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INTRODUCTION 

In 1993, in the September 2 issue of the New England Medical Journal, the results of the Global 
Utilization of Streptokinase and Tissue Plasminogen Activator in Occluded Arteries (GUSTO) trial were 
reported (2). This international collaborative trial of 41 021 patients, sought to definitively answer 
whether accelerated tissue plasminogen activator (t-PA) or steptokinase (SK) was the most efficacious 
thrombolytic therapy for treatment of patients presenting early with myocardial infarction associated with 
ST segment elevation. The authors concluded that t-PA was the preferred therapy due to its greater 
reduction in 30 day mortality compared with the combined SK groups. What are clinicians to do with this 
information and why is this important? Earlier reports by the Gruppo Italiano per lo Studio della 
Sopravvivenza nell" Infarcto Miocardico (GISSI - 2), the International Study Group, and the Third 
International Study of Infarct Siuvi.val (ISIS - 3) found no evidence of a survival advantage for any of the 
compared thrombolytic agents, which included SK and t-PA (3,4,5). Yet in the face of conflicting data, 
clinicians still need to make treatment decisions regarding which is the most efficacious thrombolytic 
treatment for the estimated 250 000 eligible patients who present with acute myocardial infarction in the 
United States per year (6). My purpose in this discussion is not to provide you with a current update on 
the most efficacious thrombolytic therapy for acute myocardial infarction, because there are much more 
capable people than myself for that task. Instead, my purpose is to use this trial, and the storm of 
controversy regarding its interpretation and application to clinical medicine that followed in its wake, to 
provide a meaningful context within which to discuss the appraisal of clinical trials. 

Why do we need to talk about critically appraising clinical trials? 

1) Clinical trials represent the pinnacle of the hierarchy of evidence when 
answering a clinical question (7, 8, 9 ). 
Randomized trials have become the accepted standard for evaluating therapeutic efficacy. As a result, they 
are likely to have the greatest impact on our clinical decision-making, as they should. But they are not 
perfect, and given their potential ready application to medicine, some careful scrutiny should be brought 
to bear on them. The GUSTO trial has been considered one of the largest and best executed clinical trials 
ever performed and its results have had substantial impact on the choice of agent for thrombolytic therapy 
in the setting of acute myocardial infarction. Yet many questions have been raised regarding the proper 
interpretation of this trial and its subsequent integration into clinical practice. 

2) Clinical trials have become increasingly more sophisticated in design and 
analysis. 
This complexity is well illustrated by a review of 45 consecutive reports, 15 each from 3 medical journals 
(British Medical Journal, Lancet, New England Journal of Medicine) reported by Pocock and colleagues 
(10) . They fotind multiplicity in many aspects of study design and analysis, including endpoints (a median 
of 6 assessed per study), measurements of outcome (repeated over time in 40%), treatment groups ( 
Investigaton of 3 or more treatment groups in 20%), and statistical tests (the mean number of significance 
tests evaluating outcomes only was 4 per trial but increased to a median of 8 when those examing 
subgroups were included). One trial had 12 endpoints, 11 significance tests and only 12 patients. With 
this degree of complexity, it becomes easy for the results to obscured by the statistics. Where is the 
knowlegde that is lost in information? (T.S. Eliot) 

3) There has been a tendency for new treatments and new technologies to be 
adopted before fully evaluated. 
Laupacis and colleagues have developed a classification system that provides guidance on the use of 
clinical and economic evaluations in making decisions about the adoption and utilization of competing 
health care technologies (11). They applied this classification system to some published studies and found 
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that some approaches to health care that have been adopted prior to full evaluation appear, after their 
widespread dissemination, to be poorly supported by evidence. In addition. they demonstrated that an 
expensive, poorly effective therapy was harder to withdraw than introducing an equally expensive but 
more effective therapy. For example, the introduction of universal precautions against HIV transmission 
in health care workers costs about $565 000 per additional life-year saved (11) . 

4) Clinical trial results are often in conflict. 
Conflicting results of multiple randomized clinical trials on the same topic is not an uncommon 
phenonmenom. Horowitz searched the literature in the disciplines of cardiology and gastroenterology, 
and found 36 topics, encompassing over 200 randomized trials, for which there were conflicting results in 
the reponed relationship between a particular therapeutic agent and a clinical outcome (12). Some 
common and clinically important topics included the medical versus surgical treatment of stable coronary 
anery disease, beta-blockers and acute myocardial infarction. and steroids and alcoholic liver disease. 
What do we do when the conclusions from our highest forms of evidence don't agree with one another? 
Yet, such was the case with the GUSTO trial, which sparked the debate that subsequently ensued. 

5) Finally, the quality of a clinical trial cannot be inferred from the reputation of the 
medical journal in which it is published. 
There are a number of repons regarding the suboptimal methodological quality of clinical trials 
published in peer-reviewed journals (10). Gore reponed the impact of implementing statistical review of 
submitted papers, which remain candidates for publication in Lancet after conventional review (13). 
Biostatisticians evaluated various methodological aspects of 191 repons in a standardized manner and 
judged the methods section to be inadequate in half. The most common major criticisms are presented in 
Table 1. After methodological review, the following recommendations were made: accept 8% (none had 
major adverse comments), accept after revision 46% (26% had major adverse comments), revise and re­
review 32% (90% had major adverSe comments) and reject 14% (100% had major adverse comments). 
Even with this process in place only 9 of 27 papers recommended for rejection were actually rejected. 

Table 1: Summary of Methodological Review of Papers Passing Conventional Review 

.. .. M.~.~~.~~.\~.~.~~. A!:e.a. ............... 'Yc! ... ~.~~~!~ ......... §~~.M~.~~~~~~~.~!?.\~.~ .. 9..\!~ ........................................... . 

Abstract 24% 

Design 28% -sampling scheme/eligibility of patients (10%) 
- power of study or sample size (9%) 
- comparability between groups (5%) 

Analysis 38% - need for better analysis ( 19%) 
- type of analysis not clear ( 13%) 
- inappropriate distribution shape (6%) 

Inference 25% - incorrect conclusions (13%) 
- multiple endpoints with selective emphasis (7%) 

Presentation 8% -failure to show raw data (3%) 
-failure to indicate scatter in tables or graphs (3%) 

Just recently, the Consolidated Standards of Reporting Trials (CONSORT) guidelines were published 
(14). The goal of these guidelines is to increase the quality of carrying out and reporting clinical trials. 
Some journals have already adopted these guidelines and ask authors who submit papers to adhere to these 
recommendations. However, there is no mechanism for ensuring compliance with them in the review 
process and they do not constitute formal statistical review (15). Only a few journals, the Lancet, British 
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Medical Journal, the Journal of the American Medical Association and the Annals of Internal Medicine, 
are notable exceptions in employing methodological review as a component of the review process. 
Unfortunately, then methodologic issues that could impact the validity of the results and the inferences 
drawn may not be recognized by content expertS, and thus adversely affect evolution of the knowledge 
base. 

Having provided this rationale for why critical appraisal is necessary, I'd like to place my discussion in 
the appropriate perspective. Critically appraising a study puts one in the heady position of being an 
armchair quarterback. It is much easier after the fact to see what might have gone wrong with a trial or 
what might be less than ideal design. However, anyone who has ever been on the playing field, so to 
speak, in designing and carrying out a clinical trial appreciateS the enormous complexity of the task. 
Issues such as feasibility with regard to study population, measurements, outcomes, cost, effort, time, etc. 
substantially influence the final study design that is implemented, which thus represents no small 
accomplishment. The goal, therefore, of critical appraisal is not statistical nihilism with regard to the 
quality of a trial. No trial is perfect, and no trial answers definitively all the clinical questions that might 
be asked of it. A less than perfect trial is not to be summarily abandoned. The goal of appraisal is to 
recognize the limitations of a study so that decision-making can be guided as objectively as possible, based 
on the study's validity and inferences that are supported by the data in the study. With careful analysis, we 
might better delineate where science ends and the art of medicine begins, a process which David Sackett 
refers ~o as "the science of the art of choosing better treatment" (16) 

The paradigm that I'll be using to discuss the critical appraisal of clinical trials is that of evidence-based 
medicine (EBM). EBM represents a paradigm shift in the practice of medicine in its emphasis on using 
the literarure more effectively in guiding medical practice (17). This paradigm does not replace the former 
paradigm which has emphasized clinical experience, the understanding of basic mechanisms of disease 
and pathphysioloigc principles, physical exam skills and content expertise. Instead, it expands and 
complements it with new skills such as precisely defining the patient's problem, efficient strategies for 
searching the literarure, application of formal rules of evidence in the interpretation of the literarure, 
appropriately applying the information to guide medical practice and increased emphasis on the 
psychosocial aspects of medicine. These formal rules of evidence for various types of studies have been 
developed and published by the Evidence-Based Medicine Working Group at McMaster University as a 
framework for critical appraisal of the literarure. The full set of criteria have been published as a series of 
articles, collectively called "The Users' Guide to Interpretation of the Literarure", aver the last several 
years in JAMA (18-31). Today I'll be focusing on clinical trials, because they represent the highest form 
of evidence, and on those that investigate therapy and prevention since these questions are the most 
common ones asked in the clinical arena, although clinical trials can also be used to investigate diagnostic 
tests, prognosis, and other types of questions. Table 2 provides a summary of the criteria for evaluating 
studies assessing therapy and prevention which will provide a methodologic framework for our discussion. 
The analysis of clinical trials encompasses a broad scope of statistics, epidemiology and medical decision­
making. I have therefore chosen to focus my discussion on some issues that are most relevant to each 
criteria or most frequently encountered by clinicians in their analysis of the literarure. These issues are 
presented in italics in association with the appropriate criteria. Before moving on to discuss these criteria 
and apply them to the GUSTO trial, as a brief aside, more detailed and quantitative methods for assessing 
the quality of a randomized control trial have also been developed (32). 
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Table 2: Readers' Guides for an Article About Therapy or Prevention 
Are the results ofthe study valid? 
Primary guides: 

Was the assignment of patients to treatments 
randomized? 

Were all patients who entered the trial properly 
accounted for and attributed at its conclusion? 
• Was follow-up complete? 
• Were patients analyzed in the groups to which 

they were randomized? 

Secondary guides: 
Were patients, health workers and study personnel 
"blind" to treatment? 

Were the groups similar at the start of the trial? 

Aside from the experimental intervention, were the 
groups treated equally? 

What were the results? 
How large was the treatment effect? 

How precise was the estimate of the treatment 
effect? 

Will the results help me in caring for my 
patients? 
Can the results be applied to my patient care? 

Were all the relevant outcomes studied? 

Are the likely treatment benefits worth the potential 
harms and costs? 

Overview of GUSTO Design 

Methodological issues 

• Selection bias, what constitutes randomization, 
statistical advantages of randomization, assessing 
the "success" of randomization 

• impact of loss to follow-up, cross-over in 
treatment, noncompliance, 

• Diagnostic and outcome assessment bias 

• Assessing the distribution of baseline covariates 

• the impact of co-interventions 

• Summary measures of benefit, 
significance/hypothesis testing, statistical 
parameters (a, P, p values), statistical 
significance vs clinical significance, modifying 
treatment effect for impact of covariatest, 
multiple comparisons 

• Confidence intervals, power and "negative 
studies" 

• Subgroup analysis 

• clinical marker vs outcome of clinical interest, 
multidimensional outcomes, multiple outcomes, 
quality of life 

• Comorbidity of therapy, cost-effectivnesslcost­
utility analyses 

Before proceeding with an appraisal of the GUSTO trial, let me briefly review its design. 41 021 patient 
who presented to 1081 hospitals in 15 different countries were randomized to one of four treatment 
strategies: accelerated t-PA +IV heparin, SK + SC heparin, SK +IV heparin, t-PA (Table 3 presents the 
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l details of dosing and administration of the main treatments). The inclusion criteria included chest pain 
due to suspected M1 of $ 6 hours duration with ECG evidence of ST-segment elevation over the 
presumed area of infarct. Exclusion criteria included prior stroke or evidence of central nervous system 
damage, earlier entry into the trial, recent use· of SK or anistreplase, active bleeding, and recent 
noncompressible puncture. All patients received at least 160 mg of aspirin on day 1, and 160 to 325 mg/d 
thereafter. Intravenous followed by oral beta-blockers using atenolol was also given in the absence of 
contraindications. The primary outcome for the trial was 30-day mortality. More details of the trial will 
be presented as they become relevant. 

Table 3: Summary of the Treatment Groups in GUSTO 
Treatment 
t-PA 

SK 

SK 

t-PA+SK 

Dose/administration oft-PA or SK 
15 mglkg bollll!, the 0.75 mglkg 
over 30 min and 0.5 mglkg over 
next60 min. 

1 million U over 60 min 

1.5 million U over 60 min 

• t-PA: 1 mglkg over 60 min (10% 
as bolus) 

• SK: I million U over 60 min 

Heparin 
5000 U IV bolus, the IV infusion of 1000 Ulhr 
(APTT 60-85) 

5000 U IV bolus, the IV infusion of 1000 Ulhr 
(APTT 60-85) 

12 000 U SC BID 

5000 U IV bolus, the IV infusion of 1000 Ulhr 
(APTT 60-85) 

I. ARE THE RESULTS OF THE STUDY VALID? 

A. Primary Guides 

1. Was the assignment of patients to treatments randomized? 

I'm going to address two issues with regard to randomization: 1) what does randomization achieve and 2) 
how is the "success" of randomization assessed and what importance does this have? First of all, we need 
to understand what randomization is, and what it is not. Randomization is a procedure for assigning 
treatment to patients such that there is an equal probability of assignment to each treatment each time a 
patient is allocated (8). A good example of a randomization procedure is the use of a random table of 
numbers generated by a computer with odd numbers being assigned to one treatment and even numbers 
being assigned to the control group or standard treatment. Alternating assignment of patients to the 
treatment and the control groups is not randomization, because at the moment of allocation to treatment, 
if the last patient randomized was assigned to the control group, the patient now being allocated has a 
100% probability, rather than an equal probability (50% in the case of two groups) of being assigned to 
the treatment group. Allocation of patients that is not truly random presents problems in the introduction 
of selection bias that results if the allocation scheme can be discerned by the patient or the clinician. 

Randomization results in three major advantages (33). First, selection bias in the assignment of patients 
to treatments is eliminated. Randomization removes physician or patient preferences that might result in 
systematic assignment of the individual therapeutic agents to patients with predominantly poor (or good) 
prognoses for ihe outcome event (34). For example, whenever surgery is chosen for operable patients, and 
nonsurgical therapy reserved for those who are inoperable, the operable patients will nsually have a better 
prognosis than the inoperable ones, even if surgery is not performed. In addition, whenever the use of a 
particular treatment requires that its recipients fulfill certain pretherapeutic criteria, the selection process 
may bias the assignment of patients with differing prognostic factors to one treatment group. For example, 
a nonrandomized study comparing thrombolytic therapy with angioplasty in the treatment of acute MI 
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may utilize selection criteria for the angioplasty group that selects patients with more favorable 
prognostic factors. 

Secondly, randomization balances the treatment groups with respect to measurable patient 
characteristics, referred to as covariates, which inay be prognostic factors for the outcomes of interest, 
whether or not these factors are known. Since most diseases are multifactorial in causation and prognosis, 
typically many factors, some known and some unknown, influence disease occurrence and progression. In 
other words, it is a very rare disease that has only one cause, and the outcome of which can be predicted 
with 100% certainty based on the knowledge of one clinical factor. The known factors can be measured. 
But randomization is particularly important for unknown prognostic factors, since it follows that they 
cannot be measured and thus cannot be adjusted for in the statistical analysis. If the reader is in doubt 
regarding the substantial impact of unknown prognostic factors on disease, i.e. you feel that most common 
diseases are well understood and explained, the reported inability to predict large proportions of the 
variance in outcomes given all the known prognostic factors is the best indicator of our generally 
incomplete understanding of most diseases. Therefore, the even distribution of covariates, especially 
unknown prognostic factors, among the treatment groups assures they will be truly comparable to one 
another. 

One final advantage to randomization is that it provides the framework for comparing treatment effects 
among groups based on statistical inference (33). Although the groups compared are never perfectly 
balanced for important covariates, the distribution of prognostic factors by chance in the process of 
randomization allows a probability distribution to be ascribed to the difference in outcome between 
treatment groups. From a probabilistic perspective, averaging across many randomizations, covariates 
would be evenly distributed among the treatment groups. Although with a single randomization, it is 
unlikely that covariates will be distributed in an exactly equal proportion between the groups, their 
distribution by chance permits mathematical modeling to draw valid statistical inferences regarding the 
statistical significance of any differences. 

Does randomization really make a difference? A number of investigators have found that 
nonrandomized studies yield larger estimates of treatment effects than studies using random allocation 
(35,36). Schultz extended this finding to clinical trials by evaluating a database of systematic reviews of 
250 controlled trials published by the Pregnancy and Childbirth Group of the Cochrane Collaboration. 
Randomization schemes which were poorly executed, resulting in inadequate allocation concealment, also 
yielded exaggerated estimates of treatment effect (37). Petro has demonstrated that inadequate 
concealment of allocation can exaggerate odd ratios, on average, by about 40% (38). Thus, the process of 
randomization needs to be tamperproof , if a clinician or member of the research team is able to discern 
the randomization scheme, he can influence the channeling of patients with poor (or good) prognoses 
selectively into one treatment arm or another. This is easily accomplished by delaying the patient's entry 
into the trial until the next allocation or by causing the exclusion of eligible patients from the trial by 
encouraging them to refuse entry. Ideally, an outside randomization center should be established, but if 
not, then randomization treatment assignments should be placed in sealed envelopes in advance. 

Once randomization is complete, how can we be certain that it was successful, i.e. resulted in 
truly comparable groups? There are methods to assess the 'efficacy' of randomization but I will defer 
their discussion for the moment except to point out the following. True comparability does not imply that 
the observed distribution of covariates is identical among all treatment groups, but rather that any 
observed imbalance is due to chance and not to some systematic bias. Therefore, a statistical test 
comparing treatment groups without regard for covariates is always "valid", if randomization has been 
done properly, and should always be reported (7) The central question is not whether this overall test 
should be replaced with others, but whether any useful insight can be gained by complementing this 
overall test by others that take covarites into account. More on this issue later. Keep in mind, then, that 
even randomization may result in an imbalanced distribution of covariates between the treatment groups 
simply due to chance (34). The greater the number of prognostic factors and the smaller the expected 
treatment effect, the larger the sample size needed to successfully evenly distribute the covarites by 
chance. The efficacy of randomization with regard to the latter can be evaluated by assessing the 
distribution of covariates between the treatment groups after the trial is completed. If known prognostic 
factors are not evenly distributed, it is also likely that any unknown factors are not. Therefore, it is 
customary in clinical trials to see a table reporting the distribution of important baseline demographic and 
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prognostic factors in each of the treatment groups. Table 4 is such a table reported by the GUSTO trial. 
Assessing the distribution of baseline factors is also one method of selecting variables to be entered into 
multivariate analysis so that statistical adjustment with regard to their impact on the treatment effect can 
be peiformed (8). This issue and the appropriate methods for assessing whether differences in the 
distribution of covariates have occurred will be discussed under "Were the groups similar at the start of 
the trial?" 

If uneven distribution of covariates has occu"ed, what can be done about it? Before the study, if 
investigators are aware of prognostic factors that are strongly related to outcome, patients can be 
randomized as matched pairs or randomization can be stratified to guarantee that these factors will be 
evenly distributed without the potential interplay of chance. However, the complexity of these procedures 
are prohibitive for more than three to four factors (33). After .the study is completed, statistical tests 
based on mathematical models are available to assist in adjusting for these differences which will be 
discussed later. The validity of conclusions based on these tests rests on the appropriateness of the 
assumed mathematical model. In general, only a small number of variables can practically be adjusted for 
and these must be identified and measured. Unknown prognostic factors cannot be adjusted for. What is 
the bottom line? Disparities in the treatment groups cannot always be removed by adjustment techniques 
and this conclusion underscores the importance of randomization. 

How well did the GUSTO trial do in achieving randomization? The randomization process was 
exemplary. A centralized randomization center was utilized which was accessible by phone 24 hours per 
day, 7 days per week (2). Individual drug kits for each patient were forwarded to each study site for use 
according to the random assignment These kits were sealed, coded with a numerical sequence, and active 
therapy was not identified until the seal was broken. As demonstrated in Table 4, there were no 
differences in baseline characteristics among the four treatment groups by the method the GUSTO 
investigators used to evaluate this, which I'll discuss in greater detail later. Keep in mind that there is still 
the potential for selection bias prior to randomization resulting from the often biased referral process of 
patients into clinical trials (33). GUSTO did not report what proportion of eligible patients were actually 
randomized. This selection bias has more impact on the generalizability of the study though since, due to 
randomization, the omission of certain types of patients would be expected to affect each treatment group 
equally. However, if a particular type of patient was never referred, and the response of this type of patient 
to treatment differed from other types of patients, the overall treatment effects may be biased. 

Table 4 : Distribution of Base-Line Covariates in the GUSTO Trial 

8ont '!Haow.o-
S1uJorocDIAU. AND S'Tu::rrouNUI: AND AcaLU.AT1D I·PA LY1'1C Aaurn •ND 

SVkVTANICJiUI IHTI.A-IHOUS AND biTW.AVINOUS INTW.AnNOVJ -..... H.rJoAaJN HuAIIN -...... o...a..cn:amc CN•9MI) IN • 10.410) (N • 10.396) (N - 10.374) 

A&e (Jr) 62 (52. 70) 62 (~2. 70) 62 (~2. 70) 61 (~2. 70) 
Female lOX( .. ) ~ ~ ~ ~ 

Diallela ( .. ) I~ I~ ·~ 14 
o.,.-.......,.c.,, 43 43" 43 43 
llyponaaioD ( .. ) 39 38 38 38 
Syaulic: blood Jlft'SSIIR Cmm HI) 130 (Ill. 144) 129 (112. 144) 130 (113, 144) 130 (112. 143) 

--(beolllmia) 
73 (62. &5) 74 (63. 86) 73 (62, 86) 74 (62, 86) 

Plnious infarcoion ( .. ) 16 17 17 16 
Plnious CABOt ( .. ) 4 4 ~ 4 
TIDIOIDrmMiomizalion(miD) t21l'c90. 180) 120 (90, 180) 121! (90. 180) 120 (90, 180) . . 

Time ID lralmonl (min) 164 (II~. 232) I~ (120. 230) 16~ (120, 230) @2.1<121.237) 

-v .... foOawcd by aaml:-en m ~ arc ~. with ~he 25th aad 73th pti'CZDli)el ahown msidc the ~-~ 'Weft. ao difflftD:a 111 t.lc·lli'IC 
~_,the rear PIP· TIIDC &o aaaDCDI, &khoup DOl JU'iaiy 1 be:ac-tine chlrK1c:nloc, did differ.,_, t:bc poap& fP<O.OOI). 

!CABO- ....-y-anory ..,_. ........,.. 
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2. Were all Patients Who Entered the Trial Properly Accounted for and Attributed at its 
Conclusion? 

Was follow-up complete? 

Every patient who entered the trial should be properly accounted for at its conclusion (19). If this is not 
done, or if substantial numbers of patients are lost to follow-up, the validity of the study is open to 
question. The trial may be subjected to bias, since the patients who did not follow· up may have different 
prognoses than those who did. This difference may result from the reasons why patients did not follow· 
up, such as having suffered adverse outcomes or because they were doing well. 

Readers must decide what degree of loss to follow-up is excessive and make a judgement as to whether 
the conclusions of the trial might have been substantially different if the outcomes of the patients who did 
not follow-up were known. The worst- and best-case case scenarios can be determined by assuming that 
all the patients lost to follow-up experienced the outcomes, or all of them did not experience the outcome, 
respectively. These provide the upper and lower limits for the impact of loss to follow-up on the results of 
the study. If the conclusions of the study would not change after considering the impact in this manner, 
then loss to follow-up is not excessive. The GUSTO trial reported that follow-up until death or 30 days 
after randomization was complete in 99.9% of patients, which was exemplary. 

Were patients analyzed in the groups to which they were randomized? 

This criteria is commonly referred to as the intention-to-treat-analysis. In this approach, all patients who 
were randomized to a specific treatment group are included in that group for the analysis of outcomes, 
regardless of whether the patients never received therapy, complied with therapy, experienced side effects 
and discontinued therapy, or crossed over to treatment in another group. This type of analysis protects the 
validity of the answer because it preserves the value of randomization (19). For example, a patient may 
crossover to another type of therapy due to lack of response to the therapy that was being received. If this 
cross-over occurred too late to allow adequate time to respond to the other therapy, and the outcome for 
this patient was analyzed in the treatment group to which he crossed over, the effectiveness of this 
treatment would erroneously appear diminished. However, the question addressed by the intention-to­
treat analytic strategy is the relative effectiveness of initiating a treatment policy. The degree to which the 
analysis reflects treatment actually taken will vary. 

Other strategies may be used to attempt to answer the question of treatment efficacy in subjects who have 
actually taken the therapy. For example, subjects in whom the intended treatment was modified may be 
excluded from the analysis as if they had never been randomized. However, differences in outcome 
susceptibility may invalidate the analysis as a result of using this strategy. In addition, the exclusion of 
major clinical events constrains the applicability of the study's findings. Another strategy is to exclude 
patients at a later point in time by means of a life-table method. However, bias can be introduced with 
strategies that exclude patients from analysis in the group to which they were randomized if the decision 
to modify treatment and the subject's prognosis for the outcome are related. 

It is desirable to enable a fuller interpretation of the results of a study by incorporating information on 
the changes in treatment in the intention-to-treat analysis (i.e. control for these using multivariable 
analysis). More sophisticated methods of incorporating modification of treatment in the statistical analysis 
have been developed (39). The GUSTO trial appropriately utilized an intention-to-treat analysis. However, 
although this preserves the validity of the treatment assignment, substantial differences in intended 
therapy can influence outcomes. Most importantly in the GUSTO trial, 51% of the treatment group 
which received SK with subcutaneous (SC) heparin, 36% actually went on to receive heparin IV instead of 
subcutaneously (2). To the extent that IV heparin does not increase the efficacy of the treatment but 
increases the risk of hemorrhagic stroke, the net treatment effect in the SK + SC heparin group may have 
been adversely affected by this change in protocol. Nearly 60% of the time, this change was for a medical 
indication, for reinfarction etc, but 40% of the time it was not. Further discussion of the impact of this 
protocol change on the treatment effects observed will be addressed under "What were the results?" 
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B. Secondary Guides 

Were Patients, Health Workers and Study Personnel "Blind" to Treatment? 

Randomization only eliminates the influence of confounding variables that are present at the time of 
randomization. It does not protect the study from confounding variables that develop during the period of 
follow-up. The goals of blinding are to avoid intentional and unintentional bias in medical management 
and diagnostic interpretation, occu"ing during follow-up, that might affect the occurrence or assessment 
of outcomes across the different treatment arms (8). Blinding is important at four levels: 1) treatment 
allocation (was treatment assignment really randomized or was the allocation scheme discerned?), 2) 
patients (did knowledge of the treatment assignment influence compliance, report of symptoms or side 
effects?), 3) clinicians (did knowledge of the treatment assignment influence the overall medical 
management , the administration of co-interventions or the decision to assess outcomes?), and 4) 
investigators (did knowledge of the treatment assignment influence the assessment or interpretation of 
outcomes in the treatment groups?). However, many interventions can' t be blinded (eg. surgery) or face 
logistical problems (7). For example, if blinding is used, a mechanism must be available to unblind the 
treatment if this should become necessary. Even when blinding is utilized, it may be unsuccessful, as 
when the treatment is associated with a discernible change in a physiologic response, such as the lowering 
of heartrate with beta-blocker therapy. After the study is over, it is a good idea to systematically assess 
whether the study patients or the investigators can "guess" the treatment assignment If a higher than 
expected proportion guess correctly, then partial unblinding must be suspected. 

The GUSTO trial was unblinded and so is subject to the potential introduction of the above biases. In an 
unblinded trial, a partial solution to the problem of unintended interventions is to specify and standardize 
the intervention. This was done for the study treatments in the GUSTO trial , but as already mentioned, 
half of the SK + SC heparin group received IV heparin. In addition, interventions other than the 
treatments under study, known as co-interventions, may be utilized differently between the treatment 
groups if they are not standardized, which was the case in the GUSTO trial. Only aspirin and beta-blocker 
use (if there was no contraindication) were standardized. The original GUSTO publication only reported 
the overall use of certain cardiac drug classes across all the treatment arms and stated that they were not 
significantly different between the treatment groups. The same was claimed for coronary revascularization 
procedures. The raw data for differences in the rates of these co-interventions among the treatment groups 
was not reported. This issue will be discussed further under "Aside from the experimental intervention, 
were the groups treated equally?" 

The GUSTO investigators have offered a number of reasons as the rationale for the unblinded design of 
this trial, which include: 1) the need for a second infusion line in approximately 30 000 patients at 
increased expense and inconvenience to achieve blinding, 2) the use of a "hard"(objective) outcome such 
as death which is less susceptible to bias in its interpretation ( i.e. a death is a death is a death .. . ), 3) the 
confirmation of other unblinded thrombolytic trials by subsequent trials that were blinded, 4) the use of 
a randomized design to eliminate selection bias , 5) the use of an intention-to-treat analysis to eliminate 
bias due to changes in treatment, 6) the high rate of compliance with therapies (98%) which reduced bias 
due to side effects of treatment, 7) the blinded assessment of secondary endpoints which was based on 
objective information ( eg. stroke definition was based on standardized criteria; diagnosis of stroke was 
made by MRI, CT, or autopsy; all data were examined by a blinded independent stoke review committee), 
8) the independence of endpoint collection, processing, and interpretation from the trial sponsors, and 9) 
the on-site monitoring of a 10% random sample of all submitted data, which included comparing with 
and cross-checking source documentation in hospital records ( 40). 

This rationale has been criticized by Ridker and colleagues (41). They point out tll3t a second intravenous 
line does not seem too burdensome given the overall complexity and invasiveness of the trial and its use 
in the double-blinded lSIS-3 trial at a lower cost of intervention per patient than was accomplished in 
the GUSTO trial. Randomization is not sufficient assurance that bias is prevented. It only ensures, if done 
successfully, tll3t ali prognostic factors that may affect study endpoints are distributed among the various 
arms of the trial in an equal and unbiased manner at the start of the trial. It does nothing to ensure the 
comparability of treatment and diagnostic assessment of outcomes among the treatment groups once the 
trial is in progress. 
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The price of the unblinded design may have been differences in important co-interventions between the 
treatment arms that .may at least partly account for the trea1ment benefit of accelerated t-P A. Even though 
the original GUSTO report stated that coronary revascularization procedures were similar in all treatment 
arms, the rate of coronary bypass in the t-PA arm was 9"/o compared to 8.3% in the SK arm (2). GUSTO 
investigators subsequently reported the specific rates of bypass in the treatment arms and claimed that the 
differences in bypass rates could not account for the 30-day mortality benefit observed. They analyzed the 
results of patients who did not receive bypass and compared them with those who did The treatment 
benefit was preserved for patients who received t-PA vs SK but did not undergo bypass (30 day mortality 
6.5% vs. 7.6%, respectively; p < 0.001). Among patients who underwent bypass, 30 day mortalities in 
the t-PA and SK arms were nearly identical (4% vs 4.1%, respectively). However, what then explains the 
reason for increased rates of bypass in the t-PA arm? If this procedure was not performed to reduce 
mortality, then the alternative explanation must be considered, i.e. that t-PA resulted in a higher rate of 
complications requiring emergent procedures for .salvage. GUSTO investigators also subsequently 
reported that logistic regression analysis adjusting for differences in rates of bypass still demonstrated a 
significant difference in treatment benefit (p = 0.001) yet did not report the adjusted difference in 
mortality benefit Given the size of the trial, calculations demonstrate that residual differences of 0.2-
0.3% would still be statistically significant Finally, specific rates for coronary arteriography and early 
percutaneous coronary angioplasty have not been reported Raw data should be provided 

Were the Groups Similar at the Start of the Trial? 

What is the importance of comparability among treatment groups and how is it assessed, particularly in 
the context of a randomized clinical trial? This criteria specifically addresses whether patient 
characteristics that might serve as important prognostic factors, which could influence the difference in 
treatment effect between groups, were evenly distributed, at the start of the study. Rccal1 that one of the 
major objectives of randomization is to accomplish comparability of treatment groups with respect to these 
covaraites but that even chance may result in some imbalance in and thus confounding of any apparent 
treatment effect (42). Confounding is represented in Figure 1, and is seen when the treatment being 
studied and the covariate being considered are related to one another, and at least the covariate, either by 
itself or through some other factor, is related to the outcome being assessed Although the treatment will 
appear to be related to the outcome, this may not actually be "true" but instead be the result of the 
treatment's association with the confounding factor. The randomization of treatment assignment in a 
clinical trial, particularly if it is large, should make confounding unlikely. But, in an occasional trial, the 
play of chance may create a gross maldistribution of prognostic factors that favors (or disfavors) one of the 
treatment groups. 

Figure 1: Confounding 

-Treatment 
Outcome~_<_-_____ t 

-covariate 

A number of methods are ·available to assess the difference in distribution of covariates among the 
treatment groups: 1) simple comparison of the magnitude of the difference between the number of patients 
with the covariate in each treatment group, 2) statistical tests of significance in comparing the number of 
patients in each treatment group with regard to each covariate, 3) tests of interaction, and 4) others (43). 
The problem with the first method is .that there is no consensus among clinicians as to what magnitude is 
sufficient to constitute an important difference. The second method applies a test for statistical 
significaLce to the distribution of each of these covariates. This. was the method used to assess mo~'t of the 
covariates in the GUSTO trial (2). For example, the proportion of patients assigned to each treatment 
stratified by patient characteristics seen in Table 4 represents comparisons based on the chi square 
statistic for dichotomous (e. g. dead vs. alive) covariates. Although statistical tests for significance is the 
most common method, it is also the one that is most problematic from a statistical perspective. Its 
problems stem from three issues: 1) the impact of multiple comparisons, 2) the lack of power to detect 
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differences and 3) conceptual violation of the statistical foundations of significance or hypothesis testing. 
The latter, while important, is more theoretical and I will leave it to the interested reader to further 
explore the basis of this criticism. 

The impact of multiple comparisons on the likeliliood of finding a significant difference can be calculated 
as follows ( 44 ). In general, if a is the 3Ibitrary cutoff value for significance and n covariates are 
examined for statistical significance, the probability that at least one of them will be found statistically 
significant is 1 - (1 - o.)" . With o. = 0.05 and n = 20, the probability of finding at least one statistically 
significant difference in the distribution of covariates assuming that all the null hypotheses are true (i.e. 
that there are no "true" differences between levels of a subgroup) is 0.64. Remember this assumption 
because it is the basis of criticism for those who oppose the use of adjustments for multiple comparisons. 
In practice, most large clinical trials examine the distribution of many covariates (often n > 100) among 
the treatment groups. The result is that chance alone can cause the difference. Adjustments for multiple 
comparisons can be made or tests for interaction can be performed but each approach leads to additional 
problems. These issues will be further addressed under "What Were the Results of the Study?: Subgroup 
Analysis". 

In general, GUSTO patients, although similar with respect to important covariates among treatment arms, 
were a relatively good risk population. Only about 12% of patients were over the age of 75 years, all but 
2% were Killip class I or II, only 16% had had a previous MI, and only 39% presented with an anterior 
infarction. Of striking importance, the time from onset of symptoms to onset of therapy was only 2.8 
hours (2). 

Aside from the Experimental Intervention, were the Groups Treated Equally? 

After the onset of therapy, treatments under comparison may become unequal in the proficiency of therapy 
and in the detection of outcomes. The ways in which treatment is administered, maintained, or 
supplemented by concomitant therapy other than the treatment under study (co-interventions) may differ 
among treatment groups. Often, modification of intended treatment occurs in response to a change in the 
patient's clinical status in which the assigned treatment is no longer judged to be indicated by the 
physician and/or patient. Bias may be introduced if the decision to modify treatment and the subject's 
prognosis for the outcome are related. This bias in randomized clinical trials has generally been handled 
by the intention-to-treat approach in its analysis. (See "Were patients analyzed in the groups to which they 
were randomized?")(39). 

The problems with detection bias arise from differences in monitoring the post-therapeutic course, in 
ordering subsequent tests and in the interpretation of the results of outcome assessments. To ascertain the 
occurrence of outcomes, subjects must: 1) remain at risk for the outcome until it can be ascertained; 2) be 
available for follow-up so that the outcome can be ascertained; and 3) if necessary, satisfactorily complete 
the procedures required for the determination of outcome status (39). For example, a competing event, 
such as death, prior to the time of ascertainment of outcome removes the patient from risk, i.e. as Sackett 
has pointed out, "dead patients cannot have strokes" (45). This problem is best dealt with by incorporating 
all competing events that could be related to the risk for the primary outcomes into the definition of the 
combined end point, since " ... to confine analysis to fatal and nonfatal strokes could produce the situation 
in which the drug that decimates the ranks of the potential stroke victims by killing them from other 
causes will spuriously appear efficacious" (45). 

When patients are not available for follow-up, the outcome status is known only up to the point in time at 
which the subject becomes unavailable. Removal of them from the analysis can produce a biased estimate 
of treatment effectiveness if the average prognosis of those unavailable for follow-up differs among 
treatments (39). A simple demonstration that the rates of unavailability are similar in the treatment 
groups, as is customarily done, may not protect the validity of this comparison. When outcomes require 
greater effort, such as an invasive procedure, some subjects may refuse to comply with the test for the 
outcome or be incapable of complying. Detection bias in randomized trials can be reduced with choosing 
outcomes that require less effort to ascertain, double-blinding and the use of "hard" endpoints (such as 
death), which are objective in nature and thus subject to less bias introduced by subjective interpretation of 
occurrence. But this strategy is unsuccessful for two reasons. First, problems can still occur in making 
determinations about the cause of death, and the use of "hard" endpoints limits the ability of studies to 
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more fully examine the impact of treatment, particularly with regard to quality of life. Feinstein 
recommends the improvement of the quality of "soft" data used to identify outcome events (34). 

Were patients in the GUSTO trial treated similarly? I have already mentioned the disparity in the use of 
CABG, which was used more frequently in the t-PA arm, and the high utilization of IV heparin in the SK 
+ SC heparin arm, particularly in the United States. The raw data for utilization of other co-interventions, 
such as cardiac classes of drugs, was not reported in the original publication. These were reported for the 
GUSTO angiographic subset study, but this study only encompassed about 6% of the original GUSTO 
enrollment (46). 

II. WHAT WERE THE RESULTS? 

A. How Large was the Treatment Effect? 

Several issues are raised when considering the magnitude of the treatment effect. 

1) How should clinical research results be summarized and what magnitude of clinical difference 
is important? 

2) To what extent does statistical significance reflect clinical significance? 

3) How should treatment effects in subgroups be assessed and what is the impact of multiple 
comparisons among subgroups? 

4) What can be concluded from a negative study? 

5) How should overall treatment effects be modified to accomodate the effects of prognostic factors? 

1) How should research results be summarized? 
How should the benefits and risks of therapeutic approaches be measured and compared? Several ways of 
summarizing the benefits of therapy are presented in Table 5 ( 4 7) . Aristotle captured the dilemma 
eloquently: "there are several possible ways of persuading people about any given subject." The absolute 
risk reduction (ARR) is the difference in event rates between the control and treatment groups. The 
relative risk reduction (RRR) is the reduction of adverse events achieved by a treatment, expressed as a 
proportion of the control rate. In other words, it is the difference in event rates between the control and 
treatment groups, divided by the event rate in the control group. The odds ratio (OR) is the traditional 
epidemiological expression of the relative likelihood of an outcome, and is expressed as the ratio of the 
odds of adverse outcomes in the two treatment groups being compared (where odds= 1 -probability). The 
number needed to treat (NNI') is the number of patients who must be treated in order to prevent one 
adverse event. Mathematically, it is the reciprocal of the absolute risk reduction. Approximate and exact 
confidence intervals can be calculated for all of the summary measures discussed ( 48). 
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Table 5 : Comparison of Summary Measures for Reporting Research Results 

Summary Measure Calculation Advantages Limitations 
Absolute risk reduction Pc•- Pt• • Captures magnitude • Combines base-line 

(ARR) of base-line risk risk and risk reduction 
without therapy into single number 

Relative risk reduction Pc- Pt/Pc • Conveys population • Magnitude of base-line 
(RRR) impact risk without therapy not 

conveyed 

Odds ratio (OR) Pt/1-Pt • Suitability for • Magnitude of risk 
Pc/1-Pc statistical modeling without therapy not 

Conveys population conveyed 
impact 

Number needed to treat 1/ARR (decimal) • Captures magnitude • Combines base-line 
(NNT) of base-line risk risk and risk reduction 

without therapy into single number 
• Need to specify 

duration of treatment 

•where Pc and Pt are the event rates in the control group and treatment groups, respectively 

Table 6 demonstrates how an odds ratio is derived (49). This summary measure is a ratio of the odds of an 
outcome in the treatment group to the odds of the outcome in the control group. The odds of an outcome is 
the ratio of the probability of the outcome over I - the probability of the outcome. For example, if a coin 
is tossed, the probability that it will come up tails is Y. or 50%. The odds of it coming up tails is 0.5 I I -
0.5 = 0.510.5 = 1:1. 

Table 6: Illustration of the Derivation of the Odds Ratio for the 

GUSTO Trial 

Disease 
(30 day mortality) 

No disease 
(3 0 day survival 

Probability of 
outcome 
*Odds of outcome 

Odds ratio 

Relative risk 

Treatment (t-PA) Control (SK) 

a b 
(6.3%) (7.35%) 

c d 
(93 .7%) (92.65%) 

a/ a+c b/b+d 

a I a+ c - ale b/b+d - b/d 
c/a+c d/b+d 

l!ls... - l!!L - 6.3 X 92.65 -
b/d be "/.35 X 93.7 

a/ a +c = 6.3 /6.3 + 93 .7 = 0.85 
b/b+d 7.35/6.3 + 92.65 

*Where: Odds= p / 1-p 
Odds ratio = odds of outcome in the treatment group 
Odds of outcome in the control group 
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A measure related to the odds ratio, the relative risk, is an epidemiological measure that is derived from a 
population (50). It is the ratio of the incidence of the outcome in the exposed members of a population to 
the incidence of the outcome in the unexposed members, where incidence is the number of individuals in 
the population that develop an outcome over the number of individuals at risk for the outcome in the 
population. Since clinical trials assign the exposure (the treatment interventions), the population gradient 
for exposure is no longer reflected but is instead fixed by the investigators. Therefore, true incidences , 
and thus relative risk, cannot be obtained from a clinical trial. However, the RR can be approximated with 
the odds ratio if the prevalence of disease is small. It is in the sense that relative risk reduction is used as a 
SUDlllllllY measure in clinical trials. 

In order to illustrate the differences among the various measures of benefit, the Veterans Administration 
cooperative study on hypertension will be nsed as an example (51). This three-year study compared the 
efficacy of antihypertensive therapy (a combination of hydrochlorthiazide, reserpine, and hydralazine) 
with that of placebo. The rates of adverse events (sudden death, stoke, myocardial infarction, congestive 
heart failure, accelerated hypertension, and dissecting aneurysm) among patients with and without target­
organ damage at the time of entry are as presented in Table 7. 

Table 7: Measures of Efficacy in the Veterans Administration Trial 

Patients ' Condition Rates of Adverse 

....................... !!:! .. ~~-~··· ··· · ·· · · · · · · ·· ··········· ·· ··-····· ···· ··~~~-~~J~).· ·······-· ···· ··········-~.{~) ............... _ ... .9~.-................ ~.~~L ............... ~ .......... . 

Target-organ damage 

No tar~;~et-organ damage 

Placebo 
22.2 

9.8 

Treatment 
8.5 

4.0 

62 0.325 13.7 

59 0.384 5.8 

Note that the treatment benefits expressed as relative risk reductions are about the same for both the 
target-organ damage group and the group without target-organ damage (-60%), despite the fact that the 
risk of adverse events with treatment was more than twice as high in the former as compared to the latter 
group. The disadvantage of RRR as a SUDlllllllY measure is that it doesn't accurately reflect the 
magnitude of risk without therapy, which in this study was much higher in the target-organ damage 
group than the no target-organ damage group. The RRR overestimates or underestimates the absolute 
impact of therapy when adverse events in untreated patients are very rare or very common, respectively. 
Overestimation of treatment effects thus becomes a problem in studies investigating conditions with low 
rates or differences in rates of adverse events, such as preventive therapy or clinical trials that compare 
treatment effects with some standard therapy in place of placebo. 

The treatment effects expressed as odds ratios are also nearly equivalent, even though the two groups of 
patients have markedly different rates of adverse outcomes with treatment. Although the odds ratio has 
distinct statistical advantages over relative risk with regard to suitability for modeling both within a study 
and across studies when treatment effects are pooled, like RRR, it fails to capture the magnitude of risk 
without therapy. 

In contrast, the absolute risk reduction for the group without target-organ damage is half that of the group 
with damage (5.8 vs 13.7%, respectively), thus expressing risk reduction with therapy and an additional 
measure of clinical effect, the consequences of giving no treatment. Similarly, the NNT indicates that 
more than twice as many patients in the no target-organ damage group would need to be treated to prevent 
one adnrse outcome than in the target-organ damage group (17 vs 7, respectively). 

Laupacis has proposed that the ideal SUDlllllllY measure would have the capacity to: 1) compare the 
consequences of doing nothing (the risk for the adverse event if no intervention is provided) with the 
potential benefits of doing something (extent to which this risk would be reduced by the use of a specific 
clinical treatment), 2) summarize the harm that would accompany the treatment in the form of side 
effects and toxicity to patients, 3) identify patients who are both at high risk for an event and responsive 
to therapy and 4) permit a comparison of the consequences of applying one approach to the prevention, 
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diagnosis, and treatment of one condition with the consequences of applying other approaches to other 
conditions (so can·decide where best to focus efforts for individual clinicians and patients) (52). NNT is 
able to satisfy all these criteria, and is a useful measure of incorporating harm and in comparing 
treatment strategies within a disease and across diseases. 

The major drawback of both ARR and NNT, however, is that they combine the baseline risk and risk 
reduction into a single number (52). Table 8 demonstrates the effect of the baseline risk of an adverse 
outcome in untreated patients and the RRR associated with treatment on the NNT. If the event rate is high 
in the control group, even a small RRR will produce a low NNT. Conversely if the baseline risk is low, 
the risk reduction must be large in order to produce a low NNT. In combining the baseline risk and risk 
reduction into a single number, nothing is revealed as to what happens to the other patients, i.e. NNT tells 
us that the patient either doesn't need therapy , will not respond to it or will not be able to continue 
therapy due to side effects. Table 9 demonstrates the limitations in interpreting the NNT. Additional 
disadvantages of NNT include its inability to capture or extrapolate the consequences of continuing 
therapy beyond trial completion and the necessity of expressing NNT per duration's of therapy, since a 
timeframe is not inherent to the calculation of this measure. 

Table 8: NNT Resulting From Various Baseline Risks and RRR 's 

8-.n-LII"t: 
RIS):• RlU.TI\'t Ran; RtournoN n,. Nr,. THUAPY f'i) 

.10 40 JO ~ ~ IS 10 

llll'"bc-'"rHnlrnNttrturd 

09 II• 
0 .6 II 17 
(1.~ "' 13 17 

, 
3~ 

0.2 10 13 17 ~0 ~5 33 50 

0.1 ~0 :.c. ~~ •o ~0 67 100 

0 .05 40 50 67 HO 100 133 200 

11 .01 ~00 ~~0 ~:t;\ •oo ~(I() 1>67 1.1100 

11 .1105 ~ 500 667 xoo IIKIO 1333 2.000 

0 .1101 ~000 ~~00 3JJJ 4IKKI ~)() t>M7 IO.IllO 

"Nn!. of a.n l!d\tr.t t\Cfll 1n cuntrt>l ~llcnl\ ' "um~" U"C'd "' cumrtk• 1n 1M· It'll 

Table 9: 11/zistration of the Limitations in Interpreting Number Needed to Treat 

How is this to be interpreted? ~ 

What happens to other 10? ~ 

Compare the fOllowing: 
Base-line risk 0.9, RRR 10% ~ 

Base-line risk 0.3, RRR 30% 

Example: NNT of 11 

11 patients must be treated to prevent one adverse 
outcome. 

Do they develop outcome? 

9/10 remaining patients have adverse event. 

2110 remaining patients have adverse event. 

:. NNT is 11 in both!! 

18 



I 
) 

1 

1 

l 

Why is the fonnat of numeric presentation in reporting results important? Studies in cognitive 
psychology have amply demonstrated that the manner _in which clinical , particularly quantitative, 
information is presented can have profound effects on the likely interpretation of that information (53-55). 
In particular, physicians, and patients, may interpret quantitative information differently and 
inconsistently (56-59). Forrow investigated physicians' treatment decisions by presenting results of two 
clinical trials, one examing the effect of treatment for hypertension and another looking at treatment for 
hypercholesterolemia, in terms af absolute and relative changes in outcome rates (60). The physicians 
were asked to rate the likelihood that the information would change their treatment of patients. In 
response to the presentation of these trials, 49.2% of physicians presented with the hypercholesterolemia 
trial and 32. 70/o of physicians presented with the hypertension trial indicated a stronger likelihood of 
treating patients when presented with relative reduction in outcome rates than when presented with the 
absolute reduction • Other investigators have similarly found that relative reduction of risk influences 
readers to perceive treatment benefits as greater than they would if these same results were reported in 
terms of absolute differences (61). Bobbio has confirmed this finding when NNT was added to the formats 
of numerical presentation (see Figure 2) (62). 

Figure 2: Relationship Between Physicians' Agreement to Prescribe Drug and 
Presentation Fonnat 
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The summary measures of benefit for the GUSTO trial are presented in Table 10. Note that the 
ARR is considerably smaller than the RRR Both were reported in the trial, but the RRR was more 
emphasized.. The NNT was not presented in the strict definition, although a similar format, the number of 
lives saved per 1000 treated patients, was 

Table 10: Comparison of Summary Measures of Benefit for t-PA Versus the Combined 
SK Groups in the GUSTO Trial. . 

Treatment Group Accelerated CombinedSK ARR(%) RRR NNT 
t-PA groups (%) 

30-day Mortality Rates 6.3 7.3 14 100 
(%) 

Calculation 7.3 -6_5 7.3 -6.5/7.3 1/0.01 

How are clinicians to determine which summary measure should most influence our treatment decisions? 
This is a difficult question as then;! is no objective standard by which we can ultimately jndge ihe 
"rightness" af our decisions_ Even the' experts haven't reached consensus on the best way to express the 
difference in treatment effect, nor on what constitutes a worthwhile difference. For example, Table 11 
presents the NNT for 'arious conditions, which can vary considerably (9). Consensus does not exist as to 

. the threshold NNT above which treatment would not be considered beneficial enough to offer. This issue 
is further complicated by the mathematical characteristics of NNT in that conditions with low baseline 
risk, even in the face of large RRR in adverse outcomes, are associated with very large NNT. A good 
example of this is screening mammography in women ages 50-74 to prevent death due to breast cancer. 
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Harris and Leininger reviewed seven randomized controlled trials of breast cancer screening. The absolute 
risk reduction varied from 0.2% to 0.4%, corresponding to RRR from 15% to 30% and NNT of 1700 to 
5000 (63). Despite the large NNT, breast cancer screening in this age group is widely recommended (64) . 

Table 11: Comparisons of Benefits of Various Conditions 

NNT 

._ ..................... '!E.~~PY. .......................... !';Y.~!?:~ ................................. ~~-:!!~~--~-~ ........... ~.r~L .... _ ........ (P.~:. .. ?. . :r.!:~ .. ~.f. .F.!.Y.'.L ...... . 
Stepped care: Death, CV A, .MI 0.13 89 3 
Dbp 115-129 mm Hg 

LeftmainCABG Death 0.32 56 6 

AsaforTIA Death, CVA 0.23 31 6 

Cholesterol for Death, .MI 0.12 14 89 
dyslipidemia 

INH for inactive Th ActiveTh 0.01 75 96 

Stepped care: Death, CV A, .MI 0.05 14 141 
dbp 90-109 mm Hg 

Screening mammography Death 15-30 1700-5000 

There is also considerable controversy with regard to the GUSTO trial over whether an ARR of 1% is to 
be viewed as a clinically worthwhile benefit. The GUSTO investigators have responded to this criticism by 
pointing out that the absolute reduction in death associated with thrombolytic therapy when compared to 
placebo translated into saving 26 lives per 1000 treated patients. The GUSTO trial supported the further 
saving of nine to 11 additional lives, which represents approximately 40% further benefit than that 
originally ascribed to thrombolytic therapy, a benefit that was ' interpreted as important by the GUSTO 
investigators (40). This impact may be interpreted as importaht from a public health perspective, since 
small reductions in mortality due to common diseases summate over the many individuals who would 
experience the smali benefit. However, in studies of individual patients, it is not clear that the small 
benefit that an individual would experience would be persuasive enough for them to choose thrombolytic 
therapy with t-PA over SK as a treatment option. Hux and colleagues found that when patients were asked 
if they would be willing to take a drug, provided at no cost and resulting in no side effects, that would 
increase heart disease-free survival an average of 15 weeks, 55% were unwilling to do so. When asked the 
same question but presenting the benefit in a stratified format that was arithmetically equivalent to the 
former format ("5% of patients would have an additional 2 to 6 years free of heart disease, 10% would 
have up to 2 additional disease-free years, and 85% would experience no change in the number of healthy 
years expected"), 44% of patients would be unwilling to take the drug (65). The controversy about what 
constitutes an important enough clinical difference to warrant treatment will not be easily settled. Many 
factors will play a role, such as the baseline risk of the disease in the population, the purpose of the 
treatment (preventive vs therapeutic), the effectiveness, toxicity, feasibility, and cost of the treatments 
being investigated, and the perspective (public health vs individual patient) being adopted. These factors 
will vary for each disease being studied. All of the summary measures provide potentially useful 
information. Relative risk reduction and odds ratio are helpful in conveying the population burden due to 
the illness that would be alleviated. Descriptions of expected benefits for individuals are best expressed as 
absolute risk reductions or number needed to treat. However, since many physicians do not seem to 
distinguish between the different presentations, and since different formats lead to different 
interpretations, the presentation of multiple formats is recommended, which would include at least the 
absolute risk reduction and some measure of event rate, or baseline risk, in the untreated group (57). 
Many experts strongly recommend that NNT be presented. Each summary measure reported should also 
be expressed with its associated confidence interval. 
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2) To what extent does statistical significance reflect clinical significance? 

What does the concept of statistical significance refer to'l(66) Statistical significance refers to what is 
essentially a decision rule regarding a probability threshold for deciding whether observed data 
could have been the result of random variation. The goal of the decision rule is to allow clinicians to 
make inferences about unknown parameters, which are generally population parameters, based on 
observed data . The foundation for the decision rule is a mathematical model of how observed data 
in the sample should be probabilistically distributed if only random variation is at play. The statistical 
test provides a means of comparing the observed data with the model, which represents what would 
occur on the basis of chance (see Figure 3). This test, in common usage, is performed by constructing 
two hypotheses: the null hypothesis (there is no "true" difference) and the alternative hypothesis 
(there is a "true" difference). For the statistical test, the null hypothesis is assumed, i.e. it is assumed 
that there is no difference. The probability of obtaining the particular value or greater in the observed 
data is predicted by comparing the observed data to that which would be expected based on the 
model. If this predicted probability, the P value, is less than an arbitrarily selected threshold, the null 
hypothesis is rejected and it is concluded that there is a significant difference, i.e. the likelihood that 
this difference could be due to chance is considered to be quite low, as long as the threshold for 
interpreting this as low is mutually accepted. If the P value is greater than the threshold probability 
then it is concluded that the null hypothesis cannot be rejected (note that this conclusion is not the 
same as accepting the null hypothesis, in effect proving that there is no difference). In the medical 
literature, this probability threshold is usually set at 0.05, or a 5 % chance that an observation this 
great or greater could be due to random variation and not the result of a "true" difference between the 
treatment groups. 

Figure 3: Paradigm of Statistical Testing 

TEST ESTIMATE OF 
DATA STATISTIC PROBABILITY 

Statistical Compare to THAT OBSERVED 
Test standard VALUE COULD BE 

distr~bullan BY CHANCE ALONE 
(USing tableS, 
etc.) 

EXAMPLES Nominal X 2, Fishers' p-value, power, 

Ordinal f3- value, confidence 

Interval t, F intervals . 

The decision-making format of statistical testing lends itself to an analogy with diagnostic testing in its 
comparison between a test (the statistical test), and a gold standard or truth, which in this case is the 
population parameter if it could be known. The matrix for the possible decisions and their accuracy with 
regard to the "truth" is presented in Table 12.(67) Four combinations of agreement are possible. The 
statistical test may be positive when. there is a "true" difference in the universal population (corresponding 
to a true positive test result), or the ~ may be positive when there is no "true" difference (a false positive 
test result or a Type I error). The statistical test may be negative when a "true" difference does exist (a 
false negative test result or a Type II Error), or the test may be negative when a 'true" difference does not 
exist (a true negative test result). Note that the probability threshold for statistical significance is ex., which 
is the probability that one would incorrectly conclude that there is a "true" difference when there is not, 
i.e. a false positive test. a. also then corresponds to the Type I error rate which is fixed in advance. The 
selection of the particular threshold cx.=0.05 was related to its convenience in that Fisher observed that two 
standard deviations encompassed 95% of the probability distribution of a Gaussian curve. 
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Table 12: The Decision Matrix for the Decision Regarding Statistical Significance 
Truth in the Universal Population 

Results of Statistical 
Test 

on Sample 
(statistical significance) 

Positive 

Negative 

Difference Exists 
True Positive 

Power 

Correctly conclude that a 
difference exists when it 
does indeed exist 

False Negative 

Type II Error(~) 

Incorrectly conclude that 
there is not a difference 
when in "truth" there is. 

No Difference Exits 
False Positive 

Type I Error (a.) 

Incorrectly conclude that a 
difference exists when in 
"truth" it does not 

True Negative 

Correctly conclude that 
there is no difference when 
in "truth" there is not 

As advanced as we believe we have become in our conceptualization of decision-making, Epictetus, as far 
back as the second century, had already captured this decision matrix (68): 

"Appearances to the mind are of four kinds. 

Things either are what they appear to be; 
or they neither are, not appear to be; 
or they are, and do not appear to be; 
or they are not, yet appear to be. 
Rightly to aim in all these cases 
is the wise man's task." 

How is this statistical theory to be applied to clinical research, and in particular, clinical trials? Figure 
4 depicts the paradigm of. the clinical research question, the focus of which is usually to provide an 
answer for all the patients with a particular disease of interest for whom the question has arisen, the 
universal population. However, this population is usually not accessible in its entirety for study. Instead, a 
sample of patients with the condition of interest is selected, from which inferences are to be drawn about 
the universal population. In a randomized clinical trial, the aim is to estimate the true response rate, P, 
for a treatment under study and compare it with the estimate of the true response rate, P 0 , of a competing 
therapy, which may be a standard treatment or placebo (69). The treatment group of patients yields the 
observed response rate, P., which is an estimate of P., and the control grouP. of patients produces the 
observed response rate, P c. which is an estimate of P c· The observed difference~-~ is then an estimate of 
the effectiveness of treatment (referred to as the point estimate). Even if P, and Po are truly equal, non­
equal observed differences ~ - P't) will occur due to random variation. The null hypotheses would be 
represented as Po-P, = 0, and the alternative hypothesis as Po-P,'* 0. On the basis of a statistical test, a 
decision is made to reject or fail to reject the He. When we reject the He, we run the risk of making an 
erroneous decision. The true population rates, P, and P0 , may indeed be equal, presenting a Type I error. 
However, if the test procedure leads us to fail to reject the He because P > a. (fixed at 0.05), and we 
conclude the difference between P.' and P;, is not statistically significant, we run the risk of another error 
ir our decision-making. This false negative or Type II error results when the true differen;:e, Po - P., is 
nonzero. Chance may have resulted in a difference not large enough to reject the He. Note that the 
statistical interpretation of failing to reject the He is not equivalent to accepting the He and to concluding 
that there is no difference in response between the two treatments. Unfortunately, this is often how it is 
interpreted. More about this later (70, 71). 

22 



-·REsEARCH 
. QUESTION 

T&lllat 
populalion 

Phenomena 
of lnlerest 

daaign 

• ) .· . ,,~~ -:: __ = :< 
-... . . . i ~ .. ,·--- . -· -....... ~ .... 

Intended 
ample 

Intended 
variablll 

Implement 

'EXTCRNAL 
VAUDITY 

::;"~f.~AcruAl: 
. . } ITIJDY 

~)': . ... ;..: ~ f.· 

Actual 
aubjectS 

Actual 
measurements 

Figure 4: Paradigm 
Of Clinical Research 

Question 

Significance testing, in its emphasis on an arbitraJy cut-off to facilitate the decision of whether to reject 
or fail to reject the null hypothesis, poses distinct disadvantages. The decision rule fails to characterize the 
magnitude of differences between groups, and as clinicians, we are as interested in how much of a 
difference there is as we are in whether there is a difference. Let's assume that in comparing the treatment 
response between two drugs, we have made a correct decision to reject the H.. . This decision would be the 
same for a P value of 0.04 as it would be for one of 0.0001, and yet these P values likely represent 
differences in magnitude with regard to treatment effect Now let's assume that we have failed to reject the 
Ho. This decision would be the result of a P value of 0.06 and one of 0.60, and thus fails to covey the 
differences in treatment effect that almost surely exist between these drugs. As can be gleaned from these 
examples, more information could be conveyed by reporting the actual P value which would convey how 
close to statistical significance the results were. However, the actual magnitudes of difference are still not 
apparent 

Another problem arises with significance testing and P values. When we fail to reject the H., , and have 
made a Type n error, i.e. there is a true difference in treatment response but we failed to detect it, simply 
reporting the lack of statistical significance (or even the actual P value) tells us that a population 
difference is not likely at a particular high probability, but fails to provide a range of estimates for the 
population difference that might have lesser, but still clinically important, probability (70). In addition, 
statistical significance depends as much on sample size as it does on the observed difference (71). Table 
13 demonstrates the relationship between sample size and the P value. Note that for a fixed difference in 
effect, the likelihood of it being declared statistically significant is strongly related to sample size. For 
small samples almost nothing is significant, and for very large samples quite small differences are 
significant Therefore, statistical significance conveys little about the magnitude of the observed difference 
and consequently conveys little about clinical significance. 

In the GUSTO trial, the P value for the comparison of accelerated t-PA with the combined SK groups 
with regard to 30-day mortality was 0.001, and yet the absolute difference in mortality was 1%. 
Although controversy as to whether this difference in treatment effect associated with this high level of 
statistical difference in GUSTO constitutes a clinically important difference has been heated, this example 
clearly illustrates that small magnitudes of difference can be associated with very small, and highly 
significant P values. Clinical significance, therefore, is a judgement (72). Clinicians weigh the relative 
the benefits of two (or more) treatments against the side effects, long-term complications, and other 
costs associated with these treatments. 

Table 13: Relationship Between Sample Size and P Values With 

Fixed Treatment Effect 

Trial Size Relative Risk 95% P-Value 
Confidence 

Inte1val 
20 0.82 (0.12, 3.79) 0.33 

200 0.82 (0.47, 1.43) 0.24 
2000 0.82 (0.69, 0.98) O.Ql 

20000 0.82 (0.77, 0.87) <0.00001 
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However, the choice to combine the two SK groups because there was no significant difference in the 
primaiy outcome between them has been sharply criticized (73,74,75). First of all, this comparison 
would have been underpowered to detect anything but very large differences between the SK groups. 
Secondly, the standard for thrombolytic therapy after ISIS-3 was reported was SK + SC heparin. There 
appeared to be little role for IV heparin when combined with SK, for several postulated reasons, and yet it 
posed a further increase in risk for bleeding. In fact, in the GUSTO trial, the SK + IV heparin group 
experienced a slightly greater mortality than the SK + SC heparin group, which was also combined with a 
higher rate of nonfatal strokes. Tables 14,15 demonstrate that combining the SK groups for comparison 
with t-PA results in an inflation of the number of lives saved per 1000 treated patients from 9 to 10.The P 
value for this comparison was 0.009. This comparison is further compounded when the complications of 
bleeding and strokes are considered, which will be addressed later. 

Table 14: Comparison of Net Benefits of t-PA Versus SK + IV Heparin in GUSTO 

t-PA SK ARR *No. of lives 
+ + (1 vs 2) saved /1000 

Outcome IV heparin IV heparin treated 

::ii!!~~iimtiiHiiiiEi;J~;;Jwl@iifiiill;iri~W;~;~~~iii~;rr~Rfiiwrri;rl1m~Jrrr~mn~;tj:[;iii;'llimrH! 

Table 15: Comparison of Net Benefits of t-PA Versus SK + SQ Heparin in GUSTO 

t-PA SK *No. of lives 
+ + ARR saved /1000 

Outcome IV heparin SQ heparin (3 vs 2) treated 

~1aJM~Y,i,.IDlijM11tiiiii1ilii~l1iliMM~it~f&fiilwriWJrJ~i~ii@\¥~lilf1r11WJII?1~J£11WiiiNl1irJEiii}J;1 
In summary, the problems with statistical significance include: 1) dichotomizing the "significance" of a 
study's results into a simple yes/no answer at some arbitrary cut-off level which cannot be equated with 
medical importance or biological relevance, 2) inability to encompass the magnitude of difference, 3) 
inability to reflect the precision in estimating the magnitude of difference and 4) inability to prove that 
there is no difference (the latter two I'll discuss shortly). 

As an aside, I should mention, on behalf of the statistical purists among the readers, that the current use 
of significance testing is criticized by many experts for lacking a valid statistical framework (76). The 
procedures for significance testing as it is now used have foundations in the earlier formulations of 
significance testing, put forth by Fisher, and of hypothesis testing, put forth by Neyman and Pearson. 
These formulations have become somewhat merged, without the benefit of a mathematical or conceptual 
model, into a procedure that probably neither Fisher nor Neyman and Pearson would claim appropriately 
reflect the mathematical models they described (77). A detailed discussion of this discrepancy is beyond 
the scope of my purpose. Nonetheless, from a practical perspective, the current use of statistical testing is 
what the reader will be called upon to interpret. 

If significance testing and P values are misleading, how should results be presented? A better way would 
be to choose a measure that quantifies the degree of effect and for which confidence intervals can be 
calculated (78). A confidence interval is the range of values, based on the data, that are plausible for the 
true treatment effect, at some specified level of confidence. A 95% confidence interval is customarily 
chosen, but others are possible. Put simply, this means that there is a 95% chance that the indicateJ range 
includes the population difference. Another way to interpret the confidence interval is from a frequentist 
perspective. If a series of identical studies (with 1000 patients each) were carried out on repeated samples 
(of 100) drawn from the same universal population (of 100 000 patients), and 95% confidence intervals 
for the difference between the means were calculated for each study, then 95% of the confidence intervals 
(or 95 out of the 100 confidence intervals), would contain the population difference in the means. 
Although the confidence interval defines the plausible range for the population difference, not all values 
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across the confidence interval have the same probability of being the population difference. Figure 5 
depicts the probability density of a 95% confidence interval (78,79). The true value is more likely to be 
near the point estimate, and the probability falls off in a nonlinear manner in either direction away from 
the point estimate, although no values in a 95% confidence interval can be "rejected" as representing a 
true difference by a 5% significance level. 

Figure 5: The Probability Density of a Confidence Interval 
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The width of the confidence interval depends on several factors that are inherent to its calculation (see 
Figure 6: sample size, the level of confidence desired, the variability in the sample and the magnitude of 
effect size observed (78,79). Figure 7 represents the effect of sample size on the confidence interval 
(78, 79). As the sample size increases, in the face of a fixed effect size, the interval narrows, and 
corresponds to an increase in precision in the results. Precision can best be understood as the reliability, or 
reproducibility, of the results. How much variation is seen in the measurements? Figures 8 and 9 depict 
how precision is to be contrasted with accuracy ("true")(7). Precision relates to how close repeated 
measurements clutter, regardless of whether they are accurate. Accuracy refers to how close the 
measurements are to the true values, regardless of their variability. Rothman views the confidence 
interval as the approximate position of the true value, whereas the P value "is equivalent to funneling all 
interest into the precise location of one boundary of a confidence interval." (80) Analogously with sample 
size, as the effect size (eg. difference in treatment response rate) increases, the confidence interval 
narrows (79). In contrast, as the level of desired confidence increases, as would be expected, the 
confidence interval widens (see Figure 10 ). 

Figure 6: Fonnulafor Calculation of Confidence Interval 
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Figure 7: Impact of Sample Size on Confidence Interval 
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Figure 8: Precision vs Accuracy 
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Figure 9: Eg. Plot of Blood Pressure Measurements; Precision vs Accuracy 

(/) 

z 
0 

~ 
> a: 

"' (/) 

<D 
0 
u. 
0 

ci z 

True 
Blood 

Pressure 
(intro-artenal cannula) 

Blood 
Pressure 

Measurement 
(sphygmomanometer) 

!
···==1==···4 . . .--1 

,.__Chance 

----Bio•-----l 

80 90 
DIASTOLIC BLOOD PRESSURE (mmHg) 

26 



Figure 10: Relationship Between Confidence Interval 
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Confidence intervals thus provide information about the precision of the study results (the point estimate), 
but also, the magnitude of the treaunent effect (as will be discussed shortly), and convey statistical 
significance. For an effect that is a difference, if either boundary of the confidence interval overlaps 0, 
then the possibility of zero, or no difference, is still plausible, and therefore the result is not statistically 
significant. Analogously, for a ratio, if one of the boundaries of the confidence interval overlaps one, the 
same is true. Keep in mind that confidence intervals convey information about the precision of the result 
due to sampling variation, but cannot control for issues related to non-sampling errors, such as biases in 
study design, conduct or analysis (79) . Confidence intervals can be calculated for many statistics, 
including, means, proportions and their differences, regression slopes, and relative risks (70,79). 
Unfortunately in Pocock's study they were reported in only 6 of 48 trials reviewed (10). 
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In the GUSTO trial, the CI for the RRR in the comparison of t-PA and the combined SK groups was 5.9 
to 21.3% (point estimate of 14%). This interval corresponds to a span of absolute risk reductions of 
0.42% to 1.52% (73). Put another way, the results of the GUSTO trial are compatible with a true 
difference as low as 0.42% and as high as 1.52%. Although the true difference is likely to be closer to the 
point estimate of ARR of 1%, it may be more extreme in either direction at probabilities greater than 5%. 

In summary then, how should the statistical analysis of a study be reported? 1) Show the raw data if the 
study small enough. 2) Provide the actual study point estimate (eg. mean, difference in means). 3) 
Provide the CI for the point estimate. 4) Provide the specific p value. Each of these pieces of information 
contributes unique and valuable insight into the study results. 

3) How should treatment effects in subgroups be assessed and what is the impact 
of multiple comparisons an:ong subgroups? 

a) What is subgroup analysis? 

Subgroup analysis has become a confusing term because it has been used to refer to a variety of 
procedures, the common focus of which is the impact of covariates on the treatment effect 
demonstrated. It essentially involves comparing the treatment effects among subgroups of patients. 
Proper subgroups consist of patients with a given set of baseline characteristics that include those not 
affected by treatment (such as age and sex) and disease characteristics defined prior to randomization, 
as well as, occasionally, outcomes after the trial is completed (81). For example, in the GUSTO 
Trial, among patients who received t-P A, the treatment effect was examined in a subgroup defined by 
age, and dichotomized into age < 75 and age > 75 (2). Improper subgroups are those defined by 
patient characteristics measured after randomization, and potentially affected by treatment. In the 
latter, a particular treatment effect, such as side effects, noncompliance or no response to therapy, 
may influence classification to the subgroup which may then influence treatment effect in a manner 
not specific to treatment but to the patient characteristic (81 ). 

b) What are the intentions of subgroup analysis? 

These analyses are used to I) examine the baseline distribution of covariates among the treatment 
groups, which has already been discussed in the context of randomization, 2) explore the influence of 
the subgroups on treatment effects (i.e. are there any interactions between the covariate and the effect 
of treatment which would be a prerequisite to 3), 3) adjust the overall treatment effect for differences 
among the subgroups, and 4) determine the effect of treatment in subgroups corresponding to the 
different values of the covariates, or patient characteristics (34). This latter purpose has been 
increasingly emphasized and is often the driving force for subgroup analysis. It represents the 
attempt to extend the generalizability of the trial's results to individual decision-making in "my 
patient" by looking at treatment effects in patients with specific characteristics that more closely 
resemble clinicians' individual patients. In other words, the response of the "average" patient to 
therapy is not necessarily the response of the patient being treated since patients with a specific 
disease often differ greatly from one another. 

c) How pervasive is subgroup analysis? 

In a survey of 45 clinical trials reported in three leading medical journals, Pocock and colleagues 
found at least one subgroup analysis that compared the response to treatment in different categories of 
patients in 51% of reports (1 0). What has the impact of subgroup analysis been on clinical practice? 
This question has been addressed by comparing treatment recommendations generated from early 
trials of new treatments based on subgroup analysis with treatment recommendations that would have 
been made had subgroup analysis been ignored, and then determining whether later trials confirmed 
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the earlier report of subgroup analysis. Yusuf reviewed 65 randomized trials examing the impact of 
beta-blockers in acute myocardial infarction. Many of these trials claimed benefits in particular 
subgroups. For example, an earlier trial claimed that treatment was beneficial in patients <65 years of 
age, but actually hannful in those > age 65 years. Most subsequent trials showed similar benefits of 
treatment among both age groups (81). 

Results of subgroup analysis, then, can have a major impact on clinical care, especially when a 
particular category of patients is denied treatment or when ineffective or hannful therapy is given to a 
subgroup. In fact, at times the results of subgroup analysis have been more emphasized than the 
results of the overall treatment effect and more influential in their impact on clinical care. 

d) Examining the impact of treatment effects in subgroups 

Subgroup analysis using statistical tests of difference between response to treatment with a 
subgroup 

Subgroup analysis, then, appears to be both informative, but potentially misleading. Even given a 
rigorous study design, the extent to which subgroup analyses should be done, or believed, is highly 
controversial. What are some of the concerns from a statistical perspective? Much of the problem stems 
from the methods of comparing the treatment effect in the subgroups with the overall treatment effect. 
Comparisons among subgroups most commonly take the form of examining the differences in the 
treatment outcome among the various levels of a subgroup, without relating it to the overall treatment 
effect. For example, in the GUSTO trial, the 30 day mortality among the patients age ~ 75 years was 
compared among patients treated with each of the treatments. This analysis was then repeated for patients 
> age 75 years. In a typical trial, this analysis will be repeated mnltiple times for many other subgroups. 
The two other prespecified subgroup analyses in GUSTO were infarct location(anterior versus inferior) 
and time to randomization (2). 

I've already addressed the statistical problem that arises when multiple comparisons are made. Table 16 
(82) demonstrates that the probability of observing a significant (but not necessarily "true") treatment 
effect in at least one subgroup increases as the overall treatment effect and the number of covariated being 
tested increases. For 10 covariates, the probability of obtaining at least one significant difference in 
treatment effect within a subgroup varies from 0.61 to >0.99, depending on the size of the overall 
treatment effect. Table 17 demonstrates the impact of subgroup analysis based on astrological sign in the 
International Study ( 4 ). For those readers with strong beliefs in the influence of your astrological sign on 
your health, here's a study to support what you've already known! Patients born under Libra or Gemini 
were harmed by the treatment with aspirin. There are several methods available to adjust statistical 
significance for the number of subgroup comparisons made. A simple conservative approach, the 
Bonferroni correction, divides the overall significance level by the number of comparisons actually made. 
For example, if 10 comparisons were made, then the newly specified a. to achieve statistical significance 
would be 0.005 (83). 

Table 16: Probability of Obtaining a Significant Result in At Least One 

Subgroup, as a Function of the Overall Treatment Effect (Z) and the 

Number of Covariates Considered (N) 

N 

1 
2 
5 
10 
20 

"Trend" in 
Overall Effect 

(Z = 1.0, p < 0.32) 
0.05 
0.09 
0.21 
0.37 
0.61 

"Significant" 
Overall Effect 

(Z = 2.0, p < 0.05) 
0.32 
0.53 
0.85 
0.98 

> 0.99 
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Table 17: Subgroup Analysis of Astrological Sign vs Aspirin Treatment 

in "International Study" 

Vascular Mortality at Week 5 
Odds Decrease 

·· -··· · ··· ·· ··········· ··· · ······ ·· · · ·· ····· · · ········ · ·········· · · ·· · ····~-~~2 ...................... }~!~.~~ .. (r.?2 ..... - ......... ..J~.~(.: .. ~PL ..... . 
Patients born under 11.1 10.2 8 (adverse) 
Libra and Gemini (NS) 

Patients born under 9.0 12.1 26 (+/- 5) 
other "birth" signs (p < 0.00016 

Overall results 9.4 11 .8 23 (+/- 4) 
(p < 0.00001) 

Simply correcting for multiple comparisons among subgroups in a trial that shows an overall treatment 
effect leads to comparisons concerning individual subgroups that are lacking in power for the 
demonstration of any "true" differences that may exist, due to the more stringent a adopted as the 
threshold for statistical significance. The sample size of a well-designed clinical trial is optimally 
designed large enough to ensure a high probability, or power, of detecting a clinically important overall 
difference between the treatment groups. Generally, this sample size is insufficient to detect effects within 
even relatively large subgroups and are very unlikely to detect interactions. In fact, as we'll see shortly, 
most trials have insufficient size to detect overall effects. 

I should mention that epidemiologists have expressed little enthusiasm for such formal correction methods 
for multiple comparisons due to their reduction in power (44,84). Briefly, the rationale for this position 
contends that the statistical formulation of the multiple comparisons problem is predicated on the 
universal null hypothesis. This means that in order to reject the alternative hypothesis', that some 
associations are present in the data, one first of all assumes that if only purely random processes govern 
the variability of all the observations in hand, then a certain number of significant associations would be 
found by chance. However, for a large number of associations, it does not make logical sense to assume 
that none of them could be "true". The validity of the data produced by a single study is logically 
independent of the motivations for having asked a question. In addition, the timing of articulating the 
question (a priori or a posteriori) is, of itself, incapable of influencing the results. Distinctions in timing 
are considered to merely reflect the investigators' knowledge at a given point in time that relates to the 
cumulative evidence in support of the hypothesis. Rothman recommends that each specific hypothesis be 
evaluated individually, even if there are many, according to the quality of the results of the study and 
their compatibility with other evidence only with respect to that specific hypothesis. Limited enthusiasm 
for pursuing certain associations would be recommended based on the lack of cumulative evidence in 
support of the hypothesis. I will defer further discussion of this issue and leave it to the interested reader 
to pursue a more comprehensive treatment of this issue. 

Subgroup analysis using statistical tests for interaction 

A better method of assessing differences in outcomes between levels of a subgroup are tests for interaction 
(44,81 ,85). An interaction exists between treatment and risk group (subgroup) if the true treatment effect 
is different among the various levels of the risk subgroup. This approach generally takes the form of 
statistically evaluating the outcome (represented as the dependent variable) in the face of treatment and 
the subgroup, represented with its different levels, as independent variables in the equation. This is often 
referred to as bivariate analysis, since two variables (treatment and a subgroup) are examined with regard 
to their relation to outcome. This analysis is repeated for each subgroup of interest. The advantage of this 
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comparison is that it relates the difference between the subgroup levels to the overall treatment effect. In 
the study by Pocock exarning the methodological quality of reported clinical trials, subgroup analysis was 
performed in about 50% but only 3 of these studies used tests of statistical interaction as the method of 
testing for differences (10). In addition, the reports tended to make overall treatment comparisons 
insufficiently prominent. 

Not all interactions are created equal though. Peto (86) has stressed the important distinction between 
interactions that are quantitative (the direction of treatment effect is the same but differs in degree) and 
those which are qualitative (the direction of treatment effect is not the same among different subgroups). 
These latter interactions are much more serious because they imply that the treatment effect is beneficial 
in some subgroups but harmful in others. Although important to discover, "true" qualitative interactions 
are usually very unlikely to occur in most circumstances. Most formal statistical testing designed to detect 
them lack power except for the most extreme interactions. The lack of power stems from the greater 
variance in the treatment difference (6) than for a. or for p. Similarly, and most unfortunately, the same is 
the case with tests for quantitative interaction. Therefore, even if the observed interaction is statistically 
significant, it is more likely to be due to chance since some variations in the true treatment effect are 
naturally to be expected between different risk groups (82). In other words, tests of interaction also face 
problems due to multiple comparisons, and they also lack power to detect "true" differences. 

Multivariate techniques can also be used to assess the impact of important cofounders, i.e. subgroups that 
influence treatment effects in addition to the treatments. These methods have the advantage of assessing 
the impact of each subgroup in the context of simultaneous consideration of all other subgroups of interest 
and need not be dependent on positive tests for interaction for their entry into the model, since the lack of 
power in tests for interaction may erroneously lead to excluding confounders from consideration. For 
example, Lee and coworkers performed a simulated randomized trial in coronary artery disease to 
illustrate the need for clinical judgement in using modem statistical methods in assessing the therapeutic 
claims of studies investigating complex diseases (87). 1073 consecutive, medically treated coronary artery 
disease patients from the Duke University data bank were randomized into two groups, designated 
"treatment group 1" and "treatment group 2". The groups were 'comparable' at baseline as assessed by 
statistical tests for significant differences. As expected, no overall difference between the two groups, 
who were essentially 'treated' with the same therapy but were merely arbitrarily designated into separate 
groups, were found. Interestingly, subgroup analysis revealed that there was a difference in survival for 
those 397 patients who had three-vessel coronary artery disease and abnormal left ventricular contraction 
when group 1 patients with this characteristic were compared with group 2 patients. However, 
multivariable adjustment procedures that incorporated a number of known confounders (the baseline 
distribution of which had not been statistically significantly different) revealed that this difference resulted 
from the combined effect of small but cumulative imbalances in a number of important confounders 
between those patients in group 1 versus group 2. (Multivariable methods will be discussed further under 
"Adjustment of the overall treatment effect for confounders"). Other methods for subgroup analysis have 
been developed but are beyond the scope of this discussion (88). 

What is the bottom line with regard to subgroup analysis? Since any differences in treatment effect 
among levels of a subgroups are most likely due to chance, and since the power of subgroup analysis for 
the detection of " true" differences is qnite limited, many experts recommend that subgroups of interest 
should be defined a priori. These groups should be selected based on known pathophysiology of the 
disease being studied or prior reported subgroup analyses that suggested differential treatment effects and 
they should be limited in number (81,85). The assessment of any difference in treatment effect among 
subgroups should be evaluated by tests of interaction, preferably carried out with multivariate methods 
that evaluate the combined impact of all important prognostic factors on treatment effect simultaneously. 
Ultimately, this approach underscores the realization that most clinical trials can at best answer a very 
small number of questions, perhaps even only one, with confidence. 

Subgroups defined a posteriori should generally be considered to be hypothesis generating and require 
confirmation in another clinical trial these hypotheses concerning subgroup effects should have strong 
biological rationale. In addition, hypotheses in ordered subgroups should generally respect the natural 
ordering (81). An example of this is presented in Table 18 from the GUSTO trial, where the timing of 
thrombolytic therapy is examined with regard to treatment effect (2) . The reduction in mortality was no 
longer statistically significant for treatment > 2 hours after on set of chest pain. One way of interpreting 
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this data, based on the statistical significance of difference in effect among the subgroup categories, is that 
treatment with t-PA within 4 hours of the onset of chest pain saves lives, but that treatment beyond 4 
hours does not, since the odds ratios associated with longer duration's of treatment were not statistically 
significant. A more cohesive way to interpret this data would be to preserve the graded relationship 
between time of administration and impact on mortality that would be suggested by the proposed 
underlying mechanism which related time to patency and mortality due to MI (81). 

All associations examined with respect to subgroup analysis should be reported, both negative and 
positive, in conjunction with the odds ratios and associated confidence intervals. Either adjustment for 
multiple comparisons should be performed or a comparison of the expected number of positive 
associations with the number actually observed should be reported. Any credence given to these subgroup 
differences should remain conservative and based on prior cumulative evidence. This approach is not 
inconsistent, then, with Rothman's recommendations. Eliminating the role of adjustments for multiple 
comparisons generally leads to conservative conclusions based on most subgroup analyses due to the need 
to weigh the validity of subgroup differences based on prior evidence. Yusuf has demonstrated that had 
these more stringent rules been followed, the numerous reports of a mortality benefit in patients treated 
with a beta-blocker would not have been supported (81). 

Table 18: Relationship Between Time to Treatment 

and Mortality in the GUSTO Trial 

Time to Treatment 
(hours) 

<2 
2-4 
4-6 
>6 

%of 
Patients 

27 
51 
19 
4 

*Indicates statistically significant. 

30 day Mortality (%) 
t-PA SK 

4.3 *5.4 
5.5 6.7 
8.9 9.3 
10.4 8.3 

However, it is often not apparent how many hypotheses were formulated and tested (since some may not 
have been reported) or even of those reported, which hypotheses were specified in advance. The prudent 
stance is to rely more on the overall results to indicate the likely "true" effect in a particular subgroup, 
rather than on actual observations, unless the trial was specifically designed to have sufficient power 
within subgroups of interest. Despite all this debate, clinicians are faced with the practical task of having 
to make the best use of the data before them. Oxman and Guyatt (85) have proposed criteria for deciding 
whether apparent differences in subgroup response are real many of which we have already discussed. 
Keep in mind that these criteria assume that the underlying methodology of the study is sound. 

1. Is the magnitude of the difference clinically important? 
Given the extent of biologic variability, it would be surprising not to find interactions between 
treatment effects and various other factors . The litmus test in answering this question is whether 
the size of the difference is sufficient to lead to different clinical decisions for the different 
subgroups compared. In general, the larger the difference between the effect in a particular 
subgroup and the overall effect, the more plausible it is that the difference is real. A problem 
arises when a large number of comparisons are made and only the most extreme differences are 
reported. This problem is compounded when treatment effect is only modest. Authors should 
report how many comparisons were made and how they decided which ones to report. 

2. Was the difference statistically significant? 

3. Did the hypothesis precede rather than follow the analysis? 

4. Was the subgroup analysis one of a small number of hypotheses tested? 
For example, one study investigating the role of digoxin in congestive heart failure looked at 16 
variables, but we can't always know how many were looked at. BHAT: 146 comparisons. Overall 
pattern of effects approximates a normal distribution. 
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5. Was the difference suggested by the comparisons within rather than between studies? 
Since patient and measurement characteristics in other studies would be expected to be more 
variable than in just one study, and thus less comparable, comparisons of subgroups between 
studies would be expected to be more ii.kely to lead to chance differences than comparisons 
among subgroups within a study. 

6. Was the difference consistent across studies? 
Replication of an interaction in another independent, unbiased study is compelling evidence for a 
"real" difference but the power of the studies being analyzed must be taken into consideration as 
well as the differences between the studies (in setting, population, definitions of outcomes, etc.). 

7. Is there indirect evidence that supports the hypothesized difference? 
This criteria addresses the biologic plausibility of the difference. However, researchers can be 
very imaginative in postulating potential mechanisms to explain incidentally discovered 
relationships. Other indirect evidence can also help to support the hypothesized relationship, 
such as results of other related (intermediary) outcomes, results in different populations ( eg 
animal), and results of similar interventions. 

How well did the GUSTO trial conform to these criteria? I've already mentioned several 
subgroup analyses reported by the GUSTO investigators. They prespeci.fied a priori three 
subgroups of interest age, location of infarct and time to randomization, based on prior evidence 
of their potential impact on the outcome. The analysis examining age dichotomized into two 
categories, patients age !> 75 years and age > 75 years, revealed a significant P value for the 
difference in the former group (p <0.05) but not in the latter (p > 0.05). Subsequent 
interpretations of the GUSTO trial have focused on this lack of statistical significance for 
treatment effect in the older age group (41). The GUSTO investigators have responded to the 
claim that t-PA is not effective in reducing mortality in patients age > 75 years quite 
appropriately by pointing out that a test for interaction between age and treatment was performed 
and not found to be significant ( 40). In addition, they point out that the overall treatment effect is 
smaller in patients !> 75 years (absolute difference of 1.1 %) than for those >75 years (absolute 
difference of 1.3%) and found that the treatment effect in each of these subgroups is not 
significantly different from the overall treatment effect of 1% when tested formally for statistical 
significance. 

The conflicting results of these comparisons makes it imperative that the reader understand what 
is being compared and what methods are being used to make the comparison. Although a limited 
number of subgroup analyses were prespeci.fied, which reduces the impact of multiple 
comparisons, the test for interaction and the specific comparison of the subgroup treatment effect 
with the overall effect warrant a conservative interpretation as to whether a "true" difference 
exists in the efficacy of treatment effect due to age. Although as discussed previously, the lack of 
statistical significance for treatment differences in the older age group may be due to 
underpowering of the study for examining this association since only 12% of enrolled patients 
were older than 7 5, not being able to reject the null hypothesis is not the same as proving there is 
no difference. 

4) What, then, can be concluded from a "negative" study? 

When a study is reported as "negative", it really means that the P value for the difference between the 
treatment and control groups did not reach statistical significance. When we fail to reject the null 
hypothesis, what can be concluded about a possible difference between the treatment and control 
groups? Does it mean that we "accept" the Ho and imply that there is a 5% chance of being wrong in 
concluding that there is no difference? When the Ho cannot be rejected, there is the potential to make 
a Type II error which is closely related to the sample size, as well as to other factors. Table 19 
demonstrates the relationship between Type II error (~) and sample size. As sample size increases, ~ 
decreases. Like a., ~ should be prespeci.fied in planning a study, so that an adequate sample size can 
be determined that will be needed to detect a difference of an expected maguitude. Unfortunately, too 
often sample size has not been planned for in this manner. In the study by Pocock, sample size was 
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planned for in only 11% of the studies (10). The GUSTO trial exhibited exemplary planning with 
regard to sample size. The methods section indicated that the suede was designed to detect a 1% 
absolute reduction in mortality in the t-PA group as compared with the SK group, that the expected 
baseline mortality in the "control" group (SK + SQ heparin) was 8%, and specified an a. of0.05 and 
a f3 of 0.1 (power= 90%). On the basis of these parameters, 41 000 patients were needed. 

Tables, which differ according to the type of statistical test, are readily available to assist in 
estimating the minimum sample to satisfy a variety of predetermined values for a., f3 and I:J. (the 
estimated effect size). Unfortunately, planning for sample size is often either not done, or the 
appropriate sample size not achieved. This leads to an increase in the probability of the Type II error, 
or f3 . Frieman et a!. reviewed the findings of 71 clinical trials that reported no significant difference 
(P > 0.05) between the compared treatments (69). The investigators for these trials incorrectly 
interpreted their data as indicative of no effect, when, in a great majority of the trials reviewed, the 
data were consistent with a reasonable strong effect of the new treatment The latter was determined 
by calculating the 90% confidence intervals for each of the trials, which are plotted in Figure 11. 65% 
of the trials reported a reduced mortality in the treatment group and the plot of the confidence 
intervals show that they overlap 0 but are skewed to favoring treatment. 

Figure 11: 90% CI Limits for the True %Difference for the 71 Trials 

= 

· 50--'!0 -30-20-10 0 -10 ·20·30·40·50 
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(PC - P1) x 100 

Figure 2. Ninety per Cent Confidence Limits for the True 
Percentage Difference for the 71 Trials. 

The vertical bar at the cent~r of _each interval indicates the 
observed value, P, - P,, for each trial. 

Freiman analyzed this data in another way to better illustrate the large Type II errors associated with these 
studies (69) . She calculated the 25 % and 50% relative reductions in adverse outcome, which are 
commonly used standards for evaluating the efficacy of therapy, as well as the associated f3, for each of 
these trials. 1n 80% of these trials, the confidence interval included the 25% relative reduction in 
endpoint (i.e. 20% were not designed to detect even a 25% relative difference in outcome). ln 49% of 
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these trials, the confidence intervals included the 50% relative reduction in endpoint (i.e. 51% were not 
designed to detect a relative reduction in outcome of 50%) .. 

The rationale for Freiman's approach is as follows. The probability of Type ll error is not analogous to the 
probability of a Type I error. A high risk of a Type I error (false positive conclusion) does not guarantee a 
low risk of a Type ll error (false negative concluSion). The probability of Type I error is calculated on the 
basis that the Ho is correct (P.- P, = 0). The probability of Type ll error is based on the H. being false ( P. 
- P, o< 0). But ifP.- P, is non zeo, then there is an infinity of possible values for this difference. For each 
value of the difference, there is probability of Type ll error. Figure 12 depicts the relationship between 
Type ll error (~) and the difference between treatments (P.- P,. A) in a clinical trial. This curve of ~as 
a function of A is known as the operating characteristic of the test It highlights the probabilities, the P's. 
of missing a 25% or a 50% reduction in an adverse outcome due to treatment, in the study depicted, 
were associated with ~ = 0.77 ~ = 0.42, respectively. Tables 20 and 21 represent comparisons between 
the event rates in the treatment and control groups to estimate whether the study was powered to detect 
25% and 50% reductions in outcome (67). 

Figure 12: Operating Characteristic Curve of a Representative Clinical Trial 
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Table 20: Was the Trial Big Enough to Show a RRR 2:. 50% if it Had Occurred? 
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The hallmark of these studies was inadequate sample size and there is no surer way to demonstrate no 
difference between treatments than to underpower a study. This is particularly a problem when a new 
treatment is being evaluated as a replacement for standard therapy, not because it is presumed to be more 
efficacious, but because it is less costly, has fewer side effects or is more convenient than the standard 
therapy (70). An underpowered study for this purpose can all too easily lead to the substitution of an 
inferior therapy for the standard therapy. Therefore, failure to reject the Ho is not equivalent to its 
acceptance and proving that a true difference does not exist. 

5) How should overall treatment effects be modified to accomodate the effects of 
prognostic factors? 

What is the goal of adjusting the treatment effect? Adjustment of the overall treatment effect is intended 
to remove the effects of confounding factors since, as we have seen, the distribution of prognostic factors 
may be unbalanced between treatment groups due to chance alone . When adjustment is performed after a 
study is completed, it generally involves the use of multivariable methods. The four main multivariable 
methods used in the medical literature are presented in Table 21, which highlights the differences in the 
methods with respect to the type of outcome variable appropriate to each. The technical details of these 
methods are described elsewhere. The use of these methods continues to grow and even several years ago, 
20% of all studies used one of these methods to adjust the overall treatment effect (89). 
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Table 22 : Comparison of Commonly Used Multivariable Methods 

Multivariable methods Outcome variable Example 

Multiple linear regression • Continuous • Blood pressure 

Multiple logistic regression • Binary event at a • Alive vs dead 
fixed point in time 

Discriminate function analysis • Category or group to •Race 
which a patient 
belongs 

Proportional hazards analysis • duration of time to •Death 
(Cox regression or survival occurrence of a binary 
curve) event 

What do multivariable methods represent when applied to medical data? The basis of"medical data" rests 
on the description of biological systems. Most mathematical models that we use were not developed to 
specifically describe these systems, and in fact. most systems do not conform to the mathematical models 
we use to describe them. There is no "inherent" link between these models and any "reality" they 
represent in the biological systems. Nonetheless, the use of these mathematical models abounds, and 
some understanding is necessary. However, the reader is cautioned to have some measure of skepticism 
when examing the output of these models, rather than viewing ·them as a "magical" black box yielding 
the "truth". Statistics should serve reason, rather than replace it. 

In general, multivariable analysis mathematically relates independent variables Xt. X2, X3, •. • X., to an 
outcome variable via a model expressed as a combination: G + b0 + b1X1 + ~X2 + ~3 + ... + &, where G 
is a function arranged in various mathematical forms; bj is a regression coefficient indicating the impact 
of each Xi variable on the outcomes; bo is the intercept term, which is usually included in the model (33). 
If a particular bi • 0, then the variable Xi has no impact on the outcome; a positive value of bi indicates 
that higher values of Xi are associated with the outcome expressed as G; and negative values have the 
reverse effect. A random variable & is an "error" term representing the increment by which any individual 
G value deviates from the calculated value of G. The validity of an adjustment technique depends on the 
correctness of the assumed mathematical model. Another serious problem arises if the covariates are 
measured after the treatment has been administered, since the possibility exits that the covariates have 
been influenced by the therapy. An example of this is when the rate of adherence to therapy differs. 

The most commonly used multivariable method is multiple logistic regression (89). What is the appeal of 
multiple logistic regression? From a mathematical standpoint. it is extremely flexible and easily used. It 
also lends itself especially well to a biologically meaningful interpretation. Since many outcomes of 
interest in clinical research have only two outcomes. Each regression coefficient turns out to be the odds 
ratio for the variable with which it is associated. Despite the restriction to only two possible outcomes, the 
logarithmic function distributes the odds ratio over a large range of values, due to the asymptotic nature of 
the function (90). 

Multivariable methods can be used for at least five purposes (89). The overwhelming majority of the time, 
they are used to quantify the risk of individual variables for their specific effects among other 
independent variables, as has been discussed. In a study assessing the frequency of and reasons for the use 
of multivariable methods, 75% of the publications used multivariable analysis to quantify risk estimates 
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reported as regression coefficients, odds ratios, or relative risks for individual variables (89).Another use 
of multivariable methods involves the confirmation of the risk factors identified in the bivariate analyses 
as independent risk factors i.e. do they retain their importance in the simultaneous context of the other 
variables? An example of this use is presented in Table 22. In this study assessing risk factors for death 
due to coronary artery disease, when risk factors were assessed individually for their impact on the 
outcome, many of them were found to be independent (chi square value> 3.84)(87). However, when these 
factors were combined in a multivariable model, only two remained independent. Multivariable methods 
are also used to confirm the results of non-regression analyses, such as standardization, as well as 
screening for significant risk factors when the total number of variables may make bivariate analysis too 
time-consuming and difficult to assimilate. Finally, multivariable methods can be used to create risk 
scores that combine the impact of multiple variables into a single risk score that is used for predicting 
outcomes of individual patients. 

Table 22: Comparison of Individual and Joint Prognostic 

Significance of Baseline Variables 

*Individuall • Joint! ·· · ·· · ······· ·· · ·· · · · · ·· · ··· · · ·· ··· ···· · · ···· ·· ···· ·· · · · ··· ·· · ·· · ·· · ·· · ·· ······ · ····· · · ··· ····· · ·· · ··· ···· · · · ·· ······~········ · ·· ··· ·· · -·· · ···· ···>.: ......... . 
Treatment 5.4 2.4 
History ofCHF 36.1 3.8 
Cardiomegaly on CXR 15.7 0.3 
Resting ST-T-wave abnormalities 8.4 2.2 
Mitral insufficiency 25.1 2.7 
AV 0 2 difference 52.0 11.1 
LV diffusely abnormal contraction 17.3 0.3 
Left main stenosis 6. 9 5. 7 

A number of issues surround the use of multi variable methods (91 ). Controversy exists regarding how the 
variables (risk or prognostic factors) should be selected for entry into the model (92-95). Variables can be 
selected by choosing those in which there is a large disparity in their distribution between groups (based 
on a statistical test of their difference), tests of interaction, or based on evidence-based judgement as to 
which factors are known to strongly influence the outcome, and others. Each strategy has its merits and 
disadvantages. In general, either tests for interaction, or simultaneous inclusion of all factors considered to 
be important in affecting the outcome of interest are preferred. In addition, the type of model used and 
how the model is built can affect both the direction and the magnitude of the results. This complexity in 
the methods and the variability that can result in what is reported has lead some to refer to multivariable 
methods as "science by sleight-of-hand" (91). 

Given the increasing application of multivariable methods in the medical sciences and its associated 
complexity, minimum criteria have been established to evaluate the appropriateness of the multivariable 
methods used in a study. Table 23 presents criteria that have been proposed by Cancato, et a!. as a 
minimum set of guidelines by which studies using multivariable methods are to evaluated with regard to 
their execution, interpretation and reporting of multivariable methods (89). I highly recommend this 
paper to readers for a more thorough discussion of these criteria. Cancato and colleagues assessed the 
quality of multivariable methods use by examining studies using one of the four methods previously 
described that were published in the Lancet or New England Journal of Medicine sometime between 1985 
and 1989. The rotation of these criteria, as presented in parentheses in the first column of Table 23, is 
exceedingly common. 
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Table 23. Problems and Issues in the Application and Reporting of Logistic Regression 
d P I R dsA I an roportrona azar na sis 

'·Pr6blem·.or issue: (:%.\ifiviilidat~J '''"'''''/':' k"·"''-' ·' 
_, i:ion):: ::::i\::::::::::;::;::::~:·-·;·, .. ·:·_.',,( ·':f>{i',{ 

Problem 
Overfitting of data Fewer than 10 outcome events per independent variable in the 

(42%) model 
Nonconfonnity to a linear gradient Nonconstant impact of variables in different zones of ranked data 

(29%) 
Nonproportional risk Violation of assumption of proportional hazard function over 

(81%) time (in the proportional hazards method) 
No report of tests for interaction Check not mentioned for interactions between independent 

(73%) variables 
Unspecified coding of variables Unknown classification or codings for independent variables 

(84%) 
Unspecified selection of variables Unknown method of selecting among candidate independent 

(86%) variables 
Issue 
Collinear variables Independent variables with high correlation to one another 
Influential observations "Outlier" observations that have substantial impact on results 
Validation of the model Separate method of confirming analytic results 

A. How Did the GUSTO Perform with Regard to These Criteria? 

The original GUSTO report presented a survival curves for each of the treatment groups, and compared 
them with proportional hazards regression. The investigators indicated that logistic regression was used 
to assess the consistency of treatment effects for age, location of infarct and time to treatment. In applying 
the above criteria, there were sufficient numbers of outcomes events to analyze these three subgroups, 
even when subcategorized, as they were. Interactions for these three variables were reported and they were 
prespecified. The remainder of the criteria were not addressed, nor was the process for building the 
regression model described. Purportedly, the impact of the three prespecified prognostic factors were 
adjusted for in the reported overall treatment effect, although the "unadjusted" treatment effect was not 
reported. 

B. How Precise was the Estimate of the Treatment Effect? 

The discussion regarding precision and its application to the GUSTO trial has been presented in 
conjunction with "What Were the Results of the Study?" 

III. WILL THE RESULTS HELP ME IN CARING FOR MY PATIENTS? 

A Can These Results be Applied to My Patient Care? 

1. Are the patients similar to mv own? (20). 

The test for this criteria is whether your patient would have been enrolled in the trial if she had been 
there, i.e. does she meet the inclusion criteria without violating any of the exclusion criteria? This 
criterion may be too restrictive as clinical trials generally must reduce the complexity that is usually 
characteristic of clinical practice to provide for better control (12). Alternatively, you could ask, is there a 
compelling reason why the results should not be applied to my patient? If the answer is no, then 
generalization of the study's results to your patient seems reasonable. This criteria is also closely related to 
the report of outcomes for subgroups of patients, since subgroups with particular characteristics may be 
more representative your patient. The appropriate integration of subgroup analysis into clinical practice 
has already been discussed. 
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I have already mentioned the relatively low risk nature of the patients studied in the GUSTO trial. Patients 
at higher risk may not experience the same net benefit from treatment. I've also allude addressed whether 
the treatment effect is to be interpreted differently in patients age :;;; 75 years as opposed to age > 75 years. 
A particularly important characteristic of the GUSTO trial that limits its generalizability greatly is the 
graded relationship between time to treatment and reduction in mortality. This relationship is strongest 
within the first two hours and falls off thereafter. Most of the patients in the GUSTO trial presented 
within 2-3 hours of chest pain and received thrombolytic therapy in the third and fourth hours. In usual 
clinical practice, patients present later, about 4 hours after the onset of chest pain (96). 

B. Were all Clinically Important Outcomes Considered? 

Were outcomes evaluated that are important to patients? Studies often evaluate surrogate outcomes, or 
physiological markers, in lieu of important outcomes because they are more feasible (less cost, effort, 
etc.). Although it is tempting to assume that a marker for an event would be a reliable predictor for 
the event, this is not always the case. For example, since the use of antiarrhythmic drugs following 
myocardial infarction reduced ventricular depolarizations in the short-term, it was assumed that they 
would reduce the occurrence of life-threatening arrhythmias in the long-term. However, the trial 
investigating the long-term efficacy of these drugs found an increase in mortality associated with their 
use (97). 

It is also important to interpret the report of a favorable benefit with regard to one outcome 
cautiously unless it is clear that there were no deleterious effects on other outcomes. For example, a 
reduction in cardiovascular deaths might be offset by an increase in noncardiovascular deaths. The 
overall mortality, death due to all causes, would most appropriately capture the impact of therapy. 
Increasingly, quality of life, as defined from the patient's perspective, is being emphasized as perhaps 
the most important outcome. Chemotherapy for cancer may prolong a patient's life, but if it does so at 
the expense of the patient's quality of life, the treatment may not be perceived as beneficial by the 
patient. 

Since thrombolytic therapy is associated with an increased risk of bleeding, including hemorrhagic 
stroke accompanying an MI, the GUSTO trial also appropriately evaluated these endpoints. It 
reported an absolute excess of hemorrhagic strokes of 0.2% (P = 0.03) for t-PA as compared with the 
combined SK groups (2 strokes per 1000 patients treated). However, comparison of t-PA with SK + 
SC heparin reveals an absolute difference of 0.33 % in all strokes and 0.18% for hemorrhagic 
strokes, which translates to 3.3 and 1.8 excess strokes in the t-PA group, respectively. Rather than 
combining the 30-day mortality with one of these endpoints, the GUSTO investigators chose to use a 
combined event rate that encompassed 30-day mortality with disabling strokes (which were defined 
as substantial limitation of activity and capabilities or inability to live independently or work) instead. 
This endpoint is rather subjective in nature, and trivializes the impact of lesser degrees of deficit on 
the quality of life of patients. In choosing this combined endpoint, the number of excess strokes was 
less impressive for t-PA compared to SIC and SC heparin. In general, the incidences of other 
bleeding events tended to favor t-P A. 

Subsequent to the preliminary report of GUSTO, the results of the angiographic substudy were published 
(46). As already mentioned, this substudy examined angiographic patency after thrombolysis in about 6% 
of the original GUSTO patients. The importance of this study is that it addresses the validity of the 
biologic mechanism proposed to explain the survival benefit associated with t-P A. These investigators 
confirmed that t-PA opened arteries more rapidly than SK, but that the patency rates were equivalent at 3 
hours, the so-called "catch up" phenomenon. Integration of the results of GUSTO with other thrombolytic 
trials have lead some experts to conclude that t-PA opens up arteries about 45 minutes earlier than SK 
(73 ). The reduction in mortality per hour associated with lysis begun at different times, based on the 
fibrinolytic therapy trialists (FTT) meta-analysis of the results from the large randomized trials of 
thrombolytic therapy versus no treatment, were calculated (98). Lysis in the first hour saves 39/1000 lives 
and in the second hour saves 30/1000, resulting in a net benefit of only 9/1000 lives if treatment is begun 
in the first hour (one hour earlier). From 2.5 hours to 20 hours, the gain of lysis one hour earlier is only 
1.6/1000 lives. The majority of GUSTO patients received thrombolytic therapy in the first 2 to 3 hours, 
and this may positively account for 10/1000 lives saved that was reported. However, according to the FIT 
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analysis, even if therapy at 2.5 hours is compared with therapy at 1.5 hours (one hour earlier), only 5/1000 
lives are saved, which is substantially less than that reported by GUSTO. Additional skepticism must be 
brought to bear on the role of patency in mediating the survival benefit observed. Despite earlier patency 
in the t-PA group, left-ventricular ejection fraction did not differ among the four treatment groups (74). 

C. Are the Likely Treatment Benefits Worth the Potential Harms and Costs? 

The beneficial impact of treatment on patients has already been discussed as well as some of the 
major complications of therapy, bleeding and stroke. It is equally important to combine the benefit 
and harm in a quantitative manner to assess the net benefit of therapy. NNT can be used in such a 
manner, by directly integrating the NNT quantifying the "harm" of therapy with the NNT 
quantifying the benefit of therapy. A quantitative estimate of the combination of benefit and harm, 
the net benefit, can thus be produced. For example, therapy that is modestly effective, but without side 
effects may be more appealing than more efficacious therapy which carries significant risks of serious 
side effects. Tables 24 and 25 presents the net benefit resulting from integrating survival benefit and 
the harm of nonfatal strokes for the comparisons of t-PA with SK +IV heparin and t-PA with SK + 
SC heparin, respectively reported in GUSTO. Note that, as already discussed, the decision to 
combine the SK groups in the comparison with t-PA favors treatment with t-PA (10 additional lives 
saved per 1000 treated), whereas comparison with SK + SC heparin alone results in only 7 additional 
lives saved per 1000 treated patients, if all strokes are considered as opposed to just severely disabling 
ones. In fact, the P values for this comparison was 0.04, which means that the 95% confidence 
interval ranges from a near zero difference, to perhaps a 30% or greater relative advantage (73 ). 
Keep in mind the previous discussion regarding a likely exaggeration in stroke complications in the 
SK + SC heparin group due to the large proportion that actually received IV heparin, and the FTT 
estimation of the expected benefit of patency for the time after the onset of chest pain that most 
GUSTO patients experienced. 

Table 24 : Comparison of Net Benefits of t-PA Versus SK + IV Heparin in GUSTO 

t-PA SK ARR *No. of lives 
+ + (%) saved /1000 

Outcome IV heparin IV heparin (1 vs 2) treated 
(Group 1) (Group 2) (1 vs 2) 

il~~J.mliff~Ut&MW!lilmfEMli\I§~%.Bi!U&1IiiM&ftstiliilltmEEr1i}llillirfdimEEtttfillEMli. 
tOr CVA 7.2 8.2 1.0 10 

tOr hemorrhagic CVA 6.6 7.6 1.0 10 
tordisablingCVA 6.9 7.9 1.0 10 

*if stroke counted as equivalent to death 
t nonfatal strokes 

Table 25 : Comparison of Net Benefits of t-PA Versus SK + SC Heparin in GUSTO 

t-PA SK *No. of lives 
+ + ARR saved /1000 

Outcome IV heparin SQ heparin (3 vs 2) treated 

*jarAm~ma;miililmu;~ii~lli,;miw~®;JI&rmmJmw•aiilf~ 
torCVA 7.2 7.9 0.7 7 

tOr hemorrhagic CVA 6.6 7.4 0.8 8 

tordisablingCVA 6.9 7.7 0.8 8 

*if stroke counted as equivalent to death 
t nonfatal strokes 
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Finally, once the net clinical benefit has been determined, the cost of utilizing accelerated t-PA in place of 
SK must be considered. There have been a nwnber of cost-effectiveness analyses, including one by the 
GUSTO investigators, that have addressed this issue (6,99,100) The conclusion of these analyses have 
varied, depending on the assumptions modeled. The cost-effectiveness of thrombolytic therapy is 
sensitive to the comparative net clinical benefit assumed, which is quite controversial, as we've discussed. 
The most useful way, then, of presenting the cost-effectiveness of t-PA versus SK + SC heparin is to 
present the cost associated with a continuwn of ARR 's that might be entertained. Table 26 presents data 
in this manner from a cost-effectiveness analysis by Naylor and colleagues. If t-PA results in ARR of 
2.5% or less, then the cost associated with its use would not be considered compatible with the threshold 
for use of other widely accepted health interventions, which is generally $100 000 per quality life year. 
However, the decision to accept the cost of a new treatment is both an individual one, and one that will be 
made from the perspective of public health policy. As yet, there has not been resolution between the 
tension experienced by these two different perspectives. As a basis of comparison, Table 27 presents the 
cost effectiveness ratios associated with other cardiac interventions. Of interest, the grading system of new 
treatments and technologies proposed by Laupacis (11) graded the use of t-PA versus SK to treat acute 
MI as E, which includes new therapies or technologies which are less effective than or as effective as the 
existing one but more costly. 

Table 26: One-way Sensitivity 
Analy_sis f.or t-P A versus SK 
ARR Marginal Cost Per 

................. ........................ ~.~.~~=I~.~ .. ~.~Y-~.1.".. .. _ ... 
3.00% $92 620 
2.50% $111 144 
2.00% $138 930 
1.50% $185 241 
1.00% $277861 
0.50% $555722 

Naylor CD, et al. Can J Cardiol1993;9:553-8. 

Table 27: Comparative Cost-Effectiveness Ratios Interventions to Reduce *CHD 
Mortality in Middle-aged Males 

................................................................. ~~~!:Y~.~!:i!?.!!-..... ·-·· ···· ··········· ·· · ··· ·· ··· ··· ··········· ·-··· ····· ·· · ·····::: .M.!!!si~.~!?.S.tJ.!if.~~Y.~~E .. S~~~ .. .. 
Beta-blockers post-MI (55 yo male@ mediwn risk) $5000 

CABG for left main disease. 

CABG for 3-vessel disease 

Treatment of severe HTN 

Treatment of moderate HTN 

CABG for 2-vessel disease 

Life-long cholestyrarnine (serwn cholesterol = 6.85 mmol/L; average 
risk rofile) 

*CHD = coronary heart disease 
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$9000 

$20 000 

$20 000 

$45 000 

$120 000 

>$250 000 



How should the results of the GUSTO trial be placed into 
context? 
A number of experts (73,74,75) have reviewed the GUSTO trial and summarized its advantages, its 
problems, and how it might be placed into appropriate context with the following: 

1) The choice of thrombolytic therapy is much less important to ultimate survival than the delay in 
time to onset of treatment 

2) There is probably an estimated net benefit of 3 lives saved per 1000 patients treated (perhaps less) 
associated with the use of accelerated t-PA in the setting of acute MI over standard therapy. This 
adjusted estimate is based on the more appropriate comparison with the SK + SC heparin arm, the 
heavy contamination of this arm with IV heparin which would be expected to increase the 
hemorrhagic stroke rate, the inclusion of all strokes, and consideration of the likely benefit of 
achieving patency one hour earlier based on the FIT analysis (the apparent difference between t-PA 
and SK). 

3) The small absolute differences in efficacy among thrombolytic therapies are not likely to be applicable 
to most patients with MI who usually present more than 4 hours after the onset of chest pain. 

4) The more important issues to address now are how to achieve thrombolytic therapy faster and how to 
increase the utilization of thrombolytic therapy in eligible patients. 

Osler said: "Let us agree that good clinical medicine will always blend the art of uncertainty with the 
science of probability. This has been expanded upon by Naylor: "But let us also hope that the blend can 
be more heavily towards science, whenever and wherever sound evidence is brought to light" (101). The 
goal of critical appraisal is not to dampen enthusiasm, but to further our understand of the limitations of 
our evidence. Having said this, let me finish with the following: 

"Clinical medicine seems to consist of a few things we know, a few things we think we know (but 
probably don't) and lots of things we don't know at all. When evidence alone cannot guide clinical 
actions, some will espouse minimalism whereas others will favor intervention based on inference and 
experience." So goes the science of the art of choosing better treatment... 
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