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ABSTRACT 

Tumor-acquired alterations in DNA methylation include both genome-wide 

hypomethylation and locus specific hypermethylation.  Global loss of DNA methylation 

destabilizes chromatin architecture, augments genomic instability, and may reactivate 

repetitive element expression.  Promoter hypermethylation often coincides with loss of 

heterozygosity at the same loci, and together these events can result in loss of function of the 

gene in tumor cells.  The “rules” governing which genes are methylated during the 

pathogenesis of individual cancers are unknown; however, it is known that certain genes are 
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methylated with high frequency in selected tumors, whereas others are methylated across 

most types of tumors.   

The objective of the work described below was to use global profiling platforms 

(RNA and DNA) to identify epigenetically modulated genes that may be involved in cancer 

pathogenesis and bring these to the point where they could be developed as targets for 

diagnostic and treatment strategies. 

Using a global expression profiling approach and pharmacological inhibition of the 

DNA methyltransferases, 132 genes were identified that have 5’ CpG islands, are induced 

from undetectable levels by 5-aza-2’-deoxycytidine (5-aza) in multiple non-small cell lung 

cancer cell lines, and are expressed in untreated immortalized human bronchial epithelial 

cells.  Methylation analysis of a subset (45/132) of these promoter regions in primary lung 

cancer (N=20) and adjacent non-malignant tissue showed that 31 genes had acquired 

methylation in the tumors, but did not show methylation in normal lung or peripheral blood 

cells.  Promoter methylation of eight of these genes were studied in breast cancers (N=37), 

colon cancers (N=24), and prostate cancers (N=24) along with counterpart non-malignant 

tissues.  We found that seven loci were frequently methylated in both breast and lung 

cancers, with four showing extensive methylation in all four epithelial tumors. 

The data presented below suggest that while tumors differ in their molecular genetic 

phenotypes and pathogenesis, there may be underlying similarities in the pathways they 

follow toward malignancy.  Some of these similarities may be reflected in the methylation 

programs tumor cells engage, which in turn, provides an opportunity to exploit for 

therapeutic applications and diagnosis.  The approaches described herein entail a systematic 
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and reproducible method to identify novel methylation markers in a variety of cancers, and 

the results of these studies provide a basis for developing a generic set of methylation 

markers for early detection screening across common epithelial cancers. 
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CHAPTER ONE 

 

DNA METHYLATION IN HEALTH, HUMAN DISEASE, AND CANCER 

 

ABSTRACT 

The spatial arrangement and three-dimensional structure of DNA in the nucleus is 

controlled through the interdigitation of DNA binding proteins such as histones and their 

modifiers, the Polycomb-Trithorax group of proteins, and the DNA methyltransferase 

enzymes.  These proteins interact with DNA to form chromatin via covalent modification as 

well as reversible macromolecular interactions involving heterogeneous protein complexes, 

RNA, and the nuclear membrane.  DNA methylation forms the foundation of chromatin and 

is crucial to epigenetic gene regulation in mammals.  Disease pathogenesis mediated through 

infectious agents, inflammation, aging, or genetic damage often involves changes in gene 

expression.  In particular, cellular transformation coincides with multiple changes in 

chromatin architecture, many of which appear to affect genome integrity and gene 

expression.  Infectious agents, such as viruses directly affect genome structure and induce 

methylation of particular sequences to suppress host immune responses.  Hyperproliferative 

tissues such as those in the gastrointestinal tract and the colon have been shown to gradually 

acquire aberrant promoter hypermethylation.  Below I review recent findings on altered DNA 

methylation in human disease, with particular focus on cancer and the increasingly large 

number of genes subject to tumor-specific promoter hypermethylation and the possible role 

of aberrant methylation in tumor development.   
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Note: The following chapter is in part made up of a review article written by David S. 

Shames under the guidance of Adi F. Gazdar
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INTRODUCTION 

The primary structure of DNA encodes all the information necessary to establish and 

maintain the diverse tissues found in higher organisms.  In humans, with the notable 

exception of certain programmed hemopoietic lineages, each cell contains identical DNA that 

is capable of directing the formation of diverse organs and tissues.  There are two 

interdependent aspects of multicellular life that must be resolved by the organism in one way 

or another: one is how to establish differentiation programs, and the other is how to maintain 

a given cellular phenotype.  To manage these tasks, complex organisms have evolved 

different mechanisms to regulate the signal transduction events and gene expression 

programs that lead to the differentiation and maintenance of specialized tissue types during 

development.  

In humans, cellular differentiation begins when intrinsic and extrinsic signals activate 

or repress master regulatory transcription factors, which in turn activate or repress 

downstream factors that impart to the cell its characteristic phenotype (Taylor and Jones 

1985; Zingg and Jones 1997; Agarwal and Rao 1998; Lee, Fitzpatrick et al. 2001; Hutchins, 

Mullen et al. 2002; Lee, Agarwal et al. 2002; Jaenisch and Bird 2003).  Often times, the 

signal transduction events that initiate differentiation cascades are transient in nature, and 

thus must be recorded in the genomes of cells present at time of the signal.  Thus, in order for 

specialized tissues to develop properly each cell needs to retain a “memory” of where it has 

been – what genes were expressed, as just as importantly, what genes were not (Urnov and 

Wolffe 2001).   
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EPIGENETICS AND CHROMATIN STRUCTURE 

In mammals, memories of things past are often mediated by epigenetic mechanisms.  

Epigenetic phenomena are those that confer heritable phenotypes in cells that cannot be 

explained by changes in the primary structure of DNA.  Epigenetic regulation of gene 

expression is critical to organismal development and cellular differentiation as well as a key 

element is the development of cancer (Jaenisch and Bird 2003; Feinberg 2004).  The 

biochemical mechanisms of epigenetic gene regulation are complex, but they seem to be 

orchestrated through the spatial arrangement of DNA in the nucleus and alterations in 

chromatin structure.  As discussed below, these changes occur through the interactions of the 

DNA methylation machinery and the Polycomb-Trithorax (Pcg-TrxG) family of proteins. 

There are at least two levels of epigenetic gene regulation: one involves DNA 

methylation and the other occurs through complex protein-protein-DNA interactions 

involving the Pcg-TrxG family of proteins, histones, and histone modifying enzymes (Turner 

2000; Wolffe 2001; Turner 2002; Reiner, Mullen et al. 2003; Ringrose and Paro 2004; 

Jaenisch, Hochedlinger et al. 2005; Bernstein, Mikkelsen et al. 2006; Boyer, Plath et al. 

2006; Lee, Jenner et al. 2006).  While relatively new to the field of epigenetics, it is clear that 

certain RNA species are also involved in heritable changes in gene expression (Lippman, 

May et al. 2003; Lippman and Martienssen 2004; Bernstein and Allis 2005).  RNA may act 

by directly interfering with transcription in a process called transcriptional gene silencing, 

indirectly by recruiting silencing complexes, or by physically coating the DNA in association 

with DNA methylation, as occurs in X-chromosome inactivation and Barr body formation in 

females (Lee and Jaenisch 1997; Eggan, Akutsu et al. 2000; Janowski, Huffman et al. 2005; 
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Ting, Schuebel et al. 2005).  The major focus of this review involves DNA methylation and 

its role in cancer development.  However, the influence of histones and their modifications, 

as well as the Pcg-TrxG proteins to the epigenetic control of gene expression in normal and 

cancer cells should not be overlooked.  

While histone modifications are clearly important to gene regulation, there is some 

question as to whether they are actually epigenetic phenomena because their modification 

state is not necessarily mitotically heritable (Bird 2002).  However, recent evidence suggests 

that alterations in histone modification may precede and possibly direct more permanent 

changes in chromatin structure (Baylin and Ohm 2006; Pruitt, Zinn et al. 2006).  Classically 

defined, chromatin is divided into two types based on differential Giemsa staining: 

heterochromatin and euchromatin (Urnov and Wolffe 2001; Fahrner and Baylin 2003; 

Huisinga, Brower-Toland et al. 2006).  On a molecular and structural level, chromatin can be 

distinguished by its level of compaction, nuclear localization, and the classes of histone 

modifications and other protein associated with it (Schubeler, Francastel et al. 2000; Tolhuis, 

Palstra et al. 2002; de Laat and Grosveld 2003; Fahrner and Baylin 2003; Felsenfeld and 

Groudine 2003).  Euchromatin exists in an open configuration, contains the majority of 

transcribed protein coding genes, localizes near the center of the nucleus, and is associated 

with hyper-acetylated histones; conversely, constitutive heterochromatin is highly ordered 

and compacted, contains transcriptionally inert sequences such as telomeric and 

pericentromeric repeats, localizes to the nuclear periphery, and is associated with 

trimethylated-histone 3 lysine 9 (H3K9), trimethylated-histone 3 lysine 27 (H3K27), 

heterochromatin protein 1 (HP1) and other factors (Ansel, Lee et al. 2003; de Laat and 
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Grosveld 2003; Fahrner and Baylin 2003; Ragoczy, Telling et al. 2003).  A third type of 

chromatin, called facultative heterochromatin, is differentially compacted in different cell 

types, presumably reflecting the different gene expression profiles extant in different cells. 

 The major focus of this chapter involves DNA methylation and its role in cancer 

development.  However, the influence of histones and their modifications, as well as the Pcg-

TrxG proteins to the epigenetic control of gene expression in normal and cancer cells is also 

important.  The Pcg-TrxG proteins are most influential in establishing and maintaining 

cellular phenotypes during early differentiation (Bernstein, Mikkelsen et al. 2006; Lee, 

Jenner et al. 2006).  The PcG proteins form repressor complexes that appear to specifically 

target the regulatory elements of master regulator transcription factors such as the homeobox 

(HOX), sry-related homeobox (SOX), and the muscle segment homeobox (MSX) family of 

genes.  Conversely, the TrxG proteins are activators of the same suite of target genes acting 

primarily through the modification of histones.  

Histone proteins together with DNA form nucleosomes, which are the basic subunits 

of chromatin.  Nucleosomes are made up of double helical DNA wound around an octamer 

of the four core histones – two each of histone 2A, histone 2B, histone 3, and histone 4 

(Berger and Felsenfeld 2001; Felsenfeld and Groudine 2003).  Each of the core histone 

particles has a globular domain around which the DNA winds and a positively charged amino 

(H3 and H4) or carboxy termini (H2A and H2B).  These tails contain multiple lysine (K) and 

arginine (R) residues that protrude from the nucleosome core and act as substrates for a large 

and growing number of histone modifying enzymes including histone methylases, acetylases, 

phophorylases, and ubiquitinases (Turner 2000; Turner 2002; Felsenfeld and Groudine 
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2003).  How the different histone modifications affect gene expression alone and in 

combination are an active and increasingly complex field of research.  

The most important function of chromatin is its influence on gene expression.  The 

earliest evidence to suggest that chromatin affects gene expression comes from genetic 

studies in Drosophila.  In the early 1930’s H. J. Muller observed that when treated with X-

rays, some Drosophila embryos developed a mosaic red and white pattern of eye color.  

Subsequent investigations demonstrated that when the mosaic phenotype was present the 

white gene had undergone a translocation from euchromatin to centromeric heterochromatin 

where it was subject to position effect variegation.  In cells with white eye pigment the white 

gene had undergone heritable silencing at some point early in development due to its 

proximity to heterochromatin (Wakimoto 1998).  In Drosophila, position effect variegation is 

mediated by the PcG proteins.  In mammals, heterochromatin formation is also influenced by 

the PcG proteins.  However, the most conspicuous difference between DNA in 

heterochromatin and euchromatin is the presence of DNA methylation.   
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DNA METHYLATION AND CHROMATIN STRUCTURE 

In mammals, DNA methylation occurs on the 5th carbon of deoxycytidine in the 

dinucleotides 5’-CpG (Fig 1-1).  This dinucleotide is substantially depleted in the human 

genome because methyl-cytosine (mC) is particularly susceptible to spontaneous 

deamination (Jones and Baylin 2002).  However, ~70% of CpG sites in genome are usually 

methylated (Bird 2002; Paz, Fraga et al. 2003).  mC acts as a foundation for DNA binding 

proteins such as the methyl-CpG binding domain protein family, which associate with 

histone deacetylases, histone methylases, and other heterochromatin associated proteins (Bird 

2002).  It is thought that the major function of DNA methylation in heterochromatin is to 

ensure that repetitive DNA remains transcriptionally inert; these regions contain an 

abundance of retroviral elements, long interspersed repeats (LINEs), and short interspersed 

repeats (SINEs) that could be deleterious to the genome if expressed as well as increase its 

susceptibility to recombination events (Garrick, Fiering et al. 1998; Walsh, Chaillet et al. 

1998; Elena Kolomietz 2002).  In cancer and certain rare congenital diseases 

(immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome), the genome is 

depleted of repetitive element CpG site methylation (Xu, Bestor et al. 1999; Gaudet, 

Hodgson et al. 2003; Gaudet, Rideout et al. 2004).  

The CpG palindrome is globally depleted in the genome, but there are local 

enrichments of GC content where the CpG dinucleotides occurs with high frequency.  These 

sequences often occur in the 5’ regions of protein coding genes and are called CpG islands 

(Gardiner-Garden and Frommer 1987; Takai and Jones 2002).  CpG islands do not have an 

operational definition, but are characterized by higher than expected GC content (>50%) 
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where the CpG dinucleotide is relatively enriched with an observed vs. expected ratio of 

>0.6, over a distance of at least 200 base pairs (Gardiner-Garden and Frommer 1987).  A 

more recent analysis of the full sequence information on chromosomes 21 and 22 suggests 

that a better definition may be a minimum of 500 base pairs, a GC content of ≥55%, and an 

observed vs. expected CpG ratio of ≥0.65.  The more stringent definition excludes many 

intergenic CpG rich areas such as those associated with long terminal repeats (LTRs), Alus, 

and other repetitive elements.  According to the latter definition approximately 40% of 

human genes are associated with these elements (Bestor, Gundersen et al. 1992; Takai and 

Jones 2002). 

CpG islands are well conserved in higher vertebrates, and in contrast to mot CpG 

sites, they are normally unmethylated.  However, in transformed cells, dense methylation of 

promoter associated CpG islands is a relatively common event, and age-related methylation 

of certain CpG islands does occur in certain tissues, particularly in hyperproliferative tissues 

such as the colon and gastrointestinal (GI) tract (Esteller, Corn et al. 2001; Issa, Ahuja et al. 

2001; Jones and Baylin 2002).  Thus, there is a mosaic pattern of CpG site methylation in 

normal cells – highly methylated individual CpG sites along with unmethylated CpG islands 

– that is reversed in transformed cells – genome-wide hypomethylation with increased CpG 

island hypermethylation. 

The mechanisms that establish genome methylation patterns are complex and occur 

during a brief period in embryonic development, whereas tissue-specific promoter 

hypermethylation patterns probably occur during cellular differentiation, but at restricted 

sites (Li, Beard et al. 1993; Rao and Avni 2000; Ansel, Lee et al. 2003; Jaenisch and Bird 
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2003).  A diverse but conserved family of enzymes mediate the transfer of methyl groups 

from S-adensyl-methionine to cytosine through an unusual mechanism whereby a cytosine 

base, in the context of a CpG dinucleotides, is flipped out of helical DNA, modified, and then 

replaced into the helix (Jeltsch 2002).   In humans, there are at least five of these enzymes 

(DNA methyltransferase 1, 2, 3A, 3B, and 3L), three of which have in vitro 

methyltransferase activity.  A recent study suggests that DNMT2 may act on tRNA, whereas 

DNMT3L activity may be limited to certain embryonal cell types (Grace Goll and Bestor 

2005; Goll, Kirpekar et al. 2006; Jeltsch 2006).  For several years it was believed that the 

different methyltransferases had exclusive activities, where DNA methyltransferase 1 

(DNMT1) was the ‘maintenance’ methyltransferase and DNMT3A and 3B were de novo 

methyltransferases.  However, recent biochemical and genetic evidence suggest that this 

distinction is probably more convenient than real. 

DNMT1 was designated the maintenance methyltransferase because it localizes with 

the replication foci during S-phase and the catalytic efficiency of recombinant human 

DNMT1 is 3-10 fold higher on hemimethylated endogenous substrates (small nuclear 

riboprotein-associated peptide N (SNRPN) - exon-1 and fragile X mental retardation 

syndrome (FMR-1) locus) than on unmethyalted substrates, in vitro  (Bacolla, Pradhan et al. 

1999; Pradhan, Bacolla et al. 1999; Rountree, Bachman et al. 2000).  However, genetic 

evidence suggests that these enzymes are at least partially redundant with respect to 

maintenance activity.  The strongest support for this comes from studies based on a series of 

isogenic cell lines engineered to have different combinations of intact methyltransferase 

enzymes.  Homozygous deletion of any of the DNMT enzymes in the colon cancer cell line 
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HCT116 had almost no effect on genome-wide and repetitive DNA methylation, or 

aberrantly methylated promoters.  However, when both DNMT1 and DNMT3B were deleted, 

nearly all genomic methylation was lost, and genes silenced by promoter hypermethylation 

were reactivated (Rhee, Jair et al. 2000; Rhee, Bachman et al. 2002).   

During lymphocyte differentiation, there are changes in the methylation patterns of 

regulatory elements that control expression of the Il4 cytokine locus (Guo, Hu-Li et al. 2002; 

Lee, Fields et al. 2003).  In a series of experiments using isolated immature thymocytes, 

Makar and colleagues co-immunoprecipitated both DNMT1 and DNMT3B at methylated 

regulatory elements in Il4 locus, however, upon stimulation and lineage  commitment, both 

proteins were actively excluded from these sites, methylation was lost, gene activation 

occurred (Makar, Perez-Melgosa et al. 2003).  These data suggest that the DNMT enzymes 

are at least partially redundant with respect to maintenance methyltransferase activity (Rhee, 

Jair et al. 2000; Lee, Fitzpatrick et al. 2001; Rhee, Bachman et al. 2002; Makar, Perez-

Melgosa et al. 2003; Ma, Jacobs et al. 2005). 

The evidence for exclusive de novo methyltransferase activity is similarly 

controversial.  While there appears to be some sequence specificity for DNMT3A and 

DNMT3B compared to DNMT1, the Michaelis constants for DNMT1, DNMT3A, and 

DNMT3B are essentially the same for unmethylated substrates (0.5 - 1.3 +/- 0.1 μM, 0.9 +/- 

0.3 μM, and 3.5 +/- 1.2 μM, respectively) when compared in vitro, suggesting that all three 

enzymes have de novo methyltransferase activity (Bacolla, Pradhan et al. 1999; Aoki, 

Suetake et al. 2001).  However, the biological relevance of these assays is questionable, since 
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all three methyltransferase activities complex with large numbers of proteins in the context of 

chromatin, which substantially affects their activity and efficiency.   

The genetic evidence supporting a de novo role for any of these enzymes is based on 

germ-line knockout experiments in mice.  Germ-line disruption of Dnmt1 or Dnmt3b results 

in early embryonic lethality (Li, Bestor et al. 1992; Lei, Oh et al. 1996; Okano, Bell et al. 

1999).  Dnmt3a-/- mice survive to term but are runted and die at around 4 weeks (Okano, 

Bell et al. 1999).  In double homozygous Dnmt3a-/- and Dnmt3b-/- mice, repetitive elements 

and proviral DNA remain unmethylated, and the mice die around day 8.  However, repetitive 

elements and proviral DNA in Dnmt1 null mice was found to be partially methylated by day 

8 (Okano, Bell et al. 1999). Interestingly, methylation of intracisternal A particle (IAP) 

repeats and proviral DNA in single knockout Dnmt3a or Dnmt3b were almost normal.  These 

data suggest that while Dnmt1 alone cannot establish methylation on repetitive DNA in the 

embryo without one of the other methyltransferases, it does compensate for loss of only one 

of the other enzymes.  However, it is important to recognize that the biology of embryonic 

stem cells and germ cells is probably quite different from that of somatic cells or cancer cells.   

Studies in tumor cells have complicated matters further.  Some reports suggest that 

different cell types may have different requirements for the different methyltransferase 

enzymes.  siRNA targeting DNMT1 in both the lung cancer cell lines H1299 and the breast 

cancer cell line HCC1954 reversed promoter hypermethylation at several tumor suppressor 

genes, whereas similar experiments in HCT116 did not appear to have any effect on 

promoter hypermethylation  (Suzuki, Sunaga et al. 2004; Ting, Jair et al. 2004).   A 

subsequent study by Ting et al. confirmed the findings previously reported by ourselves and 
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others that in some cases inhibiting DNMT1 seems to be sufficient for reversing promoter 

hypermethylation (Fournel, Sapieha et al. 1999; Robert, Morin et al. 2003; Ting, Jair et al. 

2006).  Taken together, the data suggest that the relationship between the various DNMTs, 

the types of sequences they methylate, as well as the timing of their activities, is complex, 

and probably context dependent. 
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 DNA METHYLATION AND CANCER 

The idea that there was an epigenetic component to neoplasia is several decades old, 

but its empirical roots are found in several studies performed on teratoma cell lines in the 

mid-1970’s (Mintz and Illmensee 1975; Illmensee and Mintz 1976; Nowell 1976).  Illmensee 

and Mintz combined mouse teratocarcinoma cells with a mouse blastocyst and showed that 

in the chimeric adult mice the teratocarcinoma cells were substantially involved in producing 

most of the tissues and organs in the animal.  The direct implication of these studies was that 

teratocarcinoma cells retain many aspects of totipotent embryonic stem cells.  More 

importantly, these studies showed that the malignant phenotype was not entirely intrinsic to 

or immutable in the tumor cell; crucial aspects of tumor cell behavior must also depend on 

extrinsic and epigenetic factors as well.   

Teratocarcinomas are unusual tumors and may have a large epigenetic component.  

Jaenisch and co-workers revisited these studies using modern genetic techniques and 

demonstrated that passage of melanoma cell nuclei through an embryo, which has been 

shown to remove and then re-establish methylation marks, effectively reverses many of the 

malignant characteristics of the tumor cells (Hochedlinger, Blelloch et al. 2004).  Chrimeric, 

but not cloned mice, developed to term.  While the mice did have a propensity to develop 

melanomas and lymphomas, these findings further demonstrate that epigenetic events 

substantially affect the malignant phenotype.   

During cancer development two distinct changes in DNA methylation occur: genome-

wide hypomethylation and locus specific gain or loss of cytosine methylation in promoter-

associated CpG islands (Fig. 1-2).  Genome-wide hypomethylation is associated with the 
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early stages of cellular transformation and usually targets non-coding regions.  In addition, 

genome-wide hypomethylation influences genomic stability, causes loss of imprinting, and 

may result in the induction of ectopic onco-fetal gene expression (Jaenisch and Bird 2003; 

Holm, Jackson-Grusby et al. 2005; Hong, Kang et al. 2005; Tong Ihn Lee 2006).  It is likely 

that genome-wide changes in methylation alter overall chromatin architecture, chromosome 

segregation in mitosis, and cell ploidy, all of which augment cellular transformation.  

Promoter region CpG island hypermethylation and in some cases hypomethylation affects the 

expression of associated genes (Jones and Baylin 2002; Baylin and Ohm 2006; Feinberg, 

Ohlsson et al. 2006).  
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GENOME-WIDE HYPOMETHYLATION  

Genome-wide hypomethylation occurs early in cellular transformation and usually 

targets repetitive elements and other non-coding regions (Jaenisch and Bird 2003).  Genome-

wide hypomethylation may have several implications for the genome of preneoplastic cells, 

which may be broadly grouped into transcriptional and genetic effects.  Transcriptional 

effects include loss of imprinting, induction of ectopic onco-fetal gene expression, and 

transcriptional activation of repetitive elements (Yoder, Walsh et al. 1997; Walsh, Chaillet et 

al. 1998; Holm, Jackson-Grusby et al. 2005).  Genetic effects are probably more indirect and 

involve larger scale processes such as overall chromatin architecture, aneuploidy, and DNA 

replication (Eden, Gaudet et al. 2003; Gaudet, Hodgson et al. 2003; Jaenisch and Bird 2003). 

It has been suggested that the primary function of global hypermethylation is to 

maintain the integrity of the genome through the heritable repression of repetitive element 

transcription (Walsh and Bestor 1999).  Nearly half of the genome is compromised of 

repetitive element which range from nearly complete retroviruses that have been trapped in 

the genome by DNA methylation dependent silencing or mutation of their env genes, to Alus 

which are short, inverted repeats approximately 300 bps long,  (Englander, Wolffe et al. 

1993; Ostertag and Kazazian Jr 2001).  In theory, up-regulated expression of 

retrotranspositionally active elements could increase the probability of insertional 

mutagenesis, although experimental evidence for this proposition is limited (Jackson-Grusby, 

Beard et al. 2001).  The idea that ectopic expression of transposable and retrotransposable 

elements might lead to increased insertional mutagenesis probably derives, at least in part, 

from early molecular genetics techniques where repetitive elements were used to drive 
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recombination and mutation events in yeast and Drosophila.  However, most laboratory 

species do not have endogenous DNA methyltransferase activities, and thus probably have 

evolved ways to tolerate active transposition (Drosophila), or silence repetitive elements 

through alterative pathways (C. elegan; co-suppression).  In any case, with relatively rare 

exception, insertional mutagenesis does not seem to be a common event in human cancer 

(Griffiths 2001).  Although, until recent years, sequence analysis of cancer genes has focused 

primarily on exonic sequences, thus only those insertion events occurring in, or proximal to, 

coding regions would be detected.  Recent advances in high throughput genomic sequencing 

will likely reveal whether mutational events such as repetitive sequence retrotransposition 

into regulatory elements of protein coding genes occurs with any frequency in the cancer 

genome. 

There is evidence that global demethylation results in up-regulation of genes that are 

silent in normal cells.  While the mechanisms behind this phenomenon are unclear, at least 

two possibilities exist: 1) gene promoters that are methylated during embryogenesis, 

development, or differentiation become reactivated upon promoter demethylation resulting in 

aberrant expression; 2) global demethylation results in gene rearrangements that in turn lead 

to the stochastic integration of silent genes near active promoters.  One of the first studies to 

demonstrate that altered promoter methylation states existed in cancer cells relative to normal 

cells showed that the promoters of KRAS and HRAS were relatively hypomethylated 

compared to companion normal cells (Feinberg and Vogelstein 1983; Feinberg and 

Vogelstein 1983).  In the years since this study most of the focus has been on the reverse 

process of promoter hypermethylation, which is the focus of the next section.  However, 
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recent studies have begun to revisit this issue and promoter demethylation may be a common 

event in carcinogenesis, as well.  In particular, numerous microarray expression studies using 

5-aza-2-deoxycytidine (5-aza) have shown that induction of oncogenes, imprinted genes, and 

developmentally regulated transcription factors are a direct effect of DNA demethylation, 

and comparative gene expression profiling studies have shown that tumor cells frequently 

express clusters of carcino-embryonic antigens (Sato, Maitra et al. 2003; Holm, Jackson-

Grusby et al. 2005; Vatolin, Abdullaev et al. 2005; Suzuki, Suzuki et al. 2006).  

Genomic hypomethylation has been shown to increase genomic instability and the 

frequency of spontaneous tumor formation in mice (Chen, Pettersson et al. 1998; Gaudet, 

Hodgson et al. 2003; Ma, Jacobs et al. 2005).  In one of the first studies to address the global 

differences in mC content between tumor and benign tissues, Ehrlich and colleagues 

examined 103 tumors ranging from benign fibroadenomas to a variety of secondary 

neoplasms found at autopsy, and found that mC content was lower in more progressed 

tumors (secondary malignancy < primary malignancy < benign tumor < normal tissue), 

whereas there was no statistical difference in cytosine content overall (Gama-Sosa, Slagel et 

al. 1983). 

The first hints of a connection between genome hypomethylation and genomic 

instability came from studies in a series of colon cancer cells using a selectable 

(G418/neomycin) retroviral reporter (β-Gal) system (Lengauer, Kinzler et al. 1997).  After 

repeated attempts, it was found that while all cell lines were selectable in G418, only half 

expressed the β-Gal reporter after G418 selection at detectable levels.  It turned out that the 

cells without detectable β-Gal expression had methylated the retroviral 5’ LTR.  
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Interestingly, all these cell lines had mutations in the DNA mismatch repair pathway, 

whereas the cell lines that expressed β-Gal did not.  These findings led the authors to 

speculate that cells without intact mismatch repair pathways were nevertheless able to 

methylate ectopic DNA, which coincided with high-levels of microsatellite instability.  On 

the other hand, cells with wild-type mismatch repair genes that did not methylate the reporter 

construct were more susceptible to large-scale chromosomal aberrations and aneuploidy. 

Direct evidence for the relationship between genomic instability and genome 

hypomethylation comes from studies in mice without a functional Dnmt1 allele (Chen, 

Pettersson et al. 1998).  Mouse embryonic stem (ES) cells null for the Dnmt1 locus were drug 

selected using 6-thioguanine, which selects for mutations in hypoxanthine 

phosphoribosyltransferase gene (Hprt).  Dnmt1-/- ES cells produced 10-fold more 6-

thioguanine resistant clones than Dnmt1 positive cells.  Analysis of the Hprt locus by PCR 

and southern blot showed that the major mechanism for loss of Hprt function involved large 

genomic rearrangements rather than point mutations.  Further experiments showed that the 

rearrangements occurred primarily through mitotic recombination events.  

The data described above demonstrate a correlation between DNA hypomethylation 

and genomic instability, but only suggest a link to tumorigenesis.  Since Dnmt1-/- mice die 

before gestation, Dnmt1 hypomorphs were created that harbored 10% of wild-type DNA 

methyltransferase activity.  These mice were viable, but runted, and most developed T-cell 

lymphomas by 4 months (Gaudet, Hodgson et al. 2003).  The authors examined three 

alternative explanations for the high incidence of tumors in these animals: 1) up-regulation of 

endogenous retroviral elements and insertional mutagenesis, 2) activation of proto-oncogene 
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expression via promoter demethylation, 3) increased genomic instability.  There was no 

increase type-C endogenous retrovirus expression, but some increase in IAP expression.  

There were three insertion events in c-myc in the 12 mouse tumors, which is probably 

significant, but was not pursued by the authors.  C-myc was over-expressed in the tumors, but 

not in surrounding tissues from the same mice, suggesting that c-myc activation was 

secondary to tumor formation.  The authors used array-based comparative genome 

hybridization (aCGH) to determine whether tumors from Dnmt1 hypomorphs exhibited 

higher incidences of genomic instability overall than tumors derived from mice infected 

Moloney Murine Leukemia Virus (MMLV).  While the number of mice in this study was 

small and the array technology used was relatively low resolution, there was a clear and 

statistically significant increase in chromosomal aberrations in the hypomorphic mice (Eden, 

Gaudet et al. 2003; Lengauer 2003).  Considering the above data, it appears that the major 

influence of genomic hypomethylation on tumorigenesis occurs at the level of gross 

chromosomal alterations. 

DNA hypomethylation may well have other adverse effects on genome.  Recent 

expression profiling experiments using either 35 bp resolution tiling arrays or 5 bp tiling 

arrays suggest that the transcriptional capacity and complexity of the genome has been vastly 

underestimated (Cheng, Kapranov et al. 2005; Willingham and Gingeras 2006).  Nearly all 

repetitive elements including endogenous retroviruses, LINEs, SINEs, and Alus contain 

strong promoters.  Indeed, Alus are essentially clusters of transcription factor binding sites, 

and the older members of this family are significantly enriched in GC-rich domains of the 

genome (Polak and Domany 2006).  Demethylation of mobile genomic elements may not 
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only result in transcription of these loci, but also transcription initiation at these loci.  

However, the technology to test this possibility has only recently become available and thus 

awaits future examination. 
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PROMOTER HYPERMETHYLATION AND CANCER 

In normal cells, promoter hypermethylation is relatively rare, occurring at imprinted 

loci such as H19/Igf2 promoter, as well as at promoters of genes active only during 

gametogenesis, embryogenesis, and development.  There are cases of tissue-specific 

promoter, or regulatory element hypermethylation in the hematopoietic lineages that become 

demethylated and activated upon cytokine stimulation, as well as a variety of promoters that 

are methylated in an age-dependent and tissue-specific fashion in hyperproliferative tissues 

such as the colon (Yoder, Walsh et al. 1997; Issa, Ahuja et al. 2001; Lee, Fitzpatrick et al. 

2001; Makar, Perez-Melgosa et al. 2003).   

Imprinting and the related phenomenon of X-chromosome inactivation are mediated 

through epigenetic mechanisms that are established in early development (Chow, Yen et al. 

2005; Pauler and Barlow 2006).  However, there are two important differences between these 

two processes: first, X inactivation occurs randomly in females resulting in a mosaic pattern 

of X-chromosome derived gene expression, whereas imprinting occurs in a parent-of-origin 

specific pattern affecting all cells in the same way; secondly, X-chromosome inactivation 

occurs only in females, whereas imprinting occurs in both sexes.  Despite these differences, 

both imprinting and X-inactivation are dependent on the expression of non-coding RNAs 

(ncRNA), which act in cis and recruit heterochromatin associated factors to the allele from 

which they are expressed.   

Imprinted genes tend to occur in clusters ~1 Mb in length, usually including 5-10 

protein-coding genes and a single ncRNA.  Depending on the locus, a ncRNA is expressed 

from either the maternal or the paternal allele and the protein coding genes are expressed 
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from the other allele.  While the ncRNA appears to be the key initial repressor of mRNA in 

cis, in nearly all cases, a conserved imprinting control element (ICE) carries the epigenetic 

“mark” enabling the alleles to “know” whether they should be transcribing mRNA or ncRNA 

in the first place (Pauler and Barlow 2006).  Interestingly, male alleles (paternally expressed) 

are regulated through a different mechanism than female alleles (maternally expressed), and 

the male imprinting mark is established much earlier in gametogenesis and persists longer in 

the adult than female imprints (Bourc'his and Bestor 2006).  Female alleles of paternally 

expressed genes are usually silenced by mechanisms involving direct methylation of 

promoter-associated CpG islands, whereas paternal alleles of maternally expressed genes 

seem to be regulated by methylation of distal enhancers elements (Bourc'his and Bestor 

2006).   

While the mechanisms involved in imprinting are complex and the details may differ 

somewhat from cluster to cluster the underlying theme is that at some point in development 

an expressed ncRNA recruits heterochromatin associated silencing machinery, including the 

DNMTs, which together impart the permanent epigenetic mark and expression pattern 

retained in all somatic cells throughout the life of the organism (Reik and Lewis 2005; Lewis 

and Reik 2006; Pauler and Barlow 2006).  X-inactivation is thought to work in a similar way 

except that silencing affects an entire chromosome.  For many years, it was thought that both 

copies of the X-chromosome were active in early female embryos, and then stochastic 

expression of XIST results in monoallelic silencing of the X-chromosome in cis.  However, 

recent evidence suggests that X-inactivation may have two mutually exclusive steps.  Early 

on, paternally derived expression of XIST results in silencing of the paternal X-chromosome, 
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whereupon the epigenetic mark is erased and then reset randomly, affecting all somatic cells 

in the female embryo and adult (Reik and Lewis 2005).  Thus, the main features of gene 

specific epigenetic silencing in normal cells appear to depend on meiotically heritable 

“marks” that are interpreted by ncRNAs, which in turn direct the silencing machinery to the 

promoters and regulatory elements of proximal protein coding genes, in cis.  It is unclear 

whether the mechanisms that regulate imprinting and X-inactivation during normal 

development are involved in establishing the aberrant methylation patterns found in tumor 

cells, although it would not be surprising if ncRNAs were somehow involved.   

There is overwhelming evidence that tumor acquired promoter hypermethylation is a 

common event the multi-step pathogenesis of human cancer (Zochbauer-Muller, Fong et al. 

2001; Sekido, Fong et al. 2003; Zochbauer-Muller, Lam et al. 2003; Baylin and Ohm 2006; 

Belinsky, Liechty et al. 2006).  Over the past decade, nearly 150 genes have been identified 

that show tumor-specific methylation in primary tumor samples (Appendix A).  Gene 

specific promoter hypermethylation is also an early event in tumorigenesis and occurs in 

conjunction with transcriptional silencing of the associated gene.  In addition, aberrant 

promoter hypermethylation often coincides with loss of heterozygosity resulting in complete 

loss of function of the affected locus (Jones and Baylin 2002; Baylin and Ohm 2006).  

However, the mechanisms that drive acquired promoter hypermethylation in cancer 

progression have remained elusive (Bestor 2003).   

The earliest direct evidence that altered promoter methylation patterns are present in 

tumor tissues compared to companion normal cells, came from studies by Andrew Feinberg 

and Bert Vogelstein (Feinberg and Vogelstein 1983).  They showed that the genomic 
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sequences of HRAS and KRAS were both hypomethylated in colon cancer cells compared to 

normal colonic epithelium.  The link between promoter hypermethylation and loss of gene 

expression was made first at the calcitonin locus, and then more definitively at the promoter 

of the tumor suppressor gene p16 (Baylin, Hoppener et al. 1986; Baylin, Makos et al. 1991; 

Fukuhara, Hooper et al. 1992; Ottaviano, Issa et al. 1994; Merlo, Herman et al. 1995).  

 DNA methylation-dependent silencing frequently affects genes that are involved in 

transcriptional regulation, DNA repair, negative regulation of the cell cycle, as well as 

growth regulatory signaling pathways (Appendix A).  More recently, it was shown that 

multiple members of some gene families are found to be silenced in the same tumor, 

suggesting that the methylation machinery may have specificity during the pathogenesis 

certain types of cancer (Akiyama, Watkins et al. 2003; Margetts, Astuti et al. 2005; Suzuki, 

Toyooka et al. 2005; Shivapurkar, Stastny et al. 2006).  Most data suggest that some loci are 

preferentially methylated in certain cancers, but not others (Baylin, Belinsky et al. 2000; 

Esteller, Corn et al. 2001). Aberrant promoter hypermethylation has been found in a variety 

of preneoplastic lesions, which supports the hypothesis that this epigenetic alteration is an 

early event in carcinogenesis.  This observation has resulted in substantial interest from the 

medical community in that detection of methylation in patient samples may have utility in the 

early detection of cancer. 

Promoter methylation has been detected in premalignant epithelial and hemopoietic 

cells infected with oncogenic viruses such as Epstein-Barr virus (EBV), SV40 virus, and 

Hepatitis B (HBV) and C (HCV) viruses.  Human Immunodeficiency Virus (HIV) and 

human papilloma viruses have also been associated with differential methylation, however 
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the latency of HIV and the obligate presence of HPV in cervical cancers have made these 

associations more difficult to establish (Mikovits, Young et al. 1998; Fang, Mikovits et al. 

2001; Duenas-Gonzalez, Lizano et al. 2005).  Studies examining the methylation profiles of 

virally infected cells suggest that oncogenic viruses may induce specific changes in promoter 

hypermethylation during cellular transformation that are distinguishable from tumors 

originating from the same tissue in the absence of virus (Zhong, Tang et al. 2002).   

EBV has been associated with a variety of epithelial malignancies as well as >40% of 

Hodgkin’s disease.  EBV is a member of the herpes virus family and is ubiquitous in the 

human population.  EBV-associated gastric cancers show elevated levels of tumor suppressor 

gene promoter hypermethylation as well as CpG island methylator phenotype-associated 

(CIMP) methylation patterns (Chang, Uozaki et al. 2006).  SV40 viral sequences are 

detectable in malignant mesotheliomas, brain tumors, and several types of lymphoid 

malignancies with relatively high frequency (Gazdar, Butel et al. 2002; Carbone, Bocchetta 

et al. 2003).  This virus expresses two potent oncoproteins that inhibit the activities of tumor 

protein 53, retinoblastoma protein, and protein phosphatase 2A.  Several studies have shown 

that the presence of SV40 viral sequences correlates with increased promoter methylation of 

tumor suppressor genes (Toyooka, Carbone et al. 2002; Shivapurkar, Takahashi et al. 2004; 

Suzuki, Toyooka et al. 2005).  Two strains of HPV (16 and 18) are strongly associated with 

cervical cancer, which rarely occurs in the absence of these viruses (Shivapurkar, Toyooka et 

al. 2004; Takahashi, Suzuki et al. 2005; Kitkumthorn, Yanatatsanajit et al. 2006).  

HPV, SV40, and EBV all contain oncogenes that probably mediate their tumorigenic 

effects.  However, viruses also induce cellular transformation through persistent infection 
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(Karin, Lawrence et al. 2006).  HBV and HCV do not express oncoproteins, but persistent 

infection of hepatocytes by these viruses is the major etiologic factor in the development of 

hepatocellular carcinoma (Thorgeirsson and Grisham 2002; Thorgeirsson, Lee et al. 2006).  

Long-term infection of the liver by HBV and HCV leads to cirrhosis and chronic 

inflammation of the infected tissue through localized infiltration of B and T cells.  These 

immune cells secrete high-levels of chemokines and cytokines that induce apoptosis in 

infected cells, which in turn increases the turnover rate of hepatocytes.  It is thought that the 

high turnover rate of these cells indirectly leads to errors in both DNA replication and 

possibly DNA methylation (Block, Mehta et al. 2003).  A number of studies have shown that 

several tumor suppressor genes in including p16, glutathione S-transferase (GSTP1), 

adenomatous polyposis coli (APC), and E-cadherin (ECDH) are methylated with higher 

frequency in HBV and HCV-associated hepatocellular carcinomas than in virus-independent  

malignant liver disease (Yang, Guo et al. 2003; Li, Hui et al. 2004). However, the exact 

mechanisms that cause HBV and HCV associated hepatocellular carcinoma are complex and 

direct evidence that either HBV or HCV actually alter DNA methylation has yet to be 

presented. 

As stated previously, persistent viral infection often leads to chronic inflammation.  

Chronic inflammation is caused by a variety of etiologic agents including bacterial infections 

such as H. pylori, which is the primary cause of gastric cancer (Li, Stoicov et al. 2003; 

Houghton and Wang 2005).  H. pylori infection results in the release of reactive oxygen 

species, which can cause oxidation of DNA resulting in adduct formation, spontaneous 

deamination of mC, and in rare cases double-stranded DNA breaks (Nardone, Rocco et al. 
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2004).  Besides its initiator role in tumorigenesis, H. pylori infection has been associated 

with a highly significant increase in tumor suppressor gene methylation in benign gastric 

mucosa in affected patients without cancer compared to patients without cancer or H. pylori 

infection.  When promoter hypermethylation patterns were compared between patients with 

gastric cancer, a clear distinction was found between those with and those without H. pylori 

infection (Maekita, Nakazawa et al. 2006).  While there is strong, correlative evidence to 

suggest that H. pylori infection leads to increased tumor suppressor gene hypermethylation, it 

remains unclear whether this phenotype occurs because of direct or indirect effects of the 

infection.   

Chronic inflammation has also been associated with increased promoter region 

hypermethylation in the absence of microbial infections.  Barrett’s esophagus is a 

premalignant lesion of the esophagus that begins at the junction between the stomach and 

esophagus.  This disease is characterized by morphological changes in the epithelial layers at 

this junction from stratified squamous epithelium to metaplastic columnar epithelium, which 

gradually migrates to the distal esophagus (Lambert, Hainaut et al. 2004).   The major 

etiologic factor in this disease is acid reflux, although H. pylori infection, smoking, and 

alcohol consumption also contribute (Crew and Neugut 2004).   Several groups have 

investigated whether methylation markers may be useful in stratifying patients with Barrett’s 

esophagus into at-risk and low risk groups for developing adenocarcinoma of the esophagus, 

and found that there was increased methylation of multiple markers in Barrett’s esophagus, 

but that p16, HPP1, and RUNX3 methylation correlated with progression (Schulmann, 
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Sterian et al. 2005).  Another study suggested that TIMP3 and APC might also be useful 

(Geneviève Clément 2006). 

Whether the result of environmental, infectious, or idiopathic causes, it has been 

proposed that cancer develops through the step-wise accrual of genetic mutations that 

together impart novel characteristics to the affected cell (Fearon and Vogelstein 1990; 

Hanahan and Weinberg 2000).  Recent work has shown that a similar progression of 

epigenetic events may occur in the pathogenesis of common epithelial malignancies.  

Increasing promoter hypermethylation exists in age-related cancers such as that of the colon 

(Chan, Broaddus et al. 2002).  Patients with ulcerative colitis, a precursor lesion for age 

related colon cancer, exhibit frequent methylation of p16, MLH1, and estrogen receptor in 

both dysplastic and benign tissue, whereas patients without ulcerative colitis do not (Issa, 

Ahuja et al. 2001).  In other tissues where there is chronic exposure to carcinogens, a 

continuum of increasing methylation from hyperplasia through invasive carcinoma is evident 

(Wistuba, Mao et al. 2002; Zochbauer-Muller, Minna et al. 2002; Zochbauer-Muller, Lam et 

al. 2003; Shivapurkar, Stastny et al. 2006; Wistuba and Gazdar 2006).   

The finding that promoter hypermethylation increases with age, carcinogen exposure, 

and histological progression suggests a mechanism whereby CpG islands progressively 

acquire methylation over time, which eventually leads to transcriptional silencing.  There are 

at least two ways this gradual accrual of aberrant methylation could take place: in the first 

scenario, CpG islands, which are usually refractory to methylation, could loose some of their 

resistance to methylation and increasing CpG site methylation could eventually encroach on 

the core of the CpG island, which often contains the transcription start site (“encroachment” 
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model); the major factor here is time and frequent cell cycling (Baylin 2002).  The second 

possibility is that over successive cell divisions the DNMT enzymes randomly methylate one 

or two CpG sites within a CpG island and this acts as a seed during subsequent cell division 

cycles (“marauding methylase” model) (Jones and Baylin 2002). 

Experimental evidence that directly addresses the distinguishing features of these two 

possibilities is difficult to come by, and probably both mechanisms exist.  However, the key 

issue to the relationship between aberrant promoter hypermethylation and tumorigenesis is 

the affect methylation has on transcription.  It is well established that inhibition of the DNA 

methyltransferases, pharmacologically or by genetic approaches, leads to promoter 

demethylation and gene reactivation (Bender, Pao et al. 1998; Rhee, Bachman et al. 2002; 

Velicescu, Weisenberger et al. 2002).  Most studies imply that DNA methylation is the 

proximate cause of silencing, however, it has been difficult to prove unequivocally.  

However, there is some evidence to suggest that methylation may be secondary to histone 

modification and transcriptional silencing in certain circumstances (Bachman, Park et al. 

2003; Pruitt, Zinn et al. 2006). 

Using the colon cancer cell line HCT116 engineered to be null for DNMT1 and 

DNMT3B and allele specific chromatin immunoprecipitation assays, Vogelstein and 

colleagues demonstrated that methylation of histone 3 lysine 9 preceded promoter 

methylation as the cause of silencing of wild-type p16.  HCT116 has one methylated wild-

type copy of p16, which is not expressed, and one mutant copy, which is unmethylated and 

expressed at the RNA level.  Upon genetic disruption of the two active DNA 

methyltransferases, p16 is expressed from both alleles.  After 22 passages, wild type p16 
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expression is undetectable, but in the absence of promoter hypermethylation, whereas the 

mutant allele of p16 is expressed as before.  Interestingly, promoter methylation did 

eventually return to the wild-type promoter after 86 passages, a finding that was not explored 

in detail (Bachman, Park et al. 2003). 

  Whether or not aberrant DNA methylation causes gene silencing in tumor cells 

initially does not belie the importance of this epigenetic mark to the process of 

tumorigenesis.  Estimates vary, but it has been suggested that a clinically evident lung cancer 

requires 20 or more mutations in protein coding genes (Fong, Sekido et al. 2003).  

Accumulated data suggest that aberrant promoter methylation may affect over 100 genes in a 

single tumor (Sato, Fukushima et al. 2003; Keshet, Schlesinger et al. 2006; Shames 2006).  

While it is likely that some of these aberrantly methylated promoters are the product of on-

going, random events, there is a strong possibility that promoter specific hypermethylation 

influences and perhaps drives crucial steps in cellular transformation.   

It has been suggested that altered DNA methylation is the primary etiologic factor in 

certain types of colon cancer, where there is an apparent CpG island methylator phenotype 

(CIMP).  CIMP colorectal tumors are defined by the presence of concordant methylation of 

p16, MLH1, MINT31, MINT2, MINT1, and some have argued that CIMP tumors may derive 

from different precursor lesions.  Moreover, CIMP tumors appear to have a worse prognosis 

than tumors with the classical “mutator” phenotype (Suzuki, Itoh et al. 1999; Toyota, Ahuja 

et al. 1999; Loeb 2001; Issa 2004).  Other diseases such as leukemia, pancreatic cancer, and 

gastric cancers appear to have CIMP characteristics, but future studies will be required to 
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determine whether these 5 sequences are sufficient to define this phenotype in all cancers 

(Toyota, Ahuja et al. 1999; Ueki, Toyota et al. 2000; Garcia-Manero, Jeha et al. 2003). 

A curious feature of aberrant promoter hypermethylation is that it does not appear to 

affect all genes with equal probability.  The most conspicuous example of this phenomenon 

is difference between p16 and RB; these two genes interact directly and inactivation of one or 

the other gene is nearly universal in tumors.  Both have large CpG islands in their promoter 

regions, but only p16 is methylated with significant frequency, whereas inactivation of RB 

almost always occurs through genetic mechanisms.  Moreover, in certain cases such as the 

tumor suppressor gene RASSF1A, promoter methylation appears to be the major mechanism 

underlying gene inactivation in tumors.  This suggests tumor-acquired promoter 

hypermethylation is non-random, and that there is something about certain loci that makes 

them particularly susceptible to aberrant methylation, an observation consistent with the 

CIMP hypothesis (Issa 2004; Baylin and Ohm 2006). 

The frequency of tumor-specific promoter methylation suggests that aberrant 

promoter hypermethylation is an important element in epithelial cell carcinogenesis.  The 

effects of large-scale changes in DNA methylation may be analogous to genomic instability 

and loss of heterozygosity in the neoplastic process.  That the methylation machinery is 

always present and functional in cancer cells, suggests that tumor cells have usurped its 

normally protective function and use it to actively repress anti-proliferative and apoptotic 

signals as well as stabilize gene expression at critical stages during transformation.  It may be 

that tumor cells, which are thought to derive from stem cell populations, randomly  methylate 

genes in response to environmental, genotoxic, hypoxic, or other cues, using extant normal 
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processes such as those active in the epigenetic gene regulatory cascade of lymphocyte 

differentiation (Jaenisch and Bird 2003; Reiner 2003; Reiner, Mullen et al. 2003).  

Alternatively, aberrant DNA methylation may be the result of a more directed process with 

each type of tumor having a distinctive promoter hypermethylation profile.  Either way, the 

result of these acquired epigenetic changes is a fitter, drug resistant, metastatic neoplasm, 

with a heritable epigenetic signature capable of further development toward malignancy.  

Thus, while tumors differ in their molecular genetic phenotypes and gene expression 

programs, they may engage similar methylation programs during their pathogenesis.  Future 

studies will surely unravel the mechanistic basis of the complex interplay between the 

epigenetic and genetic components of carcinogenesis.   
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Figure 1-1.  Chemical structures of deoxycytidine and 5-aza-2’deoxycytidine.  A) 
deoxycytidine.  B)  5-aza-2’-deoxycytidine (5-aza).  5-aza has a nitrogen substituted for 
the 5th carbon in the purine ring.  This compound is incorporated into DNA during S-
phase and acts as a suicide inhibitor of the DNA methyltrasferases.  5-aza is highly 
toxic to proliferating cells and is unstable in aqueous solution.  Chemical structures 
were obatined through the Chemfinder database which may be found at 
http://chemfinder.cambridgesoft.com/result.asp.  
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Figure 1-2.  Schematic of tumor-acquired promoter hypermethylation and 
promoter hypomethylation in the development of human cancer.  Cellular 
oncogenes and carcino-embryonic antigens that are normally silent in adult somatic 
cells are usually associated with methylated promoters.  During the step-wise 
accumulation of mutations in genomic DNA that accompanies the early stages of 
carcinogenesis, promoter can become demethylated, resulting ectopic expression of 
these genes.  In the reverse process, tumor suppressor genes acquire methylation of 
time that eventually results in silencing of the associated genes.  Lollipops represent 
CpG sites; full circles are methylated CpGs; open circles are unmethylated CpGs.  Red 
“X” indicates no expression; green check indicates expression. 
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CHAPTER TWO 

 

METHODS FOR STUDYING DNA METHYLATION 

 

ABSTRACT 

Tumor-acquired changes in DNA methylation are the focus of research in an 

increasing number of basic, translational, and clinical laboratories around the world.  In the 

laboratory, genome-wide technologies such as expression and DNA microarrays have been 

adapted to analyze patterns of DNA methylation and screen for novel disease markers.  Other 

technologies that are relatively inexpensive and highly sensitive such as methylation specific 

PCR (MSP), or quantitative, such as quantitative MSP and pyrosequencing are widely used 

in retrospective studies and have potential in a diagnostic setting.  In the near future, it may 

be possible to screen patients for common cancers using DNA methylation signatures as well 

as to measure patient responses to treatment, to identify patients at increased risk, or to 

monitor interventions designed to reduce cancer incidence.  In this chapter, I review genome-

wide and quantitative, high-resolution methods for methylation analysis that are used in the 

laboratory and clinic, and discuss their potential for use in a clinical setting. 

 

Note:  This chapter is made up of an invited review written by David S. Shames under 

the guidance of Adi F. Gazdar 
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INTRODUCTION 

Whether or not promoter hypermethylation is the cause or consequence of gene 

silencing, the key link between the presence of CpG island methylation in the context of a 

gene promoter is that the associated gene is not expressed, and that pharmacological 

inhibition (and in most cases RNAi-based or genetic inhibition) of the DNA methylation 

machinery leads to gene re-activation (Jones and Taylor 1980; Merlo, Herman et al. 1995; 

Robert, Morin et al. 2003; Suzuki, Sunaga et al. 2004; Ting, Jair et al. 2006).  These two 

observations have led to intense interest in the study of DNA methylation because genes that 

are silenced specifically in cancer likely affect the evolution of tumors in a negative way: for 

basic scientists this means that the genes are candidate tumor suppressors; for clinicians, 

detection of DNA methylation may provide a sensitive and specific, as well as high-through 

put and non-invasive way to screen for the presence of cancer in at-risk individuals (Jones 

and Baylin 2002; Belinsky 2004).  As a result, both basic and clinical scientists have 

developed methods to study, detect, and reverse DNA methylation. 

High through-put approaches to discovering novel DNA methylation markers such as 

restriction landmark genomic scanning, microarray gene expression profiling after 5-aza-2’-

deoxycytidine treatment, and ChIP-on-chip approaches have been employed in a variety of 

experimental contexts and have led to the discovery of several new methylation markers in 

recent years (Karpf, Peterson et al. 1999; Costello, Fruhwald et al. 2000; Suzuki, Gabrielson 

et al. 2002; Weber, Davies et al. 2005).  A major outcome of experiments using these high 

through put approaches is the realization that tumor acquired promoter hypermethylation 

may not be random, and that cancers may have a common underlying promoter methylation 
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profile (Esteller, Corn et al. 2001; Keshet, Schlesinger et al. 2006; Shames 2006).  However, 

like all high-content screening approaches, these methods are prone to certain biases, which 

may not be obvious in the initial study design.  Therefore, data from these experiments must 

be interpreted with caution and confirmed independently by other methods.   

Higher resolution methods, such sodium bisufilte pyrosequencing and quantitative 

methylation specific PCR, are gaining wider acceptance in the medical community as a 

promising method for early detection screening (Belinsky 2004).  For several types of cancer, 

and in particular lung cancer, early detection could substantially increase 5 year survival rates  

Several studies have been published that use a combination of markers to accurately predict 

outcome or the presence of clinically relevant neoplastic disease (Fackler, McVeigh et al. 

2004; Shivapurkar, Stastny et al. 2006).  Recently, the first prospective study using standard 

MSP on a cohort of at-risk individuals for lung cancer showed that combined analysis of 6 

markers, in particular p16, MGMT, RASSF1A, PAX5 ß, GATA5, and DAPK had both a 

sensitivity and specificity of 65% (Belinsky, Liechty et al. 2006).  These results are 

promising and future, larger studies perhaps using more markers and quantitative assays will 

help support the prospect of using DNA methylation as method for early detection screening. 

The detection of DNA methylation in clinical samples has other potential uses besides 

early detection screening.  Because PCR-based methylation assays are extremely sensitive, 

DNA methylation could be used to confirm tumor margins in surgically resected specimens 

(Goldenberg, Harden et al. 2004).  Additionally several recent articles have suggested that 

DNA methylation profiles could be useful in stratifying risk for breast cancer patients (Pu, 

Laitala et al. 2003; Fackler, Malone et al. 2006).  Other groups including ourselves are 
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currently investigating whether methylation profiles can be used to predict patient outcome 

and whether there are relationships between particular methylation profiles and tumor drug 

sensitivity.  These new directions in cancer epigenetics research require the application of 

global screening approaches and high-resolution methods and are important examples of how 

clinical and basic researchers will need to work together in the future.  

As a result of these advances, we will focus primarily on methods used in basic 

research to identify global patterns of CpG island methylation, and those with potential use in 

a clinical setting (Table 2-1).  For global methylation pattern recognition, several 

technologies including DNA and expression microarrays, CpG island microarrays, and ChIP-

on-chip will be discussed, whereas for high-resolution and quantitative analysis, quantitative 

methylation specific PCR and pyrosequencing will be discussed.  For a general overview of 

methods to detect DNA methylation we refer the reader to several excellent reviews 

(Costello, Smiraglia et al. 2002; Paz, Avila et al. 2002; Fackler, McVeigh et al. 2004; Curtis 

and Goggins 2005). 
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FINE MAPPING AND QUANTITATIVE ANALYSIS OF DNA METHYLATION 

Because of the stability of DNA in bodily fluids, there is great potential in using 

tumor-acquired DNA methylation as a marker for early detection screening.  Several  

methods have been described that quantitatively asses methylation at given CpG sites 

including sodium bisulfite conversion of DNA and direct sequencing, combined bisulfite 

restriction analysis (COBRA), methylation specific PCR, methylation-sensitive single-

nucleotide primer extension (Ms-SNuPE), and more recently MALDI-TOF and have been 

reviewed elsewhere (Paz, Avila et al. 2002; Ehrich, Nelson et al. 2005).  Here, we will focus 

on quantitative methylation specific PCR (QMSP) and pyrosequencing of bisulfite DNA, and 

discuss the interpretation of quantitative methylation data from clinical samples. 

The study of DNA methylation was greatly facilitated by the discovery that it was 

possible to convert unmethylated cytosine to uracil by reacting denatured DNA with a 

saturated solution of sodium bisulfite (Frommer, McDonald et al. 1992).  Methylcytosine is 

protected from conversion by aqueous sodium bisulfite.  The resultant DNA can then be 

analyzed using a variety of methods, including those mentioned below.  

The description of methylation specific PCR in the mid-90’s, opened up the 

possibility of using the power and sensitivity of the polymerase chain reaction in cancer 

epigenetics research (Herman, Graff et al. 1996).  In this method, PCR primers are designed 

to be complementary to completely methylated or completely unmethylated target DNA 

where methylated and unmethylated primer sets differ only in the CG position of the bisulfite 

converted primary sequence: methylated primer sets contain CG dinucleotides and 

unmethylated primers contain TG at these positions.  In the laboratory, this method has had a 
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tremendous impact on the efficiency of DNA methylation analysis as evidenced by the 

number of citations the original work has received (>1500; SCOPUS).  Qualitative MSP was 

used extensively in the studies described herein.  This method was adapted to screen for 

methylated genes in a 96 well format and has the advantages of being both sensitive and 

highly specific.  However, the limitation of MSP in terms of clinical applications is that it is 

not quantitative (see below).  To address this issue, a quantitative assay based on Taqman 

technology has been developed (Eads, Danenberg et al. 1999; Eads, Danenberg et al. 2000). 

Taqman technology uses fluorescence resonance energy transfer (FRET) to quantify 

Taq polymerase-based 5’ - 3’ exonuclease activity on DNA-primed, DNA substrates and is 

proportional to PCR based amplification of target DNA.  Sequence specific primers and an 

intervening probe are designed to cover an amplicon of approximately 100 bps in length.  

The probe is labeled with a fluorescent reporter dye on the 5’ end and a quencher on the 3’ 

end.  During sequence amplification in PCR, Taq exonuclease activity cleaves the 5’ 

sequence from the probe resulting in fluorescence.  Each round of PCR leads to an increase 

in fluorescence proportional to the amount of target present in the sample.  This method was 

first applied to methylation analysis by using Taqman probes as part of standard MSP where 

each sample is assayed in two separate reactions: one for methylated DNA and the other for 

unmethylated DNA (Eads, Danenberg et al. 1999; Eads, Danenberg et al. 2000).   More 

recently, two derivative approaches using this basic method have been described (Fackler, 

McVeigh et al. 2004; Shivapurkar, Takahashi et al. 2004; Suzuki, Toyooka et al. 2005). 

The newer methods are based on the same principle as the original, but they differ in 

their theoretical assumptions and practical applicability; in the first method, called 
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quantitative MSP (QMSP), only the methylated reaction is used in a single PCR and the 

resultant data yield information only on the number of completely methylated alleles of the 

target DNA, whereas in the alternative approach, called quantitative multiplex MSP (QM-

MSP), two rounds of PCR amplification are used to determine the relative percentage of 

completely methylated and completely unmethylated DNA in the sample.   

In QMSP, sodium bisulfite treated DNA is used as a substrate for amplification of the 

methylated target promoter and a reference sequence in separate reactions.  The reactions are 

set to a predetermined threshold based on standard curves using serially diluted, SssI-treated, 

sodium bisulfite DNA.  Derivative fluorescence data are converted to numbers using a 

predetermined standard curve, and the ratio of target promoter to a reference sequence (that 

does not contain CpG sites, for example, MYOD1) is calculated.  This number is an absolute 

value in fluorescence units and in theory reflects the normalized, methylated sequence 

content for a given marker in a given sample.  This number can range widely depending on 

the efficiency of the reaction and prevalence of methyl-CpG in the target sequence.  The 

reference sequence is used to normalize samples for DNA input, and also to determine the 

quality of bisulfite conversion (Shivapurkar, Stastny et al. 2005). 

In QM-MSP, two rounds of PCR are used and both methylated and unmethylated 

target promoter regions are analyzed.  In the first-round reaction, primers targeted to multiple 

regions of interest are multiplexed in a single reaction.  Then two separate quantitative 

reactions using primers and fluorescent probes specific to completely methylated and 

completely unmethylated sequences are performed for each marker.  The fluorescence data 

are then converted to percentages based on the amplification of both primer sets and are 
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additive such that the methylated sequence plus unmethylated sequence must equal 1 (U + M 

= 1).  In the first round reaction, primers flanking the target region are used to amplify the 

region of interest independent of CpG content – i.e. the primers should not include CGs and 

therefore should amplify target sequences equally (Fackler, McVeigh et al. 2004).  This 

requirement limits the available sequences that can be interrogated using this method. 

Careful quality control and calibration steps are necessary to optimize this reaction, as 

many variables, known and unknown, must be accounted for if the subsequent reaction is to 

be truly quantitative.  The primary purpose of this step is to provide a high quality substrate 

for the subsequent quantitative reaction.  In the next step, aliquots of PCR product from the 

first reaction are subjected to PCR amplification using fluorescent probes corresponding 

either to methylated or unmethylated alleles of the target sequence. 

Recently, an alternative locus-specific quantitative method was developed by 

adapting the pyrosequencing method of sequence analysis to bisulfite modified DNA 

(Colella, Shen et al. 2003).  Pyrosequencing was developed as an alternative to dideoxy 

sequencing and is based on the on the detection of pyrophosphate (PPi), which is liberated 

from incorporated nucleotides by DNA polymerase during strand elongation.  Free PPi 

molecules are converted to ATP by ATP sulfurylase, which provides the energy to luciferase 

to oxidize luciferin and generate light.  Nucleotides are added sequentially to enable base 

calling.  If the added base is not the proper Watson-Crick partner no luminescence is detected 

and the base is removed by washing in the solid-phase platform or enzymatically by apyrase 

in the liquid-phase reaction (Ronaghi 2001).   
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The major advantage of the pyrosequencing method compared to methylation specific 

PCR is that the data are actual sequences rather than fluorescence data from PCR based 

amplification.  This means that pyrosequencing can detect partially methylated sequences 

that are outside of the priming sites, whereas MSP can only detect sequences that are 

completely complimentary to the primer and probe sequences.  However, when the 

pyrosequencing method is applied to bisulfite treated DNA some special considerations need 

to be addressed that can affect assay reproducibility.  Bisulfite DNA, particularly in dense 

CpG islands, tends to be highly repetitive, with long homopolymeric tracts of thymines.  As 

with standard direct sequencing of bisulfite DNA,  the reliability of pyrosequencing over 

these regions is limited, and is unlikely quantitative after ~75 bps, depending on the region 

(Dupont, Tost et al. 2004).  As such, the further a particular CpG site is away from the 3’ end 

of the forward primer, the less reliable/quantitative the data will be.  Another drawback is 

that pyrosequencing requires dedicated equipment that is quite expensive. 

Whatever method is ultimately used, some general considerations on the biology and 

technical aspects of DNA methylation analysis need to be addressed prior to committing 

resources and precious biological samples.  These issues relate to the material under study 

and affect data interpretation.  In cell lines, the presence or absence of methylation for the 

most part is generally binary question because cell lines represent pure DNA samples.  This 

means that in the case of pyrosequencing, there should be a dominant base call at any given 

position, and a high fluorescence value or methylation percentage by QMSP and QM-MSP, 

respectively.   
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The situation is entirely different in clinical samples: the biological material available 

for use in a diagnostic setting such as a tissue biopsy, ductal lavage, blood, or sputum 

samples always contains a combination of tumor cells, stroma, leukocytes, lymphocytes, 

normal cells, and dead cells in any number of proportions.  Thus, if the region of interest is 

differentially methylated in any of these cell types other than the tumor cells, or there are 

different proportions of tumor cells in different samples, it is not always clear what is 

actually being quantified.  At the very least, this factor means that the selection of controls is 

especially important.  The standard control used for marker development is normal 

lymphocyte DNA because lymphocytes are present in nearly all tissue and samples.  

Therefore, if a marker is positive in lymphocytes, it cannot be used to differentiate tumor 

from normal.  For primary samples such as biopsy specimens, while not always practicably 

obtained, adjacent “normal” tissue is ideal.  However, if the distinction between tumor 

specific methylation and background signal has been independently and empirically 

determined for a given marker, these control samples are not necessarily required. 

There is one final caveat that warrants mention and distinguishes QMSP from QM-

MSP.  QMSP only measures the presence of completely methylated DNA sequences relative 

to a reference control, whereas QM-MSP measures both methylated and unmethylated 

sequences.  QM-MSP assumes that the only possible target sequences are either completely 

methylated or completely unmethylated and the standard curves used to calculate the final 

percentages are based on this model.  However, primary tumor material always contains 

different fractions of target sequence, some completely methylated, some completely 

unmethylated, and others harboring only partial methylation.  As the Taqman probe/primer 
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pairs are highly specific and are designed to amplify only cognate target sequences, how the 

partially methylated fraction interferes with the PCR and affects the final calculations is 

unclear and probably different for the two above described methods.  This means that in 

some cases the two methods yield different results, but both have been used successfully to 

discern cancer from normal in clinical samples (Fackler, McVeigh et al. 2004; Shivapurkar, 

Takahashi et al. 2004). 

The methods outlined above are robust and have been used to address a variety of 

questions related to altered DNA methylation.  While there are minor differences in the 

“quantitative” nature of these methods, as long as the key relationship between methylation 

and expression is kept in mind, and interpretation is based on independent empirical analysis 

for each marker, all three are probably valid.  Future studies will hopefully include head-to-

head comparisons of the three methods.    
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GLOBAL APPROACHES TO STUDYING DNA METHYLATION 

 The central focus of my thesis was to develop genome-wide information on gene 

methylation in lung cancer.  As part of this, I also wanted to detect methylated sites that 

correlated with altered gene expression.  Before discussing the methods I ultimately used, I 

discuss the methods that were available at the time I began this project.   

Recently Peter Jones and others in the cancer epigenetics field have called for an 

“epigenome project” wherein the chromatin profiles of a series of tumors and normal tissue 

will be examined on a large scale (Jones and Martienssen 2005).  Undoubtedly, novel, high-

through put methods will be developed to attack this problem, some of which may be based 

on current genome-wide approaches to studying methylation.  At present, global approaches 

to methylation analysis are high-throughput with regard to the number of loci that can be 

analyzed at one time, but they are all relatively expensive and labor intensive.  There are 

three distinct methods to study global (genome-wide) changes in promoter methylation and 

variety of alternatives that combine aspects of each: these include microarray expression 

profiling of cell lines before and after pharmacological inhibition of DNA methylation or 

inhibiting expression of the DNA methyltransferase enzymes by genetic disruption or RNAi; 

restriction landmark genomic scanning followed by gel electrophoresis or hybridization to a 

CpG island microarray; and finally immunoprecipitation of methylated DNA followed by 

array-based comparative genome hybridization (ChIP on chip) analysis (Suzuki, Gabrielson 

et al. 2002; Sato, Fukushima et al. 2003; Gius, Cui et al. 2004; Heisler, Torti et al. 2005; 

Weber, Davies et al. 2005; Smith, Lin et al. 2006).  Each of these methods has their 

advantages and disadvantages which will be discussed below. 
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MICROARRAY EXPRESSION PROFILING 

 Transcriptional profiling using high-density microarrays has become a standard 

method to identify broad biological differences between groups of samples, and has been 

used in a variety of experimental contexts.  Widespread application of microarray technology 

has led to the development of statistical approaches and algorithms that are now relatively 

standardized.  The relative merits of each approach are reviewed elsewhere (Allison, Cui et 

al. 2006). 

Several groups have used microarray expression profiling to identify novel 

methylation markers, and each has approached the experiments in slightly different ways 

(Suzuki, Gabrielson et al. 2002; Sato, Fukushima et al. 2003; Lodygin, Epanchintsev et al. 

2005).  Most study designs are based on the following scheme: cultured cancer cells are 

treated with 5-aza and then compared by RNA expression microarray both before and after 

drug treatment (Karpf, Peterson et al. 1999).  5-aza is a cytidine analogue that integrates into 

genomic DNA during cell division (Jones and Taylor 1980).  The reactive base binds 

irreversibly to the DNA methyltransferases and over a period of several days  effectively 

depletes the cells of methyltransferase activity, which eventually leads to DNA 

demethylation (Jones and Taylor 1980).  Unfortunately, 5-aza is highly toxic to cells, which 

can make data interpretation difficult.  Recently several other compounds that affect DNA 

methylation have been identified, however, none are anywhere near as potent as 5-aza with 

respect to DNA demethylation (Stresemann, Brueckner et al. 2006). 

One of the first studies to use the 5-aza expression profiling approach used membrane 

filter microarrays where radiolabeled cDNA is hybridized to a membrane that has a clone 
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library spotted onto it.  This method is less sensitive than newer platforms, but the authors 

employed an innovative subtractive hybridization step using pooled mock-treated cancer cell 

line cDNA as bait and then hybridized the eluted cDNA (thereby excluding expressed genes).  

In addition the authors combined trichostatin A with 5-aza to increase the induction affected 

genes.  The result of this landmark study was the discovery that multiple members of the 

secreted frizzled-related protein family – key members of the WNT signaling cascade – and 

are silenced by DNA methylation in a variety of tumors (Suzuki, Gabrielson et al. 2002).   

There are two other types of expression profiling microarray platforms in current use.  

One uses a single fluorophore such as biotin to label a single RNA sample, and the other uses 

two separate dyes, which emit at different wavelengths, to label two different samples of 

RNA – one test and one reference (the same reference is often used against all test samples in 

an experiment).  Both platforms have their advantages and disadvantages, but in the case of 

DNA methylation studies, the single color array platform is superior because analysis of the 

two color array platform data requires detection of signal in both Cy3 and Cy5 channels for a 

spot to be included in subsequent analyses.  Since genes that are methylated in untreated 

cancer cells do not express any RNA for that locus, only the reference dye will emit.  

Therefore, most studies use the single color method platform such as the Affymetrix 

Genechip platform. 

As mentioned above, 5-aza not only integrates into DNA, but also irreversibly binds 

protein to DNA.  It is both cytotoxic and genotoxic, and also likely affects critical metabolic 

pathways such as folate metabolism and nucleotide synthetic pathways (Stresemann, 

Brueckner et al. 2006).  This means that microarray experiments comparing gene expression 
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changes before and after treatment with this drug need to be interpreted carefully; it is 

absolutely critical to perform biological replicates using the cancer cell lines before and after 

treatment with 5-aza, and preferably using a least two different doses of drug.  It is important 

to validate the results of the screens at both the level of gene expression (quantitative PCR) 

and promoter methylation (MSP or bisulfite sequencing). 

   A further consideration is that it is not entirely clear that the most popular statistical 

algorithms used to identify differentially expressed genes such as Significance Analysis of 

Microarrays (SAM) and cluster analysis are suitable for DNA methylation studies that 

employ transcriptional profiling.  Primarily this is because in a standard comparison between 

control and 5-aza treated cancer cell lines, a “differentially expressed gene” is an unlikely 

methylation candidate.  For methylation studies, interesting genes are those that are not 

expressed in untreated controls but that are induced by 5-aza treatment; genes that are 

expressed in both controls and treated cells even if they go up after treatment or alternatively 

those that go down after treatment are interesting, but their relationship to promoter 

methylation is likely indirect.  Therefore, rote application of parametric algorithms in this 

context is imprudent as they exclude many genes from the “significant gene” list because 

they are not expressed in most of the samples.  One solution to this problem, which I 

developed in this thesis, is to include controls such as immortalized cell lines that express 

tumor suppressor genes to properly balance the analysis (Shames 2006). 
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RESTRICTION LANDMARK GENOMIC SCANNING FOLLOWED BY 2D GEL 

ELECTROPHORESIS OR CPG ISLAND MICROARRAY 

One of the major pitfalls of using 5-aza to screen cells for methylated genes is that 5-

aza alters the expression of many genes, and thus, microarray expression profiling 

experiments do not evaluate methylation per se; rather they identify genes that respond to 5-

aza treatment.  The importance of this difference is highlighted in several studies where 

nearly half the genes induced by 5-aza do not have CpG islands (Suzuki, Gabrielson et al. 

2002; Sato, Fukushima et al. 2003).  To look at methylation directly, some groups have 

employed a method called restriction landmark genomic scanning (RLGS) (Costello, 

Fruhwald et al. 2000; Costello, Smiraglia et al. 2002; Smith, Lin et al. 2006).  In this method 

genomic DNA from paired samples – ideally from DNA isolated from cancerous and 

adjacent normal tissue from the same organ in the same patient, however as this method 

requires a significant amount of high-quality DNA, usually it is performed on unmatched cell 

lines – is first digested with a six base cutter restriction enzyme that is sensitive to the 

presence of methyl-cytosine (does not cut methyl-cytosine), such as NotI.  

After digestion, the DNA is labeled with dCTP32 and dGTP32, and cut again with 

another six-base cutter.  Since each fragment will contain one molecule each of dCTP and 

dGTP the method is theoretically quantitative, and the sequential restriction digestions yields 

a product that can be resolved by agarose gel in the first dimension.  After a suitable time, 

another, more frequent cutting restriction enzyme is used to cut the DNA in situ, then the 

DNA is transferred to polyacrylamide gel, turned by 90° and run perpendicular to the 

previous direction.   
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Once the gels from the two samples have been resolved in both dimensions, they are 

compared to identify spots that are present in the normal sample, but not in the cancer.  These 

fragments may represent aberrantly methylated sites, since NotI does not cut methyl-CpG.  

Using this approach identifies only those CpG islands that contain NotI sites, which has been 

estimated at approximately 10% of CpG islands in the human genome –based on an estimate 

of approximately 45,000 CpG islands which 10-fold lower than the present estimate 

(Smiraglia and Plass 2002).  To increase coverage various approaches have been used 

including clone libraries, and different combinations of enzymes.  Recently bioinformatic 

algorithms have been designed to create virtual 2D gel maps of RLGS screens enabling easy 

identification of differentially staining positions on a gel.   

Whatever method is used to discriminate novel methylated sites, the fragment still 

needs to be cloned out of the gel, which can be tedious.  Thus while RLGS is more specific 

with respect to the identification of tumor specific methylation differences than the 5-aza 

induction approach described in the previous section, there are several disadvantages that 

make this method more difficult.  First, the samples need to be of high quality and relatively 

abundant, detection is limited to the diversity of the clone library, and distinguishing bands 

need to be cloned and sequenced.  Furthermore, less than half of the NotI clones in these 

libraries represent gene loci, and while tumor-specific differences in methylation of these 

sites is interesting in general, their biological relevance is still controversial (Costello, 

Fruhwald et al. 2000).  Therefore, for each NotI clone that associates with a given gene, the 

relationship that between methylation and expression needs to be demonstrated 

independently. 
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In an adaptation of this method, restriction digested DNA can be analyzed by CpG 

island microarray (Heisler, Torti et al. 2005).  To use this method, differentially digested 

DNA fragments are labeled with Cy3 or Cy5 and hybridized to microarrays using DNA from 

the methylation insensitive restriction digestion as reference and the methylation sensitive 

digestion as the test set.  Differential fluorescence indicates the presence or absence of 

methylated CpG islands. 
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CHIP ON CHIP 

Recently a novel approach, based on chromatin immunoprecipitation analysis,  called 

methylated DNA immunoprecipitation (MeDIP) was developed to tackle the two main 

problems associated with the methods described above: specificity in the case of microarray 

expression profiling, and sensitivity in the case of RLGS (Weber, Davies et al. 2005; Keshet, 

Schlesinger et al. 2006).  In this method, sonicated or restriction digested genomic DNA is 

immunoprecipitated using a monoclonal antibody to 5-methylcytosine.  The 

immunoprecipitated DNA is then labeled and hybridized to a DNA microarray spotted with 

probes corresponding to particular regions of interest (such as CpG island libraries), 

promoter arrays, or a whole genome tiling arrays (Bernstein, Mikkelsen et al. 2006; Keshet, 

Schlesinger et al. 2006; Lee, Jenner et al. 2006).   

Whole genome tiling arrays are generally of the two-color variety, but instead of 

labeling one RNA sample with Cy3 and the other with Cy5, DNA is used instead.  The 

detection method is the same as in the RNA profiling system in that spots enriched for one or 

the other sample will excite more in the Cy3 or Cy5 channel, respectively.  Analysis of CGH 

microarray data has different analytical hurdles to deal with than RNA microarrays in that 

positional informational must be integrated into the gain or loss of signal.  Unlike RNA 

microarrays, probes are generally “tiled” over a particular locus so each probe overlaps with 

adjacent probes.  This means that data from adjacent probes can be used to average copy 

number differences over a particular region, which works as an important internal control of 

data quality.  CGH data are relatively ‘noisy’ in that local gains and losses can appear to be 

large by differential fluorescence intensity on a particular spot, but that are also 
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discontinuous and thus likely spurious.  Therefore, researchers apply “smoothing” algorithms 

that combine data from several adjacent probes resulting in a kind of moving average along 

the chromosome for regional gains and losses.   

When a whole genome-tiling array is used with meDIP, the reference sample is an 

aliquot of input DNA and the test sample is the immunoprecipitated portion of the sample.  

Methylated sequences are detected by comparing the fluorescent signal for each probe 

corresponding to known genomic sequences for input and test samples.  Loci that are 

enriched in the test sample are potential methylation candidates.  In theory, the MeDIP 

method circumvents the specificity problems associated with 5-aza expression profiling 

experiments and the sensitivity issues found in RLGS because it selects sequences by a 

specific antibody first, but can still detect any sequence in the genome.  However, it is likely 

that the DNA shearing or cleaving and immunoprecipitation steps need to be optimized for 

different cell types similar to conventional chromatin immunoprecipitation experiments 

making this assay difficult to perform on many samples.  Moreover, this step probably 

introduces bias toward certain types of sequences in the genome where there is a high density 

of CpG sites, while it is unclear whether CpG site density per se correlates with tumor-

specific promoter methylation.  

For RLGS, CpG island microarrays, and meDIP, the relationship between 

methylation and expression needs to be established after the initial screen.  It is not sufficient 

to assume that tumor specific methylation always correlates with expression.  All of the 

above-described methods are designed to identify novel methylation targets, and provide the 

first step in developing clinically relevant markers for early detection screening, but all have 
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their limitations.  Researchers using any of these methods must balance the likelihood 

discovering false positives and making the screen too stringent to detect important 

methylation targets; importantly, these decisions should be fixed firmly in biology, as well as 

statistics.  As with all high throughput methods in molecular biology, confirmation and 

validation of positive hits from screening procedures are essential. 
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SUMMARY 

After more than 20 years of research, it is now clear that altered patterns of DNA 

methylation involving both genome wide loss of methylation and locus specific 

hypermethylation are essential events to cellular transformation (Jones and Taylor 1980; 

Feinberg and Vogelstein 1983; Baylin and Ohm 2006).  Led by innovative technology 

developments in diverse fields, epigenetics research has entered a new era of discovery and 

has become central to our understanding cancer biology.  The study of these changes has 

evolved from a candidate gene approach where single alterations in DNA methylation 

content at promoter regions were thought to result from a random process, to global 

epigenetic profiles that are beginning to be understood in the context of cancer cell 

physiology and homeostasis.  Undoubtedly, the next series of global profiling studies will 

include combined analyses of both methylation and expression microarrays.  Hopefully these 

types of studies will shed some light on how aberrant DNA methylation is initiated in the 

early stages of carcinogenesis, and whether there are common sequence motifs or protein 

binding elements that coincide with common regions of hyper- or hypomethylation.  

Development and refinement of these findings hold great promise for our understanding of 

the basic science of cancer, as well as providing a platform for its early detection and 

treatment. 
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CHAPTER THREE 

 

MATERIALS AND METHODS 

 

MICROARRAY ANALYSIS AND BIOINFORMATICS 

RNA quality and microarray analysis.  The quality of total RNA was analyzed by 

formaldehyde gel and/or by capillary electrophoresis on the Experion System (Bio-Rad).  

Total RNA was labeled and amplified by our genomics core facility, according to 

manufacturer’s instructions (http://www.affymetrix.com).  cRNA was re-analyzed after 

labeling to ensure optimal amplification.  cRNA was hybridized to U133 Plus 2.0 (~47000 

transcripts) or U133A (~18400 transcripts) (Affymetrix, Santa Clara, CA), and scanned by 

our microarray core facility (http://microarray.swmed.edu/).  RNA for other lung cancer 

samples were obtained as part of collaborations with William Gerald at Memorial Sloan-

Kettering Cancer Center (New York dataset) and Chi-Leung Lam and Maria Wong at the 

University of Hong Kong.  All samples were collected with appropriate consent and internal 

review board approval.  Expression analysis of microarray data was performed using several 

algorithms: Robust Multichip Averaging  (RMA) (Bolstad, Irizarry et al. 2003; Irizarry, 

Bolstad et al. 2003), Microarray Analysis Suite 5.0 (Affymetrix), MATRIX 1.29 (Girard et 

al., 2006, see below) NIH-DAVID (Dennis, Sherman et al. 2003), Cluster, and TreeView 

(Eisen, Spellman et al. 1998). 

After scanning, arrays were checked for quality using GCOS and then normalized to each 

using either RMA or MATRIX 1.29.  For log ratio calculations using MAS5 normalization 
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(MATRIX 1.29), the only requirement was that the numerator be present (p-value < 0.065).  

Data were then logged and renormalized.  For RMA normalization, all data were compiled 

using RMA Express, or RMA through R or BRBArrayTools. 

MATRIX (MicroArray TRansformation In eXcel) is a Microsoft Visual Basic program that 

allows import of multiple CHP files (saved as text file format) from Affymetrix MicroArray 

Suite 5.0 into an Excel spreadsheet where median normalization, comparison of arrays using 

log ratios and t-tests, color display and hierarchical clustering can be performed.  

Specifically, expression signals are first log2-transformed and a color-coded such that higher 

signals are displayed as darker (blue) colors.  Absent (high detection p-value) signals are 

optionally coded separately on a gray scale.  For comparison of samples or classes of 

samples, log2 ratios (i.e. difference of log2-transformed signals) are calculated.  If samples 

are compared, the stronger signals must have a present call (detection p-value < 0.05).  If 

classes of samples are compared (as log ratios of the means), the median of the detection p-

values for the class with the highest mean expression value must be less than 0.05.  Two-

sample t-tests are further calculated to filter out univariate non-significant differential 

expression.  Hierarchical clustering is performed using average linkage with a Pearson 

correlation metric.  All analyses are performed using extensive gene annotation and all 

probes are BLAST-verified.  MATRIX has not been released, as it is still under development.  

While this program was used extensively in these studies, all analyses were reproduced using 

publicly available software.  Please contact Luc Girard (Luc.Girard@utsouthwestern.edu) for 

further details. 
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Statistical methods.  For CpG island enrichment analysis, intersect tables between the 

relevant RefSeq gene lists and CpG island annotations were generated using the Table 

Browser function at the Genome Broswer database (http://genome.ucsc.edu/cgi-

bin/hgTables?org=Human&db=hg17&hgsid=73574615&hgta_doMainPage=1).  Statistical 

significance for the resultant data was determined using the χ2 method where the expected 

value for 5’ CpG islands for RefSeq annotations was ~37% based on the May 2006 genome 

build. 

Statistical analysis for the primary tumor gene expression data was based on the significance 

analysis of microarray algorithm (SAM) implemented through BRB ArrayTools developed 

by Dr. Richard Simon and Amy Peng Lam.  Statistical significance of the methylation data 

was determined using the χ2 method where appropriate. 

Correlations between array and QPCR data were determined using the Pearson correlation 

coefficient.  Cluster analysis was performed using Cluster and Treeview either through BRB 

ArrayTools or directly.  Agreement analysis for biological replicate array data was performed 

as follows: Affymetrix U133 Plus 2.0 .cel files were normalized using RMA implemented 

through the "Affy" R package (version 1.8.1) from Bioconductor 

(http://www.bioconductor.org/packages/bioc/1.7/src/contrib/html).  To evaluate the 

consistency of the most differentially expressed genes from biological replicate experiments, 

we considered a gene to be in agreement if in both experiments, the gene was up or down 

regulated in the same direction compared to control.  The agreement analysis consists of the 

following steps: 1) calculate log2 (expression value of the treated cell/expression value of the 

control cell of RMA normalized data) for each cell line in each experiment; 2) select the top 
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1000 or 2000 up or down regulated genes from each experiment; 3) extract genes that were 

common between the replicate experiments (union gene set) – genes that were in the top or 

bottom 1000 or 2000 genes in both experiments; 4) calculate the proportion of genes in 

common for each union data set, which yields a point estimate for the proportion of 

agreement: (# of pairs that move in the same direction)/(# of pairs in the union set); 5) for 

each data set obtain 5,000 bootstrap samples drawn with replacement from the original 

dataset; 6) calculate the median and 95% confidence interval (2.5% and 97.5%) for the 

agreement proportion (Efron and Tibshirani 2002). The total number of genes and ESTs on 

the array is 54,675.  

Enrichment analysis for gene ontology and chromosomal location was performed using NIH-

DAVID (http://david.abcc.ncifcrf.gov/home.jsp), using text files containing accession 

number lists of Affymetrix probe IDs or Genbank accession numbers.  Statistical enrichment 

was determined using a Fisher Exact test where the null hypothesis is that no difference 

exists between the number of genes falling into a given ontology in the input list than there is 

in the genome as a whole (Dennis, Sherman et al. 2003). 

Normalization: Normalizations were performed using Robust Multichip Averaging  (RMA) 

(Bolstad, Irizarry et al. 2003; Irizarry, Bolstad et al. 2003), Microarray Analysis Suite 5.0 

(MAS5) (Affymetrix), MATRIX 1.29 (Girard et al., 2006).  RMA normalizations were used 

prior to cluster analyses as well as some “fold-change” analyses.  This is because RMA 

normalized data tends to be smoother than MAS5 normalized data (Irizarry, Bolstad et al. 

2003).  The RMA algorithm is available online at 

http://www.stat.berkeley.edu/~bolstad/RMAExpress/RMAExpress.html.  
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Gene selection: Genes were selected on the basis of their expression patterns in the different 

cell types before and after 5-aza treatment normally using Microsoft Excel formulas and 

macros.  Different combinations of criteria were used for different analyses and are indicated 

in the data tables and figures.  Examples of freeware packages used in these studies include 

EASE, BRB ArrayTools developed by Dr. Richard Simon and Amy Peng Lam, Cluster, and 

TreeView (Eisen, Spellman et al. 1998), which are all available online.  The primary array 

analysis software package (MATRIX 1.29) that was used in these studies was developed by 

Luc Girard.  This program imports multiple .cel files (saved as text files) from MAS 5.0 into 

an Excel spreadsheet, and performs various analyses: mean and median normalization, 

grouping, comparison of arrays using log ratios, scatter plots, scaled coloring, hierarchical 

clustering, etc. 

CpG island analysis:  A useful website for CpG island analysis and gene associations may 

be found at http://www.charite.de/ch/medgen/cpg/.  To determine whether 5-aza induced 

gene lists were enriched for genes associated with CpG islands, intersections of the RefSeq 

annotations and CpG island positional databases were performed using the Genome Browser 

Table website (http://genome.ucsc.edu/cgi-

bin/hgTables?org=Human&db=hg17&hgsid=73574615&hgta_doMainPage=1).  Primary 

databases comprising different annotation lists derived from microarray analysis were 

uploaded into Genome Browser and converted into custom tracks.  Then each reference 

database was intersected with the CpG island positional annotation track within the 

“regulation and expression” group.  The basic procedure for this is as follows: 
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1. From the Table Browser select the refGene table; set the position to genome, and upload 

the identifier list. 

2. Select custom track output; select the "Create 1 BED record per 5' UTR Exons" option, 

and load the track into the Table Browser. 

3. Select the custom track; then intersect it with the cpgIslandExt table. 

4. Output the intersection as BED or custom track. 

5.  Copy and paste BED file into notepad and save. 

6.  Import data into Excel using “delimited” option; click next; leave tab delimiter and click 

other and add an underscore. 

7.  Concatenate “NM” column with identifier adding an underscore in between. 

The statistical significance of gene associated CpG islands was performed using a 2x2 Chi-

square where the expected association of a 5’ CpG island with a RefSeq annotation is ~37% 

based on the May 2006 genome build (See Chapter 6 for more details). 

Analysis of the distribution of CpG islands in the genome was performed using the UCSC 

Table Browser  (http://genome.ucsc.edu/cgi-

bin/hgTables?org=Human&db=hg17&hgsid=73574615&hgta_doMainPage=1and rendered 

on the genome using Vega http://vega.sanger.ac.uk/Homo_sapiens/karyoview .   

Statistical methods for agreement analysis.  Data from Affymetrix U133 Plus 2.0 .cel files 

were normalized using RMA implemented through the “Affy” R package (version 1.8.1) 

from Bioconductor (http://www.bioconductor.org/packages/bioc/1.7/src/contrib/html).  To 

evaluate the consistency of the most differentially expressed genes from biological replicate 

experiments, we considered a gene to be in agreement if in both experiments the gene was up 
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or down regulated in the same direction compared to control.  The agreement analysis 

consists of the following steps: (i) calculate log2 (expression value of the treated 

cell/expression value of the control cell) for each cell line in each experiment; (ii) select top 

1000 or 2000 up or down regulated genes; get union set of the two experiments for each cell 

line between the top 1000 or 2000 up or down gene set; (iii) calculate the proportion of 

agreement genes for each union data set, which yields a point estimate of agreement 

proportion; (iv) for each data set obtain 5,000 bootstrap samples (re-sampling labels of the 

genes), calculate the median and 95% confidence intervals (2.5% and 97.5%) for the 

agreement proportion.  Bootstrap data points are a random sample of size N (same length as 

the original data) drawn with replacement from the population of n objects (Efron and 

Tibshirani 2002).  

Useful bioinformatics portals  -  

Skip Garner’s webiste at UTSW - http://innovation.swmed.edu/research/res_inf.html  

Several links to array analysis tools and gene databases - 

http://www.biotech.ufl.edu/WorkshopsCourses/bioinfoWorkshops/bioinfoTools/bioinfoTools

.html 

“R” statistical package website - http://www.r-project.org/ 

Freeware for QPCR primer design - https://www.genscript.com/ssl-bin/app/primer 

Portal for all kinds of useful websites - 

http://www.bioinformatics.vg/biolinks/bioinformatics/PCR%2520and%2520Primer%2520De

sign.shtml 
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LAB PROTOCOLS 

Cell lines and 5-aza-2’-deoxycytidine treatment.  With the exception of A549, HCT116, 

SKBR3, ZR-75-1, and MCF7, which were purchased from the American Type Culture 

Collection (ATCC), all tumor cell lines were established by us and are deposited at the 

ATCC, or are available upon request (Phelps, Johnson et al. 1996; Gazdar, Kurvari et al. 

1998).  All cancer cell lines were grown in RPMI-1640 medium (Life Technologies Inc., 

Rockville, MD) supplemented with 10% fetal bovine serum.  Immortalized human bronchial 

epithelial cells (HBECs) were established by us (Ramirez, Sheridan et al. 2004).  In the 

present study, unless otherwise indicated, HBEC cells ectopically express murine cdk4 and 

hTERT.  HBEC cell lines were grown in KSFM medium supplemented with bovine pituitary 

extract and recombinant human epidermal growth factor (Gibco, Carlsbad, CA).  All cell 

lines were grown in a humidified atmosphere with 5% CO2, at 37°C.  A 50 mM stock 

solution of 5-aza-2’-deoxycytidine (5-aza) (Sigma, St. Louis, MO) was prepared in 

dimethylsufoxide (DMSO) and kept at -80°C until used.  Working dilutions were prepared 

from aliquots using DMSO prior to each treatment.  Cell lines were incubated in culture 

medium with 100 nM or 1 μM 5-aza for 6 days, with medium changes on days 1, 3, and 5.  

Cells were harvested and total RNA extracted on day 6 using Trizol (Invitrogen, Carlsbad, 

CA). 

Primary Tumors – Primary, resected, non-small cell lung carcinomas and corresponding 

normal lung tissue DNA was extracted as previously described (Zochbauer-Muller, Fong et 

al. 2001).  20 primary lung tumor samples and corresponding nonmalignant lung were 

randomly selected from a larger panel (n = 107) obtained from NSCLC patients who had 
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been treated with curative resectional surgery in The Prince Charles Hospital (Brisbane, 

Australia) between June 1990 and March 1993.  This cohort of patients has been investigated 

previously for various genetic abnormalities (Fong, Zimmerman et al. 1994; Fong, Kida et al. 

1995; Fong, Schonrock et al. 1995; Fong, Zimmerman et al. 1995; Fong, Zimmerman et al. 

1995).  There were 76 males and 31 females (age, 28–81 years; mean age at diagnosis, 61 

years).  Sixty-one patients had stage I disease, 21 patients had stage II disease, 24 patients 

had stage IIIA disease, and 1 patient had stage IIIB disease.  Histological subtypes included 

45 adenocarcinomas, 43 squamous cell carcinomas, 11 adenosquamous carcinomas, 4 large 

cell carcinomas, 3 atypical carcinoids, and 1 typical carcinoid.  Ninety-eight patients were 

smokers (mean pack-years, 31), and the rest of patients were never smokers or nonsmokers.  

Survival data of 5 or more years were available on most patients.  Breast tumor DNA from 

the University of North Carolina, the University of Chicago, and Thomas Jefferson 

University was prepared as previously described (Usary, Llaca et al. 2004).  All samples 

were collected with internal review board approval.  Breast sample collection from UT 

Southwestern was approved by the Institutional Review Board at UT Southwestern Medical 

Center and written informed consent was documented for each subject.  Random periareolar 

fine needle aspiration (FNA) was performed as previously described except that the FNA 

sample was fixed in Preservcyt (Cytyc Corporation, Marlborough, MA) (Lewis, Cler et al. 

2005).  DNA was extracted using the Puregene kit (Gentra Systems, Inc., Minneapolis, MN).  

All samples in this set were obtained from patients diagnosed with ≤ stage IIb breast cancer.  

Benign and malignant prostate and colon DNAs were obtained through the University of 

Texas Southwestern Tissue Resource (UTSTR) overseen by the University of Texas 
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Southwestern Medical Center Institutional Review Board.  Tissues were retrieved from the 

operating room and samples were snap frozen in liquid nitrogen within 30 minutes off of 

blood supply.  The samples were stored at -80 C until the DNA was isolated using the Qiagen 

DNA Isolation Kit (cat # 51306).  The final DNA product was stored in TE buffer at -80 C 

until retrieved for sodium bisulfite modification.  All DNAs in this group of samples were 

obtained from patients with stage 2 or 3 malignancies. 

Sodium Bisulfite Treatment, Sequencing, and Methylation Specific PCR.  Sodium 

bisulfite treatment for the UTSW breast FNAs were performed as previously described, using 

yeast tRNA as a carrier (Clark, Harrison et al. 1994).  Sodium bisulfite modification of 

genomic DNA for the remaining samples and methylation specific PCR were performed as 

reported by Herman et al. with some modification to increase through-put (Herman, Graff et 

al. 1996).  We modified the protocol to work in 96-well format as follows: 2 μg of genomic 

DNA was subjected to sodium bisulfite treatment as before except that samples were 

incubated in deep-well (1 ml) 96-well plates using a silicon seal (Nunc, Rochester, NY), and 

reagent concentrations were modified to allow the use of a repeat pipettor (Epindorf, 

Hamburg, Germany).  An equal volume of membrane binding solution (Promega, Madison, 

WI) or 4M guanidine isothiocyanate (Sigma) was added to the bisulfite reaction after 16 hrs 

at 50˚C.  The mixture from each well was transferred into the same well on a binding plate 

held in a 96-well vacuum manifold and the mixture was evacuated.  Bound DNA was washed 

3 times with 80% isopropanol, then desulfonated in situ with 100 μl of 0.2N NaOH for 10 

minutes at room temperature.  100 μl of membrane binding solution or 4M guanidine 

isothiocyanate was added, then evacuated.  The desulfonated, bisulfite DNA was washed 2 
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more times in 80% isopropanol, and kept under vacuum for 4 minutes after the last wash to 

dry the membrane.  DNA was eluted into a collection plate with 100 μl of warm (~65°C) 

nuclease free water and further diluted to 250ul before analysis. 

Methylation specific PCR primers were designed in part by using MethPrimer, however 

substantial modification was necessary in most cases (Li and Dahiya 2002).  45 of the 132 

gene 5-aza induction panel were selected for methylation analysis because this number 

enabled accommodation to a 96-well plate format including 2 control sequences (TKTL1 and 

GAPDH; total 94 primer sets), and two blank wells for negative controls.  We ensured that 

the MSP primers targeted a region within 250 bps of the annotated transcription start site, 

where possible (UCSC Genome Browser and RefSeq), and that they contained ≥3 CpG sites 

per primer (most contained ≥4), had a 3’-proximal CpG site, and had predicted annealing 

temperature of ≥55°C.  PCR conditions and primer sequences may be found in 

(Supplementary Methods I).  Primers were purchased from (Integrated DNA Technologies, 

Coralville, IA) in 96-well format and diluted to 1 μM.  2 μl of mixed primers were added to 

the corresponding well on a pre-aliquoted 96-well PCR plates (Invitrogen).  PCR plate set up 

was based on Tm (Fig. 3-1). 2 μl of diluted bisulfite DNA was added to each well.  PCR 

products were resolved by electrophoresis using 3% agarose in TBE and ethidium bromide.  

Gels were visualized using a Kodak (Rochester, NY) CCD camera and images were collated 

using Adobe Photoshop CS2 (San Jose, CA).  Several controls gels were performed using 

different combinations of bisulfite DNA, agarose, and running buffers to ensure that the 

resolving power of the gel was sufficient to identify the appropriately sized bands from 

primer dimers, which did appear when no amplicon was present.  We were unable to 
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differentiate bands from background for amplicons <90 bps using our final conditions, which 

precluded use of GAPDH as a control. An optically visible band of the appropriate size was 

called positive for each primer pair. 

Sodium bisulfite sequencing was performed using TA cloning (Invitrogen) as described 

previously (Janowski, Huffman et al. 2005).  Sequencing data was compiled and rendered 

into lollipop diagrams using BiQ Analyzer software (Bock, Reither et al. 2005). 

Real-time RT-PCR.  Expression of LOX, NRCAM, BNC1, CCNA1, MAF, ALDH1A3, CTSZ, 

IRX4, MSX1, KLF11, SERPINB5, TKTL1, GAPDH, r18s, and CDKN2A was analyzed by 

quantitative real-time RT-PCR.  Primers and probes were purchased from Applied 

Biosystems assay-on-demand, with the exception of p16, which was an assay-by-design 

(Hs00923893_m1) (ABI, Foster City, CA).  All samples were run on the Chromo 4 Real 

Time Detector (MJ Research, Bio-Rad, Hercules, CA) twice, each time in duplicate.  We 

averaged expression of GAPDH and r18s as internal reference genes to normalize input 

cDNA.  Quantitative real-time RT-PCR was performed in a reaction volume of 20 µl 

including 1 µl of cDNA.  We used the comparative Ct method to compute relative expression 

values. 

Comparative Genome Hybridization Array (aCGH) – Cell line DNA was isolated using a 

phenol/chloroform extraction and ethanol precipitation.  Each cell line was fingerprinted 

prior to analysis.  aCGH were performed as previously reported (Pollack, Perou et al. 1999; 

Ramirez, Sheridan et al. 2004). 

Preparation and transfection of siRNAs.  siRNAs targeting DNMT1 were designed and 

prepared as described previously (Elbashir, Harborth et al. 2001).  The two siRNA sequences 
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against DNMT1 were 5’-CGGUGCUCAUGCUUACAACTT-3’ (sense) and 5’-

GUUGUAAGCAUGAGCACCGTT-3’ (anti-sense), and 5’-

CGAGUUGCUAGACCGCUUCTT-3’ (sense) and 5’-GAAGCGGUCUAGCAACUCGTT-

3’ (anti-sense).  The siRNA sequences against the human T cell leukemia virus gene (Tax) 

and Lamin A/C were as previously reported (Elbashir, Harborth et al. 2001; Verma, Surabhi 

et al. 2003).  The siRNA target sequences were tested in a BLAST search of GenBank (NCBI 

database) to ensure that only the corresponding gene is the target.  RNA oligonucleotides 

were obtained from the core facility in University of Texas Southwestern Medical Center 

(see http://cbi.swmed.edu/pages/oligonet_index.htm for details).  The sense and antisense 

oligonucleotides were annealed to make siRNA (Tuschl 2001) and stored at -20°C before 

use.  One day prior to transfection, cells were seeded such that they were 30-50% confluent 

the next day.  Cells were transfected with 100 nM of siRNA using Oligofectamine 

transfection reagent (Invitrogen, CA) in Opti-MEM I reduced serum medium (Invitrogen) at 

37˚C in a 5% CO2 atmosphere for 6 h.  The medium was removed and replaced with fresh 

RPMI supplemented with 5% fetal bovine serum.  Control cells were treated with 

Oligofectamine alone or with Tax and Lamin A/C siRNA.  Transfection was repeated at 2, 4, 

and 6 days for a total of 4 treatments.  Cells were grown and harvested at 3, 5, 7, 9, 14, and 

23 days after the initial transfection for further analysis. 

Western blot analysis.  Cells were grown and harvested at 80-90% confluency, and cellular 

proteins were extracted with lysis buffer (40 mM Hepes-NaOH, pH 7.4, 1% Nonidet P-40, 

0.5% sodium deoxycholate, 0.1% SDS, 150 mM NaCl) containing Complete Mini, a cocktail 

of protease inhibitors (Roche, IN).  Total protein was electrophoresed on 
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SDS/polyacrylamine gel and transferred to nitrocellulose membranes (Schleicher & Schuell, 

NH).  After blocking with 5% nonfat dry milk and 0.1% Tween 20 in Tris-buffered saline, 

membranes were incubated with the mouse monoclonal anti-DNMT1 (IMGENEX, CA), the 

rabbit polyclonal anti-DNMT3B (a kind gift from Dr. A. Robert MacLeod), the rabbit 

monoclonal anti-p16ink4A (Santa Cruz, CA), or the mouse monoclonal anti-Actin (Sigma, 

MO) antibodies.  The membranes then were developed with peroxydase-labeled antibodies 

(Amersham Pharmacia, NJ) by Super Signal chemiluminescence substrate (Pierce, IL).  

Actin protein levels were used as a control for equal protein loading. 

Cell fractionation:  Frozen cell pellets were resuspended in 4 volumes of hypotonic buffer 

(10mM Hepes-KOH, 1.5mM MgCl2, 10mM KCl, 0.5mM DTT (dithiothreitol), 0.2mM 

PMSF (phenylmethylsulfonyl fluoride), 50 mM NaF, 1 mM Na Orthovanadate, 0.5mM Β-

glycerophosphate, H20, 1 tablet of complete mini protease inhibitor (- EDTA)), and 

incubated on ice for 10 minutes, vortexing on low speed every 2 mins.  Cell suspensions 

were then pelleted by centrifugation at 14000 rpm for 30s on a bench top centrifuge.  

Supernatant was removed and snap frozen for the cytoplasmic fraction.  Pelleted nuclei were 

lysed in 4-6 volumes of SDS lysis buffer (50mM NaCl, 1mM EDTA, 2.5mM Tris pH 7.4, 

0.1% SDS, 1% NP40, dH20) and incubated on ice for 15-20 minutes.  Lysates were then 

centrifuged for 30 minutes at 4°C at 12000g. 

Soft agar-growth assay.  Cells were transfected with siRNAs for a total of 4 treatments, and 

7 days after the initial transfection, cells were replated for soft agar-growth assay.  Briefly, 

300 viable cells were suspended and plated in 0.33% agar in RPMI-1640 medium (Life 

Technologies Inc.) supplemented with 20% fetal bovine serum and layered over a 0.50% 
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agar base medium in 12 well plates.  After 2 weeks, the number of colonies >100 cells were 

counted in triplicate plates. 

Microtiter growth assay:  Cell growth was assayed by MTT or MTS (CellTiter 96® 

AQueous One Solution Cell Proliferation Assay, Promega) assays according the 

manufacturer’s instructions.  Cells were plated 24 hrs prior to addition of drug.  Absorbance 

measurements were determined at 570nm for MTT and 490 nm for MTS 96 hrs after addition 

of drug.  Assays were performed in duplicate 96 well plates until a minimum of three plates 

produced a standard deviation smaller than the mean. 

Quantitative methylation-specific PCR (MSP) Assay.  Genomic DNA was obtained from 

cell lines by digestion with proteinase K (Life Technologies), followed by phenol/chloroform 

(1:1) extraction.  One μg of genomic DNA was denatured with 2N NaOH and modified with 

Sodium bisulfite, as previously described (Herman, Graff et al. 1996).  The modified DNA 

was purified using the Wizard DNA purification kit (Promega, Madison, WI), treated with 

3N NaOH, and precipitated with ethanol and resuspended in water.  Sodium bisulfite-treated 

genomic DNA was amplified by fluorescence-based real-time MSP (Perkin-Elmer Corp., 

Foster City, CA) as described previously (Toyooka, Toyooka et al. 2002).  For the internal 

reference gene, MYOD1, the primers and probe were designed to avoid CpG nucleotides.  

The methylation ratio is defined as the ratio of the fluorescence emission intensity values for 

the target PCR products to those of the MYOD1 PCR products, multiplied by 100.  The ratio 

is then divided by the ratio of the non-treated sample and multiplied by 100 to yield a 

percentage.  The sequences of the primers and probes are shown in Table 1.  Quantitative 

real-time MSP assays were performed in a reaction volume of 25µl by using components 
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supplied in a TaqMan PCR Core Reagent Kit (Perkin-Elmer Corp.).  Each assay was 

performed in triplicate.  The final reaction mixtures contained the forward and reverse 

primers at 300 nM each; the probe at 100 nM; 200 μM each of dATP, dGTP, dCTP and 

dTTP; 5.5 mM MgCl2; 1x TaqMan Buffer A; 1 unit of HotStarTaq DNA polymerase 

(QIAGEN Inc., Valencia, CA); and 2 μl bisulfite-converted genomic DNA.  PCR was 

performed under the following conditions: 95˚C for 12 minutes, followed by 50 cycles of 

95˚C for 15 seconds and 60˚C for 1 minute.  We performed quantitative real-time MSP with 

the Gene Amp 5700 Sequence Detection System (PerkinElmer Corp.).  DNA from 

lymphocytes of a healthy volunteer treated with Sss1 methyltransferase (New England 

BioLabs, Beverly, MA) was used as a positive control.  The same untreated, unmethylated 

DNA was used as a negative control for methylated alleles.  Water blanks were included with 

each assay. 
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Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3-1.  Regression of primer melting temperature by position on PCR plate. 
The strategy was to align primers with postion on the PCR plate such that different 
annelaing temperatures could be used if required.  Pre-aliquoted PCR plates were used for 
these reactions which had been perforated every three columns.  This enabled the use of 
two sets of conditions which turned out to be all that was needed for this reaction. 
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CHAPTER FOUR 
 

INTRODUCTION 

The primary goal of the work described in this thesis, was to identify all of the genes 

subject to aberrant promoter hypermethylation in lung cancer.  The studies described in this 

and the following chapter were pilot experiments designed to determine the appropriate 

approach to use in subsequent microarray studies, which are described in Chapter 6.  This 

chapter is derived from a published manuscript, and describes experiments using RNAi 

approaches to demethylate DNA in lung and breast cancer cells.  Both promoter methylation 

and gene expression are analyzed using quantitative methods.  Chapter 5 details experiments 

that were not published, but are a logical extension of the manuscript reproduced below.  

These studies explore the phenotypic effects of RNAi based approaches to demethylating 

DNA in cancer and immortalized bronchial epithelial cells compared to 5-aza.  In addition, a 

direct, head-to-head comparison of RNAi and 5-aza in the NSCLC cell H157 by microarray 

is discussed.   

There are three basic methods to demethylate genomic DNA: genetic knockout of the 

DNA methyltransferase enzymes, RNAi against the DNA methyltransferases, or 

pharmacological inhibition of the DNA methyltransferases.  All were considered for these 

studies, and both pharmacological and RNAi based approaches were evaluated 

experimentally.  The relative advantages and disadvantages will be discussed briefly below. 

 

Genetic knockout of the DNA methyltransferases 
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 In this method, homologous recombination is used to sequentially remove the DNA 

methyltransferase loci from host genomic DNA.  A targeting vector is used where DNA 

homologous to the intended endogenous locus flanks a resistance marker such as 

hygromycin.  This strategy enables exogenous Cre-mediated excision of the drug marker 

after targeting of the first allele and thus the use of the same targeting construct to delete the 

second allele (Rhee, Jair et al. 2000; Rhee, Bachman et al. 2002).  This method requires 

substantial manipulation of cells and is therefore not suitable for testing multiple different 

cell lines, as there are three functional methyltransferase enzymes, which means that 6 

sequential recombination events are required. 

 

RNA interference mediated silencing of the DNA methyltransferases 

 Soon after its rediscovery in 1998, RNA interference (RNAi) was shown to be useful 

for studying gene function in mammalian cells (Fire, Xu et al. 1998; Elbashir, Harborth et al. 

2001; Elbashir, Lendeckel et al. 2001).  Antisense oligonucleotides targeting the DNA 

methyltransferases had been shown to suppress DNA methyltransferase protein expression 

suggesting RNAi approaches might work as well (Fournel, Sapieha et al. 1999).   

 

Pharmacological inhibition of the DNA methyltransferases 

 Several compounds are available that inhibit the DNA methyltransferase enzymes.  

The most widely used is 5-aza-2’-deoxycytosine (5-aza), which is a cytidine analogue that 

has a nitrogen substitution at the 5th carbon of the cytosine ring.  This molecule is 

incorporated into DNA during genome replication and inhibits DNA methylation through 
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covalent linkage of the DNA methyltransferases to the nascent strand (Jones and Taylor 

1980; Jones 1985).  DNA demethylation occurs through a passive process of 

methyltransferase depletion (Michalowsky and Jones 1987).   
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RNAI-MEDIATED KNOCKDOWN OF DNMT1 EXPRESSION 

REVERSES PROMOTER HYPERMETHYLATION AND INDUCES 

EXPRESSION OF MULTIPLE GENES IN HUMAN LUNG AND 

BREAST CANCER 

 

ABSTRACT 

DNA methyltransferase 1 (DNMT1) is required to maintain DNA methylation 

patterns in mammalian cells, and is thought to be the predominant maintenance 

methyltransferase gene.  Recent studies indicate that inhibiting DNMT1 protein expression 

may be a useful approach for understanding the role of DNA methylation in tumorigenesis.  

To this end, we used RNA interference (RNAi) to specifically down-regulate DNMT1 

protein expression in NCI-H1299 lung cancer and HCC1954 breast cancer cells.  RNAi-

mediated knockdown of DNMT1 protein expression resulted in >80% reduction of promoter 

methylation in RASSF1A, p16ink4A, and CDH1 in NCI-H1299, and RASSF1A, p16ink4A, 

and HPP1 in HCC1954, and re-expression of p16ink4A, CDH1, RASSF1A, and SEMA3B in 

NCI-H1299, and p16ink4A, RASSF1A, and HPP1 in HCC1954.  By contrast, promoter 

methylation and lack of gene expression was maintained when these cell lines were treated 

with control small interfering RNAs (siRNAs).  The siRNA treatment was stopped and 17 

days later, all the sequences showed methylation and gene expression was again dramatically 

down-regulated, indicating the tumor cells still were programmed for these epigenetic 

changes.  We saw no effects on soft agar colony formation of H1299 cells 14 days after 

DNMT1 knockdown indicating that either these genes are not functioning as tumor 



 

   80

suppressors under these conditions or that more prolonged knockdown or other factors are 

also required to inhibit the malignant phenotype.  These results provide direct evidence that 

loss of DNMT1 expression abrogates tumor-associated promoter methylation and the 

resultant silencing of multiple genes implicated in the pathogenesis of human lung and breast 

cancer. 

 

 

Note:  The first part of this chapter is substantially the product of a published manuscript 

(Suzuki, Sunaga et al. 2004), where most of the primary data was generated by Makato 

Suzuki.  The siRNA sequences were designed by Noriaki Sunaga.  The original idea for the 

manuscript came from discussions between Noriaki Sunaga and David Shames.  The 

manuscript was written by David Shames.  Noriaki Sunaga and David Shames contributed 

equally to the data submitted for the revised version of the manuscript.  This manuscript is 

included because it is the result of pilot experiments performed as part of the comparison 

between pharmacologic and RNAi based approaches to demethylating DNA. 
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INTRODUCTION 

Tumor acquired, aberrantly methylated CpG dinucleotides in the promoter regions of 

tumor suppressor genes (TSGs) is a hallmark and major means of TSG inactivation in human 

cancer (Baylin, Herman et al. 1998; Jones and Baylin 2002).  Substantial evidence indicates 

that promoter methylation is associated with loss of TSG expression in lung and breast 

cancers (Toyooka, Toyooka et al. 2001; Zochbauer-Muller, Minna et al. 2002).  The 

repressed state conveyed by the presence of DNA methylation in TSG promoters can be 

reversed by administration of the nucleotide analogue 5-aza-2’-deoxycytidine (5-aza) 

(Bender, Zingg et al. 1998).  However, this drug is cytotoxic even at low concentrations, 

which may lead to expression changes not directly related to DNA methylation (Bender, Pao 

et al. 1998; Suzuki, Gabrielson et al. 2002).  To address this concern, genetic approaches 

have been used to analyze DNA methylation in cancer.   

At present three active DNA methyltransferases (DNMT1, DNMT3A, and 

DNMT3B) and one candidate gene, DNMT2, have been identified in mammals (Jeltsch 

2002).  DNMT1, the first DNA methyltransferase to be cloned, is responsible for maintaining 

DNA methylation patterns during DNA replication (Szyf 2001).  Recently, Fournel and 

MacLeod showed that ablation of DNMT1 expression with anti-sense oligonucleotides 

resulted in loss of promoter methylation, re-expression of p16ink4A, and inhibition of cell 

proliferation in the bladder cancer cell line, T24 (Fournel, Sapieha et al. 1999).  In contrast, 

Rhee et al. demonstrated that targeted deletion of DNMT1 by homologous recombination in 

the colon cancer cell line HCT116 was not sufficient to cause promoter demethylation and 

gene re-expression.  In these experiments, DNMT1 deletion resulted in only a small decrease 
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(~20%) in overall genomic methylation, and imprinted genes were not re-expressed (Rhee, 

Jair et al. 2000).  Rhee et al. further showed that deletion of both DNMT1 and DNMT3B 

reduced overall genomic methylation by >95% as well as promoter methylation of specific 

genes, and caused the re-expression of multiple genes (p16ink4A and TIMP-3), resulting in 

substantial growth suppression of HCT116 cells (Rhee, Bachman et al. 2002).  Paradoxically, 

a more recent publication by the MacLeod group showed that DNMT1 depletion using either 

anti-sense or siRNA techniques led to demethylation of p16ink4A and MLH1 promoters and re-

expression of p16ink4A in the same HCT116 cells (Robert, Morin et al. 2003).  Therefore, it is 

still unclear how the different DNMT genes act alone or in concert, to maintain or establish 

DNA methylation patterns in individual types of human cancers.  

To address this issue, we used RNA interference (RNAi) technology to knock down 

DNMT1 protein expression in the non-small cell lung cancer (NSCLC) cell line, NCI-H1299, 

and the breast cancer cell line, HCC1954.  Using quantitative assays for DNA methylation 

and mRNA expression, we found that DNMT1 knockdown led to a dramatic loss of 

methylation (>80%) compared to non-treated controls at the promoters of RASSF1A, p16ink4A, 

CDH1, and HPP1, and re-expression of RASSF1A, p16ink4A, CDH1, HPP1, and SEMA3B in 

lung and breast cancer cells.  These findings provide quantitative evidence of the role of 

DNMT1 activity in both lung and breast cancer cells.  
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RESULTS AND DISCUSSION 

RNAi-mediated knockdown of DNMT1 protein expression in NCI-H1299 and 

HCC1954 

We used RNAi technology to examine the effect of DNMT1 expression on the 

stability of tumor-associated promoter methylation in lung and breast cancer cells (Caplen, 

Parrish et al. 2001; Elbashir, Harborth et al. 2001; Sharp 2001).  Two siRNAs targeting 

different sequences of DNMT1 mRNA were used to verify that our results were a 

consequence of specific inhibition of DNMT1 expression.  In addition, siRNA targeting the 

human T-cell leukemia virus Tax oncogene was used as a negative control, since this viral 

protein is not expressed in epithelial cells (Verma, Surabhi et al. 2003).  Another negative 

control involved targeting of the expressed Lamin A/C gene, since Lamin A/C protein is 

nonessential in cultured mammalian cells (Harborth, Elbashir et al. 2001).  siRNAs both 

against DNMT1 (DNMT1-1 and DNMT1-2), Tax, and Lamin A/C were transfected into NCI-

H1299 and HCC1954 cells every 2 days for a week.  Cells were harvested at 3, 5, 7, 9, 14, 

and 23 days after the initial transfection, and Western Blot analysis was conducted to monitor 

endogenous DNMT1 protein expression (Fig. 4-1).  Both siRNAs targeted to DNMT1 mRNA 

led to substantial down-regulation of DNMT1 expression 3 days after the initial transfection 

in the NCI-H1299 cell line, and HCC1954.  These effects continued until at least day 9 (Fig. 

4-1).  We routinely observe targeted gene silencing in ~90% of the NCI-H1299 cells 

transfected with siRNA as detected by immunofluorescent staining of individual cells (data 

not shown).  DNMT1 down-regulation was specific as evidenced by a consistent level of 

Actin protein (Fig. 4-1) and DNMT3B protein (Fig. 4-3D) in the context of siRNA targeted 
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to DNMT1, while DNMT1 protein expression was not affected by siRNA targeted to Lamin 

A/C (data not shown). 
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RNAi-mediated knockdown of DNMT1 expression led to demethylation of tumor 

suppressor gene promoters in lung and breast cancer cell lines 

To assess the effect of RNAi-mediated down-regulation of DNMT1 expression on 

aberrant methylation in the promoter regions of genes thought to be involved in the 

pathogenesis of lung and breast cancer in NCI-H1299 and HCC1954 lines, we used a real-

time MSP assay to quantitate the degree of methylation before and after DNMT1 knockdown 

(Toyooka, Toyooka et al. 2002; Toyooka, Carbone et al. 2002).  Direct quantitation of the 

extent of methylation in a particular region of a promoter yields important information about 

the specificity of DNMT1 activity in terms of the methylation of specific CpGs in the 

regulatory sequence of particular genes.  Several groups have reported that DNMT1 does not 

have a preference for certain CpG sites or promoters: it appears to act as a general 

methyltransferase (Szyf 2001; Jeltsch 2002).  The kinetics of demethylation for the genes we 

assessed were not significantly different; therefore, our results are consistent with this 

hypothesis.   

To compare the methylation levels of each gene before and after treatment with 

siRNA, we converted the mean ratio of promoter methylation to a percentage.  RNAi-

mediated down-regulation of DNMT1 protein expression resulted in a significant decrease in 

methylation levels at the RASSF1A, p16ink4A, and CDH1 promoters in NCI-H1299 (Fig. 4-

2A), and similar effects were observed for RASSF1A, p16ink4A, and HPP1 in HCC1954 (Fig. 

4-2B, p<0.001; all genes examined, repeated measures ANOVA).   

Importantly, the kinetics of demethylation correlate with the loss of DNMT1 

expression (Fig 4-1, 4-2A, 4-2B).  The level of methylation for all genes was reduced on day 
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3, more so on day 5, and reached a nadir on day 7, whereupon maximal demethylation seems 

to have been reached (Fig. 4-2A, 4-2B).  As the data indicate, there does not appear to be a 

significant decrease in methylation levels between day 7 and 9.  The methylation level of all 

the genes tested was reduced by up to 80% when compared with promoter methylation levels 

in untreated cells.  Reduction of promoter methylation was greatest in the HPP1 promoter in 

HCC1954 (Fig. 4-2B), and p16ink4A in NCI-H1299 (Fig. 4-2A), yet in neither case was 

methylation completely lost. 

It is known that siRNA can be used to specifically knock down target genes, but 

RNAi never completely eliminates the targeted gene products (Shi 2003).  Thus, the presence 

of basal amounts of promoter methylation we observed, even with extended siRNA 

treatment, may result from residual DNMT1 protein, or other DNMTs.  Other 

methyltransferases such as DNMT3B or methyl-DNA binding proteins may affect 

methylation levels in the promoters of TSGs.  Rhee et al. demonstrated that genetic 

disruption of DNMT1 by homologous recombination did not lead to promoter demethylation 

and re-expression of p16ink4A in the colon cancer cell line HCT116, whereas p16ink4A was 

demethylated and re-expressed in HCT116 cells, in which both DNMT1 and DNMT3B were 

disrupted (Rhee, Bachman et al. 2002).  Therefore, knockdown of both DNMT1 and 

DNMT3B or other factors may be required to achieve complete demethylation of genes 

involved in cancer pathogenesis.   

5-aza treatment results in global demethylation of genomic DNA in many cancer 

cell lines.  Upon removal of 5-aza and continued culture, re-methylation occurs slowly and in 

a sequence specific manner (Velicescu, Weisenberger et al. 2002).  The propensity of 
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particular regions of DNA to become re-methylated may result from selective pressure, such 

as TSG function, or some cryptic sequence information within loci that are preferentially re-

methylated.  Recent research using 5-aza indicates that de novo methylation of CpG sites in 

the p16ink4A promoter is not stochastic.  Thus, the kinetics of selective CpG island re-

methylation in the promoters of genes may reflect differences in the contribution individual 

CpG sites have to gene repression.  However, due to the non-specificity, and cytotoxicity of 

5-aza, it is unclear which DNMT is responsible for the apparent nascent methylation, or 

whether re-methylation is really the result of the expansion of a resistant subclone within the 

treated population of cells (Velicescu, Weisenberger et al. 2002). 

To address these issues, and to determine how persistent loss of promoter 

methylation was in the context of the specific down-regulation of DNMT1 protein, we 

maintained the treated cell lines in the absence of any further siRNA treatment.  We then 

reexamined the methylation level of all genes at day 14 and day 23 after initial treatment.  

The kinetics of re-methylation varied between genes in both cell lines, however re-

methylation (returning to 40-80% of starting levels) and loss of gene expression was 

observed in all cases by day 23 (Fig. 4-2A, 4-2B).  These results indicate that the appearance 

of de novo methylated CpG sites within multiple gene promoters occurs in tandem with the 

re-expression of DNMT1 protein.  This finding clarifies the results from the 5-aza 

experiments described above, because it suggests that DNMT1 as opposed to DNMT3A, 

DNMT3B has important in vivo, de novo DNA methyltransferase activity.  A previous report 

has demonstrated that DNMT1 has de novo methylases activity, but only in vitro (Yoder, 

Soman et al. 1997).  The variation in re-methylation kinetics between the two cell lines may 
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result from differences in their doubling times (NCI-H1299 have a doubling time of 25 h, 

whereas HCC1954 double every 31 h), since de novo methylation has been shown to be 

dependent on cell division (Velicescu, Weisenberger et al. 2002). 
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Demethylation induced by RNAi-mediated DNMT1 knockdown restored the expression 

of several tumor suppressor genes in lung and breast cancer cell lines 

To establish whether loss of promoter methylation mediated by DNMT1 siRNA 

resulted in the quantitative re-expression of genes, we analyzed the expression status of 

RASSF1A and SEMA3B genes in NCI-H1299, and RASSF1A and HPP1 genes in HCC1954 

line by real-time RT-PCR (Fig. 4-3C, 4-3B).  RNAi-mediated DNMT1 knockdown induced 

the expression of all genes examined (p<0.001, repeated measures ANOVA).  The 

expression levels of all genes in DNMT1 siRNA-treated cells were 2-8 fold higher than that 

of untreated cells.  We examined the expression status of SEMA3B because it is silenced by 

tumor-associated promoter methylation in NCI-H1299, and is located on 3p21, a known 

tumor suppressor locus as reported by ourselves and others (Tomizawa, Sekido et al. 2001; 

Kuroki, Trapasso et al. 2003).  The expression level of p16ink4A and CDH1 genes in NCI-

H1299, and p16ink4A in HCC1954 were examined by 37-cycle end-point RT-PCR.  NCI-

H1299 cells treated with DNMT1 siRNA expressed p16ink4A mRNA from day 5 to day 23 and 

expressed CDH1 from day 3 to day 23 (Fig. 4-3C).  HCC1954 cells treated with DNMT1 

siRNA expressed p16ink4A from day 3 to day 23 (Fig. 4-3C). 

Since the p16ink4A gene locus has a complicated structure, it was not possible to 

design an isoform specific TaqMan probe.  Thus, we sought to verify gene induction by 

Western blot.  Both of two different siRNAs targeted to DNMT1 restored p16ink4A protein 

expression (Fig. 4-3D).  Thus, there is a clear inverse relationship between the presence of 

methyl-CpGs in the promoter of p16ink4A, and the expression of p16ink4A mRNA and protein.  

We further compared the effect of the DNMT1 siRNA (DNMT1-2) on the restoration of gene 
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expression with that of 5-aza treatment in these cell lines.  siRNA inhibitors of DNMT1 

protein expression are at least as effective at restoring mRNA expression as 5-aza treatment 

(Table 4-2). 

We found that specific inhibition of DNMT1 expression by RNAi is a useful 

technique to examine the relationship between DNMT1 activity and aberrant promoter 

methylation in cancer cells.  RNAi-mediated knockdown of DNMT1 expression persisted for 

over 9 days, and was sufficient for achieving the loss of promoter methylation at RASSF1A, 

CDH1, p16ink4A, and HPP1, and re-expression of p16ink4A, CDH1, RASSF1A, SEMA3B, and 

HPP1 mRNA, which also persisted for 9–14 days, in lung and breast cancer cells.  Our 

findings support and extend the conclusion of MacLeod et al. (who used HCT116 colon 

cancer cells) that DNMT1 siRNA-mediated knockdown alone is sufficient to achieve 

inhibition of gene methylation with associated gene re-expression (Robert, Morin et al. 

2003).  Our findings, like MacLeod’s, differ from that of Rhee et al. who found that in 

HCT116 colon cancer cells, using recombinant knockout techniques, both DNMT1 and 

DNMT3B had to be removed to achieve loss of methylation and gene re-expression (Rhee, 

Bachman et al. 2002).   

We assessed the effect of the DNMT1 knockdown on in vitro growth of NCI-H1299 

cells by soft agar growth assay.  Surprisingly, there was no significant difference in colony 

number between treatment of DNMT1 siRNAs (DNMT1-1 and DNMT1-2) and that of Tax 

siRNA (means ± SD of colony number by treatments with DNMT1-1, DNMT1-2 and Tax 

siRNAs were 115±13, 100±14 and 108±9, respectively).   Thus, we could not demonstrate an 

obvious phenotypic effect of the loss of DNMT1 expression on the in vitro tumor growth of 
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NCI-H1299 cells.  While this was unexpected, there are several possible explanations for this 

result.  The first is that the genes we monitored (e.g. RASSF1A or SEMA3B) really do not 

function as “tumor suppressor genes.”  While study of SEMA3B as a TSG is early, there are 

multiple methylation and functional studies of the role of p16ink4A and RASSF1A strongly 

implicating them as TSGs in lung and other cancers (Dammann, Li et al. 2000; Ballestrero, 

Coviello et al. 2001; Burbee, Forgacs et al. 2001; Tomizawa, Sekido et al. 2001; Kuroki, 

Trapasso et al. 2003).  While the tumor cells were plated after 7 days and 4 RNAi treatments 

the colonies were not scored until 14 days later, it is possible that transient re-expression of 

the tumor suppressor genes by DNMT1 siRNA was not sufficient to inhibit colony formation 

due to the short term inhibition of DNMT1 expression.  In fact, a recent study showed that 

prolonged knockdown of DNMT1 by a tetracycline-inducible vector-based siRNA induced 

growth arrest while growth resumed 1-2 days after the siRNA knockdown was relaxed 

(Matsukura, Jones et al. 2003).  It is also possible that the tumor cells have developed other 

ways to bypass these growth regulatory molecules.  For example, the p53 null status of 

H1299 cells (they are homozygously deleted for p53) prevents transient re-expression of the 

proteins from inducing apoptosis.  In fact, a previous study showed that adenovirus-mediated 

exogenous p16 expression alone did not induce apoptosis in H1299 cells, but only exhibited 

apoptosis after the addition of exogenous p53 expression (Kataoka, Shimomura et al. 2000). 

 Finally, it is possible that DNMT1 knockdown led to the expression of proteins (e.g. 

those involved in the differentiated state) which either made the cells resistant to tumor 

suppressor function or caused growth arrest, preventing subsequent induction of apoptosis by 

other re-expressed proteins.  All of these mechanisms will require future study.  However, 
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the lack of a dramatic effect on growth of H1299 cells by DNMT1 knockdown indicates to us 

that the use of agents that block methylation may have to be combined with other approaches 

before being clinically active.  Further studies of single cells and clones after knockdown will 

be needed to verify that individual cells can undergo DNMT1 knockdown, loss of promoter 

methylation, and re-expression of genes followed by later promoter re-methylation and gene 

silencing.  In this regard, further investigations using RNAi vectors that can stably suppress 

the expression of other DNMTs and/or methyl-DNA binding proteins will elucidate how 

DNA methylation contributes to cancer pathogenesis, and enable us to systematically analyze 

the DNA methylation machinery as a target for therapeutic intervention of cancer. 
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Note:  The following data are part of a published manuscript (Suzuki, Sunaga et al. 2004), 

where most of the primary data was generated by Makato Suzuki.  The siRNA sequences 

were designed by Noriaki Sunaga.  The original idea for the manuscript came from 

discussions between Noriaki Sunaga and David Shames.  The manuscript was written by 

David Shames.  Noriaki Sunaga and David Shames contributed equally to the data submitted 

for the revised version of the manuscript.  
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Tables 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 4-1. Primer and TaqMan probe sequences for MSP and mRNA expression studies

Gene Type Forward primer Reverse primer

RASSF1A M 5'-GTGGTTTCGTTCGGTTCGC-3' 5'-CGATACCCCGCGCGA-3'

M-probe 6FAM-5'-CCGACATAACCCGATTAAACCCGTACTTCG-3'-TAMRA

RT 5'-GCTCGTCTGCCTGGACTGTT-3' 5'-TGGGCATTGTACTCCTTGATCTT-3'

RT-probe 6FAM-5'-TGTGGAGTGGGAGACACCTGACCTTTCT-3'-TAMRA

p16 ink4A M 5'-CGCAACCGCCGAACG-3' 5'-TTTTTTCGTTAGTATCGGAGGAAGA-3'

M-probe 6FAM-5'-CGCGATCCGCCCCACCCT-3'-TAMRA

RT 5'-TTCGGCTGACTGGCTGGCCA-3' 5'-AGCTCCTCAGCCAGGTCCAC-3'

CDH1 M 5'-AATTTTAGGTTAGAGGGTTATCGCGT-3' 5'-TCCCCAAAACGAAACTAACGAC-3'

M-probe 6FAM-5'-CGCCCACCCGACCTCGCAT-3'-TAMRA

RT 5'-TTTCTTGGTCTACGCCTGGGACTC-3' 5'-CACCTTCAGCCATCCTGTTTCTC-3'

HPP1 M 5'-GTTATCGTCGTCGTTTTTGTTGTC-3' 5'-GACTTCCGAAAAACACAAAATCG-3'

M-probe 6FAM-5'-CCGAACAACGAACTACTAAACATCCCGCG-3'-TAMRA

RT 5'-TGCTTTCCCTACCTCCTTAAGTGA-3' 5'-CTGTCATCATAACCAGAGCAATTCC-3'

RT-probe 6FAM-5'-TGCCAAACGCCCACCGGC-3'-TAMRA

SEMA3B RT 5'-CTGGCTCAATGAGCCCAAGT-3' 5'-CTACCGCCGTCTCACGAAAG-3'

RT-probe 6FAM-5'-AGGTATTTTGGATCCCGGAGAGCGAGAATA-3'-TAMRA

MYOD1 M 5'-CCAACTCCAAATCCCCTCTCTAT-3' 5'-TGATTAATTTAGATTGGGTTTAGAGAAGGA-3'

M-probe 6FAM-5'-TCCCTTCCTATTCCTAAATCCAACCTAAATACCTCC-3'-TAMRA

GAPDH RT 5'-GACCACAGTCCATGCCATCACT-3' 5'-GCTTCACCACCTTCTTGATGTCA-3'

TBP RT 5'-TGCTGCGGTAATCATGAGGAT-3' 5'-TGGAAAACCCAACTTCTGTACAAC-3'

RT-probe 6FAM-5'-AGAGAGCCACGAACCACGGCACTG-3'-TAMRA

 
 



 

   95

 Table 4-2.  Gene expression ratios in NCI-H1299 and HCC1954 in response to treatment

Nontreateda DNMT1siRNAb 5-Aza-CdR Nontreated DNMT1siRNA 5-Aza-CdR

RASSF1A 1 (3.3) 7.0 (23) 8.2 (27) 1 (4.2) 3.1 (13) 6.4 (27)

HPP1 — — — 1 (26) 1.8 (46) 1.7 (44)

SEMA3B 1 (1.1) 6.5 (7.1) 5.6 (6.2) — — —

a  Using quantitative RT-PCR (see "Materials and Methods") the actual levels of gene expression were determined 
relative to that for TBP mRNA (TSG:TBP) x 100. A ratio for gene:TBP expression was calculated and is given in 
parentheses for each gene and nontreated sample. The other ratios are then given relative to an untreated ratio of 1.

b  siRNA, small interfering RNA; 5-Aza-CdR, 5-Aza-2'-deoxycytidine; RT-PCR, reverse transcription-PCR; TBP, TATA 
box binding protein; TSG, tumor suppressor gene.

NCI-H1299 HCC1954

Treatment
Gene
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Fig. 4-1.  RNAi-mediated knockdown of DNMT1 protein expression in NCI-
H1299 NSCLC and HCC1954 breast cancer cell lines.  NCI-H1299 and HCC1954 
cells were untreated, or treated with Oligofectamine alone, Tax siRNA, or two 
different sequences of siRNA targeted to DNMT1 (DNMT1-1, DNMT1-2) four times 
(on days 0, 2, 4, and 6).  Western blots were performed on lysates from untreated cells 
at day 0, and oligofectamine treated cells and Tax siRNA treated cells at day 9, and 
DNMT1 siRNA- treated cells at 3, 5, 7, and 9 day.  Twenty μg of total protein were
loaded per lane. 
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Fig. 4-2A.  Time course and kinetics of promoter hypermethylation changes of 
RASSF1A, p16ink4A, and CDH1 genes in NCI-H1299, treated with siRNAs
targeted to DNMT1, as determined real-time methylation-specific PCR assay. 
Cells were treated with Oligofectamine alone (blank), Tax (red), Lamin A/C (blue), 
DNMT1-1 (gray), or DNMT1-2 (black) siRNA four times (on days 0, 2, 4, and 6). 
Cells were harvested at 0, 3, 5, 7, 9, 14, and 23 days and DNA was extracted and 
treated with sodium bisulfite.  Real-time MSP was performed as described (Materials 
and Methods).  Each ratio was normalized to MYOD1 and converted to a percentage 
based on the same ratio in untreated cells.  Each point represents averages from three 
independent experiments + S.E. 
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Fig. 4-2B.  Time course and kinetics of promoter hypermethylation changes of 
RASSF1A, p16ink4A, and HPP1 genes in HCC1954 treated with siRNAs targeted to 
DNMT1, as determined by real-time Methylation-Specific PCR assay.  Cells were treated 
with Oligofectamine alone (blank), Tax (red), Lamin A/C (blue), DNMT1-1 (gray), or 
DNMT1-2 (black) siRNA four times (on days 0, 2, 4, and 6).  Cells were harvested at 0, 3, 5, 
7, 9, 14, and 23 days and DNA was extracted and treated with sodium bisulfite.  Real-time 
MSP was performed as described (Materials and Methods).  Each ratio was normalized to 
MYOD1 and converted to a percentage based on the same ratio in untreated cells.  Each point 
represents averages from three independent experiments + S.E.   
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Fig. 4-3A.  Time course of mRNA expression level of RASSF1A and SEMA3B genes by 
real-time RT-PCR in H1299.  Cells were harvested, RNA was extracted, and cDNA 
synthesized.  Real-time RT-PCR was performed as described (Materials and Methods).  Each 
ratio was normalized to TBP and converted to percentage based on the same ratio in non-
treated cells.  Each point represents averages from three independent experiments + S.E. 
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Fig. 4-3B.  Time course and kinetics of mRNA induction levels for RASSF1A and HPP1 
in HCC1954 by real-time RT-PCR.  Cells were harvested, RNA was extracted, and cDNA 
synthesized.  Real-time RT-PCR was performed as described (Materials and Methods).  Each 
ratio was normalized to TBP and converted to percentage based on the same ratio in non-
treated cells.  Each point represents averages from three independent experiments + S.E.   
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Fig. 4-3C.  Time course and kinetics of mRNA induction levels for CDH1 and p16 in 
HCC1954 and H1299 RT-PCR.  Cells were harvested, RNA was extracted, and cDNA 
synthesized.  The PCR products were separated on 2% agarose gel.  GAPDH was run as a 
control for RNA integrity.  
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Fig. 4-3D.  Western blot showing induction of p16ink4A  protein expression in H1299 cells 
after DNMT1 siRNA.  Western blot for DNMT3B shows no change in this 
methyltransferase in the presence of DNMT1 siRNAs. 
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CHAPTER FIVE 
 

COMPARISON OF RNAI AND 5-AZA 

INTRODUCTION 

The studies described above showed that it would be possible, at least in principle, to 

use RNAi approaches to demethylate DNA and screen for genes subject to promoter 

hypermethylation in lung cancer.  However, as noted in the discussion section above, there 

were two findings in particular that were unexpected.  The first was that DNMT1 knockdown 

alone was sufficient for gene re-expression, and the second was that while multiple TSGs 

were induced in the different cell lines, there was little evident toxicity.  Moreover, the above 

study did not address the question of whether RNAi approaches would be sufficient to 

reverse DNA methylation to the extent necessary for detection by gene expression 

microarray.  Finally, the experimental strategy to identify tumor-specific promoter 

hypermethylation entailed the use of immortalized human bronchial epithelial cells, which 

had not been tested for their responses to DNA demethylation, siRNA oligos, or 5-aza 

treatment.  To resolve these issues and to further evaluate whether RNAi approaches were 

comparable to 5-aza, several experiments were performed including growth assays by colony 

formation in liquid culture, mass culture growth assays (MTT/MTS), quantitative RT-PCR, 

western blotting, and microarray gene expression profiling. 



 

   104

DIRECT COMPARISON OF RNAI AND 5-AZA IN H157 CELLS 

 Based on the study described above, it was clear that siRNA targeting DNMT1 was 

sufficient to induce tumor suppressor genes silenced by promoter hypermethylation in both 

H1299 and HCC1954.  However, three issues remained to be resolved before we could make 

a decision on whether to use RNAi or 5-aza.  Previous studies had shown that microarray 

technology was relatively insensitive compared to PCR based detection techniques, and it 

was not yet apparent whether RNAi approaches resulted in gene induction levels that were 

higher than that of 5-aza treatment.  In addition, previous studies had also shown that 5-aza 

treatment is quite non-specific with respect to altering gene expression.  However, it was 

unknown what the effects of RNAi based approaches might be on general changes in gene 

expression.  We were particularly concerned about the possibility of inducing the interferon 

response.  Although several studies have claimed otherwise, in our hands siRNAs sometimes 

induce cytotoxicity independent of target sequence (see Tax siRNA treatments in Fig. 5-2, 

below), which appears to vary between cell lines (Elbashir, Harborth et al. 2001; Elbashir, 

Lendeckel et al. 2001; Harborth, Elbashir et al. 2001; Bridge, Pebernard et al. 2003; Moss 

and Taylor 2003; Sledz, Holko et al. 2003; Dunn, Sheehan et al. 2005).  The third issue was 

whether the HBEC cell lines would tolerate sequential siRNA treatments, or whether they 

would survive genome demethylation.  

 To evaluate whether RNAi approaches to reducing DNA methylation resulted in gene 

induction levels comparable to 5-aza in cancer cell lines, gene induction levels were 

evaluated for the tumor suppressor genes MASPIN and RASSF1A in H157 cells.  In these 

experiments, cells were harvested after the second and third transfections.  For comparison, 
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H157 cells were treated with 5-aza and TSA.  These data show that transfection of H157 

cells with siRNA targeted to DNMT1 alone after either 2 or 3 transfections induces both 

RASSF1A and MASPIN, however, to lower levels than with 1 μM 5-aza.  There was an 

increase in gene induction levels between transfections 2 and 3 for both RASSF1A and 

MASPIN transcripts, suggesting a specific effect of DNA demethylation.  Trichostatin A 

(TSA), a potent histone deacetylase inhibitor that synergizes with 5-aza, induced MASPIN 

expression, but not RASSF1A expression; however, when TSA was combined with siRNA 

targeted to DNMT1, both RASSF1A and MASPIN were induced.  These data suggest that 

siRNA targeted to DNMT1 leads to the induction of TSGs silenced by promoter 

hypermethylation in H157, and that gene induction levels could be increased by addition of 

the histone deacetylase inhibitor, TSA.  

 To determine whether 5-aza and siRNA targeted to DNMT1 and DNMT3B had 

similar effects on gene expression in a different cell line, and to determine whether siRNA 

treatment resulted in cytotoxicity in either cell line, we compared gene induction levels and 

cytotoxicity in H157 with H1299 cells (Fig. 5-2).  These data confirm that 5-aza and DNMT1 

inhibition led to gene induction in both H1299 and H157.  Moreover, loss of DNMT1 

activity is less toxic to NSCLC cells than either 5-aza treatment or DNMT3B knockdown, 

even though DNMT3B knockdown did not appear to affect RASSF1A expression.   

Based on the experiments described above and the findings of Rhee et al. we decided 

to examine how 5-aza compared with siRNA targeted to DNMT1 and DNMT3B in terms of 

global gene expression changes using the Affy Plus 2.0 chips.  To confirm that transfection 

of siRNA targeted to DNMT1 and DNMT3B led to reduction of target proteins, western 
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blots were performed with the appropriate antibodies (Fig. 5-3).  To ensure that the interferon 

response was not activated during transfection, we assayed for an increase phosphor-PKR 

levels.  Activated phosphor-PKR was not detected in these cells (data not shown). 

 Microarray analysis of H157 after 5-aza treatment or siRNA targeted to either 

DNMT1 or DNMT3B exhibited a varied gene expression phenotype.  The overall gene 

expression profiles for these samples varied greatly as indicated by the scatter plots below.  

Control samples were well correlated with R2 values ranging from 0.83 – 0.89 (Fig. 5-4 A-

C).  As expected, substantial alterations in gene expression were observed for the 1 μM 5-aza 

treatment (Fig. 5-4D).  Interestingly, siRNA targeted to DNMT3B also affected gene 

expression substantially, but in most cases, the gene expression levels appeared to be reduced 

compared to Oligofectamine and Tax controls.  5-aza treatment was more similar to DNMT1 

knockdown than DNMT3B knockdown, while overall the two siRNA treatments were more 

similar to each other than either was to 5-aza. 

To further explore the similarities and differences in gene expression found in these 

microarray experiments, sample clustering was performed using unsupervised average 

linkage hierarchical cluster analysis of all seven samples (Fig. 5-5).  This analysis shows that 

while the control samples (DMSO, Oligo, and Tax) group together, both 5-aza treated cells 

and the DNMT1 and DNMT3B transfectants form their own trees apart from each other and 

the control samples.  The simplest interpretation of these data is that siRNA treatments 

targeting the DNMT enzymes in H157 cells results in a different gene expression profile than 

5-aza treatment.   
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 Taken together the data highlighted above suggest that siRNA targeted to DNMT1 

and DNMT3B result in a markedly different gene expression phenotypes in H157 cells when 

compared to 5-aza treatment.  The differences observed in these experiments may be 

explained in part by the different mechanisms of action of RNAi vs. small molecule 

inhibitors.  RNAi approaches target mRNA and thus reduce the levels of proteins, whereas 5-

aza acts as a suicide substrate for the DNMTs.  The DNMT enzymes form large 

macromolecular complexes in the nucleus and may be involved in many of aspects of 

chromatin structure regulation independent of DNA methylation.  Thus, depleting these 

proteins in cells could destabilize other regulatory complexes indirectly, leading to 

differential gene expression compared to 5-aza.  Alternatively, the mechanism of action of 5-

aza involves its incorporation into the nascent strand of DNA during S-phase.  Since DNMT1 

localizes to the replication fork during S-phase, it is possible that covalent linkage of 

DNMT1 to 5-aza could block DNA synthesis.  Another possibility is that covalent linkage of 

DNMT1 to DNA leads to large-scale double-strand breaks independent of cell division. 

 While the above experiments do not directly address the question of specificity with 

respect to differential gene induction between RNAi vs. 5-aza treatment, it is noteworthy that 

DNMT1 knockdown induced well described TSGs, but did not result in significant 

cytotoxicity.  The reasons for this finding are probably complex, but one explanation may be 

that once cells undergo transfection they become epigenetically heterogeneous.  This means 

that some cells may express p16, others may express RASSF1A, and still others express 

both; expression of either of these genes would more likely lead to growth arrest as opposed 

to cell death.  On the other hand, treatment with a small molecule such as 5-aza, which is a 
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DNA analogue that is incorporated into DNA during replication, probably has more acute 

toxicity to cells that is independent of its inhibitory activity, which could lead to cell death as 

opposed to growth arrest.  Another possibility is that 5-aza may inhibit all of the 

methyltransferases, whereas siRNA presumably targets one at a time.  The difference here is 

that cancer cells may be able to tolerate the limited demethylation that results from RNAi, 

whereas they cannot tolerate the extant on DNA demethylation that results from 5-aza 

treatment (see discussion Chapter 4).  

 The purpose of the above experiments was to determine whether RNAi approaches 

might be better than 5-aza treatment to use as part of a demethylation screen.  The data above 

suggests that RNAi approaches may be more specific, but 5-aza induces genes to higher 

levels than RNAi.  Moreover, the serial transfections necessary for the RNAi approach are 

technically challenging and may introduce other, unpredictable effects in different cell lines.   
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COMPARISON OF 5-AZA AND RNAI IN IMMORTALIZED HUMAN BRONCHIAL 

EPITHELIAL CELLS 

 As part of the demethylation screen, we planned to use a series of immortalized 

human bronchial epithelial cell lines (HBEC) created by our lab.  These cell lines were 

derived from patients undergoing different forms of lung surgery.  The clinical history for the 

patients from whom these cell lines were developed appears in Table 6-1.  These cell lines 

were created using retroviral expression vectors containing cdk4 and hTERT and were 

maintained according to the protocols described in the special methods section below. 

The HBECs are immortal, clonable, can be genetically manipulated, but do not form 

colonies in soft agar nor do they form tumors in nude mice (Ramirez, Sheridan et al. 2004).  

In three-dimensional culture they can undergo differentiation into fully ciliated cells 

(Vaughan, Ramirez et al. 2006).  They have very few genetic alterations and they are a novel 

and important normal tissue control for 5-aza or siRNA targeted to DNMT1 gene induction 

experiments.  However, at the time, it was unknown whether these cells would tolerate DNA 

demethylation or RNAi treatment. 

 To determine whether the HBEC cell lines would tolerate siRNA oligos, HBEC2, 3, 

and 4 were treated with 100nM, 50nM, 10nM, and 1nM oligos targeting lentiviral gene Tax, 

green fluorescent protein (GFP), Lamin A/C, DNMT1, and DNMT3B complexed in either 

oligofectamine or lipofectamine reagents.  All doses were well-tolerated 72 hrs after a single 

transfection (data not shown).  Pilot experiments suggested that to achieve promoter 

demethylation in H1299, H157, and HCC1954, three to four sequential transfections were 

required (Figs. 4-1 and 5-3).  This approach requires initially plating the cells in 24-well 
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dishes and then transfecting every other day and re-plating the cells after the second 

transfection in 6 well or 60mm plates, depending on the cell’s doubling time.  It was found 

that after two transfections, at 100 nM, all oligos induced significant toxicity in the HBEC 

cell lines.  Only the 50nM dose was used for later experiments.    

To determine whether the HBEC2 and 3 would tolerate 5-aza treatment, cells were 

treated with 100 nM and 1 μm 5-aza every other day for 6 days and then counted using a 

trypan exclusion assay (Fig. 5-6).  These data suggest that HBEC2 and HBEC3 differ in their 

tolerance to siRNA treatment, and neither cell line tolerated siRNAs targeted to DNMT3B 

(Fig. 5-6 and 5-7).  This finding suggests that loss of DNMT3B expression may necessary for 

HBEC survival.  1 μM 5-aza treatment resulted in a different phenotype to both DNMT1 and 

DNMT3B knockdown in HBEC3.   

There were significant morphological changes in HBEC3 cells in response to 5-aza.  

Normally the HBECs exhibit highly regular morphology and contain single, elliptical, 

moderately-sized nuclei (Fig. 5-7 A&D) (Ramirez, Sheridan et al. 2004; Sato, Vaughan et al. 

2006).  Upon 5-aza treatment, the cells became highly irregular, with some cells becoming 

extremely large, vacuolated, and multinucleated.  Some had distended, pleomorphic nuclei 

with little cytoplasm (Fig. 5-7F).  Invariably however, there was significant growth inhibition 

as opposed to cell death as determined by trypan exclusion assay in both HBEC2 and 

HBEC3 (Fig. 5-6).  After treatment with 5-aza (both 100 nM and 1mM) we re-plated the 

HBEC cells at several densities to determine whether the cells would recover from the 

treatment.  After two weeks, none of the treatment groups attached to the substrate or formed 

colonies in liquid culture (data not shown).   
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SPECIAL METHODS FOR HBECS 

Infection Protocol (as per Shelley Sheridan)  

1)  When the cells are about 50% confluent, they are ready to be infected. 

2)  Remove 1 vial (stored in -80) of cdk4 or E6/E7 infected media for each flask/dish and 

thaw at 37C.  (1 vial will infect 2x T25 flasks, 1x T75 flask, or 1x 10cm dish). 

3)  Place 4 ml of KSFM and 4ug/mL hexadimethoine bromide in a 15ml tube.  

4)  Add the thawed vial of cdk4 or E6/E7 infected media to the previous mixture to a 

total volume of 6 ml. 

5)  Immediately add mixture to your flask of cells and incubate for 16 hours.  (Do not 

incubate for more than 18 hours.) 

6.   Place fresh KSFM to the flask and allow to recover for 24 hours. 

Repeat steps 2 - 6.  

7)  When the cdk4 or E6/E7 infected cells look healthy its time to select the infected 

cells: add 30 μg/ml G418 to your growth media and grow for 10 days. 

8)  Replace with fresh drug every 2-3 days.  

9)  When the selection is finished, feed with fresh media to allow recovery.  

10)  When the flask is confluent subculture as usual. Make sure you plate an extra flask of 

the cdk4 infected cells to add hTERT. 

12)  When the cdk4 infected flask is about 50% confluent infect with hTERT.  

13)  Go through steps 2 - 7 using the hTERT infected media.  When the hTERT infected 

cells look healthy its time to select the infected cells;  
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14)  Add 250 ng/ml Puromycin to your growth media and grow for 3 days.  When the s

 election is finished feed with fresh media and allow to recover.  

When the flask is confluent subculture as usual  

Continue to subculture to PD 100 to confirm immortalization is complete. 
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CONCLUSIONS 

The goal of the above-described pilot studies was to determine the appropriate 

parameters to properly compare gene induction after demethylation in tumor and normal 

cells.  To examine this question we study the phenotypic and gene expression changes in 

NSCLC cell lines and HBECs to treatment with 5-aza and siRNA targeted to DNMT1 and 

DNMT3B in HBECs.  These experiments allowed us to establish conditions for the main part 

of this thesis (see below).  In addition, we learned that normal HBECs undergo changes in 

expression of genes that are probably methylated as part of a differentiation program specific 

to lung epithelium.  We found that DNMT1 reversed promoter hypermethylation at important 

TSGs in both H1299 and H157, but to lower levels than 1 μM 5-aza treatment.  In addition, 

we found that DNTM3B knockdown is toxic to both NSCLC and HBEC cell lines. 

 As a result of these findings, and the technical difficulties involved with performing 

three sequential transfections in the HBECs, we chose to pursue the 5-aza approach for 

comparing gene expression changes between the HBECs and NSCLC cell lines.   
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Figures

 
 

 
 
Fig. 5-1.  Comparison of gene induction levels for MASPIN and RASSF1A in H157 
by QPCR.  H157 squamous cell carcinoma cell lines were treated with Oligofectamine 
alone, the general histone deacetylase inhibitor Trichostatin A (TSA), siRNA targeted to 
DNMT1 (DN1), siRNA to DNMT1 plus TSA (DN1+), DMSO, or 5-aza (1 μM).  Cells 
were harvested and RNA extracted after the second and third transfections for the siRNA 
and TSA treatments.  For TSA alone treatments, cells were treated three times, every other 
day for 6 days; siRNA + TSA, cells were treated with TSA of the off day between 
transfections, either two or three times depending on the number of transfections.  5-aza 
treatment was according to standard treatment protocol.  Black bars indicate samples from 
transfections; maroon bars indicate samples from TSA treatment; and green bars indicate 
5-aza treatment.  Values on the y-axis indicate log2 values according to the 2-ΔΔCt method. 
QPCR was performed using Taqman fluorescent probes purchased from Applied 
Biosystems.  The MASPIN primers and probe sequences were from an assay-on-demand, 
whereas primers and probe for RASSF1A from (Suzuki, Sunaga et al. 2004). 
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Fig. 5-2.  Comparison of cytotoxicity and gene induction levels in 5-aza and siRNA 
(DNMT1 or DNMT3B) treated H157 cells.  Cells were treated as in Fig. 4-4. 
Cytotoxicity was determined using the trypan exclusion assay on the final day of 
treatment.  Gene induction levels were determined by QPCR.  A) Percentage of viable 
cells after indicated treatments.  B) Gene induction levels based on QPCR for RASSF1A 
in H157 and H1299.  Data were calculated using 2ΔΔCt method.  Black bars indicate H157 
cells; red bars indicate H1299 cells. 
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Fig. 5-3.  Western blot for DNMT1 and DNMT3B after three transfections with 
100 nM siRNA in H157 cells.  Crude nuclear extracts were prepared as described in 
materials and methods.  30 μg of nuclear lysate was loaded per lane, resolved on 4% 
acrylamide gel, and transferred to nitrocellulose membranes.  Anti-DNMT1 was 
obtained from Imgenex; DNMT3B rabbit anti-serum was obtained as a kind gift from 
Robert Macleod; anti-Lamin A/C was obtained from Santa Cruz Biotechnology and 
was used as a loading control.  
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Fig. 5-4 A-I.  Scatter plots for gene expression differences in H157 cells by 
microarray analysis.  Data were normalized using RMA (methods) and filtered to 
exclude genes that were altered <1.5 fold in <20% of samples, which left 5187 genes. 
Integers on each axis indicate log2 of the absolute intensity for each probe.  Each point 
represents a single probe, and lines bisecting the data points indicate 2-fold changes 
either up (above) or down (below).  R2 values were calculated using R and Excel.  
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Fig. 5-5.  Hierarchical cluster analysis of Affymetrix U133 Plus 2.0 mRNA 
expression profiles in H157 cells after siRNA or 5-aza treatment.  Data were 
normalized and filtered as in Fig. 5-4, and clustered using the Pearson correlation 
coefficient and average linkage clustering implemented through BRB array tools. 
These data indicate that while control treated (DMSO, Tax, Oligofectamine) cell lines 
on the whole have similar gene expression profiles, 5-aza treatment (100 nM, 1 μM) is 
different from siRNA targeted to either of the DNMT proteins. 
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Fig. 5-6. Trypan exclusion assay for HBEC2 and HBEC3 after treatment with 
either siRNA or 5-aza-2’-deoxycytidine.  Cells were treated with 50 nM siRNA 
targeted to Tax, DNMT1, or DNMT3B every other day for 8 days.  Cells were re-
plated between the second and third transfections into to 6-well plates and counted on 
day 10.  For 5-aza treatments, cells were treated every other day with the indicated 
doses and harvested and counted on day 6.  Black bars indicate total cells; red 
indicates dead cells.  In general, HBEC3 tolerated both 5-aza and siRNA better than 
HBEC2.  
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Fig. 5-7 A-F.  Phase contrast images of HBEC3 indicating morphological changes 
associated with various treatments.  Images were collected on day 10, prior to 
harvesting after three sequential siRNA transfections for panels A-C, or three 
sequential treatments of 5-aza for panels D-F.  Magnification is 200x.  
 



 

   121

CHAPTER SIX 

 

INTRODUCTION 

In the previous chapter, it was determined that for our purposes, the appropriate 

method to use for demethylating DNA in the HBECs and cancer cell lines was 5-aza.  This 

decision was based on two major criteria: first, 5-aza treatment is simpler to perform than 

serial transfections, and second, 5-aza induced genes to a higher level than siRNA treatment.  

The chapter below describes experiments that form the major part of this thesis as well as the 

publication included herein.  Besides the material that was included in the publication, which 

focused primarily on the clinical aspects of the promoter hypermethylation profiles that were 

identified, I have added a section that addresses the cell line selection process and as well as 

some bioinformatic analysis of the gene expression profiles of the NSCLC cell lines.  

Part of the data included in the publication are derived from general Minna lab 

resources such as the lung and breast cancer cell lines, the microarray expression data, and 

array CGH (aCGH) data (Phelps, Johnson et al. 1996).  Primary tumor materials were 

acquired from a variety of sources: breast tumor DNAs were obtained as part of a 

collaboration with Chuck Perou from the University of North Carolina at Chapel Hill and 

Olufunmilayo Olopade from the University of Chicago, as well as Cheryl Lewis and David 

Euhus at in the Hamon Center at UT Southwestern.  The benign lung and lung tumor DNA 

was obtained by the Minna lab from Kwun Fong at the University of Queensland in 

Brisbane.  Prostate and colon cancer samples were obtained from the Cancer Center tissue 

repository at UTSW.  Some of the primary tumor microarray expression data was obtained 
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through collaborations with William Gerald at the Memorial Sloan-Kettering Cancer Center 

in New York, and David Lam and Maria Wong at Hong Kong University.  All of the 

microarray expression data was generated in the Minna lab and Luc Girard has been 

responsible for establishing this major resource for the Minna lab.  He created several of the 

software programs, which handle these data, and supervised the collection and processing of 

samples that were used to produce this resource.  Cheryl Lewis assisted in performing some 

of the methylation specific PCRs for the breast tumors. 
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A GENOME-WIDE SCREEN FOR HYPERMETHYLATED GENES IN 

LUNG CANCER IDENTIFIES TUMOR-SPECIFIC METHYLATION 

MARKERS FOR MULTIPLE MALIGNANCIES 

 

ABSTRACT 

Background:  Promoter hypermethylation coupled with loss of heterozygosity at the same 

locus results in loss of gene function in many tumor cells.  The “rules” governing which 

genes are methylated during the pathogenesis of individual cancers, how specific methylation 

profiles are initially established, or what determines tumor-type specific methylation are 

unknown.  However, DNA methylation markers that are highly specific and sensitive for 

common tumors would be useful for the early detection of cancer and those required for the 

malignant phenotype identify pathways important as therapeutic targets.   

Methods and Results: In an effort to identify new cancer-specific methylation markers, we 

employed a high-throughput global expression profiling approach in lung cancer cells.  We 

identified 132 genes that have 5’ CpG islands, are induced from undetectable levels by 5-aza-

2’-deoxycytidine (5-aza) in multiple non-small cell lung cancer cell lines, and are expressed 

in immortalized human bronchial epithelial cells.  As expected, these genes were also 

expressed in normal lung, but often not in companion primary lung cancers.  Methylation 

analysis of a subset (45/132) of these promoter regions in primary lung cancer (N=20) and 

adjacent non-malignant tissue showed that 31 genes had acquired methylation in the tumors, 

but did not show methylation in normal lung or lymphocytes.  We studied the 8 most 
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frequently and specifically methylated genes from our lung cancer data set in breast cancer 

(N=37), colon cancer (N=24), and prostate cancer (N=24) along with counterpart non-

malignant tissues.  We found that 7 loci were frequently methylated in both breast and lung 

cancers, with 4 showing extensive methylation in all 4 epithelial tumors.   

Conclusions: By using a systematic biological screen, we identified multiple genes that are 

methylated with high penetrance in primary lung, breast, colon, and prostate cancers.  The 

cross-tumor methylation pattern we observed for these novel markers suggests that we have 

identified a partial promoter hypermethylation signature for these common malignancies.  

These data suggest that while tumors in different tissues vary substantially with respect to 

gene expression, there may be commonalities in their promoter methylation profiles that 

represent generic targets for early detection screening or therapeutic strategies.   
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INTRODUCTION 

Tumor-acquired alterations in DNA methylation include both genome-wide 

hypomethylation and locus specific hypermethylation.  Genomic hypomethylation occurs 

early in cellular transformation and affects both genome stability and imprinted gene 

expression (Feinberg and Tycko 2004; Holm, Jackson-Grusby et al. 2005; Simpson, 

Caballero et al. 2005).  Promoter hypermethylation often coincides with loss of 

heterozygosity at the same locus, which often results in loss of function of the gene in tumor 

cells.  These changes often occur at tumor suppressor gene loci and are hypothesized to 

participate in cancer development (Jones and Baylin 2002). 

Even though genome methylation patterns are deranged in cancer cells, the DNA 

methyltransferases themselves are rarely if ever mutated or aberrantly expressed (Bestor 

2003).  The “rules” governing which genes are methylated during the pathogenesis of 

individual cancers, as well as the timing of their methylation and silencing (e.g. during 

preneoplasia or in metastatic progression) are unknown, and it is not yet clear how specific 

methylation profiles are initially established in tumor cells (Baylin and Ohm 2006; Feinberg, 

Ohlsson et al. 2006).    However, it is known that aberrant promoter hypermethylation is 

common to most tumors, and in many cases, appears to have tumor-type specificity 

(Costello, Fruhwald et al. 2000).  A few genes, such as the cyclin-dependent kinase inhibitor 

(p16) and the tumor suppressor gene ras association domain family protein 1A (RASSF1A) 

are methylated across many tumor types, but it is unknown whether there are more genes that 

collectively represent a common promoter hypermethylation profile for multiple epithelial 

cell malignancies (Merlo, Herman et al. 1995; Burbee, Forgacs et al. 2001; Dammann, Yang 
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et al. 2001; Esteller, Corn et al. 2001).  Since CpG island methylation is readily detectable in 

tissues and fluids, the identification of a promoter hypermethylation gene set that is common 

to multiple malignancies – with high frequency and specificity for tumors compared to 

normal tissues – would have important implications for patient screening, diagnosis, and 

therapeutic intervention (Esteller, Corn et al. 2001; Belinsky 2004).  

In an effort to identify genes subject to frequent promoter hypermethylation in human 

cancers, we used a genome-wide microarray-based approach.  In previous studies of this 

type, cancer cells were treated with the DNA methylation inhibitor, 5-aza-2’-deoxycitidine 

(5-aza), or vehicle, and compared by gene expression profiling (Suzuki, Gabrielson et al. 

2002; Sato, Fukushima et al. 2003).  In the present study, an array platform covering 47,000 

transcripts over the whole genome (Affymetrix U133 Plus 2.0) was used.  In addition, we 

increased the efficiency and specificity of the initial screen by performing the 5-aza induction 

experiments in 7 non-small cell lung cancer (NSCLC) cell lines and 3 different immortalized 

bronchial epithelial cell lines (HBECs) (Ramirez, Sheridan et al. 2004; Sato, Vaughan et al. 

2006).   Comparison of the gene expression profiles between NSCLC and HBEC before and 

after 5-aza treatment allowed us to identify genes expressed in normal bronchial epithelial 

cells but not in cancer cells that were also selectively induced in multiple lung cancers.  Next, 

we applied a series of bioinformatic filters to exclude genes that are poorly annotated or that 

do not contain 5’ CpG islands to arrive at a set of 132 genes that are candidate methylation 

markers for NSCLC.  Finally, we performed similar experiments in colon and breast cancer 

cell lines, and found that many of the genes induced specifically in NSCLC cell lines were 

also induced in these cancer models. 
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 As a result of our findings in the 5-aza gene induction screen, we first examined the 

promoter methylation status of 45/132 genes in a panel of lung cancer cell lines as well as 20 

primary lung tumors with counterpart non-malignant tissue and found that 43 were 

methylated in many tumor cell lines and primary tumors, but not in normal tissues.  We 

selected 8 loci that were frequently and specifically methylated in lung tumor tissue and 

examined promoter methylation for these loci in a broader panel of breast, colon, and 

prostate tumors and counterpart benign tissues.  These studies revealed an extensive, cross-

tissue methylation pattern for 4/8 of these genes.  Our data suggest that while tumors in 

different tissues may vary substantially with respect to gene expression, there may be 

commonalities in their promoter hypermethylation profiles, perhaps reflecting common 

events in their pathogenesis, as well as representing generic targets for early detection or 

therapeutic strategies.   

 



 

   128

RESULTS 

*Selection of cell lines for microarray analysis 

It is well established that tobacco smoke is the major etiological factor in the 

development of lung cancer; however, NSCLC remains a heterogeneous disease.  There are 

26 cell types in the lung, and at least 3 distinct types of NSCLC including, squamous cell 

carcinoma, adenocarcinoma, and large cell carcinoma.  Squamous cell carcinomas (SCC), 

adenocarcinomas (Ad), and large cell carcinomas (LCC) are all strongly associated with 

smoking, but SCC occurs primarily in the major bronchi, whereas Ad and LCC usually occur 

deeper in the lung periphery.  It is believed that for SCC, Ad, and LCC progenitor cells 

acquire multiple genetic and epigenetic changes that coincide with histological progression 

from normal epithelium through dysplasia to invasive cancer (Fig. 6-1).  The molecular 

pathology and histology of the three different types of NSCLC are different and substantial 

effort has been directed toward identifying the particular molecular lesions that are associated 

each type of NSCLC (Sekido, Fong et al. 2003; Wistuba and Gazdar 2006). 

As indicated in the figure below, certain lesions have been associated with particular 

steps in the oncogenic process.  Both hypo- and hypermethylation occur early along with 

microsatellite alterations (particularly on 3p) and the first hints of morphological changes in 

the cells.  Recently, the epidermal growth factor receptor (EGFR) was shown to be a frequent 

target of mutations affecting the kinase domain.  This type of mutation is common in female 

non-smokers of Asian decent (Shigematsu, Lin et al. 2005; Tang, Shigematsu et al. 2005; 

Shigematsu and Gazdar 2006). 
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In certain cases, it has been possible to identify gene expression signatures that 

correspond to distinctive histopathological types of some cancers, notably ductal carcinoma 

of the breast.  There is some evidence that NSCLC can be distinguished along these lines as 

well (Garber, Troyanskaya et al. 2001).  We used hierarchical cluster analysis to explore this 

finding in our panel of NSCLC cell lines.  Our first question was whether the cell lines 

grouped according to the histopathology of the parental tumor.   As indicated in Fig. 6-2, the 

cell lines do not group according to their histopathology.  However, unsupervised cluster 

analysis of the expression data from the 31 cancer cell lines using 2377 genes that were 

differentially expressed across the panel by SAM analysis indicates the presence of at least 

five and possibly six distinct groups of cell lines.  Bearing in mind the heterogeneity of 

NSCLC, we selected one cell line from each part of the dendogram in our initial experiments 

(blue arrows).  The purpose of this selection process was to identify NSCLC cell lines for 5-

aza treatment based on the diverse biology of this disease.*  
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Standardizing 5-aza-2’-deoxycytidine treatment for HBECs and cancer cell lines 

To analyze the gene expression changes associated with loss of promoter methylation 

in lung cancer cells compared to HBECs, we treated seven non-small cell lung cancer cell 

lines (NCI-H460, H1299, H157, H2347, H1819, H1993, and A549) and three HBEC lines 

(HBEC2, 3, and 4) with low (100 nM) and high (1 μM) doses of 5-aza (Table 6-1).  To 

determine whether low and high dose 5-aza induced genes silenced by promoter methylation 

in NSCLC cell lines, we performed quantitative reverse transcriptase-PCR (QPCR) for p16.  

We also ran standard RT-PCR for p16 in several cell lines to ensure that the QPCR primer 

set did not amplify the alternate  splice-form p14, which is expressed in some of these cell 

lines (Sato, Horio et al. 2002).  We observed induction of p16 mRNA for both low and high 

dose 5-aza in tumor lines that harbor p16 promoter methylation (Fig. 6-3A & B).  Since p16 

could not be used as a positive control for NSCLC lines with homozygously deleted or 

unmethylated p16, we used the universally methylated gene transketolase-like 1 (TKTL1) as 

a positive control for loss of DNA methylation and gene induction.  TKTL1 was induced by 

5-aza in all cell lines examined (Fig. 6-3A & C).  
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Microarray analysis of gene expression changes after 5-aza-2’-deoxycytidine treatment 

in lung cancer cell lines 

We performed microarray expression profiling on the seven NSCLC and three HBEC 

cell lines before and after treatment with 100 nM and 1 μM doses of 5-aza, and compared the 

resultant gene expression profiles.  The microarray data have been deposited at the GEO 

database (http://www.ncbi.nlm.nih.gov/projects/geo/).  We confirmed our array data in three 

ways: 1) each cell line was treated with 100 nM and 1 μM doses of 5-aza in a single 

experiment to confirm array reproducibility and the ability of both doses to induce gene 

expression (Table 6-2); 2) biological replication was performed on the three HBEC cell lines 

18 months apart on the U133 Plus 2.0 GeneChip, and for 4/7 NSCLC cell lines on the 

U133A GeneChip, and subsequently on the U133 Plus 2.0 platform (Table 6-3, below); 3) 

QPCR was performed on at least 15 genes in each cell line and at each dose of drug (Table 6-

4, data not shown).  

Since 5-aza alters gene expression independent of methylation changes, we reasoned 

that dose dependent changes in gene expression are probably more specific to aberrant 

promoter hypermethylation.  We found a highly significant relationship between both the 

genes induced in the two treatments, and those induced in a dose-dependent manner (Table 

6-2).  We determined whether genes were reproducibly inducible by 5-aza over long term 

culture by comparing replicates on different types of Affymetrix arrays (U133A GeneChip 

and U133 Plus 2.0) for 4/7 NSCLC cell lines (A549, H2347, H1299, and H157), as well as 

data collected on the same type of chip for biological replicates performed 18 months apart 

on the three HBEC lines.  Agreement between HBEC experiments performed 18 months 



 

   132

apart were highly significant (Table 6-3).  Gene expression patterns across platforms also 

correlated well (Pearson correlation coefficients for overlapping gene sets on the two 

platforms in independent experiments ranged from 0.90 for H157 treated with 1 μM 5-aza to 

0.98 for H157 treated with DMSO).  

Our analysis of the gene expression profiles of lung cancer cells before and after 

treatment with 5-aza identified 866/47000 transcripts that were up-regulated ≥4 fold in at 

least two lung cancer cell lines (Fig. 6-4).  Individually, the cell lines exhibited substantial 

variations in expression phenotype: H1819 had the fewest (268), whereas H460 had the most 

(1100) (Fig. 6-5).  The diversity in gene expression we observed may derive from several 

factors including etiology and histopathology (Table 6-1). 

To further validate the induction patterns observed by microarray, we performed 

QPCR on 15 genes across all cell lines (Table 6-4).  We found that, with the exception of 

Cathpesin Z (CTSZ), QPCR analysis correlated well with microarray expression changes.  

Disagreement between the array and QPCR data for CTSZ likely derives from the sensitivity 

of the Pearson correlation algorithm to small deviations above and below a mean-centered 

value. 
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Isolation of tumor-specific promoter methylation candidates 

To identify genes that are methylated specifically in cancer cells, we performed 

similar induction experiments in three immortalized bronchial epithelial cell lines.  All three 

HBEC cell lines exhibited changes in gene expression after 100 nM and 1 μM 5-aza 

treatment (Fig. 6-6).  In contrast to the cancer cell lines, the HBECs appeared to be relatively 

similar in their responses to 5-aza treatment, and bioinformatic analysis of the genes induced 

≥4 fold in the HBECs suggests that many may be expressed specifically during development 

or only in certain tissues (Fig. 6-7; Table 6-5).  

Beginning with the 866 transcripts that were induced ≥4-fold in at least two NSCLC 

lines, we excluded 133 that were induced ≥4-fold in HBECs, and we required that a given 

gene was expressed at a robust median level (MAS5 normalization procedures were used 

because this method gives an indication of whether a given probe signal is present or absent) 

in the HBECs with an Affymetrix p-value of ≤0.065.  Of the remainder, 460 were excluded 

on the basis of low (undetectable) expression in the untreated HBEC lines.  We further 

filtered this list of genes by excluding 66 genes without defined 5’ ends or that were 

otherwise poorly annotated, and 11 that were duplicate probes.  This left 196 genes that were 

induced in the NSCLCs and that met the various filtering criteria. 

5-aza can affect the expression of genes independent of their methylation status 

(Suzuki, Gabrielson et al. 2002).  Before restricting the gene set to those with CpG islands, 

we asked whether our approach had identified a set that was enriched for genes associated 

with 5’ CpG islands.  The null hypothesis was that our selection criteria would make no 

difference on the frequency of selecting a gene with a CpG island.  The expected rate for a 
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RefSeq annotated gene to contain a 5’ CpG island (>500 bps in length) within 2 kb of its 

transcription start site is ~35% (Robinson, Bohme et al. 2004).  Based on the March 2006 

build, ~37% of the RefSeq 5’-UTR annotations contain 5’ CpG islands within 500 5’ bases.  

The 866 transcripts we identified on the basis of their induction pattern in NSCLC alone 

contained 435 RefSeq annotations, while 134 of the 196 transcripts that remained after 

filtering out genes as described above had RefSeq annotations (Fig. 6-4).  Both of these 

groups had significant increases in CpG frequency (Table 6-5).   

On the basis of these data, we examined each of the 196 genes and excluded those 

that did not have CpG islands defined as >300 bps, a GC content of ≥55%, and an observed 

vs. expected CpG ratio of ≥0.65.  The remaining 132 transcripts correspond to genes (listed 

in Fig. 6-8) that are candidates for tumor specific methylation in NSCLC on the basis of their 

expression pattern in HBECs (i.e. were expressed) and lung cancer cell lines (i.e. were not 

expressed in several or more lines), their response to 5-aza in lung cancer cells (induced ≥ 4 

fold), and the presence of a 5’ CpG island (Fig. 6-8).  
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Lung cancer vs. normal lung expression patterns of the 5-aza induction gene set 

While there were other interesting gene sets in our data, particularly those genes that 

were induced by 5-aza in the HBEC lines, but were expressed in the NSCLC panel (i.e. genes 

that were candidates to have undergone tumor-specific promoter hypomethylation and thus 

potentially function as oncogenes) in this study we focused on genes that were likely to have 

undergone tumor specific promoter hypermethylation leading to inactivation of their 

expression.  We first determined whether our 5-aza induction gene set reflected the gene 

expression phenotype of a broader set of NSCLC cell lines and HBECs.  Using Affymetrix  

microarray mRNA expression data for NSCLC (N=31; combined U133A and B chips) and 

HBEC (N=7; U133 Plus 2.0) cell lines, we found that all HBEC lines express relatively high 

levels of these genes, but the lung cancers, while of diverse histologies, express much less 

(Fig. 6-9A).  These facts suggest that loss of expression of the genes in the 5-aza induction 

gene set is a common event in NSCLC.   

To determine whether the expression patterns we identified in vitro accurately 

represent those identified by microarray profiling in primary lung cancers, we explored 

whether the 132 genes in the induction set could distinguish uncultured normal lung from 

primary lung cancer in two separate microarray data sets.  These data are derived from 

different lung tumor sources (see methods), collected over a period of several years and 

comprise expression phenotypes for primary NSCLC (N=45) and counterpart normal lung 

(N=29), and were randomly selected from a larger panel of array samples.  After extracting 

the relevant probes and filtering the data, we found that the majority of genes were on 

average expressed at higher levels in the normal samples, and that the 5-aza induction gene 
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set clearly distinguished normal lung from lung cancer in these data (Fig. 6-10).  94/117 

unique genes in this group were differentially expressed between tumor and benign tissue 

based on the SAM algorithm (90th percentile confidence, false discovery rate among the 94 

significant genes was 0.11 and the delta value (false discovery rate) used to identify 

significant genes was 0.54 (Table  6-7).  

Tumor-acquired promoter methylation often coincides with allele loss.  To determine 

whether any of the 132 candidate genes were also subject to copy number losses, we 

analyzed CGH data for the same panel of NSCLC cell lines that were used for the microarray 

studies (N=31).  Of the 132 genes, approximately half (58/132) had corresponding probes 

with high quality data on the Stanford array CGH platform.  Of these, 62% (36/58) exhibited 

a net (median) allele loss across the panel of 31 NSCLC lines (Fig. 6-12, data not shown).  

Thus, beginning with 5-aza induction data in lung cancer, we have identified 132 genes with 

5’ CpG islands that are differentially expressed in primary lung cancer compared to normal 

lung tissues, many of which are also subject to frequent copy number losses in corresponding 

NSCLC lines. 
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Methylation analysis of 45/132 5-aza induction candidates in lung cancer and HBEC 

cell lines, and normal lymphocytes 

 To determine whether the genes identified in our screen are methylated in lung cancer 

cell lines, we designed MSP primers sets (methylated and unmethylated specific) for 45 of 

132 candidate genes and two control gene primer sets and tested these on the seven lung 

cancer lines used for the 5-aza induction studies (primers, setup, and protocols maybe found 

in methods and supplementary material).  As determined by MSP, between 19 and 25 genes 

out the 45 loci were methylated in any given tumor cell line, whereas at most 7 were 

methylated in the HBECs (Fig. 6-11).  Interestingly, we found that several loci were positive 

for both methylated and unmethylated alleles.  This is consistent with previous studies (Sato, 

Fukushima et al. 2003).  As a further control for tumor specific methylation, and to determine 

whether these markers might be useful in a clinical setting, we tested whether any of the 

genes were methylated in normal lymphocyte DNA.  This control is important because 

peripheral blood lymphocytes are almost always present in biopsy specimens as well as 

tumors, and the presence of methylation in these cells would preclude use of a given marker 

for patient screening purposes.  Although we found different promoter hypermethylation 

profiles between different sources of lymphocytes (data not shown), in this study, a gene 

promoter was counted as methylated if there was a methylated product in any source of 

lymphocytes.  On this basis, we found that 11 genes were methylated in at least one 

lymphocyte source.  We grouped the genes according to their methylation patterns as 

follows: genes with tumor-specific methylation (group I; 31 genes); genes with some 
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methylation in HBEC, but not in normal lymphocyte DNA (group II; 5 genes); genes with 

methylation in lymphocyte DNA (group III; 11 genes). 
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Methylation analysis of the 45/132 5-aza induction gene set in primary lung cancers and 

normal lung 

It has been suggested that tumor cell lines acquire methylation in culture and as a 

result may not accurately reflect the methylation patterns of tumors in vivo (Bestor 2003; 

Paz, Fraga et al. 2003).  To address this issue, and to determine whether any of the markers 

we found were methylated in primary tumor samples, we tested all 45 markers in twenty 

matched pairs of primary NSCLC and counterpart normal lung tissue (Fig. 6-12).  The 

frequency of methylation in a given tumor ranged from 33/45 to 17/45 genes.  When all 

genes were included, methylation was more frequent in the matched tumor samples than in 

the normal control samples, which was statistically significant (P = 4.72 x 10-6, paired t-test).  

Basonucleolin (BNC1) and lysyl oxidase (LOX) were methylated in nearly all of the primary 

tumors examined, but were not methylated in normal lymphocytes, and infrequently in 

normal lung.  By comparison, p16 and RASSF1A were methylated in this same NSCLC panel 

at 30% and 40% rates, respectively (Zochbauer-Muller, Fong et al. 2001).  The appearance of 

low-level methylation in some normal counterpart tissue may result from field effects and/or 

tumor cell contamination.  Some markers were methylated at high frequency in tumors 

(>30%; compared to p16 and RASSF1A, 30% and 40%, respectively) and never in matched 

normal tissue such as CTSZ and placental growth factor (PGF). 

In general, the methylation frequency of group I genes was similar to that of the cell 

lines we used in this study; where there was frequent methylation in the cell lines, there was 

frequent methylation in the primary tumors (Fig. 6-11 & Fig 6-12).  Group II and III genes 

also followed the patterns identified in the cell lines; where methylation was found in the 
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HBEC, we found frequent methylation in both primary tumors and matched normal lung.  

When methylation was detected in normal lymphocyte DNA and/or HBEC DNA, we also 

found methylation in both primary tumor and normal lung DNA samples (which could have 

lymphocyte contamination).  While all of these genes could be involved in lung cancer 

pathogenesis through promoter methylation and concomitant loss of expression, we focused 

on the 31 group I genes as being the best candidates for diagnostic markers to avoid genes 

found to be methylated in normal lung or lymphocytes. 
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Expression and methylation analysis of select genes in breast cancer cells 

While there was some overlap between genes induced by 5-aza among the NSCLC 

lines, the predominant pattern we found reflects significant expression differences within the 

same tissue type (Fig. 6-9).  The diversity we observed in NSCLC led us to explore whether 

other epithelial cancers differed dramatically in their response to 5-aza.  When we compared 

other cell types (colon cancer (HCT116), breast cancer (MCF7), SCLC (H526)) after 5-aza 

induction by significance analysis of microarray (SAM) and cluster analysis, we found that 

while each cell line clustered with itself independent of treatment, SCLC and breast cancer 

cells but not the colon cancer cell line HCT116, clustered apart from NSCLC (Fig. 6-13A).  

However, after supervised hierarchical cluster analysis using our final 5-aza induction gene 

set tissue-of-origin distinctions were no longer apparent (Fig. 6-13B). 

To further explore the finding that 5-aza induction patterns in cancer cell lines may be 

independent of tissue of origin differences, we compared our data set to those of Sato et al., 

who used Affymetrix’s U133A chip to examine gene induction patterns after 5-aza treatment 

in four pancreatic cancer cell lines (Sato, Fukushima et al. 2003).  The authors reported that 

475 genes were up-regulated >5 fold in at least 1 cell line.  Of these 475 genes, 203 were also 

up-regulated in at least one of our NSCLC cell lines, with 127 up-regulated in two or more 

(Table 6-8).  Bioinformatic analysis of the overlapping gene set between Sato et al. and our 

data indicates some highly significant similarities in the position of the genes induced by 5-

aza in these two organ sites (Table 6-9).  Multiple genes in two chromosomal regions, 

Xp11.2-11.4 and 6p21.3, were induced in both types of cell lines, and based on the gene 
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density in these genomic regions, each enrichment was highly significant (3.01 x 10-09 and 

1.01 x 10-07, respectively, Fisher’s Exact Test). 

 The overlap between the gene induction patterns we found in NSCLC, SCLC, breast, 

and colon cancer cells in our 5-aza induction microarray experiments, and that previously 

reported in pancreatic cancer cells led us to explore whether any of the genes we found are 

also methylated in breast cancers.  First we examined 15 of the genes found to be frequently 

induced by 5-aza and methylated in NSCLC in 6 breast cancer cell lines (HCC3153, 

HCC1143, HCC1937, SKBR3, ZR-75-1, and MCF7) and found nearly all to be induced by 

5-aza in these cells (Table 6-4; Fig. 6-14).  We then analyzed the expression pattern of the 5-

aza induction gene set across a panel breast cancer cell lines and found that for the 5-aza 

induction panel (by average linkage cluster analysis) most of the lung cancer cells and 

approximately half of the breast cancers fall into a major cluster, distinctly apart from the 

remaining breast cancer cells and the immortalized HBECs, which form their own tight 

cluster with a minimum Pearson correlation coefficient of >0.7 (6-15A & B).  These data 

suggest that tumor rather than tissue-specific gene expression patterns are the predominant 

factor driving the clustering algorithm for the 5-aza induction gene set.   

We selected 8/15 markers, found to be induced by 5-aza in both lung and breast 

cancer cells, for analysis in primary breast tumor material.  23 of the primary breast tumors 

used in this study form part of a large data set used in several earlier studies where 

fundamental histological and phenotypic differences were defined between subtypes of 

ductal breast carcinomas (Perou, Sorlie et al. 2000).  The DNA from these samples was 

derived from bulk tumor specimens upon surgical resection from the primary tumor site, 
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metastatic sites, or at autopsy.  All of these tumor specimens, with one exception were stage 

IIb or later.  We found that among the 8 genes tested in 23 breast carcinomas, 7 were 

frequently methylated (60-90%) (Fig. 6-16).  These breast cancer samples did not have 

counterpart normal tissue. 

 To address whether methylation for these 8 genes was detectable in benign breast 

tissue a further 14 tumor samples that have matched benign tissue were examined (see 

methods); these samples are primarily early stage tumors (≤ stage IIb) collected upon 

surgical resection of the primary tumor.  The counterpart benign tissue was collected by fine 

needle aspiration in the ipsilateral breast except where indicated and have not been described 

previously.  Again methylation was frequent, although overall there was more frequent 

methylation in the more advanced tumor stage UNC group.  Only SOX15 exhibited frequent 

methylation in benign breast material (Fig. 6-16 & Fig. 6-18; Table 6-10). 

Methylation specific PCR, while robust, is extremely sensitive and can detect 

methylated sequences in the presence of large amounts of unmethylated DNA.  We used 

sodium bisulfite DNA sequencing to confirm that the MSP primer sets used in these studies 

amplified the appropriate target sequences and that these sites were bona fide 

hypermethylated CpG islands.  We designed primers that flank the MSP priming sites for the 

8 genes examined and then cloned and sequenced PCR products from bisulfite treated HBEC 

and/or lymphocyte DNA and tumor cell DNA.  Between 8-20 subclones from each selection 

plate for each cell type and gene were analyzed.  With the exception of NRCAM, all 

sequences were heavily methylated in the tumor cells but not in lymphocytes or HBEC DNA 
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(Fig. 6-17).  Based on these data, and its infrequent methylation in breast cancer, we 

excluded NRCAM from subsequent analyses. 
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Examination of the methylated gene set in matched pairs of colon and prostate cancers 

Tumor-specific promoter hypermethylation is often also tissue-specific.  To explore 

whether the 7 genes (BNC1, LOX, ALDH1A3, MSX1, CCNA1, CTSZ, SOX15) we identified 

in the previous section were methylated in other tissues besides breast and lung, we 

examined an independent set of primary colon and prostate cancers and their matched normal 

tissues.  For comparative purposes, we included methylation data for p16 and RASSF1A for 

all tumor types examined (Fig. 6-17, Table 6-10).  Data for RASSF1A and p16 are derived 

from published work as annotated in the table legend (Esteller, Fraga et al. 2001; Zochbauer-

Muller, Fong et al. 2001; Maruyama, Toyooka et al. 2002; Holst, Nuovo et al. 2003; Lewis, 

Cler et al. 2005; Takahashi, Shigematsu et al. 2006). 

BNC1, MSX1, and CCNA1 were frequently methylated in all 4 tumor types.  

However, CCNA1 exhibited significant methylation in benign prostate and colon tissues.  

This suggests that CCNA1 may undergo tissue-specific methylation during cellular 

differentiation in certain tissues, but not others.  BNC1 and MSX1 showed high sensitivity 

and specificity for tumors when compared to benign counterpart tissues (estimated values 

and 95% confidence intervals: 0.81 (0.75-0.86); 0.67 (0.60-0.75), respectively).  For BNC1 

and MSX1, both prostate and colon benign tissues did have some methylation, however the 

pattern was different from CCNA1.  ALDH1A3 was specifically methylated in all tumor 

types, albeit less frequently than BNC1 or MSX1, showing the highest sensitivity in breast 

and prostate and highest specificity in lung.  LOX and CTSZ methylation was restricted to 

lung and breast tumors, and in both cases was highly specific. SOX15 was methylated in 

most benign tissues and has been omitted from the histogram for purposes of clarity.  
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DISCUSSION 

We used global gene expression profiling (47,000 transcripts) of 7 lung cancer cell 

lines before and after treatment with 5-aza to identify genes that were significantly up-

regulated by this treatment.  We performed similar experiments in three newly available 

immortalized human bronchial epithelial cells to identify genes whose expression was 

selectively lost in lung cancer, expressed in normal lung epithelium, but subject to 5-aza 

induction.  The use of these cells as part of a global methylation induction screen has not 

been described previously.  We applied a series of biological filters to extract a list of 

methylation candidates, and statistical analyses of the major steps in this process suggested 

that successive lists were enriched for genes with 5’ CpG islands.  Only those genes that 

were induced in more than one lung cancer and had well-defined CpG islands in their 

putative promoter regions were selected.  This led us to identify 132 candidate genes of 

which 45 have been studied in detail in 20 primary lung cancers and companion normal lung 

tissue. 

The large majority of the 132 genes we have identified have not been described to 

undergo tumor specific promoter hypermethylation.  Expression of these genes distinguishes 

primary lung cancers from normal lung in the same patient.  While there are probably many 

genes that are methylated – perhaps at random – during carcinogenesis, we found that the 

vast majority of the 45 genes studied here undergo tumor specific methylation in multiple 

primary lung cancers.  Eight of these 45 genes were studied in a panel of 105 primary tumors 

from NSCLC, breast, colon and prostate cancers and 82 histologically normal companion 

tissues, which showed that many undergo methylation in these common epithelial cancers.  
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Thus, this approach has identified many new genes subject to frequent tumor acquired 

methylation in lung, breast, colon, and prostate cancers.  Frequent methylation of specific 

genes in multiple independent cancers strongly suggests, although does not prove, that these 

genes are functionally relevant to cancer pathogenesis. 

One goal of this study was to identify new genes involved in tumor specific 

methylation for follow up functional analysis.  To this end, our screen uncovered some well-

established methylation markers that have tumor suppressor activity, including TIMP3, 

CDH1, and SFRP1, but missed others such as p16 and RASSF1A.  The reason for this 

highlights one of the limitations of current microarray technology in that commercial arrays 

cannot always discriminate between alternative splice forms of genes; both p16 and RASSF1 

have constitutively expressed alternative isoforms that can hybridize to probes specific for 

these loci.  Since both genes have expressed isoforms (p14 and RASSF1C) that differ only in 

their 5’ regions, none of the probes specific to these genes detected differences in expression.  

This limitation means that we have probably missed isoforms of genes that are subject to 

tumor-specific methylation, but that are part of an active transcription locus.  

Most of the genes identified in this study are novel methylation candidates in 

NSCLC, however some have been described in other tissues.  LOX was frequently 

methylated in our panel of cell lines and NSCLC tumors, and was recently shown to be 

methylated in gastric cancers (Kaneda, Wakazono et al. 2004).   CCNA1 was shown to be 

methylated in head and neck cancers and was inversely correlated with p53 mutation 

(Tokumaru, Yamashita et al. 2004).  Interestingly, in our study, CCNA1 was methylated in 

A549, which has wild-type p53, but not in NSCLC with mutant p53.  Loss of dual specificity 
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phosphatase I (DUSP1) expression as determined by immunohistochemistry inversely 

correlates with increasing malignancy of prostate cancers, and methylation of its promoter 

appears to be an early event in this disease (Rauhala, Porkka et al. 2005).  In another recent 

report, tissue factor pathway inhibitor 2 (TFPI2) methylation was used as part of a six gene 

panel to screen for cancer in pancreatic juice specimens (Matsubayashi, Canto et al. 2006).  

Promoter methylation of the transcription factor TWIST1, has been described in several 

reports, and is very frequent in neuroblastoma, cervical and breast cancers, although, 

curiously, high expression of TWIST1 seems to be necessary for breast cancer metastasis 

(Alaminos, Davalos et al. 2004; Mehrotra, Vali et al. 2004; Yang, Mani et al. 2004; Feng, 

Balasubramanian et al. 2005).   The proapoptotic BCL2 family member, BIK, was identified 

in a global screen for promoter methylation in melanoma using restriction landmark genomic 

scanning (Pompeia, Hodge et al. 2004).    

Our data suggests that some genes, such as CCNA1, clearly undergo both tissue and 

tumor-specific methylation.  Tissue-specific promoter hypermethylation arises in response to 

both extrinsic and intrinsic signals during cellular differentiation, and may account for the 

distinctive pattern we observed for this particular cyclin (Jaenisch and Bird 2003).  The 

biological basis of frequent tumor-specific hypermethylation in multiple tissues coincident 

with tissue-specific methylation in another tissue is unknown.  However, two well 

characterized tumor suppressors, p16 and RASSF1A, exhibit similar tumor and tissue-specific 

promoter methylation profiles; p16 methylation is frequently observed in benign breast 

tissue, even in young women, and RASSF1A is observed in benign liver and colonic 

epithelium (Holst, Nuovo et al. 2003; Lehmann, Berg-Ribbe et al. 2005).  Thus, the presence 
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of promoter methylation in selected normal tissues does not exclude a gene from being an 

important tumor suppressor.  Nevertheless, the information on such methylation is important 

for clinical applications. 

Another pattern of promoter hypermethylation evident in our data, exemplified by 

LOX and CTSZ, is characterized by frequent but exclusive methylation in certain tumor 

types.  According to available data provided through various online databases (Genecard 

(Weizmann Institute), and Source (Stanford University)), both LOX and CTSZ are widely 

expressed.  Both genes also have a several homologues that may be partially redundant, or 

they may have tissue-specific functions important to tumorigenesis in breast and lung, but not 

in prostate or colonic epithelium.  Several other genes exhibit a similar, restricted 

methylation profile, such as BRCA1 in breast and ovarian tumors and GSTP1 in liver and 

prostate cancers (Esteller, Silva et al. 2000; Jeronimo, Henrique et al. 2004).  Genes that are 

methylated with high frequency and specificity only in certain tumors might also be of value 

in the development of a promoter hypermethylation profile to screen for several different 

cancers at once. 

Perhaps the most important profile identified in this study is that of tumor-acquired 

methylation involving the four most common epithelial tumors.  When all matched tumors 

were combined, BNC1 and MSX1 were both highly sensitive and specific for tumor 

detection.  As yet, relatively few loci have been identified that exhibit frequent (>50%), 

tumor-specific methylation across several types of malignancies.  There are several genes 

that exhibit frequent methylation in NSCLC and other tumor types, such as the tumor 

suppressor gene adenomatosis polyposis coli  (APC) or retinoic acid receptor beta (RARβ), 
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but these genes are often methylated in counterpart benign tissue, especially in tumors where 

field effects are often seen, such as NSCLC (Zochbauer-Muller, Fong et al. 2001; 

Shivapurkar, Stastny et al. 2006).  The identification of more loci like BNC1 and MSX1 will 

be a key element in developing a promoter hypermethylation profile for the early detection of 

human cancer.  

 There are relatively few tumor-specific lesions that occur with significant frequency 

in all types of tumors with the important exceptions of p53 mutation, genomic instability, and 

constitutive reactivation of telomerase (Hollstein, Sidransky et al. 1991; Mitsudomi, 

Steinberg et al. 1992; Kim, Piatyszek et al. 1994).  The wealth of data available in the 

scientific literature suggests that aberrant DNA methylation may be another key contributor 

to cellular transformation. The frequency and diverse patterning of tumor-specific promoter 

methylation in our panel of lung, colon, prostate, and breast carcinomas coupled with the 

findings recently reported by others, indicates that tumor-acquired promoter 

hypermethylation patterns are non-random (Baylin and Ohm 2006; Keshet, Schlesinger et al. 

2006).  It is possible that there are ongoing random methylation events in cancer cells; 

however, that some genes are so frequently methylated in multiple tumor types but not in 

their companion benign tissues, suggests to us that there is something about their function or 

primary sequence that makes them particularly susceptible to promoter hypermethylation and 

silencing in the context of cellular transformation.   

By contrasting the genome-wide changes in gene expression of normal and lung 

cancer cells, we were able to gain insight into the complexity of the methylation program 

required for cells to become fully malignant.  Even though we began with a highly 
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structured, organ-specific screen, by applying successive biological and statistical filters we 

identified several genes with exceptionally high methylation frequencies and tumor 

specificity in primary lung and breast tumors.  Several of these genes also show significant 

methylation in colon and prostate tumors but not in counterpart benign tissues.  We conclude 

that while tumors differ in their molecular phenotypes and pathogenesis, the pathways they 

follow toward malignancy may be similar and may be reflected in the methylation programs 

they engage, which in turn may provide an opportunity to exploit in early diagnosis or 

therapeutic strategies.  Subsequent studies will be needed to determine whether these novel 

methylated loci could be useful in early detection screening, and whether loss of expression 

of their associated genes contributes to tumor initiation and pathogenesis. 
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Tables 

Table 6-1 . Clincopathological Features of Cell Lines Used in Microarray Studies

Sample Name Cell Type Dx Age Gender Race Smoker/PkYrs

HBEC2 Bronch. Epith NSCLC 68 M Caucasian Y

HBEC3 Bronch. Epith No Cancer 65 M Caucasian Y

HBEC4 Bronch. Epith Lung Cancer 71 F Caucasian Y

A549 Lung Cancer Adeno 58 M Caucasian Y

H460‡ Lung Cancer Large Cell ~45 M Caucasian Y/~40

H1299 Lung Cancer Large Cell 43 M Caucasian Y/50

H1819 Lung Cancer Adeno 58 F Caucasian Y/80

H157 Lung Cancer Squa 59 M Caucasian Y/?

H1993 Lung Cancer Adeno 46 F Caucasian Y/30

H2347 Lung Cancer Adeno 54 F Caucasian N/0

H526 Lung Cancer SCLC 55 M Caucasian ?

MCF7† Breast Cancer Adeno 69 F Caucasian N/A

HCT116† Colon Cancer Colorectal
Carcinoma Adult M ? N/A

Data are from Phelps et al.
‡John D. Minna, unpublished observations
†American Type Culture Collection Website  
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Cell Line 100 nM 1 μM Up in both† 1 μM > 100 nM‡ p-Value

HBEC2 602 591 99.7% 357 6.07 x 10-6

HBEC3 148 289 96.6% 106 2.24 x 10-7

HBEC4 88 219 100% 72 1.19 x 10-9

H2347 127 387 99.2% 77 0.021

H1299 74 402 100% 64 8.96 x 10-11

A549 60 188 96.7% 56 9.08 x 10-13

H1993 11 80 100% 11 9.77 x 10-4

H157 114 416 98.2% 100 1.72 x 10-15

H460 27 501 100% 27 1.49 x 10-8

H1819 25 67 100% 24 1.55 x 10-6

# of Genes Induced >4x by 5-aza

† A given gene was "up in both" if it was induced >4x in the 100 nM experiment and went up any
amount in the 1 μM experiment.

‡ A given gene was counted as dose-dependent when induction relative to control was >4x in the
100 nM array and 1 μM induction was > 100 nM for the same gene.

Table 6-2.  Reproducibility and dose-dependence of gene induction by 5-aza-2'-deoxycytidine
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Cell Line Genes
Compared Overlap* Point Estimate 95% Confidence

Interval

Top 1000 1620 0.746 (0.724 - 0.767)

Top 2000 3291 0.711 (0.695 - 0.727)

Top 1000 1682 0.762 (0.741 - 0.782)

Top 2000 3431 0.711 (0.695 - 0.726)

Top 1000 1606 0.810 (0.790 - 0.829)

Top 2000 3278 0.732 (0.717 - 0.747)

Table 6-3. Agreement and 95% confidence intervals for biological replicates
performed 18 months apart

*Agreement analysis was performed as described in methods.  Comparisons were
made between the top 1000 and 2000 genes for each replicate at 1 μM. The overlap
is the number of genes that are coincident between the two datasets: 2000 for top
1000, and 4000 for top 2000.

HBEC2

HBEC3

HBEC4
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Table 6-4.  Correlation between microarray and QPCR data

Gene Array QPCR Array QPCR Pearson

†Induction frequency is the number of cell lines out of 7 where a given gene was induced >4-fold.
‡Expression change is indicated in Log2

Induction Frequency† Range of Expression Change‡

0.807

3/7 3/7 -0.43 - 2.28 0.12 - 3.34 0.758

3/7 5/7 -0.39 - 2.44 0.74 - 6.37

0.932

2/7 5/7 -1.61 - 2.26 -0.26 - 14.31 0.906

3/7 5/7 -2.05 - 2.45 -2.16 - 44.42

-0.181

3/7 6/7 0.31 - 5.78 2.14 - 17.09 0.978

2/7 4/7 -1.56 - 2.38 0.44 - 1.56

-1.03 - 6.6 0.965

0.6032/7 5/7 1.63 - 5.17 -1.91 - 7.10

0.00 - 3.31 0.333

6/7 7/7 1.40 - 8.40 1.48 - 12.06 0.892

0 - 3.66 0.8292/7 5/7

MAF

NRCAM

PHLDA1

-0.81 - 2.71

2/7 5/7 -0.56 - 3.88

5/7 5/7 -1.06 - 6.76

CDH1

CTSZ

IRX4

LOX

ADRB2

ALDH1A3

BNC1

CCNA1
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Table 6-5.  EASE Analysis of Genes Induced >4 fold in HBEC lines

SYSTEM TERM COUNT PERCENT Fisher's Exact Test

Biological Process RESPONSE TO WOUNDING 9 11.11 7.007E-05
Molecular Function PATTERN BINDING 5 6.17 3.536E-04
Molecular Function GLYCOSAMINOGLYCAN BINDING 4 4.94 3.342E-03
Molecular Function POLYSACCHARIDE BINDING 4 4.94 3.740E-03
Biological Process INFLAMMATORY RESPONSE 5 6.17 6.572E-03
Biological Process DNA PACKAGING 5 6.17 8.555E-03
Biological Process PROTEIN COMPLEX ASSEMBLY 5 6.17 9.106E-03
Biological Process RESPONSE TO STRESS 10 12.35 9.868E-03
Biological Process CHROMATIN ASSEMBLY OR DISASSEMBLY 4 4.94 1.014E-02
Biological Process RESPONSE TO EXTERNAL STIMULUS 12 14.81 1.176E-02

Cytoband 6P22-P21.3 2 2.47 1.359E-02
Biological Process RESPONSE TO EXTERNAL BIOTIC STIMULUS 7 8.64 1.378E-02
Biological Process REGULATION OF CELL DIFFERENTIATION 3 3.70 1.468E-02
Biological Process CHROMOSOME ORGANIZATION AND BIOGENESIS 5 6.17 1.592E-02
Biological Process CHROMOSOME ORGANIZATION AND BIOGENESIS (SENSU EUKARYOTA) 5 6.17 1.592E-02
Biological Process DEVELOPMENT 14 17.28 1.729E-02
Molecular Function BINDING 41 50.62 1.949E-02

Cytoband 6P21.3 3 3.70 1.954E-02
Molecular Function HEPARIN BINDING 3 3.70 2.261E-02
Molecular Function ION BINDING 15 18.52 2.470E-02
Molecular Function METAL ION BINDING 15 18.52 2.470E-02
Molecular Function CATION BINDING 14 17.28 2.532E-02
Biological Process CELL ADHESION 7 8.64 2.805E-02

Cytoband XQ28 3 3.70 3.396E-02
Biological Process NEGATIVE REGULATION OF MONOCYTE DIFFERENTIATION 2 2.47 3.637E-02
Biological Process CELL COMMUNICATION 22 27.16 3.859E-02
Biological Process NEGATIVE REGULATION OF CELL DIFFERENTIATION 2 2.47 3.993E-02
Biological Process ESTABLISHMENT AND/OR MAINTENANCE OF CHROMATIN ARCHITECTURE 4 4.94 4.210E-02
Biological Process ORGANELLE ORGANIZATION AND BIOGENESIS 7 8.64 4.276E-02
Biological Process MONOCYTE DIFFERENTIATION 2 2.47 4.349E-02
Biological Process NEGATIVE REGULATION OF MYELOID BLOOD CELL DIFFERENTIATION 2 2.47 4.349E-02
Molecular Function RECEPTOR BINDING 6 7.41 4.497E-02
Biological Process NUCLEOSOME ASSEMBLY 4 4.94 4.831E-02

KEGG Pathway HSA04512:ECM-RECEPTOR INTERACTION 3 3.70 4.890E-02
KEGG Pathway HSA04512 3 3.70 4.890E-02

Molecular Function CARBOHYDRATE BINDING 4 4.94 4.901E-02
Biological Process REGULATION OF MONOCYTE DIFFERENTIATION 2 2.47 5.055E-02
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Gene List RefSeq Annotation 5' CpG
Island

No CpG
Island

% with CpG
Island χ2 χ2 Monte

Carlo (105)

All RefSeq 17820 6704 11116 37.6% N/A N/A

Up in NSCLC 435 240 195 55.2% 4.1 x 10-14 1 x 10-5

5-aza
Induction 134 98 36 73.1% 2.2 x 10-16 1 x 10-5

Table 6-6. Analysis of CpG island enrichment for genes induced by 5-aza in microarray experiments

Intersect tables were downloaded from the UCSC genome browser for each annotation list using the May
2006 genome build.  Chi-square statistics were determined using the expected value of 37.6% with one
degree of freedom. The Monte Carlo method was used to simulate samples of various sizes with 100,000
represented here.  
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Table 6-7.  Significant gene 
list from SAM analysis of 5-
aza gene set in primary 
NSCLC and normal lung.  
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Table 6-8 may be obtained online as supplementary table I in Shames et al.  
 

 

 

Table 6-9. Analysis of overlapping genes between Sato et al. and Shames et al.

SYSTEM TERM COUNT PERCENT Fisher's Exact Test

Cytoband XP11.4-P11.2 5 2.53 3.01E-09
Cytoband 6P21.3 9 4.55 1.01E-07

Biological Process RESPONSE TO WOUNDING 17 8.59 1.72E-06
Molecular Function ENZYME INHIBITOR ACTIVITY 13 6.57 2.92E-06
Biological Process INFLAMMATORY RESPONSE 12 6.06 7.46E-06

Biological Process RESPONSE TO EXTERNAL BIOTIC 
STIMULUS 17 8.59 1.23E-04

Biological Process DEVELOPMENT 37 18.69 1.26E-04
Molecular Function RECEPTOR BINDING 17 8.59 2.14E-04
Biological Process RESPONSE TO STRESS 23 11.62 4.79E-04
Molecular Function ENDOPEPTIDASE INHIBITOR ACTIVITY 8 4.04 5.11E-04
Molecular Function PROTEASE INHIBITOR ACTIVITY 8 4.04 5.31E-04
Molecular Function ENZYME REGULATOR ACTIVITY 16 8.08 5.93E-04

Cytoband XP11.23 5 2.53 7.07E-04
Biological Process RESPONSE TO EXTERNAL STIMULUS 28 14.14 8.68E-04

Cytoband 19P13.3-P13.2 3 1.52 9.69E-04
Biological Process REGULATION OF CELL CYCLE 13 6.57 1.21E-03
Molecular Function PROTEIN KINASE INHIBITOR ACTIVITY 4 2.02 1.26E-03
Molecular Function KINASE INHIBITOR ACTIVITY 4 2.02 1.98E-03

KEGG Pathway HSA04610:COMPLEMENT AND 
COAGULATION CASCADES 6 3.03 2.18E-03

KEGG Pathway HSA04610 6 3.03 2.18E-03
Genetic association database INFECTION 7 3.54 2.64E-03

Biological Process MORPHOGENESIS 24 12.12 2.80E-03
Biological Process MAP KINASE PHOSPHATASE ACTIVITY 3 1.52 3.45E-03
Biological Process CELL-CELL SIGNALING 14 7.07 4.99E-03
Molecular Function ISOPRENOID BINDING 3 1.52 5.00E-03
Molecular Function RETINOID BINDING 3 1.52 5.00E-03
Biological Process ORGAN DEVELOPMENT 20 10.10 5.25E-03
Biological Process ORGANOGENESIS 20 10.10 5.37E-03

Cytoband XQ28 5 2.53 6.74E-03
Molecular Function GROWTH FACTOR ACTIVITY 7 3.54 7.14E-03
Biological Process CELL PROLIFERATION 22 11.11 9.26E-03
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Tissue procurem
ent procedures and clinical inform

ation for sam
ples m

ay be found  in the m
ethods section.  In brief, all prostate and colon tum

ors w
ere S

tage II or later, 
lung tum

ors ranged from
 S

tage I to IIIb.  For breast tum
ors, see below

.  B
enign tissue w

as obtained from
 the sam

e patient in all cases except for the U
N

C
 sam

ples, see 
below

 and m
ethods.

†B
enign breast w

as obtained from
 the ipsilateral breast except for one sam

ple for LO
X

 and B
N

C
1

, and tw
o sam

ples for M
S

X
1

, w
hich w

ere obtained from
 the 

contralateral breast in the sam
e pateint.

*B
reast tum

or sam
ples w

ere obtained through a collaboration w
ith C

huck P
erou at U

N
C

.  S
am

ples in this group w
ere all S

tage IIb or later, w
ith the exception of a single 

S
tage I tum

or.

1B
reast tum

or sam
ples w

ere obtained though a collaboration w
ith D

avid E
uhus at U

TS
W

.  A
ll sam

ples in this group are S
tage IIb or earlier.

C
ells w

ith bold face type show
 a statistically significant difference in m

ethylation frequency betw
een tum

or and norm
al sam

ples according to a χ
2 statistic (p < 0.05).
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Figures 

 
 

 
 
 
Figure 6-1.  Histological changes that occur in association with the common 
molecular alterations found in NSCLC.  Adapted from (Hirsch, Franklin et al. 2001). 
The progression from benign bronchial epithelium through hyperplasia, dysplasia, 
carcinoma in situ, a finally to invasive carcinoma is accompanied by characteristic 
lesions in the lung.  Almost all cases of squamous cell carcinoma of the lung are 
associated with smoking and altered DNA methylation.  Other early events include 
microsatellite instability, telomerase dysregulation, and later on, p53 mutation.  
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Figure 6-2.  Unsupervised hierarchical cluster analysis of microarray data for 
NSCLC (N=31) cell line panel.  Microarray data were normalized using RMA and then 
filtered using a minimum 2 fold difference between 50% of the samples for a given gene 
for each gene across samples.  Data were then analyzed using the SAM algorithm with a 
delta value of 0.1 and 1000 permutations.  Unsupervised hierarchical clustering using an 
average linkage algorithm was used.  Arrays were centered about the median; genes were 
not.  Red indicates 2 fold above the median value; green indicates 2 fold below the median 
value for a given gene.  Blue arrows indicate cell lines selected as representatives of a part 
of the dendogram.  Purple arrow indicates a cell line that was selected as part of a second 
round of microarray studies.  A549 was not included as part of the NSCLC cell line panel. 
A = adenocarcinoma; SQ = squamous cell carcinoma; BAC = bronchioalveolar 
carcinoma; L = large cell carcinoma carcinoma; NE = neuroendocrine; NSCLC = non-
small cell lung carcinoma 
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Figure 6-3.  5-aza-2’-deoxycytidine treatment induces genes silenced by promoter 
methylation in HBEC and NSCLC cancer cell lines.  A)  Quantitative RT-PCR for 
p16 and TKTL1 in HBEC and NSCLC.  Solid bars are p16 and cross-hatch bars are 
TKTL1.  Data are normalized relative mRNA expression levels according to the 2ΔΔCt

method.  HBEC2, 3, 4 all had similar profiles and were combined.   p16 status is 
indicated below each cell line; (+) expressed, (M) methylated, (HD) homozygous 
deletion.  B)  RT-PCR for p16 in the indicated cell lines.  GAPDH is a loading control. 
C)  Methylation specific PCR for TKTL1 in the indicated samples indicates complete 
methylation in all samples examined; (M) methylated, (U) unmethylated.  SssI in vitro
methylated DNA in positive control for methylated primer, 5-aza treated DNA is a 
positive control for the unmethylated primer sets (methods for PCR conditions and 
primer sequences). 



 

   165

132 Tumor-specific  
methylation candidates

866

(133)

(460)

(77)

(64)

# of Genes

Genes Induced ≥4x by 
5-aza in NSCLC

Subtract

Genes Induced ≥4x by 
5-aza in HBECs

Subtract
Genes not expressed in 

HBEC 
Subtract

Poorly annotated genes (66) 
or duplicate probes (11)

Subtract

Genes without CpG 
islands

Gene Selection Criteria

132 Tumor-specific  
methylation candidates

866

(133)

(460)

(77)

(64)

# of Genes

Genes Induced ≥4x by 
5-aza in NSCLC

Subtract

Genes Induced ≥4x by 
5-aza in HBECs

Subtract
Genes not expressed in 

HBEC 
Subtract

Poorly annotated genes (66) 
or duplicate probes (11)

Subtract

Genes without CpG 
islands

Gene Selection Criteria

 
 
 
Figure 6-4.  Strategy used to identify methylation candidates by gene expression 
microarray.  NSCLC and HBEC cell lines were treated with 5-aza and compared to 
controls (DMSO).  We subtracted transcripts induced ≥4-fold in HBEC (133) from the 
total number induced ≥4-fold in 2/7 NSCLC lines (866/47000) since methylation of these 
genes is unlikely to be tumor specific.  For practical purposes, we removed genes that 
were not expressed in HBEC (460), were duplicate probes (11), had poor annotation (66). 
Finally, we excluded genes without identifiable 5’ CpG islands (64).  The number of 
genes subtracted from the total induced ≥4-fold in 2/7 NSCLC cell lines (866) is indicated 
next to each description in parentheses.  We used the percentage of transcripts associated 
with 5’ CpG islands as a measure of enrichment for the major steps in the filtering 
process.  37% of all RefSef transcripts contain 5’ CpG islands; 55% of the 866 5-aza 
induced transcripts had 5’ CpG islands; 73% of the final 196 genes had CpG islands. 
Statistical analysis of these data appears in Table 6-5. 



 

   166

A

DC

B

 
Figure 6-5.  Scatter plots of microarray data for indicated cell lines before and after 
5-aza treatment.  Each point represents signal form a single probe.  In panels A and B, a 
red point indicates 4-fold up-regulation; green indicates 4-fold down-regulation.  The cell 
lines ranged broadly in terms of the number of genes affected by 5-aza treatment: in 
H157, 4407 genes were induced, whereas in H1819, 972 genes were induced.  When we 
increased the threshold of a “significant” induction to ≥4-fold, 866 the cell lines still 
exhibited substantial variations in expression phenotype: H1819 still had the fewest (268), 
whereas now, H460 had the most (1100).   
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Figure 6-6.  Scatter plots of microarray data for the HEBC cell lines before and after 
5-aza treatment.  Each point represents signal form a single probe.  In panels A, B, and C 
compare gene expression changes in HBEC2, 3, and 4, respectively; panel D is an average 
of all 3 HBEC cell lines.  Red points indicate 4-fold up-regulation; green indicates 4-fold 
down-regulation.  All three HBEC cell lines exhibited substantial, dose-dependent 
changes in gene expression after 5-aza treatment.  In contrast to the cancer cell lines, the 
HBECs appeared to be relatively similar in their responses to 5-aza treatment. 
Bioinformatic analysis of these data appears in Table 6-5. 
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Figure 6-7.  Hiearchical cluster analysis of the gene expression profiles of NSCLC 
and HBEC cell lines before and after 5-aza treatment.  Microarray data were 
normalized using RMA and filtered using a minimum standard deviation of 20% across 
the genes.  Clustering was performed using the average linkage method.  While 5-aza 
induced substantial changes in gene expression in all cell lines with some overlap the 
NSCLC cell lines retained their expression phenotype differences.  Interestingly, two 
untreated HBEC cell lines grouped together prior to treatment, but were quite different 
upon 5-aza treatment, suggesting that the gene expression profiles of these two cell lines is 
quite similar, but their underlying methylation may be quite different.  
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Figure 6-8.  5-aza-2’-deoxycytidine induced gene set in NSCLC, SCLC, breast, and 
colon cancer cell lines.  Heat map for gene induction across NSCLC and other cancer cell 
lines as indicated.  Data are log2 changes between mock-treated and 1 μM 5-aza treatment 
in each cell line.  Bright red indicates ≥4-fold up-regulation; intermediate red ≥2-fold 
induction; grey indicates <2-fold induction; black indicates no data.  The data are ordered 
from top to bottom according to the frequency of 4-fold induction across the NSCLC 
cancer cell lines.  The vertical, colored bars parallel to the heat map represent the 
frequency of 4-fold induction in the NSCLC 5-aza induction experiments. Annotations are 
represented in order from top to bottom with the colored bars from the heat map indicating 
fold induction; purple indicates 5/7, blue indicates 4/7, green indicates 3/7, yellow 
indicates 2/7 
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Figure 6-9.  Average-linkage cluster analysis of 5-aza induced methylation 
candidates in independent microarray data sets (cell lines).  The NSCLC 
microarray panel data were established on the Affymetrix U133 A and B chips. 
These arrays contain approximately 42,000 probes, all of which appear on the U133 
Plus 2.0 chip.  Data for the 132 gene 5-aza induction gene set, which was established 
from using the U133 Plus 2.0 chip, were extracted from the U133 A and B chips 
(120 genes) for the panel of 31 NSCLC cell lines (U133A and B) and 7 HBEC cell 
lines (U133 Plus 2.0).  Data were then renormalized using the median array method, 
and transformed to log2 signal intensities, mean-centered and hten clustered using 
the average linkage method.  Red indicates above the mean, green indicates below 
the mean.  5-aza induction gene set separates cancer from HBEC cell lines and are 
highly expressed in HBEC.  Some genes on the bottom of the figure (Higher in 
NSCLC) passed filtering because of the cell lines that were used in the study.  In 
addition centering the data has the effect of forcing red and green colors on to the 
heat map when the differences may not be that great.  This is an unfortunate artifact 
of the algorithm used in this analysis. 
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Figure 6-10.  Average-linkage cluster analysis of 5-aza induced methylation 
candidates in normal lung and primary NSCLC.  The NSCLC microarray panel 
data were established on the Affymetrix U133 A and B chips.  Microarray 
expression data in a panel of 46 primary NSCLC and 29 counterpart normal lung 
tissues.  Data are median-centered and colored as in Fig. 6-9.  Blue bar indicates 
normal lung, purple bar indicates tumor tissue. 5-aza induced gene set clearly 
distinguishes cancer from normal.  Most genes are expressed at higher levels in 
normal tissues, although not all.  
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Figure 6-11.  Summary of methylation-specific PCR in cell lines.  From the left, in 
vitro methylated DNA mixed with lymphocyte DNA (SssI), normal lymphocyte DNA, 
HBEC cell lines, NSCLC lines, as indicated.  Red fill indicates positive methylated 
product; aqua indicates positive unmethylated product.  Data are grouped as follows: 
group I, no methylation in either HBECs or lymphocytes; group II, methylation in 
HBEC, but not lymphocytes; group III, methylation in lymphocytes.  Data are ordered 
based on the frequency of methylation in primary lung tumors (Fig. 6-12) 
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Figure 6-12.  Summary of methylation-specific PCR in primary NSCLC and 
counterpart normal tissue.  Data are organized as in Fig. 6-10.  Each row represents 
one gene promoter, each column represents one sample.  The samples are in the same 
order from left to right in both the methylated and unmethylated product panel. 
Summary of methylation specific PCR in matched primary NSCLC and adjacent non-
malignant tissue.  Data are colored and grouped as in (A), and ordered from top to 
bottom according to the frequency of methylation in primary NSCLC.  Left column 
indicates net copy number changes across a panel of 31 NSCLC cell lines by aCGH. 
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Figure 6-13.  Hiearchical cluster analysis of the gene expression profiles of cell lines 
treated with 5-aza.  A) Average linkage clustering of cell lines before and after treatment 
with 5-aza after SAM analysis.  In this analysis, the breast and small cell lung cancer cell 
lines cluster apart the main grouping of cell lines, suggesting that tissue-specific 
methylation patterns predominate the expression phenotype of these cells.  For these 
clusters, data was normalized using RMA and filtered to remove genes that were not 
differentially expressed across all cancer cell lines.  MATRIX 1.29 was used to cluster the 
data.  B)  Average linkage cluster analysis of cell lines before and after treatment with 5-
aza shows that the 5-aza induction gene set removes tissue-specific patterns of gene 
expression as indicated by the integrated grouping pattern.  Data were extracted using 
MATRIX 1.29 (partial gene list) function.   
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Figure 6-14.  Quantitative RT-PCR for genes induced and methylated in NSCLC
in six breast cancer cell lines before and after 5-aza treatment.  Breast cancer cells 
were treated with 5-aza according to standard protocols.  RNA was extracted using 
Trizol.  cDNA was prepared using Superscript II and random primers.  Probes and 
primers for QPCR were obtained from ABI.  Induction is in log10.  Genes induced by 
5-aza treatment in NSCLC are also frequently induced in breast cancer cells. 
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A) 
 

 
 
B) 

 
Figure 6-15.  Comparison of the gene expression patterns for the 5-aza induced gene 
set in HBEC, NSCLC, and breast cancer cell lines.  A) 120 genes from the original 132 
were compared across all cell lines using RMA normalized data.  While there is intra-
tumor type variability, the overall pattern of gene expression between lung and breast 
cancers were not significantly different (p-value >0.24, two-tailed t-test, unequal 
variances), but both were different from HBEC (6 x 10-147 for NSCLC vs. HBEC; 4 x 10-

136 for Breast vs. HBEC.  B)  Cluster analysis shows that breast cancer and NSCLC cell 
lines overlap in their clustering patterns when analyzed using all 196 genes in the 5-aza 
induction panel, whereas both remain distinct from HBEC. 
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Figure 6-16.  Methylation specific PCR for indicated genes in ductal breast carcinoma 
DNA for samples obtained from UNC.  The basal phenotype is based on gene expression 
profiles as demonstrated in prior publications (see text) and is characterized by the absence 
of estrogen receptor and a poor prognosis.  Other samples are characterized as luminal. 
Images of agarose gels were collected using a Kodak CCD camera, converted to .jpg files 
and merged using the ‘photomerge’ function in Photoshop CS2.  Visible bands 
corresponding to the appropriate size were counted as positive.  100 bp ladder is left.  M = 
methylated product; U = unmethylated product. 
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Figure 6-17.  Summary of sodium bisulfite sequencing for seven genes in 
lymphocytes, HBEC, and NSCLC cells as indicated.  Between 8 and 20 clones were 
sequenced for each locus in each cell type.  Sequencing primers were designed to 
flank the MSP priming sites and do not include any CpG sites with the exception of 
BNC1 which we were not able to amplify outside of the MSP priming sites for cells 
that harbored methylation.  There was no amplification of the methylated primer set in 
HBEC or lymphocytes, and no amplification of the unmethylated primer set in the cell 
lines examined.  One some occasions the methylated primer set for BNC1 amplified a 
289 bp amplicon from an unrelated locus on chromosome 1.  The sequence 
corresponds to a CpG island in an intronless gene (GPR25) that was heavily 
methylated in tumors.  The unmethylated primer set did not amplify this sequence. 
Each lollipop represents a composite of clones for that CpG site.  Open lollipops 
indicate 0-10% methylation, light grey indicates 11-25%, middle grey indicates 26-
50%, dark grey indicates 51-75%, black indicates 76-100% methylation.  Primers and 
PCR conditions are available upon request.  Raw data for sequencing is available 
online (PLoS Medicine). 
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Figure 6-18.  Summary of MSP data for indicated genes in breast (N=14; red bars), 
lung (N=20; black bars), prostate (N=24; pale yellow bars), colon (N=24; grey bars) 
tumors and benign tissue.   Only samples with matching benign and tumor tissue are 
represented in the histogram.  Gels were run and scored as in Fig. 6-17.  SOX15 was 
omitted from this figure for purposes of clarity.  Data for RASSF1A was obtained from 
(Zochbauer-Muller, Fong et al. 2001; Maruyama, Toyooka et al. 2002; Lewis, Cler et al. 
2005; Takahashi, Shigematsu et al. 2006); data for p16 was obtained from (Esteller, Fraga 
et al. 2001; Zochbauer-Muller, Fong et al. 2001; Holst, Nuovo et al. 2003; Takahashi, 
Shigematsu et al. 2006). 
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CHAPTER SEVEN 
 
INTRODUCTION 

 
In the following chapter, unpublished data are presented.  The first section details the 

CpG island annotation method that was developed for analyzing the microarray experiments, 

as well as the results of some of these bioinformatic studies.  The second section presents 

findings from a methylation analysis of the progressed HBEC system developed by Mitsuo 

Sato in the Minna lab.  At this writing, these data were still preliminary. 
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CPG ISLANDS 

 As discussed in previous sections, CpG islands are short repetitive sequences that are 

highly conserved, contain relatively high levels of GC, and are enriched for the CpG 

dinucleotide.  The importance of these sequences derives from their putative role in 

regulating transcription.  As part of the analysis performed on the microarray data collected 

from the 5-aza induction experiments, I developed a strategy to examine whether there was 

any relationship between the overall gene density in the genome, the presence of Refseq 

genes that are associated with CpG islands, and whether there was detectable gene induction 

in multiple NSCLC lines in the 5-aza screen at a given position. 

To examine this question we downloaded the CpG island annotation from the UCSC 

database and aligned that to the Affymetrix Gene chip (details of this approach are presented 

in materials and methods).  A schematic of the strategy for this process is presented in Fig 7-

1.  The algorithm to align the 5’ sites of transcripts was written by Luc Girard in the Minna 

lab, but I edited and optimized it.  The general strategy was to take the most 5’ positional 

information from a probe annotation track in Affymetrix database and align that with the 

CpG island positional information using a Microsoft Access database (Fig 7-2).  While this 

strategy is relatively straightforward in concept, we had to resolve several difficult technical 

issues. 

The primary complication was that the assembly scheme used by Affymetrix in 

building their U133 Genechip was based on an incomplete genome sequence database (at the 

time); many probes are based on partial sequence information such as ESTs and incomplete 

cDNAs – for details see Affymetrix probe set design white papers 
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(http://www.affymetrix.com/support/technical/whitepapers.affx).  Each EST/cDNA/partial 

sequence, etc., has its own accession and Affymetrix used many that were partially redundant 

or had the incorrect annotation (Benson, Karsch-Mizrachi et al. 2005)(Luc Girard, 

unpublished information).  Moreover, redundant alignments that comprise full RefSeq 

annotations are usually biased against the 5’ end of gene.  This led to many instances where 

the same gene had multiple alignments, some of which did not agree (Fig. 7-3). 

Despite this limitation in the underlying data and the alignment method, an overview 

of CpG island positioning in the genome was undertaken.  The number of DNA sequences 

scored as CpG islands in the genome depends critically on the parameters used to define 

these sequences.  The standard definition is based on the work of Garden and Frommer, and 

defines CpG islands as short stretches of DNA with higher than expected GC content (>50%) 

where the CpG dinucleotide content is relatively enriched with an observed vs. expected ratio 

of >0.6, over a distance of at least 200 base pairs (Gardiner-Garden and Frommer 1987).  

More recently other groups have used modern bioinformatic techniques and the full sequence 

of the human genome have developed a new definition where a sequence has a minimum of 

500 base pairs, a GC content of ≥55%, and an observed vs. expected CpG ratio of ≥0.65 

(Takai and Jones 2002).  The major limitation of the older definition is that it includes many 

intergenic CpG rich areas such as those associated with long terminal repeats (LTRs), Alus, 

and other repetitive elements.  According to the newer definition approximately 40% of 

human genes are associated with these elements (Bestor, Gundersen et al. 1992; Takai and 

Jones 2002).  Table 7-1 shows the relationship between CpG island length and frequency in 

the genome. 
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The purpose of the above analysis was to determine whether there was a relationship 

between the location and density of genes within a given locus and the density of gene 

induction our 5-aza profiles.  To analyze whether there was a relationship between the 

frequency of gene induction and gene density, the positional information for the RefSeq 

annotation database and the CpG island database was intersected using the UCSC genome 

table browser.  Then we overlaid this positional information with the 5-aza induction gene set 

that intersected with RefSeq database.  This union set included approximately 480 genes (see 

previous chapter).  The data for this analysis appears in the Fig. 7-5.  These data show that 

for the most part, the location of genes that were induced by 5-aza essentially followed the 

gene density in the genome (genes with CpG islands).  There were some exceptions however 

including chromosomes 4, 12, and 16 where there were regions of localized gene density that 

were not represented in the 5-aza gene induction set.  In addition, there were areas of 

enriched 5-aza gene induction (e.g. chromosome 9) that did not seem particularly enriched 

for CpG island associated genes. 

Taken together the gene density vs. gene induction density plots indicate that the 5-

aza gene induction set was distributed across the genome, and identifies localized regions of 

tumor suppressor loci for future study.  One particular region of interest lies in 9p21, which 

was highly enriched for 5-aza dependent gene induction and also is a LOH hot spot region 

contains the tumor suppressor locus p16.  These data form a part of a planned future study 

(see next chapter).  
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ANALYSIS OF PROMOTER HYPERMETHYLATION IN ONCOGENICALLY 

PROGRESSED IMMORTALIZED HUMAN BRONCHIAL EPITHELIAL CELLS 

 

INTRODUCTION – SUMMARY OF SATO ET AL 

 The following section describes data from an ongoing project that is part of a 

collaboration between the Adi Gazdar, Narayan Shivapakur, Mitsuo Sato, and myself.  The 

basis for this project derives from (Sato, Vaughan et al. 2006), where Mitsuo Sato generated 

a series of isogenic HBEC cell lines containing a variety of oncogenic changes (described 

below).  These HBECs have differential tumorigenic properties whereupon some grow in 

soft agar and some form tumors in mice.  We hypothesized that alterations in cellular 

phenotype, particularly toward cellular transformation may coincide with alterations in 

promoter hypermethylation.  The results of these experiments are presented below. 

 

The following abstract from a paper I co-authored is transposed directly from (Sato, 

Vaughan et al. 2006). 

 

ABSTRACT 

 

We evaluated the contribution of three genetic alterations (p53 knockdown, 

K-RASV12, and mutant EGFR) to lung tumorigenesis using human bronchial 

epithelial cells (HBEC) immortalized with telomerase and Cdk4-mediated p16 

bypass.  RNA interference p53 knockdown or oncogenic K-RASV12 resulted 

in enhanced anchorage-independent growth and increased saturation density 
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of HBECs. The combination of p53 knockdown and K-RASV12 further 

enhanced the tumorigenic phenotype with increased growth in soft agar and 

an invasive phenotype in three-dimensional organotypic cultures but failed to 

cause HBECs to form tumors in nude mice.  Growth of HBECs was highly 

dependent on epidermal growth factor (EGF) and completely inhibited by 

EGF receptor (EGFR) tyrosine kinase inhibitors, which induced G1 arrest. 

Introduction of EGFR mutations E746-A750 del and L858R progressed 

HBECs toward malignancy as measured by soft agar growth, including EGF-

independent growth, but failed to induce tumor formation.  Mutant EGFRs 

were associated with higher levels of phospho-Akt, phospho–signal 

transducers and activators of transcription 3 (but not phospho-extracellular 

signal-regulated kinase (ERK) 1/2), and increased expression of 

DUSP6/MKP-3 phosphatase (an inhibitor of phospho-ERK1/2). These results 

indicate that (a) the HBEC model system is a powerful new approach to assess 

the contribution of individual and combinations of genetic alterations to lung 

cancer pathogenesis; (b) a combination of four genetic alterations, including 

human telomerase reverse transcriptase overexpression, bypass of p16/RB and 

p53 pathways, and mutant K-RASV12 or mutant EGFR, is still not sufficient 

for HBECs to completely transform to cancer; and (c) EGFR tyrosine kinase 

inhibitors inhibit the growth of preneoplastic HBEC cells, suggesting their 

potential for chemoprevention.  
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METHYLATION ANALYSIS OF HBECS 

The data for these studies are presented in Table 7-2 and Fig 7-6.  As mentioned 

above, the goal of these studies is to identify methylated loci that correlate with the 

acquisition of specific oncogenic changes (loss of p53 and gain of oncogenic p53).  Narayan 

Shivapurkar performed quantitative methylation analysis using Taqman assays (see 

methods).  I performed standard MSP using primers for 45/132 genes in the 5-aza induction 

gene set (Chapter 6).   

In these studies, we found that methylation has occurred in the progressed HBECs, 

but it is inconsistent.  In particular, several subclones of the HBEC3RL53 were examined and 

compared to the parental lines.  There were inconsistencies between the different subclones 

in terms of which genes were methylated and the combination of all subclones did not 

reconstitute the parental methylation profile.  The C1 subclone was shown to be reproducibly 

tumorigenic in nude mice, but these cells showed different methylation profiles before going 

into mice compared to afterwards.  There are biological explanations for these findings 

however more experiments are needed to interpret these data with confidence.  As stated 

above, these are preliminary findings and will be pursued after this writing. 
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Tables 

Min. length of 
CpG Island +/- 500 + 500 +/- 250 +250 0 No. of CpG 

Islands

200 45.9% 37.6% 37.8% 32.8% 26.5% 568326

300 35.3% 30.1% 30.3% 27.3% 23.8% 287917

400 29.3% 25.9% 26.0% 24.1% 21.9% 149444

500 26.7% 24.1% 24.0% 22.6% 20.9% 96774

Window size

Table 7-1. Percentage of transcripts associated with CpG Islands on the Affy 2.0 
chip

 
Table 7-1.  Effect of different parameters on the number of CpG islands in the 
genome.  Window size means the number of bases flanking the annotated “start” site 
for a given probe set in the Affymetrix alignment scheme.  While many of these were 
wrong, they should affect each parameter change equally and so can be ignored. 
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These data were obtained from Mitsuo Sato.  He performed all of the 
transformations and tumorigenicity assays.  I was not directly involved in any of 
the experiments that support the above data.  They are included in this thesis for 
informational purposes only. 
 
Table 7-2.  Tumorigenic properties of isogenic HBEC3 and nomenclature. 
Several clones were tested for tumorigenicity in nude mice and most did not form 
tumors; see (Sato, Vaughan et al. 2006) for details.  In addition, several clones were 
derived from a soft agar screen.  Importantly, two clones from this screen were 
tumorigenic, and one was reproducibly so.  Clone 1 will be the focus of future studies.
Nomenclature: K = cdk4; T = hTERT; R = KRAS (V12); RL = KRAS (V12) (high 
titer) lentiviral vector; RB = KRAS (V12) in a retroviral vector (low titer); 53 = p53
knockdown with shRNA; G = EGFR; Gd = EGFR deletion mutant (activated); Gm = 
EGFR missense mutant; M22 = c-MYC; B = BCL2; P = PTEN shRNA; t = Small T 
antigen from SV40. 
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HBEC Minna Name Modifications Media 3-OST-2 Cytglb GRP38 RASSF1A p16 E-CAD DcR1 DcR2 SOCS3 APC MYOD1

BE3 HBEC2-KTR-pSRZ,pBABE cdk4-hTERT-v12Kras-control 
viruses for BE6 KSFM 0 0 0 0 0 0 0 0 0 0 39.95

BE4 HBEC2-KT53-pSRZ,pBABE cdk4-hTERT-p53shRNA-
control viruses for BE6 KSFM 0 0 0 0 0 0 0 0 0 0 40.27

BE5 HBEC2-pSRZ,pBABE cdk4-hTERT-control viruses 
for HBEC2 series KSFM 0 0 0 0 0 0 0 0 0 0 39.66

BE6 HBEC2-P53, KRAS cdk4-hTERT-p53shRNA-
v12Kras KSFM 0 0 0 0 0 0 0 0 0 0 41.01

BE7 HBEC3-KTG cdk4-hTERT-wt EGFR KSFM   0*   0* 0 0 0 0 0 0 0 0 38.91

BE8 HBEC3-KTGd cdk4-hTERT-EGFR del. 
Mutant KSFM ND ND ND ND ND ND ND ND ND ND ND

BE9 HBEC3-KTGm cdk4-hTERT-missense 
EGFR KSFM   0*   0* 0 0 0 0 0 0 0 0 38.93

BE10 HBEC3-KTp53-LACZ cdk4-hTERT-p53shRNA-
control viruse for BE11-13 KSFM ND ND ND ND ND ND ND ND ND ND ND

BE11 HBEC3-KT53G cdk4-hTERT-p53shRNA-wt 
EGFR KSFM 0 0 0 0 0 0 0 0 0 0 38.62

BE12 HBEC3-KT53Gd cdk4-hTERT-p53shRNA-del. 
EGFR KSFM ND ND ND ND ND ND ND ND ND ND ND

BE13 HBEC3-KT53Gm cdk4-hTERT-p53shRNA-
missense EGFR KSFM 0 0 0 0 0 0 0 0 0 0 40.30

BE14 HBEC3-KTRb53 cdk4-hTERT-v12Kras (low 
titer - retrovirus)-p53shRNA KSFM 0.22 0.65 1.05 0 0 0 0 0 0 0 31.13

BE15 HBEC3-KTRl53 cdk4-hTERT-v12Kras (high-
titer lentivirus)-p53shRNA KSFM   0* 1.48 0.67 0 0 0 0 0 0 0 36.27

BE16 HBEC3-KTRl(2) cdk4-hTERT-lentiviral 
v12Kras KSFM 0 0 0 0 0 0 0 0 0 0 38.85

BE17 HBEC3-KTRl53B
cdk4-hTERT-lentiviral 
v12Kras-p53shRNA-

Bcl2shRNA
KSFM 0 0 0 0 0 0 0 0 0 0 41.26

BE18 HBEC3-KTRl53M22 cdk4-hTERT-lentiviral 
v12Kras-p53shRNA-c-MYC KSFM 0 0 0 0 0 0 0 0 0 0 41.00

BE19 HBEC3-KTRl53t
cdk4-hTERT-lentiviral 

v12Kras-p53shRNA-SV40 
small t

KSFM 0 0 0 0 0 0 0 0 0 0 39.63

BE20 KTRl53 C.2 cdk4-hTERT-v12Kras (high-
titer lentivirus)-p53shRNA KSFM 0 0 ND 0 ND ND ND ND ND ND ND

BE21 KTRl53 C.3 cdk4-hTERT-v12Kras (high-
titer lentivirus)-p53shRNA KSFM 0 4.9 ND 0 ND ND ND ND ND ND ND

BE22 KTRl53M22 PARENTAL IN 
R10

cdk4-hTERT-lentiviral 
v12Kras-p53shRNA-c-MYC R10 0 0 ND 0 ND ND ND ND ND ND ND

BE23 KTRl53 C.6 cdk4-hTERT-v12Kras (high-
titer lentivirus)-p53shRNA KSFM 0 0.27 ND 0 ND ND ND ND ND ND ND

BE24 KTRl53 C.5 cdk4-hTERT-v12Kras (high-
titer lentivirus)-p53shRNA KSFM 0  +/- ND 0 ND ND ND ND ND ND ND

BE25 KTRl53 C.4 cdk4-hTERT-v12Kras (high-
titer lentivirus)-p53shRNA KSFM 0 0 ND 6.76 ND ND ND ND ND ND ND

BE26 KTRl53 PARENTAL IN R10 cdk4-hTERT-v12Kras (high-
titer lentivirus)-p53shRNA R10 0 0 ND 0 ND ND ND ND ND ND ND

BE27 KTRl53 C.5 explant cell line 
(mouse #453)

cdk4-hTERT-v12Kras (high-
titer lentivirus)-p53shRNA R10 0 0 ND 0 ND ND ND ND ND ND ND

BE28 KTRl53 C.1 IN R10 cdk4-hTERT-v12Kras (high-
titer lentivirus)-p53shRNA R10 0 4.17 ND 0 ND ND ND ND ND ND ND

BE29 KTRl53 C.1 cdk4-hTERT-v12Kras (high-
titer lentivirus)-p53shRNA KSFM 0.72  +/- ND 0 ND ND ND ND ND ND ND

BE30 KTRl53 C.5 IN R10 cdk4-hTERT-v12Kras (high-
titer lentivirus)-p53shRNA R10 0 0.68 ND 0 ND ND ND ND ND ND ND

BE31 KTRl53M22 EXPLANT CELL 
LINE FROM MOUSE 524

cdk4-hTERT-lentiviral 
v12Kras-p53shRNA-c-MYC R10 1.41 11.22 ND 0 ND ND ND ND ND ND ND

 
Mitsuo Sato was responsible for creating the cell lines invovled in this study.  The 
author isolated DNA and performed the bisulfite treatments.  Narayan Shivapurkar 
performed the quantitative analysis presented here. 
Table 7-3.  Quantitative methylation data for isogenic HBEC2 and HBEC3 series 
using Taqman assays.  Mostly the HBECs are unmethylated, but in certain cases, there is 
detectable methylation at some loci.  The left most column indicates the sample names 
that correspond to the genetic backgrounds indicated in columns 2 and 3.  These sample 
names also correspond to Fig. 7-6, below.  See previous page for nomenclature. 



 

   194

Figures 

Genomic Annotation for 
Chromosome 1 on Affy Chip

CpG Annotation for 
Chromosome 1 from UCSC

Composite Annotation for 
Chromosome 1 

Genomic Annotation for 
Chromosome 1 on Affy Chip

CpG Annotation for 
Chromosome 1 from UCSC

Composite Annotation for 
Chromosome 1 

 
Figure 7-1.  Schematic for CpG island/Affymetrix Genechip alignment.  Data was 
obtained through the UCSC genome browser and input into a Microsoft Access database. 
Chromosomal position information was used to align the databases using an excel macro. 
Purple arrows indicate putative (RefSeq annotated) transcription start sites; red indicates 
openreading frames (RefSeq annotated); and blue indicates CpG islands as determined by 
Gardiner-Garden (Gardiner-Garden and Frommer 1987).   
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• Downloaded the CpG Island 
annotation from Genbank
(700,000 records) from Aug, 2004 
build

• Created an MS Access database 
with a sub-table identifying each 
chromosome

• Each object contains the records 
for each chromosome

 
Figure 7-2.  Microsoft Access database containing the CpG island annotation 
from UCSC.  The structure of the database was based on position such that each sub-
table contained positional (start and end) information for each CpG island was 
grouped according to chromosome.  Each CpG island has its own accession number 
which can be seen above in the column titled “ID”.  This database was used to create 
8</rec-number><ref-type name='Journal Article'>17</ref-
type><contributors><authors><author>Lewis, C. M.</author><author>Cler, L. R.</
to look at the effect of changing the parameters defining a CpG island and their 
association with protein coding genes (see below). 
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Figure 7-3.  Results of an alignment between the CpG island annotation and 
Affymetrix annotation for chromosome 2.  The data above shows an example of an 
alignment between the CpG annotations for chromosome 2 and the Affymetrix 
annotation for chromosome 2.  The red boxes indicate disagreements between the 
resultant output from the program.  The red underlining shows that the “start” 
coordinates for these annotations.  The two annotations correspond to the same gene but 
the source sequences are different. 
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Figure 7-4.  Scatter plot showing the number of transcripts per chromosome 
versus the number of CpG islands per chromosome.  CpG island annotations were 
downloaded from the UCSC genome database and aligned to the Affymetrix probe 
alignments using a Visual Basic macro.  There is no functional definition for a CpG 
island and the total number in the genome depends heavily on the criteria used: see 
table 7-1.  For the scatter above, the standard Gardiner-Garden definition (length >200 
bps; GC content >55%; CpG >0.6) was used and the number of transcripts was based 
on the Affy Gene chip annotation.  Chromosome 19 has an unusually large number of 
CpG islands relative to the rest of the genome.  This did not result in a larger than 
expected number of genes from chromosome 19 in the ultimate 5-aza induced gene 
set. 
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Figure 7-5.  Karyogram of genes induced by 5-aza in 2/7 NSCLC compared to 
gene density.  Data for each chromosome is shown against a representation of the 
expected geimsa cytobanding patterns.  The middle, purple line plot represents the 
positional and frequency data for CpG island associated genes based on the current 
RefSeq database.  Frequency (density) is indicated in the vertical direction where all 
all heights are relative within an annotation series – i.e. densities are comparable 
between chromosomes for “RefSeq + CpG” island or “Genes induced by 5-aza”.  The 
black line plot represents the gene frequency data for genes that were induced >4 fold 
in more than 2/7 NSCLC but already expressed in HBEC (see Chapter 6).  For the 
most part, the locations of induced genes followed the gene density in the genome, 
although not always.  For example, chromosomes 8, 12, and 16 have regions of high 
density that where not represented on the induced gene list, whereas chromosome 9 
has a region of frequent induction but relatively lower gene density.  
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Figure 7-6.  Summary of MSP for 5-aza induction gene set in HBEC2 and 
HBEC3 isogenic cell lines.   Red fill indicates positive methylated product; aqua 
indicates positive unmethylated product. Data are grouped as follows: group I, no 
methylation in either parental HBECs or lymphocytes; group II, methylation in HBEC, 
but not lymphocytes; group III, methylation in lymphocytes.  Data are ordered based 
on the frequency of methylation in primary lung tumors.  Grey columns were bad 
DNA.  See Table 7-2 for explanation of different samples and their genetic 
backgrounds. 
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CHAPTER EIGHT 

 
CONCLUSIONS AND RECOMMENDATIONS 

 

The objective of my thesis work was to use global profiling platforms (RNA and 

DNA) to identify epigenetically modulated genes that may be involved in cancer 

pathogenesis and bring these to the point where they could be developed as targets for 

diagnostic and treatment strategies.  The first part of this work encompassed pilot studies that 

were designed to identify the appropriate approaches to demethylate genomic DNA.  These 

studies led to the conclusion that while RNAi approaches could be used to demethylate DNA 

in cancer cells, RNAi was not particularly well suited to these experiments because of the 

potential for artifact associated with serial transfection.  Thus, I decided that 5-aza treatment 

would be the best and most efficient approach to use in subsequent studies.  In the second 

part of this thesis, microarray technology was used to identify novel, cancer-specific 

methylation markers that are present at high frequency in multiple common epithelial 

cancers.   

The microarray studies form the major part of this work and were designed to avoid 

the pitfalls of previous studies.  We used several approaches not in the literature to do this 

including different doses of 5-aza, a novel series of immortalized human bronchial epithelial 

cells, and stringent bioinformatic methods.  In the first approach, different doses (100 and 

1000 nM) of 5-aza covering the cytotoxic and subcytotoxic levels of the drug were used and 

only those genes that were induced > 4 fold as well as those that were induced incrementally 
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between the higher and lower doses were selected.  The principle idea here was that “dose-

dependent” changes in gene expression would likely be more specific than a response that is 

variable at the two doses.  We obtained more information from this approach than would 

have been possible using a straightforward replicate-type experiment.  In particular, we found 

that most genes did respond in a dose-dependent manner. 

A second, new approach I developed was to perform the global gene expression 

profiling (47,000 transcripts) before and after treatment with 5-aza on 7 lung cancer cell lines 

selected by expression profiling and genetic studies to represent distinct subclasses of 

NSCLCs. Thus, I wanted to sample diverse types of NSCLC.  I also performed similar 

experiments in three newly available immortalized human bronchial epithelial cells (HBECs) 

to identify genes whose expression was selectively lost in lung cancer, expressed in normal 

lung epithelium, but subject to 5-aza induction.  These HBECs are immortal, clonable, can be 

genetically manipulated, but do not form colonies in soft agar nor do they form tumors in 

nude mice (Ramirez, Sheridan et al. 2004).  In three-dimensional culture they can undergo 

differentiation into fully ciliated cells (Vaughan, Ramirez et al. 2006).  They have very few 

genetic alterations and they are a novel and important normal tissue control for 5-aza or 

siRNA targeted to DNMT1 gene induction experiments.  The use of non-malignant epithelial 

cells such as these as part of a global methylation induction screen had not been described 

previously in other cancer types. 

A third aspect of these studies was that we made extensive use of bioinformatic 

processes to reduce the size of the 5-aza gene induction set.  We applied a series of biological 

filters to extract a list of methylation candidates that we believed to have a strong likelihood 
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of being methylated specifically in tumors.  Statistical analyses of the major steps in this 

process suggested that successive lists were enriched for genes with 5’ CpG islands.  We 

selected only those genes that were induced in more than one lung cancer and had well-

defined CpG islands in their putative promoter regions were selected.  This led us to identify 

132 candidate genes of which 45 have been studied in detail in 20 primary lung cancers and 

companion normal lung tissue. 

The large majority of the 132 genes identified in these studies have not been 

described previously to undergo tumor specific promoter hypermethylation.  I found that 

expression of these genes distinguishes primary lung cancers from normal lung tissue in the 

same patient.  While there are probably many genes that are methylated – perhaps at random 

– during carcinogenesis, we found that the vast majority of the 45 (out of 132) genes studied 

here undergo tumor specific methylation in multiple primary lung cancers.  Eight of these 45 

genes were studied in a panel of 105 primary tumors from NSCLC, breast, colon and prostate 

cancers and 82 histologically companion normal tissues, which showed that many undergo 

methylation in these common epithelial cancers.  Thus, this approach has identified many 

new genes subject to frequent tumor acquired methylation in primary lung, breast, colon, and 

prostate cancers.  Frequent methylation of specific genes in multiple independent cancers 

strongly suggests, although does not prove, that these genes are functionally relevant to 

cancer pathogenesis. 

Based on the frequency and specificity of methylation in the promoters of some of 

these genes (LOX, BNC1, CTSZ, PGF) in both lung and breast primary tumors, and the 

absence of methylation in normal lymphocytes, these markers are candidates for prognostic 
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or diagnostic evaluation studies.  Thus, the promoter hypermethylation profiles of these 

genes maybe generic markers of malignancy, and thus useful for clinical screening assays.  

One goal of this study was to identify novel markers of tumor specific methylation for 

follow up functional analysis.  To this end, our screen uncovered some well-established 

methylation markers that have tumor suppressor activity, including TIMP3, CDH1, and 

SFRP1, but missed others such as p16 and RASSF1A.  The reason for this highlights the 

limitations of current microarray technology in that commercial arrays cannot discriminate 

between alternative splice forms of genes; both p16 and RASSF1 have constitutively 

expressed alternative isoforms that can hybridize to probes specific for these loci.  Since both 

genes have expressed isoforms (p14 and RASSF1C) that differ only in their 5’ regions, none 

of the probes specific to these genes detected differences in expression.  This limitation 

means that we have probably missed isoforms of genes that are subject to tumor-specific 

methylation, but that are part of an active transcription locus.  

For the most part, the genes we identified are novel methylation candidates.  

However, some of the genes we identified as cancer-specific methylation markers in 

NSCLCs have been identified previously as methylation candidates in other tissues.  LOX 

was frequently methylated in our panel of cell lines and tumors, and was recently shown to 

be methylated in gastric cancers (Kaneda, Wakazono et al. 2004).   CCNA1 was shown to be 

methylated in head and neck cancers and was inversely correlated with p53 mutation 

(Tokumaru, Yamashita et al. 2004).  Interestingly, in our study, CCNA1 was methylated only 

in NSCLC A549 cells, which has wild-type p53.  Loss of dual specificity phosphatase I 

(DUSP1) expression as determined by immunohistochemistry inversely correlates with 
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increasing malignancy of prostate cancers, and methylation of its promoter appears to be an 

early event in this disease (Rauhala, Porkka et al. 2005).  In another recent report, tissue 

factor pathway inhibitor 2 (TFPI2) methylation was used as part of a six gene panel to screen 

for cancer in pancreatic juice specimens (Matsubayashi, Canto et al. 2006).  Promoter 

methylation of the transcription factor TWIST1, has been described in several reports, and is 

very frequent in neuroblastoma, cervical and breast cancers, although, curiously, high 

expression of TWIST1 seems to be necessary for breast cancer metastasis (Alaminos, Davalos 

et al. 2004; Mehrotra, Vali et al. 2004; Yang, Mani et al. 2004; Feng, Balasubramanian et al. 

2005).   The proapoptotic BCL2 family member, BIK, was identified in a global screen for 

promoter methylation in melanoma using restriction landmark genomic scanning (Pompeia, 

Hodge et al. 2004).   It is intriguing that several of the genes we identified as cancer-specific 

methylation markers in primary NSCLC and breast cancer are also clearly methylated in 

diverse epithelial tumors.   

Another goal of this study was to begin to understand how pervasive aberrant 

promoter hypermethylation is within a given cancer.  Our data suggests that tumor-acquired 

promoter methylation is widespread, affecting at least 20 promoters in any given tumor, and 

probably many more, given that we examined methylation for only part of the 5-aza 

induction gene set.  Interestingly, many of the genes we found, while conforming to the 

standard assumptions of candidate methylated genes – no expression in cancer and induction 

by 5-aza, but expressed in normal cells – appear to have both methylated and unmethylated 

alleles in tumor cell lines, even though the cell lines represent pure sources of tumor DNA.  

Whether this combination of methylated and unmethylated alleles represents 
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haploinsufficiency, and/or indicates other mechanisms for loss of gene expression/function 

remains to be determined.  Other studies have reported similar results but did not comment 

on them (Sato, Fukushima et al. 2003).   

It is possible that some loci in the 5-aza induction gene set are imprinted.  We did find 

multiple examples of imprinted genes in our original gene set (H19, Xist, and CDKN1C).  It 

would have been difficult to exclude these genes completely from our analysis and may not 

have been prudent to do so, as several recent reports have implicated biallelic inactivation or 

activation of imprinted loci to be crucial to the oncogenic process (Feinberg 2004; Holm, 

Jackson-Grusby et al. 2005; Hong, Kang et al. 2005).  However, for most genes on our list, 

we find this explanation unlikely.  In the simplest case, where the heritable trait is direct 

promoter methylation, imprinted loci should have a similar pattern of methylation in primary 

tumors and their counterpart normal tissue, which was not evident for most genes in our 

panel (with the exception of genes that were methylated everywhere, e.g. TKTL1 and 

RNASET2).  Second, imprinted genes would be evident as hemimethylated in the HBEC cell 

lines and normal lung tissue, whereas most were not.  However, due to diverse mechanisms 

of genomic imprinting, we cannot exclude the possibility that at least some of the loci we 

have discovered are parentally imprinted (Feinberg and Tycko 2004; Holm, Jackson-Grusby 

et al. 2005). 

Another possibility is that we have uncovered multiple loci that are specifically 

targeted for methylation and upon allele loss and consequent, partial loss of expression, 

contribute to tumor formation through haploinsufficiency.  Somatic loss of heterozygosity 

through locus deletion is the most common genetic alteration in human cancer (Girard, 
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Zochbauer-Muller et al. 2000; Loeb 2001).   But, the extent to which allele loss leads to 

haploinsufficiency or furthers malignancy has not been studied in as much detail as some 

other aspects of cancer biology.  Where mouse models are available, many classical tumor 

suppressor genes such as p53 and PTEN, exhibit a haploinsufficient phenotype (Santarosa 

and Ashworth 2004).  Of particular importance to lung cancer, mice heterozygous for 

RASSF1A are as sensitive to chemically induced carcinogenesis as null mice (Tommasi, 

Dammann et al. 2005).  Therefore, the effects of large-scale single allele loss through 

promoter hypermethylation may be analogous to genomic instability and loss of 

heterozygosity in the neoplastic process. 

By contrasting the genome-wide changes in gene expression of normal and lung 

cancer cells, we were able to gain novel insight into the complexity of the methylation 

program required for cells to become fully malignant.  Even though we began with a highly 

structured, organ-specific screen, by applying successive biological and statistical filters we 

identified several novel loci with exceptionally high penetrance in primary lung and breast 

tumors, suggesting that we may have captured the variation in promoter hypermethylation 

signatures found in at least two, and probably more, common epithelial cancers.  We 

conclude that while tumors differ in their molecular phenotypes and pathogenesis, the 

pathways they follow toward malignancy may be similar and may be reflected in the 

methylation programs they engage, which in turn may provide an opportunity to exploit in 

early diagnosis or therapeutic strategies.  Subsequent studies will be needed to determine 

whether these novel methylated loci could be useful in early detection screening, or whether 

loss of expression of their associated genes contributes to tumor initiation and pathogenesis. 
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FUTURE STUDIES 

 There are at least five lines of investigation that lead directly from the studies 

described here:  

 

1) Study the remaining 87 genes in the 5-aza induction gene list for methylation in 

NSCLC and other types of cancer and determine whether the genes that are 

methylated in lung cancer are the similar or different to those that are methylated in 

other tissues.  Additionally, compare the methylation profiles of new genes to other 

previously described genes and determine whether there are common patterns 

between different combinations of genes.  

2) Construct a methylation platform for early cancer detection and diagnostic screening 

using the data provided here and that recently published in other microarray screens 

3) Bioinformatic investigation of transcription factor binding sites and comparative 

sequence analysis of the proximate DNA sequences associated with the 5-aza 

induction gene set 

4) Functional studies of the genes subject to frequent promoter hypermethylation and 

loss of expression as well as LOH 

5) Study genes that are expressed in NSCLC and are off in HBEC, but come on in 

HBEC after 5-aza treatment.  These genes are candidates for hypomethylation 

associated over expression in tumors and could act as oncogenes. 
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Study the remaining genes in the 5-aza induction gene list for methylation in NSCLC 

and other types of cancer and construct a methylation platform for early detection and 

diagnostic screening using the data provided here and that recently published in other 

microarray screens 

Several aspects of DNA methylation have made it the focus of research in an 

increasingly large number of clinical and translational cancer research laboratories.  First, 

DNA methylation is a tumor specific change in molecular composition of DNA that is 

readily detectable in patient samples including blood, sputa, urine, stool, and biopsy 

specimens.  Second, alterations in DNA methylation – both hypermethylation and 

hypomethylation – are early events in carcinogenesis.  Third, there are distinctions in the 

promoter hypermethylation profiles between different types of tumors from the same organ 

site as well as between tumors from different tissues.  Fourth, DNA methylation is 

pharmacologically reversible – Decitabine (5-aza-2’-deoxycytidine) has been approved for 

use in acute myeloid leukemia (AML) and the myelodysplastic syndromes (MDS), and is 

currently in early stage trials for solid tumors (Lung Cancer Trial NCI-02-C-0205).  

If detected early, many epithelial cancers are curable through surgical resection and 

adjuvant radiation or chemotherapy (Kelloff, Lippman et al. 2006).  Unfortunately, with the 

exception of breast cancer and prostate cancer, early detection screening modalities are 

invasive and prohibitively expensive (Belinsky 2004).  However, the altered DNA 

methylation patterns found in tumors, as well as in many preneoplastic syndromes such as 

Barrett’s esophagus and ulcerative colitis (above), present a unique opportunity to detect 

cancer early on.  This is because DNA is stable and can be amplified using PCR.  As a result, 
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several labs including our own are currently examining the feasibility of using quantitative 

PCR based methods to detect the presence of methylation in biopsy material (Fackler, 

McVeigh et al. 2004; Shivapurkar, Stastny et al. 2005; Belinsky, Liechty et al. 2006; Fackler, 

Malone et al. 2006; Shivapurkar, Stastny et al. 2006). 

The detection of DNA methylation in clinical samples has other potential uses besides 

early detection screening.  Some groups have explored using DNA methylation as a marker 

to confirm tumor margins in surgically resected specimens (Goldenberg, Harden et al. 2004; 

Guo, House et al. 2004).  However, some have questioned the utility of this approach as a 

single determinant.  Several recent studies have explored whether specific combinations of 

methylation markers are useful in risk assessment for lung cancer, breast cancer, and 

pancreatic cancer.  These studies have applied both quantitative and qualitative approaches to 

DNA isolated from sputa, ductal lavage, and pancreatic juice (Belinsky, Liechty et al. 2006; 

Fackler, Malone et al. 2006; Matsubayashi, Canto et al. 2006).  Other groups are 

investigating similar applications using fine needle aspirates as source material.  Some of 

these studies have reported promising results and future, larger studies perhaps using more 

markers, will be useful in diagnostic settings.  Other applications for DNA methylation 

profiling in a clinical setting include prognosis, defining drug sensitivity profiles, as well as 

monitoring therapeutic interventions.  Indeed, a tumor sensitive to a particular chemotherapy 

may have a different methylation profile compared to a tumor that is resistant to that 

particular drug. 

The list of 132 candidates represents our best attempt to reduce the list to a 

manageable number while allowing for the limitations of available technology platforms.  
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The 45 genes that were studied in NSCLC were selected at random out of the 132.  

Determining whether the remaining 87 genes (excluding those known to be methylated) are 

methylated would be important because the results of these studies would have direct 

translational impact through the identification of pathways important as therapeutic targets as 

well as provide a basis for development of the promoter hypermethylation screening 

platform.  Moreover, once the methylation data for these genes is known, it would be of 

interest to go back to the primary tumor expression arrays and determine whether these data 

could have been used to further reduce the starting gene list, or increase the possibility of 

finding biologically relevant genes. 

 

Bioinformatic investigation of transcription factor binding sites and comparative 

sequence analysis of the proximate DNA sequences associated with the 5-aza induction 

gene set 

One of the major questions surrounding DNA methylation and cancer involves how 

tumor cells establish their characteristic methylation patterns in the first place.  Clearly, there 

is some type of sequence specificity associated with the activities of the different 

methyltransferases in that only certain CpG island associated genes are affected.  The evident 

frequency and diverse patterns of methylation we found in the above-described studies, along 

with the data of others, suggest that most lung cancers have active epigenetic pathways.  It 

could be that tumors co-opt the methylation machinery at critical stages in a given tumor’s 

evolution and actively methylate single alleles of multiple loci in response to environmental 

cues such as genotoxic or hypoxic stress.  This situation is analogous to normal processes 
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such as the cascade of epigenetic changes observed in differentiating lymphocytes during an 

immune response, except that in cancer cells, this process is likely dysregulated and random 

(Jaenisch and Bird 2003; Reiner 2003; Reiner, Mullen et al. 2003).  Evolving cancer cells 

probably require an operational epigenetic program to react to changes in the tumor 

microenvironment and adapt to the continual insults raised by the body.   

As discussed in Chapter 1, the biochemical data do not really indicate how the 

specificity of which genes become methylated during tumorigenesis comes about.  One 

possibility is that chromatin binding proteins such as transcription factors or histone 

modifying proteins control sequence specific methylation in particular contexts.  Following 

this line of reasoning, preliminary investigations into the sequence context of the 5-aza 

induced gene set suggest that there was a significant enrichment of genes associated with the 

transcription factor c-REL.  This transcription factor is a proto-oncogene that may have a 

dominant role in lymphoma development, but may also be involved in other types of tumors.  

Other approaches identified several other transcription factors that may be enriched in the 5-

aza induction gene set. 

Enrichment for c-REL binding sites was initially identified using the TRASFAC 

database, which can be found through BIOBASE at http://www.gene-regulation.com/.  To 

perform this analysis, I created gene lists of interest using their accession numbers, 

downloaded their upstream sequences (2KB or 10KB), and then used the TRANSFAC 

algorithm to identify transcription factor binding sites in these sequences.   

To further investigate these data we have performed a whole genome transcription 

factor alignment in collaboration with David States at the University of Michigan, and 
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Alexander Pertsemlidis in the McDerrmott center.  These data will be complimented with 

ChIP-on-ChIP analytical methods using antibodies for the various transcription factors using 

two novel HBEC lines with matched pair NSCLC tumor lines.  The results of these studies 

would be important for understanding the influence of DNA methylation of cancer 

development, and potentially provide novel targets for therapeutics development. 

The last two decades of research into the mechanisms of cancer epigenetics have 

begun bare fruit not just in our understanding of cancer pathogenesis, but also in terms of 

therapeutic strategies.  As mentioned above, Decitabine has been approved for use in 

leukemia, and may be useful in treating solid tumors as well.  However, there has been an 

explosion in the identification and screening of compounds that specifically target other 

epigenetic components including histone deacetylases and histones methylases.  These drugs 

may be of use both by themselves and in combination with other agents.  As a result of the 

recent findings in basic research, some of which have been described here, and the increasing 

interest from the medical community in using DNA methylation as a tool to detect cancer, 

the influence of epigenetics research on our understanding of cancer pathogenesis and 

progression has become significant.  A greater understanding of the role of epigenetics in the 

development of cancer will no doubt have a positive impact on the mortality and morbidity 

of these diseases in the future. 
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APPENDIX A – CONPENDIUM OF METHYLATED GENES
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