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CHAPTER I 

 

 

INTRODUCTION 

 

1.1 Ultrasound Imaging 

 

In conventional medical ultrasound such as B-mode imaging, the amplitude of the back-

scattered ultrasound pulse is used to image tissues along a fixed beam direction
1
. This 

imaging technique works best in static organs, and it is difficult to image moving organs 

like the heart. The M-mode imaging technique is better for cardiac applications. For 

better image resolution, ultrasound tomography systems were developed in which 

ultrasound data were acquired by transducers placed in a circle around the object
2
. This 

task of deriving the structure of the object from scattered radiation is known as the 

inverse scattering problem. 

 

The inverse scattering problem is known by several names like reflectivity tomography
3
 

and diffraction tomography
5, 6, 7

 etc.  Scattering refers to the effects on wave propagation 

due to an inhomogeneous medium. Since the inhomogenieties are unknown, the goal is to 

determine their properties – the spatial variation in density, compressibility, geometrical 

distribution etc. With the scattered wave field, determining the scatterer is called the 

inverse problem. As for the geometry of the scattering theory, the scatterer is assumed to 
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be present in a homogeneous reference medium with known properties. Following the 

notations used in Lehman
8
, the acoustic pressure, p, in this medium satisfies the 

Helmholtz equation 

                                         (2
 + k

2
) p(r) = 0                                                                      (1) 

where the pressure field is given by 

                                          p(r,t)=p
0
+p

1
(r,t)                                                                       (2) 

The ambient pressure, p
0
 is constant. Since the scatterer is present in the reference 

homogeneous medium, the pressure field can be written as 

                                      p0(r) = p
inc

(r) + p
sc

(r)                                                                  (3) 

where p
inc

 refers to the incident field and p
sc

 is the scattered field. In an ideal situation the 

incident pressure field is taken as a plane wave  

                                       p
inc

(r) = p
0
 e

ikz 
                                                                            (4) 

where k is the complex wave number which is given by 

                                      k=(/c) (1- iM)                                                                        (5) 

where M is the compressional viscosity. 

Now, we are in a position to introduce the integral representations of the scattered field. 

In the region exterior to the scatterer, the pressure field is given by 

                                    (2
 + k

2
) p0(r) = 0                                                                          (6)        

Introducing the Green‟s function 

                                    G(r – r
’
) = e

ik|r-r’|/|r-r’|
                                                                      (7) 

that will satisfy the inhomogeneous impulse equation  
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                                     (2
 + k

2
) G(r – r

’
) = -4(r-r’)                                                    (8) 

Using one of the most frequently used approximations, the Rayleigh-Born approximation 

we can modify equation (7). At large distance the Green‟s function can be approximated 

by  

                                    G(r – r
’
) ~ e

ikr
/r  e

-ikr.r’
                                                                   (9) 

which holds true for k0r‟
2
/r <<1. 

A Fourier diffraction theorem based reconstruction technique using the Born 

approximation is derived in Radial Reflection Diffraction Tomography (RRDT)
 8

. 

Though my work is concerned with time-domain reconstruction techniques, I will discuss 

some existing frequency domain reconstruction techniques. 

 

1.1.1 B-mode Imaging 

B-mode (for Brightness mode) images are 2-D ultrasound images that contain pixels that 

correspond to ultrasound echoes. The value of the pixels corresponds to the amplitude of 

the echo. The image is obtained by sweeping narrow ultrasound through the object while 

detecting the echoes with a linear electronic array. In the B-mode image, the vertical 

position of the bright pixel is determined by the time-of-delay of the ultrasound wave and 

the horizontal position is determined by the location of the receiver. The path the echo 

follows is usually referred to as the beam line. The direction of the propagation along the 

beam line is called the axial direction and the direction perpendicular to this is called the 
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lateral direction. This technique also provides data at various levels enabling the creation 

of three-dimensional image. 

 

The reconstruction technique may be compared to a crude backprojection of the obtained 

data without using any filter. In this way, B-mode imaging is considered very primitive 

form of ultrasound image reconstruction. Better techniques of reconstructing ultrasound 

data were later developed in the scheme of tomographic setup
2
. 

 

1.2 Interaction of Ultrasound Waves with the Biological Media 

 

Ultrasound is the propagating disturbance of the properties (e.g., pressure and particle 

position) of the tissue through which it travels. Unlike electromagnetic radiation which 

can propagate in vacuum, ultrasound needs the material through which it travels. As a 

consequence this leads to interactions between the physical properties of the tissues and 

the extrinsic properties of the ultrasonic waves such as pressure. Acoustic properties of 

tissues as measured in many experiments were tabulated by Goss and Dunn
18, 19

. 

In medical imaging applications, the range of ultrasound frequencies used vary from 2-10 

MHz (for imaging deep organs) to 40 MHz (for intrarterial imaging)
1
. In soft tissues  
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Material Density (Kg/m
3
) Compressibility 

(10
-12

 m
2
/Nt) 

Velocity 

(m/s) 

Acoustic 

Impedance (10
6
 

Kg/m
2
s) 

Fat 950 508 1440 1.37 

Blood 1025 396 1570 1.61 

Muscle 1070 353-393 1542-1626 1.65-1.74 

Bone 1380-1810 25-100 27100-4100 3.75-7.4 

 

Table 1.1 Acoustic parameters for some biological materials
9 

 

(which are predominantly water) like tendons and fat, the ultrasound propagation velocity 

is around 1500 m/s. Table 1.1 lists few of the acoustic parameters for some biological 

materials
9
. Though we notice the velocity of sound differs between materials, most of the 

time-domain reconstruction techniques assume the speed of sound to be constant, and the 

body is thus inhomogeneous in density. The speed of sound is related to the density and 

compressibility of the material in the following way: 

                                                      c=1/()1/2
                                                                  (10) 

where   is the density and  is the compressibility. Now we are in a position to define the 

term acoustic impedance Z, 

                                                    Z= c                                                                           (11) 

Variations in acoustic impedances cause specular reflection of the waves. 
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 As mentioned earlier the spatial resolution of the ultrasound images depend on the 

frequency of the waves used (higher the frequency, better the resolution). But, higher 

frequencies also mean higher attenuation. So, there is always a trade-off depending on the 

organ of interest. In adult cardiology
1
 2.5-5 MHz is used to get enough penetration and 

for imaging of intravascular atherosclerosis, frequencies up to 40 MHz is used. The 

positioning of the transducers also plays an important role. For example, the nearest 

possible routes anatomically to place the transducers and image the prostate is transrectal 

and transurethral. This leads to various interesting geometries from a tomographic 

perspective for which no reconstruction algorithms exist. 

 

1.3 Ultrasonic Tomography – frequency domain image reconstruction 

 

So far the basics of ultrasonic imaging have been discussed. These ultrasound principles 

were used for a long time in conventional ultrasonic imaging developed for B-mode and 

M-mode imaging. One of the earliest works which used acoustic imaging in a 

tomographic setup, in the frequency domain, used algebraic reconstruction techniques 

(ART)
 10, 11

 to form images. Greenleaf used similar techniques to reconstruct the speed of 

sound using time-of-flight profiles
12

.   Like most ART techniques the work was 

computationally intensive. Then there were techniques based on perturbation solutions of 

the wave equations
5
. These techniques reconstructed the speed of sound by 

approximating it by a small perturbation to velocity in the surrounding medium. Using 
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few first-order perturbation equations, images were reconstructed. There were old 

techniques that reconstructed spatial distribution of acoustical absorption with tissues 

from their two-dimensional projections
13

, in a manner analogous to filtered 

backprojection. 

 

1.4 Diffraction tomography Methods (Frequency domain imaging techniques) 

 

There is another tomographic technique to reconstruct acoustic data called the diffraction 

technique. There are two important approximations that are used to approximate the wave 

equation, namely the Born
15

 and the Rytov
16

 approximations that transform homogeneous 

wave equation into nonhomogeneous equation using perturbation methods which can 

then be solved analytically which will include the effects of diffraction. 

 

1.4.1 The Born approximation 

 

Let us start with the Helmholtz equation and using the notations used by Lehman
8
, we 

have 

                                              2
 + K

2=0                                                                     (12)
  

If the total wave is the sum of incident and scattered wave, i.e. 

                                               =sc
 +inc

                                                                       (13) 

then equation (12) can be written as  
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                                               2sc
+k0

2sc
=Oinc

                                                           (14) 

where 

                                       O=- k0
2
(B

2
-1)                                                                            (15) 

and the object function, 

                                        B
2
=k(x)

2
/ k0

2
                                                                                

(16) 

where k(x) is the wavenumber of the medium which varies spatially and k0 is the 

wavenumber of the background medium. We arrived at equation (14) with an important 

assumption inherent with the Born approximation, 

                                        sc
<<inc                                                                                                                           

(17) 

that is, it assumes that the amplitude of the scattered energy is much less than the incident 

energy. 

 

1.4.1 The Rytov approximation 

 

Let us start again with wave equation (12) and substitute 

                                        (r) =exp(i k0(r))                                                                  (18) 

where we express  in a form that assumes the information to be in the phase part of an 

exponential form, where complex phase allows for spatial variation in both propagation 

velocity and attenuation. The substitution results in 

                                       i k0
-12  -  ||

2
 + A

2
=0                                                          (19) 
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where  

                                        A=1+                                                                                     (20) 

where  is the change in refractive index. Now, let =0+1 where 0 is the phase 

component of the pressure distribution (r) for no perturbation and where 1 is the phase 

perturbation due to perturbation in the refractive index. Substituting the perturbations into 

equation (19) we get, 

                           i k0
-120+ i k0

-121-|0|
2
-2(0. 1) -|1|

2
+1+2+2                           

(21) 

Ignoring 2
 and 

|1|
2
, we get, 

                                        2
(1 exp(ik00)) + 

 
k0

2
(1 exp(ik00))=i2k0 exp(i k00)                    (22) 

Equations (22) are the Rytov‟s approximation and it has the same form as equation (14). 

Equations (14) and (22) are both linear and their solution is a convolution of Green‟s 

solutions with the source terms for all space. The result is obtained by Tribolet
17

. 

 

1.4.2 Monostatic forward scattering model 

 

To develop a linear forward scattering model for monostatic setup we start with the 

Helmholtz equation that governs the wave propagation and scattering, 

               [2
 +k 

2
(r)] (r,ω) = -p(r,ω),                                                                           (23) 

where r is given by the polar spatial coordinates r(cos, sin) of a point in the 

surrounding medium, ω, the temporal frequency, k (r) is the wavenumber of the medium, 

(r,ω) is the total field, p(r,ω), the incident pulse temporal spectrum. To remove the 
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spatial inhomogeneity in equation (23), we add the background wavenumber, k0(ω)= 

ω/0, to both sides of the equation and move the inhomogeneous term to the right hand 

side to obtain,  

             [2
 +k 0

2
] (r,ω) =-p(r,ω) – [k

2
(r) - k 0

2
(ω)] (r,ω)                                          (24) 

Defining the object function as, 

              o(r) = (k
2
(r)/ k 0

2
) -1                                                                                          (25) 

equation (24) becomes, 

             [2
 +k 0

2
] (r,ω) = =-p(r,ω) - k 0

2
(ω) o(r) (r,ω)                                             (26) 

where the term k 0
2
(ω) o(r) (r,ω) is known as the secondary source which creates the 

scattered field. To convert equation (26) into an integration equation we have to use the 

Green‟s theorem
43

. Equation (26) now becomes, 

            (R,ω)=∫drG(R,r’,)P(r’,)+ k0
2
 ()∫dr’G(R,r’,)o(r’)(r’),                        (27) 

where the Green‟s function is given by, 

           G(R,r,)= e
ik0|R-r|

/4|R-r|                                                                                     (28) 

The first integral in equation (27) is the primary field, inc
(R,ω).Subtracting it from the 

total field yields the scattered field, 

          scat
(R,)= (R,)- inc

(R,)= k0
2
()∫drG(R,r,)o(r)(r)                                (29) 

Evaluating the scattered field on the measurement surface, r0, we obtain, 

         scat
(r0,)= k0

2
()∫drG(r0,r,)o(r)(r)                                                                (30) 

The above equation is nonlinear the scattering term is on both sides and is under an 

integral on the right hand side. Therefore to reconstruct an estimate of o(r), we need to 
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simplify the equation by linearizing it. We can do it by assuming that the medium is 

weakly scattering and that the first Born approximation holds. Therefore equation (30) 

becomes  

         born
scat

(r0,)= k0
2
()∫drG(r0,r,)o(r)inc

(r)                                                        (31) 

We further assume the incident field is the results of a point source at r0, so that 

p(r,ω)=P(ω) (r0-r), where P(ω) is the incident pulse spectrum. With this assumption, 

the incident field is, 

       inc
(r,) = P(ω) G(r0,r,),                                                                                       (32)  

and equation (31) becomes 

      born
scat

(r0,)= P(ω) k0
2
()∫drG

2
(r0,r,)o(r)                                                            (33) 

where the squared Green‟s function is the result of the transmitter and receiver being 

located at the same point. Using equation (28), the forward model of the monostatic setup 

is expressed as follows 

      born
scat

(r0,)= P(ω) k0
2
()/(4)

2
∫dr e

i2k0(ω)|r
0

-r|
/|r0-r|

2
 o(r)                                       (34) 

We will see later how this model differs in a bistatic setup owing to the fact that the 

transmitter and locater are not colocated anymore. 

 

1.4.1 Green‟s function for the Helmholtz equation 

 

It is important to give a brief discussion of the Greens function of the Helmholtz‟s 

equation at this juncture for the case of 2-D and 3-D. A detailed explanation and 
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derivation of the all equations discussed in this section can be found in Barton
43

. 

Following the notations used by Barton
43

, we have the Green‟s function for the operator 

in the wave equation (-R
2
 +((1/c 

2
)2

/2
  where R= r-r’ as they propagate is given by                                           

Case I Three Dimensions 

                G0=(-R/c)/4R                                                                                       (34.1) 

This disturbance is expanding shell with radius c. Beyond this point there is no trace of 

the disturbance which means there is no afterglow. Moreover, the Huygen‟s principle 

works in 3D. 

 

Case II Two dimensions 

                  G0= 1/2((-R/c))/ (/[2
-R

2
/c

2
]

1/2
                                                           (34.2)  

 It can be seen that the impulse response rises steadily from zero to infinity. It becomes 

infinity at =R/c and diminishes after this point. IT diminishes and faces to zero which 

means there is an afterglow. The Huygen‟s principle does not work in 2D.                                                   

 

1.5 Time-domain ultrasound imaging 

 

Time-domain image reconstruction techniques show how to reconstruct an image of a 

point reflecting object from broadband pulse-echo data generated by translating a single, 

omni-directional source-receiver over a suitable aperture. This means that the goal of a 
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broadband imaging system is to use the wide „temporal‟ frequency bandwidth (generated 

by a large transmitting and receiving aperture), to obtain the complete information- 

 

                    

 

 

  

 

bearing capacity of these signals. One of the earliest works which tackled the time-

domain found in the work of Norton 
20

.To explain this monostatic model, where the same 

transducer acts as a transmitter and receiver (Figure 1), consider an infinitesimally short, 

spatially diverging pulse that is emitted into a two-dimensional weakly reflecting 

medium. If the reflected echoes are recorded at the same location (that is the location of 

the transmitter), as a function of time, line integrals of the property of the medium under 

study (e.g., reflectivity) over a family of concentric circles centered at this point are 

obtained. This model could be understood by observing that a diverging circular 

Figure 1. Monostatic setup of 

ultrasound tomography system. 

Shown here is the location of the 

point of transmitter/receiver 

(green) and few samples of radial 

projections. 

Figure 2. Moving the transducer 

to various locations (angular 

samples in addition to radial 

samples) on the circle, circular 

integrals are obtained over 

multiple intersecting paths. 
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disturbance produced by two-dimensional isotropic source, at any point in time, produces 

reflected waves simultaneously over the length of the arc illuminated by the wavefront at 

that point in time. These echoes arrive back at the receiver at the same instant of time 

where they are „integrated‟ producing line integrals of the property of the medium over a 

family of concentric circles (as a function of time). Several such data are obtained by 

moving the transducer at various points (Figure 2) on the boundary (the boundary usually 

being a circle). The data obtained are reconstructed using various methods, one of the 

earliest being attempted in the work of Norton
20

. I will discuss some of the popular 

reconstruction techniques in the next chapter. Though these reconstruction techniques do 

not produce a perfect image because the system is limited by both finite temporal and 

spatial frequency bandwidth (limited spatial frequency bandwidth because of finite 

aperture), they improve the considerably improve the temporal-spatial system response 

compared to the conventional delay-and-sum method of imaging
21

. 

 

1.5.1 Photo/thermo acoustic imaging 

 

Several time-domain reconstruction techniques are used in a hybrid modality imaging 

techniques known as a photo(thermo) acoustic imaging. Photoacoustic (PA) effect 

reported by Alexander Graham Bell
22

 is the basis for PA imaging. The phenomenon is 

the generation of acoustic waves by the absorption of electromagnetic (EM) energy, such 

as radio-frequency (rf) waves
23

. Photoacoustic imaging uses the high EM contrast at high 
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ultrasound resolution in large volumes of biological tissues
24

.Similar to the transducer 

setup described in the previous subsection for the monostatic geometry, the acoustic 

waves due to PA effect generated by the initial sources inside the tissue reach the 

boundary with various time delays. The image resolution as a function of imaging depth 

is depended upon the detected ultrasonic bandwidth
25

.With the help of temporal PA 

signal, depth-dependent information of the object can be determined. This is called PA 

depth profiling
26

.  

 Similarly, microwave induced themoacoustic imaging also exist in literature
27

. In this 

case, microwave pulses generate acoustic waves in a lossy medium. Although 

microwave-induced thermoacoustic imaging shares similar principles with photoacoustic 

imaging in the optical wavelength
28

, it may have a wider use in medical imaging because 

microwaves penetrate deeper and more uniformly in biological tissues than light. Since, 

both these techniques in a tomographic setup share a similar model with the monostatic 

ultrasound tomography, we will consider only photoacoustic imaging. 

 

1.5.2 Forward model based on spherical Radon transform 

 

To image complex structures, in recent years, an imaging method called photoacoustic 

tomography (PAT)
 29, 30

 has caught wide attention. A forward model based for this 

imaging technique based on spherical Radon is similar to the monostatic ultrasound 

imaging. 
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 Let the colored grid in figure 1 be a two-dimensional function f(r,) (describing for 

example, the reflectivity of the medium) defined in the inside of the circle of radius R. 

Let a  short pulse of sound be emitted from a point (indicated in green color in figure 1) 

on the circumference at an angle  measured from the positive x axis and the 

backscattered acoustic wave is recorded at the same point as a function of time. This 

generates line integrals over circles centered at this point. In other words, Spherical (or 

circular in two dimensional cases) Radon transformed projections. From a tomographic 

setup, this process of data acquisition is repeated on several points on the circumference 

(figure 2). The aim is to reconstruct f(r,) from circular integrals obtained from all the 

points on the circumference. To state symbolically, our aim is to reconstruct f(r,) from 

the following circular integrals: 

                                             g(,)= ∫ℓ(,)f(r,) ds                                                          (23) 

where g(,) is the spherical Radon transform of  f(r,). The path along which the 

function f(r,) is denoted by ℓ(,), which is a circle, parameterized by two variables  

and , where  is the radius whose center lies on the point of measurement on the 

circumference of the enclosing circle at angle .  

 In a two-dimensional form equation (23) can be written in the following way: 

                     g(,)=
0

rdr

2

0

),( drf x {[r
2
 + R

2
 -2rR cos(-)]1/2

 - }                     (24) 

the delta function follows the circular path in the (r,) plane. 
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 Equation (24) is the forward model based on the spherical Radon for monostatic 

ultrasound imaging. The same is applicable to photoacoustic imaging with a slight 

modification in the model. In the latter, there is no “emitter” because the acoustic waves 

are generated by a different mechanism (photoacoustic effect), but only the receiver.   

There are several reconstruction techniques to recover f(r,) which I will discuss in the 

next chapter. 

 

1.5.3 Inverse source problem in photo/thermo acoustic tomography 

 

As mentioned in the previous section, in the scheme of photoacoustic tomography, there 

are only receivers and no transmitters. Since, the acoustic waves are generated inside the 

object at some source, the problem of reconstructing the object from the data acquired by 

the receivers is called the “inverse source problem”. Each temporal photoacoustic signal, 

measured at various locations of the receivers, provides one- dimensional radial 

information about the photoacoustic source relative to the receiver location. Often small-

aperture receivers are used to approximate point detectors, which receive photoacoustic 

signals originating from spherical (circular in 2D) shells centered at each point detector, 

with the radius determined by the acoustic times of flight. For large aperture detectors, 

the reconstruction algorithms are different. One such reconstruction is attempted in 
31

. 

Let us assume a heat source H(r, t), and a pressure to its response at position r and time t, 

p(r, t) in a homogeneous medium. Following the notations of Xu
24

, the pressure would 
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follow the following wave equation, ignoring effects of thermal diffusion and kinematic 

viscosity
32

: 

                           2
p(r, t) – 1/c

2
 2

/t
2
 (p(r, t)) = -/Cp /t (H(r, t))                             (25) 

where  is the isobaric volume expansion and Cp is the specific heat
33

. 

The solution to equation (25) is expressed by 

                            p(r, t) = /4Cp ∫∫∫ d
3
r‟/|r-r’| /t’ (H(r’, t’))  |t’=t-|r-r’|/c                       (26) 

The heating function can be written as a product of two separable variables, spatial 

absorption function and the condition of thermal confinement,  

                           H(r, t) = A(r)Ie(t)                                                                                  (27)      

Now equation (26) can be written as a convolution between the temporal profile Ie(t) and 

the acoustic wave form p(r,t) that is excited by an infinitesimally short pulse (t), 

                          Pe(r, t) = dptI
e

),()( r                                                              (28) 

where 

                          p(r,t)=  /t[ 1/4 ∫∫|r-r’|=ct p0(r‟) dΩ’ ] ,                                                (29) 

where dΩ’ is the solid-angle element of vector r‟ with respect to the point at r; and p0(r) 

is the initial pressure excited by a (t) electromagnetic source, computed by 

p0(r)=(r)A(r), which acts as the source for the propagating acoustic wave. 

Let us assume a very simple electromagnetic source (t), and the photoacoustic signal is 

detected at the location r0 by a point detector. The signal detected at that transducer can 

be symbolically written as, 
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                               Pd(r0,t)=  /t[ 1/4 ∫∫|r-r’|=ct  p0(r) dΩ ]                                             (30) 

where dΩ  is the solid-angle element of vector r with respect to the point at r0. 

The goal is reconstruct p0(r) from the acquired data Pd(r0,t). 

 

1.5.4 Relationship between the acquired data and the Radon transformed 

projections 

 

Rewriting equation (30), we obtain, 

                            F(r0,t)= 4/t 

t

0

Pd(r0,t) dt = ∫∫|r0 – r’| p0(r) dΩ                                     (31) 

                  

 

 

 

 

Figure 3. Bistatic setup of 

ultrasound tomography system. 

Shown here is the locations of 

the points of transmitter and 

receiver (green) and few samples 

of “radial” projections. 

Figure 4. Bistatic setup of 

ultrasound tomography system. 

Shown here is the locations of 

the points of transmitter and 

receiver (green) at various 

angular positions and few 

samples of “radial” projections. 
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The function F(r0,t) gives the spherical Radon transformed projections of p0(r). r0 is the 

location of the detectors which is usually on a circumference of a circle centered at the 

center of the object and t is the time at which “radial” projections are obtained. 

The Radon transform approximation yields good results for circular detection geometry. 

All the reconstruction techniques existing for the circular detection geometry hold well 

only when the center of the object is centered at the center of the circle. Significant 

artifacts appear when the source deviates from the center. Another important assumption 

in most of the time-domain reconstruction techniques is that the speed of sound, c, is 

constant inside the medium. This assumption is reasonable because the variation in the 

speeds of sound in biological medium is very less. 

 

 
Figure 5. Definition of an 

ellipse. As can be seen from 

the figure, an ellipse has five 

degrees of freedom. 
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There are other approximations which have been attempted wherein a 2D Radon 

transform was approximated with a Hilbert transform
37

. The most common form of 

reconstruction, backprojection for tomographic data, will be discussed later. 

 

1.5.5 Bistatic time-domain ultrasound imaging (Elliptical Radon transform-based 

imaging) 

 

Unlike monostatic setup in ultrasonic imaging, in bistatic setup the locations of the source 

and the detector differ. In this respect, monostatic imaging can be considered a special 

case of bistatic imaging. Whenever the source and the sensors are not at the same 

location, surfaces of constant time of flight are ellipses, whose foci are the locations of 

the transmitting and receiving transducers. 

Some conventional medical imaging systems like focus-and-steer imaging
34

 and 

synthetic-focus imaging
35

 with complete dataset include the effects of backscattered 

signals acquired by detectors not at the same location as the source. Image reconstruction 

using elliptical projections can also be found in applications like Synthetic Aperture 

Radar (SAR) imaging
36

. The geometric setup used in this modality is not appropriate for 

medical imaging. 
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A. Parameters of an ellipse and the elliptical Radon 

 

Consider an ellipse (Figure 5) with foci at xe and xr. The family of ellipses at these foci 

has semi-major axis a, semi-minor axis b and a foci separation of 2c=| xe - xr|. The vector 

form of ellipse can be written as  

                                               |x-xe| + |x-xr|= 2a                                                              (32) 

Next, we make an identity linking the a and c with the eccentricity e of the ellipse, 

                                                a=c/e                                                                                (33) 

implying, 

                                               |x-xe| + |x-xr|=1/e |xe-xr|                                                   (34) 

e is defined the domain 0≤e<1. 

One possible definition of elliptical Radon would therefore be 

                                               Rxe,xr(e) = ∫|x-xe| + |x-xr|=1/e |xe-xr| f(x) ds                                 (35)               

There are five parameters in this expression. If we additionally require that the semi-

major axis be orthogonal to a line, then the number of degrees of freedom can be reduced 

to four. At present, nothing is known about the analytical inversion of this transform. 

Even a Fourier slice theorem is lacking. The earliest known approximate reconstruction 

was attempted in 1989
38

.  

To define the elliptical Radon, consider the locations of a transmitter and a receiver on xy 

plane on the y axis with y coordinates +/- d from the origin. Then a pulse moving from 

the transmitter to the receiver from a point (x, y) in the plane travels a distance A: 
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                   A= 222
)( xdyh + 222

)( xdyh                                            (36) 

The signal arriving at the receiver at a time instant t=A/c is that due to all signals which 

have traveled a distance A. the geometry dictates that the signal must have reflected from 

the loci in the xy plane given by a re-arrangement of equation (36):  

                     x
2
 + y

2
= (1-4d

2
/A

2
) =A

2
/4 – d

2
                                                                    (37) 

which is an ellipse centered at the origin with A and d being constants. 

To convert the expression from time-dependent equation to a spatial one, we introduce a 

new variable r
2
= A

2
/4 – d

2
, we have 

                        x
2
 + y

2
(r

2
/ r

2
+d

2
)= r

2
                                                                                (38)        

where the semi-minor axis which lies on the x axis and is of length r and the semi-major 

axis lies on the y axis and is of length 

                           yr= r 222
/)( rdr                                                                              (39) 

It can be seen clearly, when d=0 (monostatic case), yr= r which is the same length as the 

semi-minor axis, indicating the geometry is a circle. The aspect ratio of the ellipse is 

defined as the ratio of its semi-minor axis to the semi-major axis. It can been that the 

aspect ratio of the ellipse defined above changes smoothly from 
2

1 d for small r to 1 

for a circle. The ellipse will start appearing like a line for large d. 

If the ellipses are parameterized using polar coordinate, 

                            x=r cos                                                                                               (40) 

                            y= r 222
/)( rdr sin                                                                      (41) 
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then the “elliptical” measurement at the receiver, with ellipse centered at the origin, and 

the time corresponding to the radius r, is 

 

       F(r) = f(x,y)(x
2
+y

2
 (r

2
/r

2
+d

2
) – r

2
) dxdy 

        = r

2

0

f(rcos, r 222
/)( rdr  sin) 2

)/cos(1 rd d                                    (42) 

where the differential length dl of the line integral is written in terms of the integration 

variable d as: 

           dl= r 2
)/cos(1 rd                                                                                          (43) 

Equation (42) gives a generalized elliptical Radon transform.  

 

B. An engineering derivation of the elliptical Radon model from the time-dependent 

wave equation 

 

Starting with the wave equation in the time-domain, we have 

            (2
-tt) u(r,t)= s(r,t)                                                                                           (44) 

For a non-zero eigenvalue, the Green‟s function exists, given by 

            LG (x, x’) = (x-x’)                                                                                             (45) 

where L=(2
-tt) , and 

            Lf(x)=s(x)                                                                                                            (46)   
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which implies, 

           f(x)=∫B.C s(x’) G(x,x’) dx’                                                                                     (47) 

Now, 

          (2
-tt)p(r,t,r’,t’)= (r-r’)                                                                                     (48) 

           p(r,t,r’,t’)= 1/(4| r-r’|) (t-t’ - |r-r’|)                                                                  (49) 

 

 

 

 

 

 

 

We use p(r,t,r’,t’) to propagate signal from source to scatterer, and then from scatterer to 

receiver. Using the implicit Born approximation for single scatterer, we calculate 

incident field, 

(2
-tt) ui(r,t)= (r-a) (t-0)                                                                                            (50) 

scattered field, 

(2
-tt) us(r,t)=o(r)ui(r,t)                                                                                                 (51) 

Using the positional vectors, we derive, 

incident field, 

a 

b 

transmitter 

receiver 
Figure 6. Position vectors 

of the transmitter and the 

receiver which act as the 

foci of the ellipse 
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ui(r,t)=p(r,t,r’=a,t’=0)= 1/(4| r-a|) (t - |r-a|)                                                               (52) 

and the scattered field, 

(2
-tt) us(r,t)= s(r,t)                                                                                                       (53) 

where, 

s(r,t)= 1/(4| r-a|) o(r) (t - |r-a|)                                                                                    (54) 

where o(r) is the scattering object. 

Solving for the scattered field, we get, 

us(b,t)= ∫t’,x’ s(r,t) G(b,t,r,t’)dx = 1/(4)
2
∫ o(r)/|r-a| (t - |r-a|) (t-t’- |b-r|)dxdt            (55) 

 

where 

(t - |r-a|) (t-t’- |b-r|) =(t - |r-a|- |b-r|)                                                                         (56) 

Equation (55) gives the wave form in time-domain as an elliptical Radon transformed 

projection.. 
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

The problem of recovering a function from a subset of its spherical means, which has 

applications in both photo/thermo acoustic tomography and monostatic imaging, has been 

of interest to applied mathematicians and engineers for several years. One of the first 

works to tackle this problem was the seminal paper also by Norton
39

. The author was 

interested in the problem in the scheme of ultrasound reflectivity problem and this paper 

dealt with the geometry where spherical radon transformed projections are obtained on 

locations on a circumference of a circle. In an earlier paper
20

 by the same author, the 

same line-integral model was used for an analysis of a reflectivity reconstruction 

problem. But here, the problem was analyzed for the case of an omni-directional source-

receiver moved along a straight line in the boundary of a half-plane. That kind of a 

modeling would be appropriate for Synthetic Aperture Radar (SAR) imaging. During the 

time his paper was published
39

, most of the acoustical imaging systems in medical 

diagnosis employed highly directional sources and receivers (like the traditional single 

probe system) to provide resolving power transverse to the direction of propagation 

whereas the solution to the reflectivity reconstruction problem in his paper was the basis 

for a high-resolution, tomographic imaging techniques that employs omnidirectinal 

transducer elements like the one shown in Figure 6. 
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The reconstruction to the problem is obtained by deriving a relationship expressing the all 

the circular harmonic coefficients of the function to be recovered in terms of the 

projections obtained at each angular location. This, approach, which may be termed the 

method of circular harmonic decomposition, is possible because of the problem‟s 

inherent circular symmetry. That is precisely the reason why the same approach cannot 

be done with elliptical Radon transformed projections because they lack symmetry. Then 

a Hankel transformation is performed on each harmonic coefficient to yield the 

corresponding harmonic coefficient of the original function. Finally, the function is 

recovered by inserting the harmonic coefficients into the angular Fourier series. In 

essence, the method suggested in this paper can be made to resemble a convolution-

backprojection operation. It is easy to perceive that as the radius of the enclosing circle 

becomes large relative to the size of the object, the integration paths intersecting the 

object approach straight lines. In that case the convolution-backprojection formulation 

reduces to that of conventional computerized x-ray tomography. 

Figure 7. When an 

omnidirectinal element sends 

out a pulse and measure the 

echoes back as a function of 

time, line integral over 

circular paths of reflectivity 

are measured. 
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As mentioned previously, if the measurements are made in the far field with respect to 

the scattering region, where the Born approximation is usually applicable, then the 

scattering distribution and the scattering measurements bear a simple Fourier transform 

relationship to each other
41

. But in a practical medical imaging system Born 

approximation is impractical because the far-field approximation imposes unreasonable 

constraints on imaging distances. Without the far-field approximation exact inversion 

formulas are obtained by some authors using monochromatic illumination
42. 

But these 

solutions are derived under the assumption of
 
weak scattering using the first-order Born 

or Rytov approximations as mentioned in the previous chapter. But a three-dimensional 

inverse scattering problem was examined for the more general case of broad-band 

illumination without a far-field approximation
40

. Here, broad-band omnidirectional 

spherical waves are assumed to be the incident waves. 

In frequency domain, there is another wave-based tomographic imaging algorithm that 

was developed based upon a single rotating radially outward oriented transducer
8
. The 

geometrical setup is similar to the one shown in Figure 2. But since this is a frequency 

domain imaging technique, a spherical Radon model is not appropriate, but the 

acquisition of data is very similar to it. At each angular location at a fixed radius, the 

transducer launches a primary field and collects the backscattered field in what is called a 

“pitch/catch” operation. This is similar to the medical intravascular ultrasound systems 

(IVUS). IVUS systems use conventional ultrasound imaging called the B-mode imaging. 

Goss
8
 develops a wave-based imaging algorithm using diffraction tomography 
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techniques. In his work a mutimonostatic mode is used for data acquisition. 

Mutimonostatic is a terminology used when a single transducer is rotated along the 

circumference of the circle as opposed having many transducers on a circle and sending 

and receiving signals at the same time. The implementation of this model reduces the 

hardware resources and also interference effects of acoustic waves. The author derives an 

analytic expression for the multimonostatic inverse and uses Hilbert space inverse wave 

algorithm to construct images. 

In recent years researchers have taken interest time-domain reconstruction algorithms 

based on spherical Radon transformed model because if its applications in 

photo/thermoacoustic tomography. A limitation of these methods is that the Radon 

transform model is appropriate only when then medium is insonified by an impulsive 

(infinite bandwidth) wave. When pulses of finite bandwidth are employed, image quality 

can be compromised significantly
44

. But the existing frequency-domain algorithms 

provide high quality images for many numbers of discrete frequencies that is 

computationally very demanding. Some authors have worked on time-domain waveform 

for inverse scattering methods by the method of frequency decomposition to work the 

spatial Fourier transform
46

 and others on quantitative time-domain imaging
45

. 

The earliest known spherical Radon transform based image reconstruction was 

investigated by Norton
39

. The paper was based on circular harmonic decomposition. 
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But only recently, a paper provided a filtered-back projection (FBP) based reconstruction 

for the spherical Radon transformed data in 2-D
47

. FBP algorithms for 3-D have existed 

for a longer time. The authors provide a log-based filter to invert spherical Radon 

transformed data in even dimensions. If the spherical Radon transform Mf of a function f 

is defined in the following way, 

                     (Mf)(x,r)=1/|S
n-1

|∫S
n-1 

f(x+r) dS()                                                             (57) 

where |S
n-1

| denotes the area of S
n-1

 in R
n
 and ds () denotes the area measure on the 

sphere which in two-dimensions would be arcs. 

The reconstruction formula suggested in the Finch
47

 paper is (following the notations of 

the paper), 

                 f(x)= 1/2R0 ∫S
02

0

22
)(||||log),)((

R

rr
pdrdspxrrpMfr                                   (58) 

where R0 is the radius of the circle on which the detectors are placed, p is the angular 

location of the detectors and r is the radius over which the circular integrals are measured 

with p as center.  

An explicit representation for the wave is given in terms of the spherical radon transform, 

                   u(p,t)=1/(n-2)!t
n-2

 

t

n
drrpMfrtr

0

2/)3(22
),)(()(                                       (59) 

where n gives the dimension. Interesting to note here is that this solution to the initial 

value problem gives u as a function of time t, whereas the conventional image 

reconstructions are for a constant time. 
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One of the earliest attempts to reconstruct elliptical Radon transform data approximately 

was attempted in
38

. Each elliptical Radon transformed projection is back projected with a 

weight that is equal to the product of the distance of a point on the ellipse from the two 

loci. Recently, authors have attempted
48

 a Fourier transform based image reconstruction 

for ellipsoidal projections. The work does not clearly define and explain the elliptical 

Fourier transform. 
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CHAPTER III 

 

 

METHODOLOGY 

 

In the background section we saw several formulas to reconstruct a function from the 

spherically Radon transformed data. In theory all these formulas assume continuous 

functions. In real applications that would mean obtaining infinite amount of data which is 

practically not feasible. For example, we can have only a fixed number of detectors for 

the monostatic setup or move a single transducer at fixed number of angular locations. 

For the monostatic setup, the numerical implementation of the filtered backprojection 

algorithm derived in
47

 100 equally spaced angular samples and 100 equally spaced radial 

samples were used. 

The discrete version of the forward problem
47

 can be stated as follows, 

F
k,m

 = (Mf) (p
k
,r

m
),                                                                                                           (60) 

where F is the spherical Radon transformed projections, p
k
 is the angular location given 

by, 

p
k
 = R0(cos(kh), sin(kh)) where k runs from 0 to 100 in steps of 1 and r

m
=mhr where h 

is the angular spacing given by 0.0622 radians (2 divided by angular samples) and hr is 

the radial spacing which is equal to 1.4142 “pixel” units. The radius of the circle R0 on 

which the transducers are placed are determined by half of the diagonal of the size of the 

square object which is 100 pixels each side. The radial spacing is obtained by dividing 

the diameter of this circle by the number of radial samples.  

To implement equation 58 to reconstruct the function we need to calculate the partial 

derivative with respect to r. To be exact, we need to calculate the r+rr
2
 of the obtained 
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projections. To discretize differentials, we approximate with symmetric finite differences 

of the samples in the projection F
k,m+1

-F
k,m-1

/2 hr and for the second order partial 

derivatives, we use F
k,m+1

-F
k,m-1

-2F
k,m

/ hr
2
. The discrete version of the entire expression of 

r+rr
2
 acting on the projection would be as follows, 

          1/ hr((m+1/2) F
k,m+1

 + (m-1/2)F
k,m-1

- 2mF
k,m

                                                         (61) 

where F
k,-1

=F
k,Nr+1

=0 because of the boundary conditions. 

Now, the integration along circular paths over all angles is performed by linear spline 

interpolation, interpolating the projections at the positions r
m
. The discrete version of the 

interpolation operator is defined as follows 

        T
k
[G](r)= F

k,m
+ r-r

m
/hr(F

k,m+1
-F

k,m
)                                                                        (62) 

where r is in between two consecutive radial samples r
m
 and 

 
r

m+1
.Therefore the discrete 

version of the entire equation (58) is as follows 

         )(/1
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Finally, the discrete version of the back-projection operator
47

 is given by 

          1/(N+1)

N

k

ki
pxF

0

|)(| ,    x
i D                                                                 (66) 

The computational efforts are O(N
3
) for the FBP because all (N+1)

2
 reconstructions for 

the points in the image, N+1 summations must be done. Here N=N=Nr=100. The 

reconstructions were performed when both the object was inside the ring of detectors and 

exterior to it. In the exterior case, there were more radial samples from one half of the  

ring of detectors like shown in Figure 7. In this case, the object to be reconstructed is on 

the top right of the ring of detectors; the detectors on the left half of the ring of detectors 

will have more radial spacing than the right half. The radial spacing increase 

proportionately as the distance between the ring of detectors and the object increases. 

For the bistatic case, the distance between the transmitter and the receiver remain 

constant throughout data acquisition. This would geometrically mean that the distance 

between the two foci of the ellipse remain constant. In addition, a further constraint was 

imposed that the major axis remains tangential to the circle on which the pair of 

transducers are rotated. The center of the ellipse, the mid-point of the major axis is the 

angular location e
k
, where k runs from 0 to 100 with an angular spacing of 0.0622 

radians.  

Figure 8. Exterior data 

acquisition. If the object is at 

the top right of the ring of 

detectors, the detectors on the 

left half of the ring will have a 

higher radial spacing than the 

right half 
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We are at a position to define the eccentricity  of an ellipse. If the major axis of the 

ellipse is a and the minor-axis b, then the eccentricity is defined as a follows 

                       = 2
)/(1 ab                                                                                          (67) 

And the distance from the center to either focus is ae which is equal to
22

ba . In my 

numerical implementation of the forward model, the distance between the foci remains 

constant. If the constant is c, then for linear samples of major axes a
m
=mar, where m runs 

from 0 to 100 in steps of 1 (ar=1), then the samples of minor axes are calculated as 

follows, 

                                    b
m
= 22

)( ca
m                                                                         (68) 

which means the samples of minor axes do not increase in a linear fashion. 

For the backprojection, the projections were smeared aback along elliptical arcs with the 

filter that was used in the monostatic setup. Here, the log based filter had values of 

samples of minor axes as opposed to the radial samples in the case of mono-static setup.  

In the case of multi-bi-static setup, where there are more than one receiver per 

transmitter, the filter contained samples of eccentrities of the ellipses instead of the radial 

samples. In this case, the eccentrities start from zero (where an ellipse is a circle) and 

approach towards the value 1 as a the receiver moves farther away from the transmitter 

on a circle and moves back to the value 0 as the pair of transducers get closer. 
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CHAPTER IV 

 

 

FINDINGS 

 

In this section, I will present the results for the FBP reconstructions of phantoms for 

various geometrical setups. For the monostatic setup, a 100X100 Shepp-Logan phantom 

was used (figure 9). 

                     

 

 

For N=N=Nr=100, for a total angular data acquisition of 360 degrees, the corresponding 

sinogram of the Shepp-Logan phantom is shown in Figure 10.  

The reconstructed image using the FBP algorithm mentioned in the methodologies 

section is shown in Figure 11. 

 

Figure 9. 100X100 Shepp-

Logan phantom 
Figure 10. The corresponding 

sinogram of the phantom 

Figure 11. The reconstructed 

image from the obtained 

sinogram using the FBP 

method 
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The following image shows the reconstruction of a point source (Figure 12). 

                  

 

 

 

         

Next, for the phantom shown in Figure 13, the algorithm was used to reconstruct the  

 

Figure 12.4 The phantom 

used for partial 

reconstruction. The location 

of the detectors is shown with 

white dots. 

Figure 12.1 A point source at 

origin 
Figure 12.2 Sinogram of a 

point source at origin 

Figure 12.3 Reconstruction of 

a point source 
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object from half the data. This kind of modeling is most appropriate for breast cancer 

imaging using the tomographic modality. The corresponding sinogram and the 

reconstruction are shown in Figures 14 and 15 respectively. In this case N=N=Nr=100 

with an angular coverage of 180 degrees. 

 

               

 

 

 

 

 

 

For the case of exterior reconstruction, where the object was placed exterior to the ring of 

detectors (top right to the ring of detectors, with the center of the object 2N pixels from 

the center of the ring of detectors with radius of 2 N pixels. In this case N= N= Nr=100 

but the radial spacing for the detectors on the left half is twice that of the right half. The 

phantom used is shown in Figure 7 and the corresponding sinogram is shown in Figure 

16 and the reconstruction using FBP is shown in Figure 17. 

 

Figure 13. The sinogram of 

the phantom shown in Figure 

10 for partial angular 

coverage 

Figure 14. Reconstruction of 

phantom shown in fiure 10 

for partial angular coverage 
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To understand the behavior of the filter for the bistatic case, a different phantom was used 

as shown in Figure 18. It is a 100X100 binary phantom with a square in the middle of the 

phantom of 100 pixels each side. 

Figure 15. The sinogram 

obtained for an object placed 

exterior of the ring of 

detectors 

Figure 16. The reconstruction 

with artefacts for the exterior 

case. 

 

Figure 17. 100X100 binary 

phantom used with a square 

in the middle of 10 pixels each 

side.  
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For N= N= Na=100, and for a angular coverage of 360 degrees, the corresponding 

sinogram is shown in Figure.19. The reconstructed object is shown in Figure 20. Since, 

the filter is a „computational‟ quantity and to understand its spatial behavior, the square 

on the binary phantom was spatially moved. The following images were moved along the 

x-axis with no change in the y-axis. The image was moved every 2-pixels on either side 

of the center. To conserve space, few are shown here. A graph comparing the spatial 

location and the error in reconstruction will follow. 

 

 

 

 

                        
 

   

 

 

Figure 18. Sinogram of the 

phantom shown in Figure 15 

Figure 19. The reconstructed 

object 
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Figure 20. Phantom moved 

along positive x-axis while no 

change in y-axis 

Figure 21. Corresponding 

reconstructions 
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 Figure 22. Phantom moved 

along negative x-axis while no 

change in y-axis 

Figure 23. Phantom moved 

along positive x-axis while no 

change in y-axis 
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Figure 24. Phantom moved 

along positive y-axis while no 

change in x-axis 

Figure 25. Corresponding 

reconstructions 
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Figure 26. Phantom moved 

along negative y-axis while no 

change in x-axis 

Figure 27. Corresponding 

reconstructions 
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Figure 28. Phantom moved 

along the diagonal of the 

fourth quadrant of the 

Cartesian system 

Figure 29. Corresponding 

reconstructions 
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The following phantom (figure 26) was used to find the effect of nearby objects to the 

original square in the binary phantom. 

 

 

 

                      
  

 

 

 

 

 

The reconstructed image is shown in Figure 32.  

 

 

 

 
 

 

 

 

 

 

 

Figure 30. Objects placed 

next to the square in the 

original binary phantom 

Figure 31. Corresponding 

sinogram 

Figure 32. Reconstructed 

image of the phantom shown 

in Figure 31. 
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The following phantom (figure 33) was used to find the effect of the reconstruction 

algorithm on an asymmetrical object. 

 

 

                 
 

 

 

 

 

The following phantoms (figures 35 and 37) was used to find the effect of the 

reconstruction algorithm on the object by placing it in a random location at the top left 

quadrant of the Cartesian system. 

 

 

 

 

                       
 

 

 

 

 

 

Figure 33. Objects placed 

next to the square in the 

original binary phantom 

Figure 34. Reconstructed 

image of the phantom shown 

in Figure 33. 

Figure 35. Objects placed 

in a random location on 

the top left quadrant 

 

Figure 36.  

Reconstruction of Fig 35 
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The following graphs show the error in reconstruction as a function of position of the 

object along the x-axis, y-axis and the diagonal in the fourth quadrant of the Cartesian 

coordinate system. 

 

 

                        

 

 

 

Figure 39. Error in 

reconstruction while phantom 

moved along x-axis while no 

change in y-axis 

Figure 40. Error in 

reconstruction while phantom 

moved along y-axis while no 

change in x-axis 

 

Figure 37. Objects placed 

in a random location on 

the top left quadrant 

 

Figure 38.  

Reconstruction of Fig 41 
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For the case of half-projections along the radial direction for all angles, the reconstruction 

fails to work. Figure 42, shows the sinogram for the Shepp-Logan phantom for all angles 

with half radial projections and Figure 40 shows the corresponding reconstruction. 

 

                

Figure 41. Error in 

reconstruction while phantom 

moved along the diagonal in 

the fourth quadrant of the 

Cartesian system 

 

Figure 42. Sinogram for the 

Shepp Logan for half 

projections in the radial 

direction 

 

Figure 43. Recosntruction for 

the sinogram shown in Figure 

42 
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Figure 44. Moving point 

source around the origin 

 

Figure 45. Corresponding 

reconstructions 
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In the case of bistatic imaging, where the radial factor in the original filter was replaced 

by minor axis of the ellipse over which the object is being integrated, it can be noticed 

that the reconstruction is favorable when the object is more towards the center of the ring 

of detector pairs. When the object is being displaced from the center, the reconstruction 

Figure 46. Moving the 

phantom to understand the 

symmetry in artifacts 

 

Figure 47. Corresponding 

reconstructions 
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worsens and only the artefacts are being reconstructed. This is evident from figures 26, 

28 and 30.  

When other squares are being added around the original object, the reconstruction still 

favors the square in the middle of the ring of detector pairs. The worsening of the 

artefacts spatially suggests that the filter (which is a log function of space) influences the 

reconstruction. 

We can notice from figures 40 and 41 that the artefacts in the reconstruction of a point 

source placed at arbitrary locations around the origin splits asymmetrically which could 

be attributed the nonlinear nature of the filter and its effect on back smearing the obtained 

data.  

To further understand the asymmetry, the binary square phantom was moved five pixels 

to left and right of the y-axis while keeping the center of the phantom around 35 pixels 

constantly below the x-axis. A slight flip shift in the intensities in the asymmetry could be 

observed between the reconstructions of the phantom on the extreme right and extreme 

left. A rotation of artefacts is observed while the phantom is moved from laft to right in a 

translational way..While the forward Radon is a linear operation, the backprojection filter 

does not have a linear property. And the approximation from the radial factor in the 

spherical Radon to the minor axis in the elliptical Radon worsens the artefacts. 

Though a reconstruction technique was attempted in Mensah
48

, the work fails to 

analytically backup the reconstruction formula. The paper mentions classical Radon 

backprojection which cannot be applied to elliptical Radon because a Fourier slice 
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theorem does not exist for elliptical Radon transformed projections. Moreover, the 

reconstruction techniques mentioned in the paper fails to satisfy the special cases of 

ellipse namely, the line and the circle. When the two foci move away to infinity an ellipse 

become a line and the corresponding Radon becomes the classical Radon. But the 

parameterization of the lines in the classical Radon are in a different direction as 

compared to this special case of ellipse. A classical reconstruction would not work in this 

scenario. In the case when the two foci come together, the ellipse becomes a circle and 

the filter used in this paper does not match the analytically derived filter in Finch
47

. 
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CHAPTER V 

 

 

CONCLUSION AND FUTURE WORK 

 

In the most common scenario Transrectal Ultrasound is performed using an endorectal 

probe containing linear arrays
50

. The primary contrast agent in the conventional imaging 

is the acoustic impedance mismatch. Acoustic impedance depends on the velocity and 

density and hence the tissue boundaries where these properties change will produce 

image contrast. Scatterers smaller than the wavelength can produce speckles in the 

ultrasound image. 

 Unfortunately, intracapsular prostate cancer is difficult to detect with standard 2D 

ultrasound. First, the prostate is a much more homogeneous tissue than the breast, and 

hence the contrast is limited. Furthermore, prostate cancer has a wide variation in 

appearance that overlaps with the appearance of other benign pathologies and hence 

conventional 2D ultrasound has not been shown to provide any additional sensitivity 

compared to digital rectal exam (DRE). 

Since the progression of prostate cancer is an inherently 3D process, imaging the prostate 

in 3D may be useful for a radiologist. 3D TRUS is one way of imaging 3D prostate but 

still will suffer from contrast issues. Contrast-enhanced prostate Sonography using 

microbubbles has shown potential for prostate cancer detection and diagnosis
51

.Although 
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the prostate is not as well-vascularized as the breast, there is sufficient capacity to even 

perform dynamic wash in/out studies using commercial microbubbles. 

There also been some research work on translating transurethral ultrasound (TUUS) from 

therapeutic modality
52

 to an imaging modality
53

. The image formation methods are 

different between TUUS and TRUS, novel methods can be invented combining these 

two. 

In applications of breast imaging, photoacoustic and thermoacoustic tomography have 

been successful and powerful. Both these modalities merge a non-ionizing, high 

contrast/poor-resolution with low contrast/high resolution ultrasound to produce high 

quality images. However, there are technical obstacles in implementing these techniques 

in 3-D  

In the pulse-echo method the axial resolution is inversely related to the ultrasound 

frequency For example to detect a 150m sized breast microcalcification, frequencies 

greater than 10 MHz must be used. Higher the frequency, more they are attenuated in the 

body by tissues. In applications like breast imaging, reflection and transmission 

tomographic techniques are geometrically well-suited. Reflection tomography could be 

corrected for diffraction though it suffers the resolution limits like the pulse-echo 

methods. In transmission tomography, the Fourier diffraction tomography principle and 

related filtered backprojection image reconstruction algorithm can be used to produce 

good quantitative images of tissue attenuation and velocity
8
.But they are not sensitive to 

hard scattering by some microcalifications Recent advances in inverse scattering 
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techniques are applied for breast imaging. Since the breast cannot be surrounded by 

detectors, as used in photoacoustic tomography, an additional angular coverage may be 

inherent to the collected acoustic data. 

 

In time-domain ultrasound tomographic imaging, there exist several quantitative image 

reconstruction techniques. But there are limitations with FBP based techniques that 

reconstruct the object from integral transformed projections. One of the limitations is that 

all of the filtered back projection algorithms that currently exist work only if the compact 

of the image space is well-defined. This means that the image space is zero outside a 

fixed domain. This results in severe artefacts when we try and reconstruct objects that are 

placed exterior to the ring of detectors as shown in Figure 14. Even the reconstruction 

techniques suggested in
47

 result in high smoothing of the object as is apparent from 

Figure 9 due to the log based radial filter. An additional limitation with the Radon 

transformed image reconstruction is that it works only when the medium is insonified by 

an impulse (which means infinite bandwidth). This might result in additional artefacts 

while reconstructing real data.  

For the case of half-view data acquisition, that is, data obtained by detectors placed on a 

semi-circular arc around the object, the algorithm reconstructs surfaces that are touched 

tangentially by the circles over which they are integrated. This is evident from figure 15. 

It can be noticed that the sides of the squares disappear in the reconstruction. A 

mathematical discussion for this case can be found in
49

. 
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As part of the future work, as a mathematical pursuit, an analytical formula to reconstruct 

elliptical Radon transformed data can be approached. In a special case of the elliptical 

Radon, a parabolic Radon can be obtained by moving one of the detectors to infinity, that 

is to say, keeping one of the foci of the ellipse constant and moving the other to infinity. 

An analytical formula for reconstruction for this case is currently not available in 

literature.  

From an engineering perspective, reconstruction from limited number of angular 

projections can be approached. This will translate to lesser number of detectors in 

practice. Moreover, all the reconstruction algorithms assume that the speed of sound is 

constant. A more realistic model can be approached with varying speed of sound in an 

heterogeneous medium. With an integral type modeling, this will lead to a Radon 

transform in a different surface. It may be called the „noisy‟ Radon. An adaptive filter to 

backproject this kind of data can also be approached. 
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APPENDIX A 

 

Matlab Code for forward and backprojection of Spherical Radon 

 

%Sradon.m need to be run with integrate1.m 

%I would like to thank Marcus Haltmeier (email: 

markus.haltmeier@uibk.ac.at) for sharing a partial pseudo-code and 

%helping me understand the paper better 

 

fun=phantom(101); %Insert your phantom here 
radius=3; 
diameter=2*radius; 
angles=100; 
radial=100; 
sinogram=zeros(angles,radial+1); 
angle_inc= 2*pi / angles; 
radial_inc  = diameter/ radial; 
object=linspace(-3,3,101); 
object1 = linspace(-3,3,angles); 
fil =linspace( 0,12,201); 
fil=fil(:); 
lfil=length(fil)-1; 
dfil=fil(2)-fil(1); 
pixel=object1(2)-object1(1)  ; 
[X,Y]=meshgrid(object,object);  
FINAL = zeros(101); 
nfil=linspace(0,lfil-1,lfil)'; 
a=zeros(lfil+1,lfil); 
b=zeros(lfil+1,lfil); 

  

  
for i=1:lfil+1 
    filtemp=fil(i) ; 
    k =i-1; 
    g1=-log(abs((nfil+1-k)./(nfil-k)));  
    g1(i)=0; 
    g2 =-filtemp*log(abs((nfil+1-k)./(nfil-k) ) ); 
    g2(i) = 0; 
    if k>0 
        g1(i-1) = 0; 
        g2(i-1) = 0; 
    end 
    a(i,:)=g1(1:lfil); 
    b(i,:)=g2(1:lfil)-fil(1:lfil).*g1(1:lfil); 
end 
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object  = linspace( -3, 3, 101 );  
ang = linspace( -pi, pi - 0.001, angles ); 
rad  = linspace( 0,diameter, radial+1); 
xcirc = diameter/2 * cos(ang);  
ycirc = diameter/2 * sin(ang);  

  

  
for i=1:angles 
center=[xcirc(i) ycirc(i)]; 
gram1 = integrate1( center,radius,fun,rad ); 
sinogram( i,: ) = gram1(1,:); 
end 

  
imagesc(sinogram); 
radial1=radial-1; 

  
for backp =1:angles 
    cent   = [xcirc(backp); ycirc(backp)  ]; 
    mf(1,1:101 ) = sinogram(backp,1:101 )  ;  

     
  mf(2:end-1)  = (mf(3:end) - mf(1:end-2))/(2*(radial_inc)); 
  mf = rad.*mf; 
   if(backp==10) 
        kk=mf; 
    end 
   m = [  -mf(end:-1:1) , mf(2:1:end) ];  
   m = m(1:200)*a' +((m(2:201)-m(1:200) )/radial_inc)*b';        
    mf(1,1:1:101) = m(1,101:1:201); 
    dist=sqrt((X-cent(1)).^2+(Y-cent(2)).^2); 

    
    fun1=interp1(rad,mf,dist) ;  
   % 
    FINAL=FINAL+fun1; 
end 
FINAL = (3*2*pi/100)*FINAL/(2*pi*3); 
FINAL(not(FINAL<Inf))=0; 
figure(2); 
imagesc(FINAL); 

 

 

%integrate1.m 

 
function gram1 = integrate1(center,radius, fun,rad ); 

  
object = size(fun, 1 ) - 1; 
xV = linspace(-radius,radius, object+1 ); 
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mf = zeros( size(rad) ); 

  
hh = floor( 2 * object *  pi ); 

  
summe = 0;  
for ir = 1:length(rad)  
    r0 = rad( ir );  

     
   beta= real( acos( r0 / (2*radius) ) ) ; 
    calc  = atan2( center(2) , center(1) ); 
    hh2 = floor( hh * (beta/pi) * r0/(2*radius) ) + 1; 
     angleV = linspace(calc+pi - beta, calc+pi + beta, hh2); 
    s1 = center(1) + r0*cos( angleV ); 
    s2 = center(2) + r0*sin( angleV ); 

  
    fw  = interp2( xV, xV', fun, s1, s2 ); 
    fw( not(fw < Inf) ) = 0; 
    summe = sum(fw(:)); 

     
    gram1(ir) = summe; 
end 

 

 

 

 

 

 

 

 

 

 

 

 



 

 71 

 

REFERENCES 

1. Bjorn A.J. Angelsen, Ultrasound Imaging – waves, signals and signal processing, J. 

Acoust. Soc. Am, 121 (4), pp.1820-1820, 2007. 

2. Frank Natterer, “An algorithm for 3D ultrasound tomography”, Inverse problems of 

wave propagation and diffraction, pp.216-225, Springerlink, 2007. 

3. S. J. Norton and M. Linzer, Ultrasonic reflectivity tomography: Reconstruction with 

circular transducer arrays, Ultrason. Imaging, 1, pp.154-184, 1979. 

4. S.J.Norton and M.Linzer, Ultrasonic reflectivity imaging in three dimensions: 

Reconstruction with spherical transducer arrays, Ultrason. Imaging, 1, pp.210-231, 1979. 

5. M.Kaveh, R.K.Mueller, and R.D.Iverson, Ultrasonic tomography based on perturbation 

solutions of the wave equation, Comput. Graphics and Image Processing,9,pp.105-

116,1979 

6. R.K. Mueller, M.Kaveh, and G.Wade, Reconstruction tomography and applications to 

ultrasonics, Proc. IEEE, 67, pp.567-587, 1979. 

7. R.K.Mueller, M.Kaveh, and R.D.Iverson, A new approach to acoustic tomography using 

diffraction techniques, Acoustical holography, 8, A.Metherell, Ed. New York: Plenum, 

pp.615-628, 1980. 

8. S.K.Lehman and S.J.Norton, Radial reflection diffraction tomography, J. Acoust. Soc. Am, 

116(4), pp.2158-2172, 2004. 

9. P.N.T.Wells, Biomedical Ultrasonics, Academic Press, 1977. 

10. R.K.Mueller, M.Kaveh, and R.D.Iverson, A new approach to acoustic tomography using 

diffraction techniques, In: A. Metherall, Editor, Acoustical Imaging, Plenum Presspp.615-

628, 1980. 

11. E.Wolf, Three-dimensional structure determination of semitransparent objects from 

Holographic data, Optics Commun., pp.153-156, 1969. 

12. J.F.Greenleaf et al., Algebraic reconstruction of spatial distributions of acoustic velocities 

in tissue from their time-of-flight profiles, Acoustic Holography, 6, pp.71-90, 1975. 

13. J.F.Greenleaf, S.A.Johnson,S.L.Lee,G.T.Herman, and E.H.Wood, Algebraic reconstruction 

of spatial distributions of acoustic absorption with tissues from their two-dimensional 

projections, Acoustical Holography, edited by P.S.Green(Plenum, New York),5,pp.591-

603,1974. 

14. R.K.Mueller, Diffraction Tomography I: The wave equation, Ultrason. Imag. , 2, pp.213-

222, 1980. 

15. E.Wolf, Three dimensional structure determination of semitransparent objects from 

holographic data, Opt. Commun.,1(4),pp.153-156,1969. 



 

 72 

 

16. K.Iwata and R.Nagata, Calculation of refractive index distributions from interferograms 

using Born and Rytov’s approximation, Jap. J. Appl. Phys, 14, pp.379-383, 1975. 

17. J.M.Tribolet, A new phase unwrapping algorithm, IEEE Trans. Acoustics. Speech. Signal 

Proces. ASSP-25(2), pp.170-197, 1977. 

18. S.A.Goss, R.L.Johnston, and F.Dunn, Comprehensive compilation of empirical ultrasonic 

properties of mammalian tissues, J. Acoust. Soc. Am., 64(2), pp.423-457, 1978. 

19. S.A.Goss, R.L.Johnston and F.Dunn, Compilation of empirical ultrasonic properties of 

mammalian tissues. II, J. Acoust. Soc. Am., 68(1), pp.93-108, 1980. 

20. S.J. Norton, Reconstruction of a reflectivity field from line over circular paths, J. Acoust. 

Soc. Am., 67(3), pp, 853-863, 1980. 

21. S.J. Norton, Theory of acoustic imaging, Ph.D. thesis, Stanford University, Stanford Elect. 

Lab. Tech. Rept. No.4956-2, Chap. 5, 1976. 

22. A. G. Bell, On the production and reproduction of sound by light, Am. J. Sci., 20, pp.305-

324, 1880. 

23. C. K. N. Patel and A. C. Tam, Pulsed optoacoustic spectroscopy of condensed matter, 53, 

pp.517-550, 1981. 

24. M.Xu and L.V. Wang, Photoacoustic imaging in biomedicine, Rev. Sci. 

Inst.,77,pp.041101(1-22),2006. 

25. G.Ku, X.wang, G.Stoica and L.-H.Wang, Multiple bandwidth photoacoustic tomography, 

Phys. Med. Biol., 49(7), pp.1329-1338, 2004. 

26. F. A. Duck, Physical properties of tissue, Academic, London, 1990. 

27. J.C. Lin, On microwave-induced hearing sensation, IRE. Trans. Microwave. Theory Tech., 

MTT-25, pp.605-613, 1977. 

28. V.E. Gusev and A.A. Karabutov, Laser optoacoustics, American Institute of Physics, New 

York, 1993. 

29. Photons plus ultrasound: Imaging and sensing 2005, edited by A.A Oraevsky and 

L.V.Wang (SPIE, Bellingham, WA, 2005), vol.5697. 

30. Photons plus ultrasound: Imaging and sensing 2006, edited by A.A Oraevsky and 

L.V.Wang (SPIE, Bellingham, WA, 2006), vol.6086. 

31. M. Haltmier, O. Scherzer, P. Burgholzer, and G. Paltauf, Thermoacoustic computed 

tomography using large planar receivers, 20(5), pp.1663-1674, 2004. 

32. A. C. Tam, Applications of photoacoustic sensing techniques, 58(2), pp.381-431, 1986. 

33. A.A. Oraevsky and A.A. Karabutov, in Biomedical Photonics Handbook, edited by T.Vo-

Dinh (CRC, Boca Raton, FL), Chap. 34, 2003. 

34. A. Macovski, Ultrasound imaging using arrays, Proc. IEEE, 67, pp.484-495, 1979. 

35. F.Duck, S.Johnson, J.Greenleaf and W.Samayoa, Digital image focusing in the near field 

of a sampled acoustic aperture, Ultrasonics, 15, pp.83-88, 1977. 



 

 73 

 

36. J.D.Coker and A.H. Tewfik, Multistatic SAR image reconstruction based on an elliptical 

geometry Radon transform, IEEE International conference on waveform diversity and 

design, pp.204-208, 2007. 

37. Y. Xu, L.-H.Wang, G.Ambartsoumian and P.Kuchment, Reconstructions in limited-view 

thermoacoustic tomography, Med. Phys, 31, pp.724, 2004. 

38. R. M. Arthur and S. R. Broadstone, Imaging via inversion of ellipsoidal projections of 

solutions to the linear acoustic wave equation, IEEE Trans. Med. Imag, 8(1), pp.89-95, 

1989. 

39. S. J. Norton, Reconstruction of a two-dimensional reflecting medium over a circular 

domain: Exact solution, J. Acoust. Soc. Am., 67(4), pp.1266-1273, 1980. 

40. S.J.Norton and M.Linzer, Ultrasonic reflectivity imaging in three dimensions: Exact 

inverse scattering solutions for plane, cylindrical, and spherical apertures, IEEE Trans. 

Biomed. Engg., 28(2), pp.202-220,1981. 

41. S.Aks and D.J.Vezzetti, Ultrasonic scattering theory I: Scattering by single objects, 

Ultrason. Imaging, 2, pp.85-101, 1980. 

42. J.Ball, S.A.Johnson, and F.Stenger, Explicit inversion of the Helmholtz equation for 

ultrasound insonification and spherical detection, Acoustical Holography,8,A.Metherell, 

Ed. New York: Plenum, 1980. 

43. G. Barton, Elements of Green’s functions and propagation – Potentials, diffusion and 

waves, Oxford University Press, 1991. 

44. S.Pourjavid and O. Tretiak, Ultrasound imaging through time-domain diffraction 

tomography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 38, 74-85, 1991. 

45. T. D. Mast, Wideband quantitative ultrasonic imaging by time-domain diffraction 

tomography, J. Acoust. Soc. Am., 106(6), pp.3061-3071, 1999. 

46. J.M. Blackledge, R.E.Burge, K.I.Hopcraft and R.J.Wombell, Quantitative diffraction 

tomography: I. Pulsed acoustic fields, J. Phys. D., 20, pp.1-10, 1987. 

47. D.Finch, M.Haltmeier and Rakesh, Inversion of spherical means and the wave equation 

in even dimensions, SIAM J. Appl. Math., 68(2), pp.392-412, 2007. 

48. S.Mensah and E.Franceshini, Near-field ultrasound tomography, J. Acoust. Soc. Am., 

121(3), pp.1423-1433, 2007. 

49. P.Kutchment and L.Kunyansky, A survey in mathematics for industry: Mathematics of 

thermoacoustic tomography,Euro. Jnl. Of Appl. Mathematics,19, pp.191-224,2008. 

50. ACR, ACR Practice guideline for the performance of ultrasound evaluation of the 

prostate (and surrounding structures), pp.1035-1038. ACR, 35 edition, 2006.  

51. Ethan J Halpern, Contrast-enhanced ultrasound imaging of prostate cancer, Rev. Urol., 

8(suppl 1): S29-S37, 2006. 



 

 74 

 

52. C. Diedrich and E. C. Burdette, Transurethral ultrasound array for prostate thermal 

therapy: Initial studides. IEEE trans. On Ultrasonics, Ferroelectrics and frequency 

control, 43(6), pp.1011-1022, 1996. 

53. J.O.Salo, T.Lehtonen and S.Rannikko, Prostate cancer protruding into the bladder 

imaged by transurethral and transrectal ultrasound, International journal on 

Nephrology, 19(2), pp.171-174, 1987. 

 


	Signature Page

	Title Page

	Copyright Page

	Acknowledgements

	Table of Contents
	List of Tables

	List of Figures

	Chapter 1: Introduction
	Chapter 2: Review of Literature
	Chapter 3: Methodology
	Chapter 4: Findings
	Chapter 5: Conclusion and Future Work
	Appendix A
	References

