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 Viruses from several distinct families can infect the central nervous system (CNS), but 

mechanisms and host factors that influence dissemination are not completely understood. I previously 

identified barriers that limit poliovirus and yellow fever virus 17D (YFV-17D) dissemination following 

peripheral injection of mice. To investigate how different viruses disseminate from peripheral tissue to the 

CNS, I intramuscularly injected mice with genetically marked pools of viruses and monitored 

dissemination along the sciatic nerve to the spinal cord and brain. Transport efficiency of each virus was 

compared in immune competent and immune deficient mice in the presence or absence of muscle 

damage, which was previously shown to enhance retrograde axonal transport of poliovirus in the sciatic 

nerve. I found that immune deficiency enhanced poliovirus and YFV-17D transport to the CNS. While 
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muscle damage dramatically enhanced poliovirus dissemination it did not enhance YFV-17D 

dissemination, likely because YFV-17D entered the CNS through the blood. Like poliovirus, reovirus 

type 3 Dearing strain is transported through peripheral nerves to the CNS. Using genetically marked 

reoviruses, I found that young age and immune deficiency, but not muscle damage, enhanced reovirus 

transport to the CNS from peripheral tissues. Overall, my data suggest that these three viruses access the 

CNS through different routes and with different efficiencies. 

 Though muscle damage enhances neuronal poliovirus dissemination, the mechanisms that 

regulate this are unclear. I tested dissemination of the marked viruses following intramuscular injection in 

the presence or absence of potential regulatory factors. Several growth factors, including brain-derived 

neurotrophic factor, were previously shown to enhance retrograde axonal transport. In conjunction with 

poliovirus injection, brain-derived neurotrophic factor or other growth factors were not observed to 

enhance viral dissemination. Microarray analysis of muscle samples was performed to compare host gene 

expression in damaged and non-damaged tissue. Several host transcripts had elevated transcript levels in 

damaged muscles, including tissue inhibitor of metalloproteinase-1 (TIMP-1) and monocyte 

chemoattractant protein-1 (MCP-1). The targets of TIMP regulation, matrix metalloproteinases (MMPs), 

were previously shown to stimulate retrograde axonal transport following damage to peripheral tissues. 

MCP-1 has also been suggested to enhance viral dissemination. Altering MCP-1 or MMP levels during 

poliovirus infection revealed no direct impact on poliovirus dissemination. Though mechanisms 

regulating viral dissemination following muscle damage remain unclear, the path is open for exploration. 
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CHAPTER 1: Literature Review 

Nervous System and Viral Transport 

 The nervous system is divided into two subsections: the central nervous system (CNS) includes 

the spinal cord and brain, while the peripheral nervous system includes the nerves which stem from the 

CNS to communicate with other tissues in the body. Viruses capable of entering the CNS are called 

neurotropic viruses, and viruses capable of infecting cells of the CNS are considered neurovirulent [113]. 

 The nervous system is a complex network of individual cells that stretch over long distances from 

peripheral tissue sites to the spinal cord or brain. Both exogenous cargoes like viruses and endogenous 

cargoes can reach the CNS through two different pathways [113]. The first is by crossing the blood-brain 

barrier directly. The blood-brain barrier is a layer of endothelial cells lining the brain vasculature system, 

which are permeable only to specific small molecules. Some cell types are able to cross the barrier under 

specific conditions, such as T-cells following viral infection. Viruses such as HIV-1 also seem to be 

capable of crossing the blood-brain barrier, but the mechanism by which HIV-1 crosses is unclear. The 

second pathway is through peripheral nerves. Cargo is constantly moving in both the anterograde (away 

from the CNS) and retrograde (toward the CNS) directions. The kinesin motor protein is responsible for 

anterograde transport and the dynein motor facilitates retrograde transport [15,56,181,188,198]. 

Typically, these transport systems are used to signal changes to the nerve and its surrounding tissue, as 

well as to provide new proteins or other molecules [3,15,50,60,135,181,188]. Exogenous cargoes, such as 

wheat germ agglutinin, can be injected at peripheral sites and tracked as they move retrograde toward the 

CNS [117]. Viruses appear to use host peripheral nerve transport systems as well, as intramuscularly-

injected poliovirus can be detected in peripheral nerves prior to completion of the first round of viral 

replication [116,117]. 

 Viral invasion of the CNS can yield a variety of symptoms, from fever and encephalitis to acute 

paralysis and death. Once in the CNS, most viruses are able to replicate within the spinal cord, brain, or
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both [113,188]. In most human cases, CNS infection is a dead end for the virus, as the host will not 

transmit the virus. Fortunately for humans, the probability of neurological symptoms resulting from viral 

infection of the CNS is low for most viruses. For poliovirus, only about 1% of known infections result in 

paralytic disease. It is not known whether viral entry always guarantees neurological symptoms or 

infection of neurons, because I only measure cases where symptoms were observed. 

 Endogenous cargo is moved through peripheral nerves within different clusters of molecules 

associated with the molecular motor. In some cases, both motors are associated with an endosome or 

multivesicular body (MVB), but one motor dominates transport [130,188,198,231]. Neuronal transport is 

regulated by a number of factors, including neuron-produced factors and tissue-produced factors 

[22,55,60,91,135,153,181,186,197]. Though much is known regarding the regulation of host transport 

pathways, less is understood about how neurotropic viruses associate with the host transport system to be 

transported through the peripheral nerves and into the CNS. 

 To observe how viruses are transported through the nervous system, animal models are used. To 

target the nervous system directly, viruses can be inoculated through different routes to study (or bypass) 

different barriers to the virus [113]. Intracranial inoculation bypasses host barriers including the blood-

brain barrier, intravenous inoculation can be used to study how a virus surmounts the blood-brain barrier 

to reach the CNS, and intramuscular inoculation helps study how the virus enters and is transported 

through peripheral nerves to the CNS. Since peripheral nerves extend to enervate tissues throughout the 

body, they are often very fine and difficult to excise, so it is important to choose an appropriate target. 

The sciatic nerve runs from the foot to the gastrocnemius muscle to the spinal cord, as a bundle of 

continuous neurons that do not synapse until reaching the spinal cord. 

Poliovirus 

 Poliovirus is a human virus, transmitted by the fecal-oral route. It mostly likely infects and 

replicates initially in microfold cells in the gut as the first step of infection. Most poliovirus infections in 

humans are thought to be asymptomatic or cause mild flu-like symptoms. The best-known symptom of 
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infection, paralytic poliomyelitis, only presents in about 1% of naturally infected patients. The hallmark 

lower limb paralysis is the result of infection of and subsequent damage to the motor neurons in the 

ventral horn of the spinal cord [112,185,237]. It is unclear why poliovirus, following primary infection in 

the intestines, typically infects and damages these motor neurons, rather than other possible sites. Though 

many patients were able to recover at least partial function in the affected limb(s), the paralysis carries a 

lifelong impact and symptoms such as paralysis can re-emerge later in life as post-polio syndrome 

[51,73]. 

 While poliovirus has a small chance of causing paralysis on its own, there are cases of enhanced 

paralytic poliomyelitis as a by-product of other causes. Independent studies in India, Czechoslovakia, 

Cameroon, and England revealed that damage to muscle tissue by injection of antibiotics or other 

treatments within 30 days of a poliovirus infection increased the incidence of paralysis in the injected 

limb [4,23,24,88,92,208,238]. In order to understand this effect, Gromeier and Wimmer tested the effect 

of intentional muscle damage in a mouse model. They found that mice that received muscle damage by 

needle sticks at the site of inoculation showed decreased survival and increased tissue titers relative to 

control infected mice [86]. This suggested that a component of the damage or inflammatory response 

altered the ability of poliovirus to access the nervous system, impeded the host’s ability to respond to 

infection, or both. It is unclear whether this enhancement extends to other viruses. 

 The first poliovirus vaccine was an injectable inactivated virus developed by Jonas Salk in the 

1950s, and the second vaccine, an oral vaccine developed by Albert Sabin using attenuated virus, was 

released two years later [142,174,189-192]. These two vaccines were responsible for the almost complete 

eradication of the virus that I see today, where poliovirus remains endemic in only one country [6]. There 

are three serologically-distinct strains of poliovirus, termed types 1, 2, and 3. Though global eradication 

of type 2 was reported in the past, the strain re-emerged as a vaccine-derived variant due to poor 

vaccination coverage [98]. Type 1 is the predominantly circulating strain, while type 3 circulates at a 

much lower level and is on a faster path to eradication. The Sabin attenuated strain for poliovirus 1 differs 
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from the wild type strain by 57 nucleotide mutations, with the predominant attenuation from reduced 

translation of viral mRNA in host cells [142]. The Sabin strain is also extremely inefficient at infecting 

nervous system tissues, but cases of vaccine-associated paralytic poliomyelitis (VAPP) have occurred. In 

rare cases, the virus reverts from attenuation and is able to infect the nervous system, causing symptoms 

indistinguishable from those of the wild virus [30,71,168,169,173]. Though the exact cause of VAPP is 

unclear, it is likely due to reversion of specific mutations that restore replicative fitness to the virus. 

 Poliovirus is a non-enveloped virus with a positive-sense, single-stranded RNA genome of 7.5 kb. 

It is  member of the Picornaviridae family. At the start of infection, poliovirus enters via receptor-

mediated endocytosis through CD155, the poliovirus receptor (PVR) [140]. After entry into the endosome 

the genetic material is released into the cytoplasm. Initially, the genome is translated by host ribosomes to 

produce a viral polyprotein [101,162]. The polyprotein undergoes autolytic cleavage to generate the 

structural and nonstructural proteins. The virally-encoded RNA-dependent RNA polymerase (RdRp) 

copies the positive sense segments into negative sense intermediates, which are then copied into nascent 

positive-sense genomes. Self-assembly of the structural capsid porteins occur on the nascent genomes and 

depends on genome synthesis [143,144]. 

 Entry into peripheral neurons is PVR-dependent [116,117,159,161,178], though some work 

suggests that there may be a PVR-independent route to the brain [160]. It is unknown exactly what 

complex poliovirus is associated with after entry, but it is known that PVR is required for poliovirus 

retrograde axonal transport through the neuron. The cytoplasmic portion of PVR facilitates transport by 

associating with part of the dynein motor protein light chain called Tctex1 [150]. Tctex1 is responsible for 

binding cargo to dynein [41]. Without this association, retrograde neuronal transport pathways do not 

appear to carry poliovirus from peripheral muscle into the spinal cord [150]. It is expected that poliovirus 

is associated with the extracellular domain of PVR, but what membrane PVR is in and what other 

components might be associated with the poliovirus/PVR/dynein complex are unclear. 
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 Since poliovirus is specific to humans (e.g. only humans are naturally susceptible and 

permissive to the virus), transgenic mice expressing human PVR must be used to study the virus in vivo. 

These mice show normal survival and reproduction [48,108,179]. Transgenic mice also show similar 

hPVR expression patterns to humans. They are susceptible to poliovirus infection by the IM and IC 

routes, but not by poliovirus’s natural oral route of infection [48,108,179]. In addition to expressing 

hPVR, oral susceptibility requires ablation of the type I IFN response. For this, type I IFN α/β receptor 

knockout mice (IFNAR-/-) have been generated [94,158]. Mice injected IM display classical signs of 

paralytic poliomyelitis, with paralysis starting at the infected limb before spreading bilaterally. In 

contrast, orally infected mice develop encephalitis. 

 While viruses may encounter barriers en route to the CNS, the barriers may be difficult to detect. 

If a virus is capable of efficient replication both before and after a barrier, then the barrier will be masked 

when quantifying titer alone. To overcome this, the lab developed the viral diversity assay in which mice 

are infected with a pool of viruses with silent mutations and the number of viruses present at a given 

tissue is measured with specific, complementary probes. These viruses have similar fitness both in vitro 

and in vivo, such that no single pool member is found more often following in vitro serial passage or in a 

particular mouse tissue than the others. If the pool of viruses encounters a barrier but still replicates 

efficiently afterwards, I will still observe the barrier by low diversity (low number of pool member 

viruses present) [116,117]. 

 Using the poliovirus diversity assay, the lab uncovered bottlenecks to viral dissemination in the 

host based on inoculation route. Initially, I observed a major barrier following oral inoculation between 

the gut and the nervous system. This barrier was partially reduced in IFNAR-/- mice, suggesting that the 

type I IFN response was part of the challenge [116]. Further study revealed that, following IM injection, 

the major barrier to poliovirus dissemination was between the muscle inoculation site and spinal cord, 

suggesting that viral transport along the peripheral nerves was inefficient, Again, IFNAR-/- mice showed 

somewhat enhanced viral load and pathogenesis, but the loss of the innate immune response was not the 
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only factor [117]. Retrograde axonal transport is inefficient, but can be enhanced by stimulating 

transport with muscle damage at the inoculation site [86,117]. Enhanced poliovirus titer and diversity was 

observed in response to muscle damage in both IFNAR+/+ and IFNAR-/- mice, suggesting that the 

enhancement is independent of the type I IFN response [116,117]. 

YFV-17D 

 Yellow fever virus (YFV) is disseminated to humans through the bite of an arthropod host, most 

commonly the mosquito Aedes egypti [85,102]. YFV is maintained in nature in an enzootic cycle, passing 

back and forth between mosquitoes and non-human primates [14,76]. In fact, viral adaptation to passage 

through different hosts is important to perpetuation of the virus, as YFV clones selected for increased 

virulence in mosquitoes will show decreased virulence in rodents [43,69,96]. Human epidemics arise in 

urbanized and domesticated areas that have seen rapid population growth without a concurrent increase in 

mosquito control [76]. Even in epidemics, YFV is transmitted between humans by the bite of A. egypti, 

not through direct human-to-human spread [76,85,102]. 

 Though infection of arthropods fails to manifest signs of disease, human infections range from 

asymptomatic to flu-like symptoms and peak viremia within 3-6 days post infection. Approximately 20% 

of humans infected will suffer worsening symptoms, including inflammation of the liver, kidneys, and 

heart, as well as the hallmark jaundice [54,76,103,104,125,147]. YFV infection progresses to 

hemorrhagic fever in about 15% of infections, killing up to half of those patients [146]. Those that survive 

more aggressive symptoms face months of recovery after clearance of the virus. YFV is also 

neuroinvasive and neurovirulent, and in rare cases causes encephalitis [147]. YFV accesses the central 

nervous system predominantly through the hematogenous route, where increased viremia corresponds to 

earlier viral entry into the brain and enhanced viral loads in the brain [58,141,196]. Though the specific 

neuronal cell target of YFV remains unclear, its neuroinvasive ability maps to the viral envelope (E) 

protein. Enhanced neuroinvasion of YFV is likely due to enhanced binding to and/or penetration of the 

host cell [19,20,34,137,155,156]. 
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 An effective vaccine was developed in the 1930s and successfully triggers long-term protective 

immunity[76,170,172,215]. The vaccine is a live-attenuated strain called YFV-17D and encodes a series 

of mutations that yield a substantial reduction in both neurotopic and viscerotropic disease, such that the 

most common reported side effects are mild fever and pain [145,207,214]. Rare incidences of vaccine-

associated neurological disease and viscerotropic disease do occur, with age (very young or old) being a 

risk factor [99,124,207]. In both cases, the symptoms are similar to those of a natural infection; no 

particular mutations in YFV-17D that correlate with these adverse events have been identified [13]. 

 YFV is a member of the Flaviviridae family; the enveloped virus contains a positive-sense RNA 

genome of 10.9 kilobases with a 5’ cap but no 3’ polyadenylated tail [75,202,236]. Though detailed 

information about YFV replication has not been determined, investigation of related viruses such as West 

Nile virus (WNV), Dengue virus (DENV), and Japenese Encephalitis virus (JEV) provide information 

about the YFV replication cycle. Prior to replication, YFV binding to the host cell is mediated by the viral 

E protein [2,40,180,241] and aided by the presence of host cell sulfated glycosaminoglycans 

[32,38,79,115]. The virus is internalized by clathrin-mediated endocytosis [1,40,46,114,220]. Endocytosis 

is likely receptor-dependent but no receptors have yet been identified. In fact, YFV is capable of infecting 

and replicating in a broad variety of cell lines in vitro, as well as a variety of cell types in vivo [9,194]. 

Following entry, fusion of the viral envelope to the endosomal membrane [220] is triggered either by 

acidification of the endosome [1,39,81,114,220] or availability of anionic lipids in the late endosome 

[46,82,240]. The nucleocapsid then uncoats, releasing the viral genome into the cytoplasm [111]. The 

viral genome is immediately available for translation by the host machinery, encoding a single open 

reading frame that is cleaved into individual proteins by both host peptidases and viral proteases 

[35,134,154]. Nascent genomes are transcribed by the virally-encoded RNA-dependent RNA polymerase, 

NS5 [53,87,211], and are thought to serve as a scaffold for capsid protein assembly [235]. This complex 

is transported to the endoplasmic reticulum, where E and precursor membrane (prM) proteins assemble 

the viral envelope [95,127,129,227,235]. Virions begin maturation as they are transported along the 
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secretory pathway for release at the cell surface [129]. Proteolytic cleavage of prM to M by the host 

protease furin occurs immediately before release and is required to convey infectivity to the new virus 

[63,90,126,129]. 

 In vivo study of YFV and YFV-17D is limited by rodent susceptibility to infection and the 

resulting difficulty with modeling both viscerotropic and encephalitic disease states [146]. In fact, adult 

immune-competent mice are completely resistant to infection through intraperitoneal, intramuscular, or 

subcutaneous inoculation with either virus strain [64,65,139]. Clinical signs similar to human encephalitis 

disease can be studied using several different methods: by intraperitonial, intracranial, or intravenous 

infections of immune-competent infant mice [67,242], by infecting immune-competent mice with mouse-

adapted YFV strains [12,66,67,147,196], by inoculation of immune-competent mice intracranially or by 

the olfactory bulb [67,70,83,199,200,213], or by intramuscular or intraperitonial inoculation of immune-

deficient mice [64,65]. 

 Viscerotropic disease with non-adapted YFV has been more difficult to model. It was recently 

reported that subcutaneous inoculation of immune-deficient mice induced a non-fatal viscerotropic 

disease [139], but neurotropic disease was not observed in these mice. Interestingly, young immune-

deficient mice inoculated either IP or IM display one of three distinct phenotypes: no clinical signs of 

disease, fatal viscerotropic disease, or fatal neurotropic disease [65]. The range of phenotypes more 

closely imitates disease outcomes observed following human infections. Though viscerotropic disease 

was more prominent following IP inoculation than IM, viral loads in peripheral and nervous system 

tissues were not significantly different based on inoculation route or viscerotropic vs. neurotropic disease 

outcome [65]. Mice in which no clinical signs were observed lacked also viral dissemination from the 

inoculation side in most tissues. The exception is the brain, where viral load was detected to similar levels 

in both IP and IM inoculated mice, but still at significantly lower levels than mice displaying clinical 

signs of disease [65]. This suggests that immune deficiency may be sufficient to permit YFV-17D 

replication in the brain, but that the level of replication alone is insufficient to cause disease. 
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 In additional to developing suitable in vivo models for YFV infection, the molecular biology 

and dissemination patterns of several other related flaviruses have been studied in depth in rodents. West 

Nile virus (WNV), Japanese Encephalitis virus (JEV), and Dengue virus (DENV) are closely related to 

YFV. Several different routes are available to these viruses to reach the brain. Peripheral tissue infection 

induces inflammation and damage response signals, which can cause a weakening of the blood-brain 

barrier through cytokine-dependent increases in permeability of endothelial cells [128,229] or the 

production of other molecules such as MMPs, which are responsible for degrading cells in preparation for 

replacement [37,106,222,228]. Damage to the blood-brain barrier permits the virus to cross into the brain. 

Similar to poliovirus, WNV is capable of entering peripheral nerves and undergoing retrograde transport 

to access the spinal cord and brain [28,93,148,152,157,175,195,226]. However, YFV CNS invasion is 

comparatively understudied. 

Reovirus 

Mammalian orthoreoviruses (reo stands for respiratory enteric orphan viruses, hereafter called 

reoviruses) are transmitted through the fecal-oral route. They are nonenveloped viruses with a segmented 

double-stranded RNA genome of 23.5 kbp from the Reoviridae family and the spinareovirinae subfamily.  

Disease occurs primarily in children, where infection of the respiratory and intestinal tracts typically 

yields minimal associated symptoms. By ten years of age, about 50% of children in urban areas are 

seropositive for reovirus [123,210] suggesting that infection is widespread. In rare instances, reovirus is 

capable of entering the CNS in humans. 

Individual reovirus strains differ in their dissemination patterns and receptor specificities 

[18,232,233]. In mice, strain type 1 Lang (T1L) disseminates to the CNS primarily through a 

hematogenous route, while strain type 3 Dearing (T3D) disseminates to the CNS through neural or 

hematogenous routes [7,25,149,217]. Reovirus uses the viral protein σ1 to attach to cell-surface glycans 

and enter via receptor-mediated endocytosis through junctional adhesion molecule-A (JAMA) 

[16,31,36,68,121,131,177]. Glycan attachment promotes reovirus entry, but is not necessary for infection 
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[17]. T3D infects neurons using the Nogo receptor NgR1 [72,110], although glycan interactions are 

also important for viral attachment [77,78,163]. Endocytosis is likely clathrin-dependent 

[26,27,176,184,209], but instances of caveolin-dependent endocytosis have been observed [119,171]. 

Following entry, the outer capsid proteins are cleaved by host proteases [8,57,209] and the genomic 

dsRNA segments are transcribed within the viral core [203]. The 10 dsRNA segments yield 10 full-length 

mRNA segments, which are translated into 12 viral proteins. Single-stranded positive-sense RNA 

segments are sorted to developing viral cores, where minus-strand synthesis occurs to produce nascent 

dsRNA genomes [203]. Though the mechanism of reovirus release from host cells is not clear, many 

reovirus strains can induce apoptosis in vitro in immortalized cells and primary neuron culture 

[42,45,182,193,218], but apoptotic release does not seem to correlate with enhanced viral yield [183]. 

When reovirus T3D is inoculated into the hind limb muscle of newborn mice, the virus spreads to 

the CNS by trafficking through the sciatic nerve to the spinal cord. Sciatic nerve transection inhibits T3D 

dissemination from the hind limb muscle to the spinal cord [25,217]. However, sciatic nerve transection 

delays, but does not prevent, T3D spread to the brain following intramuscular inoculation, highlighting 

the importance of hematogenous spread following this inoculation route [25]. NgR1 is a GPI-anchored 

protein that is unlikely to interact directly with dynein [187], but dynein is required for reovirus entry and 

endocytic transport in non-neuronal cells [132]. An inhibitor of fast retrograde axonal transport inhibits 

T3D dissemination to the CNS in mice [217], suggesting that dynein-mediated fast retrograde axonal 

transport is involved in reovirus transport in neurons. The age-dependent barrier to reovirus CNS entry is 

also recapitulated in mice, as reovirus disseminates to the brain of young but not adult mice following 

intramuscular inoculation [133,212]. This barrier could be the result of receptor availability in young 

mice. Further study of the mechanisms regulating neuronal dissemination of reovirus T3D is required to 

clarify this complex system.
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CHAPTER 2: Materials and Methods 

Plasmid construction  

 The plasmids used to prepare the nine genetically marked reovirus strains were engineered using 

site-directed mutagenesis of the M1 gene segment of the reovirus T3D M1 cDNA plasmid beginning with 

nucleotide 426 and ending at nucleotide 444 (see Chap. 3, Fig. 5A). PCR products were subcloned using 

Bgl II and Mfe I restriction sites. Fidelity of mutagenesis for each PCR-generated region was confirmed 

by sequencing (Sequencing Core, UT Southwestern Medical Center, Dallas, TX). The 10 poliovirus 

plasmids and six YFV-17D plasmids have been described [64,116,165]. 

Viruses and cells 

 L929 cells (reovirus) and BHK cells (YFV-17D) were propagated in Dulbecco’s modified 

Eagle’s medium (DMEM) with 5% fetal bovine serum, and HeLa cells (poliovirus) were propagated in 

DMEM with 10% calf serum. Reovirus plaque assays were performed as described using 6 x 105 L929 

cells seeded into wells of 6-well plates. Monolayers were stained with neutral red at 6 d post-infection, 

and plaques were counted at 7 d post-infection [224]. Poliovirus plaque assays were performed as 

described using 106 HeLa cells seeded into wells of 6-well plates. Monolayers were stained with crystal 

violet at 2 d post-infection [165]. YFV-17D plaque assays were performed as described using 106 BHK 

cells seeded into wells of 6-well plates. Monolayers were stained with crystal violet at 5 d post-infection 

[64]. For co-infection experiments with poliovirus and reovirus, I could discriminate reovirus plaques 

from poliovirus plaques because L929 cells do not support poliovirus replication due to the absence of 

PVR. 

 Reoviruses harboring the nine different mutated M1 genome segments were recovered by 

plasmid-based rescue [105]. Monolayers of BHK-T7 cells at 90% confluency (∼3 × 106 cells) seeded in 

60-mm dishes (Costar; Corning Inc., Corning, NY) were co-transfected with 10 plasmids representing the 

cloned reovirus T3D genome using 3 µl of TransIT-LT1 transfection reagent (Mirus Bio LLC; Madison, 
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WI) per µg of plasmid DNA. Following 72 h of incubation, recombinant viruses were isolated from 

transfected cells by plaque purification using monolayers of L929 cells. [224]. High-titer reovirus stocks 

were prepared by large-scale infections and purification by cesium chloride gradient centrifugation [74]. 

 The relative fitness of the nine genetically marked reoviruses was evaluated by a serial passage 

competition experiment [64,116]. Each of the nine viruses at a dose of 106 PFU was mixed together and 

adsorbed to 106 L929 cells. After 24 h of incubation, infected cells were collected, and 25% of the 

harvested cells were plated on a fresh monolayer of 106 L929 cells to initiate further replication cycles. 

This process was repeated for a total of 7 passages, and the relative ratios of each virus in each passage 

were quantified by hybridization assay as described below. Pool member fitness was assessed in vivo by 

calculating the number of times each pool member was detected relative to the total possible number of 

times that the pool member could have been detected. Pool member totals were from all reovirus mouse 

experiments, with the exception of any experiments where all nine pool members were detected in all 

possible tissues. 

 Poliovirus growth curves were performed on HeLa cells to determine whether brain derived 

neurotrophic factor (BDNF) altered viral growth rate in vitro. Briefly, HeLa cells were infected with 

poliovirus as described at an MOI of 0.1 or 10. Inoculation solution contained either PBS alone or 25 ng 

BDNF. Cells were harvested in PBS at 2, 4, 6, or 8 hours post infection. Cells were freeze-thawed three 

times and centrifuged to separate virus-containing supernatant. Viral titers were quantified by plaque 

assay. 

Mouse experiments 

 All animals were handled in strict accordance with good animal practice as defined by the Guide 

for the Care and Use of Laboratory Animals of the National Institutes of Health. All mouse studies were 

performed at the University of Texas Southwestern Medical Center (Animal Welfare Assurance no. 

A3472-01) using protocols approved by the UT Southwestern Institutional Animal Care and Use 

Committee (IACUC). All studies were performed in a manner designed to minimize pain and suffering, 
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and any animals that exhibited severe disease signs were euthanized immediately in accordance with 

IACUC-approved endpoints. 

 C57BL/6 hPVR-Tg21 mice (called IFNAR+/+ throughout) and C57BL/6 hPVR-Tg21 mice 

lacking the IFN-α/β receptor (called IFNAR-/- throughout) were provided by S. Koike (Tokyo, Japan) 

[94,107]. Although PVR expression is required only for poliovirus infection, I used the PVR-transgenic 

mice for all viruses in this study to allow direct comparisons to be made using isogenic strains. 

 For studies comparing the neuronal dissemination patterns of poliovirus, YFV-17D, and reovirus, 

I mixed equal PFU of each pool member for a total of 107 PFU/mouse in 30 µL for adult 6-8 week-old 

mice mice or 10 µL for 3-day-old mice and inoculated the mixture into the lower left gastrocnemius 

muscle [116,117]. For YFV-17D infection of 3-day-old mice, the inoculum was 104 PFU due to low virus 

concentration and the small 10 µL inoculum. Unless otherwise stated, all muscle damage is needle sticks 

damage, which was induced in adult mice by inserting a 29-gauge needle 5 times once daily into the 

muscle around the inoculation site (Chap 3, Fig. 1). Muscle damage was not induced in 3-day old mice 

due to their small size. For one set of experiments, sterile crush damage was tested. This is separately 

denoted, and was performed by crushing the lower quadriceps with clean forceps four times at 15 seconds 

per crush, with 30-45 seconds of rest between each crush. Mice were euthanized at a predetermined 

endpoint or at the onset of clinical signs, whichever occurred earliest. 

 For studies investigating the potential effect of exogenous growth factors upon neuronal 

poliovirus dissemination, 6-10 week old immune-competent mice were intramuscularly inoculated with 

equal PFU of each pool member for a total of 3x104 or 1x105 PFU poliovirus for survival studies, or 1x106 

or 2x107 PFU poliovirus for studies in which mice were euthanized prior to clinical signs of disease to 

monitor tissue titer and viral diversity. Control mice received poliovirus alone or poliovirus mixed with 

50 µg BSA to control for the presence of exogenous protein, while experimental mice received 50 µg of 

either BDNF (Invitrogen), glial cell line derived neurotophic factor (GDNF, Invitrogen), glycogen 

synthase kinase (GSK, Santa Cruz), nerve growth factor (NGF, Invitrogen), or ciliary neurotrophic factor 
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(CNTF, Invitrogen) intramuscularly concurrently with the poliovirus inoculation. As a control, growth 

factors mixed with with 5 µg wheat germ agglutinin (Sigma-Aldrich) were injected intramuscularly to 

measure trafficking in neurons independent of viral infection. Muscle damage was performed as described 

above, using a 29-gauge needle inserted five times at the inoculation site. Mice were euthanized 

according to IACUC-approved methods at pre-determined endpoints or at the onset of clinical signs, 

whichever occurred earliest. 

 RNA for microarray was isolated following the same method of muscle damage as described 

above, by needle sticks five times per mouse with a 29-gauge needle once per day over three days. 

Muscle damage and control mice were given a mock injection of 30 µL PBS on the second day. Muscle 

tissue was collected on the fourth day, emulating a 48 hour post infection time point. Following 

dissection, each tissue was immediately flash-frozen and stored at -80ºC until processing. 

 To understand whether TIMP1 and MMPs may be regulating enhanced neuronal poliovirus 

dissemination in response to muscle damage, 6-8 week-old immune-competent mice were injected 

intraperitoneally once per day for four days with pan-MMP inhibitor GM6001 (Sigma-Aldrich) in DMSO 

at 0.5 mg/mouse/day and concurrently given muscle damage by needle sticks as described above. On the 

second day, mice were intramuscularly inoculated with equal PFU of each poliovirus pool member, for a 

total of 107 PFU per mouse. Control mice were treated with vehicle with or without muscle damage and 

the same poliovirus inoculation. Tissues were harvested at three days post-infection. 

 Macrophage chemoattractant protein-1 (MCP-1) was also tested for a possible role in stimulating 

retrograde axonal transport to enhance neuronal poliovirus dissemination. 6-8 week-old immune 

competent mice were injected intramuscularly once per day for two days (one day before and the day of 

viral inoculation) or for four days with PBS alone or 0.5 µg MCP-1 (BioLegend) in PBS. Mice were 

inoculated on the second day of MCP-1 injections with 105 or 107 PFU diversity poliovirus. Tissues were 

harvested at three days post-infection. 
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Tissue harvest, processing and viral diversity assays 

 Several tissues (muscle, sciatic nerve, spinal cord, brain, blood) were collected as described 

[64,117]. Adult mice infected with YFV-17D were perfused with PBS prior to tissue collection due to 

moderate viral titers in blood. Perfusion was not performed in poliovirus- or reovirus-infected mice due to 

negligible viral titers in blood. Tissues were isolated and processed as follows, including those from mice 

injected with virus in conjunction with exogenous growth factors, GM6001, or MCP-1. In experiments 

using adult mice, the sciatic nerve was sectioned into lower, middle, and upper segments [117]. The upper 

sciatic nerve segment included both the dorsal root ganglia and the motor nerves. The spinal cord was 

collected as the whole spine from the lumbar vertebrae (L5-L6) to the middle of the cervical vertebrae 

(C4-C5). Tissues were weighed and suspended in 1-3 volumes of PBS and homogenized with a Bullet 

Blender (Next Advance, Inc, Averill Park, NY) according to the manufacturer’s instructions. Tissues 

from YFV-17D or reovirus-infected mice were frozen and thawed once prior to homogenization, whereas 

poliovirus-infected tissues were frozen and thawed three times after homogenization. All samples were 

centrifuged at 13,000 rpm for 1 min to isolate virus-containing supernatant. 

 Virus titers in supernatants were quantified by plaque assay and amplified prior to the viral 

population diversity assay to aid in detection of pool members. Poliovirus was amplified in HeLa cells 

until cytopathic effects were apparent (6-48 h, depending on the tissue). YFV-17D was amplified for 48 h 

in BHK cells [64]. Reovirus was amplified following a 1:10 dilution of supernatant and plated on L929 

cells. Cells were incubated at 37°C for 12 h to 5 d, depending upon tissue titer, and monitored regularly 

for cytopathic effects. In all cases, cells were collected in 1 mL TRI Reagent, and RNA was extracted as 

described [116,117]. RT-PCR of poliovirus and YFV-17D samples was performed as described [64,116]. 

RT-PCR of reovirus samples was performed as described [116,166] with a few modifications to facilitate 

amplification of reovirus dsRNA. Total cellular RNA, the REO M1 614 antisense primer 5’ 

TAGAGTGAGGAACACGACC 3’, and all reaction components except for SSII reverse transcriptase 

were incubated at 100°C for 20 min to separate dsRNA, allowed to cool slowly to 42°C, and then 
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incubated with SSII reverse transcriptase at 42°C for 1 h. PCR reactions were performed as described 

[116], but with the M1 297 sense primer 5’ CGGACAACGTTGATCGTCG 3’ and the M1 542 antisense 

primer 5’ CGCATAGTACTTTCTAGGAGC 3’. Blotting and hybridization were performed as described 

[116] but with reovirus-specific probes. The reovirus probe sequences are the reverse complement of 

sequences shown in Fig. 5A, but with an extra T on the 5’ end of each. Reovirus probes were radiolabeled 

using T4 polynucleotide kinase and [γ-32P] ATP, and excess nucleotides were removed with the Qiagen 

Nucleotide Removal Kit (Qiagen, Valencia, CA). Hybridization was performed at 56°C overnight, 

followed by washing. Membranes were exposed to a Phosphor Screen for 2 d and scanned with a 

STORM Scanner. Signals were normalized to a mismatched control sample on each membrane as 

described [116]. 

 For microarray RNA samples, each tissue sample was processed in 700 µL Tri-Reagent with a 

Bullet Blender at 4ºC, 15 seconds homogenization and 1 minute rest on ice, for 12 cycles. Following 

processing, an additional 300 µL Tri-Reagent was added to each sample, and samples allowed to incubate 

at room temperature for 5 minutes prior to isolating RNA with RNeasy Mini Kit (Qiagen). RNA samples 

were stored at -80ºC until processing for microarray on the Mouse WG-6 v2.0 BeadChip (Illumina) by 

the UT Southwestern Genomics and Microarray Core Facility (Dallas, TX). 

In vitro cultures of neurons from embryonic superior cervical ganglia 

 Neuronal transport systems can be modeled in vitro using the compartmented chamber system. A 

segmented camber is placed on a plate and sealed with grease. Neurons isolated from embryonic mice are 

placed in the segment at one end of the chamber, and when properly stimulated will extend processes 

underneath the partitions between each segment. This allows separation of the growth medias and 

supernatant along the length of the neuron. Neurons can be treated or infected at either end, and the 

supernatant of the opposite segment can be monitored for any changes. Neurons of the superior cervical 

ganglia (SCG) were isolated and cultured as follows. 
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 The SCG were isolated from embryonic day 14 C57Bl/6-hPVR (immune-competent) mice and 

neurons cultured as previously described for rats [33,49,97]. A brief summary follows. Chambers were 

prepared in advance: each plate was incubated with poly-D-ornithine for at least six hours, washed with 

sterile water, incubated with laminin overnight, washed with HBSS CMF, then scored with a pin rake. 

Methocellulose solution was applied to the fresh grooves. Teflon chamber was greased then placed gently 

onto the plate over the methocellulose-containing scored section. Each chamber section was filled with 

medium and plates were incubated until neuron isolation. Embryos were dissected from mother at 

embryonic day 14 and SCG isolated as follows. Embryonic sac was gently removed and embryos were 

placed in 2X HBSS. Cuts were made with microdissecting knives on a glass dish containing HBSS, the 

first cut along the chin and the second parallel to the mouth. From the resulting slice, the spinal cord 

segments were removed and the esophageal tissue was pulled to expose the SCGs, one on each side of the 

esophagus. The SCGs have a “dolphin-like” appearance and were carefully removed with the knives. 

SCGs were pooled and the cells were dissociated by incubation with trypsin, followed by a wash with 

trypsin inhibitor, then vigorous repeated passage through a blood-blocked flame-narrowed Pasteur pipet. 

Dissociated cells were added to one end of the chamber, over the grooves. Cells were incubated at 37°C 

for two days to permit attachment, then treated overnight with anti-mitotic AraC to eliminate any non-

neuronal cells. Media was replaced every two to three days and neurons showed fully-extended processes 

by 14 days after plating, at which time infection experiments began.
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CHAPTER 3: Comparison of three neurotropic viruses reveals differences in viral dissemination to 

the central nervous system 

Introduction 

 Neurotropic viruses can invade and infect the central nervous system (CNS), which includes the 

spinal cord and brain. These viruses come from a variety of different families and include several that 

infect humans [113]. Neurotropic viruses enter the CNS through peripheral nerves or by crossing the 

blood-brain barrier following hematogenous dissemination. Different viruses target different cell types 

within the nervous system, causing symptoms ranging from seizures to paralysis or death. Here, I 

investigated the dissemination patterns of three neurotropic viruses, each from a different family, to 

discern whether common mechanisms are employed to invade the CNS. Viral dissemination barriers can 

be masked by titer-based assays since post-barrier viral replication can produce high viral titers 

[64,116,117,167]. Therefore, I used genetically marked virus pools to examine dissemination of 

poliovirus, yellow fever virus 17D (YFV-17D), and reovirus. 

Poliovirus is a nonenveloped virus with a positive-sense, single-stranded RNA genome from the 

Picornaviridae family. It is most commonly transmitted in humans by the fecal-oral route and causes 

paralysis in less than 1% of infected individuals due to damage to motor neurons. Poliovirus accesses the 

CNS by either crossing the blood-brain barrier [239] or via retrograde axonal transport in peripheral 

nerves [161,164,178]. Young mice and immune-deficient mice have enhanced susceptibly to poliovirus 

infection [48,94,158]. When poliovirus is inoculated into the hind limb muscle of mice, the virus spreads 

to the CNS by transport through the sciatic nerve to the spinal cord and brain. Concordantly, sciatic nerve 

transection limits poliovirus spread to the CNS following intramuscular inoculation [86,161,178]. 

Poliovirus enters neurons and other cell types by binding the poliovirus receptor (PVR/CD155), followed 

by endocytosis and uncoating [109,158,178]. The cytoplasmic domain of PVR interacts with Tctex-1, a 

light chain of cytoplasmic dynein, which facilitates transport of virus-containing endosomes through the
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fast retrograde transport system [150,159]. It is unclear whether other molecules are associated with 

retrograde axonal transport of poliovirus in neurons. 

YFV is an enveloped virus with a positive-sense, single-stranded RNA genome from the 

Flaviviridae family. YFV usually infects humans through the bite of a mosquito, with outcomes ranging 

from asymptomatic infection to severe hemorrhagic fever. YFV rarely enters the CNS, but the virus is 

capable of causing encephalitis [147]. The receptor for YFV and its mechanism of entry into the CNS are 

not known. YFV strain 17D (YFV-17D) is a live-attenuated vaccine strain derived from the virulent Asibi 

strain. It is one of the safest live-attenuated vaccines available, but in rare cases, YFV-17D can enter the 

CNS and induce encephalitis following vaccination [147]. Laboratory rodents have varying degrees of 

susceptibility to YFV-17D, with young and immune-deficient animals having the greatest susceptibility 

[67,120,139,213,216]. Early studies suggested that YFV disseminates to the CNS hematogenously 

[141,196]; indeed, many flaviviruses access the CNS through blood. It is unclear whether YFV can 

undergo retrograde transport in neurons. 

Mammalian orthoreoviruses (hereafter called reoviruses) are nonenveloped viruses with a 

segmented double-stranded RNA genome from the Reoviridae family. Reovirus infects humans by the 

fecal-oral route, but individual strains differ in their dissemination patterns and receptor specificities 

[18,232,233]. Reovirus infects most humans during childhood and, in rare instances, reovirus is capable 

of entering the CNS in humans. The age-dependent barrier to reovirus CNS entry is recapitulated in mice, 

as reovirus disseminates to the brain of young but not adult mice following intramuscular inoculation 

[133,212]. In mice, strain type 1 Lang (T1L) disseminates to the CNS primarily through a hematogenous 

route, while strain type 3 Dearing (T3D) disseminates to the CNS through neural or hematogenous routes 

[7,25,149,217]. When reovirus T3D is inoculated into the hind limb muscle of newborn mice, the virus 

spreads to the CNS by trafficking through the sciatic nerve to the spinal cord. Sciatic nerve transection 

inhibits T3D dissemination from the hind limb muscle to the spinal cord [25,217]. However, sciatic nerve 

transection delays, but does not prevent, T3D spread to the brain following intramuscular inoculation, 



 

 

20 
highlighting the importance of hematogenous spread following this inoculation route [25]. T1L and 

T3D reoviruses attach to host cells using cell-surface glycans and junctional adhesion molecule A, 

followed by receptor-mediated endocytosis [16,17,31,68,131,177]. T3D infects neurons using the Nogo 

receptor NgR1, although glycan interactions are also important for viral attachment to neurons [72,110]. 

NgR1 is a GPI-anchored protein that is unlikely to interact directly with dynein [187]. However, dynein is 

required for reovirus entry and endocytic transport in non-neuronal cells [132]. An inhibitor of fast 

retrograde axonal transport inhibits T3D dissemination to the CNS in mice [217], suggesting that dynein-

mediated fast retrograde axonal transport is involved in reovirus transport in neurons. 

The mouse sciatic nerve is a tractable model system to study how viruses move from the 

periphery to the CNS because of its length, width, and ease of dissection. Following intramuscular 

inoculation of the hind limb, viruses can enter the sciatic nerve and transit by retrograde fast axonal 

transport using dynein motors [161,178,217]. This transport system is essential, considering that viruses 

travel long distances within an axon. For example, viruses inoculated into the gastrocnemius muscle of 

the adult mouse travel over 2 cm within a single cell prior to reaching the site of viral replication in the 

cell body. The sciatic nerve model has been used to examine the routes by which neurotropic viruses gain 

access to the CNS and to study the effects of the type I interferon (IFN) response and stimulation of 

retrograde axonal transport [25,86,94,113,117,133,217]. For example, poliovirus transport in the sciatic 

nerve of mice is inefficient, but efficiency is enhanced by ablating the type I IFN response or increasing 

retrograde axonal transport via muscle damage. Importantly, virulence correlates with viral diversity in 

the CNS: mice with high viral diversity in the CNS have higher mortality than mice with low viral 

diversity in the CNS [116,117,166,223]. 

Although the mechanism is unclear, damage to muscle increases transport of both poliovirus and 

non-viral cargo protein in the sciatic nerve [86,117]. Muscle damage also decreases the time to disease 

onset in poliovirus-infected mice [86,117]. This damage response and subsequent enhanced poliovirus 

transport in neurons also may be operative in humans. In children, injury to muscle from trauma or 
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intramuscular injections increases the incidence of poliovirus-induced paralysis, particularly in the 

damaged limb [4,88,92,136,208,238]. The effect of muscle damage on transport of other viruses is 

unclear. 

 To investigate differences in dissemination patterns of distinct neurotropic viruses, I 

intramuscularly inoculated adult or newborn immune-competent or immune-deficient mice lacking the 

type I IFN-α/β receptor (IFNAR-/-) with genetically marked pools of poliovirus, YFV-17D, or reovirus 

T3D. I quantified viral dissemination at 72 hours post-inoculation (hpi) and found that dissemination of 

reovirus T3D was more restricted than poliovirus and YFV-17D in adult immune-competent mice. All 

three viruses had enhanced dissemination in IFNAR-/- mice. Stimulating retrograde axonal transport with 

muscle damage enhanced poliovirus dissemination but did not enhance dissemination of either YFV-17D 

or reovirus T3D. Dissemination of poliovirus and reovirus was substantially enhanced in newborn mice, 

with reovirus showing the largest differences as a function of host age. Overall, my results suggest that 

poliovirus, YFV-17D, and reovirus T3D disseminate to the CNS using different pathways with different 

efficiencies. 

Immune deficiency, muscle damage, and young age enhance poliovirus transport to the CNS  

 Analysis of viral titer is not always sufficient to define viral dissemination barriers; in fact, robust 

viral replication following traverse of a barrier can mask barriers completely [116,117,167]. To overcome 

this obstacle, I inoculated mice with genetically marked viruses and used a hybridization-based assay to 

quantify the viral population diversity in a given tissue [116,117]. A decrease in viral population diversity 

from one tissue to another indicates a viral transport barrier. Using this approach, I previously found that 

poliovirus transport to the CNS is inefficient, but ablating the type I IFN response enhanced viral 

transport to the CNS. Additionally, I found that muscle damage increased poliovirus transport to the CNS 

by enhancing retrograde axonal transport in the sciatic nerve [117]. However, the previous study analyzed 

viral titer and population diversity in tissues at disease onset, days 3-8 post-inoculation. Here, I examined 
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viral transport to the CNS at an early time point, 72 hpi, to determine whether the type I IFN response, 

muscle damage, or host age influences viral dissemination early in infection. 

 To examine viral transport early in infection, IFNAR+/+ or IFNAR-/- mice were inoculated 

intramuscularly with 10 genetically marked polioviruses (Fig. 1). Tissues were harvested at 72 hpi, and 

viral titer and population diversity were quantified. Similar to previous studies at late time points  

[116,117], I found increased viral titers in all tissues of IFNAR-/- mice relative to IFNAR+/+ mice (Fig. 

2A, white vs. gray bars). Similarly, viral population diversity was greater in IFNAR-/- mice relative to 

IFNAR+/+ mice, and viral population diversity was less in brain compared with muscle (Fig. 2B, white 

vs. gray bars). In contrast to previous studies at later time points (disease onset, 5-8 days post-infection) 

where viral brain titers were high [117], viral titers in the brain were very low at 72 hpi in immune-

competent mice. However, mean poliovirus titers in the brain were >8,000-fold higher in IFNAR-/- mice 

compared to IFNAR+/+ mice. Overall, these data suggest that poliovirus transport to the CNS is 

inefficient, particularly in adult immune-competent mice, at 72 hpi.  
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Figure 1. Experimental design. Mice were inoculated intramuscularly (IM) with 107 PFU of 10 
poliovirus (PV), 6 YFV-17D, or 9 reovirus (RV) pool members, and tissues were collected at 72 hpi 
unless otherwise indicated. Muscle damage was induced in a subset of mice before, during, and after viral 
inoculation to stimulate retrograde axonal transport in the sciatic nerve.  
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 I next examined the effect of muscle damage on poliovirus transport to the CNS at 72 hpi. 

Muscle damage was induced daily starting 1 d before viral inoculation and concluding 1 d prior to tissue 

collection (Fig. 1). Titers of poliovirus in tissues were generally higher in IFNAR+/+ mice with damage 

compared with those in IFNAR+/+ mice without damage (Fig. 2A, white vs. white hatched bars). In fact, 

mean poliovirus titers in brain were >270,000-fold higher in mice with muscle damage compared with 

mice lacking muscle damage. The muscle and brain tissues of IFNAR-/- mice with muscle damage also 

show increased titer compared with IFNAR-/- mice without damage (Fig. 2A, gray vs. gray hatched bars). 

Not surprisingly, viral population diversity was also higher for mice with muscle damage (Fig. 2B). 

Strikingly, the effect of muscle damage on viral titer and viral population diversity in the brain was 

greater than ablation of the type I IFN response. Although poliovirus replicated more efficiently in 

IFNAR-/- mice, trafficking to the CNS was still restricted by a barrier that was overcome by muscle 

damage. These results suggest that early in infection inefficient retrograde axonal transport and type I IFN 

restrict poliovirus trafficking to the CNS by different mechanisms. Furthermore, inefficient retrograde 

axonal transport is a stronger barrier for poliovirus dissemination to the CNS than the type I IFN 

response.  

 To determine whether barriers to poliovirus CNS dissemination exist in very young mice, I 

inoculated 3-day-old IFNAR+/+ or IFNAR-/- mice with the pool of genetically marked viruses and 

assessed viral titers and population diversity. Infected mice were moribund at 48 hpi; therefore, tissues 

were collected at this earlier time point. Viral titers were very high in muscle, spinal cord, and brain in 

both IFNAR+/+ and IFNAR-/- mice, and all pool members were present in all tissues (Fig. 2C-D). In 

agreement with previous studies, these data suggest that a major barrier limiting viral dissemination 

develops as mice age [48]. Overall, poliovirus dissemination is limited most by age-specific factors, 

followed by inefficient retrograde axonal transport, and the type I IFN response. 
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Figure 2. Dissemination of poliovirus to the CNS is limited by inefficient retrograde axonal 
transport, type I IFN responses, and older age. IFNAR+/+ and IFNAR-/- mice were inoculated 
intramuscularly with 107 PFU total of 10 genetically marked polioviruses, with or without additional 
muscle damage. Tissues were collected, viral titers were determined by plaque assay, and viral population 
diversity was determined using a hybridization-based assay [116]. Poliovirus titer (A) and viral 
population diversity (B) in tissues harvested from adult IFNAR+/+ or IFNAR-/- mice with or without 
muscle damage. Tissues were collected at 72 hpi, prior to disease onset. Poliovirus titer (C) and viral 
population diversity (D) in tissues harvested from 3-day-old IFNAR+/+ or IFNAR-/- mice. Tissues were 
collected at 48 hpi in C and D due to the onset of disease. Results are presented as mean +/- standard error 
of the mean from 4-8 mice per condition. Values that are significantly different, as determined by the 
Mann-Whitney test, are indicated by asterisks as follows: *, P < 0.05, **, P < 0.005, ***, P < 0.0005. 
Mus., muscle. 
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Immune deficiency, but not muscle damage, enhances YFV-17D transport to the CNS   

 Using a pool of six genetically marked viruses, I previously found that YFV-17D inoculated 

intramuscularly disseminated to the brain relatively efficiently in IFNAR-/- mice at 7-8 dpi [64]. Here, I 

examined YFV-17D dissemination at 72 hpi to better understand the kinetics of viral transport by 

evaluating the effect of immune deficiency, muscle damage, and host age on viral dissemination. I found 

that immune-competent adult IFNAR+/+ mice had moderate titers of YFV-17D in all tissues tested (Fig. 

3A, white bars). While immune-deficient IFNAR-/- mice had higher YFV-17D titers in several tissues, I 

was surprised to find that viral titers in brain were only 1.3-fold higher than those in IFNAR+/+ mice 

(Fig. 3A, white vs. gray bars). For most tissues, viral population diversity was greater in IFNAR-/- mice 

compared with that in IFNAR+/+ mice (Fig. 3B, white vs. gray bars). Although viral titers in the brain 

were similar in IFNAR-/- and IFNAR+/+ mice, viral population diversity was greater in IFNAR-/- mice. 

These results suggest that YFV-17D may encounter a barrier in IFNAR+/+ mice en route to the brain that 

was overcome in IFNAR-/- mice or that clearance of the virus differs in the two mouse strains. 

 Because YFV and YFV-17D are thought to enter the CNS predominantly via the hematogenous 

route [141,196], and muscle damage stimulates transport in neurons, I hypothesized that muscle damage 

would not alter YFV-17D dissemination to the brain. Indeed, viral titers were not higher in IFNAR+/+ 

mouse tissues at 72 hpi following muscle damage (Fig. 3A, white vs. hatched bars). In fact, viral titers 

were lower in mice with muscle damage, suggesting that muscle injury reduced viral replication and 

dissemination. Muscle damage was associated with increased YFV-17D population diversity in muscle 

tissue but not in any of the peripheral or central nervous system tissues (Fig. 3B, white vs. hatched bars). 

It is possible that inflammation associated with muscle damage reduced YFV-17D replication. 
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Figure 3. Dissemination of YFV-17D to the CNS is limited by type I IFN responses but not 
inefficient retrograde axonal transport. IFNAR+/+ and IFNAR-/- mice were inoculated 
intramuscularly with 107 PFU total of six genetically marked YFV-17D viruses, with or without 
additional muscle damage for IFNAR+/+ mice. Tissues were collected at 72 hpi, prior to disease onset. 
Viral titers were determined by plaque assay, and viral population diversity was determined using a 
hybridization-based assay. YFV-17D titer (A) and viral population diversity (B) in tissues harvested from 
adult IFNAR+/+ or IFNAR-/- mice with or without muscle damage. YFV-17D titer (C) and viral 
population diversity (D) in tissues harvested from 3-day-old IFNAR+/+ or IFNAR-/- mice infected with 
104 PFU. Results are presented as mean +/- standard error of the mean from 6-8 mice per condition. 
Values that are significantly different, as determined by the Mann-Whitney test, are indicated by asterisks 
as follows: *, P < 0.05, **, P < 0.005, ***, P < 0.0005. Mus., Muscle.  
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 To determine whether YFV-17D disseminates more efficiently in very young mice, I 

inoculated 3-day-old IFNAR+/+ or IFNAR-/- mice with the pool of genetically marked viruses and 

assessed viral titers and population diversity. Due to the small inoculation volume required for infant 

mice and low YFV-17D concentration, mice were inoculated with 104 PFU in these experiments rather 

than the 107 PFU inoculum used in experiments with adult animals. Therefore, direct comparisons 

between YFV-17D dissemination in adult vs. young mice could not be made. However, I were able to 

evaluate the relative viral dissemination efficiencies in IFNAR+/+ and IFNAR-/- infant mice. Not 

surprisingly, YFV-17D titers were higher and population diversity was greater in IFNAR-/- mice 

compared with those parameters in IFNAR+/+ mice (Fig. 3C-D). Strikingly, YFV-17D titers were 

undetectable in the brain of immune-competent young mice, while immune-deficient mice contained >104 

PFU in the brain. Therefore, the type I IFN response is a major barrier in young mice to dissemination of 

YFV-17D. 

Tracing individual viral pool members reveals different transport routes of poliovirus and YFV-17D to 

the CNS 

 A major strength of using genetically marked viruses for viral dissemination studies is that they 

can be used to determine viral transport routes from the periphery to the CNS. To determine whether 

intramuscularly inoculated YFV-17D disseminated to the brain through the blood rather than through 

peripheral nerves, we compared specific pool members found in tissues of adult mice. YFV-17D pool 

members detected in the brain were scored relative to the pool members detected in the sciatic nerve, 

spinal cord, or blood of each mouse to determine the degree of overlap. For this analysis, we used only 

mice in which less than or equal to half of the total pool members were detected in the brain, since 

animals with most or all of the pool members present in the brain would be uninformative for determining 

trafficking routes. We found that, on average, a YFV-17D pool member detected in the brain was 

detected in the sciatic nerve in 70% of mice, in the spinal cord in 45% of mice, and in the blood in 75% of 

mice (Fig. 4). Therefore, viruses found in the brain matched viruses found in the blood to a greater extent 
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than viruses found in the sciatic nerve or spinal cord. In contrast, poliovirus pool members detected in 

the brain matched the pool members detected in the sciatic nerve and spinal cord in 98-100% of cases, 

and poliovirus was undetectable in the blood (Fig. 4). These data are consistent with previous studies 

showing that poliovirus disseminates through nerves to reach the mouse brain [159,161,178] and support 

the idea that YFV-17D disseminates primarily through the blood to infect the CNS [141,196]. 
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Figure 4. Poliovirus and YFV-17D likely reach the brain through different routes. Viral pool 
members detected in the brain were scored relative to the pool members detected in the sciatic nerve, 
spinal cord, or blood of each IFNAR+/+ or IFNAR-/- mouse to determine the degree of overlap. We used 
only mice in which less than or equal to half of the total pool members were detected in the brain, since 
animals with most or all of the pool members present in the brain would be uninformative for determining 
trafficking routes. Each symbol represents a single mouse. Bars represent means of 3-18 mice. Data are 
shown as percent match of viral pool members present in the brain to viral pool members present in each 
tissue. As an example, if the brain contained poliovirus pool members 2 and 4 (of 10 total) and the spinal 
cord contained poliovirus pool members 4, 6, 8, and 10, then the percent match of brain viruses to viral 
pool members present in the spinal cord is 50% ([1 matching virus/2 total viruses present in brain] x 100). 
Values that are significantly different, as determined by the Mann-Whitney test, are indicated by asterisks 
as follows: *, P < 0.05, **, P < 0.005, ***, P < 0.0005.  
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Development of a reovirus T3D population diversity assay 

 To examine reovirus dissemination in mice, I engineered a panel of nine genetically marked 

reovirus strains that can be distinguished using a hybridization-based population diversity assay. The 

strains each contain a combination of unique silent mutations in the M1 gene segment such that RT-PCR 

products of each pool member are recognized by specific oligonucleotide probes (Fig. 5A). The 

specificity of each probe was confirmed by blotting RT-PCR products from individual strains on 

membranes, followed by hybridization with each 32P-labeled oligonucleotide probe (Fig. 5B). To 

determine whether any of the strains have altered replication efficiency compared with the others, I 

performed an in vitro viral serial passage experiment. This type of analysis is more sensitive than single-

cycle replication assays for detection of subtle replication differences [116]. After an initial infection with 

a mixture containing equal aliquots of each pool member, I used the infected cells to initiate viral 

replication in naïve cells, and relative levels of each pool member were quantified over seven serial 

passages. In this experiment, all pool members were present at similar levels in the initial and final 

passages (Fig. 5C), suggesting that the pool members have similar fitness in vitro. To determine whether 

the genetically marked reovirus strains differ in fitness in vivo, I inoculated mice intramuscularly with a 

mixture of all nine pool members and examined viral population diversity at 72 hpi. A blot of the reovirus 

pool members in peripheral and CNS tissues of a representative IFNAR-/- mouse is shown in Fig. 5D. To 

confirm that reovirus pool members have equivalent fitness in vivo, viral population diversity data for all 

reovirus mouse experiments were compiled to determine the relative number of times each pool member 

was detected. All nine reovirus pool members were detected with similar frequency (Fig. 5E), providing 

strong evidence that the pool members have similar fitness in vivo. 
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Figure 5. Development of a hybridization-based reovirus T3D viral population diversity assay. (A) 
Sequence alignment showing groups of silent point mutations introduced into the reovirus T3D M1 gene 
segment. The amino acid sequence is shown at the top. (B) Blots demonstrating specificity of each probe 
for its cognate viral RT-PCR product. (C) Serial passage competition experiment showing maintenance of 
all pool members. L929 cells were adsorbed with equivalent PFU of each reovirus pool member. Infected 
cells were collected at 24 hpi and used to initiate another cycle of replication in naïve cells. Following 
seven passages, the ratios of viruses were compared by hybridization assay. + indicates positive match 
control, - indicates mismatch control as previously described [116]. (D) Representative blot of RT-PCR 
products from a reovirus-infected IFNAR-/- mouse following intramuscular inoculation. Mice were 
inoculated intramuscularly with 107 PFU total of the nine genetically marked reoviruses. Tissues were 
collected at 72 hpi, and viral population diversity was assessed using the hybridization assay. (E) Relative 
prevalence of each reovirus pool member in all mouse tissues collected during this study. Data were 
derived from tissues of 63 mice. The relatively equal prevalence of each pool member indicates that pool 
members do not have significant fitness differences in vivo.  
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Young age and immune deficiency, but not muscle damage, enhances reovirus T3D transport to the 

CNS  

 To define factors that influence reovirus dissemination from the periphery to the CNS in mice, I 

examined trafficking of the nine genetically marked reoviruses following intramuscular inoculation. In 

accordance with previous work [59], viral titers in muscle, sciatic nerve, and spinal cord were 

significantly higher in adult IFNAR-/- mice than those in adult IFNAR+/+ mice (Fig. 6A, white vs. gray 

bars). Remarkably, reovirus dissemination to the upper sciatic nerve and spinal cord was observed only in 

IFNAR-/- mice (Fig. 6A). Viral population diversity was modest in IFNAR+/+ tissues and generally 

greater in IFNAR-/- tissues (Fig. 6B, white vs. gray bars). Reovirus was not detected in the brain of adult 

mice of either strain at 72 hpi, which was not surprising given the well-established restriction of reovirus 

dissemination to the CNS in adult mice [133,212]. 

 Because reovirus T3D and poliovirus both infect neurons and are transported by fast retrograde 

axonal transport, I hypothesized that muscle damage would enhance reovirus transport as observed in the 

case of poliovirus transport. Although damage induced small increases in reovirus titers in muscle of both 

IFNAR+/+ and IFNAR-/- mice, muscle injury was not sufficient to enhance reovirus dissemination to the 

sciatic nerve, spinal cord, or brain in IFNAR+/+ mice (Fig. 6A, white vs. white hatched bars). Muscle 

damage was associated with increased viral population diversity in muscle of IFNAR+/+ mice but 

generally not in other tissues (Fig. 6B). In IFNAR-/- mice, increases in viral population diversity 

following muscle damage were only significant in the spinal cord (Fig. 6B). Overall, these experiments 

show that dissemination of intramuscularly inoculated reovirus is severely restricted in immune-

competent adult mice and that muscle damage does not enhance viral dissemination from the inoculation 

site. 

 I next determined whether a longer infectious time course would allow increased reovirus 

dissemination to the CNS. Reovirus replicates more slowly than poliovirus and may require a longer 

interval to reach the brain. Therefore, I compared viral titers in adult IFNAR+/+ and IFNAR-/- mice with 
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and without muscle damage at 7 d post-inoculation. In most tissues tested, viral titers were lower at 7 

days post-inoculation than at 72 hpi (Fig. 6C vs. Fig. 6A). Reovirus was not detected in the brain of adult 

mice under any of the conditions tested (Fig. 6C). Therefore, the lack of reovirus dissemination to the 

brain of adult mice at 72 hpi is not simply due to the relatively early time point of tissue collection. 
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Figure 6. Dissemination of reovirus T3D to the CNS is limited by type I IFN responses and older 
age but not inefficient retrograde axonal transport. IFNAR+/+ and IFNAR-/- mice were inoculated 
intramuscularly with 107 PFU total of nine genetically marked reoviruses, with or without additional 
muscle damage. Tissues were collected at 72 hpi, prior to disease onset. Viral titers were determined by 
plaque assay, and viral population diversity was determined using a hybridization-based assay. Reovirus 
T3D titer (A) and viral population diversity (B) in tissues harvested from adult IFNAR+/+ or IFNAR-/- 
mice with or without muscle damage. (C) Reovirus T3D titer in tissues from adult mice collected at 7 d 
post-inoculation. Reovirus T3D titer (D) and viral population diversity (E) in tissues from 3-day-old 
IFNAR+/+ or IFNAR-/- mice. Results are presented as mean +/- standard error of the mean from 5-9 
mice per condition. Values that are significantly different, as determined by the Mann-Whitney test, are 
indicated by asterisks as follows: *, P < 0.05, **, P < 0.005, ***, P < 0.0005. Mus., Muscle, SN, Sciatic 
Nerve, SC, Spinal Cord, Br., Brain. 
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 To determine whether reovirus T3D disseminates more efficiently in very young mice, I 

inoculated 3-day-old IFNAR+/+ or IFNAR-/- mice with the pool of genetically marked viruses and 

assessed viral titers and population diversity. Reovirus titers were detectable in all tissues of young mice, 

including brain, with significantly higher titers in IFNAR-/- mice compared with those in INFAR+/+ mice 

(Fig. 6D). Notably, all reovirus pool members were detected in the brains of INFAR-/- mice (Fig. 6E). 

However, only about 25% of pool members were detected in the brains of IFNAR+/+ mice, revealing an 

IFN-mediated barrier limiting reovirus infection of the brain in young mice. Collectively, these 

experiments are consistent with previous findings on age-dependent and IFN-dependent barriers to 

reovirus dissemination [59,133,201,212]. 

Co-infection with poliovirus does not enhance reovirus dissemination to the CNS 

 Since poliovirus is more efficiently transported than reovirus in neurons of IFNAR+/+ and 

IFNAR-/- mice, I were curious about whether co-infection with poliovirus could enhance reovirus 

transport. I thought it possible that poliovirus infection might stimulate host pathways that mediate viral 

transport in neurons, which in turn would enhance transport of other types of cargoes. To test this 

hypothesis, adult mice were inoculated intramuscularly with 107 PFU of the 10 genetically marked 

polioviruses and 107 PFU of the nine genetically marked reoviruses for a total inoculum of 2 x 107 PFU. 

Tissues were resected at 72 hpi and processed for virus titer determination and population diversity assay 

using L929 cells, which do not support poliovirus replication. When titer and diversity data from co-

infected mice (‘co’) are compared with data from individually infected mice (‘ind’, from Fig. 6A-B), I 

found no detectable change (enhancement or diminishment) in reovirus transport following co-infection 

with poliovirus (Fig. 7A-B). This finding suggests that poliovirus and reovirus disseminate to the CNS 

using distinct pathways. 
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Figure 7. Co-infection with poliovirus does not enhance reovirus dissemination to the CNS. 
IFNAR+/+ and IFNAR-/- mice were inoculated intramuscularly with 107 PFU total of nine genetically 
marked reoviruses and 107 PFU total of 10 genetically marked polioviruses. Tissues were collected at 
72 hpi. Reovirus titers and population diversity were determined by plaque assay and hybridization-
based assay, respectively, using L929 cells, which do not support poliovirus replication. Reovirus T3D 
titer (A) and viral population diversity (B) in tissues harvested from adult IFNAR+/+ or IFNAR-/- mice 
with or without muscle damage. ‘ind’ indicates data from infections with reovirus only, and ‘co’ 
indicates data from the reovirus-poliovirus co-infection. Results are presented as mean +/- standard 
error of the mean from 5-7 mice per condition. Values that are significantly different, as determined by 
the Mann-Whitney test, are indicated by asterisks as follows: *, P < 0.05. 



 

 

38 
Discussion 

 Knowledge about how different viruses disseminate to the CNS is essential for a comprehensive 

understanding of the pathogenesis of neurotropic viral infections. In this study, I compared the transport 

of three different neurotropic viruses following intramuscular inoculation of mice using viral titer and 

population diversity assays. I found that poliovirus, YFV-17D, and reovirus T3D disseminate to the CNS 

with varying efficiencies and use distinct mechanisms that are affected differently by host damage 

responses (Table 1). 

 Although injury to the muscle at the inoculation site enhanced neuronal transport of poliovirus in 

both IFNAR+/+ and IFNAR-/- mice, muscle damage did not enhance transport of either YFV-17D or 

reovirus T3D. In fact, muscle damage reduced YFV-17D dissemination. YFV-17D likely enters the brain 

by crossing the blood-brain barrier following hematogenous dissemination rather than by transport 

through peripheral nerves into the spinal cord. Therefore, enhancement of retrograde axonal transport in 

neurons induced by muscle damage would be less likely to increase YFV-17D dissemination to the CNS. 

Interestingly, blood-brain barrier disruption by needle puncture enhances dissemination of peripherally 

inoculated YFV to the brain, but peripheral tissue damage does not [141,196]. Poliovirus and reovirus 

share many biological properties such as fecal-oral transmission, dissemination in peripheral nerves, 

dependence on dynein for transport, and spread in neurons by fast retrograde axonal transport. Therefore, 

it was somewhat surprising that muscle damage enhanced neuronal transport of poliovirus but not 

reovirus. Damage-dependent enhancement of retrograde axonal transport occurs for wheat germ 

agglutinin [117], indicating that accelerated transport as a consequence of muscle injury can occur with 

cargoes other than viruses. Collectively, these observations provide additional evidence that poliovirus 

and reovirus traffic in the nervous system using different mechanisms.  

 Injury to muscle at the inoculation site enhanced YFV-17D and reovirus population diversity in 

the muscle of IFNAR+/+ mice as well as reovirus titer in the muscle of IFNAR+/+ and IFNAR-/- 

animals. However, increased viral titer and population diversity in muscle as a consequence of damage 
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did not enhance transport through peripheral nerves for either virus, suggesting that the effect may be 

due to muscle-specific factors that enhance viral replication or decrease viral clearance.  

 Co-infection with poliovirus did not accelerate neuronal transport of reovirus, likely due to 

differences in the host transport mechanisms used by these viruses. I think it possible that each virus 

associates with different endogenous cargoes during transport, and that poliovirus is associated with a 

more efficiently transported cargo than reovirus. Differences in receptor utilization also may control 

transport efficiency. The PVR cytoplasmic domain associates with dynein light chain Tctex-1 to transport 

poliovirus using dynein motors [150,159]. Reovirus T3D requires NgR1 to infect neurons, but NgR1 is 

GPI-anchored and therefore not likely to associate directly with any dynein components outside of 

reovirus-containing endosomes [110,187]. NgR1 is expressed at high levels in the adult brain but, because 

of myelination in the adult, the receptor may not be available for reovirus T3D binding and entry [110]. 

This aspect of NgR1 physiology could explain the age-specific barrier to reovirus infection. In contrast, 

PVR is widely expressed and available for poliovirus binding and entry into the brain. 

 Findings made in this study show that poliovirus, YFV-17D, and reovirus T3D disseminate to the 

CNS by distinct mechanisms. By using assays of viral load and viral population diversity, I uncovered 

dissemination routes to the CNS and identified barriers to dissemination for each of these viruses. 

Enhancement of fast retrograde axonal transport by muscle damage increased dissemination of poliovirus 

but not YFV-17D or reovirus T3D. These findings highlight the complexity of neurotropic virus access to 

the CNS and provide a framework to define virus-specific neural transportation routes. 
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CHAPTER 4: Attempting to clarify the mechanism of muscle damage-induced enhancement to 

neuronal poliovirus dissemination 

Introduction 

 Medical evidence suggests that a damaged muscle correlates with development of paralytic 

poliomyelitis following infection [4,23,24,88,92,208,238], and previous research in mice reveals that 

muscle damage enhances retrograde axonal transport of the virus and decreases mouse survival [86,118]. 

Despite this, the mechanisms which regulate damage-dependent enhancement of poliovirus dissemination 

are still unclear. In fact, it is not even clear whether poliovirus is spreading through a single particular 

pathway and whether it has cofactors during transport. Multiple molecules have been implicated in 

stimulating retrograde axonal transport and I were interested to investigate them for their potential to 

stimulate viral transport. 

 Neuron-derived growth factors were previously studied for their effects in preventing damage to 

neurons and axonal transport. Ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor 

(BDNF) were both demonstrated to enhance retrograde axonal transport in the sciatic nerve following 

intramuscular co-injection with a tracer [22,186]. Other molecules such as glial cell line-derived 

neurotrophic factor (GDNF) and nerve growth factor (NGF) were demonstrated to protect neurons 

following damage by signaling through the retrograde axonal transport pathway, but are incapable of 

enhancing transport [135,186]. Similar to poliovirus, CNTF, BDNF, GDNF, and NGF enter motor 

neurons by receptor-dependent endocytosis and are transported through peripheral nerves in conjunction 

with their receptor [22,91,181,186]. It is unclear whether poliovirus may use one or multiple of these 

same pathways to spread through peripheral nerves to the CNS. 

 In addition to testing co-injection of growth factors and poliovirus, an unbiased approach was 

used to compare changes to gene expression between damaged and non-damaged muscle. Microarray 

analysis of uninfected tissue allows me to investigate the effects of damage independent of changes in 

transcription due to viral infection. Elevated levels of two particular transcripts stood out in damaged
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muscle compared to non-damanged muscle. The first was tissue inhibitor of metalloproteinase-1 

(TIMP-1). TIMP-1 regulates matrix metalloproteinases (MMPs), which are shown to stimulate retrograde 

axonal transport, the same mechanism by which poliovirus is disseminated through the nervous system 

[86,117,178,197,228]. MMPs are produced immediately following damage and are responsible for 

degradation of damaged tissue [100,225,234]. As MMPs are extremely effective at degrading damaged 

tissue for clearance, their activity is closely regulated by TIMPs, which are expressed roughly 24 hours 

after damage [100,230]. 

 The second transcript with elevated levels in damaged muscle was monocyte chemoattractant 

protein-1 (MCP-1), expression of which is triggered in neurons, astrocytes, and microglia by 

inflammatory responses [11,21,44,80,89,122,138] and peripheral nerve damage [221]. Though 

constitutive expression of MCP1 in the nervous system is detected in resident immune cells [5], discrete 

brain regions [10,47,84,206,219] and in dorsal horn of the spinal cord [52,221], it has inflammatory-

stimulated expression which yields enhanced permeability across the endothelial cells of the blood brain 

barrier [62,151,204,206]. Enhanced blood brain barrier permeability may in turn reduce barriers to 

poliovirus dissemination into the CNS. The above molecules were individually tested to determine 

whether their functions in altering host retrograde axonal transport or blood brain barrier permeability 

facilitates poliovirus dissemination through peripheral nerves and into the CNS. 

Exogenous BDNF does not alter poliovirus replication in HeLa cells 

 Neuron-derived growth factors were previously shown to enhance host retrograde axonal 

transport, including the dynein motor used by poliovirus [15,22,50,60,91,135,181,186]. I hypothesized 

that stimulating retrograde axonal transport with growth factors would enhance poliovirus dissemination 

similar to the effect of muscle damage. 

 Prior to testing the effect of growth factors on poliovirus dissemination in vivo, I wanted to 

examine whether BDNF altered poliovirus entry in vitro. I infected HeLa cells with poliovirus in the 

presence or absence of BDNF, then quantified viral titer by plaque assay at predetermined times 



 

 

42 
following infection. Infections at either an MOI of 0.1 or 10 revealed that BDNF does not alter 

poliovirus entry in vitro (Fig. 8). Regardless of treatment with BDNF, viral output was the same, 

suggesting that BDNF neither enhances nor impedes poliovirus replication in HeLa cells. 
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Figure 8. Exogenous BDNF does not alter poliovirus replication in HeLa cells. HeLa cells were 
infected at an MOI of 10 (A) or 0.1 (B) with poliovirus alone (black) or poliovirus with 25 ng of BDNF 
(green). Cells were harvested at 0, 2, 4, 6, or 8 hours post-infection and titers were determined by plaque 
assay on HeLa cells. 
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Exogenous neuron-derived growth factors do not alter survival of infected mice, enhance poliovirus 

load per tissue, or neuronal poliovirus dissemination 

 As previous work has shown that muscle damage decreases mouse survival following 

intramuscular poliovirus inoculation [86,117], and neuron-derived growth factors increased host 

retrograde axonal transport [22,186], I hypothesized that treatment with BDNF may also decrease 

survival. Mice were inoculated intramuscularly with either 1x105 or 3x104 PFU poliovirus alone, or 

mixed with 50 ng BSA or BDNF, then monitored for clinical signs. There were no statistically significant 

differences in the onset of clinical signs of disease between the different conditions (Fig. 9A,C). In fact, 

all mice were euthanized by 8 days post infection due to complete hind limb paralysis. This suggests that 

injection of an exogenous protein alone, such as BSA, does not alter the course of poliovirus infection 

following intramuscular inoculation. It also reveals that a single injection of BDNF at the inoculation site 

does not alter mouse survival. Quantification of viral load in the muscle, spinal cord, and brain collected 

at the onset of clinical signs show that there is no statistically significant difference in any of the tissues 

(Fig. 9B). 

 Though a single injection of BDNF insufficient to enhance poliovirus dissemination significantly 

enough to alter survival, perhaps a different growth factor enhances poliovirus transport. The effect of a 

single BDNF injection may occur early during the infection, but wane as BDNF is degraded [153]. To 

overcome this, tissues were collected at 24 hours post inoculation, rather than later timepoints. Immune-

competent 6-8 week old mice were injected intramuscularly with poliovirus with or without 50 ng of an 

exogenous growth factor added. Tissues were processed for quantification of poliovirus titer by plaque 

assay. Separately, poliovirus-containing cleared tissue lysates were amplified on HeLa cells for isolation 

of RNA for the viral diversity assay. Plaque assay data reveal that growth factors do not alter viral load 

close to the inoculation site in the muscle and lower sciatic nerve Fig. 10A). Some growth factors like 

BDNF and GSK show trends toward enhanced viral load in the spinal cord (Fig. 10D), but further 

investigation into the data reveals a very broad spread of PFU/tissue from mouse to mouse (Fig. 10E). 
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Past research shows that stimulation of neuronal poliovirus dissemination by muscle damage yields 

enhanced viral load in the brain [117], but plaque assay data lack a clear enhancement of viral load in the 

brain (Fig. 10A,F), suggesting that neuronal poliovirus transport through the spinal cord was not 

enhanced by the addition of exogenous growth factors. These data suggest that BDNF and other growth 

factors are unlikely to play a direct role in enhancing viral load of poliovirus per tissue following muscle 

damage. 
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Figure 9. Exogenous BDNF does not decrease the time of onset of clinical signs of disease or 
enhance viral load per tissue in immune-competent mice. IFNAR+/+ mice were inoculated 
intramuscularly with poliovirus alone (black line/white bar), with 50 µg BSA (red), or with 50 µg BDNF 
(green). Disease signs were the earliest point at which at least one hind limb was fully paralyzed. (A) 
Mice were inoculated with 105 PFU poliovirus alone, with BSA, or with BDNF as indicated above. (B) 
Poliovirus titer was determined by plaque assay from tissues collected at disease onset in A. Results are 
presented as mean +/- standard error. (C) Mice were inoculated with 3x104 PFU poliovirus alone, with 
BSA, or with BDNF as indicated above. Data represent 5-7 mice per condition. For both A and C, 
differences to time of onset of disease signs were not significantly different by the Mantel-Cox test. 
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Figure 10. Single dose of individual exogenous growth factors does not play a significant role in 
enhancing poliovirus titers. IFNAR+/+ mice were inoculated intramuscularly with 2x107 PFU total of 
10 genetically marked polioviruses with or without 50 µg of an individual exogenous protein: BSA (red), 
BDNF (green), GDNF (dark blue), NGF (orange), CNTF (light blue), or GSK (purple). Tissues were 
collected at 24 hours post-inoculation and viral titers were determined by plaque assay. Each dot 
represents poliovirus titer of a single mouse for the muscle (A), lower sciatic nerve (B), upper sciatic 
nerve (C), spine (D), or brain (E). Black line indicates mean of 2-11 mice per condition (A-C), 10-24 
mice per condition (D), or 6-9 mice per condition (E). Values that are significantly different, as 
determined by the Mann-Whitney test, were calculated between the control values and each condition, 
and are indicated by asterisks as follows: *, P < 0.05. 
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Figure 11. Single dose of individual exogenous growth factors does not play a significant role in 
enhancing neuronal poliovirus dissemination. IFNAR+/+ mice were inoculated intramuscularly with 
2x107 PFU total of 10 genetically marked polioviruses alone (white), with muscle damage (diagonal 
stripes/gray), or with 50 µg of an individual exogenous protein: BDNF (green), GDNF (dark blue), or 
GSK (purple). Tissues were collected at 24 hours post-inoculation and viral population diversity was 
determined used a hybridization-based assay [116]. (A) Results are presented as mean +/- standard error 
of the mean from 5-11 mice per condition. (B-F) % pool members present per individual tissue from A. 
Each dot represents the poliovirus population diversity of a single mouse for the muscle (B), lower sciatic 
nerve (C), upper sciatic nerve (D), spine (E), or brain (F). Black line indicates mean of 5-11 mice per 
condition. Values that are significantly different, as determined by the Mann-Whitney test, are indicated 
by asterisks as follows: *, P < 0.05, **, P < 0.005. 
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 Quantifying titer alone could cause poliovirus replication to mask enhancements in 

dissemination [116,117,167], so changes in poliovirus diversity along the neuronal dissemination route 

were also quantified. Similar to the plaque assay data, treatment with damage or growth factors revealed 

no detectable changes at tissues closest to the inoclulation site (Fig. 11A). In agreement with previous 

work, poliovirus diversity is enhanced by muscle damage relative to controls (Fig. 11A,D-F and [117]). 

Mean poliovirus diversity in the spine was elevated with the addition of BDNF or GSK relative to 

controls, but viral diversity was not enhanced to the same magnitude as following muscle damage, and 

review of individual data points again reveal wide variability from mouse to mouse for each condition 

(Fig. 11B-F). Interestingly, higher levels of viral diversity were detected in the brains of some growth 

factor-treated mice, but the majority of mice had no detectable virus in the brain (Fig. 11F). As with the 

plaque assay data, these data suggest that neuronal poliovirus dissemination is not enhanced by 

concurrent treatment with exogenous growth factors. 

Microarray of muscle following needle sticks damage compared to non-damaged muscle 

 To gain more insight into host reponses to muscle damage using a non-biased approach, 

microarrays comparing needle stick-damaged muscle to non-damaged muscle were performed. As I 

expect that the damage-stimulated enhancement to neuronal poliovirus dissemination is the result of a 

host response to damage, mice were not infected with poliovirus to eliminate changes in expression due to 

viral infection. Muscle damage was performed as described above and damage was given daily for three 

days. Mock IM inoculations with PBS alone were given on the second day of damage. Muscle tissue was 

collected one the second day after the mock inoculation, as most damage-dependent changes in 

expression occur within the first 24-48 hours following damage [100,230]. Data were compared as the 

fold change in transcript levels between damaged muscle and non-damaged muscle (Table 1). 

 



 

 
50

 

T
ab

le
 1

. T
ra

ns
cr

ip
ts

 w
ith

 g
re

at
er

 th
an

 5
-f

ol
d 

ch
an

ge
 in

 d
am

ag
e 

vs
. n

on
-d

am
ag

ed
 m

us
cl

e 
tis

su
e.

 

 

Ge
ne

Fo
ld
(C
ha

ng
e(

(D
am

ag
e/
N
o(
Da

m
ag
e)

M
us
$m

us
cu
lu
s$
De

fin
iti
on

Sy
no

ny
m
s

T
IM

P
1

2
0
.4
3

+t
is
s
u
e
+i
n
h
ib
it
o
r+
o
f+
m
e
ta
ll
o
p
ro
te
in
a
s
e
+1
+(
T
im

p
1
),
+t
ra
n
s
c
ri
p
t+
v
a
ri
a
n
t+
2
,+
m
R
N
A
.

M
G
C
7
1
4
3
;+
C
lg
i;
+T
IM

P
H1
;+
T
im

p

H
M
O
X
1

1
3
.4
9

+h
e
m
e
+o
x
y
g
e
n
a
s
e
+(
d
e
c
y
c
li
n
g
)+
1
+(
H
m
o
x
1
),
+m

R
N
A
.

H
s
p
3
2
;+
H
O
1
;+
H
e
m
o
x
;+
H
m
o
x
;+
H
O
H1
;+
D
8
W
s
u
3
8
e

L
O
C
1
0
0
0
3
4
2
5
1

1
2
.9
6

+p
re
d
ic
te
d
+g
e
n
e
,+
O
T
T
M
U
S
G
0
0
0
0
0
0
0
0
9
7
1
+(
O
T
T
M
U
S
G
0
0
0
0
0
0
0
0
9
7
1
),
+m

R
N
A
.

R
P
2
3
H4
3
0
I2
1
.1

L
Y
Z
S

1
1
.3
0

L
G
A
L
S
3

1
0
.8
5

+l
e
c
ti
n
,+
g
a
la
c
to
s
e
+b
in
d
in
g
,+
s
o
lu
b
le
+3
+(
L
g
a
ls
3
),
+m

R
N
A
.

L
H3
4
;+
M
a
c
H2
;+
G
B
P
;+
g
a
l3

M
S
4
A
6
D

1
0
.8
1

F
C
E
R
1
G

1
0
.0
5

A
L
O
X
5
A
P

9
.7
2
+a
ra
c
h
id
o
n
a
te
+5
Hl
ip
o
x
y
g
e
n
a
s
e
+a
c
ti
v
a
ti
n
g
+p
ro
te
in
+(
A
lo
x
5
a
p
),
+m

R
N
A
.

F
la
p

C
D
4
4

9
.0
3

C
C
L
9

9
.0
0

H
IS
T
1
H
2
A
I

8
.9
1
+h
is
to
n
e
+c
lu
s
te
r+
1
,+
H
2
a
i+
(H
is
t1
h
2
a
i)
,+
m
R
N
A
.

H
2
a
H2
9
1
A

G
P
N
M
B

8
.8
6
+g
ly
c
o
p
ro
te
in
+(
tr
a
n
s
m
e
m
b
ra
n
e
)+
n
m
b
+(
G
p
n
m
b
),
+m

R
N
A
.

ip
d
;+
D
c
h
il

H
IS
T
1
H
2
A
F

8
.7
8
+h
is
to
n
e
+c
lu
s
te
r+
1
,+
H
2
a
f+
(H
is
t1
h
2
a
f)
,+
m
R
N
A
.

H
2
a
H2
2
1

T
H
B
S
2

8
.7
3
+t
h
ro
m
b
o
s
p
o
n
d
in
+2
+(
T
h
b
s
2
),
+m

R
N
A
.

T
h
b
s
H2
;+
T
S
P
2

C
C
L
8

8
.6
9
+c
h
e
m
o
k
in
e
+(
C
HC
+m

o
ti
f)
+l
ig
a
n
d
+8
+(
C
c
l8
),
+m

R
N
A
.

M
c
p
2
;+
H
C
1
4
;+
1
8
1
0
0
6
3
B
2
0
R
ik
;+
A
B
0
2
3
4
1
8
;+
S
c
y
a
8
;+
M
C
P
H2

H
IS
T
1
H
2
A
O

8
.6
3
+h
is
to
n
e
+c
lu
s
te
r+
1
,+
H
2
a
o
+(
H
is
t1
h
2
a
o
),
+m

R
N
A
.

T
U
B
B
2
B

8
.5
0
+t
u
b
u
li
n
,+
b
e
ta
+2
b
+(
T
u
b
b
2
b
),
+m

R
N
A
.

2
4
1
0
1
2
9
E
1
4
R
ik

L
Y
Z
S

8
.4
8
+l
y
s
o
z
y
m
e
+(
L
y
z
s
),
+m

R
N
A
.

L
y
s
;+
L
z
m
;+
L
z
p
;+
L
z
m
Hs
1
;+
A
I3
2
6
2
8
0

H
IS
T
1
H
2
A
G

8
.3
2

H
IS
T
1
H
2
A
H

8
.0
7
+h
is
to
n
e
+c
lu
s
te
r+
1
,+
H
2
a
h
+(
H
is
t1
h
2
a
h
),
+m

R
N
A
.

R
P
2
3
H9
O
1
6
.9

F
C
R
L
3

8
.0
6
+F
c
+r
e
c
e
p
to
r,
+I
g
G
,+
lo
w
+a
ff
in
it
y
+I
V
+(
F
c
g
r4
),
+m

R
N
A
.

4
8
3
3
4
4
2
P
2
1
R
ik
;+
C
D
1
6
H2
;+
F
c
g
R
IV
;+
F
c
g
a
m
m
a
R
IV
;+
F
c
rl
3
;+
F
c
g
r3
a

A
L
O
X
5
A
P

7
.9
9

P
T
P
N
S
1

7
.8
4

S
L
C
1
1
A
1

7
.8
3

L
A
P
T
M
5

7
.8
0
+l
y
s
o
s
o
m
a
lH
a
s
s
o
c
ia
te
d
+p
ro
te
in
+t
ra
n
s
m
e
m
b
ra
n
e
+5
+(
L
a
p
tm

5
),
+m

R
N
A
.

E
3

H
IS
T
1
H
2
A
N

7
.7
9
+h
is
to
n
e
+c
lu
s
te
r+
1
,+
H
2
a
n
+(
H
is
t1
h
2
a
n
),
+m

R
N
A
.

H
IS
T
1
H
2
A
D

7
.6
1
+h
is
to
n
e
+c
lu
s
te
r+
1
,+
H
2
a
d
+(
H
is
t1
h
2
a
d
),
+m

R
N
A
.

S
L
C
1
1
A
1

7
.5
8
+s
o
lu
te
+c
a
rr
ie
r+
fa
m
il
y
+1
1
+(
p
ro
to
n
Hc
o
u
p
le
d
+d
iv
a
le
n
t+
m
e
ta
l+
io
n
+t
ra
n
s
p
o
rt
e
rs
),
+m

e
m
b
e
r+
1
+(
S
lc
1
1
a
1
),
+m

R
N
A
.
M
G
C
1
2
9
1
5
7
;+
L
s
h
;+
N
ra
m
p
;+
It
y
;+
B
c
g
;+
M
G
C
1
2
9
1
5
6
;+
N
ra
m
p
1

H
IS
T
1
H
2
A
K

7
.5
3
+h
is
to
n
e
+c
lu
s
te
r+
1
,+
H
2
a
k
+(
H
is
t1
h
2
a
k
),
+m

R
N
A
.

C
1
Q
B

7
.4
9
+c
o
m
p
le
m
e
n
t+
c
o
m
p
o
n
e
n
t+
1
,+
q
+s
u
b
c
o
m
p
o
n
e
n
t,
+b
e
ta
+p
o
ly
p
e
p
ti
d
e
+(
C
1
q
b
),
+m

R
N
A
.

H
IS
T
1
H
2
A
H

7
.2
6
+h
is
to
n
e
+c
lu
s
te
r+
1
,+
H
2
a
h
+(
H
is
t1
h
2
a
h
),
+m

R
N
A
.

R
P
2
3
H9
O
1
6
.9

L
IP
1

7
.2
2

C
O
T
L
1

7
.0
2
+c
o
a
c
to
s
in
Hl
ik
e
+1
+(
D
ic
ty
o
s
te
li
u
m
)+
(C
o
tl
1
),
+m

R
N
A
.

2
0
1
0
0
0
4
C
0
8
R
ik
;+
1
8
1
0
0
7
4
P
2
2
R
ik
;+
C
lp

L
O
X

6
.9
7
+l
y
s
y
l+
o
x
id
a
s
e
+(
L
o
x
),
+m

R
N
A
.

T
S
C
H1
6
0
;+
A
I8
9
3
6
1
9

P
R
C
1

6
.9
5
+p
ro
te
in
+r
e
g
u
la
to
r+
o
f+
c
y
to
k
in
e
s
is
+1
+(
P
rc
1
),
+m

R
N
A
.

D
7
E
rt
d
3
4
8
e
;+
M
G
C
6
7
4
5

S
D
C
3

6
.7
2

G
L
IP
R
2

6
.6
1

B
2
3
0
3
4
3
A
1
0
R
IK

6
.4
8



 

 
51

 

T
ab

le
 1

 (c
on

tin
ue

d)
 

 

Ge
ne

Fo
ld
(C
ha

ng
e(

(D
am

ag
e/
N
o(
Da

m
ag
e)

M
us
$m

us
cu
lu
s$
De

fin
iti
on

Sy
no

ny
m
s

CD
44

6.
46

&C
D4

4&
an
tig

en
&(C

d4
4)
,&t
ra
ns
cr
ip
t&v
ar
ia
nt
&2
,&m

RN
A.

AU
02
31
26
;&L
yB
24
;&A

W
14
61
09
;&H

ER
M
ES
;&A

W
12
19
33
;&P
gp
B1

M
S4
A7

6.
43

CY
BA

6.
40

&c
yt
oc
hr
om

e&
bB
24
5,
&a
lp
ha
&p
ol
yp
ep

tid
e&
(C
yb
a)
,&m

RN
A.

b5
58

CX
CL
4

6.
40

&c
he

m
ok
in
e&
(C
BX
BC
&m

ot
if)
&li
ga
nd

&4
&(C

xc
l4
),&
m
RN

A.
Pf
4;
&S
cy
b4

ST
AB

1
6.
36

&st
ab
ili
n&
1&
(S
ta
b1

),&
m
RN

A.
KI
AA

02
46
;&S
TA

BB
1;
&M

SB
1;
&m

KI
AA

02
46
;&F
EE
LB
1

HP
6.
32

&h
ap
to
gl
ob

in
&(H

p)
,&m

RN
A.

HP
B1

SE
RP

IN
A3

N
6.
27

&se
rin

e&
(o
r&c
ys
te
in
e)
&p
ep

tid
as
e&
in
hi
bi
to
r,&
cl
ad
e&
A,
&m

em
be

r&3
N
&(S
er
pi
na
3n

),&
m
RN

A.
Sp
i2
/e
b.
4;
&S
pi
2B
2;
&S
pi
2.
2

PS
CD

4
6.
25

LG
M
N

6.
25

M
RC

1
6.
21

&m
an
no

se
&re

ce
pt
or
,&C
&ty

pe
&1
&(M

rc
1)
,&m

RN
A.

CD
20

6;
&A
W
25

96
86

F1
3A

1
6.
17

&c
oa
gu
la
tio

n&
fa
ct
or
&X
III
,&A

1&
su
bu

ni
t&(
F1
3a
1)
,&m

RN
A.

12
00
01
4I
03
Ri
k;
&A
I4
62
30
6;
&F
13
a

CD
68

6.
17

P2
RY

6
6.
17

HP
6.
13

&h
ap
to
gl
ob

in
&(H

p)
,&m

RN
A.

HP
B1

SA
A3

6.
13

PR
G4

6.
09

GL
IP
R2

6.
02

&G
LI
&p
at
ho

ge
ne

sis
Br
el
at
ed

&2
&(G

lip
r2
),&
m
RN

A.
57
30
41
4A

08
Ri
k;
&G
AP

RB
1;
&C
77
18
0

EM
P3

5.
91

&e
pi
th
el
ia
l&m

em
br
an
e&
pr
ot
ei
n&
3&
(E
m
p3

),&
m
RN

A.
HN

M
PB
1;
&Y
m
p;
&M

IB3
5;
&H
4;
&H
B4

CO
RO

1A
5.
83

&c
or
on

in
,&a
ct
in
&b
in
di
ng
&p
ro
te
in
&1
A&
(C
or
o1

a)
,&m

RN
A.

TA
CO

;&p
57
;&C

la
bp

ED
N
RB

5.
80

&e
nd

ot
he

lin
&re

ce
pt
or
&ty

pe
&B
&(E

dn
rb
),&
m
RN

A.
ET
b;
&s;
&E
TB
B;
&S
ox
10
m
1;
&E
T>
B<

;&A
U
02
25
49

HC
PH

5.
77

PF
C

5.
76

W
BS
CR

5
5.
73

M
PE
G1

5.
72

CD
52

5.
66

&C
D5

2&
an
tig

en
&(C

d5
2)
,&m

RN
A.

CL
S1
;&B

7B
Ag

;&B
7;
&A
I4
63
19
8;
&M

B7
;&C

AM
PA

TH
B1

M
M
P1

4
5.
61

&m
at
rix
&m

et
al
lo
pe

pt
id
as
e&
14
&(m

em
br
an
eB
in
se
rt
ed

)&(
M
m
p1

4)
,&m

RN
A.

AI
32
53
05
;&M

TB
M
M
PB
1;
&M

T1
BM

M
P

GR
N

5.
59

&g
ra
nu

lin
&(G

rn
),&
m
RN

A.
ep

ith
el
in

GA
S7

5.
57

&g
ro
w
th
&a
rr
es
t&s
pe

ci
fic
&7
&(G

as
7)
,&m

RN
A.

AW
12
47
66
;&G

as
7B
cb

FX
YD

5
5.
46

&F
XY
D&
do

m
ai
nB
co
nt
ai
ni
ng
&io
n&
tr
an
sp
or
t&r
eg
ul
at
or
&5
&(F
xy
d5

),&
m
RN

A.
RI
C;
&O
it2

;&E
FB
8

C1
Q
G

5.
44

KC
N
AB

2
5.
44

&p
ot
as
siu

m
&v
ol
ta
ge
Bg
at
ed

&c
ha
nn

el
,&s
ha
ke
rB
re
la
te
d&
su
bf
am

ily
,&b
et
a&
m
em

be
r&2

&(K
cn
ab
2)
,&m

RN
A.

I2
rf
5;
&F
5;
&K
cn
b3

LY
86

5.
37

&ly
m
ph

oc
yt
e&
an
tig

en
&8
6&
(L
y8
6)
,&m

RN
A.

M
DB
1;
&M

D1
FE
R1

L3
5.
27

EM
R1

5.
21

&E
GF

Bli
ke
&m

od
ul
e&
co
nt
ai
ni
ng
,&m

uc
in
Bli
ke
,&h
or
m
on

e&
re
ce
pt
or
Bli
ke
&se

qu
en

ce
&1
&(E

m
r1
),&
m
RN

A.
Ly
71
;&E
GF

BT
M
7;
&F
4/
80
;&T
M
7L
N
3;
&G
pf
48
0;
&D
D7

A5
B7

LY
Z

5.
19

&ly
so
zy
m
e&
(L
yz
),&
m
RN

A.
Lz
pB
s

FK
BP

11
5.
08

EM
P3

5.
07

&e
pi
th
el
ia
l&m

em
br
an
e&
pr
ot
ei
n&
3&
(E
m
p3

),&
m
RN

A.
HN

M
PB
1;
&Y
m
p;
&M

IB3
5;
&H
4;
&H
B4

HP
5.
05

&h
ap
to
gl
ob

in
&(H

p)
,&m

RN
A.

HP
B1

FN
1

5.
05



 

 

52 
 The top microarray result was tissue inhibitor of metalloproteinase-1 (TIMP-1); transcript 

levels from damaged muscle were 20-fold higher than transcript expression in control muscle (Table 1). 

TIMP-1 regulates matrix metalloproteinases (MMPs), which stimulate retrograde axonal transport 

immediately following tissue damage [100,225,234]. I hypothesized that MMPs are responsible for 

enhanced retrograde axonal transport following muscle damage, and that this enhancement is also 

responsible for enhanced neuronal dissemination of poliovirus. 

 To examine whether MMPs influence poliovirus transport, three conditions were tested for 

differences in viral load and diversity per tissue: vehicle only, vehicle and damage, or pan-MMP inhibitor 

GM6001 and damage. Mice were treated with vehicle or GM6001 IP once per day for four days, 

inoculated IM with 107 PFU poliovirus on the second day, and tissues were collected three days after 

infection. If stimulation of retrograde axonal transport by MMPs is involved in enhanced poliovirus 

dissemination following muscle damage, I expect that inhibiting MMPs with GM6001 would counteract 

the effect of muscle damage and return poliovirus titer and diversity to similar levels as in vehicle alone. 

The titer data, summarized in Figure 12A-B, shows no significant difference between the muscle damage 

condition and treatment with GM6001 plus muscle damage. I also examined poliovirus diversity and 

found no significant differences (Fig. 12C-D). These data suggest that GM6001 treatment does not have a 

detectable effect upon poliovirus replication orwa dissemination. It is unusual that the viral load and 

diversity per tissue was almost as high in the control mice as the muscle damage mice in these 

experiments (Fig. 12); in fact, the viral load in the sciatic nerve segments, spinal cord, and brain for 

control mice was higher than observed previously for poliovirus (Fig. 2 and [117]). This difference, in 

conjunction with titer differences discussed in other experiments below, suggests that repeated IM 

injections of vehicle is sufficient to cause similar tissue damage to needle sticks at the muscle. 
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Figure 12. (legend on following page) 
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Figure 12. Pan-MMP inhibitor GM6001 does not block damage-induced enhancement in 
neuronal poliovirus dissemination. IFNAR+/+ mice were inoculated intramuscularly with 107 PFU total 
of 10 genetically marked polioviruses. Damage (black slashes/grey triangles) or intraperitoneal injection 
of 0.5 mg GM6001 (red slashes/red triangles) was given once daily for four days. Mice were inoculated 
with poliovirus on the second day of treatment. Tissues were collected three days post-inoculation, viral 
titers were determined by plaque assay, and viral population diversity was determined by a hybridization-
based assay [116]. Poliovirus titer (A) and viral population diversity (C) are presented as mean +/- 
standard error of the mean. (B) Individual tissue titers from A. Each dot represents poliovirus titer of an 
individual tissue from a single mouse. (D) Viral population diversity per individual tissue from C. Each 
dot represents diversity in an individual tissue from a single mouse. All means and standard errors were 
calculated from 3-7 mice per condition. 
 
 
Macrophage chemoattractant protein-1 alone is insufficient to stimulate neuronal poliovirus 

dissemination 

 In conjunction with the microarray, unpublished cytokine ELISA data from Karen Lancaster 

(previously a graduate student in the laboratory) suggested that macrophage chemoattractant protein-1 

(MCP-1) expression at the transcript and protein level was also increased following muscle damage, 

independent of poliovirus infection. Constitutive expression of MCP-1 in the nervous system is detected 

in resident immune cells [5], discrete brain regions [10,47,84,206,219] and in dorsal horn of the spinal 

cord [52,221]. Increased expression of both MCP-1 and its cognate receptor CCR2 from neurons, 

astrocytes, and microglia is triggered by inflammatory responses [11,21,44,80,89,122,138] and as a result 

of peripheral nerve damage [221]. This yields enhanced permeability across the endothelial cells of the 

blood brain barrier [62,151,204,206]. I hypothesized that MCP-1 could enhance neuronal poliovirus 

dissemination by relieving barriers to poliovirus access to the CNS. 

 To test whether MCP-1 could enhance neuronal poliovirus dissemination in a similar manner as 

muscle damage, MCP-1 or vehicle was injected IM once per day for two or four days. As in previous 

experiments, mice were inoculated IM with 107 (or 105, see below) PFU diversity poliovirus on the 

second day of treatment. Tissues were collected at three days post-inoculation. Tissues were prepared for 

titer analysis by plaque assay alone, as previous data suggested that viral load and diversity data show 

similar trends at three days post-inoculation (Fig. 2). 
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 Initially, MCP-1 or vehicle injections were given once per day over four days to simulate the 

needle sticks damage procedure and mice were inoculated with 107 PFU poliovirus to follow most 

previous experiments. I observed that the viral load per tissue was similar between the needle sticks, PBS 

control, and MCP-1 conditions (Fig. 13A-B). This suggests that a series of vehicle injections could 

simulate muscle damage sufficiently to enhance neuronal poliovirus dissemination. If MCP-1 were 

stimulating poliovirus dissemination, the result would be obfuscated by the enhancement in dissemination 

due to the injection volume alone. 

 To attempt to counteract this enhancement, MCP-1 or vehicle was injected once per day for only 

two days and in a smaller injection volume (30 µL here vs. 50 µL above). This means that the mice were 

receiving only one more injection than a typical infection, as the second MCP-1 injection was given in 

conjunction with the poliovirus inoculation. These mice were still inoculated with 107 PFU poliovirus. 

Even with fewer injections, injections with vehicle alone still showed viral loads per tissue similar to 

loads measured following needle sticks damage (Fig. 13C). Viral loads following MCP-1 injections were 

similar to those after needle sticks damage as well, suggesting no MCP-1-stimulated enhancement of 

neuronal poliovirus dissemination over that caused by repeated IM injections (Fig. 13C). An additional 

experiment was performed with the same conditions, except mice were inoculated with 105 PFU 

poliovirus to determine whether a high input titer was overwhelming existing barriers and masking any 

potential changes in poliovirus dissemination. This method was also unsuccessful in distinguishing 

between vehicle and MCP-1-treated conditions (Fig. 13D). In fact, other than a single vehicle-treated 

mouse, poliovirus was not detected in the upper sciatic, spinal cord, or brain of any mice. If MCP-1 were 

playing a major and direct role in enhancing neuronal poliovirus dissemination, I would have expected to 

detect some small amount of poliovirus in at least the upper sciatic and spinal cord of MCP-1-treated 

mice. 
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Figure 13. MCP-1 does not directly stimulate neuronal poliovirus dissemination. (A) Four conditions 
were tested: Injection Control (single poliovirus inoculation, no other injections; white), Damage (damage 
once daily for four days; black slashes), PBS (PBS injected intramuscularly once daily for four days; 
blue), or MCP-1 (0.5 µg MCP-1 injected intramuscularly once daily for four days; yellow). IFNAR+/+ 
mice were inoculated intramuscularly with 107 PFU poliovirus on the second day of treatment based on 
conditions above. Tissues were collected at three days post-inoculation and viral titer quantified by plaque 
assay for 6-12 mice per condition. (B) Individual tissue titers from A, where each dot represents an 
individual tissue from a single mouse. Black lines represent mean. (C-D) IFNAR+/+ mice were 
intramuscularly injected with PBS (blue) or 0.5 µg MCP-1 (yellow) twice, once 24 hours prior to 
poliovirus inoculation and once concurrently with poliovirus inoculation. Mice were intramuscularly 
inoculated with 107 PFU (C) or 105 PFU (D) poliovirus and tissues were collected three days post-
inoculation. Viral titers were quantified by plaque assay for 5 mice per condition. For A, C, and D, results 
are presented as mean +/- standard error of the mean. Values that are significantly different, as 
determined by the Mann-Whitney test, are indicated by asterisks as follows:*, P < 0.05, **, P < 0.005, 
***, P < 0.0005. Mus, muscle, LS, lower sciatic, MS, middle sciatic, US, upper sciatic, Sp, spine, Br, 
brain. 
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Damage-induced enhancement of neuronal poliovirus dissemination occurs independently of 

secondary infections 

 Damaging the mouse hindlimb muscle with needle sticks could allow for secondary bacterial 

infections to take hold. In fact, microarray analysis indicated increased transcript expression for genes 

related to host response to bacterial infection. It is important to clarify that enhanced poliovirus 

dissemination is the result of muscle injury itself, and not a bacterial infection. To test this, needle stick 

(open tissue) damage was compared to muscle crush damage, which maintains tissue sterility. Sterile 

damage is frequently used to test response to and recovery from muscle, peripheral nerve, and spinal cord 

trauma [29,61,205]. Similar to previous experiments, 6-8 week old immune-competent mice were 

inoculated IM with 107 PFU diversity poliovirus. Sterile crush damage was given once daily for four 

days—the same timing as needle sticks damage—by repeated crushes with clean forceps. Tissues were 

collected at three days post-inoculation and analyzed for viral load and diversity. Crush damage mice 

were separated into two groups based on the vascular damage observed at the inoculation site; the muscle 

of mice with “less damage observed” had no obvious bruising or damage, whereas mice with “more 

damage observed” had apparent bruising. 

 Plaque assay data show that there is no statistical difference between the damage conditions at the 

muscle, lower sciatic, middle sciatic, or spinal cord (Fig. 14A-B). In the upper sciatic and brain, there are 

not statistically significant differences between tissues from mice with more crush damage and needle 

sticks damage, suggesting that the crush damage stimulated retrograde axonal transport and therefore 

neuronal poliovirus dissemination to a similar degree (Fig. 14A-B). There are statistically significant 

differences between tissues from less damage and more damage. This suggests that the factor enhancing 

neuronal poliovirus replication or dissemination scales with the amount of vascular damage; it may scale 

up and enhance replication or dissemination, or scale down and relieve inhibition on the system. 

 Compared to viral load trends, the diversity data show a similar pattern in the tissues nearest to 

the inoculation site: muscle, lower sciatic, and middle sciatic. While there are detectable differences 
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between control and damage conditions, there are no detectable differences between the different 

damage conditions. (Fig. 14C-D) Interestingly, diversity at the upper sciatic, spinal cord, and brain show 

different trends than the viral load data. In the upper sciatic, there are no significant differences between 

damage conditions, similar to the other tissues closer to the inoculation site (Fig. 14C-D). In the spinal 

cord and brain it appears that crush damage is either inhibiting dissemination or not stimulating it as 

strongly. Diversity for the crush damage conditions is lower than needle sticks damage, though still 

higher than controls. Though the brains from mice with more crush damage contained higher viral loads 

than tissues with less damage, the mean percent diversity for both conditions is similar (Fig. 14C). This 

suggests that replication may be independent from dissemination; while a similar percent of viral pool 

members are able to reach the brain regardless of the amount of crush damage, greater crush damage 

allows enhanced replication in the brain. 
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Figure 14. (legend on following page) 
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Figure 14. Damage-induced enhancement of neuronal poliovirus dissemination does not depend 
on secondary infections. IFNAR+/+ mice were inoculated intramuscularly with 107 PFU total of 10 
genetically marked polioviruses without damage, with needle sticks damage given once daily for four 
days, or with crush damage given once daily for four days. Mice were inoculated the second day of 
damage treatment and tissues were collected three days post-inoculation. (A) Viral titers were quantified 
by plaque assay and results are presented as mean +/- standard error of the mean. (B) Individual tissue 
titers from A, where each dot represents poliovirus titer of an individual tissue for a single mouse. Black 
lines represent mean. (C) Viral population diversity was quantified using a hybridization-based assay 
[Kuss 2008] and results are presented as mean +/- standard error of the mean. (D) Individual viral 
diversity per tissue from C, where each dot represents population diversity in an individual tissue for a 
single mouse. Black lines represent mean. Values that are significantly different, as determined by the 
Mann-Whitney test, are indicated by asterisks as follows: *, P < 0.05, **, P < 0.005, ***, P < 0.0005. 
Results determined from 6-10 mice per condition. 
 
 
 
Discussion 

 Clarifying the mechanisms which regulate poliovirus dissemination through the nervous system 

provides a better understanding of neurotropic infections and possible targets for treatment. I investigated 

the effects of molecules such as neutrotrophic growth factors, TIMP-1, and MMPs on neuronal poliovirus 

dissemination in mice use viral titer and population diversity assays. Neuronal poliovirus dissemination 

was enhanced by stimulating retrograde axonal transport with muscle damage, but injection of growth 

factors such as BDNF and CNTF did not enhance poliovirus dissemination or alter mouse survival after 

infection. It is possible that a single growth factor alone is insufficient to stimulate a detectable change in 

poliovirus dissemination, or that the growth factors stimulate retrograde axonal transport in an alternative 

pathway not used by poliovirus. 

 Microarray analysis was performed to detect differences between transcript expression in 

damaged and non-damaged tissue. Top results with previously identified functions in reducing barriers to 

peripheral nerve and CNS transport were tested for effects upon poliovirus dissemination. MMPs, 

targeted for regulation by top hit TIMP-1, can stimulate retrograde axonal transport following tissue 

damage. Inhibiting MMPs following damage of poliovirus-infected mice did not yield detectable 

differences in viral dissemination. MCP-1 was another transcript elevated in damaged muscle; MCP-1 

induces increased blood-brain barrier permeability. I expected that increased permeability would yield 
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enhanced poliovirus dissemination into the CNS, but this was not the case in mice. These results again 

suggest that damage-dependent increases in neuronal poliovirus dissemination require an alternative 

pathway from those tested above. 

 Sterile crush damage also showed similar patterns of neuronal poliovirus dissemination as needle 

sticks damage, suggesting that secondary infections are not playing a detectable role in enhancing 

poliovirus dissemination after damage. This was important to verify, as bacterial factors can stimulate 

retrograde axonal transport in some cases. 

 Though a single molecule responsible for enhancing neuronal poliovirus dissemination in mice 

was not identified, several molecules known for enhancing retrograde axonal transport were tested. It is 

possible the retrograde axonal transport system used by poliovirus is more complex and that a single 

molecule is insufficient to trigger detectable differences in viral dissemination. It may also be that 

poliovirus is exploiting a separate pathway that was not tested. This work serves as a starting point for 

future studies of the mechanisms regulating enhanced neuronal poliovirus dissemination following 

muscle damage, and how these mechanisms may play a role in neuronal dissemination of other 

neurotropic viruses. 
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CHAPTER 5: Discussion and Future Directions 

 All three viruses disseminate by different mechanisms. Though this was somewhat expected as 

YFV-17D accesses the CNS by the hematogenous route, it was surprising that poliovirus and reovirus 

T3D appeared to disseminate differently from one another. Both viruses access the CNS following 

retrograde axonal transport through peripheral nerves, but only poliovirus dissemination is enhanced 

following muscle damage. This suggests that reovirus T3D depends on a different pathway than 

poliovirus for transport through the peripheral nerves and that this pathway is not stimulated by tissue 

damage. Determining the difference between these two retrograde axonal transport pathways, if there is 

one, would provide more breadth of knowledge on dissemination of neurotropic viruses, as previous 

research has focused predominantly on a small selection of viruses. 

 In additional to clarifying differences in retrograde axonal transport requirements for distinct 

viruses, it would be interesting to pursue differences in CNS access ability between distinct viruses. 

Poliovirus can access the CNS of adult immune-competent mice, whereas reovirus can not. One possible 

explanation is that retrograde axonal transport of reovirus is less efficient than poliovirus, such that fewer 

viruses even reach the spinal cord following intramuscular inoculation. Reovirus may also be more 

efficiently cleared from peripheral nerves than poliovirus, whether this is a result of using a different 

transport pathway or more prompt identification of reovirus as foreign material by host cells. Finally, it is 

likely that receptor avaiability is not equal for both viruses. In fact, it was recently suggested that the age-

dependent difference in reovirus access to the CNS may be the result of decreased receptor availability  

throughout the mouse life-span. Determining whether altered receptor expression in adult-hood could 

relieve the block to reovirus dissemination into the CNS is an interesting next step in understanding the 

differences among neurotropic viruses. 

 Though there is still no clear mechanism by which damage-dependent enhancement of retrograde 

axonal transport increases poliovirus dissemination, multiple pathways of interest shown to play roles in 

stimulating retrograde axonal transport and host responses to tissue damage were tested. The mechanisms 
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regulating host response to damage are complex, making it difficult to identify a single molecule 

capable of detactably altering polivirus dissemination. Neurotrophic growth factors such as BDNF were 

previously demonstrated to enhance retrograde axonal transport, but the data above suggest that 

poliovirus does not associate with the growth factor-containing complexes during transport. In fact, even 

though these growth factors are capable of protecting host cells during viral infection, there were no 

detectable differences in the survival or viral dissemination in mice co-injected with individual growth 

factors and polivirus. This suggests that the growth factors may not be playing the same role healing role 

during viral infection. Some research suggests that viruses similar to poliovirus may be moved along the 

retrograde axonal transport system by inclusion in multivesicular bodies. Identifying the other molecules 

or cofactors with which poliovirus, PVR, and the dynein motor are associated prior to and during 

poliovirus dissemination through the sciatic nerve would help clarify the mechanism of enhancement for 

polivirus and. It would also serve as a point of comparison with other viruses, to understand why muscle 

damage does or does not enhance viral dissemination. 

 It was unexpected, yet interesting, to observe that even single mock injections can cause 

sufficient damage to stimulate enahanced poliovirus dissemination. I had struggled with stimulating a 

sufficient amount of damage with needlesticks (data not shown). Congruently, sterile crush damage at the 

inoculation site was also sufficient to enhanced poliovirus titer in the brain. In contrast to previous 

experiments investigating changes in poliovirus titer and diversity, I observed that there was not a strong 

correlation between altered viral titer and population diversity. In the brain, increased poliovirus titer but 

not viral diversity suggests that polivoirus may be replicating more efficiently. Due to this and failure of 

other individual molecules to stimulate transport, it is possible that enhanced poliovirus dissemination 

following damage is a result of changes to vascular factors rather than neurotrophic factors. Therefore, it 

is important to test for differences in vascular factor expression and function following muscle damage, 

with and without polioirus infection. Understanding the mechanisms behind poliovirus dissemination will 
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help to clarify the details not only of poliovirus transport, but help develop targets for future 

pharmacological treatments. 
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