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In 1956 Otto Warburg, the most prominent scientist in cancer metabolism, stated that “the problem of 

cancer is…to discover the differences between cancer cells and normal growing cells” (Warburg, 1956a).  Over 

fifty years later, the field still lacks a valid experimental framework to discover such metabolic differences in 

human tumors.  A major limitation is the inability to faithfully recapitulate the microenvironment of primary 

human tumors in model systems. As a result, fundamental questions about tumor metabolism, including the 

suppression of pyruvate oxidation upon transformation proposed by Warburg more than 50 years ago, have 

only rarely been subjected to direct experimental assessment. 

To provide a direct readout of primary human tumor metabolism in vivo, we have used intra-operative 

13C-glucose infusions in non-small cell lung cancer (NSCLC) patients to compare metabolism between tumors 

and non-cancerous lung.  Pre-surgical imaging, including non-invasive assessment of tissue perfusion using 

dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), allowed us to select areas of 

microenvironment-based heterogeneity, to guide sample acquisition.  Specifically, this microenvironment-

based heterogeneity was assessed relative to the oncogenotype, histological parameters, and metabolism of 

glucose through glycolysis and the TCA cycle.  Diverse tumors displayed enhanced glycolysis and glucose 
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oxidation.  Furthermore, we discovered that due to the low enrichment in acetyl-CoA and other TCA cycle 

intermediates, all tumors had evidence for oxidation of multiple nutrients.  We identified lactate as a carbon 

source for tumor oxidative metabolism.  Additionally, metabolically heterogeneous regions were identified 

within and between tumors using DCE-MRI.  Regions of lesser contrast enhancement demonstrated higher 13C 

enrichment, likely reflecting contributions of non-glucose nutrients to central carbon metabolism in well-

perfused areas, or the cause or consequence of aberrant proliferation of aggressive clones resulting in 

inadequate perfusion. The data indicate that the heterogeneous metabolism of these tumors is highly and 

predictably related to the microenvironment. 

In summary, we have made novel, significant progress in assaying and analyzing primary human tumor 

metabolism and its relation to the microenvironment in vivo.  I close with a separate project for future 

directions to begin to dissect the cellular origins of the whole tumor fragment signal that is amenable to direct 

assays in patients. 
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CHAPTER ONE 
  

Introduction 
 
 

A CASE FOR THE UTILITY OF STUDYING HETEROGENEITY IN TUMOR METABOLISM USING GLUCOSE-DERIVED 

PYRUVATE OXIDATION AS AN EXAMPLE 

 
 

1.1 The original debate on the general role of respiration in cancer cells. 

 

A heated debate in 1956 between leaders of the field with opposing views on oxidative metabolism in 

cancer serves as a succinct review on the prevailing knowledge and opinions of the time (Burk and Schade, 

1956; Warburg, 1956a; Weinhouse, 1956).  Otto Warburg had a conviction in summarizing his work that 

respiratory impairment in the mitochondria of cancer cells was the origin of tumors (Warburg, 1956b).  He 

invoked this impairment to explain his original observation termed the “Warburg Effect”, that tumor tissues 

continue to convert significant amounts of glucose to lactate in the presence of oxygen, whereas in non-

cancerous tissue lactate production is significantly inhibited by oxygen (Figure 1.1).  The Warburg Effect is the 

prototypical, most heavily studied phenotype in cancer metabolism (Gatenby and Gillies, 2004; Kim and Dang, 

2006; Vander Heiden et al., 2009).  Yet, as demonstrated below, key mechanistic issues concerning the 

Warburg Effect, and explanations for the effect and its coupled phenotypes, remain inconclusive. 

Sidney Weinhouse took issue with Warburg’s conclusion that respiratory impairment was a 

fundamental property of transformation.  He provided multiple lines of evidence to refute Warburg’s 
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hypothesis.  Specifically, he noted that in some instances tumors consume oxygen at equivalent rates to non-

cancerous tissue, convert specific nutrients (namely glucose, discerned through radioisotope tracer studies) to 

carbon dioxide at rates similar to non-cancerous tissue, and display similar responses to uncoupling agents as 

non-cancerous tissue.  Additionally, he noted that some non-neoplastic tissues with high oxygen uptake also 

display high glycolytic rates (Figure 1.2a).  He concluded that “this can mean only that glucose catabolism is so 

rapid in tumors that the normal channels for disposal of pyruvic acid are overloaded” (Weinhouse, 1956).  This 

explanation for the Warburg Effect, with further evidence from in vitro studies, has been invoked in the 

modern literature (DeBerardinis et al., 2008a). 

 The crux of Warburg and Burk’s rebuttal lied in distinguishing tumor metabolism, a mixture of cancer 

and non-cancer (stromal and immune) cells, from cancer cell metabolism (Figure 1.2b) (Burk and Schade, 

1956; Warburg, 1956a).  Warburg cited his favorite model of mouse ascites tumor, which he claimed as nearly 

100% cancer cells, and noted “the more cancer cells a tumor contained, the higher was the fermentation and 

the lower was the respiration.”  He further cited an example of the chorion during embryogenesis, which 

undergoes rapid growth yet secretes negligible amounts of lactate, to discredit the idea that the Warburg 

Effect is an overflow of maximized pyruvate oxidation during cell growth (DeBerardinis et al., 2008a; Warburg, 

1956a).  Burk reiterated Warburg’s cell type argument, and questioned Weinhouse’s methodology of 

comparing different species’ tissue metabolism.  Burk additionally noted that an uncoupling agent’s effect on 

oxygen consumption cannot be extended to infer about the state of how protons are shuttled across the 

mitochondrial membrane in cancer, whether through ATP production via ATPases or other means.  We now 

know that there is molecular support for Burk’s statement by the discovery of links between cancer and other 

methods of recycling protons other than ATPases, such as uncoupling proteins and the nicotinamide 
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nucleotide transhydrogenase (NNT) protein (Burk and Schade, 1956; Derdak et al., 2008; Gameiro et al., 2013).  

Assuming oxygen consumption or carbon dioxide formation faithfully report on ATP generation from 

respiration is a common error in the literature that misinforms to this day (Reitzer et al., 1979; Zu and Guppy, 

2004) (Figure 1.3). 

 Regardless, the standstill in this debate originates in Burk’s own argument to Weinhouse, by dismissing 

some previous data because “simple saline media were employed” as opposed to more trustworthy updated 

data later acquired in media containing serum.  This leads to a slippery slope, as in 2015 there are still no 

agreed upon standards as to “physiologic” culture conditions.   So Weinhouse could claim that cell culture is 

prone to artifacts that fail to recapitulate the behavior of intact tumors, while the reductionists Otto Warburg 

and Dean Burk could claim that tumor measurements are prone to contamination of signal from the stroma.   

 In this thesis I claim that we have made significant progress to address the Weinhouse concern of 

faithfully recapitulating the microenvironment by furthering our ability to assay and analyze patient tumor 

metabolism and its connections to the microenvironment in vivo.  I close with a discussion of a separate 

project that I undertook to address the Warburg and Burke concern of cell of origin heterogeneity.  We were 

able to prove the principle of a novel method to assay the separate metabolism of subpopulations of cells 

within a heterogeneous population.  This experimental workflow is amenable to assaying primary human 

tumors in vivo. 

 

1.2 Evidence in support of microenvironment regulation of cancer cell metabolism.   
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Recent work has definitively demonstrated that non-cell-autonomous influences alter tumor cell 

metabolism to support survival and growth.  Compromised tissue perfusion resulting from an abnormal 

neovasculature is believed to be a major environmental driver of altered tumor metabolism. Inadequate 

perfusion may lead to cellular hypoxia, which induces a host of alterations in nutrient metabolism, including 

enhanced glycolysis (Coleman et al., 2002; Guillaumond et al., 2013; Le et al., 2012; Metallo et al., 2012; 

Sonveaux et al., 2008; Wise et al., 2011).  Reduced perfusion also compromises nutrient availability, which 

activates another set of compensatory metabolic responses to support cell survival (Birsoy et al., 2014; 

Commisso et al., 2013; Zhang et al., 2014b).  Interactions among malignant cells experiencing different 

conditions within a solid tumor, or between tumor cells and stromal cells, can also impact overall tumor 

metabolism (Pavlides et al., 2009; Sonveaux et al., 2008).  Thus, a full accounting of tumor metabolism will 

ultimately need to account for these extrinsic influences in addition to the complexity imposed by the 

oncogenotype.   Although cell lines have produced a wealth of information about metabolic regulation, they 

cannot provide a comprehensive view of tumor metabolism because the effects of stromal components and 

the tumor microenvironment are difficult if not impossible to recreate ex vivo. 

 
1.3 In vivo tracer studies to faithfully report tumor metabolism 
 
 

 Stable isotopes (e.g. 13C) are widely used to investigate metabolism in biological systems, 

because patterns of 13C enrichment in metabolites downstream of a labeled nutrient encode information 

about the pathways used to metabolize the nutrient (Buescher et al., 2015).  Appropriate choice of the tracer, 

coupled with assessment of 13C enrichment using nuclear magnetic resonance spectroscopy (NMR) and/or 

mass spectrometry (ms), enables many pathways to be investigated in a single experiment (DeBerardinis et al., 
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2007; Hiller et al., 2010).  Furthermore, the safety of 13C makes these studies feasible in human subjects.  A 

few studies have introduced 13C-labeled nutrients into cancer patients prior to surgical resection of the tumor 

and then extracted metabolites from tissue fragments and used the 13C enrichment patterns to infer 

metabolic activity. In gliomas and brain metastases, infusions of [U-13C]glucose revealed metabolism of 

glucose through both glycolysis and the tricarboxylic acid (TCA) cycle, with a number of pathways maintaining 

TCA cycle activity by providing oxaloacetate (OAA) and/or acetyl-CoA (Maher et al., 2012).  Co-infusion of 

labeled glucose and acetate demonstrated that these tumors could also convert acetate to acetyl-CoA to 

supply oxidative metabolism (Mashimo et al., 2014).  In non-small cell lung cancer (NSCLC), introducing a bolus 

of [U-13C] glucose revealed that both glycolysis and oxidative metabolism of pyruvate in the TCA cycle were 

apparent in the tumor, and that the abundance of metabolites labeled by these pathways was generally higher 

in the tumors than in the lung (Fan et al., 2009).  Pyruvate carboxylase (PC), the enzyme converting pyruvate 

to OAA, was highly expressed in these tumors and contributed to some of the labeling differences between 

tumor and surrounding lung (Sellers et al., 2015). Thus, pre-operative and intra-operative metabolic tracing 

using infused 13C-labeled nutrients in cancer patients provides substantial insights that potentially cannot be 

achieved through cell culture studies alone.  Furthermore, a recent study in non-small cell lung cancer (NSCLC) 

demonstrated that tissue slices from a primary human tumor labeled in culture gave different general 

conclusions to the in vivo experiment, further validating the necessity for in vivo direct assays of tumor 

metabolism. 

 

1.4 Methods to dissect heterogeneity in tumor metabolism are necessary to interpret primary human tumor 

data 
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 Recent work in NSCLC patients highlights the difficulty of interpreting tracer data from in vivo studies, 

where the influence of multiple cell types within the microenvironment may influence isotope enrichment in 

target metabolites.  The study authors validate the enhanced glycolysis in NSCLC, and demonstrate additional 

enhancements in glucose carbon flow through the mitochondrial reactions of pyruvate carboxylase (PC) and 

pyruvate dehydrogenase (PDH) (Figure 1.4a)(Sellers et al., 2015).   Specifically, the authors stress how PC is the 

anaplerotic source of the TCA cycle, not glutamine carbon as demonstrated in the majority of cancer cell lines 

(Hensley and DeBerardinis, 2015).   A similar conclusion, of glutamate generation from glucose instead of 

glutamine catabolism, was reached in brain tumors in vivo (Maher et al., 2012; Marin-Valencia et al., 2012).  

However, now we have reached a dilemma that cannot be rectified by whole tumor measurements alone 

(Sellers et al., 2015).  As Warburg and Burk argued, could the majority of the oxidative metabolism and hence 

13C enrichment pattern in the tumor be arising from the stroma (Figure 1.4b)?  This would rectify the vast 

literature that clearly establishes the importance of glutamine catabolism in both culture and in vivo models of 

cancer cell metabolism (Hensley et al., 2013).   

This is not merely an esoteric exercise, because the relative contributions of various cell types to 

overall metabolic activity lead to different possible strategies of targeting tumor metabolism and stratification 

for clinical trials.  For instance, glutamine synthetase receives little attention as a cancer drug target in the 

literature, but may be a valid avenue if intratumor glutamine symbiosis exists (Kung et al., 2011).  To address 

this dilemma, I can conceive of three possible methods to discern the origin of averaged signals in a mixed 

population of cells within a tumor.  First, the most practical and trustworthy method in terms of the quality of 

the data, one could draw correlations between cell types and signals to infer their origin from various tissue 
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fragment samples (Figure 1.4).  We take this approach in the NSCLC patient tumor metabolism project.  

Second, one could separate out the various cell types and then test their separate signals (Figure 1.5).  This 

approach was attempted in the cell cycle project, and potentially suffers from the effects of the process of 

separation before metabolic measurements.  Third, one could measure each individual cell within a population 

and the metabolic signals it contains.  This technology is theoretically available, but currently lacks the 

sensitivity to provide reliable measurements in our metabolites of interest (Walch et al., 2008).  For these 

reasons, we prioritized the first method of retrospective correlations of signal within an intact tumor 

fragment.  However, we were able to make progress in a proof of principle study in the sorting method. 
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Figure 1.1: A depiction of the Warburg Effect.   
(A) In hypoxia, both cancer and non-cancerous cells engage in anaerobic glucose metabolism to lactate 
to maintain bioenergetics viability. 
(B) Upon the addition of oxygen, non-cancerous cells secrete significantly less lactate.  This repression of 
lactate secretion upon the addition of oxygen is known as the Pasteur effect.  However, cancer cells 
continue to secrete significant amounts of lactate upon the addition of oxygen.  Hence, the Warburg 
Effect is essentially a suppressed Pasteur effect. 
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Figure 1.2:  Contrasting views on the cellular origin of oxidative metabolism in tumors. 
(A) A model of oxidative metabolism originating in the cancer cells. 
(B) A model of oxidative metabolism originating in the stromal cells. 
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Figure 1.3:  Oxygen consumption is not a surrogate of oxidative ATP production.  Protons pumped into 
the intermembrane space can return to the matrix via many routes.  Uncoupling proteins, Nicotinamide 
Nucleotide Transhydrogenase, and ATP Synthase generate heat, NADPH, and ATP as products, 
respectively, when transferring protons from the intermembrane space back to the matrix.  
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FIGURE 1.4 A tissue fragment assay workflow to understand tumor heterogeneity.   
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FIGURE 1.6 A sorted subpopulation workflow to understand tumor heterogeneity. 
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CHAPTER TWO 
 
 

PRIMARY ASSAYS OF NSCLC PATIENT TUMOR GLUCOSE METABOLISM IN-VIVO REVEAL ENHANCEMENTS OF 

BOTH GLYCOLYSIS AND GLUCOSE-DERIVED PYRUVATE METABOLISM IN THE TCA CYCLE RELATIVE TO 

PATIENT MATCHED NON-CANCEROUS LUNG. 

 

2.1 Results 

 
 

2.1.1 Workflow for pre-operative imaging, intra-operative 13C-glucose infusion, and image-informed sample 

acquisition.  

 

Prior to surgery, tumors were assessed by FDG-PET and multi-parametric magnetic resonance imaging 

(MRI) (Figure 2.1a).  MRI techniques consisted of T2-weighted imaging for anatomic delineation of the mass; 

diffusion-weighted imaging (DWI) as a surrogate for cellularity and tissue density; and dynamic contrast-

enhanced MRI (DCE-MRI), which measures time-dependent entry of a contrast agent into regions of interest 

and is used to assess tissue perfusion (Koh and Collins, 2007; Yankeelov and Gore, 2009).  Multidisciplinary 

conferences involving the research team, cardiothoracic surgeon and radiologist were held to discuss the 

images and plan the approach for tissue sampling. On the day of the surgery, the patient had an intravenous 

catheter placed into each arm. One was used to deliver 8 grams of [U-13C] glucose over approximately 10 

minutes, followed by a continuous infusion of 8 grams/hour for an average of three hours until the lobectomy 
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was performed. The other catheter was used to withdraw blood samples periodically for subsequent analysis 

of 13C enrichment in plasma glucose.  This infusion approach was similar to one previously used to analyze 

glucose metabolism in human gliomas, where the goal was to achieve a persistent state of high enrichment of 

the plasma glucose pool (Maher et al., 2012).  After removal of the affected lobe, the tissue was quickly 

reoriented according to anatomic landmarks and then dissected to procure specific fragments prioritized 

according to the pre-surgical imaging.  These fragments were briefly rinsed in saline and frozen in liquid 

nitrogen, within on average 5 minutes of lobe removal. Frozen fragments were used for histological, molecular 

and metabolic analysis. For metabolic analysis, plasma and tissue samples were extracted and metabolites 

were analyzed by gas chromatography and in some cases 13C nuclear magnetic resonance spectroscopy. 

As an example of the workflow, imaging and 13C data from a 59 year-old female smoker with a grade 3 

adenocarcinoma (patient 1) are shown in Figure 2.1b-d. This tumor exceeded 22 cm3 by MR measurements 

and was highly FDG-PET avid, demonstrating some heterogeneity of FDG signal but a maximum of greater 

than 10 (Figure 2.1b, Table 2.1). Plasma glucose exceeded 30% enrichment for 3 hours prior to removal of the 

diseased lobe (Figure 2.1c). Metabolites were extracted from a fragment of the lung and from an FDG-avid, 

relatively ADC-low (i.e. highly cellular) fragment of the tumor selected based on pre-surgical imaging. Analysis 

of 13C enrichment in these fragments revealed that glucose and the glycolytic intermediate 3-

phosphoglycerate (3PG) had somewhat lower fractional enrichments in the tumor relative to lung, but that 

lactate and TCA cycle-related metabolites citrate, glutamate and malate were more enriched in the tumor 

(Figure 2.1d; full isotopologue distributions of these metabolites are in Figure 2.2). Thus, in this patient’s 

tumor, high FDG uptake correlated with enhanced contribution of glucose carbon to both the lactate pool and 

to pools of TCA cycle intermediates. 
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2.1.2 Comparison between bolus and continuous infusion routes of [U-13C]glucose administration for analysis 

of NSCLC metabolism.  

 

Administering 13C glucose as a single or multiple boluses rather than a continuous infusion has also 

been used successfully to characterize tumor metabolism in humans and mice (Fan et al., 2009; Sellers et al., 

2015; Xie et al., 2014; Yuneva et al., 2012). Boluses have the advantage of reduced cost and ease of 

administration, significant considerations for human studies. On the other hand, longer infusions are predicted 

to lead to improved 13C signal, better evaluation of complex pathways requiring persistent exposure to 13C, 

and the possibility of achieving isotopic steady state in the tumor, at which point interpretation of 13C labeling 

patterns is simplified somewhat (Davidson and Vander Heiden, 2012; Marin-Valencia et al., 2012).  In 

particular, analysis of the TCA cycle is complicated by the fact that the number and position of 13C depends not 

only on route of entry into the cycle, but the number of times the cycle has turned over; the latter factor is 

sensitive to the duration of 13C exposure (Cheng et al., 2011).  To compare these two methods, we assessed 

the type of qualitative labeling data obtained from brief vs. prolonged periods of 13C exposure. One patient 

(patient 2) received an 8 g bolus of [U-13C] glucose, followed shortly thereafter by surgical resection. This 

produced a rapid rise in the plasma glucose enrichment, but no steady state in the circulating pool (Figure 

2.3a). Another patient (patient 3) received two periods of [U-13C] glucose administration: an 8 g bolus prior to 

induction of anesthesia followed by administration of another 8 g approximately 1 hour before surgery (Figure 

2.3b). Metabolites were then extracted from the lung and tumor and analyzed for the extent and distribution 

of 13C label. As in patient 1, enrichment in lactate (m+3 isotopologue) and TCA cycle intermediates (m+2 
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isotopologues of citrate, glutamate and malate) were higher in the tumor than in the lung of patients 2 and 3 

(Figure 2.1d, Figure 2.3c). The relative enrichment of these species was not improved by patient 1’s longer 

infusion. However, the absolute enrichments were somewhat lower in patients 2 and 3, and this resulted in 

very low signal for some isotopologues, particularly for higher-order labeling (e.g. m+3-4 in citrate and malate, 

Figure 2.3d-e).  The m+1 isotopologues of these metabolites were also better represented in the longer 13C 

glucose exposure before surgical resection in patients 1 and 3; this form of labeling likely arises after multiple 

turns of the TCA cycle involving entry of unlabeled acetyl-CoA (Figure 2.3f). Thus, short exposure methods are 

sufficient to detect abundant isotopologues, and the relative lack of labeling in higher-order isotopologues in 

single or repeated bolus administrations may heighten the relative differences of first-turn labeling between 

tumor and lung. Longer infusions appear to generate higher overall enrichment and better representation of 

some of the less abundant isotopologues. For these reasons, we used the bolus plus infusion method for 

subsequent patients.  

 

2.1.3 Evidence for enhanced anaerobic and aerobic glucose metabolism in NSCLC.  

 

Data from nine patients, including the three already described, are summarized in Figure 2.4a and 

shown individually in Figure 2.4f. The evolution of plasma glucose enrichments for all patient infusions is in 

Figure 2.5. Single samples were divided into multiple smaller fragments for metabolic, genetic, and histological 

analysis. All lung samples demonstrated enrichment of intermediates from glucose and the TCA cycle, 

indicating that benign lung tissue uses both of these pathways. Glycolytic intermediates and TCA cycle 

intermediates were also enriched in all tumors. There was substantial variability in 13C enrichment among 
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fragments, and the variability between patients far exceeded the variability among fragments from the same 

tumor, indicating that this technique detects biological variation in human tumor metabolism (Figure 2.4h).   

To provide an intuitive view of how 13C labeling compared between the tumor and lung for each 

patient, the average relative fractional enrichments (i.e. the ratio of fractional enrichments for each 

isotopologue of tumor to lung) are shown for several informative and abundant metabolites. Despite the fact 

that all tumors displayed FDG uptake by PET, the fractional enrichment of glucose was significantly lower on 

average in the tumor than the lung. Lactate, by contrast, was significantly more enriched in the tumor 

fragments, indicating a greater propensity to convert [U-13C]glucose to [U-13C]lactate than non-cancerous 

lung. Furthermore, metabolites related to glucose-derived pyruvate entry through pyruvate dehydrogenase 

and first turn of the TCA cycle, namely modeled acetyl-CoA m+2, and measured citrate, glutamate and malate 

m+2 were also significantly more enriched in the tumors than in the lung (Figure 2.4a).  

Although m+2 enrichments in citrate, glutamate and malate likely reflect entry of label into the TCA 

cycle via the pyruvate dehydrogenase (PDH) reaction, MS analysis does not provide positional information 

about 13C enrichment. This potentially confounds the interpretation of labeling data restricted to qualitative 

assessment of MS isotopologue distributions, and could be particularly problematic when the overall 

enrichment in metabolites supplying the TCA cycle (e.g. pyruvate and acetyl-CoA) is low in human infusions. 

The m+2 isotopologues in citrate, etc. may therefore reflect PDH-dependent labeling during the first turn of 

the cycle, multiple turns of the cycle, or the combined effects of PC-dependent entry followed by multiple 

turns. To limit the assumptions needed to interpret the labeling data, we analyzed several lung and tumor 

fragments (from patients 2, 3, 4, 5 and 8) by 13C NMR spectroscopy, which definitively assigns the position of 

13C (Fig. 2.6). These spectra revealed prominent 4-5 doublets in carbon 4 of glutamate, a pattern specifically 
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associated with PDH activity in the presence of pyruvate labeled in positions 2 and 3 (or all three carbons).  

This doublet was much more prominent in tumor than lung, and labeling of the 4-5 doublet relative to the 

singlet of C4 was highly correlated with the fractional enrichments of m+2 in citrate, glutamate and malate 

(Fig. 2.6). We interpret these observations to indicate that the enhanced labeling of TCA cycle intermediates in 

the tumor fragments primarily reflects entry of uniformly labeled pyruvate into the cycle via PDH. Strong 

correlations between mass isotopologues lactate m+3 and citrate m+2, and between citrate m+2 and malate 

m+2 also indicate intact PDH and TCA cycle activity in the tumors, supporting this interpretation (Fig. 2.4b-c). 

To rule out artificial inflation of 13C labeling by metabolite pool depletion, we also analyzed the abundance of 

relevant metabolites in each fragment (Figure 2.7). Glucose was significantly less abundant in the tumor 

fragments, lactate was more abundant, and TCA cycle intermediates displayed no clear trend in either 

direction. There were no differences in the normalization factor of the product of protein abundance and total 

ion current for the tumor and lung fragments used in the analysis. Thus, qualitative first-pass assessment of 

the combined MS and NMR data indicate enhanced oxidation of glucose carbon through the pyruvate 

dehydrogenase reaction and TCA cycling in tumors relative to normal lung.   

We next analyzed other aspects of TCA cycle metabolism. Lung tumors contain increased expression of 

PC and potentially have evidence of enhanced flux through this anaplerotic enzyme as assessed by qualitative 

assessment of mass isotopologue distributions (Sellers et al., 2015).  PC converts [U-13C] pyruvate into OAA 

m+3, which can condense with unlabeled acetyl-CoA to produce citrate m+3 and can equilibrate with malate 

to produce malate m+3.  Fractional enrichments of citrate m+3 and malate m+3 were higher in the tumor than 

the lung (Figure 2.4d).  However, the absolute abundance of these isotopologues was much lower than the 

PDH-derived isotopologues.  Citrate m+5, the condensation product of OAA m+3 and acetyl-CoA m+2, was 
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barely detectable, likely because of the low absolute enrichment in the OAA and acetyl-CoA pools. TCA cycle 

turnover was assessed by analyzing the fractional contributions of m+1 isotopologues in citrate and malate 

(Figure 2.4e). Both of these isotopologues were over-represented in the tumors. Therefore, enhanced 

fractional abundance of M+2 TCA cycle isotopologues is not an artifact of suppressing multiple turns of the 

cycle. To validate our qualitative isotopologue analysis, and avoid the potential pitfall of the enhanced tumor 

relative to lung enrichments in TCA cycle intermediates originating from higher enrichment in lactate, we 

modeled the isotopologue data with TCASIM.  This program can model the fluxes of PDH and PC relative to 

citrate synthase, and the fractional enrichment of [U-13C] acetyl-CoA.  Strikingly, the data indicate that the 

relative anaplerotic flux through PC is higher in the tumors, and that PDH flux, also enhanced in the tumors, 

accounts for the majority of carbon entry in both tissues (Figure 2.4g). 

 

2.2 Methods 

 

2.2.1 Clinical Protocol 

 

 Nine surgically eligible patients with either 18FDG-PET positive lung masses or biopsy verified lung 

tumors were enrolled in an IRB-approved clinical protocol after obtaining informed consent.    A bolus of 8g 

over 10 minutes followed by 8g/hr continuous infusion of pyrogen-free [U-13C] glucose from Cambridge 

Isotope Laboratories was administered for each patient through a peripheral intravenous line on the day of 

the surgery.  Standard of care surgical procedures were followed for NSCLC, with the majority of the cases 

being robotic lobectomies.  Based on pre-operative imaging analysis and gross inspection after resection, the 
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surgeon avoided necrotic tissue for tissue sampling, unless separate analysis of necrotic tissue was planned.  

Upon removal from the patient, tissue fragments were briefly washed in ice-cold saline and immediately 

frozen in liquid nitrogen.  The average total time between removal of tissue from the patient and freezing in 

liquid nitrogen was approximately 4 to 5 minutes.  All histological analyses were conducted by surgical 

pathologists blinded to the results of the study. 

 

2.2.2 Mass Spectrometry   

 

 Blood was obtained prior to and approximately every 30 minutes during infusion of [U-13C] glucose 

until affected lung tissue was removed from the patient.  Obtained blood was chilled on ice and subsequently 

centrifuged to separate and freeze the plasma.  50-100µl of plasma was added to 80:20 methanol:water.  50-

100mg of frozen tissue fragments were added to 50:50 methanol:water.  Samples were freeze thawed three 

times and subsequently centrifuged at 16,000 relative centrifugal force for 15 minutes to precipitate 

macromolecules.  Protein concentrations for relative pool size analysis were assayed from the pellets via 

Pierce BCA Protein Assay kit.  The supernatants, with 10µl of sodium oxybutyrate added as an internal control, 

were evaporated, derivitized in 150µl of a trimethylsilyl donor (TriSil, Pierce), and analyzed using either an 

Agilent 6890 or 7890 gas chromatograph coupled to an Agilent 5973N or 5975C Mass Selective Detector, 

respectively.  Measurements of mass isotopologue distributions were corrected for natural abundance using 

Metran.  Parent ions monitored were 445-441 for glucose, 459-462 for 3-phosphoglycerate, 219-222 for 

lactate, 465-471 for citrate, 363-368 for glutamate, and 335-339 for malate.   
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2.2.3 NMR Spectroscopy 

 

Sample preparation was as previously described (Maher et al., 2012).  NMR spectroscopy was 

performed on a Varian ANOVA 14.1 T spectrometer (Agilent, Santa Clara, CA) equipped with a 3-mm 

broadband probe with the “observe” coil tuned to 13C (150 MHz). Proton decoupling was performed using a 

standard WALTZ-16 pulse sequence. Carbon spectra were acquired under the following conditions: pulse flip 

angle 45°, repetition time 1.5 s, spectral width 35 kHz, number of data points 104,986, and number of scans 

~23,000–30,000, requiring 20–25 h. Free induction decays were zero filled to 131,072 points and apodized 

with exponential multiplication. Relevant peak areas were determined using ACDLabs SpecManager  

(Advanced Chemistry Development).      

 

2.2.4 Modeling 

 

 Simulations of tcasim were run using the 3PG M+3 fractional enrichment in the lactate input of tcaSIM, 

which is modeled as interchangeable with pyruvate fractional enrichment.  Relative to citrate synthase, the 

PDH, PC and YS fluxes, with YS defined as an additional anaplerotic source entering as succinate, were 

simulated in a stepwise fashion of 0.05 from 0 to 1.  The cycles function that models turns of label in the TCA 

cycle was run from 1 to 6 turns, for a total of 55,566 simulations per tissue fragment.  In a simulation using the 

average tumor 3PG enrichments, 6 turns in tcaSIM reached similar values to steady state (modeled as 35 

turns) within reason given the significant figures of the raw data.  The 55,556 simulations were imported into 

excel, and the simulated citrate m0-m1, glutamate m0-m5, and malate m0-m4 were compared to the 
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experimental data.  The absolute difference between each isotopologue’s experimental and simulated data 

was summed for each simulation, yielding a total delta.  The simulations were ranked by total delta, and the 

simulation with the lowest total delta value was used for PDH and PC relative flux values. 

 

2.2.4 Statistics 

 

Patient-matched tumor and non-cancerous lung samples, as well as intratumor samples processed on 

the same day, were analyzed by a paired student’s t test.  Correlation plots were analyzed for significance with 

pearson’s product-moment correlations coefficients of the trend lines.  All data was considered significant if p 

< 0.05.  

 

2.3 Discussion  

 

2.3.1 There is no in vivo evidence for a suppression of glucose-derive pyruvate oxidation in primary non-small 

cell lung cancer in humans. 

 

 The conceptual foundation for the imaging use of fluorodeoxyglucose positron emission tomography 

(FDG-PET) in NSCLC diagnosis, staging and detection of metastases arose from a primary observation that 

cancer cells have higher rates of glycolysis, defined as the conversion of glucose into lactate, than their 

differentiated counterparts ex vivo (Fletcher et al., 2008; Vander Heiden et al., 2009; Warburg, 1925; 

Weinhouse, 1955).  However, empirical evidence validating the Warburg Effect in vivo in spontaneously-
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formed human tumors, and exploring the relationship between tumor glycolysis and other aspects of 

metabolism or tumor biology, is fairly sparse compared to conclusions drawn from indirect assays (Higashi et 

al., 2000; Hori et al., 2011; Hu et al., 2013).  One well accepted facet of the Warburg Effect is an accompanying 

cancer cell-autonomous decrease in glucose-derived pyruvate oxidation coupled to its increased conversion to 

excreted lactate (Kim and Dang, 2006).  To date, all in vivo attempts to assay this decreased glucose oxidation 

within a tumor fragment have demonstrated robust TCA cycle oxidation of glucose carbon, and we further 

demonstrate no suppression in this study by comparing to non-cancerous lung (Maher et al., 2012; Marin-

Valencia et al., 2012; Sellers et al., 2015). 

 

2.3.2 Glucose depletion in tumors is likely a heterogeneous combination of decreased supply and increased 

demand. 

 

 One determinant of tumor metabolism that may significantly change between cell culture and in vivo 

assays is the well-documented, drastically different microenvironment in tumors in vivo compared to the 

standard practice of nutrient-replete, normoxic cell culture (McKnight, 2010).  The phenomenon of glucose 

scarcity in tumor tissues has been noted as a general property of many tumor types, yet the most widely used 

culture media are formulated with diabetic concentrations of glucose (Birsoy et al., 2014; Hirayama et al., 

2009; Urasaki et al., 2012).  As the NSCLC patient tumors additionally demonstrated consistently less fractional 

enrichment of their glucose pools with [U-13C] glucose, this argues against the simplest explanation of tumor 

enhancements of glucose uptake and metabolism being the sole factor contributing to both glucose depletion 

and increases in enrichment in downstream metabolites, some factor downstream of glucose uptake must be 



 

25 

 

enhanced in the tumors (Figure 2.4a, Figure 2.6).  There are two possible causes for this lower fractional 

enrichment in glucose in the tumors.  First, compromised tumor perfusion could lead to slower kinetics of 

glucose delivery or areas of the tumor that are inaccessible to glucose originating in the plasma.  In partial 

support of this idea, we observed an insignificant direct trend (r2 = 0.07) between relative glucose fractional 

enrichment and the DCE semi-quantitative parameter of initial area under the curve in 60 seconds (iAUC60) 

(data not shown).   Compensatory increases in glucose uptake and trapping in response to decreases in 

perfusion is likely weakening this correlation (van Baardwijk et al., 2007).  In agreement with this 

compensatory increase possibility, a recent study in NSCLC patient tumors observed an inverse correlation 

between FDG-PET SUVmax and SUVmean and DCE-MRI parameters of perfusion in lung adenocarcinomas, 

which accounted for seven of the nine patients in this study (Zhang et al., 2014a).  The second possible 

determinant of the lower glucose fractional enrichments in the tumors is cycling of glucose through cellular 

glycogen pools (Favaro et al., 2012; Yano et al., 1996; Zois et al., 2014).   
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Figure 2.1: Pre-operative multimodality image-guided workflow to analyze glucose metabolism in human 
non-small cell lung cancer. 
(A)  Diagram of standard workflow of a patient enrolled in the study. 
(B)  Pre-operative multimodality imaging of patient 1.  All images are from a single session of magnetic 
resonance imaging, except for the prior standard of care FDG-PET/CT. 
(C)  Plasma glucose enrichment time-course of perioperative 13C glucose infusion of patient 1. 
(D)  Relative fractional enrichment of the depicted 13C enriched glycolytic and TCA cycle metabolites.  
Tumor values were normalized to patient matched lung values. 
Abbreviations: FDG-PET/CT, Fluorodeoxyglucose-Positron Emission Tomography, Computed 
Tomography; SOC , standard of care; MRI, magnetic resonance imaging; DWI, diffusion weighted 
imaging; DCE, dynamic contrast-enhanced; GC-MS, Gas Chromatography-Mass Spectrometry; NMR, 
Nuclear Magnetic Resonance; ADC, Apparent Diffusion Coefficient. 

Table 2.1. 
Patient demographics and clinical tumor parameters. 
Tumor size assessed by T2 weighted magnetic resonance imaging.  NSCLC TNM staging:  T1a – Tumor 
greatest dimension ≤ 2cm.  T1b – Tumor greatest dimension > 2cm but ≤ 3cm.  T2a – Tumor greatest 
dimension > 3cm but ≤ 5cm.  N0 – regional node metastases not present.  N1 – Ipsilateral peribronchial 
and/or ipsilateral hilar lymph nodes metastases present.  MX – Distant metastasis unknown.  M0 – 
Distant metastases not present.  G1 - well differentiated.  G2 - moderately differentiated.   G3 – poorly 
differentiated.  G4 – undifferentiated.  Abbreviations: ADC = Adenocarcinoma, ac = acinar, pap = 
papillary, mpap = micropapillary, lep = lepidic.  LCNEC = Large Cell Neuroendocrine Tumor.  SQCC = 
Squamous Cell Carcinoma. 
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Figure 2.2 
Complete isotopologue distribution for metabolites depicted in figure 2.1d. 
Abbreviations: M+n, full parent ion for a given metabolite with n 13C carbons incorporated; 3PG, 3-
Phosphoglycerate. 
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Figure 2.3 
A direct comparison between [U-13C] glucose infusion (patient 1) and  bolus-like (patient 2 and 3) data. 
(A)  Enrichment time-course of perioperative 13C glucose infusion of patient 2. 
(B)  Enrichment time-course of perioperative 13C glucose infusion of patient 3. 
(C)  Relative fractional enrichment of 13C to 12C of the depicted glycolytic and TCA cycle metabolites 
depicted in figure 1D of patient 1, 2 and 3.  Tumor values were normalized to patient matched lung 
values of 1.   
(D)  Full isotopologue distribution of citrate in the tumors of patients 1, 2, and 3. 
(E)  Full isotopologue distribution of malate in the tumors of patients 1, 2, and 3. 
(F)  Proposed tracer scheme for the origin of M+1 isotopologue during [U-13C] glucose administration.   
Abbreviations: Glc, Glucose; min, minutes; M+n, full parent ion for a given metabolite with n 13C carbons 
incorporated; Pt, Patient; CoA, Coenzyme A; xC, carbon with x atomic mass units. 
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Figure 2.4 
Common NSCLC patient tumor phenotypes in glucose-derived metabolism. 
(A) Average relative fractional enrichments, tumor to lung, in the metabolic pathways of figure 1d.  
Acetyl-CoA was not directly measured but modeled from the data with TCASIM. 
(B)  Fractional enrichment correlation plot between glycolysis (lactate M+3) and initial entry into the TCA 
cycle via PDH (citrate M+2).  Shown are all fragments, non-cancerous lung and tumor, studied. 
(C)  Fractional enrichment correlation plot between initial entry via PDH (citrate M+2) and first turn of 
the TCA cycle (malate M+2).  Shown are all fragments, non-cancerous lung and tumor, studied. 
(D)  Tracer scheme for the origin of M+3 species during [U-13C] glucose administration.  Shown are the 
average and standard deviation of the relative fractional enrichments, tumor to lung, of all nine patients. 
(E)  Average relative fractional enrichments, tumor to lung, in the metabolic pathway of figure 2f. 
(F) Individual patient relative fractional enrichments, tumor to lung, in the metabolic pathways of figure 
1d.  Shown are all fragments, non-cancerous lung and tumor, studied. 
(G) TCASIM modeled fluxes relative to citrate synthase flux from the fragments of (F). 
(H) Plasma glucose M+6 normalized standard deviations for all isotopomers measured in Table S2. 
* = p < 0.05 by student’s paired t-test or Pearson’s product moment correlation coefficient in (A), (D), (E) 
and (G), or (B) and (C), respectively.   
Abbreviations: M+n, full parent ion for a given metabolite with n 13C carbons incorporated; CoA, 
Coenzyme A; xC, Carbon of x atomic mass units; Pt, Patient; PC, Pyruvate Carboxylase; PDH, Pyruvate 
Dehydrogenase. 
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Figure 2.5: Perioperative 13C Glucose plasma enrichment curves for all patients in the study. 
A bolus of 13C Glucose is administered over a ten minute period, followed by steady infusion until tumor 
resection.  Patient 3 is an exception.  Arrows denote point of tumor resection, either before or after the 
last blood draw.    
Abbreviations: Glc, Glucose; Pt, Patient; min, minutes. 
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Figure 2.6: NMR evidence in support of GC-MS isotopologue phenotypes and interpretation. 
(A) Truncated tumor and lung spectra of patient 4.  Equal weights of tissue were submitted.  Shown in 
the magnified inserts are tumor spectra enhancements in the lactate C2 quartet to singlet ratio (similar 
to lactate M+3 isotopologue) and the glutamate C4 4,5 doublet isotopomer assumed to be the major 
contributor to the M+2 TCA cycle intermediate isotopologues.   
(B)  As in (A) for patient 5. 
(C)  Correlation plot between the glutamate C4 doublet to singlet ratio and citrate M+2 fractional 
enrichments of all tissue samples submitted for NMR with accompanying regional tissue fragments 
submitted for GC-MS analysis.  NMR analysis was conducted in five patients, with two tumor fragments 
of one patient. 
(D)  As in (C), a correlation plot between glutamate C4 doublet to singlet ratio and glutamate M+2 
fractional enrichment. 
(E)  As in (C), a correlation plot between glutamate C4 doublet to singlet ratio and malate M+2 
fractional enrichment. 
Abbreviations: ppm, parts per million; S, singlet; D, doublet; Q, quartet; LAC, Lactate; GLU, Glutamate; 
ALA, Alanine; SUC, Succinate; GLN, Glutamine; TAU, Taurine; GLY, Glycine; ASP, Aspartate; Mal, Malate. 
* = p < 0.05 by Pearson’s product moment correlation coefficient.   
 

Figure 2.7: Metabolite pool size analysis of tumor fragments relative to non-cancerous lung. 
(A)  Average tumor fragment metabolite pool sizes relative to non-cancerous lung.   
(B)  Demonstration of no significant trend in the product of TIC and mg protein input, which was used 
for relative pool size comparisons.   
* = p<0.05 by paired student’s t-test 
Abbreviations: 3PG, 3-Phosphoglycerate; mg, milligram; NS, Not Significant; TIC, Total Ion Current. 
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CHAPTER THREE 
 
 

NSCLC TUMORS IMPORT AND OXIDIZE LACTATE IN VIVO IN BOTH HUMANS AND MICE 

 
3.1 Results 

 

3.1.1 NSCLC patient tumors metabolize lactate in vivo 

 

The low fractional enrichment of the tumor acetyl-CoA pool stimulated analysis of other blood-borne 

metabolites that might contribute to central carbon metabolism. Lactate circulates at levels of 1-2 mM in 

humans, and has been demonstrated to be a metabolic fuel for cancer cells under some conditions 

(Guillaumond et al., 2013; Sauer and Dauchy, 1983; Sonveaux et al., 2008). To examine the impact of 

circulating lactate on tumor metabolism, we first compared fractional enrichments between 3-PG and lactate 

in tumor and lung fragments from all nine patients. In the majority of lung fragments, 3PG enrichment was the 

same or modestly higher than lactate enrichment. This is the expected pattern if lactate arises from glycolysis 

in the lung, with modest contributions from unlabeled substrates between 3PG and lactate to reduce 

enrichment of the lactate pool. In striking contrast, lactate enrichment in most of the tumors exceeded 3PG 

enrichment, implying contribution of an additional substrate to labeled lactate (Figure 3.1a). The most obvious 

candidate is lactate itself, because lactate imported from the plasma would feed the tumor lactate pool and 

could also serve as a carbon source for pyruvate–derived TCA cycle metabolism (Figure 3.1c). Indeed, infusion 

of [U-13C] glucose led to measurable amounts of circulating [U-13C] lactate (Figure 3.1d), and the lactate 
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enrichment in the plasma pool sometimes exceeded that of the tumor (Figure 3.1b). Given our confirmation 

by NMR that m+2 isotopologues primarily reflect entry and passage of [U-13C]acetyl-CoA through the TCA 

cycle, if fractional m+2 enrichment of TCA cycle intermediates exceeds m+3 in 3PG, this would indicate 

contribution of lactate to TCA cycle metabolism. This relationship was observed in several patients, including 

patient 1 (Figure 3.1d). Others, including patient 5, demonstrated a more conventional pattern of progressive 

decline in labeling from glucose to all downstream intermediates (Figure 3.1d). Thus, the data indicate that 

some human lung tumors use lactate as a carbon source for central metabolism. 

 

3.1.2 Human NSCLC cell lines xenografted into mice flanks metabolize lactate in vivo 

 

To examine lactate metabolism more directly in a mouse model, several mice bearing subcutaneous 

xenografts derived from A549 human non-small cell lung cancer cells were infused with [2-13C] lactate in a 

manner analogous to the [U-13C] glucose infusions. This led to rapid and persistent enrichment of the 

circulating lactate pool (Figure 3.1f), and a lower level of enrichment in glucose as lactate was used as a 

gluconeogenic precursor. Similar to the findings from the patients, lactate within these tumors was highly 

labeled (Figure 3.1g). Enrichment in citrate exceeded the enrichment of 3PG (3.1g), indicating that this citrate 

likely arose from contribution of imported lactate to the TCA cycle, rather than contribution of labeled glucose 

from the circulation. Thus, lactate is a substrate for oxidative metabolism in these tumors. 

 

3.1.3 A modeling based argument for lactate metabolism in mice flank xenografts 
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 A problem has been introduced by the realization of the possibility of multiple substrate inputs 

converging on a metabolic node feeding the TCA cycle, such as extracellular lactate and intracellular 3PG 

converging on pyruvate.  Is there a way that we can distinguish between a higher enrichment coupled to a 

lower flux through an enzyme, such as lactate through PDH, and a lower enrichment coupled to a higher flux 

through an enzyme, such as 3PG and PDH in our example?  I attempted to turn to modeling the GC-MS data to 

answer this question.  I believe the short answer is yes, but there must be a significant difference in 

enrichment between the two options and a significant amount of labeling in the relevant downstream TCA 

intermediates. 

 The mouse flank xenograft lactate infusions provide an example for this problem (figure 3.2).  

Using the methodology of modeling described in chapter 2, one can compare the “total delta” between the 

tcaSIM best-fit simulation and the experimental data when using lactate or 3PG as the enriched input.  The 

results yield all of the predictable outcomes of how the program would try to compensate for the decreased 

enrichment in 3PG in an attempt to improve the fit between the simulation and the data.  Entry of label into 

the TCA cycle is significantly enhanced via PDH and PC in the 3PG series.  Additionally, on average the number 

of turns has increased to build up label in the cycle.  However, notice that in some mice the fluxes relative to 

citrate synthase of PC and PDH have maxed out at 1 in the 3PG condition.  I interpret this as the program not 

being able to get a reasonable fit with a plausible amount of PDH and PC flux relative to citrate synthase to fit 

the data, indicative of lactate being the more likely substrate than 3PG.  If one looks at the individual data, it 

appears that when both PC and PDH max out at 1 the total delta values become very high, clearly indicating 

inadequate fits.  Note that these are the two infusions with greater fractional enrichment of lactate in the 

plasma.  This data reiterates the theme of balancing infusing enough 13C to maximize signal to noise and the 
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other issue of trying to keep the conditions as close to normal physiology as possible without overloading 

substrate.  A future experiment would be to repeat the lactate infusions with [U-13C]lactate.  I predict this 

would give greater separating power as there would be more 13C signal in the TCA cycle. 

 

3.1.4 Extending the modeling to [U-13C]glucose infusions in mice flank xenografts  

 

 Observations of mice infused with glucose provide an example of the same general pattern with less 

separation between 3PG and lactate enrichment (figure 3.3).  This series compared A549 cells xenografted in 

the flank of a mouse to an A549 xenograft on the opposite flank with LKB1 added back (A549 cells are mutant 

for LKB1).  It highlights an issue to revisit in the NSCLC patients in the comparisons between tumor to non-

cancerous lung (Chapter 2), between different tumors (Chapter 4), or between various regions within a tumor 

(Chapter 4).  Now we have two variables, change in flux and choice of substrate.  Specifically, did only the flux 

increase or decrease into PDH?  Or did choice of substrate also change?  Or, likely, is it a mixture of these two 

effects?  To prioritize between scenarios, short of alternative experiments, I would turn to the total delta.  The 

most likely situation should have the best fit from the model according to the data.   

So given this series, we can systematically assess each scenario and what the resulting consequences 

and total delta would be.  If we assume that both conditions, A549 and the LKB1 add back, draw their TCA 

cycle signal from glycolysis-derived pyruvate as assessed from modeling using the 3PG data, we see that there 

are insignificant trends towards less PDH and PC, and more YS flux relative to citrate synthase upon LKB1 add 

back (Figure 3.3a).  Yet clearly, the increase in an additional anaplerotic source upon LKB1 add back looks 

promising.  This analysis essentially validates the necessity for modeling all TCA cycle tracer data, as if one 
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simply used a first turn analysis and observed the higher m+2 species in the LKB1 add back condition, one 

would have assumed more entry through PDH in the LKB1 situation.  However, upon looking at the 

enrichment data in 3PG, it becomes apparent that the LKB1 group has significantly more signal in the 

upstream metabolite 3PG.  Thus, to reiterate, more signal does not necessarily imply more carbon flow, it 

must be normalized to the enrichment of the entering upstream substrate (Figure 3.3b).  The average total 

delta under this scenario is 0.30 for the A549 group and 0.21 for the LKB1 group.   

We can repeat this analysis with lactate, assuming that both groups primarily metabolize extracellular 

lactate over intracellular glycolysis-derived pyruvate (Figure 3.3c).  Under this scenario, now PDH and PC flux 

relative to citrate synthase have gone up in the LKB1 add back group relative to A549, yet these changes are 

insignificant.  Interestingly, again under this scenario the YS flux relative to citrate synthase continues to be 

greater, still insignificant, in the LKB1 group.  At this point I would conclude that the YS change is more stable 

than PDH and YPC, which depend on the assumption made.  Finally, this gives total deltas of 0.30 and 0.21 for 

A549 and the LKB1 group, respectively.  This is the same as the previous scenario, so it is impossible to 

distinguish the source of 13C label no matter which scenario we use.   

Now we can turn the last two, more complex scenarios.  We can start with the scenario that the A549 

group utilized glycolysis-derived 3PG and the LKB1 group used extracellular lactate as pyruvate sources.  

Essentially this is no different than previous scenarios (data not shown).  Finally, we can assess if the A549 

group utilized lactate and the LKB1 group utilized intracellular glycolysis for pyruvate metabolized in the TCA 

cycle (data not shown).  This gives the same pattern as well.  In summary, perhaps surprisingly, no claim can 

be made as to choice of substrate, glucose or extracellular lactate-derived pyruvate in these models.  
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However, this exercise did demonstrate that no matter the assumption, an increase of an anaplerotic source 

was observed upon LKB1 add back.   

 

3.1.5 A re-analysis of the modeling between non-cancerous lung and lung tumors in the NSCLC patients 

in light of the possibility of lactate as a substrate choice.    

 

 
 As in the exercise in 3.3.4 above, what would happen if we revisit the modeling in figure 2.3g in light of 

the possibility of lactate import and metabolism in either the non-cancerous lung tissues or tumors?  Again, 

we can start with the simplest alternative, that both tissues ubiquitously metabolized extracellular lactate as a 

mitochondrial substrate (figure 3.b).  This maintains the trends, and PC stays significant, but blunts the effects 

to where the observed enhancement in PDH in the tumors is no longer significant.  Like the mouse 

experiments, what if we empirically let the total delta be the deciding factor of whether to use the 3PG or 

lactate data?  This scenario is similar to the previous all lactate scenario, with similar trends but PC being the 

more robust difference and maintaining significance (figure 5.3c).   

 

3.2 Methods 

 

3.2.1 Mouse studies 
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1*10^6 A549 cells were injected into the flank of male athymic Ncr nude mice purchased from Taconic.  

Before infusions, mice were fasted for an average of 12 hours.  Mice were anesthetized with isoflurane, and 

catheters were placed in the tail vein.  A 20% weight:weight aqueous solution of [2-13C] lactate purchased 

from Cambridge Isotopes was infused via an infusion pump for 150 to 180 minutes, at a rate of 100µl per 

minute for the first minute, 24 microliters for 10 minutes, and 2 microliters per minute until the end of the 

infusion.  Blood draws of roughly 50µl were sampled via retro-orbital procurement.  At the end of the infusion, 

tumors were harvested, rinsed briefly in ice cold saline, and frozen in liquid nitrogen. 

 

3.3 Discussion 

 

3.3.1 Supportive surrogate biomarker evidence of lactate metabolism in NSCLC 

 

Integral to this discussion of oxidized TCA cycle substrates, the modeling of the fractional enrichment 

data in acetyl-CoA uncovered the surprising result that there were other significant contributors to the tumor 

acetyl-CoA pool.  We provide evidence that one of these substrates is acetyl-CoA derived from lactate import 

and metabolism (Figure 3).  Lactate is transported across the cell membrane by facilitated diffusion by 

monocarboxylate transporters (Halestrap and Price, 1999; Kennedy and Dewhirst, 2010).  Additionally, the 

lactate dehydrogenase enzyme interconverts pyruvate and lactate, with the ratio of isoforms contributing to 

the directionality of conversion (Dawson et al., 1964; Doherty and Cleveland, 2013).  As in vitro studies of lung 

adenocarcinoma have implicated functional significance for LDHB, which favors the conversion of lactate to 
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pyruvate, it is plausible that lactate import and metabolism could be a significant metabolic substrate for 

NSCLC patient tumor metabolism in vivo (McCleland et al., 2013). 
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Figure 3.1: Evidence for import and metabolism of extracellular lactate in NSCLC tumors. 
(A) Lactate M+3 isotopologue fractional enrichments relative to 3PG M+3 in all patient tissue fragments.  
Shown are matched tumor and non-cancerous lung series. 
(B)  Lactate M+3 isotopologue fractional enrichments relative to plasma lactate M+3 in all patient tissue 
fragments.  Shown are matched tumor and non-cancerous lung series. 
(C)  Tracer scheme for glycolysis-derived pyruvate in green and lactate import and exchange in orange. 
(D) Gamma variate curve-fitted plasma enrichment curves of u-labeled isotopologues (glucose M+6 and 
lactate M+3) for the infusions of patients 1 and 5. 
(E) Percent enrichments in tumor fragments of patient 1 and 5 of the isotopologues of the tracer scheme 
of Figure 1D, with the proposed color schemes of (B). 
(F)  Gamma variate curve fitted plasma enrichment curves of lactate M+3 isotopologue during 13C lactate 
infusions in A549 cell line tumor xenograft bearing mice. Shown are three separate experiments. 
(G)  Results of tumor fragment analysis of the mice of (E).  Shown are the averages of fragments from 
two tumors in contralateral flanks in each mouse, for a total of six fragments.   
* = p < 0.05 by paired student’s t-test. 
Abbreviations: M+n, full parent ion for a given metabolite with n 13C carbons incorporated; 3PG, 3-
Phosphoglycerate; Gluc, Glucose; Lac, Lactate: PDH, Pyruvate Dehydrogenase; CoA, Coenzyme A. 
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Figure 3.2: Comparing modeling results of 3PG vs lactate metabolism in mouse lactate infusions.  The 
results from the methodology of modeling with tcaSIM in chapter 2 are shown directly comparing 3PG to 
lactate results in each mouse.  Displayed are the results for (a) total delta, (b) cycles, (c) PDH, (d) YPC, (e) 
AcCoa Fc1 (acetyl-CoA M+1).  The tumors are named by the mouse number, followed by the cell line.  
The infusion curves for these three mice are shown in (f).  * = p<0.05.  NS = not significant.   
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Figure 3.3: Comparing various scenarios in a series of mice bearing contralateral flank cancer cell line 
xenografts infused with [U-13C]glucose.    
The cell lines are A549 compared to A549 with functional LKB1 add back (LKB1).    
(A) Scenario where both xenografts metabolize glycolysis derived 3PG as a mitochondrial substrate. 
(B) Fractional enrichments of metabolites in two groups 
(C) Scenario where both xenografts metabolize extracellular lactate as a mitochondrial substrate. 
N = 3 mice, infused on separate days. 
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Figure 3.4: Comparing various scenarios in the NSCLC patient data.  
(A) Scenario where all tissues TCA cycle signal arises from intracellular glycolysis derived pyruvate (3pg). 
(B) Scenario where all tissues TCA cycle signal arises from lactate import derived pyruvate.  
(C) A mixture of the two scenarios, with each data point dictated by the total delta as to whether the 
lactate or 3pg data is utilized. 
* = p<0.05 by paired student’s t-test. 
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CHAPTER FOUR 
 
 

HETEROGENEITY IN GLUCOSE-DERIVED PYRUVATE OXIDATION BOTH WITHIN AND BETWEEN NSCLC PATIENT 

TUMORS IN VIVO 

 
4.1 Results 

 

4.1.1 NSCLC tumors display heterogeneous degrees of glucose metabolism predicted by an MRI marker of 

tissue perfusion. 

 

Although transforming mutations may impart tumor cells with the ability to engage in autonomous 

glucose metabolism, extrinsic factors also influence the metabolism of tumor cells (Birsoy et al., 2014; 

Commisso et al., 2013; Guillaumond et al., 2013; Zhang et al., 2014b).  The extensive metabolic heterogeneity 

among tumors in our study prompted an examination of the factors that predict 13C enrichment in various 

metabolites.   

The availability of DCE MRI data in all patients provided an opportunity to examine the influence of 

perfusion on the metabolic phenotype (Yankeelov and Gore, 2009). We first assessed whole tumor DCE data 

by region of interest (ROI) mean signal intensity of a slice chosen for largest surface area.  Patients in our 

cohort were easily dichotomized based on qualitative assessment of their DCE curves, with several more 

perfused tumors and several tumors displaying poorer entry of the gadolinium contrast agent (Figure 4.1a). 

DCE data were then analyzed as the initial area under the curve over 60 seconds after administration of the 
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contrast agent (iAUC60), a semi-quantitative parameter used as an indicator of tumor perfusion (Figure 4.1c) 

(Barnes et al., 2012). This feature also enabled the tumors to be separated into two groups, with high and low 

perfusion.  Analysis of fractional enrichment data revealed that metabolites from the well-perfused tumors 

were nearly indistinguishable from the surrounding lung, whereas the tumors with lower iAUC60 values had, 

on average, larger enhancements of enrichment over benign tissue (Figure 4.1b). Additionally, as the iAUC60 is 

a quantitative parameter, significant direct or inverse correlations could be observed between iAUC60 and 

3PG M+3 or malate M+2 relative fractional enrichments, respectively (Figure 4.1d).  Lastly, the modeling 

results demonstrated enhancements in PDH flux in the tumors displaying less contrast enhancement (Figure 

4.1e).  These findings are consistent with the inverse relationship between FDG-PET signal and contrast 

enhancement assessed by DCE-MRI (Zhang et al., 2014a).  The FDG-PET examinations in our study were 

conducted at various oncology centers without a standardized approach to measuring SUV parameters, 

prohibiting similar intertumor assessment of correlation between FDG-PET and either DCE-MRI or 13C 

enrichment. 

 

4.1.2 Intratumor regions of NSCLC tumors display heterogeneous degrees of glucose metabolism predicted by 

an MRI marker of tissue perfusion. 

 

Individual solid tumors display substantial molecular heterogeneity. Although metabolic heterogeneity 

within individual human tumors has not been widely studied, areas of high FDG uptake within large masses 

were found to be less perfused, as assessed by dynamic FDG-PET, in one series (Vriens et al., 2012).  To test 

whether regions of metabolic heterogeneity existed in the tumors of our NSCLC patients, we first used DCE 
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MRI to identify anatomic regions of differential contrast enhancement, then selected regions of high and low 

contrast from the same tumor for metabolite extraction and 13C enrichment analysis. Patient 8 was a non-

smoker with an EGFR-mutated adenocarcinoma measuring 16.1 cm3 and a high SUVmax (Figure 4.2a, Table 

2.1). Although analysis of DCE MRI signal of the tumor as a whole identified this as a well-perfused mass with 

high iAUC60 (Figure 4.1a-b), DCE characteristics were dramatically different between the superior and inferior 

regions of the tumor (Figure 4.2c). A fragment was chosen from the superior and inferior aspect of the tumor 

and subsequently sectioned into three smaller fragments, extracted, and analyzed for 13C enrichment. 

Enrichments in the poorly perfused, inferior aspect of the tumor were significantly higher than those in the 

superior aspect (Figure 4.2e). We further support these results with adjacent fragments analyzed by NMR, as 

well as modeling of the MS results (Figure 4.3).  Patient 9 had a 3.8 cm3 EGFR-wild type adenocarcinoma with 

a low SUVmax (Figure 4.2b, Table 2.1) and relatively poor DCE MRI signal throughout (Figure 4.1a). Again, 

however, subtle differences could be detected by DCE MRI, indicating modestly enhanced signal in the 

posterior compared to the medial region of the tumor (Figure 4.2d).  As in the patient 8’s larger and more 

FDG-avid tumor, fragments isolated from these two regions displayed similar albeit more subtle differences in 

13C enrichment, with the region of higher DCE signal demonstrating lower 13C enrichment in lactate, citrate 

and other metabolites. Thus, DCE-based assessment of tissue perfusion predicts the extent of glucose’s 

contribution to both anaerobic and aerobic metabolism.  In the small cohort reported here, this relationship is 

observed in tumors whose overall perfusion and SUVmax are either high or low. 

 

4.2 Methods 
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4.2.1 Multi-parametric Magnetic Resonance Imaging 

 

Magnetic Resonance Imaging was performed within eight days of the surgery. MRI studies were performed 

on either a 3T dual-transmit Achieva MR scanner (Philips Healthcare, Best, The Netherlands) with a 16-channel 

SENSE-XL Torso Coil or a 3T Philips Ingenia scanner with a 28-channel dStream Anterior-Posterior coil.  Coronal 

and axial T2-weighted half-Fourier single-shot turbo spin-echo images were acquired for anatomic reference 

for localizing the lesion. Dynamic contrast enhanced (DCE) MRI was performed using a 2D or 3D T1-weighted 

spoiled gradient-echo sequence before, during, and after the administration of a bolus of 0.01 mmol/kg 

gadobutrol (Gadavist; Bayer Healthcare Pharmaceuticals, Wayne, NJ) using a power injector at a rate of 2 

cc/sec followed by a 20 cc saline flush at the same rate. DCE images were acquired with free-breathing for at 

least 4 minutes using the following parameters: TE/TR = 1.14-1.65/2.5-4.5 ms, flip angle = 10o, field of view = 

200-300 x 200-300 mm2, in-plane resolution = 0.8-1.7 x 0.8-1.7 mm2, and temporal resolution = 0.5-5.2 sec. 

One or more imaging slices were acquired from the lesion with careful planning to avoid possible imaging 

artifacts from the heart and major blood vessel(s) depending on the size and location of the lesion. 

 Tumor volume measurements were based on T2 weighted images by ROI segmentation in Osirix.  

Dynamic contrast-enhanced MRI was analyzed by manually drawn regions of interest (ROIs) in Osirix.  For 

whole-tumor DCE analysis, ROIs were drawn around the whole tumor of a slice chosen to maximize surface 

area.  For intra-tumor DCE analysis, ROIs of the same size were placed on regions of tumor dictated by 

anatomical descriptors of tissue procurement.  ROIs were automatically propagated throughout the whole 

time series of a given scan.  Average ROI values were plotted using every available time point, and the baseline 

subtracted by using the value immediately before contrast enhancement, which was given the time point of 0 
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seconds.    Figure curves were generated by using excel solver to generate constants of a gamma variate 

function that satisfy a minimum between all data points of a DCE scan and the points of a gamma variate 

function.  Initial area under the curve measurements were approximated with the trapezoidal rule. 

 

4.3 Discussion 

 

4.3.1 A substrate diffusion model of cancer cell metabolism predicts microenvironment regulation of oxidative 

substrate usage. 

 

We propose that the results in aggregate suggest a model of preferential oxidation of less abundant 

labeled acetyl-CoA generating TCA cycle substrates in both well perfused tumors and regions of tumors, with 

subsequent oxidation of the more abundantly available glucose-derived pyruvate in the more poorly perfused 

tumors and regions of tumors once the less abundant substrates are depleted.  We propose that the glucose 

deprivation observed in tumor tissues is symptomatic of a more general nutrient depletion, with other acetyl-

CoA generating metabolites among these depleted nutrients.  This general concept of upregulating glucose 

metabolism in response to compromised perfusion has been demonstrated in a larger NSCLC patient cohort 

by an inverse correlation between FDG-PET SUVmax and SUVmean and DCE-MRI pharmacokinetic parameters 

of perfusion (Zhang et al., 2014a).  However, as elaborated above with current paradigms of the Warburg 

Effect, the tumor microenvironment regulation of TCA cycle acetyl-CoA substrate usage is relatively 

unexplored in vivo.  As we demonstrate enhancements in oxidation of glucose-derived carbon, this raises the 

possibility of discovering tumor dependencies on acetyl-CoA substrates for survival or growth that may be 
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more dispensable for non-cancerous cell survival or growth in a microenvironment with more diverse 

substrate choices. 

 

4.3.2 Studies of primary tumor heterogeneity can unravel the drivers of tumor metabolic phenotypes in vivo. 

 

 Aside from its relevance to translational efforts, we propose that intratumor heterogeneity can serve 

as an avenue to conducting in vivo studies in cancer metabolism with greater precision as the assay conditions 

are significantly more controlled within a given patient than between patients.  Additionally, we propose 

intratumor heterogeneity can uncover drivers behind whole tumor phenotypes.  For example, based solely on 

intertumor analysis, no claim can be made as of whether the perturbations in tumor glucose metabolism are a 

cause or effect of altered perfusion.  A cell-autonomous, “aerobic glycolysis” model would predict that a 

rapidly growing, highly glycolytic tumor could outpace its blood supply as well as be less dependent on it 

(Levine and Puzio-Kuter, 2010).  Indeed, we find that one of the tumors in the “less perfused” group was Kras 

mutant, which has been linked to upregulated glycolysis and glucose-dependent anabolic pathways for cell 

growth (Table 2.1, Figure 4.1) (Racker et al., 1985; Ying et al., 2012).  In congruence with this cell autonomous 

proliferation explanation of glycolysis, whole tumor measurements have found direct correlations between 

Ki67 and FDG-PET in NSCLC patient tumors (Vesselle et al., 2000).  However, an alternative microenvironment 

driven model of metabolic reprogramming of glucose metabolic pathways in tumors would predict that the 

poor perfusion induced by aberrant tumor growth induces hypoxia or metabolite depletion, which induces an 

evolutionary selection pressure for enhanced “anaerobic” glycolysis (Gatenby and Gillies, 2004).  Indeed, 

glucose depletion has been shown to increase the prevalence of Kras mutations in culture (Yun et al., 2009).  
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In congruence with this model, a study of an adenocarcinoma cell line in vitro failed to demonstrate a 

correlation between FDG-PET uptake and proliferation rate (Higashi et al., 1993).  

 However, correlation studies between whole tumor measurements of FDG-PET and markers of 

hypoxia (F-MISO, 60Cu, HIF-1alpha levels) have been contradictory in NSCLC (Dierckx and Van de Wiele, 2008; 

van Baardwijk et al., 2007).  A recent study suggests that these discrepancies may be rectified by intratumor 

measurements.  In a mouse xenograft model of NSCLC, evidence has been presented in support of the concept 

that it is the hypoxic, and not proliferative cell populations, where the majority of FDG-PET signal is originating 

(Huang et al., 2012).  Similarly, we report that it is the less-well perfused regions of tumors, not the regions 

with greater perfusion harboring a greater fraction of cycling cells, which has greater upregulations in glucose 

metabolism.  We propose intratumor correlations between metabolism and tumor biology as a general 

framework to begin to categorize and rank the drivers of metabolic phenotypes in cancer cells in vivo. 

 Overall, we propose that a workflow of pre-operative advanced imaging guided sampling followed by 

coupled analyses of tumor histology, genetics and metabolism will fill a sorely needed gap of assaying in 

patients the numerous cancer metabolic phenotypes that are being submitted as therapeutic targets in model 

systems.  We demonstrate that such a workflow can be informative of not only how to move forward with a 

given cancer metabolic phenotype, but may additionally be informative on decisions of how to create a model 

that faithfully recapitulates the desired phenotype – patient tumor metabolism.  Specifically, the results of this 

study suggest that tumor metabolism may be significantly and predictably regulated by the 

microenvironment. 

 

4.3.3. Semi-quantitative vs. quantitative DCE-MRI as a marker of perfusion 
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The logic of the analysis of the DCE data is that the raw contrast enhancement data is a valid surrogate 

of perfusion.  The reality is that due to the chaotic tumor vasculature, higher contrast enhancement may be a 

marker of vessel permeability or leakiness and not necessarily perfusion that can efficiently transfer oxygen 

and nutrients.  Furthermore, shunting through larger vessels without flow through the capillary beds can 

actually lead to contrast enhancement that is too fast for meaningful nutrient extraction.   

 There is no established gold standard for perfusion.  Our interest in perfusion lies in the downstream 

consequence of either hypoxia or nutrient depletion.  As there is no gold standard, validation studies of DCE-

MRI rely on assessing the correlation of its results to some desired physiological parameter.  Semi-quantitative 

analysis has mainly been assessed in the changes in readout after administration of anti-angiogenic 

treatments in clinical trials.  The initial area under the curve, used in this study, has been shown to have a 

direct correlation to agents targeting the tumor vasculature (Barnes et al., 2012).  Presumably, the connection 

can be made that the iAUC signal correlates to underlying flow.  But as discussed above, it is possible that the 

vessels have actually become less leaky and “normalized” with better perfusion.   

 Quantitative analysis has more validation literature.  Yet the majority of studies validate to changes 

after tumor treatment with anti-angiogenics (Barnes et al., 2012).  Additionally, many validation studies 

comparing quantitative to semi-quantitative DCE-MRI have demonstrated their good correlation and 

concluded either is valid (Chih‐Feng et al., 2012; Jackson et al., 2014; Zahra et al., 2009).  

 

4.3.4. On the stability and reproducibility of DCE-MRI signal in tumors 
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 As the MRI scans were performed up to eight days before the surgeries, one important question is how 

reproducible is DCE-MRI, and at what time scale.  Our median time between scan and surgery was four days.  

A study of tumors within the lung with a median time between scans of 2 days demonstrated within patient 

coefficients of variance of approximately 20% when assessing the DCE-MRI data with initial AUC (Ng et al., 

2010).  A separate study of reproducibility of initial AUC in non-lung tumors scanned twice within one week 

demonstrated a similar range, with essentially all tumors’ repeat scans falling within 20% of the original value 

(Galbraith et al., 2002).  As our clustering of contrast enhancements between the low and high groups is over 

two fold, it is highly probable that the signal is due to underlying biology and not noise of the assay.  These 

reproducibility studies are used to calculate if a change in contrast enhancement is likely due to an underlying 

change in biology or likely noise of the assay.  This is dependent on the patient population, techniques 

employed and stability of the MRI scans, all of which are ideally performed at the same institution using the 

same personnel and equipment.  
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Figure 4.1: Whole tumor contrast enhancement correlated metabolic heterogeneity in NSCLC patient 
tumors. 
(A)  Whole-tumor region of interest contrast enhancement post injection in the NSCLC patient cohort, 
segregated into “more contrast enhancement” in red shades and “less contrast enhancement” in blue 
shades.  Curves are gamma variate functions of the data. 
(B)  Tumor fractional enrichment relative to patient-matched non-cancerous lung of the two clustered 
groups of (A).  The isotopologues depicted are in reference to the tracer scheme of figure 1d, 2f, and 3d. 
(C) Modeling results of figure 3G segregated into the two clustered groups of contrast enhancement. 
(D)  Quantified initial area under the curve in 60 seconds of the fitted curves for the two clustered groups 
of (A). 
(E) Pearson’s correlation between iAUC60 and relative fractional enrichment in 3PG M+3 and malate 
m+2. 
Abbreviations:  Pt, patient; iAUC60, initial area under the curve in 60 seconds; NS, Not Significant. 
* = p<0.05, student’s unpaired t test. 
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Figure 4.2: Intratumor contrast enhancement correlated metabolic heterogeneity in two NSCLC patient 
tumors. 
(A)  Saggital pre-contrast image of a slice through the central region of the tumor of patient eight.  
Shown are the color schemes and areas of intratumor metabolic sampling. 
(B)  Axial T2 weighted image of a slice through the central region of the tumor of patient nine.  Shown 
are the color schemes and areas of intratumor metabolic sampling.   
(C) Intratumor region of interest contrast enhancement of the regions depicted in (A) of patient eight.  
Shown are the average curves of gamma variate functions fit to three slices of a given ROI. 
(D)  Intratumor region of interest contrast enhancement of the regions depicted in (B) of patient nine.  
Shown are the average curves of gamma variate functions fit to three slices of a given ROI.  
(E)  Intratumor metabolic analysis of patient eight of 13C glucose derived metabolites through the first-
pass pathways depicted in figure 1D.  Shown are the averages and standard deviations of regional 
triplicate tissue fragments sampled from the areas depicted in (A). 
(F)  Intratumor metabolic analysis of patient nine of 13C glucose derived metabolites through the first-
pass pathways depicted in figure 1D.  Shown are the results of single fragments sampled from the 
regions of (B). 
(G) Model of substrate diffusion regulation of NSCLC tumor metabolism. 
Abbreviations: Gluc, Glucose; 3PG, 3-Phosphoglycerate; Lac, Lactate; Cit, Citrate; Glu, Glutamate; Mal, 
Malate; PDH, Pyruvate Dehydrogenase; CoA, Coenzyme A; TCA, Tricarboxylic Acid. 
* = p<0.05, comparing inferior to superior tumor samples, paired student’s t-test. 
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Figure 4.3: NMR and modeling evidence supportive of 
intratumor qualitative gcms analysis in patient 8. 
(A)  NMR spectra of tissue fragments from the respective 
regions. 
(B)  Modeling of the qualitative gc-ms data supportive of the 
conclusions and intertumor trends. 
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CHAPTER FIVE 
 
 

DISSECTING METABOLIC HETEROGENEITY IN A MIXED POPULATION OF CELLS USING THE CELL CYCLE AS A 

DETERMINING PHENOTYPE 

 
5.1 Introduction 

 

5.1.1 Rationale that the cell cycle likely imposes oscillations in metabolism 

 

 The cell cycle is an ordered sequence of events in a cell duplicating its biomass and partitioning into 

two cells.  The logic that this would be a valid phenotype to attempt a novel experimental design of sorting 

cells and subsequently assaying their metabolism lied in the defined portion of DNA replication of the cell 

cycle, S phase.  During this defined period, the cell creates daughter strands of DNA complimentary to the 

original parent strand.  My hypothesis was that this increased demand for nucleotides during this phase would 

have to impose some change on metabolism relative to the other phases of the cell cycle, G1, G2 and M.  

Specifically, two scenarios were envisioned.  One scenario would be that the pathways of nucleotide 

biosynthesis or salvage are upregulated in S phase to meet the increased demand.  The second scenario would 

be that these pathways are constant, but that the intracellular nucleotide pools oscillate relative to cell cycle 

phase, likely rising in G1 to G1/S, falling in S phase, and then rising again during G2/M.   

For this logic to be valid, the demand for nucleotides in DNA would have needed to be significantly 

greater than the demand for nucleotides in RNA.  This varies by cell type, but in general the RNA content is 
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similar to the DNA dry weight of a cell.  Or, the biosynthesis of RNA would have to oscillate in a 

complementary fashion of DNA synthesis during the cell cycle.  In intestinal crypts in vivo, RNA synthesis has 

been demonstrated to peak in S phase (Salem et al., 1998).  However in Ehrlich ascites tumor cells the RNA 

synthesis rate appears to peak earlier in G1 (Skog and Tribukait, 1985).  This implies that the macromolecular 

precursor synthesis rates during the various phases of the cell cycle are more regulated by signaling specific to 

that cell type than an intrinsic property of cell cycle stage.  

In retrospect, this was a highly ambitious question that perhaps exceeded the tools available to answer 

the question. Nonetheless, to potentially build a case for cell cycle stage regulating central metabolism, 

perhaps a baseline would be to assess whether cell growth and division are related to central metabolism in 

general.   

 

5.1.2 Available data seem to discredit a possible link between glycolysis and cancer cell proliferation in vitro 

 

A predominant view of the cause for the Warburg Effect is to support the demand for biosynthetic 

pathways necessary for the aberrant proliferation of cancer cells (Kim and Dang, 2006; Vander Heiden et al., 

2009).  This idea is weighted on evidence in mitogen-stimulated lymphocytes demonstrating robust inductions 

of lactate secretion upon exit from quiescence (Karlsson et al., 1997).  These results can be replicated with 

genetic induction of exit from quiescence via inducible expression of Myc in fibroblasts (Morrish et al., 2009).  

However, conceptually conflicting results suggest that while induced by growth factor signaling, enhanced 

glycolytic rates may not be necessarily coupled to downstream proliferation.  Primary fibroblasts induced into 

quiescence through contact inhibition maintain their glycolytic rates (Lemons et al., 2010).  Additionally, a 
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negative correlation between lactate secretion rates and cancer cell proliferation rates has been observed in 

the NCI-60 panel of cancer cell lines (Feizi and Bordel, 2013).    

 

5.1.3 There is conflicting evidence for a link between glucose-derived pyruvate oxidation and cancer cell 

proliferation  

 

If PDH flux is correlated to the de novo fatty acid synthetic rate, this metabolic activity may be under 

cell cycle stage control if lipid synthesis oscillates relative to cell cycle stage.  There is abundant evidence 

linking de novo fatty acid synthesis to proliferation in various cancerous and non-cancerous cell lines (Kuhajda, 

2000).  However, as PDH flux could be linked to TCA cycle turnover or de novo fatty acid synthesis, assuming 

that PDH flux is correlated to growth rate may be problematic.  Accordingly, the literature on PDH flux and cell 

proliferation is conflicting.  Lymphocytes demonstrate no change in PDH flux, yet an increase in PC, upon 

mitogen stimulation (Curi et al., 1988).  This suggests against hypotheses of the Warburg Effect as an overflow 

pathway for increased PDH flux necessary for the de novo lipogenesis for cell growth (DeBerardinis et al., 

2008a).  However Myc stimulated primary fibroblasts demonstrate an increase in PDH flux, yet a 

counterintuitive decrease in PC flux (Morrish et al., 2009).  To extend the confusion, contact-inhibited 

fibroblasts demonstrate an increase in PC flux and a decrease in PDH flux (Lemons et al., 2010).  This 

underscores that various forms of the TCA cycle may support cell growth, and that cellular models may differ 

substantially from each other.  

 Detachment from the extracellular matrix suppresses glucose uptake in breast cancer cells, which leads 

to a significant decrease in PDH flux.  Of interest, overexpression of the ErbB2 oncogene induces PDH flux in 
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these cells, buffering the extracellular matrix detachment induced decrease in PDH flux.  This model that may 

mimic the glucose deprived microenvironment of tumors.  This overexpression of PDH by ErbB2 increases de 

novo lipogenesis, increases the rate of cell proliferation, and alters the distribution of cell cycle phases, with an 

increase in the SG2M fraction (Grassian et al., 2011).  Thus, there is evidence for a connection between 

glucose-derived pyruvate oxidation through the PDH enzyme and cancer cell proliferation.  However, in colon 

cancer cells xenografted in the flanks of mice or grown in soft agar to induce colony growth, overexpression of 

the mitochondrial pyruvate carrier, which was demonstrated to increase the flux through PDH, decreased cell 

proliferation (Schell et al., 2014).  Thus, even in cancer cell lines, there is no common theme of PDH flux and 

cell proliferation.   

 

5.1.4 On nucleotide biosynthesis and cell proliferation 

 

 As the logic of this project was predicated on nucleotide biosynthesis, this is the focus whereas 

discussions of glycolysis and PDH, interesting as they may be due to recited dogma in the field, are secondary.  

Detection of nucleotides by GC-MS was not attempted in this project.  However, aspartate, which is routinely 

assayed by the lab, links nucleotide biosynthesis to the TCA cycle.  Contact inhibited fibroblasts demonstrate 

no change in aspartate biosynthesis relative to proliferating fibroblasts (Lemons et al., 2010).   

 

5.1.5 Flawed previous evidence in support of cell cycle stage correlated metabolic activities in cycling cells 
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Given all of the evidence above, the foundation for specific metabolic pathway alterations of central 

metabolism that universally distinguish cell proliferation from quiescence was weak.  The finding of such a 

metabolic activity would have been supportive of where to look for first.  Regardless, this is a different 

question than comparing different cell cycle stages within a population that is proliferating.  Therefore, 

consideration was given to supportive evidence of a link between cell cycle stage and central metabolism.   

The majority of evidence of a link between cell cycle stage and metabolism employed synchronization 

methods.  I was only able to find one example of sorting cells and assessing changes in mitochondrial 

membrane potential relative to cell cycle stage. However, whether the cells in this study claimed as G1 were 

actually G1 cells and not quiescent G0 cells was not established, again begging the question of whether the 

phenotype was cell cycle stage dependent or associated with whether the cell was quiescent or not (Schieke 

et al., 2008).  In assessing the literature using synchronization methods, I concluded that extrapolating 

evidence from a population of cells synchronized by only one method to the biology of an unperturbed 

asynchronous cycling population is invalid.  Thymidine block has been demonstrated to alter cell-cycle 

dependent enzyme activities relative to cells undergoing mitotic shake-off, a sorting method with far lesser 

perturbation than overwhelming a cell with millimolar concentrations of a nucleotide (Churchill and 

Studzinski, 1970).  This concept has been reiterated for all cell cycle arrest methods of synchronization 

(Cooper, 2004; Mitchison, 1971).  However, a practical solution to this issue is to employ two different 

synchronization methods and to observe that a particular phenotype is cell cycle stage dependent rather than 

synchronization method dependent.  This strategy has been successfully utilized (Mitra et al., 2009).   

This discussion of synchronization methods is important to critique the most relevant study to the 

issue of a connection between central metabolism and cell cycle stage.  A group claimed differential rates of 
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glucose and glutamine by using different synchronization methods to study different sections of the cell cycle 

(Colombo et al., 2011).  Given the ability and necessity to use two different methods to study a whole passage 

through the cell cycle, the data of differential use of glucose and glutamine relative to cell cycle stage cannot 

be interpreted (Colombo et al., 2011; Mitra et al., 2009).  Aside from this evidence, there are reports of 

altering metabolism and observing a cell cycle arrest (Bloom, 1997).  However, it is difficult to interpret these 

studies as to whether there is a connection between metabolism and cell cycle stage in an unperturbed state, 

or whether loss of a major metabolic activity may affect cell cycle progression by compromising regulatory 

networks.  To use the cited example, there may be a link between redox state and cell cycle stage, or 

perturbing redox balance may alter the redox state of proteins necessary for cell cycle progression and 

thereby inhibit their function (Bloom, 1997).  In conclusion, the previous literature assessing the interplay 

between mammalian cell cycle stage and metabolism within a proliferating population was of low quality.  

However, there is robust evidence for a connection between cell cycle stage and metabolism in yeast grown 

under glucose limited conditions (Tu et al., 2007).   This is actually what had led to my interest in this question 

in mammalian cells.   

 

5.2. Results 

 

5.2.1 Development of models to sort a population of cells by cell cycle phase 

 

 I utilized two general methods to sort cells by cell cycle stage in this project, both using a sorting flow 

cytometer.  One, the fluorescent ubiquitination-based cell cycle indicator (FUCCI) vectors, label cells in various 
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phases of the cell cycle different colors based on a ubiquitin ligase system that regulates the levels of two 

reporters at opposing phases of the cell cycle (figure 5.1) (Sakaue-Sawano et al., 2008).  I stably infected K562 

cells, a suspension leukemia cell line, with this reporter system.  I conducted experiments in cells with only 

one reporter, or both, at various levels of expression (figure 5.1e).  The other method I used was to briefly 

incubate cells in dyes that label DNA content.  Shown is an example using Hoechst dye (figure 5.2).   

 

5.2.2 [U-13C]glucose results of cells labeled with DNA dyes 

 

The Vybrant dye labels cells by DNA content.  This was used at a time before the CRI had a sorting 

cytometer with a UV laser to sort cells with Hoechst.  Shown are the results of a pilot sort followed by a two 

hour label in media containing [U-13C]glucose (figure 5.3).  As shown, the dye worked well in sorting cells of 

different cell cycle stage (figure 5.3a-b).  However, the results of the experiment were underwhelming from a 

raw data standpoint of the fractional enrichment in metabolites after the two-hour label (figure 5.3c-f).   

 This general experiment was repeated four times, twice with the Vybrant dye and twice with Hoechst.  

The period of incubation in labeled media varied after the sort between 30 to 120 minutes per experiment.  

The results in aggregate are shown in figure 5.3.  Modeling of the data in aggregate suggested a significant 

decrease in PC flux relative to citrate synthase in sg2m cells relative to g1 (figure 5.4a).  A qualitative analysis 

of the raw TCA cycle intermediate data is difficult due to the reproducible differences in lactate fractional 

enrichment (figure 5.4b). As discussed in previous chapters, this confounds downstream labeling as now we 

have differences in the upstream substrate.  Regardless, the decrease in PC flux is seemingly counterintuitive 

given the logic of the project that an anaplerotic flux would be increased in S phase.  However, what would 



 

68 

 

justify this is if there was a switch to an alternative anaplerotic source in S phase.  Specifically, glutamine 

would make conceptual sense as a nitrogen donor for nucleotide synthesis in S phase, which could increase 

glutamine-derived glutamate flux, and potentially push this glutamine-derived glutamate into the TCA cycle 

(Deberardinis et al., 2008b).  We find supportive evidence for this phenotype in a greater M+0 glutamate 

fractional enrichment from the [U-13C] glucose cells (figure 5.4d).   

  

5.2.3 [U-13C]glutamine results of cells labeled with DNA dyes or sorted by FUCCI 

 

As tcaSIM does not incorporate a labeled input at the level of alpha-ketoglutarate, only an analysis of 

the raw fractional enrichment data is available for the [U-13C]glutamine labeling experiments.  These results 

total 10 sorts, incorporating labeling data from 20 minutes to 2 hours from DNA dye sorts and various FUCCI 

vectors (G1 vector, SG2M vector, or cells harboring both).  In these labeling experiments the general 

hypothesis of the project is validated and compliments the glucose labeling data of 5.2.2 (figure 5.5).  The m+0 

species are universally lower in SG2M implying more glutamine carbon feeding the TCA cycle in general in 

SG2M relative to G1.  This is specifically seen in the first pass species of the m+5 in glutamate and the m+4 in 

citrate.  Additionally, the smaller labeled isotopologues in the intermediates suggest higher rates of glutamine 

carbon cycling in SG2M.    

 

5.2.4 Metabolomics results of cells sorted by Hoechst 
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To further examine metabolic alterations in the cell cycle, a targeted metabolomics pilot was 

conducted in k562 cells sorted by Hoechst into G1 vs SG2M populations (figure 5.6).  The results are of three 

sorts on separate days.  As this was attempted as a screen to uncover what would likely be the most robust 

and interesting pathway related to cell cycle stage, strict criteria were used to prioritize metabolite alterations. 

Specifically, we used three criteria to assess each metabolite.  To be considered candidates for future study, 

we applied three criteria – significant alterations according to at least two methods from raw signal, TIC, and 

mg protein, and achieving a false discovery rate of less than 0.05.  Five metabolites passed the criteria, with all 

of them having logical connections to the cell cycle.  Aconitate levels increased in SG2M, further supporting 

changes in central metabolism, the hypothesis of the project.  S-lactoylglutathione was the most striking 

change, interesting in that it is a waste product of glycolysis so this data is in support of the glucose labeling 

data.  UMP is a nucleotide so this helps validate the idea of the project, that potentially nucleotide 

biosynthesis is upregulated in S phase as the pools of this nucleotide are larger.  S-adenosylhomocysteine is 

involved in one carbon metabolism, which is required for DNA synthesis.  Finally, and most interesting to me, 

phosphocreatine levels actually decreased in sg2m relative to g1.  Why this is the case is speculative, perhaps 

interesting in the connection between phosphocreatine and glycolysis in “fast twitch” muscle.  Striated 

skeletal muscle comes in two general forms, slow “aerobic” twitch muscle fibers that rely more on oxidative 

phosphorylation, and fast “anaerobic” twitch muscle fibers that rely more on glycolysis.  Phosphocreatine is 

known in this system to be an important sink of phosphate donors during the rapid demand for ATP during 

fast twitch muscle contraction.  The levels of phosphocreatine may be falling in SG2M relative to G1 due to an 

increased need for rapid ATP replenishment, perhaps also explaining the increase in glycolytic rate.   
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5.3 Methods 

 

 5.3.1 Creating FUCCI vector stably infected cell lines 

 

 The pRetroX-G1-Red Vector and pRetroX-SG2M-Cyan Vector were purchased from Clontech.  The 

plasmids were transfected into supercompetent E.coli cells, with the plasmids re-purified.  HEK-293T cells 

were transfected with the vectors, and the virus containing media was collected and used to infect k562 cells.  

Positive infectants were selected by sorting either positive populations or clones via flow cytometry. 

 

 5.3.2 Sorting cells by DNA content 

 

 Cells were incubated with the Vybrant DyeCycleTM Violet stain per manufacturer’s instructions.  For 

Hoechst stains, cells were concentrated at 9*10^6 cells per ml in RPMI medium with 10% serum, and 

incubated with 10 micromolar Hoechst for 30 minutes.  Cells were sorted at 8000 events per second for the 

Hoechst experiments.  Cells were collected in 2x Leibovitz’s solution with 20% serum, which after the sort was 

diluted 1:1 0with sheath fluid to 1x Leibovitz’s and 10% serum.  Sorted populations were spun down and 

resuspended in 13C labeling medium.   

  

 5.3.3 Sorting cells by the FUCCI reporter system 
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 Cells were concentrated to a similar density as Hoechst sorts in the same media, and sorted at a similar 

speed.  The AmCyan laser was used to sort cells expressing the SG2M vector, and the mCherry laser was used 

to sort cells expressing the G1 vector.  

 

 5.3.4 Cell culture and metabolic experiments 

  

 K562 cells were grown in RPMI media with 2mM glutamine added, with 10% fetal bovine serum and a 

mixture of penicillin streptomycin antibiotics.  For metabolic experiments, the relevant 13C tracer was replaced 

in media lacking the metabolite, and dialyzed serum lacking low molecular weight metabolites was used in 

place of complete serum.  For [U-13C]glucose experiments, 5mM glucose was used.  For [U-13C]glutamine 

experiments, 2mM glutamine was used.  Labeling experiments spanned a timeframe of 20 minutes to two 

hours. 

 

5.4 Discussion 

 

 5.4.1 A unique form of data on the general concept of glutamine metabolism and cell proliferation 

 

 The mechanistic justifications and phenomenological evidence for the importance of glutamine 

metabolism in cancer metabolism or cell proliferation are numerous and do not need more reciting 

(DeBerardinis et al., 2008a; DeBerardinis et al., 2007; Deberardinis et al., 2008b; Hensley and DeBerardinis, 

2015; Hensley et al., 2013; Rajagopalan and DeBerardinis, 2011).  However, specific to this project, two 
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concepts are worth mentioning.  First, is the idea of a dependence of glutamine for nucleotide synthesis in S-

phase.  This has been shown in Kras driven fibroblasts, as glutamine withdrawal induced apoptosis in S phase 

that could be rescued with the addition of nucleotides (Gaglio et al., 2009).  Second, glutamine metabolism 

plays an important role in the xCT transporter to exchange glutamate for cystine which is converted to 

cysteine, the rate limiting metabolite in glutathione biosynthesis.    As there are numerous reports of a redox 

control of cell cycle progression, this could also be relevant to the observed phenotype in k562 cell cycle 

stages (Bloom, 1997; Srivastava et al., 2014).   
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Figure 5.1: Description of the FUCCI cell cycle stage reporter system.  
(A) Interaction diagram for the reporter proteins, Cdt1 and Geminin, of the FUCCI reporter system.  SCF 
and APC are both ubiquitin ligases that reciprocally inhibit each other, leading to cyclic oscillations in their 
activities.  Geminin is a substrate of the APC, active in late M/G1, whereas Cdt1 is a substrate for SCF 
which is active in S/G2.  Consequently, Cdt1 protein levels accumulate in G1, whereas Geminin levels 
accumulate in S/G2/M.  Figure reproduced from Sakaue-Sawano, Kurokawa et. Al. 2008. 
(B) Schematic and validating experimental data (C) and (D) of the FUCCI system.  mKO2-hCdt1, shown in 
red, is a reporter construct labeling G1 cells, whereas  mAG-hGem, shown in green, is a reporter 
construct labeling G2/M cells (depicted at top and validated by DNA content using transfected HeLa cells 
Hoechst stained at middle and bottom).  Figure A-D reproduced from Sakaue-Sawano, Kurokawa et. Al. 
2008. 
(E) K562 cells, which were used for metabolic assays, infected with both reporters. 
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Figure 5.2: Example of sorting cells by Hoechst dye 
(A) Example of the original population before sorting.  The gates P3, P4, and P5 correspond to sorting 
cells by G1 (1n DNA content), S (between 1n and 2n DNA content), and G2/M phase (2n DNA content). 
(B)  Resulting cells sorted by the P3 (G1) gate. 
(C)  Resulting cells sorted by the P4 (S) gate. 
(D) Resulting cells sorted by the P5 (G2/M) gate. 
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Figure 5.3: Pilot of sorting K562 cells stained with Vybrant DNA dye followed by a 2 hour [U-13C] glucose 
label. 
(A) Shown are results of staining the dye and assessing signal in an unsorted population.  Cells were 
sorted into two groups – g0/g1 named “g1”, and non-g1 incorporating the S and G2/M gates, called “S-
G2-M.”  
(B) Results of cell populations sorted as described in (A), validated with a separate dye, propidium iodide 
of fixed cells. 
(C) Lactate fractional enrichment results. 
(D) Citrate fractional enrichment results. 
(E) Glutamate fractional enrichment results. 
(F) Malate fractional enrichment results. 
(G) Results of modeling the data with tcaSIM as described in chapter 2. 
* = p<0.05 by student’s unpaired t test. 
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Figure 5.4: Aggregate results of [U-13C]glucose labeling experiments in G1 vs SG2M sorted K562 cells 
stained with DNA dyes. 
(A) Aggregate tcaSIM modeling results. 
(B) Aggregate lactate fractional enrichment results. 
(C) Aggregate citrate fractional enrichment results. 
(D) Aggregate glutamate fractional enrichment results. 
(E) Aggregate malate fractional enrichment results.   
* = p<0.05 by student’s paired t test. 
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Figure 5.5: Aggregate results of [U-13C]glutamine labeling experiments in G1 vs SG2M sorted K562 cells 
stained with DNA dyes or expressing various combinations of FUCCI reporters. 
(A) Aggregate lactate fractional enrichment results. 
(B) Aggregate citrate fractional enrichment results. 
(C) Aggregate glutamate fractional enrichment results. 
(D) Aggregate malate fractional enrichment results.   
* = p<0.05 by student’s paired t test. 
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Figure 5.6: Results of a metabolomics pilot of k562 cells sorted into 
G1 and SG2M populations with Hoechst dye. 
N = 3 sorts on separate days, for two conditions fast and slow sorts, 
for a total of 6 separate sorts.  All metabolites shown pass criteria 
of being significant (p<0.05 by student’s t test) in the raw data and 
by one method of normalization (protein or total ion current).  
Additionally, all metabolites pass a false discovery rate of less than 
0.05. 
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CHAPTER 6: SUMMARY AND FUTURE DIRECTIONS 

 

We have made progress in three areas of understanding the metabolism of primary human tumors in 

vivo.  First, we have made progress in the analysis of in vivo tumor metabolism.  Second, we have made 

progress in uncovering the connections between the tumor microenvironment and metabolism.  Third, we 

have provided proof of principle of a novel experimental workflow to begin to understand the cellular origins 

of whole tumor metabolic phenotypes. 

  

6.1.1 Progress in the analysis of primary human tumor metabolism in vivo 

 

Prior to these studies, there were two general classes of the modern literature on 13C glucose 

metabolism of primary human tumors in vivo.  The first class consisted of qualitative assessment of tumor 

metabolism from both GC/MS and NMR data (Fan et al., 2009; Sellers et al., 2015).  The second class consisted 

of more rigorous analysis of NMR data (Maher et al., 2012).   

We have developed a conceptual framework to more rigorously analyze GC/MS data.  First, by utilizing 

patient-matched normalization, we were able to account for the heterogeneity in tracer exposure and patient-

specific tissue of origin metabolism.  This significantly reduced the number of patients necessary to establish 

significant differences between tumor and lung, and to begin to establish correlations to other aspects of 

tumor biology.  This is not trivial given the cost of the infusions and the labor-intensive process in 

incorporating each new patient into the trial.  Second, we have significantly extended the scope of the 
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qualitative GC/MS analysis to incorporate the concepts of multiple turns (m+1s) and the upstream source of 

labeling when multiple sources converge on an input (in our case, extracellularly imported lactate and 

intracellularly generated 3PG from glycolysis converging on the pyruvate that is utilized by the TCA cycle).  The 

latter concept additionally introduces the issue of whole body metabolism during in vivo tracer stable isotope 

tracer experiments.  This concept, crucial to the interpretation of the data, was absent from the previous 

literature, specifically in the interpretation of NSCLC patient tumor metabolism (Sellers et al., 2015).  Third, we 

have developed a workflow to cross validate GC/MS and NMR phenotypes by correlation.  This combines the 

precision of NMR positional information with the breadth of GC/MS data, both in the increased available 

number of metabolites to sample and the wealth of information present in the underlying patterns of 

isotopologues.  This wealth of information in GC/MS isotopologues underlies our fourth novel achievement, 

modeling the GC/MS data of primary human tumor metabolism.  As stated previously, this avoids pitfalls and 

more precisely defines true changes in metabolism in the area of focus vs. perturbations in other areas of the 

system.   

 

6.1.2 Future directions in the analysis of primary human tumor metabolism in vivo 

 

  Administration of the tracer: 

 

 One critique that has been made of bolus administration of 13C is the issue of where to sample along 

the evolution of the bolus.  Specifically, sampling on the downward slope of the enrichment curve of the 

tracer in the plasma can potentially cause misinterpretation of the tissue enrichment data.  What can look like 



 

82 

 

an enhancement of a metabolic activity can actually reflect reduced washout from an upstream metabolite 

being less enriched as the tracer enrichment is dropping.  We demonstrate that this is unlikely a concern with 

our phenotypes of interest of first pass oxidative and non-oxidative glucose metabolism through the data of 

patient 3.  Additionally, in all seven patients administered a bolus followed by a continuous infusion, the 

fractional enrichment of [U13C]glucose in the plasma after bolus administration was never higher than 

subsequent timepoints during the infusion.  This demonstrates that a significant rise and fall of enrichment in 

our ten minute “bolus” administration is highly improbable.  However, to further safeguard against a bolus 

effect we could potentially decrease the rate of our initial “bolus” infusion. 

 A separate administration issue is the variable levels of 13C enrichment in the plasma.  Some factors 

likely contributing to this variability are unavoidable, such as differences in whole body glucose metabolism 

between patients (e.g. patients with pre-existing or iatrogenic diabetes).  However, one factor that could 

potentially be easily improved is the dose of tracer we administer to each patient.  Currently, we are using a 

standard dose of 8 gram bolus followed by 8 grams per hour.  There may be less variability in plasma 13C 

enrichment levels between patients if dosing amounts are calculated by each individual patient by total body 

weight, total body volume, resting blood glucose concentration, or a mixture of these parameters.  To address 

this concern in variability of glucose delivered between patients, I have calculated the area under the curve of 

total [U-13C] delivered per infusion, by combining the fractional enrichment and plasma glucose concentration 

curves.  There is a weak, insignificant trend (R2 = 0.19) that the more glucose delivered, the less the tumor 

fractional enrichment relative to patient matched lung.  This does not appear to be a major driver of the 

phenotype. 
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  In vivo measurements vs. extracted tissue fragment measurements: 

 

 Practical aspects of the experimental workflow in the operating room complicate the final 

interpretation of the results.  Due to the nature of the lobectomy, a period ensues between potential 

compromise of the lung microenvironment and freezing in liquid nitrogen.  Ultimately, the goal is to assay 

tumor metabolism non-invasively in vivo.  This would provide kinetic information of multiple sampled data 

points throughout the experiment to move closer to actual metabolic rate calculation and fluxes, and remove 

concerns of artifacts induced from tissue extraction.  One exciting developing method is 1H-[13C] magnetic 

resonance spectroscopy in vivo.  Currently, the method suffers from sensitivity issues and greater peak overlay 

than 13C NMR, yet proof of principle for in vivo 13C metabolite tracer infusions with subsequent analysis of the 

TCA cycle has been demonstrated (De Graaf, 2013).  An alternative area of active research at UTSW is the use 

of hyperpolarized 13C tracers to analyze metabolism in vivo.  This method is much more sensitive with clearer 

separated peaks than 1H-[13C] magnetic resonance spectroscopy.  However, drawbacks include the need to be 

able to hyperpolarize the substrate, the extremely short period of time to assay metabolism before the 

metabolite loses hyperpolarization (minutes), and the current need to infuse supra-physiologic levels of 

hyperpolarized substrate for detection.  This short half-life of the hyperpolarized state of the metabolite is 

problematic when one wants to look farther downstream of a nutrient, such as the entry of glucose-derived 

carbon into the TCA cycle.  Nonetheless, proof of principle has been established that hyperpolarized pyruvate 

can be used to assess the rate of the pyruvate dehydrogenase reaction in cell culture, with hopes of taking this 

methodology in vivo(Nelson et al., 2013) (Yang et al., 2014).  Since mouse studies are much more amenable to 

experimental manipulation to validate phenotypes such as invasive sampling for nutrient extraction rates and 
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immediate extraction of tissue, a future project at UTSW could entail a comparison between hyperpolarization 

and traditional 13C infusion methods in a mouse tumor model. 

 

Deciphering the origin of pyruvate-derived TCA cycle label: 

 

One possible explanation for the observation that the lactate enrichment is higher than the 3PG is a 

combination of the enhanced glycolysis of the tumor and a possible bolus effect.  Specifically, it is possible that 

the fractional enrichments in glycolytic intermediates such as 3PG are much higher at the beginning of the 

experiment and begin to fall, with lactate lagging behind at the end of the pathway.  As discussed in chapter 2, 

the available evidence does not support a bolus effect in our infusions.  However, if present, a bolus effect 

could lead to two possible outcomes.  First, the metabolized lactate could be generated in the tumor.  An 

enhancement of glycolysis earlier during the infusion, followed by a drop in the glycolytic rate, could lead to a 

buildup of lactate and a drop in glycolytic intermediates later into the infusion.  This leads to a provocative 

speculation that perhaps enhanced glycolysis in tumors is beneficial to maximize the efficiency of trapping 

carbon from a compromised perfusion.  A second possibility is that the lactate could be generated but not 

metabolized.  To analyze bolus effects, in vivo 1H-[13C] magnetic resonance spectroscopy could analyze the 

evolution of signal of metabolites like lactate over time.  If it plateaus early and then declines or stays roughly 

the same, this would be suspicious of a bolus effect.  Similarly, if a similar phenotype is seen in the glutamate 

enrichment it would be suspicious for a bolus effect.  However, if both slowly rise over time, this would 

strongly argue against a bolus effect.   
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Co-infusions of carefully chosen tracers can distinguish extracellular lactate from intracellular glycolysis 

derived pyruvate as TCA cycle substrate choice.  This concept has been successfully utilized to distinguish 

acetate vs. pyruvate’s contribution to the acetyl-CoA pool feeding the TCA cycle (Mashimo et al., 2014).  

Essentially, the [2-13C] lactate used in the mice studies could be co-infused with the [U-13C] glucose, and all of 

the above questions could be revisited by analyzing the 4,5 doublet by NMR.  If the predominant lactate signal 

in a tissue was M+1, this would imply more import than intracellular generation.  The modeling could be run, 

and assessed whether a better fit was achieved with the M+1 or M+3 lactate signal, or a mixture of the two.  

As tcaSIM allows a stepwise function between the two scenarios, best fits of how much each species 

contributes to the overall signal could be generated. 

 

6.2.1 Progress in uncovering the connection between the tumor microenvironment and metabolism 

 

We have discovered that perfusion, as assessed by the surrogate marker of DCE-MRI contrast 

enhancement, is significantly correlated to the tumor 13C signal in TCA cycle intermediates in the NSCLC 

patient [U-13C]glucose infusions.  However, as noted, there is an alternative explanation to this phenotype.  

The correlation could be due to the growth of aggressive clones within a given tumor or in comparing various 

tumors.  Specifically, oncogene driven reprogramming of cellular metabolism and proliferation could lead to 

areas of densely packed clones that prohibit significant entry of contrast agent.   

 

6.2.2 Future directions in uncovering the connection between the tumor microenvironment and 

metabolism 
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To ascertain the most likely scenario, we have two routes of investigation.  We can continue to draw 

correlations between the oncogenotype, 13C signal, and contrast enhancement.  Either the three will continue 

to correlate, or one factor will become clearly more significantly correlated to 13C signal than the other.  

However, as a significant fraction of oncogenic drivers remain to be discovered in NSCLC, this may not be 

conclusive.   Perturbations of tumor perfusion in mouse models of NSCLC and observation of the presence 

or absence of changes in 13C would provide convincing data on the robustness to tumor biology in general of 

the correlation between contrast enhancement and 13C signal.  I had conducted pilot experiments on the 1.5T 

Aspect MRI to test whether I could reproduce similar correlations between 13C signal in TCA cycle 

intermediates and contrast enhancement in mouse xenograft models of NSCLC tumors.  The only attempt 

made was to generate similar data on whole tumor ROI contrast enhancement and 13C signal in A549 cell line 

xenografts compared to A549 xenografts engineered to re-express the tumor suppressor LKB1.  These 

experiments were difficult to interpret in that unlike the patient tumor data, the qualitative analysis of first 

pass m+2 metabolism and modeling results contradicted each other.  I am more inclined to believe the 

modeling results given their congruence with other results in the lab specifically focused on LKB1’s 

contribution to 13C labeling across a large panel of NSCLC cell lines.   

However, this leads to the issue that the modeling gave the opposite results as the human studies, in 

that contrast enhancement was now directly correlated to PDH flux relative to citrate synthase in this pilot 

series in mouse xenografts.  There are several caveats associated with the interpretation of this pilot.  First, 

over-expressing a tumor suppressor may not be equivalent to assessing the natural influence of the 

oncogenotype on metabolism.  Second, are studies of small differences in perfusion of rapidly growing tumors 
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in the highly hypoxic mouse flank a good enough model for the much better perfused spontaneously formed 

human tumor in the lung?   

I would rather repeat this pilot with various cell lines injected into the mouse lung (this method has 

been successfully conducted by James Kim’s lab).  This would be asking a similar question in a more relevant 

model to the human studies.  Additionally, Rolf Brekken’s lab has characterized the microvessel density of a 

panel of NSCLC cell lines grown as flank xenografts in mice, of which glucose consumption rates in vitro have 

been characterized by a graduate student in our lab.  Supporting the general hypothesis of the human studies, 

the in vitro glucose consumption rate was shown to have an inverse correlation to the in vivo microvessel 

density (n=12, r2=0.3279) in this NSCLC cell line panel.   

The most direct experiments would be to alter perfusion in a paired series of mice bearing flank 

xenografts of an identical cell line.  Ideally, the pilot series above would yield lines with either high or low 

contrast enhancement in a good range of separation.  Furthermore, it would be ideal if in vitro glucose 

consumption results were correlated to the in vivo 13C signal in TCA cycle intermediates from [U-13C]glucose 

infusions.  Regardless if the correlation holds up, I would move forward with cell lines of high contrast 

enhancement injected into contralateral flanks to cell lines of low contrast enhancement.  The mice would be 

segregated into three groups: control, increased perfusion, and decreased perfusion.   

However, how to acutely and specifically alter tumor perfusion is not straightforward.  Many agents 

that alter perfusion can simultaneously alter tumor metabolism (Gallagher and Tallant, 2004; Jordan and 

Sonveaux, 2012).  VEGF signaling has been shown to crosstalk to signaling pathways in tumor cells known to 

reprogram metabolism (EGFR, AKT/PI3K)(Goel and Mercurio, 2013).  A direct solution to alter perfusion was 

developed in rats bearing tumors in fat pads of the inguinal cleft.  Tumors grown in this area are supplied by a 
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single epigastric artery and drained by a single epigastric vein.  Blood from donor mice have been 

demonstrated in this method to be used as an infusate through a catheter in the saphenous artery (Tozer et 

al., 1994).  The infusion rate of rat donor blood containing [13C] tracer could be infused into the saphenous 

artery at various rates to mimic various levels of perfusion.  This could be validated by DCE-MRI on the 1.5T 

Aspect by adding gadovist to the infusate and measuring the dynamics of the infusion.  If our model is correct, 

once at steady state, tumors with lower perfusion rates should demonstrate less contrast enhancement, and 

higher 13C signal in TCA cycle intermediates from a [U-13C]glucose infusion.   

 While ideal in terms of controlled experimentation, the setup above is technically demanding.  A 

practical test of the model would be to infuse [U-13C]glucose in the tail vein as in previous infusions in mice, 

with or without addition of a beta-oxidation inhibitor.  Our hypothesis is that acetyl-CoA from fatty acid 

oxidation may be inhibiting PDH flux in better perfused regions of the tumor.  This draws upon the concept of 

the Randle cycle whereby fatty acid oxidation inhibits pyruvate dehydrogenase activity (Hue and Taegtmeyer, 

2009).  This would assess the first portion of the logic of the substrate diffusion model, of substrate 

competition within tumors, before moving to the complexity of altering perfusion. 

 

6.3 Progress and future directions in studying intratumor metabolic heterogeneity at the cellular level  

 

The general proof of principle has been established that sorting individual populations of cancer cells 

can yield information into the metabolic program of subpopulations.  Next, this concept should be utilized to 

study a mixed population in culture of fibroblasts and cancer cells.  This would help validate the method and 

move the method closer to being able to account for intratumor cell type heterogeneity.  Afterwards, this 
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method could be used to assay a mixed injection of fibroblasts and cancer cells in a mouse xenograft to 

discern where the majority of the glucose oxidative signal arises.  Finally, the two projects can be combined, to 

assay the heterogeneity in cell of origin and microenvironment in primary human tumors.  Fresh tissue 

fragments from the OR could be transported to the lab and disaggregated.  The fibroblasts, immune cells and 

cancer cells could be sorted and subsequently analyzed for 13C readout in TCA cycle intermediates.  

Additionally, to truly study the question of the metabolic activities upon cellular transformation, lung 

epithelial cells could be compared to the adenocarcinoma cells of a patient NSCLC tumor. 
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