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CHAPTER 1

General introduction

1.1 MicroRNA

1.1.1 Discovery of microRNA

The first microRNA (miRNA), lin-4, was found in Caenorhabditis elegans in 1993 (Lee
et al., 1993). lin-4 can regulate post embryonic C. elelgans development by negatively
regulating lin-14 protein through binding to the 3’ untranslated region (3’UTR) of lin-14
(Lee et al., 1993). In 2000, another microRNA, let-7 was found in C. elegans (Reinhart et
al., 2000). let-7 can regulate C. elegans developmental timing by targeting lin-14, lin-28,
lin-41, lin-42, and daf-12 (Reinhart et al., 2000). The finding of let-7 led to discovery of
more microRNAs in worms, flies, and mammals (Lagos-Quintana et al., 2001; Lau et al.,
2001; Lee and Ambros, 2001). There are 154 microRNAs in Caenorhabditis elegans, 152 in
Drosophila melanogaster, 472 in Mus musculus, and 678 in Homo sapiens in the miRBase

(http://microrna.sanger.ac.uk/) as of July, 2008.

1.1.2 Methods to identify microRNAs

Forward genetics identifies genes that are responsible for certain phenotypes. It was the
first method to find microRNAs such as lin-4 and let-7 in Caenorhabditis elegans (Lee et al.,
1993; Reinhart et al., 2000). bantam was another microRNA found in Drosophila by genetic

methods (Brennecke et al., 2003). Another way to discover microRNAs on a large scale is



cDNA cloning (Ambros et al., 2003b). Investigators clone small size RNAs, compare their
sequences to genomic sequences, and use RNA folding predictions to check whether they
belong to microRNA family. Then northern blot is used to check their expression (Ambros
and Lee, 2004). The third method used to identify microRNA is using bioinformatics
programs. These programs are based on the fact that the sequences of microRNA are
evolutionally conserved and microRNA precursors have a stem loop structure. These

bioinformatics programs are summarized in Table 1.1 (Kim and Nam, 2006).

1.1.3 Genomic location of microRNAs

It was thought that most microRNAs are made from independent transcripts (Lau et al.,
2001). After annotating the sequences of some mammalian microRNAs with their genomes,
researchers found 161 out of 232 microRNAs are located within the overlap of defined
transcription units (Rodriguez et al., 2004). Among them, 90 out of 161 microRNAs are
located in the intron of a protein encoding transcript, 27 are located in the intron of a
non-protein encoding transcript, 30 are located in the exon of a non-protein encoding
transcript (Rodriguez et al., 2004). Comparison of the expression pattern of microRNAs
with their overlapping genes suggests that they may come from the same transcripts
(Rodriguez et al., 2004). A single transcript may encode several microRNAs. For example,
miR-35, miR-36, miR-37, miR-38, miR-39, miR-40, and miR-41 come from a single
transcript in C. elegans (Lau et al.,, 2001). In the human genome, miR-17, miR-18a,

miR-19a, miR-20a, miR-19b-1, miR-92a-1 are from a cluster on chromosome 13



(Lagos-Quintana et al., 2001; Mourelatos et al., 2002).
MicroRNAs may have their own promoters. For examples, the promoter of miR-155
(also known as BIC gene) was found by genetic methods (Tam, 2001). Also the temporal

regulatory element of let-7 promoter has been characterized (Johnson et al., 2003).

1.1.4 Regulation of microRNAs

MicroRNAs can be regulated by other genes. p53 can bind to the promoter of miR-34
and activate its expression, which will lead to cell apoptosis (Chang et al., 2007; Corney et
al., 2007; He et al., 2007b; Hermeking, 2007; Raver-Shapira et al., 2007; Tarasov et al.,
2007). c-Myc can promote the expression of the miR-17-92 cluster (O'Donnell et al., 2005).
Furthermore, miR-1 is the direct transcriptional target of SRF (serum response factor),
MyoD (myogenic differentiation 1) and Mef2 (myocyte enhancer factor-2) (Zhao et al.,

2005).

1.1.5 MicroRNA biogenesis

The process of microRNA biogenesis is summarized in Fig. 1.1. Most microRNAs are
transcribed by RNA polymerase II. It has been shown to bind to the promoters of
microRNAs and inhibition of its activity leads to less primary microRNA products (Lee et
al., 2004). The microRNA is transcribed as a large product called the primary microRNA
(pri-miRNA), which is several kilo basepairs in length and contains 5° caps and 3’

polyadenylated tails (Cai et al., 2004). Pri-microRNA then is processed by the nuclear



Table 1.1: Program for microRNA predication (Adapted from Kim and Nam, 2006)

Nonconserv
Name of Prediction ed )
Methods . Species Sources
program target microRNA
detection
Comparative .
. ] . Lim et al, Genes Dev.
miRscan analysis, stem-loop | Pre-microRNA | No Nematode
. (2003); 17(8):991-1008.
conservation
Sequential and
. Grad et al, Mol. Cell (2003);
srnaloop structural Pre-microRNA | No Nematode
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RNaselll, Drosha, into pre-microRNA which is around 60-70 nucleotides and contains
stem-loop structures (Lee et al., 2003b; Lee et al., 2002). Cleavage of pri-microRNA into
pre-microRNA by Drosha requires double stranded RNA binding protein DGCR8 (Gregory
et al., 2004; Han et al., 2004; Landthaler et al., 2004). Pre-microRNA is exported from the
nucleus into the cytoplasm by Exportin-5 in a Ran-GTPase dependent manner (Lund et al.,
2004; Yi et al., 2003).

After pre-microRNA is exported into the cytoplasm, it is cut into a 22nt duplex by
another RNase III endonuclease called Dicer (Lee et al., 2003b). Dicer is known to play a
role in the RNA interference (RNA1i) process (Bernstein et al., 2001) and was later found to
be involved in microRNA maturation (Grishok et al., 2001; Hutvagner et al., 2001; Ketting
et al., 2001). Dicer can cut the pre-microRNA duplex like the way it does during the RNAi
process (reviewed by Bartel, 2004). Double stranded RNA binding protein Loquacious (its
homolog is human immunodeficiency virus (HIV) transactivating response RNA-binding
protein, TRBP) helps Dicer to cleave pre-microRNA into mature microRNA (Forstemann et
al., 2005; Leuschner et al., 2005; Saito et al., 2005; Chendrimada et al., 2005). After Dicer
cleavage, only the strand with low stability at its 5° end of the duplex will remain in the
microRNA containing RNA induced silencing complex (miRISC) while the other strand
disappears quickly (Khvorova et al., 2003; Schwarz et al., 2003). miRISC contains RNA
helicase Gemin 3, Gemin 4 and elF2C2, which is a human homolog of Argonaute
(Mourelatos et al., 2002). Once the RISC complex forms, microRNA can guide the complex
by binding to the 3° UTR or open reading frame of its target by imprecise base pairing

(reviewed by Pillai, 2005).



1.1.6 Mechanism of microRNA action

MicroRNAs can post-transcriptionally regulate their targets by repressing protein
translation or accelerating mRNA decay (reviewed by Eulalio et al., 2008; Wu and Belasco,
2008).

MicroRNAs can repress protein translation of their targets in several ways. Firstly, they
can inhibit protein translation initiation. Ago2 in the RISC complex has a motif similar to
the m(7)G cap-binding domain of eIF4E, which is important for translation initiation. RISC
complex can compete with eI[F4E for m(7)G cap binding (Kiriakidou et al., 2007). Another
possible mechanism for repressing protein translation after cap recognition is through
preventing 80S ribosome association. RISC complex contains elF6, which is an
anti-association factor. It can prevent the association of small and large ribosomal subunits
(Chendrimada et al., 2007). MicroRNAs also can accelerate nascent polypeptide chain
degradation co-translationally on their targets (Nottrott et al., 2006). Finally, microRNAs
may inhibit translation elongation by causing ribosome dissociation prematurely (Petersen
et al., 2006).

MicroRNAs can also promote mRNA degradation. Some microRNAs in plants have
perfect or nearly perfect sequence complementarity to their targets and they can directly
cleave their targets in a way similar to siRNA (Rhoades et al., 2002). In animals, most
microRNAs regulate their targets by translation repression, but some microRNAs can cause
cleavage of their targets. For example, the miR-196 sequence is a nearly perfect match with
the sequence of the 3° UTR of the HOXBS and can cause the cleavage of HOXBS8 transcript

(Yekta et al., 2004). Argonaute protein in the RISC complex is responsible for microRNA



-dependent mRNA cleavage (Liu et al., 2004b; Meister et al., 2004; Okamura et al., 2004).

For those microRNAs whose sequences have only partial complementary to their targets,
they may accelerate mRNA degradation by directing removal of 3’ poly (A) tail and 5’ cap
from the mRNA they targeted (Behm-Ansmant et al., 2006; Eulalio et al., 2007c; Giraldez
et al., 2006; Wu et al., 2006). Messenger RNA degradation by microRNA requires
Argonaute protein and P-body component GW182. The deadenylation is carried out by
CAFI1-CCR4-NOT deadenylase complex (Behm-Ansmant et al., 2006). The deadenylation
and loss of poly (A) binding protein leads to the decapping by Dcp2 complex, which
includes several decapping activators such as DCP1, EDC3, Ge-1, and RNA helicase
RCK/p54. Then mRNA is subject to 5° to 3’ exonucleolytic degradation by Xrn1 (Eulalio et
al., 2007c¢).

A large number of mRNAs that undergo translation repression or degradation are
concentrated in cytoplasmic foci that are called processing bodies (P bodies). P bodies
contain Argonate proteins, GW182, CAF1-CCR4-NOT deadenylase complex, DCP2
decapping enzyme complex, and other RNA degradation enzymes (reviewed by Eulalio et
al., 2007a). Although enzymes in P body are important for microRNA-induced mRNA
silencing and degradation, P body is a consequence of silencing instead of a cause (Eulalio

etal., 2007b).

1.1.7 Distinctions between siRNA and microRNA

MicroRNAs are small noncoding RNAs around 22 nt that can be detected by northern

blot or size-fractionated cDNA cloning. microRNAs are generated by Dicer from one arm



of precursors, which are around 60-80nt with stem-loop structures. Their sequences match
genomic sequences and are evolutionary conserved (Ambros et al., 2003a). microRNA and
siRNA share a lot of similarities such as small size, the same biochemical composition,
indistinguishable function and being generated by dicer (Ambros et al., 2003a). The
difference between microRNA and siRNA is their origin. microRNAs are from endogenous
transcripts of the genome and siRNAs are from exogenous or endogenous dsRNA.
microRNAs are cut from one arm of precursors with hairpin structures and siRNAs are cut
from dsRNA. Moreover, each microRNA precursor can only yield one copy of a microRNA
molecule, but each dsRNA can produce a lot of siRNA molecules. Furthermore, the
sequences of microRNAs are generally conserved in different species, while siRNA

sequences are not (Ambros et al., 2003a; Bartel, 2004).

1.1.8 Target identification for microRNA

MicroRNAs bind to the 3’UTR of their targets. Number 2-8 nucleotides of microRNAs
were found to be crucial for binding to mRNA after analysis of the sequences of
microRNAs and their targets. Positions 2-8 of the microRNA, called the ‘Seed Region’, are
usually in perfect Watson-Crick base pairing with their mRNA binding sites (Lewis et al.,
2003). The sequences of binding sites in the 3° UTR of mRNAs that are perfectly paired
with the ‘Seed Region’ of a microRNA are conserved between different species and usually
flanked with adenosines (Lewis et al., 2005). Some microRNA targets donot have perfect

Watson-Crick base pairings with the 5° of microRNAs in their binding sites, but they have
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significant complementarity with the 3’ sequences of microRNAs (reviewed by Maziere and
Enright, 2007; Rajewsky, 2006).

Several bioinformatics tools and databases have been developed to predict microRNA
targets in animals. Table 1.2 summarizes online methods and resources available for target
prediction (reviewed by Maziere and Enright, 2007; Rajewsky, 2006).

Experimentally there are several ways to identify mRNA targets for microRNAs.
Genetic studies found that lin-14 is the target of lin-4 (Lee et al., 1993). Since some
microRNAs can regulate their targets at the mRNA level, over-expression of a certain
microRNA can down-regulate its targets at the mRNA level, which can be detected by
microarray (Lim et al., 2005). Inactivation of Drosha in Drosophila abolished microRNA
production and led to accumulation of some targets for microRNAs, which can also be
detected by microarray (Rehwinkel et al., 2006). Knock-out of a certain microRNA genes as
well as inhibition of microRNAs by antisense oligonucleotides (ASO) or locked nucleic
acids (LNA) also can increase the mRNA level of some microRNA targets (Elmen et al.,
2008; Esau et al., 2006; Krutzfeldt et al., 2005). At the protein level, a reporter containing
potential microRNA binding sites in the 3’UTR of a luciferase gene can be used to check

whether it is a target for a certain microRNA (reviewed by Krutzfeldt et al., 2006).
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Table 1.2: Online methods and resources for microRNA target predication

Name Website
microRNA target predictions www.russell.embl-heidelberg.de/microRNAs/
at EMBL
miRanda www.microrna.org/microrna’/home.do
mirBase microrna.sanger.ac.uk/targets/v2/
PicTar pictar.bio.nyu.edu
TargetScan, TargetScanS genes.mit.edu/targetscan
Chan et al, 2005 tavazoielab.princeton.edu/microRNAs/
miTarget cbit.snu.ac.kr/~miTarget/
miRDB mirdb.org/miRDB/index.html
RNA hybrid bibiserv.techfak.uni-bielefeld.de/rnahybrid/
DIANA-MicroT diana.pcbi.upenn.edu/DIANA-microT
RNA22 cbesrv.watson.ibm.com/rna22.html
Tarbase www.diana.pcbi.upenn.edu/tarbase.html
Argonaute www.ma.uni-heidelberg.de/apps/zmf/argonaute/interface
microRNAMAP microRNAmap.mbc.nctu.edu.tw/

(Adapted from Rajewsky, 2006; Maziere and Enright, 2007)

1.1.9 Functions of microRNAs

Despite the small size of microRNAs, they can play very important roles in many
physiologic processes and diseases, such as development, metabolism, cell proliferation and

differentiation, apoptosis, and cancer.

1.1.9.1 MicroRNA in Cancer

MicroRNAs may act either as oncogenes or tumor suppressors. The miR-17-92 cluster,
which includes miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92-1, can

promote cell proliferation, inhibit cancer cell apoptosis, and induce tumor angiogenesis



12

(reviewed by Mendell, 2008). Proto-onco gene c-Myc can activate the miR-17-92 cluster
and E2F1. E2F1 in turn can be negatively regulated by miR-17-5p and miR-20a (O'Donnell
et al., 2005). Amplification of products from the miR-17-92 locus was found in human B
cell lymphoma and over-expression of the miR-17-92 cluster accelerated tumor progression
in c-Myc-induced mouse B cell lymphoma model (He et al., 2005b). The miR-17-92 cluster
can also target anti-angiogenic thrombospondin-1 (Tspl) and connective tissue growth
factor (CTGF), promoting tumor angiogenesis in a Myc-induced tumor phenotype (Dews et
al., 2006).

miR-155 has been found to be involved in Burkitt’s lymphoma, Hodgkin lymphoma and
lung cancer (reviewed by Williams, 2008). In transgenic mice, miR-155 can promote mouse
pre-B cell proliferation (Costinean et al., 2006).

miR-372 and miR-373 have been found working as oncogenes in testicular germ cell
tumors (Voorhoeve et al., 2006). These microRNAs can target tumor suppressor LATS2 and
abolish p53-mediated CDK inhibition (Voorhoeve et al., 2006).

miR-21 is highly over-expressed in human brain tumors (glioblastomas) (Chan et al.,
2005). Several targets for miR-21 have been identified, such as tropomyosin 1 (TPM1),
PTEN, programmed cell death 4 (PDCD4), and maspin (Asangani et al., 2008; Chan et al.,
2005; Lu et al., 2008; Meng et al., 2007a; Zhu et al., 2007; Zhu et al., 2008).

miR-221, miR-222, and miR-146 are highly expressed in papillary thyroid carcinoma
(He et al., 2005a). miR-221 and miR-222 can target the cell cycle inhibitor p27(Kip1) and
promote cancer cell proliferation (Galardi et al., 2007; Gillies and Lorimer, 2007; le Sage et

al., 2007; Visone et al., 2007).
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The expression of several microRNAs is reduced in cancer. miR-143 and miR-145 are
lower in colorectal neoplasia (Michael et al., 2003). In human breast cancer, miR-125b,
miR-145, miR-21, and miR-155 are lower than in normal tissue (Iorio et al., 2005).

Some microRNAs act as tumor suppressors. Chromosome 13q14, where miR-15 and
miR-16 are located, was often found to be deleted in B cell chronic lymphocytic leukemias
(Calin et al., 2002). miR-15 and miR-16 can bind to the 3> UTR of Bcl2 and negatively
regulate its function. Over-expression of miR-15 and miR-16 can induce apoptosis
(Cimmino et al., 2005).

Tumor suppressor p53 can bind to the promoter of miR-34a and activate its expression,
which contributes to p53-mediated apoptosis (Chang et al., 2007; He et al., 2007b;
Hermeking, 2007; Raver-Shapira et al., 2007; Tarasov et al., 2007). miR-34a induced
growth arrest and apoptosis may be due to targeting E2F3 (Tazawa et al., 2007; Welch et al.,
2007).

miR-29 and miR-181 can target oncogene Tcll in chronic lymphocytic leukemia
(Pekarsky et al., 2006). miR-29 was also reported to target Mcl1 and regulate cell apoptosis
(Mott et al., 2007).

Hmga?2 (high mobitilty group AT-hook 2) is repressed by let-7 and disruption of this
repression caused by chromosome translocation at 125 will lead to tumor formation (Lee
and Dutta, 2007; Mayr et al., 2007). let-7 can also down-regulate other oncogenes, such as
RAS and Myc (Johnson et al., 2005; Sampson et al., 2007). let-7 has been reported to be
involved in many cancers, including breast cancer, ovarian cancer, lung cancer, and colon

cancer (Akao et al., 2006; Esquela-Kerscher et al., 2008; Kumar et al., 2008; Lu et al., 2007;
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Park et al., 2007; Yu et al., 2007).

1.1.9.2 MicroRNA in metabolism

miR-375 is highly expressed in pancreas and it regulates insulin secretion.
Over-expression of miR-375 inhibits insulin secretion and inhibition of miR-375 can
enhance insulin exocytosis (Poy et al., 2004). The action of miR-375 may be through
targeting myotrophin (Poy et al., 2004). High expression of miR-9 in pancreatic beta cells
will reduce the expression of the transcription factor Onecut-2 and result in increasing
granuphilin/Slp4 and reducing insulin exocytosis (Plaisance et al., 2006). miR-96 can
increase both the mRNA and protein of granuphilin and inhibit insulin secretion (Lovis et
al., 2008). Another microRNA, miR-124a, can modulate the expression of proteins involved
in insulin exocytosis and regulate insulin secretion in pancreatic beta-cells (Lovis et al.,
2008). miR-143 is up-regulated during pre-adipocytes differentiation and inhibition of
miR-143 blocks adipogenesis (Esau et al., 2004). miR-29 is highly up-regulated in diabetic
rats and leads to insulin resistance in adipocytes (He et al., 2007a). miR-29 can also target
the dihydrolipoamide branched chain acyltransferase component of a branch chain amino
acid catabolism enzyme complex, branched chain alpha-ketoacid dehydrogenase (BCKD)
complex and regulate amino acid metabolism (Mersey et al., 2005).

Drosophila lacking miR-278 are insulin resistant and lean. The effect of miR-278 may
be through targeting expanded (Teleman et al., 2006). Flies with miR-14 deletion have

increased levels of triacylglycerol and diacylglycerol (Xu et al., 2003).
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Liver miR-122 can regulate cholesterol and fatty acid metabolism. Inhibition of
miR-122 resulted in a decrease of hepatic fatty acid and cholesterol synthesis and plasma

cholesterol level and an increase of hepatic fatty acid oxidation (Esau et al., 2006).

1.1.9.3 MicroRNA in muscle function and development

MicroRNAs can regulate cardiac and skeletal muscle differentiation (reviewed by
Bushati and Cohen, 2007; Callis and Wang, 2008; Williams, 2008). miR-1 is specifically
expressed in cardiac and skeletal muscle cells at a high level and its expression is under the
control of several muscle transcription factors such as serum response factor (SRF), MyoD,
and Mef2 (Zhao et al., 2005). Over-expression of miR-1 in heart causes defects in
ventricular cardiomyocytes proliferation (Zhao et al., 2005). miR-1 can target Hand2, a
transcription factor that promotes cardiomyocytes differentiation (Zhao et al., 2005).
miR-1-2 knock out mice have nearly 50% lethality by the age of weaning and there are
defects in hearts, revealing the role of miR-1-2 in cardiac morphogenesis, electrical
conduction, and cell-cycle control (Zhao et al., 2007). miR-1 is over-expressed in coronary
artery disease patients and over-expression of miR-1 exacerbates arrhythmogenesis in a rat
model (Yang et al., 2007). Two molecules important for heart function, KCNJ2 (potassium
inwardly-rectifying channel, subfamily J, member 2) and GJA1 (gap junction protein, alpha
1, 43kDa) are targets for miR-1 (Yang et al., 2007). miR-1 can also target histone
deacetylase 4 (HDAC4), a transcriptional repressor of muscle gene expression and promotes

myogenesis (Chen et al., 2006).
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miR-133 is transcribed as a single polycistronic transcript along with miR-1. miR-133
can promote myoblast proliferation by targeting serum response factor (SRF) (Chen et al.,
2006). miR-133 can also down-regulate the protein level of alternative splicing factor nPTB
during muscle development, leading to increased inclusion of a group of exons silenced by
nPTB (Boutz et al., 2007). miR-133 is over-expressed in a rabbit model of diabetes and it
can repress ether-a-go-go related gene (ERG) at the protein level, contributing to long QT
syndrome and arrhythmias (Xiao et al., 2007). The expression of miR-133 and miR-1 is
lower in cardiac hypertrophy, in agreement with the results that inhibition of miR-133 in
vivo by antagomir causes cardiac hypertrophy. RhoA, Cdc42 and Nelf-A/WHSC2, which
are important regulators in cardiac hypertrophy, are targets of miR-133 (Care et al., 2007).

miR-208 is encoded in an intron of a-MHC gene and miR-208 null mice failed to show
cardiac hypertrophy and induction of B-MHC in cardiac hypertrophy model. These effects
may be due to inhibition of thyroid hormone receptor-associated protein 1 (Thrapl) by
miR-208 at the protein level (van Rooij et al., 2007).

miR-206 is highly expressed in skeletal muscle and plays an important role in
myogenesis (reviewed by McCarthy, 2008). MyoD can activate miR-206, which in turn
targets follistatin-like 1 (Fstl1) and utrophin (Utrn) (Rosenberg et al., 2006). During skeletal

muscle development, miR-206 regulates connexin43 expression (Anderson et al., 2006).

1.1.9.4 MicroRNA in Neurogenesis

miR-124 is highly and specifically expressed in differentiated neurons. miR-124 can
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directly target polypyrimidine tract binding protein 1 (PTB or PTBP1), which is a general
repressor of alternative mRNA slicing (Makeyev et al., 2007). One exon of nPTB (neuronal
PTB or PTBP2), which is a nervous system-enriched PTB homolog, is repressed by PTB
and this repression leads to premature stop of nPTB mRNA. During neuronal differentiation,
the switch from PTB to nPTB triggers a wide range of nervous system specific mRNA
alternative splicing patterns. miR-124 can lower PTB levels and lead to accumulation of
nPTB, which will repress non-neuronal gene expression and increase neuronal-specific gene
expression (Makeyev et al., 2007).

Besides PTB, miR-124 can target anti-neural REST/SCP1 pathway during embryonic
CNS development to regulate neural specific gene expression (Visvanathan et al., 2007).
REST (REI-silencing transcription factor, also known as NRSF) is a transcription repressor
that can inhibit the expression of neuronal-specific genes in non-neuronal cells. SCP1
(Small C-terminal domain phosphatase 1) is an anti-neuronal factor that is recruited by
REST to bind to neuronal specific genes. miR-124 is repressed by REST in non-neuronal
cells and neural progenitors (Conaco et al., 2006). On the contrary, miR-124 can bind to the
3’UTR of SCP1 and down-regulate SCP1 levels, leading to expression of neuronal specific
genes that are repressed by REST/SCP1 (Visvanathan et al., 2007).

miR-134 is expressed in hippocampal neurons and it inhibits the growth of dendritic
spines (Schratt et al., 2006). The effect is mediated through inhibition of Limkl1, a protein

kinase that controls spine development (Schratt et al., 2006).
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1.1.9.5 MicroRNA in immune system

miR-181a is highly up-regulated in CD4 and CD8 double positive (DP) T-lymphocytes
and lower in mature T-lymphocytes, suggesting its role in the process of positive and
negative selection (Li et al., 2007). miR-181a increases the sensitivity of DP cells to peptide
antigens and inhibition of miR-181 impairs both positive and negative selections. miR-181
can lower the threshold of T-cell receptor activation in immature T-lymphocytes by
down-regulating several phosphatases, leading to increase of basal levels of Lck
(Lymphocyte specific protein tyrosine kinase) and ERK (Extracellular signal regulated
kinase) (Li et al., 2007).

miR-155 plays an important role in immune functions. miR-155 knock-out mice were
immunodeficiency and showed increased lung airway remodeling (Rodriguez et al., 2007).
miR-155 can target the transcription factor c-Maf and loss of miR-155 results in
up-regulation of c-Maf, which will increase cytokine IL-4 and T helper-2 cell number
(Rodriguez et al., 2007). miR-155 null mice also showed decreased B-lymphocytes in the
germinal centers, where B-lymphocytes differentiated into plasma cells (Thai et al., 2007).
T-cell dependent antibody production is impaired in miR-155 null mice (Thai et al., 2007).

miR-146 can negatively regulate NF-xB pathway by targeting TNF receptor-associated
factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAKI1). Since miR-146 is
up-regulated upon stimulation, it is proposed that miR-146 works as a negative feedback

signal in innate immune response (Taganov et al., 2006).
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1.1.9.6 MicroRNA in Haematopoiesis

Human granulocytic differentiation is regulated by miR-223 (Fazi et al., 2005). Two
transcription factors, NFI-A and C/EBPa, compete for binding to the miR-223 promoter.
NFI-A maintains a low expression of miR-223 while C/EBPa up-regulates miR-223
expression upon retinoic acid treatment. miR-223 in turn represses NFI-A translation (Fazi
et al., 2005). Over-expression of miR-223 in acute promyelocytic leukemia (APL) cells
enhance differentiation, while knock-down of miR-223 inhibits retinoic acid induced

differentiation (Fazi et al., 2005).

1.1.9.7 MicroRNA in Human diseases

MicroRNAs were reported to be involved in several human diseases (reviewed by
Bushati and Cohen, 2007). For example, in the neuropsychiatric disorder Tourette's
syndrome (TS), there are mutations in the miR-189 binding site of the 3’UTR of Slit and
Trk-like 1 (SLITRKT) gene. Also SLITRK1 and miR-189 show co-expression pattern in the
brain regions commonly implicated in Tourette's syndrome. It is suggested miR-189 may be
involved in Tourette's syndrome (Abelson et al., 2005).

A mutation in the 3’UTR of myostatin (GDF8) gene yields a binding site for miR-1 and
miR-206. This mutation causes translation inhibition of myostatin and leads to muscular
hypertrophy in Texel sheep (Clop et al., 2006).

Fragile X syndrome is a common form of inherited mental retardation. It is caused by
methylation induced gene silence of the fragile X mental retardation 1 (FMR1) gene as the

result of a CGG repeat expansion in its 5’UTR (reviewed by O'Donnell and Warren, 2002).
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Fragile X mental retardation protein (FMRP) is a selective RNA-binding protein and it
interacts with microRNAs, RISC complex components dicer and argonaute 1 (Jin et al.,
2004). Genetic evidence showed loss of Agol suppressed apoptosis and rough eye
phenotype caused by over-expression of FMR1 in Drosophila (Jin et al., 2004). Pronounced
synaptic overgrowth at neuromuscular junctions was found in loss-of-function dFmrl
mutants and it is exacerbated by heterozygous loss of Agol (Jin et al., 2004). These results
suggest FMRP mediates microRNA-dependent translation repression and defects in this
process may contribute to Fragile X syndrome disease.

Polyglutamine (polyQ) expansion of ataxin 3 causes cell toxicity and results in neuronal
degeneration. Deleption of Dicerl, the enzyme responsible for microRNA processing,
caused dramatic enhancement of polyQ toxicity in Drosophila and human cells (Bilen et al.,
2006). MicroRNA bantam (ban) can prevent neuronal degeneration in flies (Bilen et al.,
2006). miR-8 can directly target atrophin in Drosophila and elevated atrophin activity in
miR-8 mutant results in elevated apoptosis in the brain and behavioral defects (Karres et al.,
2007). miR-8 and atrophin orthologs are conserved in mammals and it implicates miR-8
may function in neurodegenerative disorder DRPLA (Dentatorubral-pallidoluysian atrophy)
(Karres et al., 2007).

Most of DiGeorge syndrome patients have a deletion in chromosomal region 22ql1,
where DGCRS (involved in Drosha function) is located (Gregory et al., 2004; Lindsay,

2001), but the exact microRNA involved in DiGeorge remains to be elucidated.
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1.1.9.8 MicroRNA and Virus

Some nuclear DNA viruses can express microRNAs to help them live in host cells.
Simian virus 40 (SV40) can express microRNAs that target viral T antigens at a late stage
of infection, reducing exposure of host cells to cytotoxic T-lymphocytes (Sullivan et al.,
2005). Reciprocally, host cells may use microRNAs to defend against viruses. miR-32 can
effectively restrict the accumulation of the retrovirus primate foamy virus type 1 (PFV-1) in

human cells through targeting viral mRNAs (Lecellier et al., 2005).

1.1.9.9 MicroRNA in C. elegans development

lin-4 was the first microRNA discovered in C. elegans and it can regulate L1-L2
development by binding to the 3’UTR of /in-14 (Lee et al., 1993; Wightman et al., 1993).
Without /in-4, worms cannot develop from the L1 to L2 stage due to differentiation defects.
Over-expression of /in-4 results in complete loss of cell division of larval stem cells. In both
situations, the worms were stuck at L1 stage (reviewed by Williams, 2008).

L2-L3 transition is regulated by miR-48, miR-84, and miR-241. They may bind to the
3'UTR of hbl-1 and down-regulate hbl-1 activity (Abbott et al., 2005). let-7 regulates the
larval to adult transition by targeting lin-41 (Reinhart et al., 2000). let-7 and miR-84 were
also reported to be involved in the vulval development (Johnson et al., 2005). let-7 mutants
have defects in the vulva. It may due to loss of let-7’s inhibition on let-60/RAS, which can
promote the vulva formation (Johnson et al., 2005).

MicroRNA [sy-6 and miR-273 act in a double negative feedback loop controlling
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neuronal asymmetry in C. elegans (reviewed by Bushati and Cohen, 2007). MicroRNA
Isy-6 binds to the 3’UTR of homeobox gene cog-1 and regulates its expression. Loss of
Isy-6 resulted in loss of asymmetry of bilateral taste receptor neurons known as ASE left
and ASE right, only developing ASE right neuron (Johnston and Hobert, 2003). Die-1 can
activate [sy-6 expression in ASE left neuron and Die-1 itself is negatively regulated by
another microRNA miR-273 in ASE right neuron (Chang et al., 2004). miR-273 is activated
by cog-1 in ASE right neuron (Johnston et al., 2005). Thus, two transcription factors Die-1

and cog-1 and two microRNAs work together to control the development of ASE neurons.

1.1.9.10 MicroRNA in Drosophila Development

Expression of the microRNA bantam is temporally and spatially regulated during
patterning in Drosophila. bantam can promote cell proliferation by targeting the
pro-apoptosis factor hid (Brennecke et al., 2003).

Loss of function studies using 2'O-methyl antisense oligo ribonucleotides injected into
embryos reveal that the miR-2 family, which includes miR-2, miR-6, miR-11, miR-13, and
miR-308, plays a role in suppressing embryonic apoptosis by targeting hid, grim, reaper,
and sickle (Leaman et al., 2005). Loss of miR-31 in embryos results in severe segmentation
defects (Leaman et al., 2005). Block of the miR-310/311/312/313/92 family in embryos
shows morphogenetic defects (Leaman et al., 2005).

Embryos with miR-9 inhibitor injection rarely form any cuticle and have no internal

differentiation (Leaman et al., 2005). miR-9a can also control the formation of sensory
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organ precursors (SOPs) in the adult wing imaginal disc through targeting senseless (sens).
Over-expression of miR-9a results in a severe loss of SOPs while loss of miR-9a in
Drosophila peripheral nervous system leads to ectopic production of SOPs (Li et al., 2006).

miR-1 regulates the expansion and differentiation of cardiac and muscle progenitor cells
in Drosophila through targeting transcripts encoding the Notch ligand Delta (Kwon et al.,
2005).

Drosophila microRNA iab-4, which is homologous to miR-196 in vertebrates, can
directly inhibit Ubx activity and cause a dominant homeotic transformation of halteres to
wings (Ronshaugen et al., 2005)

miR-7 regulates photoreceptor cell differentiation (Li and Carthew, 2005). Transcription
factor Yan can bind to the promoter of miR-7 and suppresses its expression in progenitor
cells. Yan is phosphorylated in EGF (epidermal growth factor) signalling pathway and
phosphorylated Yan activates miR-7 expression during the differentiation of progenitor cells
into photoreceptor cells. Furthermore, miR-7 can down-regulate Yan through binding to its

3° UTR (Li and Carthew, 2005).

1.1.9.11 MicroRNA in Vertebrate Development

Dicer is required for generating mature microRNAs and knock-out of Dicer reveals the
role of microRNAs in vertebrate development (reviewed by Williams, 2008).
Dicer-deficient mice are embryonic lethal with lack of detectable multipotent stem cells

(Murchison et al., 2005). Dicer-null mouse embryonic stem (ES) cells have severe defects
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in differentiation (Kanellopoulou et al., 2005).

Using Dicer null conditional knock-out mice as a model, it was shown that Dicer is
involved in the development of many tissues. In mice with epidermal specific Dicer deletion,
hair follicles were stunted and hypoproliferative, suggesting Dicer is important for hair
follicle morphogenesis (Andl et al., 2006).

Dicer conditional knock-out driven by the Sonic Hedgehog (Shh) promoter in the mouse
lung epithelium showed branching arrests in the mutant lungs (Harris et al., 2006). Also the
expression of Fgfl0, a key factor that may work as a chemoattractant for the outgrowth of
epithelial branches, is up-regulated and expanded in the mesenchyme cells of Dicer mutant
lungs (Harris et al., 2006).

Dicer is also involved in angiogenesis. Dicer null mice have defects in blood vessel and
yolk sacs. The expression of some important angiogenic regulators such as vegf, fltl, kdr,
and tiel is changed in the mutant embryos (Yang et al., 2005). These results may be due to
up-regulation of some microRNA targets that are crucial for angiogenesis in dicer null mice.

Deletion of Dicer at an early stage of T cell development reduced the survival of af§ T
cells, but the numbers of yo-expressing thymocytes were not affected (Cobb et al., 2005).

Conditional knock-out of Dicer in limb mesoderm resulted in much smaller limbs due to
massive cell death in limbs, but there is no defect in patterning and differentiation of the
mouse limbs (Harfe et al., 2005). Furthermore, miR-196 has been shown to act upstream of
Hoxb8 and Shh during limb development (Hornstein et al., 2005). Retinoic acid (RA) can
induce the expression of the transcription factor Hoxb8 and consequently up-regulates the

expression of Sonic Hedgehog (Shh) in the forelimb, but not in the hindlimb. However, in
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Dicer conditional knock out mice, RA can induce expression of Hoxb8 in hindlimb. This
result suggest that a microRNA negatively regultes Hoxb8 in hindlimb. miR-196 is highly
expressed in hindlimb and it can down-regulte Hoxb8 and Shh level in hindlimb (Hornstein
et al., 2005). The role of miR-196 is safeguarding excessive Hoxb8 level during normal

limb development (Hornstein et al., 2005).

1.2 Adipogenesis

Adipogenesis is the process of preadipocyte differentiation into a mature fat cell.
Adipose tissue is not only a structural component of the body and a place for energy storage,
but also an important regulator of energy homeostasis through secreting signal molecules
such as leptin and adipsin (reviewed by Rosen and Spiegelman, 2000). Investigation of
adipogenesis is important to understand human diseases such as obesity and type II diabetes;
both are frequent in modern society.

There are two types of adipocytes, white adipocytes and brown adipocytes. White
adipocyte differentiation is intensively studied in vitro in several cell lines. Some
preadipocytes cell lines can be differentiated into mature adipocytes through hormonal
induction. Mature adipocytes have many characteristics different from preadipocytes such
as morphological changes, cell growth arrest, increased lipid transportation and synthesis,
extensive lipid accumulation, insulin sensitivity, and secretion of adipocyte specific proteins

(Rosen and Spiegelman, 2000).
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1.2.1 Differentiation program

There are several in vitro models for the study of adipogenesis. Embryonic stem (ES)
cells can be differentiated into adipocytes upon retinoic acid and pro-adipogenic hormone
treatment. Also mouse embryonic fibroblasts (MEFs) at E12-14 can be induced into
adipocytes, although it is less than 100 percent efficient, after hormone treatment. Most
immortalized MEFs that were generated through serial passaging or SV40 large T antigen
introduction or chemical treatment can not differentiate into adipocytes without introduction
of transcription factors such as PPARy or C/EBPa. However, two cell lines 3T3-L1 and
3T3-F442A can be differentiated into mature adipocytes upon addition of an hormonal
cocktail containing dexamethasone, cAMP phosphodiesterase inhibitor, and insulin
treatment. The C3H10T1/2 cell line is an immortalized mouse cell line isolated from
mesenchymal cells in bone marrow and it can also be differentiated into adipocytes
(reviewed by Rosen and MacDougald, 2006).

3T3-L1 and 3T3-F442A cells are from Swiss 3T3 cells that are morphologically
indistinguishable from mouse fibroblasts, but they are capable of differentiating into
adipocytes in 4-6 days upon hormonal induction (Green and Meuth, 1974). This process has
been intensively studied. The first stage of most pre-adipocyte cell lines differentiation is
growth arrest upon contact inhibition. Then, cells enter the second phase called clonal
expansion in which the cell cycle goes one or two rounds upon treatment of a
pro-differentiative cocktail containing insulin, dexamethasone, and cAMP agonist. After
clonal expansion, cells enter final and permanent growth arrest. After that, cells go to

terminal differentiation into mature adipocytes (Rosen and Spiegelman, 2000).
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The pre-adipocyte differentiation program is characterized by the expression of different
genes. After hormonal inducer treatment, there is a rapid and transient induction of C/EBPJ
and C/EBPJ (reviewed by Darlington et al., 1998). Following that, two key transcription
factors, PPARy and C/EBPa, are expressed right at the end of the clonal expansion stage
and may help to stop cell cycles. During the final cell growth arrest, the expression of the
catalytic subunit of the serine-threonine phosphatase PP2A decreases, which results in
up-regulation of the phosphorylated form of DP-1. DP-1 is the binding partner of E2F
family members that can control cell cycles. Phosophorylation of DP-1 decreases E2F/DP-1
binding to DNA (Altiok et al., 1997). E2Fs can regulate adipocyte differentiation. Loss of
E2F1 impairs adipogenesis, while deletion of E2F4 causes MEFs to undergo spontaneous
differentiation (Fajas et al., 2002). Retinoblastoma (Rb) protein can bind to some E2Fs and
inhibit their transcription activity (reviewed by Harbour and Dean, 2000). Rb-null MEFs
lost their ability to differentiate into adipocytes (Chen et al., 1996). The expression changes
of several cyclin-dependent kinase inhibitors pl18, p21, and p27 directly couple to
differentiation stages during 3T3-L1 differentiation. PPARy can increase the expression of
pl8 and p21 in NIH-3T3 fibroblasts (Morrison and Farmer, 1999). C/EBPa also can
up-regulate p21 through increasing p21 gene expression and by post-translational
stabilization of p21 protein (Timchenko et al., 1996). Increased expression of PPARy and
C/EBPa will lead to expression of adipocyte specific genes that characterize the mature
adipocyte. These genes are involved in insulin sensitivity, such as insulin receptor and
glucose transporter glut4, and lipid accumulation, such as fatty acid synthase (FAS),

lipoprotein lipase (LPL), acetyl CoA carboxylase and fatty acid binding protein (aP2). Also
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there are secreted products such as leptin, adipsin, and adiponectin (reviewed by Rosen,

2005).

1.2.2 Transcription factors regulating adipogenesis

1.2.2.1 PPARy

Pre-adipocyte differentiation is regulated by many transcription factors both in positive
and negative ways. PPARy and C/EBP family members are critical for adipocyte
differentiation. PPARY is a nuclear receptor family member and it heterodimerizes with
retinoid X receptor (RXR) (Kliewer et al., 1994). There are two isoforms of PPARy,
PPARy1, and PPARY2, produced by differential splicing and promoter usage. PPARy1 is
expressed in adipocytes and other cells, while PPARy2 is extensively expressed in
adipocytes. Ectopic expression of PPARy2 has been shown to stimulate adipose
differentiation of cultured fibroblasts (Tontonoz et al., 1994). Also, PPARY is required for
development of adipocytes both in vivo and in vitro (Barak et al., 1999; Rosen et al., 1999).
Both isoforms of PPARy can activate adipogenesis in PPARy null fibroblasts, while
PPARYy1 has stronger activity than PPARy2 (Mueller et al., 2002). PPARY2 knock out mice
lack normal white adipose tissue and MEF cells lose the ability to differentiate into
adipocytes (Zhang et al., 2004a). Another study showed there is normal adipose tissue, but
insulin resistance is developed in PPARY2 null mice (Medina-Gomez et al., 2005).

PPARYy is important not only for adipocyte differentiation, but also for maintaining

adipocyte phenotype. Transfection of mature 3T3-L1 adipocyte with a dominant negative



29

form of PPARYy will reverse the adipocyte phenotype with decreased triglyceride content
and adipocyte-specific genes (Tamori et al., 2002). Also in vivo experiments showed that
mature PPARy-null white and brown adipocytes die within a few days after induction of
PPARY deletion (Imai et al., 2004).

Thiazolidinedione (TZD) is a class of antidiabetic drugs that can bind to and potently
activate PPARy (Lehmann et al., 1995). Also, 15-deoxy-delta 12,14-PGJ2 (Prostaglandins
J2) and some polyunsaturated fatty acids can activate PPARy (Forman et al., 1997; Forman
et al., 1995; Kliewer et al., 1995; Kliewer et al., 1997).

PPARY is a key factor in adipogenesis. Other pro-adipogenic factors such as C/EBPs
and several Kriippel-like factors can induce, while some anti-adipogenic factors such as

GATA factors can repress, PPARY expression (reviewed by Rosen and MacDougald, 2006).

1.2.2.2 C/EBP family

CCAAT/enhancer-binding proteins (C/EBP) family members C/EBPa, C/EBPp,
C/EBPy, C/EBP9, and C/EBP( are expressed in adipocytes. The expression of C/EBPf and
C/EBPo is up-regulated during the early stage and dereased during the late stage of
adipogenesis. The accumulation of C/EBP and C/EBPS leads to induction of C/EBPa in a
transcription cascade. These C/EBPs can promote adipogenesis (reviewed by Rosen and
MacDougald, 2006).

Ectopic expression of C/EBPf in 3T3-L1 cells enables them to differentiate into mature
adipocyte in the absence of hormonal inducers. C/EBPJ expression converts NIH-3T3 cells

into pre-adipocytes. Over-expression of dominant negative forms of C/EBPJ inhibits
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3T3-L1 differentiation (Yeh et al., 1995). MEFs from C/EBPp knock-out mice significantly
lose their ability to differentiate into mature adipocytes compared to that from wild type
mice, while C/EBPS knock-out MEFs only have a slight reduction in differentiation
potential. MEFs that lack both C/EBPP and C/EBP6 almost totally lose their ability to
differentiate, suggesting C/EBPB and C/EBPJ have synergic effects on pre-adipocyte
differentiation (Tanaka et al., 1997). Approximately 85% of newborn C/EBPP and C/EBP%
double knock out mice die at an early stage. For those that survive, they have less lipid
accumulation in the brown adipose tissue and their white adipose tissue is significantly
smaller than wild type (Tanaka et al., 1997).

In vitro and in vivo evidence has shown C/EBPa can promote adipogenesis. Ectopic
expression of C/EBPa in a variety of mouse fibroblasts efficiently induces adipogenic
differentiation, while repression of C/EBPa by RNAi blocks 3T3-L1 differentiation
(Freytag et al., 1994; Lin and Lane, 1992; Lin and Lane, 1994). C/EBPa knock-out mice die
right after birth due to defects in gluconeogenesis in the liver. Rescue of C/EBPa in the liver
with a transgene in C/EBPa knock-out mice will improve survival. In these mice, white
adipose tissue, not brown adipose tissue, is severely impaired (Linhart et al., 2001).
Replacement of C/EBPa gene with C/EBPJ gene in mice resulted in a significant reduction
of fat storage in white adipose tissue (Chen et al., 2000). C/EBPa-induced adipogenesis
relys on PPARy. PPARy can induce adipogenesis in C/EBPa deficient cells while the
reverse is not true (Rosen et al., 2002). In PPARy-deficient MEFs, C/EBPJ is not able to
induce C/EBPa expression and adipogenesis (Zuo et al., 2006).

C/EBPC (also known as CHOP, C/EBP homologous protein ) can dimerize with C/EBPa
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and C/EBPP and inhibit their function, markedly inhibiting preadipocyte differentiation

(Batchvarova et al., 1995).

1.2.2.3 Kruppel-like Factor family

The Kriippel-like Factor (KLF) family are zinc-finger transcription factors that are
important regulators of cell differentiation. KLFs can either play a positive role or a
negative role in adipogenesis.

Kriippel-like factor 4 (KLF4) is an essential early regulator of adipogenesis. KLF4 is
specifically induced by cAMP within 30 min after DMI (dexamethasone, IBMX and insulin)
treatment in 3T3-L1 cells. KLF4 directly binds to the C/EBPJB promoter and activates its
expression. Knock-down of KLF4 down-regulates C/EBPf levels and inhibits 3T3-L1 cell
adipogenesis. Normally, C/EBP suppresses Krox20 and KLF4 expression and C/EBPf
knock-down increases the expression of KLLF4 and Krox20. Thus, KLF4 and C/EBPJ form
a negative feedback loop (Birsoy et al., 2008).

C/EBPp and C/EBPS can bind to the KLF5 promoter and activate its expression. KLFS5,
in turn, binds to the PPARYy2 promoter and activates its expression along with C/EBPs.
Over-expression of KLF5 induces adipocyte differentiation in the absence of hormonal
stimulation while over-expression of a dominant-negative form of KLF5 inhibits adipocyte
differentiation. MEFs from KLF5 heterozygous mice show reduced adipocyte
differentiation, which is consistent with the fact that heterozygous KLF5 knockout mice

have a marked deficiency in white adipose tissue development (Mori et al., 2005).
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KLF6 has been shown to be a repressor of the Delta-like 1 (Dlk1) gene, which inhibits
adipocyte differentiation. Down-regulation of KLF6 by small interfering RNA inhibits
3T3-L1 cells adipogenesis (Li et al., 2005).

KLF15 can activate PPARy2 expression and promote adipocyte differentiation (Mori et
al., 2005). KLF15 also can activate the expression of the glucose transporter GLUT4 in
adipose (Gray et al., 2002).

KLF3 knockout mice have less white adipose tissue and the adipocytes are smaller and
fewer in their fat pads, indicating KLF3 regulates adipocyte differentiation (Sue et al.,
2008).

However, some KLFs can inhibit preadipocytes differentiation. KLF2 is highly
expressed in preadipocytes but not in mature adipocytes. KLF2 inhibits adipogenesis by
binding to the PPARY promoter and repressing its expression (Banerjee et al., 2003; Wu et
al., 2005). Over-expression of KLF7 also reduces 3T3-L1 cell differentiation (Kanazawa et

al., 2005a).

1.2.2.4 Other factors

Other transcription factors also regulate adipogenesis. Krox20 1is a zinc
finger-containing transcription factor that is up-regulated during the early stage of
differentiation. It activates C/EBPP expression and promotes 3T3-L1 differentiation (Chen
et al., 2005b).

The early B cell factor (Ebf) family of helix-loop-helix transcription factors can also

promote adipogenesis. PPARy1 and C/EBPa can be activated by Ebfl, which is induced by
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C/EBPp and C/EBPS. siRNA against Ebf1 and Ebf2 blocks 3T3-L1 differentiation (Jimenez
et al., 2007). SREBPIc (sterol regulatory element binding protein 1c) is important for lipid
metabolism and it also regulates adipocyte differentiation. A dominant-negative form of
SREBPIc represses 3T3-L1 cells’ differentiation (Kim and Spiegelman, 1996). SREBP1c
maybe responsible for producing an endogenous ligand for PPARy and activates its activity
(Kim et al., 1998).

Ectopic expression of STATSA promotes adipogenesis in two non-precursor fibroblast
cell lines by regulating PPARY expression (Floyd and Stephens, 2003; Nanbu-Wakao et al.,
2002). The Active form of CREB can promote adipogenesis by binding to C/EBPf
promoter and inducing its expression (Zhang et al., 2004b). MEFs from BMALI (Brain and
muscle Arnt-like protein-1) knock-out mice lose their ability to differentiate into adipocytes,
suggesting BMAL is required for adipogenesis (Shimba et al., 2005). Also
EPAS1(endothelial PAS domain protein 1, also known as hypoxia-inducible factor 2alpha)
has been shown to promote adipose differentiation in 3T3-L1 cells (Shimba et al., 2004).

GATA-2 and GATA-3 are specifically expressed in white adipocyte precursors, but not
in mature adipocytes. Constitutive expression of GATA-2 and GATA-3 keeps preadipocytes
from differentiating into adipocytes, while depletion of GATA-3 increases adipocyte
differentiation (Tong et al., 2000). Inhibition of adipogenesis by GATA may be through
repression of PPARy expression or binding to C/EBPa and C/EBP (Tong et al., 2000; Tong

et al., 2005).
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1.2.3 Signalling pathway regulating adipogenesis

1.2.3.1 Insulin and IGF1 pathway

Insulin and insulin-like growth factor 1 (IGF1) are very important regulators of
adipogenesis. IGF1 from fetal calf serum works together with insulin to activate IGF
receptor, which is more abundant than insulin receptors in pre-adipocytes. The number of
insulin receptors increases during preadipocytes differentiation (Smith et al., 1988). The
signal passes along insulin receptor substrate (IRS), phosphatidylinositol-3 kinase (PI3K),
and activates AKT/PKB (protein kinase B) (reviewed by Rosen and MacDougald, 2006).
Insulin signaling pathway may activate CREB to promote adipogenesis (Klemm et al.,
2001). Also insulin signalling can cause phosphorylation and nuclear exportation of
adipogenic inhibitors FOXA?2 and FOXO1 (Nakae et al., 2003; Wolfrum et al., 2003). In the
insulin signalling pathway, GATA2, which is an adipogenesis inhibitor, is also
phosphorylated and inactivated (Menghini et al., 2005). Moreover, insulin signaling
pathway can repress the expression of necdin, which in turn releases the repression of

PPARYy (Tseng et al., 2005).

1.2.3.2 Glucocorticoid Receptor

Dexamethasone is the most commonly used glucocorticoid to stimulate preadipocyte
differentiation. The action of dexamethasone is through the nuclear receptor glucocorticoid
receptor (GR) (Rosen and Spiegelman, 2000). Glucocorticoids may have a direct role on

C/EBP$ induction, which will further activate PPARy along with C/EBPJ (Cao et al., 1991;
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Wu et al., 1996). Also glucocorticoids can repress the expression of the anti-adipogenic

gene pref-1 (Smas et al., 1999).

1.2.3.3 FGF family

Fibroblast growth factor 1 (FGF-1) secreted by adipose-derived microvascular
endothelial cells (MVECs) can promote proliferation and differentiation of human
pre-adipocytes, which lack FGF-1 expression. FGF-1 is expressed in 3T3-L1 cells and
treatment of 3T3-L1 cells with FGF-1 antibody decreases their adipogenic potential (Hutley
et al., 2004; Newell et al., 2006). FGF-2 (also called basic fibroblast growth factor)
enhances adipogenic differentiation of mesenchymal stem cells and adipose-derived stem
cells (Kakudo et al., 2007; Neubauer et al., 2004). FGF10 signalling induces the expression
of C/EBPB and the subsequent adipogenic differentiation in preadipocytes. In FGF10
knock-out mice, the expression of C/EBPp is reduced and the development of white adipose

tissue is impaired (Sakaue et al., 2002).

1.2.3.4 MAPK pathway

The mitogen activated protein kinases (MAPKSs), which include ERK, p38 and JNK,
play both positive and negative roles in regulating adipogenesis (reviewed by Bost et al.,
2005). MEF cells from ERK1 knock-out mice or 3T3-L1 cells lacking ERK1 have impaired
adipogenic potential, suggesting ERKI1 is required for adipogenesis. On the other hand,

ERKI1 can phosphorylate PPARY and decrease its activity (Camp and Tafuri, 1997; Hu et al.,
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1996).

Inhibitors of p38 MAP kinase prevent 3T3-L1 fibroblasts and C3H10T1/2 cells from
differentiation into adipocytes, suggesting p38 MAP kinases are required for adipogenic
differentiation of these preadipocyte cell lines (Engelman et al., 1998; Hata et al., 2003).
However, p38 null embryonic stem cells have stronger potential to differentiate into
adipocyte than wild type ES cells, indicating it has a negative role in adipogenesis (Aouadi
et al., 2006). These controversial results may be due to MAP kinases playing varied roles at

different differential stages or in different cell types.

1.2.3.5 TGFp family

Transforming growth factor B (TGFP) family members, including TGFB and bone
morphogenetic proteins (BMPs), play a role in regulating adipogenesis. Ligand binding
induces dimerization and phosphorylation of TGF recetprs, which further phosphorylates
R-Smad (from Smad1 to Smad5). Phosphorylated R-Smad binds to Smad4 and translocates
into the nucleus (reviewed by Roelen and Dijke, 2003). TGF-B inhibits adipocyte
differentiation in preadipocyte cell lines, which is in agreement with in vivo data showing
that adipocyte differentiation is significantly inhibited in TGF-f transgenic mice (Choy et
al., 2000; Clouthier et al., 1997). Smad3, which is a component of the TGF- pathway,
inhibits adipogenesis by interacting with C/EBPJ and C/EBPS and repressing their activity
(Choy and Derynck, 2003).

Low concentration of BMP2 promotes adipocyte development, while high concentration
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of BMP2 induces chondrocytes and osteoblasts differentiation (Wang et al., 1993). BMP-2
stimulation may lead to nuclear translocation of Schnurri-2 (Shn-2), which will activate
PPARY2 expression through direct interaction with both Smadl/4 and C/EBPa (Jin et al.,
2006). Another BMP member, BMP4 has been shown to be involved in preadipocytes

determination (reviewed by Bowers and Lane, 2007).

1.2.3.6 Wnt signalling

The Wnt family, which is an evolutionarily conserved family of secreted glycoproteins,
plays a big role in regulating adipogenesis. Wnt10b, Wnt10a, and Wnt6 are expressed in
preadipocytes. They can bind to transmembrane frizzled receptors and activate the
Wnt/B-catenin pathway, which will lead to inhibition of GSK3pB and cause
hypophosphorylation and stabilization of B-catenin in the cytoplasm. Following that,
B-Catenin is translocated into the nucleus and binds to TCF/LEF transcription factors to
inhibit preadipocyte differentiation (reviewed by Prestwich and Macdougald, 2007).
FABP4-Wnt10b transgenic mice have approximately 50% less total body fat compared to
wild type (Longo et al., 2004). Conditional deletion of B-catenin in the myometrium
converts it to adipose tissue (Arango et al., 2005). Wnt5b is different from other Wnt
members. It is transiently up-regulated during adipogenesis and promotes preadipocyte
differentiation (Kanazawa et al., 2005b). Other signals may utilize the Wnt/B-catenin
pathway to carry out their functions. For example, testosterone induces androgen receptor

binding to beta-catenin and inhibits adipogenesis in 3T3-L1 cells (Singh et al., 2006).
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1.2.3.7 Hedgehog signalling pathway

Hedgehog (Hh) proteins are lipid containing secreted proteins that also regulate
adipogenesis. Secreted Hh proteins bind to the cell surface receptor Patched (PTC) and
release Smoothened (Smo). In turn, Smo regulates gene expression through the GLI family
of transcription factors (reviewed by Hooper and Scott, 2005). In flies, activation of Hh
signaling in the fat body inhibits fat formation, while inhibition of Hh in the fat body
stimulates fat formation (Suh et al., 2006). In vitro, Sonic Hedgehog can inhibit 3T3-L1 cell
and C3H10T1/2 cell adipogenesis (Spinella-Jaegle et al., 2001; Zehentner et al., 2000). The
inhibitory effects of Hh may be due to induction of anti-adipogenic transcription factors

such as Gata2 (Suh et al., 20006).

1.2.3.8 Prefl signalling

Preadipocyte factor 1 (Pref-1, also named DLK1) is an epidermal growth factor (EGF)
like repeat containing protein that can be activated through proteolytic cleavage by tumor
necrosis factor a converting enzyme (TACE, also called ADAM 17) (reviewed by Wang et
al., 2006). Pref-1 is highly expressed in preadipocytes and its expression diminishes when
3T3-L1 preadipocytes differentiate into adipocytes. Moreover, constitutive expression of
pref-1 significantly inhibits adipogenic differentiation in preadipocytes (Smas and Sul,
1993). Pref-1 knock-out mice display obesity and increased serum lipid metabolites, while
Pref-1 transgenic mice have a dramatic reduction in adipose tissue (Lee et al., 2003a; Moon

et al., 2002).



CHAPTER 2

The role of microRNA in 3T3-L1 cell differentiation

2.1 INTRODUCTION

The 3T3-L1 preadipocyte cell line is a well established in vitro model to study
adipogenesis (Green and Meuth, 1974). Upon a cocktail of cyclic AMP, insulin, and
glucocorticoids treatment, 3T3-L1 preadipocytes undergo differentiation into mature
adipocytes over 4-6 days period (Student et al., 1980). 3T3-L1 cells first reach growth arrest
by contact inhibition. Then, cell division occurs for one or two rounds during clonal
expansion. Finally, the cell cycle stops again and proceeds into final differentiation (Rosen
and Spiegelman, 2000). We wanted to investigate whether microRNAs (miRNAs) play a
role in this process.

MicroRNAs, which are endogenous small non-coding RNAs around 22 nt, play very
important roles in many processes such as development, proliferation, apoptosis,
metabolism and human diseases (Bushati and Cohen, 2007; Bartel, 2004). MicroRNAs bind
to the 3’ untranslated region (3’UTR) of their targets and negatively regulate them through
translational repression or mRNA decay (reviewed by Eulalio et al., 2008).

miR-143 was reported to regulate adipocyte differentiation by targeting ERKS (Esau et
al., 2004), but another group reported that inhibition of some up-regulated microRNAs
didnot affect 3T3-L1 differentiation (Kajimoto et al., 2006). These controversial views
promoted us to investigate the role of microRNAs in pre-adipocyte differentiation.

MicroRNA [et-7 was first reported to regulate C. elegans developmental timing

39
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(Reinhart et al., 2000). let-7 can also suppress the oncogene Ras (Johnson et al., 2005). let-7
was reported to be involved in cancer (Park et al., 2007), including breast cancer (Yu et al.,
2007), ovarian cancer (Lu et al., 2007), non-small cell lung cancer (Kumar et al., 2008),
lung cancer (Esquela-Kerscher et al., 2008), and colon cancer (Akao et al., 2006).

Other targets for let-7 were also reported such as neurofibromatosis 2 (Meng et al.,
2007b), Toll-like receptor 4 (Chen et al., 2007), CdK6, and Cdc25a (Johnson et al., 2007),
and MYC (Sampson et al., 2007).

let-7 can also target High mobility group AT hook 2 (Hmga2) (Mayr et al., 2007; Lee
and Dutta, 2007). Hmga2 and Hmgal belong to the High Mobility Group A (Hmga) family,
which encodes architectural transcription factors that bind to minor groove of AT-rich DNA
and cause conformational changes in chromatin. HMGA?2 protein contains an AT-hook
domain that is responsible for DNA binding, a linker, and an acidic tail. Hmga?2 is involved
in many physiologic process and diseases (reviewed by Young and Narita, 2007). Gene
rearrangement was found at the Hmga2 region in lipomas (Ashar et al., 1995) and
mesenchymal tumors (Schoenmakers et al., 1995). Inactivation of the Hmga2 gene in mice
yields a pygmy phenotype due to lack of fat tissue (Zhou et al., 1995). Mice with
heterozygous or null Hmga2 gene are resistant to diet induced obesity (Anand and Chada,
2000). Over-expression of the truncated Hmga2 gene produces a giant mouse with massive
fat tissue (Battista et al., 1999). These results suggest the Hmga2 gene plays a role in
adipogenesis.

E2F family members also regulate adipogenesis. E2F family members are important

transcription factors that regulate cell cycles. There are eight known E2Fs from E2F1 to
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E2F8 in this family. E2F1 through E2F6 can dimerize with DP proteins (DP1, DP2/3, DP4).
Tumor suppressor retinoblastoma protein (pRB) and other pocket proteins p107 and p130
can regulate the transcriptional activity of E2F1-E2F5 (reviewed by DeGregori and Johnson,
2006). HMGAZ2 can acetylate and activate E2F1 (Fedele et al., 2006). Lack of E2F1 impairs,
while loss of E2F4 promotes, adipogenesis (Fajas et al., 2002).

Since microRNAs have been implicated in playing a role in regulating adipogenesis, in
this work we attempted to identify microRNAs that play a role in 3T3-L1 cell

differentiation and characterize the regulatory mechanism by which they work.
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2.2 RESULTS

2.2.1 Expression of let-7 and other miRNAs during adipogenesis

To investigate whether miRNAs are involved in adipocyte differentiation, we examined
the expression of 386 miRNAs during 3T3-L1 differentiation using microarray analysis.
Post-confluent 3T3-L1 cells were induced to differentiate using a cocktail of
dexamethasone, 3-isobutyl-1-methylxanthine and insulin (DMI). RNA was prepared from
cells at 0, 1, 4 and 7 days after adipogenic induction (Fig. 2.1A) and small RNAs were
purified for use in microarray analysis (Fig. 2.1B). Among the 386 miRNAs examined, 23
were either increased or decreased >1.5 fold during 3T3-L1 differentiation (Table 2.1).
Induction of several of these, including let-7, miR-103, miR-143, miR-193 and miR-210,
was confirmed by northern blot analysis (Fig. 2.2A). The expression of all these miRNAs
was up-regulated after 2 days of differentiation and maintained at a high level in mature
adipocytes. Consistent with our in vitro findings, let-7, miR-103, miR-143, miR-193 and
miR-210 were all expressed in murine white adipose tissue (WAT) (Fig. 2.2B). Additional
profiling studies revealed that each of these miRNAs was expressed in multiple tissues
including brown adipose tissue (Fig. 2.2B).

We chose to focus further experiments on let-7 given its recently established role in
regulating cell fate decisions in C. elegans and Drosophila (Caygill and Johnston, 2008;
Reinhart et al., 2000; Sokol et al., 2008). let-7 expression was increased in 3T3-L1 cells
differentiated by treatment with either the DMI cocktail or the PPAR agonist, rosiglitazone

(Fig. 2.3A). Using a third independent assay, let-7 levels were also increased during
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insulin-induced differentiation of 3T3-F442A cells into adipocytes (Fig. 2.3A). In
agreement with these findings, let-7 was abundant in mature adipocytes isolated from mice
but barely detectable in preadipocytes (Fig. 2.3C). let-7 was not induced by DMI treatment
of NIH3T3 cells, which do not differentiate into adipocytes, nor was it induced during
differentiation of C2C12 cells into myotubes (Fig. 2.3B). These data show that let-7
induction is not invariably associated with either DMI treatment or differentiation
processes.

There are several let-7 isoforms in the mouse genome that differ in only 1-2 nucleotides
(Table 2.2). Since these isoforms cannot be distinguished by northern blot analysis, we
quantified their levels by RT-qPCR. Consistent with the microarray and northern blot data
presented above, the most abundant let-7 isoforms, including let-7a, let-7b and let-7d, were
all up-regulated during 3T3-L1 adipogenesis (Fig. 2.3D). Interestingly, with the exception
of let-7b, all the let-7 isoforms decreased from day O to day 1 and then increased. We
speculate that this transient dip in let-7 expression may be permissive for clonal expansion

(see below).

2.2.2 let-7 inhibits 3T3-L1 differentiation

To test whether let-7 plays a role in 3T3-L1 adipogenesis, pre-let-7a oligonucleotide
was transfected into 3T3-L1 cells, where it was efficiently converted into mature let-7a as
confirmed by northern blot analysis (Fig. 2.4). Introduction of ectopic let-7a in 3T3-L1 cells

prior to DMI treatment inhibited their differentiation into adipocytes as measured by Oil
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Red O staining (Fig. 2.5) and triglyceride content (Fig. 2.6C) on day 6 of differentiation.
mRNA levels of Ppary and C/ebpa, two transcription factors whose induction is important
for adipocyte differentiation, were significantly lower in cells transfected with let-7a
compared to cells transfected with control oligonucleotide (Fig. 2.6B). Likewise, mRNA
levels of the mature adipocyte markers, fatty acid binding protein 4 (aP2) and adipsin, were
decreased by let-7a transfection (Fig. 2.6B). In contrast, C/ebpf and C/ebpo, two genes
whose expression is important during the early stages of adipogenesis, were not

significantly affected by let-7a at the 6 day time point.

2.2.3 Overexpression of let-7 impairs clonal expansion of 3T3-L1 cells

The treatment of 3T3-L1 cells with an adipogenic stimulus initiates a complex sequence
of events including clonal expansion, cell cycle exit and terminal differentiation (Rosen and
Spiegelman, 2000). Since let-7 controls exit from the cell cycle in C. elegans and D.
melanogaster (Caygill and Johnston, 2008; Reinhart et al., 2000; Sokol et al., 2008), we
postulated that its up-regulation on day 1 of adipogenesis might play an analogous role in
promoting terminal differentiation of adipocytes. To test this hypothesis, 3T3-L1 cells were
transfected with either let-7a or control oligonucleotides and then allowed to reach
confluence, at which point the adipogenic program was initiated with the DMI cocktail. As
shown in Fig. 2.7, cell number was significantly reduced in cultures transfected with let-7a
compared to control oligonucleotide. These data support a role for let-7 in blocking clonal

expansion during adipogenesis.
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2.2.4 Microarray analysis showed let-7 down-regulated some genes at mRNA level.

In an effort to identify genes through which let-7 mediates its effect on adipocyte
differentiation, microarray analysis was performed using mRNA prepared from 3T3-L1
cells harvested 24 hours after transfection with either let-7a or control oligonucleotide.
Genes whose expression was down-regulated >2 fold by let-7a are listed in Table 2.3.
Several of these genes, including Hmga2, E2f6, Cdc34 and insulin-like growth factor 2
mRNA binding protein 1 (Igf2bpl), have been previously shown to be targets of let-7
(Boyerinas et al., 2008; Johnson et al., 2007; Lee and Dutta, 2007; Mayr et al., 2007).

E2F family members have been reported to be involved in adipogenesis. Knock-out of
E2fI impairs, while deletion of E2f4 promotes adipogenesis (Fajas et al., 2002). Since the
E2f6 mRNA level was down-regulated by let-7 as detected by microarray, we checked
whether let-7 regulates adipogenesis through the E2F family. Using online bioinformatics
tools, it was found that several members of the E2F family, including E2f2, E2f3, E2f5, and

E2f6, contain potential let-7 binding sites in their 3’UTR

(http://cbio.mskcc.org/cgi-bin/microRNAviewer/microRNAviewer.pl). These potential let-7
binding sites in the 3° UTR of E2f2, E2f3, E2f5, and E2f6 were cloned and put at the 3’ end
of a luciferase reporter. The reporter activity was checked in the presence of let-7 or control
oligo in F9 cells, which lack endogenous let-7 (Mayr et al., 2007). The activity of reporter
containing 3> UTR of E2f5 or E2f6 is lower than negative control reporter, while that of
E2f2 or E2f3 was comparable to control reporter (Fig. 2.8a). Mutation of two nucleotides
from “C” to “A” in the binding sites of 3’ UTR of E2f5 or E2f6, which abolishes the paring

of let-7 with the binding sites, relieved the repression of reporter activity by let-7 (Fig. 2.8c).
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These results suggest let-7 can regulate E2f5 and E2f6 by binding to the 3’ UTR of E2f5 and
E2f6, respectively. To check whether let-7 regulate adipogenesis through E2f5 or E2f6,
small interference RNA against E2f5 or E2f6 was transfected into 3T3-L1 cells and the
adipogenic potential of 3T3-L1 cells was checked after standard DMI induction. Either
knock-down of E2F5 or E2F6 didn’t inhibit 3T3-L1 differentiation (data not shown). These
results suggest the effect of lez-7 on 3T3-L1 adipogenesis may not be mainly through E2F5

or E2F6.

2.2.5 let-7 may regulate clonal expansion and differentiation by targeting HMGA2

Hmga2 was the gene whose expression was most affected by let-7a in 3T3-L1 cells
(Table 2.3). Notably, mice lacking HMGA?2 have a striking reduction in adipose tissue
(Zhou et al., 1995). Conversely, transgenic overexpression of a truncated HMGA?2 in mice
resulted in a marked increase in fat tissue, adipose tissue inflammation and a high incidence
of lipomas (Arlotta et al., 2000; Battista et al., 1999). Thus, HMGA?2 was a strong candidate
for being a let-7 target in differentiating adipocytes. In agreement with the microarray data,
ectopic let-7 reduced HMGA?2 protein concentrations >3-fold in 3T3-L1 cells (Fig. 2.9A).
Interestingly, Hmga2 mRNA was rapidly induced in 3T3-L1 cells during adipocyte
differentiation, with levels peaking 4 hours after treatment with the DMI cocktail and
returning to basal concentrations on day 2 (Fig. 2.9B). There was a subsequent increase in
HMGAZ? protein concentrations, with levels peaking at day 2 (Fig. 2.9C). HMGAZ2 and let-7

expression were inversely correlated during adipocyte differentiation (compare Fig. 2.3A,
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left panel, with Fig. 2.9A and 2.9B). Finally, siRNA knockdown of HMGA?2 inhibited
3T3-L1 differentiation as measured by aP2 and Ppary mRNA levels (Fig. 2.9D). Taken
together, these results strongly suggest that let-7 regulates 3T3-L1 differentiation in part by

targeting HMGAZ2.

2.2.7 let-7 and Hmga2 play an import role in 3T3-L1 adipogenesis

3T3-L1 pre-adipocytes undergo growth arrest, clonal expansion, final growth arrest and
terminal differentiation into mature adipocytes (Rosen and Spiegelman, 2000). Although the
main transcription cascades regulating adipogenesis are known, the exact details of how
3T3-L1 cells undergo differentiation remains unknown. Our results show that the
microRNA let-7 specifically increases at the late stage of 3T3-L1 differentiation and Hmga2
is induced at the clonal expansion stage and decreases at final growth arrest and terminal
differentiation stages (Fig 2.10). We suggest that let-7 regulates 3T3-L1 cell differentiation
by stopping clonal expansion and bringing it to final growth arrest and terminal

differentiation by targeting Hmga2.
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Fig. 2.1. Expression of microRNAs during 3T3-L1 differentiation.

A: Oil Red O staining showes lipid accumulation during 3T3-L1 differentiation; B:
microRNA array expression data from 3T3-L1 cells cultured in differentiation medium for 0,
1, 4 or 7 day. Normalized log2 data are plotted as a heat map. Red denotes high expression
and green denotes low expression relative to the median; only the microRNA that were

changed by more than 1.5 fold in differentiated adipocytes are shown.
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Table 2.1 The expression changes of microRNAs during 3T3-L1 differentiation

0 1 4
Name day |day [day [7 day
hsa_miR_422b 1 1.502.89 (12.01
hsa_miR_210 1 1.082.42 {11.93
hsa_miR_103 1 1.01{1.74 [7.53
hsa_miR_193a 1 1.022.14 5.55
hsa_miR_22 1 1.07/0.62 [3.55
hsa_miR_30d 1 1.920.44 [2.91
hsa_miR_191 1 1.00§0.52 [2.68
hsa_let_7b 1 1.13]1.03 [2.41
hsa_miR_320 1 1.211.85 [2.40
ambi_miR_7029 |1 1.02/0.71 [2.18
hsa_let_7c 1 1.21{1.01 2.14
hsa_miR_214 1 1.32{1.31 2.12
hsa_miR_24 1 1.24{0.61 [2.06
hsa_miR_500 1 1.09/0.49 [2.01
hsa_miR_30a_5p |1 0.98]0.58 [1.95
hsa_miR_188 1 1.03/0.59 [1.94
hsa_miR_30e_3p |1 0.910.47 [1.92
ambi_miR_7085 |1 1.02/1.17 [1.91
mmu_miR_155 1 1.01j0.47 |1.88
hsa_miR_143 1 1.000.35|1.83
hsa_miR_21 1 1.15/0.75 [1.69
mmu_miR_140_AS|1 1.23]0.29 (0.56
hsa_miR_182 1 1.01{0.16 (0.54
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Fig. 2.2. Up-regulation of a subset of microRNAs (lez-7, miR-103, miR-143, miR-193,
and miR-210) was confirmed by northern blot during 3T3-L1 differentiation.

Northern blot analysis of microRNA expression from different time points as indicated
during 3T3-L1 differentiation as well as in 10 different adult mouse tissues. U6 snRNA was

used as a loading control.
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Fig. 2.3. let-7 induction is specific for adipogenesis.

A: post-confluent 3T3-L1 cells were induced to differentiate by incubation with DMI
cocktails or Rosiglitazone (Rosi.), and 3T3-F442A cells were induced to differentiate by
insulin. RNA was isolated at serial time points as indicated and northern blot was performed
using a let-7a probe. let-7 precursor and mature let-7 are shown. The values are normalized
by loading control and represented as fold-changes compared to the level at O0-day B:
C2C12 cells were induced to differentiate into myotubes by incubation with differentiation
medium, and NIH3T3 cells were treated with the same inducers as 3T3-L1 differentiation.
Northern blots were used to detect let-7. The values were normalized by U6 and represented
as fold changes compared to that of 0-day. C: Pre-adipocytes (SV fraction) and mature
adipocytes (Ad) were isolated from adipose tissue of mice. RNA was extracted and northern
blot was performed as described in materials and methods. The image of ethidium bromide
(EB) stained gel served as a loading control. D: RNA was isolated at different time points as
indicated during 3T3-L1 differentiation. Individual isoforms of let-7 family were quantified
by specific ABI Tagman Q-PCR probe and primer sets. Error bar represent SDEV from

triplicate wells.
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Table 2.2 let-7 isotypes in mice

Name

Chromosome

Sequence

mmu-let-7-al

13

ugagguaguagguuguauaguu

mmu-let-7-a2

ugagguaguagguuguauaguu

mmu-let-7-b

15

ugagguaguagguugugugguu

mmu-let-7-c1

16

ugagguaguagguuguaugguu

mmu-let-7-c2

15

ugagguaguagguuguaugguu

mmu-Jlet-7-d

13

agagguaguagguugcauaguu

mmu-Jlet-7-e

17

ugagguaggagguuguauaguu

mmu-let-7-f1

13

ugagguaguagauuguauaguu

mmu-let-7-f2

ugagguaguagauuguauaguu

mmu-let-7-g

ugagguaguaguuuguacaguu

mmu-let-7-i

10

ugagguaguaguuugugcuguu

(Data from sanger miRbase)
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Fig. 2.4. Pre-let-7 can be transfected and converted into its mature form in 3T3-L1
cells.

Bright field view (A) or GFP fluorescence (B) of 3T3-L1 cells transfected with plasmid
expressing GFP. C: 3T3-L1 cells were transfected with let-7a precursor, control oligo, or
GFP by electroporation. RNA was isolated 24 h after transfection and northern blot was
performed using let-7a probe. The same membrane was re-probed with U6 as a loading

control.
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A Control oligo, 100X Control oligo, 200X

B let-7, 100X let-7, 200X

Figure 2.5 Ectopic introduction of /let-7 inhibits 3T3-L1 cell differentiation.
Oil-Red-0O stain of 3T3-L1 cells transfected with control oligo (A) or let-7 (B) and
differentiated into mature adipocytes. The number of magnification was shown.
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Fig. 2.6. Ectopic presence of let-7 inhibits 3T3-L.1 adipogenesis.

3T3-L1 cells were transfected with let-7a precursor or control oligo. After confluency,
transfected cells were either continually incubated with growth medium or induced into
differentiation with DMI cocktail. After 6 days, the cells were stained by Oil Red O
(magnification 200X) (A). B: The gene expression was analyzed by Q-PCR. (n=3+SEM,
*P<0.01). C: Triglyceride content was measured by fluorescence assay described in

material and methods. (n=6+SEM, *P<0.01).
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Fig. 2.7. Ectopic presence of let-7 inhibits 3T3-L.1 clonal expansion.

3T3-L1 cells were transfected with let-7a mimic or control oligo by electroporation and
cultured in growth medium for 24 h after transfection. Then the cells were incubated with
DMI-cocktail. On day 1, 2, and 3, the cell number was counted. (n=3+SEM, *P<0.01 vs

control oligo).
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Table 2.3.

Genes down-regulated by let-7 in 3T3-L1 cells.
Gene Access number Fold change
Hmga2 NM_010441 3.58
Isgl5 NM_015783 3.28
Nfib NM_001113209 2.78
Nmed4 NM_019731 2.70
Statl NM_009283 2.65
Parpli?2 NM_172893 2.65
Uspl8 NM_011909 2.64
Rnf213 NM_001040005 2.62
ligp2 NM_019440 2.61
Apol9a XM_128064 2.60
Mx2 NM_013606 2.56
Vstm2a NM_ 145967 2.54
Cdsn NM_001008424 2.48
Lgals3bp NM_011150 2.25
Apol9b NM_173743 2.21
Arhgap20 NM_175535 2.20
Irgm NM_008326 2.18
Igtp NM_018738 2.17
Ubell NM_023738 2.17
Samd9l XM_620286 2.17
E2f6 NM_033270 2.15
AI606181 XR_035116 2.11
Cdc34 NM_177613 2.09
Plagl2 NM_018807 2.07
Igf2bpl NM_009951 2.00
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Fig. 2.8. let-7 can bind to the 3’ UTR of E2f5 and E2f6 and regulate their expression.

A: The activity of pGL3-luc, pGL3-luc containing the exact complementary sequence
for let-7 (pGL3-let-7) or binding site from the 3> UTR of E2f2, E2f3, E2f5 or E2f6
(pGL3-E2F) was checked in the presence of control oligo or let-7b in F9 cells. The fold
changes are shown. (n=3+SEM, RLU: relative luciferase unit) B: The paring of /et-7 with
binding sites in the 3° UTR of E2f5 or E2f6. The mutated sites are shown as underlined
letters. C: The activity of pGL3 reporter containing wild-type or mutant binding sites for
let-7 from the 3’UTR of E2f5 or E2f6 was measured in the presence of let-7 or control oligo.

The fold changes are shown. (n=3+SEM)
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Fig. 2.9. let-7 regulates 3T3-L1 cell differentiation through the HMGA?2 pathway.

A: HMGAZ2 protein level in let-7 or control oligo transfected 3T3-L1 cells. GAPDH is
shown as a loading control. B: Relative Hmga2 mRNA levels at indicated time points
during 3T3-L1 cell differentiation detected by Q-PCR (SYBR green assay). (n=3+SDEV) C:
Western blots showing HMGA2 protein levels at indicated days during 3T3-L1 cell
differentiation. GAPDH is shown as a loading control. D: Relative mRNA level of aP2 and
Ppary in Hmga2 siRNA, E2fI siRNA, or control siRNA transfected 3T3-L1 cells after

differentiation. (n=3+SEM, *P<0.05, **P<0.01)
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Fig. 2.10. Schematic of let-7 and HMGAZ2 level during 3T3-L1 cell differentiation. Dash

line shows let-7 expression and solid line indicates HMGAZ2 protein level.
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2.3 DISCUSSION

The differentiation of preadipocytes into mature fat cells requires a highly orchestrated
series of changes in gene expression. Although a transcription factor cascade has been
identified that regulates adipocyte differentiation, the molecular mechanisms that coordinate
the different phases of adipogenesis are not yet completely understood. In this report, we
have identified the miRNA [et-7 as an important regulator of adipogenesis in 3T3-L1 cells.
Let-7 is up-regulated following induction of adipogenesis by either the standard DMI
cocktail or the combination of rosiglitazone and insulin. Consistent with these in vitro
findings, let-7 is much more abundant in mature adipocytes than preadipocytes derived
from mouse epididymal adipose. Notably, introduction of ectopic let-7 blocks 3T3-L1 cell
growth during the clonal expansion stage and completely blocks terminal differentiation as
measured by both the expression of marker genes and lipid accumulation.

How does let-7 block adipocyte differentiation? In microarray experiments performed
with RNA from 3T3-L1 cells transfected with let-7a, Hmga2 was the most strongly
down-regulated RNA, and there was a corresponding decrease in HMGA2 protein
concentrations. Previous studies have demonstrated that let-7 represses HMGA?2 expression
by binding to six different sites in the Hmga2 3’-untranslated region (Mayr et al., 2007).
HMGA?2 is an architectural transcription factor that alters chromatin structure.
Rearrangements of the Hmga2 gene are frequently observed in benign tumors of
mesenchymal origin, including lipomas (Ashar et al., 1995; Schoenmakers et al., 1995).

Interestingly, both gain-of-function and loss-of-function experiments in mice implicate
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HMGAZ? in adipogenesis. Mice lacking HMGA?2 have marked reductions in adipose tissue
(Zhou et al., 1995). Conversely, transgenic mice overexpressing either full-length or
truncated derivatives of HMGA?2 develop lipomatosis (Arlotta et al., 2000; Battista et al.,
1999; Fedele et al.,, 2002). These findings, together with our data showing that
siRNA-mediated knockdown of HMGA?2 blocks 3T3-L1 adipogenesis, suggest that
HMGA?2 is an important target for the effects of let-7 on adipocyte differentiation.
However, since let-7 regulates numerous genes, its effects on adipocyte differentiation are
likely to be complex and involve regulation of additional genes. In this regard, it is
interesting that let-7 reduced mRNA levels of E2f6 and Statl. Other members of the E2F
family are known to regulate adipogenesis (Fajas et al., 2002), and STAT1 has been shown
to be up-regulated during adipogenesis and to regulate gene expression in mature adipocytes
(Hogan and Stephens, 2001; Hogan and Stephens, 2003; Stephens et al., 1996).

The regulation of miRNA expression during adipocyte differentiation has been
examined by several groups. In a survey of miRNA regulation during 3T3-L1 cell
differentiation, Kajimoto et al. observed increased expression of the let-7b isoform, which
was robustly induced in our study (Kajimoto et al., 2006). In a study of human adipocyte
differentiation, Esau et al. saw increased expression of let-7a and let-7c (Esau et al., 2004).
These findings support a role for let-7 in regulating fat cell differentiation in both humans
and mice. Surprisingly, there is relatively little overlap in the miRNAs regulated in our
study and that of Kajimoto et al., with only let-7b, miR-143, miR-182 and miR-422b
showing similar patterns. The basis for this difference is not known, but it does not appear

to be due to marked differences in the differentiation protocols.
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While we were able to observe a strong gain-of-function phenotype in 3T3-L1
adipocytes with let-7a, we did not observe a reciprocal phenotype in knockdown
experiments performed with 2'-O-methyl oligoribonucleotide inhibitors against the various
let-7 isoforms (data not shown). Functional redundancy amongst miRNAs is well
documented (Miska et al., 2007) and thus the presence of many let-7 isoforms is a likely
explanation for the lack of an effect we seen in these experiments. In this regard, we note
that transfection of /et-7b had the same effect as let-7a on 3T3-L1 cell differentiation (data
not shown).

In summary, we provide evidence that let-7 regulates adipocyte differentiation. We
propose that let-7 does this in part by targeting the transcription factor HMGA?2, thereby
promoting the transition of preadipocytes from clonal expansion to terminal differentiation
(Fig. 2.10). The role of let-7 in mediating this transition switch is reminiscent of its
developmental role in C. elegans, where let-7 regulates the transition from the larva to adult
(Johnson et al., 2005; Reinhart et al., 2000). Our findings suggest that ler-7 may have
important implications in obesity and other forms of metabolic disease in which there are

alterations in the amount and/or function of adipose tissue.
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2.4 SUMMARY

3T3-L1 pre-adipocytes undergo growth arrest, clonal expansion, final growth arrest and
terminal differentiation into mature adipocytes. We investigated whether microRNAs,
endogenous small RNAs, play a role in this process. Microarrays were performed to detect
the expression of microRNAs during 3T3-L1 pre-adipocyte differentiation at day 0, day 1,
day 4, and day 7. Several microRNAs including let-7 were up-regulated at the late stage of
3T3-L1 adipogenesis. Microarray results were confirmed by northern blot and quantitative
real time PCR. let-7 expression specifically increased during the late stage of 3T3-L1
differentiation. Over presence of let-7 in 3T3-L1 cells before DMI induction inhibits
3T3-L1 adipogenesis. Both the mRNA and protein levels of Hmga2, a target for let-7,
decreased after ectopic introduction of let-7 in 3T3-L1 cells. HMGA?2 protein level is
inversely correlated to let-7 levels during 3T3-L1 adipogenesis. Knock-down of Hmga?2 or
E2f1 by siRNA also inhibits 3T3L1 pre-adipocyte differentiation. Our results suggest let-7
can stop clonal expansion of 3T3-L1 cells and bring them to final growth arrest and

terminal differentiation by targeting Hmga?2.



CHAPTER 3
Profiles of microRNA Expression in Normal Mouse Tissues Detected by

Quantitative Real Time PCR

3.1 INTRODUCTION

Genes encoding microRNAs are located in intergenic regions or in the introns or exons
of other genes on chromosomes. They either have their own promoters or are controlled by
the promoters of other genes. The expression of microRNAs in different tissues should offer
some clues into their function. Also, the expression level of microRNA in different normal
tissues can be used as a reference for that of physiologic or pathologic status.

There are several ways to detect expression of microRNAs. Northern analysis is
commonly used for detecting microRNA expression. For example, researchers have used
northern analysis to detect the expression of 119 microRNAs in mouse and human tissues
(Sempere et al., 2004). This strategy has some shortcomings. It is labor-intensive and can
not distinguish microRNAs with very similar sequences.

Microarrays have the advantage of being high-throughput and have been used for
detecting the profile of microRNA expression (Barad et al., 2004; Liu et al., 2004a; Miska
et al., 2004; Nelson et al., 2004; Sun et al., 2004; Thomson et al., 2004). However,
microarrays cannot differentiate microRNAs with similar sequences, and can not detect
microRNAs with very low expression.

In an effort to improve the specificity of microarray for microRNAs, locked nucleic acid
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(LNA)-modified capture probes have been used in microarrays. LNA probe sets were
designed for uniform, high-affinity hybridizations that can produce highly accurate signals
and are able to discriminate single nucleotide differences due to their unique biophysical
properties (Castoldi et al., 2007; Castoldi et al., 2008; Castoldi et al., 2006).

Another group used bead-based flow-cytometric microRNA expression profiling to
perform expression analysis of 217 mammalian microRNAs from 334 samples, including
multiple human cancer samples (Lu et al., 2005). It is claimed that bead-based hybridization
is superior to glass array hybridization in specificity since it is solution based chemistry.
This method also is fast, high-throughput, and low cost (Lu et al., 2005).

To achieve the goals of high specificity and sensitivity, a novel microRNA
quantification method has been developed using stem-loop revese transcription (RT)
followed by TagMan PCR analysis (Chen et al., 2005a). Stem-loop RT primers are more
efficient and specific than conventional RT primers. TagMan microRNA assays can
specifically detect mature microRNAs and are not affected by genomic DNA,
pri-microRNAs, or pre-microRNAs. This assay can discriminate microRNAs with similar
sequences that only differ by a single nucleotide. The Tagman PCR process amplifies
targets and can detect microRNAs of very low abundance (Chen et al., 2005a). This method
has been widely used for detecting microRNA expression in cell lines, tissues, and tumors
(Chen and Stallings, 2007; Gaur et al., 2007; Jongen-Lavrencic et al., 2008; Lee et al., 2008;
Liang et al., 2007).

In an effort to explore the role of microRNAs in different tissues, we analyzed the

expression profiles of 111 microRNAs in 36 mouse tissues using an Applied Biosystem
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microRNA Tagman assay kit. These resultant profiles provide hints toward the function of
different microRNAs. Furthermore, a comparison of microRNA expression with nuclear
receptor expression was performed and may provide useful information on nuclear receptor

regulation of microRNA expression, and vice versa.
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3.2 RESULTS AND DISCUSSION

3.2.1 MicroRNAs show different expression patterns in mouse tissues.

Total RNA was extracted from 36 tissues from C57BL/6]J mice using a standard
protocol (Bookout et al., 2006). These tissues include eight from CNS (eye, brain stem,
cerebellum, cerebrum, olfactory bulb, spinal cord, hypothalamus, and pituitary gland), three
belong to endocrine tissues (adrenal gland, pancreas, and thyroid gland), seven of them are
from metabolic tissues (duodenum, jejunum, ileum, colon, gall bladder, liver, and kidney),
two are from adipose tissues (WAT and BAT), two from immune system (spleen and thymus
gland), eight of them are from reproductive tissues (ovary, uterus, epididymus, preputial
gland, prostate, seminal vesicles, testis, and vas deferens), three of them are from the
respiratory system (aorta, lung, and heart), and three are from structural tissues (muscle,
skin, and bone).

The RNA was reverse transcribed using microRNA-specific stem-loop RT primers.
Then the cDNA was amplified in a Tagman PCR reaction using microRNA-specific PCR
primers and Tagman probes. The data were analyzed using the standard curve assay (Chen
et al., 2005a).

To check data accuracy, northern analysis was performed on select microRNAs. Northern
analysis confirmed the result (Fig. 3.1). In addition, our Q-PCR results are consistent with

previous publications (Esau et al., 2006).
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3.2.1.1 Low versus high expression level

The expression of different microRNAs varied considerably. Some showed high
expression in different tissues, while others were very low to undetectable (Fig. 3.3). For
example, miR-30c and miR-16 were highly expressed in most tissues (Fig. 3.2; 3.4). On the

contrary, microRNAs like miR-190 were barely detectale.

3.2.1.2 Specific expression pattern

A subset of microRNAs exhibited exclusive expression in mouse tissues. For example,
miR-122a was exclusively expressed in liver, in agreement with other reports (Esau et al.,
2006). miR-133 was highly expressed in heart and skeletal muscle, with low expression in
skin, bone and eye. The expression level of miR-133a and miR-133b was increased during
C2C12 myocyte differentiation (Fig. 3.5). These results are consistent with its role in
muscle development (reviewed by Callis and Wang, 2008). miR-194 was highly expressed
in intestinal organs such as duodenum, jejunum, ileum, and colon, as well as at a lower
levels in liver (Fig. 3.6). miR-23a and miR-23b had relatively higher expression in colon,
and lower expression in heart, lung, skin and muscle (Fig. 3.7). miR-203 and miR-205 are
highly expressed in preputial gland and skin. miR-205 was also expressed at low levels in
reproductive tissues such as epididymus, prostate and seminal vesicles (Fig. 3.8). miR-213
was highly expressed in thymus. The expression of miR-148a was higher in pancreas than
other tissues (Fig. 3.9). In white adipose tissue, the expression of miR-335 was high. It was

also expressed in pituitary (Fig. 3.4). miR-140 had high expression in aorta and bone.
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miR-142-3p was also mainly expressed in bone (Fig. 3.10). miR-182, miR-183, and
miR-184 were mainly expressed in eyes (Fig. 3.11; 3.12).

Some microRNAs was exclusively or mainly expressed in the central nerve system
(CNS). For example, miR-124 was exclusively expressed in the CNS (Fig. 3.13) and has
been reported to play a role in neuronal development (Makeyev et al., 2007; Visvanathan et
al., 2007). miR-9, miR-9*, miR-29, miR-128, miR-132, miR-204, miR-218, and miR-219
are highly expressed in the CNS (Fig. 3.14; 3.15; 3.16; 3.17; 3.18). miR-127, miR-129,
miR-134, miR-137, miR-154, miR-323, and miR-370 were mainly expressed in the CNS,
but at a much lower level (Fig. 3.19, 3.20, 3.21).

The expression data of other microRNAs in this study was shown in (Fig. 3.27-3.43).

3.2.2 Hierarchical clustering of microRNAs based in mouse tissues

Hierarchical clustering of microRNAs expression from 36 mouse tissues in these tissues
showed high correlation between tissues from the same anatomic location (Fig. 3.22).
Tissues from GI tract, including duodenum, jejunum, ileum, and colon are clustered
together. Also tissues from the CNS, such as brain stem, cerebellum, cerebrum, olfactory
bulb, spinal cord, and hypothalamus clustered together. Epididymus, vas deferens, and
prostate belong to the male productive organs and they clustered together. Tissues with
similar physiologic functions also showed high correlation in the cluster analysis. For
example, heart and skeletal muscle are clustered together; Spleen and thymus clustered
together. These results suggest that the role of a microRNA is consistent with the function of

the tissue in which it is expressed.
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Liang et al. provided expression data of 345 microRNAs from 40 normal human tissues.
In that study, the cluster analysis of human tissues based on their microRNA expression
drew similar conclusions to our study (Liang et al., 2007).

Hierarchical clustering of microRNAs based on their expression in different tissues
showed different isotypes of microRNAs clustered together (Fig. 3.23). Two isoforms of
let-7, let-7a, and let-7d, clustered together, indicating their similar expression (Fig. 3.24).
miR-133a and miR-133b also clustered together. Although these different isoforms of
microRNA may come from different locations of chromosomes, the similar expression
pattern is consistent with their redundant roles in tissues.

MicroRNAs from a single transcript clustered together (Fig. 3.23). For example, the
miR-17-92 cluster is located on chromosome 14 of the mouse genome. The expression of
three of these microRNAs (miR-17-5p, miR-19a and miR-20) clustered together based on
their expression in mouse tissues (Fig. 3.25). This result indicates microRNAs under the

control of a common promoter also exhibited similar expression patterns.

3.2.3 Correlation between nuclear receptors and microRNAs based on their expression

pattern in mouse tissues.

The expression pattern of microRNAs from this study was compared to that of nuclear
receptors in different tissues (Bookout et al., 2006), to provide meaningful information on
regulation of nuclear receptors and microRNAs. If a microRNA shows positive correlation
with a nuclear receptor, it may indicate that that nuclear receptor regulates its expression. If

the correlation is negative, it may suggest the nuclear receptor is regulated by that
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microRNA. One point worth noting here is that these correlations are only based on
microRNA and nuclear receptor tissue expression pattern. These predications will need to
be validated by further experimentation.

Based on the expression of microRNAs and nuclear receptors in mouse tissues, the
correlation coefficient was calculated using Pearson correlation. As shown in Table 3.1,
there are 50 pairs of nuclear receptors and microRNAs that have positive correlation with
coefficients greater than 0.8. None of them shows a negative correlation with an absolute
value greater than 0.5. miR-184 is exclusively expressed in eyes and it has high correlation
with the photoreceptor cell-specific nuclear receptor (PNR) (Fig. 3.11). miR-194 has high
expression in intestinal tissues and it has high correlation with HNF4y and PXR (Fig. 3.6).

To investigate whether miR-194 is a target of PXR, we checked whether miR-194 level
is changed in wild type and PXR knock-out mice treated with
pregnenolone-16a-carbonitrilepcn (PCN, a PXR ligand). CYP3all and OATP2 (organic
anion transporting polypeptide 2) are target genes of PXR and their expression was
up-regulated by PCN treatment in wild type but not PXR knock-out mice. However,
miR-194 expression was unchanged in wild-type mice treated with PXR ligand. These
results suggest miR-194 is not a direct target of PXR. Also the expression of miR-194 was
not up-regulated by thyroid hormone T3, vitamin D3, or ligands for FXR, LXR, RXR, CAR,
RAR, PPARo/B/d/y (Fig. 3.26).

Although the correlation between miR-194 and PXR predicated by clustering was
disproved by experimental data, there are still many pairs of microRNAs and nuclear

receptors remaining to be explored. For example, the relationship between miR-194 and
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HNF4y needs to be further investigated.

Another way to investigate the regulation between microRNA and nuclear receptor is
using microarray. Comparing the expression of microRNAs before and after ligand
treatment for nuclear receptors will help to identify microRNAs which are the targets of

nuclear receptors.

3.3 SUMMARY

The expression of 111 microRNAs in 36 mouse tissues was detected by quantitative real
time PCR. MicroRNAs have diverse expression patterns in different tissues. Some are
universally expressed while others are specifically expressed in certain tissues, suggesting
their roles in these tissues. The expression level of different microRNA varies from each
other. MicroRNAs transcribed from the same genomic location have similar expression
patterns in mouse tissues. Also different isotypes of microRNAs have similar expressions in
mouse tissues despite that they may come from different locations of choromosomes.
Hierarchical cluster analysis based on the expression of microRNA in tissues revealed that
tissues having similar physiological functions or from the same anatomic location are
clustered together, suggesting the roles of microRNAs are consistent with the function of
the tissue in which they are expressed. Comparison of the expression of microRNAs with
that of nuclear receptors in mouse tissues showed positive correlations between nuclear
receptors and microRNAs. Whether these relationships reflect a functional relationship
remains to be explored in the future. Taken together, the expression profile of microRNAs

in mouse tissues provides a useful resource to the microRNA and nuclear receptor



communities. To that end, these data sets will be deposited at www.nursa.org.
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Figure 3.1 Quantitative real time PCR (A) and northern analysis (B) showed miR-122 is
specifically expressed in liver.
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Figure 3.2 The expression of miR-30 in mouse tissues.
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Figure 3.4 The expression of miR-16 and miR-335 in mouse tissues.
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Figure 3.6 The expression of miR-194, HNF4g, and PXR in mouse tissues. The

expression data of HNF4g and PXR are from (Bookout et al., 2006).
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Figure 3.7 The expression of miR-23a and miR-23b in mouse tissues.
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Figure 3.8 The expression of miR-203 and miR-205 in mouse tissues.
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Figure 3.9 The expression of miR-213 and miR-148a in mouse tissues.
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Figure 3.10 The expression of miR-140 and miR-142 in mouse tissues.
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Figure 3.12 The expression of miR-182 and miR-183 in mouse tissues.
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Figure 3.13 The expression of miR-124 in mouse tissues.
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Figure 3.14 The expression of miR-9 in mouse tissues.
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Figure 3.15 The expression of miR-29 in mouse tissues.
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Figure 3.16 The expression of miR-128 in mouse tissues.
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Figure 3.17 The expression of miR-132 and miR-204 in mouse tissues.
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Figure 3.18 The expression of miR-218 and miR-219 in mouse tissues.
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Figure 3.19 The expression of miR-127 and miR-129 in mouse tissues.
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Figure 3.20 The expression of miR-134 and miR-137 in mouse tissues.
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Figure 3.21 The expression of miR-154, miR-323, and miR-370 in mouse tissues.
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Figure 3.24 The expression of let-7 in mouse tissues.
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Figure 3.25 The expression of miR-17, miR-19a, and miR-20 in mouse tissues.
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Table 3.1 Correlations between nuclear receptors and microRNAs

miRNA Nuclear Receptor Correlation P value

miR-184 PNR 0.99 6.24E-50
miR-96 PNR 0.98 6.23E-24
miR-34c GCNF 0.98 7.37E-24
miR-34c¢ DAX 0.96 2.51E-21
miR-194 HNF4g 0.96 1.48E-20
miR-183 PNR 0.94 7.9E-18

miR-9* COUP-TFI 0.93 3.18E-16
miR-9 TLX 0.92 9.89E-16
miR-135b TLX 0.92 1.11E-15
miR-182 PNR 0.92 1.33E-15
miR-128a TLX 0.92 2.35E-15
miR-129 TLX 0.91 2.38E-14
miR-34c¢ TR2 0.90 5.63E-14
miR-128b TLX 0.90 6.44E-14
miR-9 COUP-TFI 0.89 2.25E-13
miR-34c¢ FXRb 0.89 3.05E-13
miR-98b TLX 0.88 2.6E-12

miR-184 ERRDb 0.87 3.07E-12
miR-137 TLX 0.87 3.5E-12

miR-9* TRa 0.87 8.71E-12
miR-9* TLX 0.87 9.24E-12
miR-107 TLX 0.86 2.0E-11

miR-129 NURRI 0.86 2.95E-11
miR-194 PXR 0.85 3.61E-11
miR-132 NURRI 0.85 3.93E-11
miR-132 TLX 0.85 4.13E-11
miR-129 COUP-TFI 0.85 4.18E-11
miR-124b TLX 0.85 4.22E-11
miR-29b TLX 0.85 4.3E-11

miR-29c¢ TLX 0.85 4.29E-11
miR-30e TLX 0.85 4.68E-11
miR-96 ERRDb 0.85 6.79E-11
miR-128a NURRI 0.85 8.48E-11
miR-323 COUP-TFI 0.84 1.16E-10
miR-9 NURRI 0.84 1.48E-10
miR-29a TLX 0.84 2.23E-10
miR-323 TLX 0.83 2.45E-10
miR-218 COUP-TFI 0.83 3.94E-10
miR-370 COUP-TFI 0.83 4.79E-10
miR-128a COUP-TFI 0.82 1.15E-09
miR-135b COUP-TFI 0.82 1.41E-09
miR-138 TLX 0.81 2.08E-09
miR-204 PNR 0.81 2.09E-09
miR-218 TLX 0.81 2.7E-09

miR-204 RORb 0.81 2.89E-09
miR-183 ERRb 0.81 3.18E-09
miR-128b NURRI 0.80 3.68E-09
miR-9* NURRI 0.80 4.79E-09
miR-135b NURRI 0.80 6.42E-09
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Figure 3.27 The expression of miR-10, miR-15, and miR-21 in mouse tissues.
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Figure 3.28 The expression of miR-25, miR-26b, miR-27b, and miR-28 in mouse tissues.
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Figure 3.29 The expression of miR-34, miR-92, and miR-96 in mouse tissues.
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Figure 3.30 The expression of miR-98b, miR-99a, miR-100, and miR-103 in mouse tissues.
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Figure 3.31 The expression of miR-107, miR-125a, miR-125b, and miR-126 in mouse tissues.
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Figure 3.32 The expression of miR-128 and miR-130 in mouse tissues.
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Figure 3.33 The expression of miR-135, miR-138, and miR-139 in mouse tissues.
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Figure 3.34 The expression of miR-141, miR-145, miR-146, and miR-149 in mouse tissues.
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Figure 3.35 The expression of miR-150, miR-152, and miR-181 in mouse tissues.
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Figure 3.36 The expression of miR-181c, miR-185, miR-186, and miR-187 in mouse tissues.
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Figure 3.37 The expression of miR-189, miR-190, miR-191, and miR-193 in mouse tissues.
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Figure 3.38 The expression of miR-195 and miR-199 in mouse tissues.
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Figure 3.39 The expression of miR-200 and miR-210 in mouse tissues.
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Figure 3.40 The expression of miR-214, miR-221, miR-222, and miR-223 in mouse tissues.
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Figure 3.41 The expression of miR-296, miR-299, miR-301, and miR-320 in mouse tissues.
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Figure 3.42 The expression of miR-324, miR-328, miR-331, and miR-338 in mouse tissue.
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Figure 3.43 The expression of miR-339, miR-340, and miR-342 in mouse tissues.



CHAPTER 4

Material and Methods

4.1 Cell culture and differentiation

3T3-L1 cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) high
glucose with L-glutamine (Invitrogen, CA) and supplemented with 10% heat-inactivated
fetal bovine serum (FBS), 100U/ml penicillin, 100mg/ml streptomycin, and incubated at
37°C in 5% CO2 humidified atmosphere. Differentiation with DMI: two days after
confluence, a cocktail containing 1uM dexamethasone, 0.5mM
3-iso-butyl-1-methylxanthine (IBMX), and Sug/ml insulin were added into culture medium.
After culturing with DMI for 48 hours, culture medium was replaced every 48 hours with
DMEM containing 10% FBS and Sug/ml insulin until pre-adipocytes become mature
adipocytes. Differentiation with Rosiglitazone: after 3T3-L1 preadipocytes reached
confluence, cells were cultured in DMEM supplemented with 10% FBS and 5uM
Rosiglitazone. Medium was replaced every 48 hours. 3T3-F442A differentiation:
3T3-F442A cells were cultured in DMEM high glucose with 10% FBS and 5Sug/ml insulin
was added to the culture medium to induce 3T3-F442A differentiation after confluence.
C2C12 differentiation: C2C12 myocytes were cultured in DMEM supplemented with 20%
FBS and differentiated into myotubes by culture in DMEM with 2% horse serum after

confluence.
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4.2 Northern blot for microRNAs

10ug of total RNA for each sample was mixed with 2x sample loading buffer and
incubated at 65°C for 10 minutes, chilled on ice for 3 minutes and loaded on a 15%
polyacrylamide gel containing 7M Urea (Invitrogene, CA). Electrophoresis was performed
at 250V for 1 hour in 1X Tris-Borate-EDTA (TBE) buffer. RNA was transfered onto
Hybond N+ membranes (Amersham Biosciences, NJ) at 20V for 45 minutes in 0.5X TBE.
RNA was cross-linked to this membrane by UV-linker. Starfire probes for each microRNA
were labeled with o-P¥-dATP (Amersham Biosciences, NJ) using the Starfire kit
(Integrated DNA Technology, Coralville, IA). Labeled probe was separated from free
0-P**-dATP using Sephadex G-25 column (Roche, IN). Hybridization was done at 45°C in
0.2M Na,HPO,4, 7% SDS buffer overnight. Membranes were washed with 2X SSC/0.1%
SDS twice and exposed to X-ray film. Either ethidium bromide (EB) stained gel or U6

snRNA northern blot was used as a loading control.

4.3 RNA preparation and quantitative real time PCR

Total RNA was isolated from 3T3-L1 cells using RNA stat-60 (Tel-Test, TX) and
precipitated with isopropanol. Messenger RNA was converted to cDNA and detected with
ABI 7900HT sequence detection system using SYBR greener assay (Bookout and
Mangelsdorf, 2003). Cyclophilin or 18S rRNA was used as loading control. The data
analysis was done according to (Fu et al., 2005).

Primers for real time PCR (Fu et al., 2005):
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Gene Forward primer Reverse primer

C/EBPa gacatcagcgcctacatcga tcggetgtgctggaagag
C/EBPB atttctatgagaaaagaggcgtatgt aaatgtcttcactttaatgctcgaa
C/EBPS ttccaaccccttcectgat ctggagggtttgtgttttctgt
Adipsin aggacgacctcattctttttaagc acttctttgtcctcgtattgcaa

aP2 gcctgecactttecttgtg gacatcagcgcctacatcga
PPARY caagaataccaaagtgcgatcaa gagctgggtcttttcagaataataag
FAS gctgcggaaacttcaggaaat agagacgtgtcactcctggactt
LPL ggccagattcatcaactggat gctccaaggcetgtaccctaag
E2F1 ccectectgagacccaacta gctcttaagggagatctgaaatgtc
Hmga2 aacctgtgagccctctcctaag gccgtttttctccaatggte (Lin et al., 2007)

For microRNA quantitative real time PCR, Tagman MicroRNA assay kit (Applied
Biosystems, CA) was used. Reverse transcription (RT) of each microRNA with microRNA
specific stem loop RT primer and quantitative real time PCR with Tagman probe were done
according to product manual to detect mature microRNA. Universal RNAs from mouse
tissues were used to set up a standard curve for each microRNAs. U6 snRNA level was used

as a loading control.

4.4 Microarray

For microRNA microarray, microRNAs were isolated from total RNA using the
FlashPAGE fractionator (Ambion, TX). 100ug of total RNA was loaded to FlashPAGE
precast gel and small size RNA was collected after electrophoresis at 80V for 12 minutes.
Then small size RNA was purified by FlashPAGE reaction clean up kit (Ambion, TX). lug
of small size RNA was used for microarray on a custom prepared slide containing 386
probes for human, mouse, and rat microRNAs from mirVana microRNA Probe Set (Ambion,

TX). Microarrays were done at UT Southwestern Medical Center University Microarray
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Core Facility. After Labeling, hybridization, and washing, slides are scanned and analyzed
using GeneTraffic software.

For mRNA microarray, [llumina beadarray (Illumina, CA) was used. Total RNA was
extracted from control microRNA or let-7 transfected 3T3-L1 cells 24 hours post
transfection. After cDNA synthesis and purification, aRNA purification, hybridization, wash,

staining, and scanning of slides, data was analyzed.

4.5 Western blot

3T3-L1 cells were scraped from culture dishes and lysed with M-Per mammalian
protein extraction reagent (Pierce, IL) after phosphate buffer solution (PBS) washing.
Proteins were separated with 15% SDS-PAGE and transferred to cellulose membranes.
Membranes were blotted with 1:200 anti-Hmag2 rabbit antibody (Biocheck, CA). Then
1:5,000 anti rabbit HRP secondary antibody was blotted to the membrane. The same
membrane was blotted with 1:10,000 anti-GAPDH HRP conjugated antibody

(Sigma-aldrich, MO) as a loading control.

4.6 Oil Red O staining

Oil red O staining was done according to (Wu et al., 1998). Cells in culture dishes were
fixed in 10% formaldehyde in PBS for 15min after two times of PBS wash. Cells then were
stained in freshly made Oil Red O solution (60% of Oil Red O stock solution which consists

of 0.5% Oil Red O in isopropanol, 40% of H,O) for at least 1 hour. After staining, the cells
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were washed with 60% isopropanol, then with H,O until background staining was gone.

4.7 Glyceride content measurement

Glyceride content was measured using AdipoRed assay reagent (Cambrex, MD)
according to manufactory protocol. In summary, 5Sul of AdipoRed reagent was added to
each well of a 96 well plate containing 200ul PBS after washing with PBS. After mixing
and 10 minutes wait, the 96 well plate was measured in the Victor 1420 Multilabel Counter
fluorimeter (PerkinElmer, Waltham, Massachusetts) at excitation wave at 485nm and

emission wave at 572nm.

4.8 3T3-L1 cell transfection using Nucleofector

3T3-L1 cells were trypsinized and pelleted down at 90g for 10 minutes. After removal
of supernatant, 100ul of buffer V and 2ug of let-7 pre-mir (Ambion, TX) or plasmids were
used to resuspend the pellet. 3T3-L1 cells were tranfected using Nucleofector (Amaxa, MD)
in buffer V with program T-30. Cells were cultured in 6 well plates or 96 well plates after

transfection.

4.9 Luciferase assay in F9 cells

F9 cells were cultured in 0.1% gelatin-coated 48 well plates with DMEM containing

10% FBS. Plasmids for luciferase reporter, control renilla luciferase reporter, and control or



133

let-7 oligo were transfected into F9 cells with X-tremeGENE siRNA transfection reagent
(Roche, IN) according to the product manual. Cells were lysed and luciferase and renilla
luciferase activity were measured using dual luciferease assay kits (Promega, WI) 24hours

after transfection. Luciferase reporter activity was normalized to renilla luciferase activity.

4.10 Hierarchical cluster analysis

MicroRNAs or mouse tissues were subjected to unsupervised hierarchical cluster
analysis based on the expression of microRNAs in different mouse tissues using Cluster 3.0
software (which was originally developed by Michael Eisen at Stanford University and later
developed by M. J. L. de Hoon, S. Imoto, J. Nolan, and S. Miyano at the Human Genome
Center of University of Tokyo). The log2 data was centered by median and hierarchical
cluster was performed for microRNAs or tissues using a single linkage metric. The result
was shown using Java TreeView 1.1.3 (Created by Alok Saldanha). The data was displayed

using color code.
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