

Cholesterol Efflux Capacity: Biological and Clinical Determinants in a Large Multi-ethnic Population Study (Dallas Heart Study)

Background

- Cholesterol efflux capacity (CEC) characterizes the ability of HDL to accept cholesterol from extrahepatic cells in the periphery to the liver, which is a crucial step in reverse cholesterol transport.¹
- CEC has been shown in clinical studies to be inversely correlated with prevalent coronary disease and incident of cardiovascular events.¹
- However, It is still unclear what biological determinants or other clinical variables drive cholesterol efflux capacity.

Objective

- To determine the biological and clinical variables that associate with cholesterol efflux capacity measured with two different methods.
- To determine how the measurements of cholesterol efflux capacity and its determinants differ by sex, race, history of diabetes, and history of cardiovascular disease.

Methods

STUDY POPULATION

Participants of Dallas Heart Study 2 (DHS 2).² They are subsets of participants of the DHS 1 who returned for a comprehensive clinical study and repeat data collection between September 2007 and December 2009 (Tables 1&2).

ASSESSMENT OF CHOLESTEROL EFFLUX CAPACITY

- CEC was measured using both fluorescence (Boron Dipyrromethene difluoride-BODIPY) and radiolabeled methods (Figure 1). 3,4
- CEC was calculated by quantifying the capacity of a participant's plasma depleted of apolipoprotein B to efflux cholesterol from macrophages.

STATISTICAL ANALYSIS

- Variables compared across quartiles of CEC using Jonckheere-Terpstra trend test for continuous variables and Cochran-Armitage trend test for categorical variables.
- CEC measurements compared across sex, race, history of diabetes, and history of cardiovascular disease categories using Mann-Whitney test.
- Variables that were not normally distributed were log transformed for use in the multi-linear regression analysis.
- Multi-linear regression to determine the best predictors of cholesterol efflux capacity.

Oludamilola Akinmolayemi BS, Anand Rohatgi MD The University of Texas Southwestern Medical Center, Dallas, TX, USA

Table 1. Baseline Demographic and Clinical Characterist
cross Quartiles of Cholesterol Efflux Measured by BOD
Method

Variables	Cholesterol Efflux Capacity				Variables	Cholesterol Efflux Capacity					
	Quartile 1	Quartile 2	Quartile 3	Quartile 4	P Value for		Quartile 1	Quartile 2	Quartile 3	Quartile 4	P Value for
	(N = 593)	(N = 593)	(N = 594)	(N = 593)	Trend		(N = 582)	(N = 582)	(N = 582)	(N = 582)	Trend
Age (yr)	51	51	50	51	0.95	Age (yr)	49	51	50	52	0.001
	(43-58)	(42-59)	(41-57)	(43-59)			(41-58)	(42-58)	(43-59)	(44-59)	
Male (%)	42.7	42.5	40.4	44.7	0.66	Male (%)	48.8	41.9	41.9	37.5	<0.001
Female (%)	57.3	57.5	59.6	55.3	0.66	Female (%)	51.2	58.1	58.1	62.5	<0.001
Black (%)	54.5	51.9	51.7	45.9	0.005	Black (%)	54.6	52.7	49.8	46.2	0.002
White (%)	32.2	32.2	32.5	34.6	0.39	White (%)	29.4	30.2	33.2	38.3	<0.001
Hispanic (%)	11.1	14.2	13.8	17.5	0.003	Hispanic (%)	13.1	15.1	15.3	14.1	0.62
Hypertension (%)	51.4	54.3	50.7	49.9	0.37	Hypertension (%)	52.7	50.4	49.7	52.8	0.96
		- /				History of CVD (%)	8.1	3.6	4.0	5.0	0.03
History of CVD (%)	4.9	6.4	5.9	4.0	0.46	Diabetes (%)	16.8	16.3	16.8	16.3	0.88
Diabetes (%)	15.3	17.5	14.8	18.4	0.35	Current Smoking (%)	21.3	22.4	22.1	24.3	0.27
						Systolic Blood Pressure	130	129	130	130	0.74
Current Smoking (%)	22.6	21.5	23.6	21.7	0.93	(mmHg)	(118-142)	(119-143)	(119-144)	(118-144)	
						Body Mass Index (kg/m ²)	30.9	30.5	29.7	28.5	<0.001
Systolic Blood Pressure	129	130	130	131	0.994		(26.62-37.0)	(26.9-36.1)	(26.0-34.5)	(24.9-33.4)	
(mmHg)	(119-142)	(118-144)	(117-143)	(119-144)							
Body Mass Index (kg/m ²)	30.3	30.6	29.8	30.0	0.001	Total Cholesterol (mg/dl)	177	187	193	203	<0.001
	(26.5-36.0)	(26.3-36.3)	(26.3-35.0)	(25.7-34.0)			(153-201)	(165-210)	(173-222)	(179-231)	
Total Cholesterol (mg/dl)	184	185	190	199	<0.001	Triglycerides (mg/dl)	97	103	105	109	<0.001
	(160-211)	(160-211)	(170-218)	(174-224)			(70-136)	(74-144)	(76-151)	(77-156)	
Triglycerides (mg/dl)	97	102	105	109	<0.001	HDL Cholesterol (mg/dl)	45	49	52	56	<0.001
	(73-133)	(72-141)	(75-150)	(83-163)			(38-51)	(42-57)	(44-61)	(47-70)	
HDL Cholesterol (mg/dl)	49	49	50	52	<0.001	LDL Cholesterol (mg/dl)	107	114	115	117	<0.001
	(40-58)	(42-59)	(43-60)	(43-62)			(88-132)	(93-136)	(94-143)	(93-141)	
LDL Cholesterol (mg/dl)	112	110	114	119	0.002	VLDL Cholesterol	19	21	21	22	<0.001
	(90-134)	(89-133)	(93-139)	(95-140)		(mg/dl)	(14-27)	(15-29)	(15-30)	(15-31)	
VLDL Cholesterol (mg/dl)	19	20	21	22	<0.001	Non-HDL Cholesterol	131	136	140	142	<0.001
	(15-27)	(14-28)	(15-30)	(17-33)		(mg/dl)	(108-155)	(114-162)	(117-168)	(116-172)	
Non-HDL Cholesterol	133	131	137	144	<0.001	DEXA Total Percent Fat	37.8	39.0	37.9	38.3	0.35
(mg/dl)	(111-160)	(109-158)	(114-166)	(118-171)		(%)	(31.0-45.3)	(31.7-45.6)	(30.4-45.6)	(31.0-44.4)	
DEXA Total Percent Fat	39.3	38.4	37.7	37.7	0.02			-			
(%)	(31.1-46.0)	(31.3-45.1)	(30.6-44.6)	(30.8-44.6)		Continuous variables reported in	medians (IQR)				

Table 3. Cholesterol Efflux Capacity across Sex-specific, Race-specific, History of CVD, and History of diabetes Categories

	BOI	DIPY	Radiolabeled		
	N	CEC	N	CEC	
Sex					
Men	1010	0.82 (0.66-0.99)	990	0.93 (0.81-1.	
Women	1363	0.82 (0.66-0.98)	1338	0.95 (0.84-1.	
P value		0.52		<0.001	
Race					
Black	1210	0.81(0.64-0.96)	1184	0.93(0.81-1.	
Other ^a	1163	0.83(0.68-1.00)	1144	0.95(0.83-1.	
P value		0.006		0.007	
History of CVD					
Yes	126	0.81 (0.69-0.95)	120	0.89 (0.78-1.	
Νο	2213	0.82 (0.66-0.98)	2175	0.94 (0.83-1.	
P value		0.59		0.048	
History of Diabetes					
Yes	392	0.82 (0.67-0.99)	386	0.94 (0.82-1.	
Νο	1981	0.82 (0.65-0.98)	1942	0.94 (0.83-1.	
P value		0.32		0.81	

The University of Texas Health Science Center at Housto

Results

stics DIPY

Table 2. Baseline Demographic and Clinical Characteristics across Quartiles of Cholesterol Efflux Measured by **Radiolabeled Method**

Table 4. Multi-linear Regression Results for Cholesterol Efflux Capacity and Clinical Variables by Method of Measurement

N=2320	CEC (Radiolabeled)					
	Adj R ² =0.195					
Variable	Std β	P Value				
HDL Cholesterol	0.442	<0.001				
Log Triglyceride	0.281	<0.001				
LDL Cholesterol	0.082	<0.001				
BMI	-0.056	0.004				
N=2335	CEC (BODIPY)					
	Adj R ² =0.099					
Variable	Std β	P Value				
Total Cholesterol	0.316	<0.001				
Plate Number	0.221	<0.001				
Log HOMA IR	0.117	0.08				
Log VLDL	0.073	0.01				
Non-Hispanic Black	0.029	0.16				
Low HDL	-0.072	0.003				
Log Insulin	-0.163	0.01				
LDL Cholesterol	-0.221	<0.001				

Variables are listed in order of magnitude from positive to negative association for each model. Other variables included in the model are age, sex, HTN, CVD, diabetes, stroke, smoking, alcohol use, MET, blood pressure, waist-to-hip ratio, non-HDL cholesterol, hsCRP, CAC, and DEXA total fat mass

UTSouthwestern Medical Center

Cholesterol Efflux Assay

Figure 1. Cholesterol Efflux Assay

Summary

- Cholesterol efflux capacity measured by radiolabeled method was significantly higher in women than in men, p < 0.001 (Table 3).
- Blacks had the lowest cholesterol efflux capacity measured by both BODIDY (p=0.010) and radiolabeled (p<0.001) methods (Table 3).
- Participants without history of CVD had higher cholesterol efflux capacity measured by radiolabeled method compared to those with history of CVD, p=0.048 (Table 3).
- In multivariate regression, risk factors and circulating markers explained more of the variance in efflux using radiolabel than the variance in efflux using BODIPY (R2 0.195 vs. 0.099) with some overlapping and some distinct markers (Table 4). Stratification by history of CVD, history of diabetes, race, and sex categories did not alter the findings.

Conclusion

- Our analysis revealed that biological and clinical variables that associate with cholesterol efflux capacity vary with measurement methods. Further studies with different study population validating these differences are needed.
- An understanding of the differences in the clinical and biological variables that associate with efflux will be useful in identifying targets to improve cholesterol efflux capacity.

References

- Rohatgi A, Khera A, Berry JD, et al. HDL Cholesterol Efflux Capacity and Incident Cardiovascular Events. The New England journal of medicine. 2014;371(25):2383-2393. doi:10.1056/NEJMoa1409065.
- 2. Xing FY, Neeland IJ, Gore MO, Ayers CR, Paixao AR, Turer AT, Berry JD, Khera A, de Lemos JA, McGuire DK. Association of prediabetes by fasting glucose and/or haemoglobin A1c levels with subclinical atherosclerosis and impaired renal function: observations from the Dallas Heart Study. Diab Vasc Dis Res. 2014;11(1):11-8. doi: 10.1177/1479164113514239.
- 3. Zhang J, Cai S, Peterson BR, Kris-Etherton PM, Heuvel JPV. Development of a Cell-Based, High-Throughput Screening Assay for Cholesterol Efflux Using a Fluorescent Mimic of Cholesterol. Assay and Drug Development Technologies. 2011;9(2):136-146. doi:10.1089/adt.2010.0288.
- 4. Hafiane A, Genest J. High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk. BBA Clinical. 2015;3:175-188. doi:10.1016/j.bbacli.2015.01.005.