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differentiation was detected by microarrays and confirmed by northern blot and quantitative 
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inhibited 3T3-L1 adipogenesis. Both the mRNA and protein levels of HMGA2, a target of 

let-7, decreased with ectopic let-7 presence in 3T3-L1 cells. Also, HMGA2 protein level was 

inversely correlated to let-7 levels during 3T3-L1 adipogenesis. Knock-down of Hmga2 or 

E2f1 by siRNA inhibited 3T3-L1 pre-adipocyte differentiation. Our results suggest let-7 can 
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CHAPTER 1 

General introduction 

1.1 MicroRNA 

1.1.1 Discovery of microRNA 

The first microRNA (miRNA), lin-4, was found in Caenorhabditis elegans in 1993 (Lee 

et al., 1993). lin-4 can regulate post embryonic C. elelgans development by negatively 

regulating lin-14 protein through binding to the 3’ untranslated region (3’UTR) of lin-14 

(Lee et al., 1993). In 2000, another microRNA, let-7 was found in C. elegans (Reinhart et 

al., 2000). let-7 can regulate C. elegans developmental timing by targeting lin-14, lin-28, 

lin-41, lin-42, and daf-12 (Reinhart et al., 2000). The finding of let-7 led to discovery of 

more microRNAs in worms, flies, and mammals (Lagos-Quintana et al., 2001; Lau et al., 

2001; Lee and Ambros, 2001). There are 154 microRNAs in Caenorhabditis elegans, 152 in 

Drosophila melanogaster, 472 in Mus musculus,  and 678 in Homo sapiens in the miRBase 

(http://microrna.sanger.ac.uk/) as of July, 2008. 

 

1.1.2 Methods to identify microRNAs 

Forward genetics identifies genes that are responsible for certain phenotypes. It was the 

first method to find microRNAs such as lin-4 and let-7 in Caenorhabditis elegans (Lee et al., 

1993; Reinhart et al., 2000). bantam was another microRNA found in Drosophila by genetic 

methods (Brennecke et al., 2003). Another way to discover microRNAs on a large scale is 
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cDNA cloning (Ambros et al., 2003b). Investigators clone small size RNAs, compare their 

sequences to genomic sequences, and use RNA folding predictions to check whether they 

belong to microRNA family. Then northern blot is used to check their expression (Ambros 

and Lee, 2004). The third method used to identify microRNA is using bioinformatics 

programs. These programs are based on the fact that the sequences of microRNA are 

evolutionally conserved and microRNA precursors have a stem loop structure. These 

bioinformatics programs are summarized in Table 1.1 (Kim and Nam, 2006). 

 

1.1.3 Genomic location of microRNAs 

It was thought that most microRNAs are made from independent transcripts (Lau et al., 

2001). After annotating the sequences of some mammalian microRNAs with their genomes, 

researchers found 161 out of 232 microRNAs are located within the overlap of defined 

transcription units (Rodriguez et al., 2004). Among them, 90 out of 161 microRNAs are 

located in the intron of a protein encoding transcript, 27 are located in the intron of a 

non-protein encoding transcript, 30 are located in the exon of a non-protein encoding 

transcript (Rodriguez et al., 2004). Comparison of the expression pattern of microRNAs 

with their overlapping genes suggests that they may come from the same transcripts 

(Rodriguez et al., 2004). A single transcript may encode several microRNAs. For example, 

miR-35, miR-36, miR-37, miR-38, miR-39, miR-40, and miR-41 come from a single 

transcript in C. elegans (Lau et al., 2001). In the human genome, miR-17, miR-18a, 

miR-19a, miR-20a, miR-19b-1, miR-92a-1 are from a cluster on chromosome 13 
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(Lagos-Quintana et al., 2001; Mourelatos et al., 2002). 

MicroRNAs may have their own promoters. For examples, the promoter of miR-155 

(also known as BIC gene) was found by genetic methods (Tam, 2001). Also the temporal 

regulatory element of let-7 promoter has been characterized (Johnson et al., 2003). 

 

1.1.4 Regulation of microRNAs 

MicroRNAs can be regulated by other genes. p53 can bind to the promoter of miR-34 

and activate its expression, which will lead to cell apoptosis (Chang et al., 2007; Corney et 

al., 2007; He et al., 2007b; Hermeking, 2007; Raver-Shapira et al., 2007; Tarasov et al., 

2007). c-Myc can promote the expression of the miR-17-92 cluster (O'Donnell et al., 2005). 

Furthermore, miR-1 is the direct transcriptional target of SRF (serum response factor), 

MyoD (myogenic differentiation 1) and Mef2 (myocyte enhancer factor-2) (Zhao et al., 

2005). 

 

1.1.5 MicroRNA biogenesis 

The process of microRNA biogenesis is summarized in Fig. 1.1. Most microRNAs are 

transcribed by RNA polymerase II. It has been shown to bind to the promoters of 

microRNAs and inhibition of its activity leads to less primary microRNA products (Lee et 

al., 2004). The microRNA is transcribed as a large product called the primary microRNA 

(pri-miRNA), which is several kilo basepairs in length and contains 5’ caps and 3’ 

polyadenylated tails (Cai et al., 2004). Pri-microRNA then is processed by the nuclear  
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Table 1.1: Program for microRNA predication (Adapted from Kim and Nam, 2006) 

Name of 

program 
Methods 

Prediction 

target 

Nonconserv

ed 

microRNA 

detection 

Species Sources 

miRscan 

Comparative 

analysis, stem-loop 

conservation 

Pre-microRNA No Nematode 
Lim et al, Genes Dev. 

(2003); 17(8):991-1008. 

srnaloop 

Sequential and 

structural 

properties 

Pre-microRNA No Nematode 
Grad et al, Mol. Cell (2003); 

11:1253–1263 

miRseeker 

Comparative 

analysis, stem-loop 

conservation 

Pre-microRNA No Fly 
Lai et al, Genome Biol. 

(2003); 4:R4 

 

Sequential and 

structural 

properties, 

comparative 

analysis 

Pre-microRNA No Arabidopsis 
Wang et al, Genome 

Biol.(2004); 5:R65 

ERPIN 

Sequence or 

structural 

alignment 

Pre-microRNA No 
Animal, 

plant 

Legendre et al, 

Bioinformatics (2005); 

21:841–845 

findMicro

RNA 

Seed match, 

comparative 

analysis 

Pre-microRNA 

and mature 

microRNA 

No Arabidopsis 
Adai et al, Genome 

Res.(2005); 15:78–91 

 
Phylogenetic 

shadowing profile 
Pre-microRNA Yes Human 

Berezikov et al, Cell (2005); 

120:21–24 

 Seed match 
Mature 

microRNA 
Yes Human 

Xie, et al, Nature (2005); 

434:338–345 

miralign 

Sequence or 

structural 

alignment 

Pre-microRNA No 
Animal, 

plant 

Wang, et al, Bioinformatics  

(2005); 21:3610–3614 

ProMiR 

Probabilistic model 

of pairwise 

sequences 

Pre- 

microRNA and 

mature 

microRNA 

Yes Human 
Nam et al, Nucleic Acids 

Res. (2005); 33:3570–3581 

PalGrade 

Sequential and 

structural 

properties 

Pre-microRNA Yes Human 

Bentwich et al, 

Nat Genet 

(2005); 

37:766–770 
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RNaseIII, Drosha, into pre-microRNA which is around 60-70 nucleotides and contains 

stem-loop structures (Lee et al., 2003b; Lee et al., 2002). Cleavage of pri-microRNA into 

pre-microRNA by Drosha requires double stranded RNA binding protein DGCR8 (Gregory 

et al., 2004; Han et al., 2004; Landthaler et al., 2004). Pre-microRNA is exported from the 

nucleus into the cytoplasm by Exportin-5 in a Ran-GTPase dependent manner (Lund et al., 

2004; Yi et al., 2003). 

After pre-microRNA is exported into the cytoplasm, it is cut into a 22nt duplex by 

another RNase III endonuclease called Dicer (Lee et al., 2003b). Dicer is known to play a 

role in the RNA interference (RNAi) process (Bernstein et al., 2001) and was later found to 

be involved in microRNA maturation (Grishok et al., 2001; Hutvagner et al., 2001; Ketting 

et al., 2001). Dicer can cut the pre-microRNA duplex like the way it does during the RNAi 

process (reviewed by Bartel, 2004). Double stranded RNA binding protein Loquacious (its 

homolog is human immunodeficiency virus (HIV) transactivating response RNA-binding 

protein, TRBP) helps Dicer to cleave pre-microRNA into mature microRNA (Forstemann et 

al., 2005; Leuschner et al., 2005; Saito et al., 2005; Chendrimada et al., 2005). After Dicer 

cleavage, only the strand with low stability at its 5’ end of the duplex will remain in the 

microRNA containing RNA induced silencing complex (miRISC) while the other strand 

disappears quickly (Khvorova et al., 2003; Schwarz et al., 2003). miRISC contains RNA 

helicase Gemin 3, Gemin 4 and eIF2C2, which is a human homolog of Argonaute 

(Mourelatos et al., 2002). Once the RISC complex forms, microRNA can guide the complex 

by binding to the 3’ UTR or open reading frame of its target by imprecise base pairing 

(reviewed by Pillai, 2005). 
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1.1.6 Mechanism of microRNA action 

MicroRNAs can post-transcriptionally regulate their targets by repressing protein 

translation or accelerating mRNA decay (reviewed by Eulalio et al., 2008; Wu and Belasco, 

2008). 

MicroRNAs can repress protein translation of their targets in several ways. Firstly, they 

can inhibit protein translation initiation. Ago2 in the RISC complex has a motif similar to 

the m(7)G cap-binding domain of eIF4E, which is important for translation initiation. RISC 

complex can compete with eIF4E for m(7)G cap binding (Kiriakidou et al., 2007). Another 

possible mechanism for repressing protein translation after cap recognition is through 

preventing 80S ribosome association. RISC complex contains eIF6, which is an 

anti-association factor. It can prevent the association of small and large ribosomal subunits 

(Chendrimada et al., 2007). MicroRNAs also can accelerate nascent polypeptide chain 

degradation co-translationally on their targets (Nottrott et al., 2006). Finally, microRNAs 

may inhibit translation elongation by causing ribosome dissociation prematurely (Petersen 

et al., 2006). 

MicroRNAs can also promote mRNA degradation. Some microRNAs in plants have 

perfect or nearly perfect sequence complementarity to their targets and they can directly 

cleave their targets in a way similar to siRNA (Rhoades et al., 2002). In animals, most 

microRNAs regulate their targets by translation repression, but some microRNAs can cause 

cleavage of their targets. For example, the miR-196 sequence is a nearly perfect match with 

the sequence of the 3’ UTR of the HOXB8 and can cause the cleavage of HOXB8 transcript 

(Yekta et al., 2004). Argonaute protein in the RISC complex is responsible for microRNA 
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-dependent mRNA cleavage (Liu et al., 2004b; Meister et al., 2004; Okamura et al., 2004). 

For those microRNAs whose sequences have only partial complementary to their targets, 

they may accelerate mRNA degradation by directing removal of 3’ poly (A) tail and 5’ cap 

from the mRNA they targeted (Behm-Ansmant et al., 2006; Eulalio et al., 2007c; Giraldez 

et al., 2006; Wu et al., 2006). Messenger RNA degradation by microRNA requires 

Argonaute protein and P-body component GW182. The deadenylation is carried out by 

CAF1-CCR4-NOT deadenylase complex (Behm-Ansmant et al., 2006). The deadenylation 

and loss of poly (A) binding protein leads to the decapping by Dcp2 complex, which 

includes several decapping activators such as DCP1, EDC3, Ge-1, and RNA helicase 

RCK/p54. Then mRNA is subject to 5’ to 3’ exonucleolytic degradation by Xrn1 (Eulalio et 

al., 2007c). 

A large number of mRNAs that undergo translation repression or degradation are 

concentrated in cytoplasmic foci that are called processing bodies (P bodies). P bodies 

contain Argonate proteins, GW182, CAF1-CCR4-NOT deadenylase complex, DCP2 

decapping enzyme complex, and other RNA degradation enzymes (reviewed by Eulalio et 

al., 2007a). Although enzymes in P body are important for microRNA-induced mRNA 

silencing and degradation, P body is a consequence of silencing instead of a cause (Eulalio 

et al., 2007b). 

1.1.7 Distinctions between siRNA and microRNA 

MicroRNAs are small noncoding RNAs around 22 nt that can be detected by northern 

blot or size-fractionated cDNA cloning. microRNAs are generated by Dicer from one arm 
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of precursors, which are around 60-80nt with stem-loop structures. Their sequences match 

genomic sequences and are evolutionary conserved (Ambros et al., 2003a). microRNA and 

siRNA share a lot of similarities such as small size, the same biochemical composition, 

indistinguishable function and being generated by dicer (Ambros et al., 2003a). The 

difference between microRNA and siRNA is their origin. microRNAs are from endogenous 

transcripts of the genome and siRNAs are from exogenous or endogenous dsRNA. 

microRNAs are cut from one arm of precursors with hairpin structures and siRNAs are cut 

from dsRNA. Moreover, each microRNA precursor can only yield one copy of a microRNA 

molecule, but each dsRNA can produce a lot of siRNA molecules. Furthermore, the 

sequences of microRNAs are generally conserved in different species, while siRNA 

sequences are not (Ambros et al., 2003a; Bartel, 2004). 

 

1.1.8 Target identification for microRNA 

MicroRNAs bind to the 3’UTR of their targets. Number 2-8 nucleotides of microRNAs 

were found to be crucial for binding to mRNA after analysis of the sequences of 

microRNAs and their targets. Positions 2-8 of the microRNA, called the ‘Seed Region’, are 

usually in perfect Watson-Crick base pairing with their mRNA binding sites (Lewis et al., 

2003). The sequences of binding sites in the 3’ UTR of mRNAs that are perfectly paired 

with the ‘Seed Region’ of a microRNA are conserved between different species and usually 

flanked with adenosines (Lewis et al., 2005). Some microRNA targets donot have perfect 

Watson-Crick base pairings with the 5’ of microRNAs in their binding sites, but they have  
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Fig. 1.1: Biogenesis of microRNA 

(Adapted from Willams, 2008) 
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significant complementarity with the 3’ sequences of microRNAs (reviewed by Maziere and 

Enright, 2007; Rajewsky, 2006). 

Several bioinformatics tools and databases have been developed to predict microRNA 

targets in animals. Table 1.2 summarizes online methods and resources available for target 

prediction (reviewed by Maziere and Enright, 2007; Rajewsky, 2006). 

Experimentally there are several ways to identify mRNA targets for microRNAs. 

Genetic studies found that lin-14 is the target of lin-4 (Lee et al., 1993). Since some 

microRNAs can regulate their targets at the mRNA level, over-expression of a certain 

microRNA can down-regulate its targets at the mRNA level, which can be detected by 

microarray (Lim et al., 2005). Inactivation of Drosha in Drosophila abolished microRNA 

production and led to accumulation of some targets for microRNAs, which can also be 

detected by microarray (Rehwinkel et al., 2006). Knock-out of a certain microRNA genes as 

well as inhibition of microRNAs by antisense oligonucleotides (ASO) or locked nucleic 

acids (LNA) also can increase the mRNA level of some microRNA targets (Elmen et al., 

2008; Esau et al., 2006; Krutzfeldt et al., 2005). At the protein level, a reporter containing 

potential microRNA binding sites in the 3’UTR of a luciferase gene can be used to check 

whether it is a target for a certain microRNA (reviewed by Krutzfeldt et al., 2006). 
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Table 1.2: Online methods and resources for microRNA target predication 

Name Website 

microRNA target predictions 

at EMBL 
www.russell.embl-heidelberg.de/microRNAs/ 

miRanda www.microrna.org/microrna/home.do 

mirBase microrna.sanger.ac.uk/targets/v2/ 

PicTar pictar.bio.nyu.edu 

TargetScan, TargetScanS genes.mit.edu/targetscan 

Chan et al, 2005 tavazoielab.princeton.edu/microRNAs/ 

miTarget  cbit.snu.ac.kr/~miTarget/ 

miRDB mirdb.org/miRDB/index.html 

RNA hybrid bibiserv.techfak.uni-bielefeld.de/rnahybrid/ 

DIANA-MicroT diana.pcbi.upenn.edu/DIANA-microT 

RNA22 cbcsrv.watson.ibm.com/rna22.html 

Tarbase www.diana.pcbi.upenn.edu/tarbase.html 

Argonaute www.ma.uni-heidelberg.de/apps/zmf/argonaute/interface 

microRNAMAP microRNAmap.mbc.nctu.edu.tw/ 

 

(Adapted from Rajewsky, 2006; Mazière and Enright, 2007) 

 

1.1.9 Functions of microRNAs 

Despite the small size of microRNAs, they can play very important roles in many 

physiologic processes and diseases, such as development, metabolism, cell proliferation and 

differentiation, apoptosis, and cancer. 

1.1.9.1 MicroRNA in Cancer 

MicroRNAs may act either as oncogenes or tumor suppressors. The miR-17-92 cluster, 

which includes miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92-1, can 

promote cell proliferation, inhibit cancer cell apoptosis, and induce tumor angiogenesis 
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(reviewed by Mendell, 2008). Proto-onco gene c-Myc can activate the miR-17-92 cluster 

and E2F1. E2F1 in turn can be negatively regulated by miR-17-5p and miR-20a (O'Donnell 

et al., 2005). Amplification of products from the miR-17-92 locus was found in human B 

cell lymphoma and over-expression of the miR-17-92 cluster accelerated tumor progression 

in c-Myc-induced mouse B cell lymphoma model (He et al., 2005b). The miR-17-92 cluster 

can also target anti-angiogenic thrombospondin-1 (Tsp1) and connective tissue growth 

factor (CTGF), promoting tumor angiogenesis in a Myc-induced tumor phenotype (Dews et 

al., 2006). 

miR-155 has been found to be involved in Burkitt’s lymphoma, Hodgkin lymphoma and 

lung cancer (reviewed by Williams, 2008). In transgenic mice, miR-155 can promote mouse 

pre-B cell proliferation (Costinean et al., 2006). 

miR-372 and miR-373 have been found working as oncogenes in testicular germ cell 

tumors (Voorhoeve et al., 2006). These microRNAs can target tumor suppressor LATS2 and 

abolish p53-mediated CDK inhibition (Voorhoeve et al., 2006). 

miR-21 is highly over-expressed in human brain tumors (glioblastomas) (Chan et al., 

2005). Several targets for miR-21 have been identified, such as tropomyosin 1 (TPM1), 

PTEN, programmed cell death 4 (PDCD4), and maspin (Asangani et al., 2008; Chan et al., 

2005; Lu et al., 2008; Meng et al., 2007a; Zhu et al., 2007; Zhu et al., 2008). 

miR-221, miR-222, and miR-146 are highly expressed in papillary thyroid carcinoma 

(He et al., 2005a). miR-221 and miR-222 can target the cell cycle inhibitor p27(Kip1) and 

promote cancer cell proliferation (Galardi et al., 2007; Gillies and Lorimer, 2007; le Sage et 

al., 2007; Visone et al., 2007). 
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The expression of several microRNAs is reduced in cancer. miR-143 and miR-145 are 

lower in colorectal neoplasia (Michael et al., 2003). In human breast cancer, miR-125b, 

miR-145, miR-21, and miR-155 are lower than in normal tissue (Iorio et al., 2005). 

Some microRNAs act as tumor suppressors. Chromosome 13q14, where miR-15 and 

miR-16 are located, was often found to be deleted in B cell chronic lymphocytic leukemias 

(Calin et al., 2002). miR-15 and miR-16 can bind to the 3’ UTR of Bcl2 and negatively 

regulate its function. Over-expression of miR-15 and miR-16 can induce apoptosis 

(Cimmino et al., 2005). 

Tumor suppressor p53 can bind to the promoter of miR-34a and activate its expression, 

which contributes to p53-mediated apoptosis (Chang et al., 2007; He et al., 2007b; 

Hermeking, 2007; Raver-Shapira et al., 2007; Tarasov et al., 2007). miR-34a induced 

growth arrest and apoptosis may be due to targeting E2F3 (Tazawa et al., 2007; Welch et al., 

2007). 

miR-29 and miR-181 can target oncogene Tcl1 in chronic lymphocytic leukemia 

(Pekarsky et al., 2006). miR-29 was also reported to target Mcl1 and regulate cell apoptosis 

(Mott et al., 2007). 

Hmga2 (high mobitilty group AT-hook 2) is repressed by let-7 and disruption of this 

repression caused by chromosome translocation at 12q5 will lead to tumor formation (Lee 

and Dutta, 2007; Mayr et al., 2007). let-7 can also down-regulate other oncogenes, such as 

RAS and Myc (Johnson et al., 2005; Sampson et al., 2007). let-7 has been reported to be 

involved in many cancers, including breast cancer, ovarian cancer, lung cancer, and colon 

cancer (Akao et al., 2006; Esquela-Kerscher et al., 2008; Kumar et al., 2008; Lu et al., 2007; 
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Park et al., 2007; Yu et al., 2007). 

 

1.1.9.2 MicroRNA in metabolism 

miR-375 is highly expressed in pancreas and it regulates insulin secretion. 

Over-expression of miR-375 inhibits insulin secretion and inhibition of miR-375 can 

enhance insulin exocytosis (Poy et al., 2004). The action of miR-375 may be through 

targeting myotrophin (Poy et al., 2004). High expression of miR-9 in pancreatic beta cells 

will reduce the expression of the transcription factor Onecut-2 and result in increasing 

granuphilin/Slp4 and reducing insulin exocytosis (Plaisance et al., 2006). miR-96 can 

increase both the mRNA and protein of granuphilin and inhibit insulin secretion (Lovis et 

al., 2008). Another microRNA, miR-124a, can modulate the expression of proteins involved 

in insulin exocytosis and regulate insulin secretion in pancreatic beta-cells (Lovis et al., 

2008). miR-143 is up-regulated during pre-adipocytes differentiation and inhibition of 

miR-143 blocks adipogenesis (Esau et al., 2004). miR-29 is highly up-regulated in diabetic 

rats and leads to insulin resistance in adipocytes (He et al., 2007a). miR-29 can also target 

the dihydrolipoamide branched chain acyltransferase component of a branch chain amino 

acid catabolism enzyme complex, branched chain alpha-ketoacid dehydrogenase (BCKD) 

complex and regulate amino acid metabolism (Mersey et al., 2005). 

Drosophila lacking miR-278 are insulin resistant and lean. The effect of miR-278 may 

be through targeting expanded (Teleman et al., 2006). Flies with miR-14 deletion have 

increased levels of triacylglycerol and diacylglycerol (Xu et al., 2003). 
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Liver miR-122 can regulate cholesterol and fatty acid metabolism. Inhibition of 

miR-122 resulted in a decrease of hepatic fatty acid and cholesterol synthesis and plasma 

cholesterol level and an increase of hepatic fatty acid oxidation (Esau et al., 2006). 

 

1.1.9.3 MicroRNA in muscle function and development 

MicroRNAs can regulate cardiac and skeletal muscle differentiation (reviewed by 

Bushati and Cohen, 2007; Callis and Wang, 2008; Williams, 2008). miR-1 is specifically 

expressed in cardiac and skeletal muscle cells at a high level and its expression is under the 

control of several muscle transcription factors such as serum response factor (SRF), MyoD, 

and Mef2 (Zhao et al., 2005). Over-expression of miR-1 in heart causes defects in 

ventricular cardiomyocytes proliferation (Zhao et al., 2005). miR-1 can target Hand2, a 

transcription factor that promotes cardiomyocytes differentiation (Zhao et al., 2005). 

miR-1-2 knock out mice have nearly 50% lethality by the age of weaning and there are 

defects in hearts, revealing the role of miR-1-2 in cardiac morphogenesis, electrical 

conduction, and cell-cycle control (Zhao et al., 2007). miR-1 is over-expressed in coronary 

artery disease patients and over-expression of miR-1 exacerbates arrhythmogenesis in a rat 

model (Yang et al., 2007). Two molecules important for heart function, KCNJ2 (potassium 

inwardly-rectifying channel, subfamily J, member 2) and GJA1 (gap junction protein, alpha 

1, 43kDa) are targets for miR-1 (Yang et al., 2007). miR-1 can also target histone 

deacetylase 4 (HDAC4), a transcriptional repressor of muscle gene expression and promotes 

myogenesis (Chen et al., 2006). 
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miR-133 is transcribed as a single polycistronic transcript along with miR-1. miR-133 

can promote myoblast proliferation by targeting serum response factor (SRF) (Chen et al., 

2006). miR-133 can also down-regulate the protein level of alternative splicing factor nPTB 

during muscle development, leading to increased inclusion of a group of exons silenced by 

nPTB (Boutz et al., 2007). miR-133 is over-expressed in a rabbit model of diabetes and it 

can repress ether-a-go-go related gene (ERG) at the protein level, contributing to long QT 

syndrome and arrhythmias (Xiao et al., 2007). The expression of miR-133 and miR-1 is 

lower in cardiac hypertrophy, in agreement with the results that inhibition of miR-133 in 

vivo by antagomir causes cardiac hypertrophy. RhoA, Cdc42 and Nelf-A/WHSC2, which 

are important regulators in cardiac hypertrophy, are targets of miR-133 (Care et al., 2007). 

miR-208 is encoded in an intron of α-MHC gene and miR-208 null mice failed to show 

cardiac hypertrophy and induction of β-MHC in cardiac hypertrophy model. These effects 

may be due to inhibition of thyroid hormone receptor-associated protein 1 (Thrap1) by 

miR-208 at the protein level (van Rooij et al., 2007). 

miR-206 is highly expressed in skeletal muscle and plays an important role in 

myogenesis (reviewed by McCarthy, 2008). MyoD can activate miR-206, which in turn 

targets follistatin-like 1 (Fstl1) and utrophin (Utrn) (Rosenberg et al., 2006). During skeletal 

muscle development, miR-206 regulates connexin43 expression (Anderson et al., 2006). 

 

1.1.9.4 MicroRNA in Neurogenesis 

miR-124 is highly and specifically expressed in differentiated neurons. miR-124 can 
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directly target polypyrimidine tract binding protein 1 (PTB or PTBP1), which is a general 

repressor of alternative mRNA slicing (Makeyev et al., 2007). One exon of nPTB (neuronal 

PTB or PTBP2), which is a nervous system-enriched PTB homolog, is repressed by PTB 

and this repression leads to premature stop of nPTB mRNA. During neuronal differentiation, 

the switch from PTB to nPTB triggers a wide range of nervous system specific mRNA 

alternative splicing patterns. miR-124 can lower PTB levels and lead to accumulation of 

nPTB, which will repress non-neuronal gene expression and increase neuronal-specific gene 

expression (Makeyev et al., 2007). 

Besides PTB, miR-124 can target anti-neural REST/SCP1 pathway during embryonic 

CNS development to regulate neural specific gene expression (Visvanathan et al., 2007). 

REST (RE1-silencing transcription factor, also known as NRSF) is a transcription repressor 

that can inhibit the expression of neuronal-specific genes in non-neuronal cells. SCP1 

(Small
 
C-terminal domain phosphatase 1) is an anti-neuronal factor that is recruited by 

REST to bind to neuronal specific genes. miR-124 is repressed by REST in non-neuronal 

cells and neural progenitors (Conaco et al., 2006). On the contrary, miR-124 can bind to the 

3’UTR of SCP1 and down-regulate SCP1 levels, leading to expression of neuronal specific 

genes that are repressed by REST/SCP1 (Visvanathan et al., 2007). 

miR-134 is expressed in hippocampal neurons and it inhibits the growth of dendritic 

spines (Schratt et al., 2006). The effect is mediated through inhibition of Limk1, a protein 

kinase that controls spine development (Schratt et al., 2006). 
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1.1.9.5 MicroRNA in immune system 

miR-181a is highly up-regulated in CD4 and CD8 double positive (DP) T-lymphocytes 

and lower in mature T-lymphocytes, suggesting its role in the process of positive and 

negative selection (Li et al., 2007). miR-181a increases the sensitivity of DP cells to peptide 

antigens and inhibition of miR-181 impairs both positive and negative selections. miR-181 

can lower the threshold of T-cell receptor activation in immature T-lymphocytes by 

down-regulating several phosphatases, leading to increase of basal levels of Lck 

(Lymphocyte specific protein tyrosine kinase) and ERK (Extracellular signal regulated 

kinase) (Li et al., 2007). 

miR-155 plays an important role in immune functions. miR-155 knock-out mice were 

immunodeficiency and showed increased lung airway remodeling (Rodriguez et al., 2007). 

miR-155 can target the transcription factor c-Maf and loss of miR-155 results in 

up-regulation of c-Maf, which will increase cytokine IL-4 and T helper-2 cell number 

(Rodriguez et al., 2007). miR-155 null mice also showed decreased B-lymphocytes in the 

germinal centers, where B-lymphocytes differentiated into plasma cells (Thai et al., 2007). 

T-cell dependent antibody production is impaired in miR-155 null mice (Thai et al., 2007). 

miR-146 can negatively regulate NF-κB pathway by targeting TNF receptor-associated 

factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK1). Since miR-146 is 

up-regulated upon stimulation, it is proposed that miR-146 works as a negative feedback 

signal in innate immune response (Taganov et al., 2006). 
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1.1.9.6 MicroRNA in Haematopoiesis 

Human granulocytic differentiation is regulated by miR-223 (Fazi et al., 2005). Two 

transcription factors, NFI-A and C/EBPα, compete for binding to the miR-223 promoter. 

NFI-A maintains a low expression of miR-223 while C/EBPα up-regulates miR-223 

expression upon retinoic acid treatment. miR-223 in turn represses NFI-A translation (Fazi 

et al., 2005). Over-expression of miR-223 in acute promyelocytic leukemia (APL) cells 

enhance differentiation, while knock-down of miR-223 inhibits retinoic acid induced 

differentiation (Fazi et al., 2005). 

1.1.9.7 MicroRNA in Human diseases 

MicroRNAs were reported to be involved in several human diseases (reviewed by 

Bushati and Cohen, 2007). For example, in the neuropsychiatric disorder Tourette's 

syndrome (TS), there are mutations in the miR-189 binding site of the 3’UTR of Slit and 

Trk-like 1 (SLITRK1) gene. Also SLITRK1 and miR-189 show co-expression pattern in the 

brain regions commonly implicated in Tourette's syndrome. It is suggested miR-189 may be 

involved in Tourette's syndrome (Abelson et al., 2005). 

A mutation in the 3’UTR of myostatin (GDF8) gene yields a binding site for miR-1 and 

miR-206. This mutation causes translation inhibition of myostatin and leads to muscular 

hypertrophy in Texel sheep (Clop et al., 2006). 

Fragile X syndrome is a common form of inherited mental retardation. It is caused by 

methylation induced gene silence of the fragile X mental retardation 1 (FMR1) gene as the 

result of a CGG repeat expansion in its 5’UTR (reviewed by O'Donnell and Warren, 2002). 
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Fragile X mental retardation protein (FMRP) is a selective RNA-binding protein and it 

interacts with microRNAs, RISC complex components dicer and argonaute 1 (Jin et al., 

2004). Genetic evidence showed loss of Ago1 suppressed apoptosis and rough eye 

phenotype caused by over-expression of FMR1 in Drosophila (Jin et al., 2004). Pronounced 

synaptic overgrowth at neuromuscular junctions was found in loss-of-function dFmr1 

mutants and it is exacerbated by heterozygous loss of Ago1 (Jin et al., 2004). These results 

suggest FMRP mediates microRNA-dependent translation repression and defects in this 

process may contribute to Fragile X syndrome disease. 

Polyglutamine (polyQ) expansion of ataxin 3 causes cell toxicity and results in neuronal 

degeneration. Deleption of Dicer1, the enzyme responsible for microRNA processing, 

caused dramatic enhancement of polyQ toxicity in Drosophila and human cells (Bilen et al., 

2006). MicroRNA bantam (ban) can prevent neuronal degeneration in flies (Bilen et al., 

2006). miR-8 can directly target atrophin in Drosophila and elevated atrophin activity in 

miR-8 mutant results in elevated apoptosis in the brain and behavioral defects (Karres et al., 

2007). miR-8 and atrophin orthologs are conserved in mammals and it implicates miR-8 

may function in neurodegenerative disorder DRPLA (Dentatorubral-pallidoluysian atrophy) 

(Karres et al., 2007). 

Most of DiGeorge syndrome patients have a deletion in chromosomal region 22q11, 

where DGCR8 (involved in Drosha function) is located (Gregory et al., 2004; Lindsay, 

2001), but the exact microRNA involved in DiGeorge remains to be elucidated. 
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1.1.9.8 MicroRNA and Virus 

Some nuclear DNA viruses can express microRNAs to help them live in host cells. 

Simian virus 40 (SV40) can express microRNAs that target viral T antigens at a late stage 

of infection, reducing exposure of host cells to cytotoxic T-lymphocytes (Sullivan et al., 

2005). Reciprocally, host cells may use microRNAs to defend against viruses. miR-32 can 

effectively restrict the accumulation of the retrovirus primate foamy virus type 1 (PFV-1) in 

human cells through targeting viral mRNAs (Lecellier et al., 2005). 

 

1.1.9.9 MicroRNA in C. elegans development 

lin-4 was the first microRNA discovered in C. elegans and it can regulate L1-L2 

development by binding to the 3’UTR of lin-14 (Lee et al., 1993; Wightman et al., 1993). 

Without lin-4, worms cannot develop from the L1 to L2 stage due to differentiation defects. 

Over-expression of lin-4 results in complete loss of cell division of larval stem cells. In both 

situations, the worms were stuck at L1 stage (reviewed by Williams, 2008). 

L2-L3 transition is regulated by miR-48, miR-84, and miR-241. They may bind to the 

3'UTR of hbl-1 and down-regulate hbl-1 activity (Abbott et al., 2005). let-7 regulates the 

larval to adult transition by targeting lin-41 (Reinhart et al., 2000). let-7 and miR-84 were 

also reported to be involved in the vulval development (Johnson et al., 2005). let-7 mutants 

have defects in the vulva. It may due to loss of let-7’s inhibition on let-60/RAS, which can 

promote the vulva formation (Johnson et al., 2005). 

MicroRNA lsy-6 and miR-273 act in a double negative feedback loop controlling 
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neuronal asymmetry in C. elegans (reviewed by Bushati and Cohen, 2007). MicroRNA 

lsy-6 binds to the 3’UTR of homeobox gene cog-1 and regulates its expression. Loss of 

lsy-6 resulted in loss of asymmetry of bilateral taste receptor neurons known as ASE left 

and ASE right, only developing ASE right neuron (Johnston and Hobert, 2003). Die-1 can 

activate lsy-6 expression in ASE left neuron and Die-1 itself is negatively regulated by 

another microRNA miR-273 in ASE right neuron (Chang et al., 2004). miR-273 is activated 

by cog-1 in ASE right neuron (Johnston et al., 2005). Thus, two transcription factors Die-1 

and cog-1 and two microRNAs work together to control the development of ASE neurons. 

 

1.1.9.10 MicroRNA in Drosophila Development 

Expression of the microRNA bantam is temporally and spatially regulated during 

patterning in Drosophila. bantam can promote cell proliferation by targeting the 

pro-apoptosis factor hid (Brennecke et al., 2003). 

Loss of function studies using 2'O-methyl antisense oligo ribonucleotides injected into 

embryos reveal that the miR-2 family, which includes miR-2, miR-6, miR-11, miR-13, and 

miR-308, plays a role in suppressing embryonic apoptosis by targeting hid, grim, reaper, 

and sickle (Leaman et al., 2005). Loss of miR-31 in embryos results in severe segmentation 

defects (Leaman et al., 2005). Block of the miR-310/311/312/313/92 family in embryos 

shows morphogenetic defects (Leaman et al., 2005). 

Embryos with miR-9 inhibitor injection rarely form any cuticle and have no internal 

differentiation (Leaman et al., 2005). miR-9a can also control the formation of sensory 
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organ precursors (SOPs) in the adult wing imaginal disc through targeting senseless (sens). 

Over-expression of miR-9a results in a severe loss of SOPs while loss of miR-9a in 

Drosophila peripheral nervous system leads to ectopic production of SOPs (Li et al., 2006). 

miR-1 regulates the expansion and differentiation of cardiac and muscle progenitor cells 

in Drosophila through targeting transcripts encoding the Notch ligand Delta (Kwon et al., 

2005). 

Drosophila microRNA iab-4, which is homologous to miR-196 in vertebrates, can 

directly inhibit Ubx activity and cause a dominant homeotic transformation of halteres to 

wings (Ronshaugen et al., 2005) 

miR-7 regulates photoreceptor cell differentiation (Li and Carthew, 2005). Transcription 

factor Yan can bind to the promoter of miR-7 and suppresses its expression in progenitor 

cells. Yan is phosphorylated in EGF (epidermal growth factor) signalling pathway and 

phosphorylated Yan activates miR-7 expression during the differentiation of progenitor cells 

into photoreceptor cells. Furthermore, miR-7 can down-regulate Yan through binding to its 

3’ UTR (Li and Carthew, 2005). 

 

1.1.9.11 MicroRNA in Vertebrate Development 

Dicer is required for generating mature microRNAs and knock-out of Dicer reveals the 

role of microRNAs in vertebrate development (reviewed by Williams, 2008). 

Dicer-deficient mice are embryonic lethal with lack of detectable multipotent stem cells 

(Murchison et al., 2005). Dicer-null mouse embryonic stem (ES) cells have severe defects 
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in differentiation (Kanellopoulou et al., 2005). 

Using Dicer null conditional knock-out mice as a model, it was shown that Dicer is 

involved in the development of many tissues. In mice with epidermal specific Dicer deletion, 

hair follicles were stunted and hypoproliferative, suggesting Dicer is important for hair 

follicle morphogenesis (Andl et al., 2006). 

Dicer conditional knock-out driven by the Sonic Hedgehog (Shh) promoter in the mouse 

lung epithelium showed branching arrests in the mutant lungs (Harris et al., 2006). Also the 

expression of Fgf10, a key factor that may work as a chemoattractant for the outgrowth of 

epithelial branches, is up-regulated and expanded in the mesenchyme cells of Dicer mutant 

lungs (Harris et al., 2006). 

Dicer is also involved in angiogenesis. Dicer null mice have defects in blood vessel and 

yolk sacs. The expression of some important angiogenic regulators such as vegf, flt1, kdr, 

and tie1 is changed in the mutant embryos (Yang et al., 2005). These results may be due to 

up-regulation of some microRNA targets that are crucial for angiogenesis in dicer null mice. 

Deletion of Dicer at an early stage of T cell development reduced the survival of αβ T 

cells, but the numbers of γδ-expressing thymocytes were not affected (Cobb et al., 2005). 

Conditional knock-out of Dicer in limb mesoderm resulted in much smaller limbs due to 

massive cell death in limbs, but there is no defect in patterning and differentiation of the 

mouse limbs (Harfe et al., 2005). Furthermore, miR-196 has been shown to act upstream of 

Hoxb8 and Shh during limb development (Hornstein et al., 2005). Retinoic acid (RA) can 

induce the expression of the transcription factor Hoxb8 and consequently up-regulates the 

expression of Sonic Hedgehog (Shh) in the forelimb, but not in the hindlimb. However, in 
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Dicer conditional knock out mice, RA can induce expression of Hoxb8 in hindlimb. This 

result suggest that a microRNA negatively regultes Hoxb8 in hindlimb. miR-196 is highly 

expressed in hindlimb and it can down-regulte Hoxb8 and Shh level in hindlimb (Hornstein 

et al., 2005). The role of miR-196 is safeguarding excessive Hoxb8 level during normal 

limb development (Hornstein et al., 2005). 

 

1.2 Adipogenesis 

Adipogenesis is the process of preadipocyte differentiation into a mature fat cell. 

Adipose tissue is not only a structural component of the body and a place for energy storage, 

but also an important regulator of energy homeostasis through secreting signal molecules 

such as leptin and adipsin (reviewed by Rosen and Spiegelman, 2000). Investigation of 

adipogenesis is important to understand human diseases such as obesity and type II diabetes; 

both are frequent in modern society. 

There are two types of adipocytes, white adipocytes and brown adipocytes. White 

adipocyte differentiation is intensively studied in vitro in several cell lines. Some 

preadipocytes cell lines can be differentiated into mature adipocytes through hormonal 

induction. Mature adipocytes have many characteristics different from preadipocytes such 

as morphological changes, cell growth arrest, increased lipid transportation and synthesis, 

extensive lipid accumulation, insulin sensitivity, and secretion of adipocyte specific proteins 

(Rosen and Spiegelman, 2000). 
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1.2.1 Differentiation program 

There are several in vitro models for the study of adipogenesis. Embryonic stem (ES) 

cells can be differentiated into adipocytes upon retinoic acid and pro-adipogenic hormone 

treatment. Also mouse embryonic fibroblasts (MEFs) at E12-14 can be induced into 

adipocytes, although it is less than 100 percent efficient, after hormone treatment. Most 

immortalized MEFs that were generated through serial passaging or SV40 large T antigen 

introduction or chemical treatment can not differentiate into adipocytes without introduction 

of transcription factors such as PPARγ or C/EBPα. However, two cell lines 3T3-L1 and 

3T3-F442A can be differentiated into mature adipocytes upon addition of an hormonal 

cocktail containing dexamethasone, cAMP phosphodiesterase inhibitor, and insulin 

treatment. The C3H10T1/2 cell line is an immortalized mouse cell line isolated from 

mesenchymal cells in bone marrow and it can also be differentiated into adipocytes 

(reviewed by Rosen and MacDougald, 2006). 

3T3-L1 and 3T3-F442A cells are from Swiss 3T3 cells that are morphologically 

indistinguishable from mouse fibroblasts, but they are capable of differentiating into 

adipocytes in 4-6 days upon hormonal induction (Green and Meuth, 1974). This process has 

been intensively studied. The first stage of most pre-adipocyte cell lines differentiation is 

growth arrest upon contact inhibition. Then, cells enter the second phase called clonal 

expansion in which the cell cycle goes one or two rounds upon treatment of a 

pro-differentiative cocktail containing insulin, dexamethasone, and cAMP agonist. After 

clonal expansion, cells enter final and permanent growth arrest. After that, cells go to 

terminal differentiation into mature adipocytes (Rosen and Spiegelman, 2000). 
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The pre-adipocyte differentiation program is characterized by the expression of different 

genes. After hormonal inducer treatment, there is a rapid and transient induction of C/EBPβ 

and C/EBPδ (reviewed by Darlington et al., 1998). Following that, two key transcription 

factors, PPARγ and C/EBPα, are expressed right at the end of the clonal expansion stage 

and may help to stop cell cycles. During the final cell growth arrest, the expression of the 

catalytic subunit of the serine-threonine phosphatase PP2A decreases, which results in 

up-regulation of the phosphorylated form of DP-1. DP-1 is the binding partner of E2F 

family members that can control cell cycles. Phosophorylation of DP-1 decreases E2F/DP-1 

binding to DNA (Altiok et al., 1997). E2Fs can regulate adipocyte differentiation. Loss of 

E2F1 impairs adipogenesis, while deletion of E2F4 causes MEFs to undergo spontaneous 

differentiation (Fajas et al., 2002). Retinoblastoma (Rb) protein can bind to some E2Fs and 

inhibit their transcription activity (reviewed by Harbour and Dean, 2000). Rb-null MEFs 

lost their ability to differentiate into adipocytes (Chen et al., 1996). The expression changes 

of several cyclin-dependent kinase inhibitors p18, p21, and p27 directly couple to 

differentiation stages during 3T3-L1 differentiation. PPARγ can increase the expression of 

p18 and p21 in NIH-3T3 fibroblasts (Morrison and Farmer, 1999). C/EBPα also can 

up-regulate p21 through increasing p21 gene expression and by post-translational 

stabilization of p21 protein (Timchenko et al., 1996). Increased expression of PPARγ and 

C/EBPα will lead to expression of adipocyte specific genes that characterize the mature 

adipocyte. These genes are involved in insulin sensitivity, such as insulin receptor and 

glucose transporter glut4, and lipid accumulation, such as fatty acid synthase (FAS), 

lipoprotein lipase (LPL), acetyl CoA carboxylase and fatty acid binding protein (aP2). Also 
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there are secreted products such as leptin, adipsin, and adiponectin (reviewed by Rosen, 

2005). 

 

1.2.2 Transcription factors regulating adipogenesis 

1.2.2.1 PPARγ 

Pre-adipocyte differentiation is regulated by many transcription factors both in positive 

and negative ways. PPARγ and C/EBP family members are critical for adipocyte 

differentiation. PPARγ is a nuclear receptor family member and it heterodimerizes with 

retinoid X receptor (RXR) (Kliewer et al., 1994). There are two isoforms of PPARγ, 

PPARγ1, and PPARγ2, produced by differential splicing and promoter usage. PPARγ1 is 

expressed in adipocytes and other cells, while PPARγ2 is extensively expressed in 

adipocytes. Ectopic expression of PPARγ2 has been shown to stimulate adipose 

differentiation of cultured fibroblasts (Tontonoz et al., 1994). Also, PPARγ is required for 

development of adipocytes both in vivo and in vitro (Barak et al., 1999; Rosen et al., 1999). 

Both isoforms of PPARγ can activate adipogenesis in PPARγ null fibroblasts, while 

PPARγ1 has stronger activity than PPARγ2 (Mueller et al., 2002). PPARγ2 knock out mice 

lack normal white adipose tissue and MEF cells lose the ability to differentiate into 

adipocytes (Zhang et al., 2004a). Another study showed there is normal adipose tissue, but 

insulin resistance is developed in PPARγ2 null mice (Medina-Gomez et al., 2005). 

PPARγ is important not only for adipocyte differentiation, but also for maintaining 

adipocyte phenotype. Transfection of mature 3T3-L1 adipocyte with a dominant negative 
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form of PPARγ will reverse the adipocyte phenotype with decreased triglyceride content 

and adipocyte-specific genes (Tamori et al., 2002). Also in vivo experiments showed that 

mature PPARγ-null white and brown adipocytes die within a few days after induction of 

PPARγ deletion (Imai et al., 2004). 

Thiazolidinedione (TZD) is a class of antidiabetic drugs that can bind to and potently 

activate PPARγ (Lehmann et al., 1995). Also, 15-deoxy-delta 12,14-PGJ2 (Prostaglandins 

J2) and some polyunsaturated fatty acids can activate PPARγ (Forman et al., 1997; Forman 

et al., 1995; Kliewer et al., 1995; Kliewer et al., 1997). 

PPARγ is a key factor in adipogenesis. Other pro-adipogenic factors such as C/EBPs 

and several Krüppel-like factors can induce, while some anti-adipogenic factors such as 

GATA factors can repress, PPARγ expression (reviewed by Rosen and MacDougald, 2006). 

1.2.2.2 C/EBP family 

CCAAT/enhancer-binding proteins (C/EBP) family members C/EBPα, C/EBPβ, 

C/EBPγ, C/EBPδ, and C/EBPζ are expressed in adipocytes. The expression of C/EBPβ and 

C/EBPδ is up-regulated during the early stage and dereased during the late stage of 

adipogenesis. The accumulation of C/EBPβ and C/EBPδ leads to induction of C/EBPα in a 

transcription cascade. These C/EBPs can promote adipogenesis (reviewed by Rosen and 

MacDougald, 2006). 

Ectopic expression of C/EBPβ in 3T3-L1 cells enables them to differentiate into mature 

adipocyte in the absence of hormonal inducers. C/EBPβ expression converts NIH-3T3 cells 

into pre-adipocytes. Over-expression of dominant negative forms of C/EBPβ inhibits 
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3T3-L1 differentiation (Yeh et al., 1995). MEFs from C/EBPβ knock-out mice significantly 

lose their ability to differentiate into mature adipocytes compared to that from wild type 

mice, while C/EBPδ knock-out MEFs only have a slight reduction in differentiation 

potential. MEFs that lack both C/EBPβ and C/EBPδ almost totally lose their ability to 

differentiate, suggesting C/EBPβ and C/EBPδ have synergic effects on pre-adipocyte 

differentiation (Tanaka et al., 1997). Approximately 85% of newborn C/EBPβ and C/EBPδ 

double knock out mice die at an early stage. For those that survive, they have less lipid 

accumulation in the brown adipose tissue and their white adipose tissue is significantly 

smaller than wild type (Tanaka et al., 1997). 

In vitro and in vivo evidence has shown C/EBPα can promote adipogenesis. Ectopic 

expression of C/EBPα in a variety of mouse fibroblasts efficiently induces adipogenic 

differentiation, while repression of C/EBPα by RNAi blocks 3T3-L1 differentiation 

(Freytag et al., 1994; Lin and Lane, 1992; Lin and Lane, 1994). C/EBPα knock-out mice die 

right after birth due to defects in gluconeogenesis in the liver. Rescue of C/EBPα in the liver 

with a transgene in C/EBPα knock-out mice will improve survival. In these mice, white 

adipose tissue, not brown adipose tissue, is severely impaired (Linhart et al., 2001). 

Replacement of C/EBPα gene with C/EBPβ gene in mice resulted in a significant reduction 

of fat storage in white adipose tissue (Chen et al., 2000). C/EBPα-induced adipogenesis 

relys on PPARγ. PPARγ can induce adipogenesis in C/EBPα deficient cells while the 

reverse is not true (Rosen et al., 2002). In PPARγ-deficient MEFs, C/EBPβ is not able to 

induce C/EBPα expression and adipogenesis (Zuo et al., 2006). 

C/EBPζ (also known as CHOP, C/EBP homologous protein ) can dimerize with C/EBPα 
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and C/EBPβ and inhibit their function, markedly inhibiting preadipocyte differentiation 

(Batchvarova et al., 1995). 

 

1.2.2.3 Kruppel-like Factor family 

The Krüppel-like Factor (KLF) family are zinc-finger transcription factors that are 

important regulators of cell differentiation. KLFs can either play a positive role or a 

negative role in adipogenesis. 

Krüppel-like factor 4 (KLF4) is an essential early regulator of adipogenesis. KLF4 is 

specifically induced by cAMP within 30 min after DMI (dexamethasone, IBMX and insulin) 

treatment in 3T3-L1 cells. KLF4 directly binds to the C/EBPβ promoter and activates its 

expression. Knock-down of KLF4 down-regulates C/EBPβ levels and inhibits 3T3-L1 cell 

adipogenesis. Normally, C/EBPβ suppresses Krox20 and KLF4 expression and C/EBPβ 

knock-down increases the expression of KLF4 and Krox20. Thus, KLF4 and C/EBPβ form 

a negative feedback loop (Birsoy et al., 2008). 

C/EBPβ and C/EBPδ can bind to the KLF5 promoter and activate its expression. KLF5, 

in turn, binds to the PPARγ2 promoter and activates its expression along with C/EBPs. 

Over-expression of KLF5 induces adipocyte differentiation in the absence of hormonal 

stimulation while over-expression of a dominant-negative form of KLF5 inhibits adipocyte 

differentiation. MEFs from KLF5 heterozygous mice show reduced adipocyte 

differentiation, which is consistent with the fact that heterozygous KLF5 knockout mice 

have a marked deficiency in white adipose tissue development (Mori et al., 2005). 
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KLF6 has been shown to be a repressor of the Delta-like 1 (Dlk1) gene, which inhibits 

adipocyte differentiation. Down-regulation of KLF6 by small interfering RNA inhibits 

3T3-L1 cells adipogenesis (Li et al., 2005). 

KLF15 can activate PPARγ2 expression and promote adipocyte differentiation (Mori et 

al., 2005). KLF15 also can activate the expression of the glucose transporter GLUT4 in 

adipose (Gray et al., 2002). 

KLF3 knockout mice have less white adipose tissue and the adipocytes are smaller and 

fewer in their fat pads, indicating KLF3 regulates adipocyte differentiation (Sue et al., 

2008). 

However, some KLFs can inhibit preadipocytes differentiation. KLF2 is highly 

expressed in preadipocytes but not in mature adipocytes. KLF2 inhibits adipogenesis by 

binding to the PPARγ promoter and repressing its expression (Banerjee et al., 2003; Wu et 

al., 2005). Over-expression of KLF7 also reduces 3T3-L1 cell differentiation (Kanazawa et 

al., 2005a). 

1.2.2.4 Other factors 

Other transcription factors also regulate adipogenesis. Krox20 is a zinc 

finger-containing transcription factor that is up-regulated during the early stage of 

differentiation. It activates C/EBPβ expression and promotes 3T3-L1 differentiation (Chen 

et al., 2005b).  

The early B cell factor (Ebf) family of helix-loop-helix transcription factors can also 

promote adipogenesis. PPARγ1 and C/EBPα can be activated by Ebf1, which is induced by 
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C/EBPβ and C/EBPδ. siRNA against Ebf1 and Ebf2 blocks 3T3-L1 differentiation (Jimenez 

et al., 2007). SREBP1c (sterol regulatory element binding protein 1c) is important for lipid 

metabolism and it also regulates adipocyte differentiation. A dominant-negative form of 

SREBP1c represses 3T3-L1 cells’ differentiation (Kim and Spiegelman, 1996). SREBP1c 

maybe responsible for producing an endogenous ligand for PPARγ and activates its activity 

(Kim et al., 1998). 

Ectopic expression of STAT5A promotes adipogenesis in two non-precursor fibroblast 

cell lines by regulating PPARγ expression (Floyd and Stephens, 2003; Nanbu-Wakao et al., 

2002). The Active form of CREB can promote adipogenesis by binding to C/EBPβ 

promoter and inducing its expression (Zhang et al., 2004b). MEFs from BMAL1 (Brain and 

muscle Arnt-like protein-1) knock-out mice lose their ability to differentiate into adipocytes, 

suggesting BMAL is required for adipogenesis (Shimba et al., 2005). Also 

EPAS1(endothelial PAS domain protein 1, also known as hypoxia-inducible factor 2alpha) 

has been shown to promote adipose differentiation in 3T3-L1 cells (Shimba et al., 2004). 

GATA-2 and GATA-3 are specifically expressed in white adipocyte precursors, but not 

in mature adipocytes. Constitutive expression of GATA-2 and GATA-3 keeps preadipocytes 

from differentiating into adipocytes, while depletion of GATA-3 increases adipocyte 

differentiation (Tong et al., 2000). Inhibition of adipogenesis by GATA may be through 

repression of PPARγ expression or binding to C/EBPα and C/EBPβ (Tong et al., 2000; Tong 

et al., 2005). 
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1.2.3 Signalling pathway regulating adipogenesis 

1.2.3.1 Insulin and IGF1 pathway 

Insulin and insulin-like growth factor 1 (IGF1) are very important regulators of 

adipogenesis. IGF1 from fetal calf serum works together with insulin to activate IGF 

receptor, which is more abundant than insulin receptors in pre-adipocytes. The number of 

insulin receptors increases during preadipocytes differentiation (Smith et al., 1988). The 

signal passes along insulin receptor substrate (IRS), phosphatidylinositol-3 kinase (PI3K), 

and activates AKT/PKB (protein kinase B) (reviewed by Rosen and MacDougald, 2006). 

Insulin signaling pathway may activate CREB to promote adipogenesis (Klemm et al., 

2001). Also insulin signalling can cause phosphorylation and nuclear exportation of 

adipogenic inhibitors FOXA2 and FOXO1 (Nakae et al., 2003; Wolfrum et al., 2003). In the 

insulin signalling pathway, GATA2, which is an adipogenesis inhibitor, is also 

phosphorylated and inactivated (Menghini et al., 2005). Moreover, insulin signaling 

pathway can repress the expression of necdin, which in turn releases the repression of 

PPARγ (Tseng et al., 2005). 

 

1.2.3.2 Glucocorticoid Receptor 

Dexamethasone is the most commonly used glucocorticoid to stimulate preadipocyte 

differentiation. The action of dexamethasone is through the nuclear receptor glucocorticoid 

receptor (GR) (Rosen and Spiegelman, 2000). Glucocorticoids
 
may have a direct role on 

C/EBPδ induction, which will further activate PPARγ along with C/EBPβ (Cao et al., 1991; 
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Wu et al., 1996). Also glucocorticoids can repress the expression of the anti-adipogenic 

gene pref-1 (Smas et al., 1999). 

 

1.2.3.3 FGF family 

Fibroblast growth factor 1 (FGF-1) secreted by adipose-derived microvascular
 

endothelial cells (MVECs) can promote proliferation and differentiation of human 

pre-adipocytes, which lack FGF-1 expression. FGF-1 is expressed in 3T3-L1 cells and 

treatment of 3T3-L1 cells with FGF-1 antibody decreases their adipogenic potential (Hutley 

et al., 2004; Newell et al., 2006). FGF-2 (also called basic fibroblast growth factor) 

enhances adipogenic differentiation of mesenchymal stem cells and adipose-derived stem 

cells (Kakudo et al., 2007; Neubauer et al., 2004). FGF10 signalling induces the expression 

of C/EBPβ and the subsequent adipogenic differentiation in preadipocytes. In FGF10 

knock-out mice, the expression of C/EBPβ is reduced and the development of white adipose 

tissue is impaired (Sakaue et al., 2002). 

 

1.2.3.4 MAPK pathway 

The mitogen activated protein kinases (MAPKs), which include ERK, p38 and JNK, 

play both positive and negative roles in regulating adipogenesis (reviewed by Bost et al., 

2005). MEF cells from ERK1 knock-out mice or 3T3-L1 cells lacking ERK1 have impaired 

adipogenic potential, suggesting ERK1 is required for adipogenesis. On the other hand, 

ERK1 can phosphorylate PPARγ and decrease its activity (Camp and Tafuri, 1997; Hu et al., 
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1996). 

Inhibitors of p38 MAP kinase
 
prevent 3T3-L1 fibroblasts and C3H10T1/2 cells from 

differentiation into adipocytes, suggesting p38 MAP kinases are required for adipogenic 

differentiation of these preadipocyte cell lines (Engelman et al., 1998; Hata et al., 2003). 

However, p38 null embryonic stem cells have stronger potential to differentiate into 

adipocyte than wild type ES cells, indicating it has a negative role in adipogenesis (Aouadi 

et al., 2006). These controversial results may be due to MAP kinases playing varied roles at 

different differential stages or in different cell types. 

 

1.2.3.5 TGFβ family 

Transforming growth factor β (TGFβ) family members, including TGFβ and bone 

morphogenetic proteins (BMPs), play a role in regulating adipogenesis. Ligand binding 

induces dimerization and phosphorylation of TGFβ recetprs, which further phosphorylates 

R-Smad (from Smad1 to Smad5). Phosphorylated R-Smad binds to Smad4 and translocates 

into the nucleus (reviewed by Roelen and Dijke, 2003). TGF-ß inhibits adipocyte 

differentiation in preadipocyte cell lines, which is in agreement with in vivo data showing 

that adipocyte differentiation is significantly inhibited in TGF-ß transgenic mice (Choy et 

al., 2000; Clouthier et al., 1997). Smad3, which is a component of the TGF-ß pathway, 

inhibits adipogenesis by interacting with C/EBPβ and C/EBPδ and repressing their activity 

(Choy and Derynck, 2003). 

Low concentration of BMP2 promotes adipocyte development, while high concentration 
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of BMP2 induces chondrocytes and osteoblasts differentiation (Wang et al., 1993). BMP-2 

stimulation may lead to nuclear translocation of Schnurri-2 (Shn-2), which will activate 

PPARγ2 expression through direct interaction with both Smad1/4 and C/EBPα (Jin et al., 

2006). Another BMP member, BMP4 has been shown to be involved in preadipocytes 

determination (reviewed by Bowers and Lane, 2007). 

1.2.3.6 Wnt signalling 

The Wnt family, which is an evolutionarily conserved family of secreted glycoproteins, 

plays a big role in regulating adipogenesis. Wnt10b, Wnt10a, and Wnt6 are expressed in 

preadipocytes. They can bind to transmembrane frizzled receptors and activate the 

Wnt/β-catenin pathway, which will lead to inhibition of GSK3β and cause 

hypophosphorylation and stabilization of β-catenin in the cytoplasm. Following that, 

β-Catenin is translocated into the nucleus and binds to TCF/LEF transcription factors to 

inhibit preadipocyte differentiation (reviewed by Prestwich and Macdougald, 2007). 

FABP4-Wnt10b transgenic mice have approximately 50% less total body fat compared to 

wild type (Longo et al., 2004). Conditional deletion of β-catenin in the myometrium 

converts it to adipose tissue (Arango et al., 2005). Wnt5b is different from other Wnt 

members. It is transiently up-regulated during adipogenesis and promotes preadipocyte 

differentiation (Kanazawa et al., 2005b). Other signals may utilize the Wnt/β-catenin 

pathway to carry out their functions. For example, testosterone induces androgen receptor 

binding to beta-catenin and inhibits adipogenesis in 3T3-L1 cells (Singh et al., 2006). 
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1.2.3.7 Hedgehog signalling pathway 

Hedgehog (Hh) proteins are lipid containing secreted proteins that also regulate 

adipogenesis. Secreted Hh proteins bind to the cell surface receptor Patched (PTC) and 

release Smoothened (Smo). In turn, Smo regulates gene expression through the GLI family 

of transcription factors (reviewed by Hooper and Scott, 2005). In flies, activation of Hh 

signaling in the fat body inhibits fat formation, while inhibition of Hh in the fat body 

stimulates fat formation (Suh et al., 2006). In vitro, Sonic Hedgehog can inhibit 3T3-L1 cell 

and C3H10T1/2 cell adipogenesis (Spinella-Jaegle et al., 2001; Zehentner et al., 2000). The 

inhibitory effects of Hh may be due to induction of anti-adipogenic transcription factors 

such as Gata2 (Suh et al., 2006). 

 

1.2.3.8 Pref1 signalling 

Preadipocyte factor 1 (Pref-1, also named DLK1) is an epidermal growth factor (EGF) 

like repeat containing protein that can be activated through proteolytic cleavage by tumor 

necrosis factor α converting enzyme (TACE, also called ADAM 17) (reviewed by Wang et 

al., 2006). Pref-1 is highly expressed in preadipocytes and its expression diminishes when 

3T3-L1 preadipocytes differentiate into adipocytes. Moreover, constitutive expression of 

pref-1 significantly inhibits adipogenic differentiation in preadipocytes (Smas and Sul, 

1993). Pref-1 knock-out mice display obesity and increased serum lipid metabolites, while 

Pref-1 transgenic mice have a dramatic reduction in adipose tissue (Lee et al., 2003a; Moon 

et al., 2002). 
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CHAPTER 2 

The role of microRNA in 3T3-L1 cell differentiation 

2.1 INTRODUCTION 

The 3T3-L1 preadipocyte cell line is a well established in vitro model to study 

adipogenesis (Green and Meuth, 1974). Upon a cocktail of cyclic AMP, insulin, and 

glucocorticoids treatment, 3T3-L1 preadipocytes undergo differentiation into mature 

adipocytes over 4-6 days period (Student et al., 1980). 3T3-L1 cells first reach growth arrest 

by contact inhibition. Then, cell division occurs for one or two rounds during clonal 

expansion. Finally, the cell cycle stops again and proceeds into final differentiation (Rosen 

and Spiegelman, 2000). We wanted to investigate whether microRNAs (miRNAs) play a 

role in this process. 

MicroRNAs, which are endogenous small non-coding RNAs around 22 nt, play very 

important roles in many processes such as development, proliferation, apoptosis, 

metabolism and human diseases (Bushati and Cohen, 2007; Bartel, 2004). MicroRNAs bind 

to the 3’ untranslated region (3’UTR) of their targets and negatively regulate them through 

translational repression or mRNA decay (reviewed by Eulalio et al., 2008). 

miR-143 was reported to regulate adipocyte differentiation by targeting ERK5 (Esau et 

al., 2004), but another group reported that inhibition of some up-regulated microRNAs 

didnot affect 3T3-L1 differentiation (Kajimoto et al., 2006). These controversial views 

promoted us to investigate the role of microRNAs in pre-adipocyte differentiation. 

MicroRNA let-7 was first reported to regulate C. elegans developmental timing 
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(Reinhart et al., 2000). let-7 can also suppress the oncogene Ras (Johnson et al., 2005). let-7 

was reported to be involved in cancer (Park et al., 2007), including breast cancer (Yu et al., 

2007), ovarian cancer (Lu et al., 2007), non-small cell lung cancer (Kumar et al., 2008), 

lung cancer (Esquela-Kerscher et al., 2008), and colon cancer (Akao et al., 2006). 

Other targets for let-7 were also reported such as neurofibromatosis 2 (Meng et al., 

2007b), Toll-like receptor 4 (Chen et al., 2007), CdK6, and Cdc25a (Johnson et al., 2007), 

and MYC (Sampson et al., 2007). 

let-7 can also target High mobility group AT hook 2 (Hmga2) (Mayr et al., 2007; Lee 

and Dutta, 2007). Hmga2 and Hmga1 belong to the High Mobility Group A (Hmga) family, 

which encodes architectural transcription factors that bind to minor groove of AT-rich DNA 

and cause conformational changes in chromatin. HMGA2 protein contains an AT-hook 

domain that is responsible for DNA binding, a linker, and an acidic tail. Hmga2 is involved 

in many physiologic process and diseases (reviewed by Young and Narita, 2007). Gene 

rearrangement was found at the Hmga2 region in lipomas (Ashar et al., 1995) and 

mesenchymal tumors (Schoenmakers et al., 1995). Inactivation of the Hmga2 gene in mice 

yields a pygmy phenotype due to lack of fat tissue (Zhou et al., 1995). Mice with 

heterozygous or null Hmga2 gene are resistant to diet induced obesity (Anand and Chada, 

2000). Over-expression of the truncated Hmga2 gene produces a giant mouse with massive 

fat tissue (Battista et al., 1999). These results suggest the Hmga2 gene plays a role in 

adipogenesis. 

E2F family members also regulate adipogenesis. E2F family members are important 

transcription factors that regulate cell cycles. There are eight known E2Fs from E2F1 to 
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E2F8 in this family. E2F1 through E2F6 can dimerize with DP proteins (DP1, DP2/3, DP4). 

Tumor suppressor retinoblastoma protein (pRB) and other pocket proteins p107 and p130 

can regulate the transcriptional activity of E2F1-E2F5 (reviewed by DeGregori and Johnson, 

2006). HMGA2 can acetylate and activate E2F1 (Fedele et al., 2006). Lack of E2F1 impairs, 

while loss of E2F4 promotes, adipogenesis (Fajas et al., 2002).

Since microRNAs have been implicated in playing a role in regulating adipogenesis, in 

this work we attempted to identify microRNAs that play a role in 3T3-L1 cell 

differentiation and characterize the regulatory mechanism by which they work. 
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2.2 RESULTS 

2.2.1 Expression of let-7 and other miRNAs during adipogenesis 

To investigate whether miRNAs are involved in adipocyte differentiation, we examined 

the expression of 386 miRNAs during 3T3-L1 differentiation using microarray analysis. 

Post-confluent 3T3-L1 cells were induced to differentiate using a cocktail of 

dexamethasone, 3-isobutyl-1-methylxanthine and insulin (DMI). RNA was prepared from 

cells at 0, 1, 4 and 7 days after adipogenic induction (Fig. 2.1A) and small RNAs were 

purified for use in microarray analysis (Fig. 2.1B). Among the 386 miRNAs examined, 23 

were either increased or decreased >1.5 fold during 3T3-L1 differentiation (Table 2.1). 

Induction of several of these, including let-7, miR-103, miR-143, miR-193 and miR-210, 

was confirmed by northern blot analysis (Fig. 2.2A). The expression of all these miRNAs 

was up-regulated after 2 days of differentiation and maintained at a high level in mature 

adipocytes. Consistent with our in vitro findings, let-7, miR-103, miR-143, miR-193 and 

miR-210 were all expressed in murine white adipose tissue (WAT) (Fig. 2.2B). Additional 

profiling studies revealed that each of these miRNAs was expressed in multiple tissues 

including brown adipose tissue (Fig. 2.2B). 

We chose to focus further experiments on let-7 given its recently established role in 

regulating cell fate decisions in C. elegans and Drosophila (Caygill and Johnston, 2008; 

Reinhart et al., 2000; Sokol et al., 2008). let-7 expression was increased in 3T3-L1 cells 

differentiated by treatment with either the DMI cocktail or the PPAR agonist, rosiglitazone 

(Fig. 2.3A). Using a third independent assay, let-7 levels were also increased during 
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insulin-induced differentiation of 3T3-F442A cells into adipocytes (Fig. 2.3A). In 

agreement with these findings, let-7 was abundant in mature adipocytes isolated from mice 

but barely detectable in preadipocytes (Fig. 2.3C). let-7 was not induced by DMI treatment 

of NIH3T3 cells, which do not differentiate into adipocytes, nor was it induced during 

differentiation of C2C12 cells into myotubes (Fig. 2.3B). These data show that let-7 

induction is not invariably associated with either DMI treatment or differentiation 

processes. 

There are several let-7 isoforms in the mouse genome that differ in only 1–2 nucleotides 

(Table 2.2). Since these isoforms cannot be distinguished by northern blot analysis, we 

quantified their levels by RT-qPCR. Consistent with the microarray and northern blot data 

presented above, the most abundant let-7 isoforms, including let-7a, let-7b and let-7d, were 

all up-regulated during 3T3-L1 adipogenesis (Fig. 2.3D). Interestingly, with the exception 

of let-7b, all the let-7 isoforms decreased from day 0 to day 1 and then increased. We 

speculate that this transient dip in let-7 expression may be permissive for clonal expansion 

(see below). 

 

2.2.2 let-7 inhibits 3T3-L1 differentiation 

To test whether let-7 plays a role in 3T3-L1 adipogenesis, pre-let-7a oligonucleotide 

was transfected into 3T3-L1 cells, where it was efficiently converted into mature let-7a as 

confirmed by northern blot analysis (Fig. 2.4). Introduction of ectopic let-7a in 3T3-L1 cells 

prior to DMI treatment inhibited their differentiation into adipocytes as measured by Oil 
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Red O staining (Fig. 2.5) and triglyceride content (Fig. 2.6C) on day 6 of differentiation. 

mRNA levels of Pparγ and C/ebpα, two transcription factors whose induction is important 

for adipocyte differentiation, were significantly lower in cells transfected with let-7a 

compared to cells transfected with control oligonucleotide (Fig. 2.6B). Likewise, mRNA 

levels of the mature adipocyte markers, fatty acid binding protein 4 (aP2) and adipsin, were 

decreased by let-7a transfection (Fig. 2.6B). In contrast, C/ebpβ and C/ebpδ, two genes 

whose expression is important during the early stages of adipogenesis, were not 

significantly affected by let-7a at the 6 day time point. 

2.2.3 Overexpression of let-7 impairs clonal expansion of 3T3-L1 cells 

The treatment of 3T3-L1 cells with an adipogenic stimulus initiates a complex sequence 

of events including clonal expansion, cell cycle exit and terminal differentiation (Rosen and 

Spiegelman, 2000). Since let-7 controls exit from the cell cycle in C. elegans and D. 

melanogaster (Caygill and Johnston, 2008; Reinhart et al., 2000; Sokol et al., 2008), we 

postulated that its up-regulation on day 1 of adipogenesis might play an analogous role in 

promoting terminal differentiation of adipocytes. To test this hypothesis, 3T3-L1 cells were 

transfected with either let-7a or control oligonucleotides and then allowed to reach 

confluence, at which point the adipogenic program was initiated with the DMI cocktail. As 

shown in Fig. 2.7, cell number was significantly reduced in cultures transfected with let-7a 

compared to control oligonucleotide. These data support a role for let-7 in blocking clonal 

expansion during adipogenesis. 
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2.2.4 Microarray analysis showed let-7 down-regulated some genes at mRNA level. 

In an effort to identify genes through which let-7 mediates its effect on adipocyte 

differentiation, microarray analysis was performed using mRNA prepared from 3T3-L1 

cells harvested 24 hours after transfection with either let-7a or control oligonucleotide. 

Genes whose expression was down-regulated >2 fold by let-7a are listed in Table 2.3.  

Several of these genes, including Hmga2, E2f6, Cdc34 and insulin-like growth factor 2 

mRNA binding protein 1 (Igf2bp1), have been previously shown to be targets of let-7 

(Boyerinas et al., 2008; Johnson et al., 2007; Lee and Dutta, 2007; Mayr et al., 2007). 

E2F family members have been reported to be involved in adipogenesis. Knock-out of 

E2f1 impairs, while deletion of E2f4 promotes adipogenesis (Fajas et al., 2002). Since the 

E2f6 mRNA level was down-regulated by let-7 as detected by microarray, we checked 

whether let-7 regulates adipogenesis through the E2F family. Using online bioinformatics 

tools, it was found that several members of the E2F family, including E2f2, E2f3, E2f5, and 

E2f6, contain potential let-7 binding sites in their 3’UTR 

(http://cbio.mskcc.org/cgi-bin/microRNAviewer/microRNAviewer.pl). These potential let-7 

binding sites in the 3’ UTR of E2f2, E2f3, E2f5, and E2f6 were cloned and put at the 3’ end 

of a luciferase reporter. The reporter activity was checked in the presence of let-7 or control 

oligo in F9 cells, which lack endogenous let-7 (Mayr et al., 2007). The activity of reporter 

containing 3’ UTR of E2f5 or E2f6 is lower than negative control reporter, while that of 

E2f2 or E2f3 was comparable to control reporter (Fig. 2.8a). Mutation of two nucleotides 

from “C” to “A” in the binding sites of 3’ UTR of E2f5 or E2f6, which abolishes the paring 

of let-7 with the binding sites, relieved the repression of reporter activity by let-7 (Fig. 2.8c). 
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These results suggest let-7 can regulate E2f5 and E2f6 by binding to the 3’ UTR of E2f5 and 

E2f6, respectively. To check whether let-7 regulate adipogenesis through E2f5 or E2f6, 

small interference RNA against E2f5 or E2f6 was transfected into 3T3-L1 cells and the 

adipogenic potential of 3T3-L1 cells was checked after standard DMI induction. Either 

knock-down of E2F5 or E2F6 didn’t inhibit 3T3-L1 differentiation (data not shown). These 

results suggest the effect of let-7 on 3T3-L1 adipogenesis may not be mainly through E2F5 

or E2F6. 

 

2.2.5 let-7 may regulate clonal expansion and differentiation by targeting HMGA2 

Hmga2 was the gene whose expression was most affected by let-7a in 3T3-L1 cells 

(Table 2.3). Notably, mice lacking HMGA2 have a striking reduction in adipose tissue 

(Zhou et al., 1995). Conversely, transgenic overexpression of a truncated HMGA2 in mice 

resulted in a marked increase in fat tissue, adipose tissue inflammation and a high incidence 

of lipomas (Arlotta et al., 2000; Battista et al., 1999). Thus, HMGA2 was a strong candidate 

for being a let-7 target in differentiating adipocytes. In agreement with the microarray data, 

ectopic let-7 reduced HMGA2 protein concentrations >3-fold in 3T3-L1 cells (Fig. 2.9A).  

Interestingly, Hmga2 mRNA was rapidly induced in 3T3-L1 cells during adipocyte 

differentiation, with levels peaking 4 hours after treatment with the DMI cocktail and 

returning to basal concentrations on day 2 (Fig. 2.9B). There was a subsequent increase in 

HMGA2 protein concentrations, with levels peaking at day 2 (Fig. 2.9C). HMGA2 and let-7 

expression were inversely correlated during adipocyte differentiation (compare Fig. 2.3A, 
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left panel, with Fig. 2.9A and 2.9B). Finally, siRNA knockdown of HMGA2 inhibited 

3T3-L1 differentiation as measured by aP2 and Pparγ mRNA levels (Fig. 2.9D). Taken 

together, these results strongly suggest that let-7 regulates 3T3-L1 differentiation in part by 

targeting HMGA2. 

2.2.7 let-7 and Hmga2 play an import role in 3T3-L1 adipogenesis 

3T3-L1 pre-adipocytes undergo growth arrest, clonal expansion, final growth arrest and 

terminal differentiation into mature adipocytes (Rosen and Spiegelman, 2000). Although the 

main transcription cascades regulating adipogenesis are known, the exact details of how 

3T3-L1 cells undergo differentiation remains unknown. Our results show that the 

microRNA let-7 specifically increases at the late stage of 3T3-L1 differentiation and Hmga2 

is induced at the clonal expansion stage and decreases at final growth arrest and terminal 

differentiation stages (Fig 2.10). We suggest that let-7 regulates 3T3-L1 cell differentiation 

by stopping clonal expansion and bringing it to final growth arrest and terminal 

differentiation by targeting Hmga2. 
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Fig. 2.1. Expression of microRNAs during 3T3-L1 differentiation. 

A: Oil Red O staining showes lipid accumulation during 3T3-L1 differentiation; B: 

microRNA array expression data from 3T3-L1 cells cultured in differentiation medium for 0, 

1, 4 or 7 day. Normalized log2 data are plotted as a heat map. Red denotes high expression 

and green denotes low expression relative to the median; only the microRNA that were 

changed by more than 1.5 fold in differentiated adipocytes are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 



0 1 4 7 dayA

0 1 4 7 day
miR-182
miR-140-AS
let-7c
let-7b
miR-320
miR-422b
miR-7085
miR-103
miR-214
miR-210
miR-193a
miR-30d
miR-143
miR-155
miR-500
miR-30e
miR-7029
miR-22
miR-21
miR-24
miR-191
miR-188
miR-30a

B

49



 50 

Table 2.1 The expression changes of microRNAs during 3T3-L1 differentiation 

Name 

0 

day 

1 

day 

4 

day 7 day 

hsa_miR_422b 1 1.50 2.89 12.01 

hsa_miR_210 1 1.08 2.42 11.93 

hsa_miR_103 1 1.01 1.74 7.53 

hsa_miR_193a 1 1.02 2.14 5.55 

hsa_miR_22 1 1.07 0.62 3.55 

hsa_miR_30d 1 1.92 0.44 2.91 

hsa_miR_191 1 1.00 0.52 2.68 

hsa_let_7b 1 1.13 1.03 2.41 

hsa_miR_320 1 1.21 1.85 2.40 

ambi_miR_7029 1 1.02 0.71 2.18 

hsa_let_7c 1 1.21 1.01 2.14 

hsa_miR_214 1 1.32 1.31 2.12 

hsa_miR_24 1 1.24 0.61 2.06 

hsa_miR_500 1 1.09 0.49 2.01 

hsa_miR_30a_5p 1 0.98 0.58 1.95 

hsa_miR_188 1 1.03 0.59 1.94 

hsa_miR_30e_3p 1 0.91 0.47 1.92 

ambi_miR_7085 1 1.02 1.17 1.91 

mmu_miR_155 1 1.01 0.47 1.88 

hsa_miR_143 1 1.00 0.35 1.83 

hsa_miR_21 1 1.15 0.75 1.69 

mmu_miR_140_AS 1 1.23 0.29 0.56 

hsa_miR_182 1 1.01 0.16 0.54 
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Fig. 2.2. Up-regulation of a subset of microRNAs (let-7, miR-103, miR-143, miR-193, 

and miR-210) was confirmed by northern blot during 3T3-L1 differentiation. 

Northern blot analysis of microRNA expression from different time points as indicated 

during 3T3-L1 differentiation as well as in 10 different adult mouse tissues. U6 snRNA was 

used as a loading control.  
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Fig. 2.3. let-7 induction is specific for adipogenesis. 

A: post-confluent 3T3-L1 cells were induced to differentiate by incubation with DMI 

cocktails or Rosiglitazone (Rosi.), and 3T3-F442A cells were induced to differentiate by 

insulin. RNA was isolated at serial time points as indicated and northern blot was performed 

using a let-7a probe. let-7 precursor and mature let-7 are shown. The values are normalized 

by loading control and represented as fold-changes compared to the level at 0-day B: 

C2C12 cells were induced to differentiate into myotubes by incubation with differentiation 

medium, and NIH3T3 cells were treated with the same inducers as 3T3-L1 differentiation. 

Northern blots were used to detect let-7. The values were normalized by U6 and represented 

as fold changes compared to that of 0-day. C: Pre-adipocytes (SV fraction) and mature 

adipocytes (Ad) were isolated from adipose tissue of mice. RNA was extracted and northern 

blot was performed as described in materials and methods. The image of ethidium bromide 

(EB) stained gel served as a loading control. D: RNA was isolated at different time points as 

indicated during 3T3-L1 differentiation. Individual isoforms of let-7 family were quantified 

by specific ABI Taqman Q-PCR probe and primer sets. Error bar represent SDEV from 

triplicate wells. 
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Table 2.2 let-7 isotypes in mice 

 

(Data from sanger miRbase)

Name  Chromosome Sequence 

mmu-let-7-a1 13 ugagguaguagguuguauaguu 

mmu-let-7-a2 9 ugagguaguagguuguauaguu 

mmu-let-7-b 15 ugagguaguagguugugugguu 

mmu-let-7-c1 16 ugagguaguagguuguaugguu 

mmu-let-7-c2 15 ugagguaguagguuguaugguu 

mmu-let-7-d 13 agagguaguagguugcauaguu 

mmu-let-7-e 17 ugagguaggagguuguauaguu 

mmu-let-7-f1 13 ugagguaguagauuguauaguu 

mmu-let-7-f2 x ugagguaguagauuguauaguu 

mmu-let-7-g 9 ugagguaguaguuuguacaguu 

mmu-let-7-i 10 ugagguaguaguuugugcuguu 
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Fig. 2.4. Pre-let-7 can be transfected and converted into its mature form in 3T3-L1 

cells. 

Bright field view (A) or GFP fluorescence (B) of 3T3-L1 cells transfected with plasmid 

expressing GFP. C: 3T3-L1 cells were transfected with let-7a precursor, control oligo, or 

GFP by electroporation. RNA was isolated 24 h after transfection and northern blot was 

performed using let-7a probe. The same membrane was re-probed with U6 as a loading 

control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A

(100X)

(100X)

B

C

let-7

U6

C
on

tr
ol

le
t-7

G
FP

57



let-7, 100X let-7, 200X
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Figure 2.5 Ectopic introduction of let-7 inhibits 3T3-L1 cell differentiation.
Oil-Red-O stain of 3T3-L1 cells transfected with control oligo (A) or let-7 (B) and
differentiated into mature adipocytes. The number of magnification was shown.
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Fig. 2.6. Ectopic presence of let-7 inhibits 3T3-L1 adipogenesis. 

3T3-L1 cells were transfected with let-7a precursor or control oligo. After confluency, 

transfected cells were either continually incubated with growth medium or induced into 

differentiation with DMI cocktail. After 6 days, the cells were stained by Oil Red O 

(magnification 200X) (A). B: The gene expression was analyzed by Q-PCR. (n=3+SEM, 

*P<0.01). C: Triglyceride content was measured by fluorescence assay described in 

material and methods. (n=6+SEM, *P<0.01).  
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Fig. 2.7. Ectopic presence of let-7 inhibits 3T3-L1 clonal expansion. 

3T3-L1 cells were transfected with let-7a mimic or control oligo by electroporation and 

cultured in growth medium for 24 h after transfection. Then the cells were incubated with 

DMI-cocktail. On day 1, 2, and 3, the cell number was counted. (n=3+SEM, *P<0.01 vs 

control oligo). 
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Table 2.3. Genes down-regulated by let-7 in 3T3-L1 cells. 

 

Gene Access number Fold change 

Hmga2 NM_010441 3.58 

Isg15 NM_015783 3.28 

Nfib NM_001113209 2.78 

Nme4 NM_019731 2.70 

Stat1 NM_009283 2.65 

Parp12 NM_172893 2.65 

Usp18 NM_011909 2.64 

Rnf213 NM_001040005 2.62 

Iigp2 NM_019440 2.61 

Apol9a XM_128064 2.60 

Mx2 NM_013606 2.56 

Vstm2a NM_145967 2.54 

Cdsn NM_001008424 2.48 

Lgals3bp NM_011150 2.25 

Apol9b NM_173743 2.21 

Arhgap20 NM_175535 2.20 

Irgm NM_008326 2.18 

Igtp NM_018738 2.17 

Ube1l NM_023738 2.17 

Samd9l XM_620286 2.17 

E2f6 NM_033270 2.15 

AI606181 XR_035116 2.11 

Cdc34 NM_177613 2.09 

Plagl2 NM_018807 2.07 

Igf2bp1 NM_009951 2.00 
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Fig. 2.8. let-7 can bind to the 3’ UTR of E2f5 and E2f6 and regulate their expression. 

A: The activity of pGL3-luc, pGL3-luc containing the exact complementary sequence 

for let-7 (pGL3-let-7) or binding site from the 3’ UTR of E2f2, E2f3, E2f5 or E2f6 

(pGL3-E2F) was checked in the presence of control oligo or let-7b in F9 cells. The fold 

changes are shown. (n=3+SEM, RLU: relative luciferase unit) B: The paring of let-7 with 

binding sites in the 3’ UTR of E2f5 or E2f6. The mutated sites are shown as underlined 

letters. C: The activity of pGL3 reporter containing wild-type or mutant binding sites for 

let-7 from the 3’UTR of E2f5 or E2f6 was measured in the presence of let-7 or control oligo. 

The fold changes are shown. (n=3+SEM) 
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Fig. 2.9. let-7 regulates 3T3-L1 cell differentiation through the HMGA2 pathway. 

A: HMGA2 protein level in let-7 or control oligo transfected 3T3-L1 cells. GAPDH is 

shown as a loading control. B: Relative Hmga2 mRNA levels at indicated time points 

during 3T3-L1 cell differentiation detected by Q-PCR (SYBR green assay). (n=3+SDEV) C: 

Western blots showing HMGA2 protein levels at indicated days during 3T3-L1 cell 

differentiation. GAPDH is shown as a loading control. D: Relative mRNA level of aP2 and 

Pparγ in Hmga2 siRNA, E2f1 siRNA, or control siRNA transfected 3T3-L1 cells after 

differentiation. (n=3+SEM, *P<0.05, **P<0.01) 
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Fig. 2.10. Schematic of let-7 and HMGA2 level during 3T3-L1 cell differentiation. Dash 

line shows let-7 expression and solid line indicates HMGA2 protein level. 
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2.3 DISCUSSION 

The differentiation of preadipocytes into mature fat cells requires a highly orchestrated 

series of changes in gene expression. Although a transcription factor cascade has been 

identified that regulates adipocyte differentiation, the molecular mechanisms that coordinate 

the different phases of adipogenesis are not yet completely understood. In this report, we 

have identified the miRNA let-7 as an important regulator of adipogenesis in 3T3-L1 cells.  

Let-7 is up-regulated following induction of adipogenesis by either the standard DMI 

cocktail or the combination of rosiglitazone and insulin. Consistent with these in vitro 

findings, let-7 is much more abundant in mature adipocytes than preadipocytes derived 

from mouse epididymal adipose. Notably, introduction of ectopic let-7 blocks 3T3-L1 cell 

growth during the clonal expansion stage and completely blocks terminal differentiation as 

measured by both the expression of marker genes and lipid accumulation. 

 How does let-7 block adipocyte differentiation? In microarray experiments performed 

with RNA from 3T3-L1 cells transfected with let-7a, Hmga2 was the most strongly 

down-regulated RNA, and there was a corresponding decrease in HMGA2 protein 

concentrations. Previous studies have demonstrated that let-7 represses HMGA2 expression 

by binding to six different sites in the Hmga2 3’-untranslated region (Mayr et al., 2007). 

HMGA2 is an architectural transcription factor that alters chromatin structure.  

Rearrangements of the Hmga2 gene are frequently observed in benign tumors of 

mesenchymal origin, including lipomas (Ashar et al., 1995; Schoenmakers et al., 1995).  

Interestingly, both gain-of-function and loss-of-function experiments in mice implicate 
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HMGA2 in adipogenesis. Mice lacking HMGA2 have marked reductions in adipose tissue 

(Zhou et al., 1995). Conversely, transgenic mice overexpressing either full-length or 

truncated derivatives of HMGA2 develop lipomatosis (Arlotta et al., 2000; Battista et al., 

1999; Fedele et al., 2002). These findings, together with our data showing that 

siRNA-mediated knockdown of HMGA2 blocks 3T3-L1 adipogenesis, suggest that 

HMGA2 is an important target for the effects of let-7 on adipocyte differentiation.  

However, since let-7 regulates numerous genes, its effects on adipocyte differentiation are 

likely to be complex and involve regulation of additional genes. In this regard, it is 

interesting that let-7 reduced mRNA levels of E2f6 and Stat1. Other members of the E2F 

family are known to regulate adipogenesis (Fajas et al., 2002), and STAT1 has been shown 

to be up-regulated during adipogenesis and to regulate gene expression in mature adipocytes 

(Hogan and Stephens, 2001; Hogan and Stephens, 2003; Stephens et al., 1996). 

 The regulation of miRNA expression during adipocyte differentiation has been 

examined by several groups. In a survey of miRNA regulation during 3T3-L1 cell 

differentiation, Kajimoto et al. observed increased expression of the let-7b isoform, which 

was robustly induced in our study (Kajimoto et al., 2006). In a study of human adipocyte 

differentiation, Esau et al. saw increased expression of let-7a and let-7c (Esau et al., 2004).  

These findings support a role for let-7 in regulating fat cell differentiation in both humans 

and mice. Surprisingly, there is relatively little overlap in the miRNAs regulated in our 

study and that of Kajimoto et al., with only let-7b, miR-143, miR-182 and miR-422b 

showing similar patterns. The basis for this difference is not known, but it does not appear 

to be due to marked differences in the differentiation protocols. 
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While we were able to observe a strong gain-of-function phenotype in 3T3-L1 

adipocytes with let-7a, we did not observe a reciprocal phenotype in knockdown 

experiments performed with 2'-O-methyl oligoribonucleotide inhibitors against the various 

let-7 isoforms (data not shown). Functional redundancy amongst miRNAs is well 

documented (Miska et al., 2007) and thus the presence of many let-7 isoforms is a likely 

explanation for the lack of an effect we seen in these experiments. In this regard, we note 

that transfection of let-7b had the same effect as let-7a on 3T3-L1 cell differentiation (data 

not shown). 

 In summary, we provide evidence that let-7 regulates adipocyte differentiation. We 

propose that let-7 does this in part by targeting the transcription factor HMGA2, thereby 

promoting the transition of preadipocytes from clonal expansion to terminal differentiation 

(Fig. 2.10). The role of let-7 in mediating this transition switch is reminiscent of its 

developmental role in C. elegans, where let-7 regulates the transition from the larva to adult 

(Johnson et al., 2005; Reinhart et al., 2000). Our findings suggest that let-7 may have 

important implications in obesity and other forms of metabolic disease in which there are 

alterations in the amount and/or function of adipose tissue. 
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2.4 SUMMARY 

3T3-L1 pre-adipocytes undergo growth arrest, clonal expansion, final growth arrest and 

terminal differentiation into mature adipocytes. We investigated whether microRNAs, 

endogenous small RNAs, play a role in this process. Microarrays were performed to detect 

the expression of microRNAs during 3T3-L1 pre-adipocyte differentiation at day 0, day 1, 

day 4, and day 7. Several microRNAs including let-7 were up-regulated at the late stage of 

3T3-L1 adipogenesis. Microarray results were confirmed by northern blot and quantitative 

real time PCR. let-7 expression specifically increased during the late stage of 3T3-L1 

differentiation. Over presence of let-7 in 3T3-L1 cells before DMI induction inhibits 

3T3-L1 adipogenesis. Both the mRNA and protein levels of Hmga2, a target for let-7, 

decreased after ectopic introduction of let-7 in 3T3-L1 cells. HMGA2 protein level is 

inversely correlated to let-7 levels during 3T3-L1 adipogenesis. Knock-down of Hmga2 or 

E2f1 by siRNA also inhibits 3T3L1 pre-adipocyte differentiation. Our results suggest let-7 

can stop clonal expansion of 3T3-L1 cells and bring them to final growth arrest and 

terminal differentiation by targeting Hmga2. 
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CHAPTER 3 

Profiles of microRNA Expression in Normal Mouse Tissues Detected by 

Quantitative Real Time PCR 

 

3.1 INTRODUCTION 

Genes encoding microRNAs are located in intergenic regions or in the introns or exons 

of other genes on chromosomes. They either have their own promoters or are controlled by 

the promoters of other genes. The expression of microRNAs in different tissues should offer 

some clues into their function. Also, the expression level of microRNA in different normal 

tissues can be used as a reference for that of physiologic or pathologic status. 

There are several ways to detect expression of microRNAs. Northern analysis is 

commonly used for detecting microRNA expression. For example, researchers have used 

northern analysis to detect the expression of 119 microRNAs in mouse and human tissues 

(Sempere et al., 2004). This strategy has some shortcomings. It is labor-intensive and can 

not distinguish microRNAs with very similar sequences. 

Microarrays have the advantage of being high-throughput and have been used for 

detecting the profile of microRNA expression (Barad et al., 2004; Liu et al., 2004a; Miska 

et al., 2004; Nelson et al., 2004; Sun et al., 2004; Thomson et al., 2004). However, 

microarrays cannot differentiate microRNAs with similar sequences, and can not detect 

microRNAs with very low expression. 

In an effort to improve the specificity of microarray for microRNAs, locked nucleic acid 
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(LNA)-modified capture probes have been used in microarrays. LNA probe sets were 

designed for uniform, high-affinity hybridizations that can produce highly accurate signals 

and are able to discriminate single nucleotide differences due to their unique biophysical 

properties (Castoldi et al., 2007; Castoldi et al., 2008; Castoldi et al., 2006). 

Another group used bead-based flow-cytometric microRNA expression profiling to 

perform expression analysis of 217 mammalian microRNAs from 334 samples, including 

multiple human cancer samples (Lu et al., 2005). It is claimed that bead-based hybridization 

is superior to glass array hybridization in specificity since it is solution based chemistry. 

This method also is fast, high-throughput, and low cost (Lu et al., 2005). 

To achieve the goals of high specificity and sensitivity, a novel microRNA 

quantification method has been developed using stem-loop revese transcription (RT) 

followed by TaqMan PCR analysis (Chen et al., 2005a). Stem-loop RT primers are more 

efficient and specific than conventional RT primers. TaqMan microRNA assays can 

specifically detect mature microRNAs and are not affected by genomic DNA, 

pri-microRNAs, or pre-microRNAs. This assay can discriminate microRNAs with similar 

sequences that only differ by a single nucleotide. The Taqman PCR process amplifies 

targets and can detect microRNAs of very low abundance (Chen et al., 2005a). This method 

has been widely used for detecting microRNA expression in cell lines, tissues, and tumors 

(Chen and Stallings, 2007; Gaur et al., 2007; Jongen-Lavrencic et al., 2008; Lee et al., 2008; 

Liang et al., 2007). 

In an effort to explore the role of microRNAs in different tissues, we analyzed the 

expression profiles of 111 microRNAs in 36 mouse tissues using an Applied Biosystem 
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microRNA Taqman assay kit. These resultant profiles provide hints toward the function of 

different microRNAs. Furthermore, a comparison of microRNA expression with nuclear 

receptor expression was performed and may provide useful information on nuclear receptor 

regulation of microRNA expression, and vice versa. 
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3.2 RESULTS AND DISCUSSION 

3.2.1 MicroRNAs show different expression patterns in mouse tissues. 

Total RNA was extracted from 36 tissues from C57BL/6J mice using a standard 

protocol (Bookout et al., 2006). These tissues include eight from CNS (eye, brain stem, 

cerebellum, cerebrum, olfactory bulb, spinal cord, hypothalamus, and pituitary gland), three 

belong to endocrine tissues (adrenal gland, pancreas, and thyroid gland), seven of them are 

from metabolic tissues (duodenum, jejunum, ileum, colon, gall bladder, liver, and kidney), 

two are from adipose tissues (WAT and BAT), two from immune system (spleen and thymus 

gland), eight of them are from reproductive tissues (ovary, uterus, epididymus, preputial 

gland, prostate, seminal vesicles, testis, and vas deferens), three of them are from the 

respiratory system (aorta, lung, and heart), and three are from structural tissues (muscle, 

skin, and bone). 

The RNA was reverse transcribed using microRNA-specific stem-loop RT primers. 

Then the cDNA was amplified in a Taqman PCR reaction using microRNA-specific PCR 

primers and Taqman probes. The data were analyzed using the standard curve assay (Chen 

et al., 2005a). 

To check data accuracy, northern analysis was performed on select microRNAs. Northern 

analysis confirmed the result (Fig. 3.1). In addition, our Q-PCR results are consistent with 

previous publications (Esau et al., 2006). 
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3.2.1.1 Low versus high expression level 

The expression of different microRNAs varied considerably. Some showed high 

expression in different tissues, while others were very low to undetectable (Fig. 3.3). For 

example, miR-30c and miR-16 were highly expressed in most tissues (Fig. 3.2; 3.4). On the 

contrary, microRNAs like miR-190 were barely detectale. 

 

3.2.1.2 Specific expression pattern 

A subset of microRNAs exhibited exclusive expression in mouse tissues. For example, 

miR-122a was exclusively expressed in liver, in agreement with other reports (Esau et al., 

2006). miR-133 was highly expressed in heart and skeletal muscle, with low expression in 

skin, bone and eye. The expression level of miR-133a and miR-133b was increased during 

C2C12 myocyte differentiation (Fig. 3.5). These results are consistent with its role in 

muscle development (reviewed by Callis and Wang, 2008). miR-194 was highly expressed 

in intestinal organs such as duodenum, jejunum, ileum, and colon, as well as at a lower 

levels in liver (Fig. 3.6). miR-23a and miR-23b had relatively higher expression in colon, 

and lower expression in heart, lung, skin and muscle (Fig. 3.7). miR-203 and miR-205 are 

highly expressed in preputial gland and skin. miR-205 was also expressed at low levels in 

reproductive tissues such as epididymus, prostate and seminal vesicles (Fig. 3.8). miR-213 

was highly expressed in thymus. The expression of miR-148a was higher in pancreas than 

other tissues (Fig. 3.9). In white adipose tissue, the expression of miR-335 was high. It was 

also expressed in pituitary (Fig. 3.4). miR-140 had high expression in aorta and bone. 
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miR-142-3p was also mainly expressed in bone (Fig. 3.10). miR-182, miR-183, and 

miR-184 were mainly expressed in eyes (Fig. 3.11; 3.12). 

Some microRNAs was exclusively or mainly expressed in the central nerve system 

(CNS). For example, miR-124 was exclusively expressed in the CNS (Fig. 3.13) and has 

been reported to play a role in neuronal development (Makeyev et al., 2007; Visvanathan et 

al., 2007). miR-9, miR-9*, miR-29, miR-128, miR-132，miR-204, miR-218, and miR-219 

are highly expressed in the CNS (Fig. 3.14; 3.15; 3.16; 3.17; 3.18). miR-127, miR-129, 

miR-134, miR-137, miR-154, miR-323, and miR-370 were mainly expressed in the CNS, 

but at a much lower level (Fig. 3.19, 3.20, 3.21). 

The expression data of other microRNAs in this study was shown in (Fig. 3.27-3.43). 

3.2.2 Hierarchical clustering of microRNAs based in mouse tissues 

Hierarchical clustering of microRNAs expression from 36 mouse tissues in these tissues 

showed high correlation between tissues from the same anatomic location (Fig. 3.22). 

Tissues from GI tract, including duodenum, jejunum, ileum, and colon are clustered 

together. Also tissues from the CNS, such as brain stem, cerebellum, cerebrum, olfactory 

bulb, spinal cord, and hypothalamus clustered together. Epididymus, vas deferens, and 

prostate belong to the male productive organs and they clustered together. Tissues with 

similar physiologic functions also showed high correlation in the cluster analysis. For 

example, heart and skeletal muscle are clustered together; Spleen and thymus clustered 

together. These results suggest that the role of a microRNA is consistent with the function of 

the tissue in which it is expressed.  
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Liang et al. provided expression data of 345 microRNAs from 40 normal human tissues. 

In that study, the cluster analysis of human tissues based on their microRNA expression 

drew similar conclusions to our study (Liang et al., 2007). 

Hierarchical clustering of microRNAs based on their expression in different tissues 

showed different isotypes of microRNAs clustered together (Fig. 3.23). Two isoforms of 

let-7, let-7a, and let-7d, clustered together, indicating their similar expression (Fig. 3.24). 

miR-133a and miR-133b also clustered together. Although these different isoforms of 

microRNA may come from different locations of chromosomes, the similar expression 

pattern is consistent with their redundant roles in tissues. 

MicroRNAs from a single transcript clustered together (Fig. 3.23). For example, the 

miR-17-92 cluster is located on chromosome 14 of the mouse genome. The expression of 

three of these microRNAs (miR-17-5p, miR-19a and miR-20) clustered together based on 

their expression in mouse tissues (Fig. 3.25). This result indicates microRNAs under the 

control of a common promoter also exhibited similar expression patterns. 

 

3.2.3 Correlation between nuclear receptors and microRNAs based on their expression 

pattern in mouse tissues. 

The expression pattern of microRNAs from this study was compared to that of nuclear 

receptors in different tissues (Bookout et al., 2006), to provide meaningful information on 

regulation of nuclear receptors and microRNAs. If a microRNA shows positive correlation 

with a nuclear receptor, it may indicate that that nuclear receptor regulates its expression. If 

the correlation is negative, it may suggest the nuclear receptor is regulated by that 
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microRNA. One point worth noting here is that these correlations are only based on 

microRNA and nuclear receptor tissue expression pattern. These predications will need to 

be validated by further experimentation. 

Based on the expression of microRNAs and nuclear receptors in mouse tissues, the 

correlation coefficient was calculated using Pearson correlation. As shown in Table 3.1, 

there are 50 pairs of nuclear receptors and microRNAs that have positive correlation with 

coefficients greater than 0.8. None of them shows a negative correlation with an absolute 

value greater than 0.5. miR-184 is exclusively expressed in eyes and it has high correlation 

with the photoreceptor cell-specific nuclear receptor (PNR) (Fig. 3.11). miR-194 has high 

expression in intestinal tissues and it has high correlation with HNF4γ and PXR (Fig. 3.6). 

To investigate whether miR-194 is a target of PXR, we checked whether miR-194 level 

is changed in wild type and PXR knock-out mice treated with 

pregnenolone-16α-carbonitrilepcn (PCN, a PXR ligand). CYP3a11 and OATP2 (organic 

anion transporting polypeptide 2) are target genes of PXR and their expression was 

up-regulated by PCN treatment in wild type but not PXR knock-out mice. However, 

miR-194 expression was unchanged in wild-type mice treated with PXR ligand. These 

results suggest miR-194 is not a direct target of PXR. Also the expression of miR-194 was 

not up-regulated by thyroid hormone T3, vitamin D3, or ligands for FXR, LXR, RXR, CAR, 

RAR, PPARα/β/δ/γ (Fig. 3.26). 

Although the correlation between miR-194 and PXR predicated by clustering was 

disproved by experimental data, there are still many pairs of microRNAs and nuclear 

receptors remaining to be explored. For example, the relationship between miR-194 and 
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HNF4γ needs to be further investigated. 

Another way to investigate the regulation between microRNA and nuclear receptor is 

using microarray. Comparing the expression of microRNAs before and after ligand 

treatment for nuclear receptors will help to identify microRNAs which are the targets of 

nuclear receptors. 

3.3 SUMMARY 

The expression of 111 microRNAs in 36 mouse tissues was detected by quantitative real 

time PCR. MicroRNAs have diverse expression patterns in different tissues. Some are 

universally expressed while others are specifically expressed in certain tissues, suggesting 

their roles in these tissues. The expression level of different microRNA varies from each 

other. MicroRNAs transcribed from the same genomic location have similar expression 

patterns in mouse tissues. Also different isotypes of microRNAs have similar expressions in 

mouse tissues despite that they may come from different locations of choromosomes. 

Hierarchical cluster analysis based on the expression of microRNA in tissues revealed that 

tissues having similar physiological functions or from the same anatomic location are 

clustered together, suggesting the roles of microRNAs are consistent with the function of 

the tissue in which they are expressed. Comparison of the expression of microRNAs with 

that of nuclear receptors in mouse tissues showed positive correlations between nuclear 

receptors and microRNAs. Whether these relationships reflect a functional relationship 

remains to be explored in the future. Taken together, the expression profile of microRNAs 

in mouse tissues provides a useful resource to the microRNA and nuclear receptor 
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communities. To that end, these data sets will be deposited at www.nursa.org. 
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Figure 3.1 Quantitative real time PCR (A) and northern analysis (B) showed miR-122 is
specifically expressed in liver.
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Figure 3.2 The expression of miR-30 in mouse tissues.
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86Figure 3.3 The expression of microRNAs
in mouse tissues. Color scheme: low
expression (green); median expression
(black); high expression (red); no expres-
sion (grey).
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Figure 3.4 The expression of miR-16 and miR-335 in mouse tissues.
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Figure 3.5 The expression of miR-133 in mouse tissues and during C2C12 differentiation.
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Figure 3.6 The expression of miR-194, HNF4g, and PXR in mouse tissues. The
expression data of HNF4g and PXR are from (Bookout et al., 2006).
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Figure 3.7 The expression of miR-23a and miR-23b in mouse tissues.
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Figure 3.8
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The expression of miR-203 and miR-205 in mouse tissues.
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Figure 3.9 The expression of miR-213 and miR-148a in mouse tissues.
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Figure 3.10 The expression of miR-140 and miR-142 in mouse tissues.
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Figure 3.11 The expression of miR-184 and PNR (Bookout et al., 2006) in mouse tis-
sues.
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Figure 3.12 The expression of miR-182 and miR-183 in mouse tissues.
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Figure 3.13 The expression of miR-124 in mouse tissues.
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Figure 3.14 The expression of miR-9 in mouse tissues.
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Figure 3.15 The expression of miR-29 in mouse tissues.

98

R
el

at
iv

e
ex

pr
es

si
on

R
el

at
iv

e
ex

pr
es

si
on

R
el

at
iv

e
ex

pr
es

si
on

Ct=22

Ct=25

Ct=22



miR-128a
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Figure 3.16 The expression of miR-128 in mouse tissues.
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Figure 3.17 The expression of miR-132 and miR-204 in mouse tissues.
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Figure 3.18 The expression of miR-218 and miR-219 in mouse tissues.

101

R
el

at
iv

e
ex

pr
es

si
on

R
el

at
iv

e
ex

pr
es

si
on

Ct=24

Ct=28



miR-129

miR-127

Figure 3.19 The expression of miR-127 and miR-129 in mouse tissues.
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Figure 3.20 The expression of miR-134 and miR-137 in mouse tissues.
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Figure 3.21 The expression of miR-154, miR-323, and miR-370 in mouse tissues.
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Figure 3.22 Cluster analysis of mouse tissues based on their microRNA
expression.
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Figure 3.23 Cluster analysis of
microRNAs based on their
expression in mouse tissues
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Figure 3.24 The expression of let-7 in mouse tissues.
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miR-17-5p

Figure 3.25 The expression of miR-17, miR-19a, and miR-20 in mouse tissues.
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miR-184
miR-96
miR-34c
miR-34c
miR-194
miR-183
miR-9*
miR-9
miR-135b
miR-182
miR-128a
miR-129
miR-34c
miR-128b
miR-9
miR-34c
miR-98b
miR-184
miR-137
miR-9*
miR-9*
miR-107
miR-129
miR-194
miR-132
miR-132
miR-129
miR-124b
miR-29b
miR-29c
miR-30e
miR-96
miR-128a
miR-323
miR-9
miR-29a
miR-323
miR-218
miR-370
miR-128a
miR-135b
miR-138
miR-204
miR-218
miR-204
miR-183
miR-128b
miR-9*
miR-135b

PNR
PNR
GCNF
DAX
HNF4g
PNR
COUP-TFI
TLX
TLX
PNR
TLX
TLX
TR2
TLX
COUP-TFI
FXRb
TLX
ERRb
TLX
TRa
TLX
TLX
NURR1
PXR
NURR1
TLX
COUP-TFI
TLX
TLX
TLX
TLX
ERRb
NURR1
COUP-TFI
NURR1
TLX
TLX
COUP-TFI
COUP-TFI
COUP-TFI
COUP-TFI
TLX
PNR
TLX
RORb
ERRb
NURR1
NURR1
NURR1

0.99
0.98
0.98
0.96
0.96
0.94
0.93
0.92
0.92
0.92
0.92
0.91
0.90
0.90
0.89
0.89
0.88
0.87
0.87
0.87
0.87
0.86
0.86
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.84
0.84
0.84
0.83
0.83
0.83
0.82
0.82
0.81
0.81
0.81
0.81
0.81
0.80
0.80
0.80

6.24E-50
6.23E-24
7.37E-24
2.51E-21
1.48E-20
7.9E-18
3.18E-16
9.89E-16
1.11E-15
1.33E-15
2.35E-15
2.38E-14
5.63E-14
6.44E-14
2.25E-13
3.05E-13
2.6E-12
3.07E-12
3.5E-12
8.71E-12
9.24E-12
2.0E-11
2.95E-11
3.61E-11
3.93E-11
4.13E-11
4.18E-11
4.22E-11
4.3E-11
4.29E-11
4.68E-11
6.79E-11
8.48E-11
1.16E-10
1.48E-10
2.23E-10
2.45E-10
3.94E-10
4.79E-10
1.15E-09
1.41E-09
2.08E-09
2.09E-09
2.7E-09
2.89E-09
3.18E-09
3.68E-09
4.79E-09
6.42E-09

miRNA Nuclear Receptor Correlation P value
Table 3.1 Correlations between nuclear receptors and microRNAs
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Figure 3.26 Test whether miR-194 is a direct transcriptional target of nuclear recep-
tors. A. The expression of PXR target genes in wild-type or PXR knock-out mice treat-
ed with PCN. B. The expression of miR-194 in wild-type or PXR knock-out mice treat-
ed with PCN. C. The expression of miR-194 in the presence of different ligands for
nuclear receptors.
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Figure 3.27 The expression of miR-10, miR-15, and miR-21 in mouse tissues.
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Figure 3.28 The expression of miR-25, miR-26b, miR-27b, and miR-28 in mouse tissues.

miR-25

miR-26b

miR-27b

miR-28

Ct=28

Ct=27

Ct=29

Ct=31



113

R
el

at
iv

e
ex

pr
es

si
on

R
el

at
iv

e
ex

pr
es

si
on

R
el

at
iv

e
ex

pr
es

si
on

R
el

at
iv

e
ex

pr
es

si
on

Figure 3.29 The expression of miR-34, miR-92, and miR-96 in mouse tissues.
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Figure 3.30 The expression of miR-98b, miR-99a, miR-100, and miR-103 in mouse tissues.
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Figure 3.31 The expression of miR-107, miR-125a, miR-125b, and miR-126 in mouse tissues.
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Figure 3.32 The expression of miR-128 and miR-130 in mouse tissues.
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Figure 3.33 The expression of miR-135, miR-138, and miR-139 in mouse tissues.
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Figure 3.34 The expression of miR-141, miR-145, miR-146, and miR-149 in mouse tissues.
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Figure 3.35 The expression of miR-150, miR-152, and miR-181 in mouse tissues.
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Figure 3.36 The expression of miR-181c, miR-185, miR-186, and miR-187 in mouse tissues.
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Figure 3.37 The expression of miR-189, miR-190, miR-191, and miR-193 in mouse tissues.
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Figure 3.38 The expression of miR-195 and miR-199 in mouse tissues.
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Figure 3.39 The expression of miR-200 and miR-210 in mouse tissues.

miR-200a

miR-200b

miR-200c

miR-210

Ct=25

Ct=28

Ct=27

Ct=27



124

R
el

at
iv

e
ex

pr
es

si
on

R
el

at
iv

e
ex

pr
es

si
on

R
el

at
iv

e
ex

pr
es

si
on

R
el

at
iv

e
ex

pr
es

si
on

Figure 3.40 The expression of miR-214, miR-221, miR-222, and miR-223 in mouse tissues.
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Figure 3.41 The expression of miR-296, miR-299, miR-301, and miR-320 in mouse tissues.

miR-296

miR-299

miR-301

miR-320

Ct=29

Ct=33

Ct=29

Ct=30



126

R
el

at
iv

e
ex

pr
es

si
on

R
el

at
iv

e
ex

pr
es

si
on

R
el

at
iv

e
ex

pr
es

si
on

R
el

at
iv

e
ex

pr
es

si
on

Figure 3.42 The expression of miR-324, miR-328, miR-331, and miR-338 in mouse tissue.
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Figure 3.43 The expression of miR-339, miR-340, and miR-342 in mouse tissues.
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CHAPTER 4 

Material and Methods 

 

4.1 Cell culture and differentiation 

3T3-L1 cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) high 

glucose with L-glutamine (Invitrogen, CA) and supplemented with 10% heat-inactivated 

fetal bovine serum (FBS), 100U/ml penicillin, 100mg/ml streptomycin, and incubated at 

37°C in 5% CO2 humidified atmosphere. Differentiation with DMI: two days after 

confluence, a cocktail containing 1uM dexamethasone, 0.5mM 

3-iso-butyl-1-methylxanthine (IBMX), and 5ug/ml insulin were added into culture medium. 

After culturing with DMI for 48 hours, culture medium was replaced every 48 hours with 

DMEM containing 10% FBS and 5ug/ml insulin until pre-adipocytes become mature 

adipocytes. Differentiation with Rosiglitazone: after 3T3-L1 preadipocytes reached 

confluence, cells were cultured in DMEM supplemented with 10% FBS and 5uM 

Rosiglitazone. Medium was replaced every 48 hours. 3T3-F442A differentiation: 

3T3-F442A cells were cultured in DMEM high glucose with 10% FBS and 5ug/ml insulin 

was added to the culture medium to induce 3T3-F442A differentiation after confluence. 

C2C12 differentiation: C2C12 myocytes were cultured in DMEM supplemented with 20% 

FBS and differentiated into myotubes by culture in DMEM with 2% horse serum after 

confluence. 
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4.2 Northern blot for microRNAs 

10ug of total RNA for each sample was mixed with 2x sample loading buffer and 

incubated at 65°C for 10 minutes, chilled on ice for 3 minutes and loaded on a 15% 

polyacrylamide gel containing 7M Urea (Invitrogene, CA). Electrophoresis was performed 

at 250V for 1 hour in 1X Tris-Borate-EDTA (TBE) buffer. RNA was transfered onto 

Hybond N+ membranes (Amersham Biosciences, NJ) at 20V for 45 minutes in 0.5X TBE. 

RNA was cross-linked to this membrane by UV-linker. Starfire probes for each microRNA 

were labeled with α-P
32

-dATP (Amersham Biosciences, NJ) using the Starfire kit 

(Integrated DNA Technology, Coralville, IA). Labeled probe was separated from free 

α-P
32

-dATP using Sephadex G-25 column (Roche, IN). Hybridization was done at 45°C in 

0.2M Na2HPO4, 7% SDS buffer overnight. Membranes were washed with 2X SSC/0.1% 

SDS twice and exposed to X-ray film. Either ethidium bromide (EB) stained gel or U6 

snRNA northern blot was used as a loading control. 

  

4.3 RNA preparation and quantitative real time PCR 

Total RNA was isolated from 3T3-L1 cells using RNA stat-60 (Tel-Test, TX) and 

precipitated with isopropanol. Messenger RNA was converted to cDNA and detected with 

ABI 7900HT sequence detection system using SYBR greener assay (Bookout and 

Mangelsdorf, 2003). Cyclophilin or 18S rRNA was used as loading control. The data 

analysis was done according to (Fu et al., 2005). 

Primers for real time PCR (Fu et al., 2005): 
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Gene Forward primer Reverse primer 

C/EBPα gacatcagcgcctacatcga  tcggctgtgctggaagag 

C/EBPß atttctatgagaaaagaggcgtatgt aaatgtcttcactttaatgctcgaa 

C/EBPδ ttccaaccccttccctgat ctggagggtttgtgttttctgt 

Adipsin aggacgacctcattctttttaagc acttctttgtcctcgtattgcaa 

aP2 gcctgccactttccttgtg gacatcagcgcctacatcga 

PPARγ caagaataccaaagtgcgatcaa gagctgggtcttttcagaataataag 

FAS gctgcggaaacttcaggaaat agagacgtgtcactcctggactt 

LPL ggccagattcatcaactggat gctccaaggctgtaccctaag 

E2F1 cccctcctgagacccaacta gctcttaagggagatctgaaatgtc 

Hmga2  aacctgtgagccctctcctaag gccgtttttctccaatggtc (Lin et al., 2007)  

 

For microRNA quantitative real time PCR, Taqman MicroRNA assay kit (Applied 

Biosystems, CA) was used. Reverse transcription (RT) of each microRNA with microRNA 

specific stem loop RT primer and quantitative real time PCR with Taqman probe were done 

according to product manual to detect mature microRNA. Universal RNAs from mouse 

tissues were used to set up a standard curve for each microRNAs. U6 snRNA level was used 

as a loading control. 

 

4.4 Microarray 

For microRNA microarray, microRNAs were isolated from total RNA using the 

FlashPAGE fractionator (Ambion, TX). 100ug of total RNA was loaded to FlashPAGE 

precast gel and small size RNA was collected after electrophoresis at 80V for 12 minutes. 

Then small size RNA was purified by FlashPAGE reaction clean up kit (Ambion, TX). 1ug 

of small size RNA was used for microarray on a custom prepared slide containing 386 

probes for human, mouse, and rat microRNAs from mirVana microRNA Probe Set (Ambion, 

TX). Microarrays were done at UT Southwestern Medical Center University Microarray 
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Core Facility. After Labeling, hybridization, and washing, slides are scanned and analyzed 

using GeneTraffic software. 

For mRNA microarray, Illumina beadarray (Illumina, CA) was used. Total RNA was 

extracted from control microRNA or let-7 transfected 3T3-L1 cells 24 hours post 

transfection. After cDNA synthesis and purification, aRNA purification, hybridization, wash, 

staining, and scanning of slides, data was analyzed. 

 

4.5 Western blot 

3T3-L1 cells were scraped from culture dishes and lysed with M-Per mammalian 

protein extraction reagent (Pierce, IL) after phosphate buffer solution (PBS) washing. 

Proteins were separated with 15% SDS-PAGE and transferred to cellulose membranes. 

Membranes were blotted with 1:200 anti-Hmag2 rabbit antibody (Biocheck, CA). Then 

1:5,000 anti rabbit HRP secondary antibody was blotted to the membrane. The same 

membrane was blotted with 1:10,000 anti-GAPDH HRP conjugated antibody 

(Sigma-aldrich, MO) as a loading control. 

 

4.6 Oil Red O staining 

Oil red O staining was done according to (Wu et al., 1998). Cells in culture dishes were 

fixed in 10% formaldehyde in PBS for 15min after two times of PBS wash. Cells then were 

stained in freshly made Oil Red O solution (60% of Oil Red O stock solution which consists 

of 0.5% Oil Red O in isopropanol, 40% of H2O) for at least 1 hour. After staining, the cells 
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were washed with 60% isopropanol, then with H2O until background staining was gone. 

 

4.7 Glyceride content measurement 

Glyceride content was measured using AdipoRed assay reagent (Cambrex, MD) 

according to manufactory protocol. In summary, 5ul of AdipoRed reagent was added to 

each well of a 96 well plate containing 200ul PBS after washing with PBS. After mixing 

and 10 minutes wait, the 96 well plate was measured in the Victor 1420 Multilabel Counter 

fluorimeter (PerkinElmer, Waltham, Massachusetts) at excitation wave at 485nm and 

emission wave at 572nm. 

 

4.8 3T3-L1 cell transfection using Nucleofector 

3T3-L1 cells were trypsinized and pelleted down at 90g for 10 minutes. After removal 

of supernatant, 100ul of buffer V and 2ug of let-7 pre-mir (Ambion, TX) or plasmids were 

used to resuspend the pellet. 3T3-L1 cells were tranfected using Nucleofector (Amaxa, MD) 

in buffer V with program T-30. Cells were cultured in 6 well plates or 96 well plates after 

transfection. 

 

4.9 Luciferase assay in F9 cells 

F9 cells were cultured in 0.1% gelatin-coated 48 well plates with DMEM containing 

10% FBS. Plasmids for luciferase reporter, control renilla luciferase reporter, and control or 
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let-7 oligo were transfected into F9 cells with X-tremeGENE siRNA transfection reagent 

(Roche, IN) according to the product manual. Cells were lysed and luciferase and renilla 

luciferase activity were measured using dual luciferease assay kits (Promega, WI) 24hours 

after transfection. Luciferase reporter activity was normalized to renilla luciferase activity. 

 

4.10 Hierarchical cluster analysis 

MicroRNAs or mouse tissues were subjected to unsupervised hierarchical cluster 

analysis based on the expression of microRNAs in different mouse tissues using Cluster 3.0 

software (which was originally developed by Michael Eisen at Stanford University and later 

developed by M. J. L. de Hoon, S. Imoto, J. Nolan, and S. Miyano at the Human Genome 

Center of University of Tokyo). The log2 data was centered by median and hierarchical 

cluster was performed for microRNAs or tissues using a single linkage metric. The result 

was shown using Java TreeView 1.1.3 (Created by Alok Saldanha). The data was displayed 

using color code. 
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