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Interactions between proteins provide the basis for cells to perform metabolism, grow, divide, 

move, and appropriately respond to external stimuli. Because proteins do not act as independent 

entities, the genetic background influences the effect of a mutation in unexpected ways. This 

context-dependence of mutational effects is epistasis. Extensive progress has been made in our 

ability to identify epistasis between proteins. However, how the epistasis between a pair of proteins 

is distributed across the amino acid sequence is less clear. Previous work characterized this 

sequence-level epistasis between proteins that bind to form a physical complex. Until now, the 

structural pattern and magnitude of epistasis between pairs of mutations spanning interacting 

metabolic enzymes remained uncharacterized.  



 vi 

In my dissertation work, I deeply examined the context dependence of mutations for two essential 

enzymes in the bacterial folate metabolic pathway, Dihydrofolate Reductase (DHFR) and 

Thymidylate Synthase (TYMS). To achieve this goal, I used deep mutational scanning assays on 

DHFR in the context of varying activities of TYMS. The result is a rigorous dataset with epistasis 

measurements over the entire amino acid sequence of DHFR. I found that the positions with the 

greatest magnitude of epistasis within the structure of DHFR lied at the active site. However, the 

sign of epistasis at the DHFR active site was dependent on whether TYMS was active. Beyond the 

active site, the distribution of positive epistasis among the positions of DHFR was also context-

dependent on the state of TYMS. Therefore, we can think of the active site as a non-physical 

“interface” between protein pairs that do not form a physical complex but share an intermediate.  

 

The potential consequences of this dataset on the epistasis between DHFR and TYMS are 

profound. This dataset is fundamental towards our understanding of how epistasis mechanistically 

emerges in nonlinearities between catalytic activity in enzymes, protein abundance, and cellular 

growth rate. This experimental dataset is also necessary to credibly validate predictions of epistasis 

from models of statistical co-evolution.
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1 

CHAPTER ONE 
Introduction 

 
 
 

1.1 An introduction to epistasis 

Interactions between proteins are the foundation of cellular systems. These interactions include 

direct binding between proteins in physical complexes, substrate and product sharing between 

enzymes in metabolic pathways, and/or proteins that post-translationally modify one another. 

Together, these interactions provide the basis for cells to perform metabolism, grow, divide, move, 

and appropriately respond to external stimuli. Because proteins do not act as independent entities, 

the effect of mutating one protein often depends on the mutational status of other interaction 

partners. That is, genetic background influences the effect of mutation, sometimes in unanticipated 

ways. These interactions among proteins limit our ability to rationally predict how perturbations 

(e.g. mutations or changes in expression) affect cellular phenotypes. Understanding the pattern of 

interactions between proteins in the cell is thus an essential step towards building quantitative 

models that can predict the phenotypic effects of mutations. 

 

The context dependence of mutational effects is quantified using a measurement termed epistasis. 

Epistasis is the unexpected effect of combinations of mutations – in essence, how much the effect 

of making a mutant changes given a change in genetic background. Epistasis has long been used 

as a tool in classical genetics to identify the order of genes in a pathway.1 In these experiments, 

one typically measures how the effect of a deleting a gene depends on the presence (or absence) 

of a second knockout. For example, two enzymes which perform parallel reactions leading to an 

essential metabolite might be “synthetically lethal” – deleting each enzyme individually is well-
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tolerated, while deleting both enzymes together is lethal. These types of experiments provide a 

gene-level picture of interactions between a pair of proteins. But how is epistasis distributed at the 

level of individual amino acid mutations? Intuition suggests that the pattern of epistasis between 

specific mutations across a pair of proteins will be heterogeneous, with mutations at some positions 

being highly epistatic, and others not at all. Yet it remains unclear which positions are most 

strongly coupled between proteins, and how these epistatic positions are arranged on the protein 

structure. Previous work has sought to address this question for physical protein complexes (see 

section 1.2). Until now, the structural pattern and magnitude of epistasis between pairs of 

mutations spanning interacting metabolic enzymes remains uncharacterized. In my dissertation 

work, I sought to deeply examine the context dependence of mutations for two essential metabolic 

enzymes, with the goal of understanding the constraints that metabolic interactions place upon 

protein sequence.  

 

To compute epistasis between a pair of mutants, it is necessary to first identify what kind of 

epistasis we are measuring. The quantitative definition of epistasis is dependent on the type of null 

model we choose. Epistasis between mutations in a single protein is often directly related to 

thermodynamic free energy between residues of a protein.2 For example, if the experimenter 

wishes to study the landscape of thermodynamic free binding energy of a ligand-binding protein, 

they would measure the change in free energy of binding for two single mutants and the double 

mutant. In this case — because free energy is a state function — the null model is an additive one. 

Consider mutants of two amino acid positions, A and B within a protein. The epistasis between A 

and B is:  
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∆∆GAB = ∆GA - ∆GA|B        (equation 1.1) 

 

∆GA is the change in free energy of the mutant A in the context of a wild-type genetic background. 

∆GA|B is this same measurement, but in the background of mutation B. Conceptually, if these two 

positions are independent and not epistatic to each other, there should be no impact of the state of 

B on the effect of a mutation in A. The difference between ∆GA and ∆GA|B would be zero. If B is 

epistatic to A, ∆∆GAB will be non-zero. This definition of epistasis holds true in terms of ∆GB and 

∆GB|A.  

 

∆∆GAB = ∆GB - ∆GB|A         (equation 1.2) 

 

After expanding the definition of epistasis in terms of the individual measurements of free energies 

of each mutant allele (normalized by the wild-type free energy) the additive model of epistasis is:  

 

∆∆GAB = GA + GB – GAB        (equation 1.3) 

 

In this form, the epistasis is equivalent to the difference between the free binding energy of the 

double mutant (GAB) and the sum of the free binding energies of the single mutants (GA and GB). 

This mutants is epistatic if the double mutant deviates from the additive effects of the single 

mutants. However, additivity need not be the expectation when one considers epistasis in terms of 

growth rate, rather than free energy. In my thesis, I measured the effect of single and double 
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mutations on bacterial growth rate. These are well described by a log-additive or multiplicative 

model of epistasis in equation 1.4.3  

 

E = GAB - GAGB         (equation 1.4)  

 

Here, E is the epistasis and G now represents bacterial growth rate. GA and GB are the growth rate 

effects of the single mutants, A and B. GAB is the growth rate effect of a double mutant. When A 

and B do not effect each other, the epistasis is zero and the growth rate of the double mutant can 

be predicted from knowing the growth rates of the single mutants. When epistasis is positive, the 

double mutant growth rate exceeds the combined single mutant growth rates. In combination, A 

and B buffers the growth rate defects of either single mutant.  When epistasis is negative, the 

double mutant growth rate is lower than the combined single mutant growth rates. This means that 

the presence of both mutations at once aggravates the growth. Non-zero epistasis is typically 

referred to as sign epistasis, a condition where expectation of the effect of multiple mutations 

deviates from the cumulative phenotypes of the individual single mutants.  

 

These equations make clear why nonlinear interactions between mutations present a challenge for 

rationally predicting how mutations affect the fitness of an organism. A mutation might be 

deleterious in one context, yet beneficial or neutral in another. This has profound consequences 

for interpreting the effects of disease-associated mutations.  
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For example, the same sequence of alpha-synuclein, a protein that causes neurodegenerative 

disease, is non-pathogenic in mice but is pathogenic in humans.4 This variant of alpha-synuclein 

is epistatic with another protein in the genetic background, imposing a barrier to studying models 

of disease in mice. This epistasis imposes a hurdle towards developing effective mouse model 

system of neurodegenerative disease. Moreover, over 30 human genes have pathogenic mutants 

that exhibit this kind of species-specific epistasis, called Dobzhansky-Mueller Incompatibilities.4  

 

Moreover, epistasis shapes the evolutionary trajectory of proteins.5 Consider sign epistasis - if two 

mutations are individually deleterious, but beneficial in combination, this creates an evolutionary 

“valley” that is difficult to cross under conditions of constant selection pressure.   

 

As a starting point to understanding how epistasis shapes the function and evolution of metabolic 

enzymes, I characterized epistatic interactions between two well-studied essential metabolic 

enzymes. In the following sections, I first describe prior work on epistasis for the better-studied 

case of physical protein complexes (for context), then what we know about epistasis in metabolic 

enzymes, next my model system (the enzymes dihydrofolate reductase and thymidylate synthase), 

and finally, my approach (deep mutational scanning, or DMS). I end with a brief summary of my 

results. 

 

1.2 Epistasis in physical complexes  

In order to bind, it is necessary for proteins that make up a physical complex to overcome the 

thermodynamic barrier of de-solvating the interface and losing conformational energy, and come 
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together to form a stable interface maintained by non-covalent interactions. So what is the 

structural pattern of interactions that underpin binding? A foundational alanine scanning 

mutagenesis study in 1999 between the interface of human growth hormone and the human growth 

hormone binding protein revealed that the interactions within the interface are organized into “hot 

spots” of free binding energy.6 These “hot spots” are only a few residues within the interface but 

are responsible for the greatest contributions to forming the complex. This study illustrated how 

large-scale mutagenesis of a single protein pair can provide general insight into how amino acid 

interactions between proteins are distributed. 

 

Advances in next-generation sequencing and binding-based selections has enabled further studies 

of mutational effects at unprecedented scale. In 2018, Diss and Lehner used saturation mutagenesis 

to comprehensively study the interaction between Fos and Jun, two proteins that bind together to 

form a transcription factor. Here, the ability for Fos and Jun to assemble was measured in all 

possible single and double mutations in their respective leucine-zipper binding domains.7 In 

contrast to Clackson and Wells, the authors were able to consider double mutants throughout the 

protein, not just localized to the binding interface. The epistasis between Fos and Jun were driven 

by two mechanisms, one due to specific structural and biochemical interactions at the interface, 

and the other due to a three-parameter thermodynamic model of binding that was agnostic to the 

location or identity of the mutations. 

 

While Diss and Lehner focused on a single binding interaction, other work has explored epistasis 

between cognate and non-cognate binding proteins. Limited DMS assays of the interfaces between 
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a trypsin inhibitor and three homologs mapped the landscapes of free binding energies between a 

trypsin inhibitor and three trypsin homologs.8 Though they were only able to measure half of the 

double mutants in their assay, they observed that the pattern of epistasis in the landscapes of free 

binding energies differed with each homolog. When the trypsin inhibitor was paired with either of 

the two non-cognate trypsins, the binding affinities among the mutants broadly suffer, flattening 

the peak of the mutational landscape. They observed both positive and negative epistasis in key 

positions at the interface of the trypsin inhibitor in the background of the two non-optimized 

trypsin homologs. Taken together, this work on three distinct model systems — hGH/hGHbp, Fos-

Jun, and trypsin/trypsin inhibitors — shows how deep mutational scans can reveal organizational 

principles for physically interacting proteins. For my own thesis work, these studies provided 

inspiration for characterizing the pattern of epistasis between non-binding (but functionally 

coupled) enzymes.  

 

Importantly, large scale mutagenesis experiments – though informative – are expensive and 

laborious. An alternative approach to mapping interactions between proteins is the computational 

analysis of co-evolution.9–11 The basic premise of this approach is that interactions between 

residues should result in their correlated evolution (co-evolution) across homologs. In this case, 

statistical analysis of co-evolution in large and diverse sequence alignments can be used to predict 

interactions. This appears to be true for physical complexes: co-evolution studies show that 

epistasis at physical interfaces is reflected in the protein sequence. In perhaps the most cited 

example of this, the histidine-kinase and response regulator proteins that make up a two-

component signal transduction system in bacteria show co-evolution between structurally 
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localized positions at the physical interface.12 Pairwise co-evolution was computed from a multiple 

sequence alignment (MSA) of each component using Mutual Information. These key residues that 

were necessary and sufficient to identify and generate mutants to re-wire the specificity of the 

histidine-kinase to phosphorylate non-cognate response regulator proteins. A similar framework 

was applied to identifying the key positions that dictate selectivity in synthase and receptor 

proteins used for Quorum sensing, a cell to cell signaling system in bacterial populations.13 Like 

in the two component system, substitutions at these co-evolving positions was necessary and 

sufficient to engineer the synthase to make a non-cognate small molecule and to engineer the 

receptor to respond to a non-cognate small molecule.  

 

These studies have revealed how the amino acid sequence of a protein encodes physical 

interactions. The impact of this is clear: methods of sequence co-evolution have been scaled up to 

both to predict groups of proteins that form physical complexes and to predict which residues lie 

at the interface on a proteome-wide scale.14,15 For instance, Cong et al. integrated a series of 

existing coevolution methods to develop a pipeline that identified protein-protein interactions 

among over 4000 proteins in the E. coli proteome. This pipeline generated MSAs of the 

orthologous proteins in E. coli from the sequences across over 40,000 genomes. The paired MSAs 

were analyzed with a series of methods that computed sequence co-evolution with local statistics 

like Mutual Information for local residue to residue interactions and global statistics like Direct 

Coupling Analysis and GREMLIN which identify the contacts between residues within a protein 

from computing covariation. Significantly co-evolving protein pairs are then further filtered after 
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identifying their physical interfaces using a docking method.  This analysis pipeline predicted 804 

protein-protein interactions and their interfaces, including existing and novel complexes.  

 

However, these studies reveal a bias in the current literature towards considering co-evolution and 

epistasis at physical interfaces. The convenient thing about developing a method that predicts the 

proteins that form a physical complex is that the predictions can be validated with existing 

structural datasets, and large scale interaction screens (e.g. yeast two-hybrid data, or mass 

spectrometry studies).16–18 In contrast, we lack gold-standard experimental data for predicting 

epistasis between non-binding proteins. My thesis work provides a template for gathering these 

data, and provides a first picture of epistatic interactions between two sequential metabolic 

enzymes at the residue level. These experimental datasets are necessary to credibly validate 

predictions of epistasis from models of statistical co-evolution.  

 

1.3 Epistasis due to non-physical interactions: non-linearities between catalytic activity, 

protein abundance, and cellular growth rate can generate epistasis.  

In my thesis work, I will examine the pattern of epistasis between two metabolic enzymes that 

share an intermediate. So what processes can lead to epistasis between non-binding but 

functionally coupled proteins? Here, it can be useful to categorize epistasis between proteins as 

“specific” and “global”.19 Specific epistasis describes the epistasis between proteins that is due to 

biophysical and molecular interactions in the structure and function of the proteins. Thus, specific 

epistasis is typically quantified as non-additive effects of mutations on particular biochemical or 

biophysical parameters, like the dissociation constant of physical complexes (Kd), free energy of 
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folding (∆G), or catalytic power (kcat/Km). In this case, the mathematical definition of epistasis is 

when the combined effect of mutations deviate from a linear null model (Fig. 1.1). This linear null 

model is well described in Figure 1.1A. In a given protein, the effect of the single mutants, A and 

B and the double mutant AB can be measured in vitro additive biophysical traits like catalytic 

activity and in vivo phenotypes like cellular growth rate. The null expectation is that the additive 

effect of the individual mutants are equivalent to the effect of the double mutant. When a pair of 

mutants do not have proportional effects on both catalytic activity and growth rate, A and B are 

identified as epistatic to each other. One cause of specific epistasis are the interactions between 

residues at the interface in a physical complex that we considered in section 1.2.  

 

However, epistasis is not limited to non-additive interactions at the level of individual molecules 

(and biochemical parameters). When epistasis is considered at the level of growth rate, it becomes 

clear that epistasis can also emerge from global, non-linear relationships between genotype and 

phenotype.19 For example, consider Figure 1.1B. In this case there is a non-linear function that 

relates some biochemical or biophysical parameter to growth. To illustrate, consider the 

relationship between enzyme activity and growth, which we expect to saturate – in this case, we 

might reasonably expect a plateau where further improvements in activity do not yield growth rate 

enhancements because the enzyme is already “good enough”. Under these conditions even if 

individual mutations have additive effects on the underlying protein’s activity, we might observe 

epistasis at the level of growth rate (Fig. 1.1B). This is exactly how Diss and Lehner interpreted 

the epistasis between Fos and Jun. They constructed a non-linear thermodynamic model relating 

binding affinity to fraction bound: this function was able to describe a majority of the double 
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mutant effects on the ability for Fos and Jun to bind and form a complex. The minority of 

mutational effects that were not captured by this non-linear function were due to specific, structural 

mechanisms at the interface. The major hurdle to defining non-specific epistasis is to identify and 

fit such a function. This is a non-trivial task as it would necessitate in vitro measurements of protein 

function on top of deep mutational scanning assays to collect high-throughput in vivo growth rate 

measurements. However, my work benefits from a long history of in vitro work on my model 

enzyme. In Chapter 4, I discuss the potential to construct a (mathematical) null model that can 

separate my growth-based epistasis measurements into “global” and “specific” components. In the 

absence of such a model, I expect my data reflect epistasis due primarily to the non-linear 

relationship of catalytic activity to growth rate, but may contain potential specific interactions 

between the enzyme pair. In any case, my data should reveal the pattern of epistasis, regardless of 

mechanism. 

 

As for physical interactions, functional interactions between non-binding proteins can also drive 

co-evolution. For example, prior work from our lab showed that synteny (correlated physical 

proximity in the chromosome) and co-occurrence (correlated presence and absence among species) 

could identify some metabolic interactions.20 Of the gene pairs with known function, most form a 

physical interaction, the rest are in the same metabolic pathway. A small subset of these gene pairs 

are coupled by a shared metabolite. A constraint on their intermediate could be driving co-

evolution between subsequent enzymes in metabolism. If so, co-evolution might present a 

powerful strategy to map interactions between functionally linked proteins, not just those that 

physically bind. 
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1.4 The model system: A pair of enzymes in bacterial folate metabolism  

To study epistasis between metabolic enzymes, I selected a pair of enzymes in folate metabolism 

– Dihydrofolate Reductase (DHFR) and Thymidylate Synthase (TYMS). These two enzymes 

catalyze sequential reactions, wherein the product of TYMS is the substrate for DHFR. Folate 

metabolism, also known as one-carbon metabolism, is vital source of amino acids and nucleotides 

like methionine, serine, glycine, thymidine, and purine biosynthesis (Fig. 1.2A).21 The reduced 

folate species in this pathway have a shared chemical backbone and function, which is to carry and 

transfer these one-carbon units in the synthesis of these key building blocks in the cell. 21 Thus, 

we can expect that mutations which disrupt DHFR and TYMS function should effect growth rate 

in a measurable way. Importantly, prior work from the Reynolds lab indicates that DHFR and 

TYMS co-evolve strongly with one another, but co-evolve very little with the rest of folate 

metabolism (and indeed the genome).20 Analyses of both gene synteny and gene co-occurrence 

suggest that these two enzymes form a modular unit, and this was corroborated through epistasis 

measurements for select mutants and forward evolution experiments.20 Thus, DHFR and TYMS 

represent a simplified two-enzyme system for my studies, in which I expect epistasis between the 

two enzymes but less epistasis to the surrounding system.  

 

DHFR is the only enzyme in folate metabolism that catalyzes a reduction of folate (from DHF to 

THF), while TYMS is the only enzyme that catalyzes the corresponding oxidation (from THF to 

DHF).  As a consequence,  point mutations of DHFR that slow down catalytic activity led to: (1) 

an accumulation of DHF, the shared intermediate between DHFR and TYMS and (2) a depletion 
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of downstream reduced folate species that drive amino acid and nucleotide synthesis. DHF 

accumulation likely inhibited the poly-glutamation reaction on reduced folates, and lowered their 

abundance in the cell.22 These imbalances in folate metabolites were partially rescued when the 

DHFR mutant was paired with a catalytically inactive TYMS. The mechanism underlying the 

epistasis between DHFR and TYMS are constraints on folate metabolite abundances like the toxic 

effect of accumulation DHF and need to retain the pool of downstream reduced folates in 

nucleotide and amino acid synthesis. Based on these observations, I expect to see that mutations 

in DHFR are often buffered by loss of function mutations in TYMS, giving rise to positive 

epistasis. 

 

Beyond the modular nature of epistasis between the DHFR/TYMS pair, an additional benefit of 

using both DHFR and TYMS as model system is that they are well-studied enzymes. We know 

their structures, function, and conformational dynamics. Let us first review basic biochemical 

information about these two enzymes: their role in the folate metabolic pathway, the basis for 

biochemical coupling, their structural biology, and effect on growth rate.  

 

1.4.1 The structural biology and biochemistry of DHFR and TYMS  

DHFR, per its name, catalyzes the reduction of the folate, dihydrofolate (DHF) to tetrahydrafolate 

(THF). Its cofactor, NADPH, acts as a hydride donor to DHF. This small, approximately 19 kDA, 

enzyme functions as a monomer (Fig. 1.2B). The structure of E. coli DHFR cycles through a series 

of distinct and dramatic conformational changes during the redox reaction.23,24 In brief, key loops 

at the active site of DHFR facilitate the binding and release of substrate and cofactor throughout 
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the cycle. This includes the Met20 loop, which covers the opening of the active site and packs 

against NADPH in the closed conformation. Hydrogen bonds between pairs of residues in the F-

G loop and the Met20 loop stabilize the closed conformation. In the closed conformation, the 

hydride transfer between NADPH and DHF forms NADP+ and THF. After this, DHFR assumes 

the occluded conformation where the Met20 loop moves to open up the active site to release 

NADP+. The Met20 loop in the occluded conformation is stabilized by  hydrogen bonds with the 

G-H loop. These conformational changes along the catalytic cycle of DHFR has been a useful 

model system for understanding how conformational changes physically drive the catalysis of 

biochemical reactions in enzymes.  

 

TYMS, per its name, synthesizes thymidine by transferring a carbon unit from the reduced folate, 

5,10-methylene THF, to dUMP 25 The products of this reaction are dTMP, a nucleotide essential 

for DNA synthesis, and DHF, the substrate of DHFR. Functional E. coli TYMS is a homodimer 

(Fig. 1.2C). The active site is formed at the interface of the two homodimers.26 In the active site 

itself, four arginine residues directly bind the phosphate group of dUMP. Two arginine residues 

are in one homodimer (R21 and R166) and the other two are in the opposite homodimer (R126 

and R127). After TYMS binds substrate and cofactor, catalysis is initiated by a nucleophilic attack 

on dUMP by the thiol group in position C146.25 R166 forms hydrogen bonds with the phosphate 

group of dUMP and the thiol group of C146.27  

 

1.4.2 DHFR and TYMS activity is directly linked to growth  
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As essential enzymes, perturbations in the catalytic activity of DHFR and TYMS can be directly 

detected from changes in growth rate.28,20  This is clearly observed in the relationship between in 

vitro enzyme activity and bacterial growth rate. In 2011, Reynolds et al. generated a series of point 

mutations in DHFR and measured their respective in vitro Michaelis-Menten steady-state enzyme 

kinetic parameters. The catalytic activities (kcat/Km) of these mutants spanned over 5 orders of 

magnitude. These changes in enzymatic activity are directly detectable from their effect on 

bacterial growth rate (Fig. 2.3). This relationship is monotonic, where lower DHFR activity 

decreased growth. These DHFR point mutants make up what we call the “Calibration Curve”. For 

TYMS, the analogous Calibration Curve is limited to three variants: WT, Q33S, and R166Q. 

Because my thesis work studies these three variants in detail, below I will further discuss the 

biochemical roles of Q33S and R166Q. 

 

As mentioned earlier, R166 is one of the four arginine residues that coordinate the phosphate group 

of dUMP. As such, it is perhaps unsurprising that the R166Q mutation is fully detrimental to 

TYMS function. Catalytic activity of R166Q TYMS is not detectable. In contrast, mutations at the 

other three arginine residues that contact dUMP result in reduced TYMS activity, but not a total 

loss of function. A crystal structure of E. coli R166Q TYMS provides a structural basis for why 

mutations at this position are intolerable for TYMS catalytic function.27 The structures of R166Q 

TYMS and WT TYMS are highly similar to each other, with a RMSD = 0.24 Å. The major 

difference at the active site is the orientation of C146. In the mutant structure, C146 does not form 

hydrogen bonds with R166Q and the side chain shifted closer into the nucleotide-binding site. This 

change in the active site likely decreases binding affinity for dUMP and prevents the precise 
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orientation the thiol group in C146 for catalysis of the methylation reaction. This mutation in 

TYMS directly affects growth. E. coli with the R166Q mutation in TYMS are auxotrophic for 

thymidine and will not grow unless their growth media is supplemented with thymidine. When 

supplemented with thymidine, E. coli with this mutation grow as well as WT. 

 

Position Q33 in TYMS lies at the interface between the two TYMS homodimers and has no known 

role in catalysis. A limited saturation mutagenesis assay on 25 positions within and around the 

active site showed that all mutations to Q33 had growth rate effects that ranged from 50-100% of 

the WT. Out of the TYMS mutants from this saturation mutagenesis study with “moderate” growth 

rate effects, we were able to successfully protein purify Q33S TYMS and measure steady-state 

enzyme kinetics (see section 1.9). Overall, Q33S TYMS was only slightly slower than WT TYMS 

at synthesizing thymidine (Table 1.1, Table 1.2). The Vmax for Q33S TYMS is significantly lower 

than the WT. The Michaelis Constants (Km) for both dUMP and 5,10-methylene THF (MTHF) 

were not significantly affected by the mutation. The catalytic activities (kcat/Km) are also 

statistically similar between WT and Q33S. The growth rate E. coli with Q33S mutation in TYMS 

is similarly unaffected, however we will later see that Q33S is strongly epistatic with many 

mutations in DHFR. Taken together, DHFR and TYMS are an epistatically linked protein pair, in 

which growth rate is strongly linked to enzyme function. I am equipped with in vitro steady state 

Michaelis-Menten measurements for a number of DHFR and TYMS point mutants, which is 

necessary to characterize the behavior of my selection assay (see Chapter 2).  

 

1.5 Deep mutational scanning  
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Given DHFR and TYMS as a model system, I decided to measure epistasis via a deep mutational 

scan (DMS). DMS assays provide a very high-throughput way for investigating both in vitro and 

in vivo functional properties of a protein of interest, given a well-designed assay. All DMS 

experiments start with a saturation mutagenesis library which contain all possible single mutations 

at every single amino acid position in the protein sequence. The library then undergoes a selection 

assay that targets the function of the protein. This assay must report on the mutational effects of 

the function of the protein of interest. The mutants that survive the selection step have greater 

fitness, or are more functional,  relative to the remaining mutants in the library. The mutants that 

struggle to survive the selection step are less functional and less fit.  The issue with using DMS as 

a tool is that developing such an assay is a non-trivial task that requires a significant time 

investment – often over a year. The assay must report on a physiologically relevant parameter that 

can be measured at high-throughput, typically this is measurement based on bacterial growth but 

can vary depending on the protein of interest. For instance, bacterial growth rate can act as a proxy 

for thermodynamic free binding energy, protein stability, etc.29 Once such an assay is well-

developed, the saturation mutagenesis library can then be generated and go through a selection 

step. At a minimum, the library is sampled at the before and after selection, but it is also possible 

to take a series of time points during selection to resolve small changes in growth rate. Each sample 

is then deep-sequenced using Next-Generation Sequencing (NGS) technology to count the 

frequencies of each mutant in the population. These frequencies can be used to estimate the relative 

growth rates of individual mutants, which can be connected back to the parameter of interest (e.g. 

catalytic activity). 
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With the resulting data, the experimenter must overcome the challenge of analysis and 

interpretation of these large-scale measurements. Currently, there is the option of processing these 

data with software package that processes and analyzes generic NGS data from DMS experiments, 

Enrich2.30 Note that in our work, we process, analyze, fit, and visualize all NGS data in customized 

software written in python3. This process of selection and deep sequencing to estimate the 

population of alleles in the library can resolve differences as small as approximately 2% 

differences in growth (as computed from F31Y/WT and F31Y/Q33S in the calibration curve, see 

Chapter 2).  

 

In the past two decades, DMS has been a useful tool to examine the sequence constraints within a 

single protein. A DMS study on the small protein domain, PDZ,  revealed that the pattern of 

positions in the structure that were crucial to its function were consistent with the pattern of the 

most strongly co-evolving amino acid positions in a model of sequence co-evolution.31 DMS 

experiments on the TEM beta-lactamase, the enzyme that causes ampicillin resistance in bacteria, 

and Hsp90, a heat-shock chaperone protein, showed that the pattern of mutational effects is 

strongly dependent on selection pressure by the cellular environment and protein expression 

levels.32 In E. coli, a key enzyme in protein homeostasis is Lon protease, an enzyme that identifies 

and degrades damaged proteins. In laboratory strains of E. coli, this protease is absent. In 

Thompson et al. DMS of E. coli DHFR in the presence and absence of Lon protease shapes the 

distribution of fitness effects. In this study, a greater proportion of mutations are advantageous to 

E. coli growth in the absence of Lon protease. When Lon protease is present, the E. coli growth 

rate is more sensitive to mutations in DHFR that may have lowered protein stability but retained 
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catalytic activity.33 Under conditions with high selective pressure, these proteins were much more 

sensitive to mutations, leading to a change in the shape of the distribution of fitness effects 

(bacterial growth rate) where the number deleterious mutations increased and mutations with 

neutral and beneficial fitness effects decreased.  

 

These numerous DMS experiments have been successful in studying protein structure and function 

within individual proteins. Consistently, across different model systems, these works find that 

proteins are fairly robust and are tolerant to most mutations. These mutations that do affect function 

in a DMS are rarer, are usually deleterious, and tend to localize at positions that are key to the 

structure and function of the protein. Across a range of conditions, the distribution of mutational 

effects is not static, but dynamic according to the selective pressure imposed on the protein.32–34  

 

Though DMS has been a useful tool for studying individual proteins, only one study has used this 

method to study epistasis across proteins. In this work, the model system, Fos and Jun, are two 

alpha-helical proteins interact through a leucine zipper to form a transcription factor. In this study, 

Diss and Lehner generated all possible single and double mutants in leucine zipper domains of Fos 

and Jun and measured their ability to form the transcription factor.7 The basis of their assay is the 

complementation of a methotrexate resistant DHFR fragmented across Fos and Jun. When Fos and 

Jun interacted, the DHFR fragments became active, and enabled the yeast cells to grow in the 

presence of methotrexate. The library was sampled and deep sequenced before and after selection 

with methotrexate. A protein-protein interaction (PPI) score was computed from the WT-

normalized frequencies of each mutant in the population. A thermodynamic model was able 
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predict a majority of the PPI scores of the double mutants from the effects of the single mutants. 

The epistasis in the other mutants that were not predicted by the thermodynamic model were due 

to specific, structural interactions that tended to localize at the  interface between Fos and Jun. 

Overall, this study was the first time epistasis between different proteins was comprehensively 

measured at the amino acid sequence level. In my dissertation, I use DMS as a tool to study how 

epistasis to TYMS is distributed in the full sequence and structure of DHFR. I measured the effects 

of all the mutants in a saturation mutagenesis library of DHFR in the context of a fully functional 

WT TYMS, the moderately active Q33S TYMS mutant, and the fully inactive R166Q TYMS 

mutant. This work will be the first time DMS is used to assess epistasis in the amino acid sequences 

across proteins that functionally interact through a shared metabolite.  

 

We know that in the context of the cell that proteins do not operate in isolation and that epistatic 

interactions impose an evolutionary constraint on protein sequences. Despite this, application of 

DMS to study function in more than one protein has been rare. My DMS dataset on the epistasis 

between DHFR and TYMS will be a major contribution in this technical field.  

 

1.6 A summary of results  

As described in the previous section, the landscape of mutational effects in a DMS is dependent 

on the conditions of the experiment. This process is so important that I dedicate the entirety of 

Chapter 2 to describing how I chose the final conditions of the selection step of the experiment. A 

DMS of DHFR has already been done by Thompson et al. in very specific conditions that increased 

the sensitivity and resolution between near-WT and advantageous mutations. In this regime, 
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Thompson et al. was able to detect how changes in protein homeostasis modulate the landscape of 

fitness effects in DHFR. In this project, my goal was to measure epistasis between DHFR and 

TYMS. Therefore the conditions I ended up choosing were different than those in Thompson et al. 

DHFR and TYMS were expressed from a different plasmid backbone and at theoretically higher 

levels. I chose to supplement the media conditions of the assay with both amino acids and 

thymidine. This relieved selective pressure on both TYMS and folate metabolic enzymes 

downstream from DHFR. Under these environmental conditions and genetic background, I was 

able to collect high quality data and measure epistasis in DHFR and R166Q TYMS.  

 

I performed the selection of the DHFR saturation mutagenesis library under these conditions in 

the background of each TYMS variant, in triplicate. The resulting data is a comprehensive map of 

fitness effects at every position and every possible single amino acid mutation in the sequence of 

DHFR in the context of each TYMS variant. The distribution of DHFR fitness effects shifts with 

TYMS activity. DHFR is most sensitive to mutations in the context of a fully functional TYMS 

and the least sensitive to mutations when TYMS is inactive. We recapitulated the positive epistasis 

between DHFR and R166Q TYMS in the DHFR Calibration Curve.  

 

After epistasis was computed for each DHFR mutant in the background of each TYMS mutant, 

the DHFR positions were categorized into four groups using a K-means clustering algorithm. 

These categories are: no epistasis, negative epistasis, positive epistasis, and super positive 

epistasis. In both TYMS mutant backgrounds, the structural distribution of epistasis among these 

categories are very different. In the R166Q TYMS background, strong positive epistasis is 
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primarily in the DHFR active site. Positions with positive epistasis surround the active core in a 

shell-like configuration. There were no positions with negative epistasis. In the Q33S TYMS 

background, negative epistasis is localized within the active site and in the lower active site domain 

of DHFR. Positive epistasis was distinctly localized in the upper, adenosine binding domain of 

DHFR. The strongest signal of epistasis was primarily localized in the active site of DHFR. This 

result aligns with the idea that the rate of DHFR catalysis is a major constraint that drives the 

interaction between DHFR and TYMS. Also we observed that the sign of epistasis at the active 

site was not the same in each TYMS background. Here, DHFR active site positions were 

negatively epistatic to Q33S TYMS and strongly positively epistatic to R166Q TYMS. This 

observation, that in this type of functional interaction between two subsequent metabolic enzymes, 

the pattern of epistasis across in the amino acid sequence in one enzyme is not static and is 

dependent on the activity of TYMS.  
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1.7 Figures  

 

 

 

 

Figure 1.1 A visual description of non-specific epistasis (adapted from Domingo et al.)19 The 

relationship between a generic additive biophysical trait (x-axis) and a generic measurable 

phenotype (y-axis) in two different models of epistasis. (A) The solid grey line is the linear 

relationship between the additive biophysical trait and the phenotype. The arrows in blue show the 

magnitude of the effect of the single mutations in A and B on the biophysical trait. The longer blue 

and red arrows are the effects of the single mutants summed together. The grey marker at the origin 

is the WT. The grey marker at coordinates [AB,AB] is the effect of the double mutation. The 

mutational effects on the protein are directly proportional to their effects on the observed 

phenotype in the organism (grey dashed lines). (B) The grey line is the non-linear relationship 

between the biophysical trait and phenotype. The effect of the single mutations, A and B, and the 

double mutant, AB, on the biophysical trait have the same magnitude in (A). The solid black 

double-headed arrow marks the magnitude of the expected phenotype of the double mutants, given 

Epistasis is not limited to physical complexes.  
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a linear model. The dashed grey lines are the measured biophysical trait and phenotypes in the 

mutants. The orange double-headed arrow is the epistasis, or the difference of the observed 

phenotype by the double mutants in the linear and non-linear models. 
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Figure 1.2 The model system. (A) An abbreviated folate metabolic pathway (B) The x-ray crystal 

structure of E. coli Dihydrofolate Reductase (PDBID:1RX2).35  In cyan sticks are its substrate, 

dihydrofolate (DHF) and NADPH. (C) The x-ray crystal structure of E .coli Thymidylate Synthase, 

(PDBID:1BID).36 Each homodimer has a different color (lavender on the left and pink on the 

right). In the active sites are cyan stick representations of 5,10-methylene THF and dUMP. The 

four arginine residues are represented in magenta sticks. Right in between homodimers are stick 

representations of Q33.  
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Figure 1.3 In vitro Michaelis Menten steady state kinetic measurements. In 100 µM of purified 

protein (WT TYMS (green) and Q33S TYMS (blue)).  
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1.8 Tables of enzyme kinetics for WT TYMS and Q33S TYMS. R166Q TYMS activity was 

not measurable.  

 

Table 1.1 TYMS kinetics in 150 µM MTHF 

TYNS Vmax error Km  error kcat error kcat/Km error 

WT  0.150 0.013 2.237 1.716 2.994 0.256 1.762 1.07 

Q33S  0.118 0.009 2.150 0.613 2.355 0.184 1.152 0.299 

         
Table 1.2 TYMS kinetics in 100 µM dUMP 

TYMS Vmax error Km  error kcat error kcat/Km error 

WT  0.145 0.014 5.284 0.827 2.898 0.285 0.556 0.093 

Q33S  0.100 0.010 4.425 1.841 1.990 0.193 0.496 0.172 
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1.9 Methods and Materials for in vitro enzyme kinetics of TYMS  

 

1.9.1 Cloning TYMS into protein expression vector 

The thyA gene was amplified by PCR from E. coli MG1655 and cloned into pET24A (using 

XbaI/Xho restriction sites) with no 6-His tag. TYMS point mutants were made using Agilent 

QuikChange II site-directed mutagenesis kit.   

 

1.9.2 Protein induction and expression 

All protein expression was carried out in BL21(DE3) cells transformed with expression vectors 

above. Transformed cells were grown in LB with Kanamycin (35mg/L) for selection overnight. 

Following overnight growth, cultures were back-diluted 1:100 in Superbroth and grown at 30°C 

to an optical density at 600nm (OD600) of 0.5-0.8;  IPTG was added to 1mM final concentration. 

Induced cultures were incubated at 30°C for 4 hours.  0.2ml samples were taken before and after 

induction; samples were pelleted and supernatants removed. The induced cultures were pelleted at 

5000 x g for 15 minutes, 4°C. Supernatants were removed and cell pellets were stored at -80C until 

purification performed.  

 

1.9.3 Purification 

Thawed cell pellets were resuspended in 5ml/50ml culture of lysis buffer (20mM Tris (pH 8.0), 

10mM MgCl2, 5mM DTT, 0.2mg/ml lysozyme, 5ug/ml DNAseI, 0.1% deoxycholate); 

resuspended cells were incubated for 20 minutes at room temperature with gentle rocking.  Lysed 

cells were pelleted at 15K x g, 4°C, for 20 minutes to separate soluble and insoluble fractions.  The 
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soluble fraction was removed from the pellet and combined with 0.3g/ml (NH4)2SO4 (50% 

saturation) and incubated at 4°C with gentle rocking for 10 min before centrifuging at 15K x g, 

4°C for 20 min. Supernatants were removed and an additional 0.2g/ml (NH4)2SO4 was added to 

achieve 80% saturation and incubated 10-15 min at 4°C with gentle rocking. Centrifugation at 15K 

x g, 4°C for 20 min was performed and pellets retained. Pellets were resuspended in 25mM 

Potassium Phosphate pH 6.5 and dialyzed overnight in 25mM Potassium Phosphate pH 6.5. Anion 

exchange chromatography was performed using a 1ml HiTrap Q HP column (Cytiva); 25CV 

gradient to 1M NaCl in 25mM Potassium Phosphate pH 6.5.  Fractions were combined, 

concentrated, and buffer-exchanged into 25mM Potassium Phosphate pH 8, 0.3M NaCl; size 

exclusion chromatography (HiLoad 16/600 Superdex 75, Cytiva) was performed in the same 

buffer. Fractions were collected and concentrated prior to making kinetics measurements.  

  

1.9.4 Substrate preparation 

(6R)-methylenetetrahydrofolic acid (MTHF) was purchased from Merck & Cie (Switzerland) and 

dissolved to 100mM in nitrogen-sparged citrate-ascorbate buffer (10mM ascorbic acid, 8.5mM 

citrate.  30µL aliquots were made in light-safe microcentrifuge tubes, flash-frozen in liquid 

nitrogen, and stored at -80C.  Before use, stock was thawed and diluted to 10mM in TYMS kinetics 

reaction buffer and quantitated in an enzymatic assay: 50uM MTHF, 200uM dUMP and 1µM 

TYMS protein were combined and A340 measured until steady-state reached. Actual concentration 

is calculated from the difference in A340 before and after the reaction using Beer’s Law (MTHF 

extinction coefficient: 6.4mM-1cm-1).   
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1.9.5 Steady state enzyme kinetics assay 

To characterize kcat and KM for both substrates,  we followed the protocol for steady-state 

Michaelis Menten kinetics adapted from Wang et al. and Agrawal et al.23,37 Briefly, to measure 

initial velocity (Vo) of DHF production, we used a UV/Vis spectrophotometer (Perkin Elmer 

Lambda 650) to monitor increasing absorbance at 340nm (De340=6.4 mM-1 cm-1). This wavelength 

is a proxy for DHF production.23,37 The substrates (dUMP (Sigma) and N5,N10-methylene-5,6,7,8-

tetrahydrofolate (CH2H4fol) (Merck & Cie)) were prepared from stocks to appropriate 

concentrations in TYMS Kinetics Assay Buffer (100mM Tris, 1mM EDTA, 5mM formaldehyde, 

50mM DTT, pH 7.5) and allowed to equilibrate to room temperature.  Protein was prepared in the 

same assay buffer and allowed to equilibrate to room temperature for a minimum of 30 minutes 

prior to making measurements. Measurements for determining Km for 5-10 methylene THF 

substrates were made using an array of 5-10 methylene THF at saturating concentration of dUMP 

(100µM). Similarly, to measure the enzyme’s  Km of dUMP , measurements were made using an 

array of dUMP concentrations at saturating concentration of 5-10 methylene THF (150µM). In all 

reactions,  DHF accumulation was measured at A340 for 15 minutes in a Perkin-Elmer Lambda 650 

spectrophotometer alongside a cuvette that contained no-protein as a reference at 25°C.  A340 data 

was converted to DHF concentration using Beer’s law, and the kinetic parameters (Vmax, Km, kcat) 

were fit with a Michaelis-Menten model in GraphPad Prism software. 
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CHAPTER TWO 
Defining experimental conditions for high resolution measurement of inter-

protein epistasis 
 
 
 

2.1 Background  

Over the past decade, deep mutational scans have revealed the distribution of mutational effects 

on fitness in a number of individual proteins.29,31–34,38,39 Fitness is defined as the measurable effect 

of a mutation in a protein on bacterial growth rate. The distribution of fitness effects from these 

experiments typically show two modes: one large peak centered near-WT and one much smaller 

peak with a deleterious fitness. The general interpretation of these distributions is that natural 

proteins are relatively robust to mutation, with a small number of mutations leading to catastrophic 

unfolding or loss in activity. However, two examples of DMS in one protein repeated over a range 

of conditions clearly show that the conditions of the assay modulate the shape of the fitness 

distribution substantially. In the first example, a DMS on the chaperone, Hsp90, was performed 

over a range of expression conditions. This study revealed that Hsp90 was increasingly sensitive 

to mutations at low expression levels.32 The second example performed DMS on TEM-1 beta 

lactamase, the protein that confers resistance to the antibiotic, ampicillin to bacteria, across a range 

of ampicillin concentrations.34 This study showed that under increasing levels of antibiotic 

concentration and thus greater selection pressure, more positions in TEM-1 beta lactamase were 

sensitive to mutations. This pattern of resides stretched from the core to the surface with increasing 

ampicillin concentration. Thus – consistent with intuition – increasing selection pressure (either 

by reducing protein expression or increasing the concentration of an antibiotic) decreases how 
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robust a protein is to mutations. Given this information, it was important to carefully consider the 

conditions in the selection step of the DHFR deep mutational scan.  

 

For this reason, I performed a series of experiments that helped me choose the condition in which 

I performed the selection step of the Deep Mutational Scan of DHFR. The condition I chose fit 

two criteria. First, this condition must show an ability to resolve growth rates of DHFR mutants in 

the Calibration Curve along a broad range of catalytic activities in DHFR, from wild-type to 

catalytically inactive. Second, this condition must show that DHFR is epistatic to R166Q TYMS. 

Taken together, I sought to maximize the dynamic range over which I could detect changes in both 

DHFR activity and epistasis. My basic strategy was to measure growth rates for select DHFR point 

mutants in the background of specific TYMS mutations, variations in expression, and variations 

in media supplementation. Importantly, prior work has established steady-state Michaelis Menten 

parameters (kcat, Km) for 11 DHFR mutants (Table 2.1). These point mutants, which I refer to as 

the “Calibration Curve” mutants, span nearly five log orders in catalytic power. This allows me to 

closely examine the relationship between in vitro DHFR catalytic activity and growth rate, and 

establish the dynamic range and resolution of my assay. I used the bacterial strain E. coli ER2566 

that contains genomic knockouts in both DHFR and TYMS.40 I refer to this strain as ER2566 

∆folA ∆thyA. For selections, DHFR and TYMS are expressed from pTET-duet, a dual expression 

vector. In front of DHFR is a T7 promoter. In front of TYMS is the tet promoter. DHFR itself is 

upstream of TYMS. The terminator of the T7 promoter comes directly after the TYMS coding 

region. When I refer to a mutation in DHFR or TYMS, I describe mutations in this vector. Lastly, 

DHFR and TYMS alleles are referred to with the following convention: WT/WT for wild-type 
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DHFR and wild-type TYMS, respectively; or M42F/R166Q for the mutation M42F in DHFR and 

the mutation R166Q in TYMS.  

 

2.2 Optimizing conditions in the experimental measurements of epistasis between DHFR and 

TYMS  

 

2.2.1 Modulating expression of DHFR with an altered ribosome binding site  

First, I tested the effect of altering DHFR expression on growth rate. To do this, I used two variants 

of the ribosome binding site. The first one, named “RBS 1”, is the RBS variant with the Shine-

Dalgarno sequence, “AAGGAG”. The second variant is called “RBS 3” and has the sequence 

“AATGAG”. It has a lower translation initiation rate, leading to DHFR expression that is 

approximately 0.05x lower than the Shine-Dalgarno RBS 1.33,41  

 

For each RBS, I measured the growth rate of all possible single point mutants in the first 40 amino 

acid positions of DHFR with the NGS-Fit Assay. This is sublibrary 1 of the full DHFR saturation 

mutagenesis library. This allowed me to evaluate the effects of modulating expression in a simpler 

and less costly experiment. I provide a deeper description of the NGS-fit assay in Chapter 3 (see 

section 3.3 and Figure 3.2). In brief, I transformed the library of interest into the knockout E. coli 

strain, and used next-generation-sequencing (NGS) to monitor the frequencies of thousands of 

mutant alleles in parallel under conditions in which E. coli growth rate is coupled to DHFR activity. 

During this experiment, the E. coli were grown in a turbidostat with M9 minimal, 0.4% glucose 

media supplemented with 0.4 µg/mL thymidine. From this experiment, I obtained growth rate 
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measurements in both RBS backgrounds for a total of 762 mutants (~97% coverage of the 

sublibrary), after excluding the start codon and filtering for mutants that are present at the 

beginning of the experiment. A mutant was considered present if it had 10 sequencing reads at the 

t=0 time point and two other later time points.  

 

Across the entire sublibrary, we observed lowering expression with RBS 3 broadly slowed growth. 

In the correlation between these two data sets, the R2 is 0.68 (Fig. 2.1B). The mean relative growth 

rate in the RBS 1 background is 0.531 hr-1. In the RBS 3 background, the mean relative growth 

rate is much lower at 0.116 hr-1. While the dynamic range of growth rates is greater in the RBS 3 

background, it was difficult to accurately observe growth rates for deleterious mutants. In the RBS 

3 background, 95 mutants were considered absent and thus filtered from analysis. These mutants 

had too few sequencing reads, failed to meet the criteria for presence in the population. In contrast, 

in the RBS 1 background, only 19 mutants were filtered from analysis. By assessing how the RBS 

background across mutants in the sublibrary as a whole, I was able to identify a tradeoff in lowering 

DHFR expression that informed my decision to choose RBS 1. The greater dynamic range of 

relative growth rates in the RBS 3 cost noisier and incomplete growth rate fits in mutants with 

deleterious growth rate effects.  

 

To evaluate the effects of modulating expression in a more focused way, I considered the subset 

of mutants in the Calibration Curve (Fig. 2.1A). In both RBS 1 and RBS 3 backgrounds, growth 

decreased with drops in DHFR catalytic activity. In the case of the DHFR mutants in the RBS 1 

background, this decrease in growth is more gradual. The relationship between growth rate and 
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DHFR biochemical activity is much steeper when protein expression is lowered by RBS 3. This 

applies to the DHFR variants with catalytic activities that are within an order of magnitude of the 

wild-type. D27N DHFR, the mutant that sets the floor for both growth and catalytic activity, 

behaves unexpectedly at lower expression levels. In the context of RBS3, this mutant is apparently 

more fit than the other DHFR mutants that catalyze their reactions at greater speeds. D27N DHFR 

in the RBS3 background also appears to be more fit than D27N in the RBS1 background. This is 

inconsistent with the bulk of the growth rate data, which suggest that decreasing expression leads 

to more deleterious effects of mutations on growth. These discrepancies in the growth rate effect 

of D27N DHFR come from lower allelic frequencies in RBS 3 than in RBS 1, leading to large 

statistical noise. In general, it is challenging to measure the fitness effects of highly deleterious 

mutations which are present in low frequencies after a short time period of selection. This is clear 

in the data for DHFR D27N. The increased severity of growth rate defects with lowered protein 

expression also applies to the rest of the sublibrary of 762 DHFR mutants (Fig. 7.1B).  

 

Ultimately, I opted against lowering protein expression with RBS 3. My logic was that reducing 

expression would lead to a large number of highly deleterious mutations, making growth rate 

measurements statistically noisy for a large fraction of my library. Additionally, read coverage and 

data quality are precious capital in NGS-based assays. Lower DHFR expression meant sacrificing 

data quality for greater resolution among near-WT and moderate DHFR mutational effects. The 

RBS 1 did successfully resolve these same mutants but in a narrower range of growth rates. I 

preferred an outcome where I was able to measure the entirety of the saturation mutagenesis 

library. RBS 1 would yield higher data quality, greater read depth for a larger portion of the library, 
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and thus more accurate growth rate measurements. All experiments in the rest of this document 

were in the context of RBS1.  

 

2.2.2 Modulating environment with media  

Before proceeding with the deep mutational scan, it was important to ensure that the epistasis 

between DHFR and TYMS was robustly detectable. The simplest way to modulate epistasis was 

by adjusting the media conditions of the experiment. Here, I used the Growth Rate Assay in the 

plate reader (see section 2.6.1) to measure growth rates of DHFR and TYMS mutants across 

different conditions in high throughput.  

 

I first focused on the effect of thymidine supplementation on epistasis in just one mutant, G121V 

DHFR. Here, I grew four mutants in two different M9 minimal media conditions: in the presence 

or absence of 50 µg/mL thymidine (Fig. 2.2). These four mutants are WT/WT, G121V/WT, 

WT/R166Q, and G121V/R166Q. This experiment was performed in triplicate in a single 96-well 

plate. The resulting data in the assay are 24 hour time courses of OD600. The growth rates were 

linearly fitted over an empirically determined exponential phase of growth. In this experiment, this 

range was between 0.06 and 0.20. All growth rates were fitted with the same range of OD600s. In 

the absence of thymidine (Fig. 2.2A), only the WT/WT and G121V/WT were able to grow. As 

expected, G121V/WT grew slowly. Without the ability to synthesize thymidine nor an exogenous 

source of thymidine, the R166Q TYMS mutants were not able to survive. In the presence of 

thymidine (Fig. 2.2B), the pressure on R166Q TYMS is relieved and G121V is buffered by R166Q 

TYMS. Epistasis of G121V DHFR to this TYMS mutant is computed from these four growth rate 
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measurements (Fig. 2.2C, equation 1.4). In the presence of thymidine, the signal of epistasis is 

much greater. 

 

Next, I expanded these measurements of growth and epistasis to the remaining Calibration Curve 

(Fig. 2.3). To control for day to day variation between experiments, I normalized growth rates with 

WT/WT. I qualitatively reproduced the pattern of epistasis between DHFR and TYMS reported in 

Schober et al., where DHFR mutations are either fully rescued or partially rescued by a loss of 

function in TYMS (Fig. 2.3A). I also observe variation in the magnitude of epistasis across these 

mutants (Fig. 2.3B). Relieving selective pressure on TYMS function by supplementing thymidine 

into the media was key to detecting epistasis across a range of DHFR catalytic activities.  

 

I next asked whether further supplementation of the growth media could increase the signal to 

noise ratio of epistasis. The purpose of amino acid supplementation is to reduce selective pressure 

on pathways downstream of DHFR that are responsible for synthesizing amino acids and purines. 

Here, I tested whether supplementation with FolA Mix (see section 2.6.6.3) or 0.4% amicase 

affected the signal of epistasis. In this experiment, I chose to perform the Growth Rate Assay on 

three mutants that spanned a range of DHFR catalytic activities (Fig. 2.4). When supplemented 

with either FolA Mix or amicase, the signal of epistasis was greater for the two more deleterious 

mutants, F31Y/L54I and D27N. For DHFR mutants with near-WT (M42F) and moderate (F31Y) 

catalytic activities, the signal of epistasis was slightly diminished. The presence of amino acid 

supplementation increased the difference of epistasis between these two groups of DHFR mutants. 
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For the sake of simplicity, I chose to supplement the growth media with 0.4% amicase over FolA 

Mix.  

 

The final media condition I chose to perform the deep mutational scan in replicates the condition 

used in Schober et al. Regardless, these experiments were useful to rigorously test what conditions 

were reasonable for measuring both growth rate and epistasis for a saturation mutagenesis library. 

This process is necessary in the development of Deep Mutational Scans in general to ensure that 

the output of the assay actually reports on the effect of mutations in the cell. I chose to take the 

time to rigorously test these conditions on a smaller set of DHFR mutants to avoid a scenario where 

I collected NGS data were noisy and uninterpretable for the entirety of the saturation mutagenesis 

library. 

 

2.3 Evaluating effect of plasmid-based expression of DHFR and TYMS on biochemical 

activity in cellular lysates  

Our model system expresses DHFR and TYMS from a plasmid; not endogenously from the 

genome. Since E. coli in the natural world do not typically do this for essential metabolic enzymes, 

it worthwhile to ask whether and how much our model system expresses DHFR and TYMS 

compared to endogenous expression from the genome.  

In these experiments, the goal is to compare the activities of DHFR and TYMS in the lysates of 

strains that express these enzymes endogenously in the genome to strains that do so exogenously 

in the pTET-duet plasmid vector.  
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The cell lysate assays for DHFR and TYMS use a spectrophotometer to monitor the absorbance 

of the product of TYMS and the substrate of DHFR, dihydrofolate (DHF). DHF can be detected 

spectrophotometrically at an absorbance of 340 nm. In the DHFR lysate assays that monitor DHFR 

activity, DHF is consumed by DHFR, resulting in a drop of the signal over the course of the 

experiment. In the TYMS lysate assays, the opposite is true, DHF accumulates over the course of 

the experiment as TYMS synthesizes it. This drives an increase of the signal over the course of the 

experiment.  

 

These data were collected in collaboration with Christine Ingle, Research Scientist in the Reynolds 

Lab collected the following data in this section of the chapter. I provided the reagents, developed 

the protocol for the cell lysate assay, and analyzed the data she collected.  

 

2.3.1 DHFR Cell Lysate Assay  

Four E. coli strains were assayed for DHFR activity. The first is ER2566 “WT”, which contains 

genomic versions of DHFR and TYMS. The second is the genomic double knock out of these two 

enzymes, ER2566 ∆folA ∆thyA. The third strain is the double knockout with the plasmid 

containing WT DHFR and WT TYMS, ER2566 ∆folA ∆thyA + pTET-duet (WT/WT). The last 

strain is the double knockout with a WT DHFR and R166Q TYMS. These cell lysates were 

prepared as described in the Materials and Methods section and then pre-incubated with 100 µM 

NADPH (see section 2.6.2.1.2 on how I prepared this stock). After adding 100 µM of DHF to the 

cell lysate in the cuvette, the sample was immediately placed in the spectrophotometer where the 

A340 nm was monitored for 180 seconds. Figure 2.5A-B shows what these time course data look 
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like after base-line normalization. The strain that expresses DHFR endogenously has a much 

weaker signal relative to the strains that express DHFR from the plasmid. This difference is so 

stark that I felt it was necessary to “zoom into” the data for ER2566 “WT” and the double-knockout 

strains (Fig. 2.5B, Fig. 2.5D). In the signal for the double-knockout that expresses no DHFR, the 

A340nm signal does decrease until approximately 75 seconds into the experiment. After this, the 

signal levels off. This shows that outside of the DHF that is added to the sample, there are other 

molecules in the lysate that are photoactive at an absorbance of 340nm, or that DHF is undergoing 

some other degradation. Additionally, the presence of the loss of function mutation in TYMS 

controls sources of DHF outside of the 100 µM added to the sample. Overall, it is reasonable to 

conclude that the plasmids expresses DHFR at much higher levels (approximately 100-fold 

greater) than the natural, endogenous ER2566 “WT” strain (Fig. 2.5C-D). 

 

2.3.2 TYMS Cell Lysate Assay  

In this assay, the activities of three TYMS variants were expressed from the pTET-duet plasmid 

in ER2566 ∆folA ∆thyA: WT, Q33S (intermediate), and R166Q (loss of function). In the TYMS 

lysate assay, DHF production by TYMS is monitored after adding the cofactor (150 µM MTHF) 

and substrate (100 µM dUMP) (Fig. 2.6A). To control for DHF abundance, the TYMS variants 

are paired with an inactive D27N DHFR. Alongside strains that express DHFR and TYMS from 

the plasmid, we included the strains ER2566 “WT” and ER2566 ∆folA ∆thyA. TYMS 

endogenously expressed from the genome of ER2566 “WT” showed the greatest TYMS activity 

(Fig. 2.6B). The double-knockout strain set the floor of activity and was comparable to activity by 

R166Q TYMS (Fig. 2.6B). WT TYMS and Q33S TYMS activities from the plasmid were at 
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similar levels to each other but had less than half of the activity of endogenous TYMS. Like with 

DHFR, these data show that activities of TYMS expressed from the plasmid and the activity of 

TYMS expressed from the genome are not similar in magnitude to each other. This experiment 

also clearly showed that a mutation that renders the enzyme catalytically inactive is reflected by a 

corresponding drop in TYMS activity in the lysate.  

 

2.4 Conclusions  

For the selection step of the DMS, I chose to grow the E. coli cultures in minimal media 

supplemented with thymidine and amicase. I also decided to against using a genetic condition 

where a mutation in the ribosome binding site lowered expression of DHFR and TYMS off the 

plasmid. Through these carefully designed growth rate assays, I identified this set of experimental 

conditions that allowed me to resolve the changes in DHFR activity across nearly 5 orders of 

magnitude. These environmental conditions also emphasized the epistasis between DHFR and 

TYMS. After choosing these conditions, I used lysate assays to characterize the activities of DHFR 

and TYMS in the context of this set of conditions. I found that the plasmid-based expression 

system in this condition were  significantly higher than the activities in the cell lysates of genomic, 

wild-type DHFR and wild-type TYMS. Along with differences in enzymatic activity, the growth 

rate effect of mutations in DHFR are also a function of the abundance of the enzyme in the cell. 

Taken together, this work were the conditions of the growth rate assay to measure epistasis 

between DHFR and TYMS. 
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2.5 Figures  

 

Figure 2.1. The effect of a mutation in the ribosome binding site (RBS) on growth rate effects 

of single point mutants of DHFR.  (A) The Calibration Curve DHFR point mutants in the context 

of two RBS variants: the Shine-Dalgarno sequence (RBS 1, navy blue) and a mutant that lowers 

transcriptional activity (RBS 3, light blue). (B) Comparing RBS variant effect on the relative 

growth rates of mutants in sublibrary 1 of DHFR. Relative growth rates are normalized such that 

a mutant with a growth rate of 1 is equivalent to WT. RBS 1 is on the x-axis, RBS 3 is on the y-

axis. The navy markers are the relative growth rates for individual mutations. The black dashed 

line shows Y = X. The cyan dashed line is the correlation fitted with a linear regression. The cyan 

text reports the equation of the fit (Y = slope*X + intercept) and the R-Squared statistic (R2).   
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Figure 2.2 Thymidine supplementation increases signal of epistasis. Growth rates of E. coli 

strains with G121V DHFR and/or R166Q TYMS mutations in media (A) with no thymidine 

supplementation or (B) with 50 µg/mL thymidine. (C) Epistasis of G121V  

DHFR to R166Q TYMS in the presence and absence of thymidine. 
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Figure 2.3 The relationship between DHFR catalytic activity, growth, and epistasis in 

minimal media supplemented with 50 µg/mL thymidine.  (A) Calibration curve in media with 

50 µg/mL thymidine. The relative growth rates were normalized by WT. In black are the single 

mutants, with a WT TYMS background. In red are the double mutants with a R166Q TYMS 

background. (B) Epistasis of each DHFR mutant to R166Q TYMS, ordered by DHFR catalytic 

activity.  
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Figure 2.4 The effect of amino acid supplementation on epistasis select DHFR mutants. These 

experiments were done in media with only thymidine (navy), thymidine and 1X FolA mix (green), 

or thymidine with 0.4% amicase (brown).  
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Figure 2.5  Estimated DHFR activity in cell lysates. (A-B) Time course of absorbance at 340 

nm in cell lysates. (A) ER2566 WT in navy, ER2566 ∆folA ∆thyA in magenta, the double 

knockout expressing WT DHFR and WT TYMS from pTET-duet plasmid in cyan, WT DHFR 

and R166Q TYMS from pTET-duet in orange. (B) Zoomed in view of ER2566 WT (navy) and 

ER2566 ∆folA ∆thyA (magenta). (C-D) Activity, or rate of DHF consumption was inferred from 
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the slopes of the curves in A and B. These activities were then normalized by cell mass in the 

sample. For strains with plasmids, the slopes were fitted with a linear regression over the linear 

parts of the curves (first 20 seconds for WT/WT, first 40 seconds for WT/R166Q). In the strains 

without plasmids, a linear regression was fitted over all of the data. (D) Zoomed in view of 

ER2566 WT (navy) and ER2566 ∆folA ∆thyA (magenta). 
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Figure 2.6 Estimated TYMS activity in cell lysates. (A) A time course of DHF production in 

cell lysates of the following E. coli strains: ER2566 WT (dark purple), ER2566 ∆folA ∆thyA 

(genomic knockouts of DHFR and TYMS, respectively; in light purple), the double knockout 

with pTET-duet with D27N DHFR  and WT TYMS (dark blue-green), or D27N DHFR and 

Q33S TYMS (light blue-green), or D27N DHFR and R166Q TYMS (lime green). The lines 

through the markers linear regressions for respective strains. (B) Rate of DHF production, or the 

activity in the cell lysate are the slopes of the linear fits of each strain. The colors of the bars 

correspond with the color of the traces in (A). 
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2.6 Materials and Methods  

 

2.6.1 Growth rate measurements of individual DHFR/TYMS mutations 

For each mutational variant, a streak of colonies from LB agar plates was grown overnight at 37°C 

in M9 minimal media with 0.4% glucose (with or without supplementation). The next morning, 

all overnight cultures were washed and back-diluted to an optical density at 600 nm (OD600) of 

0.1. into the same minimal media described above for adaptation at 30°C for 4 hours (220 rpm 

shaking). Following adaptation, each culture was  back-diluted to OD600 0.1. 10 µL of this back-

diluted cultures was used to inoculate a  200 µL volume to a final OD600 of 0.005 in a 96 well 

plate. The plate was incubated at 30°C in a plate reader (Perkin Elmer, VictorX3), that the OD600 

was monitored for 24 hours with a program that repeated throughout the course of the experiment. 

A description of the program follows: the plate would shake (30 seconds, normal speed, orbital 

type, 1.80 mm diameter), read the OD600 of each well for 0.5 second, and delay for 570 seconds 

before shaking the plate again. After every third shake, OD600 measurement, and delay, 5 µL of 

sterile dH2O was dispensed into each well. The edge wells of each plate were filled with media, 

but not inoculated to avoid artifacts due to evaporation. Growth rates were estimated for culture 

by linear regression of the log-linear portion of each growth curve. 

 

2.6.2 Assay of DHFR activity in cell lysates  

Cell lysates were prepared by growing the following E. coli strains overnight at 37°C. ER2655 

was cultured in LB only. ER2566 ∆folA ∆thyA were cultured in LB and supplemented with 

50 µg/mL thymidine. ER2566 ∆folA ∆thyA containing pTET-duet that expressed DHFR/TYMS 
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point mutants were cultured in LB supplemented with 50 µg/mL thymidine and 30 µg/mL 

chloramphenicol. The overnight cultures were back-diluted to an OD of 0.1 in respective LB media 

and then grown for 4 hours at 37°C. The OD600 of these cultures were recorded to permit 

normalization of lysates in later steps. These cultures were pelleted at 2348 rcf for 5 minutes at 

room temperature. The supernatants were discarded and the pellets were stored in -20°C freezer 

for at least one night so that the cells undergo an initial lysis via a freeze/thaw cycle. On the day 

of the lysate assay, the cells are thawed at room temperature and then returned to ice. Meanwhile, 

the lysis buffer was prepared in ddH2O (20 mM Tris, pH 7.5, 50 mM MgSO4, 0.1% DOC, 2 

mg/mL lysozyme, 5 ng/mL DNAse, 500 µM DTT). Each thawed pellet was resuspended with a 

volume of lysis buffer to normalize equal amount of cells in each sample pellet. The culture with 

the lowest OD600 received the smallest volume of lysis buffer (in these experiments, 1.2 mL of 

lysis buffer).  

 

After resuspension with lysis buffer, the lysate is then incubated at room temperature on a nutator 

for 15 minutes. Then the debris from the pellet was pellet at 15,000 rcf at 4°C for 15 minutes in a 

microcentrifuge. The supernatants were immediately transferred to fresh Eppendorf tubes. This is 

the undiluted cell lysate to be used in the spectrophotometric assay. Alongside cell lysates, blank 

lysis buffer was also pelleted. This blank lysis buffer was used to prepare diluted cell lysates in 

triplicate. These samples were: undiluted, 1:2, 1:4, 1:8,  and 1:16.  

 

During the lysis and pelleting steps, the remaining reagents for the assay were prepared. The assay 

buffer was prepared by diluting 1M DTT with MTEN, pH 7.0 (50 mM MES, 25 mM Tris Base, 
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100 mM NaCl, 25 mM ethanolamine hydrochloride) in a 1:20 dilution and then placed on ice. The 

assay buffer was then used to dilute the frozen DHF stock to a working concentration of 1000 µM. 

The prepared DHF substrate was covered with foil and placed on ice (see section 2.6.2.1.1 for how 

we prepared the DHF stock). In a separate conical tube, the NADPH substrate was prepared by 

diluting the frozen NADPH stock to a working concentration of 1000 µM (see section 2.6.2.1.2 

for how to prepare NADPH stock). The diluted and undiluted cell lysates were pre-incubated in 

100 µM NADPH – 900 µL of the cell lysate was combined with 100 µL of the 1000 µM NADPH 

working stock in an Eppendorf tube. 30 minutes ahead of measurements of 340 nm in the 

spectrophotometer, the 1000 µM DHF working stock and the cell lysate pre-incubated with 100 

µM NADPH were equilibrated in a 25°C water bath for 30 minutes (in the dark). A blank sample 

containing no cell lysate was prepared from 900 µL pelleted lysis buffer with 100 µM NADPH 

and 100 µL of the DHF working stock. For each reaction, 900 µL of the cell lysate + 100 µM 

NADPH were combined with 100 µL of the 1000 µM DHF (for final DHF concentration of 100 

µM) into a quartz cuvette. The UV-vis spectrophotometer then immediately recorded the 

absorbance of the sample at 340nM at 25°C for 2-5 minutes. The quartz cuvettes were thoroughly 

cleaned between each sample with dH2O three times, acetone two times, dried with compressed 

air, and wiped free of smudges with lens paper.  

 

2.6.2.1 Preparation of key DHFR lysate assay reagents. Adapted from Reynolds et al. 28 

2.6.2.1.1 DHF stock  

MTEN, pH 7.0 was pre-chilled at 4°C. The amber ampule containing 10 mg of dihydrofolic acid 

(CAS number: 4033-27-6) was kept on ice throughout preparation of the stock solution. As soon 
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as the ampule was broken open, 14 µL of beta-mercaptoethanol was added to the dihydrofolic acid 

powder to prevent degradation. Then 1 mL of pre-chilled MTEN buffer was added to the ampule 

and resuspended. This was transferred to a foil-wrapped conical vial (which limited light exposure) 

and placed on ice. This resuspension step in MTEN was repeated 3 more times for a total of 4 mL 

of DHF stock. To quantify the concentration of DHF, 10 µL of the prepared stock was used in a 

series of 20 µL volume serial dilutions at 1:1, 1:10, 1:100, and 1:000 ratios of DHF:MTEN. Each 

of these serial dilutions were measured on the nanodrop at absorbance of 282 nm. The absorbance 

of the undiluted stock was back calculated for each sample and averaged. The concentration of the 

undiluted stock was calculated from this absorbance using Beer’s Law (extinction coefficient of 

DHF is 28 mM-1cm-1). The stock was then aliquoted into 150 µL volumes in black opaque 

Eppendorf tubes. These aliquots were then flash frozen in liquid nitrogen and then immediately 

transferred to -80°C for storage.   

 

2.6.2.1.2 NADPH stock  

A 4 mM stock of NADPH (CAS Number: 2646-71-1) was prepared in 10 mL pre-chilled MTEN, 

pH 7.0 buffer. The concentration of this stock was verified using the same method as in the 

quantification of DHF. The absorbances of the serial diluted samples were measured at  340 nm. 

The extinction coefficient of NADPH is 6200 M-1cm-1 . Once quantified, the samples were 

aliquoted into clear walled Eppendorf tubes, flash frozen with liquid nitrogen, and then stored at -

80°C. 

 

2.6.3 Assay TYMS activity in cell lysates  
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The cell pellets and lysates of E. coli strains ER2566, ER2566 ∆folA ∆thyA, and ER2566 ∆folA 

∆thyA with pTET-duet expressing DHFR/TYMS mutants (D27N/WT, D27N/R166Q, 

D27N/Q33S) were prepared in the same manner as the pellets for the DHFR cell lysate assay. The 

blank lysis buffer was used to prepare 1:2 and 1:4 dilutions of cell lysate, in triplicate.  

 

During the lysis and pelleting steps, the remaining reagents for the assay were prepared. The 

TYMS Kinetics Assay Buffer (100mM Tris, 1mM EDTA, 5mM formaldehyde, 50mM DTT, pH 

7.5) was diluted with 1M DTT in a 1:20 dilution and then placed on ice. This diluted TYMS 

Kinetics Assay Buffer was then used to prepare 1000 µM dUMP and 1500 µM MTHF from frozen 

-80°C stocks (MTHF stock preparation previously described in section 1.9.4). The conical tube 

holding the substrate, which contained 10x dUMP and MTHF in assay buffer, was wrapped in foil 

and placed on ice. A blank was prepared from pelleted lysis buffer.  

 

30 minutes ahead of measurements in the UV-vis spectrophometer, the cell lysate and substrate 

(the conical vial with dUMP and MTHF) were incubated separately in a 25°C water bath. For each 

sample measurement, 900 µL of the cell lysate and 100 µL of the substrate (for a final 

concentration of 100 µM dUMP and 150 µM MTHF) were combined in a quartz cuvette. This 

sample was immediately placed in the UV-vis spectrophotometer and the absorbance at 340 nM 

was monitored for 2-5 minutes. 
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2.6.4 Tables  

Table 2.1. Calibration Curve Michaelis-Menten enzyme kinetics 

Mutant  kcat (s-1) Km 
(µM)  Reference 

WT 7.95 1.1  Reynolds et al. Cell 2011 
W22H 1.89 18  Reynolds et al. Cell 2011 
L28F 18.5 9.9 Thompson et al. eLife 2020 
L28Y 19.2 21.2 Thompson et al. eLife 2020 
F31V 8.65 108  Reynolds et al. Cell 2011 
F31Y 20.61 80  Reynolds et al. Cell 2011 
M42F 79.2 13  Reynolds et al. Cell 2011 

L54F 6.3 0.7  Huang et al. Biochemistry 
1994 

L54I 7.88 35  Reynolds et al. Cell 2011 

T113V 32.9 21.4  Fierke and Benkovic 
Biochemistry 1989 

G121V 0.3 6.1  Reynolds et al. Cell 2011 
F31Y/L54I 1.94 168.3  Reynolds et al. Cell 2011 
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Table 2.2. Calibration Curve plasmids (pTET-duet, RBS 1)  
pTN DHFR TYMS  
312 WT WT  
342 W22H WT  
343 D27N WT  
344 L28F WT  
345 L28Y WT  
346 F31Y WT  
347 M42F WT  
337 G121V WT  
339 F31V WT  
341 F31Y/L54I  WT  
335 T113V WT  
315 WT R166Q  
336 F31Y R166Q  
349 W22H R166Q  
350 D27N R166Q  
351 L28F R166Q  
352 L28Y R166Q  
353 F31V R166Q  
354 M42F R166Q  
355 T113V R166Q  
338 G121V R166Q  
341 F31Y/L54I  R166Q  
408 WT Q33S  
409 D27N Q33S  
    
Table 2.3. DHFR sublibrary 1 (pTET-duet)  
pTN RBS DHFR TYMS 
325 1 SL1 WT 
330 3 SL1 WT 
    
Table 2.4. E. coli strains    
gTN Strain  Description  
101 ER2566  "WT"   
331 ER2566 dfolA dthyA Genomic double knockouts  
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2.6.5 M9 minimal media recipe    

The following autoclaved media components were combined to the following final concentrations: 

1X M9 salts, 0.4% glucose (w/v), 2 mM MgSO4, and 0.2% amicase (w/v). 

The pH of the media was adjusted to pH 6.5 and sterile ddH2O was added to volume. The media 

was sterile filtered with a 0.22 µm, PVDF filter. Supplements to the media were withheld until the 

start of the experiment.  

 

2.6.6 Supplement recipes  

2.6.6.1 50 mg/mL thymidine (1000X stock)  

0.5 g thymidine was dissolved into 10 mL ddH2O by vortexing then incubated in a 55°C water 

bath for 10-15 minutes. After incubation, the mixture was vortexed to dissolve thymidine into 

solution. I repeated the incubation and vortex steps as necessary until the thymidine fully 

dissolved. The solution was sterile filtered with a 0.22 µm PVDF filter into a sterile conical vial 

and stored at room temperature. The stock was not used once precipitated (approximately 1 week).  

 

2.6.6.2 30 mg/mL chloramphenicol (1000X stock) 

0.3 g of chloramphenicol was dissolved into into 10 mL 100% etOH by vortexing and then stored 

at -20°C.  

 

2.6.6.3 FolA mix (250X, 50 mL, in ddH2O) 

The following components were dissolved into ddH2O by incubating at 37°C for 10-15 minutes: 

475 mg glycine, 943.8 mg methionine, 12.5 mg pantothenate, and 250 mg adenosine. After the 
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components are dissolved into solution, the stock was sterile filtered with 0.22 µm PVDF filter. 

The stock was then aliquoted into Eppendorf tubes and stored at -20°C. Each experiment used a 

fresh stock because freeze/thaw cycles of the FolA Mix were poorly tolerated.  
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CHAPTER THREE 
THE STRUCTURAL DISTRIBUTION OF EPISTASIS BETWEEN A PAIR 

OF ESSENTIAL METABOLIC ENZYMES 
 
 
 

3.1 Introduction 

Mutational scanning provides an approach to map residue-level interactions both within and 

between proteins. Historically, this strategy has been used to applied to map the pattern of 

constraints between physically binding protein pairs  For example, consider Clackson and Wells’ 

classic study, “A hot spot of binding energy in a hormone-receptor interface”.6 In this work, they 

performed an alanine scanning mutagenesis assay over many positions in the interface between 

human growth hormone (hGH) and human growth hormone binding protein (hGHbp). They 

measured the thermodynamic free binding energy of the mutants. They discovered that not all 

residues were acting equally. Only a few residues, or “hot spots” were contributing to most of the 

free binding energy that drove the formation of the interface. Without this method of alanine 

scanning mutagenesis of all residues at interface, it would have been impossible to observe this 

heterogenous pattern of epistatic interactions within the interface of the hGH-hGHbp physical 

complex.  

 

The study of the interface between hGH and hGHbp focused on the amino acids that form the 

interface, not the rest of the protein. This pattern of epistasis at the amino acid sequence level in 

physical complexes beyond the interface was outstanding until 2018 when Diss and Lehner 

published the first full saturation mutagenesis between Fos and Jun, a pair of proteins that 

physically bind to form a transcription factor. In this work, a thermodynamic model was able 
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predict the effect of double mutants on the ability of Fos and Jun to physically interact. The 

interactions between mutants that were not captured by the thermodynamic model localized at 

interfacial positions between the two proteins. As of November 2021, this study was the first 

instance of a comprehensive saturation mutagenesis between two proteins in a physical complex. 

These mutational studies of physical protein complexes shaped our understanding of how proteins 

recognize one another with high specificity and affinity, and profoundly influenced strategies for 

engineering new complexes and drugging protein interfaces. 

 

In contrast, the pattern of epistasis between proteins that interact functionally but not physically, 

like DHFR and TYMS, remains relatively unexplored. Because these two enzymes functionally 

interact through a constraint on their relative activities, the structural distribution of epistasis is 

non-intuitive. However, mapping the pattern of epistasis between metabolic enzymes is a key step 

towards understanding the evolution of metabolic pathways, and defining principles for 

engineering them. This chapter describes the first study of a deep mutational scan in a pair of 

proteins that are not known to form a physical complex.  

 

I measured the fitness effects for nearly every single mutation of DHFR in the context of three 

alleles of TYMS. These are the fully functional WT TYMS, the slightly less functional TYMS 

Q33S, and the fully inactive loss of function mutant, R166Q TYMS (see Chapter 1 for an 

introduction to these mutations, 1.8 for a table of enzyme kinetics, and section 1.9 for a protocol 

of TYMS enzyme kinetics).  
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3.2 The saturation mutagenesis libraries. 

I began these experiments by characterizing the DHFR saturation mutagenesis libraries. The 

DHFR saturation mutagenesis library was divided into four sublibraries: named SL1, SL2, SL3, 

and SL4. This is to facilitate growth rate measurements using short-read sequencing (NGS 

typically covers a 300 base-pair region). Each sublibrary contained all possible amino acid single 

point mutations for 40 positions in DHFR. For instance, SL1 contained mutants for only the first 

40 positions in DHFR (excluding the start codon), SL2 carried mutants for positions 41-80. SL3 

does for 81-120. SL4 contained mutants for the remaining 39 positions (excluding the stop-codon). 

The sublibraries were originally generated by Samuel M. Thompson during his PhD work in the 

Kortemme lab (UCSF). To characterize the dependence of DHFR mutations on TYMS 

background, I duplicated these sublibraries two times through subcloning: once in the pTET-duet 

construct that expressed R166Q TYMS and another time in the same vector with the mutation, 

Q33S TYMS. This yielded a total of three DHFR saturation mutagenesis libraries (12 sublibraries), 

each of which are paired with a different TYMS variant: WT, Q33S, and R166Q.  

 

Before proceeding with measuring growth rates of the DHFR mutants, it was important to establish 

library completeness. To do this, I transformed each sublibrary into E. coli and deep sequenced a 

1 mL sample of culture for each sublibrary, replicate, and TYMS background at the start of 

selection. A given mutant is considered present if the NGS sequencing data returned greater than 

10 observations (or counts) of the mutant in the population. Table 3.1 summarizes basic statistics 

of each TYMS background and replicate. These include: the number of missing mutants (Nmissing), 
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the number of present mutants (Npresent), and a percentage of total possible mutants that are present 

(% present).  

 

There were 3,002 total possible single point amino acid mutants in the DHFR saturation 

mutagenesis library. This comes from taking the number of positions in DHFR (160), excluding 

the stop and start codons (158), and multiplying by the total number of amino (158 x 20 = 3,160). 

Lastly the mutations that are redundantly lableled as WT at each position in the sequence (I2I, 

M42M, G121G, etc.) are removed (3,160 – 158 = 3,002). Across all TYMS backgrounds and 

replicates, more than 95.9% of mutants were present. Notably, the percent of the libraries that were 

present are much greater in the first two replicates of the WT and R166Q TYMS backgrounds: at 

least 99% of mutants are present. In the first two replicates of the library with a Q33S TYMS 

background, this was only marginally lower with 96.87% mutants present.  

 

Figure 3.1A visualizes mutant counts in libraries from replicate 3, the replicate with the lowest 

percentage of present mutants, as heat maps. Across all three TYMS backgrounds, most mutants 

had between 100-1000 counts. For R166Q TYMS, the number of counts was more uniform. In 

WT TYMS, there were mutants with fewer counts represented by darker blue pixels (10-100 

counts). In the Q33S TYMS heatmap, the pattern was less homogenous with even more dark blue 

and black pixels. The histograms of these mutant counts show the distribution of mutant counts in 

each TYMS background (Fig. 3.1B). The mean mutant count in each distribution were: 2413 for 

WT TYMS, 1827 for Q33S TYMS, and 2435 for R166Q TYMS. The median mutant count in each 

distribution was: 1653 for WT TYMS, 983 for Q33S TYMS, and 1726 for R166Q TYMS.  
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The Q33S TYMS library contained the greatest number of missing mutants, ranging from 49 to 

123 mutants with fewer than 10 counts. The missing mutants (black pixels) in the heatmap in 

Figure 3.1A were not systematically dispersed along a particular position nor amino acid mutation. 

Thus, I opted against supplementing these individual mutants into the library. I chose to continue 

using this library because a vast majority of the mutants were present (95%) and likely to have at 

least 100 counts. 

 

3.3 Measuring growth rates of mutants in a mixed library. 

 

3.3.1 The NGS-Fit Assay measures growth rates of individual alleles in a mixed mutant 

library.  

After assessing library completeness, I measured the growth rate effects of each mutant in the 

DHFR library in the context of each TYMS variant with the NGS-Fit Assay (Fig. 3.2). This assay 

works by sampling the population of each sublibrary over time during the selection phase of the 

experiment, and using sequencing to quantify the frequency of each allele. During the selection 

phase, the culture is maintained at a constant density and volume with the turbidostat, a continuous 

culture device. When the culture exceeds a target OD600 of 0.15, fresh media is automatically 

dispensed to dilute the culture. To maintain a constant volume, excess culture is removed as waste. 

In addition, the Reynolds Lab turbidostat can maintain up to 15 vials of cultures in parallel. For 

the data in this chapter, I performed this assay on a total of 36 sublibrary cultures over the course 

of four separate experimental sessions: one for each combination of four sublibraries, three TYMS 
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variants, and three biological replicates. I sampled the culture over the course of selection at 6 time 

points. These samples were pelleted, frozen, and then lysed in water. Each cell lysate is a template 

for generating amplicons with two rounds of PCR. An amplicon is generated for each sample from 

two rounds of PCR. Amplicons are DNA sequences that contains the subset of DHFR to be deep 

sequenced. In this case, each amplicon spanned the relevant 40 amino acid positions in DHFR in 

a given sublibrary. In each of the three NGS runs I prepared samples for, the relevant amplicons 

were equally mixed and then deep sequenced with 300-cycle run on an illumina HiSeq machine 

by the Sequencing-Only service at GeneWiz. The output of the NGS run is a collection of FASTQ 

files, each file corresponding to a sample taken during the experiment. This FASTQ file contains 

a list of sequences, or reads. Each read was quality score filtered and then mapped to a DHFR 

mutation. After processing each FASTQ file, the output was a raw count of mutants (and WT) for 

each sublibrary and replicate at each time point.  

 

3.3.2 How was growth rate computed from mutant counts?  

From the NGS-Fit Assay sequencing data, mutants and the WT were counted at 6 time points 

during the experiment at 0, 4, 8, 12, 20, and 24 hours. First, a relative frequency was computed for 

each mutant at every time point (equation 3.1).  

 

𝑓(𝑡)!"# =	 𝑙𝑜𝑔$ *
%!"#,#
%%&,#

+ −	 𝑙𝑜𝑔$ *
%!"#,#'(
%%&,#'(

+      (equation 3.1) 

The relative frequency simplifies interpretation of how fit an allele is in the population compared 

to the WT. Across the entire time course, the relative frequency of WT is set to zero. At t = 0, all 

mutants start out with relative frequencies of zero as well. When 𝑓(𝑡)!"# is positive, the mutant 
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is present in the population at greater numbers than WT. When 𝑓(𝑡)!"# is negative, the mutant is 

present at a lower numbers than WT. Figure 3.2.6 shows the trajectory of relative frequencies of 

two example mutants clearly: The pink mutant’s relative frequency drops with each subsequent 

timepoint, showing that it is out competed by other variants in the population that are more fit 

(better growing), like the navy mutant.  

 

In order to estimate an accurate growth rate from the time course of relative frequencies, mutants 

were further filtered by requiring that the mutant must be present at t = 0 and must be present in at 

least two other time points. The threshold for presence is 10 counts. For mutants that are meet or 

exceed these criteria, the relative frequencies are fitted with a linear regression. These fits are 

normalized by sample size or the total number of counts of the mutant at each time point. The 

slope of this line is the growth rate relative to WT. Figure 3.3 shows example fits for a subset of 

mutants in the Calibration Curve in each TYMS background. Here, this method of fitting a growth 

rate qualitatively reproduces the result that mutations in DHFR that are deleterious to bacterial 

growth (like D27N and G121V) are rescued by R166Q TYMS.  

 

To minimize variation between culture vials in the turbidostat, I normalized the relative growth 

rates (units per hour) by the growth rates of the bulk culture vials (generations per hour). The 

resulting normalized relative growth rate is in units of per generation. I then scaled these 

normalized relative growth rates in the range between 0 (minimum growth rate) and 1 (WT-like 

growth). We used the relative growth rate of D27N DHFR, the catalytically dead mutant as the 

minimum growth rate, in equation 3.2 to scale the data.  
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3.3.3 Reproducibility of relative growth rates between replicates  

Fortunately, these criteria for fitting a growth rate did not filter out a significant number of  

mutants across replicates. For WT TYMS, triplicate relative growth rates were fit for 95.6% of 

mutants. For Q33S TYMS, relative growth rates were fit for 92.1% of mutants. For R166Q TYMS, 

relative growth rates were fit for 98.1% of mutants. For each TYMS background, mean relative 

growth rates and a standard deviation were computed for DHFR across triplicates. For mutants 

with triplicate growth rate measurements, the reproducibility of these growth rates from replicate 

to replicate was assessed in the 2-D correlation scatter plots in Figure 3.4. Among every replicate 

and TYMS background, mutants with deleterious effects on growth rate were noisier. This is an 

expected, as slow-growing mutants are by definition lower in frequency and thus more subject to 

statistical counting noise. In particular, Q33S TYMS showed the strongest reproducibility among 

all three replicates: the slope of the linear relationship between the growth rates of any two 

replicates was greater than 0.9. The R-squared of the linear regressions between replicates in the 

Q33S TYMS background ranged from 0.87 to 0.91, indicating strong replicate to replicate 

reproducibility. In the WT TYMS and R166Q TYMS, the 1:1 reproducibility between replicates 

were weaker, with R-squared of the linear regressions between replicates in these two TYMS 

backgrounds ranged from 0.73 to 0.89. I speculated that splitting replicates across different 

experimental days and separate NGS runs may have non-trivially contributed to weaker 

reproducibility among replicates in the WT TYMS and R166Q TYMS backgrounds. For the NGS-

Fit Assay of the library in the background of Q33S TYMS, the samples were collected during a 
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single run of the turbidostat and sequenced on a single NGS run. This was not the case for the WT 

and R166Q TYMS libraries: the replicates were divided among two separate runs. This hypothesis 

is still untested because I proceeded with analyzing these data because the I was satisfied with the 

overall result: that the growth rates between replicates are positively correlated with each other.  

 

3.3.4 Assessing selection for DHFR catalytic activity in the Calibration Curve  

In each TYMS background, I first analyzed the average growth rates of DHFR mutants in the 

Calibration Curve (Fig. 3.5). These data act as an internal control on selective pressure on DHFR 

catalytic activity and epistasis to R166Q TYMS. Figure 3.5 shows that the relationship between 

growth and DHFR catalytic activity was monotonic in the background of WT TYMS and Q33S 

TYMS. Mutations that are deleterious to biochemical activity were also deleterious to growth. In 

the background of R166Q TYMS, I was reasonably reproduce the result that a loss of function 

TYMS fully or partially rescues these effects on DHFR activity. DHFR mutants with slower 

catalytic activities are epistatic to each TYMS mutant. Interestingly, the epistasis of several DHFR 

mutations to TYMS R166Q and Q33S has opposite signs: Q33S TYMS appears to aggravate 

growth rate effects (negative sign epistasis) and R166Q TYMS buffers these growth rate effects 

(positive sign epistasis).  

 

3.4 The pattern of fitness effects across the sequence of DHFR in the context of each TYMS 

variant. 

All of the average relative growth rates in the DHFR library in the background of each TYMS 

variant are represented in the heatmaps in Figure 3.6A. Three features of these heatmaps indicated 
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that the experiment was successful. The first is that among all three TYMS backgrounds, mutations 

to the stop codon were either missing or deleterious. The second is that most mutations in the WT 

TYMS and Q33S TYMS background were either near-WT (white, very light blue, and very light 

orange pixels) or are deleterious to fitness (medium to dark blue pixels). This is consistent with 

the expectation that few mutations will be beneficial relative to wildtype. The third feature is that 

positions previously established as critical to the biochemical function of DHFR were sensitive to 

mutations. For example, the DHFR position D27 is essential for the hydride transfer step of the 

catalytic cycle. In the WT TYMS background, all mutations except for D27E were deleterious to 

fitness. Additionally, key positions in the loops that undergo conformational changes associated 

with catalysis —  the Met20 loop at positions 9-24, the F-G loop at positions 116-132, and the G-

H loop at positions 142-150 — were sensitive to mutations in the WT TYMS and Q33S TYMS 

backgrounds.42 

 

These heatmaps were useful in comparing the effect of each TYMS background on the DHFR 

saturation mutagenesis library. It is clear that R166Q buffered the mutational effects of DHFR. 

Most mutations with deleterious fitness effects were partially or fully rescued in the context of a 

loss of function TYMS. The effect of Q33S TYMS on the mutations in DHFR library was less 

obvious. Mutations at positions that were key to DHFR catalytic function are similarly deleterious 

to growth. However, some positions where mutations had neutral effects on fitness were more 

positive in the context of Q33S TYMS.  
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The same data in the heatmaps were also represented as histograms fitted with a double gaussian 

distribution (Fig. 3.6B, Table 3.2). In all three TYMS backgrounds, the distribution of DHFR 

mutational effects on fitness were divided among two modes: Mode 1 was centered near 1 with 

WT-like growth. The second, much smaller, Mode 2 was centered around a much slower growth 

rate at ~0.5. The height of each peak varied among each TYMS background. When TYMS is 

catalytically inactive (R166Q), the majority of mutational effects were in the first mode, where 

DHFR is very robust to mutations. Deleterious mutations were rarest in the background of R166Q 

TYMS. When TYMS is fully active in the WT form or moderately active with the mutation, Q33S, 

the distribution of fitness effects shifted such that the height of Mode 1 was nearly halved. In the 

backgrounds where TYMS was active, DHFR was much more sensitive to mutations. Mode 2 in 

the WT and Q33S TYMS backgrounds were more flat and spanned a larger range of growth rates 

than Mode 1. The distributions revealed that slightly more mutants had neutral or positive fitness 

effects with Q33S TYMS than in the WT TYMS background.  

 

How TYMS modulates the growth rates of each individual mutant in the DHFR library is 

represented in the correlation scatter plots in Figure 3.7. Broadly, mutations in DHFR had similar 

fitness effects in both the WT and Q33S TYMS backgrounds (Fig. 3.7B). However, in the R166Q 

TYMS background, there was no correlation to the growth rates in the WT TYMS background 

(Fig. 3.7A). Instead, the mutations in this correlation plot clearly clustered into two groups: The 

first group of mutants had neutral or beneficial fitness effects, regardless of the state of TYMS. 

The second group contains mutants that are deleterious to DHFR in the background of the WT 

TYMS and are partially rescued when paired with the inactive R166Q TYMS. In this analysis, I 
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showed that pattern of growth rates of the DHFR mutants changes in the context of different TYMS 

activities.  

 

In summary, I mapped the fitness effects of all possible single point mutations in DHFR in the 

context of three different alleles of TYMS. I observed that in the context of a fully functional WT 

TYMS, DHFR was more sensitive to mutations, particularly at positions that are involved in the 

catalysis of DHF to THF. This pattern of growth rate effects  was largely preserved in the context 

of the moderately active Q33S TYMS mutant. However, we observed that in the context of a 

catalytically inactive TYMS, DHFR was remarkably robust to mutations. The sequence constraints 

of DHFR varied across different alleles of the same enzyme, TYMS.   

 

3.5 The patterns of epistasis in DHFR to two different alleles in TYMS differ in both 

magnitude and sign. 

Epistasis describes how the effect of combinations of mutations differs from the effects of the 

mutations considered independently. Prior to my thesis work, epistasis between DHFR and TYMS 

was measured for a handful of alleles (Fig. 2.3). The growth rate measurements described in 3.4 

are sufficient to now compute and analyze epistasis across the entire amino acid sequence of 

DHFR.  

 

We computed epistasis using with equation 3.3, where G is the relative growth rate, a is the single 

mutation in DHFR, b is a single mutation in TYMS, ab is the double mutant. For every DHFR 
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mutant in the saturation mutagenesis library, we computed epistasis twice, once for R166Q TYMS 

and once for Q33S TYMS.  

 

𝐸𝑝𝑖𝑠𝑡𝑎𝑠𝑖𝑠 = 	𝐺(. −	𝐺( ∗ 𝐺.        (equation 3.3) 

 

Under the conditions of my assay (50 ng/ml thymidine), the individual TYMS mutations do not 

effect growth rate. Given that WT growth rate is normalized to one, this simplifies epistasis to 

equation 3.4 below.  

 

𝐸𝑝𝑖𝑠𝑡𝑎𝑠𝑖𝑠 = 	𝐺(. −	𝐺(         (equation 3.4) 

 

The epistasis data were organized into heatmaps that show how DHFR, at the amino acid sequence 

level, was epistatic to two different alleles of the same enzyme (Fig. 3.8). Within each heatmap, 

the pattern of epistasis was heterogenous, with both negative and positive epistasis. In both TYMS 

backgrounds, a majority of DHFR mutations were not epistatic (Fig. 3.9). In the Q33S TYMS 

background, we observed both positive and negative epistasis (Fig. 3.9A). Most mutants within 

the first 40 positions in the active site of DHFR were negatively epistatic, or were less fit in the 

background of Q33S TYMS. Conversely, positions 50-60 of DHFR, most mutations were 

positively epistatic, or were buffered in the background of Q33S. In the background of R166Q 

TYMS, mutations with positive epistasis were much more pervasive and negative epistasis was 

much rarer (Fig. 3.9B). By comparing these two heatmaps side-by-side, it is clear that (1) the 

magnitude of epistasis to R166Q TYMS was greater and (2) for positions in DHFR that are 
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involved in the biochemistry of the enzyme, Q33S TYMS was slightly negatively epistatic and 

R166Q TYMS was positively epistatic. This flipped sign epistasis was prevalent in the first 40 

positions of DHFR near the active site. This included positions that form the Met 20 loop, which 

undergoes conformational changes to hold on to and release substrate and co-factor during the 

catalytic cycle. These first 40 positions also includde D27, which as discussed earlier, is essential 

in the hydride transfer step of in the redox reaction that DHFR performs. Another instance where 

epistasis is in opposite directions in Q33S TYMS and R166Q TYMS is G121 in the F-G loop, 

which forms hydrogen bonds to the Met 20 loop, holding the active site in the closed state. The 

mutation, G121V works at reducing DHFR activity by reducing its affinity for the co-factor, 

NADPH.42 The heatmaps themselves reveal a pattern of epistasis that can be analyzed in the 

context of the structure of DHFR.  

 

3.6 The structural distribution of epistasis in DHFR to TYMS.   

 

3.6.1 Categorizing positions in DHFR by their epistasis using a simple K-means Clustering 

algorithm  

Next, we sought to map the pattern of epistasis to the structure. This required some measure that 

summarized the effect of all 20 mutations at a single protein position. To accomplish this, we 

carried out K-means clustering of each DHFR position according to the profile of epistasis across 

all substitutions. To start, we represented each DHFR position (in each TYMS background) as a 

vector of epistasis measurements. We computed the pairwise “distances” between all pairs of 

DHFR positions and TYMS backgrounds. The goal here is to assess how similar or different the 
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epistasis is in a pair of DHFR positions. In one TYMS mutant, each DHFR position has a 20 amino 

acid long vector of epistasis measurements (this is a single column in the epistasis heatmap in Fig. 

3.8A). Prior to computing distance, we concatenate the matrices of epistasis in each TYMS 

background. The length of this heatmap is now twice the length of the number of positions in 

DHFR (L). For every pair of positions, i and j in L, we pull the vectors of epistasis Ei and Ej, 

respectively. The vectors are sorted in descending order of magnitude, ignoring amino acid 

identity. Not all positions will have epistasis measurements for every amino acid mutation. Thus, 

these “null” mutants are removed from the each vector. Then longer vector is trimmed to match 

the length of the shorter one. The distances were computed by subtracting these two vectors sorted 

and trimmed from each other.  

 

Additionally, we initialized four seed vectors, each with the length of 20 amino acids, each 

represent a category centered by an empirical epistasis value. These clusters and their epistasis 

values are: no epistasis at 0, negative epistasis at -0.05, positive epistasis at 0.05, and strong 

positive epistasis at 0.15. We computed a distance between each seed vector and epistasis vector 

at each positions in L. These distances to the seeds were appended to the distance matrix, D, are 

four seed vectors.  

 

This final matrix is a square matrix with the length of L (318), plus 4 for each epistasis cluster. 

This gives a matrix with the dimensions of 322 by 322. Along the diagonal of this matrix are the 

first 159 pairs of positions, which represent distances between epistasis vectors within Q33S 

TYMS. The next 159 pairs of positions represent distances between epistasis vectors within 
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R166Q TYMS. The last 4 positions along the matrix is the distance between each position and the 

seed cluster.  

 

In the first iteration of the K-Means Clustering Algorithm, each position in L is assigned to a 

cluster based on the minimum distance between the epistasis vector and the seed vector. In the 

next iteration, each position, k, we determine whether it needs to be reassigned to a different 

cluster. To determine if k needs to be reassigned, we compared the average distance between k and 

its 10 nearest neighbors in each cluster. The position, k, gets assigned to the cluster with the 

minimum average distance of each of these four values. At the end of this iteration, all positions 

in L may or may not be reassigned. We repeated step of the algorithm 14 more times. Note that 

we observed that no positions switched to another epistasis clusters after 8 iterations. After 

categorizing these epistasis data into these clusters with this K-Means Clustering Algorithm, the 

make-up of each clusters in each TYMS mutant background are described in Tables 3.3.1 and 

3.3.2. In both Q33S and R166Q TYMS mutant backgrounds, the clusters with the largest number 

of DHFR positions are neutral epistasis (59 in Q33S TYMS, 68 in R166Q TYMS) and positive 

epistasis (71 in Q33S TYMS, 70 in R166Q TYMS). No positions in the R166Q TYMS background 

were in the negative epistasis cluster, while 22 positions in the Q33S TYMS background were in 

the negative epistasis cluster.  

 

3.6.2 The structural pattern of epistasis between DHFR and TYMS 

In the Q33S TYMS background, I focused on three clusters of positions with negative epistasis, 

positive epistasis, and neutral epistasis (Fig. 3.10). The negative epistasis cluster contained the 
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fewest number of positions and was mostly localized within the active site of DHFR (Fig. 3.10A-

B). The positive epistasis cluster contained the largest number of positions. These positions formed 

a physically contiguous unit that is predominately localized in the adenosine binding domain of 

DHFR (Fig. 3.10E-F). A subset of positions were within the back of the active site and away from 

the loops that undergo conformational change during catalysis. DHFR positions with no epistasis 

are distributed along the entire structure of DHFR (Fig. 3.10C-D). In this cluster, the positions that 

lie at the surface of the enzyme surround the core residues in the active site.  

 

The structural pattern of epistasis in the R166Q TYMS background was much different than in the 

Q33S TYMS background. Positions with positive epistasis were pervasive, covering positions 

across in both the active site and adenosine binding domain of DHFR (Fig. 3.11 C-D). The 

positions in the super positive epistasis cluster were concentrated in the core of the active site and 

include residues essential for catalysis (Fig. 3.11A-B). Remarkably, 9 of these positions (4, 16, 19, 

27, 34, 120, 121, 132, and 147) are in both the negative epistasis cluster in the Q33S TYMS 

background and super positive epistasis cluster in the R166Q TYMS backgrounds. Mutations in 

these 9 positions are deleterious to bacterial growth and even more so when TYMS is moderately 

active. A non-functional TYMS fully buffers the effect of these active site mutations. From these 

data, we can conclude that epistasis between these two enzymes is primarily within the active site 

of DHFR. Furthermore, the direction of epistasis is dependent on the activity of TYMS.  

 

3.7 Conclusions  
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Our experiment is not the first instance where the effects of double mutants spanning a pair of 

subsequent metabolic enzymes was studied. In 1986, a study from Dykhuzien et al. used metabolic 

control theory to model the relationship between the relative activities in two lactose metabolic 

enzymes and their effects bacterial growth rate.43 Though their measurements are sparse relative 

to technology in the late 2010s, their model appears to fit this relationship between enzymatic 

activity and growth well. Here, we performed this experiment on a much larger scale with far more 

mutants. It is theoretically possible to test if their model of metabolic control theory is relevant to 

our data set.  

 

The observation that epistasis between genes varies among different alleles of the same gene is not 

new.44 Here, Xu et al. used Flux Balance Analysis to assess how the experimental measurements 

of epistasis among S. cerevisiae metabolic genes respond to simulated perturbations in flux. They 

found that epistasis is allele-specific, and that epistasis measurements between a given gene pair 

is dynamic, or is sensitive to simulated perturbations in metabolic flux. This idea is recapitulated 

in our data, where DHFR varies within the structure of the enzyme and varies among the two 

TYMS mutant alleles.  

 

This chapter describes how I used deep mutational scans of DHFR to study the structural pattern 

of epistasis to TYMS. Here I observed that the pattern of epistasis in DHFR is heterogenous and 

appears to be dependent on the functional state of TYMS. DHFR is remarkably robust to mutations 

in the context of a non-active TYMS but is much more sensitive to mutations in the context of 

active TYMS. The strongest signal of epistasis in DHFR to either TYMS mutant is localized within 
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the active site. In 9 positions within the active site, the sign of the epistasis is in opposite directions. 

In the background of Q33S TYMS, we observe negative, aggravating epistasis in the active site 

and among these sign-flipping positions. In the background of R166Q TYMS, the epistasis is 

strongly positive, buffering the effect of mutations at these sites.  
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3.8 Figures  

 

Figure 3.1 Completeness of DHFR saturation mutagenesis libraries. Log10 - normalized 

mutant counts of DHFR libraries in each TYMS background from t = 0, replicate 3. (A) Heatmap 

of mutant counts of DHFR saturation mutagenesis libraries in each TYMS background (top - WT 

TYMS, middle – Q33S TYMS, bottom – R166Q TYMS). X-axis from left to right represent 

positions in the DHFR amino acid sequence (stop codon, position 160 is excluded). Y-axis 
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represent amino acids, in alphabetical order, with Ala on the bottom and stop codon on the top. 

Black pixels represent mutants with fewer than 10 counts. Pixels outlined with a lime green box 

represent WT position (e.g. I2I, M42M, D27D, G121V, etc.). (B) Distributions of log10 normalized 

mutant counts in each DHFR library. The red lines mark the mean of the distribution (2413 - WT, 

1827 -  Q33S, 2435 - R166Q). The blue lines mark the median of the distribution (1653 - WT, 983 

– Q33S, 1726 – R166Q). 
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Figure 3.2 Experimental workflow for DMS of DHFR. (1) Each culture in the experiment 

contained one of the four sublibraries of the DHFR saturation mutagenesis library (cyan part of 

the plasmid – sublibrary, navy blue part of the plasmid – rest of the DHFR coding region) paired 

in the background of TYMS variant (green – WT TYMS, orange – Q33S TYMS, purple – R166Q 

TYMS). This plasmid sublibrary was transformed into ER2566 ∆folA ∆thyA by electroporation. 

(2) Afterward, the culture is grown overnight in minimal media supplemented with 50 µg/mL 
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thymidine and 30 µg/mL chloramphenicol (see 2.5.5) at 37°C. (3) In the morning, the culture is 

back-diluted to an OD600 of 0.1 in the same media. This back-diluted culture is grown at 30°C for 

four hours to adapt to the selection temperature. (4) Afterwards, 1 mL of the culture is sampled, 

pelleted, and frozen at -20°C. This is the first time point of the experiment. Using the same media, 

the adapted culture is back-diluted to an OD600 of 0.1 and transferred into the turbidostat which 

will maintain the cultures at a target OD600 of 0.15 for 24 hours at 30°C. Here, I show an example 

OD600 time course in the turbidostat. 1 mL of the culture is sampled, pelleted and frozen at -20°C 

after 4, 8, 12, 20, and 24 hours. (5) To prepare the sample library for deep sequencing, the cell 

lysates of the samples were used as templates for synthesizing amplicons of the sublibrary region 

of DHFR by PCR (see section 3.9.2). (6) The output of this experiment are counts of each mutant 

over the course of the experiment, which are normalized by WT to compute a relative frequency. 

This value describes the trajectory of a mutant during the experiment in relation to WT. A mutant 

with a positive relative frequency has a larger number of alleles in the population than WT (green). 

A mutant with a negative relative frequency shows that its allelic population is depleting (pink). 

Mutants with WT-like effects on fitness will show a flat trajectory at zero (navy). (7) This time 

course is then fitted with a linear regression. The slope of this fit (m) is the growth rate of the 

mutant, relative to WT.  
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Figure 3.3 Examples of relative growth rate fits in a subset of the Calibration Curve in 

replicate 3. A-C show relative frequency time course traces for M42F (yellow), L54I (dark green), 

G121V (teal), and D27N (mint green) in the background of WT TYMS (A), Q33S (B), and R166Q 

TYMS (C). The markers are relative frequencies computed from experimental mutant counts using 

equation 3.1. The dashed lines are fits of the data with ordinary least squares linear regression. 

These fits are normalized by the sample size (the total, non-normalized mutant counts across time 

points).  
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Figure 3.4 Reproducibility of relative growth rates between biological replicates. All 

correlation scatter plots here compare relative growth rates of DHFR mutants in a pair of replicate 

measurements (navy blue markers). In each plot, a linear regression was fitted (dashed cyan line). 

The linear equation of these fits and R-squared are reported on the plot itself. The black dashed 
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line is a perfect correlation: Y=X. TYMS backgrounds among replicate measurements of DHFR 

relative growth rates are consistent: (A-C) WT TYMS, (D-F) R166Q TYMS, (G-I) Q33S TYMS.  
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Figure 3.5 The Calibration Curve of DHFR point mutations in the background of each 

TYMS variant. The relationship between DHFR catalytic activity and relative growth rates in the 

background of TYMS variants: WT – black, Q33S – cyan, R166Q – red. Error bars are standard 

deviations.  

The relationship between growth and DHFR catalytic activity is monotonic in the background of 

WT TYMS and Q33S TYMS. Mutations that are deleterious to biochemical activity are also 

deleterious to growth. In the background of Q33S TYMS, mutants with moderate and deleterious 

catalytic activities correspond are aggravating to growth rate. In the background of R166Q TYMS, 

we reasonably reproduce the result that a loss of function TYMS fully or partially rescues these 

effects on DHFR activity.  
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Figure 3.6 Two representations of average relative growth rates of mutants in the DHFR 

saturation mutagenesis library. (A) Heatmaps of average relative fitness of DHFR in the WT 

TYMS (top), Q33S TYMS, and R166Q TYMS backgrounds. The amino acid positions of DHFR 

are along the x-axis. All possible amino acid mutations are on the y-axis (Ala is on the top, stop 

codon is at the bottom). Black pixels indicate a mutant that is not present. Mutations with white 
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pixels had neutral effects on growth. Mutations with blue pixels are deleterious to growth. Red 

pixels indicate beneficial growth rate effects. (B) The distributions of average relative growth rates 

in WT TYMS (left), Q33S TYMS (middle), and R166Q TYMS (right) backgrounds. The red line 

are double gaussian fits of the distributions (See Table 3.2 for double gaussian parameters). 
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Figure 3.7 Comparing the effect of a mutation in TYMS on relative growth rates of DHFR 

mutants. Blue markers are mean relative growth rate from average of triplicate measurements. 

Error bars are standard deviations. Red dashed line is a perfect correlation (Y=X). The dashed grey 

lines on 1 on both axes mark the growth rate of WT DHFR. Relative growth rates of DHFR mutants 

in the background of WT are on the x-axis. A histogram of these growth rates are above the scatter 

plots. (A) Relative growth rates of these same DHFR mutants in the context of R166Q TYMS on 

the y-axis. A histogram of these data are on the right of the scatter plot. (B) Relative growth rates 

of these same DHFR mutants in the context of Q33S TYMS on the y-axis. A histogram of these 

data are on the right of the scatter plot. 
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Figure 3.8 The pattern of DHFR epistasis to Q33S TYMS (top) and R166Q TYMS (bottom). 

Epistasis could not be calculated for mutations indicated in grey. DHFR mutants with white pixels 

have neutral epistasis. Mutants with red pixels were positively epistatic to the TYMS mutant. 

Mutants with blue pixels were negatively epistatic to the TYMS mutant. 
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Figure 3.9 The distribution of DHFR epistasis to two TYMS variants. A single gaussian was 

fitted to each distribution (red line). (A) Epistasis distribution in the Q33S TYMS background. 

The parameters of the single gaussian are: peak height = 2059, mean = 0.022, sigma = 0.057 (B) 

Epistasis distribution in the R166Q TYMS background. The parameters of the single gaussian are: 

peak height = 1504, mean  = 0.017, sigma = 0.092.  
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Figure 3.10 Epistasis to Q33S TYMS can be categorized into three clusters of DHFR 

positions. (A-B) negative epistasis, (C-D) neutral epistasis, and (E-F) positive epistasis). (A,C,E) 

The structure of DHFR (PDBID: 1RX2) is in a grey ribbon. The substrate and co-factor, DHF and 

NADPH, respectively are in represented as cyan sticks. (A) DHFR positions with negative 

epistasis in blue spheres. (C) DHFR positions with positive epistasis in pink spheres. (E) DHFR 

positions with neutral epistasis in light purple spheres. (B,D, and E) The epistasis heatmap from 

Fig. 3.7A is grouped according to positions clustered by the K-means clustering algorithm.  
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Figure 3.11 Epistasis to R166Q TYMS can be categorized to two groups: (A-B) super-positive 

epistasis and (C-D) positive epistasis. (A,C) The structure of DHFR (PDBID: 1RX2) with epistasis 

clusters in red (A) or pink (C) spheres. (B,D) The epistasis heatmap from Fig. 3.7A is grouped 

according to positions clustered by the K-means clustering algorithm. 
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3.9 Materials and Methods  

 

3.9.1 Sub-cloning the saturation mutagenesis library  

The saturation mutagenesis of DHFR was performed by Samuel M. Thompson.33 After receiving 

the sub-libraries of DHFR, restriction digest and ligation was used to clone each sub-library into a 

pTet-Duet plasmid upstream of TYMS. The entire DHFR coding region containing restriction 

sites, NotI and EcoNI was amplified by PCR. These library inserts and target plasmids were double 

digested with NotI and EcoNI for 3 hours at 37°C. The digested plasmid was treated with Antarctic 

phosphatase for 1 hour at 37°C. The DHFR insert and treated plasmid were ligated with T4 DNA 

ligase overnight at 16°C. The concentrated ligation product was then transformed into E. coli XL1-

blue (homemade competent cells with a minimum transformation efficiency of ≥108 CFU/ µg 

DNA) by electroporation, and recovered in SOB for 1 hour at 37°C. To estimate library coverage, 

20 µL of the recovery culture was diluted 1:10 into 180 µL SOB. This was used for downstream 

serial dilutions of 1:100 and 1:1000 in SOB. 100 µL of each dilution was plated onto LB agar + 

30 µg/mL chloramphenicol, incubated at 37°C overnight. The remaining recovery culture was 

grown in liquid LB + 30 µg/mL chloramphenicol at 37°C, 220 rpm overnight. In the morning, the 

colonies on each plate were counted. The remaining recovery culture was grown in liquid LB 

overnight at 37°C and plasmid purified the following day. Colony counts of the plated dilutions 

were used to estimate coverage of library mutants in the liquid culture.  

 

3.9.2 NGS sample preparation 
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Each pellet from the NGS-Fit assay (section 3.3.1 and Fig. 3.2) was thawed and lysed by 

resuspending the cells with 100 µL dH2O and incubated at 95°C for 5 minutes. These cell lysates 

were then spun at 21,130  x g for 10 minutes in a room temperature bench top microcentrifuge. 

Supernatants containing the plasmids were isolated from the pellet and used for downstream NGS 

sample preparation.  

 

Each sub-library was sequenced as an amplicon using Illumina TruSeq-HT i5 and i7 indexing 

primers to identify each sub-library and time-point. The amplicon for each sample is made using 

two subsequent rounds of PCR. The first round amplified the DHFR coding region of the sub-

library (sequences of these primers are in Table 3.5) and the second used Illumina primers to add 

flanking sequences. This yielded final barcoded products ranging from 298 – 315 bp, depending 

on the sub-library. The amplicons were then individually quantified using picogreen and mixed 

equimolarly, with a final target amount of ≥ 2000 ng. This mixture of amplicons, the sample 

library, was gel-purified. To assess purity, the A260/A80 nm and A260/A230 nm absorbance ratios 

of the sample library were measured on a nanodrop. The sample library DNA concentration was 

measured using the Qubit Assay. This mixed and quantified library was sequenced with a 150 x 2 

cycle paired-end Illumina HiSeq at GeneWiz using their Sequencing-Only service.45 

 

3.9.3 Computational pipeline for analysis of the Next - Generation Sequencing data 

All scripts referenced below are in the path: 

smb://lamella.biohpc.swmed.edu/project/greencenter/Reynolds_lab/shared/tnn/. Data from NGS 

for each amplicon contain forward and reverse reads in a pair of FASTQ files. These reads are 
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overlapping and are merged using the program, USEARCH (see tnn_pythonUCombiner.bsh, 

splitFastqs_tnnHiSeq.py, and RunUSearch_tnnHiSeq.py).46 Each read is quality score filtered (Q-

Score ≥ 20) and identified as a wild-type (WT) or mutant of DHFR (see monsterBash.bsh and 

countingAlleles.py). The mutants are then counted and adjusted according to noise by hamming 

distance to other mutants (JM_hamming_analysis-tnnNotes.ipynb). The python script, 

1_CalcGrowthRates.ipynb was used to analyze these mutant counts, fit and analyze growth rates. 

Epistasis was then computed, analyzed, and then categorized with the K-Means Clustering 

Algorithm with 2_CalcEpistasis.ipynb. 
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3.10 Tables 

Table 3.1 Library completeness at t = 0   

TYMS Replicate Nmissing Npresent 
% 
present 

WT 1 5 2997 99.83 
WT 2 26 2976 99.13 
WT 3 57 2945 98.10 
R166Q 1 2 3000 99.93 
R166Q 2 13 2989 99.57 
R166Q 3 13 2989 99.57 
Q33S 1 49 2953 98.37 
Q33S 2 94 2908 96.87 
Q33S 3 123 2879 95.90 

 

 

Table 3.2 Parameters of double gaussians of the distributions of 

relative growth rates  

  Mode 1  Mode 2  

TYMS  

peak 

height mean  sigma  

peak 

height mean  sigma  

WT 428 1.003 0.045 20 0.476 0.344 

Q33S 474 1.031 0.035 17 0.500 0.522 

R166Q 831 1.019 0.027 9 0.5 0.449 
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Table 3.3.1 Epistasis clusters in the background of Q33S TYMS 
Epistasis 
Clusters  Npositions  DHFR positions  

Neutral = 
0  

59 
  

3+5+7+9+10+11+15+17+18+22+24+25+28+29+32+33+ 
36+37+39+40+43+61+90+91+96+101+123+124+125+ 
126+127+128+129+130+131+133+134+135+136+137+ 
138+139+140+141+142+143+144+145+146+148+149+ 
150+151+153+154+155+156+157+158 

Negative 
= -0.05  22  

1+2+4+8+12+13+14+16+19+20+23+27+30+31+34+ 
35+120+121+122+132+147+152  

Positive = 
0.05 
 
  

71 
 
  

6+38+41+44+45+46+47+48+49+50+51+52+53+54+ 
55+57+58+59+60+62+63+64+65+66+67+68+69+70+ 
71+72+73+74+75+76+77+78+79+80+81+82+83+84+ 
85+86+87+88+89+92+93+97+98+99+100+102+103+ 
104+105+106+107+108+109+110+111+112+113+ 
114+115+116+117+118+119 

 
Super 
Positive = 
0.15 
  

4 
  26+42+94+95  
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Table 3.3.2 Epistasis clusters in the background of R166Q TYMS 
Epistasis 
Clusters  Npositions  DHFR positions  

Neutral = 
0  68 

7+9+10+15+18+22+24+29+32+33+35+36+37+47+63+ 
65+66+67+71+75+76+77+81+82+83+84+85+86+87+ 
88+90+91+100+101+104+105+107+108+113+115+ 
117+119+123+125+126+128+129+131+133+134+ 
135+136+137+138+139+141+142+143+144+145+ 
150+151+153+154+155+156+157+158 

 
Negative 
= -0.05  0  n/a 

Positive = 
0.05 70  

7+9+10+15+18+22+24+29+32+33+35+36+37+47+ 
63+65+66+67+71+75+76+77+81+82+83+84+85+ 
86+87+88+90+91+100+101+104+105+107+108+ 
113+115+117+119+123+125+126+128+129+ 
131+133+134+135+136+137+138+139+141+ 
142+143+144+145+150+151+153+154+155+ 
156+157+158 

Super 
Positive = 
0.15 

19 
  

4+16+19+21+26+27+34+42+45+48+49+ 
53+94+95+99+120+121+132+147 
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Table 3.4 DHFR plasmid sublibraries (pTET-duet, RBS 1) 

pTN# 
DHFR 
sublibrary TYMS  

405 SL1 WT 
356 SL2 WT 
403 SL3 WT 
358 SL4 WT 
406 SL1 R166Q 
360 SL2 R166Q 
404 SL3 R166Q 
362 SL4 R166Q 
409 SL1 Q33S 
410 SL2 Q33S 
411 SL3 Q33S 
412 SL4 Q33S 

 

Table 3.5 Custom primers for amplicon generation. 

oTN 
Sublibrary, 
Direction Primer sequence 

118 SL1, FWD 
CACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNACTTTAATAATGAG
ATATACCATG 

301 SL1, REV 
TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNGATTGATTCCCAG
GTATG 

334 SL2, FWD 
CACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCACCTTAAATAAAC
CCGTG 

335 SL2, REV 
TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNATCAGCATCGTGG
AA 

336 SL3, FWD 
CACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGTGAAGTCGGTGGA
TG 

337 SL3, REV 
TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNGGAAATGGGTGTC
GC 

338 SL4, FWD 
CACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNGCATATCGACGCAG
AAGTGG 

339 SL4, REV 
TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNCTTGTCGACGCCT
G 
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CHAPTER FOUR 
Discussion and Future Directions 

 
 
 

4.1 A structural map of epistasis in a pair of metabolic enzymes 

In my thesis work, I sought to address the question of how functional coupling between two 

metabolic enzymes is encoded within the amino acid sequence and physical structure of one of 

them. To answer this question, I performed deep mutational scanning assays on the enzyme DHFR 

while varying TYMS. More specifically, I considered all DHFR single mutations in the context of 

a wild-type, moderately active mutant (Q33S), and non-functional TYMS variant (R166Q). The 

result is a rigorous dataset with epistasis measurements over the entire amino acid sequence of 

DHFR.  

 

This epistasis dataset was analyzed with a simple clustering algorithm to group DHFR positions 

into discrete epistasis categories. This analysis resulted in two distinct views of the distribution of 

epistasis in the crystal structure of DHFR, one for each TYMS mutant. In both views, the positions 

with the greatest magnitude of epistasis lied at the active site. In the context of an active TYMS 

mutant, the positions in the active site had negative epistasis. When in the background of a non-

functional TYMS mutant, these positions in the DHFR active site had strong positive epistasis. 

Beyond the active site, the distribution of DHFR positions with positive epistasis was also context 

dependent. In the background of R166Q TYMS, positions with po sitive epistasis formed a 

concentric shell around the active site. In the background of Q33S TYMS, positions in the positive 
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epistasis cluster formed a structurally distinct cluster in the adenosine binding subdomain of 

DHFR, away from the negative epistasis cluster in the active site subdomain.  

 

The finding that epistasis across enzymes is localized at the active site is consistent with the 

mechanism of positive epistasis, where the matched rates of catalysis in both enzymes prevents 

the accumulation of their shared intermediate DHF. DHFR appears to be highly robust to mutations 

in the context of a TYMS that does not catalyze the reaction that synthesizes DHF. Presumably 

this is because DHF does not accumulate, and TYMS is not present to deplete the pools of reduced 

folate. In the presence of active TYMS that continues to makes DHF, DHFR appears to be much 

more sensitive to mutations within the active site. Here, active site mutations reduce the capacity 

for DHFR to consume DHF and then maintain a flux of reduced folates throughout the pathway.20 

Epistasis was also localized to the active sites in a pair of proteins in bacterial Quorum Sensing 

that interact through the synthesis and binding a small molecule across different cells in a 

population.13 Therefore, we can think of the active site as a non-physical “interface” between 

protein pairs that do not form a physical complex but share an intermediate.  

 

4.2 A mechanistic model of epistasis between DHFR and TYMS  

The prevalent positive sign epistasis we observed in the R166Q TYMS background was consistent 

with our expectations from prior work.20 However, the negative epistasis we observed in the 

background of Q33S TYMS was unexpected. The observed negative epistasis means that in the 

context of a less active or non-active TYMS, the fitness effect of certain DHFR mutations is more 

deleterious. A potential hypothesis for this negative epistasis is that these mutations lower DHFR 
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affinity for DHF (Km) but not the rate of the catalytic reaction (kcat). The fitness effect of such 

mutations would be masked in the context of WT TYMS that synthesizes enough DHF to saturate 

DHFR active sites in the cell. When paired with a TYMS variant that produces less substrate, the 

deleterious effect of DHFR mutants with lower affinity for DHF on growth rate becomes apparent. 

This hypothesis can be tested by purifying a random sample of mutants with negative epistasis and 

then performing steady-state enzyme kinetics assays to measure parameters of catalytic activity: 

kcat, Km, and Vmax.  

 

In prior work, a simple model was able to describe the relationship between DHFR catalytic 

activity, metabolite abundance, and E. coli growth rate.47 Here, the authors studied three point 

mutants in DHFR that conferred resistance to the antibiotic, trimethoprim. They measured the 

effect of cellular protein abundance, catalytic activities, and growth rates of the single, all possible 

double mutants, and the triple mutant of DHFR across a range of trimethoprim concentrations. 

They make the assumption that the intra-cellular concentration of DHF is at a steady-state level, 

which is not true, given the folate metabolomics data from Schober et al. Even so, they were able 

to fit a Michaelis Menten-like function that accurately predicted E. coli growth rate from the effect 

of trimethoprim on DHFR catalytic activity, DHFR protein abundance, and DHFR stability. This 

work motivates further development of this  model so that it can accurately reflect the non-steady 

state DHF abundance in DHFR mutants and epistasis with TYMS. Such a model would effectively 

map how the epistasis between DHFR and TYMS relate to bacterial growth rate and fitness.  
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More broadly, creating a mechanistic mathematical model of epistasis would provide a framework 

for interpreting my data, generating hypotheses, and predicting the fitness effects of DHFR 

mutations in various TYMS backgrounds. To create such a model, future work should characterize 

an analogous Calibration Curve that relates catalytic activity to growth rate for a larger set of 

TYMS mutants. One could draw on ideas from Metabolic Control Theory, as discussed below, or 

potentially try fitting the data to the Goldbeter-Koshland equation, a model for two enzymes that 

perform cyclic coupled reactions. Ultimately, the goal of a mechanistic model is to 

comprehensively understand and capture the positive and negative epistasis we observe between 

DHFR and TYMS. Such a model would be able to predict the growth rate from DHFR and TYMS 

catalytic activities.  

 

An application of Metabolic Control Theory on a pair of lactose metabolic enzymes provides a 

framework for developing such a mechanistic model. Metabolic Control Theory (MCT) uses a 

series of equations to describe the epistasis between enzymes in a metabolic pathway.48 In brief, 

the equations of MCT state that the overall flux through an enzyme in a pathway is due to its 

individual activity and abundance and is dependent on the activities and abundances of other 

enzymes in the pathway. The flux control coefficients, a measure of how the abundance of an 

enzyme affects the flux, must sum together to equal one. To more concretely understand MCT, 

let’s take a look at an example from 1986 that mapped the relationship between fitness to the 

activity of two enzymes in E. coli lactose metabolism, beta galactosidase and beta galactosidase 

permease.43 According to MCT, the flux through the pathway is a function of the ratio of 

concentrations of substrate and products of the pathway, the enzyme activities defined by 
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Michaelis-Menten kinetic parameters Km  and Vmax, and equilibrium constants between the 

intermediate substrates. Dykhuizen and Hartl defined fitness from measurements of E. coli growth 

rate in a lactose-limited chemostat, a continuous culture device.43 Under this growth condition, the 

growth rate is directly proportional to the flux through the permease and lactase enzymes in lactose 

metabolism. Because the final derived relationship computes a relative fitness, the function 

becomes independent of substrate and product (these parameters cancel each other out). The MCT 

equation was used to derive the relationship between the relative fitness of a mutant in a given 

enzyme and the relative activities of both enzymes in the pathway. The result is a three-

dimensional surface that can predict the relative fitness from the relative growth rates of the 

lactase and permease. In this application of MCT, the fitness of a lactase or permease mutant is 

dependent on the enzymatic activities of both enzymes. This relationship was tested with 

experimental measurements of the relative activities and relative fitness in a small number of 

mutations in both enzymes. were characterized with in vitro kinetic assays and in vivo growth rate 

measurements. Though the number of experimental measurements were limited to 4 permease 

mutants and 14 lactase mutants, the model fit the data well.  

 

A major hinderance in applying MCT to model epistasis between DHFR and TYMS is a limitation 

on high-throughput measurements of catalytic activity. We made thousands of measurements of 

the effect of mutations in DHFR on growth rate. An analogous DMS of direct and high-throughput 

biochemical assays of catalytic activity does not yet exist. A way one can circumvent this problem 

is to randomly sample a handful of mutants in each category of epistasis, protein purify these 

mutants individually, and then perform steady-state kinetics assays on each individual mutant. This 
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low-throughput approach could be sufficient for testing the predictions of growth rate in the 

development of a mechanistic model.  

 

In the Introduction of this Dissertation, I discuss at length about the idea of non-specific epistasis. 

Briefly, this kind of epistasis is a function that captures global non-linearities in the relationship 

between the biophysical traits of the mutations and phenotype.19 The mechanistic model would be 

the function that describes the non-specific epistasis between DHFR and TYMS. It would describe 

the relationships between DHFR catalytic activity, TYMS catalytic activity to accurately predict 

the growth rates in any given combination of mutants.  

 

4.3 Considering the effect of environment and genetic background on measurements of 

epistasis  

Unfortunately, for experimentalists, epistasis is not a static measurement. The magnitude and 

direction of epistasis are highly context dependent. For example, the severity of the mutation 

affects the magnitude of epistasis measurements. This idea is supported by the lack of 

reproducibility between a pair of high-throughput screens of genetic interactions.49 One screen 

uses CRISPRi to knockdown transcription. The other screen, synthetic genetic array (SGA), uses 

temperature—sensitive genetic deletions. Of the 5,072 gene pairs measured in both studies, only 

149 have the same measured genetic interaction. This variation between the two data sets suggests 

that the differences in the epistatic profiles are due to differences in the severity of the genetic 

perturbations in their respective screens. 
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The context dependence of epistasis also applies at a smaller scale within a single gene. The 

dynamic feature of epistasis was initially identified from alleles computationally generated using 

flux-balance analysis to titrate WT activity through a single gene. These alleles within the same 

gene had different epistatic effects to each other.44 Differential epistasis of alleles within the same 

gene was later recapitulated experimentally using mutations in a transcriptional repressor that 

altered expression level. Here, epistasis among these mutants in the same gene varied in both sign 

and magnitude according to expression level.39  

 

Given that epistasis itself is a context-dependent measurement, the “correct” experimental 

conditions for measuring epistasis is subjective to the experimenter. In my case, the selection 

conditions I chose are far from a natural environment. DHFR and TYMS were expressed from a 

plasmid at higher levels than in the genome (Fig. 2.4, Fig. 2.5). The saturation mutagenesis library 

was transformed into a laboratory expression strain of E. coli, ER2566 ∆folA ∆thyA, which lacks 

Lon protease, an enzyme that some strains of natural E. coli use in protein quality control.50 The 

selection step was also performed under highly controlled laboratory conditions where both the 

optical density, temperature, and growth media of the bacterial cultures remained consistent for 

the entirety of the experiment. One way to address this discrepancy between the selection 

conditions of a laboratory and natural environments is with the method Phylogenetics informed by 

Deep Mutational Scanning (phyDMS).51 PhyDMS first computes the amino acid preferences of 

the fitness effects in the saturation mutagenesis library and visualizes this profile of this as a 

seqLogo plot. A MSA of the protein family of interest is then analyzed to generate a likely 

phylogenetic tree. The amino acid propensities of the sequence under the conditions of natural 
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selection are statistically inferred from this phylogenetic tree. If these profiles of amino acid site 

preferences are wildly different, then the experimental condition of the DMS also is far from the 

conditions under which natural selection occurred. This analysis can be readily applied to the five 

different DMS assays of DHFR. These include the three TYMS backgrounds described in Chapter 

3 and two in the presence and absence of Lon protease in Thompson et al. This analysis would 

assess which experimental conditions more closely reflects the condition of natural selection in the 

molecular evolution of DHFR.  

 

4.4 Epistasis dataset to test a model of sequence co-evolution, Positional Mirror Tree  

Evolutionary statistics describes an umbrella of statistical methods to infer co-evolution within or 

between proteins. One of these methods is Mirror Tree, which was designed to identify both 

physical and non-physical protein-protein interaction pairs by comparing similarities of their 

respective phylogenetic trees.52,53 The idea underlying Mirror Tree is that if a pair of interacting 

proteins undergo similar selection pressures over evolutionary time, their respective phylogenetic 

trees will be similar to each other. In practice, Mirror Tree identifies whether a pair of proteins are 

interacting from correlated sequence similarities. The “interaction score” is a Pearson correlation 

between a pair of vectors of pairwise sequence similarities computed from an individual MSA; 

one for each protein family. To account for noise due to shared historical speciation events during 

evolutionary time, a phylogenetic correction is applied.53 This phylogenetic correction is estimated 

by a vector of sequence similarities in essential Housekeeping genes like the subunits of the 16s 

RNA polymerase. After applying this correction, this interaction score is representative of the 

functional correlations between the two proteins.  
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Mirror Tree provides a way to identify whether or not a pair of proteins are interacting with each 

other in a binary fashion. This approach does not provide fine-grain detail on co-evolution at the 

level of the amino acid sequence. Positional Mirror Tree extends Mirror Tree to identify co-

evolutionary relationships between amino acids across proteins.54  

 

Broadly, Positional Mirror Tree computes a Pearson correlation for each pair of amino acid 

positions within and across a pair of proteins. For a single amino acid position, a, the amino acid 

identities of each pair of sequences in MSA of one protein family are compared to each other. If 

they are the same amino acid, this is assigned a 1. If they are not the same amino acid, this is 

assigned a 0. The result is a binary square matrix with the dimensions of the number of sequences 

in the alignment by the number of sequences in the alignment. The upper diagonal of this binary 

matrix represents is then linearized into a vector. This vector represents the pairwise identities of 

the sequences at position a. This process is repeated for amino acid position b. A Pearson 

correlation is then calculated between identify vectors for a and b. Like in Mirror Tree, the 

phylogenetic correlation is applied to reduce phylogenetic noise. Now, this Positional Mirror Tree 

score represents how strongly a and b are co-evolving with each other. This process of generating 

a pair of binary matrices and computing their interaction score is repeated for every single pair of 

positions within and between both proteins.  

 

The result of Positional Mirror Tree is a matrix of co-evolutionary relationships between all pairs 

of amino acids within and between the sequences of DHFR and TYMS. A slice of this matrix 
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along a single position in TYMS (e.g. R166), contains the correlations of every single position in 

amino acid sequence of DHFR to this single TYMS position. In other words, this vector shows 

how the entire sequence of DHFR is constrained by this one position in TYMS. Future work should 

use the dataset on the epistasis between DHFR and TYMS to test whether or not the model of 

sequence co-evolution in Positional Mirror Tree is predictive of real, functional relationships 

across proteins.  

 

Currently, Positional Mirror Tree would be the method that can infer relationships between 

proteins at the amino acid sequence level. My dataset of the epistasis in the sequence of DHFR to 

TYMS would be essential to validating such a model of sequence co-evolution. If Positional Mirror 

Tree or another model of sequence co-evolution between proteins is effective at representing real 

sequence constraints in protein-protein interactions, such a framework would also provide some 

hope for biologists everywhere. With this method, a biologist can first use these evolutionary 

statistical methods to identify whether their proteins of interest interact and how this interaction is 

encoded in the sequence. These models could then inform targeted experiments to closely study 

the mechanism driving the protein-protein interaction.  
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