UTSouthwestern Medical Center

BACKGROUND

- Left ventricular (LV) strain is a new marker of LV systolic function.
- Feature-tracking (FT) CMR is a recently established alternate technique of measuring strain.
- Objective: To evaluate the validity of Feature-Tracking (FT) CMR by examining the relationship between strain measured by FT CMR and cardiovascular risk factors.

MRI imaging Imaging. 2016;9:e004077)

METHODS

Study Participants

 Dallas Heart Study participants with tagged cardiac MRI examination at baseline.

Technique

• Tomtec Imaging software was used to measure both LV longitudinal (GLS) and LV circumferential (GCS) strain.

Data Analysis

- An interim analysis was conducted on 1,134 MRI studies.
- Linear regression modeling was used to determine associations between variables of interest and both GCS and GLS.

Table 1: Baseline Characteristics of study participants across strain adjusted tertiles used in GLS/GCS analysis

Validation of Feature Tracking Cardiac MRI for Myocardial Strain: The Dallas Heart Study

Vijay Agusala, Spencer Martens, Ambarish Pandey, M.D., Rohan Khera, M.D., Colby Ayers, M.S., and Jarett Berry, M.D. University of Texas Southwestern Medical Center, Dallas, TX

Fig 1: Circumferential Strain Assessment Using Feature Tracking Cardiac

Image from: Cardiovascular Magnetic Resonance Myocardial Feature Tracking. Andreas Schuster, Kan N. Hor, Johannes T. Kowallick, Philipp Beerbaum and Shelby Kutty. Circulation: Cardiovascular

	Global Lo	Strain	Global Circumferential Strain (GCS)			
	Tertile 1 (Better Strain)	Tertile 2	Tertile 3 (Worse Strain)	Tertile 1 (Better Strain)	Tertile 2	Tertile 3 (Worse Strain)
	44	43	44	46	43	42
	26.52	44.17	59.71	50.49	52.30	62.86
)	48.42	57.52	59.95	33.01	40.44	57.04
	123.67	125.83	125.67	127.17	124.67	124.67
	29.26	29.07	28.74	29.44	29.09	28.65
	0.88	0.90	0.92	0.89	0.90	0.92
	92	92	93	93.00	92.00	92.00
	5.60	4.25	3.30	4.80	4.00	4.30
	146.08	159.56	173.30	149.61	158.33	171.90
	96.58	99.68	97.49	94.36	98.10	102.88
	24.98	27.38	30.13	23.21	27.52	32.07
	71.62	71.38	67.02	71.03	70.78	68.41
	73.70	72.22	69.40	75.26	72.12	68.01
	23.73	23.97	21.95	21.81	23.58	24.10
	76.23	80.91	86.58	77.28	79.36	85.89
	10.96	11.58	12.33	11.27	11.38	12.14
IS	4.61	4.34	3.84	4.67	4.39	3.79
	1.95	2.07	2.13	2.06	2.05	2.02

RESULTS

(%)

train

Fig 4: Adjusted association of variables with GCS strain

• Greater LV mass, male gender, and African-American race were associated with increased (worse) GCS and GLS values.

• Greater stroke volume and higher LV ejection fraction were both associated with decreased (better) GCS and GLS values.

• Greater end diastolic volume was associated with increased (worse) GCS values but decreased (better) GLS values.

CONCLUSIONS

• FT CMR is a reliable method of measuring both GCS and GLS.

• FT CMR derived associations echo previous findings obtained by other strain measurement techniques.

 Strain values notably reflect variations in LV structural variables.

REFERENCES

- Cardiovascular Magnetic Resonance Myocardial Feature Tracking. Andreas Schuster, Kan N. Hor, Johannes T. Kowallick, Philipp Beerbaum and Shelby Kutty. Circulation: Cardiovascular Imaging. 2016;9:e004077 Race-ethnic differences in subclinical left ventricular systolic dysfunction by global longitudinal strain: A community-based cohort study. Russo, Cesare et al American Heart Journal, Volume 169, Issue 5, 721 – 726 The relative impact of circumferential and longitudinal shortening on left ventricular ejection fraction and stroke volume. David H Maclver. Exp Clin Cardiol. 2012 Spring; 17(1): 5–11. Females have greater left ventricular twist mechanics than males during acute reductions to preload. Alexandra Williams-Rob et al. American Journal of Physiology - Heart and Circulatory Physiology – 2016 Prognosis after acute coronary syndrome in relation with ventricular-arterial coupling and left ventricular strain. Milewska, Agata et al. International Journal of Cardiology , Volume 220 , 343 – 348
- Uncontrolled blood pressure as an independent risk factor of early impaired left ventricular systolic function in treated hypertension. Chen, X.-J., et al. 2016 Echocardiography, 33: 1488–1494. doi: 10.1111/echo.13289