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Cell populations, even those derived from a single clone, can exhibit a high degree of 

phenotypic variability. However, most biological studies take measurements as averages of 

entire populations without consideration for the underlying distribution of cellular phenotypes. 

Though there is growing evidence that variability within cellular populations has some functional 

consequences, the significance of cell to cell heterogeneity is still poorly understood. Here, we 

present an analytical platform that represents heterogeneity of cell populations as mixtures of 

distinct cell phenotypes, or subpopulations, based on immunofluorescent images.  These 

“subpopulation profiles” make the heterogeneity of cell populations more tractable and 

comparable. We go on to demonstrate that subpopulation profiles can be predictive of clonal 

populations’ drug responses. This separation is shown to be independent of the population’s cell-
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cycle distribution. The subpopulation profiles are then shown to be robust population readouts 

and used to classify diverse cell lines. We show that, in diverse panels of cell populations, the 

relationship between basal state heterogeneity and drug response tends to break down. We also 

show, however, that the subpopulation profiles of diverse cell lines can be useful for identifying 

independently informative biomarkers. Taken together, these results demonstrate that a 

subpopulation level reduction of heterogeneity can be a useful readout of cell populations with 

many potential applications. 
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Chapter 1: Heterogeneity in Biological Systems 

Introduction 

The appeal for describing systems by their average behaviors is readily apparent. To gain 

insights in cell biology, cell populations can be described by a feature of interest (e.g. expression 

level of a gene, phosphorylation level of a protein, or initiation of cell death) averaged over all 

cells. Reducing the complexity of a diverse system to a representative mean or median provides 

tractability for comparison and understanding. This reduction provides a focused view of a cell 

population and comparisons of distribution averages have led to many discoveries about how 

biological systems operate. However, these measurements may not always capture the behavior 

of individual cells within a population (Fig. 1.1) [1].  

 

A
ve
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ge

 le
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l 

time 

Figure 1.1 Population-average measures can reflect 

multiple single-cell behaviors. If an increase in an average 

readout is observed over time, each cell in a population could 

have gradual increases for that readout or the fraction of cells 

that have the maximal level of that readout could be increasing. 

(Adapted from Ferrell and Machleder 1998) 
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Population averages are not completely informative about cell behavior. 

In seminal work from Ferrell and Machleder [2], it was shown that Xenopus oocytes, in 

response to progesterone, appear, at the population level, to have a graded increase in MAP 

Kinase phosphorylation; however, when individual oocytes were analyzed, the authors found 

that the cells either had or didn’t have phosphorylated MAPK. The number of cells in the 

population that did have phosphorylated MAPK increased with higher doses of progesterone, but 

not the level of phosphorylated MAPK in the cells. In this case, the population-averaged 

measurements of MAPK phosphorylation could not distinguish the actual behavior of the 

system. More recent work from Loo et al. showed that, during adipogenesis, key components 

have correlated increases at the population-averaged level, but looking at the single-cell level 

tells a different story [3]. Individual cells were sorted into different subpopulations using 

automated clustering based on staining for three key readouts of adipogenesis. The 

subpopulations were inspected and it was found that during differentiation, instead of reflecting 

graded increases in the markers, the subpopulations were phenotypically distinct. This finding 

was consistent with the idea that during differentiation, as well as other processes, cells transition 

through discrete phenotypic states [4, 5]. The correlated increase observed at the population-

average level did not reflect single-cell accumulation of these adipogenesis components, but 

rather individual cells moving through distinct states at different times. Taken together, the 

results from Farrell et al., Loo et al., as well as many other studies [6-10] indicate that 

population-averaged measures are not always sufficient to capture the underlying biology of a 

cell population. 

The importance of heterogeneity in cancer 

Inter-tumor heterogeneity 

Cellular diversity has been observed in multiple contexts, but it particularly appreciated 

in the study of cancer. Cancer has long been known to exhibit heterogeneity [11, 12]. In 1836 

Johannes Müller began examining tumor specimens under a microscope, searching for 

“important internal differences in their organization and chemical composition…” [13]. He 

discovered that tumors were made up of cells, not a foreign material, and began categorizing 

different tumors in a systematic way. Unfortunately, he didn’t have access at that time to 
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sufficient pathological information for in-depth tumor characterization. Since then, we have 

learned an enormous amount about the causes, origins, and classifications of various cancers. 

The origin of cancer, that it emerges from changes in different healthy cells [14], means there are 

always differences from patient to patient (Fig. 1.2A). Every person has a different genome, and 

thus, every cancer will as well. Further, different mutations to the same types of cells can lead to 

cancer [15]. This diversity is part of the reason cancer is so difficult to treat despite a growing 

understanding of cancer biology. Tumors with the same diagnosis can have different responses to 

treatment [16, 17]. Thus, it is difficult to predict the best course of action from patient to patient. 

Major work on this front is being carried out by The Cancer Genome Atlas (TCGA), a large-

scale project with the goal of cataloging as many mutations responsible for cancer as possible 

[18]. Studies from this project have identified potentially clinically relevant subsets of cancers 

[19] and enhanced the field’s understanding of what changes to normal cells may drive cancer 

development [20]. The eventual goal of the TCGA, and indeed much of today’s cancer research, 

is the development of targeted therapy and individualized medicine, wherein a tumor is biopsied, 

Mutations 

Primary 
Tumor 
Sites 

 

Mutation present Mutation absent 

A 

B 

Figure 1.2 Inter- vs. Intra- tumor heterogeneity A. Tumors, even from 

the same tissue, can exhibit diverse phenotypes from patient to patient. 

B. Different sites within a single tumor can have diverse genetic and 

phenotypic profiles. (Adapted from Gerlinger et.al., 2012) 
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classified, and the best action is decided on an individual patient basis (in the hope that, perhaps, 

there are distinct subpopulations of patients for which a particular drug will work better) [21]. 

There have been some successfully identified targeted therapies such as the BCR-ABL targeting 

drug, imatinib [22], and the EGFR targeting drugs, gefitinib and erlotinib [23, 24], which are 

effective on certain sub-types of tumors; however, a primary challenge is that, even in tumors 

that start sensitive, resistance emerges [25]. One reason for this could be existing heterogeneity 

within a tumor population [26, 27]. 

Intra-tumor heterogeneity 

Adding to the difficulties associated with patient-to-patient differences in cancer is the 

fact that the cells that make up tumors are not all identical [28] despite usually being derived 

from a single cell (Fig. 1.2B) [29]. This phenomenon has long been observed [30, 31]; Fidler and 

Kripke, in 1977, showed that metastatic cells were pre-existent in a tumor and that not all cells 

shared the same metastatic potential [32]. In 1978, Dexter et al. showed that different cell lines 

derived from the same tumor had marked differences in antigen expression, in vitro growth, and 

karyotype despite yielding tumors of similar histology when transplanted into mice [33]. Further, 

they showed that these cells were likely present in the parental cell population at low 

frequencies. The same group went on to show in Heppner et al. that the resulting tumors had 

variable drug responses [34]. These studies were the first steps demonstrating the importance of 

taking intra-tumor heterogeneity into account when trying to understand cancer cell population 

behavior. 

Methods for classifying heterogeneity in cell populations 

With new technologies, we are able to characterize subpopulations in tumors at a deeper 

level than ever before. Sequencing allows for analysis of heterogeneity in mutational and 

transcriptional states at the genomic scale [29, 35-39]. Intra-tumor heterogeneity of this sort was 

beautifully demonstrated in a recent study from the New England Journal of Medicine [40]. 

Here, the authors take multiple biopsies from a single tumor and characterize genomic diversity 

among their samples. They report that distinct genotypes exist in different regions of the tumor. 

Metastases from the same patient also have further distinct differences. This study demonstrates 

clearly that tumors are made up of heterogeneous and evolving populations of cells.  
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Flow cytometry allows for measurements of dozens of total and phosphorylated protein 

concentrations within single cells [41, 42]. Gupta et al. showed that Fluorescence activated cell 

sorting (FACS) could be used to identify “cancer stem cells” [43], a cell subpopulation that is 

thought to exist at low frequency within a tumor and could be responsible for drug resistance and 

other traits [44]. They went on to demonstrate that targeted therapies for this specific cell state 

could be identified. The ability to do this may become more and more important as diverse cell 

states within cancer populations are identified. 

Microscopy allows for simultaneous measurement of cell morphology and biomarker 

expression and localization patterns for cells in situ over time [45, 46]. Gascoigne and Taylor in 

2008 observed over 10,000 individual cells from 15 different cell lines after treatment with 

chemotherapy and showed that the variability of cell fate within cell lines is greater than 

previously appreciated [47]. Further, even genetically identical populations can exhibit cell-to-

cell variability. Spencer et al. observed sister cells after cell division using microscopy and 

characterized their caspase activation in response to the apoptosis inducer TRAIL (tumor 

necrosis factor (TNF)-related apoptosis-inducing ligand) [48]. They found that natural 

differences in protein levels among sister cells could be responsible for variable responses to 

TRAIL. These, and other studies, underscore the importance of understanding a cancer cell 

population’s composition [49-51]. The identification of subpopulations that have profoundly 

different metastatic potentials, responses to therapy, and/or underlying biological signaling than 

the overall cell population may have a profound impact on our understanding of cancer 

progression and treatment. 

Our lab has pioneered automated high-content immunofluorescence microscopy as a 

method for studying heterogeneity. Work in the lab has been used to classify differentiation 

states in adipocytes [3] (as described above) and compare populations by distributions of distinct 

phenotypic states [52-54]. In work from Slack et al., our lab introduced an analytical platform 

(Fig. 1.3) for identifying subpopulations by adapting facial recognition software to find distinct 

phenotypes of cells in immunofluorescence images. This approach was used to classify 

populations after their response to a panel of different drugs. Cell responses, at the subpopulation 

level, were used to predict drug mechanism of action. In contrast to traditional microscopy 

studies, our platform is high-throughput and quantitative. Every cell is identified automatically 

and classified by a set of features, which dictate the cell’s subpopulation assignment. All cells in 
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a population are considered to describe the population by a subpopulation profile. Differences 

between populations are found by comparing these subpopulation profiles.  

Conclusion  

Subpopulation profiles, such as those described by Slack et al. [54], hold great promise to 

provide biologically informative classifications of populations by identifying biologically 

meaningful states. In the following work, we take a subpopulation-based approach to 

characterize different panels of cell populations. We look for the implications of observed 

heterogeneity in a panel of clones from a single cancer cell line and panels of diverse cancer cell 

lines. We demonstrate that subpopulation profiles can be an informative, robust, and valuable 

measure of cell population heterogeneity.  

 

Figure 1.3 Pipeline for determining subpopulation profiles in cell populations. 

Populations of cells are imaged and individual cells are identified. For each cell, a 

number of image based features are extracted. Each cell becomes a gray point in 

feature space. High density regioans of feature space, or subpopulations, are identified. 

Each population is then defined by a profile that consists of the fraction of cells from 

that population in each identified subpopulation. 
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Chapter 2: Heterogeneity of basal signaling state can contain 

biologically significant information 

Introduction 

Understanding the relevance of cellular diversity to cancer requires quantitative 

approaches for relating patterns of heterogeneity to biologically significant outcomes, such as 

drug sensitivity. In practice, close examination of any cellular population will reveal 

heterogeneity, and it is a challenge to identify which components of phenotypic variability 

contain functionally important information. Recent developments in high-content imaging and 

flow cytometry have enabled the comparison of heterogeneity across multiple populations and 

conditions [54-58]. Image-based methods can capture phenotypic heterogeneity arising from the 

spatial distribution of signaling molecules within individual cells. 

Previous work demonstrated the utility of a quantitative, image-based approach to 

characterize heterogeneity observed within and among cellular populations, based on patterns of 

signaling marker colocalization [54]. Briefly, that work showed that heterogeneous responses of 

drug-treated cancer populations could be characterized as mixtures of phenotypically distinct 

subpopulations. Modeling heterogeneity in this way, based on a limited, but non-trivial number 

of subpopulations, was shown to be sufficient to distinguish different classes of drugs by 

mechanism of action.  

Here, an extension of this approach to clonal populations of a cancer cell-line is 

presented. While the previous work focused on heterogeneity of a population after perturbation, 

the following work assesses the significance of heterogeneity existing within untreated cancer 

populations. Do populations with similar patterns of heterogeneity have similar physiological 

properties? Sensitivity to chemotherapeutics is used as an objective measure of the degree to 

which these quantitative models of heterogeneity contain biologically significant information. 
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Figure 2.1 Heterogeneous signalling states are observed within and among a 

panel of H460 clones.  A-B. A panel of 49 H460 clones (A) display phenotypically 

diverse signaling states as measured by activation and colocalization patterns of 

pSTAT3 and pPTEN immunostaining (B). While some clones are phenotypically 

similar to the parent (e.g. clones 20 and 33), others are dramatically dissimilar to the 

parent but similar to each other (e.g. clones 64 and 82). C. Heterogeneous cellular 

signaling states are observed within each clone. An expanded view of clone 20 

reveals the presence of distinct, stereotyped cellular signaling states. Arrowheads 

indicate cells shown in (D). D. Distinct cell states present in one clone may be found 

in varying proportions within other clones. Shown are four example cells in distinct 

signaling states from clone 20. Cells with phenotypes similar to (i-iv) are seen in high 

proportions within the parent culture, clone 9, clone 49 and clone 82, respectively. 

Pseudocolors for images in (B-D) are: DNA-blue, pSTAT3-green, pPTEN-red. Scale 

bars: 20μm in (B-C) and 10μm in (D). 
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Methods 

Cell culture and clone derivation 

The following studies involve the quantification of heterogeneity of unperturbed states in 

cancer populations and determine biological significance of this quantification. Because cancer is 

such a variable disease, the first step was to carefully calibrate the analytical platform in clonal 

populations from a single cell line. Studies were initiated by generating a collection of 49 low-

passage clonal populations from the highly metastatic non-small cell lung cancer (NSCLC) cell 

line H460 [59] (Fig. 2.1). Cells were plated in serial dilution at ~0.25 cells per well in a 96-well 

plate and inspected manually to ensure growth occurred from a single site. 49 H460 clones were 

randomly chosen along with the parental population for the experiments. Consistent with 

previous studies of clonal populations, despite similar genetics and cell type, variability among 

the H460 clones was observed for functional readouts such as growth rate, total cell count, local 

cell density, cell morphology (Fig. 2.2) [11, 59]. 

 

 

Cell lines were grown in RPMI 1640 medium supplemented with 10% fetal bovine serum 

(FBS), 2mM L-glutamine and 1x penicillin-streptomycin in a 37°C / 5% CO2 incubator. Cells 

were plated at a density of 10,000 cells per well on Nunc 96-well glass-bottomed imaging plates 

in triplicate wells, and  incubated overnight (16 hours) to allow cells to adhere.  

 

Figure 2.2 H460 clones exhibit phenotypic variability. The H460 clones show a high 

degree of variability for growth rate, total observed cell count, local cell density 

(clumpiness), and morphology (as measured by cell area and eccentricity). 
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Choice of readouts 

Which cellular readouts should be selected to capture heterogeneity? One approach is to 

select specific biomarkers that target conjectured or known links between cellular mechanism 

and functional outcome [60]. However, the focus of this study was to identify signatures of 

heterogeneity that may be informative in the context of diverse cancer types. Therefore, an 

alternative approach was taken whereby combinations of general signaling readouts were 

selected to capture the heterogeneity of cellular populations in “basal” (untreated) conditions. 

Four sets of multiplexed immunofluorescent markers were chosen and studied independently 

(Table 2.1; MS1: DNA/pSTAT3/pPTEN; MS2: DNA/pERK/pP38; MS3: DNA/E-

cadherin/pGSK3-/-Catenin; and MS4: DNA/pAkt/H3K9-Ac). These biomarkers, selected to 

monitor the activity levels of key signal transduction components associated with diverse areas 

of cancer biology [61-68], enabled the capture of a snapshot of the ensemble of cellular signaling 

states present within the panel of clonal H460 populations. 

Two additional marker sets were utilized to assay the clones’ basal state. (Table 2.1) The 

first consisted of cytoskeletal markers (MS5: DNA/actin/-tubulin), one of which is the target of 

one of the drugs whose response was assayed (-tubulin is targeted by paclitaxel [69]). The other 

marker set (MS6: DNA/GAPDH/ pericentrin) consisted of a housekeeping gene, GAPDH, which 

is commonly used as a loading control for population-averaged experiments such as western 

blots [70] and pericentrin, a protein that interacts with the centrosome and plays an important 

role in regulating cell-cycle, but is very localized within the cell and does not have a large 

variation in intensity from cell to cell [71]. 
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Marker Set Marker Active/Inactive Catalog # Lot # Dilution 

DNA Hoechst 33342 
 

Invitrogen H1399 - 10 μg/ml 

Marker Set 1 phospho-STAT3 (S727) Active BD  Transduction 

Laboratories 612543 97087 1:100 
phosphor-PTEN (pSpTpS380/382/385) Inactive Biosource 44-1066G 103 1:100 

Marker Set 2 phospho-ERK1/2 (pTpY185/187) Active Biosource 44680A1 1388699A 1:100 
phospho-P38 (pTpY180/182) Active Sigma M8177 104K4788 1:100 

Marker Set 3 
E-cadherin FITC - BD  Transduction 

Laboratories 612131 45433 1:100 

-catenin - BD Transduction 

Laboratories  610154 76283 1:100 
phospho-GSK3- (S9) Inactive Biosource 44-600G 2601 1:100 

Marker Set 4 

phospho-Akt (pS473) Active Biosource 44-621G 502 1:100 
Histone 3 Lysine-9 acetylated (H3K9-Ac) 

 Active Abcam ab12179 648913 1:500 

Marker Set 5 
Actin (Phalloidin Alexa 488) - Invitrogen A12379 23896W 1:40 

–tubulin - BD Transduction 

Laboratories 558608 68808 B 1:50 

Marker Set 6 
Glyceraldehyde 3-Phosphate 

dedhydrogenase (GAPDH) - Abcam ab9485 448196 1:500 
Pericentrin - Abcam ab4448 26969 1:500 

Apoptotic Marker (Drug experiment) 

Annexin-V-FITC Active BD Pharmingen 51-65874X 

(556420) 88205 1:100 

Cleaved Caspase-3 Active BD Transduction 

Laboratories 559565 180 1:100 

Poly ADP Ribose Phosphate (PARP) Active BD Transduction 

Laboratories 550781 97484 1:100 

Secondary 
Antibodies 

Anti-mouse IgG-Alexa 488 - Molecular Probes A11001 56881A 1:1000 
Anti-mouse IgG-Alexa 647 - Molecular Probes A21235 51782A 1:1000 
Anti-mouse  IgG-Alexa 546 - Molecular Probes A11003 53045A 1:1000 
Anti-rabbit  IgG-Alexa 488 - Molecular Probes A11008 54155A 1:1000 
Anti-rabbit  IgG-Alexa 546 - Molecular Probes A11010 435414 1:1000 
Anti-rabbit IgG-Alexa 647 - Molecular Probes A21244 459547 1:1000 

  

Table 2.1 Antibodies and dyes used in immunofluorescent staining. 
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Staining Protocol 

Cells were fixed with 4% paraformaldehyde for 5 minutes, permeabilized with 0.2% 

Triton X-100 solution in TBS for three minutes, washed with TBST, blocked with 5% BSA 

solution in TBST at room temperature for two hours, and washed with TBST three times. 5% 

BSA in TBST was used for primary and secondary antibody dilutions. Primary and secondary 

antibody staining were incubated at room temperature for 2 hours in the dark. After each staining 

step, plates were washed three times with TBST. After the final washing step, 100μl of TBST 

containing 0.1% sodium azide was added to each well to prevent contamination. Plates were 

stored at 4°F, but brought to room temperature before imaging. 

Image acquisition and processing 

All fluorescence images were acquired using a TE-2000 E2 epifluorescence microscope 

(Nikon) equipped with integrated Perfect-Focus System (PFS), Nikon Plan Apochromat 20x 

objective lens and Photometrics CoolSNAP HQ camera using 1x1 camera binning. Image 

acquisition was controlled by Metamorph software (Universal Imaging). Image background 

fluorescence correction was done using the National Institute of Health ImageJ rolling-ball 

background subtraction software [72]. 

Plate-to-plate fluorescence intensity normalization 

The panel of H460 clonal populations was assayed on seven 96-well plates. To account 

for plate-to-plate fluctuation of fluorescence intensity, (for each channel), the intensities of each 

image’s pixels were normalized compared to the parental population, which was seeded on each 

of the seven plates. Specifically, for a given plate p and fluorescence channel m, the distribution 

of median intensity per cellular region was collected across all replicate wells of the parental 

clone. The median value of this distribution (Jm
(p)

) was used to transform the pixel intensity (I 

m
(p)

) of all images to a new value (I’ m
(p)

) by rescaling using a fixed reference parameter (I0): 
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This normalization procedure sets the median pixel intensity of the parental population to I0 

across all plates and scales all clones so they can be compared across plates. In this analysis, the 

parameter I0 was set to 500 (the dynamic range of pixel value is between 0 and 4,095). 
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Cellular region segmentation 

In this work, distributions of individual cells are considered in order to describe 

variability in a population. In the acquired images, cellular regions were determined using a 

watershed-based segmentation algorithm [73], which first retrieves nuclear regions using DNA 

staining then combines multiple cytosolic region markers to identify cellular boundaries.  Here, 

~4,000 cellular regions were identified per marker set and clone after applying automated cell 

segmentation to the image data. 

Image quality control 

All fluorescence images were manually inspected, and images with severe focus or 

staining artifacts were discarded. Additionally, to account for systemic overlap between adjacent 

sections in the 4x4 panel of frames from individual wells, cells that would be counted multiple 

times were removed from frames with shared boundaries to the right or bottom. Finally, 

parameters for segmentation were manually updated in images with poorly segmented cells. If 

segmentation parameters could not be optimized in particular images, the images were discarded. 

Analysis pipeline for modeling heterogeneity 

Feature extraction 

Pixel intensity-based features developed in Slack et al. [54] were extracted from all cells 

in all images to capture cellular signaling phenotypes. Here, the intensity ratios at each pixel 

were discretized to a grid with edges at 0, 1/3, 2/3, 1, 4/3, 5/3, 2, 7/3, 8/3 and ∞ (infinity). Only 

intensity ratios without redundant information were considered during feature computation. For 

example, in Marker Set-1, pSTAT3/pPTEN was utilized and pPTEN/pSTAT3 was not when 

evaluating features. (Fig. 2.3) 
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Feature reduction by PCA 

To reduce computational workload, (due to the large number of cells in each marker set 

(~200,000)), a sample population was used for feature normalization and reduction and for 

generating a mathematical model for characterizing phenotypic heterogeneity (described in the 

next section). The sample population consisted of 10% of randomly sampled (with replacement) 

cells across all wells within a marker set. Wells were weighted for sampling proportionally by 

the number of cells identified within them. The sample population feature data was transformed 

to z-scores, with respect to the feature mean and standard deviation of the sample population. 

Figure 2.3 Determining our ratio-based intensity features. Shown here is a 

simplified two-marker case for determining our single-cell features. A. Each cell is 

made up of hundreds of pixels. B. Features were determined by binning ratios of 

intensities of markers and the bins were populated by each individual cell’s pixels. The 

number of pixels in a bin gave the value for that feature. C. Cells were then described 

by a vector of these features with feature values reflecting their pixel distribution. 
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Next, the features were reduced to their most prominent principal components (PCs). The feature 

dimension after principal component analysis (PCA)-based reduction was 9 for Marker Set-1, 6 

for Marker Set-2, 2 for Marker Set-3 and 5 for Marker Set-4.  

The choice of dimension was made for each marker set by computing an eigenvalue noise 

threshold for the covariance matrix of feature data. The threshold was determined by randomly 

scrambling the order of feature dimensions for each sampled cell, and computing the eigenvalues 

of the resulting (randomized feature) covariance matrix. The noise threshold was chosen to be 

double the largest such eigenvalue. Any dimensions whose eigenvalues from the 

(non-randomized) feature covariance matrix did not meet this threshold were discarded. 

Reference model generation 

Subpopulation reference models were generated using Gaussian Mixture Models (GMM). 

The GMM parameters were fitted based on the Expectation-Maximization (EM) algorithm [74]. 

For each model, EM clustering was executed ten times, starting from a K-means clustering [75] 

using randomly chosen means. The final clustering with the best log likelihood value was chosen 

as the subpopulation reference model. Each run was attempted up to five times with new initial 

conditions until convergence was reached. Bayesian information-theoretical criterion (BIC) [76] 

and the Gap statistics (Gap) [77] were used to evaluate the optimal number of subpopulations 

(K). The BIC seeks to maximize the (log) likelihood of the observed data samples given the 

model parameters while minimizing the complexity of the model to avoid overfitting. On the 

other hand, the Gap statistics determined the optimal number of clusters (subpopulations) by 

comparing the change in dispersion within clusters to that expected under a uniform null 

distribution. Due to the large sample size in this dataset, the BIC tends to continue growing as K 

increases. In this situation the best choice typically occurs when the BIC-versus-K curve 

encounters an inflection. We tested models with different values of K ranging from 3 to 20 and 

found that models with K between 3 and 7 reasonably captured the overall cellular heterogeneity 

using both BIC and Gap criteria (Fig. 2.4). In this analysis, a GMM with K = 5 was used for each 

of the four marker sets unless stated otherwise.   
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Subpopulation profiles 

For each replicate well associated to a given clone, PCA-reduced feature data from 1,000 

randomly selected cells (with replacement) were used to determine a probability distribution 

(profile) of subpopulation assignment. The computed GMM was used to assign to each cell in a 

population a (posterior) probability vector of belonging to each subpopulation. The averaged 

probability vectors over all cells within a population produced a subpopulation profile. The 

weighted average of such profiles across replicate wells, based on the relative total number of 

Figure 2.4 Optimal number of subpopulations in the reference model is suggested 

based on the Bayesian information-theoretical criterion (BIC) and the gap statistic 

(Gap). Traditionally the optimal number of subpopulation is found at the maximum of 

BIC value or before the gap statistic shows a significant decrease. However, with our large 

sample size (18,000) the BIC curve grows with increasing number of subpopulations. 

Therefore, we choose to identify the optimal number of subpopulations where the slope of 

the BIC curve starts to decrease (i.e. where the BIC curve shows an “elbow”). For all four 

marker sets, we found that the suggested optimal number of subpopulations consistently 

ranges between three and seven (black arrows). For simplicity, we use reference models 

with five subpopulations for all four marker sets. 
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cells per well, was generated 1,000 times by repeated cell sampling to yield an average 

subpopulation profile for each clone in each marker set. 

Hierarchical clustering 

Average linkage hierarchical clustering of subpopulation profiles and enrichment profiles 

was performed using Matlab built-in functions. We used the symmetrized Kullback-Leibler 

dissimilarity measure [78] to cluster clones as represented by their subpopulation profiles. In 

order to best illustrate separation between paclitaxel sensitive and resistant clones within the 

hierarchical clustering, we recursively pivoted each branch of the tree from the top to the bottom 

and reordered its two child nodes so that the average paclitaxel sensitivity in the sub-tree 

spanned by its left-hand side child was always smaller than or equal to the one in the sub-tree 

spanned by its right-hand side child. The pivoting affected the linear ordering of clones but 

preserved the original hierarchical clustering. 

Multidimensional scaling 

To better visualize the collection of clones, multidimensional scaling (MDS) was 

performed on the pairwise dissimilarity matrix associated to their K-dimensional subpopulation 

profiles [79] to yield a configuration of points in an s-dimensional space (typically s is much 

smaller than K) such that the Euclidean distances between these points approximate the degree of 

subpopulation profile similarity among the clones (or cell lines). MDS was performed with s = 2 

using Matlab software (version 7.4.0). In principle, the resulting MDS plots place clones with 

similar subpopulation profiles closer together, and clones with dissimilar subpopulation profiles 

further apart.  

Drug sensitivity assays 

Determining which aspects of heterogeneity contain information requires a collection of 

populations with diverse outcomes for a specific functional readout. Here, responses to the 

anticancer drugs paclitaxel and doxorubicin were assayed and related to subpopulation profiles. 

To assay drug sensitivity, after seeding, cells were treated with paclitaxel (10nM) or doxorubicin 

(1μM) for 48 hours. Cells were fixed with 4% paraformaldehyde (PFA) in PBS for 5 minutes. 

The collection of H460 clones was assayed on a single day to eliminate issues of day-to-day 

variability.  
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Cells were then stained with an apoptosis marker set consisting of stains for DNA, 

Annexin-V, cleaved Caspase3 and cleaved PARP (Table 2.1). Wells were then imaged and both 

the total number and the number of apoptosis marker expressing cells were counted. Drug 

sensitivity was defined as the log ratio between the numbers of non-apoptotic cells in the drug 

treated case over the non-drug-treated case compared to the parental population. For each given 

clone C, the relative drug sensitivity (DS) of clone C versus parent P was defined by the log 

ratio: 
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where: 

nC
+
, nP

+
: number of drug-treated cells observed in C and P; 

aC
+
, aP

+
:  number of apoptotic, drug-treated cells observed in C and P; 

nC
-
, nP

-
: number of only DMSO-treated cells observed in C and P; 

aC
-
, aP

-
: number of apoptotic, only DMSO-treated cells observed in C and P. 

A clone C is considered relatively sensitive (S) if the index DS(C) is positive and relatively 

resistant (R) if the index is negative. In this drug sensitivity assay, we encountered an image 

focus issue on one plate and did not have the values of nP
+
, aP

+
 and nC

+
 for clones 33 and 35. 

Hence clones 33 and 35 were discarded from all analysis involving drug sensitivity. To estimate 

the drug sensitivity of five other clones on that plate (32, 34, 36, 41, 49) for which only the 

variables nP
+
 and aP

+
 were missing, we recovered nP

+
 by manual counting using the brightfield 

images (which were in reasonably good focus) and estimated aP
+
 using the average apoptotic 

rate of the parental clone from the six other plates, defined as rP, so that aP
+
 = rP  nP

+
.  

Measuring drug sensitivity separation accuracy 

We measured the extent to which drug-sensitive and resistant cell populations could be 

separated based on their subpopulation profiles. We considered collections of cell populations 
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(e.g. H460 clones), with each member: 1) represented by a subpopulation profile (i.e. a vector); 

and 2) assigned either as drug resistant (R) or sensitive (S) according to their drug sensitivity 

measure. The hyperplane that “best” separated the sensitive and resistant cell populations, based 

on their subpopulation profiles, was computed using the support vector machine (SVM) 

algorithm implemented in Matlab version 7.4.0 (A linear kernel was used to avoid data over-

fitting). Separation accuracy was computed by counting the percentage of clones (or cell lines) 

that were correctly classified by the SVM. We assessed the statistical significance p-value of the 

separation accuracy against a background distribution associated to random permutations of drug 

sensitivity assignment among all cell populations. The background distribution of the separation 

accuracy was estimated based on 106 iterations of random permutations of drug sensitivity 

assignments.  

Results 

Clones demonstrate distinct subpopulations in basal signaling 

A wide range of cellular phenotypes was observed in immunofluorescence images of all 

untreated clones within each marker set. Some clones seemed to have signaling very similar to 

the parent, while others appeared quite different. Additionally, within populations, signaling 

diversity was observed at the single-cell level. (Fig. 2.1) Despite this initial observation of 

heterogeneity, further manual inspection of the images indicated that there seemed to be a 

relatively small number of distinct signaling phenotypes. These phenotypes are observed at 

varying frequencies across all clones indicating that describing clones as phenotype mixtures 

may be a reasonable approach for quantitatively characterizing populations. 

To capture common signaling phenotypes, we applied a previously developed approach 

for describing cellular distributions as mixtures of subpopulations defined by single-cell readouts 

based on marker co-localization [54]. As described above, we analyzed each marker set 

independently by identifying cellular regions using automated segmentation [73], extracting 

intensity based cellular features [54], reducing features to a set of “maximally informative” 

signaling features using PCA, and modeling the distribution of a sampled set of cells as a 

mixture of subpopulations using a GMM. We used this reference mixture model to assign each 

cell to a subpopulation and describe each clone as a different mixture of those subpopulations. 

As described in detail above, two standard model fit criteria were used to estimate the optimal  
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number of subpopulations to model: BIC and Gap statistics. These indicate that a relatively small 

number (3 to 7) of subpopulations is sufficient for modeling our data (Fig. 2.4). 

Interestingly, cells from a single subpopulation are consistently similar to one another 

and consistently different from cells from other subpopulations. (Fig. 2.5) Importantly, the 

subpopulation profiles reveal differences that were not easily distinguishable on the basis of 

population-averaged expression measurements. Specifically, clone #65, clone #100 and the 

parent population have similar mean intensities and distributions of pSTAT3 and pPTEN in 

MS1; however, they were distinct when compared by subpopulation profile (Fig. 2.5). These 

profiles provided an intermediate (less complex than single-cell but more informative than 

population-average) resolution for examining and comparing our H460 clones.   

Comparison of subpopulation profiles of different clones 

We next compared heterogeneity observed across our entire collection of H460 clones. 

We began by studying cellular heterogeneity observed with marker set 1 (MS1), and then made 

Figure 2.5 Cell populations with similar distribution of phenotypes at population level 

can exhibit significantly different profiles of heterogeneity at the single cell level.  

A.  Schematic diagram for the generation of clonal population (See Materials and Methods 

for detail) from a population of non small cell lung cancer cell line H460..  

B. Clones display phenotypically diverse signaling states as measured by activation and 

(co)localization patterns of pSTAT3 and pPTEN immunostaining (Marker Set-1). 

Pseudocolors are annotated as in Fig1C. Scale bar: 20μm.  

C. Cellular heterogeneity can be characterized as a mixture of phenotypically distinct 

subpopulations using Gaussian mixture model (GMM). Top: shown is the result of 

computing a “reference” GMM of five subpopulations. Points in GMM scatter plots 

correspond to individual cells, visualized via feature representation and PCA reduction to 

two dimensions. Colored ellipses represent covariance one standard deviation from the 

mean for each Gaussian cluster (Materials and Methods). Bottom: images of six 

representative cells from each computed subpopulation are shown. Colored subpopulation 

labels (S1-S5) correspond to colored ellipses on top.  

D. The clones 65 and 100 exhibit similar univariate distribution of the average cellular 

intensity of pSTAT3 (top row) and pPTEN (bottom row) but significantly different mixtures 

of phenotypic subpopulations. 
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use of the other marker sets (MS2-4) to test the dependence of our findings on our initial choices 

of readouts. Differences in heterogeneity among the clones could be seen as differences in 

fractions of cells in each of the 5 subpopulations (Figs. 2.6, 2.7). To assess the variation of 

signaling heterogeneity among the clones, we grouped the profiles by hierarchical clustering 

based on their Euclidean distances. Interestingly, clustering of the enrichment profiles revealed a 

relatively small number of distinct patterns (or “signatures”) of signaling heterogeneity (Fig. 

2.7). Thus, cell-to-cell variation was captured by a few signaling stereotypes common to all the 

clonal populations and, further, only a few distinct patterns of heterogeneity were observed 

Figure 2.6 Clones of similar drug sensitivities have similar phenotypes across all 

marker sets. Shown are thumbnail images of all clones (columns) sorted by MS1 

similarity, from all four marker sets (rows). Image pseudocolors are as in Figure 2.5. 

Relative drug sensitivities to paclitaxel are displayed under the thumbnail images 

according to the color bar above (red: resistant, black: intermediate, green: sensitive gray: 

unreliable score due to an image-focus problem). Scale bar: 20µm 
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within our collection of clonal populations. Our decomposition of observed cell signaling 

heterogeneity provided an approach to visualize the diversity of heterogeneity among our clones, 

succinctly encapsulate the apparent complexity of cell phenotypes, and compare clones at a 

resolution greater than provided by population means.   

Subpopulation profiles classify drug response of clones 

Do patterns of subpopulation mixtures reflect functional differences among the clones? It 

is known that not all cancer subpopulations respond equally to drugs [47, 80, 81]. Hence, we 

wondered whether clones with similar patterns of pre-existing heterogeneity would have similar 

Figure 2.7 Clones with similar patterns of subpopulation profiles tend to exhibit 

similar sensitivities to paclitaxel and doxorubicin. Subpopulation profiles were 

computed for each marker set. Clone ordering is determined by hierarchical clustering 

based on the similarity of their subpopulation profiles (using Kullback-Leibler 

dissimilarity measures). Trees were created using the “average” method in Matlab. Tree 

nodes were then pivoted so that the average drug sensitivity of all clones under the left 

node of each branch is smaller or equal to the one under the right node (dendrogram at 

top). Relative drug sensitivities are displayed under the clone indices according to the red-

black-green scale bars above (red: resistant, black: intermediate, green: sensitive). Top 

row: paclitaxel; bottom row: doxorubicin. (Gray: paclitaxel sensitivity scores of clones 33 

and 35 are unreliable due to an image-focus problem.) 
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drug sensitivities. The H460 cancer populations were given identical 48 hour treatments of the 

chemotherapeutic drugs paclitaxel (10nM) and doxorubicin (1M). Cells were then fixed and 

stained with standard markers for apoptosis, and an index of relative drug sensitivity for each 

clone to the parent was computed based on the log ratios of remaining non-apoptotic cell counts; 

negative (or positive) values indicated greater drug resistance (or sensitivity) than the parent. We 

observed that clones with similar patterns of heterogeneity tended to have similar drug 

sensitivities (Fig. 2.7). As most clones had similar sensitivities to paclitaxel and doxorubicin, we 

carried our analysis forward using only paclitaxel.  

Hierarchical clustering and multidimensional scaling (MDS), described above, revealed 

striking separation of paclitaxel-sensitive from paclitaxel-nonsensitive clones (Figs. 2.7, 2.8A). 

(We note that, as expected, cells stained without primary antibodies, but with secondary 

antibodies plus Hoechst alone, had background-like fluorescence intensity (Fig. 2.9) and yielded 

Figure 2.8 Multidimensional Scaling (MDS) plots of heterogeneity profiles can show 

drug sensitivity separation. A. Heterogeneity of signaling markers based on signaling 

markers (marker sets MS1-4) separate clones by their paclitaxel response. B. 

Heterogeneity profiles of H460 clones based on non-signaling markers (marker sets MS5-

6) show no correlation to paclitaxel drug sensitivity.  

 



25 

 

 

no separation (data not shown).) This result suggested that heterogeneity of cellular signaling 

states observed in our untreated H460 clones contained information that captured sensitivity to 

drug treatment. 

To what extent does the separation of drug sensitivities based on patterns of pre-existing 

heterogeneity depend on marker set choice? Clones of similar drug sensitivities tended to have 

similar phenotypes across all marker sets (Fig 2.6). The consistency of information across 

Figure 2.9 Cells with non-specific staining of secondary antibodies (without primary 

antibodies) have background-like fluorescence intensity. A. RGB images of the H460 

parental clone stained with 1) MS4 (Hoechst + primary and secondary antibodies) , 2) 

Hoechst + secondary antibodies, and 3) Hoechst alone. B. Average intensities in the DNA 

region obtained from secondary staining (red) and DAPI staining plus auto fluorescence 

(green) have very low value in the 488 and 546 channels (near background level) as 

opposed to those obtained from MS4 (blue). 

.  
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signaling markers and clones suggested the possibility that similar patterns of cellular 

heterogeneity were reflective of “deeper” similarities of underlying regulatory networks. This 

observation is probed in more detail in Chapter 5.   

How separable are the collections of “sensitive” and “resistant” subpopulation profiles? 

We computed the accuracy of separating these two classes of profiles using a linear support 

vector machine (SVM), described above. Our complete set of H460 clones had separation 

accuracies between 70% and 77% for our marker sets (Table 2.2 marker sets 1-4). However, 

separation accuracies between sets of clones with “extreme” sensitivities were much higher 

(~80-100% for the 10 or 20 most sensitive and resistant clones) (Table 2.2 marker sets 1-4).   

To what extent did the identification of information contained in cellular heterogeneity 

depend on the choices made in this study? Clearly, not every marker set, feature, or model 

parameter will be equally informative. For example, paclitaxel sensitivity among the H460 

clones could neither be predicted by a panel of markers including its drug target microtubules 

(MS5), nor by a panel of “neutral” markers (MS6) (Fig. 2.8B, Table 2.2 marker sets 5-6).  

Alternatively, for the sole purpose of developing functional predictions, it may be 

possible to identify specific markers and features whose population-averaged measurements can 

Table 2.2 Measures of the separation between sensitive (S) and resistant (R) clonal 

populations to paclitaxel. Accuracies of separating paclitaxel-resistant and -sensitive 

collections of cell populations based on their subpopulation profiles using a linear SVM 

(random separation: 50%; perfect separation: 100%). Columns correspond to marker sets; 

rows correspond to different pairs of sensitive and resistant groups of cell populations. ‘All:' 

all populations grouped into either resistant or sensitive classes; ‘Extreme 2N:' populations 

only included when in the N-most sensitive or resistant populations. 
¶
Accuracy not 

statistically significant (P>0.05). 
†
Accuracy not 1 s.d. above the average accuracy over all 

possible permutations of resistant/sensitive assignments.  
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provide accurate classification. For example, the average intensity of β-catenin in MS3 provided 

exceptional classification accuracy (78.72%, p < 0.05 for the complete set of H460 clones). 

Population-averaged measurements also lend themselves to multiplexed assays, such as those 

performed with array-based technology.  Features based on population-averaged measurements 

can be easily combined from parallel assays, thereby allowing greater numbers of markers to be 

explored than can be studied at present on individual cells. However, information may be lost; 

classification of paclitaxel sensitivity based on population-averaged expression of any three 

random randomly chosen readouts from MS1-MS4 performed on average 5% poorer (and if β-

catenin is dropped, 10% poorer) than our heterogeneity profiles based on three readouts. 

Furthermore, ensemble-averaged measurements may be predictive of function (e.g. drug 

response), yet poorly represent individual cellular behaviors and lead to inaccurate models of cell 

function [2]. Finally, a critical parameter for decomposing heterogeneity is the coarseness of the 

approximation [82, 83]. In cross-validation studies, we found that the range of subpopulation 

numbers suggested by model fit criteria (i.e. 3-7 subpopulations) coincided well with the range 

that provided highest separation accuracies of the H460 clones by drug sensitivities (Fig. 2.10). 

Figure 2.10 Heterogeneity profiles computed over 

a range of subpopulation numbers can separate 

H460 clones by paclitaxel sensitivity. Tenfold 

cross-validation on drug sensitivity separation 

consistently shows that a small number of 

subpopulations can give the best separation 

performance across all four marker sets. 
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In the future, refinement of model parameters may be improved by incorporating additional 

biological knowledge.  

Discussion 

Our approach for decomposing heterogeneity of a panel of clonal populations into 

phenotypically similar subpopulations allowed us to identify differences that would be missed by 

population-averaged measurements (Fig. 2.5), compare and group cell populations based on their 

observed heterogeneity (Fig. 2.7), and relate these measures of heterogeneity to biological 

function (Fig 2.8). Here, we find that even clones of the same cancer cell line demonstrate a high 

degree of phenotypic diversity and that this diversity is predictive of clonal drug response.  

Here, our studies are limited to clonal populations derived from a single cancer cell line. 

Other studies in our lab have indicated that, as expected, there is increased diversity in cancer 

populations compared to normal cell populations. We have found that ranges of phenotypic 

heterogeneity and drug response of clones of the non-cancerous, immortalized human bronchial 

epithelial cell (HBEC) line are markedly reduced. Further, a decomposition of heterogeneity into 

subpopulations in these clones is not informative about drug response (data not shown). Thus, 

our approach seems suited for highly diverse populations. In subsequent chapters, we investigate 

the ability of method for assaying heterogeneity to translate to panels of more diverse cell 

populations and the utility of relating their heterogeneity to biological function. 

It is interesting to note that different sets of a limited number of biomarkers can be used 

to make predictions about drug responsiveness. Additionally, not all biomarkers are equally 

informative: MS5 and MS6 were unable to separate drug sensitive and drug resistant clones. 

Further, β-catenin was the sole marker which demonstrated classification accuracy comparable to 

MS1-4. To what extent these markers are re-identifying the same information is investigated 

further in Chapter 5. 

The origins of the observed signaling heterogeneity and the underlying mechanisms 

defining the distinct subpopulations are beyond the scope of this work, but would certainly be an 

interesting avenue of future work. The ability to isolate and study the individual subpopulations 

defined here is difficult because of they are defined after fixation, using co-localization of active 

signaling markers. Ideally, we would watch a population change in real-time, but instead we 

have many snapshots of cells each population which we think captures the range of cellular 
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states. Monitoring clones of a clonal population over time using different markers would give a 

sense of the potential signaling diversity that is possible due to epigenetic differences versus 

underlying genetic differences, both of which are potentially included in our populations. 

Further, it is not clear what other biologically significant functions signaling-

subpopulation profiles are informative about. There are many informative population averaged 

readouts of cell populations and some are more difficult than others to perform. Our assays are 

fairly straightforward and could potentially be informative about a vast array of cell behaviors. 

For example, it could be useful to determine if subpopulation profiles are related to metastatic 

potential. It is difficult to predict which cancers will form metastases in patients and which will 

remain dormant. Perhaps the consideration of a population’s heterogeneity, particularly if there 

are metastatic subpopulations that are hidden by the population average, could be useful for 

better understanding this process. 

The ability to predict how a cancer cell population responds to chemotherapy could have 

a profound impact on selecting the proper therapy for a patient. Here, we show a relationship 

between basal-state signaling heterogeneity and a specific measure of drug response, based on a 

single dose, with two drugs. Drug response is a highly complex process and it is unlikely any one 

measure can capture all information about it [84]. The relationship between signaling 

heterogeneity and drug response could be just as dependent on our measures of population drug 

sensitivity as our measures of heterogeneity. Potentially, responses to other drugs would need to 

be measured differently. Despite this potential caveat, if our classification of heterogeneity is 

generally informative about drug response, one could imagine implications for personalized 

medicine. It is not clear, particularly in cases of generally toxic drugs, why some patients 

respond well and some do not. There are some targeted therapies for which patients can be 

screened, but mechanisms of general chemotherapy response and resistance are less well 

understood. The results presented here indicate that a cell population’s general signaling state 

(measured at the single-cell level) can be used to make predictions about how it will respond to 

generally toxic chemotherapy. If these results are translatable, we could screen many drugs and 

cancers to determine particular heterogeneity states that are responsive to particular drugs. New 

patients would then be screened for the signaling state of their cancer and we could determine a 

priori which drug would be best to use. There are many challenges for establishing such a 

pipeline, but the ability presented here to study the heterogeneity of physiological states and use 
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these studies to gain novel insights about cancer, gives the first evidence that such a pipeline 

might be possible. 
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Chapter 3: Assessing the robustness of heterogeneity profiles 

Introduction 

The previous chapter demonstrated that readouts of heterogeneity can be used to 

categorize clonal cell populations from a single cell line into paclitaxel-resistant and paclitaxel-

sensitive groups (compared to the parental population). Before applying these profiling methods 

to more diverse panels of populations, we first show in this chapter that the population readouts 

are not simply reflections of known sources of heterogeneity, such as cell-cycle state. Further, 

we investigate whether a subpopulation assignment is biased by the assignment of surrounding 

cells. And finally, the robustness of subpopulation profiles as cell-line readouts is examined. The 

extension of these profiles to diverse panels of cell populations is important for utilizing them to 

compare heterogeneity. Demonstrating that these readouts of heterogeneity capture information 

that is reliable, unbiased, and independent of known, existing cell population heterogeneity is the 

first step toward demonstrating their utility in studying cancer. 

The effect of cell-cycle state on subpopulation information 

Cell-cycle background 

To undergo replication, cells follow a highly regulated, multistep process called the cell-

cycle [85]. Cells that are not dividing, but potentially getting ready to divide in response to 

external cues are in the Gap 1 or G1 phase. In this phase, a cell increases in size and accumulates 

the necessary components for DNA replication. If the environment does not support division (i.e. 

there are insufficient growth factors or nutrients) a cell can transition from the G1 phase to the G0 

phase, in which a cell becomes quiescent, maintaining its function, but not dividing. If a cell in 

G1 has the sufficient signals to divide, it progresses to S-phase. In S-phase, DNA replication 

occurs. Upon completion of DNA replication, a cell progresses to G2 where it continues to 

increase in size and accumulate components necessary for division. The final phase is M-phase, 

during which the cell organizes its DNA and cellular components and divides into two daughter 

cells. During each of these phases of the cell-cycle, cell express different sets of cyclins and 

cyclin dependent kinases (CDKs), proteins that initiate the necessary signaling for transitioning 
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to the next phase. There are also checkpoint proteins [86] that ensure a cell is ready to progress 

during the cell-cycle. If DNA damage has occurred or a cell is experiencing other stresses, these 

checkpoint proteins prevent division until the DNA has been repaired or the environment is no 

longer prohibitive. 

It is known that cells in different cell-cycle states are distinct from one another and have 

differences in expression and signaling. These distinct states have been characterized in many 

studies [87-91]. Of particular note, work from our lab showed that cell-cycle states within an 

H460 population could be distinguished from one another and could be deeply profiled using a 

microscopy-based method [92]. These cell-cycle states were also confirmed by FACS analysis, 

which has classically been used for cell-cycle identification [93, 94].  

In the previous chapter, subpopulation profiles were constructed on asynchronously-

dividing cancer cell populations, meaning that cells from all stages of the cell-cycle were mixed 

in the studied clonal populations. The subpopulation profiles were predictive of sensitivity to 

paclitaxel, an antimitotic drug that stabilizes microtubule assembly arresting cells in the G2 or M-

phase of the cell-cycle resulting in cell-death [95]. Because of paclitaxel’s mechanism of action, 

cell populations containing more G0 or G1-phase cells could potentially be more resistant to 

paclitaxel treatment. A major question that arises from the work in Chapter 2 is whether the 

identified signaling profiles contain information that is independent of cell-cycle state. 

Presented here are: 1) a method for separating cell-cycle profiles from subpopulation 

profiles in silico and 2) experiments indicating that signaling subpopulations identified are 

independent of cell-cycle state. 

In silico determination of cell-cycle state 

In order to disentangle subpopulation profiles from cell-cycle profiles, we needed a 

method to analyze different cell-cycle states independently. One option is to synchronize a 

population of cells using serum starvation [96] (which induces quiescence or G0) or a chemical 

block [97] (which can arrest all cells in a specific phase of the cell-cycle). These methods would 

require altering the growth conditions of the cell populations. Differences previously observed 

between clonal populations may not be preserved because altered growth conditions could 

introduce artifacts into the signaling readouts. Ideally, the current subpopulation analysis would 

be compared with cell-cycle profiles from the same cells.  
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Subpopulation profiles are built using single-cell data from immunofluorescence images. 

In these images, cells are stained with 3 or 4 markers, one of which always stains DNA. As the 

cell-cycle progresses, a cell’s DNA content changes. In G1-phase, a cell has one copy of its 

DNA. In S-phase, a cell is actively replicating its DNA. Finally, in G2 and M-phases, a cell 

should have two full copies of its genome. The intensity of the marker used to label DNA, 

Hoechst stain, reflects the amount of genomic DNA in the cell being stained. If each cell’s total 

intensity of DNA stain is considered, a bimodal distribution of cells is observed from an 

asynchronous population (Fig. 3.1). The two peaks in this histogram represent cells with either 

one copy of their DNA or cells with two.  

Utilizing this generated histogram, cell-cycle-phases can be inferred. The histogram is 

modeled as a two class Gaussian mixture model (Fig. 3.1).  Cell-cycles phases are estimated as 

Figure 3.1 In silico identification of cell-cycle state. A two-class Gaussian 

mixture model with means m1, m2 and standard deviations s1, s2 was 

automatically fitted to the histogram of total DNA intensity in each H460 

clonal population (black dashed line). Two threshold values m1+s1, m2-s2 (gray 

dashed lines) were used to classify the cell-cycle state of each cell either as G1, 

S, or G2/M. Below the histogram are representative images of identified G1 

(left) and G2/M (right) cells. 
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follows: G0 and G1-phase cells are presumed to fall into the first, lower intensity Gaussian. G2 

and M-phase cells are estimated to be members of the second, higher intensity Gaussian. S-phase 

cells are estimated to be the cells between these two peaks. This region is defined as intensities 

between one standard deviation higher than the first Gaussian mean and one standard deviation 

lower than the second Gaussian mean. In this way, subpopulation profiles and cell-cycle profiles 

can be generated from the same data and compared. 

Comparison of subpopulation profiles to cell-cycle state 

Initially, cell-cycle state was determined for each cell in the clone dataset. For each 

Figure 3.2 The distribution of cell-cycle state within each 

phenotypic subpopulation is fairly consistent. Presented are cell-cycle 

distributions for each identified phenotypic subpopulation averaged over 

all H460 clonal populations. 
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marker set, all cells from each signaling subpopulation were pooled. The cell-cycle state 

distribution for these groups of cells was compared (Fig. 3.2). No single subpopulation 

represents a specific cell-cycle state. In fact, the proportions of cell-cycle state are similar across 

each of the subpopulations for each marker set. This result indicates that phenotypic 

subpopulations are independent of cell-cycle state. However, the subpopulation model was 

generated in the presence of a mix of cell-cycle states. Because the Hoechst channel is used in 

subpopulation determination, the cell-cycle state may influence the identified subpopulations. A 

better way to truly disentangle cell-cycle heterogeneity from other signaling heterogeneity is to 

build the signaling-subpopulation model on solely cells in a single cell-cycle state.  

Using the in silico classification of cell-cycle state, population synchronization can be 

simulated from the clone dataset. Cell data across all the clones from G1, S, or G2/M phase cells 

was computationally partitioned. These three sets of cells mirror synchronized populations. For 

each set, a new subpopulation model was generated (Fig. 3.3) using methods described in the 

previous chapter. The resulting subpopulation profiles are similar to those when all cells are 

Figure 3.3 Subpopulation models for each cell-cycle state 

show similar patterns to the overall model. Cellular 

heterogeneity is captured by generating a GMM on each set of 

cells: the whole population (ALL), G1, S and G2/M cells. Shown 

here are the calculated reference models built on the sample 

populations from all clones in MS1. We see a similar structure 

across the models indicating that signaling subpopulations could 

be independent of cell-cycle state 
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considered (Fig. 3.4). Further, these cell-cycle-independent profiles preserved (and, in some 

cases, improved) separation between sensitive and resistant clones (Fig. 3.5 and Table 3.1). 

These data indicate that the generated signaling subpopulation profiles are not influenced by cell-

cycle and that they contain information independent of cell-cycle state. Further, because DNA 

intensity heterogeneity is reduced by isolating cell-cycle states, these models suggest that the 

DNA channel contributes less to the phenotypic subpopulations than the signaling markers do, 

providing further evidence that the identified signaling states are robust and informative readouts 

of cell populations.  

Figure 3.4 Subpopulation profiles within cell-cycle states are similar among 

the same clones. Shown are the subpopulation profiles for each cell-cycle model 

for each clone measured using MS1. The same clones across all models have 

similar subpopulation profiles. 
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Discussion 

These results indicate that the reason our subpopulation profiles are able to separate 

resistant and sensitive clones for all marker sets is not due to the fact that we included DNA in 

each set, but that the signaling markers we’ve chosen each contain this information. Of course, if 

we were to select other markers, there is no guarantee that the identified signaling states would 

be cell-cycle independent; however, there is also no way to ensure they would contain the same 

information about resistance state. Regardless of marker choice (so long as DNA is included), for 

any future imaging experiments, this approach could be used in lieu of cell synchronization. 

Instead of demonstrating marker independence, it could also be used to apply high content image 

screening to cell-cycle related biological questions that require the advantages of microscopy.   

Figure 3.5 Subpopulation profiles from each cell-cycle state can separate 

paclitaxel resistant and sensitive clones. Shown are MDS plots of 

subpopulation profiles for each cell-cycle state’s subpopulation model. Each 

clone is colored by its relative paclitaxel sensitivity (red: resistant, black: 

neutral, green: sensitive). Sensitive and resistant clones cluster in all models. 
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Spatial organization of subpopulation assignment 

Introduction 

After demonstrating cell-cycle independence of our subpopulation profiles, we wanted to 

further rule out other potential artifacts that may affect the subpopulation profiles, particularly 

those that may arise when transitioning to diverse cell populations. Work by Snijder and 

colleagues showed that patterns single-cell heterogeneity in the context of virus infection, 

endocytosis and membrane lipid composition can be modeled and predicted by the population 

context of a cell, that is, the composition of surrounding cells [60]. In that work, monoclonal 

populations of cancer- and non-cancer- derived cell lines were first described by several single-

cell measurements that fell into two categories: microenvironment and cell state. Next, for each 

cell, ability to take up fluorescent probes for different activities related to viral infection was 

observed. Then, the microenvironment and cell state properties were used to model viral 

infection behavior. The models indicated that the heterogeneity of activity could be accurately 

predicted by both population context and individual cell state. 

Cellular subpopulation assignment is not biased by neighbor cell assignment 

Are our observed signaling-subpopulations influenced or explained by individual cells’ 

population-contexts? To test whether subpopulation assignment of a cell is biased by its 

neighbors, cells within an image were profiled using methods previously described in chapter 2. 

Next, each cell’s nearest neighbors were identified by centroid distance. For each subpopulation 

Table 3.1 Measures of drug resistance separation for each cell-cycle model 

across marker sets.  Accuracies of separating paclitaxel-resistant and -sensitive 

clonal populations based on their cell-cycle independent subpopulation profiles 

using a linear SVM (as in Table 2.2). 
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identified, the subpopulation assignment of the nearest neighbors was determined. The 

distribution of nearest neighbor assignments for each subpopulation was compared to the overall 

population’s subpopulation profile. If subpopulation assignment was spatially biased, the 

distribution of a subpopulation’s nearest neighbors would be significantly different from the 

overall subpopulation profile. One could imagine that in some images, there are clusters of cells 

that originated from the same mother cell and are all in the same subpopulation state, or that 

artifacts in an image could lead to subpopulations being assigned by location in the image. 

However, our data indicated that the nearest neighbor profiles are not appreciably different from 

Figure 3.6 Subpopulation assignment is not spatially dependent. The 

outline of segmention of a cell image is shown (top). Subpopulations are 

represented at approximately the levels of the overall profiles. Each cell’s 

subpopulation assignment is indicated by the color of the outline. The 

subpopulation assignments of the nearest neighbors of each subpopulation 

were grouped to result in profiles (bottom). The profiles of nearest neighbors 

of each subpopulation match the overall clone profile indicating no spatial 

dependence on subpopulation assignment. 
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the overall clone profile. (Data for the representative H460 clone, 8, is shown in Fig. 3.6). These 

results indicate that subpopulation assignments for individual cells are not strongly influenced by 

proximity to cells belonging to specific subpopulations.  

Discussion 

There are a few notable implications of this result. First, this result suggests that cells 

derived from the same mother are not necessarily in the same signaling state, which is further 

supported by the results in Spencer et al. [48]; and though microenvironment may play a role 

[60, 98], it does not seem to affect the subpopulation assignment. Our data here could indicate 

that the identified states are transient, which, coupled with the result that 4 to 7 subpopulation 

models the data well (Fig. 2.4), means that cells could be cycling through distinct and stable 

signaling states. It would be interesting to determine how our signaling subpopulation profiles 

are changed under different conditions and, further, if different perturbations made the identified 

signaling subpopulations more or less heritable. The stochasticity of our identified 

subpopulations is beyond the scope of the presented work, but determining the origins of the 

subpopulations and the factors that control stable signaling states could provide an understanding 

about why certain states or marker sets are informative about drug response. 

Additionally, our result indicates that potential intensity artifacts in the images are not 

causing cells in particular regions of the images to look the same and thus be assigned the same 

subpopulation. This gives us more confidence in our approaches for processing the images and 

assigning subpopulations. With this renewed confidence, we next wanted to examine potential 

implications of applying our approach to multiple diverse cell populations. 

Extension of subpopulation profiling to multiple cell lines 

Introduction 

Chapter 2 demonstrated that subpopulation profiles can identify subtle differences in 

signaling between clonal populations from a single cell line. These differences are sufficient to 

classify the sensitive and resistant clones compared to the mother population. This is an exciting 

result with potential implications for personalized medicine; however, there are a number of 

concerns that emerge when trying to extend this analysis to a panel of multiple diverse cell lines. 

We observed that subpopulation profiles of H460 clones have significant differences, so it’s 
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possible that replicates of a polyclonal cell line are also significantly heterogeneous. If this 

happens to be the case, different cell lines could not be discerned and the subpopulation profiles 

would not accurately reflect specific populations. Alternatively, different cell line populations 

could be so different, due to their difference genomes, that a model generated by our approach 

would only accurately assign one subpopulation per cell line. In this scenario, cell populations 

could not reliably be grouped and subpopulation profiles would not add any additional 

information. 

Heterogeneity readouts are robust measures of cell lines 

Subpopulation profiles from replicates of the same clone in Chapter 2 were much more 

similar to each other on average than replicates of clones selected from different clusters, 

indicating that our proposed measures of heterogeneity were experimentally reproducible (data 

not shown). We wanted to demonstrate that this reproducibility carried over to more a more 

diverse panel of cell populations. An initial experiment was done with a panel of eight cancer 

cell lines. The same MS1 (DNA/pSTAT3/pPTEN), features, and modeling approach as described 

in Chapter 2 were applied. Six replicate wells were assessed for each cell line and profiled 

independently. Subpopulations were distributed across cell lines, yet each cell line had a specific 

profile. Additionally, replicates of cell lines were quite similar, indicating that subpopulation 

profiles were robust to even diverse cell-population fluctuation (Fig. 3.7).  

Subpopulation profiles are robust in cell lines to low passage changes 

Because clonal populations are derived from the same cell line, differences between them 

are likely due to subtle fluctuations in signaling. While subpopulation profiles may reflect clonal 

Figure 3.7 Subpopulation profiles are distinct and consistent representations of diverse 

cell lines. Subpopulation profiles were built on a panel of 8 cancer cell lines stained with 

MS1 (Chapter 2). Six replicates for each cell line were assayed. Replicates of a cell line 

have more similar profiles than profiles across cell lines. Subpopulations are also well 

represented and distributed across the cell lines. 
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population drug sensitivity, both assays must be done on the same clonal population at the same 

time because these relationships do not necessarily persist over time (Table 3.2). It is not clear 

whether this is because drug sensitivity or subpopulation profile is changing. When extending 

our method to diverse cell lines, it is important to consider that observed differences may be due 

to subtle signaling fluctuations and/or robust genomic or other cell line specific changes. Drug 

sensitivity of a cell line is generally a robust readout. For us to expect that our signaling 

subpopulation profiles could distinguish resistant and sensitive populations, we would want the 

profiles to also be robust readouts of a population. As a first step for assessing this type of 

robustness, we chose to compare on lung cancer cell line, H1299, to multiple passages of another 

lung cancer cell line, PC-9.  

To generate the different passages of PC-9, the cell line was seeded at different densities 

such that over the course of two weeks the first plate grew to confluence with one passage while 

the other plates required anywhere from two to seven passages to maintain. At the end of the 

maintenance period, cells were grown to confluence and seeded along with H1299, fixed and 

stained with two marker sets, as described in Chapter 2. The marker sets chosen in this data are 

MS1 from Chapter 2 to represent active signaling states and a second marker set consisting of 

DNA/β-catenin/vimentin (described further in Chapter 4, Table 4.2). These markers reflect the 

epithelial or mesenchymal nature of a cell line, which is generally a robust cell line readout. Cell 

lines with high β-catenin staining are usually more epithelial and those with high vimentin 

staining are more mesenchymal [99]. 

Table 3.2 Reassessment of drug sensitivity separation a subset of 10 H460 clones over 

time. Separation was preserved in replicate experiments, but over the course of four weeks, 

separation was not preserved. (†) Separation accuracy not one standard deviation above the 

average accuracy over all possible permutations of drug sensitivity assignment  
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We wanted to determine if a cell line at different passages was more similar to itself than 

to another cell line. When we compare the profiles for the two marker sets (Fig. 3.8), we see that 

there is a bit more fluctuation in the active signaling marker set than in the second, more robust, 

marker set. Despite this difference, there does not seem to be a hugely drastic change in the 

DNA/pSTAT3/pPTEN profiles from passage to passage. A potential reason there looks to be any 

such change is because H1299 is too similar to PC-9 in that marker set. In the second marker set, 

we see that passage 1 is drastically different from the rest of the PC-9 populations and the H1299 

Figure 3.8 Subpopulation profile changes slightly over time in cancer 

cell lines. Two marker sets are considered here MS1 (Chapter 2) and 

DNA/β-catenin/vimentin. In MS1 (top panel), cell line profiles do not 

change too much over the course of seven passages. Cell Line 1 (H1299) 

may be too similar to Cell Line (PC-9) in this marker set to be considered 

very different. In the second marker set assayed (bottom panel), PC-9 and 

H1299 are very different. PC-9 changes after passage 1, but both the red 

and the green subpopulations indicate similar states (data not shown).  
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population. Interestingly, however, the subpopulations making up Passage 1 and Passages 2 

through 7 are generally vimentin low subpopulations. Thus, all of the profiles for PC-9 reflect a 

more epithelial state and the H1299 profile reflects a more mesenchymal state. Models were 

generated for 3, 4, and 5 subpopulations and the same general results were observed (data not 

shown).  

Discussion 

The results presented here indicate that, based on subpopulation profiles, a cell line does 

not change drastically over the course of a small number of passages. This suggests that 

subpopulation profiles are fairly robust readouts of cell lines and could potentially contain the 

same information about drug response presented in Chapter 2. Monitoring and comparing 

subpopulation profiles over a longer period of time could lead to insights about the evolution of 

cell lines. Are particular signaling states selected for over time or is the same general distribution 

kept? One way to examine this would be to compare different freeze down batches of cells from 

different times. Ideally, live cell imaging with signaling markers of interest would be used to 

watch individual cells over time to determine if they cycle through different distinct states or if 

new states emerge over time. These types of studies would yield an increased understanding 

about the diversity and dynamics of particular signaling pathways and potentially the 

identification of novel signaling states that are biologically important for population survival. 

Conclusion 

Here, we demonstrate that quantitative measures of signaling heterogeneity are not 

impacted by cell-cycle or spatial organization in clonal populations. Thus, they seem to be robust 

and biologically significant readouts of cell populations. Further, when extending these profiling 

methods to panels of diverse cell lines, subpopulation profiles are shown to be reflective of cell 

line differences and robust readouts of cell line populations over time. Potentially, these 

reflections of signaling heterogeneity could reliably correlate to biologically or clinically 

significant similarities and/or differences between panels of diverse cell populations. We explore 

this possibility in the next chapter. 
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Chapter 4: Measures of signaling heterogeneity in panels of diverse 

cancer cell lines 

Introduction 

Here, the transition of our analytical platform from clonal populations from a single cell 

line to panels of diverse cancer cell lines is explored. Panels of cell lines have been extensively 

used in previous work to identify effective chemotherapies [100-102], common genes important 

in cancer progression [103, 104], and general expression or mutational profiles that are shared in 

cancer and have biological significance [105, 106]. These studies generally utilize and relate 

population-averaged measures, as they are traditionally easier to perform and compare across 

multiple cell lines. 

In Chapter 2 we demonstrated that heterogeneity of panels of clonal populations can be 

measured and compared. Further, we showed that such measurements at the intermediate 

resolution between population-averaged measures and single-cell comparisons can reveal non-

obvious differences that can be biologically relevant. We showed in Chapter 3 that such 

measurements are fairly robust readouts of cell lines. Here, we investigate whether or not a 

subpopulation level comparison of diverse cell lines is related to clinically relevant features of 

those cell populations, namely drug response.  

Methods 

Cell culture and seeding 

Lung cancer cell line panel 

Here we present data from a panel of 33 non-small cell Lung Cancer cell lines (LC33). 

These lines are: HCC95, H596, EKVX, H2073, HCC78, H1355, H157, HCC4011, H226, 

HCC193, H1650, H358, H2009, H292, H322, PC9, H460, A549, HCC4017, HCC827, H1993, 

H1648, HCC1359, HCC515, H1395, H1299, H1264, H1819, H2126, H1693, HCC2935, H2887, 

and HCC4006. All lung cancer cell lines used in this study were obtained from the Hamon 

Cancer Center Collection (University of Texas Southwestern Medical Center). This set of cell 
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lines well represents the diversity of mutational states observed across a larger panel of 134 lung 

cancer cell lines (Fig. 4.1).  

Cell lines were all maintained in RPMI 1640 medium (Fisher Scientific) supplemented 

with 2 mM L-glutamine, 10% fetal bovine serum (FBS), and penicillin-streptomycin at 37°C in a 

humidified atmosphere containing 5% CO2 and 95% air. All cell lines have been mycoplasma 

tested by EZ-PCR Mycoplasma Test kit (Fisher Scientific). Cells were plated in four plates on 

96-well BD imaging plates. The majority of cell lines were seeded at a density of 10,000 cells 

per well. To optimize for image segmentation, a few cell lines were seeded at different densities: 

EKVX: 15k/well, HCC1359: 5k/well, PC9: 20k/well, HCC827: 5k/well, H1648: 5k/well, H1264: 

15k/well, HCC2935: 5k/well. H460 and A549 cell lines were seeded and assayed in each of the 

four plates as controls for intensity normalization. 

NCI cell line panel 

The 5 most sensitive and 5 most resistant cell lines to paclitaxel within the NCI-60 panel 

[107, 108] were selected using the publicly available GI50 values (downloaded October 6, 2008 

from the NCI depository website (NCI/NIH); values based on the highest repeat numbers were 

used (in our case 29)). The leukemia cell lines were excluded from the initial selection process as 

Figure 4.1 Genetic diversity of the Lung Cancer Cell Line (LC33) data set: Shown are 

the mutational states (pink=mutated, green=wild-type, white= no-information) of the 50 

most commonly mutated cancer genes in the full non-small cell lung cancer cell line 

collection (134 cell lines). The rows and columns correspond to genes and cell lines 

respectively, and were both ordered using hierarchical clustering using a hamming distance 

(with no-information positions ignored). Cell-lines used in the present study are marked 

with black background, and were selected to roughly span the range of oncogenotypes. 
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they were mostly non-adherent and thus unsuitable for our imaging assays. The identities of all 

selected cell lines were checked by DNA fingerprinting using Powerplex sequencing (performed 

at the UT Southwestern Medical Center Core Facilities). The CAKI-1 cell line was discarded 

since its identity could not be confirmed by fingerprinting, leaving 9 final NCI cell lines for our 

study (Table 4.1). When searching for separation between the sensitive and resistant lines, we 

use the top 4 and bottom 4 lines giving us a diverse cell line panel we refer to as the NC8 panel. 

Cell lines were grown in RPMI 1640 medium supplemented with 5% fetal bovine serum 

(FBS), 2mM L-glutamine and 1x penicillin-streptomycin in a 37°C / 5% CO2 incubator. Cells 

were plated at a density of 10,000 cells per well on Nunc 96-well glass-bottomed imaging plates 

in triplicate wells, and incubated overnight (16 hours) to allow cells to adhere.  

Readouts and immunostaining 

Cells were fixed with 4% paraformaldehyde for 5 minutes, permeabilized with 0.2% 

Triton X-100 solution in TBS for 3 minutes, then blocked with 5% IgG-free BSA solution in 

TBST at 4°C overnight. Cells were then washed with PBS three times and stored in PBS at 4°C 

before staining. 5% BSA in TBST was used for primary and secondary antibody dilutions.  

Table 4.1 List of NCI-60 cell lines with extreme paclitaxel sensitivity tested for 

correlation between patterns of heterogeneity and drug sensitivity. 

(http://dtp.nci.nih.gov/docs/cancer/cancer_data.html).  

(†) CAKI-1 was discarded since its identity could not be confirmed by DNA fingerprinting. 

 

http://dtp.nci.nih.gov/docs/cancer/cancer_data.html
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Lung cancer cell line panel 

Primary antibody staining occurred overnight at 4°C. Secondary staining occurred for 

two hours at room temperature in the dark. PBS was used to wash in between and after staining 

steps and for storage. The four lung cancer cell line plates were stained together after all had 

been seeded, fixed, permeabilized and blocked. Four biomarker sets, each containing Hoeschst 

33342 to stain DNA, were selected for the lung cancer data: (Table 4.2, LC-MS1: DNA/β-

catenin/vimentin, LC-MS2: DNA/pSTAT3/pPTEN, LC-MS3: DNA/pAkt/H3K9Ac, and LC-

Table 4.2 Antibodies and dyes used in immunofluorescent staining of the LC33 dataset 
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MS4: DNA/E-cadherin/ALDH1A1). Two of the previously studied signaling marker sets were 

coupled with a marker set to monitor epithelial to mesenchymal transition (EMT) state of cells 

[99] and a marker set to assess stemness of cells [109]. ALDH1A1 staining was undetectable in 

most cell lines; thus, LC-MS4 was dropped from multiplexed analysis and ALDH1A1 was 

dropped from single marker analysis.  

NCI cell line panel 

The staining protocol for the NCI8 was the same as the staining protocol for the H460 

clones described in Chapter 2. Here, we report data for staining of the NCI8 with two marker sets 

from the clonal populations: (Table 2.1, MS1 or NCI-MS1: DNA/pSTAT3/pPTEN and MS4 or 

NCI-MS2: DNA/pAkt/H3K9Ac). 

Image acquisition, processing, cellular region segmentation, and quality control 

Lung cancer cell line panel 

All fluorescence images in the LC33 dataset were acquired using a Nikon epifluorescence 

microscope, with a 20x objective lens and 1x1 camera binning. Image acquisition was controlled 

by Nikon Elements software. For consistency with the clonal population dataset, background 

correction was performed using National Institute of Health ImageJ rolling-ball background 

subtraction software [110]. Cellular regions were determined using a watershed-based 

segmentation algorithm [73]  which uses Hoechst staining to identify nuclear regions and 

cytosolic biomarkers in the images to identify cellular boundaries. Each individual image was 

visually inspected and those with focus issues, imaging artifacts or poor segmentation were 

discarded from analysis. Approximately 20,000 cells per biomarker we identified in the LC33 

dataset. 

 

NCI cell line panel 

All fluorescence images in the NCI8 panel were acquired with the same microscopy 

setup described in Chapter 2.  
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Plate-to-plate fluorescence intensity normalization 

Lung cancer cell line panel 

Images were normalized from plate to plate to give fixed median intensity of two pooled 

control cell lines: H460 and A549. We use two cell lines to provide a more robust control for 

normalization. Grey scale values of each image’s pixels were normalized against the merged 

distribution of pixels from images of both control lines. Pixels in each plate, p, and each 

fluorescence channel, m, were rescaled by a plate specific normalization factor, 
  

  
( ). The 

normalization factor was chosen such that the median of the pooled cell lines had a fixed 

intensity,   .  

 

  
( )     

 ( )     
( )  

  

  
( )

 

 

The median intensity of the pooled control lines,   
( )

, was used to transform each pixel intensity, 

  
( )

, of all images from channel m in plate p to a new value,   
 ( )

.    was chosen to be the mean 

of   
( )

’s across all p’s. This normalization reduces variation across plates allowing for cell line 

comparison. 

NCI cell line panel 

Plate-to-plate normalization for the NCI8 dataset was performed as described in Chapter 

2 for the H460 clones (using the same rescaling operation described for the LC33 panel); 

however, due to weaker staining of several fluorescence markers, we used the 75th percentile 

pixel intensity as Jm
(p)

 instead of the median value to ensure that all pixel values remained within 

a reasonable numerical range after rescaling. 

Modeling heterogeneity 

Lung cancer cell line panel 

We wondered if more intuitive and interpretable features could be more useful in 

classifying the lung cancer cell lines. Thus, two feature sets were extracted from these cell lines.  

In addition to the co-localization based features described in Chapter 2 (Fig. 2.3), single-cell 
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intensity-based features were extracted from all LC33 image data: the average cellular intensity 

(CIav), the average nuclear intensity (DIav), the average cytoplasmic intensity (YIav), and the 

average ratio of nuclear to cytoplasmic intensity (RDYIav).  

Initial profiles were generated based on co-localization features and clustered using the 

methods described in Chapter 2. Intensity features were processed in two ways: 

Univariate marker analysis: 

A cell line was described as the distribution of cells based on each intensity feature, one 

feature at a time. No assumptions were made about the shape of this distribution. To compare 

cell-lines, we utilized the Kolmogorov-Smirnov (KS) statistic (MatLab Statistics Toolbox), 

which quantifies the maximum distance between two empirical distribution functions (Fig. 

4.4A). We performed all pairwise comparisons between cell lines for each feature and clustered 

cell lines by their distance from one another. 

Multivariate intensity analysis: 

We then wanted to determine if utilizing our whole marker set was more informative than 

just a single marker. We selected the CIav from each marker in our marker sets and, using those 

features, described a sampled population of cells as a GMM which could then be used to 

generate subpopulation profiles for each cell line. This procedure was analagous to the analytical 

pipeline in Chapter 2, except we use two intensity features to describe the cells and thus forego 

PCA. 

NCI cell line panel 

We computed the subpopulation profiles for the NCI8 panel based on the original H460 

model of heterogeneity. The fluorescence intensities in the background subtracted images were 

first normalized in the same way as described in Chapter 2. Cellular feature vectors were also 

normalized and reduced using the same parameters as the ones associated to the H460 model. 

The subpopulation profiles were then computed as described in Chapter 2. We also generated 

NCI8 models using the analytical pipeline described in Chapter 2 and built subpopulation 

profiles from those models (data not shown). The results from these models and those presented 

here from profiles based on the H460 model were similar (data not shown). 
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Metadata associated with the LC33 panel 

The Minna laboratory at UT Southwestern has generated and characterized many lung 

cancer cell lines, including the ones we study here. Not every characterization has been 

completed for every cell line, but we were provided with the available gene expression data, 

copy number data, mutational data, clinical data, and, most importantly for our study, drug 

response data (measured using an XTT assay [111]) for the 33 assayed cell lines. We did not use 

data for drugs where only a few cell lines were assayed. We also found that, for some drugs, 

most cell lines in our panel had an extreme resistance phenotype and there was not a large 

difference in response between the most sensitive and resistant lines. These drugs were also 

dropped from the analysis because our goal is to relate heterogeneity to different drug responses. 

Results 

Profiles of heterogeneity are generally not related to drug response 

With the eventual goal of using cell population heterogeneity to predict a cancer’s 

response to therapy and potentially determine the best course of action for individual tumors, the 

natural next step from our work with a panel of clones was to expand our scope. Instead of 

investigating heterogeneity of a single cell line from a single individual, could we utilize 

heterogeneity as a metric to compare different cell lines and use the found differences to predict 

drug response? 

We assayed two different panels of cell lines (described in Methods): A panel of 33 non-

small cell lung cancer (NSCLC) cell lines (LC33 panel) and a subset of 8 cell lines with diverse 

tissues of origin from the NCI-60 (Table 4.1) cell line panel (NCI8 panel). These cell line panels 

have the advantages of being 1) well characterized, particularly for responses to different anti-

cancer drugs and 2) suited for study in our pipeline (they grow quickly and in the same media, 

they are adherent, and they can be well segmented when imaged).  

As in Chapter 2, we assayed markers with general importance in cancer. Here, we 

analyzed two overlapping (DNA/pSTAT3/pPTEN and DNA/H3K9Ac/pAkt) marker sets in both 

the NCI8 panel and the LC33 panel. Further, we stained the LC33 with two additional marker 

sets. From these marker sets, two markers (β-catenin and E-cadherin) had also been previously 

assayed. They are in different marker sets for the LC33 panel as we wanted to co-stain β-catenin 
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with vimentin (as in Chapter 3) to simultaneously read out both states of the epithelial-

mesenchymal transition (EMT), a process cancer cells undergo when becoming invasive [99]. E-

cadherin was co-stained with ALDH1A1, a marker of stem-like state in lung cancer [109]; 

however, ALDH1A1 had appreciable staining in only one of our cell lines, so we excluded it 

from further analysis as it showed little to no heterogeneity within populations or among most 

cell lines. For multivariate (multiple markers, multiple features) analysis, this marker set was 

removed; however, E-cadherin was included in univariate (single marker, single feature) 

analysis. 

We first applied the same analytical pipeline from our panel of clones to our two cell line 

panels here. As before, we created a sample population, built a GMM based on pixel-

colocalization features (Fig. 2.3), and determined the distributions of the identified 

subpopulations in each of our cell lines. Our goal here was to determine whether the 

subpopulation profiles of our cell lines separated paclitaxel resistant and sensitive populations. 

We first considered only the most sensitive and most resistant populations in our panels for 

determining separation. (The NCI8 were chosen to be the most paclitaxel sensitive and the most 

Figure 4.2 Assessment of paclitaxel sensitivity separation in 8 diverse cancer cell lines. 

A. Separation was only observed in one marker set. This separation is preserved in replicate 

experiments over time. (†) Separation accuracy not one standard deviation above the 

average accuracy over all possible permutations of drug sensitivity assignment. B. Drug 

sensitivity among diverse cancer populations can be separated by subpopulation profiles. 

Subpopulation profiles were computed for nine adherent cell lines with the most extreme 

response values for paclitaxel within the NCI-60 panel and visualized by  

MDS.  
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resistant cell lines from the larger NCI-60 cell line panel (Table 4.1).) We found that the ability 

to separate by paclitaxel response is only observed in the NCI8-MS2 and not NCI8-MS1 (Fig. 

4.2).  This separation is more reproducible over time compared to the clone data (Figs. 4.2A, 

Table 3.2) indicating that the heterogeneity profiles are more robust readouts of cell lines than 

clones. When just the profiles of the top paclitaxel sensitive and resistant lung cancer cell lines 

are taken into account, no ability to separate is found in any marker set of the LC33 (Fig. 4.3). 

Interestingly, the different marker sets do not cluster the same cell lines together, indicating that, 

unlike the clonal marker sets, they each reveal different information about the LC33 panel. We 

chose here to focus our further studies on the LC33 panel because we had many more cell lines 

in this panel than in the NCI8 and we wanted to determine if other measures of heterogeneity in 

our marker sets could relate the LC33’s signaling states to the LC33’s drug responses.  

Different characterizations of heterogeneity cannot separate drug response 

We next tested whether a different set of features may be more informative for predicting 

drug response. We utilized cellular intensity based features for each marker for a few key 

reasons. We found previously in the clones that β-catenin intensity could be informative about 

cell population drug response (data not shown). Potentially, these intensity features could 

uncover more deeply rooted phenotype differences that the co-localization features could not. 

Figure 4.3 Drug sensitivity among extreme lung cancer lines cannot be separated by 

subpopulation profiles. Subpopulation profiles were computed for ten lung cancer cell 

lines with the most extreme response values for paclitaxel within the LC33 panel and 

visualized by MDS. Resistant or sensitive lines do not cluster together for any marker set. 

This result was observed for the extreme eight cell lines as well (data not shown).   
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Additionally, these features have the advantages of being more intuitive and easier to interpret. 

Finally, if warranted, subpopulations identified with these features could conceivably be isolated 

based on expression levels for future studies. 

We began with the simplest case: a univariate analysis (meaning, here, that it relies on 

only a single-marker and a single-feature to describe our cells). The analytical pipeline is 

described in Methods. After determining all pair-wise KS distances between cell lines in this 

panel, we wondered if this method clustered cell lines based on paclitaxel response. To assess 

this, we compared the average distances among members of the most resistant four lines and 

among the most sensitive four cell lines to the average distance between the members of the 

resistant and sensitive lines: 
(     ̅̅ ̅̅ ̅̅ ̅̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (Fig. 4.4). This is a metric for how well clustered and 

separated the two groups of cell lines are. 

 

Figure 4.4 Univariate analysis pipeline. A. Kolmogorov-Smirnov (KS) statistics between 

cell-line feature distributions were calculated. These quantify the largest difference between 

the distributions. Here, Cell Lines X and Y have a high score (or large difference), while 

Cell Lines Y and Z have a low score (or small difference). B. KS distances between all pairs 

of cell lines were calculated. The maximum value of the difference is 1 or -1 depending on 

which cell line you use as a reference (if you compared X to Y, you would get a positive 

score, but if you compared Y to X, you would get the negative value of that score). This 

matrix has a diagonal of zero because a cell line compared to itself has a KS statistic of 

zero, or no difference. C. We used these scores to develop a metric for sensitivity 

separation. The circles here each represent a cell line and the lines between them represent 

the KS statistic. Our score compares the red and green lines, which are KS distances among 

cell lines in the same group (sensitive or resistant), to the black lines, which are the KS 

distances between members of different groups. 
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To determine whether these clustering scores were significant, we randomly sampled 

eight cell lines into two groups 10,000 times and determined a distribution of scores that 

represented random clustering. We found that, for paclitaxel, cell lines did not appreciably 

cluster by sensitivity using this analysis (Fig. 4.5, white arrowhead). 

One reason for choosing the LC33 panel was that many more drugs than paclitaxel have 

been assayed for these cell lines. We decided to expand our search for drug sensitivity separation 

to all drugs for which we had sensitivity data. The ability of different markers to separate any 

drug based on four different intensity features was tested (Fig. 4.5). We were excited to see that, 

potentially, we could separate the most extreme responders for a handful of drugs based on an 

initial p-value threshold of 0.05. 

Because we were looking for separation across many conditions at once (25 drugs across 

7 markers), we needed to revise our definition of a significant p-value using a multiple 

hypothesis based correction. As one considers more and more conditions simultaneously, the 

likelihood of a falsely significant separation to appear by chance increases. To mitigate this 

phenomenon, we first applied a Bonferroni correction, in which we divide our significant p-value 

for one test by the number of tests performed to determine a new significance threshold p-value. 

This test is known to be quite stringent, and when it was performed, we found that all hits were 

unfortunately not significant with this correction (data not shown). 

Our strongest hits for separation were with the drugs erlotinib and gefitinib using the 

markers pSTAT3, pPTEN, pAkt, and H3K9Ac, which were the markers carried over from our 

previous data sets. These markers made up two of the LC33 marker sets, thus we next set out to 

determine if they had better distinguishing power together than alone. 

We developed a multivariate classification of our cell lines that utilized the CIav feature, 

like the univariate analysis, but also the same subpopulation modeling as described with the 

clone data in Chapter 2 and the NCI8 data. We identified phenotypic subpopulations using a 

GMM based on the intensity features from the two non-DNA markers in the first three LC33 

marker sets. Each lung cancer cell line was then described by an intensity based subpopulation 

profile (Fig. 4.6, Appendix B). We inspected the discriminative power of each marker set to 

separate sensitive and resistant cell lines across all drugs (Appendices F-H). We note that 

paclitaxel separation is still not clearly present using these profiles; however, we do observe  
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Figure 4.5 Univariate analysis identifies candidate drugs for predicted 

separation. Separation was tested for the four most sensitive and four most 

resistant lung cancer cell lines for each drug using our univariate metric. Four 

features (CIav, DIav, YIav, RDYIav) were tested across seven markers and 25 drugs. 

The color bar represents the p-value of the separation. Most blocks do not have 

significant separation. Paclitaxel, which is among the drugs with no separation, is 

highlighted with the white arrowhead. Potential candidates for separation 

prediction, Gefitinib and Erlotinib, are highlighted with the black arrowheads. 
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separation between erlotinib and gefitinib resistant and sensitive lines using these multivariate 

profiles, which is the same separation observed in the univariate analysis.  

These drugs have nearly a two-fold higher difference in sensitivity compared to paclitaxel 

across the cell lines. This is, in part, due to the fact that these are EGFR targeting drugs and we 

have a group of cell lines harboring mutations that activate EGFR, making them sensitive to 

these drugs. Generally, EGFR mutations are used to predict sensitivity to these drugs; however, 

in our panel, there was also a cell line, H2073, without a known EGFR mutation that is very 

sensitive to these drugs. We wondered if perhaps our markers were identifying information that 

grouped all EGFR-inhibitor sensitive cell lines together. When we inspected the clustering in 

more detail, however, we found that the clustering was worse than if we had used the EGFR 

activating mutation and that H2073 was not grouped with other sensitive cell lines (Fig. 4.6, 

bottom row). Further, when we tested this model using these marker sets in a prospective study 

with 4 new erlotinib sensitive cell lines and 4 new resistant ones, the separation is not preserved 

(data not shown). 

Discussion 

The inability of our measures of signaling heterogeneity to separate resistant and 

sensitive populations could have a number of sources. Because the populations are from different 

patients and, in the NCI8, different tissues, the subpopulations defined by the colocalization 

features for the chosen markers may not reflect the same types of differences as between the 

H460 clones. This could be because cell lines may have different signaling programs activated 

from cell line to cell line. This diversity may mean that the different populations have different 

sources of paclitaxel sensitivity and that the subpopulation profiles cannot capture these 

differences.  
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In this dissertation, we have looked for relationships between measures of heterogeneity 

and resistance state in four panels of cell lines: A panel of clones from the immortalized human 

bronchial epithelial cell, HBEC, line (Mentioned in Chapter 2), a panel of clones from the cancer 

cell line, H460, (Chapter 2), a panel of Lung cancer cell lines, LC33, (Chapter 4), and a panel of 

diverse cancer cell lines (NCI8) (Chapter 4). In these panels we see strong separation of 

paclitaxel resistant and paclitaxel sensitive populations in the panel of H460 clones and one 

marker set of the NCI8 panel. The HBEC panel has a much tighter range of sensitivities than the 

H460 clones (data not shown). This reduced range may only reflect noise in response to 

paclitaxel and the identified signaling states are unable to reflect these differences. The H460 

Figure 4.6 Intensity-based multivariate subpopulation profiles do not clearly separate 

resistant and sensitive cell lines. Subpopulation profiles for each cell line were generated 

based on the CIav features of pSTAT3 and pPTEN. Cell lines were hierarchically clustered 

by their profiles and distinct groups of profiles emerge. Drug response data is shown under 

the profiles. Green indicates sensitivity and red indicates resistance, white means there was 

no data for this cell line and these drugs. The drug sensitivity data is also sorted by 

subpopulation profile. The profiles do not distinguish paclitaxel sensitive cell lines from 

paclitaxel resistant cell lines; however they do cluster most of the erlotinib sensitive cell 

lines in the LC33 panel. The common biomarker for erlotinib sensitivity is the EGFR 

mutation, which is marked with an asterisk below the sensitivity data. 
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clones, on the other hand, have a larger spread of drug response states and thus, some clones may 

have genuine signaling differences that reflect the population-level paclitaxel response. Because 

cancer cells generally have mutations that lead to genomic instability, it is far more likely that an 

H460 clone has stark underlying differences that are reflected in different readouts.  

If genomic differences are a potential source of heterogeneity and a potential reason for 

the observed relationship between signaling state and drug response, why did we observe little 

separation in the much more genetically diverse cell lines? One potential reason is that, because 

of the diversity of the cell lines, it is unfair to presume that they all have conserved signaling 

subpopulations with similar behavior. The same subpopulations may be doing different things in 

different cell lines. If this is the case, then the subpopulation profile would not be a comparable 

metric between cell lines. To test this, we would need to be able to isolate the subpopulations and 

test their drug sensitivities or monitor their responses in real-time. Isolation could be possible 

using flow sorting depending on the markers and features chosen; our current markers and co-

localization features are poor candidates for this approach. Real-time monitoring could be 

achieved with live cell imaging, but markers for this approach are more limited than the 

antibodies we are using and the labeling may affect protein localization and signaling. 

We did observe separation by subpopulation profiles in one marker set from the NCI8 

panel. This result appears genuine as it persists even in multiple experiments over time (Figure 

4.2). Why might this separation occur in the NCI8, but not in the lung cancer lines? One 

potential explanation for this particular relationship between subpopulation profiles and drug 

response is that the NCI8 differences in sensitivity were more pervasive. The NCI8 had a larger 

spread of responses to paclitaxel than the lung cancer lines. Thus, these differences may have 

overpowered the noise of cell-line to cell-line differences in signaling. If the entire NCI-60 panel 

was assayed, the predictive ability of subpopulation profiles would likely decrease as more, but 

not necessarily relevant, signaling diversity would be introduced. It is curious that paclitaxel 

sensitive and resistant lung cancer lines could not be separated in the same way, but the LC33 

panel only contains three very resistant cell lines, which may not be enough to form a clear 

group. Alternatively, this may be because the cell lines are not different enough in sensitivity or 

signaling for strong trends (as in the NCI8) to show through, but aren’t similar enough for subtle 

patterns to emerge (as in the H460 clones). This idea is also supported by the result that 
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differences in erlotinib response could be predicted, at some level, using subpopulation profiles 

since the differences in erlotinib response in extreme cell lines were much larger. 

Taken together, these results indicate that the relationship between signaling state and 

drug response is a complicated one that we still do not fully understand. It is clear that the trends 

observed in the clones are not directly applicable, but in some scenarios we did see some utility 

for subpopulation profiling. Further studies are required to determine when subpopulation 

profiling is predictive of drug response, which biomarkers are most useful for making this 

prediction, and which features of these markers are most informative. We provide here a first 

step and an addition to the analytical framework introduced in Chapter 2 that allows for the 

incorporation and comparison of new features in imaging data of panels of cell lines. While the 

identified subpopulation profiles were not necessarily related to drug response, they are still 

robust cell-line readouts of the markers chosen. In the next chapter, we explore using 

relationships between subpopulation models as a method for predicting biomarker relationships. 
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Chapter 5: Measures of heterogeneity can be used to infer marker 

relationships 

Introduction 

As the previous chapters have shown, single-cell studies can reveal wide-ranging 

differences from one cell to another, even within presumably isogenic populations. While this 

variability has traditionally been viewed as “noise”, a growing body of evidence suggests that 

analysis of this variability can reveal novel biological information [28, 112-114]. For example, 

previous work has shown that studies of variability can be used to infer network topology [115-

119], predict responses of cancer populations to drugs [47, 120-122], impute mechanisms of drug 

action [54], and identify new cellular states during differentiation [3, 8].  

A natural way of investigating heterogeneity using microscopy is to co-stain a population 

of cells with biomarkers of interest. However, a limitation of microscopy is that only a small 

number of biomarkers can typically be monitored simultaneously. (Though, new approaches are 

always being developed to increase these numbers [92, 123-126].) With a strict economy on the 

number of readouts that can be selected in microscopy, a fundamental and practical question is 

whether subpopulations of cells that appear to be in the same phenotypic state as assessed by one 

biomarker are in the same phenotypic state as assessed by another biomarker. That is, will 

additional biomarkers provide a deeper characterization of heterogeneity? We have seen in 

Chapter 2 that four of the chosen marker sets separate resistant and sensitive clones, indicating 

that they can reveal similar information. It is unclear, however, whether or not the markers are 

identifying the same underlying resistant and sensitive subpopulations. 

In this chapter, we describe a framework for assessing the extent to which different 

biomarkers reveal different structures, or “decompositions” of heterogeneity. We take the 

approach of profiling heterogeneity within a cellular population as a mixture of marker-intensity-

based, phenotypically distinct subpopulations that have been identified using automated image 

analysis (Methods) [54, 120]. First, we apply this approach to profile heterogeneity across a 

diverse panel of cell populations, one biomarker at a time. This addresses a general limitation in 

all studies of phenotypic variability that a single population of cells may not reveal the entire 

spectrum of phenotypic states [127]. For example, the expected negative correlation between 
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opposing EMT biomarkers β-catenin and vimentin may not be apparent within a single cell 

population, yet emerges after considering a panel of diverse cell populations (Fig. 5.4Aii). 

Second, we develop a regression-based approach to compare our decompositions of 

heterogeneity across biomarkers. Third, we evaluate (Fig. 5.4) and apply (Fig. 5.5) our approach 

to identify biomarkers that have similar subpopulation-based decompositions of heterogeneity. 

This approach was applied to two previously described image datasets: 1) a panel of 33 Lung 

Cancer Cell populations (termed the LC33 dataset from Chapter 4) that captures a wide variety 

of cancer oncogenotypes (Fig. 4.1) stained with seven biomarkers and 2) a less variable panel of 

49 Clonal Populations of the H460 lung cancer cell line (from Chapter 2, termed the CP dataset) 

stained with twelve biomarkers. Our framework for relating subpopulations across biomarkers 

will yield insights into the connectivity of biological networks, the complexity of the state space 

of a biological system, and provide practical guides for selecting biomarkers in studies of 

heterogeneity. 

Methods 

The following methods are applied independently to the clonal population (CP) dataset 

(methods for generation described in Chapter 2) and the LC33 dataset (methods for generation 

described in Chapter 4). 

Feature extraction 

To computationally describe cellular phenotypes, we select biomarker-specific 

phenotypic descriptors (based on intensity and localization) that we believe are relevant to the 

biomarkers’ biology (Tables 5.1A and B). For example, we characterize the nuclear biomarker 

Acetylated Histone 3 Lysine 9 (H3K9-Ac) by its nuclear intensity, while we use the cytoplasmic 

intensity of β-catenin as a readout of the epithelial state of the cell (as opposed to β-catenin’s 

nuclear intensity, which is commonly used as a readout of wnt signaling [99]).   
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Identifying subpopulations based on a single biomarker 

For each biomarker, we identify subpopulations representing local high-density clusters 

of cells in the feature space defined by these phenotypic descriptors. To capture the spectrum of 

heterogeneity in our datasets, subpopulations are identified on a pooled population of 10,000 

cells sampled equally from each cell population in the dataset. For each biomarker, we use a 

Gaussian mixture model (GMM) [54, 83] to identify phenotypically distinct cellular 

subpopulations based on the features described above. Here, we make use of a four-

subpopulation-based model [54]. (Four subpopulations are used as they provide a practical 

balance between reasonable model fit (Fig. 5.1) and computational tractability in our regression 

steps; we note that our final conclusions are unaffected if we use five or six subpopulation 

models (Fig. 5.6).) Given this model, we then determine, for each cell, a posterior probability of 

belonging to each subpopulation. Cells are then assigned the subpopulation that they most likely 

belonged to, based on their posterior probabilities. 

Table 5.1 Single-cell features used to characterize biomarkers in the A. CP dataset and 

B. LC33 dataset. Segmentation was performed to split cells into nuclear and cytoplasmic 

regions (the cellular region is the combination of these two regions) Averages were 

calculated across all pixels belonging to the specified region 

 

A B 
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Using mutual information to quantify co-stained biomarker relations 

We use the mutual information to quantify the extent to which the subpopulation state of 

one biomarker is predictive of the subpopulation state of another biomarker. We note that this is 

only possible in cases of co-stained biomarkers, where subpopulations of both biomarkers can be 

assigned to cells simultaneously. For every pair of co-stained biomarkers m1 and m2, we 

subsample 10,000 cells (distributed uniformly across all cell populations) to construct the co-

occurrence matrix,      
 of their respective subpopulations. An element,      

(   ), of this 

matrix thus measures the fraction of cells that are in both subpopulation  ,  based on biomarker 

Figure 5.1 Bayesian Information Criterion (BIC) scores for construction of 

subpopulation models: For each biomarker, subpopulation models were 

constructed by fitting single cell biomarker expression data to a Gaussian 

Mixture Model. Shown here is goodness of model fit, measured by the BIC 

scores (y-axis), as a function of number of subpopulations (x-axis) for various 

markers (different colors) in the LC33 dataset. All BIC scores are scaled so 

that, for each biomarker, the minimum and maximum values are 0 and 1 

respectively. 
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m1 and also in subpopulation   based on biomarker m2. The mutual information between m1 and 

m2 is then calculated as: 

                  (     )   ∑      
(   )      (

     
(   )

   
( )     

( )
)

 

     

 

 

Where    
( )   ∑      

(   ) 
   , are the marginal probabilities of biomarker m1’s 

subpopulations. k is the number of subpopulations for each biomarker, which in our case is 4. 

Subpopulation Profiles 

For each biomarker,  , a cell population   is described by a subpopulation profile [120]: 
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Where N is the total number of cells and     is the number of cells from C in subpopulation   .  

 

Using subpopulation profiles to quantify biomarker relationships 

We use a regression-based approach to estimate the probability,      
(     ), for cells in 

subpopulation    of biomarker m1 to be in subpopulation    of biomarker m2. When such an 

estimate of      
 is possible (when it is not, our method returns a poor fit), we expect that for 

any cell line  , the subpopulation profiles    
  and    

  for the two biomarkers are related by 

   
      

    
 . (In our analysis, we identify 4 subpopulations for each biomarker and our 
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Where we use the Kullback-Leibler divergence,    (   )    ∑        (    ⁄ ) 
     , to 

measure the similarity between pairs of subpopulation profiles. Our choice of the similarity 

measure provides consistency with the mutual information (described above) which is simply the 

Kullback-Leibler divergence between the product of the marginal distributions and the joint 

distribution. The minimization to determine      
 is performed using an interior point solver, 

subject to the constraints that ensure      
’s probabilistic interpretation (elements lie between 

zero and one and rows sum up to one). 

 

With      
, we can calculate a raw score 

    (     )   ∑   (   
     

      
)   

 

 

between the observed subpopulation profiles for biomarker m2 and the ones predicted from 

transforming m1: the higher the score (i.e. closer to 0), the more similar are the actual and 

predicted profiles. We then perform 3 steps of normalization to improve the statistical robustness 

of biomarker-biomarker similarity. 

1) We standardize the similarity across biomarkers by calculating a z-score: 

 

 (     )  
    (     )        

       
, 

 

where         and         are the mean and standard deviation respectively of SRaw calculated 

with the cell line identities randomized (thereby destroying any relationship between the two 

biomarkers). As above, the higher the z-score, the more similar are the actual and predicted 

profiles (i.e. the more similar are the subpopulation structures between the two markers). We 

also note that, in theory,  (     )   , but, in practice,   (     )   . 

2) We account for the randomness inherent to the process of sub-population construction 

 (     ) by averaging across runs of subpopulation construction to give  (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

3) Finally, we generate the Subpopulation Structure Similarity (S3) score: 

 

  (     )  
  (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 ( (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  ⁄
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  (     )    and   (     )    when    and    are perfectly unrelated. In general, 

  (     ) need not be the same as   (     ) (due to the asymmetric nature of    ), which 

reflects the asymmetric nature of biological networks. For example, the state of an upstream 

biomarker is more likely to be predictive of the states of its downstream targets, while the 

reverse is less likely to be true, as the state of a downstream target may be influenced by multiple 

upstream effectors. In our validation section below, a symmetrized version of the S3 score: 

 

 
(  (     )    (     )) is used when comparing to the standard symmetric measure of 

mutual information. 

Results 

In this chapter, we present a methodology to determine the extent to which 

decompositions of heterogeneity are preserved from one biomarker to another. Specifically, we 

focus on the question of how much information about a cell state in one biomarker is gained by 

knowing its state in another biomarker (Fig. 5.2A). At one extreme, cells in the same 

subpopulation for one biomarker are also in the same subpopulation in another marker (Fig. 5.2B 

top density plot; compare low/hi subpopulations for biomarkers 1 vs. 2). In this case, the two 

biomarkers clearly identify the same underlying subpopulation structures. On the other extreme, 

cells in the same subpopulation from one biomarker are randomly spread across subpopulations 

of the other biomarker (Fig. 5.2B bottom density plot; compare low/high subpopulations for 

biomarkers 1 vs. 3). In this case, information about the state of a cell based on one biomarker 

gives no information about the state of a cell based on the other biomarker, and subpopulations 

identified from the two biomarkers are considered to be “unrelated”. Our goal is to assess how 

deep or consistent heterogeneity is across a set of biomarkers.  
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Figure 5.2 Overview of approach for relating heterogeneity observed in different 

biomarkers. A. Shown are cartoons of cells stained for three biomarkers (M1: blue, M2: red, 

and M3: green) each showing two phenotypic subpopulations (S1, dark and S2, light). The 

phenotypic states of M1 can predict the states of M2 but not M3. B. 1-dimensional 

histograms show biomarker levels across cells and are colored to depict M1 subpopulation 

composition. M1 and M2 re-identify the same subpopulation structure (the M2 histogram 

separates by M1 state); however, M1 and M3 have unrelated subpopulation structure (M1 

states are equally distributed across the M3 histogram). These relationships can be discerned 

in the density plots, which show expected results for co-stained biomarker expression levels 

across three different cell lines (C1, C2, Cn, grey clouds).  Note that all cell lines must be 

considered for these relationships to emerge. C. Subpopulation profiles report on the 

percentage of cells in subpopulations S1 and S2 for different cell lines. Co-staining is not 

required to generate these profiles. D. Subpopulations identified using different biomarkers 

can be related using a regression approach. In this cartoon, percentages of S1 defined by M1 

and either M2 (top) or M3 (bottom) are compared across cell lines. M1 and M2 show a clear 

relationship trend, while M1 and M3 do not. Thus, subpopulation relationships can be 

inferred across biomarkers without the need for co-staining. 
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In principle, co-staining of biomarkers will allow for the determination of whether the 

biomarkers re-identify the same underlying subpopulations (Figs. 5.2A,B). However, a primary 

challenge in relating heterogeneity across a large panel of biomarkers using microscopy is the 

experimental difficulty of simultaneously assaying multiple biomarkers. Here, we propose an 

experimental-theoretical framework to compare biomarker heterogeneity that does not require 

biomarkers to be co-stained. Instead, we require only that the biomarkers of interest be stained 

(possibly separately) on a common collection of cell lines. Then, for each cell line, we can 

calculate the fractions of cells belonging to the different subpopulations for each biomarker (Fig. 

5.2C). (Though, we note that the states for individual cells across multiple biomarkers will not be 

known.) We show here that the relationship between subpopulation profiles of two biomarkers 

on the same collection of cell lines can be used to infer a relationship between their respective 

subpopulations (Fig. 5.2D). 

How can we relate subpopulations across biomarkers when these biomarkers are never 

simultaneously measured on the same cells? The idea is to look for co-variation of subpopulation 

profiles determined from different biomarkers across a common collection of cell lines. In 

practice, we relate subpopulations from two biomarkers by performing a multivariate regression 

between two sets of profiles. We then quantify the strength of the relationship between the two 

biomarkers based on the goodness of fit of this regression (described in detail in Materials and 

Methods). In the simplified case of two subpopulations per biomarker (Fig. 5.2D), the regression 

is between the fraction of cells in one subpopulation of one biomarker against a corresponding 

subpopulation fraction for another biomarker. When the two biomarkers re-identify the same 

subpopulation structure, a clear regression trend is seen (Fig. 5.2D, top panel), while when the 

subpopulations are unrelated, the quality of regression is poor (Fig. 5.2D, bottom panel). As with 

any regression, an underlying assumption is that the true variation is large enough to overcome 

experimental noise. This translates to the requirement that the cell lines considered have diverse 

subpopulation profiles. 

The Subpopulation Structure Similarity (S3) score 
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We make use of an information theoretic measure of goodness of fit to quantify the 

relationship between biomarkers, which we term the Subpopulation Structure Similarity (S3) 

score (described in detail in Methods). The S3 score is normalized such that 0 corresponds to the 

case when biomarkers are completely unrelated and 1 corresponds to the comparison of a 

biomarker to itself. To better understand if these bounds could be reached in practice, we used 

the DNA (Hoechst) channel of the LC33 dataset as a positive control. In principle, DNA-based 

subpopulations constructed using data from different biomarker sets should be perfectly related, 

giving an S3 score of 1. Thus, any deviation from this score should reflect degradation in signal 

due to experimental noise. In practice, across-biomarker-set comparisons of DNA-based 

Figure 5.3 Summaries of inferred subpopulation relationships between pairs 

of biomarkers (including DNA): All pairwise biomarker relationships in the 

LC33 dataset were calculated using our subpopulation structure similarity (S3) 

score. The lighter a box is, the stronger the inferred relationship. Biomarkers 

were ordered by hierarchical clustering  
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subpopulations yielded scores of 0.9 or higher, indicating that scores close to 1 are nearly 

achievable (Fig. 5.3). Ideally, we would also have liked to test whether artifactual co-variation 

inflated the relatedness of un-related biomarkers to be greater than 0. However, identifying the 

appropriate negative control of perfectly un-related biomarkers (apart from the randomization 

used to set our bounds) is challenging. Here, we simply note that subpopulations identified using 

EMT biomarkers such as E-cadherin showed little or no relation to those identified using DNA, 

with S3 scores as low as 0.05. Taken together, these observations suggest that biomarkers whose 

sub-populations are unrelated will give an S3 score close to 0, while biomarkers that perfectly 

rediscover each other’s sub-populations will give an S3 score of 1.0. 

Validation of method on co-stained biomarkers 

Our method is designed to determine the extent to which different biomarkers identify 

similar subpopulation structures, though without the need to co-stain these biomarkers. For 

validation, we therefore compare our results to the more direct case when biomarkers are, in fact, 

co-stained. With co-staining, we are able to use the mutual information between the 

subpopulation assignments across biomarkers (whose joint probability can now be calculated) as 

our gold standard quantification of the relationship between the biomarkers. 
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We first test our method on nine pairs of co-stained biomarkers assayed in the LC33 

dataset of 33 diverse lung cancer cell lines. While some pairs of biomarkers show little 

relationship at both a single-cell and a cell-line level (e.g. Fig. 5.4A(i)), others show clear 

relationships (Fig. 5.4A(ii-iii)); both the mutual information and the S3 score capture these 

properties. Overall, we find a clear and strong positive correlation between the S3 score and the 

co-stained mutual information (Fig. 5.4A), thereby providing confirmation of our methodology. 

Next, we explore how reduced variation among cell lines affects the performance of our 

approach. To this end we apply our method to 15 pairs of co-stained biomarkers in the CP 

dataset of 49 clonal populations derived from single cells of the same H460 lung cancer cell line. 

We observe a positive trend between the S3 score and the mutual information from co-staining.  

However, as expected, the strength of biomarker-biomarker relationships reported by the S3 

score is diminished for all biomarker pairs, and increased mutual information from co-stained 

marker pairs does not necessarily imply increased similarity of subpopulation structure based on 

Figure 5.4 Comparison of actual vs. inferred subpopulation structures across 

biomarkers. Relationships between co-stained markers in: A. the LC33 dataset and B. the 

CP dataset were inferred using a symmetrized version of our subpopulation structure 

similarity (S3) score (Methods) (y-axis) and the mutual information (x-axis). Each point 

represents a specific biomarker pair and error bars represent standard deviation from multiple 

runs (n = 10) of determining subpopulation profiles. Expression density plots for particular 

biomarker pairs and six selected cell lines are shown in (i-vi).  
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our methodology (Fig. 5.4B). A closer examination of these biomarkers indicates that, while 

there is extensive heterogeneity and correlation of levels of the biomarkers within a cell line, the 

“phenotype space” occupied by different cell lines is nearly identical (Fig. 5.4B(v-vi)), with 

Actin vs. Tubulin staining being the exception (Fig. 5.4B(iv)).  

Taken together, our results suggest that when cell lines are phenotypically distinct, 

biomarker-biomarker relations using our methods agree with those obtained by the “gold-

standard” of direct co-staining. As the cell lines become more similar, the ability to detect 

biomarker-biomarker relationships is diminished in a biomarker-specific fashion. 

Comparison of non-co-stained biomarkers 

We next use our method to examine the relationships between all pairs of biomarkers in 

the LC33 dataset (Figs. 5.5A, 5.6 & 5.7). We observe two pronounced clusters of biomarkers. 

The first captures the well-known relationships between the EMT biomarkers vimentin, E-

Figure 5.5 Summaries of inferred subpopulation relationships between pairs of 

biomarkers. All pairwise biomarker relationships in A. the LC33 dataset and B. the CP 

dataset, were calculated using our subpopulation structure similarity (S3) score. The lighter a 

box is, the stronger the inferred relationship. Biomarkers were ordered by hierarchical 

clustering. 
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cadherin, and β-catenin. The second groups the biomarkers pAkt, H3K9Ac, pPTEN, and 

pSTAT3, which have known roles in promoting cell growth. pAkt and pPTEN have particularly 

high scores in this cluster, potentially reflecting their known pathway relationship [128]. 

In the CP dataset, far fewer biomarker pairs exhibit similar subpopulation structures than 

in the LC33 dataset (Fig. 5.5B). Nonetheless, we do observe clusters of strongly related 

biomarkers. For example, the cytoskeletal biomarkers actin and tubulin are found to be strongly 

related to one another and to the housekeeping gene GAPDH.  The insulation from other 

pathways seen in our results is consistent with their frequent use as control biomarkers in a 

variety of experiments (and also suggests that they are not freely “independent” as controls) [70]. 

We also observe relationships between groups of signaling biomarkers. For this dataset, pAkt 

and pPTEN are weakly connected via pGSK3β in a cluster. Additionally, we see that pP38, 

pERK and pSTAT3 cluster together. These three proteins have been implicated together in lung 

cancer response to potential chemotherapy [129].  
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As expected, some of the interactions that are detected in the LC33 data are missed in the 

H460 clones. This is particularly evident when considering EMT related biomarkers. β-catenin 

and vimentin are negatively correlated EMT biomarkers: if membrane/cytosolic β-catenin is high 

in a cell, cells are considered to be more epithelial and, conversely, vimentin-high cells are more 

mesenchymal [99]. However, the epithelial or mesenchymal nature is a cell line level property: 

within any given cell line these biomarkers’ expressions are in fact slightly positively correlated 

(Fig. 5.4A(ii)). The LC33 dataset contains a mixture of epithelial and mesenchymal lines, and 

hence enough variation to detect the relationship between the EMT biomarkers. On the other 

Figure 5.6 Effect of the number of subpopulations on inferred subpopulation 

relationships between pairs of biomarkers. Shown are pairwise biomarker relationships, 

for the LC33 (top row) and CP (bottom row) datasets, as a function of the number of 

subpopulation (columns) used to describe marker heterogeneity. Each gray square is colored 

according to the S3 score (scale bar) for the corresponding pair of biomarkers; the lighter a 

box is, the stronger the inferred relationship. Biomarkers were ordered by hierarchical 

clustering. 
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hand all the clones of the H460 are epithelial, making it far more difficult to relate the EMT 

biomarkers. 

Discussion 

Microscopy, through its ability to capture subtle differences in cellular phenotypes, 

reveals the immense complexity of cellular populations. This complexity can be conceptually 

broken up into (at least) two aspects: the breadth of phenotypic differences between cells, and the 

depth of characterization of single cells via multiple biomarkers. Past work has shown that the 

breadth of heterogeneity can be made tractable [130] by modeling cellular populations as 

mixtures of a small number of so-called subpopulations [54, 120]. Here, we investigate the 

extent to which more biomarkers would give deeper coverage of phenotypic states. If additional 

Figure 5.7 Subpopulation level breakdown of marker relationships. Each matrix shows 

how well the fraction of cells in the four subpopulations (columns) of the different markers 

(rows) are predicted knowing the subpopulation profiles for a specific marker (matrix 

title/highlighted row label). Brighter scores indicate better predictability which implies 

stronger relationship. These are results from a single run of subpopulation construction; the 

results for a single row of Fig. 5.5 can be recovered by summing over columns of one of 

these matrices and averaging over multiple runs. 
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biomarkers simply re-identify previously identified subpopulations, then they add little new 

information and complexity. On the other hand, if each biomarker leads to an unrelated 

decomposition of heterogeneity, then the complexity of the systems blows up with the number of 

biomarkers studied. 

As a first step towards answering such questions, we build an experimental-theoretical 

framework to compare sub-populations identified by different biomarkers. A fundamental 

challenge is that traditional microscopy setups allow at most 5 biomarkers to be simultaneously 

assayed. We attempted to overcome this limitation using a novel approach, which requires only 

that the biomarkers be stained (but not necessarily co-stained) on a common set of cell lines. The 

extent to which biomarkers identify the same subpopulation can then be estimated by the ability 

of one biomarker’s subpopulation profiles to predict those of another biomarker across the set of 

cell lines. Our preliminary results using this methodology suggest an intermediate level of 

complexity: although there are a number of biomarker groups within which subpopulations are 

re-identified, subpopulations identified by biomarkers that do not belong to the same group are 

largely unrelated. The groupings of biomarkers we obtain largely reflect established signaling 

relationships, with groups consisting of EMT biomarkers, housekeeping readouts and 

particularly strong relations between biomarkers in the same signaling pathway. 

The major advantage of our proposed method is experimental extensibility. To relate a 

new biomarker to a panel of biomarkers that has already been assayed, only the new biomarker 

(but not previously assayed biomarkers) need be stained across the collection of cell lines. 

Additionally, imputing biomarker relations using our methods can offer advantages over 

studying natural variation or perturbation experiments.  Using natural variation runs the risk that 

the amount of true variation within a population is so small that it gets swamped by non-

biological signals [131]. For example, within a cell line, the expression levels of β-catenin and 

vimentin are positively correlated; the well-established negative correlation only emerges when 

we look across multiple cell lines. Although the use of perturbations can resolve this issue, 

perturbations often push cells far outside their usual operating regime, thereby undermining the 

biological relevance of any results discovered. For example, protein interactions found from 

overexpression studies may not reflect the behavior of cells in their basal state. Thus, with 

judiciously chosen cell lines, our approach offers the prospect of a middle ground: with increased 

variation, but cells still operating within their normal parameters. 
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The dependence of our results on our choice of cell lines raises interesting questions 

about the biology revealed at different scales of variation. When the cell lines are closely related, 

relationships discovered can be subtle and specific to this system. However, as the cell lines 

become more diverse, only coarse global relations that are supported by the entire panel will be 

discovered. Ultimately, once the cell lines become fundamentally different, each may support a 

different set of relationships between biomarkers, leaving no preserved relationships to discover. 

Anecdotal evidence suggests that a panel of cancer cell lines from similar tissue and sub-type 

provides a sweet spot in inter-cell-line-variation (data not shown). This suggests that a systematic 

study of how the degree of variation affects the biology that can be discovered is an interesting 

avenue to explore in the future. Previous work has suggested that crosstalk between network 

components can be phenotype specific [132]. Our methods will allow us to evaluate whether 

different phenotypes extracted from the same biomarker identify the same subpopulation 

structures and how different phenotypes affect identified relationships between biomarkers.  

Although our motivations were primarily conceptual, there are a number of practical 

applications of the method proposed here. The most obvious application is to the selection of a 

panel of biomarkers to investigate cellular heterogeneity. Since there is a premium on the 

number of biomarkers that can be simultaneously assayed in microscopy, it is crucial to select 

the least redundant set possible. Our method provides a way of determining which biomarkers 

share information, and thus a means of selecting those that provide largely independent views of 

cellular states [133]. Another possible application, made possible by the extensibility of this 

method, is to infer novel biomarker interactions. A new biomarker need only be assayed on the 

common set of cell lines, and relations to any previously assayed biomarkers could be tested. 

Being based on statistical correlation, such hypotheses would, of course, need to be rigorously 

tested with more specific experiments. Finally, although we have not explored the specific 

subpopulations that were deemed as being related, this mapping can itself be of biological 

interest. For example one could answer questions such as: How does the subpopulation of cells 

with activated JAK/STAT signaling vary with respect to EMT, MAPK, Akt, and cell-cycle 

signaling states? Or, given a prognostic biomarker, what additional biomarkers could be used to 

confirm the presence of a disease-related subpopulation? 

In conclusion, the apparent heterogeneity of a cellular population is dependent on the 

assay used for phenotypic characterization. Microscopy facilitates highly detailed 
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characterization using a few biomarkers, but there are experimental limits to how many 

biomarkers can be simultaneously assayed. It has therefore been challenging to determine the 

effect, on heterogeneity, of assaying a large number using microscopy. To this end, we have 

attempted to build an experimental-theoretical framework that allows us to determine if different 

biomarkers yield similar decompositions of heterogeneity. By staining biomarkers on a common 

set of cell lines, we have been able to overcome microscopy’s limitations on the number of 

simultaneous biomarkers. Our results, using this framework, suggest that biomarkers can be 

partitioned into different groups that each result in a similar decomposition of heterogeneity. The 

groupings found in this way are consistent with known signaling pathways. We believe this work 

represents a useful first step in deeper profiling of heterogeneity using microscopy. 
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Chapter 6: Conclusions and Future Directions 

Overview 

A major challenge in biology is choosing a scale at which to observe a system. Different 

perspectives of the same cell population can lead to different conclusions. When a population 

average is considered, information about how individual cells are acting is lost in the 

measurement (Chapter 1). This, of course, does not mean that population averages are not 

informative, but they sometimes can be misleading. With advances in technology, studies of 

populations at the single-cell level and characterizations of the heterogeneity of cells with a 

population are becoming more prevalent. Here, we focus on the use of microscopy to give us a 

snapshot of individual cell behavior in a population.   

The focus of this dissertation is the use of a subpopulation level perspective to capture 

and compare heterogeneity in cell populations. It has previously been shown that this perspective 

can be informative in describing the response of a cell population to drugs with particular 

mechanisms of action. Here, we focus on the potential utility for a subpopulation level 

perspective at the basal or untreated state of cell populations. 

A tenuous relationship between subpopulation profiling and population drug 

response 

We demonstrate that subpopulation profiles can distinguish even clonal populations from 

the same cell line (Chapter 2). What was originally envisioned as a control experiment for 

gauging the diversity within a homogeneous population revealed a large, and biologically 

significant, diversity from clone to clone. This diversity would not have necessarily been 

observed at the population-averaged level. Further, we demonstrated that subpopulation profiles 

can, depending on the markers chosen, be predictive of clonal paclitaxel response. These results 

were exciting because they indicated that taking heterogeneity into account, by way of 

subpopulation profiling, we could potentially make important predictions about tumor biology.  

Before extending this profiling method to the (more clinically relevant) setting of 

multiple diverse cell lines, we show that our profiles are not re-identifying cell-cycle information 

or contaminated by certain imaging artifacts (Chapter 3). We then go on to show that these 
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profiles are fairly stable readouts of different cell lines even over short time. These experiments 

indicated that our subpopulation profiles could robustly reflect the behavior of a cell line 

compared to other cell lines. The next step was to determine if the predictive power of 

subpopulation profiles could carry over from clones to panels of diverse lines. 

When subpopulation profiling was applied to panels of diverse cell lines (Chapter 4) 

(either the LC33 or the NCI8), the predictive power of paclitaxel response was much reduced, 

and even, in the LC33, gone entirely. We note that there was separation in the NCI8 for one 

marker set, but not the other, indicating that the relationships between subpopulation content and 

drug sensitivity were not necessarily preserved from clones to cell-lines. We went on to search 

for any relationship between population level drug response and signaling heterogeneity in the 

LC33 panel. We found that in only the cases of erlotinib and gefitinib, drugs that inhibit EGFR, 

did we see a relationship. This relationship was not nearly as strong as a previously known 

biomarker for sensitivity for these drugs. The relationship between population heterogeneity and 

drug response is not always easy to find and not necessarily as informative as population-

averaged biomarker levels. 

There are many potential rationales for the lack of carry-over from the clones to cell 

lines. It is not clear that the subpopulations identified in the clonal populations were the same as 

those identified in the cell lines or if they had the same roles in the population’s functions. 

Potentially, the subpopulations identified in the cell lines were too different due to the large 

differences between the cell lines. Alternatively, the subpopulations identified were the same, 

but, in the case of the clones, they reveal subtle differences between populations. These subtle 

differences could be hidden in the panels of cell lines due to the existence of larger differences in 

signaling that don’t reflect drug response. Potentially, when there are large differences in drug 

sensitivity and large differences in signaling, the relationship can be found in cell lines as in the 

case of the predictive marker set in the NCI8 and the relationship between signaling and EGFR-

drugs.  

The application of heterogeneity profiling to personalized medicine is still in its infancy 

and this work underscores some of the challenges that will be involved. First, the diversity from 

patient to patient is high and the meaning of the subpopulations will depend on which signaling 

pathways are active across cell lines. Understanding subpopulation states at a more mechanistic 

level will require subpopulation isolation, which is not possible given the current experimental 
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pipeline. Without this understanding, it will be difficult to match subpopulation models with the 

drugs they are predictive of. Further, it is challenging to identify useful biomarkers. There is 

never a guarantee that the biomarkers chosen will be predictive of drug response. Further, there 

is no guarantee that they are more informative when considered at the subpopulation level, even 

though a subpopulation decomposition of heterogeneity should retain population-averaged 

information. Finally, if one is performing a multivariate analysis with multiple biomarkers, there 

no guarantee that your marker set contains a maximally informative panel of markers. 

Alternative uses for subpopulation profiling 

The last results presented in this dissertation focus on the natural question of whether 

additional biomarkers provide a deeper characterization of heterogeneity. That is, how much 

information about a cell’s phenotypic state in one biomarker is gained by knowing its state in 

another biomarker? We use subpopulation profiling (Chapter 5). In this work, we present a new 

way of using subpopulation profiles to relate biomarkers that does not require co-staining and 

turns cell line diversity into an advantage. In this work, the diversity of the LC33 is advantageous 

because phenotypic space is more fully represented than in the clonal populations. Using 

subpopulation profiles in this way provides a practical guide for selecting independently 

informative biomarkers and, more generally, could yield insights into the connectivity of 

biological networks and the complexity of the state space of biological systems. 

Looking forward 

There is still much to be done to show unequivocally that profiles of cell signaling 

heterogeneity can be generalized to impact personalized medicine. However, the first steps 

presented here provide a framework for thinking about biomarkers in a different way. The work 

in this dissertation focuses on finding uses for a subpopulation decomposition of biological 

heterogeneity. The methods presented here can aid in the identification of informative 

biomarkers. Potentially, by considering biomarker heterogeneity, new information can be 

gleaned from previously uninformative biomarkers. The wealth of data about different cell lines 

that is being generated has the potential to provide many axes to gauge the value of 

subpopulation profiles. Determining which relationships exist and which don’t can provide 

insights into the underlying biology of identified subpopulations.  
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There are many ways of defining subpopulations. One can use different markers, 

different features or even different algorithms to find groups of cells in phenotype space. 

Presented here is a sample of different models for considering marker heterogeneity, but it is far 

from exhaustive. There are potentially more informative biomarker-feature-model combinations 

to create and that should be a focus of further work in this field. 

Cells, even within a clonal population, can be very heterogeneous. Here, we focused on 

signaling heterogeneity, but in ongoing experiments, we have shifted our focus to the 

heterogeneity of drug response and particularly drug resistance. We currently have a panel of 

targeted drug resistant clones derived from a single drug sensitive clonal population. 

Traditionally, drug treatment has been thought of as a bottleneck for a population, limiting the 

potential diversity; however, we are investigating the heterogeneity that emerges among resistant 

clones and are finding that it is, as we found in Chapter 2, higher than previously appreciated. 

This work has the potential to identify subpopulations of resistant states that may be lost when 

forced to compete in a polyclonal system. 

By creating a metric (our subpopulation profiles) for comparing heterogeneity across 

populations we have made cell-to-cell heterogeneity a more tractable property. The investigation 

and appreciation of heterogeneity in cell populations can provide previously undiscovered 

insights into population-level biology. 
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Appendices  

A. LC33 profiles for co-localization (ms) features 
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B. LC33 profiles for multiplexed intensity (int) features
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C. LC33 drugs sorted by ms-profiles-MS1  
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D. LC33 drugs sorted by ms-profiles-MS2  
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E. LC33 drugs sorted by ms-profiles-MS3  
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F. LC33 drugs sorted by int-profiles-MS1 
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G. LC33 drugs sorted by int-profiles-MS2  
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H. LC33 drugs sorted by int-profiles-MS3  
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