI medium containing 5% heat-inactivated, 

charcoal-stripped fetal bovine serum (∆FBS). For the assay, 1 X 105 cells were split into 6-

well plates and grown in phenol-red free RPMI media containing 5% charcoal-stripped, heat-

inactivated ∆FBS. Agonist, 17β-estradiol, (Sigma, St. Louis and Missouri) or antagonist, ICI 

182, 780, (TOCRIS, Ellisville, Missouri) was added every day for 3 days in 4 doses (0, 

0.1nM, 10nM, 1µM) in triplicate. Relative % of cell growth response was calculated by 

counting Trypan blue-excluding cells (Sigma, St. Louis, Missouri). For AR evaluation, all 

assays were performed in the same way as ERα except cells were maintained in phenol-red 

containing media. Agonist, dihydrotestosterone (DHT), (Sigma, St. Louis, Missouri) was 

added using the same concentrations as ERα ligands except for the cells LnCaP and H2009 

(0, 0.01 nM, 1 nM, 100 nM). To assess the functional and preclinical implications of PPARγ 
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expression, the MTT (Sigma-Aldrich, St. Louis, Missouri) assay was employed to measure 

cell proliferation. A number of cells which are low- (H1770, HCC1195, H1299) or high-

expressers (H1993, H2347, Calu-1) were split into 96-well plates containing phenol red-free 

RPMI media containing 5% charcoal-stripped ∆FBS in final volume of 100 µl per well. Cells 

were treated with troglitazone at the concentrations 0, 0.1, 0.3, 1, 3, 10 µM or 0, 0.1, 1, 10 for 

Calu-1 cells in a final volume of 125 µl. MTT assays were performed by measuring 

absorbance of MTT metabolites at 560 nm. Relative % growth was calculated for each dose 

versus vehicle treatment.   

 

In vivo xenograft experiment 

Athymic nude mice (5–6-week-old females) were purchased from Charles River 

Laboratories (Wilmington, MA) and maintained in sterile conditions. The care and treatment 

of experimental animals were in accordance with institutional guidelines. H1770 and H1299  

(with no expression of PPARγ), and H2347 (with high expression of PPARγ) (2 x 106) cells 

were subcutaneously injected into the right flank areas of mice on Day 0 (Nakagawa et al.) 

. The mice were randomly divided into two groups (n=4) and treated with 

intraperitoneal administration of 25 mg/kg pioglitazone (Actos, Takeda Pharmaceutical 

Company, Osaka, Japan) dissolved in 10% DMSO or the same volume of DMSO vehicle 

control four times a week. Tumor volumes were directly measured twice a week from Day 8 

with calipers and calculated by the formula π/6 X (large diameter) X (small diameter)2. The 

mice treated with vehicle were sacrificed at day 37 before tumor necrosis occurs. The 
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difference in tumor volume between different treatment groups was statistically analyzed 

using the student t-test in SPSS 11.5 software (SPSS Inc., Chicago, IL).  
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Table 7.1.Quantitative real-time PCR primer and probe sets of 50 human NRs. 

Reference sequence accession numbers are included. 

Receptor 
Formal 
Name 

mRNA 
Accession # QPCR Primers TaqMan Probe 

18S  X00686 5'accgcagctaggaataatgga3' 
5'gcctcagttccgaaaacca3' 

VIC-accgcggttctattt 

AR NR3C4 NM_000044 (3525)5'gaattcctgtgcatgaaagca3' 
(3610)5'cgaagttgatgaaagaatttttgatt3' 

6FAM-ctactcttcagcattattcca 

CAR NR1I3 NM_005122 (771)5'ttcatggtactgcaagtcatcaa3' 
(856)5'ttgagaagggagatctggtcttc3' 

6FAM-ttactaaggacctgcccgtc 

COUP-TFα NR2F1 NM_005654 (1053)5'acagctgcctcaaagccatc3' 
(1167)5'tcacgtactcctccagtgcg3' 

6FAM-cacatcgagagcctgcag 

COUP-TFβ NR2F2 NM_021005 (1249)5'aaggcgctgcacgttgac3' 
(1349)5'ctttccacatgggctacatcag3' 

6FAM-tagtcctgtttcacctcagat 

DAX NR0B1 NM_000475 (1068)5'ccaggtccaagccatcaagt3' 
(1175)5'ggcacgtccgggttaaaga3' 

6FAM-aggagtacgcctacctc 

COUP-TFγ NR2F6 NM_005234 (352)5'agggctgcaagagctttttc3' 
(427)5'tggcagtcacggttgga3' 

6FAM-caacctcagctacacctg 

ERα NR3A1 NM_000125 (989)5'agagaagtattcaaggacataacgactatat
3' (1066) 5'tcttcctcctgtttttatcaatgg3' 

6FAM-cagccaccaaccagt 

ERβ NR3A2 NM_001437 (1316)5'aagttggccgacaaggagtt3' 
(1391)5'acaggctgagctccacaaag3' 

6FAM-ccaagaagattccc 

ERRα NR3B1 NM_004451 (1143)5'gcgagaggagtatgttctactaaagg3' 
(1218)5'agcctcggcatcttcgat3' 

6FAM-ccaattcagactctgtgcac 

ERRβ NR3B2 NM_004452 (719)5'gaggactatccaagggaacattg3' 
(839)5'catccccactttgaggcatt3' 

6FAM-cgagatcaccaaacgg 

ERRγ NR3B3 NM_001438 (182)5'gctaacactgtcgcagtttgaa3' 
(357)5'cgaacagctggaatcaatgtg3' 

6FAM-tctgcagaatgtcaaaca 

FXR NR1H4 NM_005123 (897)5'tgtcgactaaggaaatgcaaaga3' 
(997)5'tgctgcttcacattttttctca3' 

6FAM-cttgttaactgaaattca 

GCNF NR6A1 NM_033334 
NM_001489 
NM_001489 
NM_033335 

(1279)5'atcgagcggctcatctacct3' 
(1379)5'atatcttgatttaggaagttaattgctttc
3' 

6FAM-agttccatcagctaaag                                 

GR NR3C1 NM_000176 (1280)5'tccctggtcgaacagtttttt3' 
(1357)5'agctggatggaggagagctt3' 

6FAM-ccagcatgagaccagat 

HNF4α NR2A1 NM_000457 (536)5'tgcaggctcaagaaatgctt3' 
(591)5'tcattctggacggcttcctt3' 

6FAM-catgccagcccgga 

HNF4γ NR2A2 NM_004133 (360)5'tgggtgcaagggtttcttc3' 
(426)5'ccgactgaacctgcaagaata3' 

6FAM-cagcattcgtaagagtcaca 

LRH-1 NR5A2 NM_003822 (469)5'cagagaaagcgttgtccttactg3' 
(569)5'ttattccttcctccacgcatt3' 

6FAM-tcggcccttacagcttct  

LXRα NR1H3 NM_005693 5'cccttcagaacccacagagatc3' 
5'gctcgttccccagcatttt3' 

6FAM-ccacaaaagcggaaaa 

LXRβ NR1H2 NM_007121 (1099)5'cgctaagcaagtgcctggtt3' 
(1199)5'gcctggctgtctctagcagc3' 

6FAM-ccctcctgaaggcat 

MR NR3C2 NM_000901 (2775)5'ccaaatcagccttcagttcgt3' 
(2876)5'ttgaggccatcctttggaat3' 

6FAM-ttagtagcagcaaaactttca  

NGFIB3 NR4A1 NM_173158 (139)5'cccttcgtgcggttgtct3' 
(220)5'ggcttggatcacgggcatct3' 

6FAM-cctttttccagggtcaaa 
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Receptor 
Formal 
Name 

mRNA 
Accession # QPCR Primers TaqMan Probe 

NOR1 NR4A3 NM_006981 
NM_173198 
NM_173199 
NM_173200 

(1741)5'aagagacgtcgaaaccgatgt3' 
(1833)5'tttcagactatctgtacggacaacttc3' 

6FAM-taccattccaacactgag  

NURR1 NR4A2 NM_006186 (1625)5'gcccaaagccgaccaa3' 
(1700)5'ggacctgtatgctaatcgaagga3' 

6FAM-ctgctttttgaatcagct 

PNR NR2E3 NM_016346 
NM_014249 

(456)5'tgtgccccgtggacaa3' 
(542)5'cggcgtcctggttcatc3' 

6FAM-acttcttcagccgg  

PPARα NR1C1 NM_005036 (148)5'acgtgcttcctgcttcatagat3' 
(218)5'caccatcgcgaccagatg3' 

6FAM-agctcggcgcacaa 

PPARδ 
 
PPARδ2       

NR1C2 
 
 

NM_006238 
NM_177435 
NM_177435 

5'cagtactgccgcttccagaa3'   
5'ggccatccgaccaaaacg3' 
(128)5’ccaacagatgaagacagatgca3’ 
(197)5’ctgaacgcagatggacctcta3’ 

6FAM-catgtcacacaacgctat 
 
6FAM-tgatgggaaccaccc 

PPARγ 
 
PPARγ2 

NR1C3  NM_005037 
NM_015869 
NM_015869 

5'agatccagtggttgcagattaca3' 
5'ggagatgcaggctccacttt3' 
(163)5’tgacccagaaagcgattcct3’ 
(263)5’caaagttggtgggccagaa3’ 

6FAM-tcaagagtaccaaagtgca 
 
6FAM-tatagcacaccatcccca 

PR NR3C3 NM_000926 (1927)5'tgggagctgtaaggtcttctttaa3' 
(2007)5'acgatgcagtcatttcttcca3'  

6FAM-aagggcagcacaact 

PXR NR1I2 NM_003889 (2984)5'cccagcctgctcataggttc3' 
(3064)5'gggtgtgctgagcattgatg3' 

6FAM-catggctatgctcaccgag 

RARα NR1B1 NM_000964 5'cagcaccagcttccagttagtg3' 
5'ctgctgctctgggtctcaatg3' 

6FAM-tatagcacaccatcccca 

RARβ NR1B2 NM_000965 
NM_016152 

(1390)5’cagctcctgcctttggaaa3’ 
(1489)5’cttttgtcggttcctcaaggt3’ 

6FAM-ttaatctgtggagaccgcca  

RARγ NR1B3 NM_000966 5'ggaacaagaagaagaaagaggtgaa3' 
5'ttggtgatgagctcttctaactga3' 

6FAM-cctgacagctatgagc 

Rev-erbα NR1D1 NM_021724 (2025)5'tgaccaagtcaccctgcttaag3' 
(2083)5'aagcaaagcgcaccatca3' 

6FAM-cacctcaaaggtgccag  

Rev-erbβ NR1D2 NM_005126 (773)5'tcagcaatgtcacttcaaaa3' 
(835)5'ccaaaccgaacagcatctctt3' 

6FAM-acattccaacagacagaca  

RORα NR1F1 NM_134261 5'ctgactgaagatgaaattgcattatt3' 
5'gcagccatgagcgatctg3' 

6FAM-ctgcatttgtactgatgtc 

RORβ NR1F2 NM_006914 (1186)5'ttcaacaatgggcagttagca3' 
(1266)5'ccaaatgggacttaatgatgttct3' 

6FAM-ccatgactgaaatcgaccga 

RORγ NR1F3 NM_005060 (951)5'gcagcgctccaacatcttc3' 
(1031)5'gcacaccgttcccacatct3'  

6FAM-cacatggacttcctctggtag  

RXRα NR2B1 NM_002957 (795)gagcccaagaccgagaccta3' 
(895)agctgtttgtcggctgctt3' 

6FAM-ccagctcgccgaac 

RXRβ NR2B2 NM_021976 (654)5'agcccccagattaactcaaca3' 
(800)5'gattgcacatagccgtttgc3' 

6FAM-atgtgaagccaccagtct 

RXRγ NR2B3 NM_006917 (215)5'gaagtttcccgcaggctatg3' 
(278)5'tgatgggctcatggatgtaga3' 

6FAM-aggctcccctggcc 

SF-1 NR5A1 NM_004959 (386)5'ttctgccgcttccagaaat3' 
(486)5'ttgtacatcggcccaaactt3' 

6FAM-aagccgtgcgcgct 

SHP NR0B2 NM_021969 (529)5'cctgcctgaaagggaccat3' 
(605)5'ctgcaggtgcccaatgtg3' 

6FAM-ccaggcctccaagc 

TLX NR2E1 NM_003269 5'tgatgctaacactctactggctgta3' 
5'cagcttctgggaatctgtgttg3' 

6FAM-cacgttcatgccag  
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Receptor 
Formal 
Name 

mRNA 
Accession # QPCR Primers TaqMan Probe 

TR2 NR2C1 NM_003297 (998)5'gcagaccaacggtgatgttt3' 
(1057)5'ccaggattcaatgcttttgc3'  

6FAM-aagggcatttgacactc 

TR4 NR2C2 NM_003298 (816)5'gatgggcatgaaaatggaatc3' 
(881)5'ggtttctcccgttgcacat3' 

6FAM-cgttcactctgcacag  

TRα NR1A1 NM_003250 (1372)5'cacggaagtggctctgctg3' 
(1472)5'gcaggtacgcctcctgactc3' 

6FAM-taatgtcaacagaccgctc 

TRβ NR1A2 NM_000461 (201)5'tgcgtgggtgccaagt3' 
(264)5'ccttttttcactgacatctccttct3' 

6FAM-ccacacatgatttaatgaat 

VDR NR1I1 NM_000376 (547)5'ccccacctactccgacttct3' 
(605)5'ctccaccatcattcacacgaa3' 

6FAM-ccagttccggcctc 
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CHAPTER EIGHT 
Biostatistics and Bioinformatics 

 

 

 

 

 

8.1 Introduction 

Biostatistics and bioinformatics have become necessary tools to analyze large amount 

of datasets generated by high-throughput technologies such as qRT-PCR and microarray 

experiments. To better understand the high level of complexity of the transcriptional control 

of nuclear receptors or the correlation between nuclear receptors, several statistical tools 

were employed in my research. Although a variety of biostatistics and bioinformatics tools 

are currently available, here I only focus on certain tools used in this thesis. 

 

8.2. Biostatistics 

8.2.1 Pearson Correlations 

The Pearson correlation (r), called a linear or product-moment correlation, is defined 

as ‘the sum of the products of the standard scores of the two measures divided by the degrees 

of freedom’ (Encyclopedia). The standard score (z) is expressed as z= (x-µ)/ σ, with x for 

individual score, µ for population mean, and σ for standard deviation. The degree of freedom 

is n-1, substracting 1 from total number of events (n). Thus, the Pearson correlation 
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coefficient can be rewritten rxy = {Σ(xi- x)(yi-y)}/(n-1)SxSy, where x  and y are means of 

sample xi and yi, Sx and Sy are standard deviations of each sample. Basically this equation 

considers the mean value of each sample and thus termed ‘centered Pearson Correlation’, 

whereas the term ‘uncentered’ is used for cases not including a sample mean value. The 

equation mathematically determines the extent to which values of the two variables are 

‘proportional’ to each other. It ranges from –1 to +1 which represents perfect negative and 

positive linear relationship, respectively, between two sets of variables. Statistical 

significance of the correlation coefficient is determined using P=TDIST(ABS(r/SQRT((1-

r^2)/(n-2))),n-2,2) where r is a Pearson correlation value and n is sample number tested. The 

squared coefficient (r2) is often used for the proportion of common variation in the two 

variables (http://www.statsoft.com/textbook/stbasic.html). When there are more than two 

variables, the correlations for every pair can be put into a matrix, called a correlation matrix as 

in Figure 2.2 and 3.9. While this parametric correlation (Pearson correlation) is based on a 

normal distribution of the samples, non-parametric correlation methods such as Spearman’s ρ 

and Kendall’s τ may be considered for a violation of sample normality, which will not be 

discussed in detail here. Also, Spearman R and Kendall tau assumes that the variables were 

measured on at least rank order scale. However, Spearman R and Kendall tau are usually not 

identical in magnitude because their underlying logic and computational formulas are 

different. More importantly, while Spearman R can be thought of as the regular Pearson 

product-moment correlation coefficient as computed from ranks, Kendall tau rather 

represents a probability. In addition, whereas the observed data are in the same order for the 
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two variables in Spearman R, the Kendall tau reveals the probability that the observed data 

are in different orders for the two variables. 

 

8.2.2 Cox Regression model 

This semi-parametric survival model has been a popularly recognized technique for 

examining the dependence of patient survival on various explanatory variables. Due to the 

benefit of handling multiple covariates or various 3rd confounding factors which potentially 

affect survival rate, basically this model statistically determines the influencing power of the 

individual explanatory variables on the dependent variables, for example, survival rate or 

treatment effectiveness. This modeling-based approach is a combined statistics of logistic 

regression analysis and survival rate, and thus overcomes multiple limitations involving 

inability of handling continuous covariates and requirement of normal distribution in the 

parametric log rank test. In addition to the survival relevance adjusted by multiple covariates, 

the Cox regression model provides a more precise estimate of the treatment effect on survival 

under considerations of several prognostic variables. In this thesis, the Cox regression model 

is used to determine the regression coefficient (or hazard ratio) for each explanatory variable 

on  survival. The mathematical implication of the term ‘regression’ involves literally reverse-

process from the results to the cause, statistically explaining the relationship between the 

dependent variable and the explanatory variable. If an estimated hazard rate ratio (or 

regression coefficient) is greater than 1 (HR ≥ 1), it indicates that the explanatory variable is 

associated with the increased risk for the event of interest (e.g., death). Conversely, the 

hazard ratio less than 1 (HR ≤ 1) represents a decreased hazard for the occurrence of the 
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event, while the ratio of 1 indicates no correlation between the variable and the event. The 

proportional hazard ratio can be obtained from the ratio of two hazard functions, for example, 

the ratio of hazard function of tumor tissue to hazard function of normal tissue in the same 

patient. The hazard function used in this thesis can be rewritten, h(t) = h0(t).exp(βage
.Age + 

βstage
.stage + βgender .gender + βrecurrence .recurrence + βsmoking .smoking + βhistology .histology + 

βNR .NR) where the h0(t) is the baseline hazard function, usually representing the probability 

of death when all explanatory variables are zero. If compared to the hazard ratio of tumor vs. 

normal like this thesis, the baseline hazard function disappeared as shown in HR= ht(t)/hn(t) = 

h0(t)exp(β.xtumor)/h0(t)exp(β.xnormal) = exp(β(xtumor-xnormal)).  

The hazard function represents the probability of the event (e.g., death) occurring for 

the individual patient in a given time interval. Therefore, the probability can be interpreted as 

risk of dying at time t (called ‘hazard ratio’). The underlying assumption of the hazard 

function is a constant relationship, or proportional, between the explanatory variables and the 

dependent variable. Most features are shared between multiple regression and Cox regression 

where is allowed to consider more than one explanatory variable at any given time but not in 

multiple regression mode. The statistical significance is assessed using the chi-square test 

which is a non-parametric test for the bivariate tabular analysis. 

 

8.2.3 Principal Component Analysis 

From the expression profile of the NR superfamily, finding the expression pattern of a 

subset of NRs relative to demographic features in a panel of patient samples is important for 

understanding certain NRs in tumor pathogenesis and thus for further clinical applications. A 
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principal component analysis (PCA) was performed to identify principal component sets of 

NRs highly relevant to patient survival. Here I introduce the basic concept and process of 

PCA using the NR expression profile in tissue samples of lung cancer patients. Considering 

one nuclear receptor in one dimension in the tissue panel, total calculations of different 

covariance values from 50 dimensions reveal 50C2 =50!/((48!)*2) =1225 covariance values 

because individual covariance represents variations from the mean with respect to each other. 

The formula is as follows; 

                           Var(X) =                           / (n-1) 

                                      cov(X,Y) =                         /(n-1) 

, where X and Y may represent any two NRs and n is 30. Then, all covariances were 

reconstituted on matrices, called covariance matrix, using  

Cm x n = (Ci,j, Ci,j = cov(Dimi, Dimj)) which generates a square matrix. Then, the covariance 

matrices, also called transformation matrices, in this specific example become  

            cov (AR, AR)   cov(AR, CAR)  cov(AR, CoupTF I)  ------------ cov(AR, VDR) 
            cov (CAR, AR) cov(CAR, CAR) ----------------------------------- cov(CAR, VDR) 
                    :                                                                                                          : 
 C=              :                                                                                                          : 
                    :                                                                                                          : 
             cov(VDR, AR) cov(VDR, CAR) ---------------------------------- cov(VDR, VDR)   
 

Note that the covariance of the standardized values equals the Pearson correlations, in that it 

provides any increased proportion or decreased relationship between two variables. From 

matrix algebraic calculations, there are 50 pairs of eigenvectors and eigenvalues derived.  

Briefly, the eigenvectors are, literally, a transforming vector directing position of the 

transformation matrix on the coordinate plane when multiplied on the left of the vector.  

∑ 
i=1 

n 
(Xi-X)(Xi-X) 

∑ 
i=1 

n 
(Xi-X)(Yj-Y) 
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Several features of eigenvectors should be mentioned: they 1) are only found for square 

matrices, 2) have the same number of eigenvectors as number of dimensions (for example, 50 

eigenvectors in 50 dimensions because it is 50 x 50 matrix), 3) are all perpendicular to each 

other regardless of how many dimensions there are. Thus, fifty pairs of eigenvalues and 

eigenvectors appeared in this specific study. When eigenvectors are changed to unit vectors, 

which is a necessary step in PCA, it provides 50 different eigenvalues on each 50 unit vector 

as follows; 

  

 

           e1 X               - -  - - - - - - - - - - e27 X                - - - - - - - - - - - - - e50 X 

 

 

where e represents eigenvalue and A1 through A50 represent individual components of 

each unit eigenvector. As mentioned above, it is important to note that the eigenvector with 

the highest eigenvalue represents the principal component dataset which provides the most 

significant relationship between the data and dimensions. In other words, the data point or 

NRs (in this research) in the first PCA is ideally able to make best explanation for the 

distribution of all covariances. In general, this is not case so that the combined group of the 

first several PCAs is generally utilized to explain the covariance distributions. Next, a feature 

vector is generated combining the individual PCAs in the order of significance from highest 

to lowest eigenvalues. Thus, it can be written as Feature Vector = (eig1 eig2 eig3 … eig50) 

where eig represents an eigenvector. In this thesis, the first 4 eigenvalues (e.g. first 4 PCAs) 

A1 
A2 
  : 
  : 
  : 
  : 
  : 
  : 
A49 
A50 

A1 
A2 
  : 
  : 
  : 
  : 
  : 
  : 
A49 
A50 

A1 
A2 
  : 
  : 
  : 
  : 
  : 
  : 
A49 
A50 
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were chosen because the cumulative value is 0.62, meaning 62% of the explanation of all 

features in this lung study are described by these four eigenvalues. Final data will be 

generated by 

Final Data = Row feature vector x row data adjust,  

where the row feature vector is the matrix having the eigenvector components transposed in 

row from column, with the first PCA positioned on top row and second one next row, etc. 

The row data adjust is also transposed, mean-adjusted data that each column stands for each 

data point, thus each row represents a different dimension. 

 

8.3 Bioinformatics 

The complete sequence of the whole human genome, along with genome projects of 

other species, provided important insights of the complexity in genetic regulation. In 

addition, this genetic information further accelerated biomedical and biological research 

along with the development of the microarray or DNA chip initiated in the early 90’s. In fact, 

the DNA microarray revolutionized molecular biology, creating a new paradigm of 

‘functional genomics’, which has been applied to all biological fields, structural genomics, 

proteomics, developmental genomics, and so forth. Functional genomics is attributing to 

understand the huge amount of genetic information generated from whole genomic 

sequencing. In comparison to traditional molecular biology in which a research simply plays 

‘treasure hunting’ or performs ‘whodunit’ analyses, the potential of functional genomics as a 

tool for molecular biology has been attributed to the development of DNA microarray to 

monitor for genetic signatures as a whole for cellular physiological changes. Bioinformatics 
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involves mostly computational biology (in silico biology) on vast amounts of experimental 

data from DNA microarray experiments. Furthermore, the tools are used to efficiently 

organize new databases, where a flood of information is continuously accumulated, and to 

build new tools that provide compatibility with the previous database. Although many useful 

bioinformatics tools are available, here I introduced two tools extensively utilized in this 

thesis.  

 

8.3.1 Microarray 

There are several types of microarray based on the experimental purpose: DNA 

microarray for detection of transcriptional changes, tissue microarray for 

immunohistochemistry with multiple tissues, comparative genomic hybridization (CGH) 

array for detection of chromosomal amplification or deletion. To detect changes in mRNA 

expression, the most widely used types of arrays include cDNA arrays and oligoarrays. The 

basic concepts of both types of arrays are considerably different in several aspects, although 

both pursue detection of differential mRNA expression between samples. First, cDNA arrays 

have various lengths (several tens of nucleotides up to 5000 nucleotides) of probes whereas 

oligoarrays include probes with a fixed nucleotide sequence length, i.e., 25 nucleotides for 

the Affymetrix and 50 nucleotides for the Ilumina array which have been the most widely 

utilized. There are also sample labeling methods differently adopted to these two types of 

arrays. Since the cDNA array employs a method to label two samples with different dyes 

Cy3 and Cy5, it can efficiently compare two different cell lines, for example, without or with 

knock-down of a specific nuclear receptor to understand its transcriptional targets. Although 
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it is useful for direct comparison, different hybridization conditions may cause highly 

variable results, leading to the significantly reduced reproducibility of the data as well as 

incomparability of two independent experiments. However, the oligoarrays such as the 

Affymetrix chip and the Ilumina array adopt a single labeling method using biotinylation due 

to the short length of the probes. This efficiently reduces the weakness of false positive 

signals in the cDNA array caused by the mismatch hybridization. Also, the reproducibility of 

the data is highly improved because of the well-defined protocol which makes independent 

experiments comparable. 

Regarding the Affymetrix array, there are several versions of the chips as shown in Table 8.1. 

There are multiple probesets covering different parts of unique genes. This strategy 

potentially lowers experimental loss of signal but increases signal variations among probesets 

for the gene of interest. In addition, recent BLAST analysis, extensively performed by Dr. 

Luc Girard, revealed that only 63% of the probesets on the affychip match with the Blast 

results without any cross-hybridization. One percent match genes different from Affymetrix-

identified gene and 6% show BLAST genes but no Affymetrix-identified genes. Most 

importantly, 14% of the probes had no BLAST result even though they were identified by 

Affymetrix. To our surprise, 16% were unidentified by both Affymetrix and BLAST. Lastly 

a total of 3% of the probesets including 1% of splice variants can cross-hybridize to other 

genes, potentially leading to false positive signals. Note that the labeling protocols for 

Affymetrix arrays are shown in Figure 8.1. A recent appearance of the Ilumina array 

improved some weakness of the Affymetrix chip discussed above. First, it employs a single 

and longer probeset (~ 50 nucleotides) compared to the Affychip and has about 30 copies of 
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each probe, greatly contributing to lower variations in signals and less background. Second, it 

reduces the experimental cost to one half of the Affymetrix chip per sample.  

In spite of its high-throughput capacity for monitoring genetic signatures on a whole 

genome scale, the microarray is qualitative rather than quantitative. Thus one should employ 

a secondary experiment for quantitative analysis such as a qRT-PCR assay. Moreover, the 

reproducibility also remains to be of concern due to high technical sensitivity of this 

technology. Through this whole thesis, both types of arrays were employed to generate data 

of genetic signatures in lung cell and tissue panels, and were analyzed by biostatistics and 

bioinformatics analysis using the following software.  

 

8.3.2. Matrix and Eisen  

The Matrix software, developed by Dr. Luc Girard, is a multipurpose program 

including various types of templates for analyzing several types of DNA microarrays such as 

CGH, Affymetrix, Ilumina array, and Oligoarray. Each template performs text file formatting 

of individual experiments into manageable datasets with signals (or detection calls) with p-

value, and annotation information including gene name, gene ontology for molecular and 

biological annotations, LocusLink, chromosomal position, etc. In addition, it also includes 

information on the degree of matching of the 11 probe sets for the individual genes from the 

BLAST analysis discussed above. Once the text file is applied to the compatible template 

selected from a pull-down menu, the dataset is normalized and includes all information 

mentioned above. The valid Affymetrix files with the normalization process is denoted with 
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the extension ‘.mtx’, a read only Excel file. Then, a package of bioinformatics tools can be 

utilized according to the various analytic purposes; 

1) Color display  

This analysis converts the numerical signals (values in log2) into the color code in 

a blue  scale for visualization where the darker blues represent the higher 

expression signals, whereas the gray scale corresponds to all absent signals. There 

is a default setting of 0.065 which is the cutoff threshold p-value for defining 

Present call from Absent call. 

2) Log ratio for individual genes between two samples 

     This analysis is the most useful method to find any set of genes, in any preference   

     fold difference (2 fold or more than), differentially expressed between two   

     corresponding samples.  

3) Combine replicate genes 

Due to multiple replicate genes on an array (especially Affymetrix array), one 

frequently wishes to cluster the same genes together with an average value of 

their signals. This tool provides an efficient method for that purpose using the 

UniGene IDs by the gene annotations. The results include a number of replicates 

in ‘No. Accessions’ column, and the correlation value between the replicates 

appeared in ‘Replicate Correlation’ column. The Pearson correlations are 

calculated between two replicates or each replicate and the combined average. 

4) Scatter plot 

      Based on the calculation of log2 ratio between the two samples to be compared,    



159 

 

this analysis plots a point for each gene on the coordinate plane where X and Y  

value indicate the expression value n the two samples compared. Based upon the   

                  described fold difference (e.g., 2-fold or 4-fold), the scattered dots are colored in   

                  red for higher expression genes and green for lower expression genes. In addition,   

                  the corresponding ‘Data’ worksheet is provided with the gene list containing  

                 detailed information including annotations.  

5) Create a subarray with a partial gene list  

This tool is utilized to extract a subset of genes of particular interest and creat a 

new ‘.mtx’ file containing only those genes for further analysis. In this thesis, this 

function was used for creation of NR subarrays from the main Affymetrix dataset 

as in figure 3.2. 

6) Correlations with sample properties 

This feature of bioinformatics is extremely useful to get Pearson correlations 

between any quantifiable sample characteristics and each gene’s expression 

profile. For example, qRT-PCR data of an individual NR is correlated to 

Affymetrix genes in a panel of 48 lung cells as in Figure 2.2. Thus, the Pearson 

correlation matrix is generated between NRs and approximately 30,000 genes. 

Following the sort process, genes with statistical significance are listed with a 

color code, where red and green indicate positive and negative correlation, 

respectively, whereas the dark grey has no correlation. The clustering analysis can 

be accompanied along with the correlations. 
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7) Hierarchical clustering analysis based on Pearson correlation (both centered and 

uncentered).  

    Following the color display, clustering analysis is performed based on the     

   calculation of the Pearson correlation (centered or uncentered) with the formula  

   discussed in section 8.2.2. This function has been most widely used to find a subset   

   of components with any statistical patterning. I have shown multiple clusters of  

   NRs potentially relevant to the specific physiologic regulation (Figure 1.8) as well  

   as the tumorigenic process (Figure 3.9). This provides the best cluster which is  

   believed to be useful to predict functional relevance between NRs within the same  

   cluster or provide an insight to the functional role of the specific NR with unknown  

   function.  

Although it includes distinguished features for bioinformatics analysis on various types of 

microarray data, the Matrix software does not support analysis of datasets that are expressed 

as log ratios of one array compared to another. Thus, next, I briefly introduce the Eisen 

software ‘Cluster’ and ‘TreeView’ available on http://rana.lbl.gov/. As a supplement for the 

Matrix program, the Eisen program includes various types of clustering techniques including 

hierarchical, k-Means, Self-organizing Map (SOM) and PCA. In this thesis, the Pearson 

correlation matrix is generated between any pair of NRs in several panels of samples 

including the lung cell panel, tissue panels, and mouse tissue samples. This matrix consists of 

both negative and positive correlations, which is followed by hierarchical clustering analysis 

using ‘Cluster’. Further application of ‘TreeView’ generates clustering view in various image 

formats -- PDF, JPEG, and Bmp -- with color codes, red for positive correlation and green 
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for negative correlation. Application of both programs is expected to be greatly helpful for 

bioinformatics analysis of the vast amount of data.  
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Table 8.1 Affymetrix CHIP 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Type of CHIP                          No. probesets (No. unique genes)                      Detection 
 
Affymetrix HG-U133A             22,283 probe sets (12,659 unique genes)         78% mRNA, 22% EST 
 
Affymetrix HG-U133B             22,645 probe sets (9,147 unique genes)           20% mRNA, 80% EST 
 
Affymetrix HG-U133A             44,928 probe sets (18,281 unique genes)         48% mRNA, 52% EST 
    and HG-U133B     
 
Affymetrix HG-U133-Plus2     54,675 probe sets (21,627 unique genes)          54% mRNA, 46% EST 
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Figure 8.1 Labeling Protocol Affymetrix Chip. 
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