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Sequence, structure and function, being the three most important properties of
proteins, are interrelated through homology relationships. In this post-genome era, we are
equipped with abundant sequence information. Homology inference is thus of great practical
importance because of its ability to make structural and functional predictions through
sequence analysis. In an effort to explore and utilize the protein sequence-structure-function
relationships, with homology detection and utilization as the central scheme, this work
concentrates on algorithmic development of methods and systems for sequence similarity
search, structure modeling and functional prediction purposes, as well as performs structure

prediction and classification for specific protein families.
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Three algorithmic developments are described in this dissertation. First, to facilitate
identification of structurally or functionally important interactions between positions in a
protein family, a program has been developed to perform positional correlation analysis of
multiple sequence alignments using different methods. The program has been shown to be
useful to identify functionally important position pairs or networks of correlated positions.

Second, to further increase the sensitivity of sequence similarity search methods in
terms of homology detection and structure modeling ability, a method has been developed by
incorporating predicted secondary structure information with sequence profiles. Evaluation
on PFAM-based system shows that this method provides improved structure template
detection ability and generates alignment of better quality.

Third, in order to systematically assess the structure modeling abilities of different
sequence similarity search programs, a comprehensive evaluation system has been
developed. This large-scale automatic evaluation system assesses the fold recognition ability
and alignment quality of different programs from global and local perspectives using both
reference-dependent and reference-independent approaches, which provides an instrument to
understand the progress and limitations of the field.

Two structure prediction and classification projects using manual analysis and
existing tools are also described in this dissertation. First, the structure of C-terminal domain
of Gyrase A is predicted through inferred homology relationship with regulator of
chromosome condensation (RCC1). This prediction has been validated by experimental data.
Second, a hierarchical structure classification of thioredoxin-like fold proteins has been
carried out, which promotes understanding of fold definitions and sequence-structure-

function relationships.
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CHAPTER 1:
General Introduction

1.1 HOMOLOGY INTERRELATES PROTEIN SEQUENCE, STRUCTURE AND
FUNCTION

Sequence, structure and function are three major properties of proteins. All studies
about proteins are essentially developed around these three aspects. From the evolutionary
point of view, homology plays a central role and interrelates these three properties of
proteins. Through inferred homology relationships, protein structure and function can be
predicted from protein sequence, and sequence similarities can be supported or verified from
structural or functional features. We discuss the details of their relationships in the following

sections.

1.1.1 Homology Detection And Sequence Analysis

Homologous proteins are proteins that have evolved from the same ancestor.
Homologous proteins typically possess conserved sequence motifs and structural features,
the same structure folds, and similar functional sites and general biochemical functions.
Strong sequence similarity alone or combined sequence-structure or sequence-function
similarities are often used to establish homology relationships between proteins. Distinctive
structure features, similar structural folds, conserved sequence motifs and functional sites are
often used to further support or verify the inference of homology.

Many sequence similarity search methods are available to automatically detect
homologs from statistically significant sequence information, the most popular one being
PSI-BLAST. Protein sequence similarity search methods have advanced greatly over the last
one and a half decades. Sequence similarity search methods have been developed from single
sequence vs. sequence methods such as BLAST (Altschul, Gish et al. 1990), to sequence vs.

1



profile methods such as PSI-BLAST (Altschul, Madden et al. 1997) and RPS-BLAST
(Marchler-Bauer, Panchenko et al. 2002), to profile vs. profile methods such as BASIC
(Rychlewski, Zhang et al. 1998), Prof sim (Yona and Levitt 2002) and COMPASS
(Sadreyev and Grishin 2003), and the ability to detect distant homology has increased
greatly. PSI-BLAST (a sequence-profile method) can be used to reliably detect homologs at
>30% sequence identity level. Profile-profile based methods can be used to detect homologs
at ~20-30% identity level (Sadreyev and Grishin 2003). However, since protein sequences
evolve very fast, detecting more remote sequence similarities (< 20% identity) is difficult.
Therefore, it is necessary to develop more powerful distant similarity detection method.
Homologous proteins can be grouped together to form protein families. The direct
advantages of grouping are (a) the ease of finding annotated sequence neighbors, which is
useful in single unknown sequence analysis, and (b) the ability to study the protein family as
a whole, which enables the identification of conserved sequence motifs or structure features.
Many protein sequence family databases exist (Henikoff, Henikoff et al. 1999; Attwood,
Bradley et al. 2003; Marchler-Bauer, Anderson et al. 2005; Hulo, Bairoch et al. 2006;
Letunic, Copley et al. 2006) with Pfam as the major one. Pfam (Protein domain families)
(Bateman, Coin et al. 2004) is a database of multiple sequence alignments of protein families
or conserved protein regions. The multiple sequence alignments are built from seed
alignments followed by profile hidden Markov models. Pfam is the largest available source

of accurate semiautomatic multiple sequence alignments (Sadreyev and Grishin 2003).

1.1.2 Structure Modeling

Protein structures usually evolve slower than their sequences. Even if their sequences
have evolved beyond recognition, homologous proteins could still share similar structure
folds. Therefore, the unknown tertiary structure of a protein can be modeled based on the
known structures of their homologous proteins.

In practice, when we have a protein sequence of unknown structure, the first step in

homology modeling is to search for similar protein sequences with known structures. Once



found, we need to infer if the structure-known protein and the structure-unknown protein are
homologous or not from the degree of sequence similarities between them. If they are
homologous, we will be able to model the structure of the unknown protein based on the
known one according to the sequence alignment between them.

There are a few commonly used terms in the field of homology modeling. “Query” or
“target” refers to the protein of unknown structure and which starts the sequence similarity
search process in order to find similar protein sequences with known structures. “Hit” or
“template” refers to the protein with known structure and which is used as a structure model
for the query. In some cases, for instance when testing a sequence similarity search program,
the query can have known structure. But in all cases, it is the one whose structure needs to be
modeled based on that of the template.

The sequence similarity search methods that are discussed in the previous section can
be used for homology modeling purposes. Homology modeling can be divided into two
categories. If the sequence similarity between the target and the template is strong (>30%
identity), the template can be readily found by BLAST or PSI-BLAST. Homology modeling
at this sequence similarity level is also called comparative modeling (Tress, Tai et al. 2005).
If the template can only be found by profile-profile based or more powerful searches,
homology modeling is categorized as fold recognition (Tress, Tai et al. 2005).

Despite the presence of other types of structure prediction methods, such as ab initio
methods, homology modeling methods for protein structure prediction are of great practical
importance (Lattman 2005). In addition to model overall structural folds for unknown
sequences, homology modeling can also be used to model active sites or interaction surfaces
of proteins with other molecules, and thus has great potential in drug design. Since many
sequence similarity search methods exists, it is important to have an evaluation system to

assess their performance in terms of homology modeling abilities.



1.1.3 Functional Prediction

Homologous proteins typically share similar functional sites and general biochemical
functions. Functional sites or active sites include catalytic sites, substrate-binding sites, or
“hot spots” on protein-protein interaction surfaces. Functional sites are identifiable through
the multiple sequence alignment of a given protein family. These sites form conserved
columns in the multiple sequence alignment since they have evolved under evolutionary
selection pressure. When proteins in a given family possess different substrate specificities,
they may have different amino acid types conserved at the same sites or have a shift in the
position of the conserved sites.

Homologs can be separated into orthologs and paralogs. Orthologs are homologs
resulting from speciation events; while paralogs are homologs resulting from gene
duplication events (Fitch 2000). Orthologs are believed to have the same function and often
the same specificity since they have been under similar evolutionary pressure. On the other
hand, paralogs are believed to have diverged to evolve new specificities or even new
functions since they have experienced weaker evolutionary pressure after duplication (Mirny
and Gelfand 2002). Therefore, identification of orthologs is crucial for reliable protein
functional prediction. The databases Clusters of Orthologous Groups of proteins (COQG)
(Tatusov, Fedorova et al. 2003) and Eukaryotic Orthologous Groups (KOG) (Tatusov,
Fedorova et al. 2003) fulfill this intention. COG is constructed from the complete genome
sequences of prokaryotes and unicellular eukaryotes, and KOG is constructed from complete
genome sequences of eukaryotes. Since orthologous proteins typically have the same
function, COG and KOG allow functional information transfer from one member to an entire
group. The approach of COG and KOG should facilitate functional annotation of genomes.

Mirny and Gelfand use the concepts of ortholog and paralog to identity specificity-
determining residues in bacterial transcription factors (Mirny and Gelfand 2002). They group
the orthologous transcription factors together, which are assumed to have the same
specificity, and thus transcription factors between groups are considered paralogs. The

specificity-determining residues are found by comparing the sequences in different groups.
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Mirny and Gelfand’s method is similar to the approach of positional correlation analysis,
which has been shown to identify specificity-determinant residues (Crowder, Holton et al.

2001).

1.1.4 Structure Classification

More than 39,000 experimentally determined protein structures have been deposited
in the Protein Data Bank (PDB) (Berman, Westbrook et al. 2000) and the acceleration in the
growth of structure data is anticipated as high-throughput structural genomics continues
(Westbrook, Feng et al. 2003). To systematize this large amount of data for better
understanding of protein evolution and sequence-structure-function relationships, protein
structure classification is necessary. In a protein structure classification, fold group and
evolutionary family are the two major levels. At the fold level, protein domains are grouped
based on the connectivity and mutual orientation of their core secondary structure elements.
Within each fold group, proteins are further divided into evolutionary families based on
inferred homology relationships. The same structural folds possessed by non-homologous
proteins are considered to be the result of convergent evolution. Protein structure
classification is hierarchical in nature, for homologous proteins typically have the same
structure fold. The geometry of protein structures usually reflects certain constraints from
sequence and function. Thus grouping proteins by folds will aid in understanding of the
physico-chemical principles behind protein structures, which in turn could help to address
problems such as protein folding and structure-functional prediction. Furthermore, although a
few exceptional examples exist where homologous proteins have evolved different folds
(Murzin 1998; Grishin 2001), protein structures generally evolve slower than their
sequences. Consequently, grouping protein domains by folds could also help in
understanding protein evolution and will facilitate homology inference. Therefore,
hierarchical protein structure classifications usually take into consideration both structural

and evolutionary criteria.



Several hierarchical protein structure classifications exist, with the major ones being
SCOP (Murzin, Brenner et al. 1995), CATH (Orengo, Michie et al. 1997) and Dali Domain
Dictionary (DaliDD) (Holm and Sander 1996; Holm and Sander 1998; Dietmann and Holm
2001). SCOP (Structural Classification Of Proteins) is constructed by combining expert
curation and automatic sequence comparison methods. There are four major levels in the
SCOP hierarchy. Starting from the lowest level, a family contains proteins that are close
homologs. A superfamily contains families that are remotely homologous to each other. A
fold contains superfamilies that share the same structure fold, i.e. the same core secondary
structures with the same connectivity and mutual orientation. A class contains folds of the
same secondary structure composition (e.g. all alpha or all beta). CATH and DaliDD are
constructed using fully automatic methods and have similar hierarchical levels as SCOP.

FSSP (Families of Structurally Similar Proteins) (Holm and Sander 1996) is a non-
hierarchical structure classification database, which provides structurally aligned families of
proteins based on significant structural similarity. This database is constructed and updated
by all-against-all structure comparisons of protein structures in the Protein Data Bank (PDB)
(Berman, Westbrook et al. 2000) using the DALI structure comparison program (Holm and
Sander 1995).

1.2 OVERVIEW OF DISSERTATION WORK

This dissertation work attempts to explore all aspects of the homology interrelated
protein sequence-structure-function relationships discussed above. With identification and
utilization of homology relationships as the central scheme, this dissertation work includes
structure modeling (Chapter 2), structure classification (Chapter 3), algorithm developments
of positional correlation-based functional prediction method (Chapter 4), sequence similarity
search method (Chapter 5), and evaluation system to assess the homology modeling
performance of sequence similarity search programs (Chapter 6). These projects are

described in detail in the following chapters.



In addition to these, project that is not described in this dissertation but also
demanded a significant amount of time and work is SCOPlink. SCOPIlink (unpublished) is an
extension and application of the SCOPmap project (Cheek, Qi et al. 2004). In the SCOPlink
project, potential homology relationships between SCOP superfamilies (Murzin, Brenner et
al. 1995) are identified by comparing SCOP superfamilies (version 1.65 and 1.69) to each
other in an all-against-all fashion. The resulting data, including sequence and structural
alignments, are transformed automatically into user-friendly formats and are presented in a
web interface for easy browsing and manipulation. Initial curation of the data revealed
numerous interesting examples of previously unrecognized homology relationships and

networks of related SCOP superfamilies.



CHAPTER 2:
Structure Prediction of C-Terminal Domain of Gyrase A

2.1 INTRODUCTION

2.1.1 Background

Topoisomerases are ubiquitous enzymes that catalyze cleavage and religation of DNA
molecules allowing for the changes in DNA topological states (Caron and Wang 1994; Wang
1996). Topoisomerases are involved in crucial cellular processes such as replication,
transcription, and recombination, and thus have pharmaceutical importance (Maxwell 1992;
Hiasa, Yousef et al. 1996). Topoisomerases of type I and type II cleave one and two DNA
strands, respectively. Type Il enzymes require ATP for their activity and possess an ATPase
domain or subunit. Most bacteria have two homologous type II enzymes: DNA gyrase
(topoisomerase I, Gyr) and topoisomerase IV (Par). Each enzyme is composed of two
subunits (Figure 2.1). GyrA is involved in breakage and reunion of DNA and GyrB functions
as an ATPase. Equivalent subunits in topoisomerase IV, ParC and ParE, share about 35%
identity with GyrA and GyrB. Despite pronounced sequence similarity, gyrase and topo IV
possess distinct cellular functions (Zechiedrich, Khodursky et al. 2000; Deibler, Rahmati et
al. 2001). Gyrase introduces negative supercoils into DNA. Topo IV relaxes negative and
positive DNA supercoils (Deibler, Rahmati et al. 2001).

The reaction mechanism of type II topoisomerases is relatively well understood and
crystal structures for most of their domains are available. GyrB can be divided into two
fragments (Figure 2.1a). The 43kDa N-terminal portion of the E. coli enzyme with known
structure is composed of an ATPase domain related to MutL/Hsp90/histidine kinase and a
ribosomal protein S5-like domain (Murzin, Brenner et al. 1995; Lo Conte, Ailey et al. 2000;
Deibler, Rahmati et al. 2001). The 47kDa C-terminal portion consists of a toprim Rossmann-

like domain interrupted by an insertion and is homologous to the N-terminal segment of the
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yeast topoisomerase II with available structure (Aravind, Leipe et al. 1998; Berger, Fass et al.
1998). Domain architecture of ParE is similar except that the insertion in the toprim domain
is shorter (Figure 2.1b).

GyrA is also composed of two fragments (Figure 2.1a). The structure of the 59K N-
terminal fragment for E. coli enzyme has been determined and the position of the catalytic
tyrosine has been localized (Morais Cabral, Jackson et al. 1997). The C-terminal 38K
fragment of GyrA still remains the largest piece of the topoisomerase sequence without
structural information. It has been shown that the C-terminal fragment can be expressed
separately. It lacks catalytic activity, but can complement the N-terminal fragment upon
mixing, which increases its supercoiling activity(Reece and Maxwell 1991). The C-terminal
fragment acts as a non-specific DNA-binding protein and is probably involved in
stabilization of the DNA-topoisomerase complex (Reece and Maxwell 1991). Without spatial
structure information, this fragment remains poorly understood.

Regulator of chromosome condensation (RCC1) is the guanine-nucleotide-exchange
factor for the nuclear G protein, Ran, which controls nucleocytoplasmic transport, mitotic
spindle formation, and nuclear envelope assembly (Nemergut 2001). These functions depend
on the association of RCC1 with DNA. Mutations in the yeast RCC1 gene affect pre-
messenger RNA processing and transport, mating, initiation of mitosis and chromatin
decondensation. The crystal structure of RCC1 revealed that the molecule folds as a 7-bladed
B-propeller, composed of seven four—stranded B-sheets (blades) arranged in a circular array
(Renault, Nassar et al. 1998). The B-propeller proteins vary in the number of blades (from 4
to 8), share limited sequence similarity despite pronounced structural resemblance, and

display extreme functional diversity (Paoli 2001).

2.1.2 Objective

In order to help fully understand its biological activities and functions, we decide to
prediction the spatial structure of the C-terminal domain of GyrA. Using consensus of

probabilistic sequence comparison methods combined with hydrophobicity analysis, we
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detect sequence similarity between the C-terminal domain of bacterial gyrase A and regulator
of chromosome condensation (RCC1) (Renault, Nassar et al. 1998) and infer homology
between them. We predict that GyrA/ParC C-terminal domain folds as a 6-bladed [3-

propeller. Functional implications of this homology prediction are discussed.

2.2 MATERIALS AND METHODS

2.2.1 Sequence Similarity Searches

The PSI-BLAST program was used to search for homologues of the gyrase C-
terminal fragment (Altschul, Madden et al. 1997). Residues 510-836 of Mycoplasma
genitalium GyrA (gi|1346233) were selected as a query to search against the non-redundant
(nr) database at NCBI (February 2001, 616,977 sequences, 195,057,269 total letters). The E-
value threshold was set to 0.02. All other parameters were defaults (Altschul, Madden et al.
1997). PSI-BLAST was iterated until convergence. Found homologues were grouped by
single linkage clustering (BLAST score threshold of 1 bit per site corresponding to about
50% identity) as implemented in the SEALS package (Walker and Koonin 1997), and the

representative sequences were used as new queries for subsequent PSI-BLAST iterations.

2.2.2 Multiple Sequence Alignment And Hydrophobicity Analysis

Multiple sequence alignments were constructed using the T-COFFEE program
(Notredame, Higgins et al. 2000) and adjusted manually based on the secondary structure
predictions (discussed below) and the conserved residue patterns. Alignments for topo II
sequences and RCC1 sequences were made separately and then merged based on the PSI-
BLAST local alignments and hydrophobicity profiles. Propeller blades corresponding to
sequence repeats were aligned to each other. The average hydrophobicity of residues in each

of the four -strands of the blades was calculated separately for topo II and RCC1 alignments
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using the scale from the mean values of 127 different hydrophobicity scales (Palliser and

Parry 2001).

2.2.3 Secondary Structure Prediction And Threading

Five representative (most diverse) topoisomerase C-terminal domain sequences
(g1|68494, residues 537-875; gi|1346229, residues 538-922; gi|1346233, residues 514-836;
gi|1835202, residues 528-907; gi|6655026, residues 517-755) were submitted to the JPRED2

consensus secondary structure prediction server (http://jura.ebi.ac.uk:8888/) (Cuff and Barton

2000), which returns the consensus of prediction results for six different secondary structure
prediction methods, including PHD, NNSSP, DSC, PREDATOR, MULPRED and ZPRED.
These five sequences were also submitted to another secondary structure prediction server,
SAM-T99 (http://www.cse.ucsc.edu/research/compbio/HMM-apps/T99-query.html)
(Karplus, Barrett et al. 1998). JPRED2 secondary structure predictions were also carried out
for 3 RCC1 sequences (gi|12325184, gi|132174, gi|7493765).

Seven fold recognition (threading) methods were applied to five representatives of the
gyrase C-terminal domain (gi/68494, gi|1346229, gi|121882, gi|1346235, gi|729651). The
following methods were explored: (1) the hybrid fold recognition method of Fischer at the
BiolnBgu server (http://www.cs.bgu.ac.il/~bioinbgu/) (Fischer 2000); (2) a method that

combines multiple sequence profiles and knowledge of protein structures to provide
enhanced recognition at the 3D-PSSM (three-dimension position-specific scoring matrix)
server (http://www.bmm.icnet.uk/~3dpssm/) (Kelley, MacCallum et al. 2000); (3) the
GenTHREADER program at the PSIPRED server (http://bioinf.cs.ucl.ac.uk/psipred/) (Jones

1999); (4) Sausage (Sequence-structure Alignment Using a Statistical Approach Guided by

Experiment) server (http://rsc.anu.edu.au/~drsnag/TheSausageMachine.html) (Huber, Russell

et al. 1999); (5) the secondary structure prediction - based fold recognition server, TOPITS
(http://www.embl-heidelberg.de/predictprotein/predictprotein.html) (Rost 1995; Rost,
Schneider et al. 1997); (6) FFAS (Fold & Function Assignment System) server
(http://bioinformatics.ljcrf.edu/FFAS/) (Rychlewski, Jaroszewski et al. 2000); (7) sequence-
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structure homology recognition server that uses environment-specific substitution tables and

structure-dependent gap penalties, FUGUE, at http://www-cryst.bioc.cam.ac.uk/~fugue/ (Shi,
Blundell et al. 2001).

2.3 RESULTS

2.3.1 PSI-BLAST Searches

GyrA and ParC homologues were found in PSI-BLAST searches initiated from the C-
terminal fragment of M. genitalium GyrA as described in Materials and Methods. Inspection
of local alignments generated by PSI-BLAST revealed the presence of multiple high scoring
pairs (HSPs) for as many as 80% of the found homologues, indicating the presence of
sequence repeats. In other words, the same segment of the query sequence was aligned to
several different segments in the same subject sequence with reliably high E-values (below
0.02). Multiple alignment analysis established the presence of 6 sequence repeats in GyrA
and ParC C-terminal domains (Figure 2.2).

PSI-BLAST iterations initiated from most of the GyrA and ParC sequences
converged within the type Il topoisomerase family and did not result in structural predictions.
However, the 3rd iteration with the query gi|544464, which is annotated as Fibrobacter
succinogenes GyrA, yielded one non-topoisomerase sequence with an E-value of 0.017 (bit
score 40, NCBI nr database, September 2001, 751,829 sequences, 239,148,880 total letters).
This sequence, human cell cycle regulatory protein (gi|87057, residues 80-206), is a variant
of human RCC1, which has a known three-dimensional structure (gi|4389390, PDB entry
lal2) (Renault, Nassar et al. 1998; Renault, Kuhlmann et al. 2001) and can offer a fold
prediction for the C-terminal fragment of GyrA/ParC. RCC1 folds as a 7-bladed B-propeller,
with blades being coded by sequence repeats. Each blade is composed of 4 antiparallel 3-

strands. No sequences from other families were found with significant E-values.
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2.3.2 Secondary Structure Predictions And Fold Recognition

JPRED?2 secondary structure predictions (Cuff and Barton 2000) obtained for several
gyrase sequences strongly suggest that they are all-beta proteins (Figure 2.2). Most of the 3-
strands were predicted with high confidence level (PHD confidence 7-9, Figure 2.2). SAM-
T99 secondary structure prediction yielded similar results (Figure 2.2). -Strands 5 residues
long on average were predicted along the sequence with spacing of about 2-20 residues
between them. Secondary structure predictions were similar for the sequence repeats with the
consensus prediction of 4 B-strands per repeat (Figure 2.2). The secondary structure
prediction for RCC1 sequences were similar and in agreement with the crystal structure of
RCCI1. Furthermore, the secondary structure predictions show an excellent correspondence
between the GyrA/ParC C-terminal domain and RCC1 families.

The consensus fold recognition method of Fischer that combines sequence, structural,
and evolutionary information (Fischer 2000) was applied to several topoisomerase 11
sequences. 7-bladed or 6-bladed B-propellers were consistently found as the top scoring
proteins. For instance, the top three fold recognition hits for gyrase gi|121882 are: a
theoretical model of human nidogen ywtd B-propeller domain (PDB entry 1INDX, score
17.8); C-terminal WD40 domain of tupl (PDB entry 1ERJ, score 17.4); and phytase from
Bacillus amyloliquefaciens (PDB entry 1CVM, score 13.0). There is a substantial gap in the
consensus scores between the top three hits and the fourth one with the score of 5.7, which
suggests that no other known fold "fits" the gyrase sequence well. In the results from 3D-
PSSM, 6-bladed or 7-bladed B-propellers were the top scoring protein folds with 0.05-0.5
PSSM E-values and 90-50% certainty. Furthermore, query gi|1346229 found RCC1 at PSSM
E-value of 0.533, with 50% certainty. The results from FFAS also showed 7- or 6-bladed
propeller as top hits. gi|68494 found RCC1 as the second hit with E-value of 13.4 and Z-
score of 6.02. gi|121882 found RCC1 as the third hits with E-value of 31.2 and Z-score 5.76.
FUGUE also found 7- or 4-bladed -propellers as top hits, but failed to find RCC1. Sausage
found B-propellers and antiparallel B-sheet proteins as top hits for the majority of the query

sequences. For gi|1346229, it found RCCI as the top hit with a score of 3.31. TOPITS and
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GenTHREADER did not find B-propellers, other mostly B-sheet proteins were the top hits

with marginal statistics.

2.3.3 Multiple Sequence Alignment

PSI-BLAST searches demonstrated that sequence repeats in GyrA/ParC are more
similar to each other than to repeats in other proteins. Thus GyrA/ParC repeats should be
more easy to align with each other. RCC1 family was the only group that displayed
statistically supported sequence similarity (PSI-BLAST E-value of 0.017, 12%-29% identity)
to GyrA/ParC repeats. Therefore we selected RCC1 for more detailed analysis.

To probe further potential homology between the GyrA/ParC C-terminal domain and
RCC1, a multiple sequence alignment was constructed (Figure 2.2). The alignment
confirmed the presence of 6 repeats in GyrA/ParC sequences. Each repeat was predicted to
contain 4 B-strands (A to D). Loops were relatively short (2-6 residues) between all but two
B-strands. Only between B-strands C and D loops were longer (typically about 15 residues).
The alignment revealed conservation of hydrophobic residues in (3-strands, conserved
positively charged residues in B-strand C, and a pair of conserved small residues (typically
glycines) in each repeat (Figure 2.2).

The alignment of the RCC1 family was constructed independently and showed 7
sequence repeats with 4 predicted B-strands in each repeat in agreement with the crystal
structure of human RCC1. The alignments of GyrA/ParC and RCC1 were merged on the
basis of PSI-BLAST local alignments that superimposed the long loops between the strands
C and D (Figure 2.2). Such alignment results in a different placement of the Velcro of the
propeller in GyrA/ParC and RCC1. In RCCl1, Velcro is between the strands B and C.
GyrA/ParC are predicted to have a Velcro between A and B. To obtain additional support for
the register of B-strands between GyrA/ParC and RCC1, average hydrophobicities were
calculated for each B-strand in GyrA/ParC and RCC1 (Table 2.1). Comparison of the 4
hydrophobicity values confirm the alignment of B-strands and thus Velcro placement in
GyrA/ParC.
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2.4 DISCUSSION

2.4.1 Validity Of The Fold Prediction

The results of PSI-BLAST searches, secondary structure predictions, fold recognition
and multiple alignment analysis allow us to deduce the fold of the GyrA/ParC C-terminal
fragment. The presence of 6 sequence repeats with 4 predicted -strands each (Figure 2.2),
the PSI-BLAST hit to RCC1, and the detection of propeller folds with threading method
strongly argue that the GyrA/ParC domain adopts the 6-bladed B-propeller structure.

Proper alignment of the GyrA/ParC sequences with the RCC1 structure is challenging
because of the low level of sequence similarity. Most importantly, corresponding 3-strands in
GyrA/ParC and RCC1 should be found and correctly aligned. Due to repetitive sequences in
GyrA/ParC and the hydrophobic character of 3-strands, it is potentially possible to miss the
register of B-strands and to align a B-strand in GyrA/ParC to a non-equivalent B-strand in
RCCI. For instance, the inner -strand of the propeller blade may be incorrectly aligned with
the outer [3-strand.

Three lines of evidence support the alignment presented in Figure 2.2. First, it
matches pairwise alignments produced by automatic tools such as PSI-BLAST and the fold
recognition method of Fischer. Second, the longest loop between the strands (C and D) in
GyrA/ParC is aligned with the longest loop between the strands in RCC1. Third, and most
importantly, hydrophobicity analysis of B-strands reveals correspondence in patterns between
GyrA/ParC and RCC1 (Table 2.1). Each blade of the propeller is composed of 4 B-strands
(A, B, C, D). Since these B-strands are placed at non-equivalent positions in the overall
circular structure of the propeller (Figure 2.3a), average hydrophobicities of these 4 B-strands
differ. The B-strand D is the outermost strand, and it is the most exposed. Thus the 3-strand
D is expected to be the most hydrophilic. The B-strand A is the innermost strand located
along the central shaft of the propeller. The shaft of the propeller contains water molecules

and thus the B-strand A is not expected to be the most hydrophobic. The B-strand B is the one
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with the highest hydrophobicity (Table 2.1). Excellent fulfillment of these tendencies in
GyrA/ParC and RCCI1 families strongly supports the alignment on Figure 2.2.

2.4.2 Structural Differences Between Gyra/Parc And RCC1

Typically, homology-based predictions can deduce only similarities between the
query and its homologue with experimentally determined structure. The differences are more
challenging to predict. Some differences may be wrongly missed and similarities be falsely
predicted instead. Such bias is more likely to occur at very low sequence similarity levels
when homology is remote. This is the case with GyrA/ParC-RCC1 superfamily. Here we
argue that the two most important differences between GyrA/ParC and RCC1 can be
predicted.

First, GyrA/ParC should fold as a 6-stranded propeller rather than a 7-stranded
propeller as RCCI. This simply follows from the fact that only 6 sequence repeats can be
detected in GyrA/ParC sequences. The sequences outside the 6-repeat fragment either belong
to the domain of determined structure (N-terminal to the first repeat) or lack clearly predicted
B-strands (the extreme C-terminal region). Additionally, the fragment of GyrA that
corresponds exactly to the 6 repeats is naturally expressed in Borrelia burgdorferi (see
discussion below) (Knight and Samuels 1999). Homology between propellers that display
different number of blades have been reported before (Wolf, Brenner et al. 1999) and
therefore is not surprising.

Second, the Velcro position should differ between GyrA/ParC and RCC1 propellers
(Figure 2.2). In RCCI1, the first blade starts from -strand C and the last blade ends with the
B-strand B. Thus, one half of the first blade is made from the N-terminal 3-strands of the
protein, and the other half is made from the C-terminal B-strands (2+2 Velcro). Such an
assembly is favorable for the stabilization of the circular arrangement of blades. Since the
first repeat of GyrA/ParC starts from the B-strand B and the last repeat ends with the -strand
A, the stabilization of the propeller circular arrangement is probably achieved by a 1+3 rather

than 2+2 combination of [ strands. This 1+3 Velcro is known for other propellers such as
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methylamine dehydrogenase (PDB entry 2BBK), nitrite reductase (PDB entry 1NIR) and
tachylectin-2 (PDB entry 1TL2), however 2+2 Velcro of RCC1 is apparently unique (Paoli
2001).

2.4.3 Functional Implications

The GyrA/ParC C-terminal domain remains the longest sequence segment of
topoisomerase II without available structural information. Therefore the function of this
domain is not fully understood despite some effort in this direction. The structure prediction
presented here and homology of the GyrA/ParC domain with the RCC1 protein have several
functional implications. The RCC1 molecule functions as a protein-binding and a DNA-
binding module. One side of the propeller accommodates a protein (Ran) binding site, and
the Ran-RCC1 complex structure is available (Renault, Kuhlmann et al. 2001). It is believed
that the opposite side of the propeller is involved in interactions with DNA. Available
experimental information about GyrA/ParC C-terminal domain suggests similar properties.
Being expressed separately, the GyrA domain can associate with the rest of the A subunit,
thus possessing a protein binding site. GyrA domain lacks catalytic activity, but binds DNA
in a non-sequence specific manner, therefore it should have a nucleic acid binding site.

It has been demonstrated that Borrelia burgdorferi expresses a 34 kDa fragment
translated from an abundant transcript initiated within the GyrA coding region (Knight and
Samuels 1999). This fragment corresponds exactly to the 6 blades of the predicted -
propeller structure, starting from the strand B and ending with the strand A. Borrelia
burgdorferi gives a unique example, for prokaryotes, of constitutive expression of two
proteins, one being a fragment of another, from the same open reading frame. It has been
shown that a naturally synthesized transcript abundant in Borrelia burgdorferi corresponding
to the predicted B-propeller functions as a non-specific DNA-binding protein, forming
higher-order nucleoprotein complexes (Knight and Samuels 1999).

Our prediction allows researchers to visualize the distribution of residues in space for

the C-terminal domain of GyrA/ParC, despite its unsolved structure. The structural diagram
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of the C-terminal domain of RCC1 is shown in Figure 2.3a. We predict protein- and DNA-
binding surfaces in GyrA/ParC to be similar to the ones in RCC1 (Figure 2.3bc). One way to
visualize sequence properties on a structure is to use conservation mapping (Pei and Grishin
2001). The conservation in the blade-to-blade alignments of all available sequences of
GyrA/ParC and RCC1 is mapped onto the structure of the 3rd blade in RCC1 (Figure 2.3bc).
Similarities in conservation between GyrA/ParC and RCCI1 include mainly small residues
(C,A,P,S,T) in loops. These residues bear potential structural importance. The most
pronounced difference in conservation patterns of GyrA/ParC and RCCl is due to the
presence of a conserved residue stretch closer to the N-terminus of the -strand C in
GyrA/ParC. These conserved residues are mainly positively charged (shown in blue in Figure

2.2) and could potentially contribute to a DNA-binding site in GyrA/ParC.

2.4.4 Prediction Confirmation

Our prediction was made in March 2001 and was published in May 2002 (Qi, Pei et
al. 2002). Two years later, experimentally determined structures for GyrA and ParC C-
terminal domains were published (Corbett, Shultzaberger et al. 2004; Hsieh, Farh et al.
2004). Figure 2.4 shows the structure diagram of GyrA C-terminal domain determined by
experiment (Corbett, Shultzaberger et al. 2004), which is a 6-bladed B-propeller with 4 B—
strands in each blade as predicted and also with a 1+3 Velcro. As summarized in Table 2.2,
the experimentally determined GyrA/ParC C-terminal domain structures confirmed our
structural fold prediction; while exhibiting a novel blade topology different from the

canonical one.

2.5 CONCLUSIONS

In this case study of structure modeling and prediction, we have detected sequence
similarity between C-terminal domain of GyrA/ParC and regulator of chromosome

condensation (RCC1) and infered homology relationship between them. The results of
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hydrophobicity analysis, secondary structure prediction and fold recognition all support the
inferred homology relationship. Based on these extensive sequence and structure analysis,
the C-terminal domain of GyrA/ParC has been predicted to have a 6-bladed b-propeller
structure with 4 b—strands in each blade. Experimentally determined GyrA/ParC C-terminal
domain structures confirm the structural fold prediction, while exhibit a novel blade topology

different from the canonical one.
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Figure 2.1 Domain compositions of gyrase and topoisomerase IV

B catalytic segment

GyrA: N G- C  parC:N S C @ the only domain without structure
GyBB: N-&S@—E—6C PaEN-E@—CC @ ATPase domain

@ S5-like domain

00 i ) C . .
a. DNA gyrase (Gyr) 1 |_a|a b. DNA topoisomerase IV (Par) o0 toprim domain with insertion

Domain compositions of (a) gyrase (topoisomerase Il Gyr) and (b) topoisomerase IV
(Par). Sequences shown are all from Escherichia coli.
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Figure 2.2 Multiple sequence alignment of C-terminal of GyrA/RCC1 domain
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Multiple sequence alignment of C-terminal of gyrase subunit A/RCC1 domain. Each sequence is labeled by its
NCBI gene identification (gi) number. The gi numbers of GyrA/ParC C-terminal domains and the gi numbers of
RCC1 domains are in black and brown, respectively. The gi number of the topoisomerase IV subunit A sequence
(gi|11270990) is in green. The gi number of the sequence with known structure is underlined (gi|4389390; PDB entry
1A12, chain A). The alignment is arranged in such a way that each row of sequences contains two blades. The blades
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are numbered from above using Roman numbers. The last B-strand A of GyrA/ParC C-terminal domain was placed
in front of the first B-strand B of blade I to complete the blade. The sequences of RCC1 were rearranged in the same
manner. The first and last residue numbers of each row of sequences are indicated. The first and last residue numbers
of the rearranged C-terminal segments are marked in red. Long insertions in loop regions are not shown but with the
omitted residues numbers in parentheses. Uncharged residues at mainly hydrophobic positions are shaded yellow.
The conserved glycine residues are shown in white on black background. Conserved positively charged residues in f3-
strand C are shown in blue. The JPRED secondary structure prediction results are the first lines shown below each
row of the alignment. The PHD prediction confidence values of every position for GyrA/ParC are shown on the
second line under the predictions. The third lines under the GyrA/ParC alignment are the secondary prediction results
from SAM-T99. The diagram of the secondary structure elements in each blade, according to the RCC1 X-ray
structure, is shown at the top of the figure. Species names: gi|121882, Escherichia coli; gi|11271030, Neisseria
meningitides; gi|11271024, Chlamydia muridarum; gi|3322255, Treponema pallidum; gi|1346235, Mycobacterium
tuberculosis; gi|1346233, Mycoplasma genitalium; gi|729651, Rickettsia prowazekii; gi|2507466, Helicobacter
pylori; gi|7437470, Synechocystis sp; gi|12322780, Arabidopsis thaliana; gi|11270990, Ureaplasma urealyticum;
gi|7437476, Archaeoglobus fulgidus; gi|10580453, Halobacterium sp.; gi|9622087, Thermus thermophilus;
gi|544464, Fibrobacter succinogenes; gi|4389390, Homo sapiens; gi|2134145, African clawed frog; gi|12325184,
Arabidopsis thaliana; gi|101055, Schizosaccharomyces pombe.
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Figure 2.3 Structure Diagrams and Conservation Mapping of RCC1 and GyrA/ParC-
CTD

Gyrase N-terminal
binding side Ran binding side

DNA binding side

DNA binding side

a b C

(a) The structural diagram of RCC1, PDB entry 1A12 chain A. Each blade is shown in a
different color and -strands in the third blade are labeled. Sequence conservation in (b)
GyrA/ParC and (c) RCC1 mapped onto the structure of the third blade in RCC1 are rainbow
colored from low conservation (dark blue) to high conservation (red).
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Figure 2.4 Experimentally Determined Structure Diagram of GyrA-CTD

Structure diagram of experimentally determined spatial structure of GyrA C-terminal domain
(PDB accession number: 1SUU)
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Table 2.1 Average hydrophobicity of beta-strands in GyrA/ParC and RCC1

GyrA/ParC RCC1
Strand A 0.21 0.256
Strand B 0.37 0.34
Strand C 0.17 0.29
Strand D 0.085 -0.13
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Table 2.2 Comparison Between Prediction and Experimental Data

Prediction Experimental Data*

Structural Fold 6-bladed B-propeller with 4 | 6-bladed B-propeller with 4 B—

[B—strands in each blade strands in each blade
1+3 Velcro Yes Yes
Relative ABCD ABCD
positions of 3- (Inner-most to outer-most) (Inner-most to outer-most)

Blade Topology

canonical novel

* Based on PDB 1SUU and 1WPS5.

26



CHAPTER 3:
Structural Classification of Thioredoxin-like Fold Proteins

3.1 INTRODUCTION

3.1.1 Background

A systematic comparison of the three major structure classifications (SCOP, CATH,
DaliDD) shows many discrepancies, even at the fold group level (Hadley and Jones 1999).
These discrepancies create obstacles for homology inference and modeling, evolutionary
studies and genome annotation. One major source of the inconsistencies stems from the
concept of fold definition. Structural fold concept is a perception of a researcher and thus is
intrinsically subjective. The definition of a protein fold is therefore somewhat arbitrary. For
example, it is difficult to define and to distinguish folds of regular-layered architectures,
especially o/} sandwiches. Their B-sheets take up a large proportion of the structure and are
similar due to hydrogen-bonding constraints, and the differences between structures could be
only a few secondary structure elements (Orengo, Flores et al. 1993; Orengo, Michie et al.
1997). In an effort to understand and to clarify fold definitions for proteins with o/
sandwich architectures, we start from a large and diverse protein group, namely thioredoxin-

like proteins.

Thioredoxin is an important redox protein that is present in every organism. Together
with thioredoxin reductase and peroxiredoxin, thioredoxin regulates the cellular
reduction/oxidation status as well as various important cellular functions, such as oxidative
stress defense, cell proliferation, signal transduction, and transcription regulation (Nakamura,
Nakamura et al. 1997; Arner and Holmgren 2000; Yamawaki, Haendeler et al. 2003; Das
2004; Kontou, Will et al. 2004). Extensive studies have been done on Thioredoxin

(Holmgren 1995; Nakamura, Nakamura et al. 1997; Arner and Holmgren 2000; Yamawaki,
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Haendeler et al. 2003; Kontou, Will et al. 2004). Consequently, a large number of X-ray and
NMR structures are available for thioredoxin and related proteins, rendering their

classification necessary.

3.1.2 Objective

Figure 3.1c shows the structure of a human thioredoxin, which is a 3-layer o/p/a
sandwich with the central B-sheet formed by 5 B-strands flanked by two a-helices on each
side. Many proteins important for cellular thiol-redox pathways, such as glutaredoxin, protein
disulfide isomerase (PDI) and oxidase (DsbA), and glutathione S-transferase (GST), are
homologous to thioredoxin and have similar structures. However, many of these classical
thioredoxin-like proteins do not contain a-helix a0’ and B-strand B0’, and some do not
contain a-helix a3’ (Figure 3.1c). To generate a consistent and inclusive definition of the
thioredoxin-like fold, we use the structure consensus of thioredoxins and the classical
thioredoxin-like proteins that are undoubtedly homologs to each other, and only include
those secondary structure elements and interactions that are present in all these homologs
(Figure 3.1a). Interestingly, a circularly permuted DsbA protein exists as a result of a protein
engineering experiment that is structurally stable and functionally active (Hennecke, Sebbel
et al. 1999). As homologous proteins can evolve to have different circular permutations (e.g.,
DNA methyltransferases (Jeltsch 1999)), we decide not to limit our fold group definition to
identical topology, but to consider all potential circular permutations of the thioredoxin-like

fold.

We employ this definition of the thioredoxin-like fold to query the PDB database
using a protein structure motif search program (unpublished). Identified thioredoxin-like
protein domains are divided into eleven evolutionary families based on combined sequence,
structural and functional evidence for homology. Analysis of the protein-ligand structure
complexes reveals two major active site locations for thioredoxin-like proteins. During the

course of analysis, we also encountered proteins with structural similarity to thioredoxin that
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should not belong to the thioredoxin-like fold group. Such examples are shown and discussed

to illustrate our approach to fold definition.

3.2 MATERIALS AND METHODS

3.2.1 Structural Motif Search For Thioredoxin-Like Protein Domains

We used a structure motif search program (unpublished) that was under development
in our lab. Briefly, the program generated a database of PDB structures (19,558 structures,
July 2003), in which each structure was represented by a Secondary Structure Element
Interaction Matrix describing the interactions (parallel or anti-parallel), hydrogen-bonding
and chirality between the secondary structure elements of the PDB structure. The structure
consensus of the classical thioredoxin-like proteins (thioredoxin, glutaredoxin, protein
disulfide isomerases (PDI), disulfide bond oxidase (DsbA), glutathione S-transferase (GST),
glutathione peroxidase and their close homologs) (Martin 1995) was represented as a query
matrix. The query matrix (Figure 3.1b) specified the number and types of secondary structure
elements in the thioredoxin motif, the hydrogen-bonding and parallel or anti-parallel
relationships between the four B-strands, and the chirality between consecutive secondary
structures. We then used our structure motif search program to search the database of
Secondary Structure Element Interaction Matrices of every PDB structure and to output the
structures containing submatrix matching the query matrix. Six query matrices characterizing
six possible circular permutations of the thioredoxin motif were constructed and searched for.
False positives were removed by visual inspection. Proteins were considered to contain the
thioredoxin-motif only when the thioredoxin motif formed the structural core of the protein

domain (see “Structural analogs” section for details).
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3.2.2 Sequence-Based Classification Of The Thioredoxin-Like Protein Domains

The thioredoxin motif-containing protein domains retrieved as described above were
subsequently grouped into evolutionary families using a combined sequence, structural and

functional analysis.

We used four methods to search for sequence similarities between the thioredoxin
motif-containing domains and all PDB proteins: gapped BLAST (Altschul, Gish et al. 1990;
Altschul, Madden et al. 1997), PSI-BLAST (Altschul, Madden et al. 1997; Schaffer, Aravind
et al. 2001), RPS-BLAST (Marchler-Bauer, Panchenko et al. 2002) and COMPASS
(Sadreyev and Grishin 2003), each of which uses a query sequence or profile to search a
database of sequences or profiles. A query sequence was the sequence of every thioredoxin-
motif containing domain. A query profile was generated by running a query sequence against
the nr database (1,479,768 sequences, 476,959,297 total letters, Aug 2003) using PSI-
BLAST for up to 5 iterations with an inclusion E-value cutoff of 0.005. The database of PDB
sequences contained sequences of PDB chains (49,319 sequences, 10,645,968 total letters,
Aug 2003). The database of domain profiles contained the profiles of representative protein
domains in the PDB. We used the SCOP v1.63 domain definitions for this purpose. The
representative SCOP v1.63 domain sequences with less than 40% sequence identity to each
other (5,224 domains) were downloaded from Astral (Brenner, Koehl et al. 2000; Chandonia,
Walker et al. 2002). A profile for each representative domain sequence was then generated in
the same way as we generated a query profile. We searched each query sequence in the
database of PDB sequences using Gapped BLAST (Altschul, Gish et al. 1990), each query
profile in the database of PDB sequences using PSI-BLAST (Altschul, Madden et al. 1997,
Schaffer, Aravind et al. 2001), each query sequence in the database of domain profiles using
RPS-BLAST (Marchler-Bauer, Panchenko et al. 2002), and each query profile in the
database of domain profiles using COMPASS (Sadreyev and Grishin 2003). Sequence
analyses were based on the search results of the four methods. We also inspected each hit
with an E-value up to 10 so that we would not miss a potential homolog that has a signature

sequence motif but with a less significant E-value.
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3.2.3 Structure And Function Based Classifications

For structure analysis, 723 thioredoxin motif-containing protein domains were first
clustered according to their sequence identities using the program BLASTCLUST (I
Dondoshansky and Y. Wolf, unpublished; ftp://ftp.ncbi.nih.gov/blast/) at a sequence identity
threshold of 50% and length coverage of 90%. A representative structure for each cluster was
selected based on the quality of the structure (resolution, R factor value, solved date for
NMR structures) and the presence of ligands or substrate analogs. All structure analyses were
done on this set of the representative domain structures. The representative structures were
aligned in an all-against-all manner using the program DaliLite and were further clustered by
a Dali Z-score cutoff of 5. The representative structures were visualized in the INSIGHT II
package (MSI) and superimposed by aligning structurally equivalent residues. A structure-
based multiple sequence alignment of all 90 representative structures was constructed
manually taking into account alignments made by DaliLite (Holm and Park 2000), Mammoth
(Ortiz, Strauss et al. 2002), CE (Shindyalov and Bourne 1998), PSI-BLAST (Altschul,
Madden et al. 1997; Schaffer, Aravind et al. 2001) and RPS-BLAST (Marchler-Bauer,
Panchenko et al. 2002). The structural alignment was further filtered by sequence identities
in the aligned regions and the final alignment contained proteins that had less than 50%
sequence identity to each other. The ligands or substrate analogs and active site residues were

also visualized in INSIGHT II and locations of active sites were compared.

3.3 OVERALL FOLD DESCRIPTION

3.3.1 Thioredoxin-like fold

Many proteins important for cellular thiol-redox pathways, such as thioredoxin,
glutaredoxin, glutathione S-transferase (GST), protein disulfide bond isomerase (PDI), are
known to adopt the thioredoxin-like fold (Martin 1995). In both SCOP and CATH, the

thioredoxin/glutaredoxin fold is described as a 3-layer o/p/a sandwich. As shown in Figure
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3.1c, thioredoxin is a 3-layer sandwich with a central B-sheet flanked by two a-helices on
each side. However, the N-terminal a-helix o0' is absent in many classical thioredoxin-like
fold proteins, such as GST, bacterial glutaredoxin, and archacon PDI. a-Helix a3'is also not
conserved in the thioredoxin homologs. For instance, the N-terminal domain of a bacterial
alkyl hydroperoxide reductase subunit F (1hyuAl), which is a close homolog of PDI, has
only a short loop connecting 32 and B3 in the place of the a-helix a3' (Figure 3.2). In
addition, phosducin (1a0rP), a homolog of thioredoxin, has only a loop with turns in the
place of the a-helix a3' (Figure 3.2). In many proteins that do have a-helices at the o3’
position, these a-helices are irregular, kinked or appear as separated short helical turns.
Based on these observations, the first a-layer of the thioredoxin fold is not conserved in all
thioredoxin homologs. Since the fold definition should include only the core secondary
structural elements that are present in the majority of homologs, we define the thioredoxin-
like fold as a 2-layer o/ sandwich with the BaBBBa secondary structure pattern. The four 3-
strands ordering 2134 form a mixed B-sheet with the third B-strand anti-parallel to the rest,
and the two a-helices pack against the B-sheet on one side (Figure 3.1a). The N-terminal half
of the fold is a right-handed Baf unit. This unit is connected through a loop to the C-terminal
half of the fold, which is a B-hairpin followed by an a-helix and the chirality of this ffa unit
is left-handed. Consequently, the chiralities between secondary structure elements 4, a2, B1,

and a2, B1, al are both right-handed.

Applying this definition, we searched for all potential thioredoxin-like protein
domains in the entire PDB database using the structure motif search program under
development in our lab. Found proteins containing the foBBBo unit with the thioredoxin-like
interactions (see materials and methods and Figure 3.1) were visually inspected to ensure that
the six elements form the structural core (see “Structural analogs” section for clarification) of
the protein domains. Altogether 723 protein domains were identified as thioredoxin-like fold
proteins. They were unified into the thioredoxin-like fold group and divided into
evolutionary families. A structure-based multiple sequence alignment of 90 representative
thioredoxin-like fold protein domains was manually constructed (Figure 3.2). From this
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alignment, we see that some thioredoxin-like proteins have insertions of secondary structure
elements into the common structural motif. A number of proteins from four families possess
the a-helix a3'. Proteins from other four families have an extra aff unit inserted between the

B-strands 32 and B3, extending the central B-sheet to be formed by 5 -strands.

3.3.2 Circular Permutations

The protein domains that we unified into the thioredoxin-like fold group represent
different circular permutations of the thioredoxin-like motif. A circular permutation of a
structural motif can be visualized as an imaginary “ligation” of the N- and C- termini
followed by an imaginary “cleavage” at a loop region of the motif to create different termini.
Except when specifically mentioned, we use the phrase “circular permutation” only to
indicate this kind of geometric relationship between structures and not to imply evolutionary
events. It has been documented, however, that circular permutations occur in nature as
evolutionary scenarios and represent a mechanism of potential fold change in evolution
(Ponting and Russell 1995; Gong, O'Gara et al. 1997; Jeltsch 1999; Bujnicki 2002). Since
proteins with different circular permutations of a structural motif have essentially the same
spatial arrangement of secondary structure elements, the same side-chain packing
interactions and may be homologous, grouping them together into the same fold group for
further comparative analysis could help us to better understand protein folding and sequence-
structure-function relationships and potential evolutionary connections. We can use the
structure-based multiple sequence alignment to study the sequence similarities between
proteins with different circular permutations. Such potential similarities are obscured if the

proteins are classified in different fold groups or even different structural classes.

Since the thioredoxin-like motif contains six secondary structure elements, six types
of circular permutations are theoretically possible by placing the termini before each
secondary structure element. However, only four types of circular permutations were seen in
the PDB database (Figure 3.1a). No proteins are present with the termini positioned between

Bl-al or al-B2, suggesting that f1a1B2 may be an essential folding or packing unit for the
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thioredoxin-like fold. This observation agrees with the finding by Salem et. al. that Bop-unit
is one of the three most prominent (highly-populated) supersecondary structures (Salem,
Hutchinson et al. 1999). However, it is possible that with more structures accumulating in the
PDB, circular permutation variants that disrupt the Bop-unit will appear. Out of the four
types of circular permutations we see, type II (B4a2B1al1p2B3; secondary structures are
numbered the same as those in the classical thioredoxin-like proteins) is adopted in five
families and the other three types are all adopted in two families, respectively (Table 3.1). If
we count the number of representative structures, type I (Blalp2p3p4a2) is the most

populated, and type Il is the second-most populated type of circular permutation.

3.4 DESCRIPTION OF THIOREDOXIN-LIKE FOLD FAMILIES

We identified 723 protein domains as belonging to the thioredoxin-like fold. We
subsequently classified these protein domains into eleven evolutionary families based on
inferred homology relationships between them. While we gathered strong support for
homology of protein domains within each evolutionary family, we are not drawing any
conclusion about the evolutionary relationship between protein domains in different families.
Protein domains from different families could simply be analogous to each other.
Alternatively, they could share homologous relationship that we were not able to support
convincingly, or be mosaics of homologous and analogous pieces. It has been hypothesized
that modern protein domains have evolved from combinations of ancient domain segments
composed of supersecondary structures, and thioredoxin fold proteins is a possible example
of such domain evolution (Lupas, Ponting et al. 2001). Although a detailed analysis of this
problem is very challenging and lies beyond the scope of our current study, this evolutionary
scenario is plausible. However, we believe that for the proteins within each of our
evolutionary families homologous segment spans through the entire common core of the

domain. Here we describe the eleven families and discuss their sequence, structural and
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functional features with evolutionary implications. The representatives of each family are

listed in Figure 3.2.

3.4.1 Thioredoxin family

This family includes all the classical thioredoxin-like proteins as well as
calsequestrin, phosducin and arsenate reductase, among others. The dithiol-disulfide
oxidoreductases, such as thioltransferases and PDI, have a conserved active-site sequence
motif Cys-X-X-Cys that is located at the N-terminus of a-helix o1. In addition, a cis-proline
residue located at the loop region before 33 is conserved and is in spatial proximity to the
Cys-X-X-Cys motif (Figure 3.1c¢). Proteins that form inter-domain disulfide bonds, such as
glutathione peroxidases, and proteins that do not form disulfide bonds, such as the N-
terminal domain of elongation factor 1-gamma (eEF1gamma), have lost one or both of the
conserved Cys residues (Figure 3.2). Nevertheless, they have the same active site locations as
the dithiol-disulfide oxidoreductases, and their homology relationships with the dithiol-
disulfide oxidoreductases can be inferred from PSI-BLAST and RPS-BLAST results and

close structural similarities.

Protein domains in this family have a type I circular permutation except for one
disulfide bond oxidase (DsbA, 1un2A, previous PDB ID: 1dyv) that is a type III circular
permutation as the result of a protein engineering experiment (Hennecke, Sebbel et al. 1999).
Aside from the common structural motif, most thioredoxins and PDIs have the extra o-
helices a0’ and a3’ (Figure 3.1c). Glutathione peroxidases and peroxiredoxins have an extra
o/P unit inserted between B2 and B3 and the extra B-strand is hydrogen-bonded with 2
(Figure 3.2); DsbAs have an extra B-strand inserted before 31 and hydrogen-bonded with [34;

so they all have a mixed B-sheet of five B-strands.
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3.4.2 RTPC small domain family

Similarly to thioredoxins, the small domains of the RNA 3'-terminal phosphate
cyclases (RTPC) have the type I circular permutation. However, the B-sheet in this family is
much flatter and the B-strands are up to 4 residues longer than those of the thioredoxins. The

functional role of the RTPC small domain remains unknown (Palm, Billy et al. 2000).

3.4.3 Ribosomal protein L30e family

Ribosomal protein L30e, eukaryotic peptide chain release factor subunit 1 C-terminal
domain (ERF1), and RNA 2'-O ribose methyltransferase N-terminal domain are grouped in
this family. Inferred from sequence similarity analyses, ribosomal proteins L.30e, LL.7ae and
15.5 kd RNA binding protein are close homologs (gapped BLAST E-value: 2e-11), while
ERF1 and L7ae are more distant (gapped BLAST E-value: 0.009). Gapped BLAST, PSI-
BLAST, a RPS-BLAST did not find any hit between the RNA methyltransferase N-terminal
domain and L30e with E-value less than 10. However, COMPASS aligned the RNA
methyltransferase N-terminal domain (1ipaA) and L30e (1cn8A) at a significant E-value of
5e-05. The COMPASS alignment covers the entire length of both domains and is consistent
with the structure-based alignment (Figure 3.2), and we thus consider the RNA
methyltransferase N-terminal domain to be a remote homolog of ribosomal protein L30e.

Protein domains in this family have a type II circular permutation, and aside from the
permutation, are structurally very similar to the thioredoxin family domains. Archaeon
ribosomal protein L30 (1h7mAl) superimposes on the thioredoxin family protein
eEFlgamma (InhyA) with a RMSD of 1.4 A based on 86 C, atoms. Furthermore, like
thioredoxins and PDIs, proteins in this family also have an extra a-helix at the N-terminus
(Figure 3.1d) and a a-helix a3' between 2 and B3 to form a second layer of a-helices, and
thus also form a 3-layer o/P/o. sandwich. However, we think that presently there is not
enough evidence to convincingly support this potential homology between the L30e

ribosomal proteins and thioredoxins.
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Protein domains in the L30e family interact with their ligands and substrates at the N-
terminal ends of the a-helices and nearby regions. The yeast ribosomal protein L30 interacts
with the RNA internal loop through the residues located at the N-terminal ends of a-helices
al and a2 and in the loop region before B-strand 33 (Mao, White et al. 1999) (Figure 3.1d).

3.4.4 Tubulin C-terminal domain family

This family includes the C-terminal domains of tubulin a- and 3-subunit, cell division
protein FtsZ, and dihydroxyacetone kinase subunit K (DhaK). The overall structures of
tubulin, FtsZ, and DhaK are similar; all are formed of two domains that have the same
relative positions. In all proteins of this family, the N-terminal domains are Rossmann-like
nucleotide-binding domains: GTPase for tubulin and FtsZ, and ATPase for DhaK. The C-
terminal domains are the thioredoxin-like domains with a type II circular permutation. The
C-terminal domain of DhaK has a -hairpin inserted between 34 and 2. The substrate Dha
is covalently bound (Siebold, Garcia-Alles et al. 2003) to this B-hairpin. In tubulin, the loop
between 34 and a2 (Figure 3.1a) also forms a functional site where the ligands, zinc ion and

anticancer drug taxol, bind (Lowe, Li et al. 2001).

3.4.5 Bacillus chorismate mutase (BCM) Family

Bacillus and Thermus chorismate mutase, hypothetical protein YjgF, and purine
regulatory protein YablJ are placed in this family. Simple BLAST results show that Bacillus
with Thermus chorismate mutases and YjgF with YabJ form two clusters of close homologs.
Despite the low sequence identity (average 8.6%) between the two groups, their tertiary and
quaternary structures are very similar to each other. These proteins are homotrimers; each
monomer is a thioredoxin-like domain of type II circular permutation. The three B-sheets
from three monomers form a barrel-shaped interface. When looking parallel to the three-fold
axis that goes in the direction from the C-terminus to the N-terminus of a-helices al and a2,

the three B-sheets of proteins in both groups run approximately parallel to the axis with a left-
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handed twist (Figure 3.3a). The monomers of Thermus chorismate mutase (1odeA) and YjgF
(1qu9A) are superimposed with a RMSD of 1.7 A based on 84 C,, atoms, and quaternary

structures are superimposed very well. The active site locations are also the same for the two
group of proteins, which are at the three clefts between adjacent monomers (Chook, Ke et al.

1993; Chook, Gray et al. 1994) (Figure 3.3a), indicating homology.

3.4.6 MECP synthase family

The quaternary structures of 2C-methyl-D-erythritol-2,4-cyclodiphosphate (MECP)
synthases are similar to proteins in the Bacillus chorismate mutase (BCM) family. MECP
synthases are also homotrimers with each monomer a thioredoxin-like domain of type II
circular permutation. However, there are several structural and functional site differences
between MECP synthases and BCM family proteins. The monomers of MECP synthases
have an extra a-helix between o2 and 1 that is absent in the BCM family proteins. The [3-
sheets of MECP synthases also run approximately parallel to the three-fold axis but with a
right-handed twist instead of a left-handed one, so the monomer cannot superimpose well
when the trimers are superimposed with the BCM family members. The active sites of
MECP synthases are also located at the clefts between adjacent monomers (Kemp, Bond et al.
2002; Kishida, Wada et al. 2003). However, in MECP synthases, the active site residues are
contributed from 32 and a1 of one monomer and 4 and a2 of the adjacent monomer; while
in BCM family proteins, the active site residues are contributed from 32 and a1 of one
monomer but 33 and 34 of the adjacent monomer. These differences between MECP
synthases and BCM family proteins indicate that they may not share a common ancestor.

Therefore, we place MECP synthases in a separate family.

3.4.7 PurM N-terminal domain family

The N-terminal domain of the aminoimidazole ribonucleotide synthetase (PurM) is a

thioredoxin-like domain of type II circular permutation, with an extra 9-residue o-helix
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inserted between 34 and a2. PurMs are homodimers, and the two 3-sheets from the two
thioredoxin-like N-terminal domains form a barrel-shaped dimer interface. The active site of
PurM is proposed to be formed by the edge B-strands of the two B-sheets and the C-terminal
domain (Li, Kappock et al. 1999).

3.4.8 Cytidine deaminase family

This family includes single domain cytidine deaminase (CDA), two-domain CDA,
and cytosine deaminase. The N-terminal domain of the two-domain CDA has a higher
sequence identity (29%) to the single domain CDA than to its C-terminal domain (15%),
suggesting that the two-domain CDA emerged by an ancient gene duplication event of the
one-domain CDA and the C-terminal domain diverged further. In fact, the N-terminal
domain of the two-domain CDA, the single domain CDA, and the cytosine deaminase all
have two conserved cysteines at the N-terminus of a-helix al and a conserved cysteine or
histidine at the N-terminus of a-helix a2 that coordinate a catalytic zinc ion (Xiang, Short et
al. 1996; Johansson, Mejlhede et al. 2002) (Figure 3.1e & Figure 3.2), while the C-terminal
domain of two-domain CDA has lost the zinc coordination and thus the catalytic activity.

All domains in this family have a type III circular permutation (B3p4a2p1al1f2,
Figure 3.1e), the same as the engineered DsbA. The loop regions before 33 and between [34-
a2 are about 8 residues longer than most domains of the thioredoxin family (Figure 3.2), and
they form a cover of the hydrophobic active site. Like glutathione peroxidases, cytosine
deaminase has an extra o/ unit inserted after 32 and the extra -strand is hydrogen-bonded
with B2 (Figure 3.2). One-domain CDA and the N-terminal domain of two-domain CDA
have an extra B-strand inserted after B2 and is also hydrogen bonded with (2, but it is

oppositely oriented compared to the extra B-strand in cytosine deaminase.
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3.4.9 AICAR Tfase domain of bifunctional purine biosynthesis enzyme ATIC family

The bifunctional purine biosynthesis enzyme ATIC has two functional parts: the
inosine monophosphate cyclohydrolase (IMPCH) part and the 5-aminoimidazole-4-
carboxamide-ribonucleotide transfermylase (AICAR Tfase) part. ATIC is a homodimer with
each monomer participating in both functional parts (Greasley, Horton et al. 2001). Each
AICAR Tfase part of the monomer includes two thioredoxin-like domains that are
structurally very similar to each other (RMSD of 1.17 A based on 118 atoms). The two
thioredoxin-like domains in the same polypeptide chain are the result of an ancient gene-
duplication event, and thus they are homologous to each other. The two thioredoxin-like
domains are of type III circular permutation, and like glutathione peroxidases of the
thioredoxin family, each of them have an extra o3 unit inserted after 32 (Figure 3.3b &
Figure 3.2). The second thioredoxin-like domain has an insertion of a small helical domain
between a2 and B1. AICAR Tfase has two active sites; each is located between the first
thioredoxin-like domain of one monomer and the second thioredoxin-like domain of the
other monomer. Our analysis shows that the two homologous thioredoxin-like domains

possess different active site locations (Figure 3.3b & section 3.5.1).

3.4.10 Phospholipase D family

This family includes phospholipase D, bacterial nuclease Nuc, and tyrosyl-DNA
phosphodiesterase (TDP1). Phospholipase D and Nuc are inferred as close homologs based
on RPS- and PSI-BLAST results (RPS-BLAST E-value: 5e-14), while TDP1 was previously
shown by Interthal efc. (Interthal, Pouliot et al. 2001) to be homologous to phospholipase D
and Nuc based on the presence of the conserved HK motif (Figure 3.2) and similar reaction
mechanism. Both phospholipase D and TDP1 contain two duplicated thioredoxin-like
domains of type IV circular permutation (a2B1c1323334). Nuc only contains one such

domain, but it is a homodimer and the two monomers are arranged in the same way as the
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two domains in phospholipase D and TDP1. Like glutathione peroxidases of the thioredoxin

family, all protein domains in this family have an extra af unit inserted after B2 (Figure 3.2).

3.4.11 gp5S domain A family

Domain A of the major capsid protein gp5 is a thioredoxin-like domain of type IV
circular permutation. Protein gp5 is the assembly subunit of the double-strand DNA
bacteriophage HK97 capsid (Wikoff, Liljas et al. 2000). Each capsid asymmetric unit is a
hexamer or a pentamer of gp5. Other domains of gp5s, domain P, E-loop, and N-arm form a
hexagon or a pentagon, and domains A of gp5s form a cover of the space inside the polygon.
A 22-residue long insertion between o-helix al and -strand B2 pushes the C-terminus of o1
up and makes al almost perpendicular to the B-sheet instead of being parallel to it (Figure
3.11). This arrangement renders a1 anti-parallel to a-helix a2 of the neighboring gp5 domain
A. al and a2 of adjacent domains A form electrostatic and hydrophobic interactions in

between to stabilize the cover of the polygon.

3.5 DISCUSSION

3.5.1 Analysis of active site locations

Proteins containing the thioredoxin-like domains are involved in a wide variety of
biological functions and pathways, including intracellular transport and cell division, signal
transduction, pyrimidine salvage pathway, phospholipid metabolism, and biosynthesis of
purine, aromatic amino acid and proteins. The thioredoxin-like protein domains can bind
and/or catalyze different ligands and substrates such as nucleic acids (RNA and DNA),
proteins, peptides, and small metabolites. 3D structure complexes of the protein domains
with their ligands or substrate analogs are available for all thioredoxin-like families except

the RTPC small domain family. We analyzed the ligands or substrates binding sites of the ten

41



thioredoxin-like fold group families and found two major types of active site locations for the
thioredoxin-like protein domains.

In many proteins, active site (type i location) is placed at the N-terminal ends of the
a-helices or nearby loop regions, i.e., the binding or catalytic residues are located on the
loops connecting B1-al, B2-B3, B4-a2, or at the N-termini of the a-helices al/a2 (Figure
3.1a). This type of active site location is adopted by protein domains in five different families
that encompass all four circular permutations (Table 3.1). Since protein domains with this
active site location belong to different evolutionary families, the similarity in the active site
placement may be the result of convergent evolution and is probably caused by physico-
chemical constraints such as the helix dipoles of al and a2.

Another common placement of the active site (type ii location) is along the edges of
the B- sheet, i.e. the binding or catalytic residues are located on the edge B-strands (2, f4) of
the B-sheet or on the sides of a-helices al and a2 that are facing opposite from each other.
This type of active site location is adopted by protein domains in four different families
(Table 3.1). Proteins in three of the families (Bacillus chorismate mutase, MECP synthase,
and PurM N-terminal domain) form homo- trimers or dimers and the 3-sheets of the trimer or
dimer form a barrel-shaped interface. Their active sites are placed in the clefts between
adjacent monomers (Figure 3.3a) and thus are constrained to the edges of the a/f sandwich
for each monomer. Although protein domains of the gp5 domain A family do not bind
substrates or ligands, they do interact with each other, participating in formation of homo-
hexamers or pentamers stabilized partially by electrostatic and hydrophobic interactions
between o-helices al and a2 of adjacent monomers (Figure 3.1f).

While homologous protein domains usually have similar active site locations, we
found an unusual exception. As we mentioned in the family description (section 11.10), the
four thioredoxin-like domains of the AICAR Tfase part of the bifunctional purine
biosynthesis enzyme ATIC are homologous to each other. The active site of AICAR Tfase is
between the first thioredoxin-like domain of one monomer and the second thioredoxin-like
domain of the other monomer (Figure 3.3b). The second thioredoxin-like domain houses

active site residues at the loop regions near the N-terminal ends of the a-helices, similarly to
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most other thioredoxin-like domains (type i location); while the first thioredoxin-like domain
has active site residues in the loop regions near the C-terminal ends of the a-helices, with
two catalytic residues located at the loop between B-strands 3 and 4 (Wolan, Greasley et al.
2002), which is opposite to that of the second domain (Figure 3.3b). Thus, our analysis
reveals a rare example of homologous protein domains possessing different active site

locations.

3.5.2 Comparison to other structure classifications

Different structure classifications use different criteria and methods. The protein
domains that we unified in the thioredoxin-like fold group are categorized differently in three
major structure classifications CATH (Orengo, Michie et al. 1997; Pearl, Lee et al. 2000;
Orengo, Bray et al. 2002), SCOP (Murzin, Brenner et al. 1995; Lo Conte, Ailey et al. 2000;
Lo Conte, Brenner et al. 2002), and Dali Domain Dictionary (Holm and Sander 1996; Holm
and Sander 1998; Dietmann and Holm 2001).

In CATH (version 2.5), some of these thioredoxin-like fold protein domains are not
classified at all, such as the 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, the
AICAR transfermylase domain of bifunctional purine biosynthesis enzyme ATIC, and the
capsid gp5 protein domain A; the others are placed into five fold groups (CATH "topology"
level). Three of the fold groups correspond to three different circular permutations, and
protein domains of type I circular permutation are divided into two fold groups. CATH
assigns the small domain of RNA 3'-terminal phosphate cyclase (RTPC) to a different fold
group than the thioredoxin proteins, although they both have the same type of circular
permutation. In fact, CATH classifies them into two different architecture types (a higher
level in the classification hierarchy than fold groups): a 2-layer sandwich and a 3-layer
sandwich. The other fold groups are also categorized as 2- or 3-layer sandwich architecture
types. CATH groups our thioredoxin-like protein domains into nine homologous
superfamilies, which is basically consistent with our evolutionary family classification except

for one protein. We assigned the C-terminal domain of phenol hydroxylase (1fohA) to be in
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the same evolutionary family as the classical thioredoxin-like proteins, while CATH assigns

it into a separate superfamily by itself.

SCOP (version 1.65) classifies the thioredoxin-like fold domains into five different
fold groups (SCOP "fold" level) corresponding to four different circular permutations and
one separate fold group for the entire capsid protein gp5. SCOP does not break gp5 into
domains; instead, it assigns the entire gp5 protein to a separate fold group and describes it as
an unusual fold. The small domain of RTPC is assigned to the same fold group as the
thioredoxin proteins in SCOP. SCOP fold groups are placed into two different structural
classes: o/ and o+f. At the evolutionary family level, our classification is consistent with

SCOP superfamily classification.

Dali Domain Dictionary (DaliDD, version 3.1 beta) classifies the thioredoxin-like
fold protein domains into seven fold groups (DaliDD "globular folding topology" level). In
this classification, there are protein domains of the same circular permutation assigned to
different fold groups, such as the N-terminal domain (1a81 1) and the C-terminal domain
(1a81 2) of an archacon PDI; there are also protein domains of different circular
permutations assigned to the same fold group, such as the C-terminal domain of two-domain
cytidine deaminase (laln 2) and the cell division protein FtsZ (1fsz). DaliDD splits the
thioredoxin-like protein domains into many more evolutionary families than we do. For
example, the protein domains in one of our evolutionary family, the thioredoxin family, are
placed into seven functional families (the highest hierarchy indicating evolutionary
relationships in DaliDD). Nevertheless, DaliDD classifies the C-terminal domain of phenol
hydroxylase (1fohA) into the same functional family as glutathione peroxidase (1gplA), one

of the classical thioredoxin-like proteins.

From the above comparisons, we perceive that the discrepancies between different
structure classifications of these thioredoxin-like fold proteins mainly arise from the
problems of the definition of the thioredoxin-like fold (2- or 3-layer sandwich) and the
treatment of different circular permutations. By defining the structural core of the

thioredoxin-like fold and considering different circular permutations within the same fold
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group, we resolve the discrepancies between the structure classifications. Grouping all these
structurally similar thioredoxin-like proteins together enables us to study their evolutionary
relationships and functional properties, which should be helpful for structure-functional

predictions of uncharacterized thioredoxin-like fold proteins.

3.5.3 Structural analogs

During our structure search, we encountered a number of protein domains with the
thioredoxin structural motif that we did not include in our thioredoxin fold group. Although
these proteins were found by automatic searches for the thioredoxin fold, since they contain
all the required secondary structure elements and interactions between them, we believe that
they belong to fold groups other than the thioredoxin-like fold group based on the reasoning

below.

Homology relationship determined structural core selection

Peptide methionine sulfoxide reductase (PMSR) contains two overlapping structural
motifs: the thioredoxin-like motif and the ferredoxin-like motif. Figure 3.4c shows a typical
ferredoxin-like fold protein. It is an a/p sandwich with the PBoaBpaf secondary structure
pattern. The four B-strands ordering 2314 form an anti-parallel B-sheet with the two a-helices
on one side. From Figure 3.4a, we can see that if we treat o-helix oA and B-strand BB as
insertions, PMSR adopts a thioredoxin-like fold of type III circular permutation. On the other
hand, if we treat a-helix ol and B-strand 2 as insertions, the protein adopts a ferredoxin-like
fold (Figure 3.4b). al, B2 and aA, BB are placed on different sides of the central -sheet and
thus occupy similar positions in relation to the structure core. 2 and B have approximately
the same length (Figure 3.4a & Figure 3.4b). Thus if we try to base our decision about the
fold solely on the structural properties of this molecule, both structural motifs (thioredoxin-
like and ferredoxin-like) appear reasonable and we are unable to choose one of them.

Sequence analysis, however, shows that PMSR is homologous to the ferredoxin-like fold
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protein that is shown in Figure 3.4c, the fourth metal-binding domain of Menkes copper-
transporting ATPase (L.N. Kinch and N.V. Grishin, unpublished), that is missing a-helix ol
and B-strand B2 and hence missing the thioredoxin-like motif. Therefore, the ferredoxin-like
motif is the essential one for PMSR, and PMSR most likely obtained the thioredoxin-like
motif later in the process of evolution by insertions of a-helix al and B-strand 2. In spite of
the thioredoxin-like motif in PMSR structure, it should be classified in a ferredoxin-like fold.
Using similar reasoning we ruled out the following proteins with the thioredoxin motif: C-
terminal domain of glyceraldehyde-3-phosphate dehydrogenase (1a7kA), transcription factor
sc-mtTFB (1i4wA), and histidyl-tRNA synthetase (1adjA).

Structural importance determined structural core selection

The C-terminal domain of subunit A of the archacon formylmethanofuran:
tetrahydromethanopterin formyltransferase (Ftr) contains a thioredoxin-like motif of the
B2B3pR4a2B1al circular permutation if a-helix oA and B-strands BB and BB' are treated as
insertions (Figure 3.4d). If we include a-helix oA and B-strands BB and BB' and treat a-helix
ol and B-strand 2 as insertions, this domain adopts a ferredoxin-like fold (Figure 3.4¢).
Weather or not to assign this protein domain into the thioredoxin-like fold group depends on
which group of secondary structures we treat as insertions: aA, BB and BB', or al and 2.
Comparisons between oA, BB, BB' and a1, B2 shows that aA, BB, BB' are seemingly more
important (i.e. core) secondary structure elements than al and 2. oA is a 16 residues long
a-helix that extensively interacts with the 18 residues long central a-helix a2; while al is
only a 6 residues long, one and half-turn a-helix that interacts with the central a-helix o2
through just a few residues. The average length of the three central B-strands B1, 3 and 4 is
about 9 residues long. If we consider BB and BB' as one B-strand interrupted by a loop, it is 7
residues long and forms 5 hydrogen bonds with one of the central -strands 34; while B2 is 4
residues long and forms only 2 hydrogen bonds with 1. Therefore, aA, BB and BB' are more

important secondary structure elements than o1 and 2, and thus should not be treated as
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insertions. Hence, the structural core of the protein domain is not formed by the thioredoxin-
like secondary structure elements. In addition, at the crossover of the loops connecting 31-o.1
(L1) and B2-B3 (L2), L1 is below L2 in a typical thioredoxin-like fold in the orientation
shown in Figure 3.1d, while L1 is above L2 in Ftr in the same orientation shown in Figure
3.4d. As a result, although Ftr contains the thioredoxin-like motif, it is not a thioredoxin-like
fold protein, but a ferredoxin-like fold protein (Figure 3.4e). The reasoning for ruling out the
N-terminal domain of subunit A of Ftr (1ftrA), the catalytic domain of type 1 cytotoxic

necrotizing factor (1hq0A), and replication terminator protein (lecrA) is similar.

3.6 CONCLUSIONS

A hierarchical structure classification of thioredoxin-like fold proteins has been
carried out. We define the thioredoxin-like fold and identify 723 protein domains as
thioredoxin-like fold. These domains are grouped into eleven evolutionary families. A
structure-based multiple sequence alignment of 90 representative thioredoxin motif-
containing proteins is manually constructed. Analysis of the secondary structure connectivity
identifies four types of circular permutations and a potential functional/packing unit.
Analysis of active site locations reveals two major functional sites for the thioredoxin motif-
containing proteins and one rare example of homologous protein domains possessing
different functional sites. Comparison to existing structure classifications shows that our

thioredoxin-like fold group is broader and more inclusive.
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Figure 3.1 Thioredoxin-like Fold and Its Observed Circular Permutations
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Thioredoxin-like fold and its observed circular permutations. (a) The topological
diagram of the thioredoxin-like fold. a-helices and -strands are shown as blue cylinders and
yellow arrows, respectively, the lines connecting different secondary structures represent
loop regions between them. Dotted loops indicate the termini positions of the four types of
circular permutations that we observed. No termini were observed at solid loop locations.
Loops shown in red indicate the type i active site location. (b) The query matrix of the
thioredoxin-like fold of type I circular permutation. Secondary structures are consecutively
numbered in Arabic numbers. Upper case letters E (B-strand) and H (a-helix) indicate the
type of secondary structure. Lower case letters ¢ and t indicate parallel and anti-parallel
hydrogen-bonding interactions between secondary structures, respectively. Upper case letter
X indicates that no interactions were considered. Upper case letters R and L indicate right-
handed and left-handed chirality in a triplet of secondary structures, respectively. Ribbon
diagrams of (c) human thioredoxin (lert (Weichsel, Gasdaska et al. 1996)), a representative
of type I circular permutation, (d) yeast ribosomal protein L30 (Icn8A (Mao, White et al.
1999)), a representative of type II circular permutation, (e) E. coli cytidine deaminase
(laln_1 (Xiang, Short et al. 1996)), a representative of type III circular permutation, and (f)
bacteriophage HK97 capsid protein gp5 (lohg (Helgstrand, Wikoff et al. 2003), previous
PDB ID: 1th6), a representative of type IV circular permutation, were produced using the
program MOLSCRIPT (Kraulis 1991). Corresponding secondary structure elements are
colored and named as in diagram (a). Elements corresponding to inserted domains are shown
in white. The long insertion in capsid protein gp5 is shown in purple in (f). In (c), (e), and (f),
active site residues are depicted in red ball-and-stick representation. In (d), active site
residues interacting with RNA are shown in red. The orange sphere in (e) shows a zinc ion.
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Figure 3.2 Structure-based multiple sequence alignment of representative thioredoxin-

like protein domains

(Please see the previous page for the Figure) Each sequence is labeled by its PDB identifier followed
by an optional chain identifier at the Sth position and an optional domain identifier for duplicated
domains at the 6th position. Sequences are grouped according to 11 evolutionary families. The first
and the last residue numbers are indicated for each sequence. Sequences of type II, III and IV circular
permutations are rearranged to align their corresponding secondary structure elements with the type I
circular permutation. The termini in these proteins are separated by a "|" and the residue numbers
around the permuted region are shown in red. Long insertions in loop regions are omitted with the
number of missing residues in parentheses. Sequences in lower case represent disordered regions in
structures. Sequences in italics differ in secondary structure from the consensus secondary structure
of the alignment. Uncharged residues at mainly hydrophobic positions are highlighted in yellow and
magenta asterisks mark the hydrophobic positions that were used to aid alignment of a-helices.
Conserved residues within each family are highlighted in black. The diagram of secondary structures
(a-helices as cylinders and B-strands as arrows) is shown above the alignment. Representative protein
sequences of each evolutionary family are included in the alignment. They are as follows. 1. phenol
hydroxylase C-terminal domain (1fohA), glutathione peroxidase (1gp1A), cytochrome ¢ maturation
oxidoreductase CemG (1kngA), soluble domain of membrane-anchored thioredoxin-like protein TlpA
(1jfuA), peroxiredoxins (1prxA, 1qmvA, 1hd2A, Inm3A1), alkyl hydroperoxide reductase AhpC
(1kygA), tryparedoxin (1i5gA), disulfide bond isomerase DsbC C-terminal domain (1eejA), chloride
intracellular channel 1 clicl (1kOnA), glutathione S-transferases (1gwcA, 11jrA, 1ev4A, 1jlvA,
leemA, 2gsq, 1pd21, 2gstA, 11bkA, 1f2eA, 1fwlA, laxdA), GST-like domain of elongation factor 1-
gamma (1nhyA), nitrogen regulation fragment of yeast prion protein ure2p (1k0aA), glutaredoxins
(1g70A, Inm3A2, laazA, 1qfnA, lkte, 1fovA), NrdH-redoxin (1h75A), thioredoxins (lert, 1faaA,
1gh2A, lep7A, 1t7pB, 1thx, liloA), thioredoxin/glutaredoxin-like protein MJ0307 (1fo5A), arsenate
reductase ArsC (1jzwA), disulphide bond oxidases DsbA (1bed, 1un2A), phosducin (1a0rP), Alkyl
hydroperoxide reductase subunit F AhpF N-terminal domain (1hyuAl, lhyuA?2), protein disulfide
isomerases (1a81 1, 1a8l 2, Imek, 2bjxA), calsequestrin (1a8y 2, 1a8y 1, 1a8y 3), endoplasmic
reticulum protein ERP29 N-terminal domain (1g7eA), spliceosomal protein U5-15Kd (1qgvA),
thioredoxin-like 2Fe-2S ferredoxin (1f37A); 2. small domains of the RNA 3'-terminal phosphate
cyclase (1gmhA); 3. eukaryotic ribosomal protein L30e (1cn8A, 1h7mA), ribosomal protein L7ae
(1jj2F), spliceosomal 15.5kd protein (1e7kA), RNA 2'O-methyltransferases N-terminal domain
(1gz0A, lipaA), eukaryotic peptide chain release factor subunit 1 ERF1 C-terminal domain (1dt9A);
4. tubulin B-subunit (1jffB ), tubulin a-subunit (1jffA ), cell-division proteins FtsZ (1fsz, 1ofuA),
dihydroxyacetone kinase subunit K (10i2A); 5. chorismate mutases (2chtA, 1odeA), purine regulatory
protein YabJ (1qd9A), translational Inhibitor Protein P14.5 (1oniA), hypothetical protein YjgF
(1qu9A); 6. 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthases (1gx1A, livlA); 7.
aminoimidazole ribonucleotide synthetase N-terminal domain (1cliA); 8. two-domain CDA (laln_1,
laln_2), one-domain cytidine deaminase (1jtkA), cytosine deaminase (1p6oA); 9. AICAR
transformylase domain of bifunctional purine biosynthesis enzyme ATIC (1m9nAl, 1m9nA2); 10.
nuclease Nuc (1bysA), phospholipase D (1f0iA1, 1f0iA2), tyrosyl-DNA phosphodiesterase TDP1
(1jy1Al, 1jy1A2); 11. domain A of capsid protein gp5 (1ohgA).
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Figure 3.3 Active site locations

>\
| domain

Active site locations. (a) Ribbon diagram of bacillus chorismate mutase (2cht (Chook, Ke et
al. 1993)) with its substrate analogs shows the type ii active site location. The a-helices and
[-strands are numbered as in Figure 3.1a, but are colored differently in different domains
with inserted elements in white, and substrate analog BAR in red. The three domains are
viewed along their three-fold axis. One BAR molecule is located at each of the three clefts
between two adjacent domains. (b) Ribbon diagram of two thioredoxin-like domains in the
AICAR Tfase part of bifunctional purine biosynthesis enzyme ATIC (1m9n (Wolan,
Greasley et al. 2002)) illustrates an unusual active site location. The second domain of one
monomer is colored as in Figure 3.1a, while the first domain of another monomer is shown in
a different color scheme. The other two thioredoxin-like domains of the AICAR Tfase part
are omitted for clarity. The substrate AMZ is shown in brown and marks the active site. Two
catalytic residues from the first domain are shown as ball-and-stick in red. A potassium ion
represented by an orange sphere binds to the loop (shown in red) between a3' and 4 of the
second domain. Both ribbon diagrams were generated using the program MOLSCRIPT
(Kraulis 1991).
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Figure 3.4 Structure Analogs

Structure analogs. Ribbon diagrams of (a, b) E. coli peptide methionine sulfoxide reductase
(13 (Tete-Favier, Cobessi et al. 2000)), (c) the fourth metal-binding domain of human
Menkes copper-transporting ATPase (1aw0 (Gitschier, Moffat et al. 1998)), a ferredoxin-like
fold protein, and (d, e) archaeon formylmethanofuran:tetrahydromethanopterin
formyltransferase (1ftr (Ermler, Merckel et al. 1997)). Protein domains in (a) and (b) are the
same, however, in (a), the elements of the thioredoxin-like motif are colored in yellow and
blue; in (b), the elements of the ferredoxin-like motif are colored in yellow and blue.
Similarly, we colored the 1ftr domain in (d) and (e). In (d), the loops L1 and L2 are shown in
red. All ribbon diagrams were generated using the program MOLSCRIPT (Kraulis 1991).
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Table 3.1 Summary of Thioredoxin-like Domain Families

Family Circular Active site Representatives in the alignment
permutation | location type
type

1. Thioredoxin I i 1fohA, 1gplA, 1kngA, 1jfuA, 1prxA, 1kygA,
IgmvA, 1hd2A, Inm3A, 1i5gA, leejA, 1kOnA,
IgwcA, 11jrA, 1ev4A, 1jlvA, leemA, InhyA, 2gsq,
1pd21, 2gstA, 11bkA, 1f2eA, 1k0aA, 1fwlA,
1g70A, laxdA, laazA, 1qfnA, lkte, 1fovA, 1h75A,
lert, 1faaA, 1gh2A, 1ep7A, 1t7pB, 1thx, liloA,
1fo5A, 1jzwA, 1bed, 1lun2A*, 1a0rP, 1hyuA, 1a8l,
Imek, 2bjxA, 1a8y, 1g7eA, 1qgvA, 1f37A

2. RTPC small I Unknown IgmhA

domain

3. Ribosomal 11 1 Icn8A, 1Th7mA, 1jj2F, 1e7kA, 1az0A, lipaA, 1dt9A

protein L30e

4. Tubulin C- I 1 1;ffB, 13ffA, 1fsz, 1ofuA, 10i2A

terminal domain

5. Bacillus II 11 (trimer) 2chtA, lodeA, 1qd9A, loniA, 1qu9A

chorismate

mutase

6. MECP II il (trimer) lgx1A, livlA

synthase

7. PurM 11 ii (dimer) IcliA

8. Cytidine I 1 laln, 1jtkA, 1p60A

deaminase

9. AICAR Tfase I Unusual Im9nA

domain of ATIC

10. v i IbysA, 1f0iA, 1jy1A

Phospholipase D

11. Gp5 domain v il (hexamer or | lohgA**

A

pentamer)

*  Previous PDB identifier: 1dyv
** Previous PDB identifier: 1th6
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CHAPTER 4:
PCOAT: A Tool For Protein Positional Correlation Analysis

4.1 INTRODUCTION
4.1.1 Background

Positional correlation or covariation refers to the phenomenon that mutations at one
position of a protein influence the mutations at other positions of the protein during
evolution. Correlation between positions may arise for structural or functional reasons, such
as stabilizing local contact (Mateu and Fersht 1999) or affecting protein functions through
networks of interactions (Suel, Lockless et al. 2003). Different methods have been developed
to detect and evaluate positional correlations in a multiple sequence alignment, including
approaches based on mutual information (Crowder, Holton et al. 2001), chi-square test
(Larson, Di Nardo et al. 2000), and correlation coefficient (Saraf, Moore et al. 2003). Each
method has its advantages and limitations (Pollock and Taylor 1997). In addition,
distinguishing structurally or functionally important correlations from background
correlations caused by phylogeny or stochastic events remains difficult (Atchley, Wollenberg

et al. 2000).

4.1.2 Objective

Aiming at the problems of the existing methods, we have developed a program
(Positional Correlation Analysis Tool) that performs positional correlation analysis
comprehensively and systematically. We have implemented different statistical significance
estimation methods to identify correlated position pairs, amino acid pairs and networks of
correlated positions in an input alignment, and utilized multiple sequence weighting and

sampling methods to eliminate the background correlations. Our program should be useful
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and convenient for researchers to identify candidate residues for structurally or functionally

important interactions in their protein families.

4.2 ALGORITHMS

For an input multiple sequence alignment, PCOAT performs the positional
correlation analysis in four steps. First, the effective count of every amino acid pair at each
position pair is estimated. Second, correlation scores of every position pair and amino acid
pair are determined with corresponding statistical significances and the pairs that are
significantly correlated are identified. Next, individual positions that are highly correlated
with multiple other positions are detected, and an optional fourth step identifies the networks

of highly correlated positions.

4.2.1 Estimation of effective counts

In order to eliminate background correlations (i.e. help to remove phylogenetic
artifact) and correct for redundant sequences in the input alignment, we implemented three
weighting methods to estimate the effective count of every amino acid pair at each position
pair: unweighted count, Henikoff weighting (HW) count (Henikoff and Henikoff 1994), and
altered position-specific independent count (PSIC) (Sunyaev, Eisenhaber et al. 1999; Pei and
Grishin 2001). Both HW and PSIC methods have been modified to calculate the weight for a
position pair instead of for a single position. The estimated effective counts are stored in
contingency tables. Invariant positions and gapped positions are removed to eliminate

potential false positives.
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4.2.2 Identification of statistically significantly correlated position pairs and amino acid

pairs

To identify significantly correlated position pairs and amino acid pairs, we have
implemented two statistical tests: Pearson's chi-square test of independence and likelihood
ratio test. Both tests have been proved useful for positional correlation analysis (Larson, Di

Nardo et al. 2000; Crowder, Holton et al. 2001).
Pearson’s Chi-square test

Our null hypothesis is that the amino acid substitutions at any two positions are

independent of each other. Based on this hypothesis, we have f," = £ * f, where f;" is

the expected frequency of amino acid a occurring at position i and amino acid b occurring at

position j in the same sequences, £, is the observed frequency of amino acid a at position 7,
and f; * is the observed frequency of amino acid b at position j. Thus, the expected count of

amino acid pair a and b at position pair i and j is eij.” = f,-jf‘b *T.

;» Where Tj; is the total effective

number of sequences at position pair i and j. Pearson's chi-square statistic x> is calculated as

ab ab ab ab
n. —e.. n. —e.
2 _ ( ij ij ) et L . 2 _ ( i i )2 : :
Xi = E —————— for position pair i and j, and y; ,, = E ~—————— for amino acid

a,h=1.20 €; €

Sl

a=p,
b=q,

Y

" is the observed effective count of amino acid pair a and b at position

pair p and g, where n;
pair i and j, and @ and b take the value of residue type p and p (all residue types but p), and
g and ¢ (all residue types but g), respectively. y? is utilized to measure the fit between the
observed counts and the expected counts, and obeys the chi-square distribution when the null

hypothesis (no correlation) is true. We calculate the chi-square probability of > for amino

acid pairs, and the Z-score of y* for position pairs.
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Sampling the alignment by vertical shuffling

The mean and standard deviation parameters of a random y° distribution that are

required to calculate the Z-scores can be the theoretical mean and standard deviation of the
chi-square distribution, or can be obtained from sampling the alignment by vertical shuffling.
Calculating Z-scores using parameters obtained by sampling helps eliminate amino acid

composition bias, and thus increases the prediction accuracy.

Likelihood ratio test

ab
Likelihood ratio statistic G is calculated as G;. =2 z nl.‘;b log— for position pair i
a,b=1.20 €;

ab

n..
andj, and G, =2 zﬁ n;b log— for amino acid pair p and g. G’ also follows the chi-

ij,pq
a=p,p ij
b=q.q

square distribution under the null hypothesis. We calculate chi-square probabilities of G’ for

. . . 2 .. .
amino acid pairs and Z-scores of G~ for position pairs the same way as for y>.

4.2.3 Identification of highly correlated positions

To identify individual positions that are highly correlated with other positions in the

input alignment, we calculate the * and G° of each positionias z7 = Y 77, G/ = Y. G;

j=1.N j=1.N
Ji G

based on the addition theorem of chi-square distribution, where A is the total number of
positions in the alignment. The Z-scores of yand G’ of each position are calculated and

ranked by their statistical significance.
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4.2.4 Identification of networks of correlated positions

To identify potential networks of correlated positions, we implement two clustering
methods. Groups of inter-correlated positions can be detected by single-linkage or complete-
linkage clustering when the degrees of correlations between them are higher than a user-
definable significance threshold. When using single-linkage clustering, the data points are
loosely connected and the average distance between data points could be long. When using
complete-linkage clustering, the data points are more compactly connected with each other
and the average distance between data points is shorter compared to single-linkage

clustering. User could select different options according to their needs.

4.3 APPLICATIONS AND COMPARISON TO OTHER METHODS

Comparison to other correlation analysis programs, DEPENDENCY (Tillier and Lui
2003) and CRASP (Afonnikov, Oshchepkov et al. 2001), shows that PCOAT is the only
correlation analysis program that identifies correlated position pairs as well as correlated
amino acid pairs, highly correlated positions, and networks of correlated positions. In
addition, PCOAT runs faster (1.5-5 times depending on the family size) and is capable to
analyze alignments with large number of sequences (more than 10,000), while other
programs cannot. We have applied PCOAT to a number of Pfam (Bateman, Coin et al. 2004)
alignments. Analysis of the C2H2 zinc finger family alignment (28,239 sequences, April
2004) using PCOAT identified positions 52 and 57 as the most correlated position pair, and
residues Arg52 and Asp57 at these two positions as the most correlated amino acid pair
(Figure 4.1). It has been shown that positions 52 and 57 are important substrate specificity
determinants for zinc finger binding to dsDNA (Iuchi 2001). Arg52 and Asp57, binding to G
and C or A of the substrate, respectively, are the dominant amino acids at positions 52 and 57
in the triple-C2H2 class of zinc finger proteins (Iuchi 2001). Both DEPENDENCY (Tillier
and Lui 2003) and CRASP (Afonnikov, Oshchepkov et al. 2001) cannot analyze this C2H2

alignment because of the large number of sequences. Working on a reduced-size (10,000)
59



C2H2 alignment, DEPENDENCY detected positions 52 and 57 as one of the four
significantly correlated position pairs but took 4.75 times the running time of PCOAT (Table
4.1). Analysis of the ACT domain alignment (1380 sequences, April 2004) using PCOAT
identified a network of nine correlated positions forming a surface patch on the 3-strands of
the domain (Figure 4.2). Structure analysis of the phenylalanine hydroxylase shows that the
ACT domain interacts with the catalytic domain through the -strands (Kobe, Jennings et al.
1999). The correlation network identified by PCOAT possibly plays a role in this interaction.

4.4 PROGRAM AVAILABILITY

The source code and executable files for different operating systems of PCOAT are
available for download at ftp://iole.swmed.edu/pub/PCOAT/. This ftp site also contains a
detailed description of the program and the complete results of PCOAT analysis on C2H2

alignment and ACT domain alignment.

4.5 CONCLUSIONS

A computer program, PCOAT (Positional Correlation Analysis Tool), has been
developed to perform positional correlation analysis for protein multiple sequence alignment
in order to identify structurally or functionally important interactions between positions in a
protein family. Different statistical methods have been implemented to detect highly
correlated position pairs, amino acid pairs, individual positions, and networks of correlated
positions, and developed multiple sequence weighting and sampling methods to eliminate
background correlations caused by phylogeny and stochastic events. This program runs
relatively fast and is suitable for analyzing alignments containing large number of sequences.
Applying PCOAT to protein families shows that the program is useful to identify structurally

or functionally important residues.
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Figure 4.1 Structure Diagram of C2H2 Zinc Finger Showing Correlated Pairs

Structure of a C2H2 zinc finger (1zaa C:5-32) showing that residues Argl8 and Asp20
(Arg52 and Asp57 in the alignment) are in close local contact (2.7 A) and interact with
nucleotides G and A in the substrate, respectively.
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Figure 4.2 Structure Diagram of ACT Domain Showing Correlated Network

The ACT domain (regulatory domain) of rat phenylalanine hydroxylase (1phz_A:33-111).
Residues in the correlation network are shown as atom spheres.
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Table 4.1 Comparison of Analysis Results Using PCOAT, DEPENDENCY and CRASP

Top 3
significantly PCOAT DEPENDENCY CRASP
correlated
Zinc finger Positions 57 47 52 N/A N/A
family Position 52 and 57 4 and 63 47 and 26
alignment™** pairs 53 and 60 52 and 57 52 and 72
52 and 58 16 and 63 64 and 72
Amino acid R@52 and N/A N/A
pairs D@57*
G@?26 and K@46
E@16 and Q@63
CPU time 7.25 34.43 N/A
(s)
ACT Network or | 474244 5657 N/A N/A
domain correlated 747577
alignment positions
CPU time 34.53 39.31 N/A
(s)

* Means amino acid R at position 52 and amino acid D at position 57 are highly correlated.
** Zinc finger family alignment of reduced size (10,000 sequences).
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CHAPTER 5:
Combining Sequence Profile With Predicted Secondary Structure For

Structure Modeling And Homology Detection

5.1 INTRODUCTION
5.1.1 Background

Protein structures are important in terms of understanding the molecular mechanisms
of their biological functions. Before the era of structural genomics, the protein structures
available were biased in the structure and function space, stemming from experimental
limitations and particular target selections by structural biologists (Xie and Bourne 2005).
This bias results in the usage limitation of protein structure prediction by homology modeling
method, since vast protein sequences have no nearby (i.e. of similar sequences) structures
available. With the progress of structure genomics initiatives (Burley, Almo et al. 1999;
Burley 2000), a set of landmark protein structures are being solved. These landmark protein
structures are intended to fully map the protein structure and function space, rendering most
newly discovered proteins within the homology modeling distance from a landmark structure
(Lattman 2005). As a result, sequence-based homology modeling methods for protein
structure prediction are of great practical importance.

In order to develop more powerful sequence similarity detection and alignment
methods for structural and functional prediction purposes, we can add sequence-based
predicted structural information on to the sequence profile information. Adding predicted
secondary structure information to sequence profiles has been shown to help structure
predictions by finding remote structure template (Kinch, Wrabl et al. 2003). Secondary
structure prediction methods are basically mature now. PSIPRED (Jones 1999), one of the
leading secondary structure prediction methods, is currently reported to have an average per

residue accuracy (Q3) of ~78% (Eyrich, Marti-Renom et al. 2001; Bryson, McGuffin et al.
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2005). The predicted secondary structures have been used in different studies or search
methods (Ginalski, Pas et al. 2003; Tang, Xie et al. 2003; Ginalski, von Grotthuss et al. 2004;
Teodorescu, Galor et al. 2004). Among them, HHsearch (Soding 2005) and Prof ss (Chung
and Yona 2004) are two most recently developed stand-alone sequence similarity search

programs.

5.1.2 Objective

The purpose of our study is to improve sequence similarity search methods based on
COMPASS (Sadreyev and Grishin 2003) (a profile-profile comparison method) by adding
predicted secondary structure information for better distant similarity detection ability and
alignment quality. There are different approaches to incorporate secondary structure
information with sequence profiles. We compare their performance and find the best

approach to use in our method.

5.2 ALGORITHM DEVELOPMENT

Our method is developed based on the theories of PSI-BLAST and COMPASS
methods. The major improvement is to integrate predicted secondary structure information
into the sequence profile. Compared to other methods, the strong point of our method is at
the statistical significance estimation of the alignment scores. Four major steps are required
in our algorithm to produce sequence alignments: (i) constructing substitution matrices of
amino acid and secondary structure element; (i1) developing scoring function to score the
combined sequence and secondary structure information between two matched positions; (iii)
applying alignment algorithm to align two profiles and obtaining optimal alignment score; (iv)

estimating statistical significance of the resulting optimal alignment.
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5.2.1 Construction Of Substitution Matrices

Data used in substitution matrix constructions

The substitution matrices of amino acid and secondary structure element are
constructed based on the sequence alignment data in the Blocks+ database (Henikoff and
Henikoff 1991) and the predicted secondary structure data generated by PSIPRED (Jones
1999). Protein blocks are segments of ungapped multiple sequence alignments that
correspond to the most highly conserved regions of the protein families. The Blocks+
database (Henikoff, Henikoff et al. 1999) version 13.0 consist of 11,853 blocks, of which
8656 blocks are taken from the Blocks database(Henikoff and Henikoff 1991) that are
constructed automatically from the SWISS-PROT and TrEMBL sequences, and 3197 blocks
are taken from the PRINTS database (version 31.0)(Attwood, Beck et al. 1994; Attwood,
Bradley et al. 2003) that uses manual seeds followed by automatic methods. The secondary
structures for each protein sequence in the Blocks+ database are predicted using PSIPRED,
and the resulting predicted secondary structure elements, helix (H), extended strand (E) and
unstructured coiled regions (C), are aligned with each other through the corresponding

sequence alignment.

Clustering of sequences within blocks

In order to balance the information provided by multiple closely related sequences
and single divergent sequences, we first need to weight the sequences in each block in the
Blocks+ database. The weighting is done through clustering the sequences within each block
by sequence identity using single-linkage clustering. Each resulting cluster is weighted as a
single sequence (Henikoff and Henikoff 1992).

The BLOSUM series of amino acid substitution matrices shows that clustering at
identity level 62% (BLOSUM®62) gives best performance for sequence similarity detection.
As the sequences in the Blocks+ database has expanded a great deal since the time when

BLOSUM matrices were constructed, we screen for the optimal sequence identity level of
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clustering for the database we use by comparing values in our amino acid (AA) substitution
matrix to BLOSUMSG62. An initial coarse screen of 45%, 62%, 80% and 90% followed by a
refined screen around 80% find out that our AA substitution matrix of identity level 80%
matches best with the values in BLOSUMS62 (Figure 5.1). Therefore, we decide to construct

all the substitution matrices at 80% sequence identity level.

Calculation of substitution matrices

Three types of substitution matrices are constructed based on these alignments: the
20x20 amino acid substitution matrix, the 3x3 secondary structure element substitution
matrix and the 60x60 substitution matrix of combined amino acid and secondary structure
symbols (e.g. If the predicted secondary structure element for amino acid Ala in a sequence
is Helix, then Ala-helix is treated as one symbol. And there totally 60 combined symbols.).
We will use the term symbol to refer to all three types of units in the substitution matrices, i.e.
amino acid residue in the 20x20 substitution matrix, secondary structure element in the 3x3
substitution matrix, or the combined symbol (e.g. Ala-helix) in the 60x60 substitution matrix.

The substitution matrices are constructed the same way as the BLOSUM matrices
(Henikoff and Henikoff 1992) with an extension to multiple dimensions (20x20, 3x3 and
60x60). Here we briefly describe the essential steps and formulae used in the construction
(for more details, see Ref: Henikoff 1992). To construct the substitution matrices, the first
step is to derive a count table that contains the observed counts of all possible pairs of

symbols f; .,

(dim equals to 20, 3 and 60, respectively, for each type of substitution matrix)

in all the clustered blocks. This is done column by column for each block of aligned symbols
and then sums the counts up. Second is to derive the observed frequencies of symbol pairs

occurring in an aligned position g, 5, from the observed count table using formula
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f;'j,dim

dim i s

2.2 Fim

i=l j=l

Equation 5.1 qij gim =

where the denominator is the total count of all symbol pairs. The third step is to calculate the

observed background frequencies p, ;.. for each symbol using formula

Digim = Z}C]”%Jrq”% , and to calculate the expected frequencies of symbol pair i and j
=

occurring in an aligned position e, ;. as 2p, . P; gim fori#jand p, . p; 4, fori=j.

We are then able to calculate the substitution score between symbols i and j using

formula

Equation 5.2 S .aim = 1085(4y; gim / €5.im) +

This formula gives substitution scores in bit units, consistent with the BLOSUM62

substitution matrix used in the NCBI BLAST search.
5.2.2 Effective Count Calculation For Multiple Sequence Alignment

Our method is used to align two sequence alignments, each with a predicted
secondary structure. The input sequence alignments can be generated using different methods
or programs (e.g. manual, PSI-BLAST, Pfam) and the distances between sequences in each
alignment is unequal. In order to balance the sequence information and make sure the
information provided by single distant sequences is not overwhelmed by a large number of
similar sequences, each sequence in a group of similar sequences should contribute less to
the sequence profile than sequences that are very distant to all others. Therefore, we need to
apply a weighting scheme to the input sequence alignment in order to correct for the unequal

distances between different sequences.
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We use a modified position-specific independent count weighting scheme (Sunyaev,

Eisenhaber et al. 1999; Pei and Grishin 2001) to calculate the effective count N, of each

amino acid at different positions. The effective number of sequences N, is calculated as

ln(l - ]Z’e‘”j
N - im

eff 1 ’
ln(l — j
dim

where dim is 20 for protein sequence alignment and thus the denominator is In0.95, N, is

Equation 5.3

the average number of different amino acid types per position, and N, corresponds to the

number of random sequences in a random alignment that has the average number of different

When derive the residue content N’ , for a

real

amino acid types per position equals to N

real *
given amino acid i at a given position, the method only considered a subset of similar
sequences that contains i at the given position.

This method corrects for the correlation between aligned sequences. When the

sequences containing i at a given position are identical, N;ﬁ. = 1; when the sequences

containing 7 at a given position are independent of each other, N, é ; €quals to the number of

these sequences. After having the effective counts, it is easy to calculate the effective
frequency of symbol i as

: Ny
Equation 5.4 Srim = 50—

dim

J
Z N eff
j=1
for a given position in the alignment.

5.2.3 Predicted Secondary Structure Information

Secondary structures of the top sequence of each multiple sequence alignment are
predicted using PSIPRED version 2.45(Jones 1999; McGuffin, Bryson et al. 2000).
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PSIPRED uses as input the position-specific scoring matrix (sequence profile) generated by
PSI-BLAST after three iterations and feeds the profile into a standard feed-forward back-
propagation neural network with a single hidden layer to predict secondary structure. The
current version of the method takes a consensus prediction from four independently trained
neural networks and results in an increased accuracy.

The output of PSIPRED contains three sets. The first set is the predicted secondary
structure state, either helix (H), extended strand (E) or coil (C), for each amino acid position
in the seed sequence of the PSI-BLAST profile. The second set is the confidence value
associated with each predicted state. The confidence value ranges from 1 to 9 with 9
indicates the most confident predictions. The third set of output is the probabilities of C, H, E
each occurring at a given amino acid position of the seed sequence. The predicted secondary
structure state in the first output set is the one with the highest probabilities for this position.

When using the predicted secondary structure information, we certainly need to take
into consideration the confidence value or the probabilities besides the predicted state. After
trying different approaches using confidence value and probabilities, we find that using
probabilities gives better alignment quality. Therefore, we decide to use probabilities in our
method and present the predicted secondary structure as a vector [p", p&, p©] for each residue
position, where p", p®, p© are the probabilities (normalized to sum up to 1) for helix, strand

and coil, respectively. The effective frequencies of secondary structure elements at a given

position is hence f;; = p', where i equals to H, E and C, respectively.

5.2.4 Estimation Of Target Frequencies

Given a multiple alignment, we need to estimate the target frequencies of each
symbol happening at every position. Because of factors like small sample size and prior
knowledge about the relationships between symbols, the observed effective frequencies are
not good estimations of the target frequencies. Studies have shown that a good approach to
estimate target frequency is to mix the effective frequency with a pseudocount frequency. We

adopt the pseudocount and target frequency estimation method used in PSI-BLAST and
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COMPASS. PSI-BLAST and COMPASS use a data-dependent pseudocount method
introduced by Tatusov et al (Tatusov, Altschul et al. 1994). This method generates
pseudocount g; gim for symbol i using the observed effective count f; 4im and the prior
knowledge of relationships between symbols that is contained in the substitution matrices

S calculated above. This pseudocount is calculated as

ij,dim

dim £
Equation 5.5 Lram = Z J i q

j=1 ¥ jdim

ij.dim 9

where g, 4, 1s the substitution probability between symbol pair i and ; in the corresponding

substitution matrices calculated above.
The target frequency is then calculated as a mixture of the effective frequency f; 4im
and pseudocount frequency g; gim,
dim
A ; gim + ﬂz fj,dim
. & ; gim T ﬂgi,dim j=1
Equation 5.6 O 4im = =
’ a+pf a+pf

4 j dim

P gim
b

The weight-parameters o and 3 in the formula are determined empirically as N¢-1 (N, is the
average number of symbol types per position for the input alignment) and 10, respectively,

the same as in PSI-BLAST and COMPASS.

5.2.5 Scoring System for Amino Acid And Secondary Structure Profiles

Profile calculation

Profiles are position-specific scoring matrices. They represent the preferences of
characteristic amino acids, and in our case secondary structures, of each particular protein
family. To calculate the profile scores for each position (column) in an alignment, we use the

proved log-odds form (Altschul, Madden et al. 1997; Schaffer, Wolf et al. 1999; Sadreyev
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Qz dim

i,dim

and Grishin 2003), log—=, where Q, . is the target frequency of symbol i, and p, 4, is

i,dim

the corresponding background frequency of i.

Basic similarity scoring function

In order to align two profiles, we need to have a scoring function to evaluate the
similarity between two aligned columns, 1 and 2, each from one of the alignment
respectively. We use the basic scoring formula that is extended from COMPASS, which is in
turn modified from PSI-BLAST scoring function,

i dlm i,dim
i=1,dim i,dim i=1,dim l,dlm

Q(Z) Q(l)
Equation 5.7 Sim =6 Z nd In =t e Z nC) In=tdm

where Q) and Q2  are the target frequencies of symbol i in column 1 and column 2,

i,dim i,dim

(2)

i,dim

respectively, n and n;;;  are the effective counts of symbol i in column 1 and 2,

l dlm

respectively. ¢; and ¢, are the weighting parameters. They are calculated as

2) M
Z nl dim Z nl dim
¢ =

) (2) > ) (2)
znldlln+znldlln_ znldlm +znldlm_

Equation 5.8 ¢, =

This symmetric scoring formula is derived from the probabilities of occurrence of column 1
and column 2 given column 2 and column 1, respectively. ¢; and ¢; are determined so that in
the special case when there is only one sequence in a column, the scoring function is

transformed to that of PSI-BLAST (for more details, see Ref: COMPASS).

Scoring systems to incorporate secondary structure with amino acid profiles

Two scoring systems are used to incorporate the secondary structure with amino acid

profiles. One is a linear combination of the amino acid score ( S,,,,,) and secondary structure
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score (S;,; ) as shown in Equation 5.9. The weighting parameters of the two scoring items

sum up to 1 and we only need to optimize one parameter, w, which is the weight for
secondary structure score. After screening from 0 to 1 with a 0.2 increment, w is optimized to
0.2 according to alignment quality. Thus, the optimal weight ratio between amino acid score

and secondary structure score is about 4:1.

Equation 5.9 Sroxz0i3ws = (L= W) #8000 + W Sy 5

The other scoring system we used to incorporate secondary structure and amino acid
profiles is to score the combined symbols directly with a 60x60 alphabet. Based on Equation
5.4 and the effective frequency of predicted secondary structure elements (section 5.2.3), the

effective frequency of combined symbol £ is calculated as

k i i
N o 60 _ N> fia _ N gy 20 % f_/,3 _

Equatlon 5.10 fk,(yO =% 60 20 — Ji20 X j.3
m m m
z Neﬁ",60 z Neﬁ",60 Z Neff,zo
m=1 m=1 m=1

for a given position in the alignment, where symbol £ is the combination of i (a type of amino
acid) and j (a type of secondary structure element). After having the effective frequencies of

combined symbols, we are able to calculate their effective counts 7, ;, and target frequencies

0, ¢0» and use Equation 5.11 to calculate the combined score S, -

1

o4 O
Equation 5.11 Seoxso =€ D, Moo In—"+¢, Y ng In=—"=

i=1,60 £.60 i=1,60 Pieo

where p, 4, is the background frequency of combined symbol 7, and ¢, and c; are calculated

the same way as in Equation 5.8.

Other scoring systems have also been tried out, including linear combination of S,
and S, ,, and using S, ; alone. Using S, , alone gives good alignment coverage comparable

t0 S,).,0.3.; DUt bad alignment accuracy. Linear combination of S, ,, and S, , requires
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more computation tasks but gives similar alignment quality result compared to S, 0.3, -

Therefore, both approaches are disregarded.

5.2.6 Estimation Of Statistical Significance Of Optimal Alignments

The local sequence alignment is generated using Smith-Waterman dynamic
programming algorithm (Smith and Waterman 1981). The optimal alignment is the one with
maximum score. After obtaining the optimal alignment and its associated score, we use a
hypothesis testing method to evaluate the statistical significance of the optimal alignment
score. The null hypothesis is that the similarity between the two aligned sequences with score
S is the result of random chance. The alternative hypothesis is that the similarity between the
two aligned sequences with score S is the result of nonrandom reasons and thus is a

biologically meaningful similarity.

Determination of statistical parameters

The statistical test requires knowing the distributions of optimal alignment scores for
random (non-homologous) alignments. To get the distribution, we generated 10,000 pairs of
pseudo sequence alignments with secondary structures composed of randomly selected
columns from real alignments. These randomly sampled columns are selected from Pfam
10.0 alignments with effective gap content less than 50%. The 10,000 pairs of pseudo-
alignments are then optimally aligned and the scores are calculated. Like PSI-BLAST and
COMPASS, the distribution of the optimal scores is well fitted by an extreme value
distribution (EVD) with parameters A and K (Figure 5.2).

According to Altschul and Gish’s study (1996, Methods Enzymology), the statistical
parameters of EVD depend on search space size, i.e. alignment length (/en). In our study, the
statistical parameters are also found to be dependent on another important property of the
alignment, the effective number of sequences in the alignment (N.4). To study these

dependencies, we constructed 16 sets of pseudo-alignments of the combinations of 4
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alignment lengths (/en = 100, 200, 300, 500) and 4 effective numbers of sequences (number
of sequence = 50, 200, 400, 600, corresponding Ny~ 10, 15, 17, 18). Each set contains
10,000 pairs of pseudo-alignments constructed as described above. For each given len and
Ny, the distribution of the random optimal scores is fitted to an EVD with parameters

A(N,,;,len) and K(N,,,len).

/i e

The dependencies of 4 and K on N, and len are approximated by planes (Figure 5.3)
in the form of A =a N + b, %+ ¢, and K =a,N +b, % + ¢, , where N is the average effective

number of sequences of the two profiles in the alignment (i.e. the average of Nyl and N,;2),
and / is the average alignment length of /enl and /en2. The corresponding coefficients are
derived from Figure 5.3 and the dependency relationships are summarized below.

Apironsss = —0.00279x N +3.51x(1/1) +0.337

= —0.00139% (N, 1+ N,;2) +1.76x vl yi0337

lenl len2
1 1
K =-0.00643x (N 1+ N ,2)+8.92x (——+——)+0.299
20x20+3x3 ( eff eff ) ( lenl l€n2)
1 1
A =—0.000228x (N 1+ N . 2)+1.79x (—— + +0.273
60x60 ( eff eff ) ([enl Zen2)
K ¢.60=—0.000220 x (Nef.l +N,;2)+4.62x (L + ! )+ 0.679
: ’ lenl len2

Calculation of E-value

After knowing the distributions of optimal alignment scores for random alignments,
we are able to calculate the E-value corresponding to an alignment with optimal score S
using the simple formula proposed by Karlin and Altschul (Karlin and Altschul 1990;
Altschul, Madden et al. 1997)
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Equation 5.12 E = Kmne ™

where K and A are the EVD parameters determined above. And m and n are the lengths of the
two profiles in case of pairwise comparison, or the lengths of query and the database in case

of database search.

5.3 RESULTS AND DISCUSSION OF THE SUBSTITUTION MATRICES

We calculate three substitution matrices, 20x20, 3x3 and 60x60, at the 80% identity
level. Table 5.1 shows the relative entropies and expected scores (means) of these
substitution matrices and BLOSUMG62. The relative entropy is calculated as

H =2 4;S; =2.4;0g, -
i i

pip;

, and it measures the average information available per

position in an alignment (Altschul 1991). From Table 5.1 we can see that the relative entropy
and expected score of our 20x20 amino acid substitution matrix are the same as those of
BLOSUMSG62. The relative entropies of 3x3, 20x20 and 60x60 increase in that order, and the
expected scores of them decrease in the same order. This phenomenon may be related to the

dimensions of the substitution matrices.

Table 5.1 Relative Entropy and Expected Scores of Substitution Matrices

3x3 20x20 60x60 BLOSUM®62
Relative entropy 0.43 0.70 1.12 0.70
Expected score -0.48 -0.52 -0.88 -0.52

Evolvement of database reflected in substitution matrices

An important parameter in substitution matrix calculation is the sequence identity
level at which the database sequences are clustered. The results of our screening for identity
levels show that 80% matches best with the BLOSUMG62 level (section 5.2.1, Figure 5.1).

Therefore, all our substitution matrices are calculated at the 80% identity level. Figure 5.11a
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shows that the values in our amino acid substitution matrix at 80% identity level (AA80) are
comparable to the values in BLOSUMG62, while Figure 5.11b shows a systematic difference
in the values of our AA62 (our amino acid substitution matrix at 62% identity level) and
BLOSUMG62.

Since we use the same protocol BLOSUMG62 used to calculate our AA62, the only
difference between the two substitution matrices is the different sequence data used in the
calculation. BLOSUMBG62 was calculated using the sequence data collected in Blocks database
in 1992. With vastly more sequences available in the database since then, the sequences
becomes much more divergent.

There is a noticeable trend in the differences between our AA62 scores and
BLOSUMSG62 scores (Figure 5.11b). Compared to BLOSUMG62, the scores for substitutions
between similar amino acid pairs (the ones with positive substitution scores) are lower in our
AAG62, while the scores for substitutions between dissimilar amino acid pairs (the ones with
negative substitution scores) are higher. This trend is consistent with the changes in the
database sequences: the proteins families are including more divergent sequences aligning
with each other. Hence in order to obtain comparable values as in BLOSUM®62, we now need
to use a more similar sequence clustering identity cutoff, 80%, to simulate the degree of

sequence diversity more than ten years ago.

Exchangeabilities of Symbol Pairs

According to Equation 5.2, the substitution score between a pair of symbols is
positive if their observed frequency is higher than their expected frequency to occur in an
aligned position, and negative if their observed frequency is lower than their expected
frequency. If a pair of symbols has a very high tendency to substitute each other, they must
possess similar chemical properties that enable their similar structural or functional roles in
proteins. In addition, their substitution scores will be a large positive value. Therefore, we are
able to identify similar amino acid/secondary structure pairs by ranking the corresponding

substitution matrices.

77



All the self-substitutions (diagonal of the substitution matrix) have positive
substitution scores. For secondary structure substitution matrix (Figure 5.12a), strand-strand
substitution happens most frequently, helix-helix substitution the second, and coil-coil
substitution the last but comparable to helix-helix. Other than these self-substitutions, all
other substitutions between different types of secondary structure elements are not favorable
(have negative substitution scores). For amino acid substitution matrix (Figure 5.12b), the top
four similar pairs with substitution scores higher than 1.0 are Tyrosine (Y) and Phenylalanine
(F), Tyrosine (Y) and Tryptophan (W), Valine (V) and Isoleucine (I), Lysine (K) and
Arginine (R). These amino acid pairs all share similar structural or chemical properties.
There are two amino acids that substitute with almost any other amino acids with negative
scores (except Cysteine with Alanine). They are Cysteine (C) and Proline (P). These two
amino acids have their unique functional or structural roles in proteins. As a result, they are

not easily substituted by other amino acids.
Substitution matrices and secondary structure propensities

By definition, the transition probability of the 60x60 combined symbol substitution
matrix, g; 0, reflects the dependency between amino acid substitution and secondary
structure substitution. In addition, the background frequency of the 60x60 substitution
matrix, p; eo, reflects the secondary structure propensities for each amino acid type, for p; ¢ is
the frequency of an amino acid type and a secondary structure type occur together. Therefore,
we can obtain secondary structure propensities from our calculation of the 60x60 substitution
matrix. The distributions of the alpha-helix and beta-strand propensities by amino acid types
are shown in Figure 5.13 a & b. Comparisons of the propensities we calculated with the
Chou-Fasman propensities (Chou and Fasman 1978) show good correlations with R* = 0.78

for helix propensities and R* = 0.82 for strand propensities (Figure 5.13 c&ad).
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5.4 RESULTS AND DISCUSSION OF PFAM-BASED PERFORMANCE
EVALUATION

We evaluate the performance of our methods from two aspects, alignment quality and
homology detection ability. As the largest source of accurate semi-automatic multiple
sequence alignments and the largest source of automatic structure-based alignments, Pfam
sequence alignments and FSSP (Holm and Sander 1996) structure alignments are used in the
evaluations. The sequence alignments of Pfam families are used to construct amino acid
profiles and the secondary structures are predicted for the top sequences in each alignment
using PSIPRED (Jones 1999). We compare the evaluation results of our methods to other
methods, including PSI-BLAST (BLAST) (Altschul, Madden et al. 1997) as the most
popular tool, COMPASS (Sadreyev and Grishin 2003) as the sequence profile-based method
to improve upon, and HHsearch (Soding 2005) and Prof ss (Chung and Yona 2004) as two

methods that also use incorporated sequence profile and secondary structure information.

5.4.1 Evaluation of Alignment Quality

Selection of evaluation data set

500 Pfam 10.0 family pairs with known three-dimensional (3D) structures and
structure-based FSSP alignments of sequence identity 14-16% are randomly selected for
alignment quality evaluation. The Pfam family pairs are grouped into different identity bins
based on the pairwise sequence identities calculated based on the FSSP alignments. Since we
want to test the ability of our methods on remotely divergent sequences, we choose to use the

family pairs in the identity bin of 14-16%.

Evaluation criteria

When assessing the alignment qualities, the sequence-based alignments (i.e.

alignments to be evaluated) are compared to the structure-based FSSP alignments that are
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used as gold standard. If a pair of residues are aligned the same way in a sequence-based
alignment as in the FSSP alignment, it is considered a correctly aligned residue pair and is
called a correct match (Sadreyev and Grishin 2003).

The alignment quality is evaluated by coverage, local accuracy and global accuracy.
Coverage measures the fraction of structure-based alignment (usually considered containing
the longest alignable segments of the two structures) that is reproduced by the sequence-
based alignment. It equals to the length between the farmost correctly aligned residue pairs in
the sequence-based alignment divided by the length of the structure-based alignment. Local
accuracy is also called Qmodeler (Yona and Levitt 2002) and measures the percentage accuracy
within the aligned region generated by sequence-based alignment. It equals to the number of
correct matches divided by the length of the sequence-based alignment. Global accuracy is
also called Qgeveloper (Yona and Levitt 2002) and measures the percentage accuracy over the
entire structure-based alignment that is reproduced by the sequence-based alignment. It
equals to the number of correct matches divided by the length of the structure-based

alignment.

Evaluation results and discussion

We compare the alignment quality of our method to other methods in two groups.
One is to compare within its own family, including BLAST, PSI-BLAST and COMPASS.
We consider these methods of the same family because they use the same basic scoring
system and the same statistical significance estimation system. The differences between the
methods are the amount of information they use to generate alignments. BLAST uses single-
sequence vs. single-sequence, PSI-BLAST uses sequence profile vs. single-sequence,
COMPASS uses sequence profile vs. sequence profile, and our methods used sequence
profile + secondary structure vs. sequence-profile + secondary structure information. In the
other group, we compare our method to HHsearch and Prof ss, that also used sequence
profile + secondary structure information. Figure 5.4a shows that compared to BLAST, PSI-
BLAST and COMPASS, our methods (both the 20x20+3x3 and the 60x60 scoring systems)
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give significantly and substantially improved coverage. Compared to HHsearch and Prof ss,
our method (using the 20x20+3x3 scoring system) also gives the best coverage. Figure 5.4b
shows that our methods give best global accuracy in both groups. Figure 5.4c shows that our
method (the 20x20+3x3 scoring system) gives slightly worse local accuracy compared to
COMPASS.

Two scenarios could cause this worse local accuracy. One is that since our method
gives much longer coverage (~1.5 times) compared to COMPASS, alignments generated by
our method extend to less similar regions of the two sequences that are more difficult to
align. The other scenario is that our method generates random alignments, and the long
coverage leads to large global accuracy. To find out which scenario is closer to the truth, we
randomly look at the alignments of ~10% of the family pairs. Most of them look like the
alignments shown in Figure 5.5 in that the alignments generated by COMPASS are short and
the alignments generated by our method contain the COMPASS alignments and extend a lot
from the short core regions formed by COMPASS alignments. To further verify our
observations, we force the alignments generated by our method and COMPASS to have the
same coverage and then compare their accuracy. We use a global version of the dynamic
programming algorithm with end gap penalties to generate global alignments for COMPASS
and our method, thus the coverage of the alignments are all forced to be 1. Now local
accuracy equals global accuracy and there is just one accuracy measure. Figure 5.6 shows
that when the coverage are forced to be the same (1.0), our method using the 20x20+3x3
scoring system gives better accuracy than COMPASS. Even using the 60x60 scoring system,
our method gives comparable accuracy to that of COMPASS. Therefore, the most plausible
reason for our method to have a slightly worse local accuracy is because our alignments

extend to less similar regions that are more difficult to align.
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5.4.2 Evaluation of Homology Detection Ability

Selection of evaluation dataset and Protocol of sequence similarity searches

To evaluate the homology detection ability, we collect all Pfam 10.0 families that
contain at least one sequence belonging to a FSSP family. 1986 Pfam 10.0 families with
known 3D structures and available FSSP alignments are selected. An all-against-all search
with each of the 1986 families as a query to search against all 1986 families is performed for
each of the sequence-based programs, including our methods, COMPASS, HHsearch and
Prof ss. Since these methods all uses multiple sequence profiles, for each query to search
against all families, 1986 numbers of searches are performed. But for PSI-BLAST, it uses
profile vs. single sequence search. The sequence profile generated from the sequence
alignment of each family is used as a query, and the single sequences extracted from the
multiple sequence alignment of each other family are transformed to a searchable database.
For each query to search against one Pfam family 4, N numbers of PSI-BLAST searches are
performed with N equals to the number of sequences in alignment 4. The sequence
alignments of query against all sequences in family 4 are sorted by E-value. The one with the

most significant E-value is used as the hit alignment and E-value for family 4.

Evaluation criteria

We use similar evaluation criteria as those described in COMPASS method
(Sadreyev and Grishin 2003). Our criteria for true positives are based on the consistency
between sequence-based alignment and structure-based alignment. The idea is that, if the
sequence-based alignment is consistent with the structure-based alignment, it is most likely
the result of homology relationship between the query and hit. Thus, we consider the
sequence-search hit a true positive if it is consistent with the structure similarity relationship
reflected in the FSSP alignment system. If the hit belongs to the same FSSP family as the
query, which ensures that they have a structure similarity (DALI) Z-score of greater than 2.0,

and if the number of correct matches between the sequence-based alignment and the FSSP
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alignment of the query and hit is greater than or equals to 5, the hit is considered a true
positive. Otherwise, the hit is considered a false positive. Using the number of correct

matches of 2 and 15 give similar results.

Evaluation results using ROC curve analysis

Receiver Operating Characteristic (ROC) curve is a popular sensitivity and specificity
evaluation technique (McNeil and Hanley 1984). ROC curve analysis is performed to
compare the homology search abilities of different methods. The hits or each method are
sorted by their E-values in an ascending order. A ROC curve is generated by plotting the
numbers of true positives corresponding to each increment in the number of false positives
for each method. Figure 5.7a shows the overall ROC curve analysis results. Compared to
other methods (HHsearch, COMPASS, Prof ss, PSI-BLAST), our 20x20+w3x3 approach
performs best, but the s60x60 approach performs worse than PSI-BLAST (data not shown).
Figure 5.7b shows the ROC curve analysis results of 200 false positives. In this region, our
method still performs the best, but its curve is pretty close to that of the COMPASS.
Therefore, we need an evaluation method to test if the difference in ROC between these two

methods (and between all other methods) is significant or not.

Evaluation results using family-based paired t-test

In order to test if the difference in ROC scores between any two methods is
significant or not, we use family-based paired t-test. To perform the test, we calculate the
ROC scores for each Pfam family using different sequence search method. We then pair the
ROC score of one Pfam family under method one with the ROC score of this family under
method two. 1986 pairs of ROC scores are formed for methods one and two and the paired t-
test is performed to test if the different in the ROC score means is significant or not at the 5%
significant level. Figure 5.7¢c shows the result of the family-based paired t-test performed
within the 200-false positive region (corresponding to that of Figure 5.7b). In this region, at

the 5% significant level, the difference between our method and COMPASS is not
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significant, neither is the difference between COMPASS and HHsearch, but the differences
between all other pairs of the 5 methods (our method, COMPASS, HHsearch, Prof ss and
PSI-BLAST) are significant.

5.5 RESULT AND DISCUSSION OF THE 60X60 SCORING SYSTEM APPROACH

We have tried different scoring systems to incorporate secondary structure
information with amino acid sequence profiles (section 5.2.5) and decide to use two of the
systems, the linear combination 20x20+3x3 approach and the combined symbol 60x60
approach, based on sequence alignment quality comparison. From the evaluation result of
homology detection ability (section 5.4.2) we can see that the 20x20+3x3 approach performs
better than COMPASS and other methods in the 200-false positive region. However from
Figure 5.14 we can see that our method using the 60x60 approach performs worse than
COMPASS, the method it is supposed to improve upon. In order to find out the reason why
the 60x60 approach fails, we carry out a thorough analysis of this scoring system.

There are three major unique factors in the 60x60 scoring system based on Equation
5.11 and Equation 5.6, (a) the 60x60 substitution matrix, (b) the scoring function and (c) the

number of effective count n, ,,. We study the effects of each factor sequentially. In order to

obtain the evaluation result quickly, we randomly choose eight Pfam families as queries to
each against the entire Pfam dataset. The ROC curve analysis and family-based paired t-test
result of these eight families are shown in Figure 5.15. The evaluation result shows that the
20x20+3x3 approach performs better than COMPASS and the 60x60 approach performs
worse than COMPASS (Figure 5.15a) and the differences are all significant (Figure 5.15b),
which is consistent with the evaluation result on the entire data set. Thus, we consider it valid

to use the randomly chosen eight families to study the effect of the factors.
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5.5.1 Study Of The Substitution Matrix Effects

We first consider the substitution matrix used in this scoring system, the 60x60
substitution matrix, which is used to generate data-dependent pseudocount (Equation 5.5) in
the scoring system. We start with checking the composition of the dataset we used to derive
the 60x60 substitution matrix (Blocks+ 13.0). The distributions of amino acids and predicted
secondary elements of the dataset are shown in Figure 5.16. The numbers seems reasonable.
A comparison between the amino acid frequencies in the dataset and the Robinson
frequencies (Robinson and Robinson 1991) shows strong correlation with R* = 0.90 (Figure
5.16c). Therefore, we conclude that there is no compositional bias in the dataset we used to
derive the substitution matrix.

We then look at the 60x60 substitution matrix itself and find out that its values are
very similar to those in an independent matrix. We define an independent 60x60 substitution

matrix as one that there is no secondary structure propensity and no dependency between
amino acid substitution and secondary structure substitution, i.e. p® = p> x p> and
Qovssy = G XG5, » Where a and b represent amino acid type, x and y represent secondary

structure type. Therefore, the values in an independent 60x60 substitution matrix can be
deduce to the sums of values in the 20x20 and 3x3 substitution matrices according to

Equation 5.13.

60 20 3
. 60 _ qax—)by _ C]a b QX—U) _ 20 3
Equation 5.13 S e by =108 ps)?pff =log pj(];,fo +log pipf, =S, TS,

Comparison of the values in the original 60x60 substitution matrix and the independent
matrix (Figure 5.17) shows a significant correlation between the two (R*=0.96). Therefore,
the 60x60 substitution matrix is indeed very similar to the independent matrix.

To further verify that this similarity has effects on the homology detection ability. We
construct the independent substitution matrix based on Equation 5.13 and use this matrix in
our scoring system instead of the 60x60 matrix. The ROC curve analysis of the searching

result shows that the curve corresponding to the independent matrix almost coincides with
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that of the 60x60 matrix (Figure 5.18a). And the t-test shows no statistically significant
difference between the two (Figure 5.18b). We also carry out a novel hit-rank comparison
between the two variations. A hit-rank comparison is defined as such. We sort the hits of
each method according to their E-values and record the rank of each hit. The ranks of the
same hit by two different methods can then be compared. This way, we can easily identify if
two methods give similar search results or not. The advantage of this kind of comparison test
is obvious. Because there is not need to determine true or false positives for each hit, it
eliminates spurious results. The hit-rank comparison between the independent matrix and the
60x60 substitution matrix shows an exact correlation (R*=1.0) between the two (Figure
5.18c). Therefore, the 60x60 substitution matrix and the independent matrix not only have

similar values, but also have the same effects in homology detection ability.
5.5.2 Study Of The Scoring Function Effects

In order to find out the difference between the two scoring systems 20x20+3x3
(Equation 5.9) and 60x60 (Equation 5.11), we decide to decompose the scoring functions of
the two. To simplify the decomposition process and clarify the results, we take only the

scoring items contributed by one amino acid, Alanine (A), and one secondary structure, Helix

(2)

(H), in part one of the symmetric scoring function (Equation 5.7),c, z n}ﬁim In =" Thus,

i=1,dim D dim

the 20x20+3x3 scoring function is decomposed to

st \ W

ny(1-w) "AP/'?S, ”APfSI nyPc '
Equation 5.14 ¢ In (&j (&J (%] (%J ,
pA ph pe pc

QAh,6O _ QA,20 y Qh,3
Paneo Paro  Phs

and assuming , the 60x60 scoring function is decomposed to
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where n4is the effective count of alanine, p;> , p/* and p' are the PSI-BLAST predicted

probabilities of helix, strand and coil, respectively. Comparison of Equation 5.14 and
Equation 5.15 shows that the only difference between the two is the parameter w, which is
the weight of the Siy3 item in the 20x20+3x3 scoring system

(8500200303 = I=w) 8, oo + w* S, ). Therefore, the 60x60 scoring function is equivalent

to the 20x20+3x3 scoring function with equal weight (both weights of S>0x20 and Ssx3 equal to
1).

To verify the deduced equivalence between the 60x60 and S, ,, +S,,; approaches,

we carry out a search using the 20x20+3x3 scoring system with both weights equal to 1 and
compare the results with that of the 60x60°s. As expected, the ROC curve of the two
variations overlap with each other (Figure 5.19a), the t-test shows no statistically significant
difference between the two (Figure 5.19b), and the hit-rank comparison shows an excellent
correlation (R*=0.996) between the two (Figure 5.19¢). These experimental results show that
the 60x60 scoring system is indeed equivalent to the 20x20+3x3 scoring system with equal
weights, 1.

To think from another direction, we can add weight w and (1-w) to Equation 5.15 so
that it becomes the same as Equation 5.14. This way, we can construct a new 60x60 scoring
system that is equivalent to the 20x20+3x3 scoring system. As it turns out, adding weight to
the 60x60 approach requires adding Siy3 in as well. By reversing the deduction process

above, we deduce that the scoring system
Equation 5.16 (1= w)* Sy — (1—2w)x S, 4

should be equivalent to the 20x20+3x3 system, S,),59.3.3 = L=W) * 8,0, + w*S, .. To

verify our thought, we use Equation 5.16 to do a search and compare the results with that of

the 20x20+3x3 system. Indeed, the ROC curve shows overlapping of the two methods
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(Figure 5.20a), the t-test shows no statistically significant difference (Figure 5.20b), and the
hit-rank comparison shows a strong correlation (R*=0.91) between the two (Figure 5.20c).
In short, the analysis of the scoring functions reveals that the fundamental difference
between the 60x60 and the 20x20+3x3 scoring systems is the difference in their weights
assigned to the amino acid score (Sxox20) and the secondary structure score (S3x3). The
20x20+3x3 scoring system has a weight ration of 4:1 for Sxox20: S3x3, While in the 60x60

scoring system this ratio is 1:1.
5.5.3 Study Of The Effective Count Effects

In order to study the effects of the number of effective count #, ¢, , we first look at the
distribution of n, ;, (Figure 5.21a). It ranges from 0.6 to 21. If the number of effective count

has effects on the homology detection ability of the 60x60 scoring system, different number
of effective count would result in different detection performance. Thus, we can use a
stratifying method to test the effects of the number of effective count.

The inter-quartile range of n, ,, is 6-14. We first divide the Pfam families into three
categories: 7, <6,6< n,, <14,and n,, > 14, then use them as queries to execute

searches. The search results are evaluated using ROC curve analysis. From Figure 5.21b we
can see, the performance of 60x60 is always the worst, and the relative performance of
20x20+3x3, COMPASS and 60x60 do not change between the three categories. Therefore,
we conclude that the number of effective count does not seem to affect the performance of

the 60x60 scoring system.

In summary, the reason why the 60x60 scoring system approach does not perform as
well as the 20x20+3x3 approach and COMPASS is mainly because (a) the 60x60 substitution
matrix is very similar to an independent matrix and thus does not contain enough information
for homology detection purposes, and (b) the amino acid information S»ox20 and the

secondary structure information Ss,3 have a fixed relative weight (1:1) in the 60x60 scoring
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system, which is improper (unoptimal) for the homology detection purpose. The number of

effective count in the scoring system does not seem to affect the performance.

5.6 APPLICATIONS

With improved alignment quality and structure similarity detection ability, our
method is able to provide many applications to the structure modeling field, including
detecting template of distant-similarity and providing better alignment for structure
modeling. In addition, our method can be used to detect distant similarities between families
with known-structures, which is useful for protein structure classification and for
understanding of protein sequence-structure-function relationships.

Figure 5.8 shows an example of the improved distance-similarity detection ability and
better alignment quality helps to identify and confirm homology relationship between
proteins that are otherwise difficult to identify using sequence profile-based method
(COMPASS). We already know that both eukaryotic peptide chain release factor subunit 1
C-terminal domain (ERF1) (1dt9:A277-A422) and RNA ribose methyltransferase N-terminal
domain (RNArm) (lipa:A1-A105) are homologous to ribosomal protein L30e through
transitive PSI-BLAST, therefore, ERF1 and RNArm should be homologous to each other.
However, a database search using sequence profile-based method, COMPASS, fails to find a
significant similarity between the two (E-value only 0.7) and the alignment generated only
covers one helix and one and half strands (pink regions in Figure 5.8 a&b). The database
search using our method is able to find a significant similarity between the two protein
domains with an E-value of 7.3e-16 and therefore is able to infer homology relationship
between the two. The alignment generated by our method covers the entire length of the two
domains and is correctly aligned in 6 out of 7 secondary structures of the two domains.

We apply our method to predict new similarities between Pfam 10.0 families by
comparing all Pfam families with known 3D structures in an all-against-all fashion. We
select hits that have significant E-values and verify them by structure-based comparisons

(number of correct matches). Our method is able to reliably predict similarities between 1809
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Pfam family-pairs, which is about 16 times of what COMPASS predicts, and about 28 times
of what PSI-BLAST predicts (Table 5.2).

Table 5.2 Number of Similar Pfam family-pairs Predicted

Number of Pfam family-pairs reliably predicted

20x20+3x3 1809
COMPASS 111
PSI-BLAST 65

Many interesting examples are found among the new similarities uniquely predicted
by our method. Figure 5.9 shows an example of new similarity detected between different
SCOP superfamilies. Because no significant sequence similarities detected between the two
domains before, Pfam families, heavy-metal-associated domain (HMA) and
hydroxymethylglutaryl-CoA reductase (HMG-CoA_red), belongs to two different SCOP
(version 1.69) superfamilies, heavy metal-associated domain (d.58.17) and NAD-binding
domain of HMG-CoA reductase (d.58.20). Both domains possess the ferredoxin-like fold
with a secondary structure arrangement of (Ba.f),. The structural similarities between the two
domains were only identified by visual inspection (the same SCOP Fold). Our method is able
to identify a significant similarity between the two domains with an E-value of 2.44e-17 and
correctly aligns 4 out of the 6 secondary structures in both domains (the red regions in Figure
5.9). Both domains can serve as a perfect structure template for each other. Figure 5.10
shows an example of new similarity detected between different SCOP folds. Pfam families
ACT domain and eukaryotic initiation factor 4E (IF4E) belongs to different SCOP folds,
ferredoxin-like fold (d.58) and translation initiation factor elF4e fold (d.86), and were
considered to possess different structural folds. This usually means that the two domains
cannot be used as structure template for each other. However, our method successfully finds
the structurally similar regions in the two domains. ACT domain is a ferredoxin-like fold
domain, while the IF4E domain also possesses the ferredoxin-like fold with insertions of

other secondary structures at the N- and C-termini (see Figure 5.10). Our method correctly
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identifies the structurally similar parts of the two domains and correctly aligned 45 out of 6

secondary structures in the smaller ACT domain. Thus the bigger IF4E domain can serve as a

perfect structure template for the ACT domain.

5.7 CONCLUSIONS

A protein sequence alignment and similarity search algorithm has been developed by
means of incorporating sequence profile and predicted secondary structure information. We
constructed substitution matrices of amino acids and secondary structure elements based on
updated sequence database and utilized them in our newly developed scoring system.
Statistical significance of the resulting alignments are estimated based the modeled random
score distributions. Comparisons to other programs (e.g. PSI-BLAST, COMPASS, Prof ss)
on a PFAM-based performance evaluation system show that our program provides improved
template detection ability and generates better quality sequence alignments. Applying our
program to PFAM 10.0 families reveals many (16-28 times) previously unrecognized
similarities between families. Additionally, we explored different approaches to incorporate
predicted secondary structure information with sequence profile and made an effort to

understand why some approach does not work from various perspectives.
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Figure 5.1 My Amino Acid Substitution Matrix AA80 Matches BLOSUM62
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(a) Plot of Pearson’s correlation coefficients vs. sequence identity level cutoffs for clustering.
Pearson’s correlation coefficients are calculated for values in BLOSUMS62 and values in our
amino acid substitution matrices at different sequence identity levels. This plot shows that the
highest correlation coefficient occurs at identity level 80%. (b) Plot of distance measure vs.
sequence identity level cutoffs for clustering. The distance measure assesses the
dissimilarities between BLOSUMG62 and our amino acid substitution matrices at different
identity levels. This plot shows that the least dissimilar (=most similar) point occurs at
identity level 80%. The distance measure is calculated as the average of d, where d is the
vertical offset to line y=x.
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Figure 5.2 Distribution of Optimal Random Scores Fitted to EVD
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Distribution of optimal scores for 10,000 pairs of pseudo sequence alignments with
secondary structures composed of randomly sampled columns from Pfam alignments. The
score distribution is generated using the 60x60 scoring system with pseudo-alignments of
length 100 and number of sequences 200. The best-fitted Extreme Value Distribution (EVD)
is plotted against the data. The chi-square goodness-of-fit test generates a chi-square value of
45.5 with a degree of freedom of 41, which corresponds to a p-value of 0.29.
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Figure 5.3 Dependency of Lambda and K on Alignment Length and Effective Sequence
Number

(a) Dependency of Extreme Value Distribution (EVD) parameter lambda on alignment length
(length) and effective sequence number (neff) for 20x20+3x3 scoring system. The tops of the
red lines indicate the values of lambdas at the combinations of lengths 100, 200, 300, 500
and neffs 10, 15, 17, 18. The green plane indicates the fitted plane of lambda as a function of
length and neff. (b) Dependency of EVD parameter K on length and neff for 20x20+3x3
scoring system. The tops of the red lines indicate the values of Ks at the combinations of
lengths 100, 200, 300, 500 and neffs 10, 15, 17, 18. The green plane indicates the fitted plane
of K as a function of length and neff. (¢c) Dependency of EVD parameter lambda on length
and neff for 60x60 scoring system. The color scheme is the same as in (a). (d) Dependency
of EVD parameter K on length and neff for 60x60 scoring system. The color scheme is the
same as in (b).
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Figure 5.4 Evaluation Results of Alignment Quality
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Figure 5.5 Example of Alignments Generated by Our Method and COMPASS

Pred: HHHHHHHHCCCCCHHHHHHH----- HHHHHHHHHHHHHHHCCCCCCCCHHHH-HHHHHHH

lbpyA 100 SAARKFVDEGIKTLEDLRKN=====EDKLNHHQRIGLKYFGDFEKRIPREEM=LQOMQODIV

+ ottt FHt+++ FHtt+ o

1fa0B 23 KLNDSLI=======QELKKEGSFETEQETAN RVQVLKILQELA

HHHHHHH------- HHHHHCCCCCCHHHHHH--——-———————————— HHHHHHHHHHHH

HHHHHHH--------———-— CCCCEEEEECCCHHHHHHCC------ CEEEEEECCCCCCCH

lbpyA LNEVKKV============DSEYTIATVCGSFRRGAESSG======DMDVLLTHPSFTSES

++ e+t ++ At bt + e R s

1fa0B QREFVYEVSKKKNMSDGMARDAGGKIFTYGSYRL=====GVHGPGSDIDTLVVVPKHVTRE

HHHHHHHHHHHHHHHHCCCCCCCEEEEECCCCC—-———— CCCCCCCCEEEEEECCCCCCHH

HHHHHHHHHHHHHHHHCCCCEEE---—-—------— ECCCCEEEEEEEECCCCCCCCCCCCEE

lbpyA TKQPKLLHQVVEQLQKVHFITDT==========LSKGETKFMGVCQLPSKNDEKEYPHRR

FHtt R+ + 4 + o+

1fa0B ====DFFTVFDSLLRERKELDEIAPVPDAFVPII KIK FSGIS

-—---HHHHHHHHHHHHCCCCCCEEEEECCCCCEE----- EEE--—————--———- ECCEE

EEEEE-—-—-—-—--- ECCCCCCCEE----- EC-—————-—-—- CCC--CHHHHHH---———-—-—---

1bpyA IDIRL=======IPKDQYYCGV LY FTG==SDIFNKN==========
+++ 4+ ++ + ++ + + ++ 4

1fa0B IDLICARLDQPQVPLSL===TLSDKNLLRNLDEKDLRALNGTRVTDEILELVPKPNVFRI

EEEEECCCCCCCCCCCC---CCCHHHHHHHHHHCCCCCCCCHHHHHHHHHHHCCCCCHHH

----HHHHHHHCCCEECC

1bpyA ====MRAHALEKGFTINE
I

1fa0B ALRATIKLWAQRRA==VYA

HHHHHHHHHHHCC--CCC

(a) The sequence alignment of 1bpy_A and 1fa0_B generated by our method (20x20+3x3 scoring system). The
red regions are the alignment generated by COMPASS. (b) The structure diagrams of 1bpy A (DNA
polymerase beta, catalytic fragment) and 1fa0 B (poly(A) polymerase N-terminal catalytic domain). The red
regions in the diagrams (a loop followed by a beta-strand) are the correspondingly only-aligned regions by
COMPASS in the sequence alignment.
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Figure 5.6 Better Accuracy Than COMPASS when Coverage Equals 1

Accuracy

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

60x60_conf 60x60 20x20+3x3 3x3 COMPASS

We use global alignment algorithm with end gap penalty to force the coverage of alignments
to be 1. As a result, local accuracy equals global accuracy. When having the same coverage
(1.0), our method using the 20x20+3x3 scoring system gives better accuracy than that of
COMPASS, and the 60x60 scoring system gives comparable accuracy than that of
COMPASS. The “60x60 conf” and “3x3” are other scoring systems we tried.
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Figure 5.7 Evaluation Results of Homology Detection Ability
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(a) Overall ROC analysis results showing the homology detection ability of various programs. Different colors
indicate different programs. (b) ROC analysis results of false positive 200 (FP200). (c¢) Family-based t-test
results of ROC FP200. At the 5% significant level, + indicates the difference is significant, — indicates the
difference is not significant. * means self-comparison, which is meaningless.
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Figure 5.8 Example of Improved Homology Detection Ability and Alignment Quality

(a) Structure diagrams of eukaryotic
peptide chain release factor subunit 1 C-
terminal domain (1dt9:A277-A422) and
RNA ribose methyltransferase N-
terminal domain (lipa:A1-A105). (b)
Database search result using our method
with 1dt9 as query. The pink region
corresponds to the alignment generated
by database search using COMPASS and
the E-value corresponding to COMPASS
search is 0.7.

1dt9: A277-A422 lipa: A1-A105 <

b.
Evalue = 7.3e-16, database size = 3.3x10°

1dt92  KLMGRYFDEISQDT=====GKY={8FlEVEDTLKALEMGA=VEILVYENLDIMRYVLILYLTPEQEKDKSHFTES

NERRERNRERY LELEEErerererr et
lipaA  PRMKELAR=LLERKHRDSQRRFLIEEAREIERALQAGIELEQAIRVW:

Q 0 > 0 />
A a B b
1dt92  MPLLEWFANNYKKFGATHEIVTDKSQEGSQF|JKGFG======6IGGILRYR
SRORXOOXXXX e ARNREE RERREREN
lipaA EGGLNPEEQQVYAALLARLEVS======EAVISKKLSVRDNPA[ELIALARMP
CZZZ%;ZZD —> CZZ%ZZD E:f§$>
C
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Figure 5.9 Example Of New Similarity Detected Between SCOP Superfamilies

New similarities detected using our
method (20x20+3x3) between two families
belonging to different SCOP
superfamilies. (a) Structure diagrams of
the representative domains of the two
families. 1awO is the 4™ metal binding
domain of Menkes copper-transporting
ATPase, which belongs to the Pfam family
of heavy-metal-associated domain. 1dqa is
the NAD-binding domain of HMG-CoA
reductase, which belongs to the Pfam
family of hydroxymethylglutaryl-CoA
reductase. The red regions in the structure
diagrams corresponding to the aligned red
regions in the alignment (b).

law0

b. ldqa: A587-A701
Evalue = 2.44e-17

law0 QSIEGVISKKP===GVKSH{RVSLANSNG==TJEYDPLLTS========Pi3TLRGATED
FEERLEEEE NN LT NERERERNN
ldgaA  AVIJEAFDSTSRFARLQK{BHTSIAGRNLYIR[FOSRSGDAMGMNMISKGTIZIKALSKLHE
CE— —) G

A b c B
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Figure 5.10 Example Of New Similarity Detected Between SCOP Folds

(a) Structure diagrams of C-terminal
regulatory domain of phosphoglycerate
dehydrogenase (1psd:A327-A410) that
belongs to the Pfam family of ACT
domain, and an representative structure
(1ap8) of the Pfam family of eukaryotic
initiation factor 4E. (b) The sequence
alignment generated using our method
(20x20+3x3 approach). The red regions
in the structures are corresponding to the
red secondary structure highlighted in
1psd:A327-A410 lap8 the alignment.

b.
E-value = 7.38e-09

lpsdA MHIHZ==NRPGVLTALN={JIFA===EQGV===== NIAAQYIOTSAQMGYVVIDIEA===D==EVAEKALQAMKA

NN NN T 7 BENREREN | \\\\IIIIIIIIIIIII

lap8 S FQLEGKGAD -—-IDE LWLETLLAVIGET IDEDD SQINGWES IRKGGNK====FALWTKS EDKEPLLRIGGKFKQ
) ) ) ) D
a A b C B
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Figure 5.11 Comparison of BLOSUM62 and Our Amino Acid Substitution Matrix

a.

BLOSUM62 vs My_AA80

values

My AA80 substitution matrix

NCBI BLOSUMB62 substitution matrix values

BLOSUMG62 vs My_AA62

My AA62 substitution matrix values

NCBI BLOSUMB62 substitution matrix values

(a) The values in our amino acid substitution matrix clustered at 80% sequence identity level
(AA80) matches the values in BLOSUMG62 substitution matrix. (b) The values in our amino
acid substitution matrix clustered at 62% sequence identity level (AA62) are systematically
different from the values in BLOSUMG62.
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Figure 5.12 The Three Substitution Matrices We Calculated

a.
H E C
H 0.932
E -2147 1. 554
C -1.186 -0.489  0.852

b.
A R N D C Q E G H L K M F P S T W Y \
A 1.94
R -0.75 2.72
N -0.77 -0.23 2.90
D -0.90 -0.73 0.67 2.94
C 0.02 -1.44 -0.95 -1.63 4.63
Q -0.43 0.44 0.06 -0.04 -1.29 2.69
E -0.43 -0.09 -0.12 0.82 -1.72 0.78 2.47
G -0.18 -1.22 -0.29 -0.78 -1.17 -0.99 -1.14 2.76
H -0.93 -0.02 0.39 -0.27 -1.07 0.33 -0.37 -1.09 3.82
| -0.71 -1.37 -1.54 -1.98 -0.77 -1.22 -1.52 -2.04 -1.37 2.05
L -0.75 -1.18 -1.46 -1.90 -0.79 -0.94 -1.42 -1.97 -1.12 0.78 1.95
K -0.54 1.06 0.10 -0.23 -1.48 0.61 0.40 -0.96 -0.13 -1.31 -1.20 2.37
M -0.37 -0.89 -1.08 -1.63 -0.54 -0.29 -1.1 -1.50 -0.82 0.54 0.94 -0.80 3.04
F -0.99 -1.43 -1.42 -1.87 -0.76 -1.24 -1.69 -1.70 -0.43 0.03 0.38 -1.53 0.29 3.02
P -0.49 -0.84 -0.84 -0.68 -1.46 -0.60 -0.50 -1.16 -0.91 -1.40 -1.38 -0.51 -1.35 -1.47 3.56
S 0.40 -0.49 0.22 -0.20 -0.30 -0.18 -0.28 -0.27 -0.45 -1.28 -1.29 -0.25 -0.78 -1.16 -0.26 2.07
T -0.14 -0.56 -0.09 -0.61 -0.35 -0.28 -0.47 -1.06 -0.62 -0.58 -0.82 -0.30 -0.38 -0.98 -0.56 0.79 2.36
W -1.14 -0.98 -1.32 -1.61 -1.08 1.1 -1.43 -1.52 -0.31 -0.78 -0.47 -1.21 -0.43 0.92 -1.37 -1.15 -1.15 5.16
Y -1.04 -0.78 -0.80 -1.37 -0.87 -0.80 -1.16 -1.69 0.65 -0.67 -0. 46 -0.94 -0.40 1.46 -1.28 -0.97 -0.89 1.22 3.45
vV -0.14 -1.22 -1.39 -1.74 -0.25 -1.04 -1.20 -1.78 -1.26 1.21 0.32 -1.13 0.17 -0.28 -1.13 -0.90 -0.18 -0.98 -0.72 1.93

c. http://iole.swmed.edu/~yqi/sub_mtx/sub_mtx.80.AS.xls

(a) 3x3 substitution matrix of secondary structure element at 80% sequence identity level (SS80). (b) 20x20 substitution matrix of amino acid at
80% sequence identity level (AA80). The red cells are the top 4 pairs with score > 1.0. The two shaded amino acids, C and P, have all negative
substitution scores with all other amino acids. (¢) url of the 60x60 substitution matrix of combined symbols at 80% sequence identity level
(AS80), which is available for download.
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Figure 5.13 Secondary Structure Propensities Extracted from 60x60 Substitution

Matrix
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Figure 5.14 Homology Detection Ability of 60x60 Approach Fails

WO ——~—0O0OT ®C - —

160

140

120

100

@
o

2]
(=]

S
o

na
o

T

. CTTTITES
IS

e

I

I
I

= AT
T T

llllllllll

T
i i

R

AT
Prriniiy
eI

- S20x20+w*S3x3

* S20x20 (COMPASS)
HHsearch
PSI-BLAST

© S60x60
Prof_ss

i

4=60x60 approach

””ébw.

..;bm..M

60

80

100 120

False Positives

140 160 180

200

ROC curve analysis showing the homology detection abilities of various methods in the 200
false positives region. 60x60 approach performs worse than 20x20+3x3, COMPASS and

HHsearch.
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Figure 5.15 ROC Curve Analysis and Family-based Paired T-Test Result of Eight Pfam
Families
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(a) ROC curve analysis of 20x20+3x3, COMPASS and 60x60 approaches using eight Pfam
families at queries within region false positive 200. Different colors indicate different
programs. (b) Family-based paired t-test results of the three approaches. + indicates a
statistically significant difference at the 5% significant level. * indicates self-comparison,
which is meaningless.
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Figure 5.16 Distributions of Amino Acids and Predicted Secondary Structure Elements

in Blocks+ Database
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(a) Distribution of amino acids in
our dataset (Blocks+ 10.0). (b)
Distribution of predicted secondary
structure elements in our dataset.
(c) Correlation analysis between
our amino acid frequencies and
Robinson amino acid frequencies.



Figure 5.17 Comparison of the 60x60 Substitution Matrix and the Independent Matrix
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Figure 5.18 Comparison of Homology Detection Ability Effects of 60x60 Substitution
Matrix and Independent Matrix

a.
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(a) ROC curve analysis of 20x20+3x3 approach, COMPASS, 60x60 approach and
independent 60x60 substitution matrix approach. The ROC curves of 60x60 and independent
60x60 almost overlap with each other. Different colors indicate different programs. (b)
Family-based paired t-test between 60x60 and independent 60x60 shows no statistically
significant difference at 5% significant level. (¢) Hit-rank comparison between 60x60 and
20x20+3x3, COMPASS show no correlation at all, but there is an excellent correlation
(linear regression determinant R” =1.00) between the hit-ranks of the 60x60 approach and the
independent 60x60 matrix approach.
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Figure 5.19 Comparison of Homology Detection Ability Effects of 60x60 Scoring System
and 20x20+3x3 Scoring System with Equal Weights 1
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(a) ROC curve analysis. The curve of 60x60 and S20x20+S3x3 approaches overlap with each
other. Different colors indicate different programs. (b) Family-based paired t-test shows no
statistically significant difference between the 60x60 and S20x20+S3x3 approaches at 5%
significant level. (¢) The hit-rank comparison shows an excellent correlation (linear
regression determinant R* =0.996) between the ranks of 60x60 and S20x20+S3x3
approaches.

110




Figure 5.20 Comparison of Homology Detection Ability Effects of Weighted 60x60
Scoring System and the 20x20+3x3 Scoring System
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(a) ROC curve analysis. The curves of the 20x20+3x3 approach and the weighted 60x60
approach ((1-w)S60x60-(1-2w)S3x3) overlaps. Different colors indicate different programs.
(b) Family-based paired t-test shows no statistically significant difference between the
20x20+3x3 approach and the weighted 60x60 approach at 5% significant level. (c) The hit-
rank comparison shows a strong correlation (linear regression determinant R* =0.91) between
the ranks of the 20x20+3x3 approach and the weighted 60x60 approach.
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Figure 5.21 Effects of the Number of Effective Count
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(a) Distribution of number of effective count (Neff) of the Pfam families. (b) ROC curve
analysis of queries in three categories: Neff < 6, 6-14, and Neff > 14. In all three categories,
the 60x60 performs the worst and the relative performance of the three methods (20x20+3x3,
COMPASS, 60x60) does not differ.
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CHAPTER 6:
A Comprehensive System to Evaluate Structure Modeling Ability of

Sequence Similarity Search Methods

6.1 INTRODUCTION

6.1.1 Background

Proteins with known 3-dimensional structures can serve as structure templates for
homologs with unknown structures. Protein sequence similarity search and alignment
methods have been used for structure modeling purposes. New programs come into being all
the time and are still under development (Yona and Levitt 2002; Sadreyev and Grishin 2003;
Chung and Yona 2004; Ginalski, von Grotthuss et al. 2004; Soding 2005)(Chapter 5).
Therefore, it is important to have an evaluation system that provides a platform to compare
their performance in terms of structure modeling abilities. Such an evaluation system helps
us to understand the achievements and limitations of the field and helps researchers to choose
the appropriate programs to use for their purposes.

There are two community-wide assessments for protein structure predictions, CASP
(Critical Assessment of Techniques for Protein Structure Prediction) and CAFASP(Critical
Assessment of Fully Automated Structure Prediction). CASP (Moult, Fidelis et al. 2005)
aims at assessing manual/semi-automatic predictions, either all manual or program-generated
results with human intervention. The evaluation procedures and measures that are used in
CASP largely depend on the assessors and change from meeting to meeting. Many steps of
the assessment, for instance, domain definition and target classification, require expert
knowledge and visual inspections. Besides, it is limited to a small number of test proteins (63
For CASP6). CAFASP (Fischer, Rychlewski et al. 2003) aims at assessing automatic
structure prediction servers. Unlike CASP, CAFASP uses automatic evaluation programs.

However, CAFAST is also limited to a small number of testing proteins. LiveBench
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(Rychlewski and Fischer 2005) is an evaluation server that also evaluates the performance of
automatic structure prediction servers. It is an extension and complement to CAFASP by
continuously assesses a relatively large number of predictions every week. Another large-
scale evaluation project for automatic structure prediction servers is EVA (Eyrich, Marti-

Renom et al. 2001), which together with LiveBench provides complements to CAFASP.

6.1.2 Objective

Since there is no standard way to perform the evaluation, we decided to develop an
automatic large-scale evaluation system to evaluate different aspects of the structure
modeling ability of sequence similarity search programs. In order to set up a systematic and
comprehensive evaluation system, we first need to select a representative testing dataset that
is non-biased and is of certain degree of difficulties, and then need to combine different
sequence and structure similarity measures, as well as measures from CASP and LiveBench,
to assess the sensitivity and specificity of different programs. The evaluation procedure needs
to include assessment for both fold recognition abilities and alignment qualities from global
and local perspectives using both reference-dependent and reference-independent

approaches.

6.2 EVALUATION ALGORITHM DEVELOPMENT

6.2.1 Selection of Representative Dataset

Based on the criteria for the representative dataset, non-biased and of certain degree
of difficulties, we decided to select a dataset with a maximum ~20% pairwise identity, which
is within the twilight zone, from SCOP (Murzin, Brenner et al. 1995) domain sequences.
Astral (Brenner, Koehl et al. 2000; Chandonia, Hon et al. 2004) offers a SCOP domain
sequence dataset of 40% identity (SCOP40 set) that contains good quality structures. We
select our 20% dataset out of the SCOP40 set. Astral also offers SCOP domain set of
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maximum 20% identity (SCOP20). However, since the Astral SCOP20 set is derived based
on sequence alignment method (BLAST), and sequence-based alignments are not accurate at
this level of sequence similarity, we decide not to use it but to select our 20% dataset based
on alignments generated by structure-based methods. Three structure-based alignment
methods, DALI (Holm and Sander 1995), TM (Zhang and Skolnick 2004) and FAST (Zhu
and Weng 2005), were chosen because they are either known to generate good quality

alignments or are fast to run.
Methods for pairwise identity calculation

Three means for calculation of pairwise sequence identities are used: (1) percentage

N,
identity within the aligned blocks, pid(1) = L—’d , where N, is the number of aligned identical

ali

residues, L, is the length of the aligned regions; (2) percentage identity over the shorter

id

query, pid(2) = , Wwhere Lgoer 1S the length of the shorter query of the compared pair;

shorter
(3) real identity within the aligned blocks combined with a random identity within the

Nid + Lunali * pldrandom

unaligned regions, pid(3) = , where L,,4; 1s the length of the unaligned

shorter

regions of the shorter query, pid,q.40m 18 the percentage identity of random alignments.

20
Estimation of the random identity as z f?, where f; is the frequency of amino acid i in
i=1

SCOPA40 set, results in 6%. Using Dayhoff amino acid frequencies (Dayhoft 1978) also
results in 6%. From experience, the random identity is in the range of 5-8%. Screening of this
region gives similar results and thus 6% is used in the final calculation. Variations of these

three means of identity calculation (Appendix A.1) are also tried and give similar results.
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Finding the largest number of unique representatives for each superfamily

To ensure each superfamily in SCOP has at least one representative in the dataset, the
representative selection process uses each superfamily as a unit. We use a novel method to
select representatives for each SCOP superfamily. The criterion is to find the largest number
of domains in this superfamily that do not have a pairwise identity higher than the cutoff. For
one SCOP superfamily, we first calculate pairwise identities for every pair of sequences in
this superfamily in the SCOP40 set. Using a graphic representation, each domain sequence is
a vertex; if the pairwise identity between two sequences is above certain cutoff x%, an edge
is placed between them (Figure 6.1). A dynamic programming-based method is then
employed to find the largest number of domain sequences that do not have an edge between

each other.

Selection of the entire representative dataset

The entire representative set of cutoff x% is composed of these domain sequences.
This process is done for DALI-, TM- and FAST-generated structural alignments. Because
there are intrinsic differences between different structure alignment programs, we want to
utilize an identity measure that best reflects the evolutionary distance between protein pairs
in spite of different structure alignment programs. Thus the best identity measure should pick
the largest overlapping representatives between all three programs and leave the least number
of unique representatives for each program. By screening the identity cutoft x% from 15-
25%, all three means of identity calculation result in ~3500-4500 representatives. When
fixing the size of the overlapping representatives to approximate 4000, we can see from
Figure 6.2 that identity measure pid(1) is clearly the worst one, and identity measure pid(3) is
able to choose a similar number of representatives for each method and has the least average
unique representatives (2.7%). Thus, the final dataset is chosen using identity measure pid(3),

and includes the OR set of representatives from all three structure alignment methods.
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6.2.2 Reference-Dependent Evaluation Of Structure Template Quality

For reference-dependent evaluation, in order to assess whether the hit is a good global
structure template for the query, we consider the structure and sequence similarity scores of
the reference alignment (structure-based alignment) only. In this step (Step 1), the 3d-
strucures of the query and hit are optimally superimposed onto each other using least-square
minimization based on the reference alignment. All structure scores are then calculated from
this structure-based superposition of the pair.

SCOP superfamily/fold/class levels could serve as a standard for true/false to
calibrate these scores. If we are lucky, the distributions of these scores for domain pairs
within the same superfamily and between different superfamilies or different folds should
separate very well, allowing for an easy discrimination of a good structure template from a
bad one. Unfortunately, this is not the case. Each of the individual score provides a poor
separation even between the same superfamily and different classes (data not shown).
Therefore, we decide to use the Support Vector Machine (SVM) technique (Joachims 1999)

to combine all the scores in a reasonable way to distinguishing good and bad templates.

Selection of SVM features based on SCOP classification

Eight types of scores are used initially, including sequence scores such as identity,
blosum score, coverage, and structure scores such as GDT TS (Zemla 2003), match index
(Kolodny, Koehl et al. 2005), DALI Z-score (Holm and Sander 1998), TM score (Zhang and
Skolnick 2004) and FAST score (Zhu and Weng 2005). Each type of score is calculated for
all three types of reference alignments (DALI/FAST/TM) of all pair of domains in the testing
dataset. SCOP classification is used as a reference for true/false in SVM training. Because we
know that many different SCOP superfamilies are homologous to each other, and many
different SCOP folds are actually of the same structural fold (e.g. Rossmann fold domains),
to avoid ambiguity, we select two stringent classification levels (superfamily and class) as
standard. In our SVM training, domain pairs belong to the same superfamily are considered

true, different classes false. 2000 pairs of SCOP domain are randomly chosen for SVM linear
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model training and the initial resulting classification accuracy is 94.8%. In this testing, totally
30 features (combinations of scores and types of structure alignments) are used as SVM
inputs. We find out that removing some input scores would result in better classification
accuracy. In order to find out the importance of the individual features, we calculate and
compare the standardized weights of the linear model by normalizing the scores by mean and
standard deviation. Five parameters are found to dominate the classification effect and give
the best prediction accuracy (95.7%) (Figure 6.3a). According to their rank of importance,
these include DALI Z-score (native), Fast score (native), GDTTS of TM alignment, coverage
of FAST alignment, and blosum score of DALI alignment. The calculated DALI Z-score of
FAST and TM alignments also have large weights, but since they highly correlate with native
DALI Z-score (R* = 0.95), adding them in do not increase the prediction accuracy. Thus, to

avoid redundancy, we do not put them in the final parameter list.
Selection of SVM score cutoffs to allow for unknowns

Since relationships between some structural folds are unclear at present (for instance,
Rossmann fold and TIM barrel fold), it is problematic to judge if hits between these kinds of
folds are true or false. Therefore, we decide to select two SVM score cutoffs in order to allow
for unknowns besides true or false hits. In order to take into account both the expert-curated
homology/fold-similarity relationship and the well-established automatic structure similarity
estimation methods, we use both SCOP classification and SVM score cutoffs as criterion for
true/false/unknown. If a hit belongs to the same SCOP superfamily as the query, we consider
it as true. Otherwise, hits with scores higher than the high-cutoff of SVM score is considered
true, lower than the low-cutoff of SVM score false, and in between unknown.

To decide on the high-cutoff, four representative problematic fold pairs for each of
the four major structure classes are selected and their SVM score distributions are plotted
(Figure 6.3b, Table 6.1a). Since we do not want to include these problematical fold pairs as
true hits, the 95% percentile of their distributions are calculated and their average is taken as

the high-cutoff (Table 1). On the other hand, some protein domains belonging to the same
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structural folds may not have high structural scores to each other because of many insertions
and deletions (for example, Rossmann fold domains), but we do not want these domain pairs
to be judged as false hits. Therefore, four representative such structural folds are selected for
each of the major class, and the average of the 5% percentiles of their SVM score

distributions is taken as the low-cutoff (Figure 6.3c, Table 6.1b).

6.2.3 Reference-Dependent Evaluation Of Alignment Quality

For reference-dependent evaluation, in order to access the quality of a sequence-based
alignment between query and hit in terms of its usefulness for structural modeling, we
compare the sequence-based alignment to the structure-based reference alignment of the pair.
Structure alignments generated by DALI are used as reference alignments in the following
studies for DALI is known to generate good quality alignments. In this step (Step 2), the 3d-
strucures of the query and hit are optimally superimposed onto each other according to the
sequence-based alignment. All scores are calculated from this sequence-based superposition
of the pair.

Two type of structure modeling scores, GDT TS (Zemla 2003) and LiveBench
3dscore, have been used traditionally in CASP and other assessments (Ginalski, Grishin et al.
2005; Rychlewski and Fischer 2005) to evaluate the quality of a sequence alignment.
However, these scores have only been used to rank different structure models, while no
cutoff has ever been given for a decent alignment. Another type of score, number of correct
matches, has also been use to access alignment quality (Sadreyev and Grishin 2003). Number
of correct matches is the number of residue pairs that are aligned the same way in sequence
alignment as in the structure alignment. In order to find a reasonable cutoff for alignment
quality, we decide to use all three types of scores. However, during our tests, GDT TS and
LiveBench 3dscore give very similar results and conclusions (Figure 6.4 a & c¢). As GDT_TS
is a more popular measure, we use GDT_TS and number of correct matches, not LiveBench

3dscore, in our criteria for alignment quality.
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To calibrate GDT TS for a decent alignment, we randomly chose 500 domains and
generate pairwise sequence alignments in an all-against-all fashion. We then apply test stepl
to these alignments and use alignments of the false hits from step 1 as negative controls and
PSI-BLAST alignments with significant E-values (less than default E-value cutoff: 0.005) as
positive controls, and mark them on the 2D plot of GDT TS of structure alignment vs.
sequence alignment (Figure 6.4a). These significant PSI-BLAST alignments are all true hits
from step 1. From the distribution of GDT_TS of the false hit alignments, the 95™ and 99"
percentiles are taken as the potential cutoffs. However, since there is no clear separation
between the positive controls and negative controls, there are alignments with significant E-
values have GDT TS less than the potential cutoffs. In order to include these hits as good
ones, we use number of correct matches to calibrate. Alignments of the true hits from step 1
are compared with structure alignments (DALI) and the number of correct matches is
calculated for each alignment. These alignments are then mapped to the PSI-BLAST
alignments with significant E-values on the 2D plot (Figure 6.4b). Previous studies (Sadreyev
and Grishin 2003) show that number of correct matches 5 is a reasonable cutoff for
alignment comparisons. From the mapping in Figure 6.4b we know that alignments with
number of correct matches more than 5 covers about 97% of all PSI-BLAST alignments with

significant E-values. Thus 5 is chosen to the cutoff for number of correct matches.
6.2.4 Summary Of Reference-Dependent Evaluation Criteria

For reference-dependent evaluation, our criteria for global structural template quality
are shown in Figure 6.5a. If the hit and query belong to the same SCOP superfamily or their
SVM score is higher than the 0.6, the hit is considered true; if the hit and query do not belong
to the same SCOP superfamily and the SVM score is lower than the —0.6, it is considered
false; if the hit and query do not belong to the same SCOP superfamily and their SVM score
is between —0.6 and 0.6, it is considered unknown. This way, we take into account both the
expert-curated homology/fold-similarity relationships (SCOP superfamily) and the

combinations of well-established automatic methods to estimate the structure similarities.
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Our criteria for sequence alignment quality are shown in Figure 6.5b. If the sequence
alignment has a GDT TS higher than 0.15 or has a number of correct matches more than 5, it

1s considered true.

6.2.5 Reference-Independent Global Mode Evaluation

Since the reference-independent evaluation is based on sequence alignment only, we
can just use GDT TS of the sequence alignment to evaluate fold similarity and alignment
quality over the entire length of the query domains. The reference-dependent evaluation
studied above is a global mode evaluation and is done in two steps, where GDT TS is used
in the second step. When figuring out the cutoff for GDT TS, we already take into
consideration the true and false hits from step 1. And thus 99% of the hits that do not share
fold similarity with the query are excluded by the GDT TS cutoff. Therefore, we can simply
take the GDT TS cutoff (>= 0.15) figured out in the reference-dependent evaluation and

apply it to the global mode of reference-independent evaluation.

6.2.6 Reference-Independent Local Mode Evaluation

For reference-independent local mode evaluation, we cannot use local GDT TS
(IGDT _TYS) directly because it has a significant dependency on aligned domain length. The
formula of local GDT TS is as follows,

Equation 6.1 IGDT TS = ! Z(”l T 2”4 +ngj

ali Lah‘

where nl, n2, n4, n8 are the numbers of aligned C-Alpha atoms that are within the distance
of 1,2, 4, 8 A from each other, and L, is the length (number of residues) of the aligned
region. From Equation 6.1 we can see that if the aligned region is very short, essentially all
residues in the aligned region will be very close to each other and the resulting IGDT TS will
be artificially large. In the extreme case, if there is only one residue aligned, the IGDT TS
will be a perfect score of 1.0. The length dependency effect also exists in the global
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GDT _TS, but it does not affect the global mode evaluation. When the aligned region is very
short compared to the length of the query, the resulting global GDT TS is small, too (refer to
Equation 6.3). Thus we can see that the global GDT TS favors long alignments while the
local GDT TS favors short alignments.

In order to eliminate this length effect for local GDT TS, we first model the length-
dependency of IGDT TS, and then normalize the local GDT TS scores by the model.

Modeling of the length-dependency of local GDT TS

For a particular length L, we randomly select 1000 pairs of domain fragments of
length L from our testing dataset. Each pair of fragments are forced to align with each other
from end to end and optimally superimposed to each other according to this alignment.

IGDT TS score is calculated based on this superposition. Thus, for length L we have 1000
values of random IGDT TS scores and their mean and standard deviation (sd) are calculated.
By repeating this process for lengths 3 to 500, we are able to plot the length-dependency of
IGDT TS (Figure 6.6a). When transforming both x- and y-axes to log-scale, the scatter plots
of the mean and sd of IGDT TS show a linear trend with respect to length (Figure 6.6b),
which indicates a power law relationship between the values and length. Using power law
function f(L)=cL” to fit the IGDT TS mean and sd (Figure 6.6b), we get the length-
dependency models of IGDT TS mean and sd:

Equation 6.2 mean(L) =3.807L°%°, sd(L)=0.617L""".

(The linear model parameters are fitted using SAS STAT package.)
Normalization of local GDT TS scores
The raw IGDT TS score of the sequence alignment is normalized to a Z-score by the

raw IGDT TS —mean(L)
sd(L)

transformation Zscore = , where L is the length of the aligned

region in the sequence alignment. By using the Z-score of IGDT TS, we are able to screen
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for alignments with IGDT_TS scores significantly higher than random scores and thus are
true ones (i.e. local alignments of good quality). In order to obtain a reasonable Z-score
cutoff for true alignment, we initially choose Z-scores 3 and 5 as cutoff candidates and
compare their corresponding local GDT TS values to those of the 95 percentile of local

GDT _TS distribution (Figure 6.7a). The comparisons are made for IGDT_TS distributions of
alignment lengths 5, 20, 50, 100, 200 and 500. From Figure 6.7a we can see that both Z-
scores 3 and 5 cutoff values are more stringent than the values of 95 percentile, but Z-score 3
values are more similar to those of 95 percentiles. In an example distribution of IGDT TS of
alignment length 50 (Figure 6.7b), the value of Z-score 3 cutoff is more extreme to that of the

95 percentile. Thus Z-score 3 is decided to be the cutoff for true good alignments.

6.2.7 Summary Of Reference-Independent Evaluation Criteria

For reference-independent evaluation, we use GDT TS score derived from sequence-
based alignment as criteria for overall fold similarity and alignment quality evaluation, but
there are differences between global and local modes evaluations. To evaluate global mode,
we use GDT TS directly (Figure 6.8a). If the GDT TS is higher than 0.15, the hit is
considered true. To evaluation local mode, we first transform the local GDT_TS score of an
alignment into Z-score, and then judge true or false according to the Z-score (Figure 6.8b). If

Z-score is higher than 3, this alignment is considered true.

6.3 RESULTS AND DISCUSSIONS OF EVALUATIONS OF SEQUENCE
SIMILARITY SEARCH PROGRAMS

This comprehensive evaluation system enables us to compare the performances of
different sequence alignment methods. By setting up the cutoffs for different steps and modes
of structure modeling efficiency (Figure 6.5, Figure 6.8), we are able to judge if a hit
generated by a sequence alignment method is true positive (TP) or false positive (FP)

according to different modeling purposes, which in turn enables us to use ROC curve, a
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sensitivity and specificity evaluation technique, to compare the performances of different
programs.

For each method to be evaluated, the hits need to be sorted by their E-values in an
ascending order. A ROC curve is then generated by plotting the numbers of true positives
corresponding to each increment in the number of false positives. In the ideal case, a method
should find all the true positives before finding any false positives, and the curve should go
vertically up from zero and then horizontally right. Thus, the further top-left the curve goes,
the better the method is.

We use our evaluation system to compare the performances of six selected sequence
similarity search programs, including the popular method PSI-BLAST (Altschul, Madden et
al. 1997), profile based methods COMPASS (Sadreyev and Grishin 2003) and HHsearch
(Soding 2005), combined profile and secondary structure methods PROF_SS (Chung and
Yona 2004), COMPRASS (Chapter 5) and HHsearch_ss (Soding 2005). These programs are
run on the entire representative dataset in an all-against-all fashion and generate six sets of
sequence-based alignments. The evaluation methods are applied to these sequence
alignments and the required scores are calculated. ROC curves are then plotted to compare

the programs.

6.3.1 Evaluations On A Small Testing Set

For the purpose of getting a testing result quickly, a small testing set with 500 domain
sequences is chosen to perform the evaluation upon. The testing set domains are selected
from the 4147 representative dataset. To ensure there is enough number of homologs (true
positives) in the testing set, these domains are chosen in a special way. One domain (head
domain) is chosen randomly from the entire dataset first, we then find all other domains in
the dataset that belongs to the same SCOP superfamily as the head domain and add them in
the testing set. This process is repeated until the number of domains in the testing set reaches

500. The performance comparison results shown in this section are based on this testing set.
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Reference-dependent structure template quality evaluation is carried out first. For
alignments generated by each program, the hits are sorted by their E-values (PSI-BLAST,
COMPASS, COMPRASS) or p-values (Prof ss, HHsearch, HHsearch ss). The TP and FP
are decided according to our criteria shown in Figure 6.5a and a ROC curve is generated for
each method. Figure 6.10 shows the resulting ROC curves. From bottom-up, we can see that
PSI-BLAST performs worst. The performances of COMPRASS and COMPASS are
comparable but COMPRASS is slightly worse than COMPASS. HHsearch and Prof ss are
comparable and HHsearch_ss performs the best.

For reference-dependent alignment quality evaluation, the TP and FP for each method
are decided according to the criteria shown in Figure 6.5b. Figure 6.11 shows the resulting
ROC curves. From bottom-up, the performance increases with programs PSI-BLAST,

Prof ss, COMPASS, HHsearch, COMPRASS and HHsearch_ss. This ranking of program
performances is consistent with the results obtained by the HHsearch author (except
COMPRASS, which was not available to the HHsearch author). The increase in performance
for COMPRASS compared to COMPASS is similar to that of HHsearch_ss compared to
HHsearch.

For reference-independent global mode evaluations, the TP and FP for each method
are decided according to the criteria shown in Figure 6.8a. Figure 6.12 shows the testing
result. From bottom-up, the performance increases with programs PSI-BLAST, COMASS,
COMPRASS and HHsearch (the two are comparable to each other), Prof ss, HHsearch_ss.
The degree of improvement of COMPRASS over COMPASS is very similar to that of
HHsearch_ss over HHsearch.

For reference-independent local mode quality evaluation, the test is done according to
the TP/FP criteria in Figure 6.8b. The resulting ROC curves are shown in Figure 6.13.
According to this figure, the ability of detecting local structure similarities increases with
programs PSI-BLAST, COMPASS, COMPRASS and HHsearch (comparable),

HHsearch_ss, Prof ss.
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HHsearch_ss program performs the best in all categories except for local mode of
reference-independent evaluation. PROF_SS performs best in the local mode evaluation but
not in the global mode evaluations, which indicates that it generates mostly locally optimal
sequence alignment. The fact that PSI-BLAST performs the worst in every categories
indicates that it do not perform well on dataset of this degrees of difficulties.

Except for the overall template detection, COMPRASS performs better than
COMPASS, and the increase in performance is comparable to the increase of HHsearch_ss
over HHsearch, which indicate that adding predicted secondary structure information to
profile information indeed helps to increase the sequence alignment quality. And although
the secondary structure information is incorporated in different ways, the amounts of

information added in are the same, and thus resulting in the same amount of effects.

6.3.2 Evaluations On The Entire Representative Set

The same evaluation procedure is done on the entire 4147 representative dataset.
Testing results are shown in Figure 6.14. For reference-dependent structure template quality
evaluation, the resulting ROC curves are shown in Figure 6.14a. From bottom-up, the
programs with performances ranking from worst to best are PSI-BLAST, HHsearch, Prof ss,
COMPASS, COMPRASS, HHsearch_ss. The performance increase of COMPRASS over
COMPASS is smaller than that of HHsearch ss over HHsearch. For reference-dependent
alignment quality evaluation, the resulting ROC curves are shown in Figure 6.14b. The
programs with performances ranking from worst to best are PSI-BLAST, Prof ss and
COMPASS and HHsearch (the performances of the three programs are comparable),
HHsearch_ss, COMPRASS. The performance increase of COMPRASS over COMPASS is
larger than that of HHsearch ss over HHsearch. For reference-independent global mode
evaluation, the resulting ROC curves are shown in Figure 6.14c. The programs with
performances ranking from worst to best are PSI-BLAST, COMPASS, COMPRASS,

Prof ss, HHsearch, HHsearch_ss. The degree of performance increase of COMPRASS over
COMPASS is very similar to that of HHsearch ss over HHsearch. For reference-independent
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local mode quality evaluation, the resulting curves are shown in Figure 6.14d. The programs
with performances ranking from worst to best are PSI-BLAST, COMPRASS and HHsearch
(the performances of the two are comparable), HHsearch_ss, COMPASS, Prof ss.

Overall, the performance ranks of programs on the entire dataset are similar to those
on the small testing set shown in the above section, which indicates that our evaluation
system is robust. However, there are two major differences comparing the results on the two
datasets. One difference occurs for reference-dependent structure template evaluation (Figure
6.14a). On the small testing set, COMPRASS performs slightly worse than COMPASS,
while on the entire set, COMPRASS performs much better than COMPASS. The other
difference occurs for reference-independent local mode evaluation (Figure 6.14d).
COMPRASS performs better than COMPASS on the small set, but worse on the entire set.
The performance comparison between COMPRASS and COMPASS on the entire
representative dataset makes more sense. Since COMPRASS tends to generate more global
alignments (i.e. long alignments with large coverage), while COMPASS alignments tend to
be more local (i.e. short alignments), it is reasonable for COMPASS to perform better on the
local mode but worse on the global mode. As to the reason why COMPASS performs better
than COMPRASS for reference-dependent structure template evaluation (global mode) on
the small set, it is probably because the small set is more compact with close homologs that
are more easily detected by COMPASS, while COMPRASS tends to detect more remote
homologs.

Looking at all four evaluation results on the entire dataset, PSI-BLAST performs
worst in every category, which indicates that PSI-BLAST does not perform well on dataset
of this degrees of difficulties (within and below the twilight zone). Except for the reference-
independent local mode evaluation, COMPRASS performs better than COMPASS, and the
degree in performance increase is comparable to that of HHsearch_ss over HHsearch. This
observation indicates that adding predicted secondary structure information to profile
information indeed helps to increase the sequence alignment quality.

Comparing the global performance of HHsearch ss and COMPRASS clearly shows

that HHsearch_ss is better at detecting overall structure template (Figure 6.14a) while
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COMPRASS is better at generate correct alignement (Figure 6.14b). And when testing for
combined global structure template detection ability and alignment quality (i.e. the reference-
independent global mode, Figure 6.14c), COMPRASS performances worse than
HHsearch_ss. These results give comprehensible indications of the advantage and limitations
of the programs. If parts of the query and template structures that are aligned are dissimilar to
each other, the overall superposition of the two domains could be skewed so that the
correctly aligned equivalent residue pairs are distant from each other. Since GDT TS
measure the distance between equivalent residue pairs, when parts of the aligned structures
have low structural similarity, even if the alignment between them is correct, the overall

GDT TS score could still be low. Since the combined global structure similarity and
alignment quality (i.e. the reference-independent global mode) is measured by GDT TS, the
method that has poorer structure template detection ability (COMPRASS) would have a
lower score than the method that has better structure template detection ability but poorer
alignment quality (HHsearch_ss). Thus, comparisons between the evaluation results of
different criteria inform us that the method COMPRASS generates better sequence alignment
but detects poorer structure template than HHsearch_ss. Another study (Pei and Grishin
submitted) using similar scoring function as COMPRASS also shows that the scoring
function used in COMPRASS helps increase sequence alignment quality. The reason why
COMPRASS detects poorer structure template than HHsearch ss might be that the statistics
(E-value calculation method) used by COMPRASS are worse, for COMPRASS statistics are
fitted for mixtures of different protein families, while HHsearch_ss statistics are calculated
specifically for each individual families. Therefore, the ranking of hits generated by
COMPRASS does not reflect the structure similarity as well as that generated by
HHsearch_ss.

6.4 RESULTS AND DISCUSSIONS OF THE EVALUATION SYSTEM

SCOP is a popular protein structure classification database constructed with both

structural and evolutionary considerations (section 1.1.4). Because it is mainly expert
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manually curated, SCOP classification is often used as a gold standard for homology
relationship and structure fold similarity (Chung and Yona 2004; Zhu and Weng 2005;
Paccanaro, Casbon et al. 2006). However, there are known problems with SCOP. One
problem is that proteins belonging to different SCOP superfamilies could be homologous to
each other. For example, thiamin phosphate synthase and Indole-3-glycerophosphate
synthase (IPGS) are homologous to each other (Nagano, Orengo et al. 2002; Cheek, Qi et al.
2004), but they are assigned to two different superfamilies in SCOP (thiamin phosphate
synthase and ribulose-phosphate binding barrel). Another problem with SCOP is that proteins
belonging to different SCOP folds could have the same structure fold. The most obvious
example is Rossmann-like fold proteins (Anantharaman and Aravind 2006). In the current
version (version 1.69) of SCOP, there are 136 SCOP folds in the a/p class, while at least 77
of them are of Rossmann-like structural fold. For example, proteins in SCOP fold nucleotide-
binding domain and SCOP fold FAD/NAD(P)-binding domain are all of Rossmann-like fold.
Because SCOP has these problems, it is not a good approach to use SCOP
classification as gold standard blindly. Researchers have realized this problem and uses
supplemental methods in addition to SCOP classification. For instance, Soding in his
HHsearch paper (Soding 2005) uses two sets of criteria for true or false positives when
evaluating homology detection abilities. In the first set, he defines true positives as pairs from
the same SCOP superfamily, false positives as pairs from different SCOP classes. All the
other pairs are considered to be unknown and are ignored. This leaves a large portion of
domain pairs in a gray area (~40% unknowns according to personal communications between
Drs. Soding and Grishin). Because he thinks using SCOP only and ignoring the pairs in the
gray area is unfair, Soeding uses MaxSub score (Siew, Elofsson et al. 2000) in addition to
SCOP superfamilies as criteria for true positives in the second set (Soding 2005). Therefore,
to develop a comprehensive evaluation system based on SCOP and structural and sequence

similarity is highly necessary.
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6.4.1 Representative Dataset

The final representative dataset contains 4147 SCOP domain sequences. Figure 6.9a
shows the distribution of domain lengths. The domain lengths range from 31 to 1256 amino
acid long with a median of 151 amino acids. These representative domains belong to 1516
SCOP superfamilies. Figure 6.9b shows the distribution of number of representatives per
SCOP superfamily. The 4147 representatives belong to seven SCOP classes. Figure 6.9¢
shows the distribution of percentage of representatives per SCOP class of this dataset, which
has a similar distribution as the representatives in the Astral SCOP20 set.

Multiple sequence alignments for each sequence in the representative dataset are
generated using PSI-BLAST with an inclusion E-value cutoff of 10-4 for up to 2 iterations.
Secondary structures for each of the representative sequence are predicted using PSIPRED
(Jones 1999). Compared to real secondary structures generated by DSSP (Kabsch and Sander
1983) based on the 3-dimensional structures of the domains, the average accuracy of the
predicted secondary structure is 80% for Q3 (Chandonia and Karplus 1999) and 78% for
SOV (Zemla, Venclovas et al. 1999), which are of the same prediction accuracy level as
reported (Bryson, McGuffin et al. 2005).

For our purposes, it is important to have a large-scale, non-biased representative
testing dataset. In addition, this dataset needs to be of certain degree of difficulty for correct
homology-identification and alignment. Otherwise, all programs could perform well and thus

the system loses the distinguishing power.

6.4.2 Global/local mode

The global and local modes of evaluations address different goals of structure
modeling and should both be considered. Global mode has a goal of getting a good overall
structural template for a query, i.e. finding a hit that share structural fold similarity to the
query over the entire length. Local mode has a goal of finding local, maybe short, but precise
alignments to segments of a query (i.e. fragment similarity). In this respect, fold similarity is

not needed; just the structural accuracy of a local alignment is evaluated. Apparently, both
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modes are useful for structure modeling. It is possible that different sequence alignment
programs or different versions of a program will be optimal for different modes, and thus

both modes should be evaluated.

6.4.3 Reference-dependent evaluation

We need to have reference-dependent and reference-independent evaluations with
structure-based alignment as the reference. Reference-dependent evaluation should be done
by comparing sequence-based alignment to the reference alignment (i.e. structure-based
alignment). At low sequence identity level (<20%), a structure-based alignment is more
reliable than a sequence-based alignment, and can be considered as the best possible
alignment for a particular pair of domains. Since for one pair of domains we have only a
single reference alignment, many short but structurally equally good alignments (for
example, helix aligned to helix) are not considered. Thus the reference-dependent method is
a good way to evaluation global mode alignments but not local mode.

The reference-dependent global mode of evaluation should consist of two steps. Stepl
is to decide whether the hit can be true in principle based on a reference, namely, to judge if
the hit is overall a good structure template in the case of best alignment. Step 2 is to decide
whether the hit can be true in terms of usefulness for structure modeling, namely, to judge the
quality of the sequence alignment. Traditionally, SCOP superfamily/fold classification was

used at step1; and step 2 has been ignored. We should make them both work.

6.4.4 Reference-independent evaluation

Reference-independent evaluation should be based just on the sequence alignment
itself. It does not need reference structure alignments or reference classifications. Thus it is
more flexible and is suitable for both global and local modes of evaluations. Reference-
independent evaluation is every well suited for local mode, but may work well for global as
well, making reference alignments obsolete. This could be a very good thing provided

difficulties to obtain correct structure alignments.
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6.4.5 Why GDT_TS and LiveBench 3dscore Give Similar Results

During the experiments with GDT TS and LiveBench 3dscore, we find out that the
two scores give very similar results and conclusions (Figure 6.4 a & c). A further look at the
GDT _TS and LiveBench 3dscore shows that the two scores actually give very similar values
for the same pair of sequence alignment (Figure 6.15a) with a coefficient of determination
(R?) of 0.984. In order to understand this phenomenon, I take a closer look at their formulae.

The formula of GDT TS is

Ly,

Ly
Equation 6.3 GDT TS = LZGDT. _ ! Z(
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which is a sum of a step function GDT; (Figure 6.15b).

The formula of LiveBench 3dscore is

Lali Lali r 2
Equation 6.4 LiveBench 3dscore = . ZLB3d ;= . z exp| —In2 = (ﬁj
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which is a sum of a continuous function LB3d; (Figure 6.15b). The formula of function LB3d;
d 2
)

see that LB3d; is a continuous simulation of the step function GDT;. Therefore, there is no

is equivalent to formula 2 , which is a continuous function. From Figure 6.15b we can

surprise that the two scores give very similar values.
6.4.6 The Model Of Length Dependency Of Local GDT_TS Scores

The form of the model (power law) and the signs of the parameters for GDT TS
mean are consistent with the findings in the TMalign study (Zhang and Skolnick 2004), but

our value of the parameters (Equation 6.2) are different from theirs (mean(L) = 5.1L""™).
This difference could be caused by different identity range of domain selections (ours: <
20%, theirs: < 30%), different superposition methods (ours: RMSD-optimal, theirs:
TMalign), or different GDT TS calculation modes (ours: local, theirs: global).
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6.5 CONCLUSIONS

We have developed an automatic large-scale evaluation system aiming at
systematically and comprehensively evaluating the structure modeling ability of sequence
similarity search methods. We have first identified the pairwise identity calculation method
that best reflects the evolutionary distance between protein domains and utilized this method
to select 4147 representative SCOP protein domains as our testing set that have maximum
20% pairwise identities based on three types of structural alignments (DALI, TM, FAST).
Both reference-dependent and reference-independent approaches are used to evaluate the fold
recognition ability and alignment quality of different programs from global and local
perspectives. For fold recognition ability (i.e. structure template quality) assessment, five
structural and sequence similarity measures are found to be most effective and SVM
technique is used to combine these measures. For alignment quality assessment, GDT TS
measure and the number of correct matches are utilized. Applying our evaluation system to
six sequence similarity search programs show that our evaluation system is robust and

helpful to shed light on the intrinsic properties of sequence similarity search programs.
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Figure 6.1 Graphical Representation of Domain Relationship within A Superfamily

A graphical representation of relationships
between domain sequences within a SCOP
superfamily. Vertices 1-5 represent 5 domain
sequences in this superfamily. An edge linking two
vertices indicates the pairwise identity between
these two domains is higher than cutoff. No edge
between two vertices indicate the pairwise identity
between the two is lower than cutoff.
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Figure 6.2 Representatives Selected Using Different Structure Alignment Programs and
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Red circle: TM alignment-based representatives
Blue circle: DALI alignment-based representatives
Black circle: FAST alignment-based representatives
(1): Representatives selected using pid(1)

(2): Representatives selected using pid(2)

(3): Representatives selected using pid(3)
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Figure 6.3 SVM Score Cutoff Selections for Overall Structure Template Quality
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(a) SVM score distributions of the
true (same superfamily) and false
(different classes) hits based on
SCOP classification. Best separation
of the true and false is obtained by
selected five features. (b) SVM
score distributions of four inter-fold
structure groups. The average (0.6)
of the 95% percentiles of the four
groups is taken as the high-cutoff.
(c) SVM score distributions of four
intra-fold structure groups. The
average (-0.6) of the 5% percentiles
of the four groups is taken as the
low-cutoff.



Figure 6.4 Cutoff Selections for Alignment Quality
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(a) GDT _TS scores of PSI-
BLAST alignment vs. GDT TS
scores of structure-based DALI
alignment of the step1 false
domain pairs (red), stepl true
domain pairs (green) and PSI-
BLAST E-value less than 0.005
domain pairs (blue). (b) Coverage
of the PSI-BLAST E-value less
than 0.005 domain pairs by
different ranges of number of
correct matches. (¢) LB 3dscores
of PSI-BLAST alignments vs. LB
3dscors of DALI alignment. The
same distributions as using

GDT _TS scores as in (a).



Figure 6.5 Flowchart of Reference-dependent Evaluation System
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Figure 6.6 Length-dependency of GDT_TS

Length dependency of GDT_TS scores
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Figure 6.7 Local GDT_TS Cutoff Method Selection
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(a) Comparison of the local GDT TS
values of Z-scores 3 (green) and 5 (blue)
with that of 95 percentile of the local
GDT TS distribution for different local
alignment lengths (5, 20, 50, 100, 200,
500 residues long). Both Z-score 3 and
Z-score 5 cutoffs are more stringent
than that of the 95 percentile of the
distribution of local GDT TS at a given
length with Z-score 3 closer to the 95
percentiles. (b) Local GDT TS
distribution of length 50 (1000
samples). Z-score 3 cutoff value is more
extreme than the 95 percentile value.



Figure 6.8 Flowchart of Reference-independent Evaluation System
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Figure 6.9 Distributions of Representative Domains
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(a) Distribution of domain lengths of the
representative dataset. (b) Distribution of
number of representatives per SCOP
superfamily of the representative dataset.
(c) Distribution of number of
representatives per SCOP Class. The
black bar shows the distribution of our
representative dataset that contains 4147
domain sequences. The grey bar shows
the distribution of Astral SCOP20 set
which contains 4960 domain sequences.
The x-axis shows the abbreviate names of
the SCOP Classes. a: all alpha proteins;
b: all beta proteins; c: alpha/beta proteins;
d: alphatbeta proteins; e: multi-domain
proteins; f: membrane and cell surface

proteins and peptides; g: small proteins.



Figure 6.10 Reference-dependent Structure Template Quality Evaluation of Various

Sequence Alignment Programs on the Testing Set
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Figure 6.11 Reference-dependent Alignment Quality Evaluation of Various Sequence

Alignment Programs on the Testing Set
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Figure 6.12 Reference-independent Global Mode Evaluation of Various Sequence

Alignment Programs on the Testing Set
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Figure 6.13 Reference-independent Local Mode Evaluation of Various Sequence

Alignment Programs on the Testing Set
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Figure 6.14 Evaluation Results of Various Sequence Alignment Programs on the Entire

Representative Dataset
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(a) Reference-dependent structure template evaluation results. (b) Reference-dependent
alignment quality evaluation results. (¢) Reference-independent global mode evaluation
results. (d) Reference-independent local mode evaluation results. Different colors of the ROC
curves indicate different programs.
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Figure 6.15 Comparison of GDT_TS and LiveBench 3dscore Functions
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(a): GDT_TS and LiveBench 3d score
give similar score values. (b). Function
of GDT; (red) and LB3d; (green). The
lines indicate the changes of function
values with the change of distances
between two aligned residues.
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Table 6.1 SVM Score Cutoffs

a. High-cutoff

Structural class | Representative problematic fold pair SVM score at
95% percentile
o/ Rossmann-fold vs. TIM barrel 0.7
ot Ferredoxin-like vs. IF3-like 0.6
All o Four-helical up-and-down bundle vs. 0.8
globin-like
AllB OB-fold vs. SH3-like barrel 0.3
Avg 0.6
b. Low-cutoff
Structural class Representative fold SVM score at 5%
percentile
o/B Rossmann-fold -0.8
otpB Ferredoxin-like -1.0
All a Four-helical up-and-down 0.4
bundle
All B OB-fold -1.1
Avg -0.6
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CHAPTER 7:
Summary and Future Directions

In an attempt to explore and utilize the sequence-structure-function relationships of
proteins, this dissertation work mainly focused on algorithmic development to address
homology detection and utilization related issues, including more powerful homology
detection methods, structure modeling ability evaluations, and positional correlation based
functional predictions. The developed algorithms and methods are generally applicable to all
protein families. Case studies of structure prediction and structure classification are also

carried out to address problems in specific protein family or groups of families.

7.1 CONCLUDING REMARKS: STRUCTURE PREDICTION OF GYRASE A C-
TERMINAL DOMAIN

7.1.1 Project Summary

A structure prediction of the C-terminal domain of Gyrase A (GyrA) and
topoisomerase [V (ParC) is presented in Chapter 2. The C-terminal domain of GyrA/ParC
was the largest piece of topoisomerase sequence without available structural information at
the time the prediction was made. Using extensive sequence and structure analysis of the
GyrA/ParC C-terminal domain and regulator of chromosome condensation (RCC1),
including sequence similarity search, multiple sequence alignment, hydrophobicity analysis,
secondary structure prediction, and fold recognition, we infer homology between these
proteins and therefore predict the structural fold and functional implications of the

GyrA/ParC C-terminal domain. The fold prediction is later verified by experimental data.
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7.1.2 Applications and Utility

This chapter illustrates a case study of homology-based structure prediction. The
results of the structure prediction and functional implications are directly beneficial to
researchers working with DNA topoisomerases. Since most of the current methods and
techniques for protein structure prediction are used in this project, the process of this project
could serve as a template for researchers who wants to perform structure prediction/modeling

for their own proteins.

7.2 CONCLUDING REMARKS: STRUCTURE CLASSIFICATION OF
THIOREDOXIN-LIKE FOLD PROTEINS

7.2.1 Project Summary

A hierarchical structure classification of thioredoxin-like fold proteins is presented in
Chapter 3. The thioredoxin-like fold is defined and protein domains containing the
thioredoxin-like fold are identified through extensive structural search and are classified into
fold groups and evolutionary families through sequence, structure and functional analysis.
The characteristic structural or functional features of each evolutionary family are described
in detail. A multiple structural alignment on ninety representatives is performed. Analysis of

active site locations is carried out.

7.2.2 Applications and Utility

This structure classification has multiple benefits. The thioredoxin-like fold is defined
firstly based on structural consensus of thioredoxin homologs and explicit usage of circular
permutations, and therefore is useful to clarify fold definitions. The resulting definition is
more inclusive compared to exiting classifications, which helps identify previously

unrecognized similarities between proteins that are newly brought together. Circular
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permutation analysis also helps reveal potential functional/packing unit. Furthermore,
because the nature of this structure classification emphasizes on convergent evolution of
structural folds, a thorough study of these protein domains may aid in understanding of the
physico-chemical principles behind protein structures, which in turn could help to address
problems such as protein folding and structure-functional predictions. The structure-based
multiple sequence alignment of the thioredoxin-like fold proteins offers information on
protein sequence-structure relationships and can be employed in protein structure predictions.
Analysis of active site locations offers useful information on protein structure-function

relationships and can be employed in protein functional predictions.

7.3 CONCLUDING REMARKS: POSITIONAL CORRELATION ANALYSIS
ALGORITHM

7.3.1 Project Summary

The development of a software package, PCOAT (Positional Correlation Analysis
Tool), is presented in Chapter 4. PCOAT has been developed to perform positional
correlation analysis for protein multiple sequence alignments. Different statistical methods
have been implemented to detect highly correlated position pairs, amino acid pairs,
individual positions, and networks of correlated positions. Multiple sequence weighting and
sampling methods have been developed to eliminate background correlations caused by

phylogeny and stochastic events.

7.3.2 Applications and Utility

Because correlations between protein positions often arise for structural or functional
reasons, such as stabilizing local contact or affecting protein functions through networks of
interactions, PCOAT should be useful and convenient for researchers to predict positions or

residues of structurally or functionally important interactions in their protein families.
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PCOAT runs relatively fast and is suitable for analyzing alignments containing large number

of sequences.

7.4 CONCLUDING REMARKS: SEQUENCE SIMILARITY SEARCH METHOD

7.4.1 Project Summary

The development of a more sensitive sequence similarity search method is presented
in Chapter 5. With increased structure modeling and homology detection abilities as the
goals, this method makes use of the predicted secondary structure information and combines
it with sequence profiles. Substitution matrices of predicted secondary structure elements and
amino acids are calculated and used in the scoring system developed for measuring
sequence-secondary structure similarities. The parameters of a statistical model are fitted in

order to estimate the statistical significance of resulting scores.

7.4.2 Applications and Utility

This method can be of use to both computational biologist and experimental
researchers. With increased sensitivity for homology detection ability, this method can find
more remotely similar homologs that can serve as structure template for newly discovered or
poorly studies proteins that are distant from other proteins in structural space. In addition,
because homologous proteins usually preserve the same general biochemical function,
making a rough functional prediction is possible using this method for newly discovered
proteins. Further more, with increased alignment quality, this method provides longer and
better alignments that are suitable for structure modeling purposes. Applying to the PFAM
families shows that this method can be used to identify previous unrecognized similarities
between protein families, as well as to directly identify homologs that were previously

identified only through transitive method.
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7.5 CONCLUDING REMARKS: EVALUATION SYSTEM FOR SEQUENCE
SIMILARITY SEARCH METHODS

7.5.1 Project Summary

A comprehensive evaluation system for the structure modeling abilities of sequence
similarity search methods is presented in Chapter 6. A large, non-biased representative
protein domain set is first selected to serve as the testing set. Different sequence and structure
similarity measures are then combined to assess the sensitivity and specificity of different
programs. The evaluation procedure makes automatic assessments for both fold recognition
abilities and alignment qualities from global and local perspectives using both reference-

dependent and reference-independent approaches.

7.5.2 Applications and Utility

This evaluation system is of particular interest to the protein structure modeling
community, both to the method developers and the users. It serves as an instrument to
benchmark the structure modeling abilities of different sequence similarity search and
alignment methods. Researchers developing sequence similarity search methods need to test
and compare their performances all the time. Such an evaluation system helps the developers
to understand the achievements and limitations of their programs and of the field, as well as

helps the users to choose the appropriate programs to use for their purposes.
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APPENDIX A
FORMULAE

A.1 Other variations of pairwise percentage identity calculation:

i 1 / Nid + Nid unali
1) Combined id2: pid(4) = _
L +L

ali sum _shoter _unali

N,+L * pid

2) Variation of pid(3) and pid(4): pid(5) = o oner el —_randon
Lali + Lsur717sh0rter7unali
- . . N,
3) Variation of pid(2): pid(6) = !
ali sum _shorter _unali
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