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Since the discovery of RNAi decades ago, it has been increasingly used in biomedical 

and biological research. The success of analyzing single genes using siRNAs has resulted in the 

large-scale application of RNAi for genome-wide loss-of-function phenotype screening while 

reducing cost and decreasing time. High-throughput RNAi screening (HTS) has been widely 

accepted and used in a variety of biomedical and biological research projects as the first step to 

identifying novel drug targets or pathway components. Huge data sets are being generated, but 

computational challenges remain in data analysis and hit identification, which have become 
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hurdles in HTS. These must be tackled before we can more accurately and precisely interpret the 

HTS results, since they are often blurred by spatial noise and off-target effects. 

In my thesis research, I have been working on statistical modeling of high-throughput 

RNAi screening results. I developed SbacHTS (spatial background noise correction in high-

throughput RNAi screening) to identify and remove spatially-correlated background noise from 

HTS, which helps enhance statistical detection power in triplicate experiments. On top of that, I 

also created a novel algorithm, DeciRNAi (deconvolution analysis high-throughput RNAi 

screening results), to quantify the strength and direction of siRNA-mimic-miRNA off-target 

effects in HTS projects. As a special case, image-based high-content HTS requires management 

of high-dimensional data analysis and visualization. I built a new R package “iScreen” (image-

based high-throughput RNAi screening analysis tools) to deal with such problems.
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CHAPTER ONE 

INTRODUCTION  

 

The discovery of RNA interference (RNAi) has opened up a wide spectrum of 

biomedical and biological research, including investigation into the mechanism and function of 

RNAi, loss-of-function (LOF) annotation, identification of drug targets and novel therapeutics. 

Both RNAi itself and its applications have been of great interest to academia and industry, 

especially in applications, where the success of analyzing single genes using RNAi technology 

has led to efforts to apply it on a large scale. Therefore we can now perform genome-wide high-

throughput RNAi screening (HTS) for genomic functional annotation. RNAi has been widely 

used in studies such as the identification of chemo-therapeutic drug sensitizers or novel 

component of a specific pathway. Recently, advances in microscopy have made it possible to 

employ high-content screening that captures multiple phenotypes after gene knock-down that 

increase the complexity of analysis. With the maturation of experimental technology, data 

analysis and modeling have become a time-limiting step in such HTS projects. 

 

1.1 Small interfering RNA 

Gene silencing caused by the injection of double-stranded RNA (dsRNA), whose 

sequence is complementary to that of the targeted gene, was discovered almost three decades ago 

(Fire, 1998; Fire, et al., 1991; Guo and Kemphues, 1995). It has been shown that the RNA 

interference (RNAi) pathway presents itself universally across most eukaryotes (Hannon, 2002). 

After entering into cells, dsRNA is processed into small interfering RNA (siRNA) of about 22 
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nucleotides, which is further cut into single-stranded RNA. Single-stranded siRNAs are then 

incorporated into the RNA-induced silencing complex (RISC) to target messenger RNA 

(mRNA) via a perfect complementary match (Figure 1), which we call the “on-target” effect.  

 

 

 

1.1.1 Applications of RNAi in mammalian cell lines 

As exogenous RNA molecules, dsRNA faced considerable barriers before it could be 

applied to generate gene silencing in a gene-sequence-specific pattern without triggering a 

nonspecific response to exogenous dsRNAs, such as the antiviral mechanism. By binding to 

dsRNA, the enzyme dsRNA-dependent protein kinase (PKR) is activated and localized, resulting 

Figure 1. Gene silencing via siRNAs. After injection and transfection, double-stranded 

RNA (dsRNA) is cut into single-stranded small interfering RNA (siRNA) by RNase 

enzyme Dicer. siRNAs are then integrated with proteins like Ago to form an RNA-induced 

silencing complex (RISC) to target complementary messenger RNA (mRNA) via perfect 

sequence match, which we call “on-target” for short.  
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in generalized inhibition of protein synthesis in a sequence-dependent manner (Williams, 1997). 

However, observations have been made that the RNA interference (RNAi) pathway is conserved 

across mammals, and nonspecific antiviral responses are not prevalent in mammalian cell lines 

(Bernstein, et al., 2001; Hammond, et al., 2001; Hannon, 2002; Williams, 1997). Developments 

have been made to employ RNAi as a genetic tool in mammalian cell lines and animals for 

functional annotation and drug target discovery.  

Short dsRNAs of less than 30 base pairs (bp) have been used to produce RNAi 

phenotypes in sequence-specific patterns. Evidence has been observed that short dsRNAs do not 

effectively trigger a PKR-induced antiviral response in mammalian cell lines (Elbashir, 2001), 

which has led to the use of siRNAs as an RNAi tool for gene silencing in mammalian cell lines 

and the commercial availability of its applications as a toolkit.  

A variety of standard transfection protocols and methods have been made available for 

siRNA introduction into mammalian cell lines, the strength and duration of which is affected by 

a number of factors such as efficiency of transfection, concentrations, specificity of sequence 

design, tissue of cell line specificity and transfection reagents (Hannon and Rossi, 2004).      

 

1.1.2 Applications of RNAi in virus diseases treatment 

As a solution to mammalian genetics tools, siRNA has been widely used in biomedical 

and biological research projects across different biological models such as C. elegans, mice and 

human cell lines (Hannon and Rossi, 2004). It was first demonstrated to induce RNAi repression 

in an adult animal in mouse liver via a luciferase reporter gene construction (McCaffrey, 2002).  
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Recently siRNAs have been proposed as potential novel therapeutics themselves based 

on their potency and specificity in determining which gene is knocked down, spanning from 

oncogenes to growth factors and single nucleotide polymorphisms (SNP) (Hannon and Rossi, 

2004). For example, in defense against the human immunodeficiency virus (HIV) infection, as a 

new antiviral therapeutic method RNAi has been used to silence some early and late HIV-

encoded RNAs, including the trans-activation response (TAR) element (Jacque, et al., 2002), tat 

(Coburn and Cullen, 2002; Lee, 2002; Surabhi and Gaynor, 2002), rev (Coburn and Cullen, 

2002; Lee, 2002), gag  (Novina, 2002; Park, 2002), and so on.  

Another major health problem that could conceivably benefit from RNAi-inspired 

treatments is hepatitis induced by the hepatitis B virus (HBV) and hepatitis C virus (HCV), 

which affect millions of patients worldwide since treatment for HBV is still unsatisfactory and 

no vaccine is available for HCV (Hannon and Rossi, 2004). The Huh-7 human hepatoma-derived 

cell line has been established to study the mechanisms of liver cancer and treatment (Blight, et 

al., 2000; Ikeda, et al., 2002; Lohmann, 1999; Pietschmann, et al., 2001). Several groups have 

attempted to investigate the possibility of using siRNA to inhibit virus replication in this system 

and have seen some success (Kapadia, et al., 2003; Randall, et al., 2003; Wilson, 2003). In a 

mouse study, siRNA-treated mice survived longer than the control group. (Song, 2003). 

 

1.1.3 Applications of RNAi in cancer treatment 

Since the discovery of RNAi, scientists and researchers have been holding out hope that 

it would benefit treatments for cancer, which is a chronic health problem that kills tens of 

thousands each year. Great efforts have been made toward this goal, and a number of ongoing 
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projects are focused on delivering siRNA in cancer samples and cell lines for the purpose of 

killing cancer cells in a cell-line specific pattern (Buchele, 2003; Kittler and Buchholz, 2003; Lu, 

et al., 2003; Wall and Shi, 2003).   

In order to achieve the highly efficient delivery of siRNA into cells, backbone 

modifications have been developed for synthetic siRNAs such that the half-life has been 

extended (Chiu and Rana, 2003; Czauderna, 2003). Chronic myelogenous leukemia (CML) is 

one example of a successful case where siRNA has proven useful as an anti-cancer therapeutic 

agent. Acquired drug resistance in CML treatments also necessitates the exploration of 

alternative novel therapeutics (Cowan-Jacob, 2004; Holtz and Bhatia, 2004; Marcucci, et al., 

2003; Tauchi and Ohyashiki, 2004). Although no siRNA clinical trials are yet underway, based 

on the cell line studies siRNA may have a promising role in improving patient care and 

inhibiting tumor development. 

 

1.2 MicroRNA 

MicroRNA (miRNA) is an endogenous RNA molecule that can also lead to gene 

silencing via imperfect complementarity between miRNA and mRNA. Mature miRNAs are 

usually 19-25 nucleotides (nt) long and generated from hairpin-shaped transcripts (Ambros, 

2003; Bartel, 2004; Cullen, 2004). 
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1.2.1 MicroRNA biogenesis 

 

 

Most miRNA genes are located in intergenic regions and could be transcribed into pri-

miRNA by RNA polymerase II, which is further cropped into pre-miRNA (60-100 nt stem-loop 

structure). Pre-miRNA is exported from the nucleus into the cytoplasm, following which it is 

diced via enzyme Dicer into miRNA duplex (22 nt). Usually only one strand is left as mature 

miRNA while the other is degraded (Figure 2) (Kim, 2005).  

Figure 2. miRNA biogenesis. miRNA genes could be transcribed into pri-miRNA by RNA 

polymerase II, which is further cropped into pre-miRNA (60-100 nt stem-loop structure). 

Pre-miRNA is exported from the nucleus into the cytoplasm, followed by the dicing of pre-

miRNA via enzyme Dicer into miRNA duplex (22 nt). Usually only one strand is left as 

mature miRNA while the other is degraded. Adapted from V. Narry Kim, Nature Review, 

2005. 
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1.2.2 MicroRNA targeting 

Targeting mRNA via miRNA is not yet well understood. At present scientists and 

researchers believe that miRNA regulation is quite universal in a spatial-temporal pattern. 

Expression of miRNA is also tissue- or cell-line-specific, which further increases the complexity 

of miRNA-mRNA targeting.  

The mechanism of miRNA-mRNA complementarity is still under investigation. 

However, it is currently believed that seed match is the major determinant of miRNA-mRNA 

complementarity. “Seed” usually refers to 2-7 six-mer sequences on the 5’ end of single-stranded 

mature miRNA (Figure 3) (Grimson, et al., 2007).  

 

 

Sequences beyond seed may also help binding. Target site and AU enrichment are 

affecting factors, too. The detailed mechanism is still blurred, and therefore target prediction 

remains a computational challenge in miRNA study. One miRNA might simultaneously target 

multiple genes or genes within the same pathway.  

 

Figure 3. Seed match within miRNA/mRNA complementarity. For miRNA/mRNA 

complementarity, seed match plays a major role determining miRNA and mRNA base 

pairings. Seed sequence is conventionally defined as 2-7 six mer on the 5’ end of miRNAs.  
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1.3 Short hairpin RNA 

As an exogenous approach, the application of siRNA has been hindered from the wider 

spectrum by the fact that the gene silencing effect is transient and not inheritable. The need for 

endogenous triggers of RNAi effects has been met at least partially, if not entirely, by the 

successful construction of short hairpin RNA (shRNA) (Paddison, et al., 2004), inspired by the 

discovery of miRNA (Grishok, 2001; Hutvagner, 2001; Ketting, 2001). Varying in size and 

design, similar to natural miRNAs, stems of shRNA range from 19 to 29 nucleotides in length 

(Figure 4).    

 

 

So far, a series of delivery systems has been made available for stable transfection of 

shRNA, including retroviruses, adenoviruses, constitutive or inducible promoter systems 

(Paddison, et al., 2004).  

Figure 4. shRNA construction. Built from virus or promoter systems, shRNA resembles 

much of miRNA mechanism in vivo, and mature shRNA leads to gene silencing via either 

perfect or imperfect matching.   
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After transfection of shRNA into cell lines, vectors will have themselves integrated into 

the host genome, following which the shRNA is transcribed in the nucleus by polymerase II or 

III. This leads to a product that mimics pri-microRNA (pri-miRNA) and is processed by Drosha. 

The resulting pre-shRNA is exported from the nucleus into the cytoplasm, which is then 

processed by Dicer and loaded into the RNA-induced silencing complex (RISC). The sense 

(passenger) strand is then degraded. The antisense (guide) strand leads RISC to mRNA that has a 

perfect complementarity to shRNA, and RISC cleaves the mRNA. Sometimes imperfect 

complementarity happens, and RISC only represses translation. Either method will cause specific 

gene silencing. 

Scientists and researchers have demonstrated the usage of shRNA in long-term gene 

silencing in vivo, such as the xenograft model (Brummelkamp, et al., 2002; Carmell, et al., 2003; 

Hasuwa, et al., 2002; Hemann, 2003; Kunath, 2003; Rubinson, 2003; Tiscornia, et al., 2003). 

The ultimate goal is to develop an approach for the creation of inducible and tissue-specific 

silencing of most genes in animal models, which may shed light on the application of RNAi as 

novel therapeutics.  

But before further application, there is an intrinsic problem with heterogenetic 

processing of shRNA such that the gene silencing might be blurred by off-target effects, which 

will be covered later. Precision in the maturation of shRNA remains a challenge, though we have 

observed strong evidence that shRNA expression gives rise to single siRNA, which makes it 

possible to use shRNA as an alternative genetic tool for employing RNAi in research and drug 

target discovery (Hannon and Rossi, 2004).   
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1.4 High-throughput RNA interference screening  

 

 

RNA interference revolutionized functional annotation and genetics study in a gene-

specific pattern and has seen a lot of success since its discovery. Because of the success of using 

siRNA for analyzing single genes, high-throughput technology has made it possible to perform 

genome-wide high-throughput RNAi screening (HTS). This is an all-in-one technology that 

makes it possible to knock down all genes one at a time. It has been widely used in studies such 

as the identification of novel pathway components, novel drug targets and synthetic 

chemotherapeutic sensitizers.  

 

Figure 5. High-throughput RNAi screening. As the most obvious large-scale application 

of RNAi, loss-of function (LOF) gene knock-down provides tools to identify and 

functionally characterize genes of interest. As a modification of HTS, synthetic high-

throughput RNAi screening helps identify genes or pathways that, when silenced, could 

help increase or decrease sensitivity to a specific compound or drug. Such genes could be 

used as chemotherapeutic sensitizers.  
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1.4.1 Formats and paradigms of HTS 

Similar to traditional genetic screening methods such as compound screening, some 

screening strategies could be readily applied to high-throughput RNAi screening. Obviously, for 

high-throughput RNAi screening the first large-scale application is loss-of-function (LOF) 

screening (Figure 5, left). Genes are knocked down individually in each well of the microplates 

such that they can be functionally characterized and annotated. Another modification of HTS is 

synthetic screening, in which compounds are used with siRNAs (Figure 5, right). In such a 

screening, we can identify genes that might have synergistic effects when knocked down with a 

sub-lethal concentration of specific compounds, like chemotherapeutic drugs (Whitehurst, et al., 

2007).   

As for the screening paradigms of HTS, usually two options are available: systematic 

screening and selection-based screening (Echeverri and Perrimon, 2006). In a systematic 

screening, the siRNA library is customized on a selected subset of the entire genome and planted 

on 96- or 384-well microplates. Each gene is silenced individually to identify relevant hits of 

interest. An appropriate read-out system that is both sensitive and specific has to be optimized to 

make sure results are reproducible. However, as the procedures suggest, a genome-wise 

systematic screening is considerably expensive and involves an enormous quantity of reagents, 

automation instruments, and computing infrastructure (Echeverri and Perrimon, 2006).  

In contrast, in a selection-based HTS screening, a pooled silencing molecule library is 

used upon a single, large population of cells, followed by cell sorting based on a specific readout 

system that can be a fluorescent reporter gene, cell growth advantage, or unique bar-code (Berns, 

2004; Silva, 2005; Silva, et al., 2004; Westbrook, 2005). It is faster, simpler and less expensive 
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than systematic screening. However, the application of selection-based HTS is expected to be 

more powerful in experiments where low multiplicity of infection is present, and in theory each 

individual cell is transfected with only one oligo (Echeverri and Perrimon, 2006). Moreover, 

simultaneous silencing of multiple genes might also blur the interpretation of loss-of-function 

phenotypes. 

 

1.4.2 Cell line selection for HTS 

Due to the simplicity of the cell culture condition, the high efficiency of transfection, 

and the high-resolution spatial-temporal observations, Drosophila melanogaster cell lines are 

excellent candidates for high-throughput RNAi screening (Clemens, 2000; Echalier, 1997; Kiger, 

2003; Lum, 2003; Ui, 1994). In other cases, many mammalian cell lines have made themselves 

available for HTS because of features such as adherent property, fast and robust growth, efficient 

delivery, well-ordered monolayer and reasonable doubling time (Hannon and Rossi, 2004; Song, 

2003). Sometimes, in order to model biological processes, primary cell lines are preferred in 

HTS since they are more likely to represent the real biological context (Ovcharenko, et al., 

2005), and close attention has to be paid to reagent selection, experimental optimization and 

read-out system.  
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1.4.3 Reagents selection for HTS 

In the selection of reagents for HTS, the two most popular commercially available 

choices are synthetic siRNAs (Elbashir, 2001) and vector-based shRNAs (Berns, 2004). For 

synthetic siRNAs, pooled siRNAs (3~6 siRNAs per pool) are often used in each well to target 

the same genes even though their sequences are different. The goal of pooling siRNAs is to 

increase the chance that the desired gene will be successfully knocked down and will generate 

loss-of-function phenotypes. However, the increased probability and decreased expense of doing 

so come at the cost of lower specificity due to sequence-dependent off-target effects.  

In order to enhance the gene silencing efficacies of pooled siRNAs, endonuclease-

prepared siRNAs (esiRNAs) have recently been developed and the pooled siRNAs effect has 

been taken to next stage of RNAi technology (Echeverri and Perrimon, 2006). Transcribed in 

vitro from DNA templates, 200~500 bp dsRNAs are cut into a cocktail of siRNA-like molecules 

all targeting the same gene (Kittler, 2004; Yang, 2002).  

Conversely, when loss-of-function phenotypes are not detectable in readily transfectable 

cells or within the time frame of a transient transfection, the shRNA library has made itself an 

important role in high-throughput RNAi screening due to advanced technology and reduced cost 

(Echeverri and Perrimon, 2006; Silva, 2005). 

 

1.5 High-content screening in HTS  

Traditionally, high-throughput RNAi screening has only been associated with single-

value read-out systems such as cell viability or substrate concentration or quantified pathway 

activity. However, the over-simplified representation of complex biological physiological 
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phenotype has hindered accurate interpretation of loss-of-function phenotypes. With the advent 

of high-content image-screening technology, image-based HTS has becoming more and more 

popular with the hope of capturing multiple features after gene interference (Carpenter and 

Sabatini, 2004). 

Advanced high-throughput imaging technology and analysis pipelines have made it 

possible to integrate high-throughput RNAi screening into high-content screening that is derived 

from a small molecule screening strategy (Figure 6).    

 

 

 

Figure 6. Schematic demonstration of high-content high-throughput RNAi screening. Data 

provided from Xiaonan Dong in Dr. Beth Levine’s lab. In this screening, in each well, 

200~500 cells are plated and transfected with RNAi reagents. For each cell, the number of 

autophagosomes is counted.    
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1.6 Summary  

The discovery of RNAi has enabled genome-wide loss-of-function phenotype screening 

at a reduced cost in time and money, and it has been widely accepted and used in a variety of 

biomedical and biological research projects. Despite advancing technology in HTS, 

computational challenges remain in data analysis and hit identification. These computational 

hurdles have to be tackled so that HTS can be more accurately interpreted without confounding 

factors such as spatial noise and off-target effects.  

In Chapter Two, I will focus on identification and correction of spatially correlated 

background noise from high-throughput RNAi screening. We adopted a well-established 

geostatistical model Kriging interpolation to fit high-throughput RNAi screening data from 

triplicate experiments, and experimental validation showed that reduction of spatial background 

noise could help enhance the signal-to-noise ratio and increase statistical detection power.  

In order to identify siRNA-mimic-miRNA off-target effects from high-throughput 

RNAi screening, we developed a deconvolution analysis approach to model data from HTS 

projects in which pooled siRNAs are used to knock down genes. Data mining and statistical 

modeling are summarized in Chapter Three. As part of the development of a novel methodology, 

we tested our algorithm on multiple datasets from a variety of biological contexts across different 

siRNA libraries. The siRNA-mimic-miRNA off-target effect is pervasive, and identification and 

removal of such an off-target effect could help reduce the false positive rate from primary 

screening.  

With the advent of advanced development of imaging instruments and technology, 

high-content screening has been integrated into high-throughput RNAi screening, which has 
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enabled multiple features from a single cell and comprehensive descriptive quantification of 

complex biological processes due to loss-of-function interference. Consequently, new 

methodologies and analysis pipelines are needed, and for this purpose we developed a new R 

package available within scientific community for data visualization and analysis. Details are 

shown in Chapter Four. We showed the high accuracy of our package in the analysis of image 

data.  
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CHAPTER TWO 

 
SPATIAL BACKGROUND NOISE CORRECTION IN HIGH-THROUGHPUT RNA 

INTERFERENCE SCREENING 

 

High-throughput cell-based RNAi screening has become an increasingly important 

technology that is widely used for discovering new drug targets and annotating gene functions. 

Screening strategies usually use hundreds of 96-well or 384-well plates in order to cover genes in 

a genome-wide pattern, and often collect measurements that are dampened by spatial background 

noise whose patterns may vary across each individual plate. Identification and correction of such 

position effects can substantially enhance measurement accuracy and screening success. We built 

SbacHTS (Spatial background noise correction for High-Throughput RNAi Screening) software 

for visualization, estimation and correction of spatial background noise in HT-RNAi screens. 

SbacHTS is available as a web-based user-friendly bioinformatics tool on the Galaxy open-

source framework with open access web interface. We showed that SbacHTS software could 

effectively detect and correct spatial background noise, improve the signal-to-noise ratio and 

increase statistical detection power in high-throughput RNAi screening experiments.  

 

2.1 Introduction 

RNAi is a process in which gene expression is silenced by small RNA molecules such 

as siRNAs (small interfering RNAs) and shRNAs (short hairpin RNAs). High-throughput RNAi 

screening is a groundbreaking technology for functional genomics and for drug target discovery 
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and has been widely used in biological and biomedical research (Orvedahl, et al., 2011; 

Whitehurst, et al., 2007).   

 

2.1.1 From small-molecule screening to HTS 

A frequently employed screening strategy relies on 96-well or 384-well microwell 

plates, on each of which is pooled siRNAs (3~6 siRNAs per pool) designed to target a specific 

gene. A similar screening strategy has been used for small-molecule screening for decades 

(Boutros and Ahringer, 2008). They both share some elements in common with respect to 

analysis workflow; however, the intrinsic features and properties of RNAi exercise their own 

challenges for data analysis and visualization. Empirically, HTS results tend to be normally 

distributed but with more noise, a decreased signal-to-noise ratio and an increased coefficient of 

variations (Birmingham, et al., 2009). Consistently, the Z’ factor of Z factor (defined as below) 

from high-throughput RNAi screening is prone to be lower than in small-molecule screening 

(Zhang, et al., 1999).  

  ' 1 3 3 /hc lc hc lcZ factor          (1) 

  1 3 3 /s c s cZ factor          (2) 

where µ indicates mean, and σ represents standard deviations. Subscription “hc” and “lc” 

represent high-value control and low-value control, while “s” and “c” represent the sample value 

and control value, respectively (Birmingham, et al., 2009).  
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2.1.2 Data triage and quality control 

Due to the higher inter-well variability of high-throughput RNAi screening, which 

results from a range of factors such as transfection efficiency and incubation conditions, 

researchers should keep in mind that analysis has to be customized from a repertoire of 

selections and quality control has to be performed as a work-in-progress from the very beginning 

in case of potential problems that might occur anytime (Birmingham, et al., 2009).  

 

 

So far, visualization is a popular approach to control quality for high-throughput RNAi 

screening in progress, and available approaches include a heat map of raw data (Figure 7), 

replicate correlation plot (Figure 8) and row-column effect visualization (Figure 9), all of which 

Figure 7. Visualization of raw data. Data provided from Xiaonan Dong in Dr. Beth Levine’s 

lab. The number of autophagosomes in each cell from the same well is measured, log-

transformed and plotted as in the above figure. Red means a higher number and green means 

a lower number.  
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can help to control reproducibility in progress (Ogier and Dorval, 2012; Zhang and Zhang, 

2013).  

 

 

A quantitative quality metrics calculation is also available to facilitate appropriate 

operation of experimental procedures (Birmingham, et al., 2009). We have seen the Z’ factor and 

Figure 8. Replicate correlation plot. Data provided from Yang Liu in Dr. Beth Levine’s lab. 

Cell death is measured and experiments are performed in triplicate. Thus the replicate 

correlation plot helps to visualize quality control. Red indicates positive control; blue 

indicates negative control; green indicates the sample.  
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Z factor. Another metric is the strictly standardized mean difference (SSMD), depicted as below 

(Zhang, 2007), 

   2 2
1 2 1 2/SSMD         (3) 

  

which measures the ratio between the mean difference and pooled standard deviation.  

 

 

Receiver operating characteristic (ROC) curves, in which both the true positive rate and 

false positive rate are calculated and plotted, have been widely applied in statistical analysis and 

are also applicable for high-throughput RNAi screening as a simple and intuitive quantitative 

metric and visualization (Fawcett, 2006; Forster, et al., 2003; Wagner, 2002; Wiles, et al., 2008). 

Figure 9. Row-column effect plot. Data provided from Xiaonan Dong in Dr. Beth Levine’s 

lab. The cell number is counted and plotted in a row-column pattern such that researchers can 

identify the specific position effect.   
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The area under the curve (AUC) is a desirable measurement of quality, with 1 representing a 

perfect predictor and 0.5 as random chance. 

 
true positive

true positive rate
true positive false negative




  (4) 

  

 
false positive

false positive rate
true negative false positive




  (5) 

  

2.1.3 Data normalization  

Before we talk about the details of data normalization strategies in high-throughput 

RNAi screening, we need to be cognizant of the two main streams, control-based and sample-

based normalization (Birmingham, et al., 2009). When applicable, both negative control and 

positive control are preferred in high-throughput RNAi screening to facilitate the calculation of 

quality metrics and data normalization. In such instances, either is unavailable and one is also 

working well most of the time. However, in some cases when controls are not working well, 

given the batch effects and position effects, sample-based normalization can be useful. However, 

the assumption for sample-based normalized is that on a plate (Whitehurst, et al., 2007), most 

genes have little or no phenotypic effect, and researchers have to keep that in mind in case the 

assumption is violated for some high-throughput RNAi screening projects.  

Normalization helps remove systematic errors such as batch effects, and therefore lends 

a hand to the comparison of data from different plates or even experimental dates. A fraction or 

percentage of either the controls or the samples are the two most obvious normalization methods, 

such as relative cell viability or cell death rate. A z score representing the number of standard 
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deviation from sample mean is also applicable, though it is quite sensitive to outliers. Therefore a 

robust z score is used in which the median replaces the mean and the median absolute deviation 

(MAD) replaces the standard deviation.  

 
sample value sample mean

z score
sample deviation


   (6) 

 
( )

sample value sample median
robust z score

sample median absolute deviation MAD


   (7) 

   MAD median sample median sample    (8) 

 

 

Figure 10. Correlation between normalization methods. Data provided from Yang Liu in 

Dr. Beth Levine’s lab.  
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Employing the Tukey median algorithm, the B score has recently been used for HTS 

normalization to account for within-well variations such as the column effect and row effect 

(Brideau, et al., 2003), and it is easily available in the R package cell HTS2 (Boutros, et al., 

2006). A recently modified t-test and goodness-of-fit test can also be generalized to normalize 

HTS results and show improvement (Dragiev, et al., 2012). Scores from different normalizations 

could be plotted against each other for double-checking (Figure 10). 

 

2.1.4 Identifying hits from HTS  

As the ultimate goal of any primary high-throughput RNAi screening project, hits 

identification is to select as many true positive hits as possible. Many techniques are available 

and should be used on a case-by-case basis. 

Both the mean  standard deviationk and median  MADk  are derived from small-

molecule screening, and quite easily used (Chung, 2008; DasGupta, et al., 2005; Muller, et al., 

2005; Possemato, et al., 2011; Zhang, 2006). Both are easy to calculate, with the former easily 

aligned to the P value and the latter more robust to outliers. 

 Multiple t-tests could be used when a comparison has to be made between the case and 

control groups, and follow-up multiple test correction has to be carefully performed in order to 

balance stringency and detection power (Manly, et al., 2004; Whitehurst, et al., 2007; Zhang, 

2008). It is easy to calculate, but it requires triplicates and is inappropriate when data is not 

normally distributed (Birmingham, et al., 2009).  

Robust to outliers, a quantile-based hit selection criterion, in which hits are defined as 

bigger than the third quantile or lower than the first quantile, is good for nonsymmetrical data 
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distribution after researchers and scientists evaluate their data distribution. However, it comes 

with limited additional power and is not linked with P values (Zhang, 2006). 

Though introduced as a quality control metric, SSMD is also applicable in the 

identification of hits selection, depending on whether the goal is to control rates of false 

negatives, false positives or both (Birmingham, et al., 2009; Zhang, 2007; Zhang, 2007; Zhang, 

et al., 2009). It is dependent on sample size and linked to rigorous probability interpretation. 

However, it is not available in most analysis software and is not very intuitive for biologists.  

In some cases, multiple reagents are used to target the same gene in a high-throughput 

RNAi screening projects, and a newly developed method, redundant siRNA activity (RSA), has 

been employed to deal with such cases (Konig, 2007). It is robust to outliers and helps identify 

weaker hits as well as reduce false positives from off-target effect. However, it is very difficult to 

calculate and not applicable to pooled siRNA HTS (Birmingham, et al., 2009). 

When it comes to merging multiple datasets from different HTS projects, the analysis 

may consider algorithms such as rank product given the assumption that a hit should be 

consistent across different biological context and background (Breitling, et al., 2004). A 

simulation is needed to generate the null distribution to calculate P values, and many replicates 

are required through this approach, which is more robust to outliers and can identify weaker hits 

(Birmingham, et al., 2009). 

A Bayesian approach is also available for hits identification in an HTS project (Zhang, 

2008); it is not sensitive to outliers, provides P values, and allows for calculation of the false 

discovery rate (FDR). Besides these it uses both negative controls and samples and includes both 
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experimental-wide and plate-wide information. However, it is quite difficult to calculate and 

interpret for a non-statistician audience (Birmingham, et al., 2009).    

    

2.1.5 Spatial noise in HTS  

An experimental and computational challenge confronting the collection of precision 

measurements during HTS is that of the required experimental steps, whose procedures 

(including cell culture, transfection, reagent delivery, incubation and HTS-plate scanning) may 

introduce spatially correlated background noise (Figure 11) varying across experiments, batches 

and plates (Birmingham, et al., 2009; Carralot, et al., 2011; Malo, et al., 2006). 

  

 

Figure 11. Sources of noise in high-throughput RNAi screening. Factors such as transfection 

efficiency, cell culture conditions, incubation environments, HTS screening or the RNAi 

reagent itself can bring in spatial noise in high-throughput RNAi screening projects.  
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Ignoring position effects leads to low signal-to-noise ratios and hampers sensitivity. 

Recently, spatial noise elements such as the edge effect have been taken into account in data 

normalization of high-throughput RNAi screening data (Carralot, et al., 2011); however, only 

row and column effects have been adjusted using analysis of variance (ANOVA) in the only 

existing approach to address the global spatial background noise across a plate using B score 

statistics (Malo, et al., 2006). This simplified model can be an effective approach for simple row 

and column effects. In our preliminary analysis of the high-throughput RNAi screening data, 

complicated spatial patterns were shown for many plates from high-throughput RNAi screening 

projects. Thus, over-simplified modeling of background noise approaches may often result in 

over-correction for some wells and under-correction for others. To help tackle this problem, we 

attempted to adopt advanced statistical models to accurately quantify and correct complex spatial 

background noise in high-throughput RNAi screening experiments.  

As a well-established statistical model to fit observed data with spatial distribution 

patter, Kriging interpolation (Banerjee, et al., 2003) is widely used in geostatistics. In this study, 

we employed a Kriging model to quantitatively identify and correct spatially-correlated 

background noise in high-throughput RNAi screening data, and we implemented a user-friendly 

software package available on a Galaxy platform, SbacHTS, for open-source implementation of 

the Kriging correction. Meanwhile, intuitive data visualization and quality assessment tools are 

also available in our package. We discovered that SbacHTS software can effectively identify and 

correct spatial background noise, enhance the signal-to-noise ratio and increase statistical 

detection power for RNAi screening experiments.  
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2.2 Methods and Materials 

 

2.2.1 Geostatistical modeling 

SbacHTS software adopted Kriging interpolation to fit spatial noise patterns to identify 

and correct spatial background noise in high-throughput screening data. For each individual 

plate, at well s, observed intensity (e.g. cell viability readout from the well) sY  is modeled as 

below: 

 s s sY X    . (9) 

Here sX  is the signal from the well s and s  is defined as spatially-correlated background noise. 

Our assumption is that sX  is from a normal distribution: 

  2,s s sX N     (10)  

And here s  is the mean of siRNAs in well s.  

For s , we model it from a multivariate Gaussian distribution,  

  0,s    (11) 

Where  

  2 2
,, i jd I        (12) 

And  ,, i jd   is a function of distance between plate well i and j with ,i jd  defined as below  

 ,i j i jd s s    (13) 
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with parameters   and 2I  that model independent Gaussian white noise. From this model, we 

can estimate the signal and spatial background noise. For details about statistical inference and 

parameters estimation, reader can refer to (Banerjee, et al., 2003). 

 

2.2.2 Synthetic lethal screening 

Chemotherapeutic drug resistance has become a treatment hurdle for cancer therapy. 

Genes that are required for drug resistance might be interesting drug targets in that inhibition of 

such genes may sensitize resistant cancer cell lines to otherwise sub-lethal concentration of 

traditional chemotherapeutic drugs (Figure 12). We refer to these genes as “chemo-sensitizers” 

(Whitehurst, et al., 2007).   

 

 

 

2.2.3 Screening paradigm  

Chemotherapeutic drug resistance has become a treatment hurdle for cancer therapy.  

Our collaborator Michael White’s group (Whitehurst, et al., 2007) conducted a high-throughput 

RNAi screening project for identification of chemotherapeutic sensitizers. A non-small-cell lung 

cancer cell line was established and used in this screen. At the beginning of experiments, cells 

Figure 12. Screening scheme for synthetic screening. HST was used to identify chemo-

sensitizers that might help cancer cell lines overcome drug resistance.   
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were transfected with a siRNA library in a genome-wide pattern. At the end of three days, the 

drug was added into each well of the plates at a concentration under which cell lines have a sub-

lethal effect. By the end of five days, end-point assays were performed and cell viability was 

measured. We had a media-only control group in this screening for comparison. Experiments 

were carried out in triplicate. A t-test was used to compare between the treatment and control 

groups to test for significant difference in cell viability. If significant difference appeared, the 

gene might be a potential chemotherapeutic sensitizer. 

 

 

 

2.3 Results 

Datasets from Michael White’s experiments are performed with whole-genome arrayed 

siRNA library on 267 96-well micro plates (Whitehurst, et al., 2007). Paclitaxel-treated non-

Figure 13. Screening paradigm for synthetic screen. Cells were transfected with siRNA 

library and at the end of three days, the drug was added into each well at a sub-lethal 

concentration. By the end of five days, cell viability was used as an end-point assay. 
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small-cell lung cancer cells (experimental group) were compared with vehicle-treated cells 

(control group) and each was carried out in triplicate (Figure 13).  

 

2.3.1 Spatial noise pattern visualization 

For high-throughput RNAi screening, noise is inevitable because many factors can 

contribute to the noise pattern across a plate, such as transfection efficiency, reagent activity, and 

incubation and cell culture conditions. Theoretically, random noise is expected such that there 

should be no specific noise pattern; however, based on our exploratory observations the HTS 

noise often presents a spatially-correlated pattern (Figure 14). This is reasonable since the 

oxygen concentration may be higher on the edge during incubation, while siRNAs concentration 

might be lower in the middle of a plate, and such effects could accumulate and superimpose over 

time.  

 

 

Figure 14. Simulated Gaussian noise VS observed spatial noise. Left, Gaussian noise is 

simulated to compare with the observed spatial noise that is frequently present in high-

throughput RNAi screening.    
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SbacHTS is able to display the observed spatial background noise pattern across each 

plot. After identification of such spatially-correlated background noise, we fit data into the 

SbacHTS model. Fitted spatial background noise is also available for visualization and analysis 

(Figure 15), which gives an opportunity for fast and intuitive recognition of the spatial pattern of 

background noise and distribution of fitted values customized for each plate across a whole HTS 

project.  

After identification of such spatially correlated noise, we can remove them from the 

original intensity and produce a purer read-out that is free of such spatial background noise. We 

will later show the benefits after removing such noise.  

 

 

 

Figure 15. Observed spatial noise and fitted spatial noise pattern. From right, we can tell the 

fitted spatial noise accurately captures the noise pattern from observed data, and after fitting 

such a noise pattern can be removed from raw data to help enhance downstream analysis.     
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2.3.2 Improvement of coefficients of variation and statistical detection power 

As a measurement of the signal-to-noise ratio, the coefficient of variation (CV) is 

commonly used and defined by the ratio between the standard deviation and mean as below: 

 vC



   (14) 

It is estimated using the sample mean and sample standard deviation as below: 

 ˆ
v

s
C

x
   (15) 

From our dataset, experiments were performed in triplicate, which therefore gave us enough to 

estimate the coefficient of variation for each gene. The coefficients of variation were therefore 

estimated for each siRNA pool. 

 

  

Figure 16. Increased detection power of one single siRNA from HTS. The p value is 

enhanced after removing spatially-correlated background noise.  
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For a single gene, removal of spatial noise could lead to a reduction of the variation and 

subsequently increase statistical power (Figure 16). For example, the P value could be improved 

from 0.075 to 54.72 10  under the same biological phenotypic strength for both experimental 

and control groups.   

Globally, reduction of spatial noise resulted in an overall decrease in the coefficients of 

variations (Figure 17 left). For example, the 90
th

 percentile of CV was reduced from 0.044 

(original data) to 0.039 (corrected data), and consequently the statistical detection power of 10% 

change between the experimental and control group was increased from 0.88 (original data) to 

0.94 (corrected data) for 90% of the genes from whole HTS project. Meanwhile, the type I error 

rate is controlled at the same level of 5%.  

 

 

Figure 17. Increased signal-to-noise ratio and statistical detection power. Left, overall 

distribution of the coefficient of variation after SbacHTS modeling is reduced compared 

with the original data. Right, scatterplot of each individual siRNA with P values before and 

after SbacHTS modeling. Data was log-transformed at base 10.   
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Locally, we also scatterplotted P values for each individual siRNA before and after 

SbacHTS modeling (Figure 17 right). Overall, the P values before and after correction were 

consistently linear with each, indicating there is no overcorrection using SbacHTS. However, we 

do see statistical power was enhanced from the down-size shift pattern with respect to the 

diagonal line (red line). For most changesP values were decreased, while for some they were 

increased, which suggests that spatial background might result in false positives from high-

throughput RNAi screening.  

The ultimate goal of the HTS project is to identify hits from primary screening, and in 

our case we tried to identify siRNAs that significantly decrease cell viability under a sub-lethal 

concentration of chemotherapeutic drug on non-small-cell lung cancer. We used t-tests to 

compare cell viability between experimental and control groups. A P value was given for each 

gene. A Beta Uniform model (Pounds and Morris, 2002) was used to evaluate the false discovery 

rate (FDR). We could only identify 101 hits from the original data; however, after SbacHTS 

modeling, we could identify 867 hits with the same FDR level less than 0.05 (Figure 18). 

Therefore, we successfully helped enhance statistical detection power while controlling the same 

false discovery rate.  
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2.3.3 Visualization of batch effects 

Batch effect, a systematic experimental error, is pervasive in high-throughput RNAi 

screening. The visualization of batch effects is the one of the most powerful approaches for 

detecting it. Therefore, we also included this type of functionality in SbacHTS software to 

provide an approach to summarize the measurements (such as observed readouts or normalized 

robust z scores) from each plate (Figure 19). Measurement scores are grouped across the plate 

and allow users to detect systematic bias or batch effects originating within the experimental 

procedures.  

Figure 18. Histogram of P values before and after SbacHTS. A) Before SbacHTS, we can 

only identify 101 hits with a controlled false discovery rate of less than 5%. B) After 

SbacHTS modeling, we could identify 867 hits under the same criterion. The result 

indicates that the spatial background correction decreases the noise and improves the 

statistical power. 
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2.3.4 Implementation 

We developed SbacHTS in R and implemented it as a web-based user-friendly Galaxy 

tool (Giardine B, Riemer C et al 2010) (Figure 20), available at http://www.galaxy.qbrc.org/. The 

user’s manual is also available online.  

    Analysis results show that SbacHTS can identify and correct spatial background 

noise, enhance the signal-to-noise ratio and help with hit identification from high-throughput 

screening experiments. In addition, SbacHTS is computationally efficient, and only needs less 

than 5 minutes to process the 267-plate data from a whole genome project. 

Figure 19. Batch effects from a HTS. Data from a whole genome screening was visualized 

using a box plot for identification of batch effects across different plates.  

http://www.galaxy.qbrc.org/
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Figure 20. Snapshot of web-based software SbacHTS. We developed SbacHTS and 

implemented it as a Galaxy tool available within the scientific community for wider 

application of our algorithm in the analysis pipeline of high-throughput RNAi screening.   
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2.4 Discussion  

In order to help with high-throughput cell-based RNAi screening data visualization and 

analysis, we developed a novel statistical modeling method, SbacHTS (spatial background noise 

correction in high-throughput RNAi screening), to help with identifying and correcting noise in 

HTS. HTS has been widely used for discovering new drug targets and annotating gene functions, 

but measurements are blurred by spatial background noise whose patterns can differ across each 

individual plate.   

Identification and correction of such position effects becomes a computational 

challenge in analysis pipeline of HTS projects, and therefore we want to substantially enhance 

measurement accuracy and screening success by modeling HTS data. We built SbacHTS 

software for the visualization, estimation and correction of spatial background noise in HTS. 

SbacHTS is available as a web-based user-friendly bioinformatics tool on the Galaxy open 

source framework with open access web interface on our public Galaxy webpage. We found that 

SbacHTS software could effectively detect and correct spatial background noise, reduce the 

signal-to-noise ratio and enhance statistical detection power in high-throughput RNAi screening 

experiments.  

Although SbacHTS was developed and demonstrated with high-throughput RNAi 

datasets, our approach could be readily generalized to other formats of high-throughput 

screening, such as small-molecule screening in which noise is also pervasive. As long as 

experiments are performed in triplicate or more, SbacHTS should be able to identify and detect 

spatially-correlated noise from experimental procedures. Therefore it can be anticipated that 

SbacHTS will have more applications with advancing screening technologies.  
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CHAPTER THREE 

 
COMPUTATIONAL DETECTION AND SUPPRESSION OF SEQUENCE-SPECIFIC 

OFF-TARGET PHENOTYPES FROM WHOLE GENOME SCREENS 

 

Even though high-throughput RNAi screening has been widely accepted and used in 

biomedical and biological research, computational challenges remain in data mining. One of 

those challenges is the biological pleiotropy that comes from multiple modes of action of 

siRNAs and transfection reagents. A major blurring feature of these reagents is the microRNA-

like translational inhibition resulting from a hexamer of as short as 6 nucleotides with 

complementarity to many different mRNAs. We developed a computational approach, 

Deconvolution Analysis of RNAi Screening data (DecoRNAi), for identification and correction 

of siRNA-mimic-miRNA off-target effects (OTE) in primary RNAi screening data sets.  

Substantial reduction of false positive rates was experimentally validated in five distinct datasets 

from difference biological contexts across different genome-wide siRNA libraries. We also 

implemented a public-access graphical-user-interface that was constructed to facilitate 

application of our algorithm within the scientific community. 

 

3.1 Introduction 

 

3.1.1 False positives in primary screening in HTS 

Genome-wide high-throughput RNAi screening has been widely used in biomedical and 

biological research for discovery of novel drug targets, identification of pathway components or 
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investigation into unknown molecular machinery, and has proven to be an effective and powerful 

means for functional annotation of protein-coding genes in a variety of biological contexts from 

both normal and disease samples and cell lines (Birmingham, et al., 2006; Kim, et al., 2013; 

Orvedahl, et al., 2011; Tang, et al., 2008; Ward, et al., 2012; Whitehurst, et al., 2007).  

However, regardless of the wide acceptance and usage of HTS in biological and 

biomedical research, the false positive rate has continually blurred the interpretation of primary 

high-throughput RNAi screening. The off-target effect has been observed and recognized in 

research resulting from both siRNAs themselves and delivery vehicles (Jackson and Linsley, 

2010). A tradeoff always appears between minimizing the false-positive rate and increasing the 

false-negative rate when a simple cutoff is used as a select ion criterion of hits in primary 

screening (Mohr, et al., 2010). Studies have shown that the false positive rate comes from both 

sequence-independent and sequence-dependent off-target effects (Sigoillot and King, 2011). 

When cell lines were transfected with siRNAs designing to target the same genes 

despite their difference in sequence design (Figure 21), microarray analysis of gene expression 

showed that four individual siRNAs generated a dramatic gene expression pattern that was a 

confirmation of off-target effects from primary screening, and evidence was observed that the 

off-target effect is highly associated with short sequence region within the 5’ end of siRNAs. It 

presented itself as a new computational challenge for high-throughput RNAi screening data 

analysis and hit selection (Birmingham, et al., 2006; Jackson, et al., 2006). The ultimate goal of a 

primary screening from HTS projects is to pick as many true positives as possible without 

excessively comprising the false-negative. Simply using a stringent cut-off from primary 
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screening doesn’t satisfy this need, which must be overcome before high-throughput RNAi 

screening can have a wider application, such as clinical trials of siRNA as novel therapeutics.  

 

 

 

3.1.2 siRNA-mimic-miRNA off-target effect in HTS 

miRNA is another small RNA molecule that in its mature form is about 20~26 

nucleotides long. One miRNA can target multiple mRNAs, and seed match is a major 

determinant of miRNA/mRNA complementarity. “Seed” refers to the 2`7 hexamer sequence on 

the 5’ end of miRNAs. Given that both mature miRNA and siRNA share structure similarity, it is 

Figure 21. Off-target effect in high-throughput RNAi screening. Despite the fact that all 

pooled siRNAs are designed to target the same gene regardless of their sequence difference, 

evidence is observed that one siRNA pool might simultaneously inhibit multiple genes, 

causing an off-target effect in HTS projects and blurring the interpretation of most primary 

screening.   
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quite possible that siRNA might mimic miRNA to raise off-target effects in primary high-

throughput RNAi screening. This becomes a pressing challenge for studies where the goal is to 

maximize the return of accurate gene-specific information. However, one individual siRNA 

often interferes with the hundreds of gene expression through partial sequence complementarity 

between hexamers on the 5’ end of siRNAs and mRNAs (Jackson, et al., 2006; Sigoillot, et al., 

2012). Therefore the phenotypic results from siRNA screens usually consist of the intentional 

“on-target” effects of target gene depletion together with unintentional “off-target” effects that 

are hexamer-sequence-dependent, but target-gene-independent (Figure 22).  

 

 

siRNA-mimic-miRNA off-target effect can lead to many false positives that 

consequently obscure interpretation of the overarching screen results. Time- and resource-

intensive experimental approaches for target validation therefore often define the limits of the 

reliable gene-level information from any given screen. Computational approaches have been 

designed which can help identify off-targeted transcripts within a given screening effort, and 

Figure 22. On-target vs. off-target effects. In a siRNA knock down event, siRNAs might 

cause both on-target and off-target effects. On one hand, they can inhibit intended gene 

through perfect match while on the other, they can also off-target unintended genes via seed 

match.   
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therefore lead to discovery of new genes or pathways associated with the phenotype under 

investigation (Bartel, 2009; Buehler, et al., 2012). However, directly addressing high false 

positive rates and deconvolution of off-target phenomena is still a major bottleneck restraining 

the pace of discovery for functional genomics efforts. Here we developed a computational 

approach to identify and correct siRNA-mimic-miRNA off-target effects from high-throughput 

RNAi screening.  

 

3.2 Methods and Materials 

 

3.2.1 Data processing 

All data processing and z-score derivations were consistent with the original 

publications (Kim, et al., 2013; Orvedahl, et al., 2011; Tang, et al., 2008; Ward, et al., 2012; 

Whitehurst, et al., 2007) 

(1). For the H1155 toxicity screens (Whitehurst, et al., 2007), host modulators of H1N1-

cytopathogenicity (Ward, et al., 2012) and the HCC4017 toxicity screens (Kim, et al., 2013), raw 

cell viability data were transformed to a robust Z score (formula shown below) and adjusted for 

batch effects. That is, raw data were grouped by experimental batch and within each group, the 

sample median and median absolute deviation were used to calculate a robust Z score. 

Annotation of all siRNA/miRNAs pools and their associated z-scores can be found in the 

corresponding publications.  

 
 

cell viability sample median
z score

median absolute deviation MAD


   (16) 
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  i iMAD median X sample median    (17) 

(2) For the WNT pathway siRNA screen (Tang, et al., 2008), Z scores were calculated 

as a standard score centered on the population mean of each screening run as described by the 

average of each triplicate experiment minus the standard deviation (SD). Annotation of all 

siRNA pools and their associated z-scores can be found in publications. 

(3) For the selective autophagy siRNA screen (Orvedahl, et al., 2011), the 

mitochondrial mass for each cell was approximated by the following formula: Mitochondrial 

Mass ~ β0 + β1 Parkin + β2 siRNA + β3 Parkin ×siRNA. Two-way ANOVA models were used 

to identify siRNAs that decreased Parkin-mediated mitophagy: 

 ( )ijk i j ij ijky            (18) 

and Z scores were calculated as the statistical significance. Annotation of all siRNA pools and 

their associated z-scores can be found in publications. 

 

3.2.2 DecoRNAi analysis 

The LASSO (least absolute shrinkage and selection operator) regression approach was 

adapted to quantify the strength of seed-link effects. For this analysis, each Z score was modeled 

as a linear combination of on-target and seed sequence-based off-target effects. The LASSO 

regression model was defined as below:  

 ,  subject to Z X Y s      (19) 
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where Zi  is the i
th

 original Z score, j   is the estimated off-target effect of the j
th

 seed family, iY   

is the corrected Z score (on-target effect) and   is the penalty parameter, X  is denoted as 

below:   

 
1,if  family

,
0,otherwise

ij j

i j
X x xi


    


  (20) 

And the solution is given as: 

 
2

argmin Z X



    
  

  
  (21) 

For each seed family, we can thus estimate the coefficient that indicates the strength and 

direction of predicted off-target effects. A negative coefficient means the seed family tends to 

lower Z scores and vice versa. Based on empirical experience,  is set to 0.001 as the default. 

We annotate those coefficients with an absolute value > 1 as indicating candidate off-target 

effects for all four datasets shown in this manuscript. However, all the parameters and cutoff 

values are tunable by users.  

For LASSO-selected off-target seed families, we further examine the statistical 

significance using the Kolmogorov-Smirnov test (KS-test). Taking Z  as a vector of original Z 

scores from the primary screening, the empirical distribution function 
snF  for Z scores from seed 

family S is defined as: 

  
1

1 s

s i

N

n Z z
s i

F z I
N





    (22) 
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Where 
iZI   is the indicator function, equal to 1 if iZ z   and equal to 0 otherwise, and 

sN  is the total number of Z scores from seed family S. The Kolmogorov–Smirnov statistic for a 

given cumulative distribution function F(z) is as follows:  

    sup
s sn n

z

D F z F z    (23) 

The statistical significance (p value) was then determined by the Kolmogorov-Smirnov 

statistic.   

 

3.2.3 Web-based application (Galaxy) 

The DecoRNAi application is available at 

http://galaxy.qbrc.org/root?tool_id=sirna_offtarget, which is an open web-based interface. 

Analysis parameters can be specified by users as below: 

• InputFile: CSV File containing response variable and siRNA sequence data.  

• Strand: Specify the strand orientation for analysis. 

• Lambda: Penalty parameter used in the model. 

• Seed Range: 1-14.  Specify the seed region to be used. 

• Library: Specify siRNA library. Default is custom which requires user input sequences. 

• Strength: Specify the cutoff for strength of seed-linked effect. Must be a positive value. 

• Significance: Specify the cutoff for significance (P-value). 

 

http://en.wikipedia.org/wiki/Indicator_function
http://en.wikipedia.org/wiki/Statistic
http://en.wikipedia.org/wiki/Cumulative_distribution_function
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3.2.4 Tissue culture, oligo transfection and cell viability assays 

H1155 cells were grown in RPMI 1640 (Gibco®) supplemented with 5% fetal bovine 

serum (FBS; Atlanta Biologicals) and 1% penicillin/streptomycin (Gibco®). All siRNAs were 

purchased from Dharmacon. The library contains 24 sets of 4 siRNAs each. The oligos targeting 

transmembrane protein 114 (TMEM114) from Dharmacon were used for siRNA-negative 

control. The miR 4633-5p and the synthetic miRNA were from Ambion.  Nontargeting miRNA 

control (IN-001005-01-05) was from Dharmacon. For reverse transfection, 1ul siRNA (10uM) in 

30ul serum free media (SFM) was mixed with 0.4ul RNAi Max (Invitrogen) in 10ul SFM. 40ul 

siRNA-reagent mix per well and 5000 cells per well, from a single cell suspension, were 

delivered in 100ul media in 96-well microtiter plates. Cell viability was measured 96 hours post-

transfection with CellTiter-Glo (Promega) according to the manufacturer’s specifications.  

 

3.3 Results 

 

3.3.1 siRNA-mimic-miRNA off-target effects 

To the best of our knowledge of miRNA/mRNA complementarity, a major determinant 

of translational inhibition of mRNA by a given miRNA is seed match (Figure 3) between mRNA 

and miRNA. ”Seed” refers to a 6-nucleotide hexamer on the 5’ end of the miRNA (Bartel, 2009). 

Therefore, if a sRNA mimics miRNA mechanism to off-target unintended genes, the “seed 

sequence” should also apply to it. To test this hypothesis, we examined a dataset from a whole-

genome HTS toxicity screen on non-small-cell lung cancer cell (Whitehurst, et al., 2007), 

H1155, and used it as a benchmark to examine the strength of this “seed sequence” mimic 
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phenomena. In this screen, we employed an arrayed one-gene/one-well commercial siRNA 

library with pooled siRNA oligonucleotide duplexes (4 siRNAs per well). The end-point assay 

was to measure cell viability and identify the genes required for non-small-cell lung cancer 

survival and growth. In our library, a siRNA is 19 nucleotides long and if we define any 

continuous hexamer as a potential “seed sequence”, we have 14 different locations to define a 

“seed” (Figure 23 left). A Kolmogorov–Smirnov test (KS-test) was used to examine the seed 

sequence/phenotype association for all hexamer windows and only 1-6, 2-7, and 3-8 had a 

statistically significant association at a controlled false discovery rate 5% (Figure 23 right). In 

order to keep with the current best understanding of dominant determinants of the miNRA 

targeting mechanism (Bartel, 2009), we used a 2-7 hexamer window as the defined “seed 

sequence” in the following studies. 

 

Figure 23. Define seed sequences on siRNAs. Left, an illustration of a hexamer sliding 

window for different definition of seed sequence along a 19 nt-long siRNA; and right, a seed 

sequence/phenotype association for different seed sequence at controlled false discovery 

rate, by which we can tell the 2~7 has the strongest association.  
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Seed sequence membership for each of the 168,992 oligonucleotides in the library was 

separately defined for each of the siRNA sequences. siRNAs sharing the same seed sequence are 

grouped as a seed family (Figure 24 left). In a genome-wide siRNA library, a sum total of 4
6
 

(4,096) possible non-redundant “seeds” are present and on average for each seed family there are 

almost 40 siRNA oliogos (Figure 24 right). The presence of a given seed within such family size 

gives us an opportunity to estimate and identify siRNA-mimic-miRNA off-target effects.  

 

 

Though we started with the KS-test, a liability of the KS-test is in that it is quite 

sensitivity to family size, which is a common problem with most statistical tests (Figure 25), 

which leads to false positive discovery since the P value is small for large family size though 

biological strength (off-target effect) is not strong. Therefore, we developed a novel algorithm, 

DecoRNAi (de-convolution analysis of RNAi screening data), to estimate the strength and 

direction of seed-associated off-target effects using LASSO (least absolute shrinkage and 

Figure 24. Seed family. Left, a demonstration of a seed family. All siRNAs originally 

targeting different genes with different sequences share the common seed sequence 

“GUUCCG”; right, a frequency distribution of seed family size from whole-genome siRNA 

library.   
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selection operator) as a penalized linear regression model. DecoRNAi is robust to large family 

size and based on the biological phenotypic strength of seed association. We used the H1155 

dataset as a benchmark to develop a scoring system and as development of a methodology. We 

also applied it to a wide spectrum of datasets from different biological contexts across different 

siRNA libraries.  

 

 

In summary, we tried to project the phenotypic measurements onto two dimensions. 

One is the on-target effect coming from the knock-down of intended gene; the other is from 

seed-driven off-target effects (Figure 26 A). Because of the presence of 8 single-stranded 

siRNAs in one pool, the off-target effect is the combinatory sum of 8 potential off-target seed 

families. Mathematically, we were partitioning the phenotypic readout, a robust Z score, into two 

parts, on-target effect and off-target effect (Figure 26 C). The off-target effect is cumulative from 

8 seed families. Usually in one siRNA library we have ~4,000 seed families and they are 

estimated. Only 8 are present in one Z score, which determines the design matrix (Figure 26 C). 

Figure 25. The liability of the KS-test depends on sample size. Examples of the empirical 

distribution plot for three different seed families of increasing family size (15, 49, and 100, 

respectively) show similar KS-test P values (~10
-5

). The KS-test is sensitive to family size 

and motivates us to develop novel algorithm to identify siRNA-mimic-miRNA off-target 

effects.  



59 

 

A volcano plot shows the resulting seed family scores after DecoRNAi modeling (Figure 26 B). 

The seed-linked effect was plotted against statistical significance, and globally we can tell the 

distribution of the off-target effects for each seed family. From which, based on empirical 

experience, we identify 13 off-target seed families (Table 1) and follow-up experimental 

validations were carried out to test the validity of our approach.  

 

 

Figure 26. Mathematical demonstration of DecoRNAi. A) original phenotypic readout Z 

scores are projected onto both on-target effect (green) and off-target effect (red) to perform a 

deconvolution analysis. B) global visualization of seed-linked effect and statistical 

significance from a H1155 study is plotted via volcano plot. C) mathematical demonstration 

of deconvolution analysis of high-throughput RNAi screening results is shown in 

illustration.    
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Out of 661 pools with significant Z scores (≤ -3), 10.29% (68/661) contained identified 

off-target effects from 13 identified off-target seed families. They correspond to 365 siRNA 

pools from a whole-genome screen. This indicates these off-target effects are quite pervasive in 

high-throughput RNAi screening hit selection. In order to evaluate the experimental performance 

of seed-driven effects, we chose four “off-target” seed families (GUUCCG, UCCAGG, 

UUGCAG, UAUGCC) (Figure 27) for a secondary individual oligo screen. 

 

 

Figure 27. Seed families to be re-tested. Four selected off-target seed families for secondary 

screening are to be evaluated for identified off-target effect from HTS projects.  
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From the four selected off-target seed families, twenty-four genes were selected for 

further analysis. For each gene, four individual siRNAs were separately evaluated for their 

efficacy on H1155 cell viability upon successful transfection (Figure 28). Therefore for each 

pool, siRNAs are classified into off-target siRNAs (red) with a predicted killing effect and same-

pool siRNAs (green) without killing effect.    

Based on our prediction, off-target siRNAs should have lower cell viability than those 

same-pool siRNAs. Secondary screen results confirmed our prediction in that for each individual 

gene, off-target oligos almost always have the lowest cell viability (Figure 28, left). Identified 

off-target seeds were strongly associated with consequences on cell viability. Consistent with 

individual-gene evaluation, the cumulative density function also suggests a dramatic difference 

between off-target siRNA Z score distribution and same-pool siRNA Z score distribution (Figure 

28, right, P value < 0.01). 

Table 1. Summary of identified off-target seed families from H1155.      
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At present we have identified off-target seed families based on siRNA-mimic-miRNA 

hypothesis. One interesting question is what would occur if a known miRNA shares the same 

seed with an identified off-target seed family. Of the 13 detected seed families, only one 

(UAUGCC) is found to be present within the seed sequence of an annotated human miRNA 

(hsa-miR-4633-5p). Consistent with the prediction, introduction of the miRNA mimic of miR-

4633-5p resulted in a similar viability defect (Figure 29, top). In order to further evaluate the 

sufficiency of seed sequence-dependent induction of off-target phenotypes, we had a synthetic 

miRNA corresponding to the validated seed family GUUCCG (Figure 29, bottom). It also 

effectively inhibited cell viability on H1155 cells. The evidence is strong that siRNA does mimic 

the miRNA mechanism to cause off-target effects in primary screen.  

Figure 28. Experimental validation of identified off-target effects. Red dots represent cell 

viability of off-target siRNAs on H1155 and green dots represent cell viability of same-pool 

siRNAs. Left, off-target siRNAs are stronger associated with killing effect than same-pool 

siRNAs within each gene. Right, cumulative density also indicates dramatic difference 

between off-target siRNAs and same-pool siRNAs with P value < 0.01. Data provided by 

JiMi Kim from Dr. Michael White’s lab.     
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As a methodology, we sought to test our algorithm on different siRNA library 

platforms. To this end, we evaluated the performance of DecoRNAi using a distinct genome-

wide siRNA library, and we examined an additional toxicity screen designed to identify genes 

required for lung cancer cell viability but using another non-small-cell lung cancer cell line 

Figure 29. Seed sequence-dependent induction of off-target effect. Top, an miRNA mimic of 

an has-miR-4633 shared seed with identified off-target seed family UAUGCC that 

significantly inhibited H1155 cell viability (P value < 0.01). Bottom, a synthetic miRNA 

mimic containing the predicted off-target seed GUUCCG also significantly inhibited H1155 

cell viability, while negative control of an identical sequence with the exception of the seed 

region did not (P value < 0.01). Data provided by JiMi Kim from Dr. Michael White’s lab.     
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HCC4017 on siRNA library platform from the Ambion (Kim, et al., 2013). DecoRNAi identified 

10 off-target seeds from the library enriched in these screens (Table 2). 

 

 

The global score was visualized (Figure 30, A). We also tested individual siRNAs to 

evaluated identified off-target effects. 60 individual siRNA oligonucleotides were retested for 

their killing effect upon cell line HCC4017 and consistently showed that off-target siRNAs have 

dramatic consequences on cell viability as compared to other same-pool siRNAs targeting the 

same genes (Figure 30, B).  

Sometimes scientists and researchers are trapped in situations such that knock-down is 

working well and phenotype is present. However, follow-up experiments don’t support the 

hypothesis. Everything works well except that the results have nothing to do with target gene. 

Here we even measured the mRNA expression level for selected siRNAs, and results show that 

even though all individual siRNAs successfully silenced gene expression (Figure 30, C), only 

off-target siRNAs had the phenotype of interest. This is strong evidence that the observed 

phenotype was uncoupled with on-target gene. It was the off-targeted genes or pathways that 

Table 2. Summary of identified off-target seed families from HCC4017 screen.       



65 

 

were producing observations. Therefore identification of such off-target effects is important to 

remove false positive hits.  

 

 

Figure 30. Off-target effect validations. A) global visualization of scores from HCC4017 

HTS project. X axis is strength of seed-linked effect and y axis is statistical significance. B)  

experimental validation of identified off-target effect using individual siRNAs. C) mRNA 

expression showed observed phenotype was uncoupled with on-target genes. Data provided 

by JiMi Kim from Dr. Michael White’s lab.     
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As in the previous example, we tested annotated miRNA and synthetic miRNA as well 

and phenotypes were consistent with a dominant seed-sequence dependent mode of action 

(Figure 31), further supporting the validity of our approach. miRNA mimic hsa-miR-4256 shared 

identified off-target seed UCUGAC, and synthetic miRNA contained seed ACAUGU. Both had 

a killing effect on cell line HCC4017.  

 

 

 So far we have been talking about lung cancer cell survival and growth, and therefore 

the potential off-targeted genes and pathways are fairly numerous. We can identify off-target 

siRNA from such screening projects. One question is what would occur if we narrowed down the 

potential off-targeted biological context. In theory, off-target effects should be much less.  

Here we applied DecoRNAi to a WNT screen project that attempted to return genes 

modulating WNT pathway activation, and therefore used a very specific endpoint assay based on 

a WNT-specific and a WNT-independent reporter gene combination (Tang, et al., 2008).  

Figure 31. siRNA-mimic-miRNA validation. Validation of seed-sequence-dependent 

induction of off-target effect by miRNA mimic and synthetic miRNA. Data provided by 

JiMi Kim from Dr. Michael White’s lab.     
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Consistent with our hypothesis, only one seed-sequence association was identified among 

reagents that selectively reduced WNT relevant activity. This may be suggestive of the narrower 

biological space that can be off-targeted and interfere with the endpoint assay employed in this 

screening effort, and therefore less off-target effect was observed. 

 

 

For primary high-throughput RNAi screening, the ultimate goal is to identify as many 

true positives as possible. In other words, we want to reduce the false positive rate. How can we 

help that? Based on our model, after we identify the off-target effects, we can remove them from 

the primary Z score and have the corrected Z score. Here the autophagy screen is an image-based 

high-throughput RNAi screen to identify gene products required for virus-induced autophagy by 

measuring colocalization of the Sinbis virus capsid protein with autophagolysosomes at the 

single cell level (Orvedahl, et al., 2011). We could identify six significant seed-sequence 

associations with inhibition of selective autophagy corresponding to 125 siRNA pools from 

primary screening (Table 3). In secondary individual oligo screening, off-target siRNAs trended 

towards lower Z scores than those same-pool siRNAs (Figure 32, B). The merit of this screen is 

that they have a relatively large-scale secondary individual screen, and therefore we can help 

evaluate the performance of the corrected Z score (Figure 32, C). The corrected Z-score is a 

better measure to prioritize the targets for further validation than the original Z-scores and reduce 

Table 3. Summary of identified off-target seed families from autophagy screen.       
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the false positive rates. With that said, no matter how many hits are selected, the corrected Z 

score will always have a lower false positive rate. For example, the false positive rate for the top 

20 “hits” rank ordered by the primary Z-score is 24%, and it was reduced to 17% when using the 

corrected Z score. In summary, we helped to reduce the false positive rate from primary 

screening. 

 

 

Figure 32. Off-target effect in autophagy screen. A) global visualization of DecoRNAi 

scores from an autophagy screen. B) in a secondary screening, off-target siRNAs have lower 

Z score than same-pool siRNAs. C) after identification of off-target effects, the false positive 

rate was reduced.  
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In our last example, the H1N1-cytopathogenicity screen project attempted to identify 

genes that modulate influenza virus replication in human bronchial epithelial cell line HBEC30 

(Ward, et al., 2012). Besides primary high-throughput RNAi screening, we also have parallel 

miRNA mimic screen and H1N1-induced cytopathogenicity that were measured using cell 

viability as the endpoint assay in our experiments. From the primary siRNA screen, DecoRNAi 

identified 13 significant seed families corresponding to 8 synthetic lethal off-target seed family 

(353 siRNA pools) and 5 synthetic viable off-target seed family (96 siRNA pools) (Table 4). 

Only 1 of 8 synthetic lethal off-target seeds shared a common seed with a human miRNA; hsa-

miR-491. Of note, the hsa-miR-491 mimic has the lowest cell viability out of all reagents from 

the miRNA mimic screen (Figure 33, right). This is strong evidence that the underlying 

hypothesis of this siRNA-mimic-miRNA mechanism is true, and additionally our approach is 

validated again in that DecoRNAi is effective in identification of such off-target effects from 

primary whole-genome RNAi screening.   

Table 4. Summary of identified off-target seed families from a virus infection screen.       
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3.3.2 Web interface implementation 

To help users implement the DecoRNAi algorithm, we have created a public access 

web-based graphical user interface at http://galaxy.qbrc.org/root?tool_id=sirna_offtarget for 

custom analysis (Figure 34). Users only need to input siRNA pool identifiers and phenotypic 

measurements (for example, Z score), and we will conduct the analysis. We have also included 

pre-computed seed sequence families for 3 commonly employed commercial siRNA libraries 

(Ambion and Dharmacon). Custom collection analysis is also available, and the tool will 

compute seed sequence from a user-supplied reagent sequence table. The default parameters 

were provided for the DecoRNAi online tools based on the empirical performance, but all 

parameters are able to be re-defined by users. The output files include global score visualization, 

identified seed families, the siRNA pools containing off-target effect, corrected z-scores and the 

annotated miRNAs with phenotypes of interest. 

Figure 33. Off-target effects in virus infection HTS. Left, a global visualization of 

DecoRNAi scores from a virus infection screen project. Right, the miRNA mimic screen 

validated that hsa-miR-491, a miRNA mimic that shares an identified off-target seed, has the 

lowest cell viability.  
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3.3.3 Summary 

Here we have designed a data-driven computational approach, Deconvolution Analysis 

of RNAi Screening data (DecoRNAi), to quantify the strength and direction of siRNA-mimic-

miRNA off-target effects as well as statistical significance and correction of off-target effects 

Figure 34. Illustrations of the web-based graphical user interface DecoRNAi. Seed families 

are pre-computed for the Dharmacon Library circa 2005, Dharmacon Library circa 2009, 

and Ambion Silencer Select. For screens employing these reagents, the only required input is 

the quantitative screen measurement for each reagent (for example, normalized z-score). 

Other libraries can be analyzed upon uploading the library-wide sequence information for 

each oligonucleotide or processed shRNA. Parameter settings are user-selected. The output 

files include a global visualization of seed family behavior, the predicted off-target seed 

families, the siRNA pools containing off-target seed families, the potential miRNAs sharing 

common seeds with identified off-target seed families, and the corrected z-scores. 



72 

 

from whole-genome RNAi screens to reduce the false positive rate (Figure 35), all validated on 

multiple datasets from different biological contexts across different siRNA libraries.  

 

 

Figure 35. Workflow of DecoRNAi analysis. From the phenotypic measurements and 

siRNA sequences, we can quantify the strength and direction of seed-linked off-target 

effects as well as statistical significance.  
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In order to simultaneously estimate gene-specific on-target effects and siRNA-mimic-

miRNA off-target effects, we developed a deconvolution algorithm to partition phenotypic 

measurements from primary high-throughput RNAi screening datasets. We tested our approach 

on 5 independent whole-genome siRNA screens, and found that microRNA (miRNA) mimicry 

by siRNA oligonucleotides is a pervasive source of “off-target” biological phenomenon in HTS 

projects. Application of DecoRNAi significantly enhanced the accurate return of single gene-

specific observations at whole-genome scale, and is provided here an open-source tool to 

enhance lead discovery accuracy from high-throughput RNAi screening studies.  

We applied DecoRNAi to five whole-genome siRNA screens employing distinct 

biological contexts and endpoint assays. These included a non-small-cell lung cancer screen for 

genes required for lung cancer cell growth and survival, a siRNA and miRNA mimic screen for 

host modulators of H1N1- cytopathogenicity, a siRNA screen for modulators of WNT reporter 

gene activation, a siRNA image-based screen for selective autophagy factors, and one additional 

screen for lung cancer drug target discovery using a distinct whole-genome siRNA library. 

 

3.4 Discussion  

We constructed DecoRNAi to quantitatively identify seed-dependent off-target effects 

by modeling the enrichment of oligonucleotide sequence-specific effects from genome-wide 

RNAi primary screen data. We don’t require arbitrary phenotypic threshold selection, and we 

attempt to combine the statistical significance of population separation with phenotypic effect 

size to return biologically meaningful correlations. We found that the algorithm performed well 

on multiple datasets across diverse phenotypic assays and within distinct reagent collections. As 
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expected, siRNA-mimic-miRNA behavior of siRNA oligonucleotides was a pervasive feature 

associated with primary screening phenotypes. This was detectable by DecoRNAi, 

experimentally verifiable, and could be imitated with appropriately designed synthetic miRNA-

like molecules.  

 

 

Figure 36. Comparison with GESS and CSA analysis. GESS analysis of human mRNA 3′ 

_UTRs from primary data of the H1155 toxicity screen (a), the selective autophagy screen 

(b), and the H1N1 cytopathogencity screen (c). Each point represents one 3’ _UTR and 

represents the SMFa value plotted against the SMFi value. (d). DecoRNAi-mediated Z score 

corrections reduce false positive rates compared to the CSA approach from the selective 

autophagy screen. Here, gene targets scoring positive with 2 or more confirmed siRNAs out 

of a total of 4 are considered to be true positives. The X-axis indicates arbitrary “hit” 

thresholds based on rank-ordered Z-scores after applying the DecoRNAi approach or the 

CSA approach, and the Y-axis indicates the corresponding false positive rate. 
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GESS (Genome-wide enrichment of seed sequence matches) is a recently reported 

computational tool designed to identify off-targeted transcripts rather than to isolate and correct 

off-target phenotypes (Sigoillot, et al., 2012). We applied the GESS algorithm in an attempt to 

employ it later. However, this method identified no off-target siRNA pools from either the 

H1155 toxicity screen or the selective autophagy screen. In stark contrast, this approach 

identified 23,807 off-target siRNA pools from the H1N1 cytopathogencity screen (Figure 36 a-

c). However, we anticipate that GESS’s intended utility will compensate DecoRNAi, providing a 

mechanism to help identify gene cohorts that are responding to siRNAs responsible for seed-

sequence driven phenotypes.   

Two additional computational efforts designed to deflect spurious gene-level 

annotations from large-scale RNAi screens are ATARiS (Analytic Technique for Assessment of 

RNAi by Similarity) (Shao, et al., 2013) and CSA (Common Seed Analysis) (Marine, et al., 

2012).  ATARiS was developed to detect coherent behavior from multiple shRNAs targeting the 

same gene. While effective, the method is less generalizable outside of pooled shRNA screens 

and requires multi-sample RNAi screens (at least 10 samples in their publication). CSA, like 

DecoRNAi, detects correlated biological behavior of siRNAs that share the same seed sequence.  

However, CSA does not account for family-size bias with its statistical significance metric.  

Integration of statistical significance with the strength and direction of biological phenotypes is 

likely an important consideration for optimized detection of false positives (Supplementary 

Figure 4c-e). Furthermore, DecoRNAi quantifies seed-driven off-target effects by modeling the 

on-target effects and off-targets from all individual siRNA oligo duplexes in the same gene pool, 

which is more efficient than looking at individual siRNA seed families separately. In support of 
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these considerations, we found that the DecoRNAi-corrected Z scores had a significantly better 

true positive rate than CSA corrections (Figure 36 d). 

A limitation of DecoRNAi is appropriate representation of seed families within a given 

screening collection to reach sufficient statistical power for detection of phenotypic associations.  

However, from the cumulative analysis of 5 different whole genome siRNA screens, we estimate 

that the DecoRNAi approach will cover ~85% of the seed sequence families present in a typical 

commercial arrayed siRNA library (Figure 37, A and B).  To facilitate automated application of 

DecoRNAi to siRNA and shRNA library screening efforts, we have embedded pre-computed 

seed family annotations for three commonly used commercial RNAi libraries (Dharmacon 

Library circa 2005, Dharmacon Library circa 2009, and Ambion Silencer). In addition, we 

provided a tool for automated generation of seed family annotation of user-specific siRNA or 

shRNA oligonucleotide collections (http://galaxy.qbrc.org/root?tool_id=sirna_offtarget). The 

tool is based on Galaxy open source framework and accepts the phenotypic measures (such as z-

scores) from the primary screen as input, and users can easily apply different parameters for 

analyzing the data. All of the user-specified parameters are well documented, and the 

intermediate outputs are provided, in order to make it convenient for users to trace back the 

analysis steps.  
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Figure 37. Optimization of DecoRNAi. A) of ~4000 seed families, seed family sizes ranging 

from 6 to 139 (red bars, 86% of total) were detectable within typical siRNA screens 

employing the Dharmacon library. B) for these studies, the threshold selection for significant 

LASSO coefficients included 3% of each tail. This threshold is investigator tunable. C) 

classification of seed families based on LASSO coefficients and KS p values. Region 1: 

considered to be both biologically and statistically significant; Region 2: considered to be 

statistically significant but biologically insignificant; Region 3: considered to be biologically 

significant but statistically insignificant. D) from the family size distribution, most seed 

families from region 3 have a family size of less than 6, and those from region 2 are enriched 

for the largest family sizes. 
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In summary, DecoRNAi is a computational tool that fills an important unmet need for 

the functional genomics research community as it enhances the return of rigorous biologically 

meaningful observations downstream of screening efforts that are otherwise consuming 

enormous quantities of time and reagents by following bad leads or by weeding them out using 

strictly empirical approaches. Substantial reduction of off-target rates was experimentally 

validated in 5 distinct biological screens across different genome-wide siRNA libraries. A 

public-access graphical user interface has been constructed to facilitate application of this 

algorithm within the functional genomics community. 
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CHAPTER FOUR 

 
STATISTICAL MODELING AND VISUALIZATION OF IMAGE-BASED HIGH-

THROUGHPUT RNA INTERFERENCE SCREENING RESULTS 

 

Image-based high-content screening has enabled us to describe complex multivariate 

cellular phenotypes on the single-cell level. Recently, the combination of image-based screen 

and high-throughput RNAi screen has led to genome-wide functional annotation in a wide 

spectrum of biological research and drug target discovery. However, statistical modeling and 

visualization tools are still lacking in that no specific tools are available for image-based high-

throughput RNAi screening. We developed iScreen (image-Based High-Throughput RNAi 

Screen Analysis Tool) R package for statistical modeling and visualization of image-based high-

throughput RNAi Screen. iScreen is available on CRAN for user download. Experimental data 

demonstrates the capability and efficiency of iScreen. 

 

4.1 Introduction 

RNAi is a loss-of-function technique with wide applications in biomedical research, 

mediated via either small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs).  

Advancing technology enables genome-wide high-throughput RNAi screening for functional 

genomics or drug target discovery. Recently, in combination with high-content microscopy, 

image-based high-throughput RNAi screening has had a breakthrough in that it can accurately 

describe complex multivariate cellular phenotypes and provide a high level of cellular 



81 

 

information, which has been widely used for finding novel pathway components or drug targets 

(Giuliano, et al., 2004; Orvedahl, et al., 2011).  

 

4.1.1 Image-based screening 

Traditionally, high-throughput screening is based on single read-out system, regardless 

of whether the system is molecule screening or RNAi screening. Commonly used phenotype 

readouts include cell viability, the chemical activity of metabolic substrates, or the strengths of 

pathway activity. Such an oversimplified representation of complex biological processes remains 

an issue for understanding a phenotype of interest, though this process does provide faster 

computation and relatively greater detection power in many HTS projects, often at a lower cost.  

However, for complex cellular phenotypes it has become necessary to simultaneously 

measure multiple features that might be relevant for biological or therapeutic purposes (Young, 

et al., 2008). For example, in the study of autophagy activity, 400~500 cells are plated in each 

well of microplate and for each cell within one well, autophagosomes have to be recognized and 

their number counted for quantification and analysis (Orvedahl, et al., 2011). For small-molecule 

compound screening, it is also beneficial to profile cellular phenotypes after treatment since this 

provides comprehensive information about therapeutic effects (Young, et al., 2008).  

Within drug discovery projects in many pharmaceutical and biotechnology companies, 

it has become more and more necessary to enhance the quality of drug screening procedures and 

results in the use of high content screening (HCS) based on automated image-based read-out 

system to measure multiple cellular features. HCS is especially popular on projects focused on 

multi-feature cellular phenomena such as signaling, cell change transformation and cellular 
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toxicology, making it a powerful tool for studying conditions like neurological disorders and 

autoimmune disease (Lang, et al., 2006; Mitchison, 2005; Nichols, 2007).  

 

 

Recently, instrument development and quantification algorithms have made several 

advancements (Giuliano, et al., 2003; Lee and Howell, 2006; Young, et al., 2008). For example, 

CellProfiler, which was developed by MIT, has helped addressed a number of image 

quantifications of biological phenotypes such as cell count, cell size, protein levels, cell shape or 

Figure 38. Work flow of cellular image-base screening. In each well of the screening plate, 

pooled siRNAs are used to knock down genes in a genome-wide pattern. Afterward, 

automatic staining and cellular segmentation are performed for downstream feature 

extraction and analysis.  
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DNA and protein staining pattern (Carpenter, 2006). Therefore the analysis results are featured 

with high-dimensional output, which requires quantification and special handling.  

In high-content high-throughput RNAi screening, the first part of the workflow is very 

similar to that of ordinary screening. Pooled siRNAs are used to knock down genes in a genome-

wide pattern. However, downstream operation and analysis are more complex than usual. Cells 

have to be stained to reveal components such as DNA, tubulin and actin, before automatic 

segmentation can be performed. Features such as the actin perimeter, number of 

autophagosomes, corner detection, and ratio will be measured. Statistical modeling and machine 

learning have to be trained to operate classification and further analysis (Figure 38).  

 

4.1.2 Commercially available software 

Commercially available imaging software has made it possible to perform high-

throughput image-based screening. For example, Cellomics (Ghosh, et al., 2004; Giuliano and 

Taylor, 1998; Kapur, 2002) has developed ArrayScan HCS for the fluorescent-protein biosensors 

screening used to determine the molecular dynamics of macromolecules, ions and metabolites, 

thereby enhancing drug discovery (Ghosh, et al., 2004).   

GE-Healthcare also developed automated confocal microscopy techniques capable of 

analyzing one million data points per day (Lang, et al., 2006). This has been used to provide 

screening of higher density plates with fewer reagents, allowing for rapid analysis of high 

density formats and ultra-high-throughput screening of a wider range of biological assays 

(Fowler, et al., 2000; Oakley, 2002).  
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Commercially available software also includes Evotec (Jager, 2003) and TTP (Grepin, 

2003), the former for automated confocal microscopy screening and the latter for laser scanning 

fluorescence microplate cytometers (Lang, et al., 2006).  

 

4.1.3 Comparison of methods for high-content screening 

With the help of high-content image-based screening, we now have a means of broadly 

characterizing cellular response to compound treatment and RNAi knockdown. Given that 

multiple features from a single cell are measured out of the hundreds or even thousands of cells 

within a single well from a microplate, high-content screening presents itself with huge high-

dimensional datasets, which makes analysis a bottlenecking step in research and projects. 

Quantitative scientists and researchers have been developing and applying a variety of new or 

available methods to modeling and analyzing such big data (Ljosa, et al., 2013). 

In some screening projects, either negative control or positive control is available and 

presents itself as a distribution. Therefore, in order to detect the difference between the sample 

distribution and control distribution, Kolmogorov-Smirnov (KS) statistics can be used to 

quantify and test the difference between two cumulative density functions (CDFs) that are based 

non-parametric statistics (Figure 39), in which statistics D is defined as below: 

 1 2sup ( ) ( )
z

D F z F z    (24) 

where F1() and F2() are two CDFs and D is test statistics.  
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In Perlman’s study, KS statistics were used to profile the dose-dependent phenotypic 

effect of drug treatments in high-content screening and to identify suggested targets for blinded 

drugs. They provided a systematic and comprehensive pipeline toward profiling at the single-cell 

level, facilitating the discovery of a new drug mechanism (Perlman, 2004).   

Figure 39. Demonstration of KS statistics. We can transform an ordinary density plot into a 

cumulative density plot, which provides better visualization and power to detect difference 

since it is based on non-parametric statistics.   
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As a supersized machine learning approach, support vector machine (SVM) provides a 

means of classification and regression analysis (Figure 40). Given a training data set with each 

object marked with a class identifier, the model can help predict classes for new incoming data 

sets. For example, in high-content screening SVM can be used to distinguish drug-treated cells 

and vehicle-treated cells. Dr. Loo’s group employed SVM to characterize compound activities in 

measuring drug effect and identifying cellular responses to dose-dependent drug treatment. (Loo, 

et al., 2007).  

A Gaussian mixture (GM) model is another methodology for classification and 

regression analysis. The basic idea is to distinguish two Gaussian populations when they are 

mixed and to select a cut-off for pattern recognition, such as in classification of drug-resistant 

and -sensitive cell lines. A Bayesian information criterion (BIC) can help identify the number of 

subgroups, and then the GM model can identify criterion for classification (Figure 41).  

Figure 40. Demonstration of SVMs. Machine learning approach SVMs could be used for 

classifying cells in each sample from high-content screening projects.  
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Factor analysis has a history of almost one hundred years (Spearman, 1904) and has 

been widely applied in fields such as high-dimensional image data (Carroll and Schweiker, 1951; 

Floyd and Widaman, 1995; Malinowski, 2002; Stewart, 1981; Tinsley and Tinsley, 1987).  

In the factor analysis model, observed sample X’s are modeled as a hidden 

transformation A y   of the factors and a case-specific noise term   dictated as below: 

 x Ay       (25) 

Using the expectation maximization (EM) algorithm, we can estimate A,   and the 

corresponding variance matrix and therefore calculate the maximum posterior of y as below:  

      
1

| T T
n nE y x A AA x 



     (26) 

Figure 41. Demonstration of Gaussian Mixture model. 50 non-small-cell lung cancer cell 

lines are treated with Paclitaxel and drug responses are measured. BIC showed two 

significantly distinguishable groups, and cell lines are classified into resistant and sensitive 

subsets.  
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Those algorithms and approaches have been accepted as a standard analysis pipeline 

and used widely in a series of high-content screening (Azegrouz, et al., 2013; Ljosa, et al., 2013; 

Pau, et al., 2013; Zhong, et al., 2013). However, so far no R package or tools have been 

developed specifically for image-based high-throughput RNAi screening.  

 

4.1.4 Challenge of high-content screening 

For current algorithms and tools designed for high-content imaging, the focus has been 

on feature extraction and classification of heterogeneous cell types via machine learning. 

Similarly, although image-based high-throughput RNAi screen generates huge amounts of 

feature data, the study process is gene-centered in that researchers experiment to annotate 

pathway- or phenotype-related genes while controlling for other confounding factors. 

Furthermore, a data visualization tool is lacking to control experimental quality and plot analysis 

results.  

Given that fact that image data comes from a variety of distributions, we implemented 

our package via generalized linear regression to cover both continuous and categorical data. In 

addition, we also made iScreen quite flexible. Users can provide customized functions to 

implement analyses. 
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4.2 Methods and Materials 

 

4.2.1 Experimental procedure 

Data was provided by collaborator Xiaonan Dong from Dr. Beth Levine’s lab. A HeLa 

cell line was used to screen for genes required for virus-induced autophagy. An autophagosome 

was used as an indicator of autophagy activity.  

 

4.2.2 Statistical modeling 

For image-based high-throughput RNAi screening, data can assume a variety of 

distributions from the exponential family, such as normal, Poisson, gamma or binomial. 

Therefore, we implement via generalized linear models (GLMs) in our package to handle 

varying data. Generalized linear models are a large class of statistical models for relating 

responses to predictor variables in a linear pattern, including many commonly encountered types 

of dependent variables and error structures as special cases. In addition to regression models for 

continuous dependent variables, models for rates and proportions, binary, ordinal and 

multinomial variables and counts can be handled as GLMs. In GLMs, 

    E Y g    (27) 

where  

 X    (28) 

Y is the response variable, η is the specified linear predictor and g(•) is the link function, 

determined by the probability distribution of Y. In order to facilitate custom analysis, we also 

allow the user to provide self-defined functions  
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  ,Y f X    (29) 

to model and analyze data such that customized functions can be integrated into our analysis 

pipeline and make use of other analysis and visualization tools in our package. 

 

4.3 Results 

 

4.3.1 Visualization 

For high-content image-based screening, visualization is often the preliminary step 

toward data analysis (Figure 42). Shown below is a snapshot from an autophagy study in which 

researchers were interested in the co-localization of the red-labelled Sindbis virus and green-

labelled autophagosome. We have a built-in visualization tool for plotting such data. Users can 

also specify different types of plotting parameters such as diameter, shape and color (Figure 43, 

left). 

 

 

Figure 42. Data visualization from an image-based screening project. Red, Sindbis virus; 

green, autophagosomes.  
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4.3.2 Case Study 

Here we applied our package to a second autophagy study. In this case, experiments 

were carried out on 96-well microplates, and in each well, 200~500 cells were planted. At the 

end of the experiments, the number of autophagosomes was counted for each cell. Accordingly, 

we chose a Poisson regression to model and analyze data since the response variable was in the 

form of count numbers. Therefore, a link function log was used. In addition, we used the 

negative controls on each plate as a reference in our model. For each well on the plate, we 

estimated a coefficient that measured the strength and direction of how the distribution of count 

numbers in each well deviated from the negative controls.   

 

Figure 43. Customized analysis and visualization. Left, a customized data plot with tunable 

parameters such shape, diameter and background color. Right, a plot of marker correlation 

with respect to the distance between two markers.   
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4.3.3 Quality control 

In order to visualize analysis results and perform quality control, we developed methods 

to plot the original data and analysis results and to use them as a means of visualizing row or 

column effects for quality control (Figure 45). This functionality provides users with a means to 

check real-time data quality in order to explore any problems that might occur during screening.  

Figure 44. Poisson distribution modeling of experimental data. Left, positive control; right, 

negative control.    
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4.3.4 ROC curve 

In our preliminary screen, experiments were designed such that positive control and 

negative control were planted alternately in wells across the plate. Therefore we were able to 

evaluate our approaches using the ROC (receiving operating characteristics) curve. As shown 

(Figure 46), the AUC (area under the curve) is almost one. We came to the conclusion that 

iScreen is powerful and efficient enough to identify true positives from such image-based high-

throughput RNAi screening. 

 

4.3.5 User-defined function 

In our package, we also provided flexibility so that users can incorporate user-defined 

functions into our analysis pipeline. For example, in the co-localization study we can implement 

a marker correlation (Figure 43, right) to determine the significance level if dots of two colors 

are co-localized. 

Figure 45. Visualization for quality control. Left, the estimated score visualization in a plate 

pattern. Right, the row effect visualization for quality control.     
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4.4 Discussion  

Recently, image-based high-throughput RNAi screening has emerged as a novel 

technique to identify pathway- or phenotype-relevant genes. Given the fact that specific tools 

were lacking for such analysis, we developed the iScreen R package to facilitate data analysis 

and visualization. In our package we implemented a generalized linear regression to handle a 

variety of distribution in the forms of both continuous and discrete data. Experimental validation 

showed the competency and capability of our package through an autophagy study. Besides, we 

also allow the user to provide a customized model and make use of our analysis pipeline and 

visualization tool via integrating a user-defined function into our package.   

 

Figure 46. ROC plot. An ROC plot from two exploratory studies in which we knew the true 

situation for each well. Therefore we could evaluate the performance of our analysis.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

 
5.1 Summary 

The ultimate goal of my dissertation research was to develop an analysis pipeline for 

high-throughput RNAi screening. Since its discovery, RNAi has opened up a wide spectrum of 

biomedical and biological research discoveries, including enhanced functional annotations, 

identification of drug targets and identification of novel therapeutic approaches. At the 

University of Texas Southwestern Medical Center we have several high throughput screening 

cores, and I have closely collaborated with the high-throughput RNAi screening center. I have 

been developing statistical models of high-throughput RNAi screening data to tackle 

computational challenges in data analysis and visualization. As part of my dissertation research, I 

have completed three major parts of the projects.  

First, I focused on modeling and correcting spatial correlated background noise from 

high-throughput RNAi screening. I employed a well-established geostatistical model, Kriging 

interpolation, to fit high-throughput RNAi screening data from duplicated experiments. We have 

shown that removal of such spatial background noise helps enhance statistical detection power 

by reducing variation within data. Experimental validation demonstrated that we can identify 

false negatives from high-throughput RNAi screening.  

After data normalization, identifying hits from HTS is the ultimate goal that will allow 

us to pick up as many true positives as possible. However, the interpretation of high-throughput 

RNAi screening result has been hampered by off-target effects, which could be due to reagent 

concentrations, immune response to transfection, or sequence-dependent off-targeting. One of 
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the sequence-dependent off-targeting effects is from the observation that siRNA might mimic 

miRNA to raise off-target effects in high-throughput RNAi screening. In order to identify such 

off-target effects, I developed a deconvolution analysis approach to model data from HTS 

projects where pooled siRNAs are used to knock down genes. To develop this new methodology, 

I tested our novel algorithm on multiple datasets from different biological contexts across 

different siRNA libraries. All identified off-target candidates were experimentally validated. This 

approach is thus far the most comprehensive analysis of siRNA-mimic-miRNA off-target effects. 

We even implemented our algorithm as a web-based user-friendly Galaxy tool available online 

within UT Southwestern and outside to the general scientific community.  

Due to the advanced development of imaging instruments and technology, high-content 

screening has been integrated into high-throughput RNAi screening, which enables multiple 

features from a single cell and comprehensive descriptive quantification of complex biological 

process due to loss-of-function interference. Consequently, new methodologies and analysis 

pipelines are needed. Therefore, we developed a new R package, “iScreen”, that is now available 

to the general scientific community for data visualization and analysis. “iScreen” is curated on 

CRAN for downloading.  

In summary, I created an analysis pipeline for high-throughput RNAi screening and 

made online tools for implementing our algorithm and approaches. Experimental validation 

confirmed the validity of our methodologies.   
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5.2 Future work 

Advances in genome-wide high-throughput RNAi screening have sped up the discovery 

of novel drug targets; however, prioritization of phenotype-associating genes remains 

challenging, making it the rate-limiting step in analysis of such studies and even blurring the 

interpretations and experimental validations. 

In future work, we will develop an integrated analysis of RNAi screening data with 

complementary genomic data, such as genome-wide functional gene networks, to prioritize 

RNAi screen hits and provide a system-level understanding of how gene perturbations affect 

phenotypes of interest from a network point of view. Specifically, we will integrate RNAi 

screening data with tissue/phenotype-specific functional gene network data to 1) prioritize 

candidate phenotype-related genes for experimental validation and 2) provide a comprehensive 

network view of gene perturbations for phenotypic outcomes. 

Our results will show if integrating RNAi screening data with tissue/phenotype specific 

functional networks is more robust and accurate for finding phenotype-related genes and sub-

networks enriched with cellular processes, which are important for phenotypes, compared to 

those that use only RNAi screen data or a protein-protein interaction network. Thus they can 

bring a novel phenotype-specific perspective for further investigation. 


