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Introduction 

During the last few years, activation of a2 -adrenoceptors has been 

demonstrated to influence a wide variety of effects in various tissues. 

These include alteration of mood, sodium and water absorption in the gut and 

kidney, insulin release, fat mobilization, electrical conduction in the 

heart, platelet aggregation, blood pressure and many other effects. I will 

attempt to provide an overview of this rapidly evolving area with examples of 

a2 -adrenoceptor activation in several tissues, an assessment of their 

demonstrated and potential importance and possible clinical implications of 

some of these effects. 

1 . Moleeulan e~ne~ on a2 -adnenoeepto~ activation. 

Let•s begin with an attempt to simplify the diverse and apparently 

unrelated effects of activation of a2 -adrenoceptors by considering more basic 

aspects of this system that are common to various tissues and their functions. 

In each tissue in which the molecular effects of a2 -adrenoceptor activation 

were studied, investigators have found that they inhibit the activation of 

adenylate cyclase and cAMP formation (1-8). Prior to 1977, the unique 

characteristics (9) of a2-adrenoceptors were unknown, even though the 

capacity of a-adrenoceptors to inhibit cAMP formation was known in the late 

sixties (1-3). The importance of cAMP as a ••second messenger 11 in mediation 

of intracellular events was heralded by awarding of the Nobel Prize to Earl 

Sutherland for discovery of this nucleotide and some of its important 

effects. 

Adenylate cyclase can be activated by many different hormones. 

Specificity of effect is governed largely by the specificity of the tissue 



·receptor for a given hormone that activates the adenylate cyclase. The 

importance of the phenomenon of specificity of receptors is emphasized by the 

number and qualities of effects of the various hormones which regulate renal 

function. Parathyroid hormone, for example, decreases bicarbonate, calcium, 

phosphate and sodium reabsorption in the proximal tubule. This hormone 

enhances ca 1 cium reabsorption and increases uri nary excretion of phosphate 

and sodium in more distal areas of the tubule and collecting duct. These 

effects generally parallel parathyroid hormone's capacity to activate 

adenylate cyclase in these segments of the tubule as characterized in 

microdissection studies by Morel and others (10). 

Several new perspectives have emanated from studies of a 2 -adrenoceptors. 

1) If adenyl ate cyclase has not been activated, there is no effect of 

a 2-adrenoceptor activation except possibly in smooth muscle tissue. 2) The 

qualitative effect of a 2 -adrenoceptor activation is determined by the 

function-specific adenylate cyclase which has been activated in a particular 

tissue or organ. 3) While nearly all tissues have adenylate cyclase, there 

is a spectrum of capacities of a 2 -adrenoceptors to inhibit this activation. 

We will address this issue to the extent that data is available when 

reviewing function-specific inhibition of adenylate cyclase. 

In the introduction to the molecular aspects of these receptor inter­

relationships I should mention that there are other endogenous and exogenous 

substances which can mediate inhibitory signals to activated adenylate 

cyclase. These include adenosine, acetylcholine (muscarinic receptors), 

somatostatin, opiates and under some circumstances pros tagl andi ns and ADP. 

These will be discussed with specific tissues in which their capacity to 

inhibit adenyl ate cyclase appears to mediate specific functions or 

pharmacologic effects. 
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A major commitment in our Department of Pharmacology is the purification 

of some of the proteins that are involved in adenylate cyclase regulation and 

characterization of their interactions as they influence rates of cAMP 

formation in plasma membranes. For an update on some of their recent 

contributions please consult references 11-13. 

2. ChaJtac;teJ!MtiC6 on a2 -adJr..en.oc.ep:toM. 

With this background information, let me return to the beginning of my 

story. The function which permitted pharmacologic characterization of 

a2 -adrenoceptors in 1964 was the reversal of melanocyte granule dispersion or 

rapid color changes in the frog skin. Our lack of understanding of the 

molecular events resulted in a delay in publication until 1977 (14) and the 

proposal of a new basis for functionally classifying a-adrenoceptors (9) . 

This classification is now generally accepted both at biochemical and 

pharmacologic levels (15-28). According to van Zwieten in 1980, "after a 

period of confusion a clear picture concerning the subdivision of 

a-adrenoceptors has now emerged" (21) . 

Abe et al ., (3) using the frog skin model and Handler (2) using the toad 

bladder, were among the first investigators to demonstrate the relationship 

between adenylate cyclase-cAMP and a-adrenoceptors but as noted above, were 

unaware of the unique characteristics of the a2 -adrenoceptors. More recent 

studies using clonidine (29) have confirmed the a2 -receptor characteristics 

of the frog skin model (9) and reinforced our original contention (14) that 

the a-adrenoceptors were similar to those in the brain whereby centrally 

acting agents lower blood pressure (28-30). 
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3. SpecifiicLtq ofi a2-a~enoeepton efine~ - Renal model. 

Let us now consider some effects of activating a 2 -adrenoceptors in 

several tissues beginning with the kidney. This is new information obtained 

in our laboratory by Dr. Donald Smyth (32b). Using a highly functional 

isolated perfused rat kidney preparation he has demonstrated that 

a 2 -adrenoceptor activation can cause sodium retention by the kidney. In 

order to demonstrate this effect on sodium excretion, he activated adenylate 

cyclase and stimulated sodium excretion using severa 1 interventions. The 

most useful one turned out to be furosemide. Infusion of epinephrine 

reversed the adenylate cyclase activation and enhanced sodium excretion 

resulting from the furosemide. This effect of epinephrine appears to be 

a 2 -adrenoceptor mediated for two reasons. One is that in this preparation B­

and a 1-adrenoceptors were blocked by propranolol and prazosin respectively 

and secondly, the a 2- adrenoceptor selective blocking drug yohimbine reversed 

the effect of epinephrine. 

You will recall that the function specificity of adenylate cyclase 

activation is determined by the plasma membrane receptor which activates this 

enzyme .. In the next illustration you will see that the qualitative effect of 

a 2 -adrenoceptor activation is dictated by the function specificity of the 

adenylate cyclase activator. For example, when vasopressin is infused into 

the same kidney preparation as previously described, water and sodium 

retention occurs. There is considerable evidence that this hormone mediates 

its effect through activation of adenylate cyclase-cAMP beginning with the 

observations of Handler et al. (2). When epinephrine is used to activate the 

a 2 -adrenoceptor as in the previous experiment, it reversed the effect of 

vasopressin (32c). Thus, in the one circumstance (furosemide~ cAMP~ sodium 

excretion) epinephrine caused sodium retention and in the other circumstance 
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(AVP-cAMP-water and sodium retention) epinephrine causes the opposite effect, 

the induction of sodium excretion. While this type of experiments permit us 

to conclude that the results are due to a 2 -adrenoceptor activation, they do 

not establish the sites at which effects are occurring (ie. tubular versus 

vascular). Nevertheless, similar effects of a 2 -adrenoceptor activation on 

AVP mediated events have been demonstrated in isolated perfused collecting 

ducts (33). 

The above example of opposite effects of a 2 -adrenoceptor activation 

depending on the receptor agonist used to activate adenylate cyclase focuses 

on one issue, the basis for specificity of a 2 -adrenoceptor effect. However, 

such a peculiar basis for selectivity of effect raises certain questions. 1) 

Since a 2 -adrenoceptors are present on most cell types in the body and only 

produce one effect - inhibition of adenylate cyclase - what is their 

physiologic role? 2) What determines their organ specificity of effects? 3) 

Is their activation dependent on locally released norepinephrine or 

epinephrine from the adrenal gland? 4) What is the relationship between 

a 2 -adrenoceptor function and other receptors which mediate adenylate cyclase 

inhibition? 5) Are there pathophysiologic roles for a 2-adrenoceptors? 

Obviously, with the area being less than ten years of age we have only 

partial answers to most of these questions, some of which I will address 

herein. Interestingly, there are a number of substantive research programs 

here in our medical school addressing these and related problems, so you will 

be hearing much more about these receptors from other groups in the near 

future. One example is the studies of a 2 -adrenoceptors by the gastro­

enterology group. 
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4. I n;tv.d:inai. a.z-adJz.e.noc.e.p..toM. 

a. 2 -Adrenoceptors are present in the ileum (34) and probably throughout 

the GI tract with the similarities between the gut and in the kidney in the 

regulation of sodium and water reabsorption. Can a. 2 -adrenoceptor activation 

cause sodium and water retention in the GI tract as in the kidney? 

Functioning tumors of the lung, pancreas and other organs can cause secretory 

diarrhea through secretion of vasoactive intestinal polypeptide (VIP) or VIP 

type hormones (35). Clonidine can reverse or control these diarrheas by 

activation of a. 2 -adrenoceptors (36). The doses of clonidine used in treating 

these diarrheas are similar or slightly higher than those used in treatment 

of high blood pressure suggesting similarities between the a. 2 -adrenoceptor in 

the brain whereby this agent lowers blood pressure and the receptor in the 

gut which enhances salt and water reabsorption. Whether clonidine can effect 

secretory diarrhea due to cholera (which is due to ADP-ribosylation of the Gs 

protein) is unknown. 

Clonidine can induce net GI retention of salt and water in the absence 

of exaggerated stimulation of adenylate cyclase through activation of 

a. 2 -adrenoceptors (37-40). When clonidine 0.3mg is given to normal human 

vol~nteers the net retention of sodium and water is increased impressively as 

shown by Schiller et al . (41). These observations are consistent with either 

of two possible mechanisms. One is that 11 basal'' cAMP is mediating a tonal 

effect on salt and water handling and a. 2 -adrenoceptor activation inhibits the 

basal adenyl ate cyclase activity and thereby i nhi biting transport. 

Al~ernatively, a. 2 -adrenoceptors may be affecting smooth muscle tone or other 

GI function independently of cAMP. An example of a calcium-mediated effect 

can be seen in vascular smooth muscle in which at least part of a. 2 -adreno­

ceptor mediated effect is blocked by calcium channel blocking agents. 
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Alpha 2-agonists such as clonidine or lofexidine can inhibit diarrhea induced 

by castor oil, morphine withdrawal, prostaglandin E2, serotonin and dibutyryl 

cAMP. Nakaki et al. (39) have argued that since the diarrheal effect of 

dibutyryl cAMP is also inhibited by clonidine that this a 2 -agonist has 

effects independent of cAMP. The issue is made even more complex by the fact 

that a number of calcium channel (slow) blockers are also a 2 -adrenoceptor 

blocking agents (see below). The issue of cAMP dependency of a 2 -adrenoceptor 

mediated effect in smooth muscle tissues is not resolved and any studies of 

these a 2-adrenoceptor effects should include monitoring of cAMP formation or 

secretion if possible. 

In our experience 20-30% of patients treated with clonidine for 

hypertension have side effects which are probably related to this 

a 2 -adrenoceptor mediated effect on salt and water handling in the GI tract. 

These side effects are dryness of t he mouth (and of the eyes) and 

constipati on. Thus, these a 2 -adrenoceptor-mediated effects are clinically 

relevant. 

Narcotic agonists or opioid peptides also enhance salt and water 

reabsorption in t he G-I tract and have many other effects similar to 

a 2-adrenoceptor agonists. They produce drowsiness, lowering of blood 

pressure, constipation, increased retention of salt and water in the sma·ll 

bowel and a withdrawal syndrome that can be at least partially controlled 

using clonidine, an a 2-adrenoceptor agonist. At the molecular level they can 

also activate specific cell membrane receptors that inhibit adenylate cyclase 

through a GTP binding protein in the GI tract and in the brain as does 

clonidine (4l.b46). Al pha2 - adrenoceptor agonists have been demonstrated to 

release s endorphins from brain tissue of SHR and could conceivably produce 

some of the similarities of effects of these two drug classes in vivo by this 
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mechanism (47). However, most of the evidence indicates that opioid peptides 

and a2 - adrenoceptor agonists mediate their effects directly through their 

respective receptors on cell membranes but possibly through a closely linked 

post- receptor mechanism. In fact, clonidine in addition to controlling 

opiate withdrawal symptoms (48,49) can also control the diarrheal symptoms of 

t hi s syndrome (50). 

Diabetic diarrhea is a syndrome that may be due to loss of adrenergic 

regulation of salt and water reabsorption in the small bowel due to defective 

re l ease of catechol ami nes onto a2 -adrenoceptors. Chang et a 1. (51) have 

proposed use of a2 -adrenoceptor agonists such as clonidine for control of 

t his syndrome . 

Cyclic AMP induced water secretion appears to be localized in the crypt 

cells at the base of the villi in the large and small bowel (52-55). Thus, 

the a2 -adrenoceptor induced effects that are mediated by cAMP would be 

expected to occur at these sites. 

5. Va;.,c.ul.aJL a- adJte.n.oc.e.p:toM . 

Both a 1 ~ and a2 -adrenoceptors are present on vascular tissues and 

mediate increased tone in arterioles and veins. The predominant 

a-adrenoceptor mediating arteriolar constriction in most beds is of the 

a 1- type (56-68) . Both types of a-adrenoceptors are present on veins and the 

predominance of one vs. the other is variable. The venous pooling and 

orthostatic hypotension that occurs with initiation of therapy in some 

patients with the a 1-blocker prazosin, indicates that this is a predominant 

venous receptor type in those patients. However, nearly all patients 

overcome this tendency to venous pooling of blood within 24 hours of 

continued therapy with prazos in, yet the a1-adrenoceptors remain b 1 ocked. 
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Thus, a 2-adrenoceptors appear to assume the mediator role of norepinephrine­

maintained venous tone in these patients. The molecular mechanism whereby 

a 2 -receptors could be directed to do this is unknown. 

Several years ago there was a flurry of interest in prazosin in the 

treatment of congestive heart failure (CHF). However, its predominant 

beneficial effects were apparently as temporary as the orthostatic 

hypotension occurring in some hypertensive patients. My suspicion is that 

the temporary blockade of sympathetic nervous system-mediated venous tone is 

the explanation for the 11 tolerance 11 that occurs to prazosin during treatment 

of congestive heart failure. Its use in treatment of CHF has now been 

lurgely abandoned unless patients simultaneously have hypertension and the 

individual patient can be demonstrated to have substantive beneficial effects 

of prazosin. 

Angiotensin and mineralocorticoids potentiate a 2 -adrenoceptor mediated 

vasa and/or venoconstriction (72-77). Thus, in vitro studies in which these 

hormones are absent may underestimate the potential for a 2 -adrenoceptor 

effects. Angiotensin in renal vascular disease and/or glucocorticoids in 

Cushings syndrome could theoretically contribute by enhancing a 2 -adrenoceptor 

mediated effect in these conditions. Also, some of the antihypertensive 

action of convert i ng enzyme inhibitors appears to be due to reduction of 

a 2- adrenoceptor mediated vasoconstriction. 

In the spontaneously hypertensive rat (SHR) model of · essential 

hypertension a2 -adrenoceptors mediate an exaggerated vasoconstrictor response 

which has been suggested to be a contributing factor to elevated blood 

pressure (78). In fact, the supersensitivity to norepinephrine in the tail 

artery of the SHR is entirely a 2 -adrenoceptor mediated and is associated with 

increased a 2 -adrenoceptor density in this arteriolar bed (79). Exaggerated 
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vasoconstrictor responses are present in humans with essenti a 1 hypertension 

and in most animal models of hypertension. However, these are not clearly 

a-adrenoceptor specific and the relative roles of a2 - versus a1 -receptor 

mediation of this supersensitivity has only been studied in the model 

mentioned above . We are particularly interested in this issue because of the 

earlier findings of high a2 -adrenoceptor density in kidneys of genetic models 

of rat hypertension (80,81). 

There is another possible contributing mechanism to vasoconstrictor 

supersensitivity that is not specific for a-adrenoceptors (82). Prosta­

glandin synthesis occurs with vasoconstriction. Prostaglandins vasodil ate 

and thereby modulate or limit vasoconstriction (83). PGE2 (and PGI 2) 

stimulation of adenylate cyclase is defective in SHR and Dahl hypertensive 

rat renal membranes and in platelets of patients with essential hypertension 

(85-87). Such a defect in vascular tissue of patients with hypertension 

could contribute to non - specific vasoconstrictor supersensitivity. 

Vascular a2-adrenoceptors increase vascular tone by opening slow calcium 

channels thus permitting entrance of extracellular calcium resulting in 

contraction (88 - 91). Thus, many calcium channel blocking agents possess 

a2 - ad.renoceptor blocking properties (88-91), a few having a 1-adrenoceptor 

blocking activity as well (88). 

a 1-Adrenoceptor mediated vasoconstriction, on the other hand, is 

asso~iated primarily with release of calcium from intracellular sites and is 

independent of/or less dependent on extracellular calcium for contraction 

(94). 

While a-adrenoceptor activation can reduce vascular cAMP content (95), 

the quantitative role of inhibition of adenylate cyclase ver~us that mediated 
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b . t . c ++ . d d . d . . y perm1t 1ng a entry 1n a2-a renoceptor me 1ate vasoconstr1ct1on has not 

been established. 

Vascular a1-adrenoceptors may be concentrated in the vicinity of the 

synapse and a2 -adrenoceptors at extrasynaptic locations (69,97). Part of the 

basis for this conjecture is that Yamaguchi and Kopin found differential 

effectiveness of blocking agents in their capacities to inhibit vasocon­

striction induced by nerve stimulation versus that which was induced by 

norepinephrine infusion. For additional evidence see review by Timmermans 

and van Zweiten (26). 

6. CcvuUac. a-ac/Jr.e.noc.e.p:toM . 

The association of s-adrenoceptors, adenylate cyclase-cAMP and enhanced 

cardiac function has been known for many years (98). a-Adrenoceptor 

activation can increase contractility (99) and can also reduce cAMP (1 00). 

However, there are very few studies in which the relative contributions of a1 

and a2 -adrenoceptors to cardiac function or dysfunction have been determined. 

Even when the a1-selective blocking agent prazosin is used experimentally, it 

is frequently in concentrations that are sufficiently high to block 

a2 -adrenoceptors. Another complicating factor is that when the first dose is 

given in vivo, it produces such pronounced systemic hemodynamic effects due 

to venous pooling that interpretation of direct cardiac effects are nearly 

impossible. Also, a2 -selective blocking agents have been rarely used to 

determine the relative physiologic or pathophysiologic roles of these 

receptors in cardiac dysfunction. 

Clonidine depresses conduction and pacemaker activity (1 02). These 

studies were done prior to the awareness of post-synaptic location of 

a2 -adrenoceptors (9) so the authors concluded that presynaptic effects were 
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mediating the effects of clonidine. Rosen et al. (103) found that 

a-adrenoceptors decrease Purkinje fibre automaticity. While this event is 

probably a2 -adrenoceptor mediated, again the perspectives concerning 

selectivity were not published until after these studies were done. 

Alpha-adrenergic receptors contribute to dysrhythmias during myocardial 

ischemia and reperfusion in animal models. Sheridan et al. (104) reduced 

· ischemia-reperfusion PVC's in cats by more than 95% with phentolamine and 

>85% with prazosin and the morbidity from >20% to 1% by these a-adrenoceptor 

blocking agents. The selectivity of a1 - vs. a2 -blockade was not established 

in these studies, so whether these are a2 -adrenoceptor mediated contributions 

to arrhythmias is unknown. 

There has been considerable interest in a possible mediator role of 

a-adrenoceptors in variant angina (105). Ergonovine, an agonist for several 

receptor types including a2 -adrenoceptors (1 06) precipitates coronary spasm 

in nearly all such patients and is used as a diagnostic tool in this 

syndrome. While coronary sinus norepinephrine concentration may be elevated 

in some patients, it is not consistently increased (107,108) and increased 

sympathetic outflow is not the mechanism for variant angina (109). If 

a-adrenoceptors mediate this remarkable problem, it is because of increased 

l ocalized response or possibly platelet mediated events which might involve 

t heir a2 -adrenoceptors. 

a1-Adrenoceptors are not involved in the syndrome. It is not 

precipitated by the a1-selective agonist phenylephrine nor is it blocked with 

prazosin (105) . Chierchia et al. (105) found that the non-selective blocking 

agent phentolamine was ineffective in preventing angina in 5 of their 

patients. However, the infusion was terminated because of major hemodynamic 

effects. Consequently, their study is inconclusive in exclusion of 
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a2 -adrenoceptors in this syndrome. To my knowledge the definitive study in 

which an a2 -adrenoceptor selective blocker is properly administered has not 

yet been published. The fact that calcium channel blockers with a2-specific 

blocking effects are so beneficial in this syndrome and that the 

a 2 -adrenoceptor agonist Ergonovine reproducibly precipitates it suggests a 

localized exaggerated a 2 -adrenoceptor response in the coronary arteries (or 

platelets) of these patients. 

7. Pla.tel.d a-adJr.e.n.oc.e.ptoM. 

All of the a-adrenoceptors on platelets are of the a 2 -type. When 

activated, they inhibit adenylate cyclase and induce aggregation (110-114). 

Clonidine and other synthetic agonists are partial agonists of this 

a2 -adrenoceptor (112,115) as in the parotid gland (116). Platelet 

a 2 - adrenoceptor density increases during menstruation (117) and has been 

reported to vary with age (117,118). Platelet a2 - adrenoceptor density 

changes reci proca 11 y to plasma norepinephrine concentration and is probably 

directly regulated by circulating catecholamines (119,120). Platelet 

a2 - adrenoceptor density is increased and they are hyperaggregable in patients 

with anorex·ia nervosa (121). Their density is purportedly increased in 

spastic but not in obstructive Raynaud's syndrome (122). 

Yokoyama (123) reported no enhancement of platelet a2 -adrenoceptor 

sensitivity in angina-free patients with myocardial infarction. However, in 

patients with variant angina the threshold epinephrine concentration required 

for initiating aggregation was shifted from 0.1 J.lMol in normals and those 

with infarctions to .012 J.lM in platelets from patients with variant angina 

(123). Thus, a 2 - adrenoceptor supersensitivity may be involved in some way in 
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variant angina and is consistent with the previous arguments concerning 

ergonovine as a test substance in this syndrome. 

Platelet a 2 -adrenoceptor density and affinity appear to be normal in 

patients with essential hypertension (124). Interestingly, in normotensive 

WKY rats platelets do not have a 2 -adrenoceptors and epinephrine does not 

induce platelet aggregation . Hov1ever, in spontaneously hypertensive rats 

a 2 - adrenoceptors are present and when activated they inhibit adenylate 

cyclase as in humans (125). 

Platelet a 2 -adrenoceptor density is markedly decreased along with the 

aggregat i ng and serotonin release responses to epinephrine in some patients 

with "essential" thrombocythemia (126). This defect could thus contribute to 

abnormal bleeding in this disorder. 

8. a.-)•.d!r.eJ1oc.ep:toM and Up_o.tq~.>..i.J.J . 

Adrenergic regulation of metabolism in fat cells is a particularly 

interesting and dynamic area with emphasis on a 2 -adrenoceptors · (127-133). 

The adrenoceptor 1 inkages to membrane and intracellular events are very 

similar to the interrelationships of these regulatory units in other tissues 

a 2 -Adrenoceptor activation can inhibit isoproterenol, GTP, and forskol in 

activated adenylate cyclase (and lipolysis). Pertussis toxin blocks this 

a 2 - adrenoceptor mediated inhibition of lipolysis and enhances the lipolytic 

response in vivo suggesting a tonal role of receptor inhibition on the rate 

of lipolysis (128). Adenosine and prostaglandins (particularly in higher 

concentrations) can also inhibit lipolysis. There is some evidence that 

epinephrine is the physiological agonist for human fat cell a 2 -adrenoceptors 

( 1 31 ) . 
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While there is some variability between species and body regions of fat 

cell a 2 -adrenoceptors, there are some patterns that remain constant. One is 

that fat a 2 -adrenoceptor density and responsiveness increases with age and 

with obesi ty (128-131 ) . There are approximately 600,000 a 2 -adrenoceptors on 

each human fat cell and the number increases with the size of the cell (131). 

Fasting changes the response in obese human fat cells to norepinephrine from 

stimulation to inhibition (133,134). 

Kather (135) has found the balance of a 2 -inhibition versus s-adrenergic 

stimula tion of lipolysis is shifted in hyperthyroidism in favor of the 

lipolytic component. In hypothyroidism, diabetes mellitus or during 

prolonged starvation the a 2 -adrenoceptor responsiveness is increased and may 

predominate over s-adrenoceptor stimulation. The underlying mechanisms 

whereby these ratios change are not yet established. 

a 1-Adrenoceptors are also present on human adipocytes. Their activation 

increases phosphatidyl inositol turnover and Ca ++ entry into the cell but 

have no effect on lipolysis (136). The second messenger between a 1 -adreno­

ceptors and several other receptor types (not a 2 ) and Ca++ release is 

inositol triphosphate. (136b). 

An increased level of a 2 -adrenoceptor activity could be a causative 

factor in obesity (128). However, this is still rather speculative. A 

similar hypothesis was proposed by Prior (137) who suggested that 

prostaglandin overproduction might contribute to obesity . 

9. a-Ad)(e.n.oc..e.ptoM a.nd iYL6uLLn )(e.f.e.a..6e.. 

Activation of a 2 -adrenoceptors in the islets of Langerhans results in 

inhibition of insulin release (138-142). Recent studies by Kato and Nakaki 

using dibutyryl cAMP have questioned the role of adenylate cyclase inhibition 
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in this effect of a2 -adrenoceptors and suggested that Ca++ may instead 

suppress insulin release (144). Whether a2 -adrenoceptors play a tonal role 

in regulation of insulin release is unknown. Excess activation of 

a-receptors in pheochromocytoma may contribute to lowered insulin and high 

blood suqar in this syndrome (145). Alpha-adrenoceptor blockade can control 

the high blood pressure and alteration of free fatty acid metabolism in 

pheochromocytoma (146). 

Very frequently we see obesity, hypertension and diabetes mellitus or at 

least two of the three in the same patients. A simplistic hypothesis would 

be that exaggerated a2 -adrenoceptor-mediated effects contribute to these 

disease processes and that they could be alleviated by similar pharmacologic 

agents. 

10. Some. c.e.Yl/tJz.a.l Yl.e.!tVOU-6 .6!{.6:te.m e.6t)e.c.:t.6 ot) az - ad!r..e.n.oc.e.p:toJr. awvaU.on.. 

Activation of · a2 -adrenoceptors in the central nervous system can alter 

many . functions . The a2 -adrenoceptors that mediate the antihypertensive 

effects of methyldopa and clonidine are located in the hypothalamus and 

medullary relay nuclei (31,32) and nucleus tractus solitarius (147). 

The sensitivity of drowsiness to a2 -adrenoceptor agonists, as in GI 

retention of salt and water, is consistent with a tonal role of cAMP in 

maintenance of mood. When yohimbine, an a2 - sel ective antagonist used for 

centuries in Europe and Asia as an aphrodisiac and for depression, was given 

to normal volunteers, it produced increased sympathetic outflow and a shift 

in mood rating scales from calm toward excited states (148). Thus, 

a2-adrenoceptors appear to have a tonic role in the brain of suppressing mood 

and blood pressure. 
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Activation of a2 -adrenoceptors in the locus coeruleus inhibits firing by 

hyperpolarizing cells (149) as occurs ,in peripheral sympathetic neuron 

terminals when the presynaptic a2-adrenoceptor is activated (150). This a2 -

adrenoceptor may thus operate through a Ca++ dependent mechanism to 

hyperpolarize locus coeruleus cells (149) as has been suggested for 

peripheral sympathetic neurons (151) . However, there is evidence in the 

brain that these events are cAMP mediated (15lb ). 

Clonidine and narcotics or opioid peptides produce very similar effects 

on intracellular recordings from locus coeruleus neurons, yet they act 

through distinct receptor mechanisms (l5l). However, a2 -agonists and opiates 

may hyper polarize 1 ocus coerul eus neurons through a common mechanism s i nee 

clonidine is effective in suppressing symptoms of opiate withdrawal by a 

functionally parallel action on central noradrenergic neurons (48,49,152). 

Because of the similarities noted previously between clonidine and opiate 

effects on salt and water reabsorption from the small bowel, the molecular 

mechanisms may again be similar. 

a2 -Adrenoceptor activation increases the depth and duration of 

anesthesia (153). Alternatively, a2 -adrenoceptor blockade produces opposite 

effects (148), again supporting the contention that a2 -adrenoceptors play a 

role in wakefulness or drowsiness. 

There have been very few investigations concerning a2 -adrenoceptor 

mediated events in the kidney even though these receptors constitute a large 

majority of rena 1 a-adrenoceptors ( 80,81). a 1-Adrenoceptors mediate 

catecholamine induced renal vasoconstriction (56) and some of the sympathetic 

nerve mediated sodium retention (154). Under the circumstances described 

above a2 -adrenoceptors have been demonstrated to increase (32b) and to 
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decrease (32c) renal sod·ium retention depending on the function specific 

activation of adenylate cyclase. 

ll. Renal a-adheno~ep~o~. 

a-Adrenoceptors have been reported to inhibit (155 ,156 ) and to stimulate 

(157) renin release. While the definitive experiments have not yet been 

done, we suspect that the a-adrenoceptor inhibitory to renin release is of 

the a2 -type. Some of the differences may be due to: 1) Differences in 

presence or absence of adenylate cyclase activation in models used; for 

example, if the renin releasing adenylate cyclase is not stimulated the 

a2 -adrenoceptor would not be expected to inhibit renin release. Alterna­

tively, a2 -adrenoceptor mediated vasoconstriction through an ischemic 

mechanism would be expected to stimulate rather than inhibit renin release. 

2) Inappropriate experimental design, particularly in the relationships 

between the mechanism for activating the adenylate cyclase mediating renin 

release and choice and dose of specific blocking agents. With new 

technologies and perspectives described above, we are now aggressively 

pursuing this issue in our laboratory. 

12. The p~~ifnap~~ a2 -adheno~ep~o~. 

a2 -Adrenoceptors are present on peripheral sympathetic nerve terminals 

.and, when activated, can inhibit depolarization-induced norepinephrine 

release. Even though these receptors are widespread, there is considerable 

debate concerning their physiologic importance (for review see 158). 
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Other ct2 -adrenoceptor media ted events include 1 oweri ng of body 

temperature (159), suppression of growth hormone release (159b) (?ct 2 ), 

inhibition of mediator release from mast cells (160), and from platelets 

(160,162). They affect transmission of pain in the spinal cord (163) and 

have been reported to restore transmission through injure9 spinal cord (164). 

They are present in bronchi (165) and reported to be increased in 

experimental asthma (166). They are present in the uterus and change with 

estrogen administration. 

contraction (167). 

Thus, they may be involved in myometrial 

Somatostatin inhibits adenyl ate cyclase in many tissues resulting in 

reversal of cAMP mediated effects (168) including the intermediate lobe of 

the pituitary gland (169). The effects of adenosine on adenylate cyclase are 

nearly as complicated as the s-and ct-adrenergic systems and are not as well 

described at this time . However , there is considerable interest in 

pharmaceutical development in this area (170). 

14. Abn.oJtma1Lti.e.6 in. hype!de.JUion. 

We have recently found receptor specific defectives in adenylate cyclase 

activation that are associated with excess renal ctz-adrenoceptors in rat 

models of human hypertension (170,171). The renal adenylate cyclase response 

to prostaglandin E2 and r2 and to parathyroid hormone is reduced in both 

hypertensive strains of rat. We suspect that these defective responses have 

biological significance because both hypertensive strains have renal leaks of 

calcium, decreased serum calcium and elevated PTH (171,172) as noted by 

McCarron et al. in patients with essential hypertension (174-176). 
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Kestleloot•s findings in hypertensive patients, incidentally, contrast with 

McCarrons•s (177). 

Schedl et al. (178) very recently reported abnormalities of serum Ca and 

PTH in the spontaneously hypertensive rat that are related to defective 

response in the small bowel to Vitamin D (169). Calcium absorption by the 

duodenum and ileum is markedly reduced and sodium absorption is increased (in 

the duodenum only) in the SHR. While the 1 ,25-dihydroxycholecalciferol 

[1 ,25~(0H2 )o3 ] was the same in the WKY and SHR, the 25-hydroxychole­

calciferol was increased. Thus, Schedl et al. conclude 1) 1 ,25-(0H2)o3 is 

inappropriately low relative to the high PTH and depressed calcium absorption 

and 2) the depressed calcium absorption with . normal 1 ,25-(0H
2

)o
3 

shows a 

defective gut responsiveness to Vitamin D and may explain low serum ionized 

calcium in the SHR. 

We suggest that the defective adenylate cyclase response to PTH that we 

have demonstrated in renal membranes is not organ specific and that the 

findings of Schedl et al. are consistent with a similar biochemical defect 

regulating calcium (and possibly sodium) handling in the .small bowel. 

While this defective adenylate cyclase response to PTH is the probable 

explanation for the altered calcium metabolism, it may be an epiphenomenon 

relative to hypertension. We find the defective response to the 

vasodilatory-natriuretic prostaglandins more attractive as an explanation for 

exaggerated renal retention of sodium and increased vascular resistance to 

these animal models and to humans with essential hypertension. 

In summary, pre- and postsynaptic effects at sympathetic neuron 

termi na 1 s of the a-adrenoceptors and their capacity to inhibit adenyl ate 

cyclase has been known for many years. However, clarification by 
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pharmacologic descriptions of the a1 - and a2 -adrenoceptor and identification 

of the a2 as the one inhibitory to adenylate cyclase occurred only seven 

years ago. While tremendous progress has evolved during the 1 ast seven 

years, there are many unanswered questions, some of which are noted in the 

text above. 

We feel that there is great potential in pathophysiologic roles for 

a2-adrenoceptors and in pharmacologic alteration thereof. 

I hope that this overview will be of some help to my clinical colleagues 

in providing perspectives of currently useful agents such as calcium channel 

blocking agents, clonidine, methyldopa and some of their effects described 

above. Perhaps it will be of some use in facil itiating much better 

experimental design involving a-adrenoceptor studies by my research 

colleagues at both the basic and clinical levels. If so, the time and effort 

required to develop this review will have been worthwhile. 
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