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Medicinal chemistry and reaction development have influenced one another in the field 

of organic chemistry. The synthesis of therapeutic small molecules often requires the use of 

practical synthetic methodologies, while reaction development is frequently inspired by the 

demands of medicinal chemistry.  
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First the development of small molecule inhibitors of hypoxia inducible factors, which 

are heterodimeric transcription factors that have been implicated in a number of cancer 

environments, will be discussed. Two scaffolds have been designed and evaluated for their 

ability to selectively bind within the binding domain of the hypoxia inducible factor-2α isoform 

and inhibit heterodimerization, with the most potent agonist exhibiting a half maximal inhibitory 

concentration value of 23 nanomolar. Inspired by the stereospecific mode of action exhibited by 

the diaryl-tetrazolo-tetrahydropyrimidine-based scaffold of hypoxia inducible factor-2 

antagonists, a potential co-catalyst system for the asymmetric synthesis of these derivatives has 

been identified, utilizing a synergistic combination of a cinchona alkaloid-based primary amine 

and acid catalysts. While the enantioselectivity of this reaction as it currently stands remains 

modest, these products can be isolated in up to 96:4 enantiomeric ratio through recrystallization 

efforts.  

Secondly, the development of a series of general and efficient methods for the synthesis 

of functionalized olefin products from simple unsaturated systems will be described. 

Unfunctionalized olefins and dienes are ideal substrates for chemical synthesis due to their low 

cost and ease of availability. However they present a variety of challenges when attempting to 

selectively differentiate between sterically and electronically similar carbon-hydrogen bonds. 

The processes described herein exploit the ability of sulfurimide and sulfurdiimide reagents to 

undergo hetero-ene reactions with terminal and internal olefins as well as [4+2] couplings with 

dienes. These reactions result in reactive intermediates that are utilized in a host of chemical 

transformations, including [2,3]-rearrangements to generate allylic amines and alcohols, 

Grignard coupling to generate linear and branched alkylated products, and aminoarylation 

chemistry. Most notably, a regio- diastereo- and enantioselective synthesis of multifunctional 

allylic sulfinimides from internal olefins is discussed.  
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CHAPTER ONE 

The Development of Allosteric Inhibitors of the  

HIF-2α  Transcription Factor 

 

1.1 Background 
 

1.1.1 Introduction 

While numerous advanced therapies have emerged throughout the years for the 

treatment of various cancer forms, cancer related mortality remains the primary cause of 

death in nearly half of the United States.1 These diseases are frequently a consequence of 

mutations in the host’s genetic makeup, leading to the disruption of normal metabolic 

pathways and the evolution of new pathways through which the deleterious effects 

attributed to cancer evolve.  As a result more and more research has shifted in focus to 

the development of new therapies targeting the regulation of gene expression.  

Specifically, each year, over 60,000 new cases of kidney cancer are diagnosed with 

less than a 15% likelihood of survival beyond five years.1 Renal clear cell carcinomas 

(RCC), the most common form of kidney cancer, are remarkably analogous to one 

another, exhibiting hypoxia inducible factor (HIF)−dependent pathogenesis.2 While 

numerous experimental and clinical reports exist to support HIF-targeted cancer therapy, 

the development of new drugs targeting hypoxic cancer cells remains wanting.3    

 

1.1.2 The HIF Family of Transcription Factors 

The hypoxic response pathway regulates the cellular response to changing oxygen 

availability within vertebrate cells, modifying gene expression and allowing for anaerobic 
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metabolism and increased oxygen delivery.4-6 While human cells necessitate continuous 

and sufficient O2 supplies, this pathway is often misused in certain tumor environments, 

driving the growth and spread of the disease.3 More specifically, the upregulation of HIF 

is associated with an increase in angiogenesis, tumorigenesis, and therapeutic resistance 

through the regulation of downstream transcriptional targets including, for example, 

VEGF (angiogenesis), EPO (metabolic adaption), Nip3 (prevention of apoptosis) and 

MMP2 (metastasis).7-10  

The HIF transcription factor itself is a protein heterodimer within the bHLH−PAS 

(basic helix−loop−helix−period-ARNT-single minded) family of transcriptional proteins 

consisting of a HIF-α subunit (which exists in 3 separate isoforms HIF-1α, HIF-2α or 

HIF-3α) and a constitutively expressed HIF-β  (ARNT) subunit (Figure 1.1.1)11. When 

the cellular environment is rich in oxygen, also known as normoxic conditions, the HIF-α 

subunit is negatively regulated through a series of proline and asparagine hydroxylases to 

promote von-Hippel–Lindau-tumour-suppressor (pVHL)-dependent proteolysis and 

prevent the recruitment of co-activators respectively.12  

Figure 1.1.1 

 

Under low oxygen (or hypoxic) conditions, however, the HIF degradation pathway 

is attenuated. Instead, the HIF-α subunit translocates from the cytoplasm into the nucleus 

where it can engage HIF-β through a series of interactions involving bHLH and PAS 

HIF-1α  
HIF-2α  
HIF-3α  
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domains, and recruit coactivators necessary for transcriptional regulation of over 100 

genes.10,13-20  

Notably, the PAS-B domain of the HIF-2α isoform has been extensively studied in 

recent years revealing an unusually large 290Å3 cavity buried within the domain (Figure 

1.1.2).21 While the identity of the endogenous ligand remains unclear, the potential for 

allosteric inhibition via small molecule binding within this cavity serves as a promising 

strategy for the disruption of the HIF-2α regulatory pathway and thus a potential therapy 

for RCC.21-25  

Figure 1.1.2 

 

 

1.2 Synthesis and Evaluation of Scaffold I Small Molecule Inhibitors  
 

1.2.1 Initial Screening for HIF-2α  Inhibition 

In conjunction with several labs, our initial studies began with an extensive data set 

compiled from a high throughput screen of greater than 200,000 small molecules 

presenting diverse functionality.26 “Hits” within the screening process were determined 

based on a compound’s ability to inhibit HIF-2α – HIF-β dimerization, as determined by 
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a homogenous, bead-based luminescence proximity assay (AlphaScreen).27  

This assay comprises of two tagged proteins (i.e., GST-HIF-2α PAS-B* and ARNT 

PAS-B*-FLAG domains, where PAS-B* denotes the HIF-2α E247R and ARNT PAS-B 

R362E variants used to crystallize complexes with small molecule ligands) that 

luminesce when in close proximity with one another. This measurable signal is 

diminished, however, when antagonistic compounds are bound within the PAS-B cavity 

inducing conformational changes that prevent the tagged proteins from interacting.   

1.2.2 Library Synthesis of Scaffold I Analogues  

Compound 1.1, with an IC50 of 0.4 μM in the AlphaScreen and a KD value of 1.1 

μM by isothermal titration calorimetry (ITC) analysis served as a starting point for lead 

optimization based on its promising activity (Scheme 1.2.1). This structure has been 

shown to bind within the aforementioned HIF-2α PAS-B cavity and perturb the 

heterodimerization process. Diversification of 1.1 to a variety of scaffold I HIF-2α 

antagonists focused in on three major regions: (1) modification of the left hand A-ring 

portion characterized by a nitro-bearing oxadiazole, (2) variation of the central 

heteroatom-containing linker, and (3) diversification of the right hand aromatic B-ring 

region.  
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Scheme 1.2.1  

 

Initial efforts to study scaffold I inhibitors focused on coupling 5-chloro-4-
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variation of the linker to include S- and O-linked analogues was readily achieved through 

couplings with thiophenol- and phenol-based compounds at room temperature under 

basic conditions (1.5a-d and 1.6 respectively).  

Scheme 1.2.2 
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Scheme 1.2.3 
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1.2.3 Analysis of Inhibitory Activity of Scaffold I Analogues  

The initial library of benzoxadiazole-based compounds was assayed for inhibitory 

activity against HIF-2α PAS-B/HIF-β PAS-B heterodimerization. Preliminary data was 

gathered through the use of an AlphaScreen assay as described previously. Moreover, a 

negative control incorporating a S304M mutation within the HIF-2α PAS-B domain was 

designed to effectively block ligand binding within the PAS-B cavity while still retaining 

the ability to form a heterodimer complex with HIF-β.22,23  

The IC50 of many compounds was not determined (ND) due to activity against both 

the wild type and S304M mutant HIF-2α PAS-B, potentially due to alternative inhibitory 

pathways. These included predominantly the linker-modified derivatives 1.4c, 1.5, and 

1.6. Benzylamine derived 1.4e and 1.4i, however, retained some appreciable activity in 

the assay (Table 1.2.1).  

Table 1.2.1- AlphaScreen IC50 Values for Linker-Modified Analogues 

   

 

 

 

 

 

 

Alternatively, the aniline-derived analogues proved to fare better in the assay, 

revealing trends in inhibitory activity based on B-ring substitution patterns (Table 1.2.2). 

For example, while para-monosubstituted analogues 1.3b, 1.3c, and 1.3e were entirely 

inactive, some meta-monosubstituted analogues retained modest activity (m-Cl 1.3d– 

Compound IC50 (µM) Compound IC50 (µM)

1.4a > 5

1.4b NA

1.4c ND

1.4d NA

1.4e 0.33

1.4f 2.0

1.4g > 10

1.4h NA

1.4i 0.5

1.5a ND

1.5b ND

1.5c ND

1.6

ND: Compound disrupts the control, NA: No activity

ND
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IC50 = 0.18 μM and m-CF3 1.3f– IC50 = 0.46 μM). Ultimately, disubstituted aniline-

based analogues exhibited the strongest inhibitory activity with para-meta-disubstituted 

1.3l displaying the most potent disruption.  

Table 1.2.2- AlphaScreen IC50 Values for Diarylamine Analogues 

 

 

 

 

 

 

 

 

ITC testing was explored for the most active analogues to determine relative 

binding affinity within the HIF-2α PAS-B cavity. KD values not only revealed good 

correlation with the IC50 values obtained from the AlphaScreen assay, but also confirmed 

1.3q to be the most active inhibitor tested in the scaffold I small molecule library (Table 

1.2.3). Interestingly, 1.3d, which differs from 1.3q only in the absence of a meta-fluoro 

group on the B-ring, exhibits a two-fold reduced binding affinity in comparison. Similar 

observations were made when the meta-chloro functionality of 1.3q was substituted for a 

meta-fluoro (1.3o) or removed altogether (1.3p). These contrasting KD values suggest that 

both the meta-fluoro and meta-chloro substitutions of 1.3q play a direct role in the 

observed activity of this molecule.   

 

Compound IC50 (µM) Compound IC50 (µM)

1.3a NA

1.3b NA

1.3c NA

1.3d 0.18

1.3e NA

1.3f 0.46

1.3g 2.8

1.3h 0.76

1.3i

1.3j 0.12

1.3k 0.17

1.3l 0.09

1.3m NA

ND: Compound disrupts the control, NA: No activity

1.3n 0.43

1.3o 2.0

1.3p 2.1

1.3q

ND

0.1
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Table 1.2.3- ITC KD Values for Select Substrates 

 

 

 

 

 

 

 

The loss of binding selectivity for S- and O-linked analogues suggests an important 

role for the hydrogen-bonding ability of N-based linkers. To further test this hypothesis, 

N-methylated 1.8 was synthesized by a collaborator and tested independently (Scheme 

1.2.5). Trifluoromethyl(3-chloro-5-fluorophenyl)carbamate (1.7) underwent N-

methylation, deprotection and subsequent coupling with 1.2 to furnish 1.8. Results reveal 

markedly reduced inhibitory activity (IC50 >3 µM) in comparison to the analogous non-

methylated 1.3q, further confirming the important role that hydrogen-bonding ability 

plays in the linker portion.  

Scheme 1.2.5 
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To better understand the SAR trends seen in both the AlphaScreen and ITC assays, 

NMR-based structural analysis was paired with X-ray crystallographic studies utilizing 

co-crystal structures of our compounds bound within an engineered, high affinity HIF2 

PAS-B* heterodimer (HIF-2α E247R and ARNT PAS-B R362E domains, Figure 1.2.1). 

Co-crystal structures of meta-fluorinated 1.3p and lead compound 1.3q show both 

compounds bound within the HIF-2α PAS-B internal cavity, favoring a weak 

electrostatic interaction between the nitro functionality of the A-ring and the H248 

imidazole side chain. The specificity in positioning required to accommodate this 

interaction consequently situates the B-rings of these molecules adjacent to the β-sheet 

directly utilized for HIF dimerization.  

Figure 1.2.1 

 

 

 

 

 

 

 While the B-rings of both 1.3p and 1.3q occupy the same binding site within the 
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forced instead into a suboptimal site against the PAS-B β-sheet. This β-sheet interaction 

induces a series of notable conformational changes throughout the PAS-B domain as 

observed by 15N/1H HSQC NMR studies of a 15N-enriched HIF-2α PAS-B–1.3q 

complex.   

 We then shifted our focus to the A-ring portion of scaffold I. The co-crystallization 

studies revealed an open pocket within the binding space para to the nitro substituent of 

the A-ring of 1.3p and 1.3q. Maintaining the optimal linker and B-ring attributes, our 

efforts fixated on filling the aforementioned pocket with steric bulk. To this end, I 

coupled dibromo-4-nitrobenzoxadiazole 1.9 with 1.10 utilizing the standard thermal 

conditions, followed by regioselective displacement of the 5-bromo substituent through a 

Suzuki-Miyaura cross coupling with phenylboronic acid yielding 1.11 (Scheme 1.2.6). 

Regioselectivity is thought to stem from both a larger Coulombic term imposed at 

position 5, as well as superior linear conjugation maintained throughout the system in the 

reactive intermediate 1.12 over 1.13.  

Scheme 1.2.6 
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Furthermore, the optimal electronic nature of the A-ring was probed by looking at 

analogues with different heteroaromatic rings. Collaborators on this project were able to 

promote nucleophilic aromatic displacements of chloride precursors 1.14, 1.15 and 1.16 

with 1.10 to provide 1.17, 1.18 and 1.19 respectively (Scheme 1.2.7). The absence of the 

oxadiazole moiety and its effect on binding affinity was also researched. To this aim, I 

synthesized analogue 1.21 via Buchwald-Hartwig coupling of nitrochlorobenzene 1.20 

and aniline 1.10.  

Scheme 1.2.7 
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respectively. These results indicate an important role played by the electronic and steric 

environment of the A-ring.   

The role of the nitro group of 1.3q was investigated next in an effort to further 

understand the significance of the weak electrostatic interaction with H248 in the HIF-2α 

PAS-B internal cavity (Scheme 1.2.8). Exclusion of the nitro group entirely (synthesized 

by collaborators through a modified Buchwald-Hartwig coupling of 5-chloro-

benzoxadiazole 1.22 and aniline 1.10) gave relatively insoluble 1.23, which exhibited 

reduced activity in the AlphaScreen as well as additional activity in the S304M control. 

Reduction of the nitro functionality of 1.3q to arylamine 1.24 likewise resulted in 

diminished activity. These results were further validated through ITC and NMR 

experiments (K
D = 3 μM for 1.23, 6 μM for 1.24).  

 Scheme 1.2.8 
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Scheme 1.2.9 

 

Finally, 4-sulfonamidobenzoxadiazoles 1.29 and 1.30 were synthesized (Scheme 

1.2.10). The metabolic stability of sulfonamides offers an advantage to nitro groups, 

which generally suffer from adverse pharmacokinetic properties. Moreover, sulfonamides 

retain the electron deficient character of the A-ring analogous to their nitro counterparts. 

To this end, I coupled 5-chlorobenzoxadiazole-4-sulfonyl chloride (1.28) with 

methylamine and dimethylamine prior to reaction with aniline 1.10. While both 1.29 and 

1.30 failed to attenuate the dimerization process, they did exhibit modest binding affinity 

within the HIF-2α internal cavity (KD = 5 µM).   
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1.2.4 Conclusions  

Data collected through AlphaScreen and ITC assays of a diverse assortment of 

analogues have identified a series of competent small molecule inhibitors of HIF-2α–

HIF-β heterodimerization. This data, in conjunction with NMR-based structural analysis 

and X-ray crystallographic studies, offers insight into the protein–small molecule 

interactions required for selective binding within the HIF-2α PAS-B internal cavity and 

destabilizing interactions that attenuate heterodimerization. Of the series, analogue 1.3q 

exhibited the highest binding affinity (IC50 = 0.1 µM, KD = 0.09 µM). Co-crystal 

structures of this compound within the HIF-2α PAS-B internal cavity show the presence 

of a stabilizing electrostatic interaction between the nitro moiety of 1.3q and the H248 

imidazole side chain of the binding pocket. Additionally, conformational changes within 

the PAS-B domain were noted and accredited to steric clash between the meta-fluoro 

functionality of the B-ring and the PAS-B β-sheet. Attempts to modify the linker and A-

ring portions of scaffold I failed to garner any substantial increase in inhibitory activity. 

 

 

1.3 Progress Toward the Stereoselective Synthesis of Scaffold II Small 

Molecule Disruptors of HIF-2α  
 

1.3.1 Identification of Scaffold II Allosteric Inhibitors of HIF-2α  

With the completion of our synthetic studies on scaffold I small molecule 

antagonists of HIF-2α, we endeavored to identify and optimize a more potent second 

scaffold (hereafter referred to as scaffold II).24 Upon further review of lead compounds 

from the original high throughput screen of >200,000 small molecules, tetrazolo-

tetrahydropyrimidine-based hits stood out for several reasons (Scaffold II, Figure 1.3.1). 

First, tetrazolo-tetrahydropyrimidines have been shown to possess biological activity in 
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other biological settings.28,29 Secondly, while the nitro functionality in scaffold I proved to 

be necessary for activity, it also posed pharmacokinetic disadvantages that are averted in 

this second scaffold. Additionally, tetrazole moieties increase compound solubility and 

have been widely studied as pharmacophores for carboxylic acids.30,31 Finally, these 

compounds are unique in that they are chiral molecules and thus may prove to exhibit 

interesting selectivity. 

After an extensive library screen, tetrazolo-tetrahydropyrimidine 1.31 was 

identified as the most potent inhibitor of HIF-2α–HIF-β heterodimerization. Furthermore, 

our studies revealed stereo-preferential binding of this compound, where (S,R)-1.31 alone 

presented inhibitory activity (IC50 = 43 nM, KD = 23 nM) and (R,S)-1.31 was entirely 

inactive (IC50 = >30,000 nM, KD = >>2,000 nM).  

Figure 1.3.1 

 

Co-crystal structures of dibromo-substituted analogue  (S,R)-1.32 bound within the 

HIF-2 PAS-B*cavity were instrumental in defining the absolute stereochemistry of the 

active enantiomeric series and providing insight into the structural features that govern 

binding affinity. Comparison of ternary complex (S,R)-1.32-HIF-2 PAS-B* to 1.3q-HIF-

2 Pas-B* revealed that both small molecule scaffolds bind within the same pocket of the 
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Most notably, the C-ring of (S,R)-1.32 was shown to occupy the same binding 

pocket as the A-ring of 1.3q, but lays perpendicular in comparison. This change in 

orientation forces the meta-bromo substituent of the C-ring within close proximity to the 

V302 residue of the cavity allowing for a stabilizing halogen bond with the backbone 

carbonyl. Altogether, these binding interactions observed with (S,R)-1.32-HIF-2 PAS-B* 

lead to a series of conformational changes within the binding domain, allowing for an 

expanded internal cavity 40-65% larger in volume than that seen with scaffold I 

inhibitors and increasing the disruption of important intermolecular contacts with the 

HIF-β PAS-B domain. 

Figure 1.3.2 

 

 

1.3.2 Strategy for the Enantioselective Synthesis of Scaffold II Analogues 

Based on our studies of diaryl-tetrazolo-tetrahydropyrimidine antagonists of HIF-

2α, which revealed a stereoselective mode of binding within the HIF-2α PAS-B internal 

cavity, we became interested in developing an efficient and cost-effective method of 

accessing these chiral ligands as a single enantiomer. To this aim, we hypothesized that 
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the coupling of 5-aminotetrazole (1.33) with the requisite chalcones (1.34) could be 

rendered enantioselective through the use of an acid and chiral amine combined catalyst 

system (1.35, Scheme 1.3.1). A subsequent diastereoselective reduction by sodium 

borohydride would furnish the corresponding diaryl-tetrazolo-tetrahydropyrimidines 

1.37, thus representing the first enantioselective path to these products.  

Scheme 1.3.1 

 

In general, chiral aza-heterocycles have become prevalent architectures in bioactive 
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1.3.3 Progress Toward an Asymmetric Tandem Aza-Michael 

Addition/Cyclocondensation 

 We began our studies looking at the tandem aza-Michael addition-

cyclocondensation of 5-aminotetrazole (1.33) with trans-chalcone (1.31) to form 

dihydropyrimidine 1.32. Because (±)-1.39 was found to be substantially insoluble in most 

organic solvents, therefore complicating product analysis, a modified single-flask 

operation was developed to covert 1.39 to the slightly more soluble tetrahydropyrimide 

1.33 in situ. Our preliminary findings are detailed in Table 1.3.1 below.  

 In the absence of any catalyst we failed to see significant product formation over 

the course of one day, even at elevated temperatures (entry 1). Quinine-based amine 1.41 

(10 mol%) and BINOL-based phosphoric acid (R)-1.42a (20 mol%) were chosen as the 

starting point for the cooperative-catalyst screen based on their precedent as a synergistic 

catalyst system for enantioselective enone functionalization.44-46 To our delight, product 

1.40 was formed in 68% yield and 67:33 enantiomeric ratio (er) (entry 2). Switching the 

acid from (R)-1.42a to (S)-1.42a produced 1.40 in elevated yield but slightly diminished 

er (entry 3). Interestingly, the product was generated as the same major enantiomer 

regardless of the identity of the phosphoric acid co-catalyst. This observation prompted 

us to examine achiral phosphoric acid 1.42b under the reaction conditions. Again, 

tetrahydropyrimidine 1.40 was accessed in comparable yield and enantiomeric ratio, 

indicating that enantioface selectivity is predominantly derived from the amine catalyst 

(entry 4). Furthermore, the absence of a matched/mismatched catalyst pair suggests a 

mechanism in which the acid’s role as a catalyst is dependent on its pKa rather than 

sterics. 
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Table 1.3.1 

 

   

 To confirm that this process relies on a dual catalytic system, we ran the reaction 

with each catalyst independently (entries 5 and 6). In the absence of amine 1.41 product 

was formed in greatly diminished yield. Interestingly, while yield wasn’t dramatically 

affected in the absence of acid, the product was isolated as a racemate. These findings 

altogether support the proposed mechanism shown below (Scheme 1.3.2) in which the 

achiral acid forms a contact ion-pair network with imine intermediate 1.34.47 The 

resulting ionic-network controls the stereofacial selectivity of nucleophilic attack of the 

5-aminotetrazole (1.33) into the imine intermediate. Subsequent cycloaddition initiated 

by a second nucleophilic attack of the primary amine into the imine of 1.35 affords the 

desired product 1.39.  
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Scheme 1.3.2 

 

 While the optimization of this reaction remains in progress, our goal to access these 

dihydropyrimidine products with enantiopurity suited for biological analysis was made 

possible through recrystallization efforts (Scheme 1.3.3). The aforementioned insolubility 

of cycloadduct 1.39 arises from the formation of densely packed crystal structures of 

racemic compound. Conversely, enantiopure 1.39 exhibits markedly higher solubility and 

remains in solution. This characteristic is similarly exhibited by proline and has been 

studied extensively.48,49 As a result, 1.39 has been obtained in up to 97:3 er (32% overall 

yield) by simply taking advantage of this solubility difference and filtering out the 

racemate in CH2Cl2.  
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Scheme 1.3.3  

 

 
1.3.4 Conclusions  

Inspired by the stereospecific mode of action exhibited by diaryl-tetrazolo-

tetrahydropyrimidine-based HIF-2 antagonists, we have identified a potential co-catalyst 

system for the asymmetric organocatalytic aza-Michael/cyclocondensation cascade 

between 5-aminotetrazole and trans-chalcone. This reaction involves a synergistic 

combination of cinchona alkaloid-based primary amine and acid catalysts. While the 

enantioselectivity of this reaction as it currently stands remains modest, 

enantioenrichment through recrystallization has afforded the product in up to 97:3 er.  

 

 

1.4 Experimental 
 

1.4.1 Materials and Methods 

All reactions were carried out under an atmosphere of nitrogen in flame-dried 

glassware with magnetic stirring unless otherwise indicated. Commercially obtained 

reagents were used as received. Liquids and solutions were transferred via syringe. 1H 

and 13C NMR spectra were recorded on a Varian Inova (500 MHz 1H frequency), or a 

Varian NMR system (400 MHz or 600 MHz 1H frequency). Data for 1H NMR spectra are 

reported relative to chloroform as an internal standard (7.26 ppm) or acetone (2.05 ppm) 
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or DMSO (2.54 ppm) and are reported as follows: chemical shift (d  ppm), multiplicity, 

coupling constant (Hz), and integration. Data for 13C NMR spectra are reported relative to 

chloroform as an internal standard (77.2 ppm) or acetone (29.9 ppm) and are reported in 

terms of chemical shift (d ppm). Mass Spectrometry data were obtained on an Agilent 

1100 Series LCMS system, which was also used to monitor the progress of reactions. 

Isothermal calorimetry data was acquired using a Microcal VP calorimeter. 

 

1.4.2 Preparative Procedures 

Synthesis of Aniline Derivatives 1.3a-q:  

 

A flame-dried reaction vial was charged with benzoxadiazole 1.2 (50 mg, 0.25 mmol) 

and anhydrous DMF (1.5 mL). The mixture was treated with an aniline (0.25 mmol) and 

stirred at 90 °C for 3 h. After cooling to room temperature, the reaction was then diluted 

with ethyl acetate (5 mL) and washed with water (3 x 5 mL). The combined aqueous 

layers were extracted with ethyl acetate (2 x 5 mL). The combined organic layers were 

washed with brine (10 mL), dried over MgSO4, and concentrated under reduced pressure. 

The resulting powder was recrystallized from 30% ethyl acetate in hexanes to provide 

crystals of the desired aniline derivative. 
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1.3a: Following the typical procedure for the synthesis of aniline derivatives with m-

anisidine, recrystallization provided yellow crystals of the desired product 1.3a (50.1 mg, 

70% yield):   

1H NMR (400 MHz, Acetone-d6) δ 8.10 (d, J = 9.9 Hz, 1H), 7.50 (m, 2H), 7.14 (dd, J = 

2.1 Hz, 2.1 Hz, 1H), 7.08 (m, 2H), 3.87 (s, 3H) 13C NMR (100 MHz, Acetone-d6) 

δ 160.9, 146.9, 145.1, 141.3, 130.6, 130.6, 130.1, 126.1, 123.8, 120.7, 118.5, 93.8, 55.1.  

LCMS (ESI) calc'd for [C13H9N4O4]–([M-H]–): m/z 285.1, found 285.0. 

 

 

1.3b: Following the typical procedure for the synthesis of aniline derivatives with 4-

fluoroaniline, recrystallization provided orange crystals of the desired product 1.3b (60.9 

mg, 88% yield):   

1H NMR (400 MHz, Acetone-d6) δ 11.73 (bs, 1H), 8.08 (d, J = 9.9 Hz, 1H), 7.60 (m, 2H), 

7.44 (d, J = 9.9 Hz, 1H), 7.38 (m, 2H) 13C NMR (100 MHz, Acetone-d6) δ 163.0 (d, J = 

252.0 Hz), 150.3, 147.8, 146.2, 130.0 (d, J = 8.9 Hz), 127.2, 127.1, 125.3, 117.6 (d, J = 

23.0 Hz), 108.8.  LCMS (ESI) calc'd for [C12H6FN4O3]–([M-H]-): m/z 273.0, found 273.0. 
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1.3c: Following the typical procedure for the synthesis of aniline derivatives with 4-

chloroaniline, recrystallization provided orange crystals of the desired product 1.3c (36.6 

mg, 51% yield):   

1H NMR (400 MHz, Acetone-d6) δ 11.7 (bs, 1H), 8.10 (d, J = 9.9 Hz, 1H), 7.6 (m, 4H), 

7.50 (d, J = 9.9 Hz, 1H) 13C NMR (100 MHz, Acetone-d6) δ 147.8, 146.2, 142.3, 134.3, 

131.2, 131.2 130.9, 129.4, 127.2, 125.3.  LCMS (ESI) calc'd for [C12H6ClN4O3]–([M-H]):  

m/z 289.0, found 289.0. 

 

1.3d: Following the typical procedure for the synthesis of aniline derivatives with 3-

chloroaniline, recrystallization provided yellow crystals of the desired product 1.3d (54.4 

mg, 75% yield):   

1H NMR (400 MHz, Acetone-d6) δ 11.7 (bs, 1H), 8.12 (d, J = 9.9 Hz, 1H), 7.65 (m, 1H), 

7.61 (d, J = 9.9 Hz, 1H), 7.65 (m, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.52 (m, 3H) 13C NMR 

(100 MHz, Acetone-d6) δ 148.5, 146.9, 145.1, 138.4, 138.3, 134.7, 131.3, 128.1, 126.7, 

126.3, 125.3, 124.3.  LCMS (ESI) calc'd for [C12H6ClN4O3]–([M-H]–):  m/z 289.0, found 

289.0. 

 

 

1.3e: Following the typical procedure for the synthesis of aniline derivatives with 4-

bromoaniline, recrystallization provided orange crystals of the desired product 1.3e (55.5 

mg, 67% yield):   
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1H NMR (400 MHz, Acetone-d6) δ 11.7 (bs, 1H), 8.10 (d, J = 9.9 Hz, 1H), 7.77 (d, J = 

8.8 Hz, 2H), 7.52 (m, 3H) 13C NMR (100 MHz, Acetone-d6) 

δ 147.8, 146.0, 134.0, 133.0, 127.4, 127.4, 127.3, 125.3, 124.8, 122.1 LCMS (ESI) calc'd 

for [C12H6BrN4O3]–([M-H]–): m/z 333.0, found 333.0. 

 

 

1.3f: Following the typical procedure for the synthesis of aniline derivatives with 3-

trifluoromethyl aniline, recrystallization provided yellow crystals of the desired product 

1.3f (43.8 mg, 54% yield):   

1H NMR (400 MHz, Acetone-d6) δ 11.80 (bs, 1H), 8.10 (d, J = 9.8 Hz, 1H), 7.95 (s, 1H), 

7.87 (m, 1H), 7.84 (m, 2H), 7.53 (d, J = 9.8 Hz, 1H).  13C NMR (100 MHz, Acetone-d6) 

δ 148.8, 146.8, 145.1, 137.9, 131.6 (q, J = 32.5 Hz), 131.0, 130.7, 126.1, 124.7 (q, J = 3.8 

Hz), 124.4, 123.8 (q, J = 271 Hz), 123.7 (q, J = 3.9 Hz), 120.0  LCMS (ESI) calc'd for 

[C13H6F3N4O3]–([M-H]–): m/z 323.0, found 323.0. 

 

 

1.3g: Following the typical procedure for the synthesis of aniline derivatives with 3-

nitroaniline, recrystallization provided red crystals of the desired product 1.3g (45.9 mg, 

61% yield):   

1H NMR (400 MHz, Acetone-d6) δ 11.81 (bs, 1H), 8.47 (dd, J = 2.1 Hz, 2.1 Hz, 1H), 8.34 

(d, J = 8.2 Hz, 1H), 8.13 (d, J = 9.9 Hz, 1H), 8.04 (d, J = 9.0 Hz, 1H), 7.90 (dd, J = 8.1 
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Hz, 8.1 Hz, 1H), 7.60 (d, J = 9.8 Hz, 1H).  13C NMR (100 MHz, Acetone-d6) 

δ 146.9, 145.7, 138.3, 133.0, 131.1, 128.3, 126.2, 124.8, 124.5, 123.3, 

122.6, 121.8.  LCMS (ESI) calc'd for [C12H6N5O5]–([M-H]–): m/z 300.0, found 300.0. 

 

 

1.3h: Following the typical procedure for the synthesis of aniline derivatives with 3-

chloro-2-fluoroaniline, recrystallization provided yellow crystals of the desired product 

1.3h (51.3 mg, 67% yield):  

1H NMR (400 MHz, Acetone-d6) δ 11.5 (bs, 1H), 8.15 (d, J = 9.9 Hz, 1H), 7.67 (m, 2H), 

7.46 (m, 2H). 13C NMR (100 MHz, Acetone-d6) δ 153.5 (d, J = 249.0 Hz), 147.9, 146.0, 

135.1, 131.5, 129.0, 127.0, 127.0, 126.7 (d, J = 5.2 Hz), 125.7, 122.7 (d, J = 16.3 Hz), 

96.0. LCMS (ESI) calc'd for [C12H5ClFN4O3]–([M-H]–): m/z 307.0, found 307.0. 

 

 

1.3i: Following the typical procedure for the synthesis of aniline derivatives with 2-

chloro-3-fluoroaniline, recrystallization provided yellow crystals of the desired product 

1.3i (50.4 mg, 66% yield):  

1H NMR (400 MHz, Acetone-d6) δ 11.6 (bs, 1H), 8.15 (d, J = 9.9 Hz, 1H), 7.60 (m, 2H), 

7.50 (ddd, J = 1.6 Hz, 8.8 Hz, 8.8 Hz, 1H), 7.39 (dd, J = 2.7 Hz, 9.8 Hz, 1H) 13C NMR 

(100 MHz, Acetone-d6) δ 158.9 (d, J = 248.0 Hz), 148.4, 146.9, 145.0, 136.2, 136.1, 

129.0 (d, J = 9.1 Hz), 126.8, 126.0, 124.7 (d, J = 4.2 Hz), 118.8 (d, J = 18.5 Hz), 116.4 
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(d, J = 21.1 Hz) LCMS (ESI) calc'd for [C12H5ClFN4O3]–([M-H]–): m/z 307.0, found 

307.0. 

 

 

1.3j: Following the typical procedure for the synthesis of aniline derivatives with 3,4-

dichloroaniline, recrystallization provided yellow crystals of the desired product 1.3j 

(51.2 mg, 63% yield):   

1H NMR (400 MHz, Acetone-d6) δ 11.7 (bs, 1H), 8.13 (d, J = 9.9 Hz, 1H), 7.84 (d, J = 

2.4 Hz, 1H), 7.79 (d, J = 8.6 Hz, 1H), 7.59 (m, 2H).  13C NMR (100 MHz, Acetone-d6) δ 

149.6, 147.9, 146.1, 138.0, 133.8, 132.6, 132.3, 129.8, 127.9, 127.3, 125.3, 107.9.   

LCMS (ESI) calc'd for [C12H5Cl2N4O3]–([M-H]–): m/z 323.0, found 323.0. 

 

 

1.3k: Following the typical procedure for the synthesis of aniline derivatives with 3-

chloro-4-fluoroaniline, recrystallization provided yellow crystals of the desired product 

1.3k (42.3 mg, 55% yield):   

1H NMR (400 MHz, Acetone-d6) δ11.68 (bs, 1H), 8.09 (d, J = 9.9 Hz, 1H), 7.96 (s, 1H), 

7.80 (dd, J = 2.3 Hz, 6.7 Hz, 1H), 7.60 (m, 1H), 7.55 (m, 2H). 13C NMR (100 MHz, 

Acetone-d6) δ 162.5, 158.0 (d, J = 250.0 Hz), 149.7, 147.4, 145.7, 134.7, 130.0, 128.4 (d, 

J = 7.7 Hz), 126.9, 125.0, 121.9 (d, J = 19.0 Hz), 118.4 (d, J = 18.4 Hz). LCMS (ESI) 

calc'd for [C12H5ClFN4O3]–([M-H]–): m/z 307.0, found 307.0. 
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1.3l: Following the typical procedure for the synthesis of aniline derivatives with 4-

chloro-3-trifluoromethylaniline, recrystallization provided orange crystals of the desired 

product 1.3l (33.6 mg, 38% yield):   

1H NMR (400 MHz, Acetone-d6) d 11.73 (bs, 1H), 8.13 (d, J = 9.9 Hz, 1H), 8.08 (s, 1H), 

7.89 (d, J = 1.4 Hz, 1H), 7.62 (d, J = 9.9 Hz, 1H), 13C NMR (100 MHz, Acetone-d6) d 

147.9, 146.0, 138.7, 137.5, 134.0, 133.0, 131.6 (q, J = 1.9 Hz), 129.8 (q, J = 31.6 Hz), 

127.4 (q, J = 5.2 Hz), 122.3, 125.3, 123.6 (q, J = 247.2 Hz), 120.9.  LCMS (ESI) calc'd 

for [C13H5ClF3N4O3]–([M-H]–): m/z 357.0, found 357.0. 

 

1.3m: Following the typical procedure for the synthesis of aniline derivatives with 2-

chloro-4-trifluoromethyl aniline, purification by flash chromatography on silica gel (20% 

ethyl acetate in hexanes) provided the desired product 1.3m as an orange powder (67.1 

mg, 75% yield)  

1H NMR (400 MHz, Acetone-d6) δ 9.44 (bs, 1H), 8.68 (d, J = 8.8 Hz, 1H), 8.59 (s, 1H), 

7.94 (dd, J = 6.8 Hz, 8.5 Hz, 1H), 7.84 (s, 1H), 7.71 (d, J = 8.7 Hz, 1H). 13C NMR (100 

MHz, Acetone-d6) δ 146.9, 145.0, 138.2, 131.8, 127.7 (q, J = 3.9 Hz), 126.3 (q, J = 3.5 

Hz), 126.2 (q, J = 278.0 Hz), 126.0, 125.5 (q, J = 5.1 Hz), 124.8 (q, J = 3.7 Hz), 124.8, 

121.6, 121.5. LCMS (ESI) calc'd for [C13H5ClF3N4O3]–([M-H]–): m/z 357.0, found 357.0. 
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1.3n: Following the typical procedure for the synthesis of aniline derivatives with 3-

fluoro-5-trifluoromethylaniline, recrystallization provided orange crystals of the desired 

product 1.3n (13.4mg, 26% yield):   

1H NMR (400 MHz, Acetone-d6) δ 11.67 (bs, 1H), 8.16 (d, J = 9.9 Hz, 1H), 7.84 (s, 1H), 

7.77 (ddd, J = 2.2 Hz, 2.2 Hz, 9.3 Hz, 1H), 7.66 (d, J = 9.8 Hz, 1H), 7.66 (d, J = 8.5 Hz, 

1H).  13C NMR (100 MHz, Acetone-d6) δ 163.0 (d, J = 260 Hz), 148.2, 146.9, 145.0, 

140.0 (d, J = 11.6 Hz), 138.1 (q, J = 268.8 Hz), 133.0, 126.4, 124.5, 121.8 (d J = 3.2 Hz), 

119.9 (dq, J = 3.4, 3.7 Hz), 118.0 (d, J = 23.8 Hz), 112.1 (dq, J = 3.7 Hz, 30.0 Hz).  

LCMS (ESI) calc'd for [C13H5F4N4O3]–([M-H]–): m/z 341.0, found 341.0. 

 

1.3o: Following the typical procedure for the synthesis of aniline derivatives with 3,5-

difluoroaniline, recrystallization provided orange crystals of the desired product 1.3o 

(52.6 mg, 72% yield):   

1H NMR (400 MHz, Acetone-d6) δ 11.65 (bs, 1H), 8.15 (d, J = 9.8 Hz, 1H), 7.66 (dd, J = 

3.1 Hz, 9.9 Hz, 1H), 7.32 (d, J = 5.8 Hz, 2H), 7.18 (ddd, J = 2.4 Hz, 2.4 Hz, 9.9 Hz, 1H), 
13C NMR (100 MHz, Acetone-d6) δ 163.5 (d, J = 243.9 Hz), 163.3 (d, J = 246.7 Hz), 

148.3, 146.9, 145.0, 139.7 (dd, J = 12.7 Hz, 13.0 Hz), 126.4, 124.5, 110.3 (d, J = 27.8 

Hz), 110.3 (d, J = 11.4 Hz), 103.3 (dd, J = 18.0 Hz, 33.0 Hz), 94.9.  LCMS (ESI) calc'd 

for [C12H5F2N4O3]–([M-H]–): m/z 291.0, found 291.0. 
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1.3p: Following the typical procedure for the synthesis of aniline derivatives with 3-

fluoroaniline, recrystallization provided yellow crystals of the desired product 1.3p (25.3 

mg, 37% yield):   

1H NMR (400 MHz, Acetone-d6) δ 11.7 (bs, 1H), 8.12 (d, J = 9.8 Hz, 1H), 7.65 (dd, J = 

7.2 Hz, 8.0 Hz, 1H), 7.55 (d, 1H, J = 9.9 Hz), 7.41 (d, J = 7.2 Hz, 2H), 7.29 (ddd, J = 2.2 

Hz, 8.7 Hz, 8.7 Hz, 1H), 13C NMR (100 MHz, Acetone-d6) δ 164.1 (d, J = 245.0 Hz), 

149.7, 149.7, 147.8, 146.1, 132.5 (d, J = 9.3 Hz), 131.6, 127.2, 125.3, 123.6 (d, J = 3.1 

Hz), 115.9 (d, 21.1 Hz), 114.9 (d, 23.8 Hz).  LCMS (ESI) calc'd for [C12H6FN4O3]–([M-

H]–): m/z 273.0, found 273.0. 

 

 

1.3q: Following the typical procedure for the synthesis of aniline derivatives with 3-

chloro-5-fluoroaniline, recrystallization provided yellow crystals of the desired product 

1.3q (436.6 mg, 81% yield):   

1H NMR (400 MHz, CDCl3) δ 11.52 (bs, 1H), 7.97 (d, J = 9.8 Hz, 1H), 7.35 (d, J = 9.8 

Hz, 1H), 7.21 (ddd, J = 1.9 Hz, 8.1 Hz, 1H), 7.16 (bs, 1H), 6.99 (ddd, J = 1.9 Hz, 8.1, 

1H). 13C NMR (100 MHz, CDCl3) δ 163.2 (d, J = 253.0 Hz), 147.6, 146.6, 144.7, 141.1, 

138.3, 137.2 (d, J = 10.7 Hz), 125.5, 124.5, 122.4 (d, J = 3.6 Hz), 116.8 (d, J = 24.4 Hz), 

112.0 (d, J = 26.5 Hz).   LCMS (ESI) calc'd for [C12H5ClFN4O3]–([M-H]–): m/z 307.0, 

found 307.0. 
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Synthesis of Benzylamine Derivatives 1.4a-i: 

 

 

A flame-dried flask was charged with benzoxadiazole 1.2 (50 mg, 0.25 mmol, 1 eq.), and 

the flask was degassed and purged with nitrogen. Anhydrous dimethylformamide (1.67 

mL) and a benzylamine (0.25 mmol, 1 equiv) were added, and the mixture was heated to 

100 °C with stirring for 5 h. After cooling to room temperature, the reaction mixture was 

diluted with water and washed with ethyl acetate (3x). The combined organic layers were 

washed with water (3x) followed by brine. The organic layers were then dried over 

MgSO4 and concentrated under reduced pressure. The resulting solid was recrystallized 

in hexanes and ethyl acetate to afford the desired benzylamine derivative. 

 

 

1.4a: Following the typical procedure for the synthesis of benzylamine derivatives with 

benzylamine, recrystallization provided crystals of the desired product 1.4a (23 mg, 34% 

yield):   

1H NMR (400 MHz, Acetone-d6) δ 8.11 (d, J = 9.9 Hz, 1H), 7.72 (d, J = 9.9 Hz, 1H), 

7.50 (d, J = 7.5 Hz, 2H), 7.42 (t, J = 7.3 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 5.14 (d, J = 6.1 

Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 151.6, 147.2, 146.1, 138.0, 129.9, 128.7, 

128.0, 126.0, 125.5, 125.5, 48.1; LCMS (ESI) calc'd for [C13H9N4O3]-([M-H]-): m/z 269.1, 

found 269.1. 
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1.4b: Following the typical procedure for the synthesis of benzylamine derivatives with 

4-methylbenzylamine, recrystallization provided crystals of the desired product 1.4b (30 

mg, 42% yield):   

1H NMR (400 MHz, Acetone-d6) δ  8.10 (d, J = 10.0 Hz, 1H), 7.72 (d, J = 10.0 Hz, 1H), 

7.38 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 8.3 Hz, 2H), 5.08 (d, J = 6.0 Hz, 2H), 2.32 (s, 3H); 

13C NMR (100 MHz, Acetone-d6) δ 151.6, 147.2, 146.11, 138.4, 135.0, 130.5, 128.1,  

126.0, 126.0, 125.5, 48.0,  21.1;  LCMS (ESI) calc'd for [C14H11N4O3]-([M-H]-): m/z 

283.1, found 283.1. 

 

 

1.4c: Following the typical procedure for the synthesis of benzylamine derivatives with 

4-chlorobenzylamine, recrystallization provided crystals of the desired product 1.4c (32 

mg, 41% yield):  

1H NMR (400 MHz, Acetone-d6) δ 8.10 (d, J = 10.0 Hz, 1H), 7.69 (d, J = 9.9 Hz, 1H), 

7.54 (d, J = 11.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 5.16 (d, J = 6.7 Hz, 2H); 13C NMR 

(100 MHz, Acetone-d6) 

δ 151.5, 147.2, 146.1, 137.1, 134.0, 129.8, 129.8, 129.8, 125.9, 125.6, 47.4;  LCMS (ESI) 

calc'd for [C13H8ClN4O3]-([M-H]-): m/z 303.0, found 303.0. 
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1.4d: Following the typical procedure for the synthesis of benzylamine derivatives with 

2-chloro-6-fluorobenzylamine, recrystallization provided crystals of the desired product 

1.4d (31 mg, 38% yield):  

1H NMR (400 MHz, Acetone-d6) δ 10.84 (bs, 1H), 8.26 (d, J = 9.9 Hz, 1H), 7.92 (d, J = 

9.9 Hz, 1H), 7.52 (m, 1H), 7.43 (d, J = 8.1 Hz, 1H), 7.29 (t, J = 9.7 Hz, 1H), 5.24 (d, J = 

5.8 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 162.3 (d, J = 247.9 Hz), 151.0, 147.2, 

146.0, 135.9, 132.4 (d, J = 10.0 Hz), 129.2, 127.2 (d, J = 3.4 Hz), 126.1, 125.2 (d, J = 2.6 

Hz), 123.1 (d, J = 17.3 Hz), 115.9 (d, J = 22.6 Hz), 40.2; LCMS (ESI) calc'd for 

[C13H7ClFN4O3]-([M-H]-): m/z 321.0, found 321.0. 

 

 

1.4e: Following the typical procedure for the synthesis of benzylamine derivatives with 

2-chloro-4-fluorobenzylamine, recrystallization provided crystals of the desired product 

1.4e (25 mg, 31% yield):  

1H NMR (400 MHz, Acetone-d6) δ 8.15 (d, J = 9.9 Hz, 1H), 7.70 (d, J = 10.0 Hz, 1H), 

7.63 (dd, J = 6.0 Hz, 8.7 Hz, 1H), 7.42 (dd, J = 2.6 Hz, 8.6 Hz, 1H), 7.18 (dt, J = 2.7 Hz, 

8.4 Hz, 1H), 5.19 (d, J = 4.1 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 163.0 (d, J = 

247.2), 151.6,  151.4, 147.3, 146.1, 134.4 (d, J = 10.6 Hz), 131.7 (d, J = 3.5 Hz), 131.3 

(d, J = 9.0 Hz), 125.8 (d, J = 3.4 Hz), 125.8, 118.0 (d, J = 25.3 Hz), 115.5 (d, J = 21.2 

Hz), 45.7;  LCMS (ESI) calc'd for [C13H7ClFN4O3]-([M-H]-): m/z 321.0, found 321.0. 
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1.4f: Following the typical procedure for the synthesis of benzylamine derivatives with 3-

chloro-5-fluorobenzylamine, recrystallization provided crystals of the desired product 

1.4f (38 mg, 47% yield):  

1H NMR (400 MHz, Acetone-d6) δ 10.95 (bs, 1H), 8.12 (d, J = 9.9 Hz, 1H), 7.68 (d, J = 

10.0 Hz, 1H), 7.42 (s, 1H), 7.31 (dt, J = 1.8 Hz, 9.5 Hz, 1H), 7.22 (dt, J = 2.1 Hz, 8.6 Hz, 

1H), 5.20 (d, J = 6.5 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 163.8 (d, J = 247.4 

Hz), 151.5, 147.3, 146.1, 143.0 (d, J = 8.0 Hz), 136.0 (d, J = 10.8 Hz), 125.8, 125.7, 

124.1, 124.1, 116.1 (d, J = 25.1 Hz), 113.7 (d, J = 22.5 Hz), 47.1; LCMS (ESI) calc'd for 

[C13H7ClFN4O3]-([M-H]-): m/z 321.0, found 321.0. 

 

 

1.4g: Following the typical procedure for the synthesis of benzylamine derivatives with 

2,5-difluorobenzylamine, recrystallization provided crystals of the desired product 1.4g 

(9 mg, 11% yield):  

1H NMR (400 MHz, Acetone-d6) δ 8.16 (d, J = 9.9 Hz, 1H), 7.74 (d, J = 9.9 Hz, 1H), 

7.35 (m, 1H), 7.28 (m, 1H), 7.17 (m, 1H), 5.21 (d, J = 5.7 Hz, 2H); 13C NMR (100 MHz, 

Acetone-d6) δ 159.8 (dd, J = 2.3 Hz, 245.2 Hz), 157.4 (dd, J = 1.4 Hz, 243.6 Hz), 151.5, 

151.3, 147.3, 146.1, 127.2 (dd, J = 7.5 Hz, 17.1 Hz), 125.8, 125.6, 117.9 (dd, J = 8.8 Hz, 
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24.2 Hz), 116.9 (dd, J = 8.8 Hz, 24.3 Hz), 116.4 (dd, J = 4.3 Hz, 25.4 Hz), 42.2; LCMS 

(ESI) calc'd for [C13H7F2N4O3]-([M-H]-): m/z 305.1, found 305.0. 

 

 

1.4h: Following the typical procedure for the synthesis of benzylamine derivatives with 

5-fluoro-2-trifluormethylbenzylamine, recrystallization provided crystals of the desired 

product 1.4h (18.2 mg, 20% yield):  

1H NMR (400 MHz, Acetone-d6) δ 10.92 (bs, 1H), 8.15 (d, J = 10.0 Hz, 1H), 7.94 (dd, J 

= 5.4 Hz, 8.7 Hz, 1H), 7.56 (d, J = 10.0 Hz, 1H), 7.51 (d, J = 10.0 Hz, 1H), 7.34 (t, J = 

8.2 Hz, 1H), 5.35 (d, J = 6.3 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 166.0 (d, J = 

250.7 Hz), 151.6, 147.3, 146.2, 140.3 (dq, J = 8.0, 4.0 Hz), 130.4 (dq, J = 9.6 Hz, 5.9 

Hz), 129.2, 125.8 (d, J = 37 Hz), 125.0 (q, J = 246.3 Hz), 121.5, 116.7 (d, J = 24 Hz), 

115.8 (d, J = 22 Hz), 44.8; LCMS (ESI) calc'd for [C14H7F4N4O3]-([M-H]-): m/z 355.1, 

found 355.0. 

 

 

1.4i: Following the typical procedure for the synthesis of benzylamine derivatives with 4-

fluoro-2-trifluormethylbenzylamine, recrystallization provided crystals of the desired 

product 1.4i (30 mg, 34% yield):  
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1H NMR (400 MHz, Acetone-d6) δ 10.89 (bs, 1H), 8.15 (d, J = 10 Hz, 1H), 7.79 (dd, J = 

5.3 Hz, 8.8 Hz, 1H), 7.65 (dd, J = 2.8 Hz, 9.0 Hz, 1H), 7.60 (d, J = 9.9 Hz, 1H), 7.47 (dt, 

J = 2.8 Hz, 8.3 Hz, 1H), 5.31 (d, J = 6.1 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 

162.6 (d, J = 246.1 Hz), 151.5, 147.3, 146.1, 142.9, 132.2 (d, J = 8.2 Hz), 131.8, 129.2, 

128.6, 125.8 (d, J = 29.8 Hz), 120.6 (d, J = 21.3 Hz), 115.6 (q, J = 277.6 Hz), 115.1 (dq, J 

= 25.5 Hz, 5.8 Hz), 44.6; LCMS (ESI) calc'd for [C14H7F4N4O3]-([M-H]-): m/z 355.1, 

found 355.0. 

 

 

 

 

Synthesis of Thiophenol Derivatives 1.5a-c: 

 

 

A flame-dried reaction vial was charged with benzoxadiazole 1.2 (50 mg, 0.25 mmol) 

and anhydrous CH3CN (1.5 mL). The mixture was treated with a thiophenol (0.25 mmol) 

and triethylamine (25 mg, 0.25 mmol). The reaction was stirred at ambient temperature 

and monitored by LCMS. At the completion of the reaction, the solvent was removed 

under a stream of nitrogen gas. Purification by flash chromatography on silica gel (1:1 

hexane:dichloromethane) provided the desired thiophenol derivative. 
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1.5a: Following the typical procedure for the synthesis of thiophenol derivatives with 

thiobenzene, purification by flash chromatography on silica gel provided the desired 

product 1.5a as a yellow solid (42.5 mg, 58% yield):  

1H NMR (400 MHz, Acetone-d6) δ 8.13 (d, J = 9.6 Hz, 1H), 7.78 (dd, J = 1.4 Hz, 7.8 Hz, 

2H), 6.67 (m, 3H), 7.21 (d, J = 9.6 Hz, 1H). 13C NMR (100 MHz, Acetone-d6) δ 150.3, 

149.2, 144.4, 135.5, 131.5, 131.3, 130.7, 129.3, 121.2, 98.8 LCMS (ESI) calc'd for 

[C12H6N3O3S]–([M-H]–): m/z 272.0, found 272.0. 

 

 

1.5b: Following the typical procedure for the synthesis of thiophenol derivatives with 3-

fluorothiobenzene, purification by flash chromatography on silica gel provided the 

desired product 1.5b as a yellow solid (15.8 mg, 20% yield):   

1H NMR (400 MHz, Acetone-d6) δ 8.15 (d, J = 9.6 Hz, 1H), 7.71 (m, 1H), 7.62  (m, 2H), 

7.48 (m, 1H), 7.29 (d, J = 9.6 Hz, 1H) 13C NMR (100 MHz, Acetone-d6) δ 168.3 (d, J = 

256.0 Hz), 154.6 (d, J = 22.5 Hz), 149.6, 137.6 (d, J = 8.4 Hz), 137.0, 136.8 (d, J = 3.2 

Hz), 136.7, 128.2, 127.3 (d, J = 22.6 Hz), 126.6, 126.6, 123.5 (d, J = 21.0 Hz).  LCMS 

(ESI) calc'd for [C12H5FN3O3]–([M-H]–): m/z 290.0, found 290.0. 
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1.5c: Following the typical procedure for the synthesis of thiophenol derivatives with 3-

chloro-5-fluorothiobenzene, purification by flash chromatography on silica gel provided 

the desired product 1.5c as a yellow solid (123.6 mg, 78% yield):   

1H NMR (400 MHz, Acetone-d6) δ 7.84 (d, J = 9.7 Hz, 1H), 7.21 (d, J = 9.8 Hz, 1H), 

6.96 (m, 2H), 6.80 (d, J = 9.4 Hz, 1H), 3.37 (s, 3H) 13C NMR (100 MHz, Acetone-d6) δ 

163.0 (d, J = 252 Hz), 149.3, 148.6, 144.3, 136.4 (d, J = 10.8 Hz), 133.3 (d, J = 8.9 Hz), 

132.1, 131.2 (d, J = 3.5 Hz), 122.3, 121.7, 121.0 (J = 22.7 Hz), 118.8 (J = 24.9 Hz) 

LCMS (ESI) calc'd for [C12H6ClFN3O3S]+([M+H]+): m/z 326.0, found 326.0. 

 

 

Synthesis of Phenol Derivative 1.6: 

 

 

A flame-dried flask was charged with 3-chloro-5-fluorophenol (36.7 mg, 0.25 mmol, 1 

equiv) and degassed and purged with nitrogen. The flask was treated with anhydrous 

CH3CN (2.75 mL) and triethylamine (31.5 μL, 0.23 mmol, 0.9 equiv). The mixture was 

strirred for 30 min at room temperature and then treated with benzoxadiazole 1.2 (55.1 

mg, 0.28 mmol, 1.1 equiv). The solution was stirred for 24 h and then diluted with ethyl 

acetate. The mixture was washed with water (3x) and brine. The organic layer was dried 

over MgSO4 and concentrated under reduced pressure. The resulting solid was then 

N
O
N

S
NO2

F

Cl
1.5c

N
O
N

O
NO2

F

Cl1.6

N
O
N

NO2
Cl HO

R
NEt3

MeCN

1.2



 41 

recrystallized in hexanes and dichloromethane to afford the product as a yellow solid (48 

mg, 62% yield):   

1H NMR (400 MHz, Acetone-d6) δ 8.44 (d, J = 9.7 Hz, 1H), 7.66 (d, J = 9.6 Hz, 1H), 

7.31 (m, 1H), 7.26 (dt, J = 2.2 Hz, 8.5 Hz 1H), 7.23 (dt, J = 2.3 Hz, 9.4 Hz, 1H); 13C 

NMR (100 MHz, Acetone-d6) δ 164.2 (d, J = 248.6 Hz), 157.3 (d, J = 12.6 Hz), 153.8, 

149.0, 145.4, 136.9 (d, J = 12.8 Hz), 128.9, 124.9, 116.78, 116.8, 114.3 (d, J = 25.1 Hz), 

107.1 (d, J = 25.7 Hz); LCMS (ESI) calc'd for [C12H5ClFN3O4]-([M-H]-): m/z 309.00, 

found 309.2. 

 
 
 
 
 
 
 
 
 
Synthesis of Analogs of Aniline 32 
 

 
1.8: A solution trifluroacetamide 1.7 in anhydrous acetone was sequentially treated with 

K2CO3 and methyl iodide. The reaction mixture was heated to reflux for 2 h and then 

filtered by vacuum filtration. The filtrate was concentrated under reduced pressure and 

dissolved in CH2Cl2. The solution was washed with H2O and brine, dried over MgSO4 

and concentrated under reduced pressure to yield a yellow solid (550 mg). The crude 

material was dissolved in 2:1 MeOH:H2O (3 mL), and treated with potassium carbonate 
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(430 mg, 3.1 mmol). The reaction was stirred for 12 h and then diluted with CH2Cl2. The 

mixture was washed with H2O and brine, dried over MgSO4 and concentrated under 

reduced pressure to provide the methyl aniline intermediate as a clear oil. This oil was 

dissolved in DMF (1.5 mL) and treated with benzoxadiazole 1.2 (79 mg, 0.39 mmol). 

After 4 h, the reaction mixture was diluted with ethyl acetate and washed repeatedly with 

H2O. The organic layer was dried over MgSO4 and concentrated under reduced pressure. 

The crude material was purified by flash chromatography on silica gel (20% ethyl acetate 

in hexanes) to provide aniline 1.8 as an orange solid (129 mg , 85 % yield):    

1H NMR (400 MHz, CDCl3) δ 7.84 (d, J = 9.7 Hz, 1H), 7.21 (d, J = 9.8 Hz, 1H), 6.96 (m, 

2H), 6.80 (d, J = 9.4 Hz, 1H), 3.37 (s, 3H) 13C NMR (100 MHz, CDCl3) δ 163.5 (d, J = 

250.7 Hz), 147.1 (d, J = 11.3 Hz), 146.9, 145.3, 137.0 (d, J = 12.3 Hz), 131.5, 125.5, 
124.5, 121.3 (d, J = 11.3 Hz), 119.1 (d, J =  3.3 Hz), 114.2 (d, J = 22.2 Hz), 108.9 (d, J = 
24.3 Hz), 42.6. LCMS (ESI) calc'd for [C13H9ClFN4O3]–([M-H]–): m/z 323.0, found 323.0. 

 

 

 

S1: Following the typical procedure for the synthesis of aniline derivatives with dibromo-

4-nitrobenzoxadiazole 1.9,53 recrystallization provided crystals of 7-bromo-4-

nitrobenzoxadiazole S1 (35 mg, 44% yield):   

1H NMR (400 MHz, Acetone-d6) δ 7.93 (s, 1H), 7.54 (s, 1H), 7.45 (d, J = 9.4 Hz, 1H), 

7.40 (d, J = 8.6 Hz, 1H); 13C NMR (100 MHz, Acetone-d6) δ 164.0 (d, J = 249 Hz), 

149.3, 148.2, 145.6, 140.4 (d, J = 11 Hz), 136.6 (d, J = 12 Hz), 129.3, 124.0, 124.0, 

119.1, 116.7 (d, J = 25 Hz), 114.0 (d, J = 24 Hz); LCMS (ESI) calc'd for 

[C12H4BrClFN4O3]-([M-H]-): m/z 384.9, found 384.9. The regioselective formation of this 
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desired was confirmed by examining crystals of benzoxadiazole S1 that were suitable for 

X-ray diffraction. 

 

1.11: A flame-dried flask containing benzoxadiazole S1 (30 mg, 0.077 mmol, 1 equiv) 

and phenylboronic acid (9.4 mg, 0.077 mmol, 1 equiv) was degassed and purged with 

nitrogen. Dioxane (4 mL) was added, and the mixture was stirred at room temperature for 

20 minutes. Tetrakis(triphenylphosphine)palladium (14.2 mg, 0.012 mmol, 16 mol%) 

was quickly added to the reaction vessel, followed by cesium carbonate (31.9 mg, 0.231 

mmol, 3 equiv) in 1.16 mL water. The reaction mixture was heated to 100˚C with a reflux 

condenser and stirred for 3.5 h. After cooling to room temperature, the reaction was 

diluted in water and extracted with ethyl acetate (3x). The combined organic layers were 

washed with brine, dried over Na2SO4 and concentrated under reduced pressure. 

Recrystallization in hexanes and ethyl acetate afforded 7-phenylbenzoxadiazole 1.11 as a 

solid (6 mg, 19% yield):   

1H NMR (400 MHz, Acetone-d6) d 7.93 (m, 2H), 7.64 (s, 1H), 7.55 (m, 3H), 7.52 (m, 

1H), 7.43 (dt, J = 2.2 Hz, 9.8 Hz, 1H), 7.1=31 (dt, J = 2.1 Hz, 8.6 Hz, 1H); 13C NMR 

(100 MHz, Acetone-d6) d 162.5 (d, J = 248 Hz), 147.6, 146.7, 140.9, 138.5, 136.6, 136.5, 

134.5, 131.8, 129.1, 123.8, 123.7, 123.2, 123.0, 116.3 (d, J = 25 Hz), 113.6 (d, J = 24 

Hz); LCMS (ESI) calc'd for [C18H9ClFN4O3]-([M-H]-): m/z 383.0, found 383.1. 

 

 

1.14 was prepared following a known literature procedure52 and was isolated as a light 

yellow powder (78% yield):  

 1H NMR (400 MHz, Acetone-d6) δ 8.38 (d, J = 8.7 Hz, 1H), 7.74 (d, J = 8.7 Hz, 1H).  

LCMS (ESI) calc’d for [C6H4ClN4O2]+([M+H]+):  m/z 199.0, found 199.0. 
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1.17: Following the typical procedure for the synthesis of aniline derivatives with 

chloride 1.14, purification by flash chromatography on silica gel (10% ethyl acetate in 

hexanes) provided the desired product 1.17 as a yellow solid (9.4 mg, 16 %):   

1H NMR (400 MHz, Acetone-d6) δ 7.96 (d, J = 1.2 Hz, 2H), 7.81 (d, J = 5.8 Hz, 1H), 

7.62 (d, J = 3.6 Hz, 1H), 7.37 (dd, J = 1.2 Hz, 5.7 Hz, 1H, ), 7.30 (d, J = 3.6 Hz, 1H), 6.4 

(s, 1H), 6.23 (m, 1H), 5.14 (bs, 1H) 13C NMR (100 MHz, Acetone-d6) δ 164.8 (d, J = 

242.0 Hz), 152.4 (d, J = 12.8 Hz), 145.4, 135.6 (d, J = 13.9 Hz), 135.2, 126.1, 124.0, 

123.3, 110.1, 103.9 (d, J = 25.8 Hz), 99.9 (d, J = 24.6 Hz), 95.9. LCMS (ESI) calc'd for 

[C12H6ClFN5O2]–([M-H]–): m/z 306.0, found 306.0. 

 

 
S3 was prepared following a known literature procedure50: A solution of 3-

chloroorthophenylene diamine S2 (252 mg, 1.77 mmol) in ethanol (2.0 mL) was heated 

to reflux and treated dropwise with a solution of selenium dioxide (216 mg, 1.94 mmol) 

in water (1 mL). The reaction was monitored by TLC. After 30 min, the mixture was 

cooled to ambient temperature and filtered via vacuum filtration to give the desired 

selenadiazole as a dark brown solid (253 mg, 66%). The crude product was carried 

forward to the next step without further purification:   

1H NMR (400 MHz, DMSO-d6) δ  7.99 (s, 1H), 7.86 (d, J = 6.2 Hz, 1H), 7.55 (d, J = 5.9 

Hz, 1H).  LCMS (ESI) calc'd for [C6H4ClN2Se]+([M+H]+): m/z 218.9, found 218.9. The 
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selenadiazole (157 mg, 0.726 mmol) from the previous step was dissolved in conc. H2SO4 

(2.4 mL) and cooled in an ice water bath. The dark green solution was treated dropwise 

with conc. HNO3 (0.16 mL) and turned dark red in color. After 50 min, the reaction 

mixture was poured onto ice and filtered via vacuum filtration to yield the nitrated 

selenadiazole product as a light brown powder (145 mg, 77% yield).  The crude product 

was carried forward to the next step without further purification:   

1H NMR (400 MHz, DMSO-d6) δ  8.13 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 7.6 Hz, 1H).  

LCMS (ESI) calc'd for [C6H3ClN3O2Se]+([M+H]+): m/z 263.9, found 263.5. 

The nitroselenadiazole (83.54 mg, 0.321 mmol) from the previous step was 

dissolved in conc. HCl (0.78 mL) and cooled in an ice bath. The reaction mixture was 

treated with a 48% HI solution (0.26 mL) followed by 50% NaOH to get to a pH of 8. 

The product was extracted with ethyl acetate. The organic layer was washed with brine 

and concentrated under reduced pressure to provide S3 as a red powder (45.7 mg, 76%):   

1H NMR (400 MHz, Acetone-d6) δ  6.78 (d, J = 8.2 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H), 

5.33 (bs, 2H), 5.18 (bs, 2H).  LCMS (ESI) calc'd for [C6H7ClN3O2]+([M+H]+): m/z 188.0, 

found 188.0. 

 

 
1.15 was prepared following a known literature procedure51: A solution of S3 (75 mg, 

0.40 mmol) in THF (1.5 mL) was treated sequentially with triethyl orthoformate (178 mg, 

1.2 mmol) and p-toluenesulfonic acid (7.6 mg, 200 µL, 0.04 mmol). The reaction mixture 

was stirred at 50 °C, the reaction was monitored by LCMS. After 2 h, the solvent was 

removed under a stream of nitrogen gas, and the resulting residue was partitioned 

between ethyl acetate and water. The organic layer was washed with saturated aqueous 

Na2CO3, dried over MgSO4, and concentrated under reduced pressure to provide 1.15 as a 

light brown solid (57 mg, 72%):   
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1H NMR (400 MHz, Acetone-d6) δ 8.42 (s, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 8.2 

Hz, 1H), 7.48 (bs, 1H).  LCMS (ESI) calc’d for [C7H5ClN3O2]+([M+H]+):  m/z 198.0, 

found 198.0. 

 

 
1.18: Following the typical procedure for the synthesis of aniline derivatives with 

chloride 1.15, purification by flash chromatography on silica gel (15% ethyl acetate in 

hexanes) provided the desired product 1.18 as a yellow solid (9.4 mg, 31%):   

1H NMR (400 MHz, Acetone-d6) δ 8.37 (d, J = 8.8 Hz, 1H), 8.01 (s, 1H), 7.72 (d, J = 8.8 

Hz, 1H), 6.51 (dd, J = 1.8 Hz, 1.8 Hz, 1H), 6.34 (m, 2H).  13C NMR (100 MHz, Acetone-

d6) δ 164.8 (d, J = 241.6 Hz), 152.3 (d, J = 12.8 Hz), 142.6, 139.5, 135.7, 135.6 (d, J = 

14.0 Hz), 129.9, 128.0, 127.1, 125.2, 118.6, 103.9 (d, J = 25.8 Hz), 100.0 (d,  J = 24.5 

Hz). LCMS (ESI) calc'd for [C13H7ClFN4O2]–([M-H]–): m/z 305.0, found 305.0. 

 

 
1.16 was prepared following a known literature procedure51: S3 (75 mg, 0.40 mmol) was 

dissolved in a 5:1 mixture of CH3CN and water (1.2 mL) and cooled to 0 ºC. The dark red 

solution was treated with cyanogen bromide (47 mg, 0.44 mmol), and the reaction was 

monitored by LCMS. At the completion of the reaction, the solvent was removed under a 

stream of nitrogen gas.  Conc. ammonium hydroxide was added, which resulted in a dark 

red precipitate formation that was filtered via vacuum filtration. The precipitate was 

washed repeatedly with cold water and dried under vacuum. Purified via flash 
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chromatography on silica gel (15% ethyl acetate in hexanes) provided the desired product 

1.16 as a red powder (35.0 mg, 41 %):   

1H NMR (CDCl3, 400 MHz) δ 6.82 (bs, 2H), 6.78 (d, J = 8.2 Hz, 1H), 6.68 (d, J = 8.2 Hz, 

1H), 5.33 (bs, 1H).  LCMS (ESI) calc’d for [C7H4ClN4O2]-([M-H]-):  m/z 211.0, found 

211.0. 

 

 

 
1.19: Following the typical procedure for the synthesis of aniline derivatives with 

chloride 1.16, purification by flash chromatography on silica gel (20% ethyl acetate in 

hexanes) provided the desired product 1.19 as a yellow solid (19.7 mg, 65%):   

1H NMR (400 MHz, Acetone-d6) δ 7.32 (d, J = 6.0 Hz, 1H), 7.28 (bs, 1H), 6.57 (s, 1H), 

6.54 (ddd, J = 1.2 Hz, 1.3 Hz, 6.7 Hz, 1H), 6.40 (ddd, J = 1.3 Hz, 1.3 Hz, 6.7 Hz, 1H), 

5.77 (s, 1H).  13C NMR (100 MHz, Acetone-d6) δ 164.8 (d, J = 249.3 Hz), 150.0, 149.8 

(d, J = 12.1 Hz), 136.1, 136.0, 134.0 (d,  J = 13.6 Hz), 131.7, 118.8, 118.4 (d, J = 1.9 

Hz), 110.9, 105.9 (d, J = 26.0 Hz), 103.3, 100.3 (d, J = 25.6 Hz). LCMS (ESI) calc'd for 

[C13H7ClFN5O2]–([M-H]–): m/z 320.0, found 320.1. 
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1.21: A flame-dried flask was charged with 2-bromonitrobenzene 1.20 (50 mg, 0.25 

mmol, 1 equiv) tris(dibenzylideneacetone)dipalladium (11.3 mg, 0.0012 mmol, 5 mol%), 

racemic 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (11.5 mg, 0.0019 mmol, 7.5 mol%), 

and cesium carbonate (163.1 mg, 0.50 mmol, 2 equiv). The flask was degassed and 

purged with nitrogen. Toluene (2.88 mL) was added, followed by 2-chloro-4-

fluoroaniline 1.10 (35.3 mg, 0.25 mmol, 1 equiv). The reaction was heated to 100˚C with 

a reflux condenser and stirred for 12 h. The mixture was cooled to room temperature, 

filtered through a pad of celite, dried over MgSO4 and concentrated under reduced 

pressure. Purification by flash chromatography on silica gel (9:1 hexanes:ethyl acetate) 

afforded the desired aniline 1.21 as an orange solid (58 mg, 88% yield): 

 1H NMR (400 MHz, Acetone-d6) δ 9.27 (bs, 1H), 8.18 (d, J = 8.5 Hz, 1H), 7.63 (d, J = 

8.6 Hz, 1H), 7.52 (d, J = 8.6 Hz, 1H), 7.28 (s, 1H), 7.17 (dt, J = 2.2 Hz, 10.4 Hz, 1H), 

7.04 (m, 2H); 13C NMR (100 MHz, Acetone-d6) δ 164.2 (d, J = 245.7 Hz), 144.0 (d, J = 

11.8 Hz), 140.9, 136.7, 136.6, 136.2 (d, J = 13.0 Hz), 127.2, 120.7, 118.9, 118.9, 112.0 

(d, J = 25.4 Hz), 108.6 (d, J = 24.5 Hz); LCMS (ESI) calc'd for [C12H7ClFN2O2]-([M-H]-): 

m/z 265.0, found 265.1. 

 

 

1.23: A flame-dried flask was charged 5-chlorobenzofurazan 1.22 (100.0 mg, 0.65 mmol, 

1 equiv) and toluene (3mL), and the mixture was stirred at 110 °C for 30 min with a 

reflux condenser. The solution was cooled to room temperature, and the flask was 

charged sequentially with palladium (II) acetate (8.8 mg, 0.040 mmol, 6 mol%), racemic 

2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (24.9 mg, 0.040 mmol, 6 mol%), 2-chloro-4-

fluoroaniline 1.10 (68.4 μL, 0.65 mmol, 1 equiv) and potassium tert-butoxide (80.0 mg, 

.71 mmol, 1.1 equiv). The mixture was stirred at 90 °C for 12 h, cooled to room 
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temperature, and diluted with water. The mixture was washed with dichloromethane (3x). 

The combined organic layers were washed with 1N HCl, 1N NaOH, and brine. The 

organic layers were then dried over MgSO4 and concentrated under reduced pressure. The 

resulting solid was then recrystallized in hexanes to the desired aniline 1.23 as a brown 

solid (67 mg, 39% yield):   

1H NMR (400 MHz, Acetone-d6) δ 8.59 (bs, 1H), 7.87 (d, J = 9.2 Hz, 1H), 7.40 (dd, J = 

2.0 Hz, 9.6 Hz, 1H), 7.31 (m, 1H), 7.20 (s, 1H), 7.12 (dt, J = 1.3 Hz, 12.0 Hz, 1 Hz), 6.92 

(dt, J = 2.0 Hz, 8.6 Hz, 1H); 13C NMR (100 MHz, Acetone-d6) δ 164.4 (d, J = 245.3 Hz), 

151.1, 147.9, 145.4, 144.9 (d, J = 11.9 Hz), 136.3 (d, J = 13.2 Hz), 131.0, 118.2, 116.3, 

110.6 (d, J = 25.5 Hz) 105.9 (d, J = 25.0 Hz), 91.7; LCMS (ESI) calc'd for 

[C12H6ClFN3O]-([M-H]-): m/z 262.0, found 262.0. 

 

 

1.24: A solution of aniline 1.3q (29 mg, 0.094 mmol) in anhydrous EtOH (2 mL) was 

treated with SnCl2•2H2O (63 mg, 0.28 mmol, 3 equiv). The reaction was heated to reflux 

for 4 h and then quenched with saturated aqueous NaHCO3. The mixture was diluted with 

ethyl acetate passed through a pad of celite. The filtrate was washed with brine, dried 

over MgSO4 and concentrated under reduced pressure. The crude oil was purified by 

flash chromatography on silica gel (20% ethyl acetate in hexanes) to provide 4-

aminobenzoxadiazole 1.24 as an orange powder (18 mg, 70%):   

1H NMR (600 MHz, CDCl3) δ 7.17 (dd, J = 6.0 Hz, 12.0 Hz, 2H), 6.57 (d, J = 6.0 Hz, 

1H), 6.44 (m, 2H), 6.25 (m, 1H), 5.26 (bs, 1H), 4.66 (bs, 2H). 13C NMR (125 MHz, 

CDCl3) δ 164.0 (d, J = 246.0 Hz), 149.1, 147.0 (d, J = 11.3 Hz), 145.4, 136.2 (J = 12.9 

Hz), 134.2, 130.3, 118.4, 110.6, 107.6 (d, J = 25.2 Hz), 107.5 (d, J = 27.9 Hz), 105.0. 

LCMS (ESI) calc'd for [C12H7ClFN4O]–([M-H]–): m/z 277.0, found 277.1. 
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1.25: A solution of 4-aminobenzoxadiazole 1.24 (15.0 mg, 0.054 mmol) in acetic acid (1 

mL) was treated with acetic anhydride (5.5 mg, 0.054 mmol). The reaction was stirred at 

ambient temperature for 19 h and quenched with ice. The desired 4-amidobenzoxadiazole 

1.25 was collected by vacuum filtration as a green precipitate (14.0 mg, 81% yield):   

1H NMR (400 MHz, Acetone-d6) δ  9.54 (bs, 1H), 8.00 (bs, 1H), 7.83 (d, J = 6.4 Hz, 1H), 

7.66 (d, J = 6.4 Hz, 1H), 6.85 (s, 1H), 6.81 (d, J = 5.7 Hz, 1H), 6.74 (d, J = 7.1 Hz, 1H) 

2.25 (s, 3H). 13C NMR (100 MHz, Acetone-d6) δ  169.5, 163.4 (d, J = 240.0 Hz), 147.9, 

145.1 (d, J = 11.0 Hz), 135.3, 135.2, 130.2, 113.6, 113.9, 108.4, 108.2, 103.6, 103.3, 

22.3. (LCMS (ESI) calc'd for [C14H9ClFN4O2]–([M-H]–): m/z 319.0, found 319.0. 

 

 

1.26: Following the procedure for the synthesis of 4-amidobenzoxadiazole 1.24 with 

chloroacetylchloride, purification by reverse phase HPLC on a C-18 column (10% 

acetonitrile in water to 90% acetonitrile in water gradient eluent) provided 4-

amidobenzoxadiazole 1.26 as a green powder. (19.6 mg, 51% yield):   

1H NMR (400 MHz, Acetone-d6) δ  8.08 (bs, 1H), 7.88 (d, J = 9.6 Hz, 1H), 7.68 (d, J = 

9.6 Hz, 1H), 6.90 (s, 1H), 6.86 (d, J = 8.6 Hz, 1H), 6.78 (d, J = 10.6 Hz, 1H), 4.39 (s, 

2H).  13C NMR (100 MHz, Acetone-d6) δ  165.8, 164.4 (d, J = 244.0 Hz), 147.9, 144.7 (d, 
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J = 11.9 Hz), 143.9, 135.2 (d, J = 10.2 Hz), 129.9, 115.5, 114.7, 114.5, 108.9 (d, J = 24.5 

Hz), 104.3 (d, J = 25.0 Hz), 95.0, 42.5.  LCMS (ESI) calc'd for [C14H8Cl2FN4O2]–([M-H]–

): m/z 353.0, found 353.0. 

 

 

1.27: Following the procedure for the synthesis of 4-amidobenzoxadiazole 1.24 with 

maleic anhydride, purification by vacuum filtration provided 4-amidobenzoxadiazole 

1.27 as a green precipitate (13.4 mg, 69% yield):   

1H NMR (400 MHz, Acetone-d6) δ  8.42 (bs, 1H), 7.89 (d, J = 6.4 Hz, 1H), 7.72 (d, J = 

6.4 Hz, 1H), 6.93 (s, 1H), 6.81 (m, 3H), 6.39 (d, J = 8.4 Hz, 1H).  13C NMR (100 MHz, 

Acetone-d6) δ 166.1, 162.8 (d, J = 243 Hz), 149.2, 148.8, 145.5, 145.4, 139.3, 136.2 (d, J 

= 13 Hz), 134.5, 133.3, 116.6, 115.7 (d, J = 5.8 Hz), 110.0 (d, J = 25.6 Hz), 105.4 (d, J = 

25.3 Hz).  LCMS (ESI) calc'd for [C16H7ClFN4O3]–([M-H]–): m/z 357.0, found 357.0. 

 

 

S4: A flame-dried flask containing 5-chlorobenzoxadiazole-4-sulfonyl chloride 1.28 (400 

mg, 1.58 mmol, 1 equiv) was degassed and purged with nitrogen. The flask was charged 

with THF (4 mL) and cooled to 0 °C. Methylamine (1.1 mL, 2M in MeOH) was added 

dropwise, and the mixture was stirred for 5.5 h. The reaction was quenched with 0.125 M 
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HCl (4 mL) and extracted with ethyl acetate (3x). The combined organic layers were 

washed with brine, dried over MgSO4 and concentrated under reduced pressure. The 

resulting solid was recrystallized in hexanes and dichloromethane to afford secondary 

sulfonamidobenzoxadiazole S4 as a yellow solid (220 mg, 56% yield).  

1.29: A flame-dried flask containing secondary sulfonamidobenzoxadiazole S4 (215.0 

mg, 0.868 mmol, 1 equiv) was degassed and purged with nitrogen. Toluene (26.2 mL), 2-

chloro-4-fluoroaniline 1.10 (0.436 mL, 4.34 mmol, 5 equiv), and N,N-

diisopropylethylamine (0.30 mL, 1.74 mmol, 2 equiv) were sequentially added, and the 

mixture was heated to 110 °C with stirring for 40 h. The reaction was cooled to room 

temperature and concentrated under reduced pressure. Purification by flash 

chromatography on silica gel (9:1 hexanes:ethyl acetate with 1% triethylamine) followed 

by recrystallization in hexanes and dichloromethane provided 

sulfonamidobenzoxadiazole 1.29 as a yellow solid (9.6 mg, 31% yield):   

1H NMR (400 MHz, Acetone-d6) δ 8.05 (d, J = 9.8 Hz, 1H), 7.65 (d, J = 9.8 Hz, 1H), 

7.34 (m, 1H), 7.26 (dt, J = 2.2 Hz, 10.0 Hz, 1H), 7.20 (dt, J = 2.0 Hz, 8.6 Hz, 1H), 2.71 

(s, 3H); ); 13C NMR (100 MHz, Acetone-d6) δ 164.1 (d, J = 247.0 Hz), 148.0, 147.5, 

147.5, 142.6 (d, J = 11.8 Hz), 136.4 (d, 12.8 Hz), 128.1, 122.3, 121.3, 121.2, 114.1 (d, J 

= 25.2 Hz), 111.1 (d, J = 24.1 Hz), 101.0; LCMS (ESI) calc'd for [C13H9ClFN4O3S]-([M-

H]-): m/z 355.0, found 355.0. 

1.30: Following the procedure for the synthesis of sulfonamidobenzoxadiazole 1.29 with 

dimethylamine, purification by flash chromatography followed by recrystallization 

provided sulfonamidobenzoxadiazole 1.30 (1.9 mg, 2% yield):   

1H NMR (400 MHz, Acetone-d6) δ 9.58 (bs, 1H), 8.04 (d, J = 9.8 Hz, 1H), 7.62 (d, J = 

9.8 Hz, 1H), 7.35 (m, 1H), 7.25 (dt, J = 2.2 Hz, 7.4 Hz, 1H), 7.19 (dt, J = 2.1 Hz, 8.6 Hz. 

1H), 2.94 (s, 3H), 1.29 (s, 3H); LCMS (ESI) calc'd for [C14H11ClFN4O3S]-([M-H]-): m/z 

369.0, found 369.0. 
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Synthesis of Chalcones 

 
LDA was generated by the following protocol: A solution of diisopropylamine (1 equiv) 

in THF (0.8 M) and cooled to 0 °C. A solution of n-BuLi in hexanes (1.6 M, 1 equiv) was 

added dropwise, and the resulting solution was stirred for 30 min at 0 °C. The solution of 

LDA was then ready for use. 

S6: A flame-dried flask was charged with ester S5 (4.29 mmol, 1 equiv) and dimethyl 

methylphosphonate (1.5 equiv) in THF (0.6 M). Freshly generated LDA (2 equiv) was 

added dropwise, and the mixture was stirred at 23 °C for 30 min. The reaction mixture 

was quenched by the addition of 1M aqueous HCl, and the solution was extracted with 

ethyl acetate (3x). The combined organic layers were dried over Na2SO4 and concentrated 

under reduced pressure. The resulting residue was purified by column chromatography to 

yield β-ketophosphonate S6 (1.04 g, 75% yield):  

1H NMR (400 MHz, Chloroform-d) δ 7.93 (t, J = 1.6 Hz, 1H), 7.64 (ddd, J = 8.8, 2.4, 1.5 

Hz, 1H), 7.48 (ddd, J = 7.6, 2.3, 1.8 Hz), 3.82 (s, 3H), 3.79 (s, 3H), 3.61 (s, 1H), 3.56 (s, 

1H). 

S7: A solution of β-ketophosphonate S6 (1 equiv) in THF (0.6 M) was added to a 

solution of NaH (1.1 equiv) in THF (0.6 M). The mixture was stirred for 15 min at 23 °C 

and then treated with 3-bromo-benzaldehyde (1.1 equiv). After stirring at 23 °C for 16 h, 

F

Br

CO2Me
F

Br

O
P
O

LDA, THF

OMe
MeO

P
O

OMeMeO
Me

NaH,

THF
CHO

O Br

FS6S5 S7

Br

Br



 54 

the reaction was quenched by the addition of saturated aqueous NaHCO3 and extracted 

with ethyl acetate. The organic layer was washed with brine, dried over Na2SO4, and 

concentrated under reduced pressure. The resulting residue was purified by column 

chromatography to provide the desired product (33% yield):  

1H NMR (400 MHz, Chloroform-d) δ 7.93 (s, 1H), 7.80 (s, 1H), 7.75 (d, J = 15.7 Hz, 

1H), 7.66 – 7.61 (m, 1H), 7.58 – 7.53 (m, 2H), 7.49 – 7.45 (m, 1H), 7.39 (d, J = 15.6 Hz, 

1H), 7.31 (t, J = 7.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 195.3, 144.5, 140.0, 133.8, 

131.0, 130.8, 130.5, 130. 3, 130.0, 127.4, 126.5, 124.0, 123.5, 122.7, 121.9.  

 

 

S8: A flask was charged with 3-bromoacetophenone (1 equiv) and 3-bromobenzaldehyde 

(1 equiv) in EtOH (0.1 M). 1% Aqueous NaOH (0.1 M) was added, and the mixture was 

stirred at 23 °C for 16 h. The reaction mixture was filtered, and the precipitate was 

washed with 1:1 EtOH:H2O (2 x 0.5 M). The precipitate was dried under vacuum 

provided the desired product (91% yield):  

1H NMR (400 MHz, CDCl3) δ 8.14 (t, J = 1.8 Hz, 1H), 7.94 (dt, J = 7.8, 1.2 Hz, 1H), 

7.80 (t, J = 1.8 Hz, 1H), 7.74 (d, J = 15.7 Hz, 1H), 7.74 – 7.71 (m, 1H), 7.56 (d, J = 7.9, 

1.8 Hz, 2H), 7.45 (d, J = 15.7 Hz, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.31 (t, J = 7.9 Hz, 1H). 
13C NMR (100 MHz, CDCl3) δ 188.5, 143.8, 136.7, 135.8, 133.5, 131.5, 130.9, 130.5, 

130.2, 127.3, 127.0, 123.1, 123.0, 122.6; LCMS (ESI) calc'd for [C15H10Br2O]+([M-

H]+): m/z 364.9, found 364.91. 
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Synthesis of Enamines S9, S10, and 1.39 
 

 
 

A flame-dried flask outfitted with a condenser was charged with chalcone 1.34 (1 equiv), 

5-aminotetrazole 1.33 (1 equiv), and DMF (2.2 M). The reaction mixture was refluxed at 

155 °C for 3 h. Then the mixture was cooled to 23 °C and diluted with CH2Cl2. After 

stirring for 45 min, the mixture was filtered, and the precipitate was purified via 

recrystallization to provide enamine 1.36. 

 

  
S9: Following the general method for enamine synthesis provided the desired product:  

1H NMR (400 MHz, CDCl3) δ 10.62 (s, 1H), 7.67 (s, 1H), 7.5 (s, 2H), 7.43 (d, J = 9.0 

Hz, 1H), 7.39 – 7.32 (m, 2H), 7.30 (d, J = 8.0 Hz, 1H), 6.45 (s, 1H), 5.24 (s, 1H). 13C 

NMR (101 MHz, DMSO-d6) δ 163.7, 150.9, 143.0, 137.5, 133.5, 132.1, 131.7, 130.5, 
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126.9, 125.7, 122.5, 120.0, 119.8, 112.9, 98.9, 58.5. LCMS (ESI) calc'd for 

[C16H10Br2FN5]+([M-H]+): m/z 449.9, found 450.0, 452.0. 

 

  
S10: Following the general method for HIF-2 ligand synthesis provided the desired 

product:   

1H NMR (500 MHz, Chloroform-d) δ 7.60 (s, 1H), 7.51 (d, J = 7.8 Hz, 2H), 7.38 (s, 1H), 

7.36 (s, 1H), 7.29 (t, J = 7.0 Hz, 2H), 7.18 (d, J = 7.7 Hz, 1H), 5.53 (s, 1H), 5.48 (dd, J = 

11.2, 4.7 Hz, 1H), 4.75 (d, 11.2 Hz, 1H), 2.60 (d, J = 14.3 Hz, 1H), 2.37 – 2.26 (m, 1H). 

 

 

1.39: Following the general method for enamine synthesis provided the desired product:  

1H NMR (400 MHz, DMSO-d6) δ 10.53 (s, 1H), 7.69 – 7.59 (m, 2H), 7.48 – 7.29 (m, 

8H), 6.59 (d, J = 3.6 Hz, 1H), 5.28 (dd, J = 3.6, 1.7 Hz, 1H). 13C NMR (101 MHz, 

DMSO-d6) δ 151.12, 141.09, 135.51, 133.99, 129.73, 129.38, 129.07, 127.58, 126.46, 

97.52, 59.21, 40.57, 40.36, 40.15, 39.94, 39.73, 39.53, 39.32. LCMS (ES-API) calc'd for 

[C16H14N5]+([M-H]+): m/z 276.1, found 276.1, 375.0. 
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A flame-dried flask was charged with enamine (1 equiv) and MeOH (0.02 M). NaBH4 

(12 equiv) was added slowly over 1 min. After 4 h, the reaction mixture was concentrated 

to 1/5 the original volume and diluted with H2O. A precipitate formed, which was filtered 

and washed using a minimal amount of water. The solid was dried under high vacuum to 

afford ligand. 

 

 

1.31: Following the general method for HIF-2 ligand synthesis provided the desired 

product:  

1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 8.1 Hz, 1H), 7.38 (d, J = 12.1 Hz, 2H), 7.30 – 

7.20 (m, 2H), 7.16 (d, J = 8.1 Hz, 1H), 7.13 (d, J = 8.5 Hz, 1H), 6.41 (bs, 1H), 5.49 (dd, J 

= 10.7, 4.6 Hz, 1H), 4.79 (d, J = 10.7 Hz, 1H), 2.60 (d, J = 14.4 Hz, 1H), 2.37 – 2.24 (m, 

1H). 13C NMR (101 MHz, DMSO-d6) δ 163.7, 161.2, 155.4, 146.1, 141.0, 131.7, 131.1, 

130.6, 127.2, 126.6, 122.2, 118.4, 113.9, 113.7, 57.5, 53.4. LCMS (ESI) calc'd for 

[C16H12Br2FN5]+([M-H]+): m/z 451.9, found 451.2. 
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1.32: Following the general method for HIF-2 ligand synthesis provided the desired 

product:  

1H NMR (500 MHz, CDCl3) δ 7.60 (s, 1H), 7.51 (d, J = 7.8 Hz, 2H), 7.38 (s, 1H), 7.36 

(s, 1H), 7.29 (t, J = 7.0 Hz, 2H), 7.18 (d, J = 7.7 Hz, 1H), 5.53 (s, 1H), 5.48 (dd, J = 11.2, 

4.7 Hz, 1H), 4.75 (d, 11.2 Hz, 1H), 2.60 (d, J = 14.3 Hz, 1H), 2.37 – 2.26 (m, 1H). 13C 

NMR (101 MHz, DMSO-d6) δ 155.6, 144.1, 141.1, 131.7, 131.1, 131.0, 130.7, 130.1, 

127.2, 126.5, 122.2, 57.9, 53.9. LCMS (ESI) calc'd for [C16H13Br2N2]+([M-H]+): m/z 

434.0, found 434.0. 

 

1.40: Following the general method for HIF-2 ligand synthesis provided the desired 

product:  

1H NMR (500 MHz, CDCl3) δ 7.50 – 7.23 (m, 10H), 5.74 (s, 1H), 5.52 (dd, J = 11.5, 4.7 

Hz, 1H), 4.79 (dd, J = 11.5, 2.3 Hz, 1H), 2.59 (d, J = 14.2 Hz, 1H), 2.35 (dt, J = 14.2, 

11.5 Hz 1H). 13C NMR (101 MHz, CDCl3) δ 171.1, 133.2, 133.1, 132.7, 132.7, 128.7, 

128.6, 127.8, 125.7, 60.4, 21.0, 14.2, 14.2. 
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General Procedure for the Asymmetric Synthesis of 1.40:  

 

To a flame-dried vial and stir bar were added cinchona alkaloid catalyst (10 

mol%, 0.02 mmol, 6.46 mg), phosphoric acid catalyst (20 mol%, 0.04 mmol, 10.00 mg), 

chalcone (1 equiv, 0.2 mmol, 41.65 mg) and aminotetrazole (1 equiv, 0.2 mmol, 17.01 

mg). The vial was evacuated and purged with nitrogen followed by addition of 1 mL 

MeCN. The vial was tightly sealed using a non-septa screw cap and the reaction was 

heated to 80ºC and stirred overnight. The mixture was then cooled to room temperature 

and diluted with methanol (4 mL) followed by addition of sodium borohydride (9.75 

equiv, 75 mg) portion-wise. Over the course of 2 hours the reaction became homogenous. 

The solution was concentrated under reduced pressure and purified by flash 

chromatography (0-10% MeOH/CH2Cl2). The product eluted at 5% MeOH and was 

isolated as an off-white solid (68% yield, 67:33 er). See the corresponding appendix for 

HPLC traces.  

 

General Procedure for the Asymmetric Synthesis and Recrystallization of 1.39: 

To a flame-dried vial and stir bar were added cinchona alkaloid catalyst (10 

mol%, 0.02 mmol, 6.46 mg), phosphoric acid catalyst (20 mol%, 0.04 mmol, 10.00 mg), 

chalcone (1 equiv, 0.2 mmol, 41.65 mg) and aminotetrazole (1 equiv, 0.2 mmol, 17.01 

mg). The vial was evacuated and purged with nitrogen followed by addition of 1 mL 

MeCN. The vial was tightly sealed using a non-septa screw cap and the reaction was 

heated to 80ºC and stirred overnight. The mixture was then cooled to room temperature 

and filtered through a fritted funnel. The collected solid was rinsed with a minimal 

amount of CH2Cl2. The filtrate was concentrated under reduced pressure and purified by 

O

Ph Ph

NH

NH2

N
N

N
N

N
H

N
N

N

Ph

Ph

1.38
(1 equiv)

1.33
(1 equiv)

NaBH4, 

MeCN/MeOH
N

N
H

N
N

N

Ph

Ph

1.41 (10 mol%)
1.42 (20 mol%)

MeCN (0.2M), 80 ºC
1 day

1.39 1.40

+



 60 

flash chromatography (0-10% MeOH/CH2Cl2) to afford 1.39 (32% yield, 97:3 er) as a 

white solid. See the corresponding appendix for HPLC traces.  

 

Determination of Absolute Stereochemistry of Enantioenriched 1.40 

We thank Dr. Jason Hein (Assistant Professor, University of British Columbia) for 

providing all of the X-ray structural analysis. 

 

A sample of the major product 1.40 was recrystallized and the resulting crystals were 

suitable for X-ray diffraction. The structure was solved and allowed for the assignment of 

absolute configuration as shown (see appendix 8 for crystallography data).  
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APPENDIX ONE 

 

 

Spectra Relevant to Chapter One: 

The Development of Allosteric Inhibitors of the  

HIF-2α  Transcription Factor 
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HPLC Traces Relevant to Chapter One: 

The Development of Allosteric Inhibitors of the  

HIF-2α  Transcription Factor 
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 Chiralpak AD-H 80:20 IPA:Hexane 0.5 ml/min 

 

 
 

 
Chiralpak AD-H 80:20 IPA:Hexane 0.8 ml/min 
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CHAPTER TWO 

An Allylic Alkylation of Unactivated Terminal Olefins with  
Grignard Reagents  

 

2.1 Background 
 

2.1.1 Introduction 

Unsaturated hydrocarbons represent an inexpensive and readily abundant class of 

starting materials for chemical synthesis. A large number of terminal olefins, for 

example, are regularly generated as byproducts of the high termperature ‘cracking’ of 

natural gas and crude oil hydrocarbons. As a result, both lower order and higher order 

terminal olefins have found wide-ranging applications in the manufacturing of functional 

materials, from industrial drilling fluids to sun creams and plastics.1-3 For example, 

700,000 tons of 1-butene are used in the industrial manufacturing of linear low density 

polyethylene annually.3  

Scheme 2.1.1 

 

Due to the wide availability of hydrocarbons bearing terminal olefins, the 

functionalization of these compounds with carbon nucleophiles represents an attractive 
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strategy for the construction of value-added materials.4-8 More specifically, the direct 

allylic C(sp3)–H alkylation of terminal alkenes has only recently found success in the 

context of metal-mediated processes utilizing stabilized carbon nucleophiles and 

trifluoromethane donors (Scheme 2.1.1).9-11 Several novel and elegant examples of early 

reports on intermolecular allylic C(sp3)–C(sp3) bond formation of these types are 

described herein.  

 
2.1.2 Stabilized Carbon Nucleophiles for the Selective Allylic Alkylation of 

Terminal Olefins  

In 1973 Trost and Fullerton provided the first report of an allylic alkylation utilizing 

a non-functionalized alkene.12 While stoichiometric amounts of palladium(II) were 

necessary, this work provided a better understanding of palladium promoted allylic C–H 

activation. In the ensuing years, major advances in the field of allylic oxidation by the 

White group provided the solution to developing a catalytic version of Trost’s discovery, 

revealing that judicious choice of ligand and oxidant was essential.13-15  

 In 2008, independent reports published by the White and Shi groups indicated 

that allyl arenes (2.1) were capable of undergoing linear allylic alkylation with a variety 

of stabilized 2º carbon nucleophiles (Scheme 2.1.2).16,17 In both cases, Pd(OAc)2 was 

necessarily ligated with bis(sulfoxide) ligand 2.2, which has been shown to stabilize the 

resulting electrophilic palladium π-allyl intermediates toward nucleophilic 

functionalization. In addition, an external oxidant was required to re-oxidize the resulting 

Pd(0) species for catalyst turnover. Both of these studies provided a general platform for 

the construction of styrenyl products (2.3) with broad functional group tolerance. In most 

cases, products were formed with exquisite linear to branch selectivity and synthetically 

useful yields.   
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Scheme 2.1.2  

 

An extension of this chemistry was applied to the allylic C–H alkylation of 

unactivated terminal olefins in 2011 by the White group and subsequently to 

accommodate 3º carbon nucleophiles (Scheme 2.1.3).18,19 The key to accommodating this 

substrate class rested in the identity of the sulfoxide ligand on the palladium catalyst. By 

modulating the electronic properties of bis(sulfoxide) 2.2, the benzyl version of this 

ligand (2.4) exhibited better binding affinity to palladium and resulted in a more active 

catalyst in the presence of competitive ligands like DMSO. As a result, a wide variety of 

unactivated terminal olefins provided linear, E-olefinated products (2.5), accommodating 

a variety of nitrogen- and oxygen-based functionalities, and exhibiting excellent 

chemoselectivity for terminal olefins over tri-substituted olefins (2.11i). These 

methodologies serve as valuable tools for the construction of complex products, as 

demonstrated in several examples of late stage functionalization of natural product 
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derivatives and tandem alkylation–Diels Alder cascades.   

Scheme 2.1.3  

 

The palladium catalyzed allylic C–H alkylation of terminal olefins has been 

extended to the use of phosphine-based ligands through the efforts of Trost and co-

workers.20 In this work stabilized 2º and 3º carbon nucleophiles were used to generate 

substituted 1,3-dienes from readily accessible 1,4-dienes (2.6), affording diene products 

(2.7) in good yields and with high E-olefin selectivity (Scheme 2.1.4a). 
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Triphenylphosphine proved to be a suitable ligand for the allylic alkylation, serving as the 

first example of allylic C–H alkylation in the absence of sulfoxide-containing ligands. 

They went on to incorporate this methodology into a single-flask tandem allylic 

alkylation to access three-component couplings (Scheme 2.1.4b).21  

Scheme 2.1.4  

 

The ability to employ phosphine-based ligands for palladium-catalyzed allylic C–H 

alkylation was significant as this provided the possibility of expanding the methodology 

to an enantioselective variant, which was accomplished shortly thereafter.22,23 In the 

presence of chiral phosphoramidite ligand 2.8, acetyl-tetralone 2.9 was coupled to a 

variety of allyl arenes in an enantioselective allylic alkylation (Scheme 2.1.5). While the 

stereoselectivity of this reaction varied substantially with differing aryl substituents on 

the allyl component, products could be accessed in up to 85% ee (2.10a).  
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Scheme 2.1.5  

 

2.1.3 Allylic C–H Alkylation of Unactivated Olefins with Trifluoromethane 

Donors  

The addition of trifluoromethyl (CF3) groups to biologically active molecules often 

provides increased chemical and metabolic stability and enhances binding affinity by 

accommodating electrostatic interactions with the protein target.24-26 For these reasons, 

the CF3 group is widely regarded as a privileged functionality in the area of medicinal 

chemistry. Recently, several methods have been described for the addition of CF3 groups 

to unactivated terminal olefins through the use of various CF3 sources.27-30  

 The Buchwald lab reported an elegant copper-catalyzed trifluoromethylation of 

olefins using Togni’s electrophilic trifluoromethylating reagent 2.11 to construct new 

linear allylic C-CF3 bonds that provided E-olefinated products 2.12 (Scheme 2.1.6).30,31 
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This chemistry obviated the need for pre-functionalized olefins to activate and direct the 

alkylation, representing a significant advance in the area of allylic C–H functionalization 

with copper for the assembly of trifluoromethylated molecules. A diverse substrate scope 

further exemplified the utility of this method, accommodating such functionalities as 

amide, alcohol, epoxide and ntiro groups.  

Scheme 2.1.6  

  

These findings were almost simultaneously corroborated by independent 

publications from the Liu and Wang labs who reported the use of Umemoto’s reagent and 

Togni’s reagent respectively for the tryfluoromethylation of terminal unactivated olefins 

with copper catalysts.27,28 The exact mechanistic pathway by which this chemistry 

proceeds is not entirely known, however preliminary studies rule out the possibility of an 

allyl radical intermediate. Detailed computational analysis by Liu suggests a mechanistic 

pathway that includes a four-membered Heck-like transition state instead (2.13, Figure 

2.1.1). 
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Figure 2.1.1 

 

 

 

 

2.1.4 Conclusions 

Several reports of direct allylic C–H alkylation strategies have emerged in the last 

decade, providing new opportunities for intermolecular C(sp3)–C(sp3) bond formation 

from relatively inert starting materials. Palladium catalyzed alkylation with stabilized 

carbon nucleophiles and copper catalyzed alkylation with trifluoromethane donors have 

been described and reveal a general trend in product formation with linear, E-olefin 

selectivity. The advantage of this approach lies in its ability to directly transform 

pertrochemical feedstocks into value-added materials with particularly high levels of 

regio-, chemo- and E-olefin selectivity. New strategies for the allylic C-H alkylation of 

simple olefins are continually being uncovered to extend the scope of this transformation 

to other classes of aliphatic and aromatic coupling partners, including very recently to 

electron deficient arenes.32,33 
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2.2 Development and Scope of an Allylic Alkylation of Unactivated 

Olefins with Grignard Reagents 
 

2.2.1 Choice of Oxidant and Optimization  

While several methods are known for the allylic alkylation of unactivated terminal 

olefins, we were interested in developing a complementary approach that utilized a more 

general class of carbon nucleophiles, Grignard reagents. To this end, we conceptualized 

an approach that would take advantage of a stoichiometric oxidant to directly activate the 

olefin component toward a metal-catalyzed coupling, in contrast to previous methods that 

utilize oxidant to re-oxidize the metal catalyst.  

Scheme 2.2.1  

 

Our choice of oxidant was initially inspired from previous reports detailing the use 

of sulfurdiimide 2.14 to affect an allylic amination of unactivated olefins (Scheme 

2.2.1).34-40 The authors postulated that this transformation took place through an initial 

hetero-ene reaction to generate allylic sulfinamides (2.15) followed by a facile [2,3]-

rearrangement to amine 2.16. While our lab has previously exploited this amination 
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intercepting the same reactive zwitterionic intermediate with a different metal catalyst to 

instead affect an intermolecular coupling (2.21 or 2.22, Scheme 2.2.2).  

Scheme 2.2.2  

 

Upon stirring bis(phenylsulfonyl)sulfur diimide (2.18) and 4-phenyl-butene (2.17a) 

at 4 ºC for 12 hours, 2.19a was generated in near quantitative yield precluding the 

formation of [2,3]-rearrangement byproduct 2.20a (Table 2.2.1). While this compound is 
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extended periods of time), we were drawn to the synthetic advantage of effecting a 
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copper(I) sources, copper(I) bromide dimethyl sulfide (CuBr•SMe2) was identified as a 

suitable catalyst for the formation of 2.21a (entry 10). 

Table 2.2.1  

 

Due to the insolubility of intermediate 2.19a in Et2O, we examined the effect of a 

more polar solvent on this reaction. Using 1,2-dimethoxyethane (DME) as solvent 

improved the overall yield of 2.21a, albeit with a significant amount of the background 

[2,3]-rearrangement product 2.20a (entry 11). Gratifyingly, an ideal solvent combination 

of 1:1 DME/Et2O provided the linear alkylation product 2.21a exclusively with 72% 

yield and 15:1 E/Z selectivity (entry 12).  
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2.2.2 Grignard and Olefin Scope of the Allylic Alkylation 

Next, we explored the generality of this allylic alkylation strategy with a variety of 

Grignard reagents (Table 2.2.2). 1º, 2º, and 3º Grignard reagents are compatible with this 

chemistry, providing synthetically useful yields across the series (2.21a-d). A Grignard 

reagent bearing silyl functionality was well tolerated under the reaction conditions 

(2.21e). Aromatic Grignard reagents provided the corresponding products with greatly 

diminished yields and numerous byproducts. To combat the enhanced reactivity of this 

Grignard class, a two-pot protocol was implemented. Subsequent to isolation of 

sulfinamide 2.19a, the copper-catalyzed coupling in the presence of catalytic amounts of 

TEMPO took place to afford an array of allyl arenes in good yields regardless of ortho or 

para substituents (2.21g-i). Of note, benzylic and allylic Grignards were not compatible 

with this chemistry and failed to provide products 2.21j and 2.21k.  
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Table 2.2.2  

 

Similarly, we sought to define the substrate scope of this chemistry by assessing the 

coupling of unactivated terminal olefins with iso-butylmagnesium bromide (Table 2.2.3). 

Various hydrocarbons efficiently provided linear, E-olefinated products with exceptional 

yields and selectivity (2.21l-n). Functional group tolerance on the substrate was also 
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carbonate functional groups (2.21o-r). Substrates bearing 1,1-disubtituted olefins 
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significant loss in reactivity. Although product 2.21a was formed in a 15:1 ratio of Z/E-

olefins, products 2.21b-r were accessed in exclusively the E-olefin isomer.  

Table 2.2.3  
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introduction of a second unsaturation to phenyl-butene 2.17a was achieved by coupling 

with olefin-containing Grignards 2.23 and 2.25 to deliver the corresponding 1,6- and 2,5-

dienes 2.24 and 2.26 (Scheme 2.2.3).  

Scheme 2.2.3  

 

An alternative approach to constructing variably substituted dienes was also 

considered to exploit polyunsaturated starting materials. In this chemistry, the reactivity 

of an olefin toward alkylation relies on the initial allylic oxidation. Therefore, we 
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selectivity (Scheme 2.2.4b).  
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Scheme 2.2.4  

 

 

2.2.4 Mechanistic Studies 
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-78 ºC to -20 ºC

i-BuMgBr (8 equiv)

                               (0.5 equiv)
DME/Et2O, 4 ºC, 12 h; 

CuBr•SMe2 (2.5 mol%), DME,
-78 ºC to -20 ºC

i-BuMgBr (4 equiv)

Me

Me

Me

Me
Me

Me

[a] Yield calculated relative to sulfur diimide 2.18 as the limiting reagent

2.18

PhO2S
N

S
N
SO2Ph

2.18

PhO2S
N

S
N
SO2Ph

n

 
    DME/Et2O, 4 ºC, 12 h

2. CuBr•SMe2 (5 mol%), 
    TEMPO (8 mol%), DME

Me

MgBr

Me 2.29

>20:1 E/Z

(4 equiv)

n

2.29a, n=1  59% yielda
2.29b, n=2  70% yielda
2.29c, n=3  89% yielda
2.29d, n=5  85% yielda

A.

B.

                               (0.5 equiv)

2.18

PhO2S
N

S
N
SO2Ph
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of reagent are consumed in off-cycle side reactions, and therefore 2.23 plays a 

multifunctional role in this reaction. At three equivalents olefin 2.21a was generated but 

at a lower yield than the typical four equivalent loading.  

Scheme 2.2.5  

 

To rule-out the possibility of a radical-based mechanism, allylic sulfinamide 2.19a 

was isolated and subjected to the copper-catalyzed alkylation conditions in the presence 

of TEMPO (Scheme 2.2.6). Even at super-stoichiometric amounts, TEMPO failed to 

inhibit the formation of 2.21g or provide any measurable amount of TEMPO adduct, 

therefore suggesting that this chemistry does not proceed through a free-radical 

intermediate.  

Scheme 2.2.6  

DME/Et2O, 4 ºC, 12 h;

CuBr•SMe2 (5 mol%)
 DME, -78 ºC to -20 ºC

Grignard reagent 2.23
 (X equiv)

Ph

2.17a

2.18PhO2S
N

S
N
SO2Ph

Ph

2.21a

2 equivalents of Grignard: <5% yield
3 equivalents of Grignard: 52% yield
4 equivalents of Grignard: 72% yield

Ph–MgBr, TEMPO

CuBr•SMe2 (5 mol%)
DME, -78 ºC to -20 ºC

PhPh
PhS

N
H
N

SO2PhPhO2S

8 mol% TEMPO : 75% yield
200 mol% TEMPO : 78% yield

O
Ph

N
Me

Me
Me

Me

(Not Observed)

2.19a 2.21g
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Interestingly, although copper-catalyzed SN2’ allylic alkylations utilizing Grignard 

reagents are well documented, in all cases we isolated products with complete linear SN2 

selectivity. Copper-mediated SN2’ allylic substitutions are thought to arise from the 

dissymmetric HOMO of heterocuprates, while dialkycuprates characteristically favor α-

alkylation with 1º allylic substrates.46-49 Accordingly, we surmise that the linear 

selectivity exhibited by this reaction is attributed to reductive elimination from a dialkyl 

π-allylcuprate intermediate.  

Scheme 2.2.7  

 

Based on these observations, we propose a mechanism in which allylic sulfinamide 

2.19 undergoes alkylation by one equivalent of Grignard reagent to form sulfimine 2.30 
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as the active allylic electrophile in this method (Scheme 2.27). The conversion of 2.19 to 

2.30 is analogous to the proposed reactivity of allylic sulfoxides in Grignard-mediated 

chemistry.42-44  Oxidative addition by dialkylcuprate 2.31 to sulfimine 2.30 forms π-

complex 2.32 and displaces 2.33 as a byproduct. While the exact identity of the resulting 

copper(III) species is not known, similar copper(III) complexes have been reported and 

characterized by spectroscopic methods.48 Preferential reductive elimination of 

copper(III) intermediate 2.34 results in SN2 product 2.21. Byproduct 2.33 is further 

consumed by an additional equivalent of Grignard reagent in an unproductive side 

reaction to generate thioether 2.35, which accounts for the requisite excess Grignard 

reagent in this reaction. The presence of 2.40 has been verified by gas chromatography 

mass spectroscopy analysis of the crude reaction mixture, and in some cases observed as 

a byproduct in 1HNMR analysis of semi-purified alkylation products.  

 

2.2.5 Conclusions  

In conclusion, we have developed a novel strategy for the allylic C–H alkylation of 

unactivated terminal olefins to access differentially substituted E-olefinated products. 

This chemistry takes advantage of hetero-ene chemistry with commercially available 

bis(phenylsulfonyl)sulfur diimide to generate allylic sulfinamides capable of participating 

in an intermolecular copper-catalyzed coupling with aliphatic, aromatic and vinyl 

Grignard reagents. This chemistry furnishes linear alkylation products in >20:1 E:Z with 

synthetically useful yields. Diverse functionality both on the olefin starting material as 

well as the Grignard reagent is well tolerated, and dienes are selectively converted into 

mono- or dialkylation products by modifying the reaction stoichiometry. The high level 

of α-selectivity in the alkylation step suggests a mechanism that proceeds through a 

dialkylcuprate intermediate.  
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2.3 Experimental Section 
 

2.3.1 Materials and Methods 

All reactions were carried out under an atmosphere of nitrogen in flame-dried 

glassware with magnetic stirring unless otherwise indicated. Commercially obtained 

reagents were used as received. Solvents were dried by passage through an activated 

alumina column under argon. Liquids and solutions were transferred via syringe. All 

reactions were monitored by thin-layer chromatography with E. Merck silica gel 60 F254 

pre-coated plates (0.25 mm). Silica gel (particle size 0.032 - 0.063 mm) purchased from 

SiliCycle was used for flash chromatography. 1H and 13C NMR spectra were recorded on 

Varian Inova-400 or 500 spectrometers. Data for 1H NMR spectra are reported relative to 

chloroform as an internal standard (7.26 ppm) or benzene as an internal standard (7.16 

ppm) and are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant 

(Hz), and integration. Data for 13C NMR spectra are reported relative to chloroform as 

an internal standard (77.23 ppm) and are reported in terms of chemical shift (δ ppm). 

Infrared spectra were recorded on a Perkin-Elmer 1000 series FTIR. HRMS data were 

obtained at The Scripps Center for Mass Spectrometry. 

 

2.3.2 Preparative Procedures 

 

Benzenesulfonyl Sulfurdiimide 2.18: Our procedure was modified from a method 

reported in the literature for the synthesis of similar arylsulfonyl sufurdiimides50: A 

solution of benzenesulfonamide S1 (50 g, 0.318 mol) and SOCl2 (80 mL, 1.1 mol) in 

benzene (30 mL) was refluxed at 80 °C for 3 days (over the course of the reaction, the 

2

S
NH2

O O 1. SOCl2, PhH
    80 °C, 3 days

2. Pyridine, PhH

(98% yield)S1

N
S

N
PhO2S SO2Ph

2.18
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mixture became a clear solution). When the starting material was consumed by 1H NMR 

analysis of an aliquot, the mixture was concentrated under vacuum to remove benzene 

and excess SOCl2. Trace amounts of SOCl2 were removed by redissolving the residue in 

toluene (50 mL), concentrating under reduced pressure, and storing under vacuum at 50 

°C for 6 h. The residue was then treated with benzene (70 mL) and heated slightly to 

ensure all material dissolved in the solvent. Once the solution was cooled to 23 °C, 

pyridine (0.5 mL) was added, and the mixture was stirred. After 12 h, stirring was ceased, 

and a yellow precipitate crystallized slowly from the solution. The precipitate was 

separated by vacuum filtration and stored under vacuum at 50 °C for 8 h. Benzensulfonyl 

sulfurdiimide 2.18 was obtained as a yellow solid (53.5 g, 98% yield). Since 

benzenesulfonyl sulfurdiimide 2.18 is sensitive to water, we store it in a dessicator inside 

a sealed flask that has been purged with N2. Optimal results for the enantioselective 

allylic amination were obtained when benzenesulfonyl sulfurdiimide 2.18 was broken into 

a fine powder immediately before use. 

1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.0 Hz, 2H), 7.67 (t, J = 8.0 Hz, 1H), 7.53 (t, J 

= 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 137.9, 135.0, 129.6, 128.3. IR (thin film): 

3348, 3255, 1557, 1332, 1159 cm-1. 

 

General Procedures for the Functionalization of Unactivated Olefins 

General procedure for the catalytic functionalization of unactivated olefins with 

Grignard reagents (Method A): A solution of benzensulfonyl sulfurdiimide 2.18 (206 

mg, 0.6 mmol, 1.2 equiv) in Et2O (1 M) and DME (1 M) was cooled to 0 °C and treated 

with the terminal olefin (0.5 mmol). After stirring for 6-12 h at 4 °C, the reaction was 

diluted with DME (0.2 M) and treated with CuBr•SMe2 (5 mg, 0.025 mmol, 0.05 equiv). 

The reaction was cooled to –78 °C, and the Grignard reagent (2 mmol, 4 equiv) was 

added quickly. After stirring at –20 °C for 30 min to 3 h, the reaction mixture was diluted 

with wet pentane/CH2Cl2 (30:20 mL) or wet pentane/Et2O (30:20 mL). This mixture was 

passed through a silica gel plug (about 5 cm long), which was flushed with CH2Cl2 or 
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Et2O. The resulting solution was concentrated under reduced pressure and purified by 

flash chromatography using hexanes or pentanes. 

 

General two-pot procedure for the catalytic functionalization of unactivated olefins with 

aryl and vinyl Grignard reagents (Method B): A solution of benzensulfonyl 

sulfurdiimide 2.18 (684 mg, 2 mmol) in Et2O (0.5 M) was cooled to 0 °C and treated with 

the terminal olefin (4 mmol, 2 equiv). The reaction was gently stirred at 4 °C for 12 h. 

The hetero-ene adduct, which formed a white precipitate, was purified at room 

temperature by vacuum filtration, washed with anhydrous Et2O (20–40 mL), and dried 

under vacuum. The hetero-ene adduct (0.5 mmol), CuBr•SMe2 (0.05 equiv), and TEMPO 

(0.08 equiv) were dissolved in DME (0.2 M). The reaction was cooled to –78 °C, and the 

Grignard reagent (2 mmol, 4 equiv) was added quickly. After stirring for at –20 °C for 3 

h, the reaction mixture was diluted with wet pentane/CH2Cl2 (30:20 mL) or wet 

pentane/Et2O (30:20 mL). This mixture was passed through a silica gel plug (about 5 cm 

long), which was flushed with CH2Cl2 or Et2O. The resulting solution was concentrated 

under reduced pressure and purified by flash chromatography using hexanes or pentanes. 

Note: We were able to achieve 4 °C in a Thermo Scientific Neslab Low-Temperature 

Cryobath with Magnetic Stirring (Fisher Scientific Catalog# 13-265-83) and a 

Temperature Controller Cryotrol (Fisher Scientific Catalog# 13-265-85). Alternatively, 

we were able to achieve 4 °C in a cold room in our department. 

 

 

2.21a: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), 4-phenyl-1-butene52 (0.5 mmol) and cyclopentylmagnesium 

bromide51 (2M in Et2O) were converted to the desired product. The hetero-ene reaction 
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was stirred for 10 h, and the copper-catalyzed step was stirred for 3 h. Purification by 

flash chromatography (pentane only) afforded 2.21a (72% yield, 15:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3) δ 7.31 (q, J = 5.6 Hz, 2H), 7.21 – 7.19 (m, 3H), 5.64 – 5.49 

(m, 2H), 3.34 (d, J = 5.7 Hz, 2H), 2.04 (t, J = 5.9 Hz, 2H), 1.86 (s, J = 7.6 Hz, 1H), 1.77 

– 1.71 (m, 2H), 1.64 – 1.56 (m, 2H), 1.53 – 1.47 (m, 2H), 1.18 – 1.10 (m, 2H); 1H NMR 

(500 MHz, benzene-d6) δ 7.16-7.03 (m, 5H), 5.51 (dt, J = 15.0 Hz, J =7.0 Hz, 1H), 5.42 

(dt, J = 15.0 Hz, J =6.5 Hz, 1H) 3.21 (d, J = 6.5 Hz, 2H), 1.95 (dd, J = 7.0Hz, J = 6.5 Hz, 

2H), 1.76-1.64 (m, 3H), 1.54-1.37 (m, 4H), 1.09-1.02 (m, 2H). 13C NMR (100 MHz, 

CDCl3) δ 141.3, 131.7, 129.3, 128.7, 128.5, 126.0, 40.2, 39.3, 39.2, 32.5, 25.4; IR (thin 

film): 3027, 2949, 2360, 1452, 968, 744 cm-1. HRMS (ESI) calcd for [C15H21]+ ([M+H]+): 

201.1638, found 201.1630. 

 

 

2.21b: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), 4-phenyl-1-butene51 (0.5 mmol) and isobutylmagnesium bromide 

solution51 (2 M in Et2O) were converted to the desired product. The hetero-ene reaction 

was stirred for 10 h, and the copper-catalyzed step was stirred for 3 h. Purification by 

flash chromatography (pentane only) afforded 2.21b (85% yield, >20:1 E:Z) as a clear 

oil: 

1H NMR (400 MHz, CDCl3) δ 7.28 (q, J = 7.6 Hz, 2H), 7.21 – 7.17 (m, 3H), 5.61 – 5.47 

(m, 2H), 3.33 (d, J = 6.1 Hz, 2H), 2.03 (q, J = 5.8 Hz, 2H), 1.57 (s, J = 6.7 Hz, 1H), 1.26 

(q, J = 6.7 Hz, 2H), 0.88 (d, J = 6.6 Hz, 6H); 13C NMR (100 MHz, CDCl3) 

δ 141.3, 132.4,  128.7, 128.7, 128.5, 126.0, 39.3, 38.9, 30.6, 27.8, 22.7;  IR (thin film): 

3027, 2956, 1494, 1453, 970, 698 cm-. HRMS (ESI) calcd for [C14H21]+ ([M+H]+): 

189.1638, found 189.1625. 

Me

Me
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2.21c: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), 4-phenyl-1-butene.51 (0.5 mmol) and octylmagnesium chloride 

solution51 (2 M in THF) were converted to the desired product. The hetero-ene reaction 

was stirred for 10 h, and the copper-catalyzed step was stirred for 3 h. Purification by 

flash chromatography (pentane only) afforded 2.21c (74% yield, >20:1 E:Z) as a clear 

oil: 

1H NMR (400 MHz, CDCl3) δ 7.28 (q, J = 7.4 Hz, 2H), 7.21 – 7.17 (m, 3H), 5.62– 5.47 

(m, 2H), 3.33 (d, J = 5.8 Hz, 2H), 2.02 (q, J = 6.5 Hz, 2H), 1.41 – 1.32 (m, 2H), 1.31 – 

1.24 (m, 12H), 0.89 (t, J = 6.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) 

δ 141.4, 132.4, 128.9, 128.7, 

128.5, 126.0, 39.3, 32.7, 32.1, 29.8, 29.7, 29.7, 29.6, 29.4, 22.9, 14.3;  IR (thin film): 

3028, 2924, 1494, 1454, 968, 697 cm-1. HRMS (ESI) calcd for [C18H27]- ([M-H]-): 

243.2118 found 243.2117. 

 

 

2.21d: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), 4-phenyl-1-butene51 (0.5 mmol) and tert-butylmagnesium chloride 

solution51 (2 M in Et2O) were converted to the desired product. The hetero-ene reaction 

was stirred for 10 h, and the copper-catalyzed step was stirred for 3 h. Purification by 

flash chromatography (pentane only) afforded 2.21d (53% yield, >20:1 E:Z) as a clear 

oil: 

C8H17

Me

Me
Me
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1H NMR (400 MHz, CDCl3) δ 7.30 (q, J = 78.3 Hz, 2H), 7.23 – 7.19 (m, 3H), 5.62– 5.53 

(m, 2H), 3.38 (d, J = 5.2 Hz, 2H), 1.93 (d, J = 4.4 Hz, 2H), 0.91 (s, 9H); 13C NMR (100 

MHz, CDCl3) δ 131.1, 129.3, 128.7, 128.5, 126.0, 47.3, 39.4, 31.2, 29.5;  IR (thin film): 

3029, 2956, 1494, 1364, 971, 698 cm-1 HRMS (ESI) calcd for [C14H19]- ([M-H]-): 

187.1492, found 187.1479. 

 

 

2.21e: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), 4-phenyl-1-butene51 (0.5 mmol) and 

(trimethylsilyl)methylmagnesium chloride solution51 (1 M in Et2O) were converted to the 

desired product. The hetero-ene reaction was stirred for 10 h, and the copper-catalyzed 

step was stirred for 3 h. Purification by flash chromatography (pentane only) afforded 

2.21e (70% yield, >20:1 E:Z) as a clear oil: 

1H NMR (400 MHz, CDCl3) δ 7.28 (q, J = 7.4 Hz, 2H), 7.20 – 7.17 (m, 3H), 5.61 – 5.51 

(m, 2H), 2.04 (m, 2H), 0.60 (m, 2H), -0.02 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 141.4, 

135.0, 128.7, 128.5, 127.5, 126.1, 39.2, 27.0, 16.7, -1.4; IR (thin film): 2953, 1495, 1248, 

968, 835, 698 cm-1. HRMS (ESI) calcd for [C13H20SiNa]+ ([M+Na]+): 227.1226, found 

227.1066. 

 

 

2.21f: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), 4-phenyl-1-butene51 (0.5 mmol) and (2S)-methylbutyl-1-magnesium 

bromide (0.98 M in THF) were converted to the desired product. The hetero-ene reaction 

SiMe3

Me
Me
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was stirred for 10 h, and the copper-catalyzed step was stirred for 3 h. Purification by 

flash chromatography (pentane only) afforded 2.21f (86% yield, >20:1 E:Z) as a clear oil: 

1H NMR (400 MHz, CDCl3) δ 7.28 (q, J = 8.3 Hz, 2H), 7.21 – 7.19 (m, 3H), 5.62 – 5.48 

(m, 2H), 3.34 (d, J = 5.9 Hz, 2H), 2.11 – 1.96 (m, 2H), 1.45 – 1.32 (m, 3H), 1.24 – 1.11 

(m, 2H), 0.89 – 0.86 (m, 6H); 13C NMR (100 MHz, CDCl3) 

δ 141.4, 132.6, 128.7, 128.7, 128.5,  126.1, 39.3, 36.6, 34.2, 30.3, 29.6, 19.3, 11.6;  IR 

(thin film): 3028, 2961, 1494, 1453, 969, 698 cm-1. HRMS (ESI) calcd for [C14H21]+ 

([M+H]+): 189.1638, found 189.1640. 

 

 
Synthesis of (2S)-methylbutyl-1-magnesium bromide: A flame-dried 3-neck round-

bottom flask was fitted with an additional funnel and charged with magnesium chips (1g, 

1.25 equiv) and catalytic amounts of iodine. (S)-(+)-1-Bromo-2-methylbutane51 (5g, 33 

mmol) in THF (10 mL) was transferred to the additional funnel, and 0.5 mL of this 

solution was added slowly to the flask with no stirring. The reaction mixture became 

colorless within 2 minutes. The remaining solution of (S)-(+)-1-bromo-2-methylbutane 

was added dropwise to the reaction flask with stirring. When addition of the solution was 

complete, the reaction mixture was stirred at 23 °C for 1 h and diluted with THF (10 mL). 

Titration of the resulting Grignard reagent (2S)-methylbutyl-1-magnesium bromide 

indicated a concentration was 0.98 M. 

 

 

2.21g: Following the general two-pot procedure for the catalytic functionalization of 

unactivated olefins with aryl and vinyl Grignard reagents (Method B), benzenesulfonyl 

Br Me
Me

Mg, I2

THF
BrMg Me

Me
(0.98 M in THF)
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sulfurdiimide 2.18 (0.5 mmol), 4-phenyl-1-butene51 (2 equiv), and phenylmagnesium 

bromide solution51 (3 M in Et2O) were converted to the desired product. The hetero-ene 

reaction was stirred for 10 h, and the copper-catalyzed step was stirred for 3 h. 

Purification by flash chromatography (pentane only) afforded 2.21g (70% yield for two 

steps, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 7.33 (t, J = 9.0 Hz, 2H), 7.24 (m, 3H), 5.75-6.68 (m, 2H), 

3.42 (d, J = 5.0 Hz, 3H). 13C NMR (125 MHz, CDCl3), 

δ 140.7, 130.4, 128.0, 128.4, 125.9, 39.0. IR (thin film): 3027, 1602, 1494, 1453, 969, 

745 cm-1.   

 

 

2.21h: Following the general two-pot procedure for the catalytic functionalization of 

unactivated olefins with aryl and vinyl Grignard reagents (Method B), benzenesulfonyl 

sulfurdiimide 2.18 (0.5 mmol), 4-phenyl-1-butene51 (2 equiv), and 4-

methylphenylmagnesium bromide solution51 (1 M in THF) were converted to the desired 

product. The hetero-ene reaction was stirred for 10 h, and the copper-catalyzed step was 

stirred for 3 h. Purification by flash chromatography (pentane only) afforded 2.21h (79% 

yield for two steps, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 7.42-7.39 (m, 2H), 7.34-7.30 (m, 3H), 7.23-7.18 (m, 4H), 

5.82-5.74 (m, 2H), 3.48 (d, J = 5.0 Hz) 3.45 (d, J = 5.0 Hz), 2.44 (S, 3H). 13C NMR (125 

MHz, CDCl3), δ 140.7, 137.6, 135.4, 130.7, 130.1, 129.0, 128.5, 128.4, 128.3, 125.9. IR 

(thin film): 3026, 2919, 1603, 1514, 1493, 1453, 969cm-1.  HRMS (ESI) calcd for 

[C17H19]+ ([M+H]+): 223.1481, found 223.1478. 

 

Me
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2.21i: Following the general two-pot procedure for the catalytic functionalization of 

unactivated olefins with aryl and vinyl Grignard reagents (Method B), benzenesulfonyl 

sulfurdiimide 2.18 (0.5 mmol), 4-phenyl-1-butene51 (2 equiv), and 2-

methylphenylmagnesium bromide solution51 (1 M in THF) were converted to the desired 

product. The hetero-ene reaction was stirred for 10 h, and the copper-catalyzed step was 

stirred for 3 h. Purification by flash chromatography (pentane only) afforded 2.21i (75% 

yield for two steps, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 7.37 (t, J = 7.5 Hz, 2H), 7.29-7.26 (m, 3H), 7.24-7.21 (m, 

4H), 5.77-5.65 (m, 2H), 3.45-3.43 (m, 4H), 2.37 (s, 3H). 13C NMR (125 MHz, CDCl3), 

δ 140.7, 138.7, 136.2, 130.1, 130.0, 129.6, 128.9, 128.4, 128.3, 126.1, 126.0, 125.9. 38.9, 

36.5, 19.4. IR (thin film): 3026, 2910, 1603, 1493, 1453, 970 cm-1.  HRMS (ESI) calcd 

for [C17H19]+ ([M+H]+): 223.1481, found 223.1481. 

 

 

2.21l: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), allylbenzene51 (0.5 mmol) and isobutylmagnesium bromide 

solution51 (2 M in Et2O) were converted to the desired product. The hetero-ene reaction 

was stirred for 6 h, and the copper-catalyzed step was stirred for 3 h. Purification by flash 

chromatography (pentane only) afforded 2.21l (90% yield, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 7.36-7.34 (m, 2H), 7.31-7.28 (m, 2H), 7.21-7.18 (m, 1H), 

6.37 (d, J = 16 Hz, 1H), 6.23 (dt, J = 16 Hz, J = 6.5 Hz, 1H), 2.22 (ddt, J = 8Hz, J = 

6.5Hz, J = 1Hz, 2H), 1.64-1.56 (m, 1H),  1.36 (dt, J = 8.5 Hz, J = 7.0 Hz, 2H), 0.92 (d, J 

Me

Me

Me
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= 7.0 Hz, 6H). 13C NMR (125 MHz, =CDCl3), δ 137.9, 131.4, 129.5, 128.4, 126.7,  

125.9, 38.5, 30.9, 27.5, 22.5. IR (thin film): 2955, 2926, 1467, 963, 691 cm-1.  HRMS 

(ESI) calcd for [C13H17]+ ([M+H]+): 173.1336., found 173.1319. 

 

 

2.21m: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), allylcyclohexane51 (0.5 mmol) and isobutylmagnesium bromide 

solution51 (2 M in Et2O) were converted to the desired product. The hetero-ene reaction 

was stirred for 6 h, and the copper-catalyzed step was stirred for 3 h. Purification by flash 

chromatography (pentane only) afforded 2.21m (86% yield, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 5.36-5.35 (m, 2H), 2.00-1.96 (m, 2H), 1.89-1.86 (m, 1H), 

1.75-1.60 (m, 5H), 1.60-1.51 (m, 1H), 1.26-1.09 (m, 5 H), 1.08-0.98 (m, 1H), 0.88 (d, J = 

7.0 Hz, 6H). 13C NMR (100 MHz, CDCl3), δ 136.2, 127.8, 40.7, 38.9, 33.3, 30.54,  

27.4, 26.2, 26.1, 22.5. IR (thin film): 2955, 2925, 2851, 1448, 967 1088 cm-1.  HRMS 

(ESI) calcd for [C13H25]+ ([M+H]+): 181.1951, found 181.1947. 

 

 

2.21n: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), 1-octene51 (0.5 mmol) and isobutylmagnesium bromide solution51 (2 

M in Et2O) were converted to the desired product. The hetero-ene reaction was stirred for 

6 h, and the copper-catalyzed step was stirred for 3 h. Purification by flash 

chromatography (pentane only) afforded 2.21n (88% yield, >20:1 E:Z) as a clear oil: 

Me

Me

C5H11 Me
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1H NMR (500 MHz, CDCl3), δ 5.41-5.36 (m, 2H), 2.01-1.96 (m, 4H), 1.57-1.53 (m, 1H), 

1.31-1.16 (m, 8H), 0.91-0.87 (m, 9H). 13C NMR (125 MHz, CDCl3), δ 130.4, 130.2,  

38.9, 32.6, 31.4,  30.5, 29.4, 27.5, 22.6, 22.5, 14.1. IR (thin film): 2957, 2926, 2872, 

1467, 968 cm-1.  HRMS (ESI) calcd for [C12H23]+ ([M-H]-): 167.1805, found 167.1782. 

 

 

2.21o: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), 7-chloro-1-heptene50 (0.5 mmol) and isobutylmagnesium bromide 

solution51 (2 M in Et2O) were converted to the desired product. The hetero-ene reaction 

was stirred for 6 h, and the copper-catalyzed step was stirred for 3 h. Purification by flash 

chromatography (pentane only) afforded 2.21o (70% yield, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 5.45-5.35 (m, 2H), 3.54 (t, J = 7.0 Hz, 2H), 2.04-1.97 (m, 

4H), 1.81-1.75 (m, 2H), 1.55-1.47 (m, 13H), 1.25-1.21 (m, 2H), 0.88 (d, J = 7.0 Hz, 6H). 
13C NMR (125 MHz, CDCl3), δ 131.3, 129.1, 45.0, 38.9, 32.0, 31.7, 30.4, 27.4, 26.7, 

 22.5, 21.7. IR (thin film): 2955, 2869, 1466, 1310, 968 cm-1.  HRMS (ESI) calcd for 

[C11H22Cl]+ ([M+H]+): 189.1404, found 189.1241. 

 

 

2.21p: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), (1,1-dimethylethyl)(dimethyl)(4-pentenyloxy)silane51 (0.5 mmol) 

and isobutylmagnesium bromide solution51 (2 M in Et2O) were converted to the desired 

product. The hetero-ene reaction was stirred for 6 h, and the copper-catalyzed step was 

stirred for 1 h. Purification by flash chromatography (hexanes and ethyl acetate) afforded 

2.21p (64% yield, >20:1 E:Z) as a clear oil: 

Me

Me

Cl

Me

Me
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1H NMR (500 MHz, CDCl3), δ 5.50-5.37 (m, 2H), 3.61 (t, J = 7.0 Hz, 2H), 2.21 (dt, J = 

7.0 Hz, J = 6.5 Hz, 2H), 2.01 (dt, J = 7.5 Hz, J = 7.0 Hz, 2H),  1.56-1.52 (m, 1H), 1.23 

(dt, J = 7.5 Hz, J = 7.0 Hz, 2H), 0.90 (s, 9H), 0.88 (d, J = 6.5 Hz, 6H), -0.06 (s, 6H). ). 
13C NMR (125 MHz, CDCl3), δ 132.8, 126.1, 63.4, 38.7, 36.3, 30.5, 27.4, 25.9, 22.5, 

18.4, -5.2. IR (thin film): 2955, 2858, 1464, 1255, 1102, 937, 836 cm-1.  HRMS (ESI) 

calcd for [C15H33OSi]+ ([M+H]+): 257.2295, found 257.2299. 

 

 

2.21q: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), ethyl pent-4-en-1-yl carbonate54 (0.5 mmol) and isobutylmagnesium 

bromide solution51 (2 M in Et2O) were converted to the desired product. The hetero-ene 

reaction was stirred for 6 h, and the copper-catalyzed step was stirred for 40 min. 

Purification by flash chromatography (hexanes and ethyl acetate) afforded 2.21q (72% 

yield, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 5.50 (dt, J = 19.0 Hz, J = 8.0 Hz, 1H), 5.36 (dt, J = 19.0 

Hz, J = 8.0 Hz, 1H), 4.18 (q, J = 7.0 Hz, 2H), 4.10 (t, J = 7.0 Hz), 2.35 (dt, J = 7.0 Hz, J 

=6.5 Hz, 2H), 1.99 (dt, J = 8.0 Hz, 6.5 Hz, 2H), 1.55-1.50 (m, 1H), 1.30 (t, 7.0 Hz, 3H), 

0.86 (d, J = 7.0 Hz). 13C NMR (125 MHz, CDCl3), 

δ 155.1, 134.0, 124.3, 67.4, 63.7, 38.5, 31.9, 30.4, 27.4, 22.4,  14.2. IR (thin film): 2957, 

2871, 1747, 1468, 1384, 1257 cm-1. HRMS (ESI) calcd for [C12H23O3]+ ([M+H]+): 

215.1642, found 215.1641. 
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2.21r: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), methyl 5-hexenoate51  (0.5 mmol) and isobutylmagnesium bromide 

solution51 (2 M in Et2O) were converted to the desired product. The hetero-ene reaction 

was stirred for 6 h, and the copper-catalyzed step was stirred for 30 min. Purification by 

flash chromatography (pentane only) afforded 2.21r (62% yield, >20:1 E:Z) as a clear 

oil: 

1H NMR (500 MHz, CDCl3), δ 5.48-5.36 (m, 2H), 3.66 (s, 3H), 2.38-2.35 (m, 2H),  

2.30 (t, J = 7.0 Hz, 2H), 1.97 (dt, J = 8.5 z, 7.0 Hz, 2H), 1.55 (m, 1H), 1.32-1.18 (m, 2H), 

0.86 (d, J = 7.0 Hz, 6H). 13C NMR (125 MHz, CDCl3), δ 173.7, 131.9, 127.6, 51.5, 38.6,  

34.1, 27.9, 27.4,  22.6. IR (thin film):  2955, 2927, 1743, 1436, 1197, 1167 cm-1. HRMS 

(ESI) calcd for [C12H22O2]+ ([M+H]+): 199.1692, found 199.1760. 

 

 

2.21s: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), methylenecyclohexane51 (0.5 mmol) and isobutylmagnesium 

bromide solution51 (2 M in Et2O) were converted to the desired product. The hetero-ene 

reaction was stirred for 6 h, and the copper-catalyzed step was stirred for 1 h. Purification 

by flash chromatography (pentane only) afforded 2.21s (83% yield, >20:1 E:Z) as a clear 

oil: 

1H NMR (500 MHz, CDCl3), δ 5.42-5.39 (m, 1H), 2.01-1.97 (m, 2H), 1.94-1.91(m, 4H), 

1.64-1.60 (m, 2H), 1.58-1.48 (m, 3H), 1.30-1.25 (m, 2H), 0.89 (d, J = 7.0 Hz, 6H). 13C 

NMR (125 MHz, CDCl3), δ 138.3, 120.3, 37.0, 35.9, 28.4, 27.8, 25.3, 23.0, 22.6, 22.5. IR 
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MeO
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(thin film): 2954, 2927, 2837, 1467, 1366 cm-1.  HRMS (ESI) calcd for [C11H21]+ 

([M+H]+)153.1638, found 153.1166. 

 

 

2.21t: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), (−)-β-Pinene51 (0.5 mmol) and isobutylmagnesium bromide 

solution51 (2 M in Et2O) were converted to the desired product. The hetero-ene reaction 

was stirred for 6 h, and the copper-catalyzed step was stirred for 40 min. Purification by 

flash chromatography (pentane only) afforded 2.21t (57% yield, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 5.18-5.15(m, 1H), 2.37-2.33 (m, 1H), 2.27-2.16 (m, 2H),  

2.09-2.06 (m, 1H), 2.01-1.99 (m, 1H), 1.95-1.91 (m, 2H), 1.55-1.50 (m, 1H), 1.27 (s, 3H)

, 1.26-1.18 (m, 2H), 1.43 (d, J = 8.5 Hz, 1H), 0.88 (d, J = 7.0 Hz, 3H), 0.88 (d, J = 7.0 

Hz, 3H), 0.83 (s, 3H). 13C NMR (100 MHz, CDCl3), 

δ 148.8, 115.3, 45.8, 40.9, 37.9, 36.4, 34.8, 31.7, 31.3,  27.8, 26.4, 22.6, 22.5, 21.2. IR 

(thin film): 3378, 2985, 1467, 1382, 1365 cm-1.  LRMS (ESI) calcd for [C14H25]+ 

([M+H]+): 193.2, found 193.2. 

 

 

2.24: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), 4-phenyl-1-butene51 (0.5 mmol) and 3-butenylmagnesium bromide 

solution 2.2351 (0.5 M in Et2O) were converted to the desired product. The hetero-ene 

reaction was stirred for 10 h, and the copper-catalyzed step was stirred for 3 h. 
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Purification by flash chromatography (pentane only) afforded 2.24 (57% yield, >20:1 

E:Z) as a clear oil: 

1H NMR (400 MHz, CDCl3) δ 7.28 (q, J = 7.6 Hz, 2H), 7.22 – 7.18 (m, 3H), 5.82 (ddt, J 

= 6.7 Hz, 10.2 Hz, 17.0 Hz, 1H), 5.63 – 5.48 (m, 2H), 5.04 – 4.94 (m, 2H), 3.34 (d, J = 

6.4 Hz, 2H), 2.06 (p, J = 6.9 Hz, 4H), 1.49 (p, J = 7.7 Hz, 2H); 13C NMR (100 MHz, 

CDCl3) δ 141.3,  139.0, 131.8, 129.4, 128.7, 128.5, 126.1, 114.7, 39.3, 33.5, 32.2, 28.9;  

IR (thin film): 3028, 2926, 1640, 968, 910, 698 cm-1  HRMS (ESI) calcd for [C14H18]+ 

([M+H]+): 187.1481, found 187.1472. 

 

 

2.26: Following the general two-pot procedure for the catalytic functionalization of 

unactivated olefins with aryl and vinyl Grignard reagents (Method B), 4-phenyl-1-

butene51 (2 mmol) and 1-methyl-1-propenylmagnesium bromide solution 2.2551 (0.5 M in 

THF) were converted to the desired product. The hetero-ene reaction was stirred for 10 h, 

and the copper-catalyzed step was stirred for 3 h. Purification by flash chromatography 

(pentane only) afforded 2.26 (80% yield for two steps, >20:1 E:Z) as a clear oil: 

1H NMR (400 MHz, CDCl3) δ 7.28 (q, J = 7.6 Hz, 2H), 7.21 – 7.18 (m, 3H), 5.65 – 5.58 

(m, 1H), 5.50 – 5.45 (m, 1H), 5.27 (q, J = 6.7 Hz, 1H), 3.36 (d, J = 6.8 Hz, 2H), 2.76 (d, J 

= 6.5 Hz, 2H), 1.69 (s, 3H), 1.59 (d, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 

141.2, 134.6, 129.8, 129.2, 128.7, 128.5, 126.1, 119.7, 39.2, 35.0, 23.6, 13.5; IR (thin 

film): 2915, 1494, 1453, 969, 746, 698 cm-1 HRMS (ESI) calcd for [C18H22N2O4S3Na]+ 

([M+Na]+): 187.1481, found 187.1242. 
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2.27 Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), benzensulfonyl sulfurdiimide 2.18 (0.5 mmol), 1,7-octadiene51 (2 

equiv), and isobutylmagnesium bromide solution51 (2 M in Et2O) were converted to the 

desired product. The hetero-ene reaction was stirred for 10 h in Et2O (1.0 mL) and DME 

(0.5 mL), and the copper-catalyzed step was stirred for 3 h. Purification by flash 

chromatography (pentane only) afforded 2.27 (80% yield, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 5.85-5.78 (m, 1H), 5.41-5.39 (m, 2H), 5.03-4.94(m, 2H), 

 2.08-1.97 (m, 6H), 1.58-1.51 (m, 1H), 1.48-1.41 (m, 2H), 1.26-1.21 (m, 2H), 0.88 (d, 

J =7.0 Hz, 6H). 13C NMR (125 MHz, CDCl3), 

δ 138.9, 130.9, 129.7, 114.4, 38.9, 33.2, 32.0,  30.5, 28.8, 27.5, 22.5. IR (thin film): 3078, 

2956, 1641, 1467, 1366 cm-1.  HRMS (ESI) calcd for [C12H23]+ ([M+H]+): 167.1794, 

found 167.1780. 

 

 

2.28: Following the general procedure for the catalytic functionalization of unactivated 

olefins (Method A), 1,7-octadiene51 (0.5 mmol), benzensulfonyl sulfurdiimide 2.18 (2.5 

equiv), and isobutylmagnesium bromide solution 1551 (2 M in Et2O) were converted to 

the desired product. The hetero-ene reaction was stirred for 10 h in Et2O (0.5 mL) and 

DME (0.5 mL), and the copper-catalyzed step was stirred for 3 h. Purification by flash 

chromatography (pentane only) afforded 2.28 (68% yield, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 5.41-5.39 (m, 2H), 2.04, 2.00 (m, 4H), 1.57-1.53 (m, 1H), 

1.25-1.22 (m, 2H), 0.88 (d, J = 7.0 Hz, 6H. 13C NMR (125 MHz, CDCl3), 
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δ 130.8, 129.6, 38.8, 32.8, 30.5, 27.4, 22.5. IR (thin film): 3078, 2921, 2847, 1467, 1366 

cm-1.  HRMS (ESI) calcd for [C16H31]+ ([M+H]+): 223.2426, found 223.2414. 

 

 

2.29a: Following the general two-pot procedure for the catalytic functionalization of 

unactivated olefins with aryl and vinyl Grignard reagents (Method B), benzensulfonyl 

sulfurdiimide 2.18 (1 mmol), 1,5-hexadiene51 (2 equiv), and 4-methylphenylmagnesium 

bromide solution51 (1 M in THF) were converted to the desired product. The hetero-ene 

reaction was stirred for 10 h, and the copper-catalyzed step was stirred for 3 h. 

Purification by flash chromatography (pentane only) afforded 2.29a (62% yield for two 

steps, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 7.14 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 5.92-

5.82 (m, 1H), 5.63-5.51 (m, 2H), 5.10-5.01 (m, 2H), 3.35 (d, J = 7.0 Hz, 2H), 2.81 (dd,  J 

= 6.0 Hz, 5.5 Hz, 2H), 2.36 (s, 3H). 13C NMR (125 MHz, CDCl3), 

δ 137.8, 137.2, 135.5, 130.6,  129.2, 129.0, 128.5, 115.2, 38.8, 36.8, 21.2. IR (thin film): 

3004, 2978, 1638, 1514, 1431, 993, 912 cm-1.  LRMS (ESI) calcd for [C13H17]+ ([M+H]+): 

173.1, found 173.1. 

 

 

2.29b: Following the general two-pot procedure for the catalytic functionalization of 

unactivated olefins with aryl and vinyl Grignard reagents (Method B), benzensulfonyl 

sulfurdiimide 2.18 (1 mmol), 1,6-heptadiene51 (2 equiv), and 4-methylphenylmagnesium 

bromide solution51 (1 M in THF) were converted to the desired product. The hetero-ene 

reaction was stirred for 10 h, and the copper-catalyzed step was stirred for 3 h. 
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Purification by flash chromatography (pentane only) afforded 2.29b (65% yield for two 

steps, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 7.16 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 5.90-

5.84 (m, 1H), 5.67-5.54 (m, 2H), 5.10-5.01 (m, 2H), 3.35 (d, J = 6.5 Hz, 2H), 2.36 (s, 

3H), 2.20-2.17 (m, 4H). 13C NMR (125 MHz, CDCl3), 

δ 138.6, 138.0, 135.5, 131.0, 129.8, 129.2, 128.5,  114.8, 38.8, 33.9, 32.1, 21.2. IR (thin 

film): 3077, 2922, 1640, 1514, 1435, 969 cm-1.  HRMS (ESI) calcd for [C14H19]+ 

([M+H]+): 187.1481, found 187.1379. 

 

 

2.29c: Following the general two-pot procedure for the catalytic functionalization of 

unactivated olefins with aryl and vinyl Grignard reagents (Method B), benzensulfonyl 

sulfurdiimide 2.18 (1 mmol), 1,7-octadiene51 (2 equiv), and 4-methylphenylmagnesium 

bromide solution51 (1 M in THF) were converted to the desired product. The hetero-ene 

reaction was stirred for 10 h, and the copper-catalyzed step was stirred for 3 h. 

Purification by flash chromatography (pentane only) afforded 2.29c (79% yield for two 

steps, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 7.14 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 5.87-

5.81 (m, 1H), 5.59-5.50 (m, 2H), 5.05-4.97 (m, 2H), 3.32 (d, J = 6.5 Hz, 2H), 2.35 (s, 

3H), 2.10-2.05 (m, 4H), 1.57-1.47 (m, 2H). 13C NMR (125 MHz, CDCl3), 

δ 139.0, 138.2, 135.5, 131.5, 129.6,  129.2, 128.5, 114.6, 38.8, 33.5, 32.1, 28.8, 21.2. IR 

(thin film): 3076, 2925, 1640, 1514, 1436, 969, 910 cm-1. HRMS (ESI) calcd for [C15H21]+ 

([M+H]+): 201.1683, found 201.1491. 
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2.29d: Following the general two-pot procedure for the catalytic functionalization of 

unactivated olefins with aryl and vinyl Grignard reagents (Method B), benzensulfonyl 

sulfurdiimide 2.18 (1 mmol), 1,9-decadiene51 (2 equiv), and 4-methylphenylmagnesium 

bromide solution51 (1 M in THF) were converted to the desired product. The hetero-ene 

reaction was stirred for 10 h, and the copper-catalyzed step was stirred for 3 h. 

Purification by flash chromatography (pentane only) afforded 2.29d (80% yield for two 

steps, >20:1 E:Z) as a clear oil: 

1H NMR (500 MHz, CDCl3), δ 7.22 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 5.97-

5.91 (m, 1H), 5.70-5.60 (m, 2H), 5.15-5.06 (m, 2H), 3.40 (d, J = 6.5 Hz, 2H), 2.44 (s, 

3H), 2.18-2.13 (m, 4H), 1.57-1.44 (m, 6H). 13C NMR (125 MHz, CDCl3), 

δ 139.3, 138.2, 135.4, 131.9, 129.3, 

 129.2, 128.5, 114.4, 38.9, 33.9, 32.7, 29.5, 28.9, 28.8, 21.2. IR (thin film): 3076, 2926, 

1640, 1514, 1436, 968, 909 cm-1. HRMS (ESI) calcd for [C17H25]+ ([M+H]+): 229.1951, 

found 229.1941. 

 

Determination of E-Olefin Geometry of Products: The large coupling constants for the 

vinyl protons of products 2.21a (J = 15 Hz), 2.21l (J = 16 Hz), and 2.21q (J = 19 Hz) 

allowed the assignment of the E-olefin geometry for these three internal olefins. The E-

olefin geometry for all other products was assumed by analogy. 
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APPENDIX THREE 

 

 

Spectra Relevant to Chapter Two: 

An Allylic Alkylation of Unactivated Terminal Olefins 

With Grignard Reagents 
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2.18 in CDCl3 
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 2.21a in CDCl3 
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2.21a in C6D6 
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2.21b in CDCl3 
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2.21c in CDCl3  
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2.21d in CDCl3 
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2.21e in CDCl3 
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2.21f in CDCl3 
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2.21g in CDCl3 
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2.21h in CDCl3 
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2.21i in CDCl3 
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2.21l in CDCl3 
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2.21m in CDCl3 
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2.21n in CDCl3 
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2.21o in CDCl3 
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2.21p in CDCl3 
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2.21q in CDCl3 
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2.21r in CDCl3 
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2.21s in CDCl3 
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2.21t in CDCl3 
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2.24 in CDCl3 
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2.25 in CDCl3 
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2.27 in CDCl3 
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2.28 in CDCl3 
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2.29a in CDCl3 
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2.29b in CDCl3 
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  2.29c in CDCl3 
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  2.29d in CDCl3 
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CHAPTER THREE 

The Development of a Regio- and Diastereoselective  

Aminoarylation of Simple Dienes 

 

3.1 Background 
 

3.1.1 Introduction 

Nitrogen-containing compounds are represented in a sizeable portion of bioactive 

small molecules, making up more than 80 percent of FDA approved pharmaceutical 

drugs.1-3 The selective introduction of C–N bonds into unsaturated hydrocarbons has 

evolved into a powerful synthetic strategy for the construction of these functional 

materials, enabling the use of inexpensive chemical feedstocks.2,4-6 In particular, allylic 

amines represent an important class of nitrogenated compounds, because they serve as 

fundamental intermediates in chemical synthesis in addition to functional materials 

themselves.7-10 

The carboamination of diene starting materials represents an underutilized chemical 

strategy for the construction of allylic amines, presumably due to the challenge of 

controlling the carboamination pathway over competing bisalkylation or bisamination 

pathways. In addition, matters of both regioselectivity and diastereoselectivity become 

increasingly more difficult when introducing multiple new bonds into conjugated systems 

lacking directing or activating functionality. To date, only a handful of strategies have 

been developed for the catalytic intermolecular carboamination of unactivated dienes.11-13 
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3.1.2 Catalytic Telomerization of Dienes with Amines  

Telomerization, or the metal catalyzed linear dimerization of 1,3-dienes in the 

presence of a nucleophile, has been widely explored as a method for the selective 

incorporation of new C–N and C–C bonds within a single operation (Scheme 3.1.1).11,14-26 

Since the establishment of this strategy by Takahashi and Smutny independently in 1967 

as an atom economic and environmentally benign process,17,19 the palladium-catalyzed 

telomerization of simple dienes in the presence of ammonia, 1º or 2º amines has found its 

niche in chemical synthesis and industrial processes and represents one of the earliest 

examples of the selective carboamination of simple dienes.  

Scheme 3.1.1 

 

In recent years, several labs have expanded on the palladium-catalyzed 

telomerization of 1,3-butadiene (3.1) with amines to selectively access a wide variety of 

amino-2,7-dienes (3.2, Scheme 3.1.2). There are several advantages to this strategy, 

including low catalyst loadings, and excellent E-olefin selectivity. N-heterocyclic 

carbenes represent particularly exceptional ligands for this process and have been shown 

to provide catalyst turnover numbers as high as 400,000.16,26 While this chemistry is 

predominantly utilized for the functionalization of 1,3-butadiene, and therefore 

circumvents additional regioselectivity concerns, recently the regioselective 

telomerization of isoprene has found some success.14,20,24,25   
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ROH, etc.



 159 

Scheme 3.1.2 

 

3.1.3 Heck’s Palladium-Catalyzed Aminoarylation of 1,3-Dienes  

Subsequent to the discovery and study of telomerization with amines, Heck and 

coworkers reported an elegant study on the palladium-catalyzed aminoarylation of 1,3-

dienes that accommodates a wider variety of acyclic and cyclic diene substrates (Scheme 

3.1.3).12 This reaction takes place through the palladium-catalyzed coupling of aryl 

bromides and secondary amines to a series of unactivated diene starting materials. For 

example, variably substituted dienes 3.3 were coupled with morpholine 3.4 and 

bromobenzene to furnish selectively the corresponding 1,4-aminoarylation products 3.5. 

The E-allylic amine products were generally accessed in moderate yield with high linear 

to branched selectivity. Higher catalyst loadings and temperatures were required to evade 

polymerization of the diene, however a competing β-hydride elimination pathway led to 

substantial formation of diene byproducts in most cases.  
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Scheme 3.1.3 

 

 

Mechanistic studies indicate that regiopreference in the arylation event stems 

from preferential carbopalladation to the sterically least hindered olefin. Accordingly, 

trends in reactivity were observed based on olefin substitution, with monosubstituted 

olefins reacting favorably to 1,1-disubstited olefins or 1,2-disubstited olefins. The 

resulting palladium π-allyl complex is susceptible to either regioselective nucleophilic 

attack by the 2º amine or β-hydride elimination. Thus, not only is olefin geometry 

dictated by the palladium catalyst, but regioselectivity as well.  

 

3.1.4 Palladium-Catalyzed Heteroannulation to Vinyl Heterocycles 

The heteroannulation of 1,3-dienes with anilines and benzyl amines represents a 

noteworthy advance in the area of combined C–C and C–N bond formation (Scheme 

3.1.4). While original examples of this methodology employed the stoichiometric use of 

toxic mercury and thallium-based reagents,27-29 modified procedures were developed 

independently by the Dieck and Larock labs to accommodate the palladium-mediated 

coupling of ortho-iodo arenes bearing various oxygen and nitrogen functionalities with 
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unfunctionalized dienes.13,30 This chemistry provides an efficient one-pot strategy to vinyl 

indoline and tetrahydroisoquinoline products in addition to analogous oxygen 

heterocycles.  

Scheme 3.1.4 

 

The reaction proceeds through oxidative addition of the active Pd(0) species to 

iodoarene 3.6 followed by coupling to diene 3.7 and concomitant heteroannulation. The 

initial palladium coupling of the aryl iodide takes place with good regio-discrimination 

when differentially substituted 1,3-dienes are used and follow the same guiding principles 

as the above-mentioned Heck chemistry. Moreover, the 1,2-carboamination products are 

generated with a strong preference for the E-olefin isomer. 

 

3.1.5 Conclusions 

To date, only a handful of examples have been reported for the intermolecular 

carboamination of simple dienes lacking activating or directing functionality. These 

instances illustrate the utility of this chemistry for the highly selective construction of 

value-added E-allylic amine products. Despite the long-standing precedence for this type 

of transformation, new strategies for the carboamination of unactivated dienes to 
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accommodate an expanded scope of 1,3-dienes or to access Z-allylic amine products have 

not been developed and require further consideration.  

 

 

3.2 The Development of a Regio- and Diastereoselective 

Aminoarylation of Unactivated 1,3-Dienes 
 

3.2.1 An Alternative Strategy for Carboamination 

We conceptualized a novel approach to the difunctionalization of 1,3-dienes to 

install both carbon- and nitrogen-based functionality within a single-flask operation. 

Following our previous work on the allylic alkylation of unactivated olefins with 

sulfurdiimide 3.10,31,32 we became interested in understanding the reactivity of this 

oxidant in the context of other π-systems, such as 1,3-dienes. Based on numerous reports 

detailing the superior reactivity of sulfurdiimide reagents as dienophiles, we wondered if 

this reagent could serve not only for the in situ generation of an allylic electrophile for a 

copper-mediated alkylation, but additionally as an aminating reagent.33-37 

To this end, we envisioned a strategy that could take advantage of the propensity of 

sulfurdiimide 3.10 to undergo spontaneous hetero Diels-Alder reactions with diene 3.9 to 

afford [4+2] adducts 3.11 exhibiting new C–S and C-N bond linkages (Scheme 3.2.1). 

We hypothesized that the resulting adduct 3.11 could directly convert to ring-opened 

intermediate 3.12 and subsequently undergo a copper-catalyzed allylic alkylation to 

afford carboamination product 3.13. Similar cycloadducts of sulfurdiimide and 

sulfurimide reagents have been reported to undergo this type of ring-opening in the 

presence of Grignard reagent.38  
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Scheme 3.2.1 

 

We anticipated that the initial generation of [4+2] adduct 3.11 would benefit from 

the robust trends in regio- and diastereoselectivity exhibited by Diels-Alder processes. 

Additionally, with respect to α-alkylation product 3.13, we wondered if this chemistry 

would proceed to selectively preserve the Z-olefin stereochemistry of intermediate 3.12, 

as witnessed previously with some copper-mediated allylic alkylations.39-42 Taken 

altogether, this chemistry would serve as a unique strategy toward a highly selective 

bisfunctionalization of dienes to access allylic amines with exceptional selectivity.  

 

3.2.2 Optimization of the Aminoarylation of 1,3-Butadiene 

We began our studies with the difunctionalization of 1,3-butadiene (3.1) with 

phenylmagnesium bromide in the presence of bis(phenylsulfonyl)sulfur diimide (3.10).  

The formation of cycloadduct 3.11a proved to be a robust reaction, providing the desired 

product after sparging a solution of sulfurdiimide 3.10 with butadiene 3.1 for only ten 

minutes. The [4+2] adduct 3.11a, which was stable to purification, was isolated and 
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subjected to a variety of conditions monitoring for the formation of either the 1,4-

aminoarylation product 3.14a or the 1,2-aminoarylation product 3.15a (Table 3.2.1).  

Table 3.2.1  

 

 

In the absence of a metal catalyst, neither product was formed when cycloadduct 

3.11a was treated with three equivalents of phenyl Grignard over the course of two hours 

CuX (2 mol%)

PhMgBr 

Conditions

N
S

NSO2Ph

SO2Ph

NHSO2Ph

Ph

NHSO2Ph

Ph

+CH2Cl2

3.1

Sparge for 10
minutes

3.11a

3.14a

3.15a

3.10PhO2S
N

S
N
SO2Ph

Entry CuX

1

2

3

CuTc4

5

6

–

CuTc

CuTc

CuCl

CuBF4

7 Cu(OTf)2

8 CuI

Solvent

DME

DME

CH2Cl2

PhMe

DME

DME

DME

DME

9 CuBr•SMe2 DME

10 CuBr•SMe2

11 CuBr•SMe2 2 DME

12 CuBr•SMe2 3 DME

Reaction conditions. Step 1: sulfurdiimide 3.10 (1 equiv.), solvent (0.2 M), 1,3-butadiene 
3.1 (sparge for 10 min and then stir for 10 min at 23 ºC). Step 2: CuX (2 mol%), Ph–MgBr 
(3 equiv), solvent (0.2 M). [a] Two-step 1HNMR yield, with 1,4-dimethoxybenzene as an 
internal standard. [b] Isolated yield. [c] Two steps performed in one flask, –78 ºC to 23 ºC, 
without isolation of cycloadduct 3.11a

3

3

3

3

3

3

3

3

3

1

PhMgBr
(equiv)

Time
(h)

NMR Yielda
(%)

3.14 : 3.15

2 < 5 –

0.5 75 14:1

2 < 5 –

2 < 5 –

0.5 60 15:1

0.5 67 9:1

0.5 70 10:1

0.5 78 10:1

0.5 95 (82)b 20:1

DME 0.5 21 20:1

0.5 45 20:1

0.5 88b,c 9:1
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(entry 1). Based on our previous success in the alkylation of analogous acyclic allylic 

sulfinamides with Grignard reagents, we explored the use of copper catalysts in this 

reaction. In the presence of 2 mol% CuTc we were gratified to see the formation of 

product in less than an hour, furnishing primarily the linear aminoarylation product 3.14a 

in good yield (entry 2). Solvent proved to have a drastic effect on the productivity of the 

copper-catalyzed process, revealing the superiority of ethereal solvent DME for this 

reaction (entries 2-4).  

After a brief survey of copper sources, CuBr•SMe2 was selected as the optimal 

catalyst for this system, providing an isolated yield of 82% and exhibiting pronounced α-

selectivity in the allylic alkylation and complete Z-olefin selectivity (entries 5-9). In 

accordance with our previous studies on allylic alkylation, a minimum of three 

equivalents of Grignard reagent were necessary for good conversion in this reaction 

(entries 10-11). Finally, the conversion of butadiene 3.1 to aminoarylation product 3.14a 

was improved to a single-flask operation by modifying the initial reaction temperature 

(entry 12). This adjustment was necessary to minimize disadvantageous side reactions of 

the Grignard reagent with any remaining sulfurdiimide 3.10 or byproducts thereof.   

 

3.2.3 Scope of Grignard Reagents and 1,3-Dienes 

Next we examined the electronic and structural requirements of the Grignard 

reagent in the Z-olefin selective 1,4-difunctionalization of butadiene 3.1 (Table 3.2.2). A 

series of para-substituted aromatic Grignard reagents were all well tolerated in this 

reaction regardless of the identity of the substituent (3.14a-d). While meta- and ortho- 

substitution led to diminished yield, an enhancement in selectivity between regioisomers 

3.14 and 3.15 was observed with ortho-substituents (3.14e-g). Interestingly, ortho-

methoxy phenylmagnesium bromide afforded aminoarylation product 3.14h with 

excellent yield and selectivity. Fused aromatic systems were smoothly incorporated into 

the product (3.14i and 3.14j) as was a heteroaromatic Grignard, which afforded 
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thiophenylated product 3.14k. Most notably, aliphatic Grignards failed to produce the 

expected aminoalkylation products and instead supplied the thioamination products 3.14l 

and 3.14m instead. Although the exact mechanism by which this occurs is not yet fully 

understood, we believe the mechanistic dichotomy between aromatic and aliphatic 

Grignards stems from the generation of electronically distinct sulfur intermediates prior 

to ring opening.  
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Table 3.2.2  

DME, 23 °C, 10 min;

CuBr•SMe2 (2 mol%)
R–MgBr (3 equiv)

–78 °C to 23 °C
30 min

R NH
SO2Ph

3.10PhO2S
N

S
N
SO2Ph

3.1

Sparge for 10
minutes

H
N

R

3.14 3.15

+

NH
SO2Ph

3.14a

88% yield
9:1 rr

NH
SO2Ph

3.14b

97% yield
7:1 rr

Me NH
SO2Ph

3.14c

82% yield
9:1 rr

Cl

NH
SO2Ph

3.14d

89% yield
5:1 rr

Ph NH
SO2Ph

3.14e

66% yield
5:1 rr

NH
SO2Ph

3.14f

56% yield
10:1 rr

Me

SO2Ph

NH
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32% yield
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Me NH
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95% yield
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Me
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Me OMe

NH
SO2Ph

3.14i

85% yield
7:1 rr

NH
SO2Ph

3.14j

81% yield
>20:1 rr

NH
SO2Ph

3.14k

75% yield
12:1 rr

S NH
SO2Ph

3.14l

55% yield
–

S

n-Oct

S NH
SO2Ph

3.14m

45% yield
–

Me

Me

Reaction conditions. Sulfurdiimide 3.10 (1 equiv), DME (0.2 M), 1,3-butadiene (sparge for 10 min and then stir for 
10 min at 23 ºC); CuBr•SMe2 (2 mol%), R–MgBr (3 equiv). Isolated yields.
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The scope of the diene component proved to be diverse and accommodated a 

number of substitution patterns along the diene backbone (Table 3.2.3). 2,3-

Disubstitution did not hinder product formation in the presence of phenylmagnesium 

bromide (entry 1). As anticipated, unsymmetrical diene substrates demonstrated 

remarkable regioselectivity in the aminoarylation providing exclusively 1,4-

aminoarylation products 3.16a-d each as one of four possible regioisomeric products 

(entries 2-5). Of note, in the presence of a flanking trisubstituted olefin the hetero Diels-

Alder reaction predominated over the potential hetero-ene reaction to cleanly afford 

3.16d. While cyclic olefins provided a mixture of α- and γ-alkylation products, the 

phenyl ring and sulfonamide were incorporated anti to one another in all cases, 

suggesting that cuprate oxidative addition occurs by an invertive mechanism with a 

subsequent retentive reductive elimination (entries 6 and 7).  
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Table 3.2.3 

  

We chose to further investigate the regioselective control exhibited by this one-

pot aminoarylation reaction by evaluating 1,4-disubstituted diene 3.18 under the 

optimized reaction parameters (Scheme 3.2.2). Product formation favored predominantly 

regioisomer 3.19 in a 4.2:1 ratio with 3.20. This regioselectivity is thought to arise from 

R1 R4

DME, 23 °C, 10 min;

CuBr•SMe2 (2 mol%)
PhMgBr (3 equiv)

–78 °C to 23 °C
30 min

Ph NH
SO2PhR1

R2

R3

R4

R2 R33.10PhO2S
N

S
N
SO2Ph

H
N

Ph

3.16 3.17

SO2PhR1

R2

R3

R4

+

3.9

1 61 >20 : 1

Entry Diene Major Product Yielda
(%)

3.16 : 3.17

3.16a

Compound 
#

Reaction conditions. Sulfurdiimide 3.10 (1 equiv), DME (0.2 M), diene 3.9 (1.5 equiv.), stir for 10 min at 
23 ºC; CuBr•SMe2 (2 mol%), R–MgBr (3 equiv). [a] Isolated yield.

Me

Me Ph NH
SO2Ph

Me Me

2 77 >20 : 1 3.16b
Me

Ph NH
SO2Ph

Me

3 80 >20 : 1 3.16cPh NH
SO2Ph

Me
Me

4 56 >20 : 1 3.16dPh NH
SO2Ph

Et
Et

5 79 >20 : 1 3.16e

Ph NH
SO2Ph

Me

Me
Me

Me

6 90 4 :1 3.16fPh NH
SO2Ph

7 85 5 : 1 3.16g
Ph

NH
SO2Ph
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slight inductive differences between the silyl ether and the methyl functionalities. In 

addition, both 3.19 and 3.20 were accessed as single diastereomers of the Z-olefin 

isomers, further illustrating the remarkable selectivity achieved in these transformations.   

Scheme 3.2.2 

 

3.2.4 Initial Studies Toward an Enantioselective Aminoarylation of Dienes 

Scheme 3.2.3 

 

Subsequent to the optimization and evaluation of a highly regio- and 

diastereoselective aminoarylation of 1,3-dienes, we considered whether this process 

could be rendered enantioselective as well (Scheme 3.2.3). Based on promising 

precedence in analogous systems, we postulated that through an asymmetric hetero Diels-

Alder reaction with diene 3.9 the resulting cycloadduct 3.21 could be generated with 

N
S

R4

R3

R2

R1
Y

R5

Hetero
Diels-Alder

α− Selective
Grignard 
Coupling

Enantioselective

R4
R3

R2
R1

Ar-MgBr

Chiral Catalyst
R4

R3

R2

R1

Ar

NHR5

R5
N

S
Y

3.9 3.22

3.21

Me

TBSO

Me

TBSO

Ph
H
N

SO2Ph
Me

TBSO

N
H
Ph

SO2Ph
DME, 23 ºC, 10min;

CuBr•SMe2 (2 mol%)
PhMgBr (3 equiv)

–78 °C to 23 °C
30 min

3.10PhO2S
N

S
N
SO2Ph

3.19 3.203.18

 41% yield, 4.2 : 1 rr

+
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enantioselectivity in addition to the inherent regio- and diastereoselectivity.43-46 We 

anticipated that the subsequent aminoarylation reaction would afford allylic amine 3.22 

with high enantiospecificity due to the high α-selectivity and diastereospecificity 

exhibited in the copper-catalyzed alkylation.  

We chose to begin optimization with 1,3-pentadiene 3.23 in the presence of 

sulfurdiimide 3.10 (Scheme 3.2.4). While this reagent gave a strong background reaction 

even at -78 ºC (Scheme 3.2.4a), we found that some enantioenrichment could be achieved 

in the formation of allylic amine 3.16c when stoichiometric amounts of copper-

bis(oxazoline) complexes were employed (Scheme 3.2.4b). In order for the copper-

bis(oxazoline) complex to affect better enantio-control in the cycloaddition, a less 

reactive oxidant will need to be identified.43-46  

Scheme 3 .2.4  

  

These initial findings indicate that the asymmetric aminoarylation of 1,3-dienes is a 

feasible strategy to afford enantioenriched Z-allylic amines from simple diene precursors. 

Me

   Cu(OTf)2 (1.25 equiv),
   3.25 (1.3 equiv), CH2Cl2,
   -78 ºC, 3 h

2.CuBr•SMe2 (2 mol%)
   PhMgBr (3 equiv), DME, 
   -78 °C to 23 °C, 30 min

3.10PhO2S
N

S
N
SO2Ph

3.23

B.

Me

N
S

Me
SO2Ph

N

CH2Cl2, -78 ºC

3.10PhO2S
N

S
N
SO2Ph

3.23 3.24

90% yield

A.

SO2Ph

Ph NH
SO2Ph

Me

3.16c

45% 2-step yield
70 : 30 er

1.

O

N N

O

Ph
Ph

Me Me

3.25
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Continued efforts to optimize this chemistry into a single-flask operation for the catalytic 

asymmetric aminoarylation of dienes are currently underway. We hope that this strategy 

will enable efficient access to a variety of allylic amine products with exceptionally high 

enantio-, regio- and diastereoselectivity.  

3.2.5 Conclusions 

We have developed a novel strategy for the 1,4-aminoarylation of unfunctionalized 

1,3-dienes. This reaction proceeds through an initial [4+2]-cycloaddition of the diene 

component with bis(phenylsulfonyl)sulfur diimide to produce cycloadducts that are 

uniquely suited for a copper-catalyzed allylic substitution with aromatic Grignards. This 

one-flask operation rapidly generates the 1,4-aminoarylation products in good yield with 

complete Z-olefin selectivity as well as high regio- and diastereoselectivity. This 

methodology accommodates a wide variety of functionalized Grignard reagents, and the 

dienes utilized in this reaction undergo oxidation and Grignard coupling smoothly, 

irrespective of substitution along the diene backbone. 

We are now exploring an asymmetric variant of this reaction via chiral Lewis acid 

catalysis. Preliminary data suggests that copper-bis(oxazoline) complexes are capable of 

facilitating an enantioselective [4+2]-coupling to access cycloadducts capable of 

undergoing the α-selective Grignard coupling with high stereospecificity. Current efforts 

to optimize the enantioselectivity of this reaction are focused on screening oxidants to 

identify a dienophile suitable for this chemistry.  

 

 

3.3 Experimental Section 

 
3.3.1 Materials and Methods 

All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware 
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with magnetic stirring unless otherwise indicated. Commercially obtained reagents were 

used as received. Solvents were dried by passage through an activated alumina column 

under argon. Liquids and solutions were transferred via syringe. All reactions were 

monitored by thin-layer chromatography with E. Merck silica gel 60 F254 pre-coated 

plates (0.25 mm). All flash chromatography purifications were performed on a Teledyne 

Isco CombiFlash® Rf unless otherwise indicated. 1H and 13C NMR spectra were recorded 

on Varian Inova-400 or 500 spectrometers. Data for 1H NMR spectra are reported relative 

to chloroform as an internal standard (7.26 ppm) and are reported as follows: chemical 

shift (d ppm), multiplicity, coupling constant (Hz), and integration. Data for 13C NMR 

spectra are reported relative to chloroform as an internal standard (77.23 ppm) and are 

reported in terms of chemical shift (d ppm). Infrared spectra were recorded on a Perkin-

Elmer 1000 series FTIR. HRMS data were obtained at The Scripps Center for Mass 

Spectrometry. 

 

3.3.2 Preparative Procedures 

 

Grignard Reagents and 1,3-Dienes 

All Grignard Reagents and 1,3-dienes in Tables 2 and 3 were purchased from Sigma-

Aldrich. Diene 3.18 was synthesized according to a previously reported literature 

procedure. 47 Spectroscopic data for diene 3.18 was identical to the reported data in the 

literature. 

 

Synthesis of Benzenesulfonyl Sulfurdiimide 

Benzenesulfonyl sulfurdiimide 3.10 was synthesized as per the procedure in chapter 2.  

 

 
General Procedures for the Aminoarylation of Dienes 
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Table 3.2.1 – Two-pot procedure for the aminoarylation of 1,3-butadiene:  

 
3.11a: A solution of benzenesulfonyl sulfurdiimide 3.10 (360 mg, 1.0 mmol, 1.0 equiv) 

in CH2Cl2 (5 mL, 0.2 M) was sparged with 1,3-butadiene for 10 min at 23 °C. The 

resulting solution was stirred at 23 °C in the absence of sparging for an additional 10 min. 

The mixture was concentrated under reduced pressure and purified by flash 

chromatography to yield [4+2] cycloadduct 3.11a (gradient eluent hexanes:ethyl acetate) 

as a white solid:  
1H NMR (400 MHz, CDCl3), δ 7.96 (d, J = 8.0 Hz, 2H), 7.77 (d, J=8.0 Hz, 2H), 7.68 (t, J 

= 8.0 Hz, 1H), 7.58 (t, J = 7.6 Hz, 2H), 7.48 (t, J = 7.8 Hz, 1H), 7.40 (d, J = 7.6 Hz, 2H), 

5.95-5.89 (m, 1H), 5.81-5.76 (m, 1H), 4.14-4.08 (m, 1H), 4.00-3.94 (m, 1H), 3.76-3.69 

(m, 1H), 3.35-3.28 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 143.46, 136.86, 134.65, 

131.94, 129.79, 128.88, 128.28, 126.32, 124.25, 115.31, 47.72, 39.08.  LRMS (ESI) calcd 

for [C16H17N2O4S3]+([M+H]+): 396.03, found 397.0. 

 

The [4+2] cycloadduct 3.11a was dissolved in solvent (5 mL, 0.2 M) and treated with 

copper catalyst (2 mol%, 0.02 mmol). The solution was treated with Grignard reagent (3 

mmol, 3 equiv) and stirred at 23 °C for 30–120 min. The reaction was quenched by the 

addition of saturated aqueous NH4Cl (10 mL) and extracted with ethyl acetate (10 mL). 

The organic layer was dried over MgSO4, concentrated under reduced pressure, and 

purified by flash chromatography (gradient eluent hexanes:ethyl acetate). 
 
Table 3.2.2 – Procedure for the aminoarylation of 1,3-butadiene:  

A solution of benzenesulfonyl sulfurdiimide 3.10 (360 mg, 1.0 mmol, 1.0 equiv) in DME 

(5 mL, 0.2 M) was sparged with 1,3-butadiene for 10 min at 23 °C. The resulting solution 

was stirred at 23 °C in the absence of 1,3-butadiene for an additional 10 min. The mixture 

was treated with CuBr•SMe2 (2 mol%, 0.02 mmol) and cooled to –78 °C. The Grignard 

reagent (3 mmol, 3 equiv) was added at –78 °C, and the solution was stirred at 23 °C for 

N
S

N

SO2Ph

SO2Ph
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30 min. The reaction was quenched by the addition of saturated aqueous NH4Cl (10 mL), 

and the mixture was extracted with ethyl acetate (10 mL). The organic layer was dried 

over MgSO4, concentrated under reduced pressure, and purified by flash chromatography 

(gradient eluent hexanes:ethyl acetate). 
 
Table 3.2.3 – Procedure for the aminoarylation of substituted 1,3-dienes:  

A solution of benzenesulfonyl sulfurdiimide 3.10 (360 mg, 1.0 mmol, 1.0 equiv) in DME 

(5 mL, 0.2 M) was treated with the 1,3-diene (1.5 mmol, 1.5 equiv) and stirred at 23 °C 

for 10 min. The mixture was treated with CuBr•SMe2 (2 mol%, 0.02 mmol) and cooled to 

–78 °C. The Grignard reagent (3 mmol, 3 equiv) was added at –78 °C, and the solution 

was stirred at 23 °C for 30 min. The reaction was quenched by the addition of saturated 

aqueous NH4Cl (10 mL), and the mixture was extracted with ethyl acetate (10 mL). The 

organic layer was dried over MgSO4, concentrated under reduced pressure, and purified 

by flash chromatography (gradient eluent hexanes:ethyl acetate). 

 

Characterization Data for Products 

NB: Linear to branched regioselectivity was determined by HNMR. Flash 

chromatography afforded an inseparable mixture of linear and branched products. 
  
 

 
3.14a: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (252 mg, 88% yield for two steps, 9:1) as a clear oil:  
1H NMR (500 MHz, CDCl3), δ 7.92 (d, J = 8.0 Hz, 2H), 7.61-7.58 (m, 1H), 7.52 (t, J = 

8.0 Hz, 2H), 7.28 (t, J = 7.5 Hz, 2H), 7.20 (t, J = 7.5 Hz, 1H), 7.10 (d, J = 7.5 Hz, 2H), 

5.72-5.67 (m, 1H), 5.47-5.42 (m, 1H), 5.05 (t, J = 5.8 Hz, 1H for NH), 3.74 (d, J = 6.8 

Hz, J = 5.8Hz, 2H), 3.32 (d, J = 7.6 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 138.95, 

139.79, 132.84, 132.70, 129.26, 128.67, 128.35, 127.25, 126.31, 124.97, 40.24, 33.50.  IR 

NH
SO2Ph
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(thin film): 3282, 3062, 3026, 1585, 1601, 1480, 1495, 1447, 1325, 1161, 1094, 1071, 

753, 689 cm-1.  HRMS (ESI) calcd for [C16H18NO2S]+([M+H]+): 288.1053, found 

288.1055. 
 

 
 
3.14b: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (261 mg, 87 % yield for two steps, 7:1) as a clear oil:  
1H NMR (500 MHz, CDCl3), δ 7.88 (d, J = 8.0 Hz, 2H), 7.61-7.58 (m, 1H), 7.53 (t, J = 

8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 5.73-5.68(m, 1H), 5.44-

5.40 (m, 1H), 4.42 (br, 1H for NH), 3.73 (t, J = 6.5Hz, 2H), 3.27 (d, J = 7.5 Hz, 2H). 13C 

NMR (100 MHz, CDCl3) δ 139.82, 136.50, 135.79, 133.17, 132.73, 129.26, 129.13, 

128.04, 127.11, 124.48, 40.12, 32.93, 20.97 IR (thin film): 3278, 3021, 1585, 1447, 1326, 

1162, 1092,863, 589, 1509, 1088 cm-1.  HRMS (ESI) calcd for [C17H20NO2S]+ ([M+H]+): 

302.1209, found 302.1207. 

 

 
 
3.14c: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (263 mg, 82 % yield for two steps, 9:1) as a clear oil:  
1H NMR (500 MHz, CDCl3), δ 7.89 (d, J = 8.0 Hz, 2H), 7.61-7.58 (m, 1H), 7.52 (t, J = 

8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 5.68-5.63 (m, 1H), 5.47-

5.42 (m, 1H), 4.61 (br, 1H for NH), 3.72 (t, J = 6.4Hz, 2H), 3.28 (d, J = 7.5 Hz, 2H). 13C 

NMR (100 MHz, CDCl3) δ 139.78, 138.02, 132.78, 132.18, 132.00, 129.53, 129.15, 

128.64, 127.09, 125.22, 40.06, 32.70. IR (thin film): 3279, 3026, 1586, 1476, 1324, 1160, 

NH
SO2Ph

Me

NH
SO2Ph

Cl



 177 

1092, 587cm-1.  HRMS (ESI) calcd for [C16H17ClNO2S]+ ([M+H]+): 322.0663, found 

322.0661. 
 

 
 
3.14d: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (323 mg, 89 % yield for two steps, 5:1) as a clear oil:  
1H NMR (400 MHz, CDCl3) δ 7.94 – 7.87 (m, 2H), 7.55 (m, 7H), 7.44 (t, J = 7.6Hz, 2H), 

7.34 (t, J = 7.0Hz, 1H), 7.16 (d, J = 7.9Hz, 2H), 5.77-5.71 (m, 1H), 5.52 – 5.41 (m, 1H), 

4.61 (br, 1H), 3.76 (t, J = 6.1Hz, 2H), 3.35 (d, J = 7.6Hz, 2H). 13C NMR (100 MHz, 

CDCl3) δ 140.81, 139.83, 139.26, 138.68, 132.77, 132.67, 129.16, 128.76, 128.62, 

127.32, 127.18, 127.13, 126.99, 124.92, 40.16, 33.02. IR (thin film): 3282, 3027, 1600, 

1487, 1447, 1325, 1161, 1094, 759, 584 cm-1.  HRMS (ESI) calcd for [C22H22NO2S]+ 

([M+H]+): 364.1366, found 364.1367. 
 
 

 
 
3.14e: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (213 mg, 66 % yield for two steps, 5:1) as a clear oil:  
1H NMR (400 MHz, CDCl3) δ 7.99 – 7.83 (m, 2H), 7.65 – 7.38 (m, 3H), 6.68 – 6.50 (m, 

3H), 5.69 – 5.52 (m, 1H), 5.52 – 5.36 (m, 1H), 5.15 (s, 1H), 3.67 (t, J = 6.0 Hz, 2H), 3.26 

(d, J = 7.4 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 163.15 (dd, J1 = 249.4 Hz, J3 = 12.9 

Hz), 143.71 (t, J3 = 9.0 Hz), 139.91, 132.96, 130.87, 129.32, 127.23, 126.34, 111.20 (dd, 

J2 = 25.0 Hz, J4 = 6.6 Hz), 101.81 (t, J2 = 25.4 Hz), 40.12, 33.09 (t, J4 = 1.9 Hz). IR (thin 

NH
SO2Ph

Ph

NH
SO2Ph

F

F



 178 

film): 3281, 3089, 3067, , 2924, 1625, 1594, 1460, 1447, 1322, 1161, 1117, 991, 848, 

586 cm-1. HRMS (ESI) calcd for [C16H16F2NO2S]+ ([M+H]+): 324.0864, found 324.0864. 
 

 
 
3.14f: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (176 mg, 56 % yield for two steps, 10:1) as a clear oil:  
1H NMR (500 MHz, CDCl3) δ 7.89 (d, J = 7.9Hz, 2H), 7.67 – 7.49 (m, 3H), 7.03 – 6.85 

(m, 3H), 5.67-5.62(m, 1H), 5.44-5.40 (m, 1H), 4.46 (s, 1H), 3.73 (t, J = 6.4 Hz, 2H), 3.22 

(d, J = 7.4Hz, 2H), 2.29 (s, 3H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 140.01, 

136.19, 136.00, 134.99, 132.94, 132.82, 131.29, 129.34, 128.50, 127.33, 126.99, 124.76, 

40.41, 30.99, 21.08, 19.58. IR (thin film): 3283, 3018, 2920, 1615, 1501, 1447, 1325, 

1161, 1094, 1057, 792, 755 cm-1.  HRMS (ESI) calcd for [C18H22NO2S]+ ([M+H]+): 

316.1366, found 316.1367. 
 

 
 
3.14g: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (105 mg, 32 % yield for two steps, >20:1) as a clear oil:  
1H NMR (500 MHz, CDCl3), d 7.95 (δ, J = 8.0 Hz, 2H), 7.63-7.60 (m, 1H), 7.56 (t, J = 

8.0 Hz, 2H), 6.83 (s, 2H), 5.39-5.31 (m, 2H), 4.82 (br, 1H for NH), 3.78 (t, J = 8.0 Hz, 

2H), 3.25 (d, J = 8.0 Hz, 2H), 2.25 (s, 3H), 2.18 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 

139.80, 136.06, 135.65, 133.37, 132.76, 132.05, 129.16, 128.99, 128.96, 128.94, 127.16, 

123.93, 40.38, 27.66, 20.80, 19.91. IR (thin film): 3284, 3064, 2919, 1613, 1581, 1446, 

NH
SO2Ph

Me

Me

NH
SO2Ph

Me

Me

Me
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1326, 1162, 1094, 1060, 851, 586, cm-1.  HRMS (ESI) calcd for [C19H24NO2S]+ ([M+H]+): 

330.1522, found 330.1528. 
 

 
 
3.14h: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (300 mg, 95 % yield for two steps, >20:1) as a clear oil:  
1H NMR (500 MHz, CDCl3), d 7.89-7.86 (m, 2H), 7.58-7.54 (m, 1H), 7.51-7.46 (m, 2H), 

7.20-7.16 (m, 1H), 7.03-7.01 (m, 1H), 6.88-6.82 (m, 2H), 5.64-5.57 (m, 1H), 5.37-5.33 

(m, 1H), 4.89 (br, 1H for NH), 3.80 (s, 3H), 3.71 (t, J = 6.5Hz, 2H), 3.23 (d, J = 7.5 Hz, 

2H). 13C NMR (100 MHz, CDCl3) δ 157.20, 140.04, 133.04, 132.78, 129.79, 129.24, 

127.94, 127.78, 127.25, 124.12, 120.87, 110.58, 55.45, 40.08, 28.52. IR (thin film): 3284, 

3023, 1656, 1587, 1493, 1325, 1159, 722, cm-1.  HRMS (ESI) calcd for [C17H20NO3S]+ 

([M+H]+): 318.1158, found 318.1157. 

 

 

 
3.14i: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (286 mg, 85 % yield for two steps, 7:1) as a clear oil:  
1H NMR (400 MHz, CDCl3) δ 7.92 – 7.86 (m, 2H), 7.83 – 7.78 (m, 1H), 7.76 (d, J = 8.0 

Hz, 2H), 7.59 – 7.41 (m, 6H), 7.24 – 7.19 (m, 1H), 5.80-5.76 (m, 1H), 5.54 – 5.42 (m, 

1H), 4.78 (s, 1H), 3.78 (t, J = 6.5 Hz, 2H), 3.47 (d, J = 7.6 Hz, 2H). 13C NMR (100 MHz, 

CDCl3) δ 139.98, 137.28, 133.72, 132.90, 132.68, 132.24, 129.31, 128.38, 127.79, 

NH
SO2Ph

OMe

NH
SO2Ph
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127.62, 127.28, 127.08, 126.45, 126.29, 125.62, 125.28, 40.36, 33.70. IR (thin film): 

3282, 3056, 1631, 1599, 1508, 1447, 1324, 1161, 1093, 817 cm-1HRMS (ESI) calcd for 

[C20H20NO2S]+ ([M+H]+): 338.1209, found 338.1209. 

 

 
3.14j: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (313 mg, 81 % yield for two steps, >20:1) as a clear oil: 1H NMR (500 MHz, 

CDCl3) δ 8.74 (d, J = 8.2 Hz, 1H), 8.66 (d, J = 8.1Hz, 1H), 7.94 (d, J = 8.1Hz, 1H), 7.87 

(d, J = 7.7Hz, 2H), 7.81 (d, J = 8.0Hz, 1H), 7.72 – 7.57 (m, 5H), 7.53 (t, J = 7.1Hz, 1H), 

7.45 (t, J = 7.7Hz, 2H), 5.91-5.86 (m, 1H), 5.59-5.54 (m, 1H), 4.65 (s, 1H), 3.82 (t, J = 

5.6 Hz, 3H), 3.77 (d, J = 7.2, 2H). 13C NMR (100 MHz, CDCl3) δ 139.86, 134.03, 

132.79, 132.00, 131.80, 131.07, 130.76, 129.82, 129.21, 128.31, 127.18, 126.85, 126.79, 

126.52, 126.40, 126.13, 125.83, 124.30, 123.33, 122.55, 40.39, 31.11. IR (thin film): 

3280, 3063, 2922, 1602, 1495, 1447, 1325, 1161, 1093, 1069, 887, 750 cm-1. HRMS 

(ESI) calcd for [C24H22NO2S]+ ([M+H]+): 388.1366, found 388.1368. 

 

 
3.14k: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (219 mg, 75 % yield for two steps, 12:1) as a clear oil:  
1H NMR (500 MHz, CDCl3), δ 7.87-7.85 (m, 2H), 7.87-7.85(m, 2H), 7.58-7.54 (m, 1H), 

7.51-7.47 (m, 2H), 7.10-7.08 (m, 1H), 6.70-6.69 (m, 1H), 5.72-5.67 (m, 1H), 5.44-5.39 

(m, 1H), 4.78 (br, 1H for NH),  3.68 (t, J = 6.5Hz, 2H), 3.46 (d, J = 7.5 Hz, 2H). 13C 

NH
SO2Ph

NH
SO2Ph

S
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NMR (100 MHz, CDCl3) δ 142.47, 139.94, 132.92, 131.86, 129.32, 127.27, 127.12, 

125.60, 124.65, 123.86, 40.17, 27.76. IR (thin film): 3281, 3026, 1585, 1447, 1324, 1160, 

1093, 849 cm-1.  HRMS (ESI) calcd for [C14H16NO2S2]+ ([M+H]+): 294.0617, found 

294.0617. 

 

 
3.14l: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the observed product 

(195 mg, 55 % yield for two steps) as a clear oil:  
1H NMR (400 MHz, CDCl3) δ 7.94 – 7.80 (m, 2H), 7.66 – 7.55 (m, 1H), 7.51 (dd, J = 

8.2, 6.8 Hz, 2H), 5.58 (m, 1H), 5.42 (m, 1H), 4.89 (s, 1H), 3.62 (t, J = 6.6 Hz, 2H), 3.02 

(d, J = 7.9 Hz, 2H), 2.50 – 2.22 (m, 2H), 1.53 – 1.44 (m, 2H), 1.37 – 1.20 (m, 10H), 0.87 

(t, J = 6.9, 3H). 13C NMR (100 MHz, CDCl3) δ 139.96, 132.92, 130.48, 129.31, 127.27, 

126.57, 39.97, 31.96, 31.75, 29.55, 29.35, 29.05, 28.20, 25.90, 22.81, 14.27. IR (thin 

film): 3281, 3066, 3027, 2925, 1586, 1447, 1327, 1161, 1094, 754, 689 cm-1.  HRMS 

(ESI) calcd for [C18H30NO2S2]+ ([M+H]+): 356.1712, found 356.1714. 

 

 
3.14m: Following the general procedure for the aminoarylation of 1,3-butadiene (Table 

3.2.2 procedure), purification by flash chromatography afforded the observed product 

(134 mg, 45 % yield for two steps) as a clear oil:  
1H NMR (500 MHz, CDCl3) δ 7.93 – 7.84 (m, 2H), 7.61 (dd, J = 8.4, 6.5 Hz, 1H), 7.54 

(t, J = 7.6 Hz, 2H), 5.67 – 5.58 (m, 1H), 5.45 (m, 1H), 4.63 (s, 1H), 3.64 (t, J = 6.3Hz, 

2H), 3.03 (d, J = 8.0Hz, 2H), 2.31 (d, J = 6.9 Hz, 2H), 1.73 (dp, J = 13.4, 6.7Hz, 1H), 

0.96 (d, J = 6.7Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 140.01, 133.01, 130.76, 129.38, 

127.33, 126.59, 41.00, 40.05, 28.72, 28.63, 22.25. IR (thin film): 3280, 3065, 3027, 2957, 

1586, 1447, 1425, 1326, 1161, 1094, 900,  755, 720, 588 cm-1. HRMS (ESI) calcd for 

[C14H22NO2S2]+ ([M+H]+): 300.1086, found 300.1089. 
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3.16a: Following the general procedure for the aminoarylation of substituted 1,3-dienes 

(Table 3.2.3 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (192 mg, 61 % yield for two steps, >20:1) as a clear oil:  
1H NMR (400 MHz, CDCl3) δ 7.84 (d, J = 7.8, 2H), 7.54 (t, J = 7.4, 1H), 7.47 (t, J = 7.7, 

2H), 7.30 – 7.08 (m, 3H), 6.99 (d, J = 7.4, 2H), 4.82-4.78(m, 1H), 3.65 (d, J = 5.9, 2H), 

3.28 (s, 2H), 1.64 (s, 3H), 1.55 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 139.96, 133.30, 

132.69, 129.13, 128.58, 128.35, 127.18, 126.17, 125.03, 46.11, 39.73, 19.28, 17.20. IR 

(thin film): 3282, 3061, 3026, 2861, 1601, 1493, 1447, 1323, 1161, 1093, 1048, 830, 754, 

727, 588 cm-1.  HRMS (ESI) calcd for [C18H22NO2S]+, ([M+H]+): 316.1366, found 

316.1363. 

 

 
3.16b: Following the general procedure for the aminoarylation of substituted 1,3-dienes 

(Table 3.2.3 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (231 mg, 77 % yield for two steps, >20:1) as a clear oil:  
1H NMR (400 MHz, CDCl3) δ 7.89-7.85 (m, 2H), 7.59-7.55 (m, 1H), 7.54 – 7.46 (m, 

2H), 7.29 – 7.22 (m, 2H), 7.22 – 7.14 (m, 1H), 7.08 – 6.98 (m, 2H), 5.24 (t, J = 7.2 Hz, 

1H), 4.52 (s, 1H), 3.70 (t, J = 6.2 Hz, 2H), 3.27 (d, J = 8.1 Hz, 2H), 1.60 (s, 3H). 13C 

NMR (100 MHz, CDCl3) δ 140.05, 139.03, 132.83, 129.27, 128.69, 128.53, 127.29, 

126.41, 120.82, 77.55, 77.23, 76.91, 41.26, 37.95, 23.68. IR (thin film): 3282, 3061, 

3026, 2970, 2916, 1668, 1600, 1494, 1447, 1326, 1161, 1094, 1045, 840, 755, 585 cm-1.  

HRMS (ESI) calcd for [C17H20NO2S]+ ([M+H]+): 302.1209 , found 302.1208. 
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3.16c: Following the general procedure for the aminoarylation of substituted 1,3-dienes 

(Table 3.2.3 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (242 mg, 80 % yield for two steps, >20:1) as a clear oil:  
1H NMR (500 MHz, CDCl3) δ 7.93 – 7.88 (m, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 

7.7Hz, 2H), 7.28 (t, J = 7.4Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 7.07 (d, J = 7.5Hz, 2H), 

5.47-5.42 (m, 1H), 5.28-5.23 (m, 1H), 5.15 (br, 1H), 4.36-4.32 (m, 1H), 3.25-3.21 (m, 

2H), 1.24 (d, J = 6.7 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 141.06, 139.98, 132.66, 

131.49, 129.73, 129.09, 128.65, 128.41, 127.30, 126.27, 47.28, 33.59, 22.80. IR (thin 

film): 3274, 3062, 3026, 2976, 1658, 1601, 1495, 1447, 1326, 1162, 1092, 1070, 879, 

744, 721, 593 cm-1.  HRMS (ESI) calcd for [C17H19NO2SNa]+ ([M+Na]+): 324.1029, 

found 324.1024. 

 

 
3.16d: Following the general procedure for the aminoarylation of substituted 1,3-dienes 

(Table 3.2.3 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (176 mg, 56 % yield for two steps, >20:1) as a clear oil:  
1H NMR (400 MHz, CDCl3) δ 7.94 – 7.73 (m, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 

7.6 Hz, 2H), 7.25 (t, J = 7.3 Hz, 2H), 7.17 (t, J = 7.3 Hz, 1H), 7.04 (d, J = 7.3, 2H), 5.52 

– 5.41 (m, 1H), 5.25 – 5.05 (m, 2H), 4.15 – 4.02 (m, 1H), 3.20-3.16 (m, 2H), 1.74 – 1.55 

(m, 1H), 1.55 – 1.40 (m, 1H), 0.85 (t, J = 7.4, 3H). 13C NMR (100 MHz, CDCl3) δ 

141.23, 140.07, 132.55, 130.73, 130.02, 129.00, 128.59, 128.43, 127.25, 126.21, 52.75, 

33.77, 29.52, 10.08. IR (thin film): 3276,3062, 1601, 1447, 1326, 1161, 1093, 729, 563, 

1509 cm-1.  HRMS (ESI) calcd for [C18H22NO2S]+ ([M+H]+): 316.1366 , found 316.1368. 
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3.16e: Following the general procedure for the aminoarylation of substituted 1,3-dienes 

(Table 3.2.3 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (292 mg, 79 % yield for two steps, >20:1) as a clear oil:  
1H NMR (500 MHz, CDCl3) δ 7.86 (d, J = 8.0 Hz, 2H), 7.59 (t, J = 7.4Hz, 1H), 7.52 (t, J 

= 7.7Hz, 2H), 7.30 – 7.23 (m, 3H), 7.19 (t, J = 7.2Hz, 1H), 7.03 (d, J = 7.5Hz, 2H), 5.27 

(t, J = 7.2Hz, 1H), 4.98 (t, J = 6.3, 1H),  4.30 (t, J = 5.5Hz, 1H), 3.71 (t, J = 6.5Hz, 2H), 

3.30 (s, 2H), 2.03 – 1.87 (m, 4H), 1.67 (d, J = 15.5, 3H), 1.55 (d, J = 10.7, 3H). 13C NMR 

(100 MHz, CDCl3) δ 143.80, 140.14, 139.26, 132.88, 132.19, 129.36, 129.31, 128.99, 

128.74, 128.52, 127.31, 126.44, 123.74, 120.51, 41.35, 36.84, 36.46, 26.45, 25.86, 17.89. 

IR (thin film): 3281, 3061, 3026, 2923, 1665, 1601, 1494, 1447, 1326, 1161, 1094, 1046, 

754, 730 cm-1.  HRMS (ESI) calcd for [C22H28NO2S]+ ([M+H]+): 370.1835, found 

370.1833. 

 

  
3.16f: Following the general procedure for the aminoarylation of substituted 1,3-dienes 

(Table 3.2.3 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product along with the 1,2-aminoarylation product as an inseparable 

mixture (226 mg, 72 % yield for two steps) as a clear oil:  
1H NMR (500 MHz, CDCl3) δ 8.09 – 7.96 (m, 2H), 7.70 – 7.49 (m, 3H), 7.41 – 7.26 (m, 

2H), 7.21 (t, J = 7.3, 1H), 7.17 – 6.96 (m, 2H), 5.80-5.76 (m, 1H), 5.61-5.58 (m, 1H), 

Ph NH
SO2Ph

Me
Me

Ph NH
SO2Ph



 185 

5.14 (d, J = 8.7, 1H), 4.07 – 3.94 (m, 1H), 3.41 – 3.22 (m, 1H), 2.13 – 1.92 (m, 2H), 1.65 

– 1.41 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 144.93, 134.16, 132.77, 129.32, 128.75, 

128.62, 127.63, 127.11, 126.55, 49.97, 41.48, 30.86, 30.07. IR (thin film): 3276, 3061, 

3026, 1601, 1491, 1447, 1326, 1160, 1088, 897, 757 cm-1.  HRMS (ESI) calcd for 

[C18H19NO2SNa]+ ([M+Na]+): 336.1029, found 336.1026. 

 

 
Purification by flash chromatography also afforded the 1,2-aminoarylation product (56 

mg, 18 % yield for two steps) as a clear oil:  
1H NMR (500 MHz, CDCl3) δ 7.62 (t, J = 11.0 Hz, 2H), 7.50 (t, J = 7.5, 1H), 7.37 (t, J = 

7.8 Hz, 2H), 7.21 – 7.14 (m, 3H), 6.97 (dd, J = 6.1, 3.3 Hz, 2H), 5.95 – 5.83 (m, 1H), 

5.56-5.50 (m, 1H), 4.86 (d, J = 7.2, 1H), 3.34 (td, J = 9.6, 2.9 Hz, 1H), 3.22 (d, J = 2.9, 

1H), 2.19 (s, 2H), 2.10 – 1.98 (m, 1H), 1.60 (dt, J = 21.5, 6.6, 1H). 13C NMR (100 MHz, 

CDCl3) δ 141.84, 140.36, 132.42, 129.12, 128.73, 128.49, 128.43, 127.42, 127.11, 

127.04, 55.91, 48.28, 26.86, 23.08. IR (thin film): 3281, 3061, 3026, 1650, 1601, 1479, 

1447, `325, 1161, 1071, 906, 720, 688, 578 cm-1.  .  HRMS (ESI) calcd for [C18H20NO2S]+ 

([M+H]+): 314.1209, found 314.1207. 
 

 
3.16g: Following the general procedure for the aminoarylation of substituted 1,3-dienes 

(Table 3.2.3 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product (229 mg, 70% yield for two steps) as a clear oil:  
1H NMR (500 MHz, CDCl3) δ 8.02 – 7.87 (m, 2H), 7.60-7.55 (m, 3H), 7.29 (t, J = 7.5 

Hz, 2H), 7.20 (t, J = 7.3 Hz, 1H), 7.12 (d, J = 7.3 Hz, 2H), 5.76 – 5.62 (m, 1H), 5.41-5.48 

Ph
NH
SO2Ph
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(m, 1H), 5.12 (d, J = 8.1, 1H), 4.13-4.10 (m, 1H), 3.52 (s, 1H), 1.87-1.60 (m, 6H). 13C 

NMR (100 MHz, CDCl3) δ 145.92, 141.12, 137.11, 132.79, 132.08, 129.30, 128.71, 

127.39, 127.21, 126.35, 53.14, 45.83, 35.35, 34.22, 23.19. IR (thin film): 3279, 3061, 

3025, 2929, 1650, 1600, 1447, 1327, 1160, 1093, 911, 755, 594 cm-1.  HRMS (ESI) calcd 

for [C19H22NO2S]+ ([M+H]+): 328.1366, found 328.1366. 

 

 
Purification by flash chromatography also afforded the 1,2-aminoarylation product (49 

mg, 15 % yield for two steps) as a clear oil:  
1H NMR (500 MHz, CDCl3) δ 7.77 – 7.68 (m, 2H), 7.56 (t, J = 7.4Hz, 1H), 7.46 (t, J = 

7.7 Hz, 2H), 7.23 – 7.14 (m, 3H), 7.03 – 6.91 (m, 2H), 6.01 (dt, J = 11.7, 6.0Hz, 1H), 

5.54 (dd, J = 11.6, 6.0Hz, 1H), 4.69 (d, J = 7.5Hz, 1H), 3.66 – 3.54 (m, 1H), 3.50 (t, J = 

6.6Hz, 1H), 2.27-2.13 (m, 2H), 2.03 – 1.89 (m, 1H), 1.79 – 1.59 (m, 2H), 1.55-1.47 (m, 

1H). 13C NMR (100 MHz, CDCl3) δ 140.73, 140.64, 134.59, 132.55, 130.31, 129.17, 

128.93, 128.24, 127.15, 126.95, 56.90, 51.61, 34.40, 28.88, 22.30. IR (thin film): 3286, 

3061, 3025, 1650, 1600, 1493, 1447, 1326, 1161, 1094, 754, 689 cm-1.  HRMS (ESI) 

calcd for [C19H22NO2S]+ ([M+H]+): 328.1366, found 328.1364. 

 

 
 
3.19: Following the general procedure for the aminoarylation of substituted 1,3-dienes 

(Table 3.2.3 procedure), purification by flash chromatography afforded the desired 1,4-

aminoarylation product (148 mg, 33 % yield for two steps) as a clear oil:  
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1H NMR (500 MHz, CDCl3) δ 7.98 (d, J = 7.3 Hz, 2H), 7.63 (t, J = 7.4Hz, 1H), 7.57 (t, J 

= 7.6Hz, 3H), 7.28-7.22 (m, 3H), 7.18 (t, J = 7.3 Hz, 1H), 6.97 (d, J = 7.1Hz, 2H), 5.68-

5.62 (m, 1H), 5.46 – 5.31 (m, 2H), 4.04-3.97 (m, 1H), 3.65-3.58 (m, 2H), 3.31-3.25 (m, 

1H), 1.12 (d, J = 6.5 Hz, 3H), 0.90 (s, 9H), 0.04 (d, J = 8.0 Hz, 6H). 13C NMR (100 MHz, 

CDCl3) δ 141.43, 140.71, 132.74, 132.67, 129.08, 128.48, 127.87, 127.54, 126.72, 67.62, 

47.26, 46.26, 26.15, 21.97, 18.64, -5.26, -5.34. IR (thin film): 3270, 2928, 1447, 1327, 

1163, 1094, 836 cm-1.  HRMS (ESI) calcd for [C24H36NO3SSi]+ ([M+H]+): 446.2180, 

found 446.2184. 
 

 
3.20: Purification by flash chromatography afforded the regioisomeric 1,4-

aminoarylation product (36 mg, 8 % yield for two steps) as a clear oil:  
1H NMR (400 MHz, CDCl3) δ 7.90 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 7.0 Hz, 1H), 7.53 – 

7.45 (m, 2H), 7.29 – 7.21 (m, 3H), 7.16 (d, J = 6.5Hz, 1H), 7.10 (d, J = 7.8Hz, 2H), 5.60 

(t, J = 10.3 Hz, 1H), 5.21 (t, J = 10.0 Hz, 1H), 5.07 (d, J = 4.4 Hz, 1H), 4.10 (s, 1H), 3.55 

(s, 1H), 3.36 – 3.28 (m, 1H), 3.28 – 3.17 (m, 1H), 1.26 (s, 3H), 0.83 – 0.77 (m, 9H), -0.11 

(d, J = 6.1 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 146.28, 140.78, 138.25, 132.82, 

129.15, 128.78, 127.50, 126.91, 126.36, 125.87, 77.55, 77.23, 76.91, 64.86, 53.15, 38.14, 

29.91, 25.99, 22.87, 18.39, -5.33, -5.43. IR (thin film): 3274, 3026, 1147, 1160, 1094 cm-

1.  HRMS (ESI) calcd for [C24H36NO3SSi]+ ([M+H]+): 446.2180, found 446.2180. 

 

Determination of Z-Olefin Geometry of Products 

NOE studies of the product 3.14b allowed the assignment of the Z-olefin geometry for 

the aminoarylation product. The Z-olefin geometry for all other products was assumed by 

analogy. 
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Determination of Relative Stereochemistry of Aminoarylation Products 

We thank Dr. Vincent Lynch (Manager of the X-ray Diffraction Lab at UT Austin) for all 

the X-ray structural analysis. 

A sample of the major product 3.16f was recrystallized from methylene chloride and 

hexanes (slow diffusion). The resulting crystals were suitable for X-ray diffraction and 

the structure was solved. This structure allowed the assignment of relative configuration 

as shown (see additional crystallographic data in appendix 8).  
 

 
 

General Procedure for the Asymmetric Hetero Diels-Alder with Sulfurdiimide 3.10 

3.24: To a solution of copper(II) triflate (0.34 mmol, 1.25 equiv) in CH2Cl2 (16 mL, 0.02 

M) was added bis(oxazoline) ligand 3.25  ( 0.36 mmol, 1.32 equiv) in CH2Cl2 (4 mL, 

0.09 M) and the mixture was allowed to stir at 23 ºC for 3 hours. Subsequently, the 

reaction was cooled to -78 ºC and treated with sulfurdiimide reagent 3.10 (0.34 mmol, 

1.25 equiv) in CH2Cl2 (4 mL, 0.09 M). After stirring for ten minutes the solution a 

solution of the 1,3-diene (0.274 mmol, 1.0 equiv) in CH2Cl2 (28 mL, 0.01 M) was added 

by gradual addition over ten minutes. The resulting mixture was stirred at –78 °C for 3 

hours. The reaction was quenched by addition of water (6 mL) at -78 ºC, and slowly 
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warmed to room temperature with stirring. The crude mixture was extracted with CH2Cl2 

and the combined organics were dried over sodium sulfate. The product was purified by 

flash chromatography to yield the [4+2] cycloadduct 3.24 (0 to 10% methanol /CH2Cl2) 

as a 3:1 diastereomeric mixture in 71% yield. This material was taken directly on to the 

aminoarylation.  

 

3.16c: Following the general two-pot procedure for the aminoarylation of 1,3-dienes, 

cycloadduct 3.24 was transferred to the 1,4-aminoarylation product 3.16c (37 mg, 63 % 

yield, 70:30 er). See the corresponding appendix for HPLC traces. Absolute configuration 

of the product was assigned by analogy to literature reports of similar asymmetric [4+2] 

reactions .46     
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Spectra Relevant to Chapter Three: 

The Development of a Regio- and Diastereoselective  

Aminoarylation of Simple Dienes 
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  3.14d in CDCl3 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 200 
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3.14h in CDCl3 
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3.14l in CDCl3 
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   3.16e in CDCl3 
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  3.16f in CDCl3 
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  3.16f in CDCl3  (Continued) 
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   3.16g in CDCl3  (Continued) 
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HPLC Traces Relevant to Chapter Three: 

The Development of a Regio- and Diastereoselective  

Aminoarylation of Simple Dienes 
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CHAPTER FOUR 

The Development of a General, Highly Selective Method for the Allylic 
Functionalization of Unactivated Internal Olefins 

 

4.1. Background 
 

4.1.1. Introduction 

The stereo- and site-selective transformation of simple unsaturated hydrocarbons 

through allylic functionalization provides a direct path toward the construction of chiral 

synthons while preserving the olefin functionality as a handle for further elaboration. The 

advantage of this method lies in its ability to harness petrochemical feedstocks for the 

rapid construction of enantioenriched building blocks. As a result, catalytic 

enantioselective allylic functionalization has emerged as a useful synthetic tool, 

streamlining the production of pharmaceuticals, natural products, fine chemicals and 

other functional materials.1-5 

The most widely used and developed approaches for catalytic asymmetric allylic 

functionalization fall within four distinct categories: 1) intramolecular allylic 

rearrangement, 2) transition metal-mediated allylic substitution/coupling, 3) 

intramolecular allylic C–H functionalization, and 4) intermolecular allylic C–H 

functionalization (Figure 4.1.1).6-16 The first three categories rely on the presence of 

activating or directing groups embedded within the starting material. In these cases, 

chemists often find themselves in a chemical two-step of sorts, inserting and/or deleting 

these additional functionalities in order to obtain the final desired product.  
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Figure 4.1.1  

 

The fourth method of allylic functionalization relies solely on the presence of an 

olefin moiety. Unfortunately, the vast majority of these reactions are limited in scope, 

requiring the use of terminal olefin starting materials.17-19 A general catalytic 

enantioselective allylic C–H functionalization of unactivated internal olefins remains a 

longstanding challenge in the field of synthetic chemistry. 

The utility of allylic C–H functionalization for the synthesis of valuable 

commodities and materials relies heavily on the ability to access products with significant 
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of enantiotopic allylic protons (Figure 4.1.2a), internal olefins possess two sets of protons 

on either side of the olefin moiety thereby posing the additional challenge of 

regioselectivity. Furthermore, when the resulting product is an internal olefin, the further 

issue of E/Z selectivity subsists (Figure 4.1.2b). The inability to control indiscriminate C–

H functionalization of electronically and sterically similar allylic protons, therefore, has 

the potential to produce a mixture of regio-, diastereo-, and enantiomeric isomers that are 

difficult to separate via preparative methods. 
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Figure 4.1.2 

 

The first examples of asymmetric allylic C–H functionalization utilizing 

unfunctionalized internal olefins began to appear nearly three decades ago, however these 

chemical transformations have been largely limited to symmetrical cycloalkenes. 

Nonetheless, these studies provided the first insights into the difficulty of tackling 

stereoselective allylic C–H activation while precluding the challenges of E/Z- and 

regioselectivity.  
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enantioselective (up to 16% ee),22,23 several groups reported enantioselective variants of 

this oxidation with unfunctionalized cycloalkenes in the 1990’s.24-37 Enantioselectivity, 

yield and reaction time varied substantially throughout these reports and appeared to be 

largely dependent on ligand identity.  

Scheme 4.1.1 

The Muzart, Andersson and Feringa labs independently explored the use of proline-

based ligands for the stereoselective oxidation of cyclohexene (4.1) with catalytic 

Cu(OAc)2 (Scheme 4.1.2).26,28,33,35 Andersson’s bicyclic amino acid 4.5 appeared to be 

superior to the conventional L-proline 4.4, exhibiting the best selectivity of the series 

(40% yield, 64% ee).  Feringa and co workers further studied the effect of modifying 4.4 

but these efforts failed to increase the enantioselectivity of this process.37  
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Scheme 4.1.3  

 

Several examples of the asymmetric Kharasch-Sosnovsky reaction have also been 
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converted to the allylic ester in 93% ee using a modified C3-symmetric tris(oxazoline) 

ligand 4.9 (Scheme 4.1.3b).30  While various other ligand classes have been examined in 

the asymmetric Kharasch-Sosnovsky reaction, including bipyridines, β-pinene, and 

diazabis(oxazoline)-based scaffolds, bis(oxazoline) ligands have shown the highest 

enantioselectivity to date with ligand 4.11 leading to the formation of allylic ester 4.10 in 

99% ee (Scheme 4.1.3c).31,43-48 

Trisubstituted olefins 4.12 and 4.17 were also investigated under various reaction 

conditions (Scheme 4.1.4). In all cases the secondary radical intermediate was 

preferentially formed over the tertiary, precluding any significant formation of 4.15 or 

4.20. Still, regioselectivity between products 4.13 and 4.14 or 4.18 and 4.19 was poor, 

and the enantiomeric excess varied substantially between all of the regioisomers. With 

regard to acyclic olefins, those surveyed in this chemistry were limited to terminal 

alkenes that displayed diminished enantioselectivities.25,30  

Scheme 4.1.4 
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Andrus and Singh have both offered stereoinduction models in an attempt to 

explain the manner by which enantioselectivity is derived (Figure 4.1.3).29,32 In the model 

proposed by Andrus, the minimization of steric interactions between the substrate, 

benzoate functionality, and chiral ligand dictate the substrate’s approach (Figure 4.1.3a). 

Singh’s model employing a tridentate pyridyl bis(oxazoline) ligand invokes an additional 

stabilizing π-π interaction between one of the phenyl groups of the chiral ligand and the 

aromatic functionality of the benzoate (Figure 4.1.3b). In both cases, stereochemical 

models account for the lowered selectivity exhibited by acyclic olefins lacking in 

conformational rigidity.  

Figure 4.1.3   
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catalyzed the formation of C–H amination product 4.21 instead (Scheme 4.1.5).49 While it 

is not uncommon for this reaction pathway to compete with aziridination, the electron 

deficient cationic catalyst 4.22 was particularly suited for asymmetric allylic amination, 

exclusively affording 4.21 in 44% yield and 67% ee (Scheme 4.1.5a). Additionally 

cycloheptene (4.23) was assayed under the reactions conditions yielding 4.24 with lower 

enantioselectivity and as a mixture with the corresponding aziridine byproduct 4.25 

(Scheme 4.1.5b).  

Scheme 4.1.5 
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Interestingly, the identity of the peroxycarbamate was critical for the formation of 

the amination product over that of the alternative oxidation product 4.27, which was in 

some cases isolated exclusively. They do note, however, that the aryl carbamates of 

allylic alcohols undergo stereospecific rearrangement to yield the desired allylic amines. 

Likewise, the introduction of ligand was shown to bias reactivity toward esterification 

rather than the amination in some cases, suggesting that the ligand plays a crucial role in 

moderating the reactivity of the copper–carbamate complex prior to olefin addition.  

Scheme 4.1.6 
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With the goal of enhancing the scope and selectivity of the asymmetric Heck 

reaction, Pfaltz et al. identified phosphonyldihydrooxazole 4.29 as a suitable ligand for 

the palladium-catalyzed coupling of cycloalkenes with aryl and vinyl triflates (Scheme 

4.1.7a).27 Among these substrates, cyclopentene afforded enantioenriched products 4.27 

and 4.30 when coupled with phenyl triflate and 1-cyclohexenyl triflate respectively. The 

Heck products were formed preferentially to isomerization byproducts 4.28 and 4.31 

when ligand 4.29 was used in contrast to (R)-BINAP. Subsequent to Pfaltz’s findings, 

additional studies with P-N ligands identified biaryl phosphite-oxazoline 4.32 as the 

optimal ligand scaffold for the formation of 4.27 (Scheme 4.1.7c).53-55 
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Whereas BINAP failed to suppress disadvantageous double bond migration in Heck 

reactions with unactivated cycloalkenes, (R)-BINAP-monooxide (4.33), a common 

contaminant produced when palladium(II) acetate is reduced with BINAP, was revealed 

to be a competent ligand for this process (Figure 4.1.4). In Oestreich’s studies 4.33 

outcompeted (R)-BINAP for the formation of 4.27, suppressing alkene migration and 

providing enhanced enantioselectivities up to 86% ee.56 Later, the Zhou group improved 

upon the yield and selectivity when spirocycle 4.34 was used as a ligand.57 The 

effectiveness of this chemistry was highlighted through the Heck coupling of a variety of 

aromatic systems to 4.1 with excellent yields and levels of stereoinduction (73% yield, 

98% ee for 4.27). 

Figure 4.1.4 
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Scheme 4.1.8 

 

X-ray crystallography and calculation studies of [Cu((S,S)-t-Bu-
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geometry with glyoxylate 4.35 (Figure 4.1.5). This conformation provides insight into the 
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butene produced α-hydroxy ester 4.36d with comparable enantioselectivity to the 

structurally rigid cycloalkenes. Interestingly, this trend did not extend to cycloheptene, 

which failed to afford synthetically useful yield under any of the conditions screened. 

Since this initial discovery by Evans, a palladium(II) catalyzed version of this reaction 

has also been developed. 62  

 

4.1.6. Enantioselective Allylic Alkylation of Unactivated Olefins with 
Donor/Acceptor Stabilized Carbenoids 

Site selective carbenoid C–H functionalization has emerged as one of the most 

effective ways of accessing new C–C bonds in unactivated substrates with impressive 

regio- and stereoselectivity.63,64,6 Around the same time as Müller’s initial report of an 

acceptor/acceptor substituted carbenoid for moderately enantioselective allylic C–H 

alkylations, Davies began to explore this mode of C–H functionalization with 

donor/acceptor stabilized carbenoids.65-70 To his success, the Rh2(DOSP)4 catalyzed 

decomposition of aryldiazoacetates has become one of the most selective methods for 

C(sp3)–H functionalization. 

In 2001 Davies reported a catalytic asymmetric allylic C–H activation to access γ,δ-

unsaturated esters, providing an alternative route to Claisen rearrangement products 

(Scheme 4.1.9).69 The donor/acceptor stabilized carbenoids resulted in enhanced stability 

and chemoselectivity toward the C–H functionalization product over the alternative 

cyclopropanation pathway. A variety of substituted cyclohexenes were smoothly 

alkylated in the presence of catalytic D2-symmetric Rh2(S-DOSP)4  and 4.38 (4.39a-d) 

revealing high levels of regioselectivity as a result of steric and electronic bias. 

Enantioselectivity was generally high, even when acylic internal olefins were used 

(4.39e-g), however the diastereomeric ratios varied substantially with some dropping as 

low as 1.3:1 in response to changing steric environments. 
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Scheme 4.1.9 

 

Recently, Davies reported a new method for accessing C–H functionalized products 

similar to 4.39e-g with increased selectivity (Scheme 4.1.10).70 N-Sulfonyl-1,2,3-triazole 

4.40 generates a donor/acceptor carbene with chiral rhodium(II) catalyst Rh2(S-NTTL)4 

that exhibits increased regio-, diastereo- and enantioselectivity for allylic alkylation. 

Though only four examples are described, the conversion of acyclic olefins to 4.41a-b 
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represents two of the most selective direct allylic alkylations of unactivated acyclic 

internal alkenes to date.  

Scheme 4.1.10 

 

4.1.7. Conclusions 

Recent advances in catalytic enantioselective allylic C–H oxidation, amination and 

alkylation of unactivated internal olefins have begun to address the long list of selectivity 

issues encountered when utilizing unsaturated hydrocarbons. These powerful strategies 

have provided chemists with the ability to directly access value-added products from 

relatively inexpensive and abundant starting materials. Despite these innovations, few 

examples of selective allylic C–H functionalization utilizing acyclic systems have been 

demonstrated, and are largely limited to allylic alkylation chemistry. More significantly, 

enantioselective intermolecular allylic C–S bond formation of unactivated internal olefins 

remains limited to the use of non-catalytic systems employing chiral auxiliaries.  
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4.2. The Development of a Catalytic Highly Selective Allylic Oxidation 

of Unactivated Internal Olefins 
 

4.2.1. Strategy and Choice of Oxidant 

Our studies initiated with the ultimate goal of developing a general platform for the 

construction of chiral olefinic building blocks from inexpensive commodity olefins. To 

this aim, we set out to develop a catalytic enantioselective hetero-ene reaction that would 

provide access to a multifunctional intermediate capable of stereospecific differentiation 

toward a variety of products (Figure 4.2.1). This strategy would provide chemists with 

the ability to selectively introduce allylic C-N, C-O, C-S, C-C, and C–Cl bonds, enabling 

rapid library synthesis of analogous enantioenriched products.  

While most examples of asymmetric allylic oxidation necessitate the use of terminal 

olefins or functionalized internal olefins to direct regioselectivity, our approach would 

instead exploit the inherent regioselective bias of the oxidant. Initial reports of chalcogen-

based oxidants for the racemic allylic oxidation of unfunctionalized internal olefins 

indicated that this class of enophile might serve as suitable starting point for this 

strategy.71-81 More specifically, we were drawn to sulfurimide and sulfurdiimide reagents 

4.42 and 4.43 due to the robust trends in regioselectivity exhibited by these oxidants with 

unfunctionalized internal olefins.  
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Figure 4.2.1  

 

Determining the exact identity of the chalcogen-based oxidant was a critical step in 

the development of this novel approach to the stereoselective allylic oxidation of internal 

olefins. While our previous studies in allylic alkylation utilized enophiles akin to 4.42, 

Sharpless has shown that the ene adduct generated between internal olefin 4.44 and 

sulfurdiimide 4.45 spontaneously undergoes [2,3]-rearrangement to afford 4.47 (Scheme 

4.2.1a).71 While this reagent is robust and highly regioselective, the facile [2,3]-

rearrangement precludes the capability to diversify the resulting ene adducts.  

In contrast, sulfurimide reagent 4.49 is reported to be less reactive than the 

analogous diimide reagent and ene adducts generated from this oxidant are stable to 

thermal [2,3]-rearrangement, as exemplified by the isolation of allylic sulfinimides like 

4.50 (Scheme 4.2.1b).78 Moreover, sulfurimide-based reagents 4.43 contain both nitrogen 

and oxygen moieties on the central sulfur atom providing the opportunity for C-N or C-O 

bond formation through divergent [2,3]-rearrangements.  
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Scheme 4.2.1  

 

 

4.2.2. Optimization of a Catalytic Enantioselective Hetero-Ene   Reaction with Cis-

5-Decene 

The reactivity of sulfurimide 4.49 was assessed thermally with both trans- and cis-

5-decene (4.51 and 4.52 respectively) to provide allylic sulfinimide 4.53 (Scheme 4.2.2). 

With trans-5-decene 4.51 the product was isolated as a 10:1 mixture of E/Z-isomers 

(Scheme 4.2.2a), however cis-5-decene 4.52 cleanly provided ene adduct 4.53 as a single 

olefin isomer in quantitative yield (Scheme 4.2.2b). Although the ene adduct of 4.52 was 

isolated initially in a 5:1 mixture of epimers at sulfur (majorly 4.53a) 5 hours into the 

reaction, this mixture equilibrated over several hours to a 1.2:1 mixture of 4.53a/4.53b.  

Me

Me
Me

n-Bu Me

N
Ts

Me

Me
Me

N
S

O

(4.49)
PhO2S

(4.45)

Et2O, 23 ºC, 3 h

S
N
H

O
SO2Ph

4.50

60% yield
>20 : 1 rr

Deleris et al. 
1988

Sharpless et. al.
 1976

4.47

59% yield
19 : 1 rr

A.

B.

CH2Cl2, 
23 ºC, 14 h

n-Bu Me

S
TsN NHTs

n-Bu Me

S
N

H
N

Ts

Ts
n-Bu Me

S
TsN NTs

H

Hetero-ene
reaction

Spontaneous
[2,3]- 

Rearrangement

Hetero-ene
reaction

4.46

4.48

4.44

S
NHTs



 248 

Scheme 4.2.2  

 

Under thermal conditions trans-5-decene 4.51 and cis-5-decene 4.52 provided 

opposite major diastereomers. Additionally, in both cases the product was formed 

predominantly as the E-olefin isomer. These observations can be rationalized on the basis 

of disfavored steric interactions in an endo closed transition state (Figure 4.2.2).  
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With a better understanding of the inherent reactivity and selectivity of 4.49 

established, we sought to identify reaction conditions that would shut down the 

background hetero-ene reaction with 4.52 and instead allow for a chiral Lewis acid 

complex to mediate the formation of allylic oxidation product 4.53 (Table 4.2.1). At -70 

ºC in CH2Cl2 product failed to form in any significant amount (entry 1). When strong 

Lewis acids such as TiCl4, and SnCl4 were added to the reaction, allylic sulfinimide 4.53 

was produced with some catalyst turnover. In comparison, at 20 mol% loading SbCl5 

afforded the product in only 17% yield (entries 2-4).  

Table 4.2.1 

(1.5 equiv)

-70 ºC, 12-20 h 

Lewis Acid (20 mol%), 
Diol (25 mol%),

n-Pr

n-Pr

n-Pr
n-Pr

S
H
N O

PhO2S

4.52 4.53

N
S

O

(4.49)
PhO2S

Entry Lewis Acid Diol % Yield

1

2

3

SbCl54

5

6

– 33

– 35

– 17

(R)-BINOL 24

(R)-BINOL 29

Enantiomeric
Ratio

–

–

–

56.5 : 43.5

57 : 43

– – <5 –

TiCl4

SnCl4

TiCl5

SnCl4

7 SbCl5 (R)-BINOL 75 84 : 16

8a SbCl5 (R)-BINOL 88 86.5 : 13.5

Solvent

CH2Cl2

CH2Cl2

 CH2Cl2

CH2Cl2

CH2Cl2

CH2Cl2

CH2Cl2

CH2Cl2

9a SbCl5 (R)-BINOL PhMe 17 88.5 : 11.5

10a SbCl5 (R)-BINOL PhMe/CH2Cl2
(2:1)

84 90 : 10

11a,b SbCl5 (R)-BINOL PhMe/CH2Cl2
(2:1)

55 90 : 10

12a,c SbCl5 (R)-BINOL PhMe/CH2Cl2
(2:1)

82 90 : 10

Reaction conditions. Cis-5-decene (1 equiv), sulfurimide reagent 4.49 (1.5 equiv), 
solvent (0.13M), Lewis acid (20 mol%), (R)-BINOL (25 mol%). Yields were 
determined by 1HNMR using DMB as an internal standard. [a] 0.5 equiv 
trifluoroacetic acid added to reaction. [b] 10 mol% SbCl5 and 25 mol% (R)-BINOL 
was used instead. [c] 40 mol% SbCl5 and 25 mol% (R)-BINOL was used instead.
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The addition of a coordinating diol, (R)-BINOL, diminished the yield of allylic 

oxidation product 4.53 when tin or titanium catalysts were used (entries 5 and 6). To our 

surprise, in the presence of (R)-BINOL the antimony-catalyzed process was not only 

amplified, but 4.53 was formed with moderate enantiomeric enrichment (entry 7). When 

50 mol% of trifluoroacetic acid (TFA) was dosed into the reaction the overall yield was 

enhanced (entry 8).  

Next, we surveyed the effect of solvent identity on the catalytic hetero-ene reaction. 

While the conversion of cis-5-decene 4.52 to sulfinimide 4.53 was highest yielding in 

CH2Cl2, we noticed a slight boost in enantioselectivity when PhMe was used as solvent, 

albeit at greatly diminished yield (entry 9). In this case, sulfurimide 4.49 was largely 

insoluble in PhMe, resulting in a sluggish reaction with cis-5-decene 4.52. Fortunately, a 

2:1 ratio of PhMe and CH2Cl2 provided a favorable environment for both solubility and 

selectivity, affording ene adduct 4.53 in 84% yield and 90:10 enantiomeric ratio (er) 

using (R)-BINOL (entry10). When the amount of Lewis acid was decreased in the 2:1 

PhMe/CH2Cl2 solvent mixture a corresponding decrease in yield was observed (entry 11). 

In contrast, increasing SbCl5 catalyst loading to 40 mol% did not result in any significant 

change in yield or er (entry 12).   

An extensive study of the diol-based co-catalyst followed, providing substantial 

yield and er disparities throughout the entire series (Table 4.2.2). Most notably, in the 

absence of the 1,1’-binaphthyl backbone the reaction failed to proceed (4.54). Several 

coordinating diols bearing sterically and electronically varied 3,3’-substitutents gave 

similar yield and enantiomeric enrichment despite these differences (4.55-4.57). Of the 

series, derivatives 4.58-4.60 provided allylic sulfinimide 4.53 in high yield and increased 

enantiomeric ratios, with diol 4.60 providing the best selectivity at 92.5:7.5 er. Under 

these optimized conditions the product was isolated in 84% yield with complete E-olefin 

selectivity and a >20:1 initial ratio of epimers at sulfur. It is important to note that even a 

minimal amount of PhMe in the solvent composition resulted in a significantly 

diminished yield and was therefore excluded from the reaction when 4.60 was used as the 
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coordinating diol (25% NMR yield in 3:1 CH2Cl2/PhMe). This observation suggests that 

the 3,3’-aryl substituents assist in enantiodiscrimination by partaking in some form of 

electrostatic π -interaction that is precluded when aromatic solvent is added.82,83  

Table 4.2.2  

OH

OH

Me

Me

4.58

95% yield,
86 : 14 er

OH

OH

CF3

CF3

4.57

76% yield,
61.5 : 38.5 er

OH

OH

4.55

75% yield,
58.5 : 41.5 er

OH

OH

4.56

79% yield,
53 : 47 er

(1.5 equiv)

CH2Cl2,  SbCl5 (20 mol%), 
TFA, -70 ºC, 12-20 h

Diol (25 mol%)

n-Pr

n-Pr

n-Pr
n-Pr

S
H
N O

PhO2S

4.52 4.53

OH

OH

4.59
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OH

OH
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89% yield, (84%)a
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Reaction conditions. Cis-5-decene (1 equiv), sulfurimide reagent 4.49 (1.5 equiv), CH2Cl2 (0.13M), SbCl5 (20 mol%), 
diol (25 mol%), trifluoroacetic acid (0.5 equiv). Yields were determined by 1HNMR using DMB as an internal standard. 
[a] Isolated yield.
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4.2.3. Substrate Scope and Trends in Regioselectivity 

With an optimized system for the enantioselective, E/Z-selective and 

diastereoselective  construction of allylic sulfinimides in hand, we explored the potential 

of this strategy with a series of symmetrical unsaturated hydrocarbons (Table 4.2.3). 

Acyclic cis-internal olefins with varying chain length and functionality all afforded the 

oxidized product 4.53 with comparably good yield and stereoinduction (4.61-4.64) 

representing the most general strategy for this class of substrate to date. Cycloalkene 4.65 

was generated with lower enantiomeric excess than its acyclic counterparts, presumably 

due to unfavorable steric interactions encountered with more rigid cyclic olefins. 

Interestingly, the sulfur stereocenter was stable and did not epimerize in this product. 

Unfortunately, ene adduct 4.66 was not produced under these reaction conditions, 

suggesting that allyl arenes in general may not be suitable substrates for this chemistry.   

Table 4.2.3  

Me

S
Me

S

Me
S

Me

O
H
N

PhO2S
H
N O

PhO2S

H
N O

PhO2S

Me
Me

S
H
N O
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4.61

84% yield
92.5 : 7.5 er
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80% yield
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Ph
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 In addition, we were interested in determining the functional group tolerance of this 

chemistry in order to expand its synthetic utility to more complex settings. A qualitative 

functional group compatibility screen was initiated monitoring for the formation of ene 

adduct 4.66 from cyclohexene 4.67 under simplified racemic conditions (Table 4.2.4).84 

Gratifyingly, a wide variety of functionalities were tolerated under the reaction 

conditions, including compounds that are not traditionally compatible with strong Lewis 

acid conditions. In addition to oxygen, nitrogen, heterocycle and boron functionality, 

interestingly an alkyne was tolerated in this reaction and did not compete with 

cyclohexene 4.67 for reaction with sulfurimide 4.49.  

Table 4.2.4 
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Me
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 We decided to test functional group tolerance within the optimized reaction 

conditions by synthesizing a variety of symmetrical substrates bearing heteroatom 

functionality (Table 4.2.5). Increased loadings of SbCl5 to 40 mol% was necessary to 

maintain synthetically useful yields, with the exception of 4.69 which appeared to 

provide relatively similar yields regardless of Lewis acid loading. Halogen functionality 

was tolerated across the board (4.68-4.71) providing exceptional enantioselectivity. The 

absolute configuration of products generated from cis-olefins was confirmed through X-

ray crystallographic analysis of the major diastereomer formed initially for allylic 

oxidation product 4.68 (Figure 4.2.3). Likewise, trifluoroacetate- and indole-containing 

substrates provided enantioenriched allylic sulfinimides 4.72 and 4.73 respectively, 

further confirming the utility of this chemistry within more complex chemical settings.  

Table 4.2.5 

S
O

H
N

PhO2SN

N

Ts

Ts

4.68

72% yield
93.5 : 6.5 er

4.69

49% yielda
93.5 : 6.5 er

4.70

84% yield
93.5 : 6.5 er

4.73

61% yieldb
90 : 10 er

4.71

76% yield
93.5 : 6.5 er

S
H
N O

PhO2S

Cl
Cl

S
H
N O

PhO2S

Br
Br

S
H
N O

PhO2S

I
I

S
H
N O

PhO2S

CF3
F3C

4.72

76% yieldb
93.5 : 6.5 er

S
H
N O

PhO2S

O
O

CF3

O
F3C

O

S
H
N O

PhO2S(1.5 equiv)

SbCl5 (40 mol%)
4.60 (25 mol%)

TFA (0.5 equiv), CH2Cl2, 
–70 °C, 14-23 h

Reaction conditions. Cis-5-decene (1 equiv), sulfurimide reagent 4.49 (1.5 equiv), CH2Cl2 (0.13M), SbCl5 (20 mol%), diol 
4.60 (25 mol%), trifluoroacetic acid (0.5 equiv). Reported as isolated yields. [a] 20 mol% SbCl5 was used. [b] Yields were 
determined by 1HNMR using DMB as an internal standard.
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Figure 4.2.3 

  

We chose sulfurimide reagent 4.49 because we thought it was uniquely suited to 

address the long-standing issue of regioselectivity with unfunctionalized internal olefins.  

As a proof of concept, we assessed the inherent regioselectivity of the asymmetric allylic 

oxidation with a series of unsymmetrical olefins (Table 4.2.6). While altogether the 

yields of 4.74-4.8 were lower in comparison to symmetrical substrates, these reactions 

proceeded with complete regioselectivity in addition to E/Z-, diastereo- and 

enantioselectivity. For instance, when a substrate presents the choice between a proton 

belonging to a methylene and methine, the oxidant preferentially abstracts the less 

hindered proton (entry 1, 4.74). Conversely, when the choice lies between methylene and 

methyl protons the internal olefin product is predominant (entries 2-4, 4.75-4.77). 

Consequently, as a result of the oxidant’s predilection for abstracting methylene protons 

over that of methyl and methine protons, terminal olefin 4.78 was isolated in low yield 

(again as a single regioisomer) (entry 5). In these instances (R)-BINOL provided superior 

stereoselectivity in comparison to diol 4.60. 
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Table 4.2.6  
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satisfaction, allylic sulfinimide 4.79 was accessed as a single regioisomer favoring the 

hetero-ene reaction with the distal allylic protons. However, this inductive effect is 

markedly less effective when employing bis-homoallylic chlorides, as exhibited by the 
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poor regioselectivity for 4.80 (entry 3). Nevertheless, these reactions still provided the 

allylic sulfinimides with excellent enantiomeric enrichment. Taken altogether, our 

synthetic studies have revealed a robust set of rules that predict regioselectivity with this 

catalytic system (Figure 4.2.4). 

Table 4.2.7 

 

Figure 4.2.4 
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4.2.4. Mechanistic Insight Into the Catalytic Asymmetric Allylic Oxidation of 

Unfunctionalized Olefins  

 Our findings that a catalytic antimony-BINOL system effects remarkably 

pronounced enantio-, regio-, diastereo- and E-olefin selectivity in the hetero-ene reaction 

between sulfurimide 4.49 and simple acyclic internal olefins prompted us to better 

understand the mechanism by which this selectivity is derived. The observation that the 

yield of decene-derived sulfinimide 4.53 is markedly diminished in the absence of diol 

4.60 suggests that the diol plays a greater role in promoting the catalytic reaction rather 

than serving as merely a chiral ligand to antimony (Scheme 4.2.3). We attribute this 

enhanced reactivity to the Lewis acid-assisted Brønsted acidity (LBA) of BINOL, a 

concept pioneered by the Yamamoto group.85-91 The addition of sterically hindered base, 

2,6-di-tert-butylpyridine (which does not exhibit any interaction with SbCl5 via low 

temperature 1H NMR analysis at -30 ºC) shut down the allylic oxidation entirely, further 

endorsing the LBA-based mechanism.  

Scheme 4.2.3 

 

One other report utilizing this form of catalysis was disclosed by the Corey group 

for an enantioselective polycyclization of polyenes (Scheme 4.2.4).92 Coordination of the 
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and the BINOL backbone.  

Scheme 4.2.4 

 

 The role of the acid additive was further investigated (Scheme 4.2.5). When TFA 

was substituted with an acid of lower pKa value a corresponding decrease in yield was 
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Scheme 4.2.5 

 

Scheme 4.2.6  
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In an effort to better understand the identity of the active catalyst complex 

facilitating this oxidation, we conducted a non-linear effect study of the enantiomeric 

composition of co-catalyst 4.60 and the resulting product 4.53 (Scheme 4.2.7).  The 

outcome of this study indicated a linear relationship, which suggests a 1:1 stoichiometry 

between 4.60 and the olefin substrate in the transition state.  

Scheme 4.2.7  
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group. Additionally, the switch in diastereoselectivity between the thermal endo-selective 

hetero-ene reaction and the catalyzed reaction suggests that the catalyzed reaction is 

taking place through an exo transition state.  

Scheme 4.2.8  
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Scheme 4.2.9  
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4.2.5. Stereospecific Diversification of Allylic Sulfinimides  

We sought to diversify allylic sulfinimide 4.53 in order to better understand the 

utility of these products in chemical synthesis (Scheme 4.2.10). We initially selected 

sulfurimide reagent 4.49 because it contains both nitrogen and oxygen functionality and 

could therefore yield an oxidized product capable of undergoing chemodivergent 

rearrangements. While allylic sulfinimides have been shown to preferentially undergo 

exclusively the nitrogen centered [2,3]-rearrangement under thermal conditions, this 

required the use of high temperatures.71,78,80 In the case of oxidized product 4.53, the 

presence of catalytic TiCl(Oi-Pr)3 was sufficient to promote the rearrangement at 60 ºC 

with the sole formation of amine product 4.82. Gratifyingly, this product was generated 

exclusively as the E-olefin isomer with 98% enantiospecificity (es).  Because the oxygen 

centered [2,3]-rearrangement is thermally disfavored, conversion of 4.53 to the 

corresponding allylic aryl sulfoxide and subsequent Mislow-Evans rearrangement was 

necessary to provide the free allylic alcohol 4.83, again with high enantiospecificity (99% 

es).  

Additional chiral heteroatom-containing products were similarly accessed from 

allylic oxidation product 4.53. Through reduction with lithium aluminum hydride the 

corresponding thiol (4.84) was isolated with good yield.76 Notably, the stereoselective 

introduction of a C-Cl bond was achieved when the allylic sulfinimide was stirred at low 

temperatures in the presence of sulfuryl chloride. 4-Chloro-5-decene 4.85 was cleanly 

isolated with 95% es, presumably through a retro-ene process. While a previous report of 

this retro-ene chemistry utilized N-chlorosuccinimide at elevated temperatures, we found 

that the switch in halogenating reagent and lower temperatures increased the 

regioselectivity of this chemistry from 1:1 to 3:1.93  

Finally, based on our previous allylic alkylation research we wondered if allylic 

sulfinimide 4.53 would be compatible with these substitution conditions to afford chiral 

hydrocarbon 4.86 with regioselectivity and enantiospecificity.94 Under the copper-

catalyzed conditions with ethylmagnesium chloride, hydrocarbon 4.86 was formed with 
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perfect enantiospecificity, complete E-olefin selectivity and a 3:1 regioisomeric ratio. The 

stereochemistry of 4.86 was assigned based on analogy to our previous studies in the 

aminoarylation of dienes where we were able to confirm that oxidative addition of the 

cuprate and consequent reductive elimination results in a net inversion of 

stereochemistry.95 The allylic alkylation of these sulfinimides represents a significant 

advance in the regioselective allylic substitution of an unbiased internal allylic 

electrophile.  

Scheme 4.2.10 
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hetero-ene reaction via Lewis acid-assisted Brønsted acidity. This methodology produces 

stable allylic sulfinimide products with exclusive E-olefin selectivity and high regio- and 

enantioselectivity precluding the use of directing or activating groups. To date, we have 

been able to achieve up to 84% yield, >20:1 regiomeric ratio and 96:4 enantiomeric ratio 

with a general and diverse scope of cis-olefins. The products of this oxidation are 

amenable to stereospecific diversification thus representing a general platform for the 

formal enantioselective, regioselective and E-olefin selective allylic C-X bond formations 

of internal olefins, where X can be carbon, nitrogen, oxygen, sulfur, or chloride based 

functionality. 

 

 

4.3. Experimental Section 
 

4.3.1. Methods and Materials 

All reactions were carried out under an atmosphere of argon in flame-dried 

glassware with magnetic stirring unless otherwise indicated. Commercially obtained 

reagents were used as received. Solvents were dried by passage through an activated 

alumina column under argon. Liquids and solutions were transferred via syringe. All 

reactions were monitored by thin-layer chromatography with E. Merck silica gel 60 F254 

pre-coated plates (0.25 mm). Silica gel (particle size 0.032 - 0.063 mm) purchased from 

SiliCycle was used for flash chromatography. 1H and 13C NMR spectra were recorded on 

Varian Inova-400 or 500 spectrometers. Data for 1H NMR spectra are reported relative to 

chloroform as an internal standard (7.26 ppm) and are reported as follows: chemical shift 

(d ppm), multiplicity, coupling constant (Hz), and integration. Data for 13C NMR spectra 

are reported relative to chloroform as an internal standard (77.16 ppm) and are reported 

in terms of chemical shift (d ppm). Optical rotations were measured on a JAS DIP-360 

digital polarimeter. Infrared spectra were recorded on a Perkin-Elmer 1000 series FTIR. 
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Chiral HPLC analyses were performed on an Agilent 1200 Series system. GC analyses 

were performed on an Agilent 7820A system. HRMS data were obtained at The Scripps 

Center for Mass Spectrometry and The UT Austin Center for Mass Spectrometry. 

 

4.3.2. Preparative Procedures 

 

Synthesis of olefin starting materials 

 

 

S1: Dec-5-yne-1,10-diol was synthesized by the following procedure and the 
corresponding spectroscopic data was identical to the reported data in the literature.96 

 

 

S2: A flame-dried round-bottom flask was charged with nickel (II) acetate tetra hydrate 

(0.746 g, 3 mmol, 3 equiv). The flask was then put under high vacuum and was back-

filled with hydrogen gas from a balloon. Ethanol anhydrous (20 mL) was then added. To 

a stirred suspension of nickel (II) acetate tetra hydrate in ethanol was added 3.1 mL of a 1 

M solution of NaBH4 (3.1 equiv) in ethanol at room temperature. The new formed 

solution of black solid was stirred for 30 minutes after which an ethanol solution (5 mL) 

of 1,10-decyne-diol S1 (1.71g, 10 mmol, 1eq)  was added. The reaction mixture was then 

kept stirring for 2 h. After completion, the reaction was filtered through a celite plug, 

S1

S2



 268 

concentrated to yield crude product. The crude product was purified by column 

chromatography (gradient 40-80% EtOAc/hexanes). The product S2 was obtained as a 

light yellow oil (1.6 g, 93% yield). The spectra were identical with those reported in 

literature.96 

 

 

S3: Imidazole (0.51 g, 7.5 mmol, 3 equiv) and triphenylphosphine (1.84 g, 7.0 mmol, 2.8 

equiv) was added to a stirred solution of (Z)-dec-5-ene-1,10-diol S2 (0.43 g, 2.5 mmol, 1 

equiv) in CH2Cl2 (10 mL, 0.25 M) at 0 °C. Iodine was then added in portions to the 

reaction mixture. The resulting solution was stirred for 30 min at 0 °C and 14 hours at 

room temperature. After completion, the reaction mixture was poured into hexanes (100 

mL) and filtered through a silica plug. The solid residue was washed with hexanes (5 x 

50 mL) and the combined solvent was removed under reduced pressure to give the title 

compound. The product S3 was obtained as a clear oil (0.924 g, 94% yield). 

1H NMR (500 MHz, CDCl3) δ 5.40 (ddd, J = 5.6, 4.3, 1.1 Hz, 2H), 3.22 (t, J = 7.0 Hz, 4H), 2.17 – 2.00 (m, 

4H), 1.94 – 1.77 (m, 4H), 1.55 – 1.43 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 129.62, 33.03, 30.45, 26.09, 

6.98. IR (thin film): 2929, 2341, 1425, 1207, 720 cm-1. HRMS (CI+) calcd for [C10H18I2]: 391.9498, 

found 391.9508 

 

S4: A flame-dried round-bottom flask was charged with anhydrous THF (0.5 M), and the 

flask was cooled to -78 ˚C in a dry ice/acetone bath. (Z)-1,10-diiododec-5-ene S3 (0.784 

g, 2.0 mmol, 1 equiv) was then added under an argon atmosphere.  Phenyllithium (4.4 

mL, 8 mmol, 4 equiv, 1.8 M) was added dropwise to the flask while maintaining the 

S3

S3 S4
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reaction temperature at -78 °C. After 30 minutes at -78 °C, the reaction mixture was 

allowed to warm to room temperature and stirred overnight. After completion, saturated 

NH4Cl solution was added. The reaction mixture was extracted with Et2O (3x), and the 

organic phases were combined and washed with sodium thiosulfate and brine, dried over 

anhydrous magnesium sulfate, filtered, and concentrated to yield crude product. The 

crude product was purified by column chromatography on silica gel using 100% hexanes 

as an eluent. Olefin S4 was obtained as a colorless oil (0.429 g, 73% yield) 

1H NMR (500 MHz, CDCl3) δ 7.31 (d, J = 7.7 Hz, 4H), 7.24 – 7.17 (m, 6H), 5.41 – 5.29 (m, 2H), 2.71 – 

2.55 (m, 4H), 2.08 (td, J = 7.5, 5.2 Hz, 4H), 1.65 (ddt, J = 9.6, 7.8, 3.6 Hz, 4H), 1.42 (t, J = 7.6 Hz, 4H). 13C 

NMR (101 MHz, CDCl3) δ 142.72, 129.78, 128.38, 128.22, 125.58, 35.84, 31.08, 29.35, 27.05. IR (thin 

film): 2930, 2855, 1495, 1453, 746 cm-1. HRMS [M+Cl] calcd for [C22H28]: 292.2191, found 292.2191 

 

 

S5: N-Bromosuccinimide (0.62 g, 3.48 mmol, 3 equiv) was added in portions to a stirred 

solution of (Z)-dec-5-ene-1,10-diol S2 (0.2 g, 1.16 mmol, 1 equiv) and 

triphenylphosphine (0.852 g, 3.25 mmol, 2.8 equiv) in THF (5 mL) at 0 °C, and the 

resulting solution was stirred for 30 min at 0 °C and 14 hours at room temperature. After 

completion, the reaction mixture was poured into hexanes (20 mL) and filtered through a 

silica plug. The solid residue was washed with hexanes (5 x 20 mL) and the combined 

solvent was removed under reduced pressure to give the title compound. Olefin S5 was 

obtained as a clear oil (0.346 g, 99% yield). 

1H NMR (400 MHz, CDCl3) δ 5.37 (t, J = 4.9 Hz, 2H), 3.41 (t, J = 6.8 Hz, 4H), 2.06 (td, J = 7.3, 5.0 Hz, 

4H), 1.86 (q, J = 7.2 Hz, 4H), 1.51 (h, J = 7.0 Hz, 4H). 13C NMR (101 MHz, CDCl3) δ 129.64, 33.78, 

32.29, 28.12, 26.29. IR (thin film): 2935, 1437, 1248, 740, 645 cm-1. HR-MS (CI+) calcd for 

[C10H1779Br81Br]: 296.9677, found 296.9679 

 

S2 S5
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S6: N-Chlorosuccinimide (0.6 g, 4.5 mmol, 3 equiv) was added in portions to a stirred 

solution of (Z)-dec-5-ene-1,10-diol S2 (0.258 g, 1.5 mmol, 1 equiv) and 

triphenylphosphine (1.1 g, 4.2 mmol, 2.8 equiv) in THF (6 mL) at 0 °C, and the resulting 

solution was stirred for 30min at 0 °C and 3 hours at room temperature. After completion, 

the reaction mixture was poured into hexanes (20 mL) and filtered through a silica plug. 

The solid residue was washed hexanes (5 x 20 mL) and the combined solvent was 

removed under reduced pressure to give the title compound. Olefin S6 was obtained as a 

clear oil (0.289 g, 97% yield). 

1H NMR (400 MHz, CDCl3) δ 5.38 (t, J = 4.9 Hz, 2H), 3.54 (t, J = 6.7 Hz, 4H), 2.06 (q, J = 6.9 Hz, 4H), 

1.78 (q, J = 7.1 Hz, 4H), 1.61 – 1.39 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 129.66, 44.98, 32.12, 26.84, 

26.41. IR (thin film): 2861, 2360, 1445, 1309, 720 cm-1. HR-MS (CI+) calcd for [C10H17Cl2]: 207.0707, 

found 207.0710 

 

 

S7: To a solution of (Z)-1,10-diiododec-5-ene  S3 (0.392 g, 1.0 mmol, 1 equiv) in 

monoglyme (5 mL) in a flame-dried round-bottom flask, TMSCF3 (2 mL, 4.0 mmol, 4.0 

equiv, 2M in THF) was added. The resulting mixture was then cooled to -10 °C in an 

ethylene glycol/dry ice bath. CsF (0.607 g, 4 mmol, 4 equiv) and 15-crown-5 (1.5 mL, 8 

mmol, 8 equiv) were successively added and the mixture was allowed to warm up to 

room temperature and stirred for 14 h. After completion, the reaction mixture was filtered 

through a celite plug and concentrated. The liquid residue was then washed with pentane 

(5 x 5 mL) to give a solution of desired product and 15-crown-5. This solution was 

S2 S6

S3 S7
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washed with brine (3x) and water (2x), dried over Magnesium sulfate, and concentrated 

under reduced pressure to give olefin S7 as a clear oil (0.268 g, 97% yield). 

1H NMR (500 MHz, CDCl3) δ 5.40 (dd, J = 5.5, 4.2 Hz, 2H), 2.09 (ddd, J = 13.1, 9.1, 5.2 

Hz, 8H), 1.63 – 1.50 (m, 4H), 1.46 (q, J = 7.6 Hz, 4H). 13C NMR (101 MHz, CDCl3) δ 

129.54, 33.77, 33.49, 28.64, 26.74, 21.47, 21.44. 19F NMR (470 MHz, CDCl3) δ -66.39. 

IR (thin film): 2947, 1389, 1136, 1027, 653 cm-1. HR-MS (CI+) calcd for [C12H18F6]: 

276.1313, found 276.1311 

 

 

S8: A flame-dried round-bottom flask was charged with anhydrous CH2Cl2 (10 mL), (Z)-

dec-5-ene-1,10-diol S2 (0.43 g, 2.5 mmol, 1 equiv) and the flask was cooled to 0 ˚C in an 

ice bath. 4-Dimethylaminopyridine (0.062 g, 0.5 mmol, 0.2 equiv) was then added under 

an argon atmosphere.  Triflouroacetic anhydride (1.4 mL, 10 mmol, 4 equiv) was added 

dropwise to the flask while maintaining the reaction temperature at 0 °C. The reaction 

mixture was then allowed to warm to room temperature and stirred overnight. After 

completion, the reaction mixture was poured into hexanes (100 mL) and filtered through 

a silica gel plug. The reaction residue on silica gel was washed with hexanes (5 x 30 mL) 

and the combined solvent was removed under reduced pressure to give the title 

compound. Olefin S8 was obtained as a clear oil (0.476 g, 52% yield). CH2Cl2  

1H NMR (400 MHz, CDCl3) δ 5.38 (td, J = 4.5, 2.2 Hz, 2H), 4.36 (t, J = 6.6 Hz, 4H), 2.08 (td, J = 7.3, 5.3 

Hz, 4H), 1.84 – 1.67 (m, 4H), 1.52 – 1.36 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 129.60, 68.05, 27.66, 

26.53, 25.49. 19F NMR (470 MHz, CDCl3) δ -75.15. IR (thin film): 2943, 1789, 1352, 1222, 777 cm-1. 

HR-MS (CI+) calcd for [C14H19O4F6]: 365.1188, found 365.1202 

 

S2 S8
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S9: A flame-dried round-bottom flask was charged with anhydrous THF (6 mL), 3-

bromo-1-tosyl-1H-indole (1.314 g, 3.75 mmol, 2.5 equiv),97 and the flask was cooled to -

78 ˚C in a dry ice/acetone bath. t-BuLi (2.2 mL, 3.75 mmol, 2.5 equiv, 1.7 M) was added 

dropwise to the flask while maintaining the reaction temperature at -78 °C.  After the 

reaction was stirred for additional 1 hour, a solution of (Z)-1,10-diiododec-5-ene S3 

(0.588 g, 1.5 mmol, 1 equiv) in THF (3 mL) was added. The reaction mixture was 

allowed to warm to room temperature and stirred for 21 hours. After completion, 

saturated NH4Cl solution was added. The reaction mixture was extracted with Et2O (3x), 

and the organic phases were combined and washed with sodium thiosulfate, and brine, 

dried over anhydrous Magnesium sulfate, filtered, and concentrated to yield crude 

product. The crude product was purified by column chromatography (gradient 0-10% 

EtOAc/hexanes). Olefin S9 was obtained as a white solid (0.3 g, 29% yield). 

1H NMR (500 MHz, CDCl3) δ 8.23 – 8.18 (m, 2H), 7.65 – 7.58 (m, 4H), 7.43 (ddd, J = 7.4, 1.6, 0.8 Hz, 

2H), 7.37 – 7.29 (m, 6H), 7.19 (d, J = 8.1 Hz, 4H), 5.42 – 5.36 (m, 2H), 3.15 – 3.06 (m, 4H), 2.35 (s, 6H), 

2.17 – 2.04 (m, 4H), 1.82 – 1.69 (m, 4H), 1.53 – 1.44 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 144.96, 

138.78, 135.95, 135.63, 129.86, 129.71, 129.22, 126.30, 125.14, 124.10, 119.22, 115.09, 101.92, 29.47, 

29.46, 27.42, 26.99, 21.56. IR (thin film): 2924, 2341, 1448, 1175, 668 cm-1. HRMS (ESI-TOF) calcd for 

[C40H42N2O4S2]: 679.2659, found 679.2654 

 

 

S10: A flame-dried round-bottom flask was charged with anhydrous THF (10 mL), 3-

methylbut-1-yne (0.66 g, 6.5 mmol, 1.3 equiv) and the flask was cooled to -78 ˚C in a dry 

ice/acetone bath.  n-BuLi (2.5 mL, 6.25 mmol, 1.25 equiv, 2.5 M) was added dropwise to 

S3
S9

S10
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the flask while maintaining the reaction temperature at -78 °C.  After the reaction was 

stirred for additional 1 hour, (4-bromobutyl)benzene  (0.84 mL, 5 mmol, 1 equiv) and 

1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (5 mL) were successively added. 

The reaction mixture was then allowed to warm to room temperature and stirred for 17 

hours. After completion, saturated NH4Cl solution was added. The reaction mixture was 

extracted with Et2O (3x), and the organic phases were combined and washed with brine, 

dried over anhydrous magnesium sulfate, filtered, and concentrated to yield crude 

product. The crude product was purified by column chromatography (100% hexanes). 

Alkyne S10 was obtained as a clear oil (0.826 g, 88% yield). 

1H NMR (400 MHz, CDCl3) δ 7.30 – 7.27 (m, 2H), 7.18 (d, J = 7.3 Hz, 3H), 2.62 (t, J = 7.7 Hz, 2H), 2.51 

(ddt, J = 9.1, 6.8, 3.4 Hz, 1H), 2.23 – 2.10 (m, 2H), 1.72 (tt, J = 9.0, 6.8 Hz, 2H), 1.55 – 1.47 (m, 2H), 1.13 

(d, J = 6.8 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ δ 142.49, 128.38, 128.24, 125.63, 86.26, 78.99, 35.39, 

30.47, 28.65, 23.45, 20.51, 18.55. IR (thin film): 2935, 2860, 1496, 746, 698 cm-1. HR-MS (CI+) calcd for 

[C15H20]: 200.1565, found 200.1566 

 

 

S11: To a flame-dried round-bottom flask was charged with nickel (II) acetate tetra 

hydrate (0.134 g, 0.54 mmol, 0.27 equiv). The flask was then put under high vacuum and 

was back-filled with hydrogen gas from a balloon. Ethanol anhydrous (4 mL) was then 

added. To a stirred suspension of nickel (II) acetate tetra hydrate in ethanol was added 0.5 

mL of a 1 M solution of NaBH4 (0.25 equiv) in ethanol at room temperature. The new 

formed solution of black solid was stirred for 30 minutes after which an ethanol solution 

(2 mL) of alkyne S10 (0.4 g, 2 mmol, 1eq) was added. The reaction mixture was stirred 

for 1 hour. After completion, the reaction was filtered through a celite plug, concentrated 

to yield crude product. The crude product was purified by column chromatography ( 

100% hexanes). Olefin S11 was obtained as a clear oil (0.368 g, 91% yield). 

S10 S11
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1H NMR (400 MHz, CDCl3) δ 7.32 – 7.23 (m, 2H), 7.21 – 7.11 (m, 3H), 5.26 – 5.14 (m, 2H), 2.60 (dt, J = 

13.7, 7.2 Hz, 3H), 2.07 (td, J = 7.5, 6.2 Hz, 2H), 1.71 – 1.58 (m, 2H), 1.45 – 1.33 (m, 2H), 0.94 (d, J = 6.7 

Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 142.72, 137.67, 128.38, 128.21, 127.16, 125.57, 35.83, 31.06, 

29.53, 27.11, 26.45, 23.23. IR (thin film): 2955, 2857, 1496, 1454, 745 cm-1. HR-MS (CI+) calcd for 

[C15H22]: 202.1722, found 202.1721 

 

 

S12: N-Chlorosuccinimide (2.0 g, 15 mmol, 1.5 equiv) was added in portions to a stirred solution of (Z)-

hept-4-en-1-ol (1.4 g, 10 mmol, 1 equiv) and triphenylphosphine (2.27 g, 14 mmol, 1.4 equiv) in THF (20 

mL) at 0 °C. The resulting solution was stirred for 30 min at 0 °C and 14 hours at room temperature. After 

completion, the reaction mixture was poured into hexanes (100 mL) and filtered through a silica plug. The 

solid residue was washed hexanes (5 x 30 mL) and the combined solvent was removed under reduced 

pressure to give the title compound. The product was obtained as a clear oil (0.976 g, 74% yield). 

 
1H NMR (400 MHz, CDCl3) δ 5.50 – 5.37 (m, 1H), 5.36 – 5.20 (m, 1H), 3.54 (t, J = 6.6 

Hz, 2H), 2.26 – 2.12 (m, 2H), 2.12 – 2.00 (m, 2H), 1.83 (dt, J = 7.6, 6.6 Hz, 2H), 0.97 (t, 

J = 7.5 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 133.29, 126.93, 44.51, 32.45, 24.24, 

20.53, 14.31. IR (thin film): 2934, 1458, 1308, 726, 654 cm-1. HR-MS (CI+) calcd for 

[C7H13Cl]: 132.0706, found 132.0708 

 

 

S13: Triphenylphosphine (5.6 mmol, 1.4 equiv) was diluted in THF (8 mL, 0.5 M) within 

a flame-dried flask set under argon atmosphere. Cis-3-hexen-1-ol (4.0 mmol) was added 

to the solution followed by N-chlorosuccinimide (6.0 mmol, 1.5 equiv) carefully. The 

reaction was stirred at room temperature until complete as determined by TLC analysis (2 

h). After diluting with pentane (roughly 30 mL), the suspension was filtered through a 

S12

S13

Me ClMe OH

PPh3, NCS, 

THF, 23 ºC
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celite plug and purified by flash chromatography (100% pentane) afforded S13 (92% 

yield) as a colorless oil: 
1H NMR (400 MHz, CDCl3) δ 5.60 – 5.48 (m, 1H), 5.45 – 5.33 (m, 1H), 3.51 (t, J = 7.1 

Hz, 2H), 2.52 (q, J = 7.4 Hz, 2H), 2.03 (q, J = 7.1 Hz, 2H), 1.39 (h, J = 7.4 Hz, 2H), 0.91 

(t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 133.2, 125.1, 44.4, 30.9, 29.6, 22.8, 

13.9.  

 

 

S14: N-Chlorosuccinimide (1.0 g, 7.5 mmol, 1.5 equiv) was added in portions to a stirred 

solution of (Z)-hex-2-en-1-ol (0.59 g, 5 mmol, 1 equiv) and triphenylphosphine (1.84 g, 7 

mmol, 1.4 equiv) in THF (10 mL) at 0 °C, and the resulting solution was stirred for 30 

min at 0 °C and 2 hours at room temperature. After completion, the reaction mixture was 

poured into pentane (100 mL) and filtered through a silica plug. The solid residue was 

washed pentane (5x30 mL) and the combined solvent was removed under reduced 

pressure to give the title compound. The product was obtained as a clear oil (0.358 g, 

60% yield). The collected spectra were consistent with those reported in literature.98 

 

Synthesis of BINOL Derivatives 

Binol co-catalysts 4.54 and 4.56 were purchased from Sigma Aldrich. BINOL co-

catalysts 4.55, 4.57 and 4.58 were synthesized according to the corresponding literature 

procedures.99-101  

S14
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S15: (R)-3,3'-diiodo-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene was prepared according to literature 

procedure.102  

4.60: A flame-dried round-bottom flask was charged with S15 (4.38 g, 7 mmol, 1 equiv) 3,5-

bis(trifluoromethyl)- phenylboronic acid (5.42 g, 21 mmol, 3 equiv), and barium hydroxide octahydrate 

(6.63 g, 21 mmol, 3 equiv). The flask was put under vacuum and back-filled with argon (3 times).  

Tetrakis(triphenylphosphine)palladium(0) (0.81 g, 0.7 mmol, 0.1 equiv) was added and the flask was again 

put under vacuum and back-filled with argon (3 times). Degassed dioxane and H2O (60 mL, 3:1) was 

finally added and the reaction mixture was heated to 85°C with stirring for 36h.  After completion, CH2Cl2 

was added and the reaction mixture was extracted with CH2Cl2 (3x). The combined organic extracts were 

washed with brine, dried over anhydrous magnesium sulfate, filtered, and concentrated to yield crude 

mixture. Purification by column chromatography (gradient 0-5% EtOAc/ hexanes) afforded the MOM 

protected intermediate. This material was transferred to a round bottom flask and THF and methanol (20 

mL, 1:1) were added, followed by amberlyst 15 (8 g). The reaction mixture was heated to 60 °C and stirred 

overnight.  After completion, the reaction was filtered through a celite plug and concentrated to yield the 

crude product, which was purified by column chromatography (gradient 0-5% EtOAc/ hexanes) as an 

eluent. The product was obtained as a white solid (4.15 g, 83% yield). Chiral HPLC show the product was 

obtained with enatiomeric ratio 99:1. 1HNMR and 13CNMR spectra were consistent with those reported in 

literarure.99 

 

Synthesis of Benzenesulfonyl Sulfurimide 4.49 

 

4.49: Our procedure was modified from a method reported in the literature for the 

synthesis of similar arylsulfonyl sufurdiimides:103 A solution of benzenesulfonamide 
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(14.55 g, 92.5 mmol) and SOCl2 (20 mL, 0.275 mol) in benzene (20 mL) was refluxed at 

95 °C for 3 days (over the course of the reaction, the mixture became a clear solution). 

When the starting material was consumed by 1H NMR analysis of an aliquot, the mixture 

was concentrated under vacuum to remove benzene and excess SOCl2. Trace amounts of 

SOCl2 were removed by redissolving the residue in toluene (20 mL) and concentrating 

under reduced pressure. The residue was redissolved in toluene (8 mL) and stored at 0 ºC 

until a yellow precipitate crystallized slowly from the solution. The precipitate was 

obtained by vacuum filtration under an argon atmosphere, washed with cold toluene (3 x 

5 mL) and stored under vacuum until dry. Benzensulfonyl sulfurimide 4.49 was obtained 

as a pale yellow solid (15 g, 80% yield). 1HNMR and 13CNMR spectra were consistent 

with those reported in literarure. Since benzenesulfonyl sulfurdiimide 3 is sensitive to 

water, we store it in a vacuum desiccator within a sealed flask that has been purged with 

argon. 

 

Representative Procedure for Thermal Hetero-Ene Reactions  

 

4.53: A flame-dried flask was charged with benzenesulfonyl sulfurimide 4.49 (3.5 mmol, 

1.25 equiv) and diluted with CH2Cl2 (2.8 mL, 1M) under argon atmosphere. Cis-5-decene 

(2.8 mmol, 1 equiv) was added in and the reaction was stirred 4 h or until TLC indicated 
the complete disappearance of olefin starting material. The solution was concentrated 
under reduced pressure and diluted in a minimal amount of CHCl3. Benzenesulfonamide 

was precipitated out by trituration with hexanes and removed under vacuum filtration. 

The filtrate was concentrated under reduced pressure to afford ene adduct 4.53 (>95% 

yield) as a pale yellow oil. (See 4.61 for characterization data).  
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General Procedures for the Catalytic Enantioselective Allylic Oxidation 

 

General Procedure for the Enantioselective Hetero-Ene Reaction (Method A): 

Benzenesulfonyl sulfurimide 4.49 (122mg, 1.5 equiv), and (R)-(+)-3,3′-Bis(3,5-

bis(trifluoromethyl)phenyl)-1,1′-bi-2-naphthol (4.60) (71mg, 25 mol%) were set under 

vacuum in a flame dried flask for approximately 10 minutes before purging with argon. 

The solids were dissolved in PhMe (1 mL) and cooled to –70 ºC. The resulting yellow 

solution was then treated with SbCl5 (80 mL, 1M in CH2Cl2, 20 mol%) dropwise while 

stirring vigorously. After 20 minutes, olefin (0.4 mmol) was added followed immediately 

by the addition of 1 mL PhMe and 1 mL CH2Cl2 to wash the sides of the reaction vessel 

(solvents were added slowly to ensure that the internal reaction temperature did not 

significantly rise). The resulting black solution was treated with TFA (200 mL, 1M 

CH2Cl2, 0.5 equiv) and the vessel septum was sealed with wax to prevent contamination 

by moisture. The solution was stirred at –70 ºC for 14-23 h. The reaction was quenched 

by addition of water (3 mL) at –70 ºC, and allowed to warm to room temperature over the 

span of 1 h while stirring vigorously (~ 1,300 rpm). The resulting organics were collected 

and the aqueous layer was washed with EtOAc (3 x 6 mL, or until the aqueous layer went 

colorless). The combined organics were dried over Na2SO4 and concentrated under 

reduced pressure.  

The resultant crude material was dissolved in a minimal amount of CHCl3. 

Benzenesulfonamide was precipitated out by trituration with hexanes and removed under 

vacuum filtration. The filtrate was concentrated under reduced pressure and suspended in 

Et2O (20 mL) and NEt3 (123 mL, 2.2 equiv). The cloudy solution was washed with water 

(2 x 7 mL), and the combined aqueous extracts were washed with 20 mL Et2O. The 

organic layer was back extracted with 5 mL water. All combined aqueous washes were 

R R'
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H
N O

PhO2S
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R'
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(1.5 equiv)
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acidified with 1N HCl until cloudy (approximately pH = 2), and washed with EtOAc (3 x 

20 mL). The combined organics were dried over Na2SO4 and concentrated under reduced 

pressure to afford pure ene adduct.  

 

Modified Procedure for the Enantioselective Hetero-Ene Reaction (Method B) 

Benzenesulfonyl sulfurimide 4.49 (122mg, 1.5 equiv), and (R)-(+)-3,3′-Bis(3,5-

bis(trifluoromethyl)phenyl)-1,1′-bi-2-naphthol (4.60) (71mg, 25 mol%) were set under 

vacuum in a flame dried flask for approximately 10 minutes before purging with argon. 

The solids were dissolved in PhMe (1 mL) and cooled to –70 ºC. The resulting yellow 

solution was then treated with SbCl5 (160 mL, 1M in CH2Cl2, 40 mol%) dropwise while 

stirring vigorously. After 20 minutes, olefin (0.4 mmol) was added followed immediately 

by the addition of 1 mL PhMe and 1 mL CH2Cl2 to wash the sides of the reaction vessel 

(solvents were added slowly to ensure that the internal reaction temperature did not 

significantly rise). The resulting black solution was treated with TFA (200 mL, 1M 

CH2Cl2, 0.5 equiv) and the vessel septum was sealed with wax to prevent contamination 

by moisture. The solution was stirred at –70 ºC for 14-23 h. The reaction was quenched 

by addition of water (3 mL) at –70 ºC, and allowed to warm to room temperature over the 

span of 1 h while stirring vigorously (~ 1,300 rpm). The resulting organics were collected 

and the aqueous layer was washed with EtOAc (3 x 6 mL, or until the aqueous layer went 

colorless). The combined organics were dried over Na2SO4 and concentrated under 

reduced pressure. The product was purified according to Method A.  

 

General Procedure for the Enantioselective Hetero-Ene Reaction (Method C) 

Benzenesulfonyl sulfurimide 4.49 (122mg, 1.5 equiv), and (R)-1,1'-Bi-2-naphthol (29 

mg, 25 mol%) were set under vacuum in a flame dried flask for approximately 10 

minutes before purging with argon. The solids were dissolved in PhMe (1 mL) and 

cooled to –70 ºC. The resulting yellow solution was then treated with SbCl5 (160 mL, 1M 
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in CH2Cl2, 40 mol%) dropwise while stirring vigorously. After 20 minutes, olefin (0.4 

mmol) was added followed immediately by the addition of 1 mL PhMe and 1 mL CH2Cl2 

to wash the sides of the reaction vessel (solvents were added slowly to ensure that the 

internal reaction temperature did not significantly rise). The resulting black solution was 

treated with TFA (200 mL, 1M CH2Cl2, 0.5 equiv) and the vessel septum was sealed with 

wax to prevent contamination by moisture. The solution was stirred at –70 ºC for 14-23 

h. The reaction was quenched by addition of water (3 mL) at –70 ºC, and allowed to 

warm to room temperature over the span of 1 h while stirring vigorously (~ 1,300 rpm). 

The resulting organics were collected and the aqueous layer was washed with EtOAc (3 x 

6 mL, or until the aqueous layer went colorless). The combined organics were dried over 

Na2SO4 and concentrated under reduced pressure. The product was purified according to 

Method A.  

 

 

4.61: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method A), cis-5-decene (0.4 mmol) was converted to the desired 

product. The hetero-ene reaction was stirred for 16 h. The product was purified according 

to the general procedure to afford 4.61 (84% yield, 4:1 dr) as a viscous colorless oil The 

enantiomeric ratio of the product was determined to be 92.5:7.5 after conversion to 

thiocarbamate S17 (see experimental procedure for S17):  

[a]23
D = -39.4° (c = 1.34, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.99 – 7.89 (m, 2H), 

7.62 (td, J = 7.3, 1.6 Hz, 1H), 7.59 – 7.49 (m, 2H), 5.83 (dt, J = 15.6, 7.0 Hz, 1H), 5.40 – 

5.23 (m, 1H), 3.43 (td, J = 8.8, 5.1 Hz, 0.2H), 3.11 (td, J = 9.7, 5.5 Hz, 0.8H), 2.20 – 1.99 

(m, 2H), 1.96 – 1.82 (m, 0.8H), 1.79 – 1.62 (m, 1H), 1.61 – 1.49 (m, 0.2H), 1.48 – 1.22 

(m, 6H), 0.89 (dt, J = 7.0, 2.5 Hz, 6H); 13C NMR (101 MHz, CDCl3) δ 142.3, 141.6, 

140.4, 140.4, 133.8, 133.8, 129.5, 129.5, 127.3, 127.3, 120.4, 119.7, 69.1, 69.0, 35.0, 

34.8, 29.1, 28.9, 28.9, 27.5, 22.5, 22.4, 22.3, 22.2, 13.9, 13.7, 13.7; IR (thin film): 2958, 
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2360, 1375, 1149, 1071, 856 cm-1. HRMS (ESI-TOF) calcd for [C16H25NO3S2]+ ([M+H]+): 

344.1349, found 344.1351  

 

 

S16: Ene adduct 4.61 (0.1mmol) was converted to thiol S16 according to the literature 

procedure.76 Following quenching, the crude suspension was stirred vigorously for 1 h. 

Extraction by Et2O and concentration gave a grey residue, which was purified by flash 

chromatography (100% pentane) to afford S16 (72% yield) as a colorless oil.  

[a]23
D = -23.2° (c = 0.19, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 5.49 (dt, J = 15.1, 6.4 

Hz, 1H), 5.39 (dd, J = 15.1, 8.5 Hz, 1H), 3.41 (qd, J = 7.4, 4.7 Hz, 1H), 1.98 (q, J = 6.8, 

6.4 Hz, 2H), 1.64 – 1.53 (m, 2H), 1.44 – 1.24 (m, 6H), 0.89 (t, J = 7.3 Hz, 6H); 13C NMR 

(101 MHz, CDCl3) δ 134.1, 130.4, 42.6, 38.3, 34.3, 29.8, 22.5, 22.5, 14.1, 13.8; IR (thin 

film): 2958, 2928, 1464, 1378, 964, 730 cm-1. HRMS (CI) calcd for [C10H19S]- ([M-H]-): 

171.1207, found 171.1212. 

 

 

S17: Thiol S16 (0.13 mmol) was suspended in pyridine (200 mL, 0.65 M) and phenyl 

isothiocyanate (21 mL, 1.4 equiv) was added. The reaction was stirred for 35 minutes. 

Pyridine was azeotropped off with heptane and the resulting residue was purified by flash 

chromatography (gradient from 100% hexanes to 10% hexanes/ethyl acetate) to afford 

S17 as a white solid (81% yield):  

[a]23
D = +69.6° (c = 0.81, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.5 Hz, 

2H), 7.30 (t, J = 7.9 Hz, 2H), 7.16 – 7.02 (m, 2H), 5.70 (dt, J = 14.3, 6.8 Hz, 1H), 5.42 

S16
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(dd, J = 15.2, 8.7 Hz, 1H), 4.05 (q, J = 8.0 Hz, 1H), 2.01 (q, J = 7.1 Hz, 2H), 1.81 – 1.62 

(m, 2H), 1.47 – 1.28 (m, 6H), 0.89 (q, J = 7.0 Hz, 6H); 13C NMR (101 MHz, CDCl3) δ 

137.9, 132.9, 130.2, 129.2, 124.4, 119.8, 48.0, 35.0, 34.5, 29.5, 25.5, 22.5, 22.4, 14.1, 

13.7; IR (thin film): 2920, 2342, 1440, 1146, 751, 668 cm-1. HRMS (CI) calcd for 

C17H25NOS: 291.1657, found 291.1650.  

 

 

4.62: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method A), cis-4-octene (0.4 mmol) was converted to the desired 

product. The hetero-ene reaction was stirred for 16 h. The product was purified according 

to the general procedure to afford 4.62 (80% yield, 4:1 dr) as a viscous colorless oil. The 

enantiomeric ratio of the product was determined to be 92.5:7.5 after conversion to 

thiocarbamate S18 (see experimental procedure for S18): 

[a]23
D = -79.3° (c = 0.30, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.99 – 7.89 (m, 2H), 

7.68 – 7.58 (m, 1H), 7.59 – 7.49 (m, 2H), 5.89 (dt, J = 15.6, 6.3 Hz, 1H), 5.32 (ddt, J = 

15.5, 9.8, 1.7 Hz, 1H), 3.45 (td, J = 8.9, 5.2 Hz, 0.2H), 3.14 (td, J = 9.6, 5.4 Hz, 0.8H), 

2.22 – 2.02 (m, 2H), 1.93 – 1.79 (m, 0.8H), 1.76 – 1.30 (m, 3.2H), 1.07 – 0.87 (m, 6H); 
13C NMR (101 MHz, CDCl3) δ 144.0, 143.3, 140.4, 140.3, 133.9, 133.8, 129.5, 129.5, 

127.3, 127.3, 119.1, 118.5, 68.8, 68.7, 31.3, 29.9, 26.0, 26.0, 20.1, 20.0, 13.9, 13.8, 13.6, 

13.4; IR (thin film): 2962, 2360, 1374, 1169, 1071, 840 cm-1. HRMS (CI) calcd for 

[C14H22NO3S2]+ ([M+H]+): 316.1041, found 316.1050. 
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S18: 4.62 (0.2 mmol) was converted to S18 under the previously described conditions for 

the synthesis of carbamothioate S17. Purification by preparative TLC yielded S18 as a 

white solid (13% yield for 2 steps; Rf = 0.43 in 15% EtOAc/Hexanes):  

[a]23
D = +40.0° (c = 0.18, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 8.0 Hz, 

2H), 7.31 (t, J = 7.9 Hz, 2H), 7.10 (t, J = 7.4 Hz, 1H), 6.98 (s, 1H), 5.76 (dt, J = 13.6, 6.4 

Hz, 1H), 5.42 (dd, J = 15.2, 8.8 Hz, 1H), 4.06 (q, J = 8.4, 7.9 Hz, 1H), 2.05 (p, J = 7.1 

Hz, 2H), 1.80 – 1.59 (m, 2H), 1.42 (h, J = 7.3 Hz, 2H), 0.96 (dt, J = 22.1, 7.4 Hz, 6H); IR 

(thin film): 2959, 1656, 1534, 1309, 1146, 751 cm-1. HRMS (CI) calcd for C15H21NOS: 

263.1344, found 263.1347. 

 

 

 4.63: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method A), cis-3-hexene (0.4 mmol) was converted to the desired 

product. The hetero-ene reaction was stirred for 17 h. The product was purified according 

to the general procedure to afford 4.63 (80% yield, 4:1 dr) as a viscous colorless oil. The 

enantiomeric ratio of the product was determined to be 95:5 after conversion to 

thiocarbamate S19 (see experimental procedure for S19):  

[a]23
D = -14.0° (c = 1.30, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.98 – 7.86 (m, 2H), 

7.65 – 7.58 (m, 1H), 7.57 – 7.48 (m, 2H), 5.91 – 5.70 (m, 1H), 5.33 (ddq, J = 15.1, 9.7, 

1.7 Hz, 0.8H), 5.20 (ddq, J = 15.4, 8.5, 1.7 Hz, 0.2H), 3.36 (td, J = 9.3, 4.8 Hz, 0.2H), 

3.06 (td, J = 9.6, 5.4 Hz, 0.8H), 1.98 – 1.78 (m, 3.4H), 1.73 – 1.52 (m, 1.6H), 0.98 (dt, J 

= 13.4, 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 140.4, 140.4, 136.9, 136.2, 133.7, 

133.5, 129.5, 129.4, 127.2, 127.2, 121.3, 121.0, 70.5, 70.5, 22.6, 21.5, 18.5, 18.5, 11.4, 
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11.3; IR (thin film): 2970, 1448, 1373, 1168, 1072, 860 cm-1. HRMS (CI) calcd for 

[C12H18NO3S2]+ ([M+H]+): 288.0728, found 288.0741. 

 

 
S19: 4.63 (0.2 mmol) was converted to S19 under the previously described conditions for 

the synthesis of carbamothioate S17. Purification by preparative TLC yielded S19 as a 

white solid (10% yield for 2 steps; Rf = 0.43 in 15% EtOAc/Hexanes):  

[a]23
D = +32.3° (c = 0.16, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.2 Hz, 

2H), 7.31 (t, J = 7.9 Hz, 2H), 7.10 (t, J = 7.3 Hz, 1H), 6.99 (s, 1H), 5.79 – 5.68 (m, 1H), 

5.45 (ddd, J = 15.2, 8.7, 1.7 Hz, 1H), 3.98 (q, J = 7.4 Hz, 1H), 1.84 – 1.66 (m, 5H), 0.99 

(t, J = 7.3 Hz, 3H); IR (thin film): 2958, 1656, 1440, 1149, 882, 750 cm-1. HRMS (CI) 

calcd for C13H17NOS: 235.1031, found 235.1035. 

 

 
4.64: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method A), cis-1,10-diphenyl-5-decene (0.4 mmol) was converted to 

the desired product. The hetero-ene reaction was stirred for 16 h. The product was 

purified according to the general procedure to afford 4.64 (80% yield, 4:1 dr) as a viscous 

colorless oil. The enantiomeric ratio of the product was determined to be 92.5:7.5 after 

conversion to thiocarbamate S20 (see experimental procedure for S20): 

[a]23
D = -101.7° (c = 0.59, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 8.01 – 7.87 (m, 4H), 

7.66 – 7.44 (m, 6H), 7.35 – 7.10 (m, 20H), 5.89 – 5.73 (m, 2H), 5.29 (ddd, J = 30.5, 15.6, 

9.0 Hz, 2H), 3.41 (dt, J = 8.9, 4.9 Hz, 1H), 3.11 (dt, J = 9.6, 5.3 Hz, 1H), 2.59 (q, J = 7.3 

Hz, 8H), 2.22 – 2.00 (m, 4H), 2.00 – 1.83 (m, 1H), 1.84 – 1.28 (m, 15H); 13C NMR (101 

MHz, CDCl3) δ 142.1, 142.0, 142.1, 141.9, 141.9, 141.2, 140.4, 140.4, 133.8, 133.7, 

129.5, 129.5, 129.0, 128.7, 128.6, 128.5, 128.5, 128.5, 127.3, 127.2, 126.3, 126.2, 126.1, 
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126.0, 126.0, 125.9, 120.7, 120.0, 69.0, 68.8, 35.6, 35.5, 35.5, 35.5, 32.5, 32.4, 31.1, 31.0, 

30.9, 30.7, 29.1, 27.7, 26.4, 26.3; IR (thin film): 2931, 1448, 1375, 1152, 1072, 700 cm-1. 

HRMS (ESI) calcd for [C28H33NO3S2]+ ([M+Na]+): 518.1794, found 518.1796. 

 

 
S20: 4.64 (0.1 mmol) was converted to S20 under the previously described conditions for 

the synthesis of carbamothioate S17. Purification by preparative TLC yielded S20 as a 

white solid (16% yield for 2 steps; Rf = 0.48 in 15% EtOAc/Hexanes):  

[a]23
D = +45.7° (c = 0.53, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.9 Hz, 

2H), 7.34 – 7.22 (m, 5H), 7.22 – 7.05 (m, 6H), 6.99 (s, 1H), 5.72 (dt, J = 14.2, 6.8 Hz, 

1H), 5.43 (dd, J = 15.3, 8.8 Hz, 1H), 4.06 (q, J = 7.8 Hz, 1H), 2.61 (q, J = 7.7 Hz, 4H), 

2.07 (q, J = 7.2 Hz, 2H), 1.85 – 1.58 (m, 6H), 1.52 – 1.43 (m, 2H); IR (thin film): 2920, 

1645, 1439, 1308, 1143, 752 cm-1. HRMS (CI) calcd for C29H33NOS: 443.2283, found 

443.2270.  

 

 
 4.65: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method A), cyclooctene (0.4 mmol) was converted to the desired 

product. The hetero-ene reaction was stirred for 15 h. The product was purified according 

to the general procedure to afford 4.65 (76% yield, >20:1 dr) as a white solid. The 

enantiomeric ratio of the product was determined to be 86:14 after conversion to 

thiocarbamate S20 (see experimental procedure for S20):  

[a]23
D = -172.8° (c = 1.6, CH2Cl2). 1H NMR (500 MHz, CDCl3) δ 7.96 (d, J = 7.7 Hz, 

2H), 7.62(t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.8 Hz, 2H), 6.12 (dt, J = 9.6, 7.9 Hz, 1H), 5.68 

(ddd, J = 10.2, 8.9, 1.3 Hz, 1H), 3.77 (ddd, J = 12.5, 8.9, 4.1 Hz, 1H), 2.24 – 2.13 (m, 

1H), 2.15 – 2.03 (m,1H), 2.02 – 1.92 (m, 1H), 1.77 – 1.52 (m, 5H), 1.46 – 1.30 (m, 2H); 
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13C NMR (101 MHz, CDCl3) δ 140.4, 137.9, 133.8, 129.5, 127.3, 119.1, 62.7, 30.0, 29.0, 

27.0, 26.3, 25.2; IR (thin film): 2930, 1448, 1374, 1152, 1073, 840 cm-1. HRMS (CI) 

calcd for [C14H20NO3S2]+ ([M+H]+): 314.0885, found 314.0885. 

 

 
S20: 4.65 (0.2 mmol) was converted to S20 under the previously described conditions for 

the synthesis of carbamothioate S17. Purification by preparative TLC yielded S20 as a 

white solid (33% yield for 2 steps; Rf = 0.36 in 10% EtOAc/Hexanes):  

[a]23
D = -80.0° (c = 0.22, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.2 Hz, 

2H), 7.30 (t, J = 7.9 Hz, 2H), 7.09 (t, J = 7.4 Hz, 1H), 7.02 (s, 1H), 5.77 (q, J = 8.8 Hz, 

1H), 5.49 (t, J = 10.3 Hz, 1H), 4.56 – 4.45 (m, 1H), 2.40 (q, J = 12.0, 11.4 Hz, 1H), 2.22 

– 2.09 (m, 1H), 2.04 – 1.91 (m, 1H), 1.80 – 1.62 (m, 4H), 1.56 – 1.42 (m, 2H), 1.40 – 

1.28 (m, 1H); IR (thin film): 2926, 1599, 1441, 1152, 883, 750 cm-1. HRMS (CI) calcd 

for C15H19NOS: 261.1187, found 261.1192.  

 

 
4.68: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method B), cis-1,10-dichlorodec-5-ene (0.4 mmol, 40 mol% SbCl5) 

was converted to the desired product. The hetero-ene reaction was stirred for 18.5 h. The 

product was purified according to the general procedure to afford 4.68 (72% yield, 4:1 dr) 

as a white solid. The enantiomeric ratio of the product was determined to be 93.5:6.5 

after conversion to thiocarbamate S21 (see experimental procedure for S21): 

[a]23
D = -20.4° (c = 2.11, CH2Cl2). 1H NMR (500 MHz, CDCl3) δ 8.00 – 7.88 (m, 2H), 

7.69 – 7.48 (m, 3H), 5.89 – 5.71 (m, 1H), 5.39 (dd, J = 15.4, 9.6 Hz, 0.8H), 5.28 (dd, J = 

15.5, 8.8 Hz, 0.2H), 3.64 – 3.39 (m, 4.2H), 3.22 (dt, J = 9.7, 5.0 Hz, 0.8H), 2.30 (q, J = 

7.1 Hz, 1.6H), 2.21 (q, J = 7.4 Hz, 0.4H), 1.95 – 1.41 (m, 8H); 13C NMR (101 MHz, 

CDCl3) δ 140.2, 140.2, 139.6, 139.6, 133.8, 133.7, 129.4, 129.4, 127.2, 127.1, 121.3, 
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121.0, 68.7, 68.5, 44.5, 44.4, 44.2, 44.2, 32.0, 31.9, 31.1, 30.7, 29.8, 29.7, 28.0, 27.3, 

24.1, 24.0; IR (thin film): 2956, 1448, 1373, 1072, 855, 688 cm-1. HRMS (CI) calcd for 

[C16H24NO3S2Cl2]+ ([M+H]+): 412.0575, found 412.0571. 

 

 
S21: 4.68 (0.1 mmol) was converted to S21 under the previously described conditions for 

the synthesis of carbamothioate S17. Purification by preparative TLC yielded S21 as a 

white solid (15% yield for 2 steps; Rf = 0.38 in 20% EtOAc/Hexanes):  

[a]23
D = +75.6° (c = 0.59, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.43 – 7.36 (m, 2H), 

7.36 – 7.27 (m, 1H), 7.11 (t, J = 7.3 Hz, 1H), 7.00 (s, 1H), 5.74 – 5.62 (m, 1H), 5.49 (dd, 

J = 15.2, 8.7 Hz, 1H), 4.05 (q, J = 8.2 Hz, 1H), 3.53 (dt, J = 8.2, 6.5 Hz, 4H), 2.20 (q, J = 

7.1, 6.5 Hz, 2H), 1.93 – 1.66 (m, 6H), 1.56 (q, J = 7.3 Hz, 2H); IR (thin film): 2919, 

1652, 1438, 1308, 1144, 751 cm-1. HRMS (CI) calcd for [C17H24NOSCl2]+ ([M+H]+): 

360.0956, found 360.0944. 

 

 
4.69: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method A), cis-1,10-dibromodec-5-ene (0.4 mmol) was converted to 

the desired product. The hetero-ene reaction was stirred for 16.5 h. The product was 

purified according to the general procedure to afford 4.69 (49% yield, 12:1 dr) as a white 

solid. The enantiomeric ratio of the product was determined to be 93.5:6.5 after 

conversion to thiocarbamate S22 (see experimental procedure for S22): 

[a]23
D = -70.7° (c = 1.8, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 8.00 – 7.90 (m, 2H), 7.64 

(t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.6 Hz, 2H), 5.82 (dt, J = 15.5, 6.8 Hz, 1H), 5.43 (ddt, J = 

15.6, 9.7, 1.5 Hz, 0.92H), 5.32 (dd, J = 15.5, 8.6 Hz, 0.08H), 3.40 (qd, J = 6.6, 2.1 Hz, 

4.07H), 3.20 (td, J = 9.6, 5.1 Hz, 0.93H), 2.38 – 2.20 (m, 2H), 2.02 – 1.81 (m, 5H), 1.76 – 
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1.47 (m, 3H); 13C NMR (101 MHz, CDCl3) δ 140.3, 140.1, 133.9, 129.5, 127.3, 121.6, 

68.6, 33.2, 33.2, 32.2, 31.2, 31.1, 28.1, 25.4; IR (thin film): 2937, 1448, 1371, 1168, 

1073, 849 cm-1. HRMS (ESI) calcd for [C16H23Br2NO3S2]+ ([M+Na]+): 521.9378, found 

521.9375. 

 

 
S22: 4.69 (0.1 mmol) was converted to S22 under the previously described conditions for 

the synthesis of carbamothioate S17. Purification by preparative TLC yielded S22 as a 

white solid (16% yield for 2 steps; Rf = 0.36 in 20% EtOAc/Hexanes):  

[a]23
D = +40.0° (c = 0.19, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 7.4 Hz, 

2H), 7.32 (t, J = 7.9 Hz, 2H), 7.11 (t, J = 7.3 Hz, 1H), 6.97 (s, 1H), 5.67 (dt, J = 14.0, 6.8 

Hz, 1H), 5.50 (dd, J = 15.2, 8.7 Hz, 1H), 4.05 (q, J = 8.1 Hz, 1H), 3.40 (dt, J = 8.5, 6.6 

Hz, 4H), 2.21 (q, J = 6.7 Hz, 2H), 1.99 – 1.83 (m, 4H), 1.82 – 1.66 (m, 2H), 1.57 (q, J = 

7.4 Hz, 2H); IR (thin film): 2920, 1652, 1438, 1308, 1142, 751 cm-1. HRMS (CI) calcd 

for [C17H24NOSBr2]+ ([M+H]+): 447.9945, found 447.9926. 

 

 

4.70: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method B), cis-1,10-diiododec-5-ene (0.4 mmol, 40 mol% SbCl5) 

was converted to the desired product. The hetero-ene reaction was stirred for 16 h. The 

product was purified according to the general procedure to afford 4.70 (84% yield, 9:1 dr) 

as a white solid. The enantiomeric ratio of the product was determined to be 93.5:6.5 

after conversion to thiocarbamate S17 (see experimental procedure for S17): 

[a]23
D = -53.6° (c = 5.29, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.99 – 7.87 (m, 2H), 

7.64 (t, J = 7.4 Hz, 1H), 7.61 – 7.49 (m, 2H), 5.79 (dt, J = 15.5, 6.8 Hz, 1H), 5.69 (dt, J = 
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14.6, 7.0 Hz, 0.1H), 5.43 (dd, J = 15.5, 9.6 Hz, 0.9H), 5.32 (dd, J = 15.4, 8.5 Hz, 0.1H), 

3.39 (td, J = 9.2, 5.0 Hz, 0.1H), 3.25 – 3.10 (m, 4.9H), 2.35 – 2.14 (m, 2H), 1.96 – 1.77 

(m, 5H), 1.75 – 1.60 (m, 1H), 1.60 – 1.42 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 140.2, 

139.9, 139.5, 139.5, 133.9, 133.8, 129.5, 129.5, 127.2, 127.2, 121.6, 121.2, 68.8, 68.6, 

33.4, 33.3, 32.9, 32.7, 31.8, 31.2, 27.7, 27.6, 27.4, 27.1, 7.5, 6.4, 6.4, 6.3; IR (thin film): 

2933, 1448, 1372, 1152, 1073, 854 cm-1. LRMS (CI) calcd for [C16H24I2NO3S2]+ 

([M+H]+): 594.92, found 595.85. 

 

 

4.70 (0.15 mmol) was converted to S17 under the previously described conditions for the 

synthesis of carbamothioate S17. Purification by preparative TLC yielded S17 as a white 

solid (19% yield for 2 steps): [a]23
D = +74.2° (c = 0.655, CH2Cl2).  

 

 

4.71: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method B), cis-1,1,1,12,12,12-hexafluorododec-6-ene (0.34 mmol, 

40 mol% SbCl5) was converted to the desired product. The hetero-ene reaction was 

stirred for 14 h. The product was purified according to the general procedure to afford 

4.71 (76% yield, 1:1 dr) as a pale yellow solid. The enantiomeric ratio of the product was 

determined to be 93.5:6.5 after conversion to thiocarbamate S23 (see experimental 

procedure for S23): 

[a]23
D = -34.0° (c = 2.07, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.97 – 7.86 (m, 2H), 

7.68 – 7.58 (m, 1H), 7.58 – 7.49 (m, 2H), 5.78 (ddt, J = 22.1, 15.3, 6.7 Hz, 1H), 5.34 (dd, 

J = 15.5, 9.6 Hz, 0.5H), 5.23 (dd, J = 15.5, 8.8 Hz, 0.5H), 3.47 (dt, J = 9.5, 4.7 Hz, 0.5H), 

SN
H MeMe

O
PhS

H
NPhO2S

II

O 1. LiAlH4, Et2O

2. Pyridine, 
    PhN=C=O

S
H
N O

PhO2S

CF3
F3C



 290 

3.22 (dt, J = 9.7, 4.9 Hz, 0.5H), 2.28 – 1.95 (m, 6H), 1.94 – 1.76 (m, 1H), 1.71 – 1.34 (m, 

7H); 13C NMR (101 MHz, CDCl3) δ 140.5, 140.4, 140.3, 139.8, 133.8, 133.6, 129.5, 

129.4, 127.2, 127.2 (q, J = 275 Hz), 127.1 (q J = 275 Hz, 2C), 127.1 (q, J = 275 Hz), 

127.1, 121.9, 121.4, 68.7, 68.5, 33.4 (q, J = 28.5 Hz, 2C), 33.1 (q, J = 28.4 Hz), 33.1 (q, J 

= 28.4 Hz), 31.6, 31.6, 28.0, 27.9, 25.9, 25.9, 21.8 (dq, J = 8.2, 3.1 Hz; 2C), 21.3 (q, J = 

2.9 Hz), 21.2 (q, J = 2.9 Hz); IR (thin film): 2950, 1449, 1256, 1134, 1031, 838 cm-1. 

HRMS (CI) calcd for [C18H24NO3F6S2]+ ([M+H]+): 480.1102, found 480.1097. 

 

 

S23: 4.71 (0.15 mmol) was converted to S23 under the previously described conditions 

for the synthesis of carbamothioate S17. Purification by preparative TLC yielded S23 as a 

white solid (14% yield for 2 steps; Rf = 0.63 in 20% EtOAc/Hexanes):  

[a]23
D = +67.4° (c = 0.78, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.43 – 7.27 (m, 4H), 

7.11 (t, J = 7.2 Hz, 1H), 7.00 (s, 1H), 5.67 (dt, J = 15.1, 6.8 Hz, 1H), 5.46 (dd, J = 15.1, 

8.8 Hz, 1H), 4.04 (q, J = 8.2 Hz, 1H), 2.18 – 1.98 (m, 6H), 1.83 – 1.42 (m, 8H); IR (thin 

film): 2945, 1655, 1599, 1254, 1029, 752 cm-1. HRMS (ESI) calcd for [C19H23F6NOS]+ 

([M+Na]+): 450.1297, found 450.1305.     

 

 

4.72: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method B), cis-1,10-bis(2,2,2-trifluoroacetate)-5-decene (0.4 mmol, 

40 mol% SbCl5) was converted to the desired product 4.72. The hetero-ene reaction was 

stirred for 14.5 h. The product was not stable to the purification procedure for method A, 
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so the crude product mixture was taken directly on to S24 for analysis (75% yield by 
1HNMR analysis with 1,4-DMB as internal standard). 

S24: Crude 4.72 was diluted in CH2Cl2 (2 mL, 0.2 M). Dimethylsulfate (2 mmol, 5 equiv) 

and trimethylamine (1.2 mmol, 3 equiv) were added sequentially and the reaction mixture 

was stirred at room temperature overnight. Upon completion, the reaction was 

concentrated under reduced pressure and purified by preparative TLC (Rf = 0.46 in 45% 

EtOAc/Hexanes) to yield S24 as a mixture of diastereomers. The enantiomeric ratio of 

the product was averaged to be 93.5:6.5 by comparison to a sample of the racemate.   

1H NMR (500 MHz, CDCl3) 7.91 (tdd, J = 7.1, 3.1, 1.6 Hz, 6H), 7.70 – 7.64 (m, 2H), 

7.59 (dddd, J = 13.5, 11.7, 8.9, 7.2 Hz, 7H), 5.92 – 5.77 (m, 2H), 5.50 – 5.41 (m, 1H), 

5.41 – 5.32 (m, 1H), 4.67 – 4.18 (m, 7H), 3.78 – 3.57 (m, 2H), 3.37 (dt, J = 7.0, 4.8 Hz, 

2H), 2.83 – 2.77 (m, 6H), 2.70 (d, J = 5.3 Hz, 2H), 2.35 – 2.23 (m, 5H), 2.05 – 1.88 (m, 

6H), 1.83 (ddt, J = 16.2, 8.1, 6.3 Hz, 3H), 1.73 (dddd, J = 15.0, 8.8, 6.2, 3.6 Hz, 3H), 1.68 

– 1.54 (m, 6H), 1.54 – 1.42 (m, 2H). HRMS (ESI-TOF) calcd for [C21H25F6NO7S2]: 

582.1049 , found 582.1048.  

 

 

4.73: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method B), cis-1,10-bis(1-tosyl-1H-indol-3-yl)-5-decene (0.2 mmol, 

40 mol% SbCl5) was converted to the desired product. The hetero-ene reaction was 

stirred for 19 h to afford 4.73 as a crude mixture (61% yield by 1HNMR analysis with 

1,4-DMB as internal standard, 1:1 dr). The enantiomeric ratio of the product was 

determined to be 90:10 after conversion to amine S25 (see experimental procedure for 

S25): 
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1H NMR (400 MHz, CDCl3) δ 8.18 (dd, J = 8.2, 3.3 Hz, 2H), 7.97 – 7.86 (m, 2H), 7.62 – 

7.07 (m, 19H), 5.91 (ddt, J = 16.6, 10.0, 6.7 Hz, 1H), 5.43 (dt, J = 15.8, 9.0 Hz, 1H), 3.50 

(td, J = 8.6, 4.6 Hz, 0.5H), 3.28 – 2.95 (m, 4.5H), 2.35 – 2.14 (m, 7H), 2.06 – 1.41 (m, 

9H); 13C NMR (101 MHz, CDCl3) δ 150.0, 145.2, 145.2, 141.1, 140.4, 140.4, 139.6, 

138.4, 138.2, 138.2, 138.2, 136.0, 136.0, 135.6, 135.5, 135.4, 135.3, 133.6, 133.5, 133.4, 

132.4, 131.8, 131.5, 130.1, 129.9, 129.9, 129.5, 129.5, 129.4, 129.4, 129.3, 129.2, 129.0, 

128.7, 127.8, 127.3, 127.3, 127.2, 126.4, 126.4, 126.4, 126.4, 125.5, 125.5, 125.5, 125.4, 

125.3, 124.7, 124.4, 124.4, 124.3, 124.1, 123.4, 121.0, 120.3, 120.3, 119.5, 119.4, 119.4, 

115.3, 115.2, 115.2, 114.9, 113.6, 111.9, 109.1, 102.5, 102.4, 102.3, 102.2, 68.7, 68.7, 

32.4, 32.3, 31.7, 29.8, 29.2, 29.1, 28.9, 27.2, 27.2, 27.2, 27.1, 26.3, 26.3, 21.7, 14.3; 

HRMS (ESI-TOF) calcd for [C46H46N3O7S4]– ([M-H]–): 880.2224 , found 880.9169.  

 

 

S25: 4.73 (0.06 mmol) was converted to S25 under the allylic amination conditions 

reported for 4.82. Purification by flash chromatography (gradient from 100% hexanes to 

50% hexanes/ethyl acetate) afforded the product (52% yield) as a pale yellow solid:  

[a]23
D = +8.0° (c = 0.95, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 8.18 (d, J = 7.7 Hz, 2H), 

7.80 (ddd, J = 5.4, 2.9, 1.5 Hz, 2H), 7.58 (dd, J = 8.4, 1.6 Hz, 4H), 7.44 – 7.25 (m, 11H), 

7.17 (dd, J = 8.2, 3.3 Hz, 4H), 5.33 (dt, J = 15.5, 6.5 Hz, 1H), 5.05 (dd, J = 15.6, 7.3 Hz, 

1H), 4.46 (d, J = 8.0 Hz, 1H), 3.78 (p, J = 7.1 Hz, 1H), 3.03 (dq, J = 7.9, 4.1 Hz, 4H), 

2.33 (s, 6H), 1.84 (q, J = 7.7 Hz, 2H), 1.71 – 1.50 (m, 8H); 13C NMR (101 MHz, CDCl3) 

δ 145.3, 145.2, 141.2, 138.8, 138.1, 136.1, 136.0, 135.6, 135.6, 132.9, 132.4, 130.1, 

130.0, 129.3, 129.3, 129.2, 128.9, 127.3, 126.4, 126.4, 125.5, 125.4, 124.4, 124.3, 119.5, 

119.4, 115.2, 115.2, 102.3, 102.2, 56.1, 35.5, 31.6, 29.8, 29.3, 28.3, 27.4, 27.1, 25.8, 
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21.7; IR (thin film): 2926, 1448, 1372, 1175, 1091, 754 cm-1. HRMS (ESI-TOF) calcd for 

[C46H48N3O6S3]+ ([M+H]+): 834.2700, found 834.0742.  

 

 

4.74: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method A), cis-(7-methyl-5-octenyl)benzene (0.4 mmol) was 

converted to the desired product. The hetero-ene reaction was stirred for 16 h. The 

product was purified according to the general procedure to afford 4.74 (68% yield, >20:1 

rr, 1.5:1 dr) as a viscous colorless oil. The enantiomeric ratio of the product was 

determined to be 96:4 after conversion to S26 (see experimental procedure for S26): 

[a]23
D = -5.4° (c = 0.56, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.98 – 7.85 (m, 2H), 7.67 

– 7.41 (m, 3H), 7.29 (t, J = 7.4 Hz, 2H), 7.24 – 7.12 (m, 3H), 5.80 (ddt, J = 30.4, 15.4, 

6.8 Hz, 1H), 5.46 (dd, J = 15.6, 10.2 Hz, 0.4H), 5.14 (dd, J = 15.3, 9.9 Hz, 0.6H), 3.31 

(dd, J = 9.9, 5.9 Hz, 0.6H), 2.82 – 2.76 (t, J = 9.7 Hz, 0.4H), 2.69 – 2.51 (m, 2H), 2.30 – 

2.06 (m, 2H), 2.03 – 1.92 (m, 1H), 1.75 (p, J = 7.6 Hz, 1H), 1.69 – 1.56 (m, 1H), 1.18 (d, 

J = 6.6 Hz, 1H), 0.99 (td, J = 6.9, 4.2 Hz, 5H); 13C NMR (101 MHz, CDCl3) δ 142.5, 

142.3, 142.1, 141.8, 140.4, 140.4, 133.8, 133.6, 129.5, 129.4, 128.6, 128.5, 128.5, 128.4, 

127.2, 127.2, 126.0, 125.9, 119.7, 117.9, 76.7, 76.3, 35.5, 35.4, 32.5, 32.4, 31.1, 30.7, 

28.8, 27.7, 20.8, 20.6, 20.4, 18.4; IR (thin film): 2930, 1449, 1371, 1169, 1090, 865 cm-1. 

HRMS (CI) calcd for [C21H28NO3S2]+ ([M+H]+): 406.1511, found 406.1503. 
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S26: 4.74 (0.07 mmol) was converted to S26 under the previously described conditions 

for the synthesis of carbamothioate S17. Purification by preparative TLC yielded S26 as a 

white solid (6% yield for 2 steps; Rf = 0.78 in 20% EtOAc/Hexanes):  

[a]23
D = +57.5° (c = 0.08, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.43 – 7.35 (m, 2H), 

7.38 – 7.24 (m, 3H), 7.28 – 7.20 (m, 1H), 7.16 (td, J = 7.8, 1.3 Hz, 3H), 7.14 – 7.04 (m, 

1H), 5.73 (dt, J = 14.7, 6.7 Hz, 1H), 5.47 (ddt, J = 15.2, 9.3, 1.4 Hz, 1H), 4.01 (dd, J = 

9.3, 5.5 Hz, 1H), 2.64 – 2.55 (m, 2H), 2.08 (q, J = 8.2, 7.6 Hz, 2H), 1.99 (dq, J = 13.3, 

6.7 Hz, 1H), 1.70 (p, J = 7.5 Hz, 2H), 1.00 (dd, J = 6.7, 1.2 Hz, 6H); IR (thin film): 2926, 

1598, 1437, 1308, 1144, 750 cm-1. HRMS (CI) calcd for C22H27NOS: 353.1813, found 

353.1802.  

 

 

4.75: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method C), cis-2-octene (0.4 mmol) was converted to the desired 

product. The hetero-ene reaction was stirred for 16 h. The product was purified according 

to the general procedure to afford 4.75 (54% yield, >20:1 rr, 12:1 dr) as a viscous 

colorless oil. The enantiomeric ratio of the product was determined to be 90:10 after 

conversion to thiocarbamate S27 (see experimental procedure for S27): 

[a]23
D = -68.3° (c = 0.80, CH2Cl2). 1H NMR (500 MHz, CDCl3) δ 7.98 – 7.90 (m, 2H), 

7.67 – 7.59 (m, 1H), 7.58 – 7.51 (m, 2H), 5.88 – 5.76 (m, 1H), 5.48 – 5.30 (m, 1H), 3.61 

(p, J = 7.1 Hz, 0.08H), 3.33 (dp, J = 7.1, 3.4 Hz, 2H), 2.14 – 2.03 (m, 2H), 1.43 (dd, J = 

7.0, 2.3 Hz, 3H), 1.40 – 1.25 (m, 5H), 0.88 (dt, J = 7.2, 2.5 Hz, 3H); 13C NMR (101 MHz, 

CDCl3) δ 141.1, 140.4, 133.8, 129.5, 127.3, 121.5, 63.6, 32.5, 31.2, 22.3, 14.4, 14.0; IR 
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(thin film): 2930, 1448, 1376, 1169, 1073, 854 cm-1. HRMS (CI) calcd for 

[C14H22NO3S2]+ ([M+H]+): 316.1041, found 316.1044.    

 

 

S27: 4.75 (0.13 mmol) was converted to S27 under the previously described conditions 

for the synthesis of carbamothioate S17. Purification by preparative TLC yielded S27 as a 

white solid (26% yield for 2 steps; Rf = 0.5 in 15% EtOAc/Hexanes):  

[a]23
D = +83.2° (c = 0.375, CH2Cl2). 1H NMR (500 MHz, CDCl3) δ 7.40 (d, J = 8.0 Hz, 

2H), 7.31 (t, J = 7.7 Hz, 2H), 7.10 (t, J = 7.4 Hz, 1H), 6.99 (s, 1H), 5.69 (dt, J = 14.0, 6.6 

Hz, 1H), 5.53 (dd, J = 15.3, 7.4 Hz, 1H), 4.19 (p, J = 6.9 Hz, 1H), 2.02 (q, J = 7.0 Hz, 

2H), 1.47 (d, J = 7.0 Hz, 3H), 1.36 – 1.27 (m, 4H), 0.88 (t, J = 7.0 Hz, 3H); IR (thin 

film): 2926, 1655, 1440, 1309, 1149, 751 cm-1. HRMS (CI) calcd for [C15H21NOS]: 

263.1344, found 263.1339.  

 

 

4.76: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method C), cis-2-heptene (0.4 mmol) was converted to the desired 

product. The hetero-ene reaction was stirred for 16 h. The product was purified according 

to the general procedure to afford 4.76 (61% yield, >20:1 rr, 11:1 dr) as a viscous 

colorless oil. The enantiomeric ratio of the product was determined to be 89.5:10.5 after 

conversion to thiocarbamate S28 (see experimental procedure for S28): 

[a]23
D = -69.6° (c = 0.75, CH2Cl2). 1H NMR (500 MHz, CDCl3) δ 7.99 – 7.89 (m, 2H), 

7.62 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 8.0 Hz, 2H), 5.87 – 5.74 (m, 1H), 5.45 – 5.30 (m, 

1H), 3.62 (p, J = 6.9 Hz, 0.08H), 3.35 (dq, J = 9.4, 7.1 Hz, 0.92H), 2.12 – 1.98 (m, 2H), 
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1.47 – 1.36 (m, 5H), 0.91 – 0.84 (m, 3H); 13C NMR (101 MHz, CDCl3) δ 140.9, 140.4, 

133.8, 129.5, 127.3, 121.7, 63.6, 34.8, 22.2, 14.4, 13.7; IR (thin film): 2960, 1448, 1373, 

1168, 1073, 852 cm-1. HRMS (CI) calcd for [C13H20NO3S2]+ ([M+H]+): 302.0885, found 

302.0876. 

 

 

S28: 4.76 (0.17 mmol) was converted to S28 under the previously described conditions 

for the synthesis of carbamothioate S17. Purification by preparative TLC yielded S28 as a 

white solid (7% yield for 2 steps; Rf = 0.30 in 15% EtOAc/Hexanes):  

[a]23
D = +57.6° (c = 0.30, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.40 (dd, J = 8.6, 1.3 

Hz, 2H), 7.31 (t, J = 7.9 Hz, 2H), 7.10 (t, J = 7.3 Hz, 0H), 6.96 (s, 1H), 5.69 (dt, J = 15.4, 

6.8 Hz, 1H), 5.54 (ddt, J = 15.3, 7.3, 1.3 Hz, 1H), 4.20 (p, J = 6.9 Hz, 1H), 2.00 (q, J = 

7.4 Hz, 2H), 1.47 (d, J = 7.0 Hz, 3H), 1.39 (h, J = 7.3 Hz, 2H), 0.88 (t, J = 7.4 Hz, 4H); 

IR (thin film): 2920, 1652, 1599, 1440, 1142, 750 cm-1. HRMS (ESI-TOF) calcd for 

[C14H19NOS]– ([M-H]–): 248.1115, found 248.0656.  

 

 

4.77: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method C), cis-2-hexene (0.4 mmol) was converted to the desired 

product. The hetero-ene reaction was stirred for 16.5 h. The product was purified 

according to the general procedure to afford 4.77 (63% yield, >20:1 rr, 7:1 dr) as a 

viscous colorless oil. The enantiomeric ratio of the product was determined to be 

88.5:11.5 after conversion to thiocarbamate S29 (see experimental procedure for S29): 

Me

SN
H

O
Ph

Me

Me

S
H
N O

PhO2S
Me



 297 

[a]23
D = -78.0° (c = 1.02, CH2Cl2). 1H NMR (500 MHz, CDCl3) δ 8.02 – 7.93 (m, 2H), 

7.66 (t, J = 7.4 Hz, 1H), 7.57 (t, J = 7.8 Hz, 2H), 5.91 (dt, J = 15.5, 6.3 Hz, 1H), 5.49 – 

5.33 (m, 1H), 3.64 (p, J = 7.0 Hz, 0.12H), 3.37 (dq, J = 9.2, 7.1 Hz, 0.88H), 2.20 – 2.08 

(m, 2H), 1.46 (d, J = 7.0 Hz, 2.64H), 1.35 (d, J = 7.0 Hz, 0.36H), 1.09 – 0.97 (m, 3H); 13C 

NMR (101 MHz, CDCl3) δ 42.6, 140.4, 133.8, 129.5, 127.3, 120.5, 63.6, 25.9, 14.5, 13.5; 

IR (thin film): 2967, 1449, 1372, 1168, 1073, 857 cm-1. HRMS (CI) calcd for 

[C12H18NO3S2]+ ([M+H]+): 288.0728, found 288.0730. 

 

 

S29: 4.77 (0.24 mmol) was converted to S29 under the previously described conditions 

for the synthesis of carbamothioate S17. Purification by preparative TLC yielded S29 as a 

white solid (5% yield for 2 steps; Rf = 0.39 in 15% EtOAc/Hexanes):  

[a]23
D = +51.3° (c = 0.16, CH2Cl2). 1H NMR (500 MHz, CDCl3) δ 7.40 (dd, J = 8.5, 1.2 

Hz, 2H), 7.31 (dd, J = 8.6, 7.3 Hz, 2H), 7.10 (tt, J = 7.3, 1.2 Hz, 1H), 7.02 (s, 1H), 5.74 

(dtd, J = 15.4, 6.3, 1.2 Hz, 1H), 5.54 (ddt, J = 15.3, 7.3, 1.6 Hz, 1H), 4.20 (p, J = 7.0 Hz, 

1H), 2.10 – 2.00 (m, 2H), 1.47 (d, J = 7.0 Hz, 3H), 0.98 (t, J = 7.5 Hz, 3H); IR (thin 

film): 2925, 1599, 1442, 1311, 1238, 751 cm-1. HRMS (CI) calcd for [C13H17NOS]: 

235.1031, found 235.1032. 

 

 

4.78: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method A), cis-4-methyl-2-pentene (0.4 mmol) was converted to the 

desired product. The hetero-ene reaction was stirred for 15 h. The product was purified 

according to the general procedure to afford 4.78 (21% yield, >20:1 rr, 9:1 dr) as a 
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viscous colorless oil. The enantiomeric ratio of the product was determined to be 

87.5:12.5 after conversion to S30 (see experimental procedure for S30): 

[a]23
D = -70.7° (c = 0.22, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 8.00 – 7.86 (m, 2H), 

7.67 – 7.47 (m, 3H), 5.80 (dt, J = 17.1, 10.2 Hz, 0.9H), 5.65 (dd, J = 10.2, 1.7 Hz, 0.9H), 

5.61 – 5.46 (m, 0.1H), 5.43 – 5.25 (m, 1.1H), 3.26 (dt, J = 9.5, 6.2 Hz, 0.1H), 2.80 (t, J = 

9.7 Hz, 0.9H), 2.29 – 2.06 (m, 1H), 1.19 (d, J = 6.6 Hz, 3H), 1.05 – 0.95 (m, 3H); 13C 

NMR (101 MHz, CDCl3) δ 140.3, 133.9, 129.5, 128.2, 127.3, 125.7, 77.0, 28.6, 20.6, 

20.3; IR (thin film): 3251, 1448, 1370, 1161, 1090, 756 cm-1. HRMS (CI) calcd for 

[C12H18NO3S2]+ ([M+H]+): 288.0728, found 288.0734. 

 

 

S30: 4.78 (0.06 mmol) was converted to S30 by dissolving the ene adduct in CH3Cl2 (0.1 

M) and adding NEt3 (1.2 equiv) and dimethylsulfate (2 equiv) sequentially. After stirring 

at 23 ºC for 2 hours, the reaction was concentrated. Purification by preparative TLC 

yielded S30 as a colorless oil (49% yield, 9:1 dr; Rf = 0.2 in 15% EtOAc/Hexanes):  

[a]23
D = -43.9° (c = 0.41, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.97 – 7.83 (m, 2H), 

7.60 (dt, J = 33.7, 7.2 Hz, 3H), 5.97 – 5.83 (m, 0.9H), 5.79 – 5.64 (m, 0.1H), 5.56 – 5.34 

(m, 2H), 3.22 (dd, J = 10.1, 5.9 Hz, 1H), 2.78 (bs, 3H), 2.41 – 2.18 (m, 1H), 1.12 (d, J = 

6.8 Hz, 3H), 1.06 (d, J = 6.7 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 137.6, 133.8, 129.6, 

127.9, 127.7, 124.8, 78.1, 28.4, 26.3, 21.0, 18.9; IR (thin film): 2967, 1447, 1354, 1168, 

1087, 804 cm-1. HRMS (CI) calcd for [C13H20NO3S2]+ ([M+H]+): 302.0885, found 

302.0874. 
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4.79: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method B), cis-1-chloro-3-heptene (0.4 mmol, 40 mol% SbCl5) was 

converted to the desired product. The hetero-ene reaction was stirred for 23 h to afford 

4.79 as a crude mixture (59% 1H NMR yield, >20:1 rr, dr). This product was not stable to 

the purification procedure for method A, so the crude product mixture was taken directly 

on to S31 (see experimental procedure for S31). The enantiomeric ratio of the product 

was determined to be 93:7 after conversion to S31. 

HRMS (CI) calcd for [C13H19NO3S2Cl]+ ([M+H]+): 336.0495, found 336.0493. 

 

 

S31: Crude 4.79 was converted to S31 under the previously described conditions for the 

synthesis of carbamothioate S17. Purification by preparative TLC yielded S31 as a white 

solid (Rf = 0.79 in 20% EtOAc/Hexanes):  

[a]23
D = +40.0° (c = 0.10, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.8 Hz, 

2H), 7.31 (t, J = 7.8 Hz, 2H), 7.11 (t, J = 7.3 Hz, 1H), 7.03 (s, 1H), 5.82 (dt, J = 15.3, 6.3 

Hz, 1H), 5.44 (dd, J = 15.4, 8.8 Hz, 1H), 4.22 (q, J = 7.9 Hz, 1H), 3.60 (qt, J = 10.9, 7.1 

Hz, 2H), 2.31 – 1.98 (m, 4H), 0.99 (t, J = 7.4 Hz, 3H); IR (thin film): 2924, 1600, 1441, 

1309, 1146, 751 cm-1. HRMS (CI) calcd for [C14H19NOSCl]+ ([M+H]+): 284.0876, found 

284.0869. 
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4.80: Following the general procedure for the asymmetric catalytic oxidation of 

unactivated olefins (Method B), cis-7-chloro-3-heptene (0.4 mmol) was converted to the 

desired product. The hetero-ene reaction was stirred for 14 h. The product was purified 

according to the general procedure to afford 4.80 (62% yield, 1.2:1 rr, 1:1 dr) as a viscous 

pale yellow oil. The enantiomeric ratio of the product was determined to be 96:4 after 

conversion to S32 (see experimental procedure for S32): 

1H NMR (400 MHz, CDCl3) δ 8.00 – 7.87 (m, 2H), 7.70 – 7.58 (m, 1H), 7.60 – 7.49 (m, 

2H), 5.96 – 5.70 (m, 1H), 5.59 – 5.45 (m, 0.46H), 5.36 (ddq, J = 15.1, 9.6, 1.7 Hz, 

0.24H), 5.26 (ddq, J = 15.4, 8.3, 1.7 Hz, 0.3H), 3.73 – 3.41 (m, 2.5H), 3.18 (td, J = 9.5, 

5.4 Hz, 0.25H), 3.10 (td, J = 9.5, 5.9 Hz, 0.25H), 2.74 – 2.64 (m, 0.3H), 2.62 – 2.47 (m, 

0.7H), 2.10 – 1.58 (m, 4.65H), 1.05 (dt, J = 7.5, 7.5 Hz, 1.35H); 13C NMR (101 MHz, 

CDCl3) δ 40.5, 140.4, 140.3, 140.2, 137.6, 137.1, 137.0, 135.9, 133.9, 133.8, 133.8, 

133.8, 129.6, 129.5, 129.5, 129.5, 127.4, 127.3, 127.3, 127.3, 124.5, 123.5, 120.9, 120.4, 

70.3, 70.0, 68.3, 68.2, 44.3, 44.1, 44.1, 43.9, 35.8, 35.5, 29.8, 29.7, 26.8, 25.5, 23.1, 21.0, 

18.6, 18.6, 11.5, 11.5; IR (thin film): 2965, 1448, 1372, 1073, 857, 687 cm-1. HRMS (CI) 

calcd for [C13H19NO3S2Cl]+ ([M+H]+): 336.0495, found 336.0504. 

 

 

S32: 4.80 (0.15 mmol) was converted to S32 under the previously described conditions 

for the synthesis of carbamothioate S17. Purification by preparative TLC yielded 

regioisomer S32 as a white solid (25% yield for 2 steps; Rf = 0.57 in 20% 

EtOAc/Hexanes):  
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[a]23
D = +11.6° (c = 0.43, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.3 Hz, 

1H), 7.31 (dd, J = 8.6, 7.2 Hz, 2H), 7.10 (t, J = 7.3 Hz, 1H), 7.00 (s, 1H), 5.70 (dt, J = 

15.2, 6.7 Hz, 1H), 5.57 (ddt, J = 15.4, 8.5, 1.3 Hz, 1H), 4.00 (q, J = 7.6 Hz, 1H), 3.53 (t, J 

= 6.9 Hz, 2H), 2.59 – 2.41 (m, 2H), 1.89 – 1.66 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H); IR (thin 

film): 3293, 1599, 1440, 1309, 1147, 751 cm-1. HRMS (CI) calcd for C14H18NOS: 

283.0798, found 283.0795.  

 

Synthetic Procedures for the Diversification of 4.53 

 

 

4.82: Ene adduct 4.53 (0.15 mmol, 92.5:7.5 er) was dissolved in anhydrous toluene 

(0.2M) within a flame-dried vial set under argon atmosphere. Chlorotitanium(IV) 

triisopropoxide (30 mL, 1 M hexanes, 20 mol%), was added dropwise, and the solution 

heated to 60 ºC. The reaction mixture was stirred at this temperature for 1.5 h or until 

TLC indicated complete disappearance of 4.53, at which time the reaction was cooled to 

room temperature and diluted in MeOH (1.4 mL). Trimethyl phosphite (88 mL, 5 equiv) 

was added in and the solution was stirred for 2 h. The reaction was quenched by addition 

of water (2 mL) and the crude solution was washed with EtOAc (3 x 7 mL). The 

combined organics were dried over Na2SO4, filtered and concentrated. Purification by 

flash chromatography (100% hexanes to 20% EtOAc/Hexanes) afforded 4.82 (71% yield, 

91.5:8.5 er, 98% es) as a colorless oil: 

[a]23
D = -4.2° (c = 0.53, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.84 (d, J = 7.1 Hz, 2H), 

7.54 (t, J = 7.3 Hz, 1H), 7.47 (t, J = 7.3 Hz, 2H), 5.30 (dt, J = 14.6, 6.7 Hz, 1H), 5.02 (dd, 

J = 15.3, 7.5 Hz, 1H), 4.45 (d, J = 7.8 Hz, 1H), 3.73 (p, J = 7.2 Hz, 1H), 1.78 (q, J = 6.6, 

6.0 Hz, 2H), 1.53 – 1.32 (m, 2H), 1.34 – 1.06 (m, 8H), 0.83 (t, J = 6.9 Hz, 6H); 13C NMR 

(101 MHz, CDCl3) δ 141.4, 133.0, 132.4, 129.3, 128.9, 127.3, 56.2, 38.4, 31.8, 31.1, 

Me

HN
SO2Ph

Me
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22.2, 18.8, 14.0, 13.8; IR (thin film): 3273, 2959, 1448, 1325, 1163, 689 cm-1. HRMS 

(CI) calcd for [C16H26NO2S]+ ([M+H]+): 296.1684, found 296.1683. 

 

 

S33: Ene adduct 4.53 (0.093 mmol, 91.5:8.5 er) was dissolved in CH2Cl2. 

Dimethylsulfate (44µl, 5 equiv) and trimethylamine (39 µl, 3 equiv) were added and the 

reaction mixture was stirred at room temperature overnight. Upon completion, CH2Cl2 (1 

mL) was added and the reaction was concentrated to yield a crude viscous oil which was 

purified by column chromatography (gradient  0-20% EtOAc\ hexanes) to afford S33 as a 

clear oil (87% yield). 

1H NMR (500 MHz, CDCl3) (mixture of two diastereomers) δ 7.96 – 7.86 (m, 4H), 7.70 

– 7.60 (m, 2H), 7.60 – 7.48 (m, 4H), 5.82 (ddt, J = 36.2, 15.2, 6.8 Hz, 2H), 5.39 (ddt, J = 

15.3, 9.2, 1.5 Hz, 1H), 5.27 (ddt, J = 15.4, 9.6, 1.5 Hz, 1H), 3.38 – 3.27 (m, 2H), 2.80 (d, 

J = 7.5 Hz, 6H), 2.22 – 1.99 (m, 4H), 2.03 – 1.79 (m, 2H), 1.77 – 1.58 (m, 4H), 1.54 – 

1.27 (m, 16H), 1.06 – 0.79 (m, 15H).  HRMS (ESI-TOF) calcd for [C17H27NO3S2] 

358.1505, found 358.1504. 

 

 

4.83: A flame-dried round-bottom flask was charged with anhydrous THF (0.8 mL) and 

compound S33 (0.0808 mmol) and the flask was cooled to 0 ˚C in an ice bath.  PhMgBr 

(0.24 mmol, 3 equiv) was added dropwise to the flask while maintaining the reaction 

temperature at 0 °C.  After the reaction was stirred for additional 2 hours at 0 °C, 

Me
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H
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trimethyl phosphite (66µl, 5 equiv) and methanol was added and the reaction mixture was 

allowed to warm up to room temperature and stirred overnight. Upon completion, CH2Cl2 

was added and the reaction was concentrated to yield a crude product. The crude product 

was purified by column chromatography (gradient  0-20% EtOAc/ hexanes) to afford 

4.83 as clear oil (10.7 mg, 85% yield). The enantiospecificity of this reaction sequence 

was determined to be 99% after conversion to S34 (see experimental procedure for S34): 

1H NMR (500 MHz, CDCl3) δ 5.65 (dtd, J = 15.3, 6.7, 1.0 Hz, 1H), 5.47 (ddt, J = 15.4, 

7.2, 1.4 Hz, 1H), 4.07 (q, J = 6.7 Hz, 1H), 2.05 (q, J = 6.8 Hz, 2H), 1.93 – 1.79 (m, 1H), 

1.65 – 1.49 (m, 1H), 1.49 – 1.40 (m, 2H), 1.40 – 1.25 (m, 5H), 0.93 (dt, J = 14.3, 7.1 Hz, 

6H). 13C NMR (126 MHz, CDCl3) δ 132.94, 132.24, 73.04, 39.46, 31.89, 31.37, 22.22, 

18.72, 14.02, 13.95. IR (thin film): 3399, 2930, 1714, 1458, 969 cm-1. HRMS (CI) calcd 

for [C10H19O]– ([M-H]–): 155.1436, found 155.1436 

 

 

S34: 4.83 (0.17 mmol) was converted to S34 under the previously described conditions 

for the synthesis of carbamothioate S17. Purification by preparative TLC yielded S34 as a 

white solid (62% yield; Rf = 0.53 in 15% EtOAc/Hexanes; 91:9 er):  

[a]23
D = -17.7° (c = 0.53, CH2Cl2). 1H NMR (500 MHz, CDCl3) δ 7.41 (d, J = 8.0 Hz, 

2H), 7.37 – 7.30 (m, 3H), 6.59 (s, 1H), 5.79 (dt, J = 15.7, 6.8 Hz, 1H), 5.45 (ddt, J = 15.4, 

7.5, 1.5 Hz, 1H), 5.22 (q, J = 7.0 Hz, 1H), 2.31 – 1.96 (m, 2H), 1.78 – 1.53 (m, 2H), 1.49 

– 1.25 (m, 6H), 0.96 (t, J = 7.4 Hz, 3H), 0.91 (t, J = 7.1 Hz, 3H). IR (thin film): 3320, 

2958, 1700, 1539, 1050 cm-1. HR-MS (CI) calcd for [C17H25NO2] ([M]): 275.1885, found 

275.1884.  
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4.85: Ene adduct 4.53 (0.12 mmol, 94:6 er) was diluted in Et2O (0.6 mL, 0.2 M) within a 

flame-dried vial set under argon atmosphere. Sulfuryl chloride (11 mL, 1.1 equiv) was 

added in dropwise at –78 ºC and the solution warmed to –5 ºC. After stirring for 30 

minutes, the reaction was quenched by addition of water (0.2 mL). The layers were 

separated and the aqueous layer was washed with Et2O (3 x 3 mL). The combined 

organic extracts were dried over MgSO4 and concentrated under reduced pressure. The 

resulting residue was suspended in pentane (5 mL) and filtered through a celite plug to 

afford 4.85 (94% crude yield, 3:1 rr by 13C NMR analysis, 95% es). The major 

regioisomer was assigned after conversion of 4.85 to S35 (see experimental procedure 

below). The enantiomeric ratio of the product was determined to be 89:11 after 

conversion to S36 (see experimental procedure for S36): 

1H NMR (400 MHz, CDCl3) δ 5.67 (dtd, J = 16.0, 6.8, 2.7 Hz, 1H), 5.51 (ddt, J = 15.2, 

8.8, 1.5 Hz, 1H), 4.34 (dt, J = 13.5, 6.2 Hz, 1H), 2.09 – 1.96 (m, 2H), 1.87 – 1.68 (m, 

2H), 1.51 – 1.23 (m, 6H), 0.96 – 0.87 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 133.7, 

133.5, 131.4, 131.1, 64.0, 63.7, 41.1, 38.8, 34.1, 31.8, 31.2, 28.9, 22.3, 22.3, 22.2, 20.0, 

14.1, 14.1, 13.8, 13.6.  

 

 

S35: Our procedure was modified from a method reported in the literature for olefin 

reduction104: A flame-dried flask was charged with potassium (E)-diazene-1,2-

dicarboxylate (254 mg, 12 equiv) and CH2Cl2 (2.2 mL, 0.05 M) under argon atmosphere. 

4-chloro-5-decene (4.85) (0.11 mmol) was added to the suspension followed by dropwise 

addition of acetic acid (0.88 mL, 0.5M CH2Cl2, 4 equiv). The mixture was heated to 30 

ºC and stirred vigorously for 13.5 h. The resulting suspension was cooled to room 

Me
Me

Me

Cl
Me

Cl
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temperature, filtered through a short silica gel plug and concentrated. Purification by 

flash chromatography (100% pentane) afforded S35 (71% yield, 2:1 rr by 13C NMR) as a 

colorless oil. 1H NMR and 13C NMR spectra were consistent with authentic samples of 

the corresponding regioisomers prepared by Appel chlorination105: 

 [a]23
D = +1.5° (c = 0.14, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 3.95 – 3.86 (m, 1H), 

1.78 – 1.65 (m, 4H), 1.61 – 1.28 (m, 10H), 0.99 – 0.86 (m, 6H); 13C NMR (101 MHz, 

CDCl3) δ 64.5, 64.2, 40.7, 38.7, 38.6, 38.4, 31.9, 31.5, 29.0, 28.8, 26.6, 26.3, 22.7, 22.7, 

22.4, 19.9, 14.2, 14.2, 14.1, 13.8; IR (thin film): 2932, 2873, 2860, 1466, 1380, 725 cm-1. 

HRMS (ESI-TOF) calcd for [C10H21Cl]+ ([M+Na]+): 199.1224, found 199.9909.  

 

 

S36: Our procedure was modified from a method reported in the literature for the 

synthesis of 1,4-disubstituted 1,2,3-triazoles106: 4-Chlorodecane S35 (0.28 mmol) was 

added to a suspension of sodium azide (28 mg, 1.5 equiv) in DMSO (0.56 mL, 0.5 M) 

and heated to 50 ºC. After stirring for 2 h, the reaction was diluted with water (10 mL) 

and washed with Et2O (3 x 10 mL). Combined organics were dried over MgSO4 and 

concentrated to yield crude 4-azidodecane, which was taken directly on to the next step. 

CuSO4•5H2O (7 mg, 10 mol%) and sodium L-ascorbate (11 mg, 20 mol%) were 

suspended in water/methanol (1:0.5 mL). Phenylacetylene (34 mL, 1.1 equiv) was added 

in followed by crude 4-azidodecane in 0.5 mL methanol and the heterogenous mixture 

was stirred overnight. The crude mixture was diluted with water (2 mL) and extracted 

with CH2Cl2 (3 x 5 mL). The organic extracts were dried over Na2SO4 and concentrated. 

Purification by flash chromatography (0-20% EtOAc/hexanes) afforded S36 as a white 

solid (18% yield for two steps; Rf = 0.30 in 10% EtOAc/Hexanes, 89:11 er): 

[a]23
D = -5.7° (c = 0.07, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.86 (dd, J = 7.2, 2.0 Hz, 

2H), 7.71 (s, 1H), 7.42 (t, J = 7.7 Hz, 2H), 7.32 (t, J = 7.5 Hz, 1H), 4.56 – 4.47 (m, 1H), 

Me

N
Me

N
N
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1.99 – 1.79 (m, 4H), 1.40 – 1.03 (m, 10H), 0.93 – 0.78 (m, 6H); 13C NMR (101 MHz, 

CDCl3) δ 147.6, 131.0, 128.9, 128.1, 125.7, 117.8, 62.5, 35.9, 35.7, 31.5, 28.2, 25.8, 

22.5, 22.4, 14.1, 14.0; IR (thin film): 2929, 1463, 1225, 1076, 765, 695 cm-1. HRMS (CI) 

calcd for [C18H27N3]2+ ([M+2H]2+): 285.2205, found 285.2204. 

 

 

4.86: Our procedure was modified from our method reported in the literature for the 

alkylation of terminal olefin derived ene adducts94: Ene adduct 4.53 (0.2 mmol, 90:10 er) 

was diluted in 1,2-dimethoxyethane (2 mL, 0.1 M) within a flame-dried vial set under 

argon atmosphere. Copper(I) bromide dimethyl sulfide (2.1 mg, 5 mol%) was added at –

78 ºC immediately followed by addition of ethylmagnesium chloride (0.4 mL, 2M THF, 

4 equiv). The solution was warmed to 0 ºC and stirred vigorously for 3 hours. The 

resulting mixture was then poured onto wet pentane/Et2O (20:3 mL) and passed through a 

silica gel plug, which was subsequently washed with pentane. The filtered organics were 

concentrated under reduced pressure. Purification by flash chromatography (100% 

hexanes) afforded 4.86 (73% yield, 3:1 rr, 90:10 er, 100% es) as a colorless oil. The 

major regioisomer was assigned by comparison to an authentic sample of the major 

regioisomer (see below S37): 

[a]23
D = +0.99° (0.61, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 5.38 – 5.26 (m, 1H), 5.08 

(dddd, J = 15.2, 8.8, 3.0, 1.6 Hz, 1H), 1.97 (dq, J = 7.0, 1.4 Hz, 2H), 1.84 – 1.70 (m, 1H), 

1.45 – 1.10 (m, 10H), 0.94 – 0.78 (m, 9H); 13C NMR (101 MHz, CDCl3) δ 135.1, 134.8, 

130.4, 130.2, 44.7, 44.5, 37.7, 35.1, 34.9, 32.5, 32.2, 29.9, 29.7, 29.7, 28.4, 23.0, 23.0, 

22.3, 20.5, 14.4, 14.3, 14.1, 13.8, 11.9; IR (thin film): 2959, 2926, 2859, 1464, 1378, 968 

cm-1.  
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S37: Our procedure was modified from a literature report of a highly E-olefin selective 

Wittig-Schlosser olefination107: n-Butyltriphenylphosphonium bromide (1.0 mmol) was 

diluted in THF (1.75 mL) and Et2O (1 mL) in a flame-dried flask under argon 

atmosphere. Phenyl lithium (0.56 mL, 1.8 M in Bu2O, 1 equiv) was added and the 

solution was stirred for 15 minutes before cooling to – 78 ºC. 2-Ethylhexanal 0.156 mL, 1 

equiv) was added and the reaction held at -78 ºC for 10 minutes before warming to -30 

ºC. After 30 minutes, a second equivalent of phenyl lithium as added followed by Et2O (4 

mL). After gradually warming the reaction to – 10 ºC, the reaction was allowed to warm 

to room temperature with stirring for 30 minutes. Filtration through celite and 

purification by flash chromatography (100% pentane) afforded S37 (43% yield, >>20:1 

E/Z) as a colorless oil. 

1H NMR (400 MHz, CDCl3) δ 5.32 (dt, J = 15.0, 6.7 Hz, 1H), 5.09 (ddt, J = 15.3, 8.8, 1.4 

Hz, 1H), 1.97 (qd, J = 7.4, 1.4 Hz, 2H), 1.84 – 1.70 (m, 1H), 1.45 – 1.11 (m, 10H), 0.92 – 

0.80 (m, 9H); 13C NMR (101 MHz, CDCl3) δ 135.1, 130.2, 44.8, 35.1, 34.9, 29.7, 28.4, 

23.0, 23.0, 14.3, 13.8, 11.9. 

 

Determination of Absolute Stereochemistry of Chiral Allylic Ene Products 

A sample of sulfinimide 4.68 was recrystallized from hexanes and chloroform (slow 

evaporation). The resulting crystals were suitable for X-ray diffraction and the structure 

was solved (Figure 4.2.3). This structure allowed the assignment of absolute 

configuration as shown. The absolute configurations of all other allylic ene products were 

assigned by analogy. We thank Dr. Vincent Lynch (Manager of the X-ray Diffraction 

Lab at UT Austin) for the X-ray structural analysis.  The CIF file is available as a 

separate file in the appendix. 
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Linear Correlation Experiment 

 

 

The (R)- and (S)-enantiomers of diol 4.60 were mixed together to obtain the desired 

enantiomeric ratio which was checked on HPLC by comparison to a sample of the 

racemate (see HPLC traces in appendix). The ene reactions were run following the 

method A of the general procedure. The resulting ene adducts were not isolated but 

directly converted to S17 for HPLC analysis.  

 

Entry Co-Catalyst's ee product's ee 

1 4 4 

2 10 10 

3 22 16 

4 52 48 

5 90 76 

6 98 85 
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APPENDIX SIX 

 

 

Spectra Relevant to Chapter Four: 

The Development of a General, Highly Selective Method for 

the Allylic Functionalization of Unactivated Internal Olefins 
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 S13 in CDCl3 
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 4.61 in CDCl3 
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 4.61 in CDCl3 (Crude 1HNMR, >20:1 dr) 
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S18 in CDCl3 
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4.63 in CDCl3 
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S19 in CDCl3 

 

 

 

 

 

 

 

 

 

 

Me
Me

SN
H

O
Ph

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0
f1 (ppm)

0

50

100

150

200

250

300

350

400
LAB-viii-022Acarb-clean
STANDARD PHOSPHORUS PARAMETERS

3
.2

0

5
.1

1

0
.9

4

0
.9

0

0
.9

3

0
.8

7
0

.9
6

2
.0

2
2

.0
0



 334 

 4.64 in CDCl3 

 

 

S
H
N O

PhO2S

Ph
Ph

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1 (ppm)

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900LAB-viii-103A-final
STANDARD PHOSPHORUS PARAMETERS

1
5

.6
2

1
.0

5

4
.0

0

8
.3

1

0
.8

3

0
.9

0

1
.9

6

2
.0

1

2
1

.1
1

6
.3

4

4
.1

4

0102030405060708090100110120130140150
f1 (ppm)

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

32000

34000

36000

38000

40000CARBON_01
LAB-viii-103A



 335 

S20 in CDCl3 
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4.65 in CDCl3 
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4.68 in CDCl3 

 

 

S
H
N O

PhO2S

Cl
Cl

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1 (ppm)

-200

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

LAB-viii-039A-final

8
.1

7

0
.3

6
1

.4
5

0
.7

1

4
.2

5

0
.1

9
0

.7
2

0
.8

6

3
.5

6

2
.1

6

102030405060708090100110120130140150160
f1 (ppm)

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

LAB-viii-075B-Carbon



 339 

 S21 in CDCl3 

 

 

 

 

 

 

 

 

 

 

SN
H

Cl
Cl

O
Ph

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600LAB-viii-101A-carb
STANDARD PHOSPHORUS PARAMETERS

2
.3

5

6
.2

9

2
.0

0

4
.0

6

0
.9

4

0
.9

4

0
.9

3

0
.9

6
0

.9
6

1
.9

8
1

.9
6



 340 

 4.69 in CDCl3 

 

 

 

 

 

 

 

S
H
N O

PhO2S

Br
Br

0102030405060708090100110120130140150160
f1 (ppm)

0

5

10

15

20

25

30

35

40

45

50

55

60

LAB-viii-77-repurify-carbon
STANDARD PHOSPHORUS PARAMETERS



 341 

 S22 in CDCl3 

 

 

 

 

 

 

 

 

 

 

SN
H

Br
Br

O
Ph

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0
f1 (ppm)

-200

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

LAB-viii-112A-carb
STANDARD PHOSPHORUS PARAMETERS

2
.1

5
2

.3
1

4
.0

9
1

.9
0

4
.0

0

0
.9

9

0
.9

4
0

.9
3

0
.8

9
1

.0
4

2
.3

9
1

.9
6



 342 

 4.70 in CDCl3 
 

 
 

 

S
H
N O

PhO2S

I
I

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1 (ppm)

-20

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

LAB-viii-042B-final

2
.1

9
0

.9
9

5
.3

4

2
.0

7

5
.0

3

0
.1

1

0
.0

9
0

.8
9

0
.1

0
0

.9
0

2
.1

1
1

.0
0

2
.0

4

0102030405060708090100110120130140150160
f1 (ppm)

-4

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

LAB-viii-083B-carbon



 343 

 

 4.71 in CDCl3 

 
 

 

S
H
N O

PhO2S

CF3
F3C

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700LAB-viii-112C-final
STANDARD PHOSPHORUS PARAMETERS

7
.4

7
1

.0
4

6
.4

8

0
.4

8

0
.5

1

0
.5

3
0

.5
2

1
.0

0

2
.4

3
1

.0
3

2
.2

9

0102030405060708090100110120130140150160
f1 (ppm)

-4000

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

32000

34000

36000

38000

40000

42000CARBON_01
LAB-viii-106C



 344 

 S23 in CDCl3 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SN
H

CF3
F3C

O
Ph

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1 (ppm)

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800
LAB-viii-112C-carb
STANDARD PHOSPHORUS PARAMETERS

9
.0

5

5
.5

3

0
.8

5

0
.8

6

0
.8

2

0
.8

4
1

.0
5

4
.0

0



 345 

  S24 in CDCl3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



 346 

 4.73 in CDCl3 
 

 

 

N
Ts

S
H
NO

SO2PhN
Ts

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1 (ppm)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200PROTON_01
LAB-viii-116A

9
.6

4

7
.2

5

3
.9

2
0

.7
1

0
.5

9

1
.1

9

1
.1

5

1
8

.6
1

2
.0

5

1
.9

0

0102030405060708090100110120130140150160170
f1 (ppm)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

CARBON_01
LAB-viii-116A-carbon



 347 

S25 in CDCl3 
 

 

 

N
Ts

HN
SO2PhN

Ts

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1 (ppm)

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

LAB-viii-116a-NRAR
STANDARD PHOSPHORUS PARAMETERS

8
.0

4

2
.0

2

6
.4

7

4
.0

0

0
.9

2

0
.8

8

0
.9

2

0
.9

2

4
.7

3
9

.0
6

4
.1

1
1

.9
1

1
.8

6

102030405060708090100110120130140150160
f1 (ppm)

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

23000

24000

25000

26000

CARBON_01
LAB-viii-116A-NRAR



 348 

 4.74 in CDCl3 
 

 

 

S
H
N O

PhO2S

Me

Me

Ph

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1 (ppm)

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

650

LAB-viii-115-almostpure
STANDARD FLUORINE PARAMETERS

4
.9

2
1

.2
9

1
.2

2
0

.9
0

1
.1

6
1

.9
1

2
.1

1

0
.4

0

0
.5

6

0
.6

7
0

.4
1

1
.0

0

3
.0

4
2

.0
4

3
.3

6

2
.1

9

102030405060708090100110120130140150160
f1 (ppm)

-5

0

5

10

15

20

25

30

35

40

45

50

55

LAB-viii-114B-final-Carbon
STANDARD FLUORINE PARAMETERS



 349 

S26 in CDCl3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S

Me

MePh

O

N
H

Ph

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

LAB-viii-116-carb
STANDARD PHOSPHORUS PARAMETERS

6
.2

2

2
.3

5
1

.1
8

1
.8

1

2
.0

0

0
.8

8

0
.9

1

0
.9

0

0
.8

6
0

.9
7

2
.9

6
1

.2
7

3
.4

4
2

.0
5



 350 

 4.75 in CDCl3 
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  4.77 in CDCl3 
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4.78 in CDCl3 
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S30 in CDCl3 
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  4.79 in CDCl3 (Crude reaction mixture) 
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  S31 in CDCl3 
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  S32 in CDCl3 
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 4.82 in CDCl3 
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  S33 in CDCl3 
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4.85 in CDCl3 
 
 

 
 

 

Me
Me

Me

Cl
Me

Cl
+

(Major) (Minor)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0
f1 (ppm)

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950
LAB-vii-241crude

6
.1

5

6
.5

6

2
.0

1

1
.7

7

0
.7

8

0
.8

1
0

.7
5

0102030405060708090100110120130140
f1 (ppm)

0

5

10

15

20

25

30

35

40

45

50

55

60LAB-viii-123CNMR2
STANDARD FLUORINE PARAMETERS

63.463.563.663.763.863.964.064.164.264.3
f1 (ppm)

0

5

3
.0

4

1
.0

1



 368 

  S35 in CDCl3 
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  S36 in CDCl3 
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  S37 in CDCl3 
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APPENDIX SEVEN 

 

 

HPLC Traces Relevant to Chapter Four: 

The Development of a General, Highly Selective Method for 

the Allylic Functionalization of Unactivated Internal Olefins 
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4.60 
 
CHIRALCEL OD-H 97:03 IPA:Hexane 0.6 ml/min 

 

 
 

  S17 
CHIRALCEL OJ-H 95:05 Hex/IPA, 0.5 mL/min, 220 nm 
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   S18 
 
CHIRALCEL OJ-H 95:5 Hex/IPA, 0.5 mL/min, 220 nm 
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CHIRALCEL OD-H 90:10 Hex/IPA, 0.8 mL/min, 210 nm 
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  S20 
 
CHIRALPAK AD-H 90:10 Hex/IPA, 0.8 mL/min, 254 nm 
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CHIRALCEL OJ-H 95:5 Hex/IPA, 0.8 mL/min, 220 nm 
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   S21 
 
CHIRALCEL OJ-H 90:10 Hex/IPA, 0.8 mL/min, 254 nm 
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CHIRALPAK AD-H 90:10 Hex/IPA, 0.8 mL/min, 254 nm 
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S17 
 
CHIRALCEL OJ-H 95:5 Hex/IPA, 0.8 mL/min, 254 nm 

 

 
 

  S23 
 
CHIRALCEL OJ-H 90:10 Hex/IPA, 0.6 mL/min, 220 nm 
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   S24 
 
CHIRALPAK AS-H 94:06 Hex/IPA, 0.8 mL/min, 220 nm 

 

 
 
 

   S25 
CHIRALPAK AD-H 70:30 Hex/IPA, 0.7 mL/min, 230 nm 
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  S26 
 
CHIRALCEL OD-H 90:10 Hex/IPA, 0.8 mL/min, 210 nm 

 

 
 
 

   S27 
 
CHIRALCEL OJ-H 95:05 Hex/IPA, 0.8 mL/min, 220 nm 
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   S28 
 
CHIRALCEL OJ-H 95:05 Hex/IPA, 0.8 mL/min, 220 nm 
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CHIRALCEL OJ-H 95:05 Hex/IPA, 0.8 mL/min, 254 nm 
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   S30 
 
CHIRALCEL OD-H 90:10 Hex/IPA, 0.8 mL/min, 220 nm 

 

 
 
 

   S31 
 
CHIRALCEL OD-H 90:10 Hex/IPA, 0.8 mL/min, 210 nm 
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   S32 
 
CHIRALCEL OJ-H 90:10 Hex/IPA, 0.8 mL/min, 220 nm 

 

 
 
 
 

   4.82 
 
CHIRALPAK AD-H 97:03 Hexanes/IPA, 0.25 mL/min, 230 nm 
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   S34 
 
CHIRALCEL OD-H 90:10 IPA/Hexane 0.8 ml/min 

 

 
 

   S36 
 
CHIRALCEL OJ-H 100% Hexanes 30 min, gradient to 2% IPA over 20 min, 0.8 
mL/min, 210 nm 
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   4.86  
 
GC Agilent Cyclodex-B (Isothermal, 50 °C; flow rate: 1 mL/min)  

 

 
 
HPLC Traces for Non-Linear Effect Study 
 

4.60 (R/S mixtures) 
 
CHIRALCEL OD-H 97:03 IPA:Hexane 0.6 ml/min 

 

 

Me

Et
Me

OH

OH

CF3

CF3

CF3

CF3



 385 

 

 

 
 

  S17 
 
CHIRALCEL OJ-H 95:05 IPA:Hexane 0.5 ml/min 
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APPENDIX EIGHT 

 

 

Crystallography Data: 

For Chapters One Through Four 
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A8.1    X-ray Crystallography Reports Relevant to Chapter One:  
 

 
 
Figure A8.1 Ortep diagram of 1.39 showing ellipsoids at 50% probability and atom 

labeling scheme. 
 
 

 

Experimental Summary 

         The single crystal X-ray diffraction studies were carried out on a Bruker APEX 

CCD diffractometer equipped with Cu Ka radiation (λ = 1. 54178).  A 0.351 x 0.202 x 

0.140 mm clear colorless block was mounted on a Cryoloop with Paratone oil.  Data were 

collected in a nitrogen gas stream at 100(2) K using φ and ω scans.  Crystal-to-detector 

distance was 40 mm using 1-3 s exposure times with a scan width of 1.0°.  Data 

collection was 100.0% complete to 68.000° in θ.  A total of 21873 reflections were 

collected covering the indices, -10<=h<=10, -10<=k<=10, -21<=l<=21.  4926 reflections 

were found to be symmetry independent, with a Rint of 0.0345.  Indexing and unit cell 

refinement indicated a primitive, monoclinic lattice.  The space group was found to be 

P21.  The data were integrated using the Bruker SAINT software program and scaled 



 388 

using the SADABS software program.  Solution by direct methods (SHELXT) produced 

a complete phasing model consistent with the proposed structure.   

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares 

(SHELXL).  The amine hydrogen atom was found via the difference map and the bond 

distance was restrained relative to the parent oxygen atom using the appropriate DFIX 

command in SHELXL. All remaining hydrogen atoms were placed using a riding 

model.  Their positions were constrained relative to their parent atom using the 

appropriate HFIX command in SHELXL.  Crystallographic data are summarized in Table 

A8.1.1. 

 
Table A8.1.1    Crystal data and structure refinement for 1.39. 

Identification code  JEH-1-174-freebase 

Empirical formula  C16 H13 N5 

Molecular formula  C16 H13 N5 

Formula weight  275.31 

Temperature  100.0 K 

Wavelength  1.54178 Å 
Crystal system  Monoclinic 
Space group  P 1 21 1 

Unit cell dimensions a = 8.7736(2) Å α= 90°. 

 b = 8.8396(2) Å β= 98.8220(9)°. 

 c = 17.6810(4) Å γ = 90°. 

Volume 1355.03(5) Å3 
Z 4 

Density (calculated) 1.350 Mg/m3 

Absorption coefficient 0.682 mm-1 
F(000) 576 

Crystal size 0.351 x 0.202 x 0.14 mm3 
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Crystal color, habit Clear colorless Block 
Theta range for data collection 2.529 to 68.238°. 
Index ranges -10<=h<=10, -10<=k<=10, -21<=l<=21 
Reflections collected 21873 
Independent reflections 4926 [R(int) = 0.0345] 
Completeness to theta = 68.000° 100.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.0818 and 0.0108 

Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 4926 / 1 / 387 

Goodness-of-fit on F2 1.077 
Final R indices [I>2sigma(I)] R1 = 0.0542, wR2 = 0.1194 
R indices (all data) R1 = 0.0548, wR2 = 0.1206 
Absolute structure parameter 0.04(13) 
Extinction coefficient n/a 

Largest diff. peak and hole 0.369 and -0.162 e.Å-3 

 
 
 
Table A8.1.2   Atomic coordinates ( x 104) and equivalent isotropic displacement 

parameters (Å2x 103) for 1.39. U(eq) is defined as one third of  the trace of the 

orthogonalized Uij tensor. 
_______________________________________________________________________ 
 x y z U(eq) 

 
N(1) 1241(2) 7357(3) 2082(1) 44(1) 
N(2) 1544(2) 7090(2) 794(1) 43(1) 
N(3) 2314(2) 6164(3) 370(1) 47(1) 
N(4) 3068(3) 5225(3) 842(1) 48(1) 
N(5) 2824(2) 5492(3) 1578(1) 46(1) 
C(1) -730(3) 10885(3) 2498(2) 47(1) 
C(2) -1410(3) 11537(3) 3074(2) 50(1) 
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C(3) -1741(3) 10677(4) 3681(2) 51(1) 
C(4) -1382(3) 9151(4) 3714(2) 53(1) 
C(5) -705(3) 8486(3) 3134(2) 49(1) 
C(6) -369(3) 9346(3) 2518(1) 43(1) 
C(7) 289(3) 8631(3) 1880(1) 42(1) 
C(8) -12(3) 9102(3) 1151(1) 43(1) 
C(9) 427(3) 8252(3) 472(1) 42(1) 
C(10) 1090(3) 9162(3) -127(1) 42(1) 
C(11) 2279(3) 10198(3) 67(1) 44(1) 
C(12) 2929(3) 10926(3) -501(2) 47(1) 
C(13) 2374(3) 10641(3) -1267(2) 48(1) 
C(14) 1189(3) 9613(3) -1464(1) 46(1) 
C(15) 552(3) 8874(3) -896(1) 44(1) 
C(16) 1852(3) 6651(3) 1524(1) 42(1) 
N(1A) 2796(3) 3097(3) 2706(1) 46(1) 
N(2A) 1962(2) 2931(3) 3903(1) 44(1) 
N(3A) 1134(3) 3784(3) 4332(1) 48(1) 
N(4A) 776(3) 5003(3) 3950(1) 48(1) 
N(5A) 1334(2) 4997(3) 3269(1) 45(1) 
C(1A) 4542(3) -403(3) 2123(2) 45(1) 
C(2A) 5287(3) -939(3) 1546(2) 48(1) 
C(3A) 5921(3) 54(3) 1067(1) 46(1) 
C(4A) 5795(3) 1605(3) 1179(1) 46(1) 
C(5A) 5040(3) 2156(3) 1756(1) 44(1) 
C(6A) 4401(3) 1156(3) 2237(1) 44(1) 
C(7A) 3557(3) 1710(3) 2846(1) 43(1) 
C(8A) 3471(3) 932(3) 3492(1) 45(1) 
C(9A) 2507(3) 1381(3) 4093(1) 44(1) 
C(10A) 3383(3) 1305(3) 4906(1) 45(1) 
C(11A) 4812(3) 1996(3) 5090(2) 49(1) 
C(12A) 5608(3) 1912(3) 5835(2) 54(1) 
C(13A) 4957(3) 1140(4) 6393(2) 56(1) 
C(14A) 3542(3) 456(4) 6209(2) 56(1) 
C(15A) 2745(3) 526(3) 5464(2) 50(1) 
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C(16A) 2063(3) 3686(3) 3257(1) 42(1) 
 
 
 
_______________________________________________________________________ 
Table A8.1.3   Bond lengths [Å] and angles [°] for 1.39 
_______________________________________________________________________
N(1)-H(1)  0.84(4) 
N(1)-C(7)  1.414(3) 
N(1)-C(16)  1.346(3) 
N(2)-N(3)  1.357(3) 
N(2)-C(9)  1.473(3) 
N(2)-C(16)  1.336(3) 
N(3)-N(4)  1.287(3) 
N(4)-N(5)  1.371(3) 
N(5)-C(16)  1.326(3) 
C(1)-H(1A)  0.9500 
C(1)-C(2)  1.382(4) 
C(1)-C(6)  1.396(4) 
C(2)-H(2)  0.9500 
C(2)-C(3)  1.382(4) 
C(3)-H(3)  0.9500 
C(3)-C(4)  1.385(4) 
C(4)-H(4)  0.9500 
C(4)-C(5)  1.392(4) 
C(5)-H(5)  0.9500 
C(5)-C(6)  1.396(4) 
C(6)-C(7)  1.485(3) 
C(7)-C(8)  1.341(4) 
C(8)-H(8)  0.9500 
C(8)-C(9)  1.516(3) 
C(9)-H(9)  1.0000 
C(9)-C(10)  1.515(3) 
C(10)-C(11)  1.391(4) 

C(10)-C(15)  1.392(3) 
C(11)-H(11)  0.9500 
C(11)-C(12)  1.387(3) 
C(12)-H(12)  0.9500 
C(12)-C(13)  1.391(4) 
C(13)-H(13)  0.9500 
C(13)-C(14)  1.384(4) 
C(14)-H(14)  0.9500 
C(14)-C(15)  1.386(4) 
C(15)-H(15)  0.9500 
N(1A)-H(1AA)  0.84(4) 
N(1A)-C(7A)  1.399(4) 
N(1A)-C(16A)  1.351(3) 
N(2A)-N(3A)  1.356(3) 
N(2A)-C(9A)  1.473(3) 
N(2A)-C(16A)  1.338(3) 
N(3A)-N(4A)  1.285(3) 
N(4A)-N(5A)  1.367(3) 
N(5A)-C(16A)  1.326(4) 
C(1A)-H(1AB)  0.9500 
C(1A)-C(2A)  1.377(4) 
C(1A)-C(6A)  1.401(4) 
C(2A)-H(2A)  0.9500 
C(2A)-C(3A)  1.394(4) 
C(3A)-H(3A)  0.9500 
C(3A)-C(4A)  1.392(4) 
C(4A)-H(4A)  0.9500 
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C(4A)-C(5A)  1.387(4) 
C(5A)-H(5A)  0.9500 
C(5A)-C(6A)  1.401(3) 
C(6A)-C(7A)  1.480(3) 
C(7A)-C(8A)  1.345(4) 
C(8A)-H(8A)  0.9500 
C(8A)-C(9A)  1.510(3) 
C(9A)-H(9A)  1.0000 
C(9A)-C(10A)  1.524(3) 
C(10A)-C(11A)  1.388(4) 
C(10A)-C(15A)  1.390(3) 
C(11A)-H(11A)  0.9500 
C(11A)-C(12A)  1.396(4) 
C(12A)-H(12A)  0.9500 
C(12A)-C(13A)  1.392(4) 
C(13A)-H(13A)  0.9500 
C(13A)-C(14A)  1.374(5) 
C(14A)-H(14A)  0.9500 
C(14A)-C(15A)  1.394(4) 
C(15A)-H(15A)  0.9500 
 
C(7)-N(1)-H(1) 123(2) 
C(16)-N(1)-H(1) 117(3) 
C(16)-N(1)-C(7) 118.1(2) 
N(3)-N(2)-C(9) 124.36(19) 
C(16)-N(2)-N(3) 108.4(2) 
C(16)-N(2)-C(9) 126.9(2) 
N(4)-N(3)-N(2) 106.25(19) 
N(3)-N(4)-N(5) 111.4(2) 
C(16)-N(5)-N(4) 104.9(2) 
C(2)-C(1)-H(1A) 119.7 
C(2)-C(1)-C(6) 120.7(2) 
C(6)-C(1)-H(1A) 119.7 
C(1)-C(2)-H(2) 119.7 

C(3)-C(2)-C(1) 120.6(2) 
C(3)-C(2)-H(2) 119.7 
C(2)-C(3)-H(3) 120.2 
C(2)-C(3)-C(4) 119.7(2) 
C(4)-C(3)-H(3) 120.2 
C(3)-C(4)-H(4) 120.0 
C(3)-C(4)-C(5) 120.0(3) 
C(5)-C(4)-H(4) 120.0 
C(4)-C(5)-H(5) 119.7 
C(4)-C(5)-C(6) 120.7(3) 
C(6)-C(5)-H(5) 119.7 
C(1)-C(6)-C(5) 118.4(2) 
C(1)-C(6)-C(7) 120.6(2) 
C(5)-C(6)-C(7) 120.9(2) 
N(1)-C(7)-C(6) 115.5(2) 
C(8)-C(7)-N(1) 120.8(2) 
C(8)-C(7)-C(6) 123.7(2) 
C(7)-C(8)-H(8) 117.6 
C(7)-C(8)-C(9) 124.8(2) 
C(9)-C(8)-H(8) 117.6 
N(2)-C(9)-C(8) 105.94(18) 
N(2)-C(9)-H(9) 107.8 
N(2)-C(9)-C(10) 109.68(18) 
C(8)-C(9)-H(9) 107.8 
C(10)-C(9)-C(8) 117.5(2) 
C(10)-C(9)-H(9) 107.8 
C(11)-C(10)-C(9) 122.1(2) 
C(11)-C(10)-C(15) 119.4(2) 
C(15)-C(10)-C(9) 118.4(2) 
C(10)-C(11)-H(11) 119.9 
C(12)-C(11)-C(10) 120.2(2) 
C(12)-C(11)-H(11) 119.9 
C(11)-C(12)-H(12) 120.0 
C(11)-C(12)-C(13) 120.0(2) 
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C(13)-C(12)-H(12) 120.0 
C(12)-C(13)-H(13) 120.0 
C(14)-C(13)-C(12) 120.1(2) 
C(14)-C(13)-H(13) 120.0 
C(13)-C(14)-H(14) 120.1 
C(13)-C(14)-C(15) 119.9(2) 
C(15)-C(14)-H(14) 120.1 
C(10)-C(15)-H(15) 119.8 
C(14)-C(15)-C(10) 120.5(2) 
C(14)-C(15)-H(15) 119.8 
N(2)-C(16)-N(1) 121.9(2) 
N(5)-C(16)-N(1) 129.1(2) 
N(5)-C(16)-N(2) 109.0(2) 
C(7A)-N(1A)-H(1AA) 123(3) 
C(16A)-N(1A)-H(1AA) 118(3) 
C(16A)-N(1A)-C(7A) 118.5(2) 
N(3A)-N(2A)-C(9A) 124.9(2) 
C(16A)-N(2A)-N(3A) 108.1(2) 
C(16A)-N(2A)-C(9A) 126.6(2) 
N(4A)-N(3A)-N(2A) 106.32(19) 
N(3A)-N(4A)-N(5A) 111.6(2) 
C(16A)-N(5A)-N(4A) 104.9(2) 
C(2A)-C(1A)-H(1AB) 119.7 
C(2A)-C(1A)-C(6A) 120.5(2) 
C(6A)-C(1A)-H(1AB) 119.7 
C(1A)-C(2A)-H(2A) 119.6 
C(1A)-C(2A)-C(3A) 120.8(2) 
C(3A)-C(2A)-H(2A) 119.6 
C(2A)-C(3A)-H(3A) 120.5 
C(4A)-C(3A)-C(2A) 119.0(2) 
C(4A)-C(3A)-H(3A) 120.5 
C(3A)-C(4A)-H(4A) 119.7 
C(5A)-C(4A)-C(3A) 120.6(2) 
C(5A)-C(4A)-H(4A) 119.7 

C(4A)-C(5A)-H(5A) 119.8 
C(4A)-C(5A)-C(6A) 120.3(2) 
C(6A)-C(5A)-H(5A) 119.8 
C(1A)-C(6A)-C(5A) 118.8(2) 
C(1A)-C(6A)-C(7A) 119.7(2) 
C(5A)-C(6A)-C(7A) 121.5(2) 
N(1A)-C(7A)-C(6A) 116.1(2) 
C(8A)-C(7A)-N(1A) 120.7(2) 
C(8A)-C(7A)-C(6A) 123.2(2) 
C(7A)-C(8A)-H(8A) 117.5 
C(7A)-C(8A)-C(9A) 125.0(2) 
C(9A)-C(8A)-H(8A) 117.5 
N(2A)-C(9A)-C(8A) 106.3(2) 
N(2A)-C(9A)-H(9A) 108.7 
N(2A)-C(9A)-C(10A) 110.8(2) 
C(8A)-C(9A)-H(9A) 108.7 
C(8A)-C(9A)-C(10A) 113.40(19) 
C(10A)-C(9A)-H(9A) 108.7 
C(11A)-C(10A)-C(9A) 120.5(2) 
C(11A)-C(10A)-C(15A) 120.0(2) 
C(15A)-C(10A)-C(9A) 119.5(2) 
C(10A)-C(11A)-H(11A) 120.0 
C(10A)-C(11A)-C(12A) 120.1(2) 
C(12A)-C(11A)-H(11A) 120.0 
C(11A)-C(12A)-H(12A) 120.2 
C(13A)-C(12A)-C(11A) 119.7(3) 
C(13A)-C(12A)-H(12A) 120.2 
C(12A)-C(13A)-H(13A) 120.0 
C(14A)-C(13A)-C(12A) 120.1(2) 
C(14A)-C(13A)-H(13A) 120.0 
C(13A)-C(14A)-H(14A) 119.7 
C(13A)-C(14A)-C(15A) 120.6(3) 
C(15A)-C(14A)-H(14A) 119.7 
C(10A)-C(15A)-C(14A) 119.6(2) 
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C(10A)-C(15A)-H(15A) 120.2 
C(14A)-C(15A)-H(15A) 120.2 
N(2A)-C(16A)-N(1A) 121.6(2) 
N(5A)-C(16A)-N(1A) 129.3(2) 
N(5A)-C(16A)-N(2A) 109.1(2) 
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Table A8.1.4   Anisotropic displacement parameters (Å2x 103) for 1.39.  The 

anisotropic displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 

h k a* b* U12 ] 
_______________________________________________________________________  

 U11 U22  U33 U23 U13 U12 
_______________________________________________________________________  
N(1) 49(1)  44(1) 39(1)  3(1) 9(1)  2(1) 
N(2) 47(1)  42(1) 42(1)  2(1) 11(1)  1(1) 
N(3) 52(1)  45(1) 45(1)  2(1) 14(1)  2(1) 
N(4) 54(1)  45(1) 46(1)  4(1) 17(1)  5(1) 
N(5) 49(1)  45(1) 44(1)  4(1) 12(1)  5(1) 
C(1) 50(1)  46(1) 44(1)  1(1) 6(1)  1(1) 
C(2) 52(1)  47(1) 51(1)  -3(1) 6(1)  6(1) 
C(3) 51(1)  58(2) 46(1)  -7(1) 12(1)  4(1) 
C(4) 60(1)  56(2) 45(1)  3(1) 15(1)  1(1) 
C(5) 54(1)  47(1) 46(1)  1(1) 10(1)  3(1) 
C(6) 42(1)  45(1) 42(1)  -2(1) 5(1)  -1(1) 
C(7) 41(1)  42(1) 45(1)  0(1) 8(1)  -1(1) 
C(8) 43(1)  42(1) 45(1)  1(1) 9(1)  1(1) 
C(9) 42(1)  44(1) 41(1)  0(1) 6(1)  0(1) 
C(10) 42(1)  41(1) 42(1)  2(1) 8(1)  4(1) 
C(11) 45(1)  45(1) 41(1)  0(1) 5(1)  3(1) 
C(12) 46(1)  46(1) 50(1)  2(1) 9(1)  -2(1) 
C(13) 50(1)  49(1) 45(1)  7(1) 13(1)  2(1) 
C(14) 52(1)  48(1) 39(1)  1(1) 6(1)  5(1) 
C(15) 46(1)  41(1) 44(1)  -1(1) 7(1)  2(1) 
C(16) 44(1)  40(1) 42(1)  2(1) 8(1)  -3(1) 
N(1A) 53(1)  45(1) 41(1)  3(1) 13(1)  4(1) 
N(2A) 45(1)  47(1) 41(1)  1(1) 8(1)  3(1) 
N(3A) 52(1)  50(1) 44(1)  0(1) 11(1)  5(1) 
N(4A) 51(1)  50(1) 43(1)  2(1) 10(1)  6(1) 
N(5A) 47(1)  46(1) 41(1)  2(1) 9(1)  3(1) 
C(1A) 48(1)  45(1) 44(1)  4(1) 9(1)  0(1) 
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C(2A) 48(1)  46(1) 49(1)  0(1) 7(1)  6(1) 
C(3A) 41(1)  54(1) 45(1)  -2(1) 9(1)  4(1) 
C(4A) 42(1)  52(1) 45(1)  1(1) 7(1)  -2(1) 
C(5A) 44(1)  43(1) 45(1)  0(1) 6(1)  -1(1) 
C(6A) 42(1)  48(1) 41(1)  1(1) 4(1)  1(1) 
C(7A) 44(1)  43(1) 43(1)  -2(1) 6(1)  -1(1) 
C(8A) 49(1)  44(1) 42(1)  0(1) 9(1)  3(1) 
C(9A) 47(1)  44(1) 43(1)  1(1) 9(1)  1(1) 
C(10A) 49(1)  43(1) 43(1)  1(1) 10(1)  6(1) 
C(11A) 54(1)  47(1) 48(1)  3(1) 11(1)  1(1) 
C(12A) 53(1)  50(1) 58(1)  -2(1) 2(1)  1(1) 
C(13A) 66(2)  56(2) 43(1)  0(1) 3(1)  14(1) 
C(14A) 65(2)  59(2) 44(1)  9(1) 13(1)  7(1) 
C(15A) 51(1)  53(1) 48(1)  3(1) 11(1)  2(1) 
C(16A) 42(1)  44(1) 41(1)  0(1) 6(1)  -1(1) 

 
 
 

Table A8.1.5   Hydrogen coordinates ( x 104) and isotropic displacement parameters 

(Å2x 10 3) for 1.39 
_______________________________________________________________________  
 x  y  z  U(eq) 
_______________________________________________________________________  
  
H(1) 1280(40) 6900(40) 2500(20) 54(9) 
H(1A) -506 11491 2085 56 
H(2) -1652 12585 3052 60 
H(3) -2212 11131 4074 61 
H(4) -1598 8557 4133 64 
H(5) -469 7436 3157 59 
H(8) -540 10037 1054 52 
H(9) -515 7721 211 51 
H(11) 2646 10408 590 53 
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H(12) 3754 11619 -367 57 
H(13) 2808 11151 -1656 57 
H(14) 813 9415 -1988 56 
H(15) -258 8165 -1032 52 
H(1AA) 2870(40) 3640(50) 2320(20) 54(9) 
H(1AB) 4120 -1095 2446 55 
H(2A) 5370 -1999 1474 58 
H(3A) 6431 -322 669 56 
H(4A) 6229 2292 858 56 
H(5A) 4956 3217 1826 53 
H(8A) 4061 30 3576 54 
H(9A) 1593 693 4054 53 
H(11A) 5249 2526 4708 59 
H(12A) 6589 2379 5961 65 
H(13A) 5492 1086 6902 67 
H(14A) 3104 -69 6592 67 
H(15A) 1771 44 5340 61 

 
 
 
Table A8.1.6   Hydrogen bonds for 1.39 [Å and °] 
_______________________________________________________________________  
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________  
 N(1)-H(1)...N(5A) 0.84(4) 2.16(4) 2.952(3) 157(3) 
 N(1A)-H(1AA)...N(5) 0.84(4) 2.10(4) 2.912(3) 163(4) 
_______________________________________________________________________  
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A8.2    X-ray Crystallography Reports Relevant to Chapter Four:  
 

 
Figure A8.2   View of 4.68 showing the atom labeling scheme.  Displacement 

ellipsoids are scaled to the 50% probability level.    

 

 

 
Experimental Summary 

 
X-ray Experimental for C16H23NO3S2Cl2:  Crystals grew as long, very thin 

colorless needles by slow evaporation from CH2Cl2.  The data crystal had approximate 
dimensions; 0.34 x 0.13 x 0.05 mm.  The data were collected on an Agilent Technologies 

SuperNova Dual Source diffractometer using a µ-focus Cu Kα radiation source (λ = 
1.5418Å) with collimating mirror monochromators.  A total of 1896 frames of data were 

collected using ω-scans with a scan range of 1° and a counting time of 7.5 seconds per 

frame for frames collected with a detector offset of +/- 41.9° and 23.5 seconds per frame 

with frames collected with a detector offset of +/- 110.4°.  The data were collected at 100 
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K using an Oxford Cryostream low temperature device.  Details of crystal data, data 
collection and structure refinement are listed in Table A8.2.1.  Data collection, unit cell 
refinement and data reduction were performed using Agilent Technologies CrysAlisPro 
V 1.171.37.31.1  The structure was solved by direct methods using SHELXT2 and refined 

by full-matrix least-squares on F2 with anisotropic displacement parameters for the non-
H atoms using SHELXL-2014/7.3  Structure analysis was aided by use of the programs 
PLATON984 and WinGX.5  The hydrogen atoms were calculated in ideal positions with 
isotropic displacement parameters set to 1.2xUeq of the attached atom (1.5xUeq for 

methyl hydrogen atoms).  The hydrogen atom bound to N1 was observed in a ΔF map 
and refined with an isotropic displacement parameter.  The absolute configuration was 
determined using the method of Flack6 and confirmed using the Hooft y-parameter 
method.7    

The function, Σw(|Fo|2 - |Fc|2)2, was minimized, where w = 1/[(σ(Fo))2 + 

(0.1012*P)2] and P = (|Fo|2 + 2|Fc|2)/3.  Rw(F2) refined to 0.250, with R(F) equal to 

0.0917 and a goodness of fit, S, = 1.14.  Definitions used for calculating R(F), Rw(F2) 

and the goodness of fit, S, are given below.8  The data were checked for secondary 

extinction effects but no correction was necessary.  Neutral atom scattering factors and 

values used to calculate the linear absorption coefficient are from the International Tables 

for X-ray Crystallography (1992).9  All figures were generated using SHELXTL/PC.10  

Tables of positional and thermal parameters, bond lengths and angles, torsion angles and 

figures are found elsewhere.   
 
 
 

Table A8.2.1.  Crystal data and structure refinement for 4.68  
Empirical formula  C16 H23 Cl2 N O3 S2 
Formula weight  412.37 
Temperature  100(2) K 
Wavelength  1.54184 Å 
Crystal system  monoclinic 
Space group  P 21 
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Unit cell dimensions a = 12.121(2) Å α= 90°. 

 b = 6.6569(10) Å β= 111.94(2)°. 

 c = 13.185(3) Å γ = 90°. 

Volume 986.8(3) Å3 
Z 2 

Density (calculated) 1.388 Mg/m3 

Absorption coefficient 5.059 mm-1 
F(000) 432 

Crystal size 0.310 x 0.030 x 0.019 mm3 
Theta range for data collection 6.828 to 57.874°. 
Index ranges -13<=h<=12, -7<=k<=7, -13<=l<=14 
Reflections collected 8149 
Independent reflections 2712 [R(int) = 0.1908] 
Completeness to theta = 57.874° 99.7 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 1.00 and 0.593 

Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 2712 / 1 / 222 

Goodness-of-fit on F2 1.115 
Final R indices [I>2sigma(I)] R1 = 0.0917, wR2 = 0.2216 
R indices (all data) R1 = 0.1148, wR2 = 0.2498 
Absolute structure parameter -0.07(8) 
Extinction coefficient n/a 

Largest diff. peak and hole 0.636 and -0.610 e.Å-3 
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Table A8.2.2   Atomic coordinates  ( x 104) and equivalent  isotropic displacement 

parameters (Å2x 103) for 4.68.  U(eq) is defined as one third of  the trace of the 

orthogonalized Uij tensor. 
_______________________________________________________________________  
 x y z U(eq) 
_______________________________________________________________________  
C1 6328(15) 1820(30) 977(12) 50(4) 
C2 5931(16) 1520(30) 1899(12) 51(4) 
C3 5325(16) 3410(20) 2089(12) 46(4) 
C4 4879(15) 3140(30) 3024(13) 47(4) 
C5 4207(12) 4950(20) 3232(11) 41(4) 
C6 3115(13) 5530(20) 2280(11) 41(4) 
C7 2103(14) 6010(20) 2345(13) 45(4) 
C8 1026(14) 6630(20) 1366(12) 47(4) 
C9 709(15) 8790(20) 1436(12) 43(4) 
C10 1677(15) 10310(20) 1528(12) 46(4) 
C11 8179(13) 5760(30) 4266(11) 44(4) 
C12 8525(14) 3770(20) 4526(13) 47(4) 
C13 9047(14) 2760(30) 3901(15) 54(4) 
C14 9171(16) 3680(30) 3015(15) 60(5) 
C15 8801(16) 5590(30) 2752(14) 56(5) 
C16 8299(13) 6680(20) 3394(12) 42(4) 
N1 6156(12) 6330(20) 4697(9) 43(3) 
O1 4382(11) 8693(16) 3952(9) 51(3) 
O2 8105(10) 6508(17) 6179(8) 51(3) 
O3 7513(11) 9173(17) 4805(9) 52(3) 
S1 5116(3) 7244(6) 3606(2) 40(1) 
S2 7544(4) 7089(6) 5080(3) 43(1) 
Cl1 7126(5) -359(8) 786(3) 70(2) 
Cl2 2152(4) 10206(7) 390(3) 63(1) 
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Table A8.2.3   Bond lengths [Å] and angles [°] for 4.68. 
_____________________________________________________  
C1-C2  1.48(2) 
C1-Cl1  1.811(15) 
C1-H1A  0.99 
C1-H1B  0.99 
C2-C3  1.52(2) 
C2-H2A  0.99 
C2-H2B  0.99 
C3-C4  1.53(2) 
C3-H3A  0.99 
C3-H3B  0.99 
C4-C5  1.53(2) 
C4-H4A  0.99 
C4-H4B  0.99 
C5-C6  1.494(19) 
C5-S1  1.840(16) 
C5-H5  1.0000 
C6-C7  1.30(2) 
C6-H6  0.95 
C7-C8  1.51(2) 
C7-H7  0.95 
C8-C9  1.50(2) 
C8-H8A  0.99 
C8-H8B  0.99 
C9-C10  1.52(2) 

C9-H9A  0.99 
C9-H9B  0.99 
C10-Cl2  1.799(14) 
C10-H10A  0.99 
C10-H10B  0.99 
C11-C16  1.36(2) 
C11-C12  1.39(2) 
C11-S2  1.773(15) 
C12-C13  1.39(2) 
C12-H12  0.95 
C13-C14  1.38(2) 
C13-H13  0.95 
C14-C15  1.35(3) 
C14-H14  0.95 
C15-C16  1.41(2) 
C15-H15  0.95 
C16-H16  0.95 
N1-S1  1.635(13) 
N1-S2  1.645(14) 
N1-H1N  0.86(14) 
O1-S1  1.495(11) 
O2-S2  1.405(11) 
O3-S2  1.431(12) 

C2-C1-Cl1 111.2(12) 
C2-C1-H1A 109.4 
Cl1-C1-H1A 109.4 
C2-C1-H1B 109.4 
Cl1-C1-H1B 109.4 
H1A-C1-H1B 108.0 
C1-C2-C3 110.4(13) 

C1-C2-H2A 109.6 
C3-C2-H2A 109.6 
C1-C2-H2B 109.6 
C3-C2-H2B 109.6 
H2A-C2-H2B 108.1 
C2-C3-C4 112.0(13) 
C2-C3-H3A 109.2 
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C4-C3-H3A 109.2 
C2-C3-H3B 109.2 
C4-C3-H3B 109.2 
H3A-C3-H3B 107.9 
C3-C4-C5 115.1(13) 
C3-C4-H4A 108.5 
C5-C4-H4A 108.5 
C3-C4-H4B 108.5 
C5-C4-H4B 108.5 
H4A-C4-H4B 107.5 
C6-C5-C4 114.5(13) 
C6-C5-S1 105.4(10) 
C4-C5-S1 113.1(10) 
C6-C5-H5 107.8 
C4-C5-H5 107.8 
S1-C5-H5 107.8 
C7-C6-C5 124.7(13) 
C7-C6-H6 117.7 
C5-C6-H6 117.7 
C6-C7-C8 123.1(14) 
C6-C7-H7 118.5 
C8-C7-H7 118.5 
C9-C8-C7 111.6(14) 
C9-C8-H8A 109.3 
C7-C8-H8A 109.3 
C9-C8-H8B 109.3 
C7-C8-H8B 109.3 
H8A-C8-H8B 108.0 
C8-C9-C10 115.9(13) 
C8-C9-H9A 108.3 
C10-C9-H9A 108.3 
C8-C9-H9B 108.3 
C10-C9-H9B 108.3 
H9A-C9-H9B 107.4 

C9-C10-Cl2 112.6(10) 
C9-C10-H10A 109.1 
Cl2-C10-H10A 109.1 
C9-C10-H10B 109.1 
Cl2-C10-H10B 109.1 
H10A-C10-H10B 107.8 
C16-C11-C12 121.2(15) 
C16-C11-S2 119.8(13) 
C12-C11-S2 119.0(11) 
C13-C12-C11 118.7(15) 
C13-C12-H12 120.7 
C11-C12-H12 120.7 
C14-C13-C12 120.4(16) 
C14-C13-H13 119.8 
C12-C13-H13 119.8 
C15-C14-C13 120.5(16) 
C15-C14-H14 119.8 
C13-C14-H14 119.8 
C14-C15-C16 120.2(16) 
C14-C15-H15 119.9 
C16-C15-H15 119.9 
C11-C16-C15 119.0(16) 
C11-C16-H16 120.5 
C15-C16-H16 120.5 
S1-N1-S2 121.4(8) 
S1-N1-H1N 133(8) 
S2-N1-H1N 104(8) 
O1-S1-N1 108.8(6) 
O1-S1-C5 104.6(7) 
N1-S1-C5 96.6(7) 
O2-S2-O3 119.1(7) 
O2-S2-N1 106.1(6) 
O3-S2-N1 107.0(7) 
O2-S2-C11 109.5(7) 
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O3-S2-C11 107.8(7) N1-S2-C11 106.7(7) 
__________________________________________________________________ 
 
 
 

Table A8.2.4   Anisotropic displacement parameters  (Å2x 103) for 1.  The 

anisotropic displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 

h k a* b* U12 ] 
_______________________________________________________________________  

 U11 U22  U33 U23 U13 U12 
_______________________________________________________________________  
C1 47(10)  48(11) 46(7)  1(8) 8(7)  17(8) 
C2 48(10)  51(11) 44(8)  3(7) 7(7)  17(8) 
C3 54(11)  38(10) 43(8)  2(7) 15(8)  8(8) 
C4 58(11)  37(8) 54(9)  9(7) 30(9)  12(8) 
C5 29(8)  50(10) 43(7)  12(7) 11(7)  10(7) 
C6 35(9)  52(10) 39(7)  8(7) 15(7)  10(8) 
C7 36(9)  43(9) 56(9)  15(8) 16(8)  2(7) 
C8 47(10)  52(11) 45(8)  -9(7) 21(8)  -7(8) 
C9 48(10)  49(9) 36(7)  2(7) 20(7)  0(8) 
C10 58(11)  31(8) 50(8)  0(7) 21(8)  -4(8) 
C11 37(9)  59(11) 36(7)  -1(7) 14(7)  -15(8) 
C12 37(9)  39(9) 55(9)  6(7) 8(8)  -8(7) 
C13 36(10)  38(10) 85(12)  2(8) 19(9)  5(7) 
C14 41(11)  68(14) 72(12)  -5(10) 23(10)  15(9) 
C15 62(12)  62(12) 56(9)  -16(9) 34(9)  -12(10) 
C16 30(8)  42(9) 54(8)  1(7) 15(7)  4(7) 
N1 51(8)  55(8) 27(5)  14(6) 18(6)  4(6) 
O1 51(7)  46(7) 53(6)  -14(5) 17(6)  0(5) 
O2 55(7)  63(8) 36(5)  8(5) 18(5)  -12(6) 
O3 59(8)  45(7) 60(6)  -8(5) 32(6)  -13(6) 
S1 49(2)  38(2) 36(2)  0(2) 21(2)  2(2) 
S2 53(2)  43(2) 38(2)  -2(2) 23(2)  -8(2) 
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Cl1 86(3)  79(3) 53(2)  -1(2) 33(2)  34(3) 
Cl2 67(3)  77(3) 53(2)  12(2) 33(2)  -4(2) 

 
 
 

Table A8.2.5   Hydrogen coordinates ( x 104) and isotropic  displacement 

parameters (Å2x 10 3) for 4.68. 
_______________________________________________________________________  
 x  y  z  U(eq) 
_______________________________________________________________________  
  
H1A 6852 3012 1121 59 
H1B 5628 2070 299 59 
H2A 6624 1193 2569 61 
H2B 5368 377 1736 61 
H3A 4645 3750 1411 55 
H3B 5895 4543 2262 55 
H4A 5571 2857 3704 57 
H4B 4349 1958 2864 57 
H5 3960 4600 3854 49 
H6 3163 5542 1577 50 
H7 2039 5975 3041 54 
H8A 1190 6421 692 56 
H8B 343 5768 1321 56 
H9A 481 8943 2078 52 
H9B 1 9111 777 52 
H10A 2369 10063 2213 56 
H10B 1375 11678 1573 56 
H12 8406 3123 5118 56 
H13 9321 1420 4086 65 
H14 9518 2964 2585 72 
H15 8880 6212 2133 67 
H16 8048 8029 3218 50 
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H1N 6190(110) 5300(200) 5110(100) 20(30) 

 
 
 
Table A8.2.6   Torsion angles [°] for 4.68. 
________________________________________________________________  
Cl1-C1-C2-C3 176.7(12) 
C1-C2-C3-C4 178.9(14) 
C2-C3-C4-C5 -177.2(15) 
C3-C4-C5-C6 59.8(19) 
C3-C4-C5-S1 -61.0(17) 
C4-C5-C6-C7 137.0(17) 
S1-C5-C6-C7 -98.0(17) 
C5-C6-C7-C8 178.7(15) 
C6-C7-C8-C9 -113.5(18) 
C7-C8-C9-C10 58.1(16) 
C8-C9-C10-Cl2 59.1(17) 
C16-C11-C12-C13 3(2) 
S2-C11-C12-C13 -178.5(13) 
C11-C12-C13-C14 -3(3) 
C12-C13-C14-C15 1(3) 
C13-C14-C15-C16 1(3) 
C12-C11-C16-C15 -1(2) 

S2-C11-C16-C15 -179.7(12) 
C14-C15-C16-C11 -1(3) 
S2-N1-S1-O1 -104.2(9) 
S2-N1-S1-C5 147.8(9) 
C6-C5-S1-O1 63.4(10) 
C4-C5-S1-O1 -170.8(10) 
C6-C5-S1-N1 174.8(9) 
C4-C5-S1-N1 -59.3(11) 
S1-N1-S2-O2 162.5(8) 
S1-N1-S2-O3 34.4(10) 
S1-N1-S2-C11 -80.8(10) 
C16-C11-S2-O2 -144.7(12) 
C12-C11-S2-O2 36.5(14) 
C16-C11-S2-O3 -13.8(15) 
C12-C11-S2-O3 167.5(12) 
C16-C11-S2-N1 100.8(13) 
C12-C11-S2-N1 -78.0(14)

______________________________________________________________________ 
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Table A8.2.7   Hydrogen bonds for 4.68  [Å and °]. 
_______________________________________________________________________  
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________  
 N1-H1N...O1#1 0.86(14) 1.95(13) 2.749(16) 153(11) 
_______________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
#1 -x+1,y-1/2,-z+1       
 


