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Prediction of a protein structure is important for understanding the function of a protein. 

The process of protein structure prediction employs the approximation of a protein free 

energy that guides protein folding to the protein’s native state. A function with a good 

approximation of the protein free energy should allow estimation of the structural 

distance of the evaluated candidate structure to the protein native state. Currently the 

energy optimization process relies on the correlation between the energy and the 

similarity to the native structure. The energy function is presented as a weighted sum of 
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components which are designed by human experts with the use of statistical analysis of 

solved protein strictures. Values of the weights are derived through the procedure that 

maximizes the correlation between the energy and the similarity to the native structure 

measured by a root mean square deviation between coordinates of the protein 

backbone. 

Two major components are required for a successful ab initio modelling: (1) an 

effective energy function that discriminates the native protein structure out of all 

possible decoy structures; (2) an efficient sampling algorithm that quickly searches for 

the low-energy states. In this dissertation a new method for energy optimization is 

proposed. The method relies on a fast sampling algorithm and targets successful 

protein folding. The weights for energy components are optimized on a found with the 

Gō potential energy fast folding pathway. The Lennard-Jones potential, the Lazaridis-

Karplus solvation potential, hydrogen bonding potential are used in the optimization 

algorithm. The optimized weights successfully predict all α and α/β proteins. 

The proposed strategy is conceptually different from the existing methods that 

optimize the energy on solved protein structures. The developed algorithm is a novel 

concept that allows the optimization of a more complex functional combination of the 

energy components that would improve the prediction quality. 
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Chapter 1 

Introduction 

1.1 Overview of the problem 

Protein structure determination is central for understanding protein function (40). 

X-ray crystallography, nuclear magnetic resonance (NMR) and electron microscopy 

(EM) are common experimental techniques for protein structure determination. 

However, these methods are expensive and time consuming, leading to a large 

discrepancy between the number of known protein sequences and the number of 

solved protein structures (3, 4). Efficient computer-based algorithms capable of 

predicting 3D structures from sequences could reduce this gap (26). 

 

Computational methods for protein structure prediction can be grouped into three 

categories: homology modeling (1, 82), threading (10, 34, 56, 94, 103), and ab initio 

methods (9, 12, 13, 25, 45, 55, 86, 98). Homology modeling methods assume structure 

resemblance from proteins that share sequence similarity. Threading approaches 

compare a target sequence against a set of known protein structures by using statistical 

knowledge of the relationship. If similar protein structures are not available, ab initio 

methods build the 3D models “from scratch”. Unlike homology modeling and threading 

approaches, ab initio algorithms are essential for understanding how and why a protein 

folds to its specific structure out of the large number of possibilities.  

 

Ab initio modeling searches protein conformational space under the guidance of 

a designed energy function and generates a set of possible conformations from which 
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final models are chosen. Three key components are required for successful ab initio 

modeling: (1) an effective energy function that discriminates the native protein structure 

out of all possible decoy structures (16, 53, 57, 86, 90); (2) an efficient sampling 

algorithm that quickly searches for the low-energy states; (3) a selection method for  

native-like models from a pool of decoys. 

 

Typically, an energy function consists of a variety of energy terms that represent 

different structural features and the interplay between local and global interactions 

among amino acid residues. It includes Van Der Waals interactions, electrostatic 

interactions, hydrogen bonding, and solvation potential. If a sampling algorithm uses 

fixed backbone atoms and rotamer libraries, then the bonding energy terms often are 

ignored. The weights are used to balance the contribution of terms to the overall energy. 

The ability of an energy function to predict the structure of novel proteins is evaluated by 

its prediction accuracy on an independent set of test proteins. This approach aims to 

stabilize the correct structures and to destabilize incorrect ones by harnessing the 

theoretical argument that the native protein state is characterized by a large energy gap 

(92). Therefore, the best energy function would maximize the Z-score, defined as the 

difference between the mean energy of the native-like structures and the mean energy 

of the non-native structures divided by the standard deviation of the energy of the non-

native structures (33, 54, 63). 
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1.2 Aims and Methodological Aspects 

In this report, I describe a new method for energy weight optimization, inspired by 

the design of a funnel –shaped energy surface for folding of α, β and αβ proteins (51, 

81, 91) This funnel sculpting method generates an energy function in an iterative 

manner until a random starting conformation folds into a native-like fold. In our 

algorithm, I outline the energy funnel shape by tuning a Monte Carlo based sampling 

algorithm (5) with a Gō potential (32) as a scoring function to simultaneously fold 

proteins from different SCOP classes (65). I used off-lattice all-atom protein models, 

including hydrogens atoms, and started folding simulations from a fully extended 

backbone chain. In general, a Gō potential is often viewed as an idealized energy 

landscape with a strong correlation between energy and structural distance from the 

native state, and, despite the criticism, is used to study folding kinetics (20, 70, 85, 104). 

Thus, I assumed that this strategy would be able to find fast-folding pathways (85) in 

which I optimized the weights for physics- and/or knowledge-based energy terms. The 

weight optimization routine employed a scoring function designed as a linear 

combination of the Gō potential and the three most frequently used potentials. During 

the algorithm’s iterations, I minimize the Gō potential weight.  

 

The method presented in this study is a novel concept. Although the potential I 

employed did not contain a sufficient number of energy terms to independently fold an 

arbitrary protein sequences, I demonstrated that the full conformational search of the 

ground states can be solved by the available sampling methods and standard 
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computational resources. 
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Chapter 2 

Background and Related Work 

 

2.1 Amino acids and Proteins 

Proteins are polymers that composed of 20 different amino acids (residues) 

encoded in DNA or RNA sequence. Each amino acid includes α-carbon (Cα) bonded to 

amino (NH) and carboxyl (COOH) groups and a side chain, which is different for each 

amino acid. The amino acids in the protein chain are linked with peptide bonds (CO-NH) 

formed between the amino and carboxyl groups (Figure 2.1). These bonds are formed 

during the polymerization process when a molecule of water is lost. The connected 

carbon, oxygen and nitrogen atoms form a protein backbone. This backbone can adapt 

repeating local structures called secondary structure elements: α helices, β sheets or 

loops (Figure 2.1). The secondary structure elements and their spatial interrelations 

form the tertiary structure of a protein. A part of a protein folded into a distinct structural 

region comprises a protein domain. Under physiological conditions proteins 

spontaneously fold into a particular shape named as its native state. The native state 

geometry of a protein defines its behavior and function. 
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  Figure 2.1: Protein Structure. a) The atomic structure of a single amino acid and the 
chain of amino acids are; b) a protein sequence.; c) an all-atom representation of the 
protein colored by atom type, secondary structure elements, and a backbone 
representation with colored secondary structure elements. 

a) 

b) 

c) 
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2.2 Protein Folding 

Anfinsen showed that protein ribonuclease can be reversibly denatured / 

renatured in a test tube (2). It indicates that if a protein always folds into the same native 

structure, it is possible to develop a protein folding algorithm that uses only the 

information contained in a sequence to fold a protein towards its native or near native 

state. 

 

2.2.1 Folding Funnel 

The energy landscape of protein folding, known as a folding funnel, can be 

viewed as a rugged landscape with kinetic traps, energy barriers and some narrow 

throughway path to native (28). It is considered that the native state of a protein 

corresponds to the global energy minimum, the lowest point of the landscape, and the 

folding process is a roll down a free energy hill to the bottom (28). Figure 2.2 

demonstrates a folding funnel, where the native state (N) corresponds to the energy 

minimum surrounded by steep slopes (29). 
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Figure 2.2. Folding funnel (28) 
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2.2.3 Levinthal's Paradox 

If I take into account the enormous number of protein’s possible conformations, 

the process of a protein self-assembly into the native state is remarkably efficient. The 

gap between expected and current folding speed was demonstrated by Levinthal (52) 

and known as Levinthal's paradox. For example, if we have a polypeptide of 101 amino 

acids and each bond connecting two neighboring amino acids can have 3 possible 

states then the number of possible configurations is equal to 3100 = 5⋅1047. Assuming a 

protein sampling rate of 1013 configurations per second (0.1 ps per configuration) it will 

take 1027 years to try all of them. Nevertheless, proteins fold in seconds, not performing 

an exhaustive search of entire conformational space. There are several possible 

explanations of the paradox: 1) proteins through the evolution process specialized to 

fold rapidly, meaning that other amino acid sequences simply did not survive; 2) the lack 

of stability of some proteins (37). It was also noticed that the native configuration may 

not have the lowest free energy. Thus, absolute stability is not required since a protein 

has to survive as long as it performs perform its function. 

 

2.2.4 Molecular Dynamics 

A potential energy of a whole system represented by a sum of forces for all 

atoms is called a force field. Two groups of forces affect folding of protein molecules: 

bonded and non-bonded forces. Bonded forces result from a covalent bond between 

two atoms or ionic bond between oppositely charged ions, the atoms that lost or gained 

one or more electrons. Non-bonded forces result from distance interactions between 

atoms. Bonded forces attribute to bending, stretching and rotating. Bending (Equation 
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2.1) and stretching potentials (Equation 2.2) adapt an elastic spring model. They are 

parametrized with the equilibrium values (𝑙0 and 𝛩0) and bond/angle stiffness (𝑘𝑙 and 𝑘𝛩 

where 𝑘𝛩 ≪ 𝑘𝑙). 

 

Bond rotation potential (Equation 2.3) is represented by a cosinusoid function of 

parametrized amplitude (𝑉𝜔), periodicity (n) and phase shift (ϕ): 

 

Non-bonded forces are represent by steric effects, van der Waals' interactions and 

electrostatics. Steric interactions are caused by Pauli short range repulsion due to an 

energetic cost of electron clouds overlap). The polarization of molecules causes long 

range attractive forces, called Van der Waals' forces They are modelled together with 

Lennard-Jones potential: 

 

where rmin is a distance at the minimum of potential. Electrostatic charge is expressed 

by Coulomb's law: 
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The full force field that can reproduce the basic features of protein energy landscapes at 

an atomic level of detail is then represented by the following potential energy function 

[PW]: 

 

Over the last thirty years several families of force fields has been developed. The most 

used for protein folding are AMBER (Assisted Model Building and Energy Refinement), 

CHARMM (Chemistry at HARvard Macromolecular Mechanics), OPLS (Optimized 

Potential for Liquid Simulations) families (76). Their force fields include those terms in 

Equation 2.6. Parameters representing a single force field designed for certain type of 

molecules may vary for each family. The computational cost of these all-atom energy 

functions is very high and limits their application to the molecular dynamic simulations of 

short proteins.  

 

2.3 Protein Structure Prediction 

The complete search of all possible protein conformations is not possible and all-

atom model simulations demand enormous computational resources. Thus, simplified 

models were proposed. 
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2.3.1 Minimalist models for protein folding 

Native state topology plays important role in determining the speed and 

mechanism of folding for small proteins as was shown by simulations using minimalist 

protein models. Minimalist protein models are able to rapidly collect meaningful 

statistics about folding pathways and kinetics focusing on the fundamental physics of 

the problem and linking the results to experimental observations for a target protein. 

Over the last thirty years many minimalist models have been developed ranging from 

all-atom Gō potentials to coarse-grained bead models with Gō interactions substituted 

or enhanced by physics based potentials. The reduction of computational burden 

provided by coarse-grained models may support folding studies on a genomic scale and 

protein design. 

 

2.3.1.1 Coarse-grained models 

HP model (27) refers to hydrophobic collapse hypothesis. It was observed that 

ground states have hydrophobic core and polar exterior (14). HP model uses a 2 letter 

alphabet (H and P) instead of the 20 element amino acid alphabet. Only one property of 

an amino acid, hydrophobicity or polarity, is taking into consideration. The force of 

attraction of hydrophobic residues is used as a scoring function. The number of gained 

H-H contacts measures quality of a folded structure. However, HP model was shown to 

be NP-complete even for two dimensional lattice (73). 

 

Several residue-level models have been proposed where an atomic 

representation was reduced to the center of mass of an atomic group. These models 
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are represented by UNRES (54), CAS (101), SICHO (47). The loss of detail is 

compensated by knowledge-based potentials derived from a statistical analysis of 

solved protein structures. Such energy functions do not capture the physical free energy 

explicitly but represent the probability that a given structure is native-like. 

 

2.3.1.2 Gō-like models 

Gō potentials favor native state contacts of the target fold and have been used to 

illustrate the energy landscape. Simulations with Gō potentials usually employ the 

protein chain as a string of beads (19, 38). Minimalist Gō-models minimize energetic 

traps (roughness) on the free energy surface. The main limitation of Gō-like models is 

that they cannot be used to characterize protein landscape regions where energetic 

frustration is not negligible such as certain compact non-native states and misfolding 

processes. The studies of misfolding process require take into account non-native 

interactions, energetic heterogeneity, and frustration within definitions of an appropriate 

model. Nevertheless, Gō potentials provide a sufficient model to explain rapid and 

reliable folding of native sequences relative to poorly designed or arbitrary 

heteropolymer sequences (28, 46, 67, 79). Those conclusions support the hypothesis 

that evolution has evolved sequences that favor fast folding (62). The argument towards 

support that minimalist models can give reasonable approximation of the folding of the 

real proteins is the observation that the magnitude of the folding rate for two-state 

folders is correlated with average distance between contacting residues in the native 

state (75). 
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Figure 2.3: (38): Minimalist model of L and G proteins. Minimalist model of the native 
state topology of protein L (bottom) and the NMR solution of G structure (top), showing 
the similar arrangement of secondary and tertiary structure. 
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Sequence-independent Gō models are not suitable for exploring folding process 

of proteins with low sequence identity but high structural homology since they have 

minimal energetic frustration. An example of delicate balance between energetic and 

topological frustration was demonstrated for proteins G and L (Figure 2.3). It was 

demonstrated that G and L proteins fold by different pathways (35, 36, 66, 71, 74, 80). 

In protein L the first β hairpin forms with the second β hairpin unstructured. Protein G 

folds through a transition state with purported rate-limiting formation of the second b 

hairpin. It was also demonstrated that protein G folds through multiple pathways that 

involve intermidiates (Figure 2.4). 

 

2.3.2 CASP 

CASP (Critical Assessment of Structure Prediction) is an experiment, where 

structural predictions (the native structures are not known at the moment of submission) 

of set of the target protein sequences are submitted by the participants. The accuracy of 

a model is then assessed by the comparison to a real native structure. Targets are 

classified into three categories: comparative modeling, fold recognition/threading and 

new fold/ab initio prediction. Comparative modeling methods make use of structure 

resemblance between proteins that share sequence similarity. Threading approaches 

compare the target sequence against a set of known protein structures by using 

statistical knowledge of the relationship. If similar protein structures are not available, ab 

initio methods build the 3D models “from scratch”. 
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Figure 2.4: (38) Two folding pathways for protein G. Free energy at the folding temperature 
as a function of radius of gyration (Rg) and native state similarity (w) for protein G. Two folding 
pathways are present. The fast pathway corresponds to a collapse-concomitant folding 
pathway (arrow on right), whereas the slow pathway (arrow on left) corresponds to rapid non-
native collapse with a structured second b hairpin and a longer process of finding the native 
structure. The contour lines are spaced at intervals of k

b
T, with blue to red representing high to 

low free energy values 
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To identify top predictions several distance based methods like Global Distance 

Test (GDT), Z-Score or TM-Score as well as using a human expert visual evaluation 

(97, 102) are used. For example, for ab initio methods in CASP11 two types of score 

were produced 1) to compare prediction models to random models (random ratio) and 

2) to compare prediction models to top templates (template ratio) (44). The random ratio 

used to detect promising model predictions corresponds to the ratio of the best server or 

manual group GDT_TS score to the random model score. To evaluate overall prediction 

quality of each predictor group the combinations of six scores (GDT_TS (96), TenS 

(43), QCS (22), ContS (84), lDDT (59), and MolProb (17)) was used. Scores were 

provided by The Prediction Center for every prediction. Significance scores for CASP11 

ab initio ranks included bootstraps and T-tests (44). 

 

The considerable progress in prediction quality has been observed for 

comparative modeling and fold recognition. The ab initio remains the most challenging 

of the CASP experiment categories. Even though ab initio predictions result in the low 

quality of models they have been verified to be successful on targets where other 

methods fail. 

 

To improve de novo prediction secondary structure prediction, fragments and 

motifs identification, contact prediction and assembly of folds from fragments have been 

applied. These methods usually are combined with the search methods based on the 

molecular dynamics, Monte Carlo optimization or genetic algorithms. A few methods 

use pure ab initio simulations together with empirical potentials (64). In CASP11 the 

most successful participants in the template free category were David Baker with the 
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Robetta server (18) and Yang Zhang with I-TASSER and QUARK servers (99, 100). 

Importantly, the use of alignment-based contact prediction methods defined the 

CASP11 progress. These innovations permitted de-novo modeling of larger domain 

structures.  

 

2.3.3 State-of-the-art De Novo Prediction 

The most successful prediction methods in the free modelling category of the 

CASP11 experiment (see Table 2.1) (44) are Robetta (69) and I-TASSER (93). Both 

methods use short fragments of known structures with similar sequence to build initial 

models. Random perturbations are applied to these models and the Monte Carlo 

method (30) is used to find a structure with the minimal energy. In both methods the 

energy is a weighted sum of knowledge-based potentials. Energy terms weights are 

optimized on a set of decoys by maximizing the correlation between the value of energy 

function and the similarity of decoys to the native structure. The decoys are generated 

by introducing small random changes to the known native structure. Thus, the decoys 

similar to the native structure have the lowest energy values. The root mean square 

deviation (RMSD) of euclidean distance between Cα atoms is used to measure structure 

similarity. However, the described optimization method described has drawbacks: 1) 

decoys of the native structure are biased towards that structure and potentially over fit 

the energy function; 2) the linear combination of energy terms assumes that all energy 

terms equally well discriminate between good and bad candidate structures (in practice, 

these terms works well for some proteins and bad for the others).  
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Table 2.1 (44): FM (free modelling, ab initio) Server Group Performance 
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2.3.4 Robetta algorithm 

Before CASP11 experiment, Robetta algorithm sampled a diverse set of 

fragment assembly followed by all-atom refinement, and selection of final models based 

on clustering and Rosetta all-atom energy. This approach for high accuracy models has 

been limited to small proteins (<100 residues) due to enormous size of the 

conformational search space. In CASP11, Rosetta employed residue-residue co-

evolution derived restraints (69) during sampling and refinement to direct the search 

towards the native conformation. CASP11 demonstrated that co-evolution derived 

contacts increase structure prediction accuracy. 

 

2.3.4.1 Residue-residue co-evolution 

Two or more proteins can bind together and form a complex to perform various 

functions. Solving the structures of these complexes remains a challenge even if the 

structures of the protein subunits are known. Ovchinnikov et al (68) designed an 

algorithm to predict which parts of the proteins make contact with each other in a protein 

complex. The similar algorithm is incorporated into Robetta to improve multidomain 

protein structure prediction (69).  

 

Two amino acids at positions X and Y are co-varied if for any given amino acid at 

position Y there is often a specific amino acid at position X. It is noticed that when a pair 

of amino acids co-varied, these two amino acids tends to make contact with each other 

at the protein–protein interface or the protein multidomain interface (Figure 2.5). 
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Figure 2.5 (69): Residue covariation in complexes with known structures. Contacts with 
high GREMLIN scores correlate with residue-pairs across protein interfaces in solved complex 
structures; the structures are pulled apart for clarity.  
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2.3.4.2 Robetta’s pipeline 

The Robetta algorithm starts with an iterative process of domain boundaries 

prediction from PDB structures with sequence similarity to the query (Figure 2.6) (69). 

At each iteration step, HHSearch (88), Sparks-X (95), and RaptorX (41) identify 

templates from pdb database and generate alignments. The sequence is threaded onto 

the template structures to generate partial models that are clustered to identify distinct 

topologies. Through this iterative process domain boundaries are assigned. For each 

domain Robetta finds homologous sequences for the multiple sequence alignment 

(MSA) to predict residue-residue coevolution contacts. GREMLIN (42) obtains a global 

statistical model of the prepared MSAs using a pseudo likelihood approach, and 

contacts are predicted using the residue-residue coupling values derived from the 

model fitting procedure. The contacts with sequence separation of at least 3 were 

converted to distance restraints supplement the Rosetta energy function. 

 

2.3.4.3 Rosetta ab initio modeling 

The next module of Robetta’s algorithm is attributed to Rosetta ab initio 

modelling (Figure 2.7). Fragments are generated with the use of PSI-BLAST 

alignments and up to three secondary structure predictions from PSIPRED, SAM-T02, 

JUFO or PhD. Similarity between the target sequence and a fragment is measured by a 

sum of similarity scores for the sequence and secondary structure. This fragment library 

is used in the next step in the fragment insertion. Conformational sampling starts from 

completely extended chain. It is carried out by a Monte Carlo fragment replacement 

strategy guided by a low resolution score function that favors protein-like features. Both 
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bond angles and bond lengths are fixed to ideal values, and the side chains are 

approximated with the center of their mass as a single “centroid” interaction center. 

Each conformational change starts with random selection of a position in the chain. One 

of the fragments starting in that position is selected from the library and backbone 

torsion angles (φ, ψ, ω) from the fragment are applied in that position. Fragment 

insertion is performed in two stages. First 9-residue fragments are used to construct a 

rough model, which is refined with 3-residue fragments. The predicted by GREMLIN 

contacts are used as restraints for sampling and refinement. The energy function used 

for structure evaluation is composed of Rosetta knowledge based potentials (see Table 

2.2): sequence profile, secondary structure (SS), Ramachandran basin, depth 

dependent structure profile (103), phi and psi torsion (31) and solvent accessibility (31) 

score terms. Score term weights were optimized from an unpublished benchmark. The 

number of used potential terms increases gradually with the progress of simulated 

annealing, starting from steric overlap and finishing with complete potential for the last 

quart of iterations of 9-residue stage and for the whole 3-residue stage. The best decoy 

structures are chosen from a top 5% lowest energy subset or cluster analysis is 

performed to select the representative structures. The chosen decoys structure 

becomes a starting point for the full-atom refinement. It includes moves like torsion 

angles perturbation, the fragment insertion which takes only those similar to existing 

fragment in the model from the fragment database. The refinement also incorporates 

local fragment gradient descent optimizations and sampling side chains using a 

backbone-dependent rotamer library (8, 15). 
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Figure 2.6 (69): Fully automated  Rosetta structure prediction protocol. 
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Figure 2.7 (78): Rosetta ab initio modelling 
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2.3.4.4 Rosetta Energy Function 

The components of Rosetta energy function are knowledge/statistical based 

terms and refer to the probability of “nativeness" of given structure, based on analysis of 

features of known native structures. A Bayesian model of the likelihood of the structure 

being a native one, given the sequence of amino acids (Table 2.2, Table 2.3) is used to 

design Rosetta energy. The statistical analysis of the native structures features is 

employed to designed the energy terms and describe either the energy of structure 

independent of sequence (P(structure)) or energy of sequence given particular structure 

(P(sequence | structure)) (87). The all-atom Rosetta energy function is composed as a 

linear combination of the Ramachadran torsion preferences, the Lennard-Jones 

potential, implicit solvation and electrostatic effects, hydrogen bonding and backbone 

dependent rotamer self-energy potentials. The Lennard- Jones potential utilizes energy 

parameters used in CHARMM 19 and uses a linear function for repulsion to 

compensate for fixed rotamer set. The implicit solvation energy is calculated by using 

Lazaridis and Karplus (50) complete model. Electrostatic interactions are approximated 

based on PDB statistics. Hydrogen bonding potential depends on secondary structure 

and orientation of a hydrogen bond. The Van der Waals potential in a low resolution 

energy function rewards globally compact structures. It is represented by steric 

repulsion of backbone atoms and side-chain centroids. Solvation potential and 

hydrogen bonding potentials are based on statistical data. 
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Table 2.2 (78) : Rosetta energy terms for coarse-grain ab initio simulations   
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Table 2.2 (continued) (78): Rosetta energy terms for coarse-grain 

 ab initio simulations  
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Table 2.3 (78): Rosetta energy terms for ab initio refinement stage 
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Table 2.3 (78) (continued): Rosetta energy terms for ab initio refinement stage 
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Conclusions 

Protein structure prediction requires different intricate methods that involve 

sequence and structure comparison, prediction of secondary structure elements, 

calculation of solvent accessibility, structure clustering and optimization of complex 

energy functions. This dissertation touches an aspect of optimization of an energy 

function. This work is about the design of a new Monte Carlo based approach that 

optimizes weights for energy terms on a fast folding pathway found with assistance of 

Gō-like potential. The analysis of the state-of-the-art prediction methods has revealed 

weak points in the current energy optimization procedures. First, the decoys used in 

design of the energy functions are biased to the native structure due to the methods of 

their design. Besides, the process of decoys generation is opposite to the reality of 

protein structure prediction when decoys have to be built without any knowledge of the 

native structure. Finally, the linear combination of energy terms often assumes that 

energy terms are independent, where weights are used to define the relative 

contribution of terms. However, it is likely that energy terms may correlate with each 

other. For example, the volume based terms may correlate with van der Waals 

interactions (VDW). Another example is that hydrogen bonding interactions occur at 

VDW distances. Thus, it is likely that a linear sum of weighted energy terms cannot 

capture those covariances, leading to an inaccurate energy (39, 89). 

 

In the following chapters I address the first issue. First, I describe the Monte 

Carlo based sampling algorithm. It was designed within OOPS software which I 

optimize for the significant folding speed increase. The algorithm employs effective 
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Otwinovski’s backbone torsional angles distributions, a soft core Gō potential. Second, I 

present a new Monte Carlo based energy weights optimization approach, which relies 

on a fast folding pathway. Several energy terms are tested during the optimization 

procedure, such as the Lennard-Jones potential (LJ), the Lazaridis-Karplus solvation 

potential (LK), oriented hydrogen bonding potential (HB), the compactness term and 

Discrete Optimized Protein Energy (DOPE) term. Three of them, LJ, LK and HB, are 

shown to be effective. Finally, I apply optimized weights for the energy terms to predict 

proteins not included into the optimization procedure. 
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Chapter 3 

Sampling algorithm 

3.1 All-atom protein representation model 

All atoms including hydrogen atoms were explicitly included into simulations from 

the very beginning. The bond lengths and backbone planar angles, bond lengths were 

fixed at their mean values. The backbone dihedral angles ω were fixed at their trans 

conformation, ω = 180°, since ω is observed in the trans conformation more frequently 

than in cis conformation, ω = 0°. However those ω that are in cis conformation in native 

structures were held fixed at in cis conformation. The backbone dihedral angles ϕ, ψ 

and side chain dihedral angles chi varied during simulations. 

 

3.2 Training set 

Proteins in different classes may potentially require different weights for each of 

the energy terms. In order to use an optimized set of weights for any protein regardless 

of its structure classification, I explored and optimized energy weights by running 

simultaneously the sampling algorithm and energy weights optimization for 

representatives of three protein classes (all α, all β, α/β). The overview of three proteins 

is listed in Table 3.1 and .their structure shown in Figure 3.1 
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Table 3.1. Protein structures used in the training set. The 3 proteins belong to 
different SCOP classes and have comparable sequence lengths  

Figure 3.1 Training set for the sampling and the energy weights optimization 
algorithms.  .
a) All-beta (WW-domain, 1ywj) – 1μs folding time in solution 

b) Alpha/beta (crambin, 1crn) – 1μs folding time in solution 

c) All-alpha(albumin-binding domain, 1prb) – 100ns folding time in solution 

a) b) c) 
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3.3 Monte Carlo simulations 

Conformational space of proteins was explored with Metropolis Monte Carlo 

method (MMC) (Figure 3.3) (61). In the developed algorithm, protein folding simulations 

always started from a stretched conformation, where all backbone dihedral angles were 

equal to 180°and side chain dihedral angles were chosen to minimize clashes with a 

backbone and neighboring side chains. To generate a new conformation I changed 

dihedral angles of a protein chain as described in the Move set section below. If the 

energy of a new conformation was less than the energy of a previous conformation, the 

former conformation was accepted. Otherwise a new conformation was accepted with 

probability Pi,j : 

 

 𝑷𝒊,𝒋 = 𝒎𝒊𝒏 {𝟏, 𝐞𝐱𝐩 (
−𝜟𝑬𝒊,𝒋

𝒌𝑻
)}        (𝟑. 𝟏)  

 

where 𝜟𝑬𝒊,𝒋is the energy difference between i and j .conformations, k—the Boltzmann 

constant, T-temperature. The maximum number of MC steps was set to 106. 

 

3.4 Scoring function 

All-atom Gō potential 

Gō potentials favor native state contacts of the target fold and have been used to 

illustrate the energy landscape. Minimalist Gō-models minimize energetic traps 

(roughness) on the free energy surface and provide a sufficient model to explain rapid 
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and reliable folding of native sequences.  

 

  

Figure 3.2 Monte Carlo procedure. The initial conformation at the beginning 
of simulations represents a “stretched” conformation with backbone dihedral 
angles at 180 °. Side chains dihedral angles are chosen to minimize clashes 
with a backbone and neighboring side chains. Each random perturbation 
assigns random psi, phi angles to one randomly chosen amino acid and give 
random values to all chi angles of all amino acids. A new conformation is 
accepted if its energy is les s than the energy of a previous one, or satisfies the 
Boltzmann condition. 
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A smoothed atom version of an atomic square the Gō potential (32, 85) is used (Figure 

3.4) for all-atom model protein representation. For two atoms i and j separated by a 

distance d, the energy Pij(d) was calculated according to the following rules: 

If two atoms are in contact in the native conformation, the Gō potential is : 

 

𝑷𝒊𝒋(𝒅) =

{
 
 

 
 

𝟒(𝒅 − 𝝈)𝟐,    𝒅 <  𝝈,
  −𝟏,     𝝈 ≤ 𝒅 <  𝝀𝝈,

   −𝒆
(−(

𝒅−𝝀𝝈
𝟐𝒔

)
𝟐

)
,    𝝀𝝈 ≤ 𝒅 < 𝝀𝝈 + 𝟑𝒔,

 𝟎,    𝒅 ≥ 𝝀𝝈 + 𝟑𝒔

         (𝟑. 𝟐) 

the Gō potential for contacts that are not present in the native conformation: 

 

𝑷𝒊𝒋(𝒅) =  {
𝟒(𝒅 − 𝝈)𝟐 , 𝒅 < 𝝈

      𝟎,                𝒅 ≥ 𝝈  
         (3.3) 

𝝈 = 𝜶 ∙ 𝒓𝒊𝒋                                                   (3.4) 

𝒔 =
𝟎. 𝟏 ∙ 𝒓𝒊𝒋

√𝟐 ∙ 𝒍𝒏𝟐
⁄          (3.5) 

 

where rij  is a sum of Van Der Waals radii. I chose α = 0.66 and λ=2 since they give the 

fastest folding time and sufficient number of trajectories with rmsd in range [1.3Å, 3Å] 

for all three proteins. The total energy of a conformation was computed as the sum over 

all pairs. The folding results for the three proteins from the training set presented in 

Figure 3.4 as scatter plots with RMSD of folded trajectories vs their folding time. I ran 

100 trajectories for statistical validation. About 40% of 1crn trajectories, more than 20% 

of 1prb trajectories and near 8% of 1ywj trajectories were folded with RMSD ≤ 3Å. 

 



38 
 

 
 

  

Figure 3.3 Soft Core Gō Potential Function. 
𝑒𝑖𝑗- two atoms potential, r-distance between two atoms (Å); a) 

the Gō potential for native contacts; b) the Gō potential for non-
native contacts 
  

e
ij
 

e
ij
 

a) 

b) 
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Figure 3.4. Scatter plots of representative runs of RMSD vs folding 
time for proteins trajectories folded with the Gō potential. Folding 
results for 1crn, 1prb, 1ywj 

1prb 

E = Gō  

1crn 

E = Gō 

1ywj 

E = Gō 
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The square version of the Gō potential described in (85) was initially tested. 

However, the energy function was not able to handle steric clashes even being 

accompanied with different types of backbone and side chains torsional angles 

distributions (see The move set section). 

 

3.4.1 Exploring the Gō Potential well depth  

In order to explore the influence of change of the potential well depth during 

folding simulations, the average number of Monte Carlo steps required to fold a protein 

(simulations time) was divided into 2 equal periods for the first experiment and into 3 

periods for the second experiment. For both studies s I started simulations with the well 

depth 1; for the next period the depth of the well was increased by 1 (Figure 3.5). The 

idea behind those experiments was to allow accepting more trial conformations in the 

beginning of simulations and less to the end, accepting conformations that were closer 

to the native state. Therefore, I forced the algorithm to look for the fastest folding 

pathway. The results (Figure 3.6-Figure 3.11) revealed that for all proteins in the 

training set the decrease in folding time was accompanied with significant drop in the 

numbers of folded trajectories which meant that more trajectories were trapped in local 

minima. Thus, I had to reject this strategy for the sampling algorithm. 
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Figure 3.5: Changing soft core Gō potential well depth. During the length of protein 
folding simulations with the Gō potential as a scoring function, the depth of the potential well 
was changed from 1 to 3 to accelerate protein folding, which is equivalent to the finding of a 
fast folding pathway.  
a) an atomic pairwise Gō potential for native contacts b) an atomic pairwise potential for 
non-native contacts 
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Figure 3.6: Comparison of folding time and RMSD distributions between 2-step 
and 3-step change of the Gō potential well depth for 1CRN. For both 2-step and 3-
step energy well depth change a folding time decrease was accompanied with a 
folded trajectories (RMSD below 3 Å) dropping off. 
a) a top figure demonstrates a folding time distribution for 2-step energy well depth 
change (the well depth was changed from 1 to 2, see Figure 3.5), a bottom figure 
shows folding time distribution for 3-step potential well change, see Figure 3.5 b) a top 
figure illustrates RMDS distribution for 2-step energy well depth change, a bottom  
figure presents results for 3-step potential well depth change, see Figure 3.5 

a) b) 
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Figure 3.7: Scatter plot RMSD vs folding time comparison between 
constant Gō potential well depth and 2-step well depth change for 1CRN. 
Speeding up the sampling algorithm by changing well depth of the Gō potential 
leads to a fast trapping in local minima. a) a scatter plot of 1crn trajectories with 
a frozen energy well depth b) a scatter plot for 1crn for 2-step energy well 
change demonstrates the loss of folded trajectories with RMSD below 3Å.  

a) 

b) 
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a) b) 

rmsd (ca) 

rmsd (ca) 

Figure 3.8: Comparison of folding time and RMSD distributions between 2-step 
and 3-step change of the Gō potential well depth for 1PRB. For both 2-step and 3-
step energy well depth change a folding time decrease was accompanied with a 
folded trajectories (RMSD below 3 Å) dropping off. a) a top figure demonstrates a 
folding time distribution for 2-step energy well depth change (the well depth was 
changed from 1 to 2, see Figure 3.5), a bottom figure shows folding time distribution 
for 3-step potential well change, see Figure 3.5 b) a top figure illustrates RMDS 
distribution for 2-step energy well depth change, a bottom figure presents results for 
3-step potential well depth change, see Figure 3.5 
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  a) 

b) 

Figure 3.9: Scatter plot RMSD vs folding time comparison between 
constant Gō potential well depth and 2-step well depth change for 1PRB. 
Speeding up the sampling algorithm by changing well depth of the Gō potential 
leads to a fast trapping in local minima. a) a scatter plot of 1prb trajectories with 
a frozen energy well depth b) a scatter plot for 1prb for 2-step energy well 
change demonstrates the loss of folded trajectories with RMSD below 3Å.  
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a) b) 

Figure 3.10: Comparison of folding time and RMSD distributions between 2-step 
and 3-step change of the Gō potential well depth for 1YWJ. For both 2-step and 3-
step energy well depth change a folding time decrease was accompanied with a 
folded trajectories (RMSD below 3 Å) dropping off. a) a top figure demonstrates a 
folding time distribution for 2-step energy well depth change (the well depth was 
changed from 1 to 2, see Figure 3.5), a bottom figure shows folding time distribution 
for 3-step potential well change, see Figure 3.5 b) a top figure illustrates RMDS 
distribution for 2-step energy well depth change, a bottom figure presents results for 
3-step potential well depth change, see Figure 3.5 



47 
 

 
 

  

a) 

b) 

Figure 3.11: Scatter plot RMSD vs folding time comparison between 
frozen Gō potential well depth and 2-step well depth change for 1YWJ. 
Speeding up the sampling algorithm by changing well depth of the Gō potential 
leads to a fast trapping in local minima. a) a scatter plot of 1ywj trajectories with 
a frozen energy well depth b) a scatter plot for 1ywj for 2-step energy well 
change demonstrates the loss of folded trajectories with RMSD below 3Å.  
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3.5 The move set 

A fast sampling algorithm needs a simple effective move to sustain its speed. 

The choice of such move should be defined by the general design of a protein molecule 

as a computational object, in spite of the temptation to mimic real protein moves in 

solution. Taken into an account that the fewer calculations are required to generate a 

new protein conformation for the faster move, I opted for a simple torsional rotation. It 

might not be the most effective solution but it was the fastest in terms of our software 

design. A single MC step consisted of a backbone move and followed by all side-chain 

moves. A backbone move consisted of the rotations of phi and psi angles of one 

randomly chosen amino acid. A side-chain move consisted of rotating of the all side-

chain torsion angles. Values for the backbone dihedral angles ϕ, ψ were sampled from 

refined Ramachandran basins (72) at each Monte Carlo step. In contrast to traditional-

histogram-based method, continuous and differentiable 2D-distribution functions were 

derived for backbone torsional angles (ϕ, ψ) for 8 groups of amino acids. Twenty amino 

acids were grouped as following: (1) Val, Ile; (2) Asp, Asn; (3) Ser, Thr (4) Glu, Gln; (5) 

Leu, Ala; (6) Gly; (7) Pro; (8) Arg, Cys, His, Lys, Met, Phe, Tyr, Trp. For each group two 

2D sampling distribution functions were provided: 1) if an amino acid was not followed 

by Pro and 2) if an amino acid was followed by Pro (Figure 3.12 – Figure 3.19). The 

backbone-dependent rotamer library (83) was used to sample amino acid side chain 

conformations. The library contains rotamer frequencies, mean dihedral angles, and 

variances as a function of the backbone dihedral angles. The backbone-dependent 

rotamer library is created by using adaptive kernel density estimates for the rotamer 

frequencies and adaptive kernel regression for the mean dihedral angles and variances. 
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The method gives a smooth and continuous function of phi and psi to evaluate the 

rotamer probabilities, mean angles, and variances. For the non-rotameric degrees of 

freedom of amides, carboxylates, and aromatic side chains probability density estimates 

are presented as a function of the backbone dihedrals and rotamers of the remaining 

degrees of freedom. 

 

Other distribution and strategies for the move set 

Backbone. Uniform and Gaussian sampling distributions were also tested for the 

development of a fast sampling algorithm. First, values for the backbone dihedral angles 

were uniformly sampled from [-180°, 180°] interval at each Monte Carlo step during the 

entire length of simulations. Second, angles were drawn from Gaussian distribution with 

from 2° to 15° standard deviation at each Monte Carlo step. However, those both 

sampling significantly slowdown the speed of simulations and do not converge to 

acceptable final structures (a final structure is expected to gain 70 % of the energy of a 

native protein structure and has rmsd > 4 A) within 1015 MC steps.  

Side chains. Uniform and Gaussian sampling distributions were also used to 

sample torsional angles of amino acids side chains. Similar to backbone torsional angle 

sampling, values for chi were uniformly sampled from [-180°, 180°] interval at each 

Monte Carlo step for all amino acids during the entire length of simulations. For 

sampling from Gaussian distribution angles were drawn with 15° standard deviation at 

each Monte Carlo step. Those both sampling gave slightly worse performance in 

comparison to Dunbrack‘s rotamer library. 
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Figure 3.12: Otwinowski’s backbone torsional angles distributions for all 20 
amino acids. a) an amino acid is followed by PRO; b) an amino acid is not followed 
by PRO 
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Figure 3.13: Otwinowski’s backbone torsional angles distributions for GLY. a) GLY is 
followed by PRO; b) GLY is not followed by PRO 
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Figure 3.14: Otwinowski’s backbone torsional angles distributions for PRO. a) PRO 
is followed by PRO; b) PRO is not followed by PRO 
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Figure 3.15: Otwinowski’s backbone torsional angles distributions for VAL, ILE. a) 
VAL, ILE are followed by PRO; b) VAL, ILE are not followed by PRO 
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Figure 3.16: Otwinowski’s backbone torsional angles distributions for ASP, ASN. a) 
ASP, ASN are followed by PRO; b) ASP, ASN are not followed by PRO 
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Figure 3.17: Otwinowski’s backbone torsional angles distributions for SER, THR. a) 
SER, THR are followed by PRO; b) SER, THR are not followed by PRO 
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Figure 3.18: Otwinowski’s backbone torsional angles distributions for GLU, GLN. 
a) GLU, GLN are followed by PRO; b) GLU, GLN are not followed by PRO 
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Figure 3.19: Otwinowski’s backbone torsional angles distributions for LEU, ALA. a) 
LEU, ALA are followed by PRO; b) GLU, GLN are not followed by PRO 
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Figures 3.20 – 3.23 illustrate that Dunbrack’s rotamer libraries help to increases 

the number of folded trajectories with RMSD ≤ 3Å and accelerate folding process for all 

tested proteins. However, this effect is less significant for all-β protein 1ywj which can 

be explained by overall challenge to predict β-sheets (11). 

 

3.6 Simulated annealing 

Monte Carlo procedure (Figure 3.2) is accompanied by Simulated Annealing 

scheme (48) (Figure 3.24). Simulated annealing is a local search that uses hill-climbing 

moves to escape local optima. The concept of the algorithm is inspired by an analogy 

between the physical annealing process of solids. Annealing is a thermal process for 

obtaining low energy states of a solid in a heat bath. It consists of two steps (48): 

1) the temperature is increased to a maximum value at which the solid melts; 

2) the temperature is gradually decreased until the particles arrange themselves 

in the ground state of the solid. 

Particles in the liquid phase are arranged randomly. In the solid (ground) state 

they are arranged in a structured lattice with the corresponding minimal energy. The 

ground state is obtained when the initial value of the temperature is sufficiently high and 

the cooling is slow. Otherwise, the solid will be frozen into a meta-stable state. 

In my annealing procedure the initial temperature T0 was set to 8 and was updated 

every 100th MC step. Three cooling schedules were used: 

a) an exponential schedule 
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𝑇𝑘 = 𝑇0𝑎
𝑘, 0 < 𝑎 < 1 , 𝑘 − 𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝑠𝑡𝑒𝑝                   (3.6) 

b) a linear schedule  
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Figure 3.20: Dunbrack’s library improve prediction of 1CRN vs Gaussian 
distributions for side chains torsional angles. a) scatter plots Cα RMSD  vs folding time, 
a top figure – Gaussian distribution for chi angles with 15° standard deviation, a bottom 
figure – Dunbrack’s library for chi angles; b) scatter plots all-atom RMSD vs folding time, a 
top figure – Gaussian distribution for chi angles with 15° standard deviation, a bottom figure 
– Dunbrack’s library for chi angles  

a) b) 
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Figure 3.21: Application of Dunbrack’s library decrease folding time for 1CRN. 
a) Folding time distribution with applied Gaussian distribution for chi angles; b) Folding 
time distribution with applied Dunbrack’s library for chi angles.  

a) 

b) 
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Figure 3.22: Dunbrack’s library improve prediction of 1PRB vs Gaussian distributions 
for side chains torsional angles. a) scatter plots Cα RMSD vs folding time, a top figure – 
Gaussian distribution for chi angles with 15° standard deviation, a bottom figure – 
Dunbrack’s library for chi angles; b) scatter plots all-atom RMSD vs folding time, a top  
figure – Gaussian distribution for chi angles with 15° standard deviation, a bottom figure – 
Dunbrack’s library for chi angles 

a) b) 
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Figure 3.23: Application of Dunbrack’s library decrease folding time and increase 
folded trajectories with RMSD below 4Å for 1YWJ. 
a) Folding time distribution with applied Gaussian distribution (top) vs. Dunbrack’s library 
(bottom), for chi angles; b) RMSD distribution with applied Gaussian distribution (top) vs. 
Dunbrack’s (bottom) library for chi angles.  

a) b) 
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𝑇𝑘 = 𝑇0 − 𝜂𝑘,                                  (3.7) 

c) a logarithmic schedule 

 

𝑇𝑘 = 
𝑇𝑘−1

1 +
𝑇𝑘−1 log(1 + 𝛿)

3 ∗ 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

, 𝛿 = 1                      (3.8) 

 

I ran 100 trajectories for each protein with the same initial conditions for the 

statistical validation of the folding results. The only difference between trajectories is a 

seed value that is used for random number generation (see Random number chapter). 

 

The most successful in terms of balance of folding time and folded trajectories 

number was a logarithmic schedule (Equation 3.8). By changing δ values I speeded up 

the temperature decrease that should force the sampling algorithm to find a faster 

folding pathway or to trap trajectories at local minimum (an energetic trap). The results 

of those experiments, shown in Figures 3.25 - Figure3.33, illustrated the latter; the 

decrease in folding time had a high price of losing folded trajectories with RMSD below 

3Å. The optimal for parameter δ was 1. 
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  Generated initial conformation X; 

Generated initial temperature T0 ; 

n = 0; 

REPEAT 

    n = n + 1; 

    m = 0;  
    REPEAT 

      m = m + 1; 
      Y = generate_new_conformation(X, Tk); 

       IF accept_conformation(X, Y, Tk) THEN X=Y 

       UNTIL m = M  OR  m = N; 

       Tk+1 = update(Tk); 

       k = k + 1; 
UNTIL Tk = 0  OR  Protein  Native Energy is reached  
        OR in Protein Energy Local Minimum 

                         OR n = N 

Fig 3.24: Pseudo code for simulated annealing algorithm. 
N – the total number of Monte Carlo Steps; M-number of Monte Carlo 
steps after which the temperature is updated; M < N; T

k
 – current 

temperature.  
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Figure 3.25: Folding speed distribution for 1CRN with different values for 
Simulated Annealing (SA) parameter δ. SA parameter δ allows folding speed 
regulation, see Equation 3.8. 
a) δ = 1; b) δ = 0.8 c) δ = 0.5 

a) b) 

c) 
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Figure 3.26: Cα RMSD distribution for 1CRN with different values for Simulated 
Annealing (SA) parameter δ. SA parameter δ allows folding speed regulation, see 
Equation 3.8. 
a) δ = 1; b) δ = 0.8 c) δ = 0.5 

a) b) 

c) 
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Figure 3.27: Scatter plots Cα RMSD vs, folding speed for 1CRN with different 
values for Simulated Annealing (SA) parameter δ. SA parameter δ allows folding 
speed regulation, see Equation 3.8. 
a) δ = 1; b) δ = 0.8 c) δ = 0.5 

a) b) 

c) 
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Figure 3.28: Folding speed  distribution for 1PRB with different values for 
Simulated Annealing (SA) parameter δ. SA parameter δ allows folding speed 
regulation, see Equation 3.8. 
a) δ = 1; b) δ = 0.8 c) δ = 0.5 

a) b) 

c) 
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Figure 3.29: Cα RMSD distribution for 1PRB with different values for Simulated 
Annealing (SA) parameter δ. SA parameter δ allows folding speed regulation, see 
Equation 3.8. 
a) δ = 1; b) δ = 0.8 c) δ = 0.5 

a) b) 

c) 
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Figure 3.30: Scatter plots Cα RMSD vs, folding speed for 1PRB with different 
values for Simulated Annealing (SA) parameter δ. SA parameter δ allows folding 
speed regulation, see Equation 3.8. 
a) δ = 1; b) δ = 0.8 c) δ = 0.5 

a) b) 

c) 
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Figure 3.31: Folding speed  distribution for 1YWJ with different values for 
Simulated Annealing (SA) parameter δ. SA parameter δ allows folding speed 
regulation, see Equation 3.8. 
a) δ = 1; b) δ = 0.8 c) δ = 0.5 

a) b) 

c) 
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Figure 3.32: Cα RMSD distribution for 1YWJ with different values for Simulated 
Annealing (SA) parameter δ. SA parameter δ allows folding speed regulation, see 
Equation 3.8. 
a) δ = 1; b) δ = 0.8 c) δ = 0.5 

a) b) 

c) 
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Figure 3.33: Scatter plots Cα RMSD vs, folding speed for 1YWJ with different 
values for Simulated Annealing (SA) parameter δ. SA parameter δ allows folding 
speed regulation, see Equation 3.8. 
a) δ = 1; b) δ = 0.8 c) δ = 0.5 

a) b) 

c) 
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3.7 Random numbers generation 

A random number generator is an important algorithmic tool for Monte Carlo 

based simulations. In my algorithm it is used for the generation and the acceptance of 

protein conformations. At each MC step the sampling algorithm requires at least 6*N 

random numbers, where N is a protein sequence length. Therefore it is essential to 

choose a suitable random number generation algorithm for protein structure prediction. 

A random number generator (RNG) is a computational device that produces a 

sequence of numbers that cannot be reasonably predicted better than by a random 

chance. However, any program will produce output that is entirely predictable, hence 

not truly “random.” Nevertheless, practical computer “random number generators” are in 

common use. Good random number generators should pass a certain list of statistical 

tests. The user should also be aware of any limitations of RNGs, so that he or she will 

be able to judge whether they are relevant to the case at hand. 

Mersenne Twister (MT) (C/C++ code is listed in Appendices section) was chosen 

for the sampling algorithm. MT is a pseudo RNG (PRNG) that satisfies all the 

requirements to be rated as a good PRNG. It provides fast generation of very high-

quality pseudorandom numbers with a long period length of 219937-1. Since MT uses a 

machine word length, a programmer should be very careful when employs specific to a 

programming language/compiler variables that refer to machine architecture. For 

example, I noticed that the same C++ code can produce different results in two different 

OS, such as Windows and Linux. Figure 3.34 illustrates how original 2-dimensional 

distribution (Figure 3.34, a)) was correctly sampled in Windows7 (Figure 3.34, b)) and 

incorrectly sampled in Linux (32-bit) (Figure 3.34, c)). The discovery was crucial for the 

https://en.wikipedia.org/wiki/Number
https://en.wikipedia.org/wiki/Random
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sampling algorithm.  

 

  

Figure 3.34: The same random number generator algorithm 
implementation may give dissimilar results in different Operating 
Systems (OS) 
a) original distribution; b) sampling of the original distribution in Windows 7; 
c) sampling of the original distribution in Linux  

a) 

b) c) 
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3.8 The protein structure prediction software 

The software is built on OOPS, an Open Protein Simulator. OOPS provides a 

framework where different approaches and algorithms for protein folding and structure 

prediction can be tested. OOPS is based on the PL and its plugin architecture (21). 

The overall design of OOPS is illustrated in Figure 3.35. The C++ main() functions call 

plugins to initiates and finalizes the main ab initio routine and energy terms functions 

located in separate plugins. The module that contains the design of a molecule and 

functions required for molecule manipulations such as a rotation of torsional angles, 

property of atoms and amino acids and etc. is located in PL library which is an 

independent entity of the software. 

There are main (but not limited to) additions and changes that has been introduced to 

the original version of OOPS: 

1) Optimized rotation procedure for a backbone and side chains. 

2) Corrected side chains definitions. 

3) A new Monte Carlo sampling algorithm and related to it functions. 

4) A new version of Mersenne Twister, a random number generator. 

5) Introduction of torsional angles sampling distributions to the algorithm. 

6) Energy function design. 
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oops.cpp: 
main () 

AbInitio 

plugin 

Gō potential 
plugin 

Protein structure definition and protein manipulations library 
(PL) 

Figure 3.35: OOPS software design 

Lennard-Jones 

plugin 

Solvation 
potential 

plugin

Hydrogen bonding 
potential plugin 

Read pdb plugin Save to pdb plugin 
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Chapter 4 

Energy Optimization 

4.1 The optimization of energy weights 

In the optimization algorithm an energy function was a weighted sum of energy 

terms I chose to test, the Lennard-Jones potential, the Lazaridis-Karplus solvation 

potential and hydrogen bonding potential, and the Gō potential, for which the sampling 

algorithm was tuned to maximize the number of folded trajectories and to minimize 

protein folding time:  

 

𝐸 =  𝑤0𝐸𝐺Ō + 𝑤1𝐸1 + 𝑤2𝐸2 +⋯+ 𝑤𝑁𝐸𝑁 ,∑𝑤𝑖

𝑁

𝑖=0

= 1      (4.1) 

 

The optimization process started with the Gō weight 𝑤0 = 1 and zero weights for 

other energy terms. At the next iteration step I used the Dirichlet distribution [42] with 

𝛼 = 1 to generate random 𝑁 + 1 weights that summates to 1 and 𝑤0 < 1. I calculated 

how many protein trajectories out of 100 were folded for each protein. A protein 

trajectory was considered to be folded if the backbone RMSD of a final structure was 

equals or less 3 Å. If the number of folded trajectories exceeded 3, I saved the current 

Gō weight as a reference for the next step and generated a new random combination of 

weights with 𝑤0 < 𝑤0
𝑝𝑟𝑒𝑣

. If the number of folded trajectories were less than 3, I 

generated a new set of weights. The optimization process was stopped after a pre-

defined number of steps M = 100, or the Gō weight became zero. I also incorporated 
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the tuning procedure for the reduced Gō potential weight 𝑤0. For the fixed value 

of 𝑤0 I generated L= 10 sets of (𝑤1, … , 𝑤𝑁),   ∑ 𝑤𝑖
𝑁
𝑖=0 = 1, and chose the combinations of 

weights that gave the bigger number of folded trajectories for all proteins (Figure 4.1). 

 

4.2 Finding a fast folding pathway with the Gō Potential 

To outline the energy funnel I used our MMC routine with the Gō potential as a 

scoring function 𝐸 = 𝐸𝐺ō. For each of the tested proteins I ran 100 trajectories to assess 

how many of them were folded. I considered a protein to be folded if the backbone 

RMSD was within 3 Å to the native state. It should be mentioned that the criterion alone 

might not distinguish correctly formed secondary structures due to the nature of a Gō 

potential (85). Simulations were started from a fully extended protein conformation with 

backbone dihedral angles at 180⁰. Side chain dihedral angles were chosen to minimize 

the number of clashes with a backbone and neighboring side chains. The average 

numbers of folded trajectories over 5 runs folding were 35 for 1crn trajectories, 21 for 

1prb trajectories and 6 ywj trajectories (Table 4.1). Scatter plots of RMSD vs. folding 

time for a representative run are presented in Figure 3.4. Successful trajectories for 

1crn and 1prb were folded within 6K Monte Carlo steps, for 1ywj successful folding was 

reached within 4K Monte Carlo steps. Energy landscapes for representative trajectories 

are shown in Figure 4.2. 
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Run 100 trjs  for each of 3 
proteins  

If 3% 
trjs 

have 
rmsd

NO 

Gen {w
0
ʹ, …, w

N
ʹ}, w

0
ʹ < w

0
  

and 
 
Ʃwʹ

i
 = 1 

YES 

iter < M 

YES 

Iter < M 
AND 

wʹ
0
!= 0 

NO 

YES 

start: w
0
 = 1 

and other w  = 

Print {w
GO

ʹ, …, w
N
ʹ} 

Tuning: 
Fix w

0
ʹ, gen {w

1
”, …, w

N
″} 

 L times 

NO 

Figure 4.1. The optimization of energy weights flow chart.  
The optimization process starts with Gō weight equals to 1and zero weights for other energy 
terms. At the next iteration step I generate random weights that summate to 1 and Gō weight 
less than 1, calculate how many protein trajectories out of 100 are folded for each protein. If the 
number of folded trajectories exceeds 3, I save the current Gō weight as a reference for the next 
step and generate a new random combination of weights with Gō weight less than the previous 
one. If the number of successful trajectories less than 3, I generate a new set of weights. The 
optimization process stops after defined number of steps or the weight of Gō becomes zero. 
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  1crn 
1prb 

1ywj 

Figure 4.2. Energy landscapes for representative protein 
folding trajectories folded with the Gō potential only. Results 
for 1crn, 1prb, 1ywj 
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4.3 Addition of a single energy term to the Gō potential allows reduction of its 

weight 

To explore effects of additional energy terms on protein folding and the Gō 

potential weight reduction, the Lennard-Jones (LJ) potential (Equation 4.3), the 

Lazaridis-Karplus (LK) solvation potential (Equations 4.4-4.5 ),, and hydrogen bonding 

(HB) potentials (Equation 4.6), were used in the following scoring function:  

𝐸 = 𝑤𝐺ō 𝐸𝐺ō + 𝑤𝑎𝑑𝑑𝐸𝑎𝑑𝑑 , 𝑤𝐺ō + 𝑤𝑎𝑑𝑑 = 1      (4.2) 

where 𝐸𝐺ō is the Gō potential, 𝐸𝑎𝑑𝑑 is one of three potentials chosen for the test, 𝑤𝐺ō  

and 𝑤𝑎𝑑𝑑 are corresponding energy weights. Scaling factors were applied to each 

added energy term. I started simulations with 𝑤𝐺ō = 0.95 and continued to reduce the 

values of 𝑤𝐺ō  by 0.01 for each next run of simulations till 𝑤𝐺ō = 0.8 or the number of 

successful trajectories was significantly decreased. 

 

4.3.1 Lennard Jones Potential 

Van der Waals interactions were modeled with 6-12 Lennard-Jones potential 

(23), where a linear function was used in a repulsion mode. This potential was utilized in 

early versions of Rosetta algorithm for the final refinement stage (12, 78), where 

physically realistic, atomic- level potentials were required for a better presentation of the 

primary contributions to stability and structural specificity. 

 

𝑬𝑽𝑫𝑾 =∑∑

{
 
 

 
 ((

𝒓𝒊𝒋

𝒅𝒊𝒋
)

𝟏𝟐

− 𝟐(
𝒓𝒊𝒋

𝒅𝒊𝒋
)

𝟔

)𝒆𝒊𝒋 ,    
𝒅𝒊𝒋

𝒓𝒊𝒋
> 𝟎. 𝟔

[−𝟖𝟕𝟓𝟗(
𝒅𝒊𝒋

𝒓𝒊𝒋
) + 𝟓𝟔𝟕𝟐. 𝟎] 𝒆𝒊𝒋, 𝒆𝒍𝒔𝒆𝒋>𝒊𝒊

       (4.3) 
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where rij is a sum of VDW radii of atoms i and j, dij is a distance between two atoms i 

and j, eij is a depth of VDW well which is calculated as a square root of energy 

CHARMM parameters [19] for Van der Waals interactions ei and ej. 

 

4.3.2 Solvation Energy 

Solvation effects are presented by the model of Lazaridis and Karplus (50), a 

Gaussian solvent-exclusion model. It based on theoretical considerations and 

parametrized with experimental data. The Lazaridis-Karplus solvation energy (EEF1) is 

used in CHARMM 19 and ROSETTA. 

 

𝑬𝒔𝒐𝒍𝒗 = ∑𝜟𝑮𝒊
𝒓𝒆𝒇

−∑{
𝟐𝜟𝑮𝒊

𝒇𝒓𝒆𝒆

𝟒𝝅√𝝅𝝀𝒊𝒓𝒊𝒋
𝟐
𝒆𝒙𝒑(−𝒙𝒊𝒋

𝟐 )𝑽𝒋 +
𝟐𝜟𝑮𝒋

𝒇𝒓𝒆𝒆

𝟒𝝅√𝝅𝝀𝒋𝒓𝒊𝒋
𝟐
𝒆𝒙𝒑(−𝒙𝒋𝒊

𝟐 )𝑽𝒊}

𝒊>𝒋𝒊

        (4.4) 

 

where 𝜟𝑮𝒊
𝒇𝒓𝒆𝒆

 and 𝜟𝑮𝒊
𝒓𝒆𝒇

 are pre-calculated the solvation free energy and the reference 

solvation free energy of for an atom type i, rij is the distance between atoms type i and j 

atoms, 𝝀𝒊 is a correlation length for atom type i, Vi is the volume of atom type i, Ri is the 

Van der Waals radius of atom i and  

 

𝒙𝒊𝒋 =
𝒓𝒊𝒋 − 𝑹𝒊

𝝀𝒊
           (4.5) 
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4.3.3 Hydrogen Bonding 

I applied an orientation-dependent hydrogen bonding potential in this study (49). 

This potential is a secondary structure- and orientation-dependent potential derived 

from the analysis of hydrogen bond geometries in high-resolution protein structures. In 

our simulations I used only backbone-backbone hydrogen bonding potential since side 

chain-side chain and backbone-side chain hydrogen bonding potentials would require 

different weights (6, 7, 49, 77, 86). The hydrogen bond energy is a linear combination of 

the four terms: 

 

𝑬𝑯𝑩 = 𝑬(𝜹𝑯𝑨) + 𝑬(𝜣) + 𝑬(𝜳) + 𝑬(𝜲)               (4.6) 

where 𝑬(𝜹𝑯𝑨) depends on the distance between hydrogen and acceptor atoms, 𝑬(𝜣) 

depends on the angle at the hydrogen, 𝑬(𝜳) depends on the angle at the acceptor 

atom and 𝑬(𝜲) depends on the dihedral angle in the hydrogen bonds involving in sp2 

hybridized acceptor. 

 

4.3.4 Results 

The analysis of simulations for weights pairs (𝑤𝐺ō ,  𝑤𝐿𝐽) showed that the increase 

of the LJ potential weight reduced the average number of folded trajectories for 𝑤𝐺ō <

0.95 without any significant change in folding time, despite the fact that more 

calculations for the scoring function were required (Figure 4.3-Figure 4.5). The 

inclusion of the LJ was the most beneficial for 1crn, 1prb. I observed some increase in 

the average number of successful trajectories for 𝑤𝐺ō = 0.95,𝑤𝐿𝐽 = 0.05 for those 
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proteins. The increase of HB potential weight dropped the average number of folded 

trajectories with no significant change in folding speed for the examined proteins 

(Figure 4.6 - Figure 4.8). The most effective energy potential was the LK potential in 

terms of the increased average number of folded trajectories. For the weights 𝑤𝐺ō = 0.8,

𝑤𝐿𝐾 = 0.2  the average number of folded trajectories was comparable to that when the 

Gō potential only was applied for the tested proteins (Figure 4.9-Figure 4.11). At the 

same time, folding time for the proteins was increased. 

 

4.4 Adding all three energy terms to the Gō potential  

I composed a scoring energy function to test the influence of three additional 

energy terms on protein folding as following: 

𝐸 =  𝑤𝐺ō𝐸𝐺ō + 𝑤𝐿𝐽𝐸𝐿𝐽 +𝑤𝐿𝐾𝐸𝐿𝐾 + 𝑤𝐻𝐵𝐸𝐻𝐵 , 𝑤𝐺ō + 𝑤𝐿𝐽 + 𝑤𝐿𝐾 + 𝑤𝐻𝐵 = 1      (12)  

To minimize the burden of calculations at this stage, I chose weights for energy terms 

from a 4D-grid [min 𝑤𝐺ō,max𝑤𝐺ō) 

Χ[min𝑤𝐿𝐽 , max𝑤𝐿𝐽]Χ[min𝑤𝐿𝐾 ,max𝑤𝐿𝐾]Χ[min𝑤𝐻𝐵 , max𝑤𝐻𝐵] with the extreme values 

min𝑤𝐺ō = 0.8 and max𝑤𝐺ō = 1, min𝑤𝐿𝐽\𝐿𝐾\𝐻𝐵 = 0 and max𝑤𝐿𝐽\𝐻𝐵\𝐿𝐾 = 0.2. A grid step 

for each dimension was set to 0.05. For each quadruplet (𝑤𝐺ō , 𝑤𝐿𝐽, 𝑤𝐿𝐾, 𝑤𝐻𝐵) I ran five 

trials to simultaneously fold three proteins to calculate the average percentage of folded 

trajectories. Table 4.1 lists the average number of folded trajectories for each protein, 

where at least two weights are not equal to 0. Four combinations of weights, (0.8, 0, 

0.05, 0.15), (0.8, 0.05, 0.05, 0.1), (0.8, 0.05, 0, 0.15), (0.8, 0.1, 0, 0.1) gave the best 

performance with at least 3% of folded trajectories for each protein. 
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E= 0.8*Gō + 0.15*LJ 

1crn 

Figure 4.3. Scatter plots RMSD vs folding time for 1crn 
trajectories folded with E= w

Gō
*Gō+w

LJ
*LJ potential. The 

average numbers of folded trajectories with rmsd ≤ 3 Å decreased 
with no significant change in folding time with the LJ weight 
increase. 

1crn 

E = Gō  

E = 0.95*Gō + 0.05*LJ 

1crn 
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Figure 4.4. Scatter plots RMSD vs folding time for 1ywj 
trajectories folded with E= w

Gō
*Gō+w

LJ
*LJ potential. The 

average numbers of folded trajectories with rmsd ≤ 3 Å decreased 
with no significant change in folding time with the LJ weight 
increase. 
  

1ywj 

E = Gō 

E = 0.95* Gō + 0.05*LJ 

1ywj 

E = 0.8*Gō + 0.15*LJ 

1ywj 
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Figure 4.5. Scatter plots RMSD vs folding time for 1prb trajectories 
folded with E= w

Gō
*Gō+w

LJ
*LJ potential. The average numbers of 

folded trajectories with rmsd ≤ 3 Å decreased with no significant change 
in folding time with the LJ weight increase. 

E = Gō  

1prb 

E = 0.95* Gō + 0.05*LJ 

1prb 

E = 0.8* Gō + 0.15*LJ 

1prb 
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1crn 

E = Gō  

E = 0.95* Gō + 0.05*HB 

1crn 

E = 0.8*Gō + 0.15*HB 

1crn 

Figure 4.6 Scatter plots RMSD vs folding time for 1crn trajectories 
folded with E= wGō*Gō+wHB*HB potential. The average numbers of 
folded trajectories with rmsd ≤ 3 Å decreased with no significant change 
in folding time with the HB weight increase. 
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Figure 4.7. Scatter plots RMSD vs folding time for 1ywj trajectories 
folded with E= w

Gō
*Gō+w

HB
*HB potential. The average numbers of folded 

trajectories with rmsd ≤ 3 Å decreased with no significant change in folding 
time with the HB weight increase. 

1ywj 

E = Gō  

E = 0.95* Gō + 0.05*HB 

1ywj 

E = 0.8* Gō + 0.15*HB 

1ywj 
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Figure 4.8. Scatter plots RMSD vs folding time for 1prb 
trajectories folded with E= w

Gō
*Gō+w

HB
*HB potential. The 

average numbers of folded trajectories with rmsd ≤ 3 Å decreased 
with no significant change in folding time with the LJ weight increase. 

1prb 

E = Gō  

E = 0.95* Gō + 0.05*HB 

1prb 

E = 0.85* Gō + 0.15*HB 

1prb 
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Figure 4.9. Scatter plots RMSD vs folding time for 1crn trajectories folded 
with E= w

Gō
*Gō+w

LK
*LK potential. The average numbers of folded trajectories 

with rmsd ≤ 3 Å did not change with the LK weight increase. Folding time 
increase was observed.  

1crn 

E = Gō  

E = 0.95* Gō + 0.05*LK 

1crn 

E = 0.8* Gō + 
0.2*LK 

1crn 
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1ywj 

E = Gō  

E = 0.9* Gō + 0.1*LK 

1ywj 

E = 0.8* Gō + 0.2*LK 

1ywj 

Figure 4.10. Scatter plots RMSD vs folding time for 1ywj 
trajectories folded with E= wGō*Gō+wLJ*LK potential. The average 
numbers of folded trajectories with rmsd ≤ 3 Å did not change with the 
LK weight increase. Folding time increase was observed. 
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Figure 4.11. Scatter plots RMSD vs folding time for 1prb trajectories 
folded with E= w

Gō
*Gō+w

LK
*LK potential. The average numbers of 

folded trajectories with rmsd ≤ 3 Å did not change with the LK weight 
increase. Folding time increase was observed. 

E = Gō  

1prb 

E = 0.9* Gō + 0.1*LK 

1prb 

E = 0.8* Gō + 0.2*LK 

1prb 
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E= wGō *Gō+wLJ *LJ+wLK *LK+wHB *HB  1crn 1ywj 1prb 

(1,0,0,0) 35 6 21

(0.8, 0, 0.1, 0.1) 24 1 18

(0.8, 0, 0.15, 0.05 ) 11 0 4

(0.8, 0, 0.05, 0.15 ) 28 5 27

(0.8, 0.05, 0.15, 0) 9 1 5

(0.8, 0.05, 0.1, 0.05) 21 0 9

(0.8, 0.05, 0.05, 0.1) 22 3 19

(0.8, 0.05, 0, 0.15) 29 3 22

(0.8, 0.1, 0.1, 0) 10 0 3

(0.8, 0.1, 0, 0.1 ) 20 4 16

(0.8, 0.1, 0.05, 0.05 ) 27 0 13

(0.8, 0.15, 0.05, 0) 10 0 6

(0.8, 0.15, 0, 0.05) 17 1 9

Table 4.1. The folding results for energy terms weights taken on a grid. 

1
st

 column list weights combinations; 2
nd

, 3
rd

  and 4
th

 list proteins folded 
trajectories with RMSD ≤ 3 Å. 
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4.5 The proposed energy optimization algorithm finds several combinations of 

weights 

I demonstrated that the inclusion of all three energy terms reduced the Gō 

potential weight to 0.8. I tested further reduction of the Gō potential weight running our 

Monte Carlo based optimization algorithm. Within fifty iterations I found seventeen 

combinations of weights with the Gō potential weight below 0.8 (Table 4.2). For each of 

those combinations I repeated simulations five times. The combinations with the Gō 

potential weight greater 0.54 gave reliable results, which meant the average number of 

folded trajectories for every protein exceeded three. Two combinations with the lowest 

Gō potential weight and the highest number of folded trajectories for all tested proteins 

turned out to be outliers; all five repeated simulations gave zero trajectories for all 

proteins. 

 

4.6 Correlation between the number of folded trajectories and energy terms 

weights 

In this section I addressed the question: whether the number of folded 

trajectories correlated with the energy weights or were due to pure chance alone? I 

used Canonical Correlation Analysis (CCA) to explore the relationships between two 

random multivariate variables, 3-variable set associated with the number of folded 

trajectories for the three tested proteins (1crn, 1prb and 1ywj) and 4-variable set that 

represented weights for four energy terms (the Gō potential, the LJ potential, the LK 

solvation potential and hydrogen bonding potential) respectively. 
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Table 4.2. Folded trajectories of training set’s proteins and 
energy terms weights derived with novel energy weights 
optimization algorithms. 

1crn 1prb 1ywj wGō wLJ wLK wHB

24 19 16 0.502633 0.358179 0.0141239 0.125064

33 38 3 0.503473 0.158081 0.125194 0.213252

15 3 4 0.518735 0.110758 0.110646 0.259862

33 18 3 0.534161 0.273634 0.0219685 0.170237

13 3 5 0.538649 0.403826 0.012412 0.045113

5 4 4 0.540561 0.304886 0.0379914 0.116562

7 12 4 0.541796 0.182007 0.264814 0.011383

4 6 8 0.628141 0.228282 0.0158063 0.127771

15 10 3 0.658026 0.196777 0.120762 0.024435

35 31 7 0.671296 0.156325 0.0448453 0.127533

21 11 3 0.671544 0.0786879 0.182639 0.067129

32 18 8 0.707932 0.0446181 0.214877 0.032574

30 12 3 0.714463 0.0128168 0.165884 0.106837

25 16 7 0.729089 0.0550044 0.14114 0.074767

29 24 3 0.731645 0.0150575 0.209363 0.043934

27 17 4 0.797442 0.0631897 0.0487766 0.090592
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To collect the data for the statistical test, I generated a sample of 50 random 1-

by-4 vectors 𝑤𝑖 = (𝑤𝑖
𝐺ō
, 𝑤𝑖

𝐿𝐽, 𝑤
𝑖
𝐿𝐾, 𝑤

𝑖
𝐻𝐵) , 𝑖 = 1…  50 for energy weights. Vectors were 

drawn from the Dirichlet distribution with α = 1 and 𝑤𝑖
𝐺ō + 𝑤

𝑖
𝐿𝐽 + 𝑤

𝑖
𝐿𝐾 + 𝑤

𝑖
𝐻𝐵 = 1. For 

each weight vector from the sample I ran 100 trajectories for each protein to calculate 

the number of folded trajectories for the folding statistics. CCA was carried out in SAS. 

SAS reported (Table 4.3, a) - b)) the significant canonical correlation γ = 0.654556 with 

the Wilks’ lambda Λ = 0.43883230; F= 3.47; d.f. = 12, 114.06; p-value = 0.0002 for the 

first canonical pair, which means that there is a linear correlation between two sets of 

variables, the energy terms weights and the numbers folded proteins trajectories. 

Canonical coefficients for the linear correlation are listed in Table 4.4 in the first 

columns for each random multivariate variable. Since the Gō potential weight dominated 

over the other energy terms weights, I ran CCA test for the same weights set with each 

vector component divided by its Gō weight 𝑤𝑖 = (1,
𝑤𝐿𝐽
𝑖

𝑤𝐺ō
𝑖⁄ ,
𝑤𝐿𝐾
𝑖

𝑤𝐺ō
𝑖⁄ ,
𝑤𝐻𝐵
𝑖

𝑤𝐺ō
𝑖⁄ ) to get 

better sense how the LJ potential, the LK solvation potential and hydrogen bonding 

potential influence protein structure prediction. The first canonical pair (𝑈1, 𝑉1 ) (Table 

4.5) is represented as: 

𝑈1 = −0.07 ⋅ 1𝑐𝑟𝑛 − 0.04 ⋅ 1𝑝𝑟𝑏 + 0.13 ⋅ 1𝑦𝑤𝑗      (13) 

𝑉1 = 3.36 ⋅ 𝐿𝐽 + 2.43 ⋅ 𝐿𝐾 + 5.92 ⋅ 𝐻𝐵      (14) 

As seen from the values of the canonical coefficients for 𝑉1 protein structure prediction 

is mostly influences by the LK solvation energy and the LJ potential and to a lesser 

extent by hydrogen bonding potential. 
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Table 4.3 CCA statistics. a) Canonical correlation values for 1
st

, 2
nd

 and 3
rd

 canonical 

pairs are listed in the first column; b) only first 1
st

 canonical pair that has a small Wilk’s 
Lambda value 0.43883230 with p-value 0.0002 

a) 

b) 
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Table 4.4. CCA raw canonical coefficients. a) the first column lists 

coefficients for 1
st

 canonical variable 𝑈1 which is a linear combination of 
three random variables that represent folded trajectories  for three proteins 
1crn (crambin), 1prb (album) and 1ywj (wwdom). b) the first column lists 

coefficients for 1
st

 canonical variable 𝑉1 which is a linear combination of 
four random variables that represent energy weights for four energy terms: 
the Gō potential (GOP), the Lennard Jones  potential (LJ), the Lazaridis-
Karplus solvation potential (LK) and  hydrogen bonding potential (HB). 

a) 

b) 
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a) 

b) 

Table 4.5. CCA scaled raw canonical coefficients. Scaling each energy weights 
combinations to its Gō potential weight simplifies analysis of contributions of the 
Lennard-Jones potential (LJ), the Lazaridis –Karplus solvation (LK) and hydrogen 
bonding (HB) potentials to protein structure prediction a) the first column lists 

coefficients for 1
st

 canonical variable 𝑈1 which is a linear combination of three 
random variables that represent folded trajectories for three proteins 1crn 
(crambin), 1prb (album) and 1ywj (wwdom). b) the first column lists coefficients for 

1
st

 canonical variable 𝑉1 which is a linear combination of three random variables 
that represent energy weights for three energy terms: the Lennard Jones  potential 
(LJ), the Lazaridis-Karplus solvation potential (LK) and  hydrogen bonding potential 
(HB). 
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4.7 Application of optimal weights to predict structure of all-α and α/β proteins 

Finally, I conducted experiments to investigate whether the optimized weights 

can be used to predict structure of proteins different from those that was used in the 

weight optimization procedure. I chose three small proteins that represent three different 

folds (Table 4.6). For each reliable combination of weights (Table 4.7) I ran 100 

trajectories for each protein. All simulations were started from fully extended chains (see 

Methods section for more details). Eleven weights combinations gave at least two 

folded trajectories with RMSD less than 4 Å for 1i2t, an all α protein (Table 4.2). The 

best prediction for the weight combination 𝑤𝐺𝑜 = 0.658026,𝑤𝐿𝐽 =  0.196777,  𝑤𝐿𝐾 =

0.120762,  𝑤𝐻𝐵 = 0.0244345 with the smallest weight for the Gō potential had RMSD to 

native structure 1.38 Å (Figure 4.11); the all-α protein was folded within 9000 Monte 

Carlo steps (Figure 4.11, c)). For 2p5k, an α/β protein, two weights combinations gave 

one folded trajectory with RMSD less than 4.5 Å. The best 2p5k final structure for the 

weight combination 𝑤𝐺𝑜 = 0.658026,  𝑤𝐿𝐽 =  0.196777,  𝑤𝐿𝐾 = 0.120762,  𝑤𝐻𝐵 =

0.0244345 had RMSD 4.43 Å (Figure 4.12) and was folded within 9000 Monte Carlo 

steps (Figure 4.12, c)). As expected, there were no trajectories for 1zlm, an all β 

protein, with RMSD below 8 Å for any combinations of weights listed in Table 4.7. 
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Protein PDB ID code Chain Class # Residues 

Arginine repressor 2p5k A α/β 64 

HYD protein 1i2t A all-α 61 
Osteoclast stimulating factor 

1 
1zlm A all -β 58 

  

Table 4.6 Protein structures used to test optimized weights. The 3 proteins belong 
to different SCOP classes and have comparable sequence lengths.  

2p5k      

rmsd ≤ 4.5 Å

1i2t       

rmsd ≤ 4Å
wGō wLJ wLK wHB

0 0 0.540561 0.304886 0.0379914 0.116562

0 0 0.541796 0.182007 0.264814 0.011383

0 0 0.628141 0.228282 0.0158063 0.127771

0 2 0.658026 0.196777 0.120762 0.024434

0 0 0.671296 0.156325 0.0448453 0.127533

1 5 0.671544 0.0786879 0.182639 0.067128

0 4 0.707932 0.0446181 0.214877 0.032573

0 2 0.714463 0.0128168 0.165884 0.106837

0 3 0.729089 0.0550044 0.14114 0.074767

0 5 0.731645 0.0150575 0.209363 0.043934

2 8 0.797442 0.0631897 0.0487766 0.090592

Table 4.7. Prediction results for reliable weights for proteins not 
included into the training set. Folded trajectories derived with 
optimized energy terms weights. 
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Figure 4.11. Prediction results for 1i2t. Optimized energy weights with w
Gō 

= 

0.658 , w
LJ

= 0.196777, w
LK 

= 0.120762 , w
HB

= 0.0244345 predict structure of all-α 

protein 1i2t. a) Scatter plot RMSD vs folding time for 100 trajectories (only those 
with rmsd ≤12Å are visualized) ; b) energy profile of trajectory with final structure 
rmsd 1.38 Å; c) superposition of 1i2t native structure (in cyan) with predicted 
structure (red) with RMSD 1.38Å  

1i2t 

1i2t 

1i2t 

a) 

b) c) 
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  a) 

b) c) 

2p5k 

2p5k 2p5k 

Figure 4.12. Prediction results for 2p5k. Optimized energy weights with w
Gō 

= 

0.671544 , w
LJ

= 0.182639 , w
LK 

= 0.182639 , w
HB

= 0.0671288 predict α/β protein 

2p5k.  a) Scatter plot RMSD vs folding time for 100 trajectories (only those with 
rmsd ≤12Å  are visualized); b) energy profile of trajectory with final structure rmsd 
4.23 Å; c) superposition of 2p5k native structure (in cyan) with predicted structure 
(red) with RMSD 4.23Å  
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Chapter 5 

 

Discussion and Conclusions 

There are two widely used approaches that extract energy parameters for protein 

structure prediction. Linear programming (24, 58) performs optimizations on a large 

number of parameters and constraints with the assumption that the energy of the native 

state is lower than all alternative conformations. Z-score minimization (33, 54, 63, 92) 

requires a large energy gap between the native state and some reference state, 

represented by an ensemble of compact structures. Our approach is conceptually 

different; I target a fast protein folding pathway, which is found by a bias toward the 

native state Gō model scoring function. Since I start all simulations from a fully extended 

polypeptide chain with the sampling procedure (as any Monte Carlo based sampling) 

governed by a series of particular changes in dihedrals defined by a researcher, 

sampling distributions and pseudo-random number generators, I can say that the 

proposed algorithm is “pathway” directed.  

 

Thus, I proposed a new algorithm for finding the optimal weights of energy terms. 

I developed a fast sampling algorithm with a Gō potential as a scoring function and 

assumed the ability of the algorithm to find fast folding pathways. If proteins can be 

folded with the Gō potential, then the addition of physics- and knowledge-based 

potentials should improve the protein structure prediction. The structural information 

encoded in the Lennard-Jones, the Lazaridis-Karplus solvation and hydrogen bonding 
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potentials but missed in the Gō potential alone should help to sustain the adequate 

number of the folded trajectories and folding speed. Thus, if the energy terms are 

effective, I should be able to eliminate the Gō potential completely with the proposed 

optimization procedure. The algorithm I developed found several combinations of 

weights that predicted successfully the structures of all-α and α/β proteins not included 

in the optimization procedure.  

 

I demonstrated that each tested energy term alone was able to reduce the Gō 

potential weight to 0.8. The Lennard-Jones potential to some extent boosted the 

number of folded trajectories for 1crn and 1prb and reduced that number for 1ywj. The 

increase of the hydrogen bonding potential weight gradually decreased the number of 

folded trajectories for all proteins The Lazaridis-Karplus solvation potential was 

beneficial for all proteins. Contrary to hydrogen bonding and the Lennard–Jones 

potentials, the solvation energy kept the number of folded trajectories at the same level. 

However, for all proteins I observed an increase in folding time. 

 

Even though I showed that one added energy term could reduce the Gō potential 

weight, it was unclear whether this was due to the extra information brought by a 

potential or the introduction of computational noise. To answer this question, I needed 

to reduce the Gō potential weight by adding all three energy terms, the Lennard-Jones, 

the Lazaridis-Karplus solvation and hydrogen bonding potentials, and to get acceptable 

percentage of folded trajectories and folding time for each of three proteins. To simplify 

the task, I tested weights for energy terms chosen from a grid 0.8 ≤ 𝑤𝐺ō < 1,  0 <
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𝑤𝐿𝐽/𝑠𝑜𝑙𝑣/𝐻𝐵 ≤ 0.2. I was shown that the addition of several energy terms indeed allowed 

the reduction of the Gō potential weight while sustaining reasonable folding time and an 

adequate number of folded trajectories for all proteins. The values for the weights also 

implied that the better results were collected for the weights that gave the best 

performance for a single energy term addition.  

 

I applied our energy weights optimization algorithm to perform a rigorous search 

for weights for four energy terms, the Gō potential, the Lennard-Jones Potential, the 

Lazaridis-Karplus potential, by minimizing the Gō potential weight. Sixteen weights 

combinations were found that satisfied our definition of successful simulations. I 

encountered two outliers with the Gō potential weight below 0.54 that produced 

unusually high numbers of folded trajectories for all proteins. The outcome in those 

cases did not correlate with the weights that gave the best performance when only one 

energy term was added to the Gō potential. Also, four out of eleven reliable 

combinations of weights had values for the solvation energy weights that were lower 

than weights for the Lazaridis-Karplus solvation and hydrogen bonding potentials. 

 

The linear correlation between the numbers of folded trajectories and the energy 

term weights was confirmed by a CCA statistical test. Moreover, it was shown that the 

Lazaridis-Karplus and the Lennard-Jones potentials played a more significant role than 

hydrogen bonding potential in protein structure prediction. CCA might be viewed as an 

instrument for the assessment of potency of energy terms used to compose an energy 

function. Adding a newly designed energy term to the Gō potential and testing it with 
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different weights provides a new tool to evaluate its effectiveness.  

Finally, I applied the derived weights to predict proteins not included into the 

optimization procedure. The algorithm demonstrated better performance for all-α and 

α/β proteins than for all β protein. Proteins with β-sheets are challenging for ab initio 

structure prediction for several reasons: 1) the difficulty of efficiently sampling long-

range strand pairings; 2) a very high entropic cost once β-strand pairings formed, which 

disallows further perturbations to refine a structure; 3) and the high number of 

alternative nonlocal β-sheet topologies that expands the conformational search (11, 60). 

Our algorithm utilizes a simple backbone move that limits the ability of the sampling 

algorithm to maximize the number of hydrogen bonds that form β-sheets. The energy 

minimization routine froze conformations without any attempts to align β-strands when a 

substantial number of hydrogen bonds was found. Hydrogen bonding potential alone 

was not able to fix the problem. To deal with this problem, Bradley and Baker (11) 

proposed a new multilevel sampling method to β-sheet structure prediction that 

overcomes this difficulty by reformulating structure generation in terms of a folding tree 

composed of peptide segments and long-range connections. Nonlocal connections in 

this tree allow them to explicitly sample alternative β-strand pairings while 

simultaneously exploring local conformational space using backbone torsion-space 

moves. This method uses an iterative, energy-biased resampling approach that selects 

nonlocal pairing from previous iterations and explores them while stochastically 

disfavoring local ones. The method can sample the nonlocal interactions to navigate the 

search into the promising areas of the huge conformational space. Therefore, future 

improvements to our algorithm will require a new procedure that improves β-sheet 
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prediction with effective hydrogen bonding potential. I also intend to carry out similar 

studies on larger sets of energy terms and benchmark proteins to eliminate the Gō 

potential completely. 

 

In this work, I demonstrated a fast and effective way to optimize energy functions 

for protein structure prediction and the ability to fold proteins with an all-atom, ab initio 

algorithm without involving extra information derived from PDB databases (fragments 

libraries and templates), using ordinary computational resources. 
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Appendices 

 

Mersenne Twister C/C++ implementation 

I tested several implementations of Mersenne Twister algorithms that generate random 

numbers. The version of Takuji Nishimura and Makoto Matsumoto showed itself to be 

very reliable for different Operational Systems and C/C++ compilers. 

A C-program for MT19937, with initialization improved 2002/2/10. 
   Coded by Takuji Nishimura and Makoto Matsumoto. 
   This is a faster version by taking Shawn Cokus's optimization, 
   Matthe Bellew's simplification, Isaku Wada's real version. 
 
   Before using, initialize the state by using init_genrand(seed)  
   or init_by_array(init_key, key_length). 
 
   Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, 
   All rights reserved.                           
 
/* 
   C++ codes by Kohei Takeda (k-tak@letter.or.jp) 
   Redistribution terms are the same as the original ones above. 
*/ 
 
#ifndef ___MERSENNE_TWISTER_RNG___ 
#define ___MERSENNE_TWISTER_RNG___ 
 
#include <ctime> 
#include <cstdlib> 
#include <cassert> 
 
 
struct Mt32Traits 
{ 
      typedef unsigned int  UINTTYPE; 
      typedef signed int  INTTYPE; 
      static const int   INTTYPE_BITS = 32; 
      static const unsigned int  MAXDOUBLEVAL = 4294967295U; //2^32-1 
      static const size_t  NN  = 624; 
      static const size_t  MM  = 397; 
      static const unsigned int  INITVAL  = 1812433253U; 
      static const unsigned int  ARRAYINITVAL_0 = 19650218U; 
      static const unsigned int  ARRAYINITVAL_1 = 1664525U; 
      static const unsigned int  ARRAYINITVAL_2 = 1566083941U; 
 
      static unsigned int twist(const unsigned int& u, const unsigned int& v) 
      { 
  static unsigned int mag01[2] = {0U, 0x9908b0dfU}; 
  return ((((u & 0x80000000U) | (v & 0x7fffffffU)) >> 1) ^ mag01[v&1]); 
      } 
       
      static unsigned int temper(unsigned int y) 
      { 
  y ^= (y >> 11);
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  y ^= (y << 7) & 0x9d2c5680U; 
  y ^= (y << 15) & 0xefc60000U; 
  y ^= (y >> 18); 
   
  return y; 
      } 
}; 
 
struct Mt64Traits 
{ 
      typedef unsigned long long UINTTYPE; 
      typedef signed long long  INTTYPE; 
      static const int   INTTYPE_BITS = 64; 
      static const unsigned long long MAXDOUBLEVAL = 9007199254740991ULL; // 
2^53-1 
      static const size_t  NN  = 312; 
      static const size_t  MM  = 156; 
      static const unsigned long long INITVAL  = 
6364136223846793005ULL; 
      static const unsigned long long ARRAYINITVAL_0 = 19650218ULL; 
      static const unsigned long long ARRAYINITVAL_1 = 
3935559000370003845ULL; 
      static const unsigned long long ARRAYINITVAL_2 = 
2862933555777941757ULL; 
 
      static unsigned long long twist(const unsigned long long& u, const unsigned 
long long& v) 
      { 
  static unsigned long long mag01[2] = {0ULL, 0xB5026F5AA96619E9ULL}; 
  return ((((u & 0xFFFFFFFF80000000ULL) | (v & 0x7FFFFFFFULL)) >> 1) ^ 
mag01[v&1]); 
      } 
 
      static unsigned long long temper(unsigned long long y) 
      { 
  y ^= (y >> 29) & 0x5555555555555555ULL; 
  y ^= (y << 17) & 0x71D67FFFEDA60000ULL; 
  y ^= (y << 37) & 0xFFF7EEE000000000ULL; 
  y ^= (y >> 43); 
   
  return y; 
      } 
}; 
 
 
template <typename Traits> 
class MtRng 
{ 
   public: 
      typedef typename Traits::UINTTYPE UINTTYPE; 
      typedef typename Traits::INTTYPE INTTYPE; 
 
   protected: 
      // member variables 
      UINTTYPE*  state_; 

      size_t  left_; 
      UINTTYPE*  next_; 
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   protected: 
      void nextState() 
      { 
  UINTTYPE *p = state_; 
  size_t j; 
   
  left_ = Traits::NN; 
  next_ = state_; 
   
  for (j=Traits::NN-Traits::MM+1; --j; p++) 
     *p = p[Traits::MM] ^ Traits::twist(p[0], p[1]); 
   
  for (j=Traits::MM; --j; p++) 
     *p = p[Traits::MM-Traits::NN] ^ Traits::twist(p[0], p[1]); 
   
  *p = p[Traits::MM-Traits::NN] ^ Traits::twist(p[0], state_[0]); 
      } 
    
   public: 
      MtRng() 
      { 
  left_ = 1; 
  next_ = NULL; 
  state_ = (UINTTYPE*)malloc(sizeof(UINTTYPE) * Traits::NN); 
  init((UINTTYPE)time(NULL)); 
      } 
 
      MtRng(UINTTYPE seed) 
      { 
  left_ = 1; 
  next_ = NULL; 
  state_ = (UINTTYPE*)malloc(sizeof(UINTTYPE) * Traits::NN); 
  init(seed); 
      } 
 
      MtRng(UINTTYPE initkeys[], size_t keylen) 
      { 
  left_ = 1; 
  next_ = NULL; 
  state_ = (UINTTYPE*)malloc(sizeof(UINTTYPE) * Traits::NN); 
  init(initkeys, keylen); 
      } 
 
      virtual ~MtRng() 
      { 
  if (state_) { 
     free(state_); 
  } 
      } 
       
      void init(UINTTYPE seed) 
      { 
  assert(sizeof(UINTTYPE)*8 == (size_t)Traits::INTTYPE_BITS); 
   
  state_[0]= seed; 
  for (size_t j=1; j<Traits::NN; j++) { 
     state_[j] 
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        = (Traits::INITVAL * (state_[j-1] ^ (state_[j-1] >> 
(Traits::INTTYPE_BITS-2))) 
    + (UINTTYPE)j);  
  } 
  left_ = 1; 
      } 
       
      void init(UINTTYPE initkeys[], size_t keylen) 
      { 
  init(Traits::ARRAYINITVAL_0); 
   
  size_t i = 1; 
  size_t j = 0; 
  size_t k = (Traits::NN > keylen ? Traits::NN : keylen); 
   
  for (; k; k--) { 
     state_[i] 
        = (state_[i] 
    ^ ((state_[i-1] ^ (state_[i-1] >> (Traits::INTTYPE_BITS-2))) 
       * Traits::ARRAYINITVAL_1)) 
        + initkeys[j] + (UINTTYPE)j; /* non linear */ 
      
     i++; 
     j++; 
      
     if (i >= Traits::NN) { 
        state_[0] = state_[Traits::NN-1]; 
        i = 1; 
     } 
     if (j >= keylen) { 
        j = 0; 
     } 
  } 
   
  for (k=Traits::NN-1; k; k--) { 
     state_[i] 
        = (state_[i] 
    ^ ((state_[i-1] ^ (state_[i-1] >> (Traits::INTTYPE_BITS-2))) 
       * Traits::ARRAYINITVAL_2)) 
        - (UINTTYPE)i; /* non linear */ 
      
     i++; 
      
     if (i >= Traits::NN) { 
        state_[0] = state_[Traits::NN-1]; 
        i = 1; 
     } 
  } 
   
  /* MSB is 1; assuring non-zero initial array */  
  state_[0] = (UINTTYPE)1 << (Traits::INTTYPE_BITS-1); 
  left_ = 1; 
      } 
       
      /* generates a random number on [0,2^bits-1]-interval */ 
      UINTTYPE getUint() 
      { 
  if (--left_ == 0) nextState(); 
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  return Traits::temper(*next_++); 
      } 
       
      /* generates a random number on [0,2^(bits-1)-1]-interval */ 
      INTTYPE getInt() 
      { 
  if (--left_ == 0) nextState(); 
  return (INTTYPE)(Traits::temper(*next_++)>>1); 
      } 
       
      /* generates a random number on [0,1]-real-interval */ 
      double getReal1() 
      { 
  if (--left_ == 0) nextState(); 
  if (Traits::INTTYPE_BITS > 53) { 
     return ( 
        (double)(Traits::temper(*next_++)>>(Traits::INTTYPE_BITS-53)) 
        * (1.0 / 9007199254740991.0) 
        ); 
  } else { 
     return ( 
        (double)Traits::temper(*next_++) * 
(1.0/(double)Traits::MAXDOUBLEVAL) 
        ); 
  } 
      } 
       
      /* generates a random number on [0,1)-real-interval */ 
      double getReal2() 
      { 
  if (--left_ == 0) nextState(); 
  if (Traits::INTTYPE_BITS > 53) { 
     return ( 
        (double)(Traits::temper(*next_++)>>(Traits::INTTYPE_BITS-53)) 
        * (1.0 / 9007199254740992.0) 
        ); 
  } else { 
     return ( 
        (double)Traits::temper(*next_++) * 
(1.0/((double)Traits::MAXDOUBLEVAL+1.0)) 
        ); 
  } 
      } 
       
      /* generates a random number on (0,1)-real-interval */ 
      double getReal3() 
      { 
  if (--left_ == 0) nextState(); 
  if (Traits::INTTYPE_BITS > 52) { 
     return ( 
        ((double)(Traits::temper(*next_++)>>(Traits::INTTYPE_BITS-52)) + 
0.5) 
        * (1.0 / 4503599627370496.0) 
        ); 
  } else { 
     return ( 
        ((double)Traits::temper(*next_++) + 0.5) * 
(1.0/((double)Traits::MAXDOUBLEVAL+1.0)) 
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        ); 
  } 
      } 
 
 
}; 
 
typedef MtRng<Mt32Traits> MtRng32; 
typedef MtRng<Mt64Traits> MtRng64; 
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Program Parameters, Program Running and Programs to analyze data 

 Configuration files (with extension .cfg) are employed to set the program’s 

parameters. All parameter files are located in /home/safronova/clOOPS-

0.9.6/prj/AbInitioSimple/cfg directory. For ab initio routine (ab initio plugin), AbInitio.cfg is 

used. Each energy plugin also has its own configuration file: gop.cfg corresponds to the 

Gō potential, chlk.cfg corresponds to the Lazaridis-Karplus solvation potential, chlj2.cfg 

is used for the Lennard-Jones potential and BMKhbond-B.cfg is designated for 

hydrogen bonding potential. PDB structures for proteins are located in  

/home/safronova/clOOPS-0.9.6/prj/AbInitioSimple/nat 

 In AbInitio.cfg a researcher should define energy terms and their weights that are 

going to be used in simulations. All parameters for Monte Carlo algorithm, Simulated 

Annealing are set through AbInitio.cfg. 

 To start the program that runs N trajectories for each protein from the list 

Test_Poteins_lst the following command is used: 

./run_oops -simInfo GO -i Test_Protein_lst -nTrj 100 

Where -simInfo option is a name of an experiment, –i option is a file name that contains 

pdb ids for proteins and –nTrj option is used to set the number of trajectories for each 

protein from a list in Test_Protein_lst file. Executable file run_oops is located in  

/home/safronova/clOOPS-0.9.6/src/PL-tools/C++/AbInitioSimple/src. A source and a 

header files are located in  

/home/safronova/clOOPS-0.9.6/src/PL-tools/C++/AbInitioSimple/run_oops 
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To run the optimization procedure the following command is used: 

./optimize_energy_weights -prevGOw 1 -lGO 0 -hGO 1 -nextSim 0 -nRun 100 -

percent 3 -i Test_Protein_lst -nTrj 100 

Where –prevGOw is used to set a previous value for the Gō weight. If simulations are 

just started this value is equal 1, options - lGO and –hGO set the range of the Gō 

potential weight to be tested. To eliminate the Go weight –lGO should be set to 0 and –

hGO should be set to 1. Option –nextSim sets a simulation step to start with, the total 

number of steps is set to 100. Option –i sets the name for a file that contains proteins 

pdb ids. Option –percent serves to set the percentage of successful trajectories with 

final structures rmsd ≤ 3 Å to define success. 

 To prepare data for analysis and visualization sort_files program must be run. 

qsub -b y -j y -cwd sort_files Test_Protein_lst Test_Time_lst SimulationName 

where Test_Protein_lst is the name of a file that contains proteins’ pdb ids, 

Test_Time_lst is the name of a file that contains proteins’ expected folding times, and 

the last parameter is a simulation name ( used with option –simName for run_oops and 

optimize_energy_weights programs). The program creates folder 

Results_SimulationName in trajectories output folder (see run_opps.cpp file’s initiation 

section fot TRJ_DIR). The data contained in Results_SimulationName is used by 

MATLAB program to create scatter plots and energy profiles for successful trajectories. 
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Program run_oops 
 
//run_oops.cpp 
#include <cstdio> 
#include <iostream> 
#include <fstream> 
#include <cstring> 
#include <string> 
#include <cassert> 
#include <list> 
#include <stdlib.h> 
#include <unistd.h>/// for unix 
#include <ctime> 
using namespace std; 
 
string PRJ_DIR = "/home/safronova/clOOPS-0.9.6/prj/AbInitioSimple"; 
//string TRJ_DIR = "/home/safronova_1/clOOPS-0.9.6/prj/AbInitioSimple/trj"; 
string TRJ_DIR = "/home/safronova_3/trj"; 
string CFG =  PRJ_DIR + "/cfg/AbInitioFold.cfg"; 
string PDB_DIR = PRJ_DIR + "/nat"; 
//string TRJ_DIR = PRJ_DIR + "/trj"; 
//string CMD_NAME = "qsub -b y -j y -cwd oops"; 
//string CMD_NAME = "qsub -b y -j y -q fast.q -cwd oops"; 
string CMD_NAME = "qsub -b y -j y -cwd -N oopsbatch oops"; 
string sCB = ""; 
string CMD_NEW_DIR = "mkdir -m a=rwx -p"; 
 
 
// Parameters. 
string InputLst, SimInfo; 
int NTrjs, NSimulationSteps = 1000000; 
 
int StrToInt(const string &str) { return atoi(str.c_str()); } 
 
/* reverse:  reverse string s in place */ 
void reverse(char s[]) 
{ 
    int c, i, j; 
 
    for (i = 0, j = strlen(s)-1; i<j; i++, j--) { 
        c = s[i]; 
        s[i] = s[j]; 
        s[j] = c; 
    } 
} 
 
 
/* itoa:  convert n to characters in s */ 
void itoa(int n, char s[]) 
{ 
    int i, sign; 
    if ((sign = n) < 0)  /* record sign */ 
        n = -n;          /* make n positive */ 
    i = 0; 
    do {       /* generate digits in reverse order */ 
        s[i++] = n % 10 + '0';   /* get next digit */ 
    } while ((n /= 10) > 0);     /* delete it */ 
    if (sign < 0) 
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        s[i++] = '-'; 
    s[i] = '\0'; 
    reverse(s); 
}  
 
void PrintHelp() 
{ 
 const char *const PROG_USAGE = "run_oops -i <input file without ext and path> -
simInfo <string:date[additional info]> -n <number of simulations>"; 
 
    const char *const PROG_DESC = "run_oops runs n simulations(n copies of oops 
program)"; 
 
    cout << "USAGE: " << PROG_USAGE << '\n'; 
    cout << PROG_DESC << '\n'; 
     
    exit(0); 
} 
 
void PrintError(string err_str, int err_code) 
{ 
    cout << "run_oops error: " << err_str << '\n'; 
    cout << "Try run_oops --help to get some more information." << '\n'; 
    exit(err_code); 
} 
 
void ReadParams(int argc, char *argv[]) 
{ 
    string args, par, val; 
    int i, NextArgIsVal = -1; 
 
    for (i = 1; i < argc; i++) 
    { 
        args = argv[i]; 
 
        if (-1 < NextArgIsVal) 
        { 
            switch (NextArgIsVal) 
            { 
                case 0: 
                    InputLst = args; 
                    break; 
                case 1: 
                    SimInfo = args; 
                    break; 
                case 2: 
                    NTrjs = StrToInt(args); 
                    break; 
    case 3: 
                    NSimulationSteps = StrToInt(args); 
                    break; 
 
            } 
            NextArgIsVal = -1; 
        } 
        else 
        { 
            NextArgIsVal = -1; 
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            if (args == "--help") PrintHelp();else 
   if (args == "-sCB") sCB = " -sCB";else 
            if (args == "-i") NextArgIsVal = 0; else 
            if (args == "-simInfo") NextArgIsVal = 1; else 
            if (args == "-nTrj") NextArgIsVal = 2; else 
   if (args == "-nSim") NextArgIsVal = 3; else 
    PrintError("unrecognized option", 1); 
        } 
    } 
 
} 
int main (int argc, char *argv[]) 
{ 
 ReadParams (argc, argv); 
 
 ifstream in (InputLst.c_str()); 
 if(!in){cout << "can't open InputLst \n"; exit (1);}  
  
 list<string> ProtLst; 
 list<string>::iterator lstIter; 
  
 string line, prot_name; 
 while (getline (in, line)){ 
  //we assume a line doesn't contain spaces 
  prot_name = line; 
  ProtLst.push_back (prot_name); 
 } 
 in.close ();  
  
 char buffer0 [33]; 
 buffer0 [0]= '\0'; 
 itoa (NSimulationSteps, buffer0); 
  
 for (lstIter = ProtLst.begin (); lstIter != ProtLst.end (); lstIter ++){ 
 
  string trj_full_dir = TRJ_DIR + "/" + SimInfo + "/" + *lstIter; 
  string cmd_dir = CMD_NEW_DIR + " " + trj_full_dir; 
  system (cmd_dir.c_str()); 
  string trj = trj_full_dir + "/" + *lstIter + "_" + SimInfo; // number will 
be added in cycle 
  string pdb_file = PDB_DIR + "/" + *lstIter + ".pdb"; 
  string cmd_files = CMD_NAME + " -c " + CFG + " -i " + pdb_file +  + " -n "  
+ buffer0 + " -o " + trj; 
 
  char buffer1 [33]; 
  char buffer2 [33]; 
   
  string FileNameLst = *lstIter + "_" + SimInfo + "_lst"; 
  ofstream FileLst(FileNameLst.c_str()); 
  if(!FileLst)PrintError("can't open list file", 3); 
 
  string cmd; 
  int seed = time(NULL); 
   
  for ( int i = 1; i <= NTrjs; i++ ) 
  { 
   seed += i; 
   buffer1[0]= '\0'; 
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   buffer2[0]= '\0'; 
   itoa (i,buffer1); 
   itoa (seed,buffer2); 
   cmd = cmd_files + "_" + buffer1 + " -seed " + buffer2 + sCB ; 
   FileLst << trj + "_" + buffer1 + "_stat" << endl; 
   system (cmd.c_str ()); 
   sleep (1); 
  } 
  
  
  FileLst.close (); 
 } 
 return 0; 
} 
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Data Analysis Program 
 
 
//sort_files.cpp 
 
#include <stdio.h> 
#include <cstdlib> 
 
#include <cstdio> 
#include <iostream> 
#include <fstream> 
#include <cstring> 
#include <string> 
#include <cassert> 
#include <list> 
#include <stdlib.h> 
#include <unistd.h>/// for unix 
#include <ctime> 
#include <utility> 
#include <string> 
#include <vector> 
#include <sstream>  
 
using namespace std; 
string TOOL_DIR = "/home/safronova/clOOPS-0.9.6/src/PL-tools/C++/AbInitioSimple"; 
string RMSD_DIR = TOOL_DIR + "/calc_rmsd/bin/"; 
string TIME_DIR = TOOL_DIR + "/combine_files/"; 
 
string PRJ_DIR = "/home/safronova/clOOPS-0.9.6/prj/AbInitioSimple"; 
string TRJ_DIR = "/home/safronova_3/trj"; 
string CFG =  PRJ_DIR + "/cfg/AbInitioFold.cfg"; 
string PDB_DIR = PRJ_DIR + "/nat"; 
 
string CMD_RMSD_NAME = RMSD_DIR +"calc_rmsd -cfg " + PRJ_DIR + "/cfg/Calc_RMSD.cfg"; 
//string CMD_RMSD_NAME = RMSD_DIR +"calc_rmsd "; 
 
string CMD_TIME_NAME = TIME_DIR +"combine_files"; 
string CMD_NEW_DIR = "mkdir -m a=rwx -p"; 
 
 
using namespace std; 
 
double RmsdMax = 3; 
double TimeMax = 300; 
 
int StrToInt(const string &str) { return atoi(str.c_str()); } 
void Copy (const vector<pair<int, pair<double, double> > > vec, vector<pair<int, 
pair<double, double> > >& vec_cpy ) 
 
{ 
 for (int i = 0; i < vec.size(); i ++) 
  vec_cpy.push_back(vec[i]); 
} 
 
void SortByRmsd (vector<pair<int, pair<double, double> > >& vec) 
{ 
 pair<int, pair<double, double> > temp; 
 //sort array 
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 for(int i = 0; i < vec.size(); i++) 
 { 
  for (int j = 0; j < vec.size()-1; j++) 
        { 
            if (vec[j].second.first > vec[j+1].second.first) 
   { 
    temp = vec[j]; 
    vec[j] = vec[j+1]; 
    vec[j+1] = temp; 
   } 
        }/*End inner for loop*/ 
 }/*End outer for loop*/ 
} 
 
void SortByTime (vector<pair<int, pair<double, double> > >& vec) 
{ 
 pair<int, pair<double, double> > temp; 
 //sort array 
 for(int i = 0; i < vec.size(); i++) 
 { 
  for (int j = 0; j < vec.size()-1; j++) 
        { 
            if (vec[j].second.second > vec[j+1].second.second) 
   { 
    temp = vec[j]; 
    vec[j] = vec[j+1]; 
    vec[j+1] = temp; 
   } 
        }/*End inner for loop*/ 
 }/*End outer for loop*/ 
} 
 
void FindBestCandidates( 
 const vector<pair<int, pair<double, double> > > vec_rmsd, 
 const vector<pair<int, pair<double, double> > > vec_time, 
 vector<pair<int, pair<double, double> > >& vec_canditates) 
{ 
  
  
 int count_candidates = 0; 
 for(int i = 0; i < vec_rmsd.size()/3 && count_candidates < 6; i++) 
 { 
   
   
  for(int j = 0; j < vec_time.size()/3 ; j++) 
  { 
    
    
   if (vec_rmsd[i].first == vec_time[j].first ) 
   { 
    count_candidates ++; 
    vec_canditates.push_back(vec_time[j]); 
     
   } 
  } 
 } 
} 
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void ReplaceSubStr(string fn, string from, string to) 
{ 
 ifstream file (fn.c_str()); 
 if(!file){cout << "cannot open file from ReplaceSubStr()\n"; exit (1);} 
 string line; 
 vector<string> line_vec; 
 while (getline (file,line)) 
 { 
  line.replace(line.find(from), from.size(), to); 
  line_vec.push_back(line); 
 } 
 file.close(); 
 ofstream new_file(fn.c_str()); 
 for(int i = 0; i < line_vec.size(); i ++) 
  new_file << line_vec[i]<< endl; 
  
 new_file.close(); 
 
} 
 
void Output_file_names (ofstream& file, vector<string> vec, vector<pair<int, pair<double, 
double> > > vec_sorted) 
{ 
 int j = 0;  
  
 for (int i= 0; i < 3 && i< vec_sorted.size(); i ++ ) 
 { 
  j = vec_sorted[i].first - 1; 
  file << vec[j] << endl; 
 } 
} 
 
void Copy_Files(string file_with_fn, string to_dir ) 
// file names in file_with_fn must be with full-path-names 
 
{ 
 ifstream file(file_with_fn.c_str()); 
 if(!file){cout << "cannot open file_with_fn from Copy_Files()\n"; exit (1);} 
  
 string line; 
 while (getline (file, line)){ 
  string cmd = "cp " + line + " " + to_dir; 
  system(cmd.c_str()); 
 } 
    file.close(); 
} 
 
void DeleteExtraSpaceInDatFiles(string dir, string file_with_names_fn) 
{ 
 ifstream file_with_names (file_with_names_fn.c_str()); 
 if(!file_with_names){cout << "cannot open " << file_with_names_fn << endl; exit 
(1);} 
 string line, line2; 
 vector<string> files_vec; 
  
 while (getline (file_with_names,line)) 
 { 
  string name = dir + "/" + line; 
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  ifstream dat_file (name.c_str()); 
  if(!dat_file){cout << "cannot open " << name <<  " from 
DeleteExtraSpaceInDatFiles()"  << endl; exit (1);} 
   
  vector<double> x_vec, y_vec, in_vec, out_vec, in_out_vec; 
  getline (dat_file,line2); 
  while (getline (dat_file,line2)) 
  { 
   double x,y, in, out, in_out; 
   istringstream ist_data(line2); 
   ist_data >> x; x_vec.push_back(x); 
   ist_data >> y; y_vec.push_back(y); 
   ist_data >> in; in_vec.push_back(in); 
   ist_data >> out; out_vec.push_back(out); 
   ist_data >> in_out; in_out_vec.push_back(in_out); 
  } 
  dat_file.close(); 
  if (x_vec.size() != y_vec.size()) {cout << name << ": x_vec.size() != 
y_vec.size()" << endl; exit(1);} 
  if (y_vec.size() != in_vec.size()) {cout << name << ": y_vec.size() != 
in_vec.size()" << endl; exit(1);} 
  if (in_vec.size() != out_vec.size()) {cout << name << ": in_vec.size() != 
out_vec.size()" << endl; exit(1);} 
  if (out_vec.size() != in_out_vec.size()) {cout << name << ": out_vec.size() 
!= In_out_vec.size()" << endl; exit(1);} 
   
  ofstream dat_file_new (name.c_str()); 
  if(!dat_file_new){cout << "cannot open for w-mode" << name <<  " from 
DeleteExtraSpaceInDatFiles()"  << endl; exit (1);} 
  for(int i = 0; i < x_vec.size() ; i ++) 
  { 
   dat_file_new << x_vec[i] << " " << y_vec[i] << " "<< in_vec[i] << " 
" << out_vec[i] << " "<< in_out_vec[i] <<endl; 
  } 
  dat_file_new.close(); 
 } 
} 
 
//1st parameter - Protein names file 
//2nd parameter -Time Max for quadrants file name 
//3nd parameter - simulation name 
 
//             |      | 
//  t          |  II  |  III 
//  i          |   | 
//  m  TimeMax |______|________ 
//  e          |  I   |  IV 
//             |______|________  
//             0     RmsdMax 
//                    rmsd 
// How to run: 
int main (int argc, char *argv[]) 
{//1 
 if (argc != 4) {cout << "wrong number of parameters" << endl; exit (1);} 
  
  
 ifstream proteins (argv[1]); 
 if(!proteins){cout << "cannot open proteins file \n"; exit (1);} 
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 ifstream time_limit (argv[2]); 
 if(!time_limit){cout << "cannot open time_limit file \n"; exit (1);} 
 
 string line_proteins, line_time, line; 
 double number; 
  
 string  results_dir = TRJ_DIR + "/" +  argv[3] + "/" + "Results_"  + argv[3]; 
 string cmd_dir = CMD_NEW_DIR + " " + results_dir; 
 system (cmd_dir.c_str()); 
  
 string all_files_for_matlab_fn = results_dir + "/all_files_for_matlab"; 
 ofstream all_files_for_matlab (all_files_for_matlab_fn.c_str()); 
 if(!all_files_for_matlab){cout << "all_files_for_matlab file \n"; exit (1);} 
  
 string all_rmsd_time_fn = results_dir + "/all_rmsd_time_files"; 
 ofstream all_rmsd_time (all_rmsd_time_fn.c_str()); 
 if(!all_rmsd_time){cout << "rmsd file \n"; exit (1);} 
  
 string all_rmsd_time_short_fn = results_dir + "/all_rmsd_time_files_short"; 
 ofstream all_rmsd_time_short (all_rmsd_time_short_fn.c_str()); 
 if(!all_rmsd_time_short){cout << "rmsd file \n"; exit (1);} 
  
 all_files_for_matlab << "all_rmsd_time_files_short" << endl; 
 
 //reads rmsd and time files for proteins from the list 
 while (getline (proteins,line_proteins)){//2 
   
  //read proteins list file 
  string cmd; 
   
  //read protein name 
  string protein_name; 
  istringstream ist_protein(line_proteins); 
  ist_protein >> protein_name; 
   
  cout << protein_name<< ":" << endl; 
   
  // create name that reflects protein-simulation names 
   
  string FileNameLst = protein_name + "_" + argv[3] + "_lst";//this file and 
its name are generated in run_oops.cpp 
  string trj_full_dir = TRJ_DIR + "/" +  argv[3] + "/" + protein_name;// 
where are trj and dat files 
   
  //create required folders: Results_SimName, Results_SimName/Best;  
Results_SimName/I; ... Results_SimName/IV 
   
  string dir_name = results_dir + "/" + protein_name;//new 
  //string dir_name = trj_full_dir + "/Results_" + argv[3];//old 
   
  cmd_dir = CMD_NEW_DIR + " " + dir_name + "/Best"; 
  system (cmd_dir.c_str()); 
  cmd_dir = CMD_NEW_DIR + " " + dir_name + "/I"; 
  system (cmd_dir.c_str()); 
  cmd_dir = CMD_NEW_DIR + " " + dir_name + "/II"; 
  system (cmd_dir.c_str()); 
  cmd_dir = CMD_NEW_DIR + " " + dir_name + "/III"; 
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  system (cmd_dir.c_str()); 
  cmd_dir = CMD_NEW_DIR + " " + dir_name + "/IV"; 
  system (cmd_dir.c_str()); 
 
  //generate file names for output rmsds and times 
  string in_rmsd_fn = dir_name + "/" + FileNameLst + "_rmsd"; 
  string in_time_fn = dir_name + "/" + FileNameLst + "_time"; 
  //string rmsd_time_fn = dir_name + "/" + FileNameLst + "_rmsd_time";//for 
matlab scatter plot//old 
  string rmsd_time_fn = results_dir + "/" +  protein_name + 
"_rmsd_time";//for matlab scatter plot 
  all_rmsd_time << rmsd_time_fn << endl; 
  all_rmsd_time_short <<protein_name + "_rmsd_time" << endl; 
  //cp file with trajectories names to Result folder, in this case we can 
clear folder with jobs otput 
   
  cmd = "cp " + TOOL_DIR + "/src/" + FileNameLst  + " " + dir_name; 
  system(cmd.c_str()); 
   
  //run combine_files program (TIME) 
   
  cmd = CMD_TIME_NAME + " " + dir_name + "/" + FileNameLst + " " + 
in_time_fn; 
   
  //test 
  cout << "time cmd = " << cmd <<endl; 
  system(cmd.c_str()); 
   
  
  // modify FileNameLst file: replace all "_stat" to "_f.pdb" for rmsd 
calculation 
  string modify_fn =  dir_name + "/" + FileNameLst; 
   
   
  ReplaceSubStr(modify_fn, "_stat", "_f.pdb"); 
  //run RMSD calculation program 
  string pdb_file = PDB_DIR + "/" +  protein_name + ".pdb"; 
  cmd = CMD_RMSD_NAME + " -str " + pdb_file + " -list " + modify_fn ; 
   
  system(cmd.c_str()); 
   
  //open rmsd file 
  ifstream in_rmsd (in_rmsd_fn.c_str()); 
  if(!in_rmsd){cout << "rmsd file \n"; exit (1);} 
   
  //open time file 
  ifstream in_time (in_time_fn.c_str()); 
  if(!in_time) {cout << "time file \n"; exit (1);} 
  
  //read time file and fills TimeMax for each protein/rmsdMax and TimaMax 
define quadrants 
  double time_from_file; 
  getline (time_limit,line_time); 
  istringstream ist_time(line_time); 
  ist_time >> time_from_file; 
  TimeMax = time_from_file; 
  
  // read rmsd and time file for each protein  
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  vector<double> rmsd_vec; 
  vector<double> time_vec; 
  //istringstream ist; 
  double rmsd; 
   
  while (getline (in_rmsd, line)){ 
    istringstream ist(line); 
    ist >> rmsd; 
   // number = atof(word_number.c_str()); 
       rmsd_vec.push_back(rmsd); 
  } 
     
  in_rmsd.close (); 
  double time; 
   
  //test 
  cout << "Time vector values:" << endl; 
  while (getline (in_time, line)){ 
   istringstream ist(line); 
   ist >> time;   
   cout << time << endl; 
   //number = atof(word_number.c_str()); 
   time_vec.push_back(time);  
  } 
  in_time.close (); 
 
  if(rmsd_vec.size() != time_vec.size() ){ 
   cout << "rmsd vector size (" <<rmsd_vec.size()<< ")" << " != time 
vector size (" <<time_vec.size()<< ")"<< endl; 
   exit(1); 
  } 
 
  ofstream rmsd_time (rmsd_time_fn.c_str()); 
  if (!rmsd_time) {cout << "cannot open rmsd_time file" << endl; exit(1);} 
  for (int i = 0; i < rmsd_vec.size(); i++ ) 
  { 
   rmsd_time <<  rmsd_vec[i] << " " <<  time_vec[i] << endl; 
  } 
      
   
  // sort to quadrants  
  vector<pair<int, pair<double, double> > > I, II, III, IV, All; 
  int size = rmsd_vec.size(); 
  
  for (int i = 0; i < size; i ++ ) 
  {//3 
   pair<double, double> rmsd_time; 
   pair <int, pair <double, double> > index__rmsd_time; 
   
      rmsd_time.first = rmsd_vec[i]; 
      rmsd_time.second = time_vec[i]; 
      index__rmsd_time.first = i + 1; 
   index__rmsd_time.second =  rmsd_time; 
    
   // list with a triad (trj number, rmsd, time) 
   All.push_back(index__rmsd_time); 
   
   if ((rmsd_vec[i] <= RmsdMax) && (time_vec[i] <= TimeMax)) 
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    I.push_back(index__rmsd_time); 
   if ((rmsd_vec[i] <= RmsdMax) && (time_vec[i] > TimeMax)) 
    II.push_back(index__rmsd_time); 
   if ((rmsd_vec[i] > RmsdMax) && (time_vec[i] > TimeMax)) 
    III.push_back(index__rmsd_time); 
   if ((rmsd_vec[i] > RmsdMax) && (time_vec[i] <= TimeMax)) 
    IV.push_back(index__rmsd_time); 
 
  }//_3 
  
     //copy 
  vector<pair<int, pair<double, double> > > I_t, II_t, III_t, IV_t, All_t; 
  Copy(All, All_t);Copy(I, I_t); Copy(II, II_t); Copy(III, III_t); Copy(IV, 
IV_t); 
  cout <<"All_t.size() =  " << All_t.size() << endl; 
  cout <<"I_t.size() =  " << I_t.size() << endl; 
  cout <<"II_t.size() =  " << II_t.size() << endl; 
  cout <<"III_t.size() =  " << III_t.size() << endl; 
  cout <<"IV_t.size() =  " << IV_t.size() << endl; 
 
  //sort 
   SortByRmsd(All); SortByRmsd(I);  SortByRmsd(II);  SortByRmsd(III);  
SortByRmsd(IV); 
   SortByTime(All_t); SortByTime(I_t);  SortByTime(II_t);  SortByTime(III_t);  
SortByTime(IV_t); 
  
   
   //Find the best candidates 
   vector<pair<int, pair<double, double> > > best_candidates; 
   FindBestCandidates(All, All_t, best_candidates); 
   
   //print all results sorted by rmsd to files 
  string out_all_fn = dir_name + "/" + FileNameLst + "_all"; 
  ofstream out_all (out_all_fn.c_str()); 
  if(!out_all){cout << "all info file can't be open\n"; exit (1);} 
  
  string out_best_fn = dir_name + "/" +  FileNameLst +"_best"; 
  ofstream out_best_candidates (out_best_fn.c_str()); 
  if(!out_best_candidates){cout << "best_candidates file can't be open\n"; 
exit (1);} 
 
   
  out_best_candidates << "The best candidates (" <<best_candidates.size() << 
")"<< endl; 
  for (int i = 0; i< best_candidates.size(); i ++ ) 
   out_best_candidates << best_candidates[i].first << ":  (" <<  
best_candidates[i].second.first << ", " <<  best_candidates[i].second.second << ")" << 
endl; 
  
  out_all << "// Sorted by RMSD" << endl; 
   
   
  out_all << "// I quadrant (" <<I.size() << ")"<< endl; 
  for (int i = 0; i< I.size(); i ++ ) 
   out_all << I[i].first << ":  (" <<  I[i].second.first << ", " <<  
I[i].second.second << ")" << endl; 
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  out_all << "// II quadrant (" <<II.size() << ")"<< endl; 
  for (int i = 0; i< II.size(); i ++ ) 
   out_all << II[i].first << ":  (" <<  II[i].second.first << ", " <<  
II[i].second.second << ")" << endl; 
   
   
  out_all << "// III quadrant (" <<III.size() << ")"<< endl; 
  for (int i = 0; i< III.size(); i ++ ) 
   out_all << III[i].first << ":  (" <<  III[i].second.first << ", " <<  
III[i].second.second << ")" << endl; 
   
   
  out_all << "// IV quadrant (" <<IV.size() << ")"<< endl; 
  for (int i = 0; i< IV.size(); i ++ ) 
   out_all << IV[i].first << ":  (" <<  IV[i].second.first << ", " <<  
IV[i].second.second << ")" << endl; 
  out_best_candidates.close(); 
  out_all.close(); 
     
   
 string trj_fn =  dir_name + "/" + FileNameLst; 
 //put .dat files to vector<string> 
 vector<string> final_pdb_files_names; 
 vector<string> dat_files_names; 
 vector<string> dat_files_names_without_dir; 
 ifstream trj_files (trj_fn.c_str()); 
 if(!trj_files){cout << "cannot open file with trj_f names\n"; exit (1);} 
 while (getline (trj_files, line)){ 
  final_pdb_files_names.push_back(line);  
  line.replace(line.find("_f.pdb"), 6, ".dat"); 
  dat_files_names.push_back(line); 
 
  size_t line_len = line.size(); 
  string find_str = "/"+ protein_name + "/"; 
  line.erase(0, line.find (find_str)+protein_name.size()+2); 
  dat_files_names_without_dir.push_back(line); 
 } 
 trj_files.close(); 
  
  
 //We need to create foders in Results: 
 //1.SimName_best: 
 //  _f.pdb//later 
 //   .dat 
 //2. SimName_I/II/III/IV (max 3trj in each category) 
 //  _f.pdb//later 
 //   .dat 
  
 //these files contain lists with file names required for matlab analysis 
  
 //AND COPY DAT FILES TO RESULT , f.pdb and trj  
 // 
 string matlab_out_best_energy_profile_fn =dir_name + "/Best/" + FileNameLst + 
"_best_energy_profile_matlab"; 
 ofstream matlab_out_best_energy_profile 
(matlab_out_best_energy_profile_fn.c_str()); 
 if(!matlab_out_best_energy_profile){cout << 
"best_matlab_out_best_energy_profile_matlab info file can't be open\n"; exit (1);} 
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 string matlab_out_best_energy_profile_fn_short =dir_name + "/Best/" + FileNameLst 
+ "_best_energy_profile_matlab_short"; 
 ofstream matlab_out_best_energy_profile_short 
(matlab_out_best_energy_profile_fn_short.c_str()); 
 if(!matlab_out_best_energy_profile_short){cout << 
"best_matlab_out_best_energy_profile_matlab_short info file can't be open\n"; exit (1);} 
 all_files_for_matlab << protein_name + "/Best/" + FileNameLst + 
"_best_energy_profile_matlab_short" << endl; 
  
 Output_file_names (matlab_out_best_energy_profile, dat_files_names, 
best_candidates); 
 Output_file_names (matlab_out_best_energy_profile_short, 
dat_files_names_without_dir, best_candidates); 
 
 matlab_out_best_energy_profile.close(); 
 matlab_out_best_energy_profile_short.close(); 
 Copy_Files(matlab_out_best_energy_profile_fn, dir_name + "/Best/" ); 
 DeleteExtraSpaceInDatFiles(dir_name + "/Best", 
matlab_out_best_energy_profile_fn_short); 
 // 
 string matlab_out_I_best_energy_profile_fn = dir_name + "/I/" + FileNameLst + 
"_I_energy_profile_matlab"; 
 ofstream matlab_out_I_best_energy_profile 
(matlab_out_I_best_energy_profile_fn.c_str()); 
 if(!matlab_out_I_best_energy_profile){cout << "I_energy_profile_matlab info file 
can't be open\n"; exit (1);} 
  
 string matlab_out_I_best_energy_profile_fn_short = dir_name + "/I/" + FileNameLst 
+ "_I_energy_profile_matlab_short"; 
 ofstream matlab_out_I_best_energy_profile_short 
(matlab_out_I_best_energy_profile_fn_short.c_str()); 
 if(!matlab_out_I_best_energy_profile_short){cout << "I_energy_profile_matlab_short 
info file can't be open\n"; exit (1);} 
 all_files_for_matlab << protein_name + "/I/" + FileNameLst + 
"_I_energy_profile_matlab_short" << endl; 
  
 Output_file_names (matlab_out_I_best_energy_profile, dat_files_names, I); 
 Output_file_names (matlab_out_I_best_energy_profile_short, 
dat_files_names_without_dir, I); 
  
 matlab_out_I_best_energy_profile.close(); 
 matlab_out_I_best_energy_profile_short.close(); 
 Copy_Files(matlab_out_I_best_energy_profile_fn, dir_name + "/I/" ); 
 DeleteExtraSpaceInDatFiles(dir_name + "/I", 
matlab_out_I_best_energy_profile_fn_short); 
 // 
 string matlab_out_II_best_energy_profile_fn = dir_name + "/II/" + FileNameLst + 
"_II_energy_profile_matlab"; 
 ofstream matlab_out_II_best_energy_profile 
(matlab_out_II_best_energy_profile_fn.c_str()); 
 if(!matlab_out_II_best_energy_profile){cout << 
"II_best_matlab_out_best_energy_profile_matlab info file can't be open\n"; exit (1);} 
  
 string matlab_out_II_best_energy_profile_fn_short = dir_name + "/II/" + 
FileNameLst + "_II_energy_profile_matlab_short"; 
 ofstream matlab_out_II_best_energy_profile_short 
(matlab_out_II_best_energy_profile_fn_short.c_str()); 
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 if(!matlab_out_II_best_energy_profile_short){cout << 
"II_best_matlab_out_best_energy_profile_matlab_short info file can't be open\n"; exit 
(1);} 
 all_files_for_matlab << protein_name + "/II/" + FileNameLst + 
"_II_energy_profile_matlab_short" << endl; 
  
 Output_file_names (matlab_out_II_best_energy_profile, dat_files_names, II); 
 Output_file_names (matlab_out_II_best_energy_profile_short, 
dat_files_names_without_dir, II); 
  
 matlab_out_II_best_energy_profile.close(); 
 matlab_out_II_best_energy_profile_short.close(); 
 Copy_Files(matlab_out_II_best_energy_profile_fn, dir_name + "/II/" ); 
 DeleteExtraSpaceInDatFiles(dir_name + "/II", 
matlab_out_II_best_energy_profile_fn_short); 
 // 
 string matlab_out_III_best_energy_profile_fn = dir_name + "/III/" +  FileNameLst + 
"_III_energy_profile_matlab"; 
 ofstream matlab_out_III_best_energy_profile 
(matlab_out_III_best_energy_profile_fn.c_str()); 
 if(!matlab_out_III_best_energy_profile){cout << 
"III_best_matlab_out_best_energy_profile_matlab info file can't be open\n"; exit (1);} 
  
 string matlab_out_III_best_energy_profile_fn_short = dir_name + "/III/" +  
FileNameLst + "_III_energy_profile_matlab_short"; 
 ofstream matlab_out_III_best_energy_profile_short 
(matlab_out_III_best_energy_profile_fn_short.c_str()); 
 if(!matlab_out_III_best_energy_profile_short){cout << 
"III_best_matlab_out_best_energy_profile_matlab_short info file can't be open\n"; exit 
(1);} 
 all_files_for_matlab << protein_name + "/III/" + FileNameLst + 
"_III_energy_profile_matlab_short" << endl; 
  
 Output_file_names (matlab_out_III_best_energy_profile, dat_files_names, III); 
 Output_file_names (matlab_out_III_best_energy_profile_short, 
dat_files_names_without_dir, III); 
  
 matlab_out_III_best_energy_profile.close(); 
 matlab_out_III_best_energy_profile_short.close(); 
 Copy_Files(matlab_out_III_best_energy_profile_fn, dir_name + "/III" ); 
 DeleteExtraSpaceInDatFiles(dir_name + "/III", 
matlab_out_III_best_energy_profile_fn_short); 
 // 
 string matlab_out_IV_best_energy_profile_fn = dir_name + "/IV/" + FileNameLst + 
"_IV_energy_profile_matlab"; 
 ofstream matlab_out_IV_best_energy_profile 
(matlab_out_IV_best_energy_profile_fn.c_str()); 
 if(!matlab_out_IV_best_energy_profile){cout << 
"IV_best_matlab_out_best_energy_profile_matlab info file can't be open\n"; exit (1);} 
  
 string matlab_out_IV_best_energy_profile_fn_short = dir_name + "/IV/" + 
FileNameLst + "_IV_energy_profile_matlab_short"; 
 ofstream matlab_out_IV_best_energy_profile_short 
(matlab_out_IV_best_energy_profile_fn_short.c_str()); 
 if(!matlab_out_IV_best_energy_profile_short){cout << 
"IV_best_matlab_out_best_energy_profile_matlab_short info file can't be open\n"; exit 
(1);} 
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 all_files_for_matlab << protein_name + "/IV/" + FileNameLst + 
"_IV_energy_profile_matlab_short" << endl; 
  
 Output_file_names (matlab_out_IV_best_energy_profile, dat_files_names, IV); 
 Output_file_names (matlab_out_IV_best_energy_profile_short, 
dat_files_names_without_dir, IV); 
  
 matlab_out_IV_best_energy_profile.close(); 
 matlab_out_IV_best_energy_profile_short.close(); 
 Copy_Files(matlab_out_IV_best_energy_profile_fn, dir_name + "/IV" ); 
 DeleteExtraSpaceInDatFiles(dir_name + "/IV", 
matlab_out_IV_best_energy_profile_fn_short); 
 }//_2 
 all_rmsd_time.close(); 
 all_rmsd_time_short.close(); 
 all_files_for_matlab.close(); 
}//_1 
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MATLAB programs to visualize data 

To create scatter plots (rmsd vs time) and energy profiles for successful trajectories the 

following MATLAB program should be run: 

CreateScatterPlots_new('C:\Users\sasha\Desktop\TEMP_WORK', 'newprot-10', 

'all_files_for_matlab', 'Test_Time_lst', 'Energy_LST') 

Where the first parameter is the name of a directory where Results_SimulationName 

are located (sort_files command). The second parameter is a simulation name to be 

analyzed, the third parameter is the name of the file in Results_SimulationName folder, 

the forth parameter is a file with expected folding times for proteins, and the last 

parameter is a file with energy terms names used for simulations. Files Test_Time_lst, 

Energy_LST must be located in the folder that was used for the first parameter. 

function CreateScatterPlots_new( dir, sim_name, file, time_file_name, 

energy_file_name ) 
% HOW to run: 
%CreateScatterPlots('C:\Users\Aleksandra Safronova\Desktop\oops\Matlab', 
%                     'TestInertia2', 'all_files_for_matlab', 

'Test_Time_lst') 
% file Test_Time_lst must be in dir  
names_to_join = {'Results_', sim_name}; 
joined_name = strjoin(names_to_join, ''); 
%joined_name = [names_to_join{:}]; 

  
full_name = {dir, joined_name, file}; 
full_name_str = strjoin(full_name, '\'); 
%full_name = {dir,'\' ,joined_name,'\' ,file}; 
%full_name_str = [full_name{:}]; 

  
L = readtable(full_name_str,'ReadVariableNames',false,'Format', '%s'); 
MAT_NAMES = L.Var1; 

  
full_time_file_name = {dir,time_file_name}; 
full_time_file_name_str = strjoin(full_time_file_name, '\'); 

  
full_energy_file_name = {dir,energy_file_name}; 
full_energy_file_name_str = strjoin(full_energy_file_name, '\'); 

  



137 
 

 

%full_time_file_name = {dir,'\',time_file_name}; 
%full_time_file_name_str = [full_time_file_name{:}]; 

  
%full_energy_file_name = {dir,'\',energy_file_name}; 
%full_energy_file_name_str = [full_energy_file_name{:}]; 

  
%generates scatter plots 
scatter_files = {dir, joined_name, MAT_NAMES{1}}; 
full_scatter_files =  strjoin(scatter_files, '\'); 
%scatter_files = {dir,'\',joined_name, MAT_NAMES{1}}; 
%full_scatter_files =  [scatter_files{:}]; 
L = readtable(full_scatter_files,'ReadVariableNames',false,'Format', '%s'); 
NAMES = L.Var1; 
len = length(NAMES); 

  
L = readtable(full_time_file_name_str,'ReadVariableNames',false,'Format', 

'%f%s'); 
TIMES = L.Var1; 

 
for n = 1:len 
    C = {dir, joined_name,  NAMES{n}}; 
    name = strjoin(C,'\'); 
    %C = {dir,'\' ,joined_name,'\' , NAMES{n}}; 
    %name = [C{:}]; 
    %CallScatter( name, sim_name,TIMES(n)); 
    CallScatter( name, sim_name); 
end 

  
%generates energy profiles and compactness 
len = length(MAT_NAMES); 
for n = 2:len 
   %for windows only 
    C = strsplit (MAT_NAMES{n},'/'); 
    %//C_size = length(C); 
    %//str_file = {C{1},C{2},C{3}}; 
    str_file2 = strjoin(C, '\'); 
    %str_file2 = strjoin(C, '\'); 
    C = {dir, joined_name, str_file2}; 
    %//C = {dir, joined_name,  MAT_NAMES{n}}; 
    name = strjoin(C,'\'); 
    CallEnergyProfile_new( dir, joined_name, name, 

full_energy_file_name_str); 
end 
end 

 

 

function CallScatter( name, sim_name ) 

  
T = readtable(name,'Delimiter','space','ReadVariableNames',false, 'Format', 

'%f%f'); 
RMSD =T.Var1; 
TIME = T.Var2; 
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h=figure('visible','off'); 
scatter(RMSD, TIME); 
axis([0,12, 0, inf]); 

  
h2=xlabel('rmsd'); 
set(h2, 'FontSize', 16);  
set(gca,'XTick',[0:1:12]); 
set(gca,'XTickLabel',{'0','', '2','', '4','', '6','', '8','', '10','', 

'12'}); 

  
h3 = ylabel('time in sec'); 
set(h3, 'FontSize', 16); 
C = strsplit (name,'\'); 
C_size = length(C); 
str_file = C{C_size}; 
str_file2 = strrep(str_file, '_', ' '); 
C = {sim_name, str_file2}; 
str_file3 = strjoin(C, ' '); 

  
h4 = title(str_file3); 
set(h4, 'FontSize', 18) ; 
set(h4,'FontWeight','bold'); 

  
%set(h, 'Color', 'white'); % white bckgr 
%export_fig( h, ...      % figure handle 
%    name,... % name of output file without extension 
%    '-painters', ...      % renderer 
%    '-jpg', ...           % file format 
%    '-r150' );             % resolution in dpi 
%savefig(h,name); 
saveas(h,name,'fig'); 
saveas(h,name,'jpg'); 

  
close(h); 

  
end 

 

function CallEnergyProfile_new( dir, joined_name,name,energies_file_name ) 
T = readtable(name,'ReadVariableNames',false,'Format', '%s'); 
C = strsplit (name,'\'); 
C_size = length(C); 
prot_cat = {C{C_size-2}, C{C_size-1} }; 
prot_cat_str = strjoin(prot_cat, '\'); 

  
DAT_NAMES = T.Var1; 

  
len = length(DAT_NAMES); 
for n = 1:len 
    full_name = {dir, joined_name, prot_cat_str, DAT_NAMES{n} }; 
    full_name_str = strjoin(full_name, '\'); 
    CallEnergyProfilePlot_new( full_name_str,energies_file_name); 
end 
end 
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unction CallEnergyProfilePlot( name, energies_file_name ) 

  
L = readtable(energies_file_name,'ReadVariableNames',false,'Format', '%s'); 
ENERGIES = L.Var1; 

  
T = readtable(name,'ReadVariableNames',false,'Delimiter','space','Format', 

'%f%f%f%f%f'); 
X =T.Var1; 
Y = T.Var2; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
h=figure('visible','off'); 
plot(X, Y); 
axis([0,inf, -inf, inf]); 

  
h_1=xlabel('MC steps'); 
set(h_1, 'FontSize', 16);  

  
h_2 = ylabel('energy'); 
set(h_2, 'FontSize', 16); 

  
C = strsplit (name,'\'); 
C_size = length(C); 
str_file = C{C_size}; 
str_file2 = strrep(str_file, '_', ' '); 
CC = {C{C_size - 1}, str_file2}; 
title_name = strjoin(CC, ' '); 

  
h_3 = title(title_name); 
set(h_3, 'FontSize', 18) ; 
set(h_3,'FontWeight','bold'); 
file_name = name; 
energy_file_name = strrep(file_name, '.dat', '_energy'); 

  
saveas(h,energy_file_name,'fig'); 
saveas(h,energy_file_name,'jpg'); 
close(h); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
for n = 1:length(ENERGIES) 
energy_term =T.(n+2); 
h2=figure('visible','off'); 
plot(X, energy_term); 
%hold all; 
axis([0,inf, -inf, inf]); 

  
h2_1=xlabel('MC steps'); 
set(h2_1, 'FontSize', 16);  
h2_2 = ylabel('Energy'); 
set(h2_2, 'FontSize', 16); 



140 
 

 

  
CCC = {ENERGIES{n}, title_name}; 
energy_title = strjoin(CCC, ' '); 
h2_3 = title(energy_title); 
set(h2_3, 'FontSize', 18) ; 
set(h2_3,'FontWeight','bold'); 

  
en_file_name = strrep(file_name, '.dat', ENERGIES{n}); 
saveas(h2,en_file_name,'fig'); 
saveas(h2,en_file_name,'jpg'); 
close(h2); 
end 
end 
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