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Sequence, structure and function, being the three most important properties of 

proteins, are interrelated through homology relationships. In this post-genome era, we are 

equipped with abundant sequence information. Homology inference is thus of great practical 

importance because of its ability to make structural and functional predictions through 

sequence analysis. In an effort to explore and utilize the protein sequence-structure-function 

relationships, with homology detection and utilization as the central scheme, this work 

concentrates on algorithmic development of methods and systems for sequence similarity 

search, structure modeling and functional prediction purposes, as well as performs structure 

prediction and classification for specific protein families. 
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Three algorithmic developments are described in this dissertation. First, to facilitate 

identification of structurally or functionally important interactions between positions in a 

protein family, a program has been developed to perform positional correlation analysis of 

multiple sequence alignments using different methods. The program has been shown to be 

useful to identify functionally important position pairs or networks of correlated positions. 

Second, to further increase the sensitivity of sequence similarity search methods in 

terms of homology detection and structure modeling ability, a method has been developed by 

incorporating predicted secondary structure information with sequence profiles. Evaluation 

on PFAM-based system shows that this method provides improved structure template 

detection ability and generates alignment of better quality. 

Third, in order to systematically assess the structure modeling abilities of different 

sequence similarity search programs, a comprehensive evaluation system has been 

developed. This large-scale automatic evaluation system assesses the fold recognition ability 

and alignment quality of different programs from global and local perspectives using both 

reference-dependent and reference-independent approaches, which provides an instrument to 

understand the progress and limitations of the field. 

Two structure prediction and classification projects using manual analysis and 

existing tools are also described in this dissertation. First, the structure of C-terminal domain 

of Gyrase A is predicted through inferred homology relationship with regulator of 

chromosome condensation (RCC1). This prediction has been validated by experimental data. 

Second, a hierarchical structure classification of thioredoxin-like fold proteins has been 

carried out, which promotes understanding of fold definitions and sequence-structure-

function relationships. 
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CHAPTER 1:  
General Introduction 

1.1 HOMOLOGY INTERRELATES PROTEIN SEQUENCE, STRUCTURE AND 

FUNCTION 

Sequence, structure and function are three major properties of proteins. All studies 

about proteins are essentially developed around these three aspects. From the evolutionary 

point of view, homology plays a central role and interrelates these three properties of 

proteins. Through inferred homology relationships, protein structure and function can be 

predicted from protein sequence, and sequence similarities can be supported or verified from 

structural or functional features. We discuss the details of their relationships in the following 

sections. 

1.1.1 Homology Detection And Sequence Analysis 

Homologous proteins are proteins that have evolved from the same ancestor. 

Homologous proteins typically possess conserved sequence motifs and structural features, 

the same structure folds, and similar functional sites and general biochemical functions. 

Strong sequence similarity alone or combined sequence-structure or sequence-function 

similarities are often used to establish homology relationships between proteins. Distinctive 

structure features, similar structural folds, conserved sequence motifs and functional sites are 

often used to further support or verify the inference of homology. 

Many sequence similarity search methods are available to automatically detect 

homologs from statistically significant sequence information, the most popular one being 

PSI-BLAST. Protein sequence similarity search methods have advanced greatly over the last 

one and a half decades. Sequence similarity search methods have been developed from single 

sequence vs. sequence methods such as BLAST (Altschul, Gish et al. 1990), to sequence vs. 
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profile methods such as PSI-BLAST (Altschul, Madden et al. 1997) and RPS-BLAST 

(Marchler-Bauer, Panchenko et al. 2002), to profile vs. profile methods such as BASIC 

(Rychlewski, Zhang et al. 1998), Prof_sim (Yona and Levitt 2002) and COMPASS 

(Sadreyev and Grishin 2003), and the ability to detect distant homology has increased 

greatly. PSI-BLAST (a sequence-profile method) can be used to reliably detect homologs at 

>30% sequence identity level. Profile-profile based methods can be used to detect homologs 

at ~20-30% identity level (Sadreyev and Grishin 2003). However, since protein sequences 

evolve very fast, detecting more remote sequence similarities (< 20% identity) is difficult. 

Therefore, it is necessary to develop more powerful distant similarity detection method. 

Homologous proteins can be grouped together to form protein families. The direct 

advantages of grouping are (a) the ease of finding annotated sequence neighbors, which is 

useful in single unknown sequence analysis, and (b) the ability to study the protein family as 

a whole, which enables the identification of conserved sequence motifs or structure features. 

Many protein sequence family databases exist (Henikoff, Henikoff et al. 1999; Attwood, 

Bradley et al. 2003; Marchler-Bauer, Anderson et al. 2005; Hulo, Bairoch et al. 2006; 

Letunic, Copley et al. 2006) with Pfam as the major one. Pfam (Protein domain families) 

(Bateman, Coin et al. 2004) is a database of multiple sequence alignments of protein families 

or conserved protein regions. The multiple sequence alignments are built from seed 

alignments followed by profile hidden Markov models. Pfam is the largest available source 

of accurate semiautomatic multiple sequence alignments (Sadreyev and Grishin 2003). 

1.1.2 Structure Modeling 

Protein structures usually evolve slower than their sequences. Even if their sequences 

have evolved beyond recognition, homologous proteins could still share similar structure 

folds. Therefore, the unknown tertiary structure of a protein can be modeled based on the 

known structures of their homologous proteins. 

In practice, when we have a protein sequence of unknown structure, the first step in 

homology modeling is to search for similar protein sequences with known structures. Once 
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found, we need to infer if the structure-known protein and the structure-unknown protein are 

homologous or not from the degree of sequence similarities between them. If they are 

homologous, we will be able to model the structure of the unknown protein based on the 

known one according to the sequence alignment between them. 

There are a few commonly used terms in the field of homology modeling. “Query” or 

“target” refers to the protein of unknown structure and which starts the sequence similarity 

search process in order to find similar protein sequences with known structures. “Hit” or 

“template” refers to the protein with known structure and which is used as a structure model 

for the query. In some cases, for instance when testing a sequence similarity search program, 

the query can have known structure. But in all cases, it is the one whose structure needs to be 

modeled based on that of the template. 

The sequence similarity search methods that are discussed in the previous section can 

be used for homology modeling purposes. Homology modeling can be divided into two 

categories. If the sequence similarity between the target and the template is strong (>30% 

identity), the template can be readily found by BLAST or PSI-BLAST. Homology modeling 

at this sequence similarity level is also called comparative modeling (Tress, Tai et al. 2005). 

If the template can only be found by profile-profile based or more powerful searches, 

homology modeling is categorized as fold recognition (Tress, Tai et al. 2005).  

Despite the presence of other types of structure prediction methods, such as ab initio 

methods, homology modeling methods for protein structure prediction are of great practical 

importance (Lattman 2005). In addition to model overall structural folds for unknown 

sequences, homology modeling can also be used to model active sites or interaction surfaces 

of proteins with other molecules, and thus has great potential in drug design. Since many 

sequence similarity search methods exists, it is important to have an evaluation system to 

assess their performance in terms of homology modeling abilities.  
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1.1.3 Functional Prediction 

Homologous proteins typically share similar functional sites and general biochemical 

functions. Functional sites or active sites include catalytic sites, substrate-binding sites, or 

“hot spots” on protein-protein interaction surfaces. Functional sites are identifiable through 

the multiple sequence alignment of a given protein family. These sites form conserved 

columns in the multiple sequence alignment since they have evolved under evolutionary 

selection pressure. When proteins in a given family possess different substrate specificities, 

they may have different amino acid types conserved at the same sites or have a shift in the 

position of the conserved sites. 

Homologs can be separated into orthologs and paralogs. Orthologs are homologs 

resulting from speciation events; while paralogs are homologs resulting from gene 

duplication events (Fitch 2000). Orthologs are believed to have the same function and often 

the same specificity since they have been under similar evolutionary pressure. On the other 

hand, paralogs are believed to have diverged to evolve new specificities or even new 

functions since they have experienced weaker evolutionary pressure after duplication (Mirny 

and Gelfand 2002). Therefore, identification of orthologs is crucial for reliable protein 

functional prediction. The databases Clusters of Orthologous Groups of proteins (COG) 

(Tatusov, Fedorova et al. 2003) and Eukaryotic Orthologous Groups (KOG) (Tatusov, 

Fedorova et al. 2003) fulfill this intention. COG is constructed from the complete genome 

sequences of prokaryotes and unicellular eukaryotes, and KOG is constructed from complete 

genome sequences of eukaryotes. Since orthologous proteins typically have the same 

function, COG and KOG allow functional information transfer from one member to an entire 

group. The approach of COG and KOG should facilitate functional annotation of genomes. 

Mirny and Gelfand use the concepts of ortholog and paralog to identity specificity-

determining residues in bacterial transcription factors (Mirny and Gelfand 2002). They group 

the orthologous transcription factors together, which are assumed to have the same 

specificity, and thus transcription factors between groups are considered paralogs. The 

specificity-determining residues are found by comparing the sequences in different groups. 
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Mirny and Gelfand’s method is similar to the approach of positional correlation analysis, 

which has been shown to identify specificity-determinant residues (Crowder, Holton et al. 

2001). 

1.1.4 Structure Classification 

More than 39,000 experimentally determined protein structures have been deposited 

in the Protein Data Bank (PDB) (Berman, Westbrook et al. 2000) and the acceleration in the 

growth of structure data is anticipated as high-throughput structural genomics continues 

(Westbrook, Feng et al. 2003). To systematize this large amount of data for better 

understanding of protein evolution and sequence-structure-function relationships, protein 

structure classification is necessary. In a protein structure classification, fold group and 

evolutionary family are the two major levels. At the fold level, protein domains are grouped 

based on the connectivity and mutual orientation of their core secondary structure elements. 

Within each fold group, proteins are further divided into evolutionary families based on 

inferred homology relationships. The same structural folds possessed by non-homologous 

proteins are considered to be the result of convergent evolution. Protein structure 

classification is hierarchical in nature, for homologous proteins typically have the same 

structure fold. The geometry of protein structures usually reflects certain constraints from 

sequence and function. Thus grouping proteins by folds will aid in understanding of the 

physico-chemical principles behind protein structures, which in turn could help to address 

problems such as protein folding and structure-functional prediction. Furthermore, although a 

few exceptional examples exist where homologous proteins have evolved different folds 

(Murzin 1998; Grishin 2001), protein structures generally evolve slower than their 

sequences. Consequently, grouping protein domains by folds could also help in 

understanding protein evolution and will facilitate homology inference. Therefore, 

hierarchical protein structure classifications usually take into consideration both structural 

and evolutionary criteria. 
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Several hierarchical protein structure classifications exist, with the major ones being 

SCOP (Murzin, Brenner et al. 1995), CATH (Orengo, Michie et al. 1997) and Dali Domain 

Dictionary (DaliDD) (Holm and Sander 1996; Holm and Sander 1998; Dietmann and Holm 

2001). SCOP (Structural Classification Of Proteins) is constructed by combining expert 

curation and automatic sequence comparison methods. There are four major levels in the 

SCOP hierarchy. Starting from the lowest level, a family contains proteins that are close 

homologs. A superfamily contains families that are remotely homologous to each other. A 

fold contains superfamilies that share the same structure fold, i.e. the same core secondary 

structures with the same connectivity and mutual orientation. A class contains folds of the 

same secondary structure composition (e.g. all alpha or all beta). CATH and DaliDD are 

constructed using fully automatic methods and have similar hierarchical levels as SCOP. 

FSSP (Families of Structurally Similar Proteins) (Holm and Sander 1996) is a non-

hierarchical structure classification database, which provides structurally aligned families of 

proteins based on significant structural similarity. This database is constructed and updated 

by all-against-all structure comparisons of protein structures in the Protein Data Bank (PDB) 

(Berman, Westbrook et al. 2000) using the DALI structure comparison program (Holm and 

Sander 1995). 

1.2 OVERVIEW OF DISSERTATION WORK 

This dissertation work attempts to explore all aspects of the homology interrelated 

protein sequence-structure-function relationships discussed above. With identification and 

utilization of homology relationships as the central scheme, this dissertation work includes 

structure modeling (Chapter 2), structure classification (Chapter 3), algorithm developments 

of positional correlation-based functional prediction method (Chapter 4), sequence similarity 

search method (Chapter 5), and evaluation system to assess the homology modeling 

performance of sequence similarity search programs (Chapter 6). These projects are 

described in detail in the following chapters. 
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In addition to these, project that is not described in this dissertation but also 

demanded a significant amount of time and work is SCOPlink. SCOPlink (unpublished) is an 

extension and application of the SCOPmap project (Cheek, Qi et al. 2004). In the SCOPlink 

project, potential homology relationships between SCOP superfamilies (Murzin, Brenner et 

al. 1995) are identified by comparing SCOP superfamilies (version 1.65 and 1.69) to each 

other in an all-against-all fashion. The resulting data, including sequence and structural 

alignments, are transformed automatically into user-friendly formats and are presented in a 

web interface for easy browsing and manipulation. Initial curation of the data revealed 

numerous interesting examples of previously unrecognized homology relationships and 

networks of related SCOP superfamilies. 
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CHAPTER 2:  
Structure Prediction of C-Terminal Domain of Gyrase A 

2.1 INTRODUCTION 

2.1.1 Background 

Topoisomerases are ubiquitous enzymes that catalyze cleavage and religation of DNA 

molecules allowing for the changes in DNA topological states (Caron and Wang 1994; Wang 

1996). Topoisomerases are involved in crucial cellular processes such as replication, 

transcription, and recombination, and thus have pharmaceutical importance (Maxwell 1992; 

Hiasa, Yousef et al. 1996). Topoisomerases of type I and type II cleave one and two DNA 

strands, respectively. Type II enzymes require ATP for their activity and possess an ATPase 

domain or subunit. Most bacteria have two homologous type II enzymes: DNA gyrase 

(topoisomerase II, Gyr) and topoisomerase IV (Par). Each enzyme is composed of two 

subunits (Figure 2.1). GyrA is involved in breakage and reunion of DNA and GyrB functions 

as an ATPase. Equivalent subunits in topoisomerase IV, ParC and ParE, share about 35% 

identity with GyrA and GyrB. Despite pronounced sequence similarity, gyrase and topo IV 

possess distinct cellular functions (Zechiedrich, Khodursky et al. 2000; Deibler, Rahmati et 

al. 2001). Gyrase introduces negative supercoils into DNA. Topo IV relaxes negative and 

positive DNA supercoils (Deibler, Rahmati et al. 2001).  

The reaction mechanism of type II topoisomerases is relatively well understood and 

crystal structures for most of their domains are available. GyrB can be divided into two 

fragments (Figure 2.1a). The 43kDa N-terminal portion of the E. coli enzyme with known 

structure is composed of an ATPase domain related to MutL/Hsp90/histidine kinase and a 

ribosomal protein S5-like domain (Murzin, Brenner et al. 1995; Lo Conte, Ailey et al. 2000; 

Deibler, Rahmati et al. 2001). The 47kDa C-terminal portion consists of a toprim Rossmann-

like domain interrupted by an insertion and is homologous to the N-terminal segment of the 
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yeast topoisomerase II with available structure (Aravind, Leipe et al. 1998; Berger, Fass et al. 

1998). Domain architecture of ParE is similar except that the insertion in the toprim domain 

is shorter (Figure 2.1b).  

GyrA is also composed of two fragments (Figure 2.1a). The structure of the 59K N-

terminal fragment for E. coli enzyme has been determined and the position of the catalytic 

tyrosine has been localized (Morais Cabral, Jackson et al. 1997). The C-terminal 38K 

fragment of GyrA still remains the largest piece of the topoisomerase sequence without 

structural information. It has been shown that the C-terminal fragment can be expressed 

separately. It lacks catalytic activity, but can complement the N-terminal fragment upon 

mixing, which increases its supercoiling activity(Reece and Maxwell 1991). The C-terminal 

fragment acts as a non-specific DNA-binding protein and is probably involved in 

stabilization of the DNA-topoisomerase complex (Reece and Maxwell 1991). Without spatial 

structure information, this fragment remains poorly understood.  

Regulator of chromosome condensation (RCC1) is the guanine-nucleotide-exchange 

factor for the nuclear G protein, Ran, which controls nucleocytoplasmic transport, mitotic 

spindle formation, and nuclear envelope assembly (Nemergut 2001). These functions depend 

on the association of RCC1 with DNA. Mutations in the yeast RCC1 gene affect pre-

messenger RNA processing and transport, mating, initiation of mitosis and chromatin 

decondensation. The crystal structure of RCC1 revealed that the molecule folds as a 7-bladed 

β-propeller, composed of seven four–stranded β-sheets (blades) arranged in a circular array 

(Renault, Nassar et al. 1998). The β-propeller proteins vary in the number of blades (from 4 

to 8), share limited sequence similarity despite pronounced structural resemblance, and 

display extreme functional diversity (Paoli 2001). 

2.1.2 Objective 

In order to help fully understand its biological activities and functions, we decide to 

prediction the spatial structure of the C-terminal domain of GyrA. Using consensus of 

probabilistic sequence comparison methods combined with hydrophobicity analysis, we 
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detect sequence similarity between the C-terminal domain of bacterial gyrase A and regulator 

of chromosome condensation (RCC1) (Renault, Nassar et al. 1998) and infer homology 

between them. We predict that GyrA/ParC C-terminal domain folds as a 6-bladed β-

propeller. Functional implications of this homology prediction are discussed. 

2.2 MATERIALS AND METHODS 

2.2.1 Sequence Similarity Searches 

The PSI-BLAST program was used to search for homologues of the gyrase C-

terminal fragment (Altschul, Madden et al. 1997). Residues 510-836 of Mycoplasma 

genitalium GyrA (gi|1346233) were selected as a query to search against the non-redundant 

(nr) database at NCBI (February 2001, 616,977 sequences, 195,057,269 total letters). The E-

value threshold was set to 0.02. All other parameters were defaults (Altschul, Madden et al. 

1997). PSI-BLAST was iterated until convergence. Found homologues were grouped by 

single linkage clustering (BLAST score threshold of 1 bit per site corresponding to about 

50% identity) as implemented in the SEALS package (Walker and Koonin 1997), and the 

representative sequences were used as new queries for subsequent PSI-BLAST iterations. 

2.2.2 Multiple Sequence Alignment And Hydrophobicity Analysis 

Multiple sequence alignments were constructed using the T-COFFEE program 

(Notredame, Higgins et al. 2000) and adjusted manually based on the secondary structure 

predictions (discussed below) and the conserved residue patterns. Alignments for topo II 

sequences and RCC1 sequences were made separately and then merged based on the PSI-

BLAST local alignments and hydrophobicity profiles. Propeller blades corresponding to 

sequence repeats were aligned to each other. The average hydrophobicity of residues in each 

of the four β-strands of the blades was calculated separately for topo II and RCC1 alignments 
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using the scale from the mean values of 127 different hydrophobicity scales (Palliser and 

Parry 2001). 

2.2.3 Secondary Structure Prediction And Threading 

Five representative (most diverse) topoisomerase C-terminal domain sequences 

(gi|68494, residues 537–875; gi|1346229, residues 538–922; gi|1346233, residues 514–836; 

gi|1835202, residues 528–907; gi|6655026, residues 517-755) were submitted to the JPRED2 

consensus secondary structure prediction server (http://jura.ebi.ac.uk:8888/) (Cuff and Barton 

2000), which returns the consensus of prediction results for six different secondary structure 

prediction methods, including PHD, NNSSP, DSC, PREDATOR, MULPRED and ZPRED. 

These five sequences were also submitted to another secondary structure prediction server, 

SAM-T99 (http://www.cse.ucsc.edu/research/compbio/HMM-apps/T99-query.html) 

(Karplus, Barrett et al. 1998). JPRED2 secondary structure predictions were also carried out 

for 3 RCC1 sequences (gi|12325184, gi|132174, gi|7493765). 

Seven fold recognition (threading) methods were applied to five representatives of the 

gyrase C-terminal domain (gi|68494, gi|1346229, gi|121882, gi|1346235, gi|729651). The 

following methods were explored: (1) the hybrid fold recognition method of Fischer at the 

BioInBgu server (http://www.cs.bgu.ac.il/~bioinbgu/) (Fischer 2000); (2) a method that 

combines multiple sequence profiles and knowledge of protein structures to provide 

enhanced recognition at the 3D-PSSM (three-dimension position-specific scoring matrix) 

server (http://www.bmm.icnet.uk/~3dpssm/) (Kelley, MacCallum et al. 2000); (3) the 

GenTHREADER program at the PSIPRED server (http://bioinf.cs.ucl.ac.uk/psipred/) (Jones 

1999); (4) Sausage (Sequence-structure Alignment Using a Statistical Approach Guided by 

Experiment) server (http://rsc.anu.edu.au/~drsnag/TheSausageMachine.html) (Huber, Russell 

et al. 1999); (5) the secondary structure prediction - based fold recognition server, TOPITS 

(http://www.embl-heidelberg.de/predictprotein/predictprotein.html) (Rost 1995; Rost, 

Schneider et al. 1997); (6) FFAS (Fold & Function Assignment System) server 

(http://bioinformatics.ljcrf.edu/FFAS/) (Rychlewski, Jaroszewski et al. 2000); (7) sequence-
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structure homology recognition server that uses environment-specific substitution tables and 

structure-dependent gap penalties, FUGUE, at http://www-cryst.bioc.cam.ac.uk/~fugue/ (Shi, 

Blundell et al. 2001). 

2.3 RESULTS 

2.3.1 PSI-BLAST Searches 

GyrA and ParC homologues were found in PSI-BLAST searches initiated from the C-

terminal fragment of M. genitalium GyrA as described in Materials and Methods. Inspection 

of local alignments generated by PSI-BLAST revealed the presence of multiple high scoring 

pairs (HSPs) for as many as 80% of the found homologues, indicating the presence of 

sequence repeats. In other words, the same segment of the query sequence was aligned to 

several different segments in the same subject sequence with reliably high E-values (below 

0.02). Multiple alignment analysis established the presence of 6 sequence repeats in GyrA 

and ParC C-terminal domains (Figure 2.2). 

PSI-BLAST iterations initiated from most of the GyrA and ParC sequences 

converged within the type II topoisomerase family and did not result in structural predictions. 

However, the 3rd iteration with the query gi|544464, which is annotated as Fibrobacter 

succinogenes GyrA, yielded one non-topoisomerase sequence with an E-value of 0.017 (bit 

score 40, NCBI nr database, September 2001, 751,829 sequences, 239,148,880 total letters). 

This sequence, human cell cycle regulatory protein (gi|87057, residues 80-206), is a variant 

of human RCC1, which has a known three-dimensional structure (gi|4389390, PDB entry 

1a12) (Renault, Nassar et al. 1998; Renault, Kuhlmann et al. 2001) and can offer a fold 

prediction for the C-terminal fragment of GyrA/ParC. RCC1 folds as a 7-bladed β-propeller, 

with blades being coded by sequence repeats. Each blade is composed of 4 antiparallel β-

strands. No sequences from other families were found with significant E-values.  
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2.3.2 Secondary Structure Predictions And Fold Recognition 

JPRED2 secondary structure predictions (Cuff and Barton 2000) obtained for several 

gyrase sequences strongly suggest that they are all-beta proteins (Figure 2.2). Most of the β-

strands were predicted with high confidence level (PHD confidence 7-9, Figure 2.2). SAM-

T99 secondary structure prediction yielded similar results (Figure 2.2). β-Strands 5 residues 

long on average were predicted along the sequence with spacing of about 2-20 residues 

between them. Secondary structure predictions were similar for the sequence repeats with the 

consensus prediction of 4 β-strands per repeat (Figure 2.2). The secondary structure 

prediction for RCC1 sequences were similar and in agreement with the crystal structure of 

RCC1. Furthermore, the secondary structure predictions show an excellent correspondence 

between the GyrA/ParC C-terminal domain and RCC1 families. 

The consensus fold recognition method of Fischer that combines sequence, structural, 

and evolutionary information (Fischer 2000) was applied to several topoisomerase II 

sequences. 7-bladed or 6-bladed β-propellers were consistently found as the top scoring 

proteins. For instance, the top three fold recognition hits for gyrase gi|121882 are: a 

theoretical model of human nidogen ywtd β-propeller domain (PDB entry 1NDX, score 

17.8); C-terminal WD40 domain of tup1 (PDB entry 1ERJ, score 17.4); and phytase from 

Bacillus amyloliquefaciens (PDB entry 1CVM, score 13.0). There is a substantial gap in the 

consensus scores between the top three hits and the fourth one with the score of 5.7, which 

suggests that no other known fold "fits" the gyrase sequence well. In the results from 3D-

PSSM, 6-bladed or 7-bladed β-propellers were the top scoring protein folds with 0.05-0.5 

PSSM E-values and 90-50% certainty. Furthermore, query gi|1346229 found RCC1 at PSSM 

E-value of 0.533, with 50% certainty. The results from FFAS also showed 7- or 6-bladed 

propeller as top hits. gi|68494 found RCC1 as the second hit with E-value of 13.4 and Z-

score of 6.02. gi|121882 found RCC1 as the third hits with E-value of 31.2 and Z-score 5.76. 

FUGUE also found 7- or 4-bladed β-propellers as top hits, but failed to find RCC1. Sausage 

found β-propellers and antiparallel β-sheet proteins as top hits for the majority of the query 

sequences. For gi|1346229, it found RCC1 as the top hit with a score of 3.31. TOPITS and 
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GenTHREADER did not find β-propellers, other mostly β-sheet proteins were the top hits 

with marginal statistics.  

2.3.3 Multiple Sequence Alignment 

PSI-BLAST searches demonstrated that sequence repeats in GyrA/ParC are more 

similar to each other than to repeats in other proteins. Thus GyrA/ParC repeats should be 

more easy to align with each other. RCC1 family was the only group that displayed 

statistically supported sequence similarity (PSI-BLAST E-value of 0.017, 12%-29% identity) 

to GyrA/ParC repeats. Therefore we selected RCC1 for more detailed analysis. 

To probe further potential homology between the GyrA/ParC C-terminal domain and 

RCC1, a multiple sequence alignment was constructed (Figure 2.2). The alignment 

confirmed the presence of 6 repeats in GyrA/ParC sequences. Each repeat was predicted to 

contain 4 β-strands (A to D). Loops were relatively short (2-6 residues) between all but two 

β-strands. Only between β-strands C and D loops were longer (typically about 15 residues). 

The alignment revealed conservation of hydrophobic residues in β-strands, conserved 

positively charged residues in β-strand C, and a pair of conserved small residues (typically 

glycines) in each repeat (Figure 2.2).  

The alignment of the RCC1 family was constructed independently and showed 7 

sequence repeats with 4 predicted β-strands in each repeat in agreement with the crystal 

structure of human RCC1. The alignments of GyrA/ParC and RCC1 were merged on the 

basis of PSI-BLAST local alignments that superimposed the long loops between the strands 

C and D (Figure 2.2). Such alignment results in a different placement of the Velcro of the 

propeller in GyrA/ParC and RCC1. In RCC1, Velcro is between the strands B and C. 

GyrA/ParC are predicted to have a Velcro between A and B. To obtain additional support for 

the register of β-strands between GyrA/ParC and RCC1, average hydrophobicities were 

calculated for each β-strand in GyrA/ParC and RCC1 (Table 2.1). Comparison of the 4 

hydrophobicity values confirm the alignment of β-strands and thus Velcro placement in 

GyrA/ParC. 
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2.4 DISCUSSION 

2.4.1 Validity Of The Fold Prediction 

The results of PSI-BLAST searches, secondary structure predictions, fold recognition 

and multiple alignment analysis allow us to deduce the fold of the GyrA/ParC C-terminal 

fragment. The presence of 6 sequence repeats with 4 predicted β-strands each (Figure 2.2), 

the PSI-BLAST hit to RCC1, and the detection of propeller folds with threading method 

strongly argue that the GyrA/ParC domain adopts the 6-bladed β-propeller structure. 

Proper alignment of the GyrA/ParC sequences with the RCC1 structure is challenging 

because of the low level of sequence similarity. Most importantly, corresponding β-strands in 

GyrA/ParC and RCC1 should be found and correctly aligned. Due to repetitive sequences in 

GyrA/ParC and the hydrophobic character of β-strands, it is potentially possible to miss the 

register of β-strands and to align a β-strand in GyrA/ParC to a non-equivalent β-strand in 

RCC1. For instance, the inner β-strand of the propeller blade may be incorrectly aligned with 

the outer β-strand.  

Three lines of evidence support the alignment presented in Figure 2.2. First, it 

matches pairwise alignments produced by automatic tools such as PSI-BLAST and the fold 

recognition method of Fischer. Second, the longest loop between the strands (C and D) in 

GyrA/ParC is aligned with the longest loop between the strands in RCC1. Third, and most 

importantly, hydrophobicity analysis of β-strands reveals correspondence in patterns between 

GyrA/ParC and RCC1 (Table 2.1). Each blade of the propeller is composed of 4 β-strands 

(A, B, C, D). Since these β-strands are placed at non-equivalent positions in the overall 

circular structure of the propeller (Figure 2.3a), average hydrophobicities of these 4 β-strands 

differ. The β-strand D is the outermost strand, and it is the most exposed. Thus the β-strand 

D is expected to be the most hydrophilic. The β-strand A is the innermost strand located 

along the central shaft of the propeller. The shaft of the propeller contains water molecules 

and thus the β-strand A is not expected to be the most hydrophobic. The β-strand B is the one 
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with the highest hydrophobicity (Table 2.1). Excellent fulfillment of these tendencies in 

GyrA/ParC and RCC1 families strongly supports the alignment on Figure 2.2. 

2.4.2 Structural Differences Between Gyra/Parc And RCC1 

Typically, homology-based predictions can deduce only similarities between the 

query and its homologue with experimentally determined structure. The differences are more 

challenging to predict. Some differences may be wrongly missed and similarities be falsely 

predicted instead. Such bias is more likely to occur at very low sequence similarity levels 

when homology is remote. This is the case with GyrA/ParC-RCC1 superfamily. Here we 

argue that the two most important differences between GyrA/ParC and RCC1 can be 

predicted.  

First, GyrA/ParC should fold as a 6-stranded propeller rather than a 7-stranded 

propeller as RCC1. This simply follows from the fact that only 6 sequence repeats can be 

detected in GyrA/ParC sequences. The sequences outside the 6-repeat fragment either belong 

to the domain of determined structure (N-terminal to the first repeat) or lack clearly predicted 

β-strands (the extreme C-terminal region). Additionally, the fragment of GyrA that 

corresponds exactly to the 6 repeats is naturally expressed in Borrelia burgdorferi (see 

discussion below) (Knight and Samuels 1999). Homology between propellers that display 

different number of blades have been reported before (Wolf, Brenner et al. 1999) and 

therefore is not surprising.  

Second, the Velcro position should differ between GyrA/ParC and RCC1 propellers 

(Figure 2.2). In RCC1, the first blade starts from β-strand C and the last blade ends with the 

β-strand B. Thus, one half of the first blade is made from the N-terminal β-strands of the 

protein, and the other half is made from the C-terminal β-strands (2+2 Velcro). Such an 

assembly is favorable for the stabilization of the circular arrangement of blades. Since the 

first repeat of GyrA/ParC starts from the β-strand B and the last repeat ends with the β-strand 

A, the stabilization of the propeller circular arrangement is probably achieved by a 1+3 rather 

than 2+2 combination of β strands. This 1+3 Velcro is known for other propellers such as 
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methylamine dehydrogenase (PDB entry 2BBK), nitrite reductase (PDB entry 1NIR) and 

tachylectin-2 (PDB entry 1TL2), however 2+2 Velcro of RCC1 is apparently unique (Paoli 

2001).  

2.4.3 Functional Implications 

The GyrA/ParC C-terminal domain remains the longest sequence segment of 

topoisomerase II without available structural information. Therefore the function of this 

domain is not fully understood despite some effort in this direction. The structure prediction 

presented here and homology of the GyrA/ParC domain with the RCC1 protein have several 

functional implications. The RCC1 molecule functions as a protein-binding and a DNA-

binding module. One side of the propeller accommodates a protein (Ran) binding site, and 

the Ran-RCC1 complex structure is available (Renault, Kuhlmann et al. 2001). It is believed 

that the opposite side of the propeller is involved in interactions with DNA. Available 

experimental information about GyrA/ParC C-terminal domain suggests similar properties. 

Being expressed separately, the GyrA domain can associate with the rest of the A subunit, 

thus possessing a protein binding site. GyrA domain lacks catalytic activity, but binds DNA 

in a non-sequence specific manner, therefore it should have a nucleic acid binding site.  

It has been demonstrated that Borrelia burgdorferi expresses a 34 kDa fragment 

translated from an abundant transcript initiated within the GyrA coding region (Knight and 

Samuels 1999). This fragment corresponds exactly to the 6 blades of the predicted β-

propeller structure, starting from the strand B and ending with the strand A. Borrelia 

burgdorferi gives a unique example, for prokaryotes, of constitutive expression of two 

proteins, one being a fragment of another, from the same open reading frame. It has been 

shown that a naturally synthesized transcript abundant in Borrelia burgdorferi corresponding 

to the predicted β-propeller functions as a non-specific DNA-binding protein, forming 

higher-order nucleoprotein complexes (Knight and Samuels 1999). 

Our prediction allows researchers to visualize the distribution of residues in space for 

the C-terminal domain of GyrA/ParC, despite its unsolved structure. The structural diagram 
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of the C-terminal domain of RCC1 is shown in Figure 2.3a. We predict protein- and DNA-

binding surfaces in GyrA/ParC to be similar to the ones in RCC1 (Figure 2.3bc). One way to 

visualize sequence properties on a structure is to use conservation mapping (Pei and Grishin 

2001). The conservation in the blade-to-blade alignments of all available sequences of 

GyrA/ParC and RCC1 is mapped onto the structure of the 3rd blade in RCC1 (Figure 2.3bc). 

Similarities in conservation between GyrA/ParC and RCC1 include mainly small residues 

(C,A,P,S,T) in loops. These residues bear potential structural importance. The most 

pronounced difference in conservation patterns of GyrA/ParC and RCC1 is due to the 

presence of a conserved residue stretch closer to the N-terminus of the β-strand C in 

GyrA/ParC. These conserved residues are mainly positively charged (shown in blue in Figure 

2.2) and could potentially contribute to a DNA-binding site in GyrA/ParC.  

2.4.4 Prediction Confirmation 

Our prediction was made in March 2001 and was published in May 2002 (Qi, Pei et 

al. 2002). Two years later, experimentally determined structures for GyrA and ParC C-

terminal domains were published (Corbett, Shultzaberger et al. 2004; Hsieh, Farh et al. 

2004). Figure 2.4 shows the structure diagram of GyrA C-terminal domain determined by 

experiment (Corbett, Shultzaberger et al. 2004), which is a 6-bladed β-propeller with 4 β–

strands in each blade as predicted and also with a 1+3 Velcro. As summarized in Table 2.2, 

the experimentally determined GyrA/ParC C-terminal domain structures confirmed our 

structural fold prediction; while exhibiting a novel blade topology different from the 

canonical one. 

2.5 CONCLUSIONS 

In this case study of structure modeling and prediction, we have detected sequence 

similarity between C-terminal domain of GyrA/ParC and regulator of chromosome 

condensation (RCC1) and infered homology relationship between them. The results of 
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hydrophobicity analysis, secondary structure prediction and fold recognition all support the 

inferred homology relationship. Based on these extensive sequence and structure analysis, 

the C-terminal domain of GyrA/ParC has been predicted to have a 6-bladed b-propeller 

structure with 4 b–strands in each blade. Experimentally determined GyrA/ParC C-terminal 

domain structures confirm the structural fold prediction, while exhibit a novel blade topology 

different from the canonical one. 
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Figure 2.1 Domain compositions of gyrase and topoisomerase IV 

S5-like domain 
ATPase domain 
the only domain without structure 
catalytic segment 

b. DNA topoisomerase IV (Par) a. DNA gyrase (Gyr) 

C GyrB: N C ParE: N 

ParC: N C 

100 aa 

NGyrA:  C 

toprim domain with insertion 

 

Domain compositions of (a) gyrase (topoisomerase II Gyr) and (b) topoisomerase IV 
(Par). Sequences shown are all from Escherichia coli. 
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Figure 2.2 Multiple sequence alignment of C-terminal of GyrA/RCC1 domain 
 
                   A                   B                  C                         D                A            B            C                          D 
 
                                                I                                                                                   II           
121882   832 --ENVVGLQRVAE 841 537-EDVVVTLSHQ----------GYVKYQPLSEYEAQRRGGKG------KSAARIK-EE-   --DFIDRLLVANT---HDHILCFSSR---GRVYSMKVYQLPEATRGARG------RPIVNLLPLEQ 627  
11271030 886 --ETLVSLERVAE 895 548-REMVVTLTHG----------GYIKTQPTTDYQAQRRGGRG------KQAAATK-DE-   --DFIETLFVANT---HDYLMCFTNL---GKCHWIKVYKLPEGGRNSRG------RPINNVIQLEE 638  
11271024 803 --DTLVAMEKLSV 812 504-ESVIITISGD----------DYVKRMPVKVFREQKRGGQG------VTGFDMKKGS-   --DFLKAVYSAST---KDYLLIFTNM---GQCYWLKVWQLPEGERRAKG------KPIINFLEGIR 595  
3322255  803 --DLVVGLSCVMQ 812 508-EEMVILISHL----------GYIKRVPVSAYRNQNRGGKG------SSSANLA-AH-   --DFISQIFTAST---HDYVMFVTSR---GRAYWLKVYGIPESGRANRG------SHIKSLLMVAT 598  
1346235  811 --DTLLAIARNAE 820 514-EDVVVTITET----------GYAKRTKTDLYRSQKRGGKG------VQGAGLK-QD-   --DIVAHFFVCST---HDLILFFTTQ---GRVYRAKAYDLPEASRTARG------QHVANLLAFQP 604  
1346233  808 --ERLERVTIFKE 817 514-ENVVITMSTN----------GYLKRIGVDAYNLQHRGGVG------VKGLTTY-VD-   --DSISQLLVCST---HSDLLFFTDK---GKVYRIRAHQIPYGFRTNKG------IPAVNLIKIEK 604  
729651   875 --EKVVSVSLIAE 884 528-EEMVVTVTLG----------GYIKRVPLSSYRSQKRGGKG------RSGLSMR-DE-   --DITTQVFVGST---HTPMLFFSNI---GKVYSLKLYKLPLSNPQGKG------RPMVNILSLQE 618  
2507466  801 ---KVMYVNSCPK 810 505-EPMVVSMSYK----------GYVKRVDLKAYEKQNRGGKG------KLSGSTY-ED-   --DFIENFFVANT---HDILLFITNK---GQLYHLKVYKIPEASRIAMG------KAIVNLISLAP 595  
7437470  836 --DAIAAVALVPP 845 507-DQALILLTEQ----------GYIKRMPASTFGTQNRATRG------KAAAKIK-DD-   --DGVEHFLSCCD---HDKVLFFSDR---GVVYSLNAYQIPIASRTARG------VPIVQMLPIPK 597  
12322780 911 ----VYFIWFLI- 917 599-EEMLMAVSEK----------GYVKRMKADTFNLQHRGTIG------KSVGKLR-VD-   --DAMSDFLVCHA---HDHVLFFSDR---GIVYSTRAYKIPECSRNAAG------TPLVQILSMSE 689  
11270990 800 --D-VVKDCFLSD 808 504-QNLNLVISRD----------GYIKTVSKKSFESSKYDELG---------LKT---N-   --DILFYHNIINS---HDKILIITSK---AKLINLVAHKITSMRWKDVG------EHLNNYVKFDA 589  
7437476  777 ---RVALKKVRKG 785 490-EENAVLITAE----------GYAKRMSLEEFRVQSRGGVG------VIGASVS-PG-   --DEIAVFRICNS---TDRLLIFTNT---GRAFWINAYEIPKMDRTARG------TTLKRLIRLEN 580  
10580453 808 --DEVAGVSVRAA 817 508-EDTVVVLSEG---------- YIKRVPAETFDAQHRGGKG------IIGSDLK-DG-   --DRVSTVFTAST---HDYLLCFTDQ---GQVYRLKVYQVPEMSRTARG------TSAVNILDLDD 598  D
9622087  794 --DEVASAFVVEE 803 496-EPMVITLTAQ----------GFLKRLPLESYRAQGRGGKG------LLAGRTK-EE-   --DEATHVFVADA---HDDLLLFTNR---GRVYRLKVYELPEMGRQARG—-----VHVKSLLPLAE 586  
544464   141 --DVVKDATALPS 150    ----------------------------------------------------------   ------------------------------------------------------------------      
Jpred        ---EEEEEEE---         --EEEEEE--------------EEEE---HHHHH-------------E--E------   ---EEEEEEEE-------EEEEEE------EEEEEE---------------------EEEEE---- 
PHD rel      ---1678776529        -9879999567----------51422154321111248986------3211125-55-   --41479999624---6379999458---64999953213655445799------73253213269 
SAM-T99      --LEEEEEEEELL         LLEEEEEELL----------LEEEELLHHHHHHHLLLLLL------LLLLLLL-LL-   --LLEEEEEEELL---LLEEEEEELL---LEEEELEELLLLLLLLLLLL------LEEEEELLLLL 
 
                                                III                                                                                 IV 
121882   628 –DERITAILPVTE(3)------GVKVFMATAN----------GTVKKTVLTEFNRLR--TAG------KVAIKLVDG--   --DELIGVDLTSG---EDEVMLFSAE---GKVVRF(4)-VRAMGCNTTG------VRGIRLGEG-- 729  
11271030 639 –GEKVSAILAVRE(3)------DQYVFFATAQ----------GMVKKVQLSAFKNVR--AQG------IKAIALKEG--   --DYLVGAAQTGG---ADDIMLFSNL---GKAIRF(42)VRPSGRGSGG------LRGMRLPADG- 779  
11271024 596 PGEQVAAVLNVKR(3)------GEYLLLATKK----------GVVKKVSLDAFGSPR--KKG------IRALEIDDG--   --DELIAARHIVN--DEEKVMLFTRL---GMAVRF(3)-VRPMGRAARG------VRGVSLKNEE- 700  
3322255  599 –DEEITAIVSLRE(3)------KSYVFMATAR----------GVVKKVTTDNFVNAK--TRG------IIALKLSGG--   --DTLVSAVLVQD---EDEVMLITRQ---GKALRM(3)-VREMGRNSSG------VIGIKLTSE-- 700  
1346235  605 --EERIAQVIQIR(4)------APYLVLATRN----------GLVKKSKLTDFDSNR--SGG------IVAVNLRDN--   --DELVGAVLCSA---GDDLLLVSAN---GQSIRF(6)-LRPMGRATSG------VQGMRFNID-- 708  
1346233  605 –DERICSLLSVNN(2)------DGYFFFCTKN----------GIVKRTSLNEFINIL--SNG------KRAISFDDN--   --DTLYSVIKTHG---NDEIFIGSTN---GFVVRF(4)-LRVLSRTARG------VFGISLNKG-- 705  
729651   619 –NEHITNIMPLPE(6)------HLNIMFATAK----------GNIRRSDLLDFKKIQ--SNG------KIAIRLDED--   --DKLIDVKPCKE---DEHILLATKA---GKALRF(5)-RIIKSRISDG------VRGMKLAKED- 725  
2507466  596 –DEKIMATLSTKD(3)------ERSLAFFTKN----------GVVKRTNLSEFESNR--SCG------IRAIVLDEG--   --DELVSAKVVDK--NAKHLLIASHL---GIFIKF(4)-VREIGRTTRG------VIGIKLNEN-- 698  
7437470  598 –DEKITSLVSVSE(3)------DTYFIMLTKQ----------GYIKKTALSAFSNIR--ANG------LIAISLVEG--   --DQLRWVRLAKA---EDSVIIGSQK---GMAIHF(6)-LRALGRATRG------VKSMRLRSGD- 702  
12322780 690 –GERVTSIVPVSE(3)------DRYLLMLTVN----------GCIKKVSLKLFSGIR--STG------IIAIQLNSG--   --DELKWVRCCSS---DDLVAMASQN---GMVALS(4)-VRTLSRNTKG------VTAMRLKNED- 792  
11270990 590 –NEKVIAVYIWNE(5)------EYQLVLASRL----------NLIKRIELSELDINKN-SKQ------ISIMKLNDN--(1)--DLISANLIKKG--HNQFIIAISKL---GLALLF(4)-INCLNRLAKG------IKIMKLKPN-- 696  
7437476  581 –GEKVVSALGVKD(2)------GKIAVILSPD----------GYIKKVPLIEFENAK--RAG------VKASAG-----   ---EIQQVELLEG----DSIFIATAN---GNVVRL(4)-VPEYGRNAKG------VIAVRLRDG-- 676  
10580453 599 –GEEISAVVTADD(6)------DEYLTMATRN----------GYVKRTSVGEFGNIL--STG------IIAIDLEDG--   --DALADVEVTDG---SHDVILGSEA---GMAIRF(4)-VRAMGRNARG------VRGMDLDAA-- 703  
9622087  587 –DEEVAALLSVRG(3)------EGYLVFATER----------GLVKRTALKEYQNLG--QAG------LIAIRLQEG--   --DRLVGVALSDP---EDEAILATQE---GQAIRF(4)-VRATGRDTQG—-----VIGVRFKKPE- 689  
544464       -------------------------------------------------------------------------------   -----------------DLLMIATKN---GQAVTF(4)-FRAMGRGTHG------VKGITLAEG--  38  
Jpred        ---EEEEEEE--------------EEEEEE-------------EEEEEE-------------------EEEEEE-----   ---EEEEEEEE-------EEEEEE------EEEEE---------------------EEEEEE---- 
PHD rel      -631399997425---------7359999538----------826764223334446—-785------2789846898-   ---1799999648---9739999538---956996----4322220122------13458963798 
SAM-T99      -LLEEEEEEEELLL--------LLEEEEEELL----------LEEEEELHHHHHHLL--LLL------EEEEEELLL--   --LEEEEEEEELL---LLEEEEEELL---LEEEEEL---LLHLLLLLLL------LEEEEELL--- 
 
                                                V                                                                                   VI 
121882   730 --DKVVSLIVPRG---------DGAILTATQN----------GYGKRTAVAEYPTKSRATKG------VISIKVTERN-   --GLVVGAVQVDD---CDQIMMITDA---GTLVRTRVSEISIVGRNTQG------VILIRTAED-- 831  
11271030 784 --LITFAPETEES---------GLQVLTATAN----------GYGKRTPIADYSRKNKGGQG------NIAINTGERN-   --GDLVAATLVGE---TDDLMLITSG---GVLIRTKVEQIRETGRAAAG------VKLINLDEG-- 885  
11271024 701 --DFVVSCQVVTD---------DQSVLVVCDN----------GFGKRSLVCDFRETNRGSVG------VRSILINQRN-   --GDVLGAISVTD---FDSILLMSAQ---GQAIRINMQDVRVMGRATQG------VRLVNLREG-- 802  
3322255  701 --DLVAGVLRVSE---------QRKVLIMTEN----------GYGKRVSFSEFSVHGRGTAG------QKIYTQTDRK-   --GAIIGALAVLD---TDECMCITGQ---GKTIRVDVCAISVLGRGAQG------VRVLDIEPS-- 802  
1346235  709 --DRLVSLNVVRE---------GTYLLVATSG----------GYAKRTAIEEYPVQGRGGKG------VLTVMYDRRR-   --GRLVGALIVDD---DSELYAVTSG---GGVIRTAARQVRKAGRQTKG------VRLMNLGEG-- 810  
1346233  706 --EFVNGLSTSSN---------GSLLLSVGQN----------GIGKLTSIDKYRLTKRNAKG------VKTLRVTDRT-   --GPVVTTTTVFG---NEDLLMISSA---GKIVRTSLQELSEQGKNTSG------VKLIRLKDN-- 807  
729651   774 --ADSILEMANS----------EEFILTVTEN----------GFGKRSSAYGYRITDRGGSG------IINMDINDKT-   --GLVVGVMPVKM---DDELMLITNS---GKLIRCKLESVRITGRNTSG------VILFKLDDD-- 874  
2507466  699 --DFVVGAVVISDD--------GNKLLSVSEN----------GLGKQTLAEAYRGQSRGGKG------VIGMKLTQKT-   --GNLVGVISVDD--ENLDLMILTAS---AKMIRVSIKDIRETGRNASG------VKLINTAD--- 800  
7437470  732 --GDTDAILEESDNP-------GPWLLGVTMK----------GFGKRVPIGQFRLQHRAGLG------VKAIRFKSKD-   --DQLVALHVVNA---DDELMIVTNR---GIIIRQSVNDISPQSRSATG------VRVQRLDAD-- 835  
12322780 797 –MDIIPASLRKD-(15)-----GPWLLFVCEN----------GYGKRVPLSSFRRSRLNRVG------LSGYKVGS---   --GFSPFLVVFSD----EQVVLVSQS---GTVNRIKVRDISIQSRRARY------SLHVTVFSN-- 910  
11270990 697 --DEVSAILITPNN--------GYNVQLFLER----------G-SKCFNISELKLSKRAATP------TNLYPITKKV-   --QNVLAAFLVAH--ENVFYLLDQQQ---KINPYYLSNPKPTKLDTKIS------IYENDQMIT-- 799  
7437476  677 --DRIAWMSASE----------GEYLLMLTER----------GYGKRCDVNEFRFIGRGSMG------MIGYRISEKT-   --GKLAFISACNG----EEVFIMSED---GYCIRIDSSTIPVQGRYSSG------VVVARKGVK-- 776  
10580453 704 --DRIAGVAAVESED-------DRSLLTVTEF----------GYGKRTRVGEYRSQSRNGKG------LVDIKTGDRN-   --GDVVSVDAVGD---DDSLVVMSAD---GQIIQMPVDEISTVGRNTKG------VNIMAVGSG-- 807  
9622087  690 --DRVVSLVVVKPGE-------MVDLLSVSTR----------GYGKRTPLSEYPLQGRGGMG------VITYAVSTKV-   --GRLAALLKVRG---GEDLLVLSRR---GLAIRTPVAEIRQYSRATAG------VRVMNLPED-- 793  
544464    39 --DEVISLLWLKA---------GNKILTITEK----------GYGKRSEPGSYRVTRRGSKG------VRNLNVTDKI-   --GAAVFVESVAD---DYDLIITSKD---GQVIRIKAADIRLTGRNAQG------VKAITLRDG-- 140  
Jpred        ---EEEEEEEE-------------EEEEEE--------------------------------------EEEEEE-----   ----EEEEEEE-------EEEEEE-------EEEEEE--EEE-------------EEEEEE----- 
PHD rel      ---2699999548---------9728999845----------87322221343113668862------5999971689-   --92799997457---8659998369---71798614331111333363------3789937994- 
SAM-T99      -LLEEEEEEEELL--------LLEEEEEELLL----------L-LLLLLHHHHHHLLLLLLL------EEEEEELLLL-   --LLEEEEEEELL---LLEEEEEELL---LEEEEEELLLLLLLLLLLLL------EEEEELLLL--    
 
 
                                                I                                                                                   II 
4389390  390 -NRVVLSVSSGG-----------QHTVLLVKD 409  26 PGLVLTLGQGDV-----GQLG(6)-ERKKPALVSIP--   --EDVVQAEAGG-----MHTVCLSKS---GQVYSFGCNDE-----GALG(7) SEMVPGKVEL--- 109  
2134145  403 -DREVLSVSSGG-----------QHTVLLVRK 422  40 GGQVLTLGQGDV-----GQLG(6)-ERKKPALVTLT--   --EDIVQAAAGG-----MHTVCLGAS---GSIYTFGCNDE-----GALG(7) SEMQPGKVEL--- 123  
12325184 614 -EKQVKAITCGS-----------NFTAVICVH 633 246 LGDVFVWGESIS-------DG(14)DALLPKALEST--(3)---DAQNIACGK-----CHAVLVTKQ---GEIFSWGEGKG-----GKLG(8) ---KPKFISSV-- 336  
101055   454 -EVAIRVAGAGG-----------QFSIIAGIP 473  70 RLNVYVFGSGSM-----NELG(7)-VVYRPRLNPIL--(4)--VGVVDLAVGG-----MHSAALLHD---GRVYTWGVNDD-----YALG(18)LEGTPSKVEGA-- 170  
             ----EEEEEE--------------EEEEE---         --EEEEE--------------------EEEEEE-----   ----EEEEE---------EEEEEE------EEEEEE-----------------------E------     
                                                III                                                                                 IV 
4389390  110 -QEKVVQVSAGD-----------SHTAALTDD----------GRVFLWGSFRDNN---GVIG(6)-KSMVPVQVQLD--   --VPVVKVASGN-----DHLVMLTAD---GDLYTLGCGEQ-----GQLG(16)RLLVPKCVMLKS- 225  
2134145  124 -AEKVVQVSAGD-----------SHTAALTED----------GRVFVFGSFRDNN---GVIG(6)-KSMVPVQVQIN--   --TPVIKIASGN-----DHLVLLTVD---GDLYTSGCGEQ-----GQLG(16)RLLVPQCIHLKA- 239  
12325184 338 -GLGFKSLACGD-----------FHTCAITQS----------GDLYSWGDGTHNV---DLLG(10)K-RVTGDLQG---   --LYVSDVACGP-----WHTAVVASS---GQLFTFGDGTF-----GALG(9) ----PREVESLI- 444  
101055   173 -HLRVTKVICSD-----------NLTAAITDN----------GCCFTWGTFRCSD---GVLG(6)-RTAEPTQMRL—--   --PEICQLATGT-----DHIIALTTT---GKVYTWGNGQQ-----FQLG(9) QGLTPQPLALKN- 280  
             ----EEEEEE--------------EEEEEE-------------EEEEE--------------------EEEEEE-----   ----EEEEEE---------EEEE--------EEE---------------------EEEEEE-----  
                                                V                                                                                   VI  
4389390  231 -HVRFQDAFCGA-----------YFTFAISHE----------GHVYGFGLSNY-----HQLG(5)-SCFIPQNLTSFK-(2)-TKSWVGFSGGQ-----HHTVCMDSE---GKAYSLGRAEY-----GRLG(7) -KSIPTLISRLP- 337  
2134145  244 -RVHFQDVFCGA-----------YFTFAVSQE----------GHVYGFGLSNY-----HQLG(5)-ACYAPQNLTSFK-(2)-TKSWIGFSGGQ-----HHTVCVDSE---GKAYSLGRAEY-----GRLG(7) -QSEPTPIPDLP- 350  
12325184 450 -KVACGVWHTAA-----------VVEVTNEAS-(8)------GQVFTWGDGEK-----GQLG(5)-TKLLPECVISLT-   -NENICQVACGH-----SLTVSRTSR---GHVYTMGSTAY-----GQLG(7) -FPERVEGDIV-- 561  
101055   283 ----SVG--AGS-----------YHSFAIDNK----------GRVYAWGLNIT-----RQCG(10)VITKPTLVDALE-   -GYNVKSITGGE-----HHTLALLED---GRVLAWGRDDR-----HQLG(19)YLSTPTIIPGLT- 400  
             ----EEEEEEE-------------EEEEE---------------E------------------------EEEEEE----   ----EEEEEEE--------EEEEE-------E-----------------------EEEEEE-----  
                                                VII 
4389390  339 ----VSSVACGA-----------SVGYAVTKD----------GRVFAWGMGTN-----YQLG(5)-DAWSPVEMMGKQ- 387  
2134145  351 ---KINSVASGA-----------SVSYAVSTD----------GCVFAWGMGTN-----LQLG(5)-DVWSPEQMTGKH- 400  
12325184 562 -EASVEEIACGS-----------YHVAVLTSK----------SEIYTWGKGLN-----GQLG(5)-NKREPAVVGFL-- 612  
101055   401 ---NVIQVVCGT-----------HHNLAVTSD----------GKVYSWGSAEN-----YEVG(6)-DVAVPTLVRSKA- 451  
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             ----EEEEEE--------------EEEEE--------------EEEE----------------------EEEEEE----  

Multiple sequence alignment of C-terminal of gyrase subunit A/RCC1 domain. Each sequence is labeled by its 
NCBI gene identification (gi) number. The gi numbers of GyrA/ParC C-terminal domains and the gi numbers of 
RCC1 domains are in black and brown, respectively. The gi number of the topoisomerase IV subunit A sequence 
(gi|11270990) is in green. The gi number of the sequence with known structure is underlined (gi|4389390; PDB entry 
1A12, chain A). The alignment is arranged in such a way that each row of sequences contains two blades. The blades 



 

are numbered from above using Roman numbers. The last β-strand A of GyrA/ParC C-terminal domain was placed 
in front of the first β-strand B of blade I to complete the blade. The sequences of RCC1 were rearranged in the same 
manner. The first and last residue numbers of each row of sequences are indicated. The first and last residue numbers 
of the rearranged C-terminal segments are marked in red. Long insertions in loop regions are not shown but with the 
omitted residues numbers in parentheses. Uncharged residues at mainly hydrophobic positions are shaded yellow. 
The conserved glycine residues are shown in white on black background. Conserved positively charged residues in β-
strand C are shown in blue. The JPRED secondary structure prediction results are the first lines shown below each 
row of the alignment. The PHD prediction confidence values of every position for GyrA/ParC are shown on the 
second line under the predictions. The third lines under the GyrA/ParC alignment are the secondary prediction results 
from SAM-T99. The diagram of the secondary structure elements in each blade, according to the RCC1 X-ray 
structure, is shown at the top of the figure. Species names: gi|121882, Escherichia coli; gi|11271030, Neisseria 
meningitides; gi|11271024, Chlamydia muridarum; gi|3322255, Treponema pallidum; gi|1346235, Mycobacterium 
tuberculosis; gi|1346233, Mycoplasma genitalium; gi|729651, Rickettsia prowazekii; gi|2507466, Helicobacter 
pylori; gi|7437470, Synechocystis sp; gi|12322780, Arabidopsis thaliana; gi|11270990, Ureaplasma urealyticum; 
gi|7437476, Archaeoglobus fulgidus; gi|10580453, Halobacterium sp.; gi|9622087, Thermus thermophilus; 
gi|544464, Fibrobacter succinogenes; gi|4389390, Homo sapiens; gi|2134145, African clawed frog; gi|12325184, 
Arabidopsis thaliana; gi|101055, Schizosaccharomyces pombe. 
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Figure 2.3 Structure Diagrams and Conservation Mapping of RCC1 and GyrA/ParC-

CTD 

(a) The structural diagram of RCC1, PDB entry 1A12 chain A. Each blade is shown in a 
different color and β-strands in the third blade are labeled. Sequence conservation in (b) 
GyrA/ParC and (c) RCC1 mapped onto the structure of the third blade in RCC1 are rainbow 
colored from low conservation (dark blue) to high conservation (red). 
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Figure 2.4 Experimentally Determined Structure Diagram of GyrA-CTD 

 

Structure diagram of experimentally determined spatial structure of GyrA C-terminal domain 
(PDB accession number: 1SUU) 
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Table 2.1 Average hydrophobicity of beta-strands in GyrA/ParC and RCC1 

 GyrA/ParC RCC1 

Strand A 0.21 0.256 

Strand B 0.37 0.34 

Strand C 0.17 0.29 

Strand D 0.085 -0.13 
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Table 2.2 Comparison Between Prediction and Experimental Data 

* Based on PDB 1SUU and 1WP5. 
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CHAPTER 3:  
Structural Classification of Thioredoxin-like Fold Proteins 

3.1 INTRODUCTION 

3.1.1 Background 

A systematic comparison of the three major structure classifications (SCOP, CATH, 

DaliDD) shows many discrepancies, even at the fold group level (Hadley and Jones 1999). 

These discrepancies create obstacles for homology inference and modeling, evolutionary 

studies and genome annotation. One major source of the inconsistencies stems from the 

concept of fold definition. Structural fold concept is a perception of a researcher and thus is 

intrinsically subjective. The definition of a protein fold is therefore somewhat arbitrary. For 

example, it is difficult to define and to distinguish folds of regular-layered architectures, 

especially α/β sandwiches. Their β-sheets take up a large proportion of the structure and are 

similar due to hydrogen-bonding constraints, and the differences between structures could be 

only a few secondary structure elements (Orengo, Flores et al. 1993; Orengo, Michie et al. 

1997). In an effort to understand and to clarify fold definitions for proteins with α/β 

sandwich architectures, we start from a large and diverse protein group, namely thioredoxin-

like proteins.  

Thioredoxin is an important redox protein that is present in every organism. Together 

with thioredoxin reductase and peroxiredoxin, thioredoxin regulates the cellular 

reduction/oxidation status as well as various important cellular functions, such as oxidative 

stress defense, cell proliferation, signal transduction, and transcription regulation (Nakamura, 

Nakamura et al. 1997; Arner and Holmgren 2000; Yamawaki, Haendeler et al. 2003; Das 

2004; Kontou, Will et al. 2004). Extensive studies have been done on Thioredoxin 

(Holmgren 1995; Nakamura, Nakamura et al. 1997; Arner and Holmgren 2000; Yamawaki, 
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Haendeler et al. 2003; Kontou, Will et al. 2004). Consequently, a large number of X-ray and 

NMR structures are available for thioredoxin and related proteins, rendering their 

classification necessary.  

3.1.2 Objective 

Figure 3.1c shows the structure of a human thioredoxin, which is a 3-layer α/β/α 

sandwich with the central β-sheet formed by 5 β-strands flanked by two α-helices on each 

side. Many proteins important for cellular thiol-redox pathways, such as glutaredoxin, protein 

disulfide isomerase (PDI) and oxidase (DsbA), and glutathione S-transferase (GST), are 

homologous to thioredoxin and have similar structures. However, many of these classical 

thioredoxin-like proteins do not contain α-helix α0’ and β-strand β0’, and some do not 

contain α-helix α3’ (Figure 3.1c). To generate a consistent and inclusive definition of the 

thioredoxin-like fold, we use the structure consensus of thioredoxins and the classical 

thioredoxin-like proteins that are undoubtedly homologs to each other, and only include 

those secondary structure elements and interactions that are present in all these homologs 

(Figure 3.1a). Interestingly, a circularly permuted DsbA protein exists as a result of a protein 

engineering experiment that is structurally stable and functionally active (Hennecke, Sebbel 

et al. 1999). As homologous proteins can evolve to have different circular permutations (e.g., 

DNA methyltransferases (Jeltsch 1999)), we decide not to limit our fold group definition to 

identical topology, but to consider all potential circular permutations of the thioredoxin-like 

fold. 

We employ this definition of the thioredoxin-like fold to query the PDB database 

using a protein structure motif search program (unpublished). Identified thioredoxin-like 

protein domains are divided into eleven evolutionary families based on combined sequence, 

structural and functional evidence for homology. Analysis of the protein-ligand structure 

complexes reveals two major active site locations for thioredoxin-like proteins. During the 

course of analysis, we also encountered proteins with structural similarity to thioredoxin that 
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should not belong to the thioredoxin-like fold group. Such examples are shown and discussed 

to illustrate our approach to fold definition. 

3.2 MATERIALS AND METHODS 

3.2.1 Structural Motif Search For Thioredoxin-Like Protein Domains 

We used a structure motif search program (unpublished) that was under development 

in our lab. Briefly, the program generated a database of PDB structures (19,558 structures, 

July 2003), in which each structure was represented by a Secondary Structure Element 

Interaction Matrix describing the interactions (parallel or anti-parallel), hydrogen-bonding 

and chirality between the secondary structure elements of the PDB structure. The structure 

consensus of the classical thioredoxin-like proteins (thioredoxin, glutaredoxin, protein 

disulfide isomerases (PDI), disulfide bond oxidase (DsbA), glutathione S-transferase (GST), 

glutathione peroxidase and their close homologs) (Martin 1995) was represented as a query 

matrix. The query matrix (Figure 3.1b) specified the number and types of secondary structure 

elements in the thioredoxin motif, the hydrogen-bonding and parallel or anti-parallel 

relationships between the four β-strands, and the chirality between consecutive secondary 

structures. We then used our structure motif search program to search the database of 

Secondary Structure Element Interaction Matrices of every PDB structure and to output the 

structures containing submatrix matching the query matrix. Six query matrices characterizing 

six possible circular permutations of the thioredoxin motif were constructed and searched for. 

False positives were removed by visual inspection. Proteins were considered to contain the 

thioredoxin-motif only when the thioredoxin motif formed the structural core of the protein 

domain (see “Structural analogs” section for details).  
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3.2.2 Sequence-Based Classification Of The Thioredoxin-Like Protein Domains 

The thioredoxin motif-containing protein domains retrieved as described above were 

subsequently grouped into evolutionary families using a combined sequence, structural and 

functional analysis.  

We used four methods to search for sequence similarities between the thioredoxin 

motif-containing domains and all PDB proteins: gapped BLAST (Altschul, Gish et al. 1990; 

Altschul, Madden et al. 1997), PSI-BLAST (Altschul, Madden et al. 1997; Schaffer, Aravind 

et al. 2001), RPS-BLAST (Marchler-Bauer, Panchenko et al. 2002) and COMPASS 

(Sadreyev and Grishin 2003), each of which uses a query sequence or profile to search a 

database of sequences or profiles. A query sequence was the sequence of every thioredoxin-

motif containing domain. A query profile was generated by running a query sequence against 

the nr database (1,479,768 sequences, 476,959,297 total letters, Aug 2003) using PSI-

BLAST for up to 5 iterations with an inclusion E-value cutoff of 0.005. The database of PDB 

sequences contained sequences of PDB chains (49,319 sequences, 10,645,968 total letters, 

Aug 2003). The database of domain profiles contained the profiles of representative protein 

domains in the PDB. We used the SCOP v1.63 domain definitions for this purpose. The 

representative SCOP v1.63 domain sequences with less than 40% sequence identity to each 

other (5,224 domains) were downloaded from Astral (Brenner, Koehl et al. 2000; Chandonia, 

Walker et al. 2002). A profile for each representative domain sequence was then generated in 

the same way as we generated a query profile. We searched each query sequence in the 

database of PDB sequences using Gapped BLAST (Altschul, Gish et al. 1990), each query 

profile in the database of PDB sequences using PSI-BLAST (Altschul, Madden et al. 1997; 

Schaffer, Aravind et al. 2001), each query sequence in the database of domain profiles using 

RPS-BLAST (Marchler-Bauer, Panchenko et al. 2002), and each query profile in the 

database of domain profiles using COMPASS (Sadreyev and Grishin 2003). Sequence 

analyses were based on the search results of the four methods. We also inspected each hit 

with an E-value up to 10 so that we would not miss a potential homolog that has a signature 

sequence motif but with a less significant E-value.  
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3.2.3 Structure And Function Based Classifications 

For structure analysis, 723 thioredoxin motif-containing protein domains were first 

clustered according to their sequence identities using the program BLASTCLUST (I. 

Dondoshansky and Y. Wolf, unpublished; ftp://ftp.ncbi.nih.gov/blast/) at a sequence identity 

threshold of 50% and length coverage of 90%. A representative structure for each cluster was 

selected based on the quality of the structure (resolution, R factor value, solved date for 

NMR structures) and the presence of ligands or substrate analogs. All structure analyses were 

done on this set of the representative domain structures. The representative structures were 

aligned in an all-against-all manner using the program DaliLite and were further clustered by 

a Dali Z-score cutoff of 5. The representative structures were visualized in the INSIGHT II 

package (MSI) and superimposed by aligning structurally equivalent residues. A structure-

based multiple sequence alignment of all 90 representative structures was constructed 

manually taking into account alignments made by DaliLite (Holm and Park 2000), Mammoth 

(Ortiz, Strauss et al. 2002), CE (Shindyalov and Bourne 1998), PSI-BLAST (Altschul, 

Madden et al. 1997; Schaffer, Aravind et al. 2001) and RPS-BLAST (Marchler-Bauer, 

Panchenko et al. 2002). The structural alignment was further filtered by sequence identities 

in the aligned regions and the final alignment contained proteins that had less than 50% 

sequence identity to each other. The ligands or substrate analogs and active site residues were 

also visualized in INSIGHT II and locations of active sites were compared. 

3.3 OVERALL FOLD DESCRIPTION 

3.3.1 Thioredoxin-like fold 

Many proteins important for cellular thiol-redox pathways, such as thioredoxin, 

glutaredoxin, glutathione S-transferase (GST), protein disulfide bond isomerase (PDI), are 

known to adopt the thioredoxin-like fold (Martin 1995). In both SCOP and CATH, the 

thioredoxin/glutaredoxin fold is described as a 3-layer α/β/α sandwich. As shown in Figure 
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3.1c, thioredoxin is a 3-layer sandwich with a central β-sheet flanked by two α-helices on 

each side. However, the N-terminal α-helix α0' is absent in many classical thioredoxin-like 

fold proteins, such as GST, bacterial glutaredoxin, and archaeon PDI. α-Helix α3' is also not 

conserved in the thioredoxin homologs. For instance, the N-terminal domain of a bacterial 

alkyl hydroperoxide reductase subunit F (1hyuA1), which is a close homolog of PDI, has 

only a short loop connecting β2 and β3 in the place of the α-helix α3' (Figure 3.2). In 

addition, phosducin (1a0rP), a homolog of thioredoxin, has only a loop with turns in the 

place of the α-helix α3' (Figure 3.2). In many proteins that do have α-helices at the α3' 

position, these α-helices are irregular, kinked or appear as separated short helical turns. 

Based on these observations, the first α-layer of the thioredoxin fold is not conserved in all 

thioredoxin homologs. Since the fold definition should include only the core secondary 

structural elements that are present in the majority of homologs, we define the thioredoxin-

like fold as a 2-layer α/β sandwich with the βαβββα secondary structure pattern. The four β-

strands ordering 2134 form a mixed β-sheet with the third β-strand anti-parallel to the rest, 

and the two α-helices pack against the β-sheet on one side (Figure 3.1a). The N-terminal half 

of the fold is a right-handed βαβ unit. This unit is connected through a loop to the C-terminal 

half of the fold, which is a β-hairpin followed by an α-helix and the chirality of this ββα unit 

is left-handed. Consequently, the chiralities between secondary structure elements β4, α2, β1, 

and α2, β1, α1 are both right-handed.  

Applying this definition, we searched for all potential thioredoxin-like protein 

domains in the entire PDB database using the structure motif search program under 

development in our lab. Found proteins containing the βαβββα unit with the thioredoxin-like 

interactions (see materials and methods and Figure 3.1) were visually inspected to ensure that 

the six elements form the structural core (see “Structural analogs” section for clarification) of 

the protein domains. Altogether 723 protein domains were identified as thioredoxin-like fold 

proteins. They were unified into the thioredoxin-like fold group and divided into 

evolutionary families. A structure-based multiple sequence alignment of 90 representative 

thioredoxin-like fold protein domains was manually constructed (Figure 3.2). From this 
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alignment, we see that some thioredoxin-like proteins have insertions of secondary structure 

elements into the common structural motif. A number of proteins from four families possess 

the α-helix α3'. Proteins from other four families have an extra αβ unit inserted between the 

β-strands β2 and β3, extending the central β-sheet to be formed by 5 β-strands.  

3.3.2 Circular Permutations  

The protein domains that we unified into the thioredoxin-like fold group represent 

different circular permutations of the thioredoxin-like motif. A circular permutation of a 

structural motif can be visualized as an imaginary “ligation” of the N- and C- termini 

followed by an imaginary “cleavage” at a loop region of the motif to create different termini. 

Except when specifically mentioned, we use the phrase “circular permutation” only to 

indicate this kind of geometric relationship between structures and not to imply evolutionary 

events. It has been documented, however, that circular permutations occur in nature as 

evolutionary scenarios and represent a mechanism of potential fold change in evolution 

(Ponting and Russell 1995; Gong, O'Gara et al. 1997; Jeltsch 1999; Bujnicki 2002). Since 

proteins with different circular permutations of a structural motif have essentially the same 

spatial arrangement of secondary structure elements, the same side-chain packing 

interactions and may be homologous, grouping them together into the same fold group for 

further comparative analysis could help us to better understand protein folding and sequence-

structure-function relationships and potential evolutionary connections. We can use the 

structure-based multiple sequence alignment to study the sequence similarities between 

proteins with different circular permutations. Such potential similarities are obscured if the 

proteins are classified in different fold groups or even different structural classes.  

Since the thioredoxin-like motif contains six secondary structure elements, six types 

of circular permutations are theoretically possible by placing the termini before each 

secondary structure element. However, only four types of circular permutations were seen in 

the PDB database (Figure 3.1a). No proteins are present with the termini positioned between 

β1-α1 or α1-β2, suggesting that β1α1β2 may be an essential folding or packing unit for the 
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thioredoxin-like fold. This observation agrees with the finding by Salem et. al. that βαβ-unit 

is one of the three most prominent (highly-populated) supersecondary structures (Salem, 

Hutchinson et al. 1999). However, it is possible that with more structures accumulating in the 

PDB, circular permutation variants that disrupt the βαβ-unit will appear. Out of the four 

types of circular permutations we see, type II (β4α2β1α1β2β3; secondary structures are 

numbered the same as those in the classical thioredoxin-like proteins) is adopted in five 

families and the other three types are all adopted in two families, respectively (Table 3.1). If 

we count the number of representative structures, type I (β1α1β2β3β4α2) is the most 

populated, and type II is the second-most populated type of circular permutation.  

3.4 DESCRIPTION OF THIOREDOXIN-LIKE FOLD FAMILIES 

We identified 723 protein domains as belonging to the thioredoxin-like fold. We 

subsequently classified these protein domains into eleven evolutionary families based on 

inferred homology relationships between them. While we gathered strong support for 

homology of protein domains within each evolutionary family, we are not drawing any 

conclusion about the evolutionary relationship between protein domains in different families. 

Protein domains from different families could simply be analogous to each other. 

Alternatively, they could share homologous relationship that we were not able to support 

convincingly, or be mosaics of homologous and analogous pieces. It has been hypothesized 

that modern protein domains have evolved from combinations of ancient domain segments 

composed of supersecondary structures, and thioredoxin fold proteins is a possible example 

of such domain evolution (Lupas, Ponting et al. 2001). Although a detailed analysis of this 

problem is very challenging and lies beyond the scope of our current study, this evolutionary 

scenario is plausible. However, we believe that for the proteins within each of our 

evolutionary families homologous segment spans through the entire common core of the 

domain. Here we describe the eleven families and discuss their sequence, structural and 
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functional features with evolutionary implications. The representatives of each family are 

listed in Figure 3.2. 

3.4.1 Thioredoxin family 

This family includes all the classical thioredoxin-like proteins as well as 

calsequestrin, phosducin and arsenate reductase, among others. The dithiol-disulfide 

oxidoreductases, such as thioltransferases and PDI, have a conserved active-site sequence 

motif Cys-X-X-Cys that is located at the N-terminus of α-helix α1. In addition, a cis-proline 

residue located at the loop region before β3 is conserved and is in spatial proximity to the 

Cys-X-X-Cys motif (Figure 3.1c). Proteins that form inter-domain disulfide bonds, such as 

glutathione peroxidases, and proteins that do not form disulfide bonds, such as the N-

terminal domain of elongation factor 1-gamma (eEF1gamma), have lost one or both of the 

conserved Cys residues (Figure 3.2). Nevertheless, they have the same active site locations as 

the dithiol-disulfide oxidoreductases, and their homology relationships with the dithiol-

disulfide oxidoreductases can be inferred from PSI-BLAST and RPS-BLAST results and 

close structural similarities. 

Protein domains in this family have a type I circular permutation except for one 

disulfide bond oxidase (DsbA, 1un2A, previous PDB ID: 1dyv) that is a type III circular 

permutation as the result of a protein engineering experiment (Hennecke, Sebbel et al. 1999). 

Aside from the common structural motif, most thioredoxins and PDIs have the extra α-

helices α0’ and α3’ (Figure 3.1c). Glutathione peroxidases and peroxiredoxins have an extra 

α/β unit inserted between β2 and β3 and the extra β-strand is hydrogen-bonded with β2 

(Figure 3.2); DsbAs have an extra β-strand inserted before β1 and hydrogen-bonded with β4; 

so they all have a mixed β-sheet of five β-strands.  
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3.4.2 RTPC small domain family 

Similarly to thioredoxins, the small domains of the RNA 3'-terminal phosphate 

cyclases (RTPC) have the type I circular permutation. However, the β-sheet in this family is 

much flatter and the β-strands are up to 4 residues longer than those of the thioredoxins. The 

functional role of the RTPC small domain remains unknown (Palm, Billy et al. 2000).  

3.4.3 Ribosomal protein L30e family 

Ribosomal protein L30e, eukaryotic peptide chain release factor subunit 1 C-terminal 

domain (ERF1), and RNA 2'-O ribose methyltransferase N-terminal domain are grouped in 

this family. Inferred from sequence similarity analyses, ribosomal proteins L30e, L7ae and 

15.5 kd RNA binding protein are close homologs (gapped BLAST E-value: 2e-11), while 

ERF1 and L7ae are more distant (gapped BLAST E-value: 0.009). Gapped BLAST, PSI-

BLAST, a RPS-BLAST did not find any hit between the RNA methyltransferase N-terminal 

domain and L30e with E-value less than 10. However, COMPASS aligned the RNA 

methyltransferase N-terminal domain (1ipaA) and L30e (1cn8A) at a significant E-value of 

5e-05. The COMPASS alignment covers the entire length of both domains and is consistent 

with the structure-based alignment (Figure 3.2), and we thus consider the RNA 

methyltransferase N-terminal domain to be a remote homolog of ribosomal protein L30e.  

Protein domains in this family have a type II circular permutation, and aside from the 

permutation, are structurally very similar to the thioredoxin family domains. Archaeon 

ribosomal protein L30 (1h7mA1) superimposes on the thioredoxin family protein 

eEF1gamma (1nhyA) with a RMSD of 1.4 Å based on 86 Cα atoms. Furthermore, like 

thioredoxins and PDIs, proteins in this family also have an extra α-helix at the N-terminus 

(Figure 3.1d) and a α-helix α3' between β2 and β3 to form a second layer of α-helices, and 

thus also form a 3-layer α/β/α sandwich. However, we think that presently there is not 

enough evidence to convincingly support this potential homology between the L30e 

ribosomal proteins and thioredoxins. 
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Protein domains in the L30e family interact with their ligands and substrates at the N-

terminal ends of the α-helices and nearby regions. The yeast ribosomal protein L30 interacts 

with the RNA internal loop through the residues located at the N-terminal ends of α-helices 

α1 and α2 and in the loop region before β-strand β3 (Mao, White et al. 1999) (Figure 3.1d). 

3.4.4 Tubulin C-terminal domain family 

This family includes the C-terminal domains of tubulin α- and β-subunit, cell division 

protein FtsZ, and dihydroxyacetone kinase subunit K (DhaK). The overall structures of 

tubulin, FtsZ, and DhaK are similar; all are formed of two domains that have the same 

relative positions. In all proteins of this family, the N-terminal domains are Rossmann-like 

nucleotide-binding domains: GTPase for tubulin and FtsZ, and ATPase for DhaK. The C-

terminal domains are the thioredoxin-like domains with a type II circular permutation. The 

C-terminal domain of DhaK has a β-hairpin inserted between β4 and α2. The substrate Dha 

is covalently bound (Siebold, Garcia-Alles et al. 2003) to this β-hairpin. In tubulin, the loop 

between β4 and α2 (Figure 3.1a) also forms a functional site where the ligands, zinc ion and 

anticancer drug taxol, bind (Lowe, Li et al. 2001).  

3.4.5 Bacillus chorismate mutase (BCM) Family 

Bacillus and Thermus chorismate mutase, hypothetical protein YjgF, and purine 

regulatory protein YabJ are placed in this family. Simple BLAST results show that Bacillus 

with Thermus chorismate mutases and YjgF with YabJ form two clusters of close homologs. 

Despite the low sequence identity (average 8.6%) between the two groups, their tertiary and 

quaternary structures are very similar to each other. These proteins are homotrimers; each 

monomer is a thioredoxin-like domain of type II circular permutation. The three β-sheets 

from three monomers form a barrel-shaped interface. When looking parallel to the three-fold 

axis that goes in the direction from the C-terminus to the N-terminus of α-helices α1 and α2, 

the three β-sheets of proteins in both groups run approximately parallel to the axis with a left-
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handed twist (Figure 3.3a). The monomers of Thermus chorismate mutase (1odeA) and YjgF 

(1qu9A) are superimposed with a RMSD of 1.7 Å based on 84 Cα atoms, and quaternary 

structures are superimposed very well. The active site locations are also the same for the two 

group of proteins, which are at the three clefts between adjacent monomers (Chook, Ke et al. 

1993; Chook, Gray et al. 1994) (Figure 3.3a), indicating homology. 

3.4.6 MECP synthase family 

The quaternary structures of 2C-methyl-D-erythritol-2,4-cyclodiphosphate (MECP) 

synthases are similar to proteins in the Bacillus chorismate mutase (BCM) family. MECP 

synthases are also homotrimers with each monomer a thioredoxin-like domain of type II 

circular permutation. However, there are several structural and functional site differences 

between MECP synthases and BCM family proteins. The monomers of MECP synthases 

have an extra α-helix between α2 and β1 that is absent in the BCM family proteins. The β-

sheets of MECP synthases also run approximately parallel to the three-fold axis but with a 

right-handed twist instead of a left-handed one, so the monomer cannot superimpose well 

when the trimers are superimposed with the BCM family members. The active sites of 

MECP synthases are also located at the clefts between adjacent monomers (Kemp, Bond et al. 

2002; Kishida, Wada et al. 2003). However, in MECP synthases, the active site residues are 

contributed from β2 and α1 of one monomer and β4 and α2 of the adjacent monomer; while 

in BCM family proteins, the active site residues are contributed from β2 and α1 of one 

monomer but β3 and β4 of the adjacent monomer. These differences between MECP 

synthases and BCM family proteins indicate that they may not share a common ancestor. 

Therefore, we place MECP synthases in a separate family. 

3.4.7 PurM N-terminal domain family 

The N-terminal domain of the aminoimidazole ribonucleotide synthetase (PurM) is a 

thioredoxin-like domain of type II circular permutation, with an extra 9-residue α-helix 
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inserted between β4 and α2. PurMs are homodimers, and the two β-sheets from the two 

thioredoxin-like N-terminal domains form a barrel-shaped dimer interface. The active site of 

PurM is proposed to be formed by the edge β-strands of the two β-sheets and the C-terminal 

domain (Li, Kappock et al. 1999). 

3.4.8 Cytidine deaminase family 

This family includes single domain cytidine deaminase (CDA), two-domain CDA, 

and cytosine deaminase. The N-terminal domain of the two-domain CDA has a higher 

sequence identity (29%) to the single domain CDA than to its C-terminal domain (15%), 

suggesting that the two-domain CDA emerged by an ancient gene duplication event of the 

one-domain CDA and the C-terminal domain diverged further. In fact, the N-terminal 

domain of the two-domain CDA, the single domain CDA, and the cytosine deaminase all 

have two conserved cysteines at the N-terminus of α-helix α1 and a conserved cysteine or 

histidine at the N-terminus of α-helix α2 that coordinate a catalytic zinc ion (Xiang, Short et 

al. 1996; Johansson, Mejlhede et al. 2002) (Figure 3.1e & Figure 3.2), while the C-terminal 

domain of two-domain CDA has lost the zinc coordination and thus the catalytic activity. 

All domains in this family have a type III circular permutation (β3β4α2β1α1β2, 

Figure 3.1e), the same as the engineered DsbA. The loop regions before β3 and between β4-

α2 are about 8 residues longer than most domains of the thioredoxin family (Figure 3.2), and 

they form a cover of the hydrophobic active site. Like glutathione peroxidases, cytosine 

deaminase has an extra α/β unit inserted after β2 and the extra β-strand is hydrogen-bonded 

with β2 (Figure 3.2). One-domain CDA and the N-terminal domain of two-domain CDA 

have an extra β-strand inserted after β2 and is also hydrogen bonded with β2, but it is 

oppositely oriented compared to the extra β-strand in cytosine deaminase. 
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3.4.9 AICAR Tfase domain of bifunctional purine biosynthesis enzyme ATIC family 

The bifunctional purine biosynthesis enzyme ATIC has two functional parts: the 

inosine monophosphate cyclohydrolase (IMPCH) part and the 5-aminoimidazole-4-

carboxamide-ribonucleotide transfermylase (AICAR Tfase) part. ATIC is a homodimer with 

each monomer participating in both functional parts (Greasley, Horton et al. 2001). Each 

AICAR Tfase part of the monomer includes two thioredoxin-like domains that are 

structurally very similar to each other (RMSD of 1.17 Å based on 118 atoms). The two 

thioredoxin-like domains in the same polypeptide chain are the result of an ancient gene-

duplication event, and thus they are homologous to each other. The two thioredoxin-like 

domains are of type III circular permutation, and like glutathione peroxidases of the 

thioredoxin family, each of them have an extra αβ unit inserted after β2 (Figure 3.3b & 

Figure 3.2). The second thioredoxin-like domain has an insertion of a small helical domain 

between α2 and β1. AICAR Tfase has two active sites; each is located between the first 

thioredoxin-like domain of one monomer and the second thioredoxin-like domain of the 

other monomer. Our analysis shows that the two homologous thioredoxin-like domains 

possess different active site locations (Figure 3.3b & section 3.5.1).  

3.4.10 Phospholipase D family 

This family includes phospholipase D, bacterial nuclease Nuc, and tyrosyl-DNA 

phosphodiesterase (TDP1). Phospholipase D and Nuc are inferred as close homologs based 

on RPS- and PSI-BLAST results (RPS-BLAST E-value: 5e-14), while TDP1 was previously 

shown by Interthal etc. (Interthal, Pouliot et al. 2001) to be homologous to phospholipase D 

and Nuc based on the presence of the conserved HK motif (Figure 3.2) and similar reaction 

mechanism. Both phospholipase D and TDP1 contain two duplicated thioredoxin-like 

domains of type IV circular permutation (α2β1α1β2β3β4). Nuc only contains one such 

domain, but it is a homodimer and the two monomers are arranged in the same way as the 
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two domains in phospholipase D and TDP1. Like glutathione peroxidases of the thioredoxin 

family, all protein domains in this family have an extra αβ unit inserted after β2 (Figure 3.2). 

3.4.11 gp5 domain A family 

Domain A of the major capsid protein gp5 is a thioredoxin-like domain of type IV 

circular permutation. Protein gp5 is the assembly subunit of the double-strand DNA 

bacteriophage HK97 capsid (Wikoff, Liljas et al. 2000). Each capsid asymmetric unit is a 

hexamer or a pentamer of gp5. Other domains of gp5s, domain P, E-loop, and N-arm form a 

hexagon or a pentagon, and domains A of gp5s form a cover of the space inside the polygon. 

A 22-residue long insertion between α-helix α1 and β-strand β2 pushes the C-terminus of α1 

up and makes α1 almost perpendicular to the β-sheet instead of being parallel to it (Figure 

3.1f). This arrangement renders α1 anti-parallel to α-helix α2 of the neighboring gp5 domain 

A. α1 and α2 of adjacent domains A form electrostatic and hydrophobic interactions in 

between to stabilize the cover of the polygon. 

3.5 DISCUSSION 

3.5.1 Analysis of active site locations 

Proteins containing the thioredoxin-like domains are involved in a wide variety of 

biological functions and pathways, including intracellular transport and cell division, signal 

transduction, pyrimidine salvage pathway, phospholipid metabolism, and biosynthesis of 

purine, aromatic amino acid and proteins. The thioredoxin-like protein domains can bind 

and/or catalyze different ligands and substrates such as nucleic acids (RNA and DNA), 

proteins, peptides, and small metabolites. 3D structure complexes of the protein domains 

with their ligands or substrate analogs are available for all thioredoxin-like families except 

the RTPC small domain family. We analyzed the ligands or substrates binding sites of the ten 
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thioredoxin-like fold group families and found two major types of active site locations for the 

thioredoxin-like protein domains. 

In many proteins, active site (type i location) is placed at the N-terminal ends of the 

α-helices or nearby loop regions, i.e., the binding or catalytic residues are located on the 

loops connecting β1-α1, β2-β3, β4-α2, or at the N-termini of the α-helices α1/α2 (Figure 

3.1a). This type of active site location is adopted by protein domains in five different families 

that encompass all four circular permutations (Table 3.1). Since protein domains with this 

active site location belong to different evolutionary families, the similarity in the active site 

placement may be the result of convergent evolution and is probably caused by physico-

chemical constraints such as the helix dipoles of α1 and α2.  

Another common placement of the active site (type ii location) is along the edges of 

the β- sheet, i.e. the binding or catalytic residues are located on the edge β-strands (β2, β4) of 

the β-sheet or on the sides of α-helices α1 and α2 that are facing opposite from each other. 

This type of active site location is adopted by protein domains in four different families 

(Table 3.1). Proteins in three of the families (Bacillus chorismate mutase, MECP synthase, 

and PurM N-terminal domain) form homo- trimers or dimers and the β-sheets of the trimer or 

dimer form a barrel-shaped interface. Their active sites are placed in the clefts between 

adjacent monomers (Figure 3.3a) and thus are constrained to the edges of the α/β sandwich 

for each monomer. Although protein domains of the gp5 domain A family do not bind 

substrates or ligands, they do interact with each other, participating in formation of homo-

hexamers or pentamers stabilized partially by electrostatic and hydrophobic interactions 

between α-helices α1 and α2 of adjacent monomers (Figure 3.1f).  
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While homologous protein domains usually have similar active site locations, we 

found an unusual exception. As we mentioned in the family description (section II.10), the 

four thioredoxin-like domains of the AICAR Tfase part of the bifunctional purine 

biosynthesis enzyme ATIC are homologous to each other. The active site of AICAR Tfase is 

between the first thioredoxin-like domain of one monomer and the second thioredoxin-like 

domain of the other monomer (Figure 3.3b). The second thioredoxin-like domain houses 

active site residues at the loop regions near the N-terminal ends of the α-helices, similarly to 



 

most other thioredoxin-like domains (type i location); while the first thioredoxin-like domain 

has active site residues in the loop regions near the C-terminal ends of the α-helices, with 

two catalytic residues located at the loop between β-strands 3 and 4 (Wolan, Greasley et al. 

2002), which is opposite to that of the second domain (Figure 3.3b). Thus, our analysis 

reveals a rare example of homologous protein domains possessing different active site 

locations. 

3.5.2 Comparison to other structure classifications 

Different structure classifications use different criteria and methods. The protein 

domains that we unified in the thioredoxin-like fold group are categorized differently in three 

major structure classifications CATH (Orengo, Michie et al. 1997; Pearl, Lee et al. 2000; 

Orengo, Bray et al. 2002), SCOP (Murzin, Brenner et al. 1995; Lo Conte, Ailey et al. 2000; 

Lo Conte, Brenner et al. 2002), and Dali Domain Dictionary (Holm and Sander 1996; Holm 

and Sander 1998; Dietmann and Holm 2001). 

In CATH (version 2.5), some of these thioredoxin-like fold protein domains are not 

classified at all, such as the 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, the 

AICAR transfermylase domain of bifunctional purine biosynthesis enzyme ATIC, and the 

capsid gp5 protein domain A; the others are placed into five fold groups (CATH "topology" 

level). Three of the fold groups correspond to three different circular permutations, and 

protein domains of type I circular permutation are divided into two fold groups. CATH 

assigns the small domain of RNA 3'-terminal phosphate cyclase (RTPC) to a different fold 

group than the thioredoxin proteins, although they both have the same type of circular 

permutation. In fact, CATH classifies them into two different architecture types (a higher 

level in the classification hierarchy than fold groups): a 2-layer sandwich and a 3-layer 

sandwich. The other fold groups are also categorized as 2- or 3-layer sandwich architecture 

types. CATH groups our thioredoxin-like protein domains into nine homologous 

superfamilies, which is basically consistent with our evolutionary family classification except 

for one protein. We assigned the C-terminal domain of phenol hydroxylase (1fohA) to be in 
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the same evolutionary family as the classical thioredoxin-like proteins, while CATH assigns 

it into a separate superfamily by itself.  

SCOP (version 1.65) classifies the thioredoxin-like fold domains into five different 

fold groups (SCOP "fold" level) corresponding to four different circular permutations and 

one separate fold group for the entire capsid protein gp5. SCOP does not break gp5 into 

domains; instead, it assigns the entire gp5 protein to a separate fold group and describes it as 

an unusual fold. The small domain of RTPC is assigned to the same fold group as the 

thioredoxin proteins in SCOP. SCOP fold groups are placed into two different structural 

classes: α/β and α+β. At the evolutionary family level, our classification is consistent with 

SCOP superfamily classification.  

Dali Domain Dictionary (DaliDD, version 3.1 beta) classifies the thioredoxin-like 

fold protein domains into seven fold groups (DaliDD "globular folding topology" level). In 

this classification, there are protein domains of the same circular permutation assigned to 

different fold groups, such as the N-terminal domain (1a8l_1) and the C-terminal domain 

(1a8l_2) of an archaeon PDI; there are also protein domains of different circular 

permutations assigned to the same fold group, such as the C-terminal domain of two-domain 

cytidine deaminase (1aln_2) and the cell division protein FtsZ (1fsz). DaliDD splits the 

thioredoxin-like protein domains into many more evolutionary families than we do. For 

example, the protein domains in one of our evolutionary family, the thioredoxin family, are 

placed into seven functional families (the highest hierarchy indicating evolutionary 

relationships in DaliDD). Nevertheless, DaliDD classifies the C-terminal domain of phenol 

hydroxylase (1fohA) into the same functional family as glutathione peroxidase (1gp1A), one 

of the classical thioredoxin-like proteins. 

From the above comparisons, we perceive that the discrepancies between different 

structure classifications of these thioredoxin-like fold proteins mainly arise from the 

problems of the definition of the thioredoxin-like fold (2- or 3-layer sandwich) and the 

treatment of different circular permutations. By defining the structural core of the 

thioredoxin-like fold and considering different circular permutations within the same fold 
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group, we resolve the discrepancies between the structure classifications. Grouping all these 

structurally similar thioredoxin-like proteins together enables us to study their evolutionary 

relationships and functional properties, which should be helpful for structure-functional 

predictions of uncharacterized thioredoxin-like fold proteins.   

3.5.3 Structural analogs 

During our structure search, we encountered a number of protein domains with the 

thioredoxin structural motif that we did not include in our thioredoxin fold group. Although 

these proteins were found by automatic searches for the thioredoxin fold, since they contain 

all the required secondary structure elements and interactions between them, we believe that 

they belong to fold groups other than the thioredoxin-like fold group based on the reasoning 

below.  

Homology relationship determined structural core selection 

Peptide methionine sulfoxide reductase (PMSR) contains two overlapping structural 

motifs: the thioredoxin-like motif and the ferredoxin-like motif. Figure 3.4c shows a typical 

ferredoxin-like fold protein. It is an α/β sandwich with the βαββαβ secondary structure 

pattern. The four β-strands ordering 2314 form an anti-parallel β-sheet with the two α-helices 

on one side. From Figure 3.4a, we can see that if we treat α-helix αA and β-strand βB as 

insertions, PMSR adopts a thioredoxin-like fold of type III circular permutation. On the other 

hand, if we treat α-helix α1 and β-strand β2 as insertions, the protein adopts a ferredoxin-like 

fold (Figure 3.4b). α1, β2 and αA, βB are placed on different sides of the central β-sheet and 

thus occupy similar positions in relation to the structure core. β2 and βB have approximately 

the same length (Figure 3.4a & Figure 3.4b). Thus if we try to base our decision about the 

fold solely on the structural properties of this molecule, both structural motifs (thioredoxin-

like and ferredoxin-like) appear reasonable and we are unable to choose one of them. 

Sequence analysis, however, shows that PMSR is homologous to the ferredoxin-like fold 
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protein that is shown in Figure 3.4c, the fourth metal-binding domain of Menkes copper-

transporting ATPase (L.N. Kinch and N.V. Grishin, unpublished), that is missing α-helix α1 

and β-strand β2 and hence missing the thioredoxin-like motif. Therefore, the ferredoxin-like 

motif is the essential one for PMSR, and PMSR most likely obtained the thioredoxin-like 

motif later in the process of evolution by insertions of α-helix α1 and β-strand β2. In spite of 

the thioredoxin-like motif in PMSR structure, it should be classified in a ferredoxin-like fold. 

Using similar reasoning we ruled out the following proteins with the thioredoxin motif: C-

terminal domain of glyceraldehyde-3-phosphate dehydrogenase (1a7kA), transcription factor 

sc-mtTFB (1i4wA), and histidyl-tRNA synthetase (1adjA). 

Structural importance determined structural core selection 

The C-terminal domain of subunit A of the archaeon formylmethanofuran: 

tetrahydromethanopterin formyltransferase (Ftr) contains a thioredoxin-like motif of the 

β2β3β4α2β1α1 circular permutation if α-helix αA and β-strands βB and βB' are treated as 

insertions (Figure 3.4d). If we include α-helix αA and β-strands βB and βB' and treat α-helix 

α1 and β-strand β2 as insertions, this domain adopts a ferredoxin-like fold (Figure 3.4e). 

Weather or not to assign this protein domain into the thioredoxin-like fold group depends on 

which group of secondary structures we treat as insertions: αA, βB and βB', or α1 and β2. 

Comparisons between αA, βB, βB' and α1, β2 shows that αA, βB, βB' are seemingly more 

important (i.e. core) secondary structure elements than α1 and β2. αA is a 16 residues long 

α-helix that extensively interacts with the 18 residues long central α-helix α2; while α1 is 

only a 6 residues long, one and half-turn α-helix that interacts with the central α-helix α2 

through just a few residues. The average length of the three central β-strands β1, β3 and β4 is 

about 9 residues long. If we consider βB and βB' as one β-strand interrupted by a loop, it is 7 

residues long and forms 5 hydrogen bonds with one of the central β-strands β4; while β2 is 4 

residues long and forms only 2 hydrogen bonds with β1. Therefore, αA, βB and βB' are more 

important secondary structure elements than α1 and β2, and thus should not be treated as 
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insertions. Hence, the structural core of the protein domain is not formed by the thioredoxin-

like secondary structure elements. In addition, at the crossover of the loops connecting β1-α1 

(L1) and β2-β3 (L2), L1 is below L2 in a typical thioredoxin-like fold in the orientation 

shown in Figure 3.1d, while L1 is above L2 in Ftr in the same orientation shown in Figure 

3.4d. As a result, although Ftr contains the thioredoxin-like motif, it is not a thioredoxin-like 

fold protein, but a ferredoxin-like fold protein (Figure 3.4e). The reasoning for ruling out the 

N-terminal domain of subunit A of Ftr (1ftrA), the catalytic domain of type 1 cytotoxic 

necrotizing factor (1hq0A), and replication terminator protein (1ecrA) is similar. 

3.6 CONCLUSIONS 

A hierarchical structure classification of thioredoxin-like fold proteins has been 

carried out. We define the thioredoxin-like fold and identify 723 protein domains as 

thioredoxin-like fold. These domains are grouped into eleven evolutionary families. A 

structure-based multiple sequence alignment of 90 representative thioredoxin motif-

containing proteins is manually constructed. Analysis of the secondary structure connectivity 

identifies four types of circular permutations and a potential functional/packing unit. 

Analysis of active site locations reveals two major functional sites for the thioredoxin motif-

containing proteins and one rare example of homologous protein domains possessing 

different functional sites. Comparison to existing structure classifications shows that our 

thioredoxin-like fold group is broader and more inclusive. 
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Figure 3.1 Thioredoxin-like Fold and Its Observed Circular Permutations 
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Thioredoxin-like fold and its observed circular permutations. (a) The topological 
diagram of the thioredoxin-like fold. α-helices and β-strands are shown as blue cylinders and 
yellow arrows, respectively, the lines connecting different secondary structures represent 
loop regions between them. Dotted loops indicate the termini positions of the four types of 
circular permutations that we observed. No termini were observed at solid loop locations. 
Loops shown in red indicate the type i active site location. (b) The query matrix of the 
thioredoxin-like fold of type I circular permutation. Secondary structures are consecutively 
numbered in Arabic numbers. Upper case letters E (β-strand) and H (α-helix) indicate the 
type of secondary structure. Lower case letters c and t indicate parallel and anti-parallel 
hydrogen-bonding interactions between secondary structures, respectively. Upper case letter 
X indicates that no interactions were considered. Upper case letters R and L indicate right-
handed and left-handed chirality in a triplet of secondary structures, respectively. Ribbon 
diagrams of (c) human thioredoxin (1ert (Weichsel, Gasdaska et al. 1996)), a representative 
of type I circular permutation, (d) yeast ribosomal protein L30 (1cn8A (Mao, White et al. 
1999)), a representative of type II circular permutation, (e) E. coli cytidine deaminase 
(1aln_1 (Xiang, Short et al. 1996)), a representative of type III circular permutation, and (f) 
bacteriophage HK97 capsid protein gp5 (1ohg (Helgstrand, Wikoff et al. 2003), previous 
PDB ID: 1fh6), a representative of type IV circular permutation, were produced using the 
program MOLSCRIPT (Kraulis 1991). Corresponding secondary structure elements are 
colored and named as in diagram (a). Elements corresponding to inserted domains are shown 
in white. The long insertion in capsid protein gp5 is shown in purple in (f). In (c), (e), and (f), 
active site residues are depicted in red ball-and-stick representation. In (d), active site 
residues interacting with RNA are shown in red. The orange sphere in (e) shows a zinc ion.  
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 5  1qd9A   71 ---VVKATVFIA--------DMEQFA-EVN---EVYGQYFDTHK--------PARSCVEVARLP----------------------------------------------------------KDALVEIEVIA 122|28 YSSGQIPLTPSGE-MVNGDIKEQTHQVFSNLKAVLEEAGASFET----  70 
    1oniA   76 ---VVKTTVLLA--------DINDFN-TVN---EIYKQYFKSNF--------PARAAYQVAALP----------------------------------------------------------KGSRIEIEAVA 127|32 YISGQIGMDPSSGQLVSGGVAEEAKQALKNMGEILKAAGCDFTN----  75 
    1qu9A   71 ---IVKTTVFVK--------DLNDFA-TVN---ATYEAFFTEHNAT-----FPARSCVEVARLP----------------------------------------------------------KDVKIEIEAIA 125|28 ITSGQIPVNPKTG-EVPADVAAQARQSLDNVKAIVEAAGLKVGD----  70 
 6  1gx1A   91 ---LGNVDVTIIAQ---APKMLPHIP-QMR---VFIAEDLGCHM--------DDVNVKATTTEKLGF---------------------------------------------------TGRGEGIACEAVALL 154|2  RIGHGFDVHAF(19)LAHSDGDVALHALTDALLGAAALG---------  55 
    1iv1A   91 ---LLQASLVLTLD---RPKLGPHRK-ALV---DSLSRLLRLPQ--------DRIGLTFKTSEGLA-------------------------------------------------------PSHVQARAVVLL 150|2  RIGYGEDSHRL(19)LAHSDGDAALHALTDALLSA-YGLG--------  55 
 7  1cliA  102 ---PLFFLDYYAT----GKLDVDTAS-AVI---SGIAEGCLQSG-------CSLVGGETAEMPGMYH------------------------------------------------------GEDYDVAGFCVG 162|61 VSGTDGVGTKLRLAMDLKRHDTIGIDLVAMCVNDLVVQGAE------- 101 
11  1ohgA  271 ----SASGIVL-------------NP-RDW---HNIALLKDNEGRYIF(11)WGLPVVPTKAQ-----------------------------------------------------------AAGTFTVGGFD--(42)--PTAIIKGT 380|252 DTRADIIAHAIYQVTESEF------------ 270 
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Figure 3.2 Structure-based multiple sequence alignment of representative thioredoxin-

like protein domains 
 
(Please see the previous page for the Figure) Each sequence is labeled by its PDB identifier followed 
by an optional chain identifier at the 5th position and an optional domain identifier for duplicated 
domains at the 6th position. Sequences are grouped according to 11 evolutionary families. The first 
and the last residue numbers are indicated for each sequence. Sequences of type II, III and IV circular 
permutations are rearranged to align their corresponding secondary structure elements with the type I 
circular permutation. The termini in these proteins are separated by a "|" and the residue numbers 
around the permuted region are shown in red. Long insertions in loop regions are omitted with the 
number of missing residues in parentheses. Sequences in lower case represent disordered regions in 
structures. Sequences in italics differ in secondary structure from the consensus secondary structure 
of the alignment. Uncharged residues at mainly hydrophobic positions are highlighted in yellow and 
magenta asterisks mark the hydrophobic positions that were used to aid alignment of α-helices. 
Conserved residues within each family are highlighted in black. The diagram of secondary structures 
(α-helices as cylinders and β-strands as arrows) is shown above the alignment. Representative protein 
sequences of each evolutionary family are included in the alignment. They are as follows. 1. phenol 
hydroxylase C-terminal domain (1fohA), glutathione peroxidase (1gp1A), cytochrome c maturation 
oxidoreductase CcmG (1kngA), soluble domain of membrane-anchored thioredoxin-like protein TlpA 
(1jfuA), peroxiredoxins (1prxA, 1qmvA, 1hd2A, 1nm3A1), alkyl hydroperoxide reductase AhpC 
(1kygA), tryparedoxin (1i5gA), disulfide bond isomerase DsbC C-terminal domain (1eejA), chloride 
intracellular channel 1 clic1 (1k0nA), glutathione S-transferases (1gwcA, 1ljrA, 1ev4A, 1jlvA, 
1eemA, 2gsq, 1pd21, 2gstA, 1lbkA, 1f2eA, 1fw1A, 1axdA), GST-like domain of elongation factor 1-
gamma (1nhyA), nitrogen regulation fragment of yeast prion protein ure2p (1k0aA), glutaredoxins 
(1g7oA, 1nm3A2, 1aazA, 1qfnA, 1kte, 1fovA), NrdH-redoxin (1h75A), thioredoxins (1ert, 1faaA, 
1gh2A, 1ep7A, 1t7pB, 1thx, 1iloA), thioredoxin/glutaredoxin-like protein MJ0307 (1fo5A), arsenate 
reductase ArsC (1jzwA), disulphide bond oxidases DsbA (1bed, 1un2A), phosducin (1a0rP), Alkyl 
hydroperoxide reductase subunit F AhpF N-terminal domain (1hyuA1, 1hyuA2), protein disulfide 
isomerases (1a8l_1, 1a8l_2, 1mek, 2bjxA), calsequestrin (1a8y_2, 1a8y_1, 1a8y_3), endoplasmic 
reticulum protein ERP29 N-terminal domain (1g7eA), spliceosomal protein U5-15Kd (1qgvA), 
thioredoxin-like 2Fe-2S ferredoxin (1f37A); 2. small domains of the RNA 3'-terminal phosphate 
cyclase (1qmhA); 3. eukaryotic ribosomal protein L30e (1cn8A, 1h7mA), ribosomal protein L7ae 
(1jj2F), spliceosomal 15.5kd protein (1e7kA), RNA 2'O-methyltransferases N-terminal domain 
(1gz0A, 1ipaA), eukaryotic peptide chain release factor subunit 1 ERF1 C-terminal domain (1dt9A); 
4. tubulin β-subunit (1jffB ), tubulin α-subunit (1jffA ), cell-division proteins FtsZ (1fsz, 1ofuA), 
dihydroxyacetone kinase subunit K (1oi2A); 5. chorismate mutases (2chtA, 1odeA), purine regulatory 
protein YabJ (1qd9A), translational Inhibitor Protein P14.5 (1oniA), hypothetical protein YjgF 
(1qu9A); 6. 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthases (1gx1A, 1iv1A); 7. 
aminoimidazole ribonucleotide synthetase N-terminal domain (1cliA); 8. two-domain CDA (1aln_1, 
1aln_2), one-domain cytidine deaminase (1jtkA), cytosine deaminase (1p6oA); 9. AICAR 
transformylase domain of bifunctional purine biosynthesis enzyme ATIC (1m9nA1, 1m9nA2); 10. 
nuclease Nuc (1bysA), phospholipase D (1f0iA1, 1f0iA2), tyrosyl-DNA phosphodiesterase TDP1 
(1jy1A1, 1jy1A2); 11. domain A of capsid protein gp5 (1ohgA). 

51 



 

 

Figure 3.3 Active site locations 

 
Active site locations. (a) Ribbon diagram of bacillus chorismate mutase (2cht (Chook, Ke et 
al. 1993)) with its substrate analogs shows the type ii active site location. The α-helices and 
β-strands are numbered as in Figure 3.1a, but are colored differently in different domains 
with inserted elements in white, and substrate analog BAR in red. The three domains are 
viewed along their three-fold axis. One BAR molecule is located at each of the three clefts 
between two adjacent domains. (b) Ribbon diagram of two thioredoxin-like domains in the 
AICAR Tfase part of bifunctional purine biosynthesis enzyme ATIC (1m9n (Wolan, 
Greasley et al. 2002)) illustrates an unusual active site location. The second domain of one 
monomer is colored as in Figure 3.1a, while the first domain of another monomer is shown in 
a different color scheme. The other two thioredoxin-like domains of the AICAR Tfase part 
are omitted for clarity. The substrate AMZ is shown in brown and marks the active site. Two 
catalytic residues from the first domain are shown as ball-and-stick in red. A potassium ion 
represented by an orange sphere binds to the loop (shown in red) between α3' and β4 of the 
second domain. Both ribbon diagrams were generated using the program MOLSCRIPT 
(Kraulis 1991). 
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Figure 3.4 Structure Analogs 

 
Structure analogs. Ribbon diagrams of (a, b) E. coli peptide methionine sulfoxide reductase 
(1ff3 (Tete-Favier, Cobessi et al. 2000)), (c) the fourth metal-binding domain of human 
Menkes copper-transporting ATPase (1aw0 (Gitschier, Moffat et al. 1998)), a ferredoxin-like 
fold protein, and (d, e) archaeon formylmethanofuran:tetrahydromethanopterin 
formyltransferase (1ftr (Ermler, Merckel et al. 1997)). Protein domains in (a) and (b) are the 
same, however, in (a), the elements of the thioredoxin-like motif are colored in yellow and 
blue; in (b), the elements of the ferredoxin-like motif are colored in yellow and blue. 
Similarly, we colored the 1ftr domain in (d) and (e). In (d), the loops L1 and L2 are shown in 
red. All ribbon diagrams were generated using the program MOLSCRIPT (Kraulis 1991). 
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Table 3.1 Summary of Thioredoxin-like Domain Families 

Family Circular 
permutation 
type 

Active site 
location type 

Representatives in the alignment 

1. Thioredoxin I i 1fohA, 1gp1A, 1kngA, 1jfuA, 1prxA, 1kygA, 
1qmvA, 1hd2A, 1nm3A, 1i5gA, 1eejA, 1k0nA, 
1gwcA, 1ljrA, 1ev4A, 1jlvA, 1eemA, 1nhyA, 2gsq, 
1pd21, 2gstA, 1lbkA, 1f2eA, 1k0aA, 1fw1A, 
1g7oA, 1axdA, 1aazA, 1qfnA, 1kte, 1fovA, 1h75A, 
1ert, 1faaA, 1gh2A, 1ep7A, 1t7pB, 1thx, 1iloA, 
1fo5A, 1jzwA, 1bed, 1un2A*, 1a0rP, 1hyuA, 1a8l, 
1mek, 2bjxA, 1a8y, 1g7eA, 1qgvA, 1f37A 

2. RTPC small 
domain 

I Unknown 1qmhA 

3. Ribosomal 
protein L30e 

II i 1cn8A, 1h7mA, 1jj2F, 1e7kA, 1az0A, 1ipaA, 1dt9A 

4. Tubulin C-
terminal domain 

II i 1jffB, 1jffA, 1fsz, 1ofuA, 1oi2A 

5. Bacillus 
chorismate 
mutase 

II ii (trimer) 2chtA, 1odeA, 1qd9A, 1oniA, 1qu9A 

6. MECP 
synthase 

II ii (trimer) 1gx1A, 1iv1A 

7. PurM II ii (dimer) 1cliA 
8. Cytidine 
deaminase 

III i 1aln, 1jtkA, 1p6oA 

9. AICAR Tfase 
domain of ATIC 

III Unusual 1m9nA 

10. 
Phospholipase D 

IV i 1bysA, 1f0iA, 1jy1A 

11. Gp5 domain 
A 

IV ii (hexamer or 
pentamer) 

1ohgA** 

*   Previous PDB identifier: 1dyv 
** Previous PDB identifier: 1fh6 
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CHAPTER 4:  
PCOAT: A Tool For Protein Positional Correlation Analysis 

4.1 INTRODUCTION 

4.1.1 Background 

Positional correlation or covariation refers to the phenomenon that mutations at one 

position of a protein influence the mutations at other positions of the protein during 

evolution. Correlation between positions may arise for structural or functional reasons, such 

as stabilizing local contact (Mateu and Fersht 1999) or affecting protein functions through 

networks of interactions (Suel, Lockless et al. 2003). Different methods have been developed 

to detect and evaluate positional correlations in a multiple sequence alignment, including 

approaches based on mutual information (Crowder, Holton et al. 2001), chi-square test 

(Larson, Di Nardo et al. 2000), and correlation coefficient (Saraf, Moore et al. 2003). Each 

method has its advantages and limitations (Pollock and Taylor 1997). In addition, 

distinguishing structurally or functionally important correlations from background 

correlations caused by phylogeny or stochastic events remains difficult (Atchley, Wollenberg 

et al. 2000). 

4.1.2 Objective 

Aiming at the problems of the existing methods, we have developed a program 

(Positional Correlation Analysis Tool) that performs positional correlation analysis 

comprehensively and systematically. We have implemented different statistical significance 

estimation methods to identify correlated position pairs, amino acid pairs and networks of 

correlated positions in an input alignment, and utilized multiple sequence weighting and 

sampling methods to eliminate the background correlations. Our program should be useful 
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and convenient for researchers to identify candidate residues for structurally or functionally 

important interactions in their protein families. 

4.2 ALGORITHMS 

For an input multiple sequence alignment, PCOAT performs the positional 

correlation analysis in four steps. First, the effective count of every amino acid pair at each 

position pair is estimated. Second, correlation scores of every position pair and amino acid 

pair are determined with corresponding statistical significances and the pairs that are 

significantly correlated are identified. Next, individual positions that are highly correlated 

with multiple other positions are detected, and an optional fourth step identifies the networks 

of highly correlated positions. 

4.2.1 Estimation of effective counts 

In order to eliminate background correlations (i.e. help to remove phylogenetic 

artifact) and correct for redundant sequences in the input alignment, we implemented three 

weighting methods to estimate the effective count of every amino acid pair at each position 

pair: unweighted count, Henikoff weighting (HW) count (Henikoff and Henikoff 1994), and 

altered position-specific independent count (PSIC) (Sunyaev, Eisenhaber et al. 1999; Pei and 

Grishin 2001). Both HW and PSIC methods have been modified to calculate the weight for a 

position pair instead of for a single position. The estimated effective counts are stored in 

contingency tables. Invariant positions and gapped positions are removed to eliminate 

potential false positives. 
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4.2.2 Identification of statistically significantly correlated position pairs and amino acid 

pairs 

To identify significantly correlated position pairs and amino acid pairs, we have 

implemented two statistical tests: Pearson's chi-square test of independence and likelihood 

ratio test. Both tests have been proved useful for positional correlation analysis (Larson, Di 

Nardo et al. 2000; Crowder, Holton et al. 2001). 

Pearson’s Chi-square test 

Our null hypothesis is that the amino acid substitutions at any two positions are 

independent of each other. Based on this hypothesis, we have *ab a b
ij i jf f f= , where ab

ijf  is 

the expected frequency of amino acid a occurring at position i and amino acid b occurring at 

position j in the same sequences, a
if  is the observed frequency of amino acid a at position i, 

and b
jf  is the observed frequency of amino acid b at position j. Thus, the expected count of 

amino acid pair a and b at position pair i and j is e fab ab
ij ij ijT= ∗ , where Tij is the total effective 

number of sequences at position pair i and j. Pearson's chi-square statistic  is calculated as 2χ
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pair p and q, where  is the observed effective count of amino acid pair a and b at position 

pair i and j, and a and b take the value of residue type p and p (all residue types but p), and 

q and q (all residue types but q), respectively.  is utilized to measure the fit between the 

observed counts and the expected counts, and obeys the chi-square distribution when the null 

hypothesis (no correlation) is true. We calculate the chi-square probability of  for amino 

acid pairs, and the Z-score of  for position pairs.  
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Sampling the alignment by vertical shuffling 

The mean and standard deviation parameters of a random  distribution that are 

required to calculate the Z-scores can be the theoretical mean and standard deviation of the 

chi-square distribution, or can be obtained from sampling the alignment by vertical shuffling. 

Calculating Z-scores using parameters obtained by sampling helps eliminate amino acid 

composition bias, and thus increases the prediction accuracy. 

2χ

Likelihood ratio test 

Likelihood ratio statistic G2 is calculated as 2

, 1..20
2 log

ab
ijab

ij ij ab
a b ij

n
n
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= ∑G  for position pair i 

and j, and 2
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,
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a p p ij
b q q

n
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e=
=

= ∑G  for amino acid pair p and q. G2 also follows the chi-

square distribution under the null hypothesis. We calculate chi-square probabilities of G2 for 

amino acid pairs and Z-scores of G2 for position pairs the same way as for . 2χ

4.2.3 Identification of highly correlated positions 

To identify individual positions that are highly correlated with other positions in the 

input alignment, we calculate the  and G2 of each position i as , G G2χ ∑
≠
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based on the addition theorem of chi-square distribution, where N is the total number of 

positions in the alignment. The Z-scores of and  of each position are calculated and 

ranked by their statistical significance. 
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4.2.4 Identification of networks of correlated positions 

To identify potential networks of correlated positions, we implement two clustering 

methods. Groups of inter-correlated positions can be detected by single-linkage or complete-

linkage clustering when the degrees of correlations between them are higher than a user-

definable significance threshold. When using single-linkage clustering, the data points are 

loosely connected and the average distance between data points could be long. When using 

complete-linkage clustering, the data points are more compactly connected with each other 

and the average distance between data points is shorter compared to single-linkage 

clustering. User could select different options according to their needs. 

4.3 APPLICATIONS AND COMPARISON TO OTHER METHODS 

Comparison to other correlation analysis programs, DEPENDENCY (Tillier and Lui 

2003) and CRASP (Afonnikov, Oshchepkov et al. 2001), shows that PCOAT is the only 

correlation analysis program that identifies correlated position pairs as well as correlated 

amino acid pairs, highly correlated positions, and networks of correlated positions. In 

addition, PCOAT runs faster (1.5-5 times depending on the family size) and is capable to 

analyze alignments with large number of sequences (more than 10,000), while other 

programs cannot. We have applied PCOAT to a number of Pfam (Bateman, Coin et al. 2004) 

alignments. Analysis of the C2H2 zinc finger family alignment (28,239 sequences, April 

2004) using PCOAT identified positions 52 and 57 as the most correlated position pair, and 

residues Arg52 and Asp57 at these two positions as the most correlated amino acid pair 

(Figure 4.1). It has been shown that positions 52 and 57 are important substrate specificity 

determinants for zinc finger binding to dsDNA (Iuchi 2001). Arg52 and Asp57, binding to G 

and C or A of the substrate, respectively, are the dominant amino acids at positions 52 and 57 

in the triple-C2H2 class of zinc finger proteins (Iuchi 2001). Both DEPENDENCY (Tillier 

and Lui 2003) and CRASP (Afonnikov, Oshchepkov et al. 2001) cannot analyze this C2H2 

alignment because of the large number of sequences. Working on a reduced-size (10,000) 
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C2H2 alignment, DEPENDENCY detected positions 52 and 57 as one of the four 

significantly correlated position pairs but took 4.75 times the running time of PCOAT (Table 

4.1). Analysis of the ACT domain alignment (1380 sequences, April 2004) using PCOAT 

identified a network of nine correlated positions forming a surface patch on the β-strands of 

the domain (Figure 4.2). Structure analysis of the phenylalanine hydroxylase shows that the 

ACT domain interacts with the catalytic domain through the β-strands (Kobe, Jennings et al. 

1999). The correlation network identified by PCOAT possibly plays a role in this interaction. 

4.4 PROGRAM AVAILABILITY 

The source code and executable files for different operating systems of PCOAT are 

available for download at ftp://iole.swmed.edu/pub/PCOAT/. This ftp site also contains a 

detailed description of the program and the complete results of PCOAT analysis on C2H2 

alignment and ACT domain alignment. 

4.5 CONCLUSIONS 

A computer program, PCOAT (Positional Correlation Analysis Tool), has been 

developed to perform positional correlation analysis for protein multiple sequence alignment 

in order to identify structurally or functionally important interactions between positions in a 

protein family. Different statistical methods have been implemented to detect highly 

correlated position pairs, amino acid pairs, individual positions, and networks of correlated 

positions, and developed multiple sequence weighting and sampling methods to eliminate 

background correlations caused by phylogeny and stochastic events. This program runs 

relatively fast and is suitable for analyzing alignments containing large number of sequences. 

Applying PCOAT to protein families shows that the program is useful to identify structurally 

or functionally important residues. 
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Figure 4.1 Structure Diagram of C2H2 Zinc Finger Showing Correlated Pairs 

 
Structure of a C2H2 zinc finger (1zaa_C:5-32) showing that residues Arg18 and Asp20 
(Arg52 and Asp57 in the alignment) are in close local contact (2.7 Å) and interact with 
nucleotides G and A in the substrate, respectively. 
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Figure 4.2 Structure Diagram of ACT Domain Showing Correlated Network 

 
The ACT domain (regulatory domain) of rat phenylalanine hydroxylase (1phz_A:33-111). 
Residues in the correlation network are shown as atom spheres. 
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Table 4.1 Comparison of Analysis Results Using PCOAT, DEPENDENCY and CRASP 

 Top 3 

significantly 

correlated 

 

PCOAT 

 

DEPENDENCY 

 

CRASP 

Positions 57  47  52 N/A N/A 

Position 

pairs 

52 and 57 

53 and 60 

52 and 58 

4 and 63 

52 and 57 

16 and 63 

47 and 26 

52 and 72 

64 and 72 

Amino acid 

pairs 

R@52 and 

D@57* 

G@26 and K@46 

E@16 and Q@63 

N/A N/A 

Zinc finger 

family 

alignment** 

CPU time 

(s) 

7.25 34.43 N/A 

Network or 

correlated 

positions 

4 7 42 44 56 57 

74 75 77 

N/A N/A ACT 

domain 

alignment 

CPU time 

(s) 

34.53 39.31 N/A 

* Means amino acid R at position 52 and amino acid D at position 57 are highly correlated. 
** Zinc finger family alignment of reduced size (10,000 sequences). 
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CHAPTER 5:  
Combining Sequence Profile With Predicted Secondary Structure For 

Structure Modeling And Homology Detection 

5.1 INTRODUCTION 

5.1.1 Background 

Protein structures are important in terms of understanding the molecular mechanisms 

of their biological functions. Before the era of structural genomics, the protein structures 

available were biased in the structure and function space, stemming from experimental 

limitations and particular target selections by structural biologists (Xie and Bourne 2005). 

This bias results in the usage limitation of protein structure prediction by homology modeling 

method, since vast protein sequences have no nearby (i.e. of similar sequences) structures 

available. With the progress of structure genomics initiatives (Burley, Almo et al. 1999; 

Burley 2000), a set of landmark protein structures are being solved. These landmark protein 

structures are intended to fully map the protein structure and function space, rendering most 

newly discovered proteins within the homology modeling distance from a landmark structure 

(Lattman 2005). As a result, sequence-based homology modeling methods for protein 

structure prediction are of great practical importance.  

64 

In order to develop more powerful sequence similarity detection and alignment 

methods for structural and functional prediction purposes, we can add sequence-based 

predicted structural information on to the sequence profile information. Adding predicted 

secondary structure information to sequence profiles has been shown to help structure 

predictions by finding remote structure template (Kinch, Wrabl et al. 2003). Secondary 

structure prediction methods are basically mature now. PSIPRED (Jones 1999), one of the 

leading secondary structure prediction methods, is currently reported to have an average per 

residue accuracy (Q3) of ~78% (Eyrich, Marti-Renom et al. 2001; Bryson, McGuffin et al. 



 

2005). The predicted secondary structures have been used in different studies or search 

methods (Ginalski, Pas et al. 2003; Tang, Xie et al. 2003; Ginalski, von Grotthuss et al. 2004; 

Teodorescu, Galor et al. 2004). Among them, HHsearch (Soding 2005) and Prof_ss (Chung 

and Yona 2004) are two most recently developed stand-alone sequence similarity search 

programs. 

5.1.2 Objective 

The purpose of our study is to improve sequence similarity search methods based on 

COMPASS (Sadreyev and Grishin 2003) (a profile-profile comparison method) by adding 

predicted secondary structure information for better distant similarity detection ability and 

alignment quality. There are different approaches to incorporate secondary structure 

information with sequence profiles. We compare their performance and find the best 

approach to use in our method. 

5.2 ALGORITHM DEVELOPMENT 

Our method is developed based on the theories of PSI-BLAST and COMPASS 

methods. The major improvement is to integrate predicted secondary structure information 

into the sequence profile. Compared to other methods, the strong point of our method is at 

the statistical significance estimation of the alignment scores. Four major steps are required 

in our algorithm to produce sequence alignments: (i) constructing substitution matrices of 

amino acid and secondary structure element; (ii) developing scoring function to score the 

combined sequence and secondary structure information between two matched positions; (iii) 

applying alignment algorithm to align two profiles and obtaining optimal alignment score; (iv) 

estimating statistical significance of the resulting optimal alignment. 
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5.2.1 Construction Of Substitution Matrices 

Data used in substitution matrix constructions 

The substitution matrices of amino acid and secondary structure element are 

constructed based on the sequence alignment data in the Blocks+ database (Henikoff and 

Henikoff 1991) and the predicted secondary structure data generated by PSIPRED (Jones 

1999). Protein blocks are segments of ungapped multiple sequence alignments that 

correspond to the most highly conserved regions of the protein families. The Blocks+ 

database (Henikoff, Henikoff et al. 1999) version 13.0 consist of 11,853 blocks, of which 

8656 blocks are taken from the Blocks database(Henikoff and Henikoff 1991) that are 

constructed automatically from the SWISS-PROT and TrEMBL sequences, and 3197 blocks 

are taken from the PRINTS database (version 31.0)(Attwood, Beck et al. 1994; Attwood, 

Bradley et al. 2003) that uses manual seeds followed by automatic methods. The secondary 

structures for each protein sequence in the Blocks+ database are predicted using PSIPRED, 

and the resulting predicted secondary structure elements, helix (H), extended strand (E) and 

unstructured coiled regions (C), are aligned with each other through the corresponding 

sequence alignment.  

Clustering of sequences within blocks 

In order to balance the information provided by multiple closely related sequences 

and single divergent sequences, we first need to weight the sequences in each block in the 

Blocks+ database. The weighting is done through clustering the sequences within each block 

by sequence identity using single-linkage clustering. Each resulting cluster is weighted as a 

single sequence (Henikoff and Henikoff 1992). 

The BLOSUM series of amino acid substitution matrices shows that clustering at 

identity level 62% (BLOSUM62) gives best performance for sequence similarity detection. 

As the sequences in the Blocks+ database has expanded a great deal since the time when 

BLOSUM matrices were constructed, we screen for the optimal sequence identity level of 
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clustering for the database we use by comparing values in our amino acid (AA) substitution 

matrix to BLOSUM62. An initial coarse screen of 45%, 62%, 80% and 90% followed by a 

refined screen around 80% find out that our AA substitution matrix of identity level 80% 

matches best with the values in BLOSUM62 (Figure 5.1). Therefore, we decide to construct 

all the substitution matrices at 80% sequence identity level. 

Calculation of substitution matrices 

Three types of substitution matrices are constructed based on these alignments: the 

20x20 amino acid substitution matrix, the 3x3 secondary structure element substitution 

matrix and the 60x60 substitution matrix of combined amino acid and secondary structure 

symbols (e.g. If the predicted secondary structure element for amino acid Ala in a sequence 

is Helix, then Ala-helix is treated as one symbol. And there totally 60 combined symbols.). 

We will use the term symbol to refer to all three types of units in the substitution matrices, i.e. 

amino acid residue in the 20x20 substitution matrix, secondary structure element in the 3x3 

substitution matrix, or the combined symbol (e.g. Ala-helix) in the 60x60 substitution matrix. 

The substitution matrices are constructed the same way as the BLOSUM matrices 

(Henikoff and Henikoff 1992) with an extension to multiple dimensions (20x20, 3x3 and 

60x60). Here we briefly describe the essential steps and formulae used in the construction 

(for more details, see Ref: Henikoff 1992). To construct the substitution matrices, the first 

step is to derive a count table that contains the observed counts of all possible pairs of 

symbols  (dim equals to 20, 3 and 60, respectively, for each type of substitution matrix) 

in all the clustered blocks. This is done column by column for each block of aligned symbols 

and then sums the counts up. Second is to derive the observed frequencies of symbol pairs 

occurring in an aligned position  from the observed count table using formula  

dim,ijf

dim,ijq

 67



 

Equation 5.1    
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where the denominator is the total count of all symbol pairs. The third step is to calculate the 

observed background frequencies  for each symbol using formula dim,ip
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, and to calculate the expected frequencies of symbol pair i and j 

occurring in an aligned position  as  for i ≠ j and  for i = j. dim,ije dim,dim,2 ji pp dim,dim, ji pp

We are then able to calculate the substitution score between symbols i and j using 

formula  

Equation 5.2   )/(log dim,dim,2dim, ijijij eqS = . 

This formula gives substitution scores in bit units, consistent with the BLOSUM62 

substitution matrix used in the NCBI BLAST search.  

5.2.2 Effective Count Calculation For Multiple Sequence Alignment 

Our method is used to align two sequence alignments, each with a predicted 

secondary structure. The input sequence alignments can be generated using different methods 

or programs (e.g. manual, PSI-BLAST, Pfam) and the distances between sequences in each 

alignment is unequal. In order to balance the sequence information and make sure the 

information provided by single distant sequences is not overwhelmed by a large number of 

similar sequences, each sequence in a group of similar sequences should contribute less to 

the sequence profile than sequences that are very distant to all others. Therefore, we need to 

apply a weighting scheme to the input sequence alignment in order to correct for the unequal 

distances between different sequences. 
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We use a modified position-specific independent count weighting scheme (Sunyaev, 

Eisenhaber et al. 1999; Pei and Grishin 2001) to calculate the effective count  of each 

amino acid at different positions. The effective number of sequences  is calculated as  

effN

effN

Equation 5.3    
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where dim is 20 for protein sequence alignment and thus the denominator is ln0.95,  is 

the average number of different amino acid types per position, and  corresponds to the 

number of random sequences in a random alignment that has the average number of different 

amino acid types per position equals to . When derive the residue content  for a 

given amino acid i at a given position, the method only considered a subset of similar 

sequences that contains i at the given position. 

realN

effN

realN i
realN

This method corrects for the correlation between aligned sequences. When the 

sequences containing i at a given position are identical,  = 1; when the sequences 

containing i at a given position are independent of each other,  equals to the number of 

these sequences. After having the effective counts, it is easy to calculate the effective 

frequency of symbol i as  

i
effN
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for a given position in the alignment. 

5.2.3 Predicted Secondary Structure Information 

Secondary structures of the top sequence of each multiple sequence alignment are 

predicted using PSIPRED version 2.45(Jones 1999; McGuffin, Bryson et al. 2000). 
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PSIPRED uses as input the position-specific scoring matrix (sequence profile) generated by 

PSI-BLAST after three iterations and feeds the profile into a standard feed-forward back-

propagation neural network with a single hidden layer to predict secondary structure. The 

current version of the method takes a consensus prediction from four independently trained 

neural networks and results in an increased accuracy. 

The output of PSIPRED contains three sets. The first set is the predicted secondary 

structure state, either helix (H), extended strand (E) or coil (C), for each amino acid position 

in the seed sequence of the PSI-BLAST profile. The second set is the confidence value 

associated with each predicted state. The confidence value ranges from 1 to 9 with 9 

indicates the most confident predictions. The third set of output is the probabilities of C, H, E 

each occurring at a given amino acid position of the seed sequence. The predicted secondary 

structure state in the first output set is the one with the highest probabilities for this position. 

When using the predicted secondary structure information, we certainly need to take 

into consideration the confidence value or the probabilities besides the predicted state. After 

trying different approaches using confidence value and probabilities, we find that using 

probabilities gives better alignment quality. Therefore, we decide to use probabilities in our 

method and present the predicted secondary structure as a vector [pH, pE, pC] for each residue 

position, where pH, pE, pC are the probabilities (normalized to sum up to 1) for helix, strand 

and coil, respectively. The effective frequencies of secondary structure elements at a given 

position is hence , where i equals to H, E and C, respectively.  i
i pf =3,

5.2.4 Estimation Of Target Frequencies 

Given a multiple alignment, we need to estimate the target frequencies of each 

symbol happening at every position. Because of factors like small sample size and prior 

knowledge about the relationships between symbols, the observed effective frequencies are 

not good estimations of the target frequencies. Studies have shown that a good approach to 

estimate target frequency is to mix the effective frequency with a pseudocount frequency. We 

adopt the pseudocount and target frequency estimation method used in PSI-BLAST and 
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COMPASS. PSI-BLAST and COMPASS use a data-dependent pseudocount method 

introduced by Tatusov et al (Tatusov, Altschul et al. 1994). This method generates 

pseudocount gi,dim for symbol i using the observed effective count fi,dim and the prior 

knowledge of relationships between symbols that is contained in the substitution matrices 

 calculated above. This pseudocount is calculated as  dim,ijS
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where  is the substitution probability between symbol pair i and j in the corresponding 

substitution matrices calculated above. 

dim,ijq

The target frequency is then calculated as a mixture of the effective frequency fi,dim 

and pseudocount frequency gi,dim,  
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The weight-parameters α and β in the formula are determined empirically as Nc-1 (Nc  is the 

average number of symbol types per position for the input alignment) and 10, respectively, 

the same as in PSI-BLAST and COMPASS. 

5.2.5 Scoring System for Amino Acid And Secondary Structure Profiles 

Profile calculation 

Profiles are position-specific scoring matrices. They represent the preferences of 

characteristic amino acids, and in our case secondary structures, of each particular protein 

family. To calculate the profile scores for each position (column) in an alignment, we use the 

proved log-odds form (Altschul, Madden et al. 1997; Schaffer, Wolf et al. 1999; Sadreyev 
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and Grishin 2003), 
dim,

dim,log
i

i

p
Q

, where  is the target frequency of symbol i, and  is 

the corresponding background frequency of i. 

dim,iQ dim,ip

Basic similarity scoring function 

In order to align two profiles, we need to have a scoring function to evaluate the 

similarity between two aligned columns, 1 and 2, each from one of the alignment 

respectively. We use the basic scoring formula that is extended from COMPASS, which is in 

turn modified from PSI-BLAST scoring function,  
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where Q  and  are the target frequencies of symbol i in column 1 and column 2, 

respectively, n  and  are the effective counts of symbol i in column 1 and 2, 

respectively. c1 and c2 are the weighting parameters. They are calculated as  
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This symmetric scoring formula is derived from the probabilities of occurrence of column 1 

and column 2 given column 2 and column 1, respectively. c1 and c2 are determined so that in 

the special case when there is only one sequence in a column, the scoring function is 

transformed to that of PSI-BLAST (for more details, see Ref: COMPASS).  

Scoring systems to incorporate secondary structure with amino acid profiles 

Two scoring systems are used to incorporate the secondary structure with amino acid 

profiles. One is a linear combination of the amino acid score ( ) and secondary structure 2020xS
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score ( ) as shown in Equation 5.9. The weighting parameters of the two scoring items 

sum up to 1 and we only need to optimize one parameter, w, which is the weight for 

secondary structure score. After screening from 0 to 1 with a 0.2 increment, w is optimized to 

0.2 according to alignment quality. Thus, the optimal weight ratio between amino acid score 

and secondary structure score is about 4:1. 

33xS

60,ip
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3320 x+

Equation 5.9    332020332020 )1( ××+ ∗+∗−= SwSwS xx  

The other scoring system we used to incorporate secondary structure and amino acid 

profiles is to score the combined symbols directly with a 60x60 alphabet. Based on Equation 

5.4 and the effective frequency of predicted secondary structure elements (section 5.2.3), the 

effective frequency of combined symbol k is calculated as  
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for a given position in the alignment, where symbol k is the combination of i (a type of amino 

acid) and j (a type of secondary structure element). After having the effective frequencies of 

combined symbols, we are able to calculate their effective counts  and target frequencies 

, and use Equation 5.11 to calculate the combined score . 
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where  is the background frequency of combined symbol i, and c1 and c2 are calculated 

the same way as in Equation 5.8.  

Other scoring systems have also been tried out, including linear combination of  

and , and using  alone. Using  alone gives good alignment coverage comparable 

to  but bad alignment accuracy. Linear combination of  and  requires 

6060xS

3S

20x

33xS 33xS

S 6060xS 33xS
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more computation tasks but gives similar alignment quality result compared to . 

Therefore, both approaches are disregarded. 

332020 xxS +

5.2.6 Estimation Of Statistical Significance Of Optimal Alignments 

The local sequence alignment is generated using Smith-Waterman dynamic 

programming algorithm (Smith and Waterman 1981). The optimal alignment is the one with 

maximum score. After obtaining the optimal alignment and its associated score, we use a 

hypothesis testing method to evaluate the statistical significance of the optimal alignment 

score. The null hypothesis is that the similarity between the two aligned sequences with score 

S is the result of random chance. The alternative hypothesis is that the similarity between the 

two aligned sequences with score S is the result of nonrandom reasons and thus is a 

biologically meaningful similarity. 

Determination of statistical parameters 

The statistical test requires knowing the distributions of optimal alignment scores for 

random (non-homologous) alignments. To get the distribution, we generated 10,000 pairs of 

pseudo sequence alignments with secondary structures composed of randomly selected 

columns from real alignments. These randomly sampled columns are selected from Pfam 

10.0 alignments with effective gap content less than 50%. The 10,000 pairs of pseudo-

alignments are then optimally aligned and the scores are calculated. Like PSI-BLAST and 

COMPASS, the distribution of the optimal scores is well fitted by an extreme value 

distribution (EVD) with parameters λ and K (Figure 5.2). 

According to Altschul and Gish’s study (1996, Methods Enzymology), the statistical 

parameters of EVD depend on search space size, i.e. alignment length (len). In our study, the 

statistical parameters are also found to be dependent on another important property of the 

alignment, the effective number of sequences in the alignment (Neff). To study these 

dependencies, we constructed 16 sets of pseudo-alignments of the combinations of 4 
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alignment lengths (len = 100, 200, 300, 500) and 4 effective numbers of sequences (number 

of sequence = 50, 200, 400, 600, corresponding Neff ≈ 10, 15, 17, 18). Each set contains 

10,000 pairs of pseudo-alignments constructed as described above. For each given len and 

Neff, the distribution of the random optimal scores is fitted to an EVD with parameters 

),( lenNeffλ  and .  ),( lenNK eff

The dependencies of λ and K on Neff and len are approximated by planes (Figure 5.3) 

in the form of 111
1 c
l

bNa ++=λ  and 222
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bNaK ++= , where N is the average effective 

number of sequences of the two profiles in the alignment (i.e. the average of Neff1 and Neff2), 

and l is the average alignment length of len1 and len2. The corresponding coefficients are 

derived from Figure 5.3 and the dependency relationships are summarized below. 
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Calculation of E-value 

After knowing the distributions of optimal alignment scores for random alignments, 

we are able to calculate the E-value corresponding to an alignment with optimal score S 

using the simple formula proposed by Karlin and Altschul (Karlin and Altschul 1990; 

Altschul, Madden et al. 1997)  
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Equation 5.12    SKmneE λ−=

where K and λ are the EVD parameters determined above. And m and n are the lengths of the 

two profiles in case of pairwise comparison, or the lengths of query and the database in case 

of database search. 

5.3 RESULTS AND DISCUSSION OF THE SUBSTITUTION MATRICES 

We calculate three substitution matrices, 20x20, 3x3 and 60x60, at the 80% identity 

level. Table 5.1 shows the relative entropies and expected scores (means) of these 

substitution matrices and BLOSUM62. The relative entropy is calculated as 
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log , and it measures the average information available per 

position in an alignment (Altschul 1991). From Table 5.1 we can see that the relative entropy 

and expected score of our 20x20 amino acid substitution matrix are the same as those of 

BLOSUM62. The relative entropies of 3x3, 20x20 and 60x60 increase in that order, and the 

expected scores of them decrease in the same order. This phenomenon may be related to the 

dimensions of the substitution matrices. 

Table 5.1 Relative Entropy and Expected Scores of Substitution Matrices 

 3x3 20x20 60x60 BLOSUM62 

Relative entropy 0.43 0.70 1.12 0.70 

Expected score -0.48 -0.52 -0.88 -0.52 

Evolvement of database reflected in substitution matrices 
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An important parameter in substitution matrix calculation is the sequence identity 

level at which the database sequences are clustered. The results of our screening for identity 

levels show that 80% matches best with the BLOSUM62 level (section 5.2.1, Figure 5.1). 

Therefore, all our substitution matrices are calculated at the 80% identity level. Figure 5.11a 



 

shows that the values in our amino acid substitution matrix at 80% identity level (AA80) are 

comparable to the values in BLOSUM62, while Figure 5.11b shows a systematic difference 

in the values of our AA62 (our amino acid substitution matrix at 62% identity level) and 

BLOSUM62.  

Since we use the same protocol BLOSUM62 used to calculate our AA62, the only 

difference between the two substitution matrices is the different sequence data used in the 

calculation. BLOSUM62 was calculated using the sequence data collected in Blocks database 

in 1992. With vastly more sequences available in the database since then, the sequences 

becomes much more divergent.  

There is a noticeable trend in the differences between our AA62 scores and 

BLOSUM62 scores (Figure 5.11b). Compared to BLOSUM62, the scores for substitutions 

between similar amino acid pairs (the ones with positive substitution scores) are lower in our 

AA62, while the scores for substitutions between dissimilar amino acid pairs (the ones with 

negative substitution scores) are higher. This trend is consistent with the changes in the 

database sequences: the proteins families are including more divergent sequences aligning 

with each other. Hence in order to obtain comparable values as in BLOSUM62, we now need 

to use a more similar sequence clustering identity cutoff, 80%, to simulate the degree of 

sequence diversity more than ten years ago. 

Exchangeabilities of Symbol Pairs 

According to Equation 5.2, the substitution score between a pair of symbols is 

positive if their observed frequency is higher than their expected frequency to occur in an 

aligned position, and negative if their observed frequency is lower than their expected 

frequency. If a pair of symbols has a very high tendency to substitute each other, they must 

possess similar chemical properties that enable their similar structural or functional roles in 

proteins. In addition, their substitution scores will be a large positive value. Therefore, we are 

able to identify similar amino acid/secondary structure pairs by ranking the corresponding 

substitution matrices. 
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All the self-substitutions (diagonal of the substitution matrix) have positive 

substitution scores. For secondary structure substitution matrix (Figure 5.12a), strand-strand 

substitution happens most frequently, helix-helix substitution the second, and coil-coil 

substitution the last but comparable to helix-helix. Other than these self-substitutions, all 

other substitutions between different types of secondary structure elements are not favorable 

(have negative substitution scores). For amino acid substitution matrix (Figure 5.12b), the top 

four similar pairs with substitution scores higher than 1.0 are Tyrosine (Y) and Phenylalanine 

(F), Tyrosine (Y) and Tryptophan (W), Valine (V) and Isoleucine (I), Lysine (K) and 

Arginine (R). These amino acid pairs all share similar structural or chemical properties. 

There are two amino acids that substitute with almost any other amino acids with negative 

scores (except Cysteine with Alanine). They are Cysteine (C) and Proline (P). These two 

amino acids have their unique functional or structural roles in proteins. As a result, they are 

not easily substituted by other amino acids. 

Substitution matrices and secondary structure propensities 

By definition, the transition probability of the 60x60 combined symbol substitution 

matrix, qij,60, reflects the dependency between amino acid substitution and secondary 

structure substitution. In addition, the background frequency of the 60x60 substitution 

matrix, pi,60, reflects the secondary structure propensities for each amino acid type, for pi,60 is 

the frequency of an amino acid type and a secondary structure type occur together. Therefore, 

we can obtain secondary structure propensities from our calculation of the 60x60 substitution 

matrix. The distributions of the alpha-helix and beta-strand propensities by amino acid types 

are shown in Figure 5.13 a & b. Comparisons of the propensities we calculated with the 

Chou-Fasman propensities (Chou and Fasman 1978) show good correlations with R2 = 0.78 

for helix propensities and R2 = 0.82 for strand propensities (Figure 5.13 c&d). 
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5.4 RESULTS AND DISCUSSION OF PFAM-BASED PERFORMANCE 

EVALUATION 

We evaluate the performance of our methods from two aspects, alignment quality and 

homology detection ability. As the largest source of accurate semi-automatic multiple 

sequence alignments and the largest source of automatic structure-based alignments, Pfam 

sequence alignments and FSSP (Holm and Sander 1996) structure alignments are used in the 

evaluations. The sequence alignments of Pfam families are used to construct amino acid 

profiles and the secondary structures are predicted for the top sequences in each alignment 

using PSIPRED (Jones 1999). We compare the evaluation results of our methods to other 

methods, including PSI-BLAST (BLAST) (Altschul, Madden et al. 1997) as the most 

popular tool, COMPASS (Sadreyev and Grishin 2003) as the sequence profile-based method 

to improve upon, and HHsearch (Soding 2005) and Prof_ss (Chung and Yona 2004) as two 

methods that also use incorporated sequence profile and secondary structure information. 

5.4.1 Evaluation of Alignment Quality 

Selection of evaluation data set 

500 Pfam 10.0 family pairs with known three-dimensional (3D) structures and 

structure-based FSSP alignments of sequence identity 14-16% are randomly selected for 

alignment quality evaluation. The Pfam family pairs are grouped into different identity bins 

based on the pairwise sequence identities calculated based on the FSSP alignments. Since we 

want to test the ability of our methods on remotely divergent sequences, we choose to use the 

family pairs in the identity bin of 14-16%. 

Evaluation criteria 

When assessing the alignment qualities, the sequence-based alignments (i.e. 

alignments to be evaluated) are compared to the structure-based FSSP alignments that are 
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used as gold standard. If a pair of residues are aligned the same way in a sequence-based 

alignment as in the FSSP alignment, it is considered a correctly aligned residue pair and is 

called a correct match (Sadreyev and Grishin 2003). 

The alignment quality is evaluated by coverage, local accuracy and global accuracy. 

Coverage measures the fraction of structure-based alignment (usually considered containing 

the longest alignable segments of the two structures) that is reproduced by the sequence-

based alignment. It equals to the length between the farmost correctly aligned residue pairs in 

the sequence-based alignment divided by the length of the structure-based alignment. Local 

accuracy is also called Qmodeler (Yona and Levitt 2002) and measures the percentage accuracy 

within the aligned region generated by sequence-based alignment. It equals to the number of 

correct matches divided by the length of the sequence-based alignment. Global accuracy is 

also called Qdeveloper (Yona and Levitt 2002) and measures the percentage accuracy over the 

entire structure-based alignment that is reproduced by the sequence-based alignment. It 

equals to the number of correct matches divided by the length of the structure-based 

alignment.  

Evaluation results and discussion 

We compare the alignment quality of our method to other methods in two groups. 

One is to compare within its own family, including BLAST, PSI-BLAST and COMPASS. 

We consider these methods of the same family because they use the same basic scoring 

system and the same statistical significance estimation system. The differences between the 

methods are the amount of information they use to generate alignments. BLAST uses single-

sequence vs. single-sequence, PSI-BLAST uses sequence profile vs. single-sequence, 

COMPASS uses sequence profile vs. sequence profile, and our methods used sequence 

profile + secondary structure vs. sequence-profile + secondary structure information. In the 

other group, we compare our method to HHsearch and Prof_ss, that also used sequence 

profile + secondary structure information. Figure 5.4a shows that compared to BLAST, PSI-

BLAST and COMPASS, our methods (both the 20x20+3x3 and the 60x60 scoring systems) 
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give significantly and substantially improved coverage. Compared to HHsearch and Prof_ss, 

our method (using the 20x20+3x3 scoring system) also gives the best coverage. Figure 5.4b 

shows that our methods give best global accuracy in both groups. Figure 5.4c shows that our 

method (the 20x20+3x3 scoring system) gives slightly worse local accuracy compared to 

COMPASS.  

Two scenarios could cause this worse local accuracy. One is that since our method 

gives much longer coverage (~1.5 times) compared to COMPASS, alignments generated by 

our method extend to less similar regions of the two sequences that are more difficult to 

align. The other scenario is that our method generates random alignments, and the long 

coverage leads to large global accuracy. To find out which scenario is closer to the truth, we 

randomly look at the alignments of ~10% of the family pairs. Most of them look like the 

alignments shown in Figure 5.5 in that the alignments generated by COMPASS are short and 

the alignments generated by our method contain the COMPASS alignments and extend a lot 

from the short core regions formed by COMPASS alignments. To further verify our 

observations, we force the alignments generated by our method and COMPASS to have the 

same coverage and then compare their accuracy. We use a global version of the dynamic 

programming algorithm with end gap penalties to generate global alignments for COMPASS 

and our method, thus the coverage of the alignments are all forced to be 1. Now local 

accuracy equals global accuracy and there is just one accuracy measure. Figure 5.6 shows 

that when the coverage are forced to be the same (1.0), our method using the 20x20+3x3 

scoring system gives better accuracy than COMPASS. Even using the 60x60 scoring system, 

our method gives comparable accuracy to that of COMPASS. Therefore, the most plausible 

reason for our method to have a slightly worse local accuracy is because our alignments 

extend to less similar regions that are more difficult to align. 
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5.4.2 Evaluation of Homology Detection Ability 

Selection of evaluation dataset and Protocol of sequence similarity searches 

To evaluate the homology detection ability, we collect all Pfam 10.0 families that 

contain at least one sequence belonging to a FSSP family. 1986 Pfam 10.0 families with 

known 3D structures and available FSSP alignments are selected. An all-against-all search 

with each of the 1986 families as a query to search against all 1986 families is performed for 

each of the sequence-based programs, including our methods, COMPASS, HHsearch and 

Prof_ss. Since these methods all uses multiple sequence profiles, for each query to search 

against all families, 1986 numbers of searches are performed. But for PSI-BLAST, it uses 

profile vs. single sequence search. The sequence profile generated from the sequence 

alignment of each family is used as a query, and the single sequences extracted from the 

multiple sequence alignment of each other family are transformed to a searchable database. 

For each query to search against one Pfam family A, N numbers of PSI-BLAST searches are 

performed with N equals to the number of sequences in alignment A. The sequence 

alignments of query against all sequences in family A are sorted by E-value. The one with the 

most significant E-value is used as the hit alignment and E-value for family A. 

Evaluation criteria 

We use similar evaluation criteria as those described in COMPASS method 

(Sadreyev and Grishin 2003). Our criteria for true positives are based on the consistency 

between sequence-based alignment and structure-based alignment. The idea is that, if the 

sequence-based alignment is consistent with the structure-based alignment, it is most likely 

the result of homology relationship between the query and hit. Thus, we consider the 

sequence-search hit a true positive if it is consistent with the structure similarity relationship 

reflected in the FSSP alignment system. If the hit belongs to the same FSSP family as the 

query, which ensures that they have a structure similarity (DALI) Z-score of greater than 2.0, 

and if the number of correct matches between the sequence-based alignment and the FSSP 
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alignment of the query and hit is greater than or equals to 5, the hit is considered a true 

positive. Otherwise, the hit is considered a false positive. Using the number of correct 

matches of 2 and 15 give similar results. 

Evaluation results using ROC curve analysis 

Receiver Operating Characteristic (ROC) curve is a popular sensitivity and specificity 

evaluation technique (McNeil and Hanley 1984). ROC curve analysis is performed to 

compare the homology search abilities of different methods. The hits or each method are 

sorted by their E-values in an ascending order. A ROC curve is generated by plotting the 

numbers of true positives corresponding to each increment in the number of false positives 

for each method. Figure 5.7a shows the overall ROC curve analysis results. Compared to 

other methods (HHsearch, COMPASS, Prof_ss, PSI-BLAST), our 20x20+w3x3 approach 

performs best, but the s60x60 approach performs worse than PSI-BLAST (data not shown). 

Figure 5.7b shows the ROC curve analysis results of 200 false positives. In this region, our 

method still performs the best, but its curve is pretty close to that of the COMPASS. 

Therefore, we need an evaluation method to test if the difference in ROC between these two 

methods (and between all other methods) is significant or not. 

Evaluation results using family-based paired t-test 

In order to test if the difference in ROC scores between any two methods is 

significant or not, we use family-based paired t-test. To perform the test, we calculate the 

ROC scores for each Pfam family using different sequence search method. We then pair the 

ROC score of one Pfam family under method one with the ROC score of this family under 

method two. 1986 pairs of ROC scores are formed for methods one and two and the paired t-

test is performed to test if the different in the ROC score means is significant or not at the 5% 

significant level. Figure 5.7c shows the result of the family-based paired t-test performed 

within the 200-false positive region (corresponding to that of Figure 5.7b). In this region, at 

the 5% significant level, the difference between our method and COMPASS is not 
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significant, neither is the difference between COMPASS and HHsearch, but the differences 

between all other pairs of the 5 methods (our method, COMPASS, HHsearch, Prof_ss and 

PSI-BLAST) are significant. 

5.5 RESULT AND DISCUSSION OF THE 60X60 SCORING SYSTEM APPROACH 

We have tried different scoring systems to incorporate secondary structure 

information with amino acid sequence profiles (section 5.2.5) and decide to use two of the 

systems, the linear combination 20x20+3x3 approach and the combined symbol 60x60 

approach, based on sequence alignment quality comparison. From the evaluation result of 

homology detection ability (section 5.4.2) we can see that the 20x20+3x3 approach performs 

better than COMPASS and other methods in the 200-false positive region. However from 

Figure 5.14 we can see that our method using the 60x60 approach performs worse than 

COMPASS, the method it is supposed to improve upon. In order to find out the reason why 

the 60x60 approach fails, we carry out a thorough analysis of this scoring system. 

There are three major unique factors in the 60x60 scoring system based on Equation 

5.11 and Equation 5.6, (a) the 60x60 substitution matrix, (b) the scoring function and (c) the 

number of effective count . We study the effects of each factor sequentially. In order to 

obtain the evaluation result quickly, we randomly choose eight Pfam families as queries to 

each against the entire Pfam dataset. The ROC curve analysis and family-based paired t-test 

result of these eight families are shown in Figure 5.15. The evaluation result shows that the 

20x20+3x3 approach performs better than COMPASS and the 60x60 approach performs 

worse than COMPASS (Figure 5.15a) and the differences are all significant (Figure 5.15b), 

which is consistent with the evaluation result on the entire data set. Thus, we consider it valid 

to use the randomly chosen eight families to study the effect of the factors. 

60,in
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5.5.1 Study Of The Substitution Matrix Effects 

We first consider the substitution matrix used in this scoring system, the 60x60 

substitution matrix, which is used to generate data-dependent pseudocount (Equation 5.5) in 

the scoring system. We start with checking the composition of the dataset we used to derive 

the 60x60 substitution matrix (Blocks+ 13.0). The distributions of amino acids and predicted 

secondary elements of the dataset are shown in Figure 5.16. The numbers seems reasonable. 

A comparison between the amino acid frequencies in the dataset and the Robinson 

frequencies (Robinson and Robinson 1991) shows strong correlation with R2 = 0.90 (Figure 

5.16c). Therefore, we conclude that there is no compositional bias in the dataset we used to 

derive the substitution matrix.  

We then look at the 60x60 substitution matrix itself and find out that its values are 

very similar to those in an independent matrix. We define an independent 60x60 substitution 

matrix as one that there is no secondary structure propensity and no dependency between 

amino acid substitution and secondary structure substitution, i.e.  and 

, where a and b represent amino acid type, x and y represent secondary 

structure type. Therefore, the values in an independent 60x60 substitution matrix can be 

deduce to the sums of values in the 20x20 and 3x3 substitution matrices according to 

Equation 5.13. 

32060
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Comparison of the values in the original 60x60 substitution matrix and the independent 

matrix (Figure 5.17) shows a significant correlation between the two (R2=0.96). Therefore, 

the 60x60 substitution matrix is indeed very similar to the independent matrix.  

To further verify that this similarity has effects on the homology detection ability. We 

construct the independent substitution matrix based on Equation 5.13 and use this matrix in 

our scoring system instead of the 60x60 matrix. The ROC curve analysis of the searching 

result shows that the curve corresponding to the independent matrix almost coincides with 
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that of the 60x60 matrix (Figure 5.18a). And the t-test shows no statistically significant 

difference between the two (Figure 5.18b). We also carry out a novel hit-rank comparison 

between the two variations. A hit-rank comparison is defined as such. We sort the hits of 

each method according to their E-values and record the rank of each hit. The ranks of the 

same hit by two different methods can then be compared. This way, we can easily identify if 

two methods give similar search results or not. The advantage of this kind of comparison test 

is obvious. Because there is not need to determine true or false positives for each hit, it 

eliminates spurious results. The hit-rank comparison between the independent matrix and the 

60x60 substitution matrix shows an exact correlation (R2=1.0) between the two (Figure 

5.18c). Therefore, the 60x60 substitution matrix and the independent matrix not only have 

similar values, but also have the same effects in homology detection ability. 

5.5.2 Study Of The Scoring Function Effects 

In order to find out the difference between the two scoring systems 20x20+3x3 

(Equation 5.9) and 60x60 (Equation 5.11), we decide to decompose the scoring functions of 

the two. To simplify the decomposition process and clarify the results, we take only the 

scoring items contributed by one amino acid, Alanine (A), and one secondary structure, Helix 

(H), in part one of the symmetric scoring function (Equation 5.7), ∑
= dim,1 dim,

)2(
dim,)1(

dim,1 ln
i i

i
i p

Q
nc . Thus, 

the 20x20+3x3 scoring function is decomposed to  

Equation 5.14  





























































−

w
pn

c

c

pn

e

e

pn

h

h

wn

A

A

PSI
cA

PSI
eA

PSI
hAA

p
Q

p
Q

p
Q

p
Qc

)1(

1 ln , 

and assuming 
3,

3,

20,

20,

60,

60,

h

h

A

A

Ah

Ah

p
Q

p
Q

p
Q

×= , the 60x60 scoring function is decomposed to  

 86



 

Equation 5.15  
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where nA is the effective count of alanine, ,  and  are the PSI-BLAST predicted 

probabilities of helix, strand and coil, respectively. Comparison of Equation 5.14 and 

Equation 5.15 shows that the only difference between the two is the parameter w, which is 

the weight of the S3x3 item in the 20x20+3x3 scoring system 

( ). Therefore, the 60x60 scoring function is equivalent 

to the 20x20+3x3 scoring function with equal weight (both weights of S20x20 and S3x3 equal to 

1).  

PSI
hp PSI

ep PSI
cp

332020332020 )1( ××+ ∗+∗−= SwSwS xx

To verify the deduced equivalence between the 60x60 and  approaches, 

we carry out a search using the 20x20+3x3 scoring system with both weights equal to 1 and 

compare the results with that of the 60x60’s. As expected, the ROC curve of the two 

variations overlap with each other (Figure 5.19a), the t-test shows no statistically significant 

difference between the two (Figure 5.19b), and the hit-rank comparison shows an excellent 

correlation (R2=0.996) between the two (Figure 5.19c). These experimental results show that 

the 60x60 scoring system is indeed equivalent to the 20x20+3x3 scoring system with equal 

weights, 1. 

332020 ×× + SS

To think from another direction, we can add weight w and (1-w) to Equation 5.15 so 

that it becomes the same as Equation 5.14. This way, we can construct a new 60x60 scoring 

system that is equivalent to the 20x20+3x3 scoring system. As it turns out, adding weight to 

the 60x60 approach requires adding S3x3 in as well. By reversing the deduction process 

above, we deduce that the scoring system  

Equation 5.16   ( ) ( ) 336060 211 xx SwSw ∗−−∗−   

should be equivalent to the 20x20+3x3 system, 332020332020 )1( ××+ ∗+∗−= SwSwS xx . To 

verify our thought, we use Equation 5.16 to do a search and compare the results with that of 

the 20x20+3x3 system. Indeed, the ROC curve shows overlapping of the two methods 
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(Figure 5.20a), the t-test shows no statistically significant difference (Figure 5.20b), and the 

hit-rank comparison shows a strong correlation (R2=0.91) between the two (Figure 5.20c). 

In short, the analysis of the scoring functions reveals that the fundamental difference 

between the 60x60 and the 20x20+3x3 scoring systems is the difference in their weights 

assigned to the amino acid score (S20x20) and the secondary structure score (S3x3). The 

20x20+3x3 scoring system has a weight ration of 4:1 for S20x20: S3x3, while in the 60x60 

scoring system this ratio is 1:1. 

5.5.3 Study Of The Effective Count Effects 

In order to study the effects of the number of effective count , we first look at the 

distribution of  (Figure 5.21a). It ranges from 0.6 to 21. If the number of effective count 

has effects on the homology detection ability of the 60x60 scoring system, different number 

of effective count would result in different detection performance. Thus, we can use a 

stratifying method to test the effects of the number of effective count.  

60,in

60,in

The inter-quartile range of  is 6-14. We first divide the Pfam families into three 

categories: n  < 6, 6 ≤  ≤ 14, and  > 14, then use them as queries to execute 

searches. The search results are evaluated using ROC curve analysis. From Figure 5.21b we 

can see, the performance of 60x60 is always the worst, and the relative performance of 

20x20+3x3, COMPASS and 60x60 do not change between the three categories. Therefore, 

we conclude that the number of effective count does not seem to affect the performance of 

the 60x60 scoring system. 

60,in

60,i 60,in 60,in

 

In summary, the reason why the 60x60 scoring system approach does not perform as 

well as the 20x20+3x3 approach and COMPASS is mainly because (a) the 60x60 substitution 

matrix is very similar to an independent matrix and thus does not contain enough information 

for homology detection purposes, and (b) the amino acid information S20x20 and the 

secondary structure information S3x3 have a fixed relative weight (1:1) in the 60x60 scoring 
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system, which is improper (unoptimal) for the homology detection purpose. The number of 

effective count in the scoring system does not seem to affect the performance. 

5.6 APPLICATIONS 

With improved alignment quality and structure similarity detection ability, our 

method is able to provide many applications to the structure modeling field, including 

detecting template of distant-similarity and providing better alignment for structure 

modeling. In addition, our method can be used to detect distant similarities between families 

with known-structures, which is useful for protein structure classification and for 

understanding of protein sequence-structure-function relationships. 

Figure 5.8 shows an example of the improved distance-similarity detection ability and 

better alignment quality helps to identify and confirm homology relationship between 

proteins that are otherwise difficult to identify using sequence profile-based method 

(COMPASS). We already know that both eukaryotic peptide chain release factor subunit 1 

C-terminal domain (ERF1) (1dt9:A277-A422) and RNA ribose methyltransferase N-terminal 

domain (RNArm) (1ipa:A1-A105) are homologous to ribosomal protein L30e through 

transitive PSI-BLAST, therefore, ERF1 and RNArm should be homologous to each other. 

However, a database search using sequence profile-based method, COMPASS, fails to find a 

significant similarity between the two (E-value only 0.7) and the alignment generated only 

covers one helix and one and half strands (pink regions in Figure 5.8 a&b). The database 

search using our method is able to find a significant similarity between the two protein 

domains with an E-value of 7.3e-16 and therefore is able to infer homology relationship 

between the two. The alignment generated by our method covers the entire length of the two 

domains and is correctly aligned in 6 out of 7 secondary structures of the two domains. 
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We apply our method to predict new similarities between Pfam 10.0 families by 

comparing all Pfam families with known 3D structures in an all-against-all fashion. We 

select hits that have significant E-values and verify them by structure-based comparisons 

(number of correct matches). Our method is able to reliably predict similarities between 1809 



 

Pfam family-pairs, which is about 16 times of what COMPASS predicts, and about 28 times 

of what PSI-BLAST predicts (Table 5.2). 

Table 5.2 Number of Similar Pfam family-pairs Predicted 

 Number of Pfam family-pairs reliably predicted 

20x20+3x3 1809 

COMPASS 111 

PSI-BLAST 65 

 

Many interesting examples are found among the new similarities uniquely predicted 

by our method. Figure 5.9 shows an example of new similarity detected between different 

SCOP superfamilies. Because no significant sequence similarities detected between the two 

domains before, Pfam families, heavy-metal-associated domain (HMA) and 

hydroxymethylglutaryl-CoA reductase (HMG-CoA_red), belongs to two different SCOP 

(version 1.69) superfamilies, heavy metal-associated domain (d.58.17) and NAD-binding 

domain of HMG-CoA reductase (d.58.20). Both domains possess the ferredoxin-like fold 

with a secondary structure arrangement of (βαβ)2. The structural similarities between the two 

domains were only identified by visual inspection (the same SCOP Fold). Our method is able 

to identify a significant similarity between the two domains with an E-value of 2.44e-17 and 

correctly aligns 4 out of the 6 secondary structures in both domains (the red regions in Figure 

5.9). Both domains can serve as a perfect structure template for each other. Figure 5.10 

shows an example of new similarity detected between different SCOP folds. Pfam families 

ACT domain and eukaryotic initiation factor 4E (IF4E) belongs to different SCOP folds, 

ferredoxin-like fold (d.58) and translation initiation factor eIF4e fold (d.86), and were 

considered to possess different structural folds. This usually means that the two domains 

cannot be used as structure template for each other. However, our method successfully finds 

the structurally similar regions in the two domains. ACT domain is a ferredoxin-like fold 

domain, while the IF4E domain also possesses the ferredoxin-like fold with insertions of 

other secondary structures at the N- and C-termini (see Figure 5.10). Our method correctly 
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identifies the structurally similar parts of the two domains and correctly aligned 
2
14  out of 6 

secondary structures in the smaller ACT domain. Thus the bigger IF4E domain can serve as a 

perfect structure template for the ACT domain. 

5.7 CONCLUSIONS 

A protein sequence alignment and similarity search algorithm has been developed by 

means of incorporating sequence profile and predicted secondary structure information. We 

constructed substitution matrices of amino acids and secondary structure elements based on 

updated sequence database and utilized them in our newly developed scoring system. 

Statistical significance of the resulting alignments are estimated based the modeled random 

score distributions. Comparisons to other programs (e.g. PSI-BLAST, COMPASS, Prof_ss) 

on a PFAM-based performance evaluation system show that our program provides improved 

template detection ability and generates better quality sequence alignments. Applying our 

program to PFAM 10.0 families reveals many (16-28 times) previously unrecognized 

similarities between families. Additionally, we explored different approaches to incorporate 

predicted secondary structure information with sequence profile and made an effort to 

understand why some approach does not work from various perspectives. 
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Figure 5.1 My Amino Acid Substitution Matrix AA80 Matches BLOSUM62 
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(a) Plot of Pearson’s correlation coefficients vs. sequence identity level cutoffs for clustering. 
Pearson’s correlation coefficients are calculated for values in BLOSUM62 and values in our 
amino acid substitution matrices at different sequence identity levels. This plot shows that the 
highest correlation coefficient occurs at identity level 80%. (b) Plot of distance measure vs. 
sequence identity level cutoffs for clustering. The distance measure assesses the 
dissimilarities between BLOSUM62 and our amino acid substitution matrices at different 
identity levels. This plot shows that the least dissimilar (=most similar) point occurs at 
identity level 80%. The distance measure is calculated as the average of d, where d is the 
vertical offset to line y=x. 
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Figure 5.2 Distribution of Optimal Random Scores Fitted to EVD 

 

Fitted EVD(K, λ) 
Optimal scores of 

random alignment with 

secondary structure 

 
Distribution of optimal scores for 10,000 pairs of pseudo sequence alignments with 
secondary structures composed of randomly sampled columns from Pfam alignments. The 
score distribution is generated using the 60x60 scoring system with pseudo-alignments of 
length 100 and number of sequences 200. The best-fitted Extreme Value Distribution (EVD) 
is plotted against the data. The chi-square goodness-of-fit test generates a chi-square value of 
45.5 with a degree of freedom of 41, which corresponds to a p-value of 0.29. 
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Figure 5.3 Dependency of Lambda and K on Alignment Length and Effective Sequence 
Number 

 

a b 

 

 

d c 

 
(a) Dependency of Extreme Value Distribution (EVD) parameter lambda on alignment length 
(length) and effective sequence number (neff) for 20x20+3x3 scoring system. The tops of the 
red lines indicate the values of lambdas at the combinations of lengths 100, 200, 300, 500 
and neffs 10, 15, 17, 18. The green plane indicates the fitted plane of lambda as a function of 
length and neff.  (b) Dependency of EVD parameter K on length and neff for 20x20+3x3 
scoring system. The tops of the red lines indicate the values of Ks at the combinations of 
lengths 100, 200, 300, 500 and neffs 10, 15, 17, 18. The green plane indicates the fitted plane 
of K as a function of length and neff. (c) Dependency of EVD parameter lambda on length 
and neff for 60x60 scoring system. The color scheme is the same as in (a).  (d) Dependency 
of EVD parameter K on length and neff for 60x60 scoring system. The color scheme is the 
same as in (b). 
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Figure 5.4 Evaluation Results of Alignment Quality 
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Figure 5.5 Example of Alignments Generated by Our Method and COMPASS 
Pred:          HHHHHHHHCCCCCHHHHHHH-----HHHHHHHHHHHHHHHCCCCCCCCHHHH-HHHHHHH 

a 1bpyA   100    SAARKFVDEGIKTLEDLRKN=====EDKLNHHQRIGLKYFGDFEKRIPREEM=LQMQDIV 
               + +++++       ++++++     ++++++                 + ++ +++++++ 
1fa0B   23     KLNDSLI=======QELKKEGSFETEQETAN=================RVQVLKILQELA 
               HHHHHHH-------HHHHHCCCCCCHHHHHH-----------------HHHHHHHHHHHH 
 
               HHHHHHH------------CCCCEEEEECCCHHHHHHCC------CEEEEEECCCCCCCH  
1bpyA          LNEVKKV============DSEYIATVCGSFRRGAESSG======DMDVLLTHPSFTSES 
               ++ ++++             ++ ++++ ++++      +      +++++++ ++  +++ 
1fa0B          QRFVYEVSKKKNMSDGMARDAGGKIFTYGSYRL=====GVHGPGSDIDTLVVVPKHVTRE 
               HHHHHHHHHHHHHHHHCCCCCCCEEEEECCCCC-----CCCCCCCCEEEEEECCCCCCHH 
 
               HHHHHHHHHHHHHHHHCCCCEEE----------ECCCCEEEEEEEECCCCCCCCCCCCEE 
1bpyA          TKQPKLLHQVVEQLQKVHFITDT==========LSKGETKFMGVCQLPSKNDEKEYPHRR 
                     ++++ +++++++   +           +     +++              + ++ 
1fa0B          ====DFFTVFDSLLRERKELDEIAPVPDAFVPII=====KIK=============FSGIS 
               ----HHHHHHHHHHHHCCCCCCEEEEECCCCCEE-----EEE-------------ECCEE 
 
               EEEEE-------ECCCCCCCEE-----EC---------CCC--CHHHHHH---------- 
1bpyA          IDIRL=======IPKDQYYCGV=====LY=========FTG==SDIFNKN========== 
               +++ +       ++ +    ++     +            +    ++  +           
1fa0B          IDLICARLDQPQVPLSL===TLSDKNLLRNLDEKDLRALNGTRVTDEILELVPKPNVFRI 
               EEEEECCCCCCCCCCCC---CCCHHHHHHHHHHCCCCCCCCHHHHHHHHHHHCCCCCHHH 
 
               ----HHHHHHHCCCEECC 
1bpyA          ====MRAHALEKGFTINE 
                   +++ +++++  +++ 
1fa0B          ALRAIKLWAQRRA==VYA 
               HHHHHHHHHHHCC--CCC 

1bpy_A

(a) The sequence alignment of 1bpy_A and 1fa0_B generated by our method (20x20+3x3 scoring system). The 
red regions are the alignment generated by COMPASS. (b) The structure diagrams of 1bpy_A (DNA 
polymerase beta, catalytic fragment) and 1fa0_B (poly(A) polymerase N-terminal catalytic domain). The red 
regions in the diagrams (a loop followed by a beta-strand) are the correspondingly only-aligned regions by 

1fa0_B 

b 
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COMPASS in the sequence alignment.



 

 

Figure 5.6 Better Accuracy Than COMPASS when Coverage Equals 1 
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We use global alignment algorithm with end gap penalty to force the coverage of alignments 
to be 1. As a result, local accuracy equals global accuracy. When having the same coverage 
(1.0), our method using the 20x20+3x3 scoring system gives better accuracy than that of 
COMPASS, and the 60x60 scoring system gives comparable accuracy than that of 
COMPASS. The “60x60_conf” and “3x3” are other scoring systems we tried. 
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Figure 5.7 Evaluation Results of Homology Detection Ability 

a. 

 

(COMPASS) 

b. 

c. 
 20x20+3x3 COMPASS HHsearch PSI-BLAST Prof_ss 

20x20+3x3 *     
COMPASS − *    
HHsearch + − *   

PSI-BLAST + + + *  
Prof_ss + + + + * 

(a) Overall ROC analysis results showing the homology detection ability of various programs. Different colors 
indicate different programs. (b) ROC analysis results of false positive 200 (FP200). (c) Family-based t-test 
results of ROC FP200. At the 5% significant level, + indicates the difference is significant, − indicates the 
difference is not significant. * means self-comparison, which is meaningless.
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Figure 5.8 Example of Improved Homology Detection Ability and Alignment Quality 
a. 
 
 
 
 
 
 
 
 
 

b. 
Evalue = 7.3e-16, database size = 3.3x105
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1ipaA LER DSQRRFLIEGAREIERALQAGIELEQALVW============================ 
 
           A                  a       B           b 
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1 1ipa: A1-A105 

(a) Structure diagrams of eukaryotic 
peptide chain release factor subunit 1
terminal domain (1dt9:A277-A422) a
RNA ribose methyltransferase N-
terminal domain (1ipa:A1-A105). (b)
Database search result using our meth
with 1dt9 as query. The pink region 
corresponds to the alignment generate
by database search using COMPASS and 
the E-value corresponding to COMPASS 
search is 0.7. 

 C-
nd 

 
od 

d 



 

 100

 

. 

 
 
 

 
 
 
b. 

Figure 5.9 Example Of New Similarity Detected Between SCOP Superfamilies 

a
New similarities detected using our 
method (20x20+3x3) between two fa
belonging to different SCOP 
superfamilies. (a) Structure di
the representative domains of the t
families. 1aw0 is the 4th metal bindin
domain of Menkes copper-transp
ATPase, which belongs to the Pfam 
of heavy-metal-associated domain. 1d
the NAD-binding domain of HMG-CoA 

milies 

agrams of 
wo 

g 
orting 

family 
qa is 

reductase, which belongs to the Pfam 
family of hydroxymethylglutaryl-CoA 
reductase. The red regions in the structure 
diagrams corresponding to the aligned red 
regions in the alignment (b). 

 
 
 
 
 
 
 
 

 

Evalue = 2.44e-17 
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Figure 5.10 Example Of New Similarity Detect
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a) Structure diagrams of C-terminal 
egulatory domain of phosphoglycerate 

dehydrogenase (1psd:A327-A410) that 
elongs to the Pfam family of ACT 
omain, and an representative structure 
1ap8) of the Pfam family of eukaryotic 
nitiation factor 4E. (b) The sequence 
lignment generated using our method 
20x20+3x3 approach). The red regions 
n the structures are corresponding to the 
ed secondary structure highlighted in 
he alignment. 

 



 

 

Figure 5.11 Comparison of BLOSUM62 and Our Amino Acid Substitution Matrix 
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(a) The values in our amino acid substitution matrix clustered at 80% sequence identity level 
(AA80) matches the values in BLOSUM62 substitution matrix. (b) The values in our amino 
acid substitution matrix clustered at 62% sequence identity level (AA62) are systematically 
different from the values in BLOSUM62. 
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Figure 5.12 The Three Substitution Matrices We Calculated 
a. 

b. 

H C
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(a) 3x3 substitut x of secondary structure element at 80% sequence identity level (SS80). (b) 20x20 substitution matrix ino acid at 
80% sequence identity level (AA80). The red cells are the top 4 pairs with score > 1.0. The two shaded amino acids, C and P, h all negative 

ino acids. (c) url of the 60x60 substitution matrix of combined symbols at 80% sequence id ty level 
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Figure 5.13 Secondary Structure Propensities Extracted from 60x60 Substitution 
Matrix 
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Figure 5.14 Homology Detection Ability of 60x60 Approach Fails 

h 60x60 approac

 
ROC curve analysis showing the homology detection abilities of various methods in the 200 
false positives region. 60x60 approach performs worse than 20x20+3x3, COMPASS and 
HHsearch. 
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 Result of Eight Pfam 
Families 

a. 

 

Figure 5.15 ROC Curve Analysis and Family-based Paired T-Test
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 20x20+3x3 COMPASS 60x60 
20x20+3x3 *   

COMPASS + *  

60x60 + + * 

 
(a) ROC curve analysis of 20x20+3x3, COMPASS and 60x60 approaches using eight Pfam 
families at queries within region false positive 200. Different colors indicate different 
programs.  (b) Family-based paired t-test results of the three approaches. + indicates a 
statistically significant difference at the 5% significant level. * indicates self-comparison, 
which is meaningless. 



 

 107

 Database 

 

Figure 5.16 Distributions of Amino Acids and Predicted Secondary Structure Elements 
in Blocks+
a. 
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(a) Distribution of amino acids in 
our dataset (Blocks+ 10.0). (b) 
Distribution of predicted secondary 
structure elements in our dataset. 
(c) Correlation analysis between 
our amino acid frequencies and 
Robinson amino acid frequencies. 
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Figure 5.17 Comparison of the 60x60 Substitution Matrix and the Independent Matrix 
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Matrix and Independent Matrix 
a.  

 

Figure 5.18 Comparison of Homology Detection Ability Effects of 60x60 Substitution 

0
10
20
30
40
50
60
70

0 100 200

False Positives

Tr
ue

 P
os

iti
ve

s

20x20+w*3x3

COMPASS

60x60

independent_6
0x60

 
b.  

 60x60 Independent_60x60 
60x60 *  

Independent_60x60 - * 

c. 

R2 = 1.00

0

500

1000

1500

2000

0 500 1000 1500 2000

hit-rank of 60x60

hi
t-r

an
k 

of
 o

th
er

 m
et

ho
d

rank of 20x20+w*3x3

rank of COMPASS

rank of
independent_60x60
Linear (rank of
independent_60x60)

 
 
(a) ROC curve analysis of 20x20+3x3 approach, COMPASS, 60x60 approach and 
independent 60x60 substitution matrix approach. The ROC curves of 60x60 and independent 
60x60 almost overlap with each other. Different colors indicate different programs.  (b) 
Family-based paired t-test between 60x60 and independent 60x60 shows no statistically 
significant difference at 5% significant level. (c) Hit-rank comparison between 60x60 and 
20x20+3x3, COMPASS show no correlation at all, but there is an excellent correlation 
(linear regression determinant R2 =1.00) between the hit-ranks of the 60x60 approach and the 
independent 60x60 matrix approach. 
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Figure 5.19 Comparison of Homology Detection Ability Effects of 60x60 Scoring Syste
and 20x20+3x3 Scoring System w
a. 
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(a) ROC curve analysis. The curve of 60x60 and S20x20+S3x3 approac s overlap with each 

ows no 
he

other. Different colors indicate different programs. (b) Family-based paired t-test sh
statistically significant difference between the 60x60 and S20x20+S3x3 approaches at 5% 
significant level. (c) The hit-rank comparison shows an excellent correlation (linear 
regression determinant R2 =0.996) between the ranks of 60x60 and S20x20+S3x3 
approaches. 
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Figure 5.20 Comparison of Homology Detection Ability Effects of Weighted 60x60 
Scoring System and the 20x20+3x3 Scoring System 
a. 
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a) ROC curv(

a
e analysis. The curves of the 20x20+3x3 approach and the weighted 60x60 

pproach ((1-w)S60x60-(1-2w)S3x3) overlaps. Different colors indicate different programs. 
(b) Family-based paired t-test shows no statistically significant difference between the 
20x20+3x3 approach and the weighted 60x60 approach at 5% significant level. (c) The hit-
rank comparison shows a strong correlation (linear regression determinant R2 =0.91) between 
the ranks of the 20x20+3x3 approach and the weighted 60x60 approach. 
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Figure 5.21 Effects of the Number of Effective Count 
a. 

 
b. 
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(a) Distribution of number of effective count (Neff) of the Pfam families. (b) ROC curve 
analysis of queries in three categories: Neff < 6, 6-14, and Neff > 14. In all three categories, 
the 60x60 performs the worst and the relative performance of the three methods (20x20+3x3,
COMPASS, 60x60) does not differ. 
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CHAPTER 6:  
A Comprehensive System to Evaluate Structure Modeling Ability of 

Sequence Similarity Search Methods 

6.1  INTRODUCTION 

6.1.1 Background 

Proteins with known 3-dimensional structures can serve as structure templates for 

homologs with unknown structures. Protein sequence similarity search and alignment 

methods have been used for structure modeling purposes. New programs come into being all 

the time and are still under development (Yona and Levitt 2002; Sadreyev and Grishin 2003; 

Chung and Yona 2004; Ginalski, von Grotthuss et al. 2004; Soding 2005)(Chapter 5). 

Therefore, it is important to have an evaluation system that provides a platform to compare 

their performance in terms of structure modeling abilities. Such an evaluation system helps 

us to understand the achievements and limitations of the field and helps researchers to choose 

the appropriate programs to use for their purposes. 

There are two community-wide assessments for protein structure predictions, CASP 

(Critical Assessment of Techniques for Protein Structure Prediction) and CAFASP(Critical 

Assessment of Fully Automated Structure Prediction). CASP (Moult, Fidelis et al. 2005) 

aims at assessing manual/semi-automatic predictions, either all manual or program-generated 

results with human intervention. The evaluation procedures and measures that are used in 

CASP largely depend on the assessors and change from meeting to meeting. Many steps of 

the assessment, for instance, domain definition and target classification, require expert 

 

ASP, CAFASP uses automatic evaluation programs. 

However, CAFAST is also limited to a small number of testing proteins. LiveBench 

 

knowledge and visual inspections. Besides, it is limited to a small number of test proteins (63

For CASP6). CAFASP (Fischer, Rychlewski et al. 2003) aims at assessing automatic 

tructure prediction servers. Unlike Cs



 

(Rychlewski and Fischer 2005) is an evaluation server that also evaluates the performance of 

auto

continuously assesses a ek. Another large-

scale evaluation project for automatic structure prediction servers is EVA (Eyrich, Marti-

Renom et al. 2001), which together with LiveBench provides complements to CAFASP. 

6.1.2 Objective 

Since there is no standard way to perform the evaluation, we decided to develop an 

automa

 and 

ench, 

s 

6.2 EVALUATION ALGORITHM DEVELOPMENT 

hich 

 

matic structure prediction servers. It is an extension and complement to CAFASP by 

 relatively large number of predictions every we

tic large-scale evaluation system to evaluate different aspects of the structure 

modeling ability of sequence similarity search programs. In order to set up a systematic

comprehensive evaluation system, we first need to select a representative testing dataset that 

is non-biased and is of certain degree of difficulties, and then need to combine different 

sequence and structure similarity measures, as well as measures from CASP and LiveB

to assess the sensitivity and specificity of different programs. The evaluation procedure need

to include assessment for both fold recognition abilities and alignment qualities from global 

and local perspectives using both reference-dependent and reference-independent 

approaches. 

6.2.1 Selection of Representative Dataset 

Based on the criteria for the representative dataset, non-biased and of certain degree 

of difficulties, we decided to select a dataset with a maximum ~20% pairwise identity, w

is within the twilight zone, from SCOP (Murzin, Brenner et al. 1995) domain sequences. 

Astral (Brenner, Koehl et al. 2000; Chandonia, Hon et al. 2004) offers a SCOP domain

sequence dataset of 40% identity (SCOP40 set) that contains good quality structures. We 

select our 20% dataset out of the SCOP40 set. Astral also offers SCOP domain set of 
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maximum 20% identity (SCOP20). However, since the Astral SCOP20 set is derived based 

on sequence alignment method (BLAST), and sequence-based alignments are not accurate

this level of sequence similarity, we decide not to use it but to select our 20% dataset based

on alignments generated by structure-based methods. Three structure-based alignment 

methods, DALI (Holm and Sander 1995), TM (Zhang and Skolnick 2004) and FAST (Zh

 at 

 

u 

and Weng 2005), were chosen because they are either known to generate good quality 

 fast to run.  

Method

identity within the aligned blocks, 

alignments or are

s for pairwise identity calculation 

Three means for calculation of pairwise sequence identities are used: (1) percentage 

ali

id

L
N

residues, Lali is the length of the aligned regions; (2) percentage identity over the shorter 

shorter

id

L
N

shorter

(3) real identity within the aligned blocks combined with a random identity within 

pid =)1( , where Nid is the number of aligned identical 

query, pid =)2(

unaligned regions, 

, where L  is the length of the shorter query of the compared pair; 

the 

shorter

randomunaliid

L
pidLN

pid
∗+

=)3(

pidrandom

 identity as ∑
=1

2

i
if , where 

, where Lunali is the length of the unaligned 

regions of the shorter query,  is the percentage identity of random alignments. 

Estimation of the random fi is the frequency of amino acid i in 

SCOP40 set, results in 6%. Using Dayhoff amino acid frequencies (Dayhoff 1978) also 

results in 6%. From experience, the random identity is in the range of 5-8%. Screening of this 

region gives similar results and thus 6% is used in the final calculation. Variations of these 

three means of identity calculation (Appendix A.1) are also tried and give similar results. 

20
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Finding the largest number of unique representatives for each superfamily 

To ensure each superfamily in SCOP has at least one representative in the dataset, the

representative selection process uses each superfamily as a unit. We use a novel method

select representatives for each SCOP superfamily. The criterion is to find the largest numbe

of domains in this superfamily that do not have a pairwise identity higher than the cutof

one SCOP superfamily, we firs

 

 to 

r 

f. For 

t calculate pairwise identities for every pair of sequences in 

this superfamily in the SCOP40 set. Using a graphic representation, each domain sequence is 

o sequences is above certain cutoff x%, an edge 

is placed between them (Figure 6.1). A dynamic programming-based method is then 

employ

The entire repre

se 

there are intrinsic differences between different structure alignment programs, we want to 

utilize an identity measure that best reflects the evolutionary distance between protein pairs 

nme d pick 

the largest overlapping representatives between all three programs and leave the least number 

gram.

is 

ge 

unique representatives (2.7%). Thus, the final dataset is chosen using identity measure pid(3), 

and includes the OR set of representatives from all three structure alignment methods. 

a vertex; if the pairwise identity between tw

ed to find the largest number of domain sequences that do not have an edge between 

each other. 

Selection of the entire representative dataset 

sentative set of cutoff x% is composed of these domain sequences. 

This process is done for DALI-, TM- and FAST-generated structural alignments. Becau

in spite of different structure alig nt programs. Thus the best identity measure shoul

of unique representatives for each pro  By screening the identity cutoff x% from 15-

25%, all three means of identity calculation result in ~3500-4500 representatives. When 

fixing the size of the overlapping representatives to approximate 4000, we can see from 

Figure 6.2 that identity measure pid(1) is clearly the worst one, and identity measure pid(3) 

able to choose a similar number of representatives for each method and has the least avera
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6.2.2 Reference-Dependent Evaluation Of Structure Template Quality 

For reference-dependent evaluation, in order to assess whether the hit is a good global 

structure template for the query, we consider the structure and sequence similarity scores of

the reference alignment (structure-based alignment) only. In this step (Step 1), the 3d-

strucures of the query and hit are optimally superimposed onto each other using least-square 

minimization based on the reference alignment. All structure scores are then calculated from

this structure-based superposition of the pair. 

SCOP superfamily/fold/class levels could serve as a standard for true/false to 

calibrate these scores. If we are lucky, the distributions of these scores for domain pai

within the same superfamily and between different superfamilies or different folds should 

separate ver

 

 

rs 

y well, allowing for an easy discrimination of a good structure template from a 

bad one. Unfortunately, this is not the case. Each of the individual score provides a poor 

 and different classes (data not shown). 

Therefore, we decide to use the Support Vector Machine (SVM) technique (Joachims 1999) 

to comb

nd 

or 

sting 

 as 

standard. In our SVM training, domain pairs belong to the same superfamily are considered 

true, different classes false. 2000 pairs of SCOP domain are randomly chosen for SVM linear 

separation even between the same superfamily

ine all the scores in a reasonable way to distinguishing good and bad templates.  

Selection of SVM features based on SCOP classification 

Eight types of scores are used initially, including sequence scores such as identity, 

blosum score, coverage, and structure scores such as GDT_TS (Zemla 2003), match index 

(Kolodny, Koehl et al. 2005), DALI Z-score (Holm and Sander 1998), TM score (Zhang a

Skolnick 2004) and FAST score (Zhu and Weng 2005). Each type of score is calculated f

all three types of reference alignments (DALI/FAST/TM) of all pair of domains in the te

dataset. SCOP classification is used as a reference for true/false in SVM training. Because we 

know that many different SCOP superfamilies are homologous to each other, and many 

different SCOP folds are actually of the same structural fold (e.g. Rossmann fold domains), 

to avoid ambiguity, we select two stringent classification levels (superfamily and class)
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model training and the initial resulting classification accuracy is 94.8%. In this testing, totally 

30 features (combinations of scores and types of structure alignments) are used as SVM 

inputs. 

an and 

e (native), GDTTS of TM alignment, coverage 

of FAS re of 

ative 

 

ce, 

Rossmann fold and TIM barrel fold), it is problematic to judge if hits between these kinds of 

SVM score cutoffs in order to allow 

for unknowns besides true or false hits. In order to take into account both the expert-curated 

homolo y 

r 

 

 

s 

We find out that removing some input scores would result in better classification 

accuracy. In order to find out the importance of the individual features, we calculate and 

compare the standardized weights of the linear model by normalizing the scores by me

standard deviation. Five parameters are found to dominate the classification effect and give 

the best prediction accuracy (95.7%) (Figure 6.3a). According to their rank of importance, 

these include DALI Z-score (native), Fast scor

T alignment, and blosum score of DALI alignment. The calculated DALI Z-sco

FAST and TM alignments also have large weights, but since they highly correlate with n

DALI Z-score (R2 = 0.95), adding them in do not increase the prediction accuracy. Thus, to

avoid redundancy, we do not put them in the final parameter list. 

Selection of SVM score cutoffs to allow for unknowns 

Since relationships between some structural folds are unclear at present (for instan

folds are true or false. Therefore, we decide to select two 

gy/fold-similarity relationship and the well-established automatic structure similarit

estimation methods, we use both SCOP classification and SVM score cutoffs as criterion fo

true/false/unknown. If a hit belongs to the same SCOP superfamily as the query, we consider 

it as true. Otherwise, hits with scores higher than the high-cutoff of SVM score is considered

true, lower than the low-cutoff of SVM score false, and in between unknown.  

To decide on the high-cutoff, four representative problematic fold pairs for each of 

the four major structure classes are selected and their SVM score distributions are plotted

(Figure 6.3b, Table 6.1a). Since we do not want to include these problematical fold pairs as 

true hits, the 95% percentile of their distributions are calculated and their average is taken a

the high-cutoff (Table 1). On the other hand, some protein domains belonging to the same 
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structural folds may not have high structural scores to each other because of many insertions 

and deletions (for example, Rossmann fold domains), but we do not want these domain p

to be judged as false hits. Therefore, four representative such structural folds are selected

each of the major class, and the average of the 5% percentiles of their SVM score 

distributions is taken as the low-cutoff (Figure 6.3c, Table 6.1b). 

6.2.3 Reference-Dependent Evaluation Of Alignment Quality 

For reference-dependent evaluation, in order to access the quality of a sequence-base

alignment between query and hit in terms of its usefulness for structural modeling, we 

compare the sequence-based alignment to the structure-based reference alignment of the pair

Structure alignments generated by DALI are used as reference alig

airs 

 for 

d 

. 

nments in the following 

studies for DALI is known to generate good quality alignments. In this step (Step 2), the 3d-

ed onto each other according to the 

sequence-based alignment. All scores are calculated from this sequence-based superposition 

of the p

alignment 

quality

TS 

strucures of the query and hit are optimally superimpos

air.  

Two type of structure modeling scores, GDT_TS (Zemla 2003) and LiveBench 

3dscore, have been used traditionally in CASP and other assessments (Ginalski, Grishin et al. 

2005; Rychlewski and Fischer 2005) to evaluate the quality of a sequence alignment. 

However, these scores have only been used to rank different structure models, while no 

cutoff has ever been given for a decent alignment. Another type of score, number of correct 

matches, has also been use to access alignment quality (Sadreyev and Grishin 2003). Number 

of correct matches is the number of residue pairs that are aligned the same way in sequence 

alignment as in the structure alignment. In order to find a reasonable cutoff for 

, we decide to use all three types of scores. However, during our tests, GDT_TS and 

LiveBench 3dscore give very similar results and conclusions (Figure 6.4 a & c). As GDT_

is a more popular measure, we use GDT_TS and number of correct matches, not LiveBench 

3dscore, in our criteria for alignment quality. 
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To calibrate GDT_TS for a decent alignment, we randomly chose 500 domains and 

generate pairwise sequence alignments in an all-against-all fashion. We then apply test step1 

to these alignments and use alignments of the false hits from step 1 as negative controls and 

PSI-BLAST alignments with significant E-values (less than default E-value cutoff:

positive controls, and mark them on the 2D plot of GDT_TS of str

 0.005) as 

ucture alignment vs. 

sequence alignment (Figure 6.4a). These significant PSI-BLAST alignments are all true hits 

nments, the 95th and 99th 

percentiles are taken as the potential cutoffs. However, since there is no clear separation 

betwee

od 

v 

mparisons. From the mapping in Figure 6.4b we know that alignments with 

number  with 

ng 

onships (SCOP superfamily) and the 

combinations of well-established automatic methods to estimate the structure similarities. 

from step 1. From the distribution of GDT_TS of the false hit alig

n the positive controls and negative controls, there are alignments with significant E-

values have GDT_TS less than the potential cutoffs. In order to include these hits as go

ones, we use number of correct matches to calibrate. Alignments of the true hits from step 1 

are compared with structure alignments (DALI) and the number of correct matches is 

calculated for each alignment. These alignments are then mapped to the PSI-BLAST 

alignments with significant E-values on the 2D plot (Figure 6.4b). Previous studies (Sadreye

and Grishin 2003) show that number of correct matches 5 is a reasonable cutoff for 

alignment co

 of correct matches more than 5 covers about 97% of all PSI-BLAST alignments

significant E-values. Thus 5 is chosen to the cutoff for number of correct matches. 

6.2.4 Summary Of Reference-Dependent Evaluation Criteria 

For reference-dependent evaluation, our criteria for global structural template quality 

are shown in Figure 6.5a. If the hit and query belong to the same SCOP superfamily or their 

SVM score is higher than the 0.6, the hit is considered true; if the hit and query do not belo

to the same SCOP superfamily and the SVM score is lower than the –0.6, it is considered 

false; if the hit and query do not belong to the same SCOP superfamily and their SVM score 

is between –0.6 and 0.6, it is considered unknown. This way, we take into account both the 

expert-curated homology/fold-similarity relati
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Our cri

 

 

 

hare 

simply 

For reference-independent local mode evaluation, we cannot use local GDT_TS 

gned domain length. The 

formula of local GDT_TS is as follows,  

Equation 6.1   

teria for sequence alignment quality are shown in Figure 6.5b. If the sequence 

alignment has a GDT_TS higher than 0.15 or has a number of correct matches more than 5, it 

is considered true.  

6.2.5 Reference-Independent Global Mode Evaluation 

Since the reference-independent evaluation is based on sequence alignment only, we

can just use GDT_TS of the sequence alignment to evaluate fold similarity and alignment

quality over the entire length of the query domains. The reference-dependent evaluation 

studied above is a global mode evaluation and is done in two steps, where GDT_TS is used

in the second step. When figuring out the cutoff for GDT_TS, we already take into 

consideration the true and false hits from step 1. And thus 99% of the hits that do not s

fold similarity with the query are excluded by the GDT_TS cutoff. Therefore, we can 

take the GDT_TS cutoff (>= 0.15) figured out in the reference-dependent evaluation and 

apply it to the global mode of reference-independent evaluation. 

6.2.6 Reference-Independent Local Mode Evaluation 

(lGDT_TS) directly because it has a significant dependency on ali

∑ =TSlGDT _  




 +++

aliLali

nnnn
L 4
1 8421

where n1, n2, n4, n8 are the numbers of aligned C-Alpha atoms that are within the distance 

of 1, 2, 4, 8 Å from each other, and L  is the length (number of residues) of the aligned 

region. From Equation 6.1 we can see that if the aligned region is very short, essentially all 

residues in the aligned region will be very close to each other and the resulting lGDT_TS wi

will be a perfect score of 1.0. The length dependency effect also exists in the global 

ali

ll 

be artificially large. In the extreme case, if there is only one residue aligned, the lGDT_TS 
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GDT_TS, but it does not affect the global mode evaluation. When the aligned region i

short compared to the length of the query, the resulting global GDT_TS is small, too (refer to 

Equation 6.3). Thus

s very 

 we can see that the global GDT_TS favors long alignments while the 

local GDT_TS favors short alignments. 

T_TS, we first model the length-

dependency of lGDT_TS, and then normalize the local GDT_TS scores by the model. 

h other 

ed. 

 the length-dependency of 

lGDT_TS (Figure 6.6a). When transforming both x- and y-axes to log-scale, the scatter plots 

respect to length (Figure 6.6b), 

which indicates a power law relationship between the values and length. Using power law 

functio

Equation 6.2   , . 

el par eters are fitted using SAS STAT package.) 

 

transformation 

In order to eliminate this length effect for local GD

Modeling of the length-dependency of local GDT_TS 

For a particular length L, we randomly select 1000 pairs of domain fragments of 

length L from our testing dataset. Each pair of fragments are forced to align with eac

from end to end and optimally superimposed to each other according to this alignment. 

lGDT_TS score is calculated based on this superposition. Thus, for length L we have 1000 

values of random lGDT_TS scores and their mean and standard deviation (sd) are calculat

By repeating this process for lengths 3 to 500, we are able to plot

of the mean and sd of lGDT_TS show a linear trend with 

n f(L)=cLb to fit the lGDT_TS mean and sd (Figure 6.6b), we get the length-

dependency models of lGDT_TS mean and sd:  

956.0807.3)( −= LLmean 714.0617.0)( −= LLsd

(The linear mod am

Normalization of local GDT_TS scores 

The raw lGDT_TS score of the sequence alignment is normalized to a Z-score by the

)(
)(__

Lsd
LmeanTSlGDTraw −

region in the sequence alignment. By using the Z-score of lGDT_TS, we are able to s

Zscore = , where L is the length of the aligned 

creen 
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for alignments with lGDT_TS scores significantly higher than random scores and thus are 

true ones (i.e. local alignments of good quality). In order to obtain a reasonable Z-score 

cutoff for true alignment, we initially choose Z-scores 3 and 5 as cutoff candidates and 

compare their corresponding local GDT_TS values to those of the 95 percentile of local 

GDT_T f 

-

scores 3 and 5 cutoff values are more stringent than the values of 95 percentile, but Z-score 3 

n example distribution of lGDT_TS of 

alignment length 50 (Figure 6.7b), the value of Z-score 3 cutoff is more extreme to that of the 

95 perc

 

 6.8b). If 

ered true. 

 OF SEQUENCE 

SIMILARITY SEARCH PROGRAMS 

This comprehensive evaluation system enables us to compare the performances of 

differen  

eling efficiency (Figure 6.5, Figure 6

generated by a sequence alignment method is true positive (TP) or false positive (FP) 

S distribution (Figure 6.7a). The comparisons are made for lGDT_TS distributions o

alignment lengths 5, 20, 50, 100, 200 and 500. From Figure 6.7a we can see that both Z

values are more similar to those of 95 percentiles. In a

entile. Thus Z-score 3 is decided to be the cutoff for true good alignments. 

6.2.7 Summary Of Reference-Independent Evaluation Criteria 

For reference-independent evaluation, we use GDT_TS score derived from sequence-

based alignment as criteria for overall fold similarity and alignment quality evaluation, but 

there are differences between global and local modes evaluations. To evaluate global mode, 

we use GDT_TS directly (Figure 6.8a). If the GDT_TS is higher than 0.15, the hit is 

considered true. To evaluation local mode, we first transform the local GDT_TS score of an

alignment into Z-score, and then judge true or false according to the Z-score (Figure

Z-score is higher than 3, this alignment is consid

6.3  RESULTS AND DISCUSSIONS OF EVALUATIONS

t sequence alignment methods. By setting up the cutoffs for different steps and modes

of structure mod .8), we are able to judge if a hit 

according to different modeling purposes, which in turn enables us to use ROC curve, a 
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sensitivity and specificity evaluation technique, to compare the performances of different 

programs.  

For each method to be evaluated, the hits need to be sorted by their E-values in a

ascending order. A ROC curve is then generated by plotting the numbers of true positives

corresponding to each increment in the number of false positives. In the ideal case, a method 

should find all the true positives before finding any false positives, and the curve should 

vertically up from zero and then horizontally right. Thus, the further top-left the curve goes, 

the better the method is. 

We use our evaluation system to compare the performances of six selected sequence 

similarity search programs, including the popular method PSI-BLAST (Altschul, M

n 

 

go 

adden et 

al. 1997), profile based methods COMPASS (Sadreyev and Grishin 2003) and HHsearch 

ROF_SS (Chung and 

Yona 2004), COMPRASS (Chapter 5) and HHsearch_ss (Soding 2005). These programs are 

run on 

For the purpose of getting a testing result quickly, a small testing set with 500 domain 

sequences is chosen to perform the evaluation upon. The testing set domains are selected 

from t e 

positives) in the testing set, t ne domain (head 

domain) is chosen randomly from the entire dataset first, we then find all other domains in 

the data  

g set. 

(Soding 2005), combined profile and secondary structure methods P

the entire representative dataset in an all-against-all fashion and generate six sets of 

sequence-based alignments. The evaluation methods are applied to these sequence 

alignments and the required scores are calculated. ROC curves are then plotted to compare 

the programs. 

6.3.1 Evaluations On A Small Testing Set 

he 4147 representative dataset. To ensure there is enough number of homologs (tru

hese domains are chosen in a special way. O

set that belongs to the same SCOP superfamily as the head domain and add them in

the testing set. This process is repeated until the number of domains in the testing set reaches 

500. The performance comparison results shown in this section are based on this testin
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Reference-dependent structure template quality evaluation is carried out first. For 

alignments generated by each program, the hits are sorted by their E-values (PSI-BLAST, 

COMPASS, COMPRASS) or p-values (Prof_ss, HHsearch, HHsearch_ss). The TP and FP 

r 

h_ss performs the best. 

 

e 

ed to 

rence-independent global mode evaluations, the TP and FP for each method 

are decided according to the criteria shown in Figure 6.8a. Figure 6.12 shows the testing 

eases with programs PSI-BLAST, COMASS, 

COMPRASS and HHsearch (the two are comparable to each other), Prof_ss, HHsearch_ss. 

The deg

to 

are decided according to our criteria shown in Figure 6.5a and a ROC curve is generated fo

each method. Figure 6.10 shows the resulting ROC curves. From bottom-up, we can see that 

PSI-BLAST performs worst. The performances of COMPRASS and COMPASS are 

comparable but COMPRASS is slightly worse than COMPASS. HHsearch and Prof_ss are 

comparable and HHsearc

For reference-dependent alignment quality evaluation, the TP and FP for each method

are decided according to the criteria shown in Figure 6.5b. Figure 6.11 shows the resulting 

ROC curves. From bottom-up, the performance increases with programs PSI-BLAST, 

Prof_ss, COMPASS, HHsearch, COMPRASS and HHsearch_ss. This ranking of program 

performances is consistent with the results obtained by the HHsearch author (except 

COMPRASS, which was not available to the HHsearch author). The increase in performanc

for COMPRASS compared to COMPASS is similar to that of HHsearch_ss compar

HHsearch. 

For refe

result. From bottom-up, the performance incr

ree of improvement of COMPRASS over COMPASS is very similar to that of 

HHsearch_ss over HHsearch. 

For reference-independent local mode quality evaluation, the test is done according 

the TP/FP criteria in Figure 6.8b. The resulting ROC curves are shown in Figure 6.13. 

According to this figure, the ability of detecting local structure similarities increases with 

programs PSI-BLAST, COMPASS, COMPRASS and HHsearch (comparable), 

HHsearch_ss, Prof_ss. 
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HHsearch_ss program performs the best in all categories except for local mode of 

reference-independent evaluation. PROF_SS performs best in the local mode evaluation bu

not in the global mode evaluations, which indicates that it generates mostly locally optimal 

sequence alignment. The fact that PSI-BLAST performs the worst in every categories 

indicates that it do not perform well on dataset of this degrees of difficulties. 

Except for the overall template detection, COMPRASS performs better than 

COMPASS, and the increase in performance is comparable to the increase of HHsearch_ss 

over HHsearch, which indicate that adding predic

t 

ted secondary structure information to 

profile 

lts are shown in Figure 6.14. For reference-dependent structure template quality 

evaluat

ss, 

nking from worst to best are PSI-BLAST, Prof_ss and 

COMP

S is 

ith 

om worst to best are PSI-BLAST, COMPASS, COMPRASS, 

Prof_ss, HHsearch, HHsearch_ss. The degree of performance increase of COMPRASS over 

COMPASS is very similar to that of HHsearch_ss over HHsearch. For reference-independent 

information indeed helps to increase the sequence alignment quality. And although 

the secondary structure information is incorporated in different ways, the amounts of 

information added in are the same, and thus resulting in the same amount of effects. 

6.3.2 Evaluations On The Entire Representative Set 

The same evaluation procedure is done on the entire 4147 representative dataset. 

Testing resu

ion, the resulting ROC curves are shown in Figure 6.14a. From bottom-up, the 

programs with performances ranking from worst to best are PSI-BLAST, HHsearch, Prof_

COMPASS, COMPRASS, HHsearch_ss. The performance increase of COMPRASS over 

COMPASS is smaller than that of HHsearch_ss over HHsearch. For reference-dependent 

alignment quality evaluation, the resulting ROC curves are shown in Figure 6.14b. The 

programs with performances ra

ASS and HHsearch (the performances of the three programs are comparable), 

HHsearch_ss, COMPRASS. The performance increase of COMPRASS over COMPAS

larger than that of HHsearch_ss over HHsearch. For reference-independent global mode 

evaluation, the resulting ROC curves are shown in Figure 6.14c. The programs w

performances ranking fr
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local m s 

hose 

valuation 

system the two 

e 

re set. 

The performance comparison between COMPRASS and COMPASS on the entire 

ASS tends to generate more global 

alignments (i.e. long alignments with large coverage), while COMPASS alignments tend to 

be mor the 

 on 

 

taset 

rence-

s 

 

ode quality evaluation, the resulting curves are shown in Figure 6.14d. The program

with performances ranking from worst to best are PSI-BLAST, COMPRASS and HHsearch 

(the performances of the two are comparable), HHsearch_ss, COMPASS, Prof_ss.  

Overall, the performance ranks of programs on the entire dataset are similar to t

on the small testing set shown in the above section, which indicates that our e

 is robust. However, there are two major differences comparing the results on 

datasets. One difference occurs for reference-dependent structure template evaluation (Figur

6.14a). On the small testing set, COMPRASS performs slightly worse than COMPASS, 

while on the entire set, COMPRASS performs much better than COMPASS. The other 

difference occurs for reference-independent local mode evaluation (Figure 6.14d). 

COMPRASS performs better than COMPASS on the small set, but worse on the enti

representative dataset makes more sense. Since COMPR

e local (i.e. short alignments), it is reasonable for COMPASS to perform better on 

local mode but worse on the global mode. As to the reason why COMPASS performs better 

than COMPRASS for reference-dependent structure template evaluation (global mode)

the small set, it is probably because the small set is more compact with close homologs that 

are more easily detected by COMPASS, while COMPRASS tends to detect more remote 

homologs. 

Looking at all four evaluation results on the entire dataset, PSI-BLAST performs

worst in every category, which indicates that PSI-BLAST does not perform well on da

of this degrees of difficulties (within and below the twilight zone). Except for the refe

independent local mode evaluation, COMPRASS performs better than COMPASS, and the 

degree in performance increase is comparable to that of HHsearch_ss over HHsearch. Thi

observation indicates that adding predicted secondary structure information to profile

information indeed helps to increase the sequence alignment quality. 

Comparing the global performance of HHsearch_ss and COMPRASS clearly shows 

that HHsearch_ss is better at detecting overall structure template (Figure 6.14a) while 
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COMPRASS is better at generate correct alignement (Figure 6.14b). And when testing for 

combined global structure template detection ability and alignment quality (i.e. the reference-

independent global mode, Figure 6.14c), COMPRASS performances worse than 

HHsear  

es 

 

d 

 

ve a 

 

cs 

lculation method) used by COMPRASS are worse, for COMPRASS statistics are 

fitted fo d 

ION SYSTEM 

SCOP is a popular protein structure classification database constructed with both 

structural and evolutionary considerations (section 1.1.4). Because it is mainly expert 

ch_ss. These results give comprehensible indications of the advantage and limitations

of the programs. If parts of the query and template structures that are aligned are dissimilar to 

each other, the overall superposition of the two domains could be skewed so that the 

correctly aligned equivalent residue pairs are distant from each other. Since GDT_TS 

measure the distance between equivalent residue pairs, when parts of the aligned structur

have low structural similarity, even if the alignment between them is correct, the overall

GDT_TS score could still be low. Since the combined global structure similarity an

alignment quality (i.e. the reference-independent global mode) is measured by GDT_TS, the

method that has poorer structure template detection ability (COMPRASS) would ha

lower score than the method that has better structure template detection ability but poorer 

alignment quality (HHsearch_ss). Thus, comparisons between the evaluation results of 

different criteria inform us that the method COMPRASS generates better sequence alignment

but detects poorer structure template than HHsearch_ss. Another study (Pei and Grishin 

submitted) using similar scoring function as COMPRASS also shows that the scoring 

function used in COMPRASS helps increase sequence alignment quality. The reason why 

COMPRASS detects poorer structure template than HHsearch_ss might be that the statisti

(E-value ca

r mixtures of different protein families, while HHsearch_ss statistics are calculate

specifically for each individual families. Therefore, the ranking of hits generated by 

COMPRASS does not reflect the structure similarity as well as that generated by 

HHsearch_ss. 

6.4 RESULTS AND DISCUSSIONS OF THE EVALUAT
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manually curated, SCOP classification is often used as a gold standard for homology 

relationship and structure fold similarity (Chung and Yona 2004; Zhu and Weng 2005; 

Paccanaro, Casbon et al. 2006). However, there are known problems with SCOP.

problem is that proteins belonging to different SCOP superfamilies could be homologous to 

each other. For example, thiamin phosphate synthase and Indole-3-glycerophosphate 

synthase (IPGS) are homologous to each other (Nagano, Orengo et al. 2002; Cheek, Q

2004), but they are assigned to two different superfamilies in SCOP (thiamin phosphat

synthase and ribulose-phosphate binding barrel). Another problem with SCOP is that protein

belonging to different SCOP folds could have the same structure fold. The most obvious 

example is Rossmann-like fold proteins (Anantharaman and Aravind 2006). In the cur

version (version 1.69) of SCOP, there are 136 SCOP folds in the α/β class, while at least 77 

of them are of Rossmann-like structural fold. For example, proteins in SCOP fold nucleo

binding domain and SCOP fold FAD/NAD(P)-binding domain are all of Rossmann-like fo

Because SCOP has these problems, it is not a good approach to use SCOP 

classification as gold standard blindly. Researchers have realized this problem and uses 

supplemental methods in addition to SCOP classification. For instance, Soding in his 

HHsearch paper (Soding 2005) uses two sets of criteria for true or false positives when

evaluating homology detection abilities. In the first set, he defines true positives as pairs fro

the same SCOP superfamily, false positives as pairs from different SCOP classes. All the 

other pairs are considered to be unknown and are ignored. This leaves a large portion of 

domain pairs in a gray area (~40% unknowns according to personal communications betwee

Drs. Soding and Grishin). Because he thinks using SCOP only and ignoring the pairs

gray area is unfair, Soeding uses MaxSub score (Siew, Elofsson et al. 2000) in add

SCOP superfam

 One 

i et al. 

e 

s 

rent 

tide-

ld. 

 

m 

n 

 in the 

ition to 

ilies as criteria for true positives in the second set (Soding 2005). Therefore, 

to develop a comprehensive evaluation system based on SCOP and structural and sequence 

similarity is highly necessary. 
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6.4.1 Representative Dataset 

The final representative dataset contains 4147 SCOP domain sequences. Figure 

shows the distribution of domain lengths. The domain lengths range from 31 to 1256 amino 

acid long with a median of 151 amino acids. These representative domains belong to 1

SCOP superfamilies. Figure 6.9b shows the distribution of number of representatives per 

SCOP superfamily. The 4147 representatives belong to seven SCOP classes. Figure 6.9c 

shows the distribution of percentage of representatives per SCOP class of this dataset, which 

has a similar distribution as the representatives in the Astral SCOP20 set. 

Multiple sequence alignments for each sequence in the representative dataset are 

generated using PSI-BLAST with an inclusion E-value cutoff of 10-4 for up to 2 iterations. 

Secondary structures for each of the representative sequence are predicted using PSIPRED 

(Jones 1999). Compared to real secondary structures generated by DSSP (Kabsch and Sander 

6.9a 

516 

1983) b f the 

 

as 

t 

thus 

The global and local modes of evaluations address different goals of structure 

modeling and should both be considered. Global mode has a goal of getting a good overall 

structural template for a query, i.e. finding a hit that share structural fold similarity to the 

query over the entire length. Local mode has a goal of finding local, maybe short, but precise 

alignments to segments of a query (i.e. fragment similarity). In this respect, fold similarity is 

not needed; just the structural accuracy of a local alignment is evaluated. Apparently, both 

ased on the 3-dimensional structures of the domains, the average accuracy o

predicted secondary structure is 80% for Q3 (Chandonia and Karplus 1999) and 78% for

SOV (Zemla, Venclovas et al. 1999), which are of the same prediction accuracy level 

reported (Bryson, McGuffin et al. 2005). 

For our purposes, it is important to have a large-scale, non-biased representative 

testing dataset. In addition, this dataset needs to be of certain degree of difficulty for correc

homology-identification and alignment. Otherwise, all programs could perform well and 

the system loses the distinguishing power. 

6.4.2 Global/local mode 
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modes are useful for structure modeling. It is possible that different sequence alignment 

programs or different versions of a program will be optimal for different modes, and thus 

both m

 

ructure-based 

alignm

 is 

tep1 

rinciple based on a reference, namely, to judge if 

the hit e 

 

We should make them both work. 

ent evaluation 

ent 

odes should be evaluated. 

6.4.3 Reference-dependent evaluation 

We need to have reference-dependent and reference-independent evaluations with

structure-based alignment as the reference. Reference-dependent evaluation should be done 

by comparing sequence-based alignment to the reference alignment (i.e. st

ent). At low sequence identity level (<20%), a structure-based alignment is more 

reliable than a sequence-based alignment, and can be considered as the best possible 

alignment for a particular pair of domains. Since for one pair of domains we have only a 

single reference alignment, many short but structurally equally good alignments (for 

example, helix aligned to helix) are not considered. Thus the reference-dependent method

a good way to evaluation global mode alignments but not local mode. 

The reference-dependent global mode of evaluation should consist of two steps. S

is to decide whether the hit can be true in p

is overall a good structure template in the case of best alignment. Step 2 is to decid

whether the hit can be true in terms of usefulness for structure modeling, namely, to judge the

quality of the sequence alignment. Traditionally, SCOP superfamily/fold classification was 

used at step1; and step 2 has been ignored. 

6.4.4 Reference-independ

Reference-independent evaluation should be based just on the sequence alignm

itself. It does not need reference structure alignments or reference classifications. Thus it is 

more flexible and is suitable for both global and local modes of evaluations. Reference-

independent evaluation is every well suited for local mode, but may work well for global as 

well, making reference alignments obsolete. This could be a very good thing provided 

difficulties to obtain correct structure alignments. 
 131



 

6.4.5 Why GDT_TS and LiveBench 3dscore Give Similar Results 

During the experiments with GDT_TS and LiveBench 3dscore, we find out that the 

two scores give very similar results and conclusions (Figure 6.4 a & c). A further look at the 

that the two scores actually give very similar values 

for the same pair of sequence alignment (Figure 6.15a) with a coefficient of determination 

(R2) of e. 

GDT_TS and LiveBench 3dscore shows 

 0.984. In order to understand this phenomenon, I take a closer look at their formula

The formula of GDT_TS is  

Equation 6.3  ∑∑ ==
LL

i L
GDT

L
TSGDT 8421

4
_  

which is a sum of a step function GDTi (Figure 6.15b).  

The formula of LiveBench 3dscore is  

Equation 6.4   ∑∑
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which is a sum of a continuous function LB3di (Figure 6.15b). The formula of function LB3di
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is equivalent to formula 2 , which is a continuous function. From Figure 6.15b we can 

see that LB3d  is a continuous simulation of the step function GDT . Therefore, there is no 

surprise that the two scores give very similar values. 

6.4.6 The Model Of Length Dependency Of Local GDT_TS Scores 

The form of the model (power law) and the signs of the parameters for GDT_TS 

mean are consistent with the findings in the TMalign study (Zhang and Skolnick 2004), but 

). 

 (ours: local, theirs: global). 

our value of the parameters (Equation 6.2) are different from theirs ( 74.01.5)( −LLmean

This difference could be caused by different identity range of domain selections (ours: < 

20%, theirs: < 30%), different superposition methods (ours: RMSD-optimal, theirs: 

TMalign), or different GDT_TS calculation modes

=
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6.5 CONCLUSIONS 

We have developed an automatic large-scale evaluation system aiming at 

systematically and comprehensively evaluating the structure modeling ability of sequence 

similarity search methods. We have first identified the pairwise identity calculation method 

that best reflects the evolutionary distance between protein domains and utilized this metho

to select 4147 representative SCOP protein domains as our testing set that have maximum 

20% pairwise identities based

d 

 on three types of structural alignments (DALI, TM, FAST). 

Both reference-dependent and reference-independent approaches are used to evaluate the fold 

ty and alignment quality of different programs from global and local 

perspectives. For fold recognition ability (i.e. structure template quality) assessment, five 

 be most effective and SVM 

sures. For alignment quality assessment, GDT_TS 

measure and the number of correct matches are utilized. Applying our evaluation system to 

ilarity search programs show that our evaluation system is robust and 

helpful to shed light on the intrinsic properties of sequence similarity search programs. 

recognition abili

structural and sequence similarity measures are found to

technique is used to combine these mea

six sequence sim
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Figure 6.1 Graphical Representation of Domain Relationship within A Superfamily 

 A graphical representation of relationships
between domain sequences within a SC
superfamily. Vertices 1-5 represent 5 dom
sequences in this superfamily. An edge linking 
vertices indicates the pairwise identity betwee

two
n

these two domains is higher than cutoff. No edge
between two vertices indicate the pairwis
between the two is lower than cutoff. 

2

4

53

OP
ain

e identity
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nd 

ifferent Identity Measures 

Figure 6.2 Representatives Selected Using Different Structure Alignment Programs a

D

 

Red circle: TM alignment-based representatives 
Blue circle: DALI alignment-based representatives 
Black circle: FAST alignment-based representatives 
(1): Representatives selected using pid(1) 
(2): Representatives selected using pid(2) 
(3): Representatives selected using pid(3) 



 

 

Figure 6.3 SVM Score Cutoff Selections for Overall Structure Template Quality 

 

 

 
 

a 

b 

c 

(a) SVM score distributions of the 
true (same superfamily) and false 
(different classes) hits based on 
SCOP classification. Best separation 
of the true and false is obtained by 
selected five features. (b) SVM 
score distributions of four inter-fold 
structure groups. The average (0.6) 

 
tiles 
e 

low-cutoff. 

of the 95% percentiles of the four 
groups is taken as the high-cutoff. 
(c) SVM score distributions of four 
intra-fold structure groups. The
average (-0.6) of the 5% percen
of the four groups is taken as th
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Figure 6.4 Cutoff Selections for Alignment Quality 

 
a.
% 

5 

 
b.
 

 (red), step1 true 
domain pairs (green) and PSI-
BLAST E-value less than 0.005 
domain pairs (blue). (b) Coverage 
of the PSI-BLAST E-value less 
than 0.005 domain pairs by 
different ranges of number of 

(a) GDT_TS scores of PSI-
BLAST alignment vs. GDT_TS 
scores of structure-based DALI 
alignment of the step1 false 
domain pairs

 
c.
 

99
0.1
 

correct matches. (c) LB 3dscores 
of PSI-BLAST alignments vs. LB 
3dscors of DALI alignment. The 
same distributions as using 
GDT_TS scores as in (a). 
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Figure 6.5 Flowchart of Reference-dependent Evaluation System 
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Figure 6.6 Length-dependency of GDT_TS 

 

 

b 
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Figure 6.7 Local GDT_TS Cutoff Method Selection 

a 
 
 

(a) Comparison of the local GDT_TS 
values of Z-scores 3 (green) and 5 (blue)
with that of 95 percentile of the local 
GDT_TS distribution for different local 
alignment lengths (5, 20, 50, 100, 200, 
500 residues long). Both Z-score 3 and 
Z-score 5 cutoffs are more stringent 
than that of the 95 percentile of the b 

 

 

 

 

Length 50
 

distribution of local GDT_TS at a given 
length with Z-score 3 closer to the 95 
percentiles. (b) Local GDT_TS 
distribution of length 50 (1000 
samples). Z-score 3 cutoff value is more 
extreme than the 95 percentile value. 

95 percentile 

(0.2) 

Z3 cutoff  

(0.24) 
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Figure 6.8 Flowchart of Reference-independent Evaluation System 
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Figure 6.9 Distributions of Representative Domains 

 

 

SCOP Class

a b c d e f g

%

0

5

10

15

20

25

30

Our dataset (4147)
Astral set (4960)

 
 

a 

b 

(a) Distribution of domain lengths of the 

representative dataset. (b) Distribution of 

number of representatives per SCOP 

superfamily of the representative dataset. 

(c) Distribution of number of 

representatives per SCOP Class. The 

black bar shows the distribution of our 

representative dataset that contains 4147 

domain sequences. The grey bar shows 

the distribution of Astral SCOP20 set 

which contains 4960 domain sequences. 

The x-axis shows the abbreviate names of 

the SCOP Classes. a: all alpha proteins; 

b: all beta proteins; c: alpha/beta proteins;

d: alpha+beta proteins; e: multi-domain 

proteins; f: membrane and cell surface 

proteins and peptides; g: small proteins. c 
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Figure 6.10 Reference-dependent Structure Template Quality Evaluation of Various 

Sequence Alignment Programs on the Testing Set 

 
rams. Different colors of the ROC curves indicate different prog
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Figure 6.11 Reference-dependent Alignment Quality Evaluation of Various Sequence 

Alignment Programs on the Testing Set 

 
Different colors of the ROC curves indicate different programs. 
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Figure 6.12 Reference-independent Global Mode Evaluation of Various Sequence 

Alignment Programs on the Testing Set 

 
Different colors of the ROC curves indicate different programs. 
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Figure 6.13 Reference-independent Local Mode Evaluation of Various Sequence 

Alignment Programs on the Testing Set 

 
Different colors of the ROC curves indicate different programs. 
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Figure 6.14 Evaluation Results of Various Sequence Alignment Programs on the E

Representative Dataset 

ntire 

 

 

a. b. 

c. d. 

 
(a) Reference-dependent structure template evaluation results. (b) Reference-dependent 
alignment quality evaluation results. (c) Reference-independent global mode evaluation 
results. (d) Reference-independent local mode evaluation results. Different colors of the ROC 
curves indicate different programs. 

 147



 

 

Figure 6.15 Comparison of GDT_TS and LiveBench 3dscore Functions 

 
 

a 

R2 = 0.984 

b 

 (a): GDT_TS and LiveBench 3d score 
give similar score values. (b). Function 
of GDTi (red) and LB3di (green). The 
lines indicate the changes of function 
values with the change of distances 
between two aligned residues. 

4
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Table 6.1 SVM Score Cutoffs 

a. High-cutoff 

Structural class Representative problematic fold pair SVM score at 

95% percentile 

0.7 

0.6 

α/β Rossmann-fold vs. TIM barrel 

α+β Ferredoxin-like vs. IF3-like 

All α Four-helical up-and-down bundle vs. 

globin-like 

0.8 

All β OB-fold vs. SH3-like barrel 0.3 

Avg   0.6 

 

b. Low-cutoff 

Structural class Representative fold SVM score at 5% 

percentile 

α/β Rossmann-fold -0.8 

α+β Ferredoxin-like -1.0 

All α Four-helical up-and-down 

bundle 

0.4 

All β OB-fold -1.1 

Avg  -0.6 
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CHAPTER 7:  
Summary and Future Directions 

In plo unction relationships of 

proteins, this dissertation work mainly focused on algorithmic develop

homology detection and utilization related issues, including more powerful homology 

detection ds, structure and position rrelation based 

functional predictions. The developed algorithms and methods are generally applicable to all 

protein families. Case studies  prediction and structure classification are also 

carried out to address problems in specific protein family or groups of families. 

7.1 CONCLUDING REMARKS: STRUCTURE PREDICTION OF GYRASE A C-

TERMINAL DOMAIN 

7.1.1 Project Summary 

A structure prediction of the C-terminal domain of Gyrase A (GyrA) and 

topoisomerase IV (ParC) is presented in Chapter 2. The C-terminal domain of GyrA/ParC 

was the la iece of topoiso ailable ctural information at 

the time the prediction was made. Using extensive sequence and structure analysis of the 

GyrA/ParC C-terminal domain and regulator of chromosome condensation (RCC1), 

including sequence similarity search, multiple sequence alignment, hydrophobicity analysis, 

condary structure prediction, and fold recognition, we infer homology between these 

roteins and therefore predict the structural fold and functional implications of the 

yrA/ParC C-terminal domain. The fold prediction is later verified by experimental data. 

 an attempt to ex re and utilize the sequence-structure-f

ment to address 

 metho modeling ability evaluations, al co

 of structure

rgest p merase sequence without av  stru

se

p

G
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7.1.2 Applications and Utility 

This chapter illustrates a case study of homology-based structure prediction. The 

results of the structure prediction and functional implications are directly beneficial to 

researc

oject 

deling 

 OF 

THIOREDOXIN-LIKE FOLD PROTEINS 

7.

A hierarchical structure classification of thioredoxin-like fold proteins is presented in 

n-like fold is defined and protein domains containing the 

thioredoxin-like fold are identified through extensive structural search and are classified into 

fold gro analysis. 

d 

 

is defined 

r 

permutations, and therefore is useful to clarify fold definitions. The resulting definition is 

more inclusive compared to exiting classifications, which helps identify previously 

unrecognized similarities between proteins that are newly brought together. Circular 

hers working with DNA topoisomerases. Since most of the current methods and 

techniques for protein structure prediction are used in this project, the process of this pr

could serve as a template for researchers who wants to perform structure prediction/mo

for their own proteins. 

7.2 CONCLUDING REMARKS: STRUCTURE CLASSIFICATION

2.1 Project Summary 

Chapter 3. The thioredoxi

ups and evolutionary families through sequence, structure and functional 

The characteristic structural or functional features of each evolutionary family are describe

in detail. A multiple structural alignment on ninety representatives is performed. Analysis of

active site locations is carried out. 

7.2.2 Applications and Utility 

This structure classification has multiple benefits. The thioredoxin-like fold 

firstly based on structural consensus of thioredoxin homologs and explicit usage of circula
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permutation analysis also helps reveal potential functional/packing unit. Furthermore, 

because the nature of this structure classification emphasizes on convergent evolution of 

structur e 

ss 

d 

ocations offers useful information on protein structure-function 

relationships and can be employed in protein functional predictions. 

7.3 CONCLUDING N ANALYSIS 

ALGORITHM 

7.3.1 Project Summary 

al folds, a thorough study of these protein domains may aid in understanding of th

physico-chemical principles behind protein structures, which in turn could help to addre

problems such as protein folding and structure-functional predictions. The structure-base

multiple sequence alignment of the thioredoxin-like fold proteins offers information on 

protein sequence-structure relationships and can be employed in protein structure predictions. 

Analysis of active site l

REMARKS: POSITIONAL CORRELATIO

The development of a software package, PCOAT (Positional Correlation An

T

alysis 

ool), is presented in Chapter 4. PCOAT has been developed to perform positional 

correlation analysis for protein multiple sequence alignments. Different statistical methods 

have been implemented to detect highly correlated position pairs, amino acid pairs, 

individual positions, and networks of correlated positions. Multiple sequence weighting and 

sampling methods have been developed to eliminate background correlations caused by 

phylogeny and stochastic events. 

7.3.2 Applications and Utility 

 

f 

tions or 

 

Because correlations between protein positions often arise for structural or functional

reasons, such as stabilizing local contact or affecting protein functions through networks o

interactions, PCOAT should be useful and convenient for researchers to predict posi

residues of structurally or functionally important interactions in their protein families.
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PCOAT runs relatively fast and is suitable for analyzing alignments containing large nu

of sequences. 

7.4 CONCLUDING REMARKS: SEQUENCE SIMILARITY SEARCH METHOD 

7.4.1 Project Summary 

mber 

The development of a more sensitive sequence similarity search method is presented 

in Chapter 5. With increased structure modeling and homology detection abilities as the 

goals, this method makes use of the predicted secondary structure information and combines 

it wi nd 

amino acids are calculated and used in th eveloped for measuring 

sequence-secondary structure similarities. The parameters of a statistical model are fitted in 

tical significance of resulting scores. 

7.4.2 A

an find 

, 

lly preserve the same general biochemical function, 

making a rough functional prediction is possible using this method for newly discovered 

eased alignment quality, this method provides longer and 

better alignments that are suitable for structure modeling purposes. Applying to the PFAM 

familie

th sequence profiles. Substitution matrices of predicted secondary structure elements a

e scoring system d

order to estimate the statis

pplications and Utility 

This method can be of use to both computational biologist and experimental 

researchers. With increased sensitivity for homology detection ability, this method c

more remotely similar homologs that can serve as structure template for newly discovered or 

poorly studies proteins that are distant from other proteins in structural space. In addition

because homologous proteins usua

proteins. Further more, with incr

s shows that this method can be used to identify previous unrecognized similarities 

between protein families, as well as to directly identify homologs that were previously 

identified only through transitive method. 
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7.5 CONCLUDING REMARKS: EVALUATION SYSTEM FOR SEQUENCE 

SIMILARITY SEARCH METHODS 

7.5.1 Project Summary 

A comprehensive evaluation system for the structure modeling abilities of sequence 

 is presented in Chapter 6. A large, non-biased representative 

protein domain set is first selected to serve as the testing set. Different sequence and structure 

similar

on 

This evaluation system is of particular interest to the protein structure modeling 

evelopers and the users. It serves as an instrument to 

benchmark the structure modeling abilities of different sequence similarity search and 

alignm  to test 

 

similarity search methods

ity measures are then combined to assess the sensitivity and specificity of different 

programs. The evaluation procedure makes automatic assessments for both fold recogniti

abilities and alignment qualities from global and local perspectives using both reference-

dependent and reference-independent approaches. 

7.5.2 Applications and Utility 

community, both to the method d

ent methods. Researchers developing sequence similarity search methods need

and compare their performances all the time. Such an evaluation system helps the developers

to understand the achievements and limitations of their programs and of the field, as well as 

helps the users to choose the appropriate programs to use for their purposes. 
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APPENDIX A 
FORMULAE 

 

 pairwise percentage identity calculation: 

1) 

A.1 Other variations of

Combined id2: 
unalishotersumali LL

pid
__

)4(
+

=  

2) Variation of pid(3) and pid(4): 
unalishortersumali

randomunalishortersumid pidLN
pid

__

__)5(
∗+

=  

unalishortersumali

id

LL
N

__+

unaliidid NN _+

LL +

3) Variation of pid(2): pid )6( =  
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