

A NEW APPROACH TO OPTIMIZE A PROTEIN ENERGY FUNCTION ON A FOLDING

PATHWAY USING GŌ-LIKE POTENTIAL AND ALL-ATOM, AB INITIO MONTE CARLO

SIMULATIONS

APPROVED BY SUPERVISORY COMMITTEE

Nick Grishin, Ph.D.

Elizabeth Goldsmith, Ph.D.

Zbyszek Otwinowski, Ph.D.

Luke Rice, Ph.D.

A NEW APPROACH TO OPTIMIZE A PROTEIN ENERGY FUNCTION ON A FOLDING

PATHWAY USING GŌ-LIKE POTENTIAL AND ALL-ATOM, AB INITIO MONTE CARLO

SIMULATIONS

by

Alexandra Safronova

DISSERTATION

Presented to the Faculty of the Graduate School of Biomedical Sciences

The University of Texas Southwestern Medical Center at Dallas

in Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

The University of Texas Southwestern Medical Center

Dallas, Texas

May, 2016

iii

A NEW APPROACH TO OPTIMIZE A PROTEIN ENERGY FUNCTION ON A FOLDING

PATHWAY USING GŌ-LIKE POTENTIAL AND ALL-ATOM, AB INITIO MONTE CARLO

SIMULATIONS

Alexandra Safronova, M.S.

Nick Grishin, Ph.D.

Prediction of a protein structure is important for understanding the function of a protein.

The process of protein structure prediction employs the approximation of a protein free

energy that guides protein folding to the protein’s native state. A function with a good

approximation of the protein free energy should allow estimation of the structural

distance of the evaluated candidate structure to the protein native state. Currently the

energy optimization process relies on the correlation between the energy and the

similarity to the native structure. The energy function is presented as a weighted sum of

iv

components which are designed by human experts with the use of statistical analysis of

solved protein strictures. Values of the weights are derived through the procedure that

maximizes the correlation between the energy and the similarity to the native structure

measured by a root mean square deviation between coordinates of the protein

backbone.

Two major components are required for a successful ab initio modelling: (1) an

effective energy function that discriminates the native protein structure out of all

possible decoy structures; (2) an efficient sampling algorithm that quickly searches for

the low-energy states. In this dissertation a new method for energy optimization is

proposed. The method relies on a fast sampling algorithm and targets successful

protein folding. The weights for energy components are optimized on a found with the

Gō potential energy fast folding pathway. The Lennard-Jones potential, the Lazaridis-

Karplus solvation potential, hydrogen bonding potential are used in the optimization

algorithm. The optimized weights successfully predict all α and α/β proteins.

The proposed strategy is conceptually different from the existing methods that

optimize the energy on solved protein structures. The developed algorithm is a novel

concept that allows the optimization of a more complex functional combination of the

energy components that would improve the prediction quality.

v

Contents

1 Introduction 1

1.1 Overview of the problem 1

1.2 Aims and Methodological Aspects 3

2 Background and Related Work 5

2.1 Amino acids and Proteins 5

2.2 Protein Folding 7

2.2.2 Folding Funnel 7

2.2.3 Levinthal's Paradox 9

2.2.4 Molecular Dynamics 9

2.3 Protein Structure Prediction 11

2.3.1 Minimalist models for protein folding 12

 2.3.1.1 Coarse-grained models 12

 2.3.1.2 Gō-like models 13

2.3.2 CASP 15

2.3.3 State-of-the-art De Novo Prediction 18

2.3.4 Robetta algorithm 20

2.3.4.1 Residue-residue co-evolution 20

2.3.4.2 Robetta’s pipeline 22

2.3.4.3 Rosetta ab initio modeling 22

2.3.4.4 Rosetta Energy Function 26

2.4 Conclusions 31

vi

3 Sampling Algorithm 33

3.1 All-atom protein representation mode 33

3.2 Training set 33

3.3 Monte Carlo simulations 35

3.4 Scoring function 35

3.4.1 Exploring the Gō Potential well depth 40

3.5 The move set 48

3.6 Simulated annealing 58

3.7 Random numbers generation 75

3.8 The protein structure prediction software 77

4 Energy Optimization 79

4.1 The optimization of energy weights 78

4.2 Finding a fast folding pathway with the Gō Potential 80

4.3 Addition of a single energy term to the Gō potential 83

4.3.1 Lennard-Jones Potential 83

4.3.2 Solvation Energy 84

4.3.3 Hydrogen Bonding 85

4.3.4 Results 85

4.4 Adding all three energy terms to the Gō potential 86

4.5 The proposed energy optimization algorithm finds several

combinations of weights 97

vii

4.6 Correlation between the number of folded trajectories and

energy terms weights 97

4.7 Application of optimal weights to predict structures of

 all-α and α/β proteins 103

5 Discussion and Conclusions 107

6 Appendices 112

 Mersenne Twister C/C++ implementation 112

 Program Parameters, Program Running and Programs

 to analyze data 118

MATLAB programs to visualize data 136

7 Bibliography 141

viii

List of Figures

2.1 Protein Structure 6

2.2 Folding funnel 8

2.3 Minimalist model of L and G proteins 14

2.4 Two folding pathways for protein G 16

2.5 Residue covariation in complexes with known structures 21

2.6 Fully automated Rosetta structure prediction protocol 24

2.7 Rosetta ab initio modelling 25

3.1 Training set for the sampling and the energy weights

optimization algorithms 34

3.2 Monte Carlo procedure 36

3.3 Soft Core Gō Potential Function 38

3.4 Scatter plots of representative runs of RMSD vs folding time

for proteins trajectories folded with the Gō potential 39

3.5 Changing soft core Gō potential well depth 41

3.6 Comparison of folding time and RMSD distributions between

2-step and 3-step change of the Gō potential well depth

for 1CRN 42

3.7 Scatter plot RMSD vs folding time comparison between

ix

constant Gō potential well depth and 2-step well depth change

for 1CRN 43

3.8 Comparison of folding time and RMSD distributions between

2-step and 3-step change of the Gō potential well depth

for 1PRB 44

3.9 Scatter plot RMSD vs folding time comparison between

 constant Gō potential well depth and 2-step well depth change

for 1PRB 45

3.10 Comparison of folding time and RMSD distributions between

2-step and 3-step change of the Gō potential well depth

for 1YWJ 46

3.11 Scatter plot RMSD vs folding time comparison between

constant Gō potential well depth and 2-step well depth change

for 1YWJ 47

3.12 Otwinowski’s backbone torsional angles distributions

for all 20 amino acids 50

3.13 Otwinowski’s backbone torsional angles distributions for GLY 51

3.14 Otwinowski’s backbone torsional angles distributions for PRO 52

3.15 Otwinowski’s backbone torsional angles distributions

for VAL, ILE 53

3.16 Otwinowski’s backbone torsional angles distributions

x

for ASP, ASN 54

3.17 Otwinowski’s backbone torsional angles distributions

for SER, THR 55

3.18 Otwinowski’s backbone torsional angles distributions

for GLU, GLN 56

3.19 Otwinowski’s backbone torsional angles distributions

for LEU, ALA 57

3.20 Dunbrack’s library improve prediction of 1CRN vs

Gaussian distributions for side chains torsional angles 60

3.21 Application of Dunbrack’s library decrease folding time for 1CRN 61

3.22 Dunbrack’s library improve prediction of 1PRB vs

Gaussian distributions for side chains torsional angles 62

3.23 Application of Dunbrack’s library decrease folding time and

increase folded trajectories with RMSD below 4Å for 1YWJ 63

3.24 Pseudo code for simulated annealing algorithm 65

3.25 Folding speed distribution for 1CRN with different values for

Simulated Annealing (SA) parameter δ 66

3.26 Cα RMSD distribution for 1CRN with different values for

Simulated Annealing (SA) parameter δ 67

3.27 Scatter plots Cα RMSD vs, folding speed for 1CRN with

different values for Simulated Annealing (SA) parameter δ 68

xi

3.28 Folding speed distribution for 1PRB with different values for Simulated Annealing

(SA) parameter δ 69

3.29 Cα RMSD distribution for 1PRB with different values for Simulated Annealing

(SA) parameter δ 70

3.30 Scatter plots Cα RMSD vs, folding speed for 1PRB with different values for

Simulated Annealing (SA) parameter δ 71

3.31 Folding speed distribution for 1YWJ with different values for Simulated Annealing

(SA) parameter δ 72

3.32 Cα RMSD distribution for 1YWJ with different values for Simulated Annealing

(SA) parameter δ 73

3.33 Scatter plots Cα RMSD vs, folding speed for 1YWJ with different values for

Simulated Annealing (SA) parameter δ 74

3.34 The same random number generator algorithm implementation may give

dissimilar results in different Operating Systems (OS) 76

3.35 OOPS software design 78

4.1 The optimization of energy weights flow chart 81

4.2 Energy landscapes for representative protein folding trajectories folded

 with the Gō potential only 82

4.3 Scatter plots RMSD vs folding time for 1crn trajectories

folded with E= wGō*Gō + wLJ*LJ potential 87

4.4 Scatter plots RMSD vs folding time for 1ywj trajectories

folded with E= wGō*Gō+wLJ*LJ potential 88

4.5 Scatter plots RMSD vs folding time for 1prb trajectories

xii

folded with E= wGō*Gō+wLJ*LJ potential 89

4.6 Scatter plots RMSD vs folding time for 1crn trajectories folded with E=

wGō*Gō+wHB*HB potential 90

4.7 Scatter plots RMSD vs folding time for 1ywj trajectories

folded with E= wGō*Gō+wHB*HB potential 91

4.8 Scatter plots RMSD vs folding time for 1prb trajectories folded with E=

wGō*Gō+wHB*HB potential 92

4.9 Scatter plots RMSD vs folding time for 1crn trajectories folded with

E= wGō*Gō+wLK*LK potential 93

4.10 Scatter plots RMSD vs folding time for 1ywj trajectories

folded with E= wGō*Gō+wLJ*LK potential 94

4.11 Scatter plots RMSD vs folding time for 1prb trajectories

folded with E= wGō*Gō+wLK*LK potential 95

4.11 Prediction results for 1i2t 105

4.12 Prediction results for 2p5k 106

xiii

List of Tables

2.1 FM (free modelling, ab initio) Server Group Performance 19

2.2 Rosetta energy terms for coarse-grain ab initio simulations 27, 28

2.3 Rosetta energy terms for ab initio refinement stage 29, 30

3.1 Protein structures used in the training set 34

4.1 The folding results for energy terms weights taken on a grid 96

4.2 Folded trajectories of training set’s proteins and energy terms

weights derived with novel energy weights optimization

algorithms 98

4.3 CCA statistics 100

4.4 CCA raw canonical coefficients 101

4.5 CCA scaled raw canonical coefficients 102

4.6 Protein structures used to test optimized weights 104

4.7. Prediction results for reliable weights for proteins not included

 into the training set 104

xiv

List of Abbreviations

HB Hydrogen bonding potential

LJ the Lennard-Jones potential

LK the Lazaridis-Karplus Potential

MC Monte Carlo simulations

MD Molecular Dynamics simulations

RMSD Root Mean Square Deviation

SA Simulated Annealing

1

Chapter 1

Introduction

1.1 Overview of the problem

Protein structure determination is central for understanding protein function (40).

X-ray crystallography, nuclear magnetic resonance (NMR) and electron microscopy

(EM) are common experimental techniques for protein structure determination.

However, these methods are expensive and time consuming, leading to a large

discrepancy between the number of known protein sequences and the number of

solved protein structures (3, 4). Efficient computer-based algorithms capable of

predicting 3D structures from sequences could reduce this gap (26).

Computational methods for protein structure prediction can be grouped into three

categories: homology modeling (1, 82), threading (10, 34, 56, 94, 103), and ab initio

methods (9, 12, 13, 25, 45, 55, 86, 98). Homology modeling methods assume structure

resemblance from proteins that share sequence similarity. Threading approaches

compare a target sequence against a set of known protein structures by using statistical

knowledge of the relationship. If similar protein structures are not available, ab initio

methods build the 3D models “from scratch”. Unlike homology modeling and threading

approaches, ab initio algorithms are essential for understanding how and why a protein

folds to its specific structure out of the large number of possibilities.

Ab initio modeling searches protein conformational space under the guidance of

a designed energy function and generates a set of possible conformations from which

2

final models are chosen. Three key components are required for successful ab initio

modeling: (1) an effective energy function that discriminates the native protein structure

out of all possible decoy structures (16, 53, 57, 86, 90); (2) an efficient sampling

algorithm that quickly searches for the low-energy states; (3) a selection method for

native-like models from a pool of decoys.

Typically, an energy function consists of a variety of energy terms that represent

different structural features and the interplay between local and global interactions

among amino acid residues. It includes Van Der Waals interactions, electrostatic

interactions, hydrogen bonding, and solvation potential. If a sampling algorithm uses

fixed backbone atoms and rotamer libraries, then the bonding energy terms often are

ignored. The weights are used to balance the contribution of terms to the overall energy.

The ability of an energy function to predict the structure of novel proteins is evaluated by

its prediction accuracy on an independent set of test proteins. This approach aims to

stabilize the correct structures and to destabilize incorrect ones by harnessing the

theoretical argument that the native protein state is characterized by a large energy gap

(92). Therefore, the best energy function would maximize the Z-score, defined as the

difference between the mean energy of the native-like structures and the mean energy

of the non-native structures divided by the standard deviation of the energy of the non-

native structures (33, 54, 63).

3

1.2 Aims and Methodological Aspects

In this report, I describe a new method for energy weight optimization, inspired by

the design of a funnel –shaped energy surface for folding of α, β and αβ proteins (51,

81, 91) This funnel sculpting method generates an energy function in an iterative

manner until a random starting conformation folds into a native-like fold. In our

algorithm, I outline the energy funnel shape by tuning a Monte Carlo based sampling

algorithm (5) with a Gō potential (32) as a scoring function to simultaneously fold

proteins from different SCOP classes (65). I used off-lattice all-atom protein models,

including hydrogens atoms, and started folding simulations from a fully extended

backbone chain. In general, a Gō potential is often viewed as an idealized energy

landscape with a strong correlation between energy and structural distance from the

native state, and, despite the criticism, is used to study folding kinetics (20, 70, 85, 104).

Thus, I assumed that this strategy would be able to find fast-folding pathways (85) in

which I optimized the weights for physics- and/or knowledge-based energy terms. The

weight optimization routine employed a scoring function designed as a linear

combination of the Gō potential and the three most frequently used potentials. During

the algorithm’s iterations, I minimize the Gō potential weight.

The method presented in this study is a novel concept. Although the potential I

employed did not contain a sufficient number of energy terms to independently fold an

arbitrary protein sequences, I demonstrated that the full conformational search of the

ground states can be solved by the available sampling methods and standard

4

computational resources.

5

Chapter 2

Background and Related Work

2.1 Amino acids and Proteins

Proteins are polymers that composed of 20 different amino acids (residues)

encoded in DNA or RNA sequence. Each amino acid includes α-carbon (Cα) bonded to

amino (NH) and carboxyl (COOH) groups and a side chain, which is different for each

amino acid. The amino acids in the protein chain are linked with peptide bonds (CO-NH)

formed between the amino and carboxyl groups (Figure 2.1). These bonds are formed

during the polymerization process when a molecule of water is lost. The connected

carbon, oxygen and nitrogen atoms form a protein backbone. This backbone can adapt

repeating local structures called secondary structure elements: α helices, β sheets or

loops (Figure 2.1). The secondary structure elements and their spatial interrelations

form the tertiary structure of a protein. A part of a protein folded into a distinct structural

region comprises a protein domain. Under physiological conditions proteins

spontaneously fold into a particular shape named as its native state. The native state

geometry of a protein defines its behavior and function.

6

 Figure 2.1: Protein Structure. a) The atomic structure of a single amino acid and the
chain of amino acids are; b) a protein sequence.; c) an all-atom representation of the
protein colored by atom type, secondary structure elements, and a backbone
representation with colored secondary structure elements.

a)

b)

c)

7

2.2 Protein Folding

Anfinsen showed that protein ribonuclease can be reversibly denatured /

renatured in a test tube (2). It indicates that if a protein always folds into the same native

structure, it is possible to develop a protein folding algorithm that uses only the

information contained in a sequence to fold a protein towards its native or near native

state.

2.2.1 Folding Funnel

The energy landscape of protein folding, known as a folding funnel, can be

viewed as a rugged landscape with kinetic traps, energy barriers and some narrow

throughway path to native (28). It is considered that the native state of a protein

corresponds to the global energy minimum, the lowest point of the landscape, and the

folding process is a roll down a free energy hill to the bottom (28). Figure 2.2

demonstrates a folding funnel, where the native state (N) corresponds to the energy

minimum surrounded by steep slopes (29).

8

Figure 2.2. Folding funnel (28)

9

2.2.3 Levinthal's Paradox

If I take into account the enormous number of protein’s possible conformations,

the process of a protein self-assembly into the native state is remarkably efficient. The

gap between expected and current folding speed was demonstrated by Levinthal (52)

and known as Levinthal's paradox. For example, if we have a polypeptide of 101 amino

acids and each bond connecting two neighboring amino acids can have 3 possible

states then the number of possible configurations is equal to 3100 = 5⋅1047. Assuming a

protein sampling rate of 1013 configurations per second (0.1 ps per configuration) it will

take 1027 years to try all of them. Nevertheless, proteins fold in seconds, not performing

an exhaustive search of entire conformational space. There are several possible

explanations of the paradox: 1) proteins through the evolution process specialized to

fold rapidly, meaning that other amino acid sequences simply did not survive; 2) the lack

of stability of some proteins (37). It was also noticed that the native configuration may

not have the lowest free energy. Thus, absolute stability is not required since a protein

has to survive as long as it performs perform its function.

2.2.4 Molecular Dynamics

A potential energy of a whole system represented by a sum of forces for all

atoms is called a force field. Two groups of forces affect folding of protein molecules:

bonded and non-bonded forces. Bonded forces result from a covalent bond between

two atoms or ionic bond between oppositely charged ions, the atoms that lost or gained

one or more electrons. Non-bonded forces result from distance interactions between

atoms. Bonded forces attribute to bending, stretching and rotating. Bending (Equation

10

2.1) and stretching potentials (Equation 2.2) adapt an elastic spring model. They are

parametrized with the equilibrium values (𝑙0 and 𝛩0) and bond/angle stiffness (𝑘𝑙 and 𝑘𝛩

where 𝑘𝛩 ≪ 𝑘𝑙).

Bond rotation potential (Equation 2.3) is represented by a cosinusoid function of

parametrized amplitude (𝑉𝜔), periodicity (n) and phase shift (ϕ):

Non-bonded forces are represent by steric effects, van der Waals' interactions and

electrostatics. Steric interactions are caused by Pauli short range repulsion due to an

energetic cost of electron clouds overlap). The polarization of molecules causes long

range attractive forces, called Van der Waals' forces They are modelled together with

Lennard-Jones potential:

where rmin is a distance at the minimum of potential. Electrostatic charge is expressed

by Coulomb's law:

11

The full force field that can reproduce the basic features of protein energy landscapes at

an atomic level of detail is then represented by the following potential energy function

[PW]:

Over the last thirty years several families of force fields has been developed. The most

used for protein folding are AMBER (Assisted Model Building and Energy Refinement),

CHARMM (Chemistry at HARvard Macromolecular Mechanics), OPLS (Optimized

Potential for Liquid Simulations) families (76). Their force fields include those terms in

Equation 2.6. Parameters representing a single force field designed for certain type of

molecules may vary for each family. The computational cost of these all-atom energy

functions is very high and limits their application to the molecular dynamic simulations of

short proteins.

2.3 Protein Structure Prediction

The complete search of all possible protein conformations is not possible and all-

atom model simulations demand enormous computational resources. Thus, simplified

models were proposed.

12

2.3.1 Minimalist models for protein folding

Native state topology plays important role in determining the speed and

mechanism of folding for small proteins as was shown by simulations using minimalist

protein models. Minimalist protein models are able to rapidly collect meaningful

statistics about folding pathways and kinetics focusing on the fundamental physics of

the problem and linking the results to experimental observations for a target protein.

Over the last thirty years many minimalist models have been developed ranging from

all-atom Gō potentials to coarse-grained bead models with Gō interactions substituted

or enhanced by physics based potentials. The reduction of computational burden

provided by coarse-grained models may support folding studies on a genomic scale and

protein design.

2.3.1.1 Coarse-grained models

HP model (27) refers to hydrophobic collapse hypothesis. It was observed that

ground states have hydrophobic core and polar exterior (14). HP model uses a 2 letter

alphabet (H and P) instead of the 20 element amino acid alphabet. Only one property of

an amino acid, hydrophobicity or polarity, is taking into consideration. The force of

attraction of hydrophobic residues is used as a scoring function. The number of gained

H-H contacts measures quality of a folded structure. However, HP model was shown to

be NP-complete even for two dimensional lattice (73).

Several residue-level models have been proposed where an atomic

representation was reduced to the center of mass of an atomic group. These models

13

are represented by UNRES (54), CAS (101), SICHO (47). The loss of detail is

compensated by knowledge-based potentials derived from a statistical analysis of

solved protein structures. Such energy functions do not capture the physical free energy

explicitly but represent the probability that a given structure is native-like.

2.3.1.2 Gō-like models

Gō potentials favor native state contacts of the target fold and have been used to

illustrate the energy landscape. Simulations with Gō potentials usually employ the

protein chain as a string of beads (19, 38). Minimalist Gō-models minimize energetic

traps (roughness) on the free energy surface. The main limitation of Gō-like models is

that they cannot be used to characterize protein landscape regions where energetic

frustration is not negligible such as certain compact non-native states and misfolding

processes. The studies of misfolding process require take into account non-native

interactions, energetic heterogeneity, and frustration within definitions of an appropriate

model. Nevertheless, Gō potentials provide a sufficient model to explain rapid and

reliable folding of native sequences relative to poorly designed or arbitrary

heteropolymer sequences (28, 46, 67, 79). Those conclusions support the hypothesis

that evolution has evolved sequences that favor fast folding (62). The argument towards

support that minimalist models can give reasonable approximation of the folding of the

real proteins is the observation that the magnitude of the folding rate for two-state

folders is correlated with average distance between contacting residues in the native

state (75).

14

Figure 2.3: (38): Minimalist model of L and G proteins. Minimalist model of the native
state topology of protein L (bottom) and the NMR solution of G structure (top), showing
the similar arrangement of secondary and tertiary structure.

15

Sequence-independent Gō models are not suitable for exploring folding process

of proteins with low sequence identity but high structural homology since they have

minimal energetic frustration. An example of delicate balance between energetic and

topological frustration was demonstrated for proteins G and L (Figure 2.3). It was

demonstrated that G and L proteins fold by different pathways (35, 36, 66, 71, 74, 80).

In protein L the first β hairpin forms with the second β hairpin unstructured. Protein G

folds through a transition state with purported rate-limiting formation of the second b

hairpin. It was also demonstrated that protein G folds through multiple pathways that

involve intermidiates (Figure 2.4).

2.3.2 CASP

CASP (Critical Assessment of Structure Prediction) is an experiment, where

structural predictions (the native structures are not known at the moment of submission)

of set of the target protein sequences are submitted by the participants. The accuracy of

a model is then assessed by the comparison to a real native structure. Targets are

classified into three categories: comparative modeling, fold recognition/threading and

new fold/ab initio prediction. Comparative modeling methods make use of structure

resemblance between proteins that share sequence similarity. Threading approaches

compare the target sequence against a set of known protein structures by using

statistical knowledge of the relationship. If similar protein structures are not available, ab

initio methods build the 3D models “from scratch”.

16

Figure 2.4: (38) Two folding pathways for protein G. Free energy at the folding temperature
as a function of radius of gyration (Rg) and native state similarity (w) for protein G. Two folding
pathways are present. The fast pathway corresponds to a collapse-concomitant folding
pathway (arrow on right), whereas the slow pathway (arrow on left) corresponds to rapid non-
native collapse with a structured second b hairpin and a longer process of finding the native
structure. The contour lines are spaced at intervals of k

b
T, with blue to red representing high to

low free energy values

17

To identify top predictions several distance based methods like Global Distance

Test (GDT), Z-Score or TM-Score as well as using a human expert visual evaluation

(97, 102) are used. For example, for ab initio methods in CASP11 two types of score

were produced 1) to compare prediction models to random models (random ratio) and

2) to compare prediction models to top templates (template ratio) (44). The random ratio

used to detect promising model predictions corresponds to the ratio of the best server or

manual group GDT_TS score to the random model score. To evaluate overall prediction

quality of each predictor group the combinations of six scores (GDT_TS (96), TenS

(43), QCS (22), ContS (84), lDDT (59), and MolProb (17)) was used. Scores were

provided by The Prediction Center for every prediction. Significance scores for CASP11

ab initio ranks included bootstraps and T-tests (44).

The considerable progress in prediction quality has been observed for

comparative modeling and fold recognition. The ab initio remains the most challenging

of the CASP experiment categories. Even though ab initio predictions result in the low

quality of models they have been verified to be successful on targets where other

methods fail.

To improve de novo prediction secondary structure prediction, fragments and

motifs identification, contact prediction and assembly of folds from fragments have been

applied. These methods usually are combined with the search methods based on the

molecular dynamics, Monte Carlo optimization or genetic algorithms. A few methods

use pure ab initio simulations together with empirical potentials (64). In CASP11 the

most successful participants in the template free category were David Baker with the

18

Robetta server (18) and Yang Zhang with I-TASSER and QUARK servers (99, 100).

Importantly, the use of alignment-based contact prediction methods defined the

CASP11 progress. These innovations permitted de-novo modeling of larger domain

structures.

2.3.3 State-of-the-art De Novo Prediction

The most successful prediction methods in the free modelling category of the

CASP11 experiment (see Table 2.1) (44) are Robetta (69) and I-TASSER (93). Both

methods use short fragments of known structures with similar sequence to build initial

models. Random perturbations are applied to these models and the Monte Carlo

method (30) is used to find a structure with the minimal energy. In both methods the

energy is a weighted sum of knowledge-based potentials. Energy terms weights are

optimized on a set of decoys by maximizing the correlation between the value of energy

function and the similarity of decoys to the native structure. The decoys are generated

by introducing small random changes to the known native structure. Thus, the decoys

similar to the native structure have the lowest energy values. The root mean square

deviation (RMSD) of euclidean distance between Cα atoms is used to measure structure

similarity. However, the described optimization method described has drawbacks: 1)

decoys of the native structure are biased towards that structure and potentially over fit

the energy function; 2) the linear combination of energy terms assumes that all energy

terms equally well discriminate between good and bad candidate structures (in practice,

these terms works well for some proteins and bad for the others).

19

Table 2.1 (44): FM (free modelling, ab initio) Server Group Performance

20

2.3.4 Robetta algorithm

Before CASP11 experiment, Robetta algorithm sampled a diverse set of

fragment assembly followed by all-atom refinement, and selection of final models based

on clustering and Rosetta all-atom energy. This approach for high accuracy models has

been limited to small proteins (<100 residues) due to enormous size of the

conformational search space. In CASP11, Rosetta employed residue-residue co-

evolution derived restraints (69) during sampling and refinement to direct the search

towards the native conformation. CASP11 demonstrated that co-evolution derived

contacts increase structure prediction accuracy.

2.3.4.1 Residue-residue co-evolution

Two or more proteins can bind together and form a complex to perform various

functions. Solving the structures of these complexes remains a challenge even if the

structures of the protein subunits are known. Ovchinnikov et al (68) designed an

algorithm to predict which parts of the proteins make contact with each other in a protein

complex. The similar algorithm is incorporated into Robetta to improve multidomain

protein structure prediction (69).

Two amino acids at positions X and Y are co-varied if for any given amino acid at

position Y there is often a specific amino acid at position X. It is noticed that when a pair

of amino acids co-varied, these two amino acids tends to make contact with each other

at the protein–protein interface or the protein multidomain interface (Figure 2.5).

21

Figure 2.5 (69): Residue covariation in complexes with known structures. Contacts with
high GREMLIN scores correlate with residue-pairs across protein interfaces in solved complex
structures; the structures are pulled apart for clarity.

22

2.3.4.2 Robetta’s pipeline

The Robetta algorithm starts with an iterative process of domain boundaries

prediction from PDB structures with sequence similarity to the query (Figure 2.6) (69).

At each iteration step, HHSearch (88), Sparks-X (95), and RaptorX (41) identify

templates from pdb database and generate alignments. The sequence is threaded onto

the template structures to generate partial models that are clustered to identify distinct

topologies. Through this iterative process domain boundaries are assigned. For each

domain Robetta finds homologous sequences for the multiple sequence alignment

(MSA) to predict residue-residue coevolution contacts. GREMLIN (42) obtains a global

statistical model of the prepared MSAs using a pseudo likelihood approach, and

contacts are predicted using the residue-residue coupling values derived from the

model fitting procedure. The contacts with sequence separation of at least 3 were

converted to distance restraints supplement the Rosetta energy function.

2.3.4.3 Rosetta ab initio modeling

The next module of Robetta’s algorithm is attributed to Rosetta ab initio

modelling (Figure 2.7). Fragments are generated with the use of PSI-BLAST

alignments and up to three secondary structure predictions from PSIPRED, SAM-T02,

JUFO or PhD. Similarity between the target sequence and a fragment is measured by a

sum of similarity scores for the sequence and secondary structure. This fragment library

is used in the next step in the fragment insertion. Conformational sampling starts from

completely extended chain. It is carried out by a Monte Carlo fragment replacement

strategy guided by a low resolution score function that favors protein-like features. Both

23

bond angles and bond lengths are fixed to ideal values, and the side chains are

approximated with the center of their mass as a single “centroid” interaction center.

Each conformational change starts with random selection of a position in the chain. One

of the fragments starting in that position is selected from the library and backbone

torsion angles (φ, ψ, ω) from the fragment are applied in that position. Fragment

insertion is performed in two stages. First 9-residue fragments are used to construct a

rough model, which is refined with 3-residue fragments. The predicted by GREMLIN

contacts are used as restraints for sampling and refinement. The energy function used

for structure evaluation is composed of Rosetta knowledge based potentials (see Table

2.2): sequence profile, secondary structure (SS), Ramachandran basin, depth

dependent structure profile (103), phi and psi torsion (31) and solvent accessibility (31)

score terms. Score term weights were optimized from an unpublished benchmark. The

number of used potential terms increases gradually with the progress of simulated

annealing, starting from steric overlap and finishing with complete potential for the last

quart of iterations of 9-residue stage and for the whole 3-residue stage. The best decoy

structures are chosen from a top 5% lowest energy subset or cluster analysis is

performed to select the representative structures. The chosen decoys structure

becomes a starting point for the full-atom refinement. It includes moves like torsion

angles perturbation, the fragment insertion which takes only those similar to existing

fragment in the model from the fragment database. The refinement also incorporates

local fragment gradient descent optimizations and sampling side chains using a

backbone-dependent rotamer library (8, 15).

24

Figure 2.6 (69): Fully automated Rosetta structure prediction protocol.

25

Figure 2.7 (78): Rosetta ab initio modelling

26

2.3.4.4 Rosetta Energy Function

The components of Rosetta energy function are knowledge/statistical based

terms and refer to the probability of “nativeness" of given structure, based on analysis of

features of known native structures. A Bayesian model of the likelihood of the structure

being a native one, given the sequence of amino acids (Table 2.2, Table 2.3) is used to

design Rosetta energy. The statistical analysis of the native structures features is

employed to designed the energy terms and describe either the energy of structure

independent of sequence (P(structure)) or energy of sequence given particular structure

(P(sequence | structure)) (87). The all-atom Rosetta energy function is composed as a

linear combination of the Ramachadran torsion preferences, the Lennard-Jones

potential, implicit solvation and electrostatic effects, hydrogen bonding and backbone

dependent rotamer self-energy potentials. The Lennard- Jones potential utilizes energy

parameters used in CHARMM 19 and uses a linear function for repulsion to

compensate for fixed rotamer set. The implicit solvation energy is calculated by using

Lazaridis and Karplus (50) complete model. Electrostatic interactions are approximated

based on PDB statistics. Hydrogen bonding potential depends on secondary structure

and orientation of a hydrogen bond. The Van der Waals potential in a low resolution

energy function rewards globally compact structures. It is represented by steric

repulsion of backbone atoms and side-chain centroids. Solvation potential and

hydrogen bonding potentials are based on statistical data.

27

Table 2.2 (78) : Rosetta energy terms for coarse-grain ab initio simulations

28

Table 2.2 (continued) (78): Rosetta energy terms for coarse-grain

 ab initio simulations

29

Table 2.3 (78): Rosetta energy terms for ab initio refinement stage

30

Table 2.3 (78) (continued): Rosetta energy terms for ab initio refinement stage

31

Conclusions

Protein structure prediction requires different intricate methods that involve

sequence and structure comparison, prediction of secondary structure elements,

calculation of solvent accessibility, structure clustering and optimization of complex

energy functions. This dissertation touches an aspect of optimization of an energy

function. This work is about the design of a new Monte Carlo based approach that

optimizes weights for energy terms on a fast folding pathway found with assistance of

Gō-like potential. The analysis of the state-of-the-art prediction methods has revealed

weak points in the current energy optimization procedures. First, the decoys used in

design of the energy functions are biased to the native structure due to the methods of

their design. Besides, the process of decoys generation is opposite to the reality of

protein structure prediction when decoys have to be built without any knowledge of the

native structure. Finally, the linear combination of energy terms often assumes that

energy terms are independent, where weights are used to define the relative

contribution of terms. However, it is likely that energy terms may correlate with each

other. For example, the volume based terms may correlate with van der Waals

interactions (VDW). Another example is that hydrogen bonding interactions occur at

VDW distances. Thus, it is likely that a linear sum of weighted energy terms cannot

capture those covariances, leading to an inaccurate energy (39, 89).

In the following chapters I address the first issue. First, I describe the Monte

Carlo based sampling algorithm. It was designed within OOPS software which I

optimize for the significant folding speed increase. The algorithm employs effective

32

Otwinovski’s backbone torsional angles distributions, a soft core Gō potential. Second, I

present a new Monte Carlo based energy weights optimization approach, which relies

on a fast folding pathway. Several energy terms are tested during the optimization

procedure, such as the Lennard-Jones potential (LJ), the Lazaridis-Karplus solvation

potential (LK), oriented hydrogen bonding potential (HB), the compactness term and

Discrete Optimized Protein Energy (DOPE) term. Three of them, LJ, LK and HB, are

shown to be effective. Finally, I apply optimized weights for the energy terms to predict

proteins not included into the optimization procedure.

33

Chapter 3

Sampling algorithm

3.1 All-atom protein representation model

All atoms including hydrogen atoms were explicitly included into simulations from

the very beginning. The bond lengths and backbone planar angles, bond lengths were

fixed at their mean values. The backbone dihedral angles ω were fixed at their trans

conformation, ω = 180°, since ω is observed in the trans conformation more frequently

than in cis conformation, ω = 0°. However those ω that are in cis conformation in native

structures were held fixed at in cis conformation. The backbone dihedral angles ϕ, ψ

and side chain dihedral angles chi varied during simulations.

3.2 Training set

Proteins in different classes may potentially require different weights for each of

the energy terms. In order to use an optimized set of weights for any protein regardless

of its structure classification, I explored and optimized energy weights by running

simultaneously the sampling algorithm and energy weights optimization for

representatives of three protein classes (all α, all β, α/β). The overview of three proteins

is listed in Table 3.1 and .their structure shown in Figure 3.1

34

Table 3.1. Protein structures used in the training set. The 3 proteins belong to
different SCOP classes and have comparable sequence lengths

Figure 3.1 Training set for the sampling and the energy weights optimization
algorithms. .
a) All-beta (WW-domain, 1ywj) – 1μs folding time in solution

b) Alpha/beta (crambin, 1crn) – 1μs folding time in solution

c) All-alpha(albumin-binding domain, 1prb) – 100ns folding time in solution

a) b) c)

35

3.3 Monte Carlo simulations

Conformational space of proteins was explored with Metropolis Monte Carlo

method (MMC) (Figure 3.3) (61). In the developed algorithm, protein folding simulations

always started from a stretched conformation, where all backbone dihedral angles were

equal to 180°and side chain dihedral angles were chosen to minimize clashes with a

backbone and neighboring side chains. To generate a new conformation I changed

dihedral angles of a protein chain as described in the Move set section below. If the

energy of a new conformation was less than the energy of a previous conformation, the

former conformation was accepted. Otherwise a new conformation was accepted with

probability Pi,j :

 𝑷𝒊,𝒋 = 𝒎𝒊𝒏 {𝟏, 𝐞𝐱𝐩 (
−𝜟𝑬𝒊,𝒋

𝒌𝑻
)} (𝟑. 𝟏)

where 𝜟𝑬𝒊,𝒋is the energy difference between i and j .conformations, k—the Boltzmann

constant, T-temperature. The maximum number of MC steps was set to 106.

3.4 Scoring function

All-atom Gō potential

Gō potentials favor native state contacts of the target fold and have been used to

illustrate the energy landscape. Minimalist Gō-models minimize energetic traps

(roughness) on the free energy surface and provide a sufficient model to explain rapid

36

and reliable folding of native sequences.

Figure 3.2 Monte Carlo procedure. The initial conformation at the beginning
of simulations represents a “stretched” conformation with backbone dihedral
angles at 180 °. Side chains dihedral angles are chosen to minimize clashes
with a backbone and neighboring side chains. Each random perturbation
assigns random psi, phi angles to one randomly chosen amino acid and give
random values to all chi angles of all amino acids. A new conformation is
accepted if its energy is les s than the energy of a previous one, or satisfies the
Boltzmann condition.

37

A smoothed atom version of an atomic square the Gō potential (32, 85) is used (Figure

3.4) for all-atom model protein representation. For two atoms i and j separated by a

distance d, the energy Pij(d) was calculated according to the following rules:

If two atoms are in contact in the native conformation, the Gō potential is :

𝑷𝒊𝒋(𝒅) =

{

𝟒(𝒅 − 𝝈)𝟐, 𝒅 < 𝝈,
 −𝟏, 𝝈 ≤ 𝒅 < 𝝀𝝈,

 −𝒆
(−(

𝒅−𝝀𝝈
𝟐𝒔

)
𝟐

)
, 𝝀𝝈 ≤ 𝒅 < 𝝀𝝈 + 𝟑𝒔,

 𝟎, 𝒅 ≥ 𝝀𝝈 + 𝟑𝒔

 (𝟑. 𝟐)

the Gō potential for contacts that are not present in the native conformation:

𝑷𝒊𝒋(𝒅) = {
𝟒(𝒅 − 𝝈)𝟐 , 𝒅 < 𝝈

 𝟎, 𝒅 ≥ 𝝈
 (3.3)

𝝈 = 𝜶 ∙ 𝒓𝒊𝒋 (3.4)

𝒔 =
𝟎. 𝟏 ∙ 𝒓𝒊𝒋

√𝟐 ∙ 𝒍𝒏𝟐
⁄ (3.5)

where rij is a sum of Van Der Waals radii. I chose α = 0.66 and λ=2 since they give the

fastest folding time and sufficient number of trajectories with rmsd in range [1.3Å, 3Å]

for all three proteins. The total energy of a conformation was computed as the sum over

all pairs. The folding results for the three proteins from the training set presented in

Figure 3.4 as scatter plots with RMSD of folded trajectories vs their folding time. I ran

100 trajectories for statistical validation. About 40% of 1crn trajectories, more than 20%

of 1prb trajectories and near 8% of 1ywj trajectories were folded with RMSD ≤ 3Å.

38

Figure 3.3 Soft Core Gō Potential Function.
𝑒𝑖𝑗- two atoms potential, r-distance between two atoms (Å); a)

the Gō potential for native contacts; b) the Gō potential for non-
native contacts

e
ij

e
ij

a)

b)

39

Figure 3.4. Scatter plots of representative runs of RMSD vs folding
time for proteins trajectories folded with the Gō potential. Folding
results for 1crn, 1prb, 1ywj

1prb

E = Gō

1crn

E = Gō

1ywj

E = Gō

40

The square version of the Gō potential described in (85) was initially tested.

However, the energy function was not able to handle steric clashes even being

accompanied with different types of backbone and side chains torsional angles

distributions (see The move set section).

3.4.1 Exploring the Gō Potential well depth

In order to explore the influence of change of the potential well depth during

folding simulations, the average number of Monte Carlo steps required to fold a protein

(simulations time) was divided into 2 equal periods for the first experiment and into 3

periods for the second experiment. For both studies s I started simulations with the well

depth 1; for the next period the depth of the well was increased by 1 (Figure 3.5). The

idea behind those experiments was to allow accepting more trial conformations in the

beginning of simulations and less to the end, accepting conformations that were closer

to the native state. Therefore, I forced the algorithm to look for the fastest folding

pathway. The results (Figure 3.6-Figure 3.11) revealed that for all proteins in the

training set the decrease in folding time was accompanied with significant drop in the

numbers of folded trajectories which meant that more trajectories were trapped in local

minima. Thus, I had to reject this strategy for the sampling algorithm.

41

Figure 3.5: Changing soft core Gō potential well depth. During the length of protein
folding simulations with the Gō potential as a scoring function, the depth of the potential well
was changed from 1 to 3 to accelerate protein folding, which is equivalent to the finding of a
fast folding pathway.
a) an atomic pairwise Gō potential for native contacts b) an atomic pairwise potential for
non-native contacts

0

-1

-2

-3
r

en
er

gy

0

r

1

2

3

1

2

3

a) b)

42

Figure 3.6: Comparison of folding time and RMSD distributions between 2-step
and 3-step change of the Gō potential well depth for 1CRN. For both 2-step and 3-
step energy well depth change a folding time decrease was accompanied with a
folded trajectories (RMSD below 3 Å) dropping off.
a) a top figure demonstrates a folding time distribution for 2-step energy well depth
change (the well depth was changed from 1 to 2, see Figure 3.5), a bottom figure
shows folding time distribution for 3-step potential well change, see Figure 3.5 b) a top
figure illustrates RMDS distribution for 2-step energy well depth change, a bottom
figure presents results for 3-step potential well depth change, see Figure 3.5

a) b)

43

Figure 3.7: Scatter plot RMSD vs folding time comparison between
constant Gō potential well depth and 2-step well depth change for 1CRN.
Speeding up the sampling algorithm by changing well depth of the Gō potential
leads to a fast trapping in local minima. a) a scatter plot of 1crn trajectories with
a frozen energy well depth b) a scatter plot for 1crn for 2-step energy well
change demonstrates the loss of folded trajectories with RMSD below 3Å.

a)

b)

44

a) b)

rmsd (ca)

rmsd (ca)

Figure 3.8: Comparison of folding time and RMSD distributions between 2-step
and 3-step change of the Gō potential well depth for 1PRB. For both 2-step and 3-
step energy well depth change a folding time decrease was accompanied with a
folded trajectories (RMSD below 3 Å) dropping off. a) a top figure demonstrates a
folding time distribution for 2-step energy well depth change (the well depth was
changed from 1 to 2, see Figure 3.5), a bottom figure shows folding time distribution
for 3-step potential well change, see Figure 3.5 b) a top figure illustrates RMDS
distribution for 2-step energy well depth change, a bottom figure presents results for
3-step potential well depth change, see Figure 3.5

45

 a)

b)

Figure 3.9: Scatter plot RMSD vs folding time comparison between
constant Gō potential well depth and 2-step well depth change for 1PRB.
Speeding up the sampling algorithm by changing well depth of the Gō potential
leads to a fast trapping in local minima. a) a scatter plot of 1prb trajectories with
a frozen energy well depth b) a scatter plot for 1prb for 2-step energy well
change demonstrates the loss of folded trajectories with RMSD below 3Å.

46

a) b)

Figure 3.10: Comparison of folding time and RMSD distributions between 2-step
and 3-step change of the Gō potential well depth for 1YWJ. For both 2-step and 3-
step energy well depth change a folding time decrease was accompanied with a
folded trajectories (RMSD below 3 Å) dropping off. a) a top figure demonstrates a
folding time distribution for 2-step energy well depth change (the well depth was
changed from 1 to 2, see Figure 3.5), a bottom figure shows folding time distribution
for 3-step potential well change, see Figure 3.5 b) a top figure illustrates RMDS
distribution for 2-step energy well depth change, a bottom figure presents results for
3-step potential well depth change, see Figure 3.5

47

a)

b)

Figure 3.11: Scatter plot RMSD vs folding time comparison between
frozen Gō potential well depth and 2-step well depth change for 1YWJ.
Speeding up the sampling algorithm by changing well depth of the Gō potential
leads to a fast trapping in local minima. a) a scatter plot of 1ywj trajectories with
a frozen energy well depth b) a scatter plot for 1ywj for 2-step energy well
change demonstrates the loss of folded trajectories with RMSD below 3Å.

48

3.5 The move set

A fast sampling algorithm needs a simple effective move to sustain its speed.

The choice of such move should be defined by the general design of a protein molecule

as a computational object, in spite of the temptation to mimic real protein moves in

solution. Taken into an account that the fewer calculations are required to generate a

new protein conformation for the faster move, I opted for a simple torsional rotation. It

might not be the most effective solution but it was the fastest in terms of our software

design. A single MC step consisted of a backbone move and followed by all side-chain

moves. A backbone move consisted of the rotations of phi and psi angles of one

randomly chosen amino acid. A side-chain move consisted of rotating of the all side-

chain torsion angles. Values for the backbone dihedral angles ϕ, ψ were sampled from

refined Ramachandran basins (72) at each Monte Carlo step. In contrast to traditional-

histogram-based method, continuous and differentiable 2D-distribution functions were

derived for backbone torsional angles (ϕ, ψ) for 8 groups of amino acids. Twenty amino

acids were grouped as following: (1) Val, Ile; (2) Asp, Asn; (3) Ser, Thr (4) Glu, Gln; (5)

Leu, Ala; (6) Gly; (7) Pro; (8) Arg, Cys, His, Lys, Met, Phe, Tyr, Trp. For each group two

2D sampling distribution functions were provided: 1) if an amino acid was not followed

by Pro and 2) if an amino acid was followed by Pro (Figure 3.12 – Figure 3.19). The

backbone-dependent rotamer library (83) was used to sample amino acid side chain

conformations. The library contains rotamer frequencies, mean dihedral angles, and

variances as a function of the backbone dihedral angles. The backbone-dependent

rotamer library is created by using adaptive kernel density estimates for the rotamer

frequencies and adaptive kernel regression for the mean dihedral angles and variances.

49

The method gives a smooth and continuous function of phi and psi to evaluate the

rotamer probabilities, mean angles, and variances. For the non-rotameric degrees of

freedom of amides, carboxylates, and aromatic side chains probability density estimates

are presented as a function of the backbone dihedrals and rotamers of the remaining

degrees of freedom.

Other distribution and strategies for the move set

Backbone. Uniform and Gaussian sampling distributions were also tested for the

development of a fast sampling algorithm. First, values for the backbone dihedral angles

were uniformly sampled from [-180°, 180°] interval at each Monte Carlo step during the

entire length of simulations. Second, angles were drawn from Gaussian distribution with

from 2° to 15° standard deviation at each Monte Carlo step. However, those both

sampling significantly slowdown the speed of simulations and do not converge to

acceptable final structures (a final structure is expected to gain 70 % of the energy of a

native protein structure and has rmsd > 4 A) within 1015 MC steps.

Side chains. Uniform and Gaussian sampling distributions were also used to

sample torsional angles of amino acids side chains. Similar to backbone torsional angle

sampling, values for chi were uniformly sampled from [-180°, 180°] interval at each

Monte Carlo step for all amino acids during the entire length of simulations. For

sampling from Gaussian distribution angles were drawn with 15° standard deviation at

each Monte Carlo step. Those both sampling gave slightly worse performance in

comparison to Dunbrack‘s rotamer library.

50

Figure 3.12: Otwinowski’s backbone torsional angles distributions for all 20
amino acids. a) an amino acid is followed by PRO; b) an amino acid is not followed
by PRO

phi

p
si

phi

p
si

a)

b)

51

Figure 3.13: Otwinowski’s backbone torsional angles distributions for GLY. a) GLY is
followed by PRO; b) GLY is not followed by PRO

phi

phi

p
si

p

si

a)

b)

52

phi

p
si

p

si

phi

a)

b)

Figure 3.14: Otwinowski’s backbone torsional angles distributions for PRO. a) PRO
is followed by PRO; b) PRO is not followed by PRO

53

Figure 3.15: Otwinowski’s backbone torsional angles distributions for VAL, ILE. a)
VAL, ILE are followed by PRO; b) VAL, ILE are not followed by PRO

phi

phi

p
si

p

si

p
si

a)

b)

54

Figure 3.16: Otwinowski’s backbone torsional angles distributions for ASP, ASN. a)
ASP, ASN are followed by PRO; b) ASP, ASN are not followed by PRO

p
si

p

si

phi

phi

a)

b)

55

Figure 3.17: Otwinowski’s backbone torsional angles distributions for SER, THR. a)
SER, THR are followed by PRO; b) SER, THR are not followed by PRO

phi

phi

p
si

p

si

a)

b)

56

Figure 3.18: Otwinowski’s backbone torsional angles distributions for GLU, GLN.
a) GLU, GLN are followed by PRO; b) GLU, GLN are not followed by PRO

phi

phi

p
si

p

si

a)

b)

57

Figure 3.19: Otwinowski’s backbone torsional angles distributions for LEU, ALA. a)
LEU, ALA are followed by PRO; b) GLU, GLN are not followed by PRO

phi

phi

p
si

p

si

a)

b)

58

Figures 3.20 – 3.23 illustrate that Dunbrack’s rotamer libraries help to increases

the number of folded trajectories with RMSD ≤ 3Å and accelerate folding process for all

tested proteins. However, this effect is less significant for all-β protein 1ywj which can

be explained by overall challenge to predict β-sheets (11).

3.6 Simulated annealing

Monte Carlo procedure (Figure 3.2) is accompanied by Simulated Annealing

scheme (48) (Figure 3.24). Simulated annealing is a local search that uses hill-climbing

moves to escape local optima. The concept of the algorithm is inspired by an analogy

between the physical annealing process of solids. Annealing is a thermal process for

obtaining low energy states of a solid in a heat bath. It consists of two steps (48):

1) the temperature is increased to a maximum value at which the solid melts;

2) the temperature is gradually decreased until the particles arrange themselves

in the ground state of the solid.

Particles in the liquid phase are arranged randomly. In the solid (ground) state

they are arranged in a structured lattice with the corresponding minimal energy. The

ground state is obtained when the initial value of the temperature is sufficiently high and

the cooling is slow. Otherwise, the solid will be frozen into a meta-stable state.

In my annealing procedure the initial temperature T0 was set to 8 and was updated

every 100th MC step. Three cooling schedules were used:

a) an exponential schedule

59

𝑇𝑘 = 𝑇0𝑎
𝑘, 0 < 𝑎 < 1 , 𝑘 − 𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝑠𝑡𝑒𝑝 (3.6)

b) a linear schedule

60

Figure 3.20: Dunbrack’s library improve prediction of 1CRN vs Gaussian
distributions for side chains torsional angles. a) scatter plots Cα RMSD vs folding time,
a top figure – Gaussian distribution for chi angles with 15° standard deviation, a bottom
figure – Dunbrack’s library for chi angles; b) scatter plots all-atom RMSD vs folding time, a
top figure – Gaussian distribution for chi angles with 15° standard deviation, a bottom figure
– Dunbrack’s library for chi angles

a) b)

61

Figure 3.21: Application of Dunbrack’s library decrease folding time for 1CRN.
a) Folding time distribution with applied Gaussian distribution for chi angles; b) Folding
time distribution with applied Dunbrack’s library for chi angles.

a)

b)

62

Figure 3.22: Dunbrack’s library improve prediction of 1PRB vs Gaussian distributions
for side chains torsional angles. a) scatter plots Cα RMSD vs folding time, a top figure –
Gaussian distribution for chi angles with 15° standard deviation, a bottom figure –
Dunbrack’s library for chi angles; b) scatter plots all-atom RMSD vs folding time, a top
figure – Gaussian distribution for chi angles with 15° standard deviation, a bottom figure –
Dunbrack’s library for chi angles

a) b)

63

Figure 3.23: Application of Dunbrack’s library decrease folding time and increase
folded trajectories with RMSD below 4Å for 1YWJ.
a) Folding time distribution with applied Gaussian distribution (top) vs. Dunbrack’s library
(bottom), for chi angles; b) RMSD distribution with applied Gaussian distribution (top) vs.
Dunbrack’s (bottom) library for chi angles.

a) b)

64

𝑇𝑘 = 𝑇0 − 𝜂𝑘, (3.7)

c) a logarithmic schedule

𝑇𝑘 =
𝑇𝑘−1

1 +
𝑇𝑘−1 log(1 + 𝛿)

3 ∗ 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

, 𝛿 = 1 (3.8)

I ran 100 trajectories for each protein with the same initial conditions for the

statistical validation of the folding results. The only difference between trajectories is a

seed value that is used for random number generation (see Random number chapter).

The most successful in terms of balance of folding time and folded trajectories

number was a logarithmic schedule (Equation 3.8). By changing δ values I speeded up

the temperature decrease that should force the sampling algorithm to find a faster

folding pathway or to trap trajectories at local minimum (an energetic trap). The results

of those experiments, shown in Figures 3.25 - Figure3.33, illustrated the latter; the

decrease in folding time had a high price of losing folded trajectories with RMSD below

3Å. The optimal for parameter δ was 1.

65

 Generated initial conformation X;

Generated initial temperature T0 ;

n = 0;

REPEAT

 n = n + 1;

 m = 0;
 REPEAT

 m = m + 1;
 Y = generate_new_conformation(X, Tk);

 IF accept_conformation(X, Y, Tk) THEN X=Y

 UNTIL m = M OR m = N;

 Tk+1 = update(Tk);

 k = k + 1;
UNTIL Tk = 0 OR Protein Native Energy is reached
 OR in Protein Energy Local Minimum

 OR n = N

Fig 3.24: Pseudo code for simulated annealing algorithm.
N – the total number of Monte Carlo Steps; M-number of Monte Carlo
steps after which the temperature is updated; M < N; T

k
 – current

temperature.

66

Figure 3.25: Folding speed distribution for 1CRN with different values for
Simulated Annealing (SA) parameter δ. SA parameter δ allows folding speed
regulation, see Equation 3.8.
a) δ = 1; b) δ = 0.8 c) δ = 0.5

a) b)

c)

67

Figure 3.26: Cα RMSD distribution for 1CRN with different values for Simulated
Annealing (SA) parameter δ. SA parameter δ allows folding speed regulation, see
Equation 3.8.
a) δ = 1; b) δ = 0.8 c) δ = 0.5

a) b)

c)

68

Figure 3.27: Scatter plots Cα RMSD vs, folding speed for 1CRN with different
values for Simulated Annealing (SA) parameter δ. SA parameter δ allows folding
speed regulation, see Equation 3.8.
a) δ = 1; b) δ = 0.8 c) δ = 0.5

a) b)

c)

69

Figure 3.28: Folding speed distribution for 1PRB with different values for
Simulated Annealing (SA) parameter δ. SA parameter δ allows folding speed
regulation, see Equation 3.8.
a) δ = 1; b) δ = 0.8 c) δ = 0.5

a) b)

c)

70

Figure 3.29: Cα RMSD distribution for 1PRB with different values for Simulated
Annealing (SA) parameter δ. SA parameter δ allows folding speed regulation, see
Equation 3.8.
a) δ = 1; b) δ = 0.8 c) δ = 0.5

a) b)

c)

71

Figure 3.30: Scatter plots Cα RMSD vs, folding speed for 1PRB with different
values for Simulated Annealing (SA) parameter δ. SA parameter δ allows folding
speed regulation, see Equation 3.8.
a) δ = 1; b) δ = 0.8 c) δ = 0.5

a) b)

c)

72

Figure 3.31: Folding speed distribution for 1YWJ with different values for
Simulated Annealing (SA) parameter δ. SA parameter δ allows folding speed
regulation, see Equation 3.8.
a) δ = 1; b) δ = 0.8 c) δ = 0.5

a) b)

c)

73

Figure 3.32: Cα RMSD distribution for 1YWJ with different values for Simulated
Annealing (SA) parameter δ. SA parameter δ allows folding speed regulation, see
Equation 3.8.
a) δ = 1; b) δ = 0.8 c) δ = 0.5

a) b)

c)

74

Figure 3.33: Scatter plots Cα RMSD vs, folding speed for 1YWJ with different
values for Simulated Annealing (SA) parameter δ. SA parameter δ allows folding
speed regulation, see Equation 3.8.
a) δ = 1; b) δ = 0.8 c) δ = 0.5

a) b)

c)

75

3.7 Random numbers generation

A random number generator is an important algorithmic tool for Monte Carlo

based simulations. In my algorithm it is used for the generation and the acceptance of

protein conformations. At each MC step the sampling algorithm requires at least 6*N

random numbers, where N is a protein sequence length. Therefore it is essential to

choose a suitable random number generation algorithm for protein structure prediction.

A random number generator (RNG) is a computational device that produces a

sequence of numbers that cannot be reasonably predicted better than by a random

chance. However, any program will produce output that is entirely predictable, hence

not truly “random.” Nevertheless, practical computer “random number generators” are in

common use. Good random number generators should pass a certain list of statistical

tests. The user should also be aware of any limitations of RNGs, so that he or she will

be able to judge whether they are relevant to the case at hand.

Mersenne Twister (MT) (C/C++ code is listed in Appendices section) was chosen

for the sampling algorithm. MT is a pseudo RNG (PRNG) that satisfies all the

requirements to be rated as a good PRNG. It provides fast generation of very high-

quality pseudorandom numbers with a long period length of 219937-1. Since MT uses a

machine word length, a programmer should be very careful when employs specific to a

programming language/compiler variables that refer to machine architecture. For

example, I noticed that the same C++ code can produce different results in two different

OS, such as Windows and Linux. Figure 3.34 illustrates how original 2-dimensional

distribution (Figure 3.34, a)) was correctly sampled in Windows7 (Figure 3.34, b)) and

incorrectly sampled in Linux (32-bit) (Figure 3.34, c)). The discovery was crucial for the

https://en.wikipedia.org/wiki/Number
https://en.wikipedia.org/wiki/Random

76

sampling algorithm.

Figure 3.34: The same random number generator algorithm
implementation may give dissimilar results in different Operating
Systems (OS)
a) original distribution; b) sampling of the original distribution in Windows 7;
c) sampling of the original distribution in Linux

a)

b) c)

77

3.8 The protein structure prediction software

The software is built on OOPS, an Open Protein Simulator. OOPS provides a

framework where different approaches and algorithms for protein folding and structure

prediction can be tested. OOPS is based on the PL and its plugin architecture (21).

The overall design of OOPS is illustrated in Figure 3.35. The C++ main() functions call

plugins to initiates and finalizes the main ab initio routine and energy terms functions

located in separate plugins. The module that contains the design of a molecule and

functions required for molecule manipulations such as a rotation of torsional angles,

property of atoms and amino acids and etc. is located in PL library which is an

independent entity of the software.

There are main (but not limited to) additions and changes that has been introduced to

the original version of OOPS:

1) Optimized rotation procedure for a backbone and side chains.

2) Corrected side chains definitions.

3) A new Monte Carlo sampling algorithm and related to it functions.

4) A new version of Mersenne Twister, a random number generator.

5) Introduction of torsional angles sampling distributions to the algorithm.

6) Energy function design.

78

oops.cpp:
main ()

AbInitio

plugin

Gō potential
plugin

Protein structure definition and protein manipulations library
(PL)

Figure 3.35: OOPS software design

Lennard-Jones

plugin

Solvation
potential

plugin

Hydrogen bonding
potential plugin

Read pdb plugin Save to pdb plugin

79

Chapter 4

Energy Optimization

4.1 The optimization of energy weights

In the optimization algorithm an energy function was a weighted sum of energy

terms I chose to test, the Lennard-Jones potential, the Lazaridis-Karplus solvation

potential and hydrogen bonding potential, and the Gō potential, for which the sampling

algorithm was tuned to maximize the number of folded trajectories and to minimize

protein folding time:

𝐸 = 𝑤0𝐸𝐺Ō + 𝑤1𝐸1 + 𝑤2𝐸2 +⋯+ 𝑤𝑁𝐸𝑁 ,∑𝑤𝑖

𝑁

𝑖=0

= 1 (4.1)

The optimization process started with the Gō weight 𝑤0 = 1 and zero weights for

other energy terms. At the next iteration step I used the Dirichlet distribution [42] with

𝛼 = 1 to generate random 𝑁 + 1 weights that summates to 1 and 𝑤0 < 1. I calculated

how many protein trajectories out of 100 were folded for each protein. A protein

trajectory was considered to be folded if the backbone RMSD of a final structure was

equals or less 3 Å. If the number of folded trajectories exceeded 3, I saved the current

Gō weight as a reference for the next step and generated a new random combination of

weights with 𝑤0 < 𝑤0
𝑝𝑟𝑒𝑣

. If the number of folded trajectories were less than 3, I

generated a new set of weights. The optimization process was stopped after a pre-

defined number of steps M = 100, or the Gō weight became zero. I also incorporated

80

the tuning procedure for the reduced Gō potential weight 𝑤0. For the fixed value

of 𝑤0 I generated L= 10 sets of (𝑤1, … , 𝑤𝑁), ∑ 𝑤𝑖
𝑁
𝑖=0 = 1, and chose the combinations of

weights that gave the bigger number of folded trajectories for all proteins (Figure 4.1).

4.2 Finding a fast folding pathway with the Gō Potential

To outline the energy funnel I used our MMC routine with the Gō potential as a

scoring function 𝐸 = 𝐸𝐺ō. For each of the tested proteins I ran 100 trajectories to assess

how many of them were folded. I considered a protein to be folded if the backbone

RMSD was within 3 Å to the native state. It should be mentioned that the criterion alone

might not distinguish correctly formed secondary structures due to the nature of a Gō

potential (85). Simulations were started from a fully extended protein conformation with

backbone dihedral angles at 180⁰. Side chain dihedral angles were chosen to minimize

the number of clashes with a backbone and neighboring side chains. The average

numbers of folded trajectories over 5 runs folding were 35 for 1crn trajectories, 21 for

1prb trajectories and 6 ywj trajectories (Table 4.1). Scatter plots of RMSD vs. folding

time for a representative run are presented in Figure 3.4. Successful trajectories for

1crn and 1prb were folded within 6K Monte Carlo steps, for 1ywj successful folding was

reached within 4K Monte Carlo steps. Energy landscapes for representative trajectories

are shown in Figure 4.2.

81

Run 100 trjs for each of 3
proteins

If 3%
trjs

have
rmsd

NO

Gen {w
0
ʹ, …, w

N
ʹ}, w

0
ʹ < w

0

and

Ʃwʹ

i
 = 1

YES

iter < M

YES

Iter < M
AND

wʹ
0
!= 0

NO

YES

start: w
0
 = 1

and other w =

Print {w
GO

ʹ, …, w
N
ʹ}

Tuning:
Fix w

0
ʹ, gen {w

1
”, …, w

N
″}

 L times

NO

Figure 4.1. The optimization of energy weights flow chart.
The optimization process starts with Gō weight equals to 1and zero weights for other energy
terms. At the next iteration step I generate random weights that summate to 1 and Gō weight
less than 1, calculate how many protein trajectories out of 100 are folded for each protein. If the
number of folded trajectories exceeds 3, I save the current Gō weight as a reference for the next
step and generate a new random combination of weights with Gō weight less than the previous
one. If the number of successful trajectories less than 3, I generate a new set of weights. The
optimization process stops after defined number of steps or the weight of Gō becomes zero.

82

 1crn
1prb

1ywj

Figure 4.2. Energy landscapes for representative protein
folding trajectories folded with the Gō potential only. Results
for 1crn, 1prb, 1ywj

83

4.3 Addition of a single energy term to the Gō potential allows reduction of its

weight

To explore effects of additional energy terms on protein folding and the Gō

potential weight reduction, the Lennard-Jones (LJ) potential (Equation 4.3), the

Lazaridis-Karplus (LK) solvation potential (Equations 4.4-4.5),, and hydrogen bonding

(HB) potentials (Equation 4.6), were used in the following scoring function:

𝐸 = 𝑤𝐺ō 𝐸𝐺ō + 𝑤𝑎𝑑𝑑𝐸𝑎𝑑𝑑 , 𝑤𝐺ō + 𝑤𝑎𝑑𝑑 = 1 (4.2)

where 𝐸𝐺ō is the Gō potential, 𝐸𝑎𝑑𝑑 is one of three potentials chosen for the test, 𝑤𝐺ō

and 𝑤𝑎𝑑𝑑 are corresponding energy weights. Scaling factors were applied to each

added energy term. I started simulations with 𝑤𝐺ō = 0.95 and continued to reduce the

values of 𝑤𝐺ō by 0.01 for each next run of simulations till 𝑤𝐺ō = 0.8 or the number of

successful trajectories was significantly decreased.

4.3.1 Lennard Jones Potential

Van der Waals interactions were modeled with 6-12 Lennard-Jones potential

(23), where a linear function was used in a repulsion mode. This potential was utilized in

early versions of Rosetta algorithm for the final refinement stage (12, 78), where

physically realistic, atomic- level potentials were required for a better presentation of the

primary contributions to stability and structural specificity.

𝑬𝑽𝑫𝑾 =∑∑

{

 ((

𝒓𝒊𝒋

𝒅𝒊𝒋
)

𝟏𝟐

− 𝟐(
𝒓𝒊𝒋

𝒅𝒊𝒋
)

𝟔

)𝒆𝒊𝒋 ,
𝒅𝒊𝒋

𝒓𝒊𝒋
> 𝟎. 𝟔

[−𝟖𝟕𝟓𝟗(
𝒅𝒊𝒋

𝒓𝒊𝒋
) + 𝟓𝟔𝟕𝟐. 𝟎] 𝒆𝒊𝒋, 𝒆𝒍𝒔𝒆𝒋>𝒊𝒊

 (4.3)

84

where rij is a sum of VDW radii of atoms i and j, dij is a distance between two atoms i

and j, eij is a depth of VDW well which is calculated as a square root of energy

CHARMM parameters [19] for Van der Waals interactions ei and ej.

4.3.2 Solvation Energy

Solvation effects are presented by the model of Lazaridis and Karplus (50), a

Gaussian solvent-exclusion model. It based on theoretical considerations and

parametrized with experimental data. The Lazaridis-Karplus solvation energy (EEF1) is

used in CHARMM 19 and ROSETTA.

𝑬𝒔𝒐𝒍𝒗 = ∑𝜟𝑮𝒊
𝒓𝒆𝒇

−∑{
𝟐𝜟𝑮𝒊

𝒇𝒓𝒆𝒆

𝟒𝝅√𝝅𝝀𝒊𝒓𝒊𝒋
𝟐
𝒆𝒙𝒑(−𝒙𝒊𝒋

𝟐)𝑽𝒋 +
𝟐𝜟𝑮𝒋

𝒇𝒓𝒆𝒆

𝟒𝝅√𝝅𝝀𝒋𝒓𝒊𝒋
𝟐
𝒆𝒙𝒑(−𝒙𝒋𝒊

𝟐)𝑽𝒊}

𝒊>𝒋𝒊

 (4.4)

where 𝜟𝑮𝒊
𝒇𝒓𝒆𝒆

 and 𝜟𝑮𝒊
𝒓𝒆𝒇

 are pre-calculated the solvation free energy and the reference

solvation free energy of for an atom type i, rij is the distance between atoms type i and j

atoms, 𝝀𝒊 is a correlation length for atom type i, Vi is the volume of atom type i, Ri is the

Van der Waals radius of atom i and

𝒙𝒊𝒋 =
𝒓𝒊𝒋 − 𝑹𝒊

𝝀𝒊
 (4.5)

85

4.3.3 Hydrogen Bonding

I applied an orientation-dependent hydrogen bonding potential in this study (49).

This potential is a secondary structure- and orientation-dependent potential derived

from the analysis of hydrogen bond geometries in high-resolution protein structures. In

our simulations I used only backbone-backbone hydrogen bonding potential since side

chain-side chain and backbone-side chain hydrogen bonding potentials would require

different weights (6, 7, 49, 77, 86). The hydrogen bond energy is a linear combination of

the four terms:

𝑬𝑯𝑩 = 𝑬(𝜹𝑯𝑨) + 𝑬(𝜣) + 𝑬(𝜳) + 𝑬(𝜲) (4.6)

where 𝑬(𝜹𝑯𝑨) depends on the distance between hydrogen and acceptor atoms, 𝑬(𝜣)

depends on the angle at the hydrogen, 𝑬(𝜳) depends on the angle at the acceptor

atom and 𝑬(𝜲) depends on the dihedral angle in the hydrogen bonds involving in sp2

hybridized acceptor.

4.3.4 Results

The analysis of simulations for weights pairs (𝑤𝐺ō , 𝑤𝐿𝐽) showed that the increase

of the LJ potential weight reduced the average number of folded trajectories for 𝑤𝐺ō <

0.95 without any significant change in folding time, despite the fact that more

calculations for the scoring function were required (Figure 4.3-Figure 4.5). The

inclusion of the LJ was the most beneficial for 1crn, 1prb. I observed some increase in

the average number of successful trajectories for 𝑤𝐺ō = 0.95,𝑤𝐿𝐽 = 0.05 for those

86

proteins. The increase of HB potential weight dropped the average number of folded

trajectories with no significant change in folding speed for the examined proteins

(Figure 4.6 - Figure 4.8). The most effective energy potential was the LK potential in

terms of the increased average number of folded trajectories. For the weights 𝑤𝐺ō = 0.8,

𝑤𝐿𝐾 = 0.2 the average number of folded trajectories was comparable to that when the

Gō potential only was applied for the tested proteins (Figure 4.9-Figure 4.11). At the

same time, folding time for the proteins was increased.

4.4 Adding all three energy terms to the Gō potential

I composed a scoring energy function to test the influence of three additional

energy terms on protein folding as following:

𝐸 = 𝑤𝐺ō𝐸𝐺ō + 𝑤𝐿𝐽𝐸𝐿𝐽 +𝑤𝐿𝐾𝐸𝐿𝐾 + 𝑤𝐻𝐵𝐸𝐻𝐵 , 𝑤𝐺ō + 𝑤𝐿𝐽 + 𝑤𝐿𝐾 + 𝑤𝐻𝐵 = 1 (12)

To minimize the burden of calculations at this stage, I chose weights for energy terms

from a 4D-grid [min 𝑤𝐺ō,max𝑤𝐺ō)

Χ[min𝑤𝐿𝐽 , max𝑤𝐿𝐽]Χ[min𝑤𝐿𝐾 ,max𝑤𝐿𝐾]Χ[min𝑤𝐻𝐵 , max𝑤𝐻𝐵] with the extreme values

min𝑤𝐺ō = 0.8 and max𝑤𝐺ō = 1, min𝑤𝐿𝐽\𝐿𝐾\𝐻𝐵 = 0 and max𝑤𝐿𝐽\𝐻𝐵\𝐿𝐾 = 0.2. A grid step

for each dimension was set to 0.05. For each quadruplet (𝑤𝐺ō , 𝑤𝐿𝐽, 𝑤𝐿𝐾, 𝑤𝐻𝐵) I ran five

trials to simultaneously fold three proteins to calculate the average percentage of folded

trajectories. Table 4.1 lists the average number of folded trajectories for each protein,

where at least two weights are not equal to 0. Four combinations of weights, (0.8, 0,

0.05, 0.15), (0.8, 0.05, 0.05, 0.1), (0.8, 0.05, 0, 0.15), (0.8, 0.1, 0, 0.1) gave the best

performance with at least 3% of folded trajectories for each protein.

87

E= 0.8*Gō + 0.15*LJ

1crn

Figure 4.3. Scatter plots RMSD vs folding time for 1crn
trajectories folded with E= w

Gō
*Gō+w

LJ
*LJ potential. The

average numbers of folded trajectories with rmsd ≤ 3 Å decreased
with no significant change in folding time with the LJ weight
increase.

1crn

E = Gō

E = 0.95*Gō + 0.05*LJ

1crn

88

Figure 4.4. Scatter plots RMSD vs folding time for 1ywj
trajectories folded with E= w

Gō
*Gō+w

LJ
*LJ potential. The

average numbers of folded trajectories with rmsd ≤ 3 Å decreased
with no significant change in folding time with the LJ weight
increase.

1ywj

E = Gō

E = 0.95* Gō + 0.05*LJ

1ywj

E = 0.8*Gō + 0.15*LJ

1ywj

89

Figure 4.5. Scatter plots RMSD vs folding time for 1prb trajectories
folded with E= w

Gō
*Gō+w

LJ
*LJ potential. The average numbers of

folded trajectories with rmsd ≤ 3 Å decreased with no significant change
in folding time with the LJ weight increase.

E = Gō

1prb

E = 0.95* Gō + 0.05*LJ

1prb

E = 0.8* Gō + 0.15*LJ

1prb

90

1crn

E = Gō

E = 0.95* Gō + 0.05*HB

1crn

E = 0.8*Gō + 0.15*HB

1crn

Figure 4.6 Scatter plots RMSD vs folding time for 1crn trajectories
folded with E= wGō*Gō+wHB*HB potential. The average numbers of
folded trajectories with rmsd ≤ 3 Å decreased with no significant change
in folding time with the HB weight increase.

91

Figure 4.7. Scatter plots RMSD vs folding time for 1ywj trajectories
folded with E= w

Gō
*Gō+w

HB
*HB potential. The average numbers of folded

trajectories with rmsd ≤ 3 Å decreased with no significant change in folding
time with the HB weight increase.

1ywj

E = Gō

E = 0.95* Gō + 0.05*HB

1ywj

E = 0.8* Gō + 0.15*HB

1ywj

92

Figure 4.8. Scatter plots RMSD vs folding time for 1prb
trajectories folded with E= w

Gō
*Gō+w

HB
*HB potential. The

average numbers of folded trajectories with rmsd ≤ 3 Å decreased
with no significant change in folding time with the LJ weight increase.

1prb

E = Gō

E = 0.95* Gō + 0.05*HB

1prb

E = 0.85* Gō + 0.15*HB

1prb

93

Figure 4.9. Scatter plots RMSD vs folding time for 1crn trajectories folded
with E= w

Gō
*Gō+w

LK
*LK potential. The average numbers of folded trajectories

with rmsd ≤ 3 Å did not change with the LK weight increase. Folding time
increase was observed.

1crn

E = Gō

E = 0.95* Gō + 0.05*LK

1crn

E = 0.8* Gō +
0.2*LK

1crn

94

1ywj

E = Gō

E = 0.9* Gō + 0.1*LK

1ywj

E = 0.8* Gō + 0.2*LK

1ywj

Figure 4.10. Scatter plots RMSD vs folding time for 1ywj
trajectories folded with E= wGō*Gō+wLJ*LK potential. The average
numbers of folded trajectories with rmsd ≤ 3 Å did not change with the
LK weight increase. Folding time increase was observed.

95

Figure 4.11. Scatter plots RMSD vs folding time for 1prb trajectories
folded with E= w

Gō
*Gō+w

LK
*LK potential. The average numbers of

folded trajectories with rmsd ≤ 3 Å did not change with the LK weight
increase. Folding time increase was observed.

E = Gō

1prb

E = 0.9* Gō + 0.1*LK

1prb

E = 0.8* Gō + 0.2*LK

1prb

96

E= wGō *Gō+wLJ *LJ+wLK *LK+wHB *HB 1crn 1ywj 1prb

(1,0,0,0) 35 6 21

(0.8, 0, 0.1, 0.1) 24 1 18

(0.8, 0, 0.15, 0.05) 11 0 4

(0.8, 0, 0.05, 0.15) 28 5 27

(0.8, 0.05, 0.15, 0) 9 1 5

(0.8, 0.05, 0.1, 0.05) 21 0 9

(0.8, 0.05, 0.05, 0.1) 22 3 19

(0.8, 0.05, 0, 0.15) 29 3 22

(0.8, 0.1, 0.1, 0) 10 0 3

(0.8, 0.1, 0, 0.1) 20 4 16

(0.8, 0.1, 0.05, 0.05) 27 0 13

(0.8, 0.15, 0.05, 0) 10 0 6

(0.8, 0.15, 0, 0.05) 17 1 9

Table 4.1. The folding results for energy terms weights taken on a grid.

1
st

 column list weights combinations; 2
nd

, 3
rd

 and 4
th

 list proteins folded
trajectories with RMSD ≤ 3 Å.

97

4.5 The proposed energy optimization algorithm finds several combinations of

weights

I demonstrated that the inclusion of all three energy terms reduced the Gō

potential weight to 0.8. I tested further reduction of the Gō potential weight running our

Monte Carlo based optimization algorithm. Within fifty iterations I found seventeen

combinations of weights with the Gō potential weight below 0.8 (Table 4.2). For each of

those combinations I repeated simulations five times. The combinations with the Gō

potential weight greater 0.54 gave reliable results, which meant the average number of

folded trajectories for every protein exceeded three. Two combinations with the lowest

Gō potential weight and the highest number of folded trajectories for all tested proteins

turned out to be outliers; all five repeated simulations gave zero trajectories for all

proteins.

4.6 Correlation between the number of folded trajectories and energy terms

weights

In this section I addressed the question: whether the number of folded

trajectories correlated with the energy weights or were due to pure chance alone? I

used Canonical Correlation Analysis (CCA) to explore the relationships between two

random multivariate variables, 3-variable set associated with the number of folded

trajectories for the three tested proteins (1crn, 1prb and 1ywj) and 4-variable set that

represented weights for four energy terms (the Gō potential, the LJ potential, the LK

solvation potential and hydrogen bonding potential) respectively.

98

Table 4.2. Folded trajectories of training set’s proteins and
energy terms weights derived with novel energy weights
optimization algorithms.

1crn 1prb 1ywj wGō wLJ wLK wHB

24 19 16 0.502633 0.358179 0.0141239 0.125064

33 38 3 0.503473 0.158081 0.125194 0.213252

15 3 4 0.518735 0.110758 0.110646 0.259862

33 18 3 0.534161 0.273634 0.0219685 0.170237

13 3 5 0.538649 0.403826 0.012412 0.045113

5 4 4 0.540561 0.304886 0.0379914 0.116562

7 12 4 0.541796 0.182007 0.264814 0.011383

4 6 8 0.628141 0.228282 0.0158063 0.127771

15 10 3 0.658026 0.196777 0.120762 0.024435

35 31 7 0.671296 0.156325 0.0448453 0.127533

21 11 3 0.671544 0.0786879 0.182639 0.067129

32 18 8 0.707932 0.0446181 0.214877 0.032574

30 12 3 0.714463 0.0128168 0.165884 0.106837

25 16 7 0.729089 0.0550044 0.14114 0.074767

29 24 3 0.731645 0.0150575 0.209363 0.043934

27 17 4 0.797442 0.0631897 0.0487766 0.090592

99

To collect the data for the statistical test, I generated a sample of 50 random 1-

by-4 vectors 𝑤𝑖 = (𝑤𝑖
𝐺ō
, 𝑤𝑖

𝐿𝐽, 𝑤
𝑖
𝐿𝐾, 𝑤

𝑖
𝐻𝐵) , 𝑖 = 1… 50 for energy weights. Vectors were

drawn from the Dirichlet distribution with α = 1 and 𝑤𝑖
𝐺ō + 𝑤

𝑖
𝐿𝐽 + 𝑤

𝑖
𝐿𝐾 + 𝑤

𝑖
𝐻𝐵 = 1. For

each weight vector from the sample I ran 100 trajectories for each protein to calculate

the number of folded trajectories for the folding statistics. CCA was carried out in SAS.

SAS reported (Table 4.3, a) - b)) the significant canonical correlation γ = 0.654556 with

the Wilks’ lambda Λ = 0.43883230; F= 3.47; d.f. = 12, 114.06; p-value = 0.0002 for the

first canonical pair, which means that there is a linear correlation between two sets of

variables, the energy terms weights and the numbers folded proteins trajectories.

Canonical coefficients for the linear correlation are listed in Table 4.4 in the first

columns for each random multivariate variable. Since the Gō potential weight dominated

over the other energy terms weights, I ran CCA test for the same weights set with each

vector component divided by its Gō weight 𝑤𝑖 = (1,
𝑤𝐿𝐽
𝑖

𝑤𝐺ō
𝑖⁄ ,
𝑤𝐿𝐾
𝑖

𝑤𝐺ō
𝑖⁄ ,
𝑤𝐻𝐵
𝑖

𝑤𝐺ō
𝑖⁄) to get

better sense how the LJ potential, the LK solvation potential and hydrogen bonding

potential influence protein structure prediction. The first canonical pair (𝑈1, 𝑉1) (Table

4.5) is represented as:

𝑈1 = −0.07 ⋅ 1𝑐𝑟𝑛 − 0.04 ⋅ 1𝑝𝑟𝑏 + 0.13 ⋅ 1𝑦𝑤𝑗 (13)

𝑉1 = 3.36 ⋅ 𝐿𝐽 + 2.43 ⋅ 𝐿𝐾 + 5.92 ⋅ 𝐻𝐵 (14)

As seen from the values of the canonical coefficients for 𝑉1 protein structure prediction

is mostly influences by the LK solvation energy and the LJ potential and to a lesser

extent by hydrogen bonding potential.

100

Table 4.3 CCA statistics. a) Canonical correlation values for 1
st

, 2
nd

 and 3
rd

 canonical

pairs are listed in the first column; b) only first 1
st

 canonical pair that has a small Wilk’s
Lambda value 0.43883230 with p-value 0.0002

a)

b)

101

Table 4.4. CCA raw canonical coefficients. a) the first column lists

coefficients for 1
st

 canonical variable 𝑈1 which is a linear combination of
three random variables that represent folded trajectories for three proteins
1crn (crambin), 1prb (album) and 1ywj (wwdom). b) the first column lists

coefficients for 1
st

 canonical variable 𝑉1 which is a linear combination of
four random variables that represent energy weights for four energy terms:
the Gō potential (GOP), the Lennard Jones potential (LJ), the Lazaridis-
Karplus solvation potential (LK) and hydrogen bonding potential (HB).

a)

b)

102

a)

b)

Table 4.5. CCA scaled raw canonical coefficients. Scaling each energy weights
combinations to its Gō potential weight simplifies analysis of contributions of the
Lennard-Jones potential (LJ), the Lazaridis –Karplus solvation (LK) and hydrogen
bonding (HB) potentials to protein structure prediction a) the first column lists

coefficients for 1
st

 canonical variable 𝑈1 which is a linear combination of three
random variables that represent folded trajectories for three proteins 1crn
(crambin), 1prb (album) and 1ywj (wwdom). b) the first column lists coefficients for

1
st

 canonical variable 𝑉1 which is a linear combination of three random variables
that represent energy weights for three energy terms: the Lennard Jones potential
(LJ), the Lazaridis-Karplus solvation potential (LK) and hydrogen bonding potential
(HB).

103

4.7 Application of optimal weights to predict structure of all-α and α/β proteins

Finally, I conducted experiments to investigate whether the optimized weights

can be used to predict structure of proteins different from those that was used in the

weight optimization procedure. I chose three small proteins that represent three different

folds (Table 4.6). For each reliable combination of weights (Table 4.7) I ran 100

trajectories for each protein. All simulations were started from fully extended chains (see

Methods section for more details). Eleven weights combinations gave at least two

folded trajectories with RMSD less than 4 Å for 1i2t, an all α protein (Table 4.2). The

best prediction for the weight combination 𝑤𝐺𝑜 = 0.658026,𝑤𝐿𝐽 = 0.196777, 𝑤𝐿𝐾 =

0.120762, 𝑤𝐻𝐵 = 0.0244345 with the smallest weight for the Gō potential had RMSD to

native structure 1.38 Å (Figure 4.11); the all-α protein was folded within 9000 Monte

Carlo steps (Figure 4.11, c)). For 2p5k, an α/β protein, two weights combinations gave

one folded trajectory with RMSD less than 4.5 Å. The best 2p5k final structure for the

weight combination 𝑤𝐺𝑜 = 0.658026, 𝑤𝐿𝐽 = 0.196777, 𝑤𝐿𝐾 = 0.120762, 𝑤𝐻𝐵 =

0.0244345 had RMSD 4.43 Å (Figure 4.12) and was folded within 9000 Monte Carlo

steps (Figure 4.12, c)). As expected, there were no trajectories for 1zlm, an all β

protein, with RMSD below 8 Å for any combinations of weights listed in Table 4.7.

104

Protein PDB ID code Chain Class # Residues

Arginine repressor 2p5k A α/β 64

HYD protein 1i2t A all-α 61
Osteoclast stimulating factor

1
1zlm A all -β 58

Table 4.6 Protein structures used to test optimized weights. The 3 proteins belong
to different SCOP classes and have comparable sequence lengths.

2p5k

rmsd ≤ 4.5 Å

1i2t

rmsd ≤ 4Å
wGō wLJ wLK wHB

0 0 0.540561 0.304886 0.0379914 0.116562

0 0 0.541796 0.182007 0.264814 0.011383

0 0 0.628141 0.228282 0.0158063 0.127771

0 2 0.658026 0.196777 0.120762 0.024434

0 0 0.671296 0.156325 0.0448453 0.127533

1 5 0.671544 0.0786879 0.182639 0.067128

0 4 0.707932 0.0446181 0.214877 0.032573

0 2 0.714463 0.0128168 0.165884 0.106837

0 3 0.729089 0.0550044 0.14114 0.074767

0 5 0.731645 0.0150575 0.209363 0.043934

2 8 0.797442 0.0631897 0.0487766 0.090592

Table 4.7. Prediction results for reliable weights for proteins not
included into the training set. Folded trajectories derived with
optimized energy terms weights.

105

Figure 4.11. Prediction results for 1i2t. Optimized energy weights with w
Gō

=

0.658 , w
LJ

= 0.196777, w
LK

= 0.120762 , w
HB

= 0.0244345 predict structure of all-α

protein 1i2t. a) Scatter plot RMSD vs folding time for 100 trajectories (only those
with rmsd ≤12Å are visualized) ; b) energy profile of trajectory with final structure
rmsd 1.38 Å; c) superposition of 1i2t native structure (in cyan) with predicted
structure (red) with RMSD 1.38Å

1i2t

1i2t

1i2t

a)

b) c)

106

 a)

b) c)

2p5k

2p5k 2p5k

Figure 4.12. Prediction results for 2p5k. Optimized energy weights with w
Gō

=

0.671544 , w
LJ

= 0.182639 , w
LK

= 0.182639 , w
HB

= 0.0671288 predict α/β protein

2p5k. a) Scatter plot RMSD vs folding time for 100 trajectories (only those with
rmsd ≤12Å are visualized); b) energy profile of trajectory with final structure rmsd
4.23 Å; c) superposition of 2p5k native structure (in cyan) with predicted structure
(red) with RMSD 4.23Å

107

Chapter 5

Discussion and Conclusions

There are two widely used approaches that extract energy parameters for protein

structure prediction. Linear programming (24, 58) performs optimizations on a large

number of parameters and constraints with the assumption that the energy of the native

state is lower than all alternative conformations. Z-score minimization (33, 54, 63, 92)

requires a large energy gap between the native state and some reference state,

represented by an ensemble of compact structures. Our approach is conceptually

different; I target a fast protein folding pathway, which is found by a bias toward the

native state Gō model scoring function. Since I start all simulations from a fully extended

polypeptide chain with the sampling procedure (as any Monte Carlo based sampling)

governed by a series of particular changes in dihedrals defined by a researcher,

sampling distributions and pseudo-random number generators, I can say that the

proposed algorithm is “pathway” directed.

Thus, I proposed a new algorithm for finding the optimal weights of energy terms.

I developed a fast sampling algorithm with a Gō potential as a scoring function and

assumed the ability of the algorithm to find fast folding pathways. If proteins can be

folded with the Gō potential, then the addition of physics- and knowledge-based

potentials should improve the protein structure prediction. The structural information

encoded in the Lennard-Jones, the Lazaridis-Karplus solvation and hydrogen bonding

108

potentials but missed in the Gō potential alone should help to sustain the adequate

number of the folded trajectories and folding speed. Thus, if the energy terms are

effective, I should be able to eliminate the Gō potential completely with the proposed

optimization procedure. The algorithm I developed found several combinations of

weights that predicted successfully the structures of all-α and α/β proteins not included

in the optimization procedure.

I demonstrated that each tested energy term alone was able to reduce the Gō

potential weight to 0.8. The Lennard-Jones potential to some extent boosted the

number of folded trajectories for 1crn and 1prb and reduced that number for 1ywj. The

increase of the hydrogen bonding potential weight gradually decreased the number of

folded trajectories for all proteins The Lazaridis-Karplus solvation potential was

beneficial for all proteins. Contrary to hydrogen bonding and the Lennard–Jones

potentials, the solvation energy kept the number of folded trajectories at the same level.

However, for all proteins I observed an increase in folding time.

Even though I showed that one added energy term could reduce the Gō potential

weight, it was unclear whether this was due to the extra information brought by a

potential or the introduction of computational noise. To answer this question, I needed

to reduce the Gō potential weight by adding all three energy terms, the Lennard-Jones,

the Lazaridis-Karplus solvation and hydrogen bonding potentials, and to get acceptable

percentage of folded trajectories and folding time for each of three proteins. To simplify

the task, I tested weights for energy terms chosen from a grid 0.8 ≤ 𝑤𝐺ō < 1, 0 <

109

𝑤𝐿𝐽/𝑠𝑜𝑙𝑣/𝐻𝐵 ≤ 0.2. I was shown that the addition of several energy terms indeed allowed

the reduction of the Gō potential weight while sustaining reasonable folding time and an

adequate number of folded trajectories for all proteins. The values for the weights also

implied that the better results were collected for the weights that gave the best

performance for a single energy term addition.

I applied our energy weights optimization algorithm to perform a rigorous search

for weights for four energy terms, the Gō potential, the Lennard-Jones Potential, the

Lazaridis-Karplus potential, by minimizing the Gō potential weight. Sixteen weights

combinations were found that satisfied our definition of successful simulations. I

encountered two outliers with the Gō potential weight below 0.54 that produced

unusually high numbers of folded trajectories for all proteins. The outcome in those

cases did not correlate with the weights that gave the best performance when only one

energy term was added to the Gō potential. Also, four out of eleven reliable

combinations of weights had values for the solvation energy weights that were lower

than weights for the Lazaridis-Karplus solvation and hydrogen bonding potentials.

The linear correlation between the numbers of folded trajectories and the energy

term weights was confirmed by a CCA statistical test. Moreover, it was shown that the

Lazaridis-Karplus and the Lennard-Jones potentials played a more significant role than

hydrogen bonding potential in protein structure prediction. CCA might be viewed as an

instrument for the assessment of potency of energy terms used to compose an energy

function. Adding a newly designed energy term to the Gō potential and testing it with

110

different weights provides a new tool to evaluate its effectiveness.

Finally, I applied the derived weights to predict proteins not included into the

optimization procedure. The algorithm demonstrated better performance for all-α and

α/β proteins than for all β protein. Proteins with β-sheets are challenging for ab initio

structure prediction for several reasons: 1) the difficulty of efficiently sampling long-

range strand pairings; 2) a very high entropic cost once β-strand pairings formed, which

disallows further perturbations to refine a structure; 3) and the high number of

alternative nonlocal β-sheet topologies that expands the conformational search (11, 60).

Our algorithm utilizes a simple backbone move that limits the ability of the sampling

algorithm to maximize the number of hydrogen bonds that form β-sheets. The energy

minimization routine froze conformations without any attempts to align β-strands when a

substantial number of hydrogen bonds was found. Hydrogen bonding potential alone

was not able to fix the problem. To deal with this problem, Bradley and Baker (11)

proposed a new multilevel sampling method to β-sheet structure prediction that

overcomes this difficulty by reformulating structure generation in terms of a folding tree

composed of peptide segments and long-range connections. Nonlocal connections in

this tree allow them to explicitly sample alternative β-strand pairings while

simultaneously exploring local conformational space using backbone torsion-space

moves. This method uses an iterative, energy-biased resampling approach that selects

nonlocal pairing from previous iterations and explores them while stochastically

disfavoring local ones. The method can sample the nonlocal interactions to navigate the

search into the promising areas of the huge conformational space. Therefore, future

improvements to our algorithm will require a new procedure that improves β-sheet

111

prediction with effective hydrogen bonding potential. I also intend to carry out similar

studies on larger sets of energy terms and benchmark proteins to eliminate the Gō

potential completely.

In this work, I demonstrated a fast and effective way to optimize energy functions

for protein structure prediction and the ability to fold proteins with an all-atom, ab initio

algorithm without involving extra information derived from PDB databases (fragments

libraries and templates), using ordinary computational resources.

112

Appendices

Mersenne Twister C/C++ implementation

I tested several implementations of Mersenne Twister algorithms that generate random

numbers. The version of Takuji Nishimura and Makoto Matsumoto showed itself to be

very reliable for different Operational Systems and C/C++ compilers.

A C-program for MT19937, with initialization improved 2002/2/10.
 Coded by Takuji Nishimura and Makoto Matsumoto.
 This is a faster version by taking Shawn Cokus's optimization,
 Matthe Bellew's simplification, Isaku Wada's real version.

 Before using, initialize the state by using init_genrand(seed)
 or init_by_array(init_key, key_length).

 Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
 All rights reserved.

/*
 C++ codes by Kohei Takeda (k-tak@letter.or.jp)
 Redistribution terms are the same as the original ones above.
*/

#ifndef ___MERSENNE_TWISTER_RNG___
#define ___MERSENNE_TWISTER_RNG___

#include <ctime>
#include <cstdlib>
#include <cassert>

struct Mt32Traits
{
 typedef unsigned int UINTTYPE;
 typedef signed int INTTYPE;
 static const int INTTYPE_BITS = 32;
 static const unsigned int MAXDOUBLEVAL = 4294967295U; //2^32-1
 static const size_t NN = 624;
 static const size_t MM = 397;
 static const unsigned int INITVAL = 1812433253U;
 static const unsigned int ARRAYINITVAL_0 = 19650218U;
 static const unsigned int ARRAYINITVAL_1 = 1664525U;
 static const unsigned int ARRAYINITVAL_2 = 1566083941U;

 static unsigned int twist(const unsigned int& u, const unsigned int& v)
 {
 static unsigned int mag01[2] = {0U, 0x9908b0dfU};
 return ((((u & 0x80000000U) | (v & 0x7fffffffU)) >> 1) ^ mag01[v&1]);
 }

 static unsigned int temper(unsigned int y)
 {
 y ^= (y >> 11);

113

 y ^= (y << 7) & 0x9d2c5680U;
 y ^= (y << 15) & 0xefc60000U;
 y ^= (y >> 18);

 return y;
 }
};

struct Mt64Traits
{
 typedef unsigned long long UINTTYPE;
 typedef signed long long INTTYPE;
 static const int INTTYPE_BITS = 64;
 static const unsigned long long MAXDOUBLEVAL = 9007199254740991ULL; //
2^53-1
 static const size_t NN = 312;
 static const size_t MM = 156;
 static const unsigned long long INITVAL =
6364136223846793005ULL;
 static const unsigned long long ARRAYINITVAL_0 = 19650218ULL;
 static const unsigned long long ARRAYINITVAL_1 =
3935559000370003845ULL;
 static const unsigned long long ARRAYINITVAL_2 =
2862933555777941757ULL;

 static unsigned long long twist(const unsigned long long& u, const unsigned
long long& v)
 {
 static unsigned long long mag01[2] = {0ULL, 0xB5026F5AA96619E9ULL};
 return ((((u & 0xFFFFFFFF80000000ULL) | (v & 0x7FFFFFFFULL)) >> 1) ^
mag01[v&1]);
 }

 static unsigned long long temper(unsigned long long y)
 {
 y ^= (y >> 29) & 0x5555555555555555ULL;
 y ^= (y << 17) & 0x71D67FFFEDA60000ULL;
 y ^= (y << 37) & 0xFFF7EEE000000000ULL;
 y ^= (y >> 43);

 return y;
 }
};

template <typename Traits>
class MtRng
{
 public:
 typedef typename Traits::UINTTYPE UINTTYPE;
 typedef typename Traits::INTTYPE INTTYPE;

 protected:
 // member variables
 UINTTYPE* state_;

 size_t left_;
 UINTTYPE* next_;

114

 protected:
 void nextState()
 {
 UINTTYPE *p = state_;
 size_t j;

 left_ = Traits::NN;
 next_ = state_;

 for (j=Traits::NN-Traits::MM+1; --j; p++)
 *p = p[Traits::MM] ^ Traits::twist(p[0], p[1]);

 for (j=Traits::MM; --j; p++)
 *p = p[Traits::MM-Traits::NN] ^ Traits::twist(p[0], p[1]);

 *p = p[Traits::MM-Traits::NN] ^ Traits::twist(p[0], state_[0]);
 }

 public:
 MtRng()
 {
 left_ = 1;
 next_ = NULL;
 state_ = (UINTTYPE*)malloc(sizeof(UINTTYPE) * Traits::NN);
 init((UINTTYPE)time(NULL));
 }

 MtRng(UINTTYPE seed)
 {
 left_ = 1;
 next_ = NULL;
 state_ = (UINTTYPE*)malloc(sizeof(UINTTYPE) * Traits::NN);
 init(seed);
 }

 MtRng(UINTTYPE initkeys[], size_t keylen)
 {
 left_ = 1;
 next_ = NULL;
 state_ = (UINTTYPE*)malloc(sizeof(UINTTYPE) * Traits::NN);
 init(initkeys, keylen);
 }

 virtual ~MtRng()
 {
 if (state_) {
 free(state_);
 }
 }

 void init(UINTTYPE seed)
 {
 assert(sizeof(UINTTYPE)*8 == (size_t)Traits::INTTYPE_BITS);

 state_[0]= seed;
 for (size_t j=1; j<Traits::NN; j++) {
 state_[j]

115

 = (Traits::INITVAL * (state_[j-1] ^ (state_[j-1] >>
(Traits::INTTYPE_BITS-2)))
 + (UINTTYPE)j);
 }
 left_ = 1;
 }

 void init(UINTTYPE initkeys[], size_t keylen)
 {
 init(Traits::ARRAYINITVAL_0);

 size_t i = 1;
 size_t j = 0;
 size_t k = (Traits::NN > keylen ? Traits::NN : keylen);

 for (; k; k--) {
 state_[i]
 = (state_[i]
 ^ ((state_[i-1] ^ (state_[i-1] >> (Traits::INTTYPE_BITS-2)))
 * Traits::ARRAYINITVAL_1))
 + initkeys[j] + (UINTTYPE)j; /* non linear */

 i++;
 j++;

 if (i >= Traits::NN) {
 state_[0] = state_[Traits::NN-1];
 i = 1;
 }
 if (j >= keylen) {
 j = 0;
 }
 }

 for (k=Traits::NN-1; k; k--) {
 state_[i]
 = (state_[i]
 ^ ((state_[i-1] ^ (state_[i-1] >> (Traits::INTTYPE_BITS-2)))
 * Traits::ARRAYINITVAL_2))
 - (UINTTYPE)i; /* non linear */

 i++;

 if (i >= Traits::NN) {
 state_[0] = state_[Traits::NN-1];
 i = 1;
 }
 }

 /* MSB is 1; assuring non-zero initial array */
 state_[0] = (UINTTYPE)1 << (Traits::INTTYPE_BITS-1);
 left_ = 1;
 }

 /* generates a random number on [0,2^bits-1]-interval */
 UINTTYPE getUint()
 {
 if (--left_ == 0) nextState();

116

 return Traits::temper(*next_++);
 }

 /* generates a random number on [0,2^(bits-1)-1]-interval */
 INTTYPE getInt()
 {
 if (--left_ == 0) nextState();
 return (INTTYPE)(Traits::temper(*next_++)>>1);
 }

 /* generates a random number on [0,1]-real-interval */
 double getReal1()
 {
 if (--left_ == 0) nextState();
 if (Traits::INTTYPE_BITS > 53) {
 return (
 (double)(Traits::temper(*next_++)>>(Traits::INTTYPE_BITS-53))
 * (1.0 / 9007199254740991.0)
);
 } else {
 return (
 (double)Traits::temper(*next_++) *
(1.0/(double)Traits::MAXDOUBLEVAL)
);
 }
 }

 /* generates a random number on [0,1)-real-interval */
 double getReal2()
 {
 if (--left_ == 0) nextState();
 if (Traits::INTTYPE_BITS > 53) {
 return (
 (double)(Traits::temper(*next_++)>>(Traits::INTTYPE_BITS-53))
 * (1.0 / 9007199254740992.0)
);
 } else {
 return (
 (double)Traits::temper(*next_++) *
(1.0/((double)Traits::MAXDOUBLEVAL+1.0))
);
 }
 }

 /* generates a random number on (0,1)-real-interval */
 double getReal3()
 {
 if (--left_ == 0) nextState();
 if (Traits::INTTYPE_BITS > 52) {
 return (
 ((double)(Traits::temper(*next_++)>>(Traits::INTTYPE_BITS-52)) +
0.5)
 * (1.0 / 4503599627370496.0)
);
 } else {
 return (
 ((double)Traits::temper(*next_++) + 0.5) *
(1.0/((double)Traits::MAXDOUBLEVAL+1.0))

117

);
 }
 }

};

typedef MtRng<Mt32Traits> MtRng32;
typedef MtRng<Mt64Traits> MtRng64;

118

Program Parameters, Program Running and Programs to analyze data

 Configuration files (with extension .cfg) are employed to set the program’s

parameters. All parameter files are located in /home/safronova/clOOPS-

0.9.6/prj/AbInitioSimple/cfg directory. For ab initio routine (ab initio plugin), AbInitio.cfg is

used. Each energy plugin also has its own configuration file: gop.cfg corresponds to the

Gō potential, chlk.cfg corresponds to the Lazaridis-Karplus solvation potential, chlj2.cfg

is used for the Lennard-Jones potential and BMKhbond-B.cfg is designated for

hydrogen bonding potential. PDB structures for proteins are located in

/home/safronova/clOOPS-0.9.6/prj/AbInitioSimple/nat

 In AbInitio.cfg a researcher should define energy terms and their weights that are

going to be used in simulations. All parameters for Monte Carlo algorithm, Simulated

Annealing are set through AbInitio.cfg.

 To start the program that runs N trajectories for each protein from the list

Test_Poteins_lst the following command is used:

./run_oops -simInfo GO -i Test_Protein_lst -nTrj 100

Where -simInfo option is a name of an experiment, –i option is a file name that contains

pdb ids for proteins and –nTrj option is used to set the number of trajectories for each

protein from a list in Test_Protein_lst file. Executable file run_oops is located in

/home/safronova/clOOPS-0.9.6/src/PL-tools/C++/AbInitioSimple/src. A source and a

header files are located in

/home/safronova/clOOPS-0.9.6/src/PL-tools/C++/AbInitioSimple/run_oops

119

To run the optimization procedure the following command is used:

./optimize_energy_weights -prevGOw 1 -lGO 0 -hGO 1 -nextSim 0 -nRun 100 -

percent 3 -i Test_Protein_lst -nTrj 100

Where –prevGOw is used to set a previous value for the Gō weight. If simulations are

just started this value is equal 1, options - lGO and –hGO set the range of the Gō

potential weight to be tested. To eliminate the Go weight –lGO should be set to 0 and –

hGO should be set to 1. Option –nextSim sets a simulation step to start with, the total

number of steps is set to 100. Option –i sets the name for a file that contains proteins

pdb ids. Option –percent serves to set the percentage of successful trajectories with

final structures rmsd ≤ 3 Å to define success.

 To prepare data for analysis and visualization sort_files program must be run.

qsub -b y -j y -cwd sort_files Test_Protein_lst Test_Time_lst SimulationName

where Test_Protein_lst is the name of a file that contains proteins’ pdb ids,

Test_Time_lst is the name of a file that contains proteins’ expected folding times, and

the last parameter is a simulation name (used with option –simName for run_oops and

optimize_energy_weights programs). The program creates folder

Results_SimulationName in trajectories output folder (see run_opps.cpp file’s initiation

section fot TRJ_DIR). The data contained in Results_SimulationName is used by

MATLAB program to create scatter plots and energy profiles for successful trajectories.

120

Program run_oops

//run_oops.cpp
#include <cstdio>
#include <iostream>
#include <fstream>
#include <cstring>
#include <string>
#include <cassert>
#include <list>
#include <stdlib.h>
#include <unistd.h>/// for unix
#include <ctime>
using namespace std;

string PRJ_DIR = "/home/safronova/clOOPS-0.9.6/prj/AbInitioSimple";
//string TRJ_DIR = "/home/safronova_1/clOOPS-0.9.6/prj/AbInitioSimple/trj";
string TRJ_DIR = "/home/safronova_3/trj";
string CFG = PRJ_DIR + "/cfg/AbInitioFold.cfg";
string PDB_DIR = PRJ_DIR + "/nat";
//string TRJ_DIR = PRJ_DIR + "/trj";
//string CMD_NAME = "qsub -b y -j y -cwd oops";
//string CMD_NAME = "qsub -b y -j y -q fast.q -cwd oops";
string CMD_NAME = "qsub -b y -j y -cwd -N oopsbatch oops";
string sCB = "";
string CMD_NEW_DIR = "mkdir -m a=rwx -p";

// Parameters.
string InputLst, SimInfo;
int NTrjs, NSimulationSteps = 1000000;

int StrToInt(const string &str) { return atoi(str.c_str()); }

/* reverse: reverse string s in place */
void reverse(char s[])
{
 int c, i, j;

 for (i = 0, j = strlen(s)-1; i<j; i++, j--) {
 c = s[i];
 s[i] = s[j];
 s[j] = c;
 }
}

/* itoa: convert n to characters in s */
void itoa(int n, char s[])
{
 int i, sign;
 if ((sign = n) < 0) /* record sign */
 n = -n; /* make n positive */
 i = 0;
 do { /* generate digits in reverse order */
 s[i++] = n % 10 + '0'; /* get next digit */
 } while ((n /= 10) > 0); /* delete it */
 if (sign < 0)

121

 s[i++] = '-';
 s[i] = '\0';
 reverse(s);
}

void PrintHelp()
{
 const char *const PROG_USAGE = "run_oops -i <input file without ext and path> -
simInfo <string:date[additional info]> -n <number of simulations>";

 const char *const PROG_DESC = "run_oops runs n simulations(n copies of oops
program)";

 cout << "USAGE: " << PROG_USAGE << '\n';
 cout << PROG_DESC << '\n';

 exit(0);
}

void PrintError(string err_str, int err_code)
{
 cout << "run_oops error: " << err_str << '\n';
 cout << "Try run_oops --help to get some more information." << '\n';
 exit(err_code);
}

void ReadParams(int argc, char *argv[])
{
 string args, par, val;
 int i, NextArgIsVal = -1;

 for (i = 1; i < argc; i++)
 {
 args = argv[i];

 if (-1 < NextArgIsVal)
 {
 switch (NextArgIsVal)
 {
 case 0:
 InputLst = args;
 break;
 case 1:
 SimInfo = args;
 break;
 case 2:
 NTrjs = StrToInt(args);
 break;
 case 3:
 NSimulationSteps = StrToInt(args);
 break;

 }
 NextArgIsVal = -1;
 }
 else
 {
 NextArgIsVal = -1;

122

 if (args == "--help") PrintHelp();else
 if (args == "-sCB") sCB = " -sCB";else
 if (args == "-i") NextArgIsVal = 0; else
 if (args == "-simInfo") NextArgIsVal = 1; else
 if (args == "-nTrj") NextArgIsVal = 2; else
 if (args == "-nSim") NextArgIsVal = 3; else
 PrintError("unrecognized option", 1);
 }
 }

}
int main (int argc, char *argv[])
{
 ReadParams (argc, argv);

 ifstream in (InputLst.c_str());
 if(!in){cout << "can't open InputLst \n"; exit (1);}

 list<string> ProtLst;
 list<string>::iterator lstIter;

 string line, prot_name;
 while (getline (in, line)){
 //we assume a line doesn't contain spaces
 prot_name = line;
 ProtLst.push_back (prot_name);
 }
 in.close ();

 char buffer0 [33];
 buffer0 [0]= '\0';
 itoa (NSimulationSteps, buffer0);

 for (lstIter = ProtLst.begin (); lstIter != ProtLst.end (); lstIter ++){

 string trj_full_dir = TRJ_DIR + "/" + SimInfo + "/" + *lstIter;
 string cmd_dir = CMD_NEW_DIR + " " + trj_full_dir;
 system (cmd_dir.c_str());
 string trj = trj_full_dir + "/" + *lstIter + "_" + SimInfo; // number will
be added in cycle
 string pdb_file = PDB_DIR + "/" + *lstIter + ".pdb";
 string cmd_files = CMD_NAME + " -c " + CFG + " -i " + pdb_file + + " -n "
+ buffer0 + " -o " + trj;

 char buffer1 [33];
 char buffer2 [33];

 string FileNameLst = *lstIter + "_" + SimInfo + "_lst";
 ofstream FileLst(FileNameLst.c_str());
 if(!FileLst)PrintError("can't open list file", 3);

 string cmd;
 int seed = time(NULL);

 for (int i = 1; i <= NTrjs; i++)
 {
 seed += i;
 buffer1[0]= '\0';

123

 buffer2[0]= '\0';
 itoa (i,buffer1);
 itoa (seed,buffer2);
 cmd = cmd_files + "_" + buffer1 + " -seed " + buffer2 + sCB ;
 FileLst << trj + "_" + buffer1 + "_stat" << endl;
 system (cmd.c_str ());
 sleep (1);
 }

 FileLst.close ();
 }
 return 0;
}

124

Data Analysis Program

//sort_files.cpp

#include <stdio.h>
#include <cstdlib>

#include <cstdio>
#include <iostream>
#include <fstream>
#include <cstring>
#include <string>
#include <cassert>
#include <list>
#include <stdlib.h>
#include <unistd.h>/// for unix
#include <ctime>
#include <utility>
#include <string>
#include <vector>
#include <sstream>

using namespace std;
string TOOL_DIR = "/home/safronova/clOOPS-0.9.6/src/PL-tools/C++/AbInitioSimple";
string RMSD_DIR = TOOL_DIR + "/calc_rmsd/bin/";
string TIME_DIR = TOOL_DIR + "/combine_files/";

string PRJ_DIR = "/home/safronova/clOOPS-0.9.6/prj/AbInitioSimple";
string TRJ_DIR = "/home/safronova_3/trj";
string CFG = PRJ_DIR + "/cfg/AbInitioFold.cfg";
string PDB_DIR = PRJ_DIR + "/nat";

string CMD_RMSD_NAME = RMSD_DIR +"calc_rmsd -cfg " + PRJ_DIR + "/cfg/Calc_RMSD.cfg";
//string CMD_RMSD_NAME = RMSD_DIR +"calc_rmsd ";

string CMD_TIME_NAME = TIME_DIR +"combine_files";
string CMD_NEW_DIR = "mkdir -m a=rwx -p";

using namespace std;

double RmsdMax = 3;
double TimeMax = 300;

int StrToInt(const string &str) { return atoi(str.c_str()); }
void Copy (const vector<pair<int, pair<double, double> > > vec, vector<pair<int,
pair<double, double> > >& vec_cpy)

{
 for (int i = 0; i < vec.size(); i ++)
 vec_cpy.push_back(vec[i]);
}

void SortByRmsd (vector<pair<int, pair<double, double> > >& vec)
{
 pair<int, pair<double, double> > temp;
 //sort array

125

 for(int i = 0; i < vec.size(); i++)
 {
 for (int j = 0; j < vec.size()-1; j++)
 {
 if (vec[j].second.first > vec[j+1].second.first)
 {
 temp = vec[j];
 vec[j] = vec[j+1];
 vec[j+1] = temp;
 }
 }/*End inner for loop*/
 }/*End outer for loop*/
}

void SortByTime (vector<pair<int, pair<double, double> > >& vec)
{
 pair<int, pair<double, double> > temp;
 //sort array
 for(int i = 0; i < vec.size(); i++)
 {
 for (int j = 0; j < vec.size()-1; j++)
 {
 if (vec[j].second.second > vec[j+1].second.second)
 {
 temp = vec[j];
 vec[j] = vec[j+1];
 vec[j+1] = temp;
 }
 }/*End inner for loop*/
 }/*End outer for loop*/
}

void FindBestCandidates(
 const vector<pair<int, pair<double, double> > > vec_rmsd,
 const vector<pair<int, pair<double, double> > > vec_time,
 vector<pair<int, pair<double, double> > >& vec_canditates)
{

 int count_candidates = 0;
 for(int i = 0; i < vec_rmsd.size()/3 && count_candidates < 6; i++)
 {

 for(int j = 0; j < vec_time.size()/3 ; j++)
 {

 if (vec_rmsd[i].first == vec_time[j].first)
 {
 count_candidates ++;
 vec_canditates.push_back(vec_time[j]);

 }
 }
 }
}

126

void ReplaceSubStr(string fn, string from, string to)
{
 ifstream file (fn.c_str());
 if(!file){cout << "cannot open file from ReplaceSubStr()\n"; exit (1);}
 string line;
 vector<string> line_vec;
 while (getline (file,line))
 {
 line.replace(line.find(from), from.size(), to);
 line_vec.push_back(line);
 }
 file.close();
 ofstream new_file(fn.c_str());
 for(int i = 0; i < line_vec.size(); i ++)
 new_file << line_vec[i]<< endl;

 new_file.close();

}

void Output_file_names (ofstream& file, vector<string> vec, vector<pair<int, pair<double,
double> > > vec_sorted)
{
 int j = 0;

 for (int i= 0; i < 3 && i< vec_sorted.size(); i ++)
 {
 j = vec_sorted[i].first - 1;
 file << vec[j] << endl;
 }
}

void Copy_Files(string file_with_fn, string to_dir)
// file names in file_with_fn must be with full-path-names

{
 ifstream file(file_with_fn.c_str());
 if(!file){cout << "cannot open file_with_fn from Copy_Files()\n"; exit (1);}

 string line;
 while (getline (file, line)){
 string cmd = "cp " + line + " " + to_dir;
 system(cmd.c_str());
 }
 file.close();
}

void DeleteExtraSpaceInDatFiles(string dir, string file_with_names_fn)
{
 ifstream file_with_names (file_with_names_fn.c_str());
 if(!file_with_names){cout << "cannot open " << file_with_names_fn << endl; exit
(1);}
 string line, line2;
 vector<string> files_vec;

 while (getline (file_with_names,line))
 {
 string name = dir + "/" + line;

127

 ifstream dat_file (name.c_str());
 if(!dat_file){cout << "cannot open " << name << " from
DeleteExtraSpaceInDatFiles()" << endl; exit (1);}

 vector<double> x_vec, y_vec, in_vec, out_vec, in_out_vec;
 getline (dat_file,line2);
 while (getline (dat_file,line2))
 {
 double x,y, in, out, in_out;
 istringstream ist_data(line2);
 ist_data >> x; x_vec.push_back(x);
 ist_data >> y; y_vec.push_back(y);
 ist_data >> in; in_vec.push_back(in);
 ist_data >> out; out_vec.push_back(out);
 ist_data >> in_out; in_out_vec.push_back(in_out);
 }
 dat_file.close();
 if (x_vec.size() != y_vec.size()) {cout << name << ": x_vec.size() !=
y_vec.size()" << endl; exit(1);}
 if (y_vec.size() != in_vec.size()) {cout << name << ": y_vec.size() !=
in_vec.size()" << endl; exit(1);}
 if (in_vec.size() != out_vec.size()) {cout << name << ": in_vec.size() !=
out_vec.size()" << endl; exit(1);}
 if (out_vec.size() != in_out_vec.size()) {cout << name << ": out_vec.size()
!= In_out_vec.size()" << endl; exit(1);}

 ofstream dat_file_new (name.c_str());
 if(!dat_file_new){cout << "cannot open for w-mode" << name << " from
DeleteExtraSpaceInDatFiles()" << endl; exit (1);}
 for(int i = 0; i < x_vec.size() ; i ++)
 {
 dat_file_new << x_vec[i] << " " << y_vec[i] << " "<< in_vec[i] << "
" << out_vec[i] << " "<< in_out_vec[i] <<endl;
 }
 dat_file_new.close();
 }
}

//1st parameter - Protein names file
//2nd parameter -Time Max for quadrants file name
//3nd parameter - simulation name

// | |
// t | II | III
// i | |
// m TimeMax |______|________
// e | I | IV
// |______|________
// 0 RmsdMax
// rmsd
// How to run:
int main (int argc, char *argv[])
{//1
 if (argc != 4) {cout << "wrong number of parameters" << endl; exit (1);}

 ifstream proteins (argv[1]);
 if(!proteins){cout << "cannot open proteins file \n"; exit (1);}

128

 ifstream time_limit (argv[2]);
 if(!time_limit){cout << "cannot open time_limit file \n"; exit (1);}

 string line_proteins, line_time, line;
 double number;

 string results_dir = TRJ_DIR + "/" + argv[3] + "/" + "Results_" + argv[3];
 string cmd_dir = CMD_NEW_DIR + " " + results_dir;
 system (cmd_dir.c_str());

 string all_files_for_matlab_fn = results_dir + "/all_files_for_matlab";
 ofstream all_files_for_matlab (all_files_for_matlab_fn.c_str());
 if(!all_files_for_matlab){cout << "all_files_for_matlab file \n"; exit (1);}

 string all_rmsd_time_fn = results_dir + "/all_rmsd_time_files";
 ofstream all_rmsd_time (all_rmsd_time_fn.c_str());
 if(!all_rmsd_time){cout << "rmsd file \n"; exit (1);}

 string all_rmsd_time_short_fn = results_dir + "/all_rmsd_time_files_short";
 ofstream all_rmsd_time_short (all_rmsd_time_short_fn.c_str());
 if(!all_rmsd_time_short){cout << "rmsd file \n"; exit (1);}

 all_files_for_matlab << "all_rmsd_time_files_short" << endl;

 //reads rmsd and time files for proteins from the list
 while (getline (proteins,line_proteins)){//2

 //read proteins list file
 string cmd;

 //read protein name
 string protein_name;
 istringstream ist_protein(line_proteins);
 ist_protein >> protein_name;

 cout << protein_name<< ":" << endl;

 // create name that reflects protein-simulation names

 string FileNameLst = protein_name + "_" + argv[3] + "_lst";//this file and
its name are generated in run_oops.cpp
 string trj_full_dir = TRJ_DIR + "/" + argv[3] + "/" + protein_name;//
where are trj and dat files

 //create required folders: Results_SimName, Results_SimName/Best;
Results_SimName/I; ... Results_SimName/IV

 string dir_name = results_dir + "/" + protein_name;//new
 //string dir_name = trj_full_dir + "/Results_" + argv[3];//old

 cmd_dir = CMD_NEW_DIR + " " + dir_name + "/Best";
 system (cmd_dir.c_str());
 cmd_dir = CMD_NEW_DIR + " " + dir_name + "/I";
 system (cmd_dir.c_str());
 cmd_dir = CMD_NEW_DIR + " " + dir_name + "/II";
 system (cmd_dir.c_str());
 cmd_dir = CMD_NEW_DIR + " " + dir_name + "/III";

129

 system (cmd_dir.c_str());
 cmd_dir = CMD_NEW_DIR + " " + dir_name + "/IV";
 system (cmd_dir.c_str());

 //generate file names for output rmsds and times
 string in_rmsd_fn = dir_name + "/" + FileNameLst + "_rmsd";
 string in_time_fn = dir_name + "/" + FileNameLst + "_time";
 //string rmsd_time_fn = dir_name + "/" + FileNameLst + "_rmsd_time";//for
matlab scatter plot//old
 string rmsd_time_fn = results_dir + "/" + protein_name +
"_rmsd_time";//for matlab scatter plot
 all_rmsd_time << rmsd_time_fn << endl;
 all_rmsd_time_short <<protein_name + "_rmsd_time" << endl;
 //cp file with trajectories names to Result folder, in this case we can
clear folder with jobs otput

 cmd = "cp " + TOOL_DIR + "/src/" + FileNameLst + " " + dir_name;
 system(cmd.c_str());

 //run combine_files program (TIME)

 cmd = CMD_TIME_NAME + " " + dir_name + "/" + FileNameLst + " " +
in_time_fn;

 //test
 cout << "time cmd = " << cmd <<endl;
 system(cmd.c_str());

 // modify FileNameLst file: replace all "_stat" to "_f.pdb" for rmsd
calculation
 string modify_fn = dir_name + "/" + FileNameLst;

 ReplaceSubStr(modify_fn, "_stat", "_f.pdb");
 //run RMSD calculation program
 string pdb_file = PDB_DIR + "/" + protein_name + ".pdb";
 cmd = CMD_RMSD_NAME + " -str " + pdb_file + " -list " + modify_fn ;

 system(cmd.c_str());

 //open rmsd file
 ifstream in_rmsd (in_rmsd_fn.c_str());
 if(!in_rmsd){cout << "rmsd file \n"; exit (1);}

 //open time file
 ifstream in_time (in_time_fn.c_str());
 if(!in_time) {cout << "time file \n"; exit (1);}

 //read time file and fills TimeMax for each protein/rmsdMax and TimaMax
define quadrants
 double time_from_file;
 getline (time_limit,line_time);
 istringstream ist_time(line_time);
 ist_time >> time_from_file;
 TimeMax = time_from_file;

 // read rmsd and time file for each protein

130

 vector<double> rmsd_vec;
 vector<double> time_vec;
 //istringstream ist;
 double rmsd;

 while (getline (in_rmsd, line)){
 istringstream ist(line);
 ist >> rmsd;
 // number = atof(word_number.c_str());
 rmsd_vec.push_back(rmsd);
 }

 in_rmsd.close ();
 double time;

 //test
 cout << "Time vector values:" << endl;
 while (getline (in_time, line)){
 istringstream ist(line);
 ist >> time;
 cout << time << endl;
 //number = atof(word_number.c_str());
 time_vec.push_back(time);
 }
 in_time.close ();

 if(rmsd_vec.size() != time_vec.size()){
 cout << "rmsd vector size (" <<rmsd_vec.size()<< ")" << " != time
vector size (" <<time_vec.size()<< ")"<< endl;
 exit(1);
 }

 ofstream rmsd_time (rmsd_time_fn.c_str());
 if (!rmsd_time) {cout << "cannot open rmsd_time file" << endl; exit(1);}
 for (int i = 0; i < rmsd_vec.size(); i++)
 {
 rmsd_time << rmsd_vec[i] << " " << time_vec[i] << endl;
 }

 // sort to quadrants
 vector<pair<int, pair<double, double> > > I, II, III, IV, All;
 int size = rmsd_vec.size();

 for (int i = 0; i < size; i ++)
 {//3
 pair<double, double> rmsd_time;
 pair <int, pair <double, double> > index__rmsd_time;

 rmsd_time.first = rmsd_vec[i];
 rmsd_time.second = time_vec[i];
 index__rmsd_time.first = i + 1;
 index__rmsd_time.second = rmsd_time;

 // list with a triad (trj number, rmsd, time)
 All.push_back(index__rmsd_time);

 if ((rmsd_vec[i] <= RmsdMax) && (time_vec[i] <= TimeMax))

131

 I.push_back(index__rmsd_time);
 if ((rmsd_vec[i] <= RmsdMax) && (time_vec[i] > TimeMax))
 II.push_back(index__rmsd_time);
 if ((rmsd_vec[i] > RmsdMax) && (time_vec[i] > TimeMax))
 III.push_back(index__rmsd_time);
 if ((rmsd_vec[i] > RmsdMax) && (time_vec[i] <= TimeMax))
 IV.push_back(index__rmsd_time);

 }//_3

 //copy
 vector<pair<int, pair<double, double> > > I_t, II_t, III_t, IV_t, All_t;
 Copy(All, All_t);Copy(I, I_t); Copy(II, II_t); Copy(III, III_t); Copy(IV,
IV_t);
 cout <<"All_t.size() = " << All_t.size() << endl;
 cout <<"I_t.size() = " << I_t.size() << endl;
 cout <<"II_t.size() = " << II_t.size() << endl;
 cout <<"III_t.size() = " << III_t.size() << endl;
 cout <<"IV_t.size() = " << IV_t.size() << endl;

 //sort
 SortByRmsd(All); SortByRmsd(I); SortByRmsd(II); SortByRmsd(III);
SortByRmsd(IV);
 SortByTime(All_t); SortByTime(I_t); SortByTime(II_t); SortByTime(III_t);
SortByTime(IV_t);

 //Find the best candidates
 vector<pair<int, pair<double, double> > > best_candidates;
 FindBestCandidates(All, All_t, best_candidates);

 //print all results sorted by rmsd to files
 string out_all_fn = dir_name + "/" + FileNameLst + "_all";
 ofstream out_all (out_all_fn.c_str());
 if(!out_all){cout << "all info file can't be open\n"; exit (1);}

 string out_best_fn = dir_name + "/" + FileNameLst +"_best";
 ofstream out_best_candidates (out_best_fn.c_str());
 if(!out_best_candidates){cout << "best_candidates file can't be open\n";
exit (1);}

 out_best_candidates << "The best candidates (" <<best_candidates.size() <<
")"<< endl;
 for (int i = 0; i< best_candidates.size(); i ++)
 out_best_candidates << best_candidates[i].first << ": (" <<
best_candidates[i].second.first << ", " << best_candidates[i].second.second << ")" <<
endl;

 out_all << "// Sorted by RMSD" << endl;

 out_all << "// I quadrant (" <<I.size() << ")"<< endl;
 for (int i = 0; i< I.size(); i ++)
 out_all << I[i].first << ": (" << I[i].second.first << ", " <<
I[i].second.second << ")" << endl;

132

 out_all << "// II quadrant (" <<II.size() << ")"<< endl;
 for (int i = 0; i< II.size(); i ++)
 out_all << II[i].first << ": (" << II[i].second.first << ", " <<
II[i].second.second << ")" << endl;

 out_all << "// III quadrant (" <<III.size() << ")"<< endl;
 for (int i = 0; i< III.size(); i ++)
 out_all << III[i].first << ": (" << III[i].second.first << ", " <<
III[i].second.second << ")" << endl;

 out_all << "// IV quadrant (" <<IV.size() << ")"<< endl;
 for (int i = 0; i< IV.size(); i ++)
 out_all << IV[i].first << ": (" << IV[i].second.first << ", " <<
IV[i].second.second << ")" << endl;
 out_best_candidates.close();
 out_all.close();

 string trj_fn = dir_name + "/" + FileNameLst;
 //put .dat files to vector<string>
 vector<string> final_pdb_files_names;
 vector<string> dat_files_names;
 vector<string> dat_files_names_without_dir;
 ifstream trj_files (trj_fn.c_str());
 if(!trj_files){cout << "cannot open file with trj_f names\n"; exit (1);}
 while (getline (trj_files, line)){
 final_pdb_files_names.push_back(line);
 line.replace(line.find("_f.pdb"), 6, ".dat");
 dat_files_names.push_back(line);

 size_t line_len = line.size();
 string find_str = "/"+ protein_name + "/";
 line.erase(0, line.find (find_str)+protein_name.size()+2);
 dat_files_names_without_dir.push_back(line);
 }
 trj_files.close();

 //We need to create foders in Results:
 //1.SimName_best:
 // _f.pdb//later
 // .dat
 //2. SimName_I/II/III/IV (max 3trj in each category)
 // _f.pdb//later
 // .dat

 //these files contain lists with file names required for matlab analysis

 //AND COPY DAT FILES TO RESULT , f.pdb and trj
 //
 string matlab_out_best_energy_profile_fn =dir_name + "/Best/" + FileNameLst +
"_best_energy_profile_matlab";
 ofstream matlab_out_best_energy_profile
(matlab_out_best_energy_profile_fn.c_str());
 if(!matlab_out_best_energy_profile){cout <<
"best_matlab_out_best_energy_profile_matlab info file can't be open\n"; exit (1);}

133

 string matlab_out_best_energy_profile_fn_short =dir_name + "/Best/" + FileNameLst
+ "_best_energy_profile_matlab_short";
 ofstream matlab_out_best_energy_profile_short
(matlab_out_best_energy_profile_fn_short.c_str());
 if(!matlab_out_best_energy_profile_short){cout <<
"best_matlab_out_best_energy_profile_matlab_short info file can't be open\n"; exit (1);}
 all_files_for_matlab << protein_name + "/Best/" + FileNameLst +
"_best_energy_profile_matlab_short" << endl;

 Output_file_names (matlab_out_best_energy_profile, dat_files_names,
best_candidates);
 Output_file_names (matlab_out_best_energy_profile_short,
dat_files_names_without_dir, best_candidates);

 matlab_out_best_energy_profile.close();
 matlab_out_best_energy_profile_short.close();
 Copy_Files(matlab_out_best_energy_profile_fn, dir_name + "/Best/");
 DeleteExtraSpaceInDatFiles(dir_name + "/Best",
matlab_out_best_energy_profile_fn_short);
 //
 string matlab_out_I_best_energy_profile_fn = dir_name + "/I/" + FileNameLst +
"_I_energy_profile_matlab";
 ofstream matlab_out_I_best_energy_profile
(matlab_out_I_best_energy_profile_fn.c_str());
 if(!matlab_out_I_best_energy_profile){cout << "I_energy_profile_matlab info file
can't be open\n"; exit (1);}

 string matlab_out_I_best_energy_profile_fn_short = dir_name + "/I/" + FileNameLst
+ "_I_energy_profile_matlab_short";
 ofstream matlab_out_I_best_energy_profile_short
(matlab_out_I_best_energy_profile_fn_short.c_str());
 if(!matlab_out_I_best_energy_profile_short){cout << "I_energy_profile_matlab_short
info file can't be open\n"; exit (1);}
 all_files_for_matlab << protein_name + "/I/" + FileNameLst +
"_I_energy_profile_matlab_short" << endl;

 Output_file_names (matlab_out_I_best_energy_profile, dat_files_names, I);
 Output_file_names (matlab_out_I_best_energy_profile_short,
dat_files_names_without_dir, I);

 matlab_out_I_best_energy_profile.close();
 matlab_out_I_best_energy_profile_short.close();
 Copy_Files(matlab_out_I_best_energy_profile_fn, dir_name + "/I/");
 DeleteExtraSpaceInDatFiles(dir_name + "/I",
matlab_out_I_best_energy_profile_fn_short);
 //
 string matlab_out_II_best_energy_profile_fn = dir_name + "/II/" + FileNameLst +
"_II_energy_profile_matlab";
 ofstream matlab_out_II_best_energy_profile
(matlab_out_II_best_energy_profile_fn.c_str());
 if(!matlab_out_II_best_energy_profile){cout <<
"II_best_matlab_out_best_energy_profile_matlab info file can't be open\n"; exit (1);}

 string matlab_out_II_best_energy_profile_fn_short = dir_name + "/II/" +
FileNameLst + "_II_energy_profile_matlab_short";
 ofstream matlab_out_II_best_energy_profile_short
(matlab_out_II_best_energy_profile_fn_short.c_str());

134

 if(!matlab_out_II_best_energy_profile_short){cout <<
"II_best_matlab_out_best_energy_profile_matlab_short info file can't be open\n"; exit
(1);}
 all_files_for_matlab << protein_name + "/II/" + FileNameLst +
"_II_energy_profile_matlab_short" << endl;

 Output_file_names (matlab_out_II_best_energy_profile, dat_files_names, II);
 Output_file_names (matlab_out_II_best_energy_profile_short,
dat_files_names_without_dir, II);

 matlab_out_II_best_energy_profile.close();
 matlab_out_II_best_energy_profile_short.close();
 Copy_Files(matlab_out_II_best_energy_profile_fn, dir_name + "/II/");
 DeleteExtraSpaceInDatFiles(dir_name + "/II",
matlab_out_II_best_energy_profile_fn_short);
 //
 string matlab_out_III_best_energy_profile_fn = dir_name + "/III/" + FileNameLst +
"_III_energy_profile_matlab";
 ofstream matlab_out_III_best_energy_profile
(matlab_out_III_best_energy_profile_fn.c_str());
 if(!matlab_out_III_best_energy_profile){cout <<
"III_best_matlab_out_best_energy_profile_matlab info file can't be open\n"; exit (1);}

 string matlab_out_III_best_energy_profile_fn_short = dir_name + "/III/" +
FileNameLst + "_III_energy_profile_matlab_short";
 ofstream matlab_out_III_best_energy_profile_short
(matlab_out_III_best_energy_profile_fn_short.c_str());
 if(!matlab_out_III_best_energy_profile_short){cout <<
"III_best_matlab_out_best_energy_profile_matlab_short info file can't be open\n"; exit
(1);}
 all_files_for_matlab << protein_name + "/III/" + FileNameLst +
"_III_energy_profile_matlab_short" << endl;

 Output_file_names (matlab_out_III_best_energy_profile, dat_files_names, III);
 Output_file_names (matlab_out_III_best_energy_profile_short,
dat_files_names_without_dir, III);

 matlab_out_III_best_energy_profile.close();
 matlab_out_III_best_energy_profile_short.close();
 Copy_Files(matlab_out_III_best_energy_profile_fn, dir_name + "/III");
 DeleteExtraSpaceInDatFiles(dir_name + "/III",
matlab_out_III_best_energy_profile_fn_short);
 //
 string matlab_out_IV_best_energy_profile_fn = dir_name + "/IV/" + FileNameLst +
"_IV_energy_profile_matlab";
 ofstream matlab_out_IV_best_energy_profile
(matlab_out_IV_best_energy_profile_fn.c_str());
 if(!matlab_out_IV_best_energy_profile){cout <<
"IV_best_matlab_out_best_energy_profile_matlab info file can't be open\n"; exit (1);}

 string matlab_out_IV_best_energy_profile_fn_short = dir_name + "/IV/" +
FileNameLst + "_IV_energy_profile_matlab_short";
 ofstream matlab_out_IV_best_energy_profile_short
(matlab_out_IV_best_energy_profile_fn_short.c_str());
 if(!matlab_out_IV_best_energy_profile_short){cout <<
"IV_best_matlab_out_best_energy_profile_matlab_short info file can't be open\n"; exit
(1);}

135

 all_files_for_matlab << protein_name + "/IV/" + FileNameLst +
"_IV_energy_profile_matlab_short" << endl;

 Output_file_names (matlab_out_IV_best_energy_profile, dat_files_names, IV);
 Output_file_names (matlab_out_IV_best_energy_profile_short,
dat_files_names_without_dir, IV);

 matlab_out_IV_best_energy_profile.close();
 matlab_out_IV_best_energy_profile_short.close();
 Copy_Files(matlab_out_IV_best_energy_profile_fn, dir_name + "/IV");
 DeleteExtraSpaceInDatFiles(dir_name + "/IV",
matlab_out_IV_best_energy_profile_fn_short);
 }//_2
 all_rmsd_time.close();
 all_rmsd_time_short.close();
 all_files_for_matlab.close();
}//_1

136

MATLAB programs to visualize data

To create scatter plots (rmsd vs time) and energy profiles for successful trajectories the

following MATLAB program should be run:

CreateScatterPlots_new('C:\Users\sasha\Desktop\TEMP_WORK', 'newprot-10',

'all_files_for_matlab', 'Test_Time_lst', 'Energy_LST')

Where the first parameter is the name of a directory where Results_SimulationName

are located (sort_files command). The second parameter is a simulation name to be

analyzed, the third parameter is the name of the file in Results_SimulationName folder,

the forth parameter is a file with expected folding times for proteins, and the last

parameter is a file with energy terms names used for simulations. Files Test_Time_lst,

Energy_LST must be located in the folder that was used for the first parameter.

function CreateScatterPlots_new(dir, sim_name, file, time_file_name,

energy_file_name)
% HOW to run:
%CreateScatterPlots('C:\Users\Aleksandra Safronova\Desktop\oops\Matlab',
% 'TestInertia2', 'all_files_for_matlab',

'Test_Time_lst')
% file Test_Time_lst must be in dir
names_to_join = {'Results_', sim_name};
joined_name = strjoin(names_to_join, '');
%joined_name = [names_to_join{:}];

full_name = {dir, joined_name, file};
full_name_str = strjoin(full_name, '\');
%full_name = {dir,'\' ,joined_name,'\' ,file};
%full_name_str = [full_name{:}];

L = readtable(full_name_str,'ReadVariableNames',false,'Format', '%s');
MAT_NAMES = L.Var1;

full_time_file_name = {dir,time_file_name};
full_time_file_name_str = strjoin(full_time_file_name, '\');

full_energy_file_name = {dir,energy_file_name};
full_energy_file_name_str = strjoin(full_energy_file_name, '\');

137

%full_time_file_name = {dir,'\',time_file_name};
%full_time_file_name_str = [full_time_file_name{:}];

%full_energy_file_name = {dir,'\',energy_file_name};
%full_energy_file_name_str = [full_energy_file_name{:}];

%generates scatter plots
scatter_files = {dir, joined_name, MAT_NAMES{1}};
full_scatter_files = strjoin(scatter_files, '\');
%scatter_files = {dir,'\',joined_name, MAT_NAMES{1}};
%full_scatter_files = [scatter_files{:}];
L = readtable(full_scatter_files,'ReadVariableNames',false,'Format', '%s');
NAMES = L.Var1;
len = length(NAMES);

L = readtable(full_time_file_name_str,'ReadVariableNames',false,'Format',

'%f%s');
TIMES = L.Var1;

for n = 1:len
 C = {dir, joined_name, NAMES{n}};
 name = strjoin(C,'\');
 %C = {dir,'\' ,joined_name,'\' , NAMES{n}};
 %name = [C{:}];
 %CallScatter(name, sim_name,TIMES(n));
 CallScatter(name, sim_name);
end

%generates energy profiles and compactness
len = length(MAT_NAMES);
for n = 2:len
 %for windows only
 C = strsplit (MAT_NAMES{n},'/');
 %//C_size = length(C);
 %//str_file = {C{1},C{2},C{3}};
 str_file2 = strjoin(C, '\');
 %str_file2 = strjoin(C, '\');
 C = {dir, joined_name, str_file2};
 %//C = {dir, joined_name, MAT_NAMES{n}};
 name = strjoin(C,'\');
 CallEnergyProfile_new(dir, joined_name, name,

full_energy_file_name_str);
end
end

function CallScatter(name, sim_name)

T = readtable(name,'Delimiter','space','ReadVariableNames',false, 'Format',

'%f%f');
RMSD =T.Var1;
TIME = T.Var2;

138

h=figure('visible','off');
scatter(RMSD, TIME);
axis([0,12, 0, inf]);

h2=xlabel('rmsd');
set(h2, 'FontSize', 16);
set(gca,'XTick',[0:1:12]);
set(gca,'XTickLabel',{'0','', '2','', '4','', '6','', '8','', '10','',

'12'});

h3 = ylabel('time in sec');
set(h3, 'FontSize', 16);
C = strsplit (name,'\');
C_size = length(C);
str_file = C{C_size};
str_file2 = strrep(str_file, '_', ' ');
C = {sim_name, str_file2};
str_file3 = strjoin(C, ' ');

h4 = title(str_file3);
set(h4, 'FontSize', 18) ;
set(h4,'FontWeight','bold');

%set(h, 'Color', 'white'); % white bckgr
%export_fig(h, ... % figure handle
% name,... % name of output file without extension
% '-painters', ... % renderer
% '-jpg', ... % file format
% '-r150'); % resolution in dpi
%savefig(h,name);
saveas(h,name,'fig');
saveas(h,name,'jpg');

close(h);

end

function CallEnergyProfile_new(dir, joined_name,name,energies_file_name)
T = readtable(name,'ReadVariableNames',false,'Format', '%s');
C = strsplit (name,'\');
C_size = length(C);
prot_cat = {C{C_size-2}, C{C_size-1} };
prot_cat_str = strjoin(prot_cat, '\');

DAT_NAMES = T.Var1;

len = length(DAT_NAMES);
for n = 1:len
 full_name = {dir, joined_name, prot_cat_str, DAT_NAMES{n} };
 full_name_str = strjoin(full_name, '\');
 CallEnergyProfilePlot_new(full_name_str,energies_file_name);
end
end

139

unction CallEnergyProfilePlot(name, energies_file_name)

L = readtable(energies_file_name,'ReadVariableNames',false,'Format', '%s');
ENERGIES = L.Var1;

T = readtable(name,'ReadVariableNames',false,'Delimiter','space','Format',

'%f%f%f%f%f');
X =T.Var1;
Y = T.Var2;

%%
h=figure('visible','off');
plot(X, Y);
axis([0,inf, -inf, inf]);

h_1=xlabel('MC steps');
set(h_1, 'FontSize', 16);

h_2 = ylabel('energy');
set(h_2, 'FontSize', 16);

C = strsplit (name,'\');
C_size = length(C);
str_file = C{C_size};
str_file2 = strrep(str_file, '_', ' ');
CC = {C{C_size - 1}, str_file2};
title_name = strjoin(CC, ' ');

h_3 = title(title_name);
set(h_3, 'FontSize', 18) ;
set(h_3,'FontWeight','bold');
file_name = name;
energy_file_name = strrep(file_name, '.dat', '_energy');

saveas(h,energy_file_name,'fig');
saveas(h,energy_file_name,'jpg');
close(h);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for n = 1:length(ENERGIES)
energy_term =T.(n+2);
h2=figure('visible','off');
plot(X, energy_term);
%hold all;
axis([0,inf, -inf, inf]);

h2_1=xlabel('MC steps');
set(h2_1, 'FontSize', 16);
h2_2 = ylabel('Energy');
set(h2_2, 'FontSize', 16);

140

CCC = {ENERGIES{n}, title_name};
energy_title = strjoin(CCC, ' ');
h2_3 = title(energy_title);
set(h2_3, 'FontSize', 18) ;
set(h2_3,'FontWeight','bold');

en_file_name = strrep(file_name, '.dat', ENERGIES{n});
saveas(h2,en_file_name,'fig');
saveas(h2,en_file_name,'jpg');
close(h2);
end
end

141

Bibliography

1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, and Lipman DJ. Gapped BLAST
and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402,
1997.
2. Anfinsen CB. Principles that govern the folding of protein chains. Science 181: 223-230, 1973.
3. Bairoch A AR, Wu CH, et al. The Universal Protein Resource [UniProt]. Nucleic Acids Res D154-
159, 2005.
4. Berman HM, Bhat TN, Bourne PE, Feng Z, Gilliland G, Weissig H, and Westbrook J. The Protein
Data Bank and the challenge of structural genomics. Nature structural biology 7 Suppl: 957-959, 2000.
5. Binder KH, D. W. Monte Carlo Simulation in Statistical Physics. 2nd edit, Springer- Verlag, Berlin
1992.
6. Bonneau R, Strauss CE, Rohl CA, Chivian D, Bradley P, Malmstrom L, Robertson T, and Baker D.
De novo prediction of three-dimensional structures for major protein families. Journal of molecular
biology 322: 65-78, 2002.
7. Bonneau R, Tsai J, Ruczinski I, Chivian D, Rohl C, Strauss CE, and Baker D. Rosetta in CASP4:
progress in ab initio protein structure prediction. Proteins Suppl 5: 119-126, 2001.
8. Bower MJ, Cohen FE, and Dunbrack RL, Jr. Prediction of protein side-chain rotamers from a
backbone-dependent rotamer library: a new homology modeling tool. Journal of molecular biology 267:
1268-1282, 1997.
9. Bowie JU, and Eisenberg D. An evolutionary approach to folding small alpha-helical proteins
that uses sequence information and an empirical guiding fitness function. Proceedings of the National
Academy of Sciences of the United States of America 91: 4436-4440, 1994.
10. Bowie JU, Luthy R, and Eisenberg D. A method to identify protein sequences that fold into a
known three-dimensional structure. Science 253: 164-170, 1991.
11. Bradley P, and Baker D. Improved beta-protein structure prediction by multilevel optimization
of nonlocal strand pairings and local backbone conformation. Proteins 65: 922-929, 2006.
12. Bradley P, Misura KM, and Baker D. Toward high-resolution de novo structure prediction for
small proteins. Science 309: 1868-1871, 2005.
13. Brooks BR BR, Olafson BD, et al. CHARMM: a program for macromolecular energy,
minimization, and dynamics calculations. J Comput Chem 4: 187–217, 1983.
14. Brylinski M, Konieczny L, and Roterman I. Hydrophobic collapse in (in silico) protein folding.
Computational biology and chemistry 30: 255-267, 2006.
15. Canutescu AA, Shelenkov AA, and Dunbrack RL, Jr. A graph-theory algorithm for rapid protein
side-chain prediction. Protein science : a publication of the Protein Society 12: 2001-2014, 2003.
16. Case DA PD, Caldwell JA, et al. AMBER 5.0. University of California, San Francisco, CA 1997.
17. Chen VB, Arendall WB, 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW,
Richardson JS, and Richardson DC. MolProbity: all-atom structure validation for macromolecular
crystallography. Acta crystallographica Section D, Biological crystallography 66: 12-21, 2010.
18. Chivian D, Kim DE, Malmstrom L, Schonbrun J, Rohl CA, and Baker D. Prediction of CASP6
structures using automated Robetta protocols. Proteins 61 Suppl 7: 157-166, 2005.
19. Clementi C. Coarse-grained models of protein folding: toy models or predictive tools? Current
opinion in structural biology 18: 10-15, 2008.
20. Clementi C, Nymeyer H, and Onuchic JN. Topological and energetic factors: what determines
the structural details of the transition state ensemble and "en-route" intermediates for protein folding?
An investigation for small globular proteins. Journal of molecular biology 298: 937-953, 2000.
21. Colubri A. OOPS software. http://protlibuchicagoedu/oopshtml

http://protlibuchicagoedu/oopshtml

142

22. Cong Q, Kinch LN, Pei J, Shi S, Grishin VN, Li W, and Grishin NV. An automatic method for
CASP9 free modeling structure prediction assessment. Bioinformatics (Oxford, England) 27: 3371-3378,
2011.
23. Creighton TE. Protein Folding. 1st edit, WH Freeman and Company, New York 1992.
24. Crippen GM. Easily searched protein folding potentials. Journal of molecular biology 260: 467-
475, 1996.
25. Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, Khare S, Tyka MD, Bhat D, Chivian
D, Kim DE, Sheffler WH, Malmstrom L, Wollacott AM, Wang C, Andre I, and Baker D. Structure
prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins 69 Suppl
8: 118-128, 2007.
26. Dill KA. Additivity principles in biochemistry. The Journal of biological chemistry 272: 701-704,
1997.
27. Dill KA. Dominant forces in protein folding. Biochemistry 29: 7133-7155, 1990.
28. Dill KA, and Chan HS. From Levinthal to pathways to funnels. Nature structural biology 4: 10-19,
1997.
29. Dinner AR, Sali A, Smith LJ, Dobson CM, and Karplus M. Understanding protein folding via free-
energy surfaces from theory and experiment. Trends in biochemical sciences 25: 331-339, 2000.
30. Earl DJ, and Deem MW. Parallel tempering: theory, applications, and new perspectives. Physical
chemistry chemical physics : PCCP 7: 3910-3916, 2005.
31. Faraggi E, Xue B, and Zhou Y. Improving the prediction accuracy of residue solvent accessibility
and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural
network. Proteins 74: 847-856, 2009.
32. Go N, and Abe H. Noninteracting local-structure model of folding and unfolding transition in
globular proteins. I. Formulation. Biopolymers 20: 991-1011, 1981.
33. Goldstein RA, Luthey-Schulten ZA, and Wolynes PG. Optimal protein-folding codes from spin-
glass theory. Proceedings of the National Academy of Sciences of the United States of America 89: 4918-
4922, 1992.
34. Gront D, Blaszczyk M, Wojciechowski P, and Kolinski A. BioShell Threader: protein homology
detection based on sequence profiles and secondary structure profiles. Nucleic Acids Res 40: W257-262,
2012.
35. Gu H, Kim D, and Baker D. Contrasting roles for symmetrically disposed beta-turns in the folding
of a small protein. Journal of molecular biology 274: 588-596, 1997.
36. Gu H, Yi Q, Bray ST, Riddle DS, Shiau AK, and Baker D. A phage display system for studying the
sequence determinants of protein folding. Protein science : a publication of the Protein Society 4: 1108-
1117, 1995.
37. Hayes B. Prototeins. American Scientist 86: 216, 1998.
38. Head-Gordon T, and Brown S. Minimalist models for protein folding and design. Current opinion
in structural biology 13: 160-167, 2003.
39. Huang YM, and Bystroff C. Expanded explorations into the optimization of an energy function
for protein design. IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM 10:
1176-1187, 2013.
40. J.Tooze CBa. Introduction to protein structure. New York Garland Publishing 1999.
41. Kallberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, and Xu J. Template-based protein structure
modeling using the RaptorX web server. Nature protocols 7: 1511-1522, 2012.
42. Kamisetty H, Ovchinnikov S, and Baker D. Assessing the utility of coevolution-based residue-
residue contact predictions in a sequence- and structure-rich era. Proceedings of the National Academy
of Sciences of the United States of America 110: 15674-15679, 2013.

143

43. Kinch L, Yong Shi S, Cong Q, Cheng H, Liao Y, and Grishin NV. CASP9 assessment of free
modeling target predictions. Proteins 79 Suppl 10: 59-73, 2011.
44. Kinch LN, Li W, Monastyrskyy B, Kryshtafovych A, and Grishin NV. Evaluation of free modeling
targets in CASP11 and ROLL. Proteins 2015.
45. Klepeis JL, Wei Y, Hecht MH, and Floudas CA. Ab initio prediction of the three-dimensional
structure of a de novo designed protein: a double-blind case study. Proteins 58: 560-570, 2005.
46. Klimov DK, and Thirumalai D. Factors governing the foldability of proteins. Proteins 26: 411-441,
1996.
47. Kolinski A, and Skolnick J. Assembly of protein structure from sparse experimental data: an
efficient Monte Carlo model. Proteins 32: 475-494, 1998.
48. Korst EAJ. Simulated annealing and Boltzmann Machines. Wiley & Sons 1989.
49. Kortemme T, Morozov AV, and Baker D. An orientation-dependent hydrogen bonding potential
improves prediction of specificity and structure for proteins and protein-protein complexes. Journal of
molecular biology 326: 1239-1259, 2003.
50. Lazaridis T, and Karplus M. Effective energy function for proteins in solution. Proteins 35: 133-
152, 1999.
51. Leaver-Fay A, O'Meara MJ, Tyka M, Jacak R, Song Y, Kellogg EH, Thompson J, Davis IW, Pache
RA, Lyskov S, Gray JJ, Kortemme T, Richardson JS, Havranek JJ, Snoeyink J, Baker D, and Kuhlman B.
Scientific benchmarks for guiding macromolecular energy function improvement. Methods in
enzymology 523: 109-143, 2013.
52. Levinthal C. in Proceedings of a Meeting Held at Allerton House, Monticello, IL (Univ of Illinois
Press, Urbana) 1969.
53. Lindahl E HB, van der Spoel D GROMACS 3.0: a package for molecular simulation and trajectory
analysis. J Mol Model 7: 306–317, 2001.
54. Liwo A, Arlukowicz P, Czaplewski C, Oldziej S, Pillardy J, and Scheraga HA. A method for
optimizing potential-energy functions by a hierarchical design of the potential-energy landscape:
application to the UNRES force field. Proceedings of the National Academy of Sciences of the United
States of America 99: 1937-1942, 2002.
55. Liwo A, Khalili M, and Scheraga HA. Ab initio simulations of protein-folding pathways by
molecular dynamics with the united-residue model of polypeptide chains. Proceedings of the National
Academy of Sciences of the United States of America 102: 2362-2367, 2005.
56. Ma J, Peng J, Wang S, and Xu J. A conditional neural fields model for protein threading.
Bioinformatics (Oxford, England) 28: i59-66, 2012.
57. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo
H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FT, Mattos C, Michnick S, Ngo T, Nguyen DT,
Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-
Kuczera J, Yin D, and Karplus M. All-atom empirical potential for molecular modeling and dynamics
studies of proteins. The journal of physical chemistry B 102: 3586-3616, 1998.
58. Maiorov VN, and Crippen GM. Contact potential that recognizes the correct folding of globular
proteins. Journal of molecular biology 227: 876-888, 1992.
59. Mariani V, Biasini M, Barbato A, and Schwede T. lDDT: a local superposition-free score for
comparing protein structures and models using distance difference tests. Bioinformatics (Oxford,
England) 29: 2722-2728, 2013.
60. Max N, Hu C, Kreylos O, and Crivelli S. BuildBeta--a system for automatically constructing beta
sheets. Proteins 78: 559-574, 2010.
61. Metropolis N, Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of State
Calculations by Fast Computing Machines. J Chem Phys 21: 1087, 1953.

144

62. Mirny LA, Abkevich VI, and Shakhnovich EI. How evolution makes proteins fold quickly.
Proceedings of the National Academy of Sciences of the United States of America 95: 4976-4981, 1998.
63. Mirny LA, and Shakhnovich EI. How to derive a protein folding potential? A new approach to an
old problem. Journal of molecular biology 264: 1164-1179, 1996.
64. Moult J, Fidelis K, Zemla A, and Hubbard T. Critical assessment of methods of protein structure
prediction (CASP)-round V. Proteins 53 Suppl 6: 334-339, 2003.
65. Murzin AG, Brenner SE, Hubbard T, and Chothia C. SCOP: a structural classification of proteins
database for the investigation of sequences and structures. Journal of molecular biology 247: 536-540,
1995.
66. Nauli S, Kuhlman B, and Baker D. Computer-based redesign of a protein folding pathway.
Nature structural biology 8: 602-605, 2001.
67. Onuchic JN, Luthey-Schulten Z, and Wolynes PG. Theory of protein folding: the energy
landscape perspective. Annual review of physical chemistry 48: 545-600, 1997.
68. Ovchinnikov S, Kamisetty H, and Baker D. Robust and accurate prediction of residue-residue
interactions across protein interfaces using evolutionary information. eLife 3: e02030, 2014.
69. Ovchinnikov S, Kim DE, Wang RY, Liu Y, DiMaio F, and Baker D. Improved de novo structure
prediction in CASP11 by incorporating Co-evolution information into rosetta. Proteins 2015.
70. Pande VS, and Rokhsar DS. Folding pathway of a lattice model for proteins. Proceedings of the
National Academy of Sciences of the United States of America 96: 1273-1278, 1999.
71. Park SH, O'Neil KT, and Roder H. An early intermediate in the folding reaction of the B1 domain
of protein G contains a native-like core. Biochemistry 36: 14277-14283, 1997.
72. Pertsemlidis A, Zelinka J, Fondon JW, 3rd, Henderson RK, and Otwinowski Z. Bayesian
statistical studies of the Ramachandran distribution. Statistical applications in genetics and molecular
biology 4: Article35, 2005.
73. Pierluigi Crescenzi DG, Christos H. Papadimitriou, Antonio Piccolboni, and Mihalis Yannakakis.
On the Complexity of Protein Folding. Journal of Computational Biology 5: 423-466, 1998.
74. Plaxco KW, Millett IS, Segel DJ, Doniach S, and Baker D. Chain collapse can occur concomitantly
with the rate-limiting step in protein folding. Nature structural biology 6: 554-556, 1999.
75. Plaxco KW, Simons KT, and Baker D. Contact order, transition state placement and the refolding
rates of single domain proteins. Journal of molecular biology 277: 985-994, 1998.
76. Ponder JW, and Case DA. Force fields for protein simulations. Advances in protein chemistry 66:
27-85, 2003.
77. Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, Kim D, Kellogg E, DiMaio F, Lange
O, Kinch L, Sheffler W, Kim BH, Das R, Grishin NV, and Baker D. Structure prediction for CASP8 with all-
atom refinement using Rosetta. Proteins 77 Suppl 9: 89-99, 2009.
78. Rohl CA. Protein structure estimation from minimal restraints using Rosetta. Methods in
enzymology 394: 244-260, 2005.
79. Sali A, Shakhnovich E, and Karplus M. How does a protein fold? Nature 369: 248-251, 1994.
80. Scalley ML, Yi Q, Gu H, McCormack A, Yates JR, 3rd, and Baker D. Kinetics of folding of the IgG
binding domain of peptostreptococcal protein L. Biochemistry 36: 3373-3382, 1997.
81. Schafer NP, Kim BL, Zheng W, and Wolynes PG. Learning To Fold Proteins Using Energy
Landscape Theory. Israel journal of chemistry 54: 1311-1337, 2014.
82. Schwede T, Kopp J, Guex N, and Peitsch MC. SWISS-MODEL: An automated protein homology-
modeling server. Nucleic Acids Res 31: 3381-3385, 2003.
83. Shapovalov MV, and Dunbrack RL, Jr. A smoothed backbone-dependent rotamer library for
proteins derived from adaptive kernel density estimates and regressions. Structure (London, England :
1993) 19: 844-858, 2011.

145

84. Shi S, Pei J, Sadreyev RI, Kinch LN, Majumdar I, Tong J, Cheng H, Kim BH, and Grishin NV.
Analysis of CASP8 targets, predictions and assessment methods. Database : the journal of biological
databases and curation 2009: bap003, 2009.
85. Shimada J, Kussell EL, and Shakhnovich EI. The folding thermodynamics and kinetics of crambin
using an all-atom Monte Carlo simulation. Journal of molecular biology 308: 79-95, 2001.
86. Simons KT, Kooperberg C, Huang E, and Baker D. Assembly of protein tertiary structures from
fragments with similar local sequences using simulated annealing and Bayesian scoring functions.
Journal of molecular biology 268: 209-225, 1997.
87. Simons KT, Ruczinski I, Kooperberg C, Fox BA, Bystroff C, and Baker D. Improved recognition of
native-like protein structures using a combination of sequence-dependent and sequence-independent
features of proteins. Proteins 34: 82-95, 1999.
88. Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics (Oxford,
England) 21: 951-960, 2005.
89. Song Y, Tyka M, Leaver-Fay A, Thompson J, and Baker D. Structure-guided forcefield
optimization. Proteins 79: 1898-1909, 2011.
90. Wang JM CP, Kollman PA How well does a restrained electrostatic potential [RESP] model
perform in calculating conformational energies of organic and biological molecules? . J Comput Chem 21:
1049–1074, 2000.
91. Wolynes PG. Energy landscapes and solved protein-folding problems. Philosophical transactions
Series A, Mathematical, physical, and engineering sciences 363: 453-464; discussion 464-457, 2005.
92. Wolynes PG, Onuchic JN, and Thirumalai D. Navigating the folding routes. Science 267: 1619-
1620, 1995.
93. Wu S, Skolnick J, and Zhang Y. Ab initio modeling of small proteins by iterative TASSER
simulations. BMC biology 5: 17, 2007.
94. Xu J, Li M, Lin G, Kim D, and Xu Y. Protein threading by linear programming. Pacific Symposium
on Biocomputing Pacific Symposium on Biocomputing 264-275, 2003.
95. Yang Y, Faraggi E, Zhao H, and Zhou Y. Improving protein fold recognition and template-based
modeling by employing probabilistic-based matching between predicted one-dimensional structural
properties of query and corresponding native properties of templates. Bioinformatics (Oxford, England)
27: 2076-2082, 2011.
96. Zemla A. LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res 31:
3370-3374, 2003.
97. Zemla A, Venclovas C, Moult J, and Fidelis K. Processing and analysis of CASP3 protein structure
predictions. Proteins Suppl 3: 22-29, 1999.
98. Zhang Y. Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 69 Suppl
8: 108-117, 2007.
99. Zhang Y, Arakaki AK, and Skolnick J. TASSER: an automated method for the prediction of
protein tertiary structures in CASP6. Proteins 61 Suppl 7: 91-98, 2005.
100. Zhang Y, and Skolnick J. Automated structure prediction of weakly homologous proteins on a
genomic scale. Proceedings of the National Academy of Sciences of the United States of America 101:
7594-7599, 2004.
101. Zhang Y, and Skolnick J. Tertiary structure predictions on a comprehensive benchmark of
medium to large size proteins. Biophysical journal 87: 2647-2655, 2004.
102. Zhang Y, and Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-
score. Nucleic Acids Res 33: 2302-2309, 2005.
103. Zhou H, and Zhou Y. Fold recognition by combining sequence profiles derived from evolution
and from depth-dependent structural alignment of fragments. Proteins 58: 321-328, 2005.

146

104. Zhou Y, and Karplus M. Interpreting the folding kinetics of helical proteins. Nature 401: 400-
403, 1999.

