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Ventricular Hypertrophy: Advantages and Consequences

Myocardial hypertrophy is the adaptive response .to sustained increases
in ventricular workload. The workload stimulus provoking hypertrophy may be
either a chronic increase in ventricular volume (aortic or mitral
regurgitation, arteriovenous fistulae) or ventricular afterload (systemic
hypertension, aortic stenosis). Hypertrophy may also be provoked by humoral
substances such as catecholamines, the renin-angiotensin system (Grossman et
al., 1983), thyroid hormone and copper, iron and thiamine deficiency (Maron
and Ferrans, 1978). Myocardial ischemia (Bloor, 1978) results in hypertrophy
of the nonaffected myocardium, and finally, hypertrophy may be genetically
determined, as is the case in idiopathic hypertrophic cardiomyopathy. The
element in common among all of these forms of hypertrophy is an increase in
the mass of the affected ventricles which is accomplished by increase in
myocyte size rather than number of myocytes, and the functional progression
from adaptive advantage to eventual failure. In addition to an increase in
myocyte size, there are increases in other elements of myocardium including
fibrous tissue and vasculature. Proliferation of these elements may vary
strikingly depending upon the stimulus to hypertrophy. For example, when
hypertrophy results from excess thyroid hormone, there is evidence that new
vascular elements are formed thus maintaining a normal relationship between
volume of myocytes and volume of capillaries and that collagen synthesis is
not increased. In contrast, when hypertrophy results from pressure overload,
there is Tlimited vascular proliferation and capillary density decreases
relative to myocardium (Marcus et al., 1983b; Tomanek et al., 1986) while
collagen remodeling 1is extensive. Myosin isoenzymes in hypertrophied
myocardium may also vary dependent upon the stimulus to hypertrophy.
Pressure-overload in the rat is accompanied by a shift to isoenzyme Vi, a
slower activity form of the enzyme (Mercadier et al., 1981). Thus,
ventricular hypertrophy 1is a process of considerable tissue cellular and
biochemical heterogeneity rather than a simple quantitative process - there
are substantial qualitative changes associated with myocardial hypertrophy.
While, in general, myocardial hypertrophy has the adaptive advantage of
maintaining normal cardiac output in the face of a sustained increase in
workload, this 1is accomplished at considerable biologic expense. The
disadvantageous consequences of myocardial hypertrophy are extensive and
interact in a negative synergistic fashion with other common forms of heart
disease.

0f the many forms of hypertrophy, the most frequently encountered in the
clinical setting is that resulting from increases in afterload such as
systemic hypertension or aortic stenosis. The remainder of this discussion
will be confined to a discussion of the structural, functional, electro-
physiologic, and coronary vascular alterations associated with compensated
pressure-overload hypertrophy, thus, stressing a third important concept - in
the setting of the functionally_compensated hypertrophied ventricle, (hyper-
trophy prior to the onset of failure) biologic advantage and deleterious
consequences are temporally coexistent.



ANATOMIC CHANGES.

Left ventricular hypertrophy is defined as a left ventricular mass in
excess of 500 g (normal <350). In response to pressure overload, prompt
acceleration of protein synthesis and inhibition of protein degradation occur
(Gordon et al., 1987; Morgan et al., 1986) resulting in a net increase in
myocardial mass. '

Figure 1.
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Figure 1. Left ventricular (LV) pressure, left ventricular mass index
(LVMI), wall thickness, ratio of wall thickness to radius (h/R) at end
diastole, and meridional left ventricular wall stress (am) in patients with
normal hearts compared to “those with chronic left ventricular pressure
overload or volume overload. Only patients with chronic left ventricular
pressure or volume overload who were well compensated and had no depression
of systolic function (LV ejection fraction) were included. (Grossman et
al., 1983).

The particular geometric remodeling of the ventricle is a very sensitive
indicator of the nature of the stimulus to hypertrophy. Wall thickness is
accomplished at the expense of cavity area in pressure overload hypertrophy.
Thus the ratio of wall thickness to cavity radius (h/R) 1is increased
(Grossman, 1983) in pressure overload hypertrophy but preserved in volume
overload. Trabeculae carneae and papillary muscles also enlarge (Gould,
1968). Lengthening of the left ventricular chamber is prominent, so that the
papillary muscles appear to arise nearer the MV orifice and the MV orifice, is
tilted in a plane such that it is nearly parallel to the AV ring (Bloor,
1978).

Hutchins et al. (1978) have suggested that the shape of the heart
develops to meet the needs of efficient filling (diastole) as well as



efficient tension development and ejection (systole). The prolate ellipse
shape of the left ventricle is a compromise shape between the thin-walled
sphere (most efficient geometry for diastolic filling) and a simple tubular
structure (most efficient geometry for systolic pressure development). The
heart hypertrophying in response to pressure overload both elongates and
develops thicker walls thereby becoming more tubular.

Figure 2.
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Figure 2. Diagram of possible ventricular shapes, all with the same inlet-
outlet port. A, a spherical ventricle would require the least expenditure
of energy for diastolic filling. B, a nearly conical ventricle would be
more efficient for systole bDecause the curvature of muscle cells is
increased allowing a greater transfer of the energy of contraction to
increasing intracavitary pressure. C, the prolate hemispheroid is the shape
that would minimize the sum of energy expenditures in diastole and systole
and is also the shape that most closely resembles the normal human left
ventricle. (Hutchins et al., 1878).

Normal systolic wall stress (force per unit cross-sectional area of
myocardium), (Grossman et al., 1975) and contractile efficiency are
maintained; however, diastolic filling efficiency is compromised.

Changes in cellular architecture accompanying pressure overload
hypertrophy are summarized below, next to the corresponding elements of normal
tissue.
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Basic UNIT

NorRMAL MYOCARDIUM

HYPERTROPHIED MYOCARDIUM

MYOFIBER

Individual myocardial cell 10-20 u
diameter, 50-100 u length-myocytes are
branching striated cells connected to
to other myofibers by intercalated
discs. Interercalated discs join
cells together and provide a special-
ized area for facilitation transmis-
sion of action potentials.

Increased size particularly in the
transverse diameter (20-60 u) rath-
er than longitudinal dimension with
considerable cell to cell size
variability. Tortuosity and multi-
plicity of intercalated discs which
are thought to be preferential
sites of new sarcomere formation
during cell enlargement. Overall
during compensated hypertrophy, the
orientation of individual myofibers
remain relatively normal.

SUBUNITS

MYOFIBRILS

sarco-
and in

Contractile unit composed of
meres arranged in  series
parallel.

Early in pressure overload hyper-
trophy, increases in myofibril size
occurs by increasing the numbers of
sarcomeres in paraliel. However, as
cellular enlargement progresses in-
creases in myofibril number occur.
Over time, the organizational pat-
tern of sarcomeres making up myo-
fibrils may become less ordered.

SARCOMERE

Basic contractile unit consists of
interdigitating thick (myosin) and
thin (actin) fibers. The boundary of
each sarcomere is the Z band which is
the site of insertion of the thin
(actin) filaments. Thin fibers are
also the sites of proteins which regu-
late contraction such as troponin and
tropomyosin.

Increase in number of sarcomeres
with some disarrangement of sarco-
meric units. Sarcomeres in pres-
sure overload hypertrophy are added
in parallel rather than 1in series
as is the case with volume over-
load. Aggregated Z band material
is often present in hypertrophied

cells. This material is thought to
be the site of attachment of new
sarcomeres. But, excess Z band

material may also be the product of
disruption of myofibrils.



MYOFILAMENTS

Bundles of contractile protein fila-
ments consisting of myosin (thick
filament - forming the A band of the
sarcomere) and actin (thin filament
forming the I band of the sarcomere
attached to the Z band). Cyclic Ca**
dependent crossbridging of these pro-

tein filaments produce muscle shorten-
ing. Troponin and tropomyosin, pro-
tein regulators of cyclic actin-myosin

Early in hypertrophy, all myofila-
ments increase 1in number. Late
with cellular degeneration resuit-
ing from long standing hypertrophy,
there is selective 1loss of thick
(myosin) fibers with aggregations
of thin fiber material.

cross-bridging are located on the
myofibrils.
MITOCHONDRIA
Site of ATP generation - in normal Large, early (within 20 hours of
myocardium occupy about 20-30% of the imposition of pressure load) in-
cell volume. Generally closely op- crease in mitochondrial  volume
posed to myofibrils and sarcolemma. fraction relative to myofibril
volume fraction with return to nor-
mal ratio during stable hyper-
trophy. However, late in hyper-
trophy, the volume ratio of mito-
chondria to myofibrils decreases.
Size heterogeneity is typically
present.
SARCOLEMMA
The cell membrane controls the ionic Increases with hypertrophy, however
composition of the cell and maintains membrane- electrical capacitance is
electrochemical gradients. Contains decreased suggesting that newly
ion channels for action potential formed membrane may not be func-
generation as well as receptors for tionally normal.

neurotransmitters and hormones.

T-TUBULES

Transmission of ion current-generated
action potential from the sarcolemma
to cell interior where Ca** necessary
for contraction is released.

Increased in area proportional to
the increase in cell volume:. The
relative proportion of sarcolemma

to T-tubule system is decreased.



SARCOPLASMIC RETICULUM

Site of cyclic Ca’™ uptake and release Increases proportionately to the
necessary for coupling of electrical cell volume increase so that normal
excitation to mechanical contraction ratio is preserved.

and relaxation.

Non MuscLE COMPONENTS

COLLAGEN
Provides structural support, as well Collagen content and distribution
maintenance of cellular alignment. increases slowly relative to other
Fine collagen fibrils are generally cell components. In compensated
found in and around myofibers. hypertrophy of 4-88 weeks duration,

collagen is increased by 4 weeks,
then remained stable for up to 88
weeks. At 4 weeks, heavy collagen
fibers replaced thin fibers. By
35-88 weeks, fine fibrils reappear-
ed but dense collagenous septae
were also present. At this stage
cardiac output was preserved, and
no necrotic changes in myocytes had
appeared. Of interest both sys-
tolic and diastolic function were
normal. Collagen remodeling is a
slow process which then stabilizes
for Tong periods of time.

Figure 6.
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Fioure 6 Schematic representation of the collagen matrix of the primate
left ventricle. Groups of myocytes formed by collagen weave, are termed
myofibers. Myofibers are connected to one another by strands of collagen,
whereas myocyte-to-myocyte connections and myocyte and their adjacent
capillaries are joined by struts of collagen. (Weber et al., 1987).
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VASCULATURE

Capillary density in normal myocar- Capillary volume does not increase
dium is 2 to 5 x 105 capillary per with the increase in myocardial
mm2 myocardium. Normal capillary to mass. Capillary Tlumen (but not
myofiber ratio is 1:1. length) selectively  increases.

Intercapillary distance increases.

The end stage of hypertrophy with degeneration consists of:

1. Loss of contractile elements, preferentially thick filaments
(myosin).

2. Loss of specialized areas of intercellular contacts.

3. Interstitial fibrosis.

4. Preservation of other cell organelles (nuclei, mitochondria) despite
loss of contractile elements.

Specific disease entities have been more frequently associated with
hypertrophy with or without associated degeneration. Thus, it has been found
that combined aortic stenosis and regurgitation was more likely to be
associated with degenerative changes than pure aortic stenosis in which
hypertrophy without degeneration was more likely. However, the authors point
out that the timing and reason for surgery in these two groups are different;
thus, it may not be possible to conclude that the type of hemodynamic burden
determines whether or not degeneration occurs (Anversa et al., 1978; Anversa
et al., 1976; Anversa et al., 1986; Bishop, 1983; Bloor, 1978; Braunwald et
al., 1988; Ferrans, 1983; Goldstein et al., 1974; Gould, 1968; Jones and
Ferrans, 1980; Legato, 1973; Marcus, 1983; Maron and Ferrans, 1978; Pearlman
et al., 1981; Rakusan et al., 1980; Schaper et al., 1974; Weber et al., 1987;
Weber et al., 1988).

MeEcHANICAL FuNcTION IN HYPERTROPHY

CLiNicAL FINDINGS

Clinical studies of contractile function in hypertrophied myocardium are
complicated by several important variables: 1) the duration and severity of
the increased workload, 2) the adequacy of the hypertrophy response, 3) age of
subjects, 4) the presence of other concomitant pathologic processes such as
coronary artery disease, or unrelated cardiomyopathies, 5) the effects of
sympathetic influences in the reflex intact subject, and finally 6) peripheral
adaptive changes.

Overall, in patients with hypertrophy from hypertension (Takahashi et
al., 1980) or aortic stenosis (Huber et al., 1981; Spann et al., 1980; Levine
et al., 1970; Simon et al., 1970) there is a spectrum of function ranging from
supernormal to congestive heart failure. In the absence of congestive failure
however most indices of ventricular function are normal in adults or even
above normal 1in children (Assey et al., 1987). One key element in the
preservation of normal function appears to be the preservation of normal wall

~]11~



stress.

(dynes/cm? myocardium).

Wall stress is the force per unit cross-sectional area of myocardium

2_p2
O (Rg-RY)

(L

Figure 7.

Figure 7 Diagrammatic representation of an idealized LV
chamoer in coronal section, looking from the front (left)
and above (right). Wall thickness (h), inner radius (R.),
and outer radius (Ry) are reauired to calculate mendmr‘xal
wall stress (am). This 1s accomplished by eguating the
meridicnal wall forces (am X ﬂ{Roz - R‘Z]) to the
pressure loading (PaR_%), since these must be exactly
equal 1f the ventricle is to hoid together. The same
calculation appiies for either an ellipsoidal or a

UmW(Rg'Riz)zp'ﬂ'R? spherical mogel (Grossman et al., 1975).
0 =PR/2h(1+h/2R)

Wall stress, whether circumferential, meridional or radial, is directly
related to ventricular pressure and indirectly related to wall thickness.
Thus, if pressure increases, wall thickness must increase to maintain normal
wall stress (Grossman et al., 1975).
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Figure 8. A comparison of changes in LV pressure (solid dots), wall

thickness (cpen dets), and meridional stress (open squares) throughout the
cardiac cycle for representative normai, pressure-overloaded, and volume-

over iocaded
intervals.

jeft wventricles. Measurements are plotted here at 40-ms
In the pressure-overicaged ventricle (B), the markedly elevated

systolic pressure 1s exactly counterpalanced by 1increased wall thickness

with the result that wall stress remains normai. In the volume-overloaded
ventricle (C), peak systolic stress 1s normal but end diastolic stress 1s

significantly increased. (Grossman et al., 1975).
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Ejection fraction (the percentage of blood ejected by the ventricle
during systole) may then be closely coupled to wall stress. Linear regression
shows the decreasing ejection fraction as wall stress increases.

Figure 9.
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The age at which pressure overload is applied may influence the amount
of increase in wall thickness and thus, wall stress and ejection fraction.
Assey et al. compared left ventricular mass, ejection fraction and wall stress
in three groups of patients with similar transaortic pressure gradients. The
groups were as follows: young children (<10 years) with aortic stenosis, older
children and young adults with congenital aortic stenosis and adults with
acquired aortic stenosis. Age matched controls for each group were also
studied. No patients or controls had abnormal ejection fraction. Left
ventricular pressure gradients were similar.

Figure 10.
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Left ventricular mass (normalized to body surface area) was elevated in
all three patient groups. However, the magnitude of enlargement was greater
in both young patient groups compared to the adult patients.

Ejection fractions for the experimental and control groups are shown.
Ejection fractions for the two young groups with aortic stenosis were
significantly higher than their age matched controls, while adults with aortic
stenosis had ejection fractions similar to their control group.

Figure 11.
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Figure !1. Ejection fractions (EFs) for the six groups of patients. Each

patient 1n the groups of those with acrtic stenosis is represented by a
symbo! and the corresponding symbcl for each subject in the control group
represents the age-matched control for that patient. The comparisons were
performed by analysis of variance followed by the Newman-Keuls test.
(Assey et al., 1987).
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Wall stress was significantly lower in the young aortic stenosis groups
compared to their controls, whereas it was identical in the adult group.

Figure 12.
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Figure 12. Wall stress for the six groups of patients. Symbols are

matched and statistical analysis i1s as n figure 11. (Assey et al., 1987).

The inverse relationship between ejection fraction and wall stress for
all patients and controls is demonstrated.
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Figure 13.

Figure 13. Ejection fraction plotted against end-systolic
wall stress for the six groups of subjects. The figure
demonstrates that patients with congenital aortic stenosis
had higher ejection fractions and lower wall stress than
control subjects. There 1s a linear correlation between
ejectron fraction ang wall stress, as shown throughout the
range of the variables. {Assey et al., 1987).
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This study reemphasizes the point that if wall stress remains normal in
the face of increased workload, then the usual clinical measures of overall
ventricular function remain normal. Maintenance of normal wall stress has
been suggested to be the stimulus for hypertrophy. However, in the two groups
of children, hypertrophy was in excess of what was required to maintain normal
wall stress - wall stresses were abnormally Tow, while ejection fractions were
supernormal (Assey et al., 1987). It is unclear whether this represents a
more extensive hypertrophic response in children or a Timited hypertrophic
response in the adult.

The above cited clinical studies would suggest that if the tissue
response to increased workload is quantitatively sufficient to maintain wall
stress at normal levels, then overall cardiac function is benefitted by the
hypertrophy process. By contrast, Huber et al. (1981) and Spann et al. (1980)
studied patients with aortic stenosis and found that wall stress could be
normal in patients with depressed ejection fractions. Huber (1981) further
demonstrated that in patients with normal wall stress, contractility might
nonetheless be impaired, suggesting that qualitative abnormalities exist in
hypertrophied, compensated myocardium. Takahashi et al. (1980) made similar
observations in a group of patients with hypertrophy resulting from systemic
hypertension, all of whom had normal overall left ventricular function.

Studies which examine function of isolated muscle strips from animals
with hypertrophy but preserved systolic function have found substantial
intrinsic abnormalities of muscle function. Spann et al. (1967) using a
feline model of right ventricular hypertrophy induced by pulmonary artery

-16-



banding,

studied normal control
hypertrophy without evidence of failure as well as with failure.
animals with hypertrophy but without congestive heart failure,

significant alterations in the following parameters of muscle function.

The relationship between fiber length and active tension generation was
shifted downward and to the right so that for any given muscle length, tension

generated was significantly decreased in hypertrophied fibers.

TENSION
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Figure 14.
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Figure 1¢& Relation between muscie length ana tension of the papillary

muscles from normal {circles), hypertrophied (squares) and failing
(triangles) right ventricles. Open symnols=resting tension; solid
symbols=actively deveioped tension. fach value is the average of the
group; vertical lines with cross bars = =1 SEM. Tension 1s corrected for
cross-sectional area (g/mz). Numbers in parentheses=number of animals.

(Spann et al., 1967).

Rate of maximum isometric force development was depressed.

-17-
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Figure 15.

g/mm?/sec msec
40 500

Figure 15 Left, maximum rate of isometric  force
deveiopment shown for the three groups of muscles in
g/m?/sec. AN muscles were studied at the apex of their
length-tension curves. Right, time from stimulation to
the peak of developed 1sometric tension in millisecongs.
A1l muscles were studied at the apex of their length-
tension curves. Numbers in barentheses=number of anmmals.
Vertical lines with cross bars = =1 SEM. (Spann et al.,

1867).
N RVH CHF N RVH CHF
8 (3 w0 8 (9 o
Lp<05hp< 054

The force-velocity relationship was shifted downward and leftward so
that at any given load, velocity of shortening was depressed for hypertrophied
fibers.

Figure 16.

groups of cat papillary muscies. Average values with %
SEM are given for each point. Velocity has been corrected
to muscle lengths per second (Lo/sec). Numbers in
parentheses=number of animals. (Spann et al., 1967).
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Capasso et al. (1981) wusing a model of renal hypertension and
hypertrophied left ventricular papillary muscles from rats also found that
velocity of shortening was impaired by 10 weeks of hypertension but found
developed tension in hypertensives to be significantly greater than control
animals.

8=



SHORTENING VELOCITY {muscle length/sec)

Figure 17.
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1.4 A
[8
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8k Fiqure 17. Normalized force-velocity relations at bath
[Ca2™) 2.4 mM. Values were obtained from a series of
b - afterloaded isotonic contractions at an initial musc le
length of Lmax‘ Force is expressed as % relative load
At - (total isotonic load/total isometric load X 100).
2 ABYEERTENSIVES Velocity is expressed as number of muscle lengths per
L - o
covmoL second, calculated as peak velocity (in mm/s) divided by
0 L ! L. Vvalues are plotted as means &+ SE. Velocities were
FORCE -VELOCITY 20 WEEKS FORCE-VELOCITY 30 WEERS - significantly lower in hypertensives than controls in each
12r ¢ ro study. *P<0.05. A: 5 wk hypertension (closed triangles,
1.0 hypertensives; closed circles, controls; n=12). B: 10 wk
’ il hypertension (closed triangles, hypertensives; closed
8 | circles, controls; n=10). C: 20 wk hypertension (closed
triangles, hypertensives: closed circles, controls; n=11).
b - D: 30 wk hypertension (closed triangles, hypertensives;
4 closed circles, controls; n=10). (Capasso et al., 1981).
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Fiqure 18. Resting and developed tensions are plotted as a function of muscle length
in hypertensives and controls. Bath [Caz*] 2.4 mM. Values are plotted as means t
SE. *P, <0.05. A: 5 wk hypertension (closed triangles, hypertensives; closed
circles, controls; n=12). B: 10 wk hypertension (closed triangles, hypertensives;
closed circles, controls; n=10). C: 20 wk hypertension (closed triangles,
hypertensives; closed circles, controls; n=11). D: 30 wk hypertension (closed
triangles, hypertensives: closed circles, controls; n=10). (Capasso et al., 1981).
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Time to peak tension was measured in this study and was found to be
prolonged.

Jouannot (1975), using aortic banded rats found that time to peak
tension was prolonged and the muscle developed length-tension relationship was
depressed. While there is some variability in the peak tension generated
relative to control, prolongation of time to peak tension is uniformly
described in hypertrophied myocardium.

Information on intrinsic muscle function is not available from patients
with stable compensated hypertrophy; however, these animal studies would
suggest that despite preservation of overall ventricular function, function of
individual myocardial units is impaired.

One important objection to many of the animal studies of hypertrophy is
that usually a sudden large afterload is imposed and the duration of the
afterload increase is substantially shorter than would be found clinically.
It has been shown (Sasayama et al., 1976,1977) that associated with sudden
imposition of increased afterload, there is transient depression of overall
function as measured by ejection fraction and velocity of muscle fiber
shortening, with subsequent recovery of overall function. Carabello et al.
(1981) used the opposite approach and studied overall function during gradual
imposition of pressure load created by banding puppies with a non-constricting
aortic band which became constricting as the puppies matured. Ejection
fraction, rate of pressure development and velocity of muscle fiber shortening
were serially compared with a group of sham-operated litter mate controls.
The two groups were functionally indistinguishable at all time points.
However, it should be reemphasized that measures of overall ventricular
function are not necessarily reflective of intrinsic muscle function.

DiasToLIC FUNCTION.

Congestive heart failure manifested by pulmonary venous congestion in
the setting of normal or supernormal systolic function 1is a common
presentation 1in hypertensive hypertrophy, as well as in the patient with
aortic stenosis particularly in the setting of an arrhythmia (Lorell and
Grossman, 1987; Eichhorn et al., 1982; Hanrath et al., 1980). Impaired
diastolic function (increased left ventricular filling pressure relative to
diastolic volume (Lorell and Grossman, 1987)) is very common in pressure
overload hypertrophy; diastolic dysfunction may be a finding which Tlong
precedes the onset of systolic dysfunction, and may be more severe than the
contractile dysfunction (Lecarpentier et al., 1987). Diastolic function is
determined by 1) intrinsive tissue stiffness as well as 2) energy dependent
relaxation. There is evidence to suggest that muscle stiffness as well as
active relaxation are altered by pressure overload hypertrophy (Schwarz et
al., 1978; Eichhorn et al., 1982; Grossman and McLaurin, 1976).

Clinical measures of diastolic function in patients with aortic stenosis
(Eichhorn et al., 1982; Schwarz et al., 1978; Fifer et al., 1985) and with
chronic hypertension (Hanrath, 1980) all show abnormalities in ventricular
filling. Eichhorn et al. (1982) found the time constant of decay of left
ventricular pressure was prolonged in 13 patients with aortic stenosis (67
msec vs 41 msec, p<0.01) ‘and normal systolic function. The time constant did
not correlate with left ventricular systolic pressure, but did significantly
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correlate with ventricular mass. Fifer et al. (1985) measured rates of left
ventricular early diastolic filling and wall thinning in both children and
adults with aortic stenosis, and found these indices to be depressed in both
patient groups when compared to normal controls. Importantly, depression of
diastolic function was noted in children with supernormal systolic function as
well as low wall stress. Schwarz et al. compared the degree of diastolic
dysfunction to morphologic abnormalities of increased myofiber diameter as
well as fibrosis in patients before and after aortic valve replacement.
Interestingly, diastolic dysfunction was best correlated to muscle cell
diameter rather than fibrosis, suggesting that the component of diastolic
dysfunction attributable to passive elastic properties of the myocardium were
dependent upon the myocardial cell, rather than upon the increased collagen
content.

In addition to changes in myocardial stiffness (Schwarz et al., 1978),
there 1is considerable evidence that active relaxation is also impaired.
Studies of isolated muscle fibers show that the rate of isometric relaxation
is decreased (Jouannot, 1975), the time to half relaxation is prolonged
(Capasso et al., 1981; Lecarpentier et al., 1987). An important finding of
Lecarpentier et al. was the disappearance of load sensitivity of relaxation in
severely hypertrophied myocardium. This property is present when sarcoplasmic
reticulum is present and normally functional, and not present under conditions
when sarcoplasmic reticulum is either not present or pharmacologically
inhibited. Gwathmey et al. (1985) present further evidence that calcium
uptake by sarcoplasmic reticulum in hypertrophied myofibers is disturbed. In
summary, changes in passive muscle stiffness as well as impaired active
relaxation probably contribute to the diastolic dysfunction observed in
hypertrophied myocardium.

ExciTAaTION - CONTRACTION COUPLING

While peak tension generated by hypertrophied myocardium may be somewhat
variable, the prolongation in the time to peak tension is relatively constant.
There is a corresponding change in the excitation-contraction coupling which
is thought to be responsible for the prolongation of contraction. Normal
excitation-contraction coupling is shown below.
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Figure 19.
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Figure 13. A, Schematic illustration cof the approximate time course of
excitation-activation-contraction coupling. From tocp to bottom, the
transients are the cell membrane action potential, the myoplasmic [Ca-’) as
measured by the photoprotein aequorin, and myocarcial force developed
during an isometric contraction. Note the sequence of events: the action
potential precedes the rise 1in myoplasmic free [Caﬁf. which in turn
precedes the onset of force develcpment. The decline in myoplasmic [Ca ]
précedes the fall-off in force. B, Schematic diagram of some interactions
between membrane potential and contraction in the heart. The seauence in
excitation-activation-contraction coupling may be followed via the heavy
black arrows (mainly clockwise). lon fluxes across the sarcolemma [arrow
1+] determine the membrane potential, which 1tself can provide a driving
force for ion movements [arrow !-]. The changes in memorane potential are
a function of the 1onic equilibrium potentials and conductances. The
depolarization [2] causes a rise in myoplasmic [Ca ] derived from
intracellular s‘tores [3+]. This results directly from the depolarization
or possibly from Ca "-induced Ca  release. The Ca  within the myop lasm
combines with troponin C{5+] to allow an actin-myosin interaction requiring
ATP and resulting in force development [6+]. At the time that, or probably
before, the membrane repolarizes, the sarcopiasmic reticulum sequesters
Ca  [5-; 3-] permitting relaxation to occur [6-]. Ca™ can also leave the
myoplasm by a metabolically dependent ca” pump or by Na', Cah-exchange
[4-]. Force and length changes could 1influence membrane events
(contraction-activation-excitation feedback) by processes depicted the
dotted lines. For exampie, these mechanical alterations cculd change ionic
fluxes across the sarcolemma by affecting permeability or diffusion
gradients directly [7]. Indirectly, force ana lengin changes could
influence the membrane by altering myoplasmic [Ca J[6-; 5-]. This may
inf luence ionic flux [4-], and hence, memorane potential [i+] by modulation
of the electrochemical gradient for Ca  and thus, mooulation of the slow
ca’ channel, outward K~ currents, "leak" currents, the electrogenic
Na+/CaH exchange, or the nonspecific cation conductance referred to as the
oscillatory or transient inward (T1) current. (Braunwald et al., 1988).
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In hypertrophied muscle, the action potential is prolonged with a
corresponding prolongation of the time course of tension generation. of
interest, both action potential duration and the time course of tension
generation normalize with regression of hypertrophy (Capasso et al., 1982).

Figure 20.
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Figure 20. Superimposed tracings of oscilloscopic photograpnic records of
isometric tension and action potentials from SHAM (20), HBP (20), and HBP

(R) papillary muscles. Insert shows actual oscilloscopic records from SHAM

(20), HBP (20), and HBP (R) papillary muscies. (Capasso, 1982).

LEFT VENTRICULAR HYPERTROPHY AND ARRHYTHMIAS

The presence of left ventricular hypertrophy by electrocardiogram and
more recently echocardiogram has been associated with a three to five-fold
increased likelihood of sudden death (Kannel et al., 1975). Of interest, this
increased incidence of sudden death is in excess of the risk of sudden death’
associated with the presence of hypertension alone (Kannel et al., 1975)
suggesting an independent contribution to the risk for sudden death made by
the presence of hypertrophy. Thus for men in the Framingham-Albany cohort,
hypertension increased the risk of sudden death three-fold, while
electrocardiographic evidence of left ventricular hypertrophy increased the
risk five-fold. While this is of interest, it does not clearly show that
-hypertrophy is the precipitant to sudden arrhythmic death - one might
postulate, for example, that Tleft ventricular hypertrophy (stimulated by
myocardial ischemia) was associated with more severe coronary artery disease,
and thus, the severity of the coronary disease, rather than hypertrophy per se
might be responsible for the increased incidence of sudden death. Perper et
al. (1975), however, found no correlation between heart weight and severity of
coronary artery disease in patients dying suddenly thus, countering the
argument that hypertrophy is simply another consequence of the disease process
producing increased sudden death. In a somewhat different setting, Messerli
et al. (1984) quantitated ventricular ectopic activity in patients with
hypertension with and without hypertrophy. The authors noted that patients
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with hypertension, but without hypertrophy had ventricular ectopic activity no
different than normal control subjects; however, if hypertrophy was present in
addition to hypertension, ventricular ectopic activity was significantly
increased. Importantly, coronary artery disease was excluded in this group of
patients.

Further evidence that hypertrophy independent of coronary artery disease
may provide a proarrhythmic substrate is suggested by the fact that other
diseases associated with pressure overload hypertrophy in the absence of
coronary artery disease, such as aortic stenosis in children or coarctation of
the aorta, are associated with sudden arrhythmic death (Jones et al., 1980).
It is, therefore, worth considering whether there are features of the
hypertrophied myocardium which might potentiate the initiation and maintenance
of arrhythmias.

In general, arrhythmias can be subdivided into disorders of automaticity
(abnormal rate, or site of origin of electrical impulse generation) and
disorders of impulse conduction (Cranefield, 1973). Lethal arrhythmias such
as ventricular tachycardia leading to ventricular fibrillation may arise from
altered automaticity, or from reentry secondary to differential conduction of
an electrical impulse or from a combination of these mechanisms.

There is substantial data showing that electrophysiologic alterations
exist in compensated, non-ischemic hypertrophied myocardium which could
provide the substrate for the initiation and maintenance of arrhythmias.

The normal action potential consists of changes in membrane voltage
determined by transmembrane ionic currents. These are summarized on the
diagram below. Current passes from cell to cell in an orderly fashion and
results in mechanical activation of myocytes.

Figure 21.
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Figure 21. Dragrammatic representation of a cardiac action potential,

emphasizing characteristics of the Purkinje fiber. Upstroke 1s pnase 0;
rapid repolarization is phase l; plateau is phase 2; final repolarization
1s phase 3; and diastolic depolarization if phase 4. The arrows below the
diagram refer to the approximate time when the indicated ion 1s influencing

memorane potential. They point 1n the direction of the effect on the
membrane potential, upward for depolarization and downward for
repolarization. (Fozzarc, 1977).
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Many myocardial cells possess the ability to ‘spontaneously depolarize
and generate an action potential (automaticity). Arrhythmias resulting from
altered automaticity arise when some factor enhances the spontaneous
electrical activity of one or more of the latent myocardial pacemakers. When
this occurs a single ectopic or a sustained ectopic. arrhythmia may result.
Reentrant arrhythmias, by contrast, occur when there is a localized area of
abnormal conduction slowing such that an impulse traveling this circuit is
delayed sufficiently at one point that it reaches tissue which would normally
be refractory to excitation but is excitable due to the impulse delay, and is
thus capable of generating a single or series of ectopic beats (Cranefield,
1973).

Figure 22.
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Figure 22. Models for reentry. The upper figure consists of a Purkinje
fiber bundle (D) which divides into two branches (B and C). These two
branches are connected distally by ventricular muscle. The stippled
segment (A-B) 1s an area of unidirectional conduction block. In the lower
figure A and B indicate two paralle!l muscle fibers with lateral
connections. (Cranefield et al., 1973).
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In practice, clear separation of arrhythmias into these two mechanisms
is not feasible and arrhythmias may result from a combination of both
mechanisms. Importantly, it can be shown that the substrate for both
mechanisms of arrhythmogenesis exist in hypertrophied myocardium.

Cameron et al. (1983) using a model of aortic constriction with
resultant LV hypertrophy, found abnormalities in action potential duration,
upstroke velocity and amplitude of the action potential that were
heterogeneous within the same heart. In some regions of the heart, action
potentials were shortened with low upstroke velocity and low amplitude, while
in other regions action potentials were prolonged. Conduction velocity of
electrophysiologic impulses are directly related to upstroke velocity so that
areas of low upstroke velocity would create regions of conduction delay.
Electrocardiographic monitoring was done with and without vagal stimulation to
slow heart rate in hypertrophied and control animals. When heart rate was
slowed, arrhythmias including single and repetitive PVC'’s as well as
spontaneous ventricular fibrillation were observed only in hypertrophied
hearts.

Aronson  (1980), using microelectrode techniques, studied the
characteristics of the action potential from rats with renal hypertension-
induced hypertrophy and found that action potential duration was increased as
a consequence of prolongation of the refractory period.

Figure 23.

HBP

Fiqure 23. Configurations of representative AP recorded
E from the papillary muscles of SHAM and HBP rats. Traces
of HBP AP (A-C) and SHAM AP (D-F) recorded simultaneously
from three pairs of muscles taken from animais. Note that
HBP AP show marked and consistent lengthening as well as
considerable variability in the course of repolarization.
Horizontal bars show zero potential. (Aronson, 1980).

20mv | =
20msec

-26-



Keung and Aronson (1981) found that the prolongation of refractoriness
was distributed. in a non-uniform fashion among endocardial, epicardial and
papillary muscle segments; such nonuniformity would provide areas of
conduction delay.

Figure 24.

SmAM HBP

Figure 24 Tracings cof representative action potentials
showing the effect of OCL on configuration. DCL=1000 (a),
300 (b) and 150 (c) msec. Tracings are from endocardial
(EN), papillary muscle (PM), and epicardial (EP) fibers of
SHAM and HBP rats. Note that HEBP action potentials of
endocardial and papillary muscle fibers are clearly longer
than those of SHAM fibers at longer DCL. Prolongation ot
epicardial HBP action potentials 1s seen only during the
latter half of repolarization. (Keung and Aronson, 1981).

Keung (1989) found that the transmembrane inward calcium current was
increased in isolated hypertrophied myocytes and accounted for the action
potential prolongation. It has also been reported that the amount of
electrically effective membrane area is reduced in hypertrophied myocardium
despite the increase in total membrane area resulting from cellular
enlargement. Prolongation of refractoriness, dispersal of refractoriness, and
impaired impulse spread across from cell to cell are the substrates for the
development of reentrant arrhythmias and have been found to exist in
compensated, nonhypertrophied myocytes.

Calcium-dependent afterdepolarizations resulting in triggered activity
have been noted in a similar preparation (Aronson, 1981). Additionally,
spontaneous oscillatory activity leading to action potentials in hypertrophied
myocytes has also been noted. 0f interest, this spontaneous oscillatory
activity could be blocked by caffeine, a substance which blocks both uptake
and release of calcium from the sarcoplasmic reticulum.
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Figure 25.
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Figure 25. Triggered activity arising from early afterdepolarizations in
HBP papillary muscles exposed to TEA. In A, the same external stimulus was
applied simultaneously to the SHAM and HBP muscies following a quiescent
period of 2 minutes. The SHAM preparations responced with only a single
drive action potential whereas the repoclarization phase of the driven
action potential of the HBP preparation was interrupted by an early
afterdepolarization that gave rise to sustained triggered activity; the
triggered activity finally terminates with a delayed afterdepolarization.
In B, simultaneous recording were obtained from 2 sites in the same HBP
preparation (interelectrode distance, 1.5 mm). A single drive action
potential was evoked after a quiescent pericd of 2 minutes. The
repolarization phase of the driven action potential is interrupted by an
early afterdepolarization which, after an initial quiescent period, gives
rise to progressively larger oscillatory responses. The first burst of
this triggered oscillatory activity ceases when the membrane repolarizes to
a negative level, but then a spontaneous upstroke occurs, apparently from
the depolarizing phase of a delayed afterdepciarization. The
repolarization phase of this action potential 1s again interrupted by
oscillatory triggered activity. This same sequence is repeated twice more
until the membrane potential following repolarization of the fourth burst
of oscillatory activity remains at negative levels of membrane potential
but sustained spontaneous activity follows, gresumably having arisen from
the depolarizing phase of a delayed afterdepolarization. The diastolic
membrane potential attains gradually more necative levels with each
subsequent beat until spontaneous activity terminates with a small and slow
delayea afterdepolarization. Note that the electrical activity recorded at
both sites 1s syncnronous. This 1s an example of triggered activity
initiated by the alternation of early and delayed afterdepolarizations.
(Aronson, 1881).
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Thus in nonischemic hypertrophied myocardium, prolongation and dispersal
of refractoriness, as well as heterogeneity of conduction velocity have been
identified, and may facilitate the development of reentrant arrhythmias.
Alternatively, the presence of calcium-dependent after potentials which may
lead to triggered electrical activity may predispose to arrhythmias secondary
to altered automaticity.

HYPERTROPHY AND THE CORONARY CIRCULATION

Two clinical observations have suggested that the coronary .circulation
may be abnormal in hypertrophied myocardium. Angina pectoris, in the absence
of atherosclerosis in the epicardial coronary arteries, occurs as a major
symptom in aortic stenosis (Marcus et al., 1982) and may also be observed in
patients with hypertension and hypertrophy (Brush et al., 1988). Patients
with hypertrophy undergoing exercise electrocardiography may have abnormal ST
segment responses consistent with ischemia, as well as angina in the absence
of obstructive coronary artery disease (Brush, 1988).

Anatomic studies of the coronary vasculature in both humans and animals
have shown that the epicardial coronary arteries enlarge with hypertrophy
(Marcus et al., 1987); the enlargement, however, is not proportional to the
amount of hypertrophy, and these arteries constitute only a small proportion
of the overall cross-sectional area of the coronary vasculature. Morphometry
of the coronary microcirculation (which constitutes the 1largest cross-
sectional area of vasculature) has shown that the capillary density is
decreased by 20-30% in the pressure overloaded heart (Rakusan et al., 1980;
Holtz et al., 1977) thus, suggesting that growth of the major portion of the
coronary vasculature is not commensurate with the growth in myocardial mass.
A different method of measuring the amount of microcirculation is to
functionally assess the cross-sectional area of the capillary bed by
calculation of coronary vascular resistance (pressure drop across the coronary
circulation (mmHg) + mean coronary blood flow (ml/min) across the coronary
circulation during maximal, pharmacologic vasodilation (to ensure that all
vascular channels are open); this quantity, the minimal coronary vascular
resistance, is linearly related to the cross-sectional area of the coronary
bed. One can then calculate the resistance per gram of tissue to normalize
for increases in myocardial mass. If the coronary microvascular growth is
equivalent to the increased muscle mass, then for any given pressure drop, the
coronary flow rate should increase, resulting in a decrease in overall
resistance and no change in resistance per gram of myocardium. In
hypertrophied myocardium resulting from renal hypertension (Mueller et al.,
(1978) and from aortic banding (0’Keefe et al., 1978), calculation of the
minimal vascular resistance per gram of myocardium has shown that minimal
coronary vascular resistance per gram of tissue was significantly increased in
both models of hypertrophy, indicating a decrease in the functional cross-
sectional area of the coronary capillary bed.



Figure 26.
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The above diagram adapted from Marcus (1983b) illustrates the anatomic
changes accompanying pressure overload hypertrophy. The relationship between
normal microvasculature and myocardial mass is shown as the center square.
The bottom Teft square illustrates the failure of the coronary circulation to
increase with muscle mass, the bottom center square shows an increase in
vasculature which 1is structurally abnormal leading to increased vascular
resistance across the whole heart, while the bottom right panel shows
increased microvasculature which 1is functionally subject to elevated
compressive forces (i.e. increased end-diastolic pressure), and thus
extrinsically compressed resuiting in elevated resistance.

Hypertrophy has also been found to be associated with significant
alterations in the reaional distribution of blood flow resulting in selective
underperfusion of the subendocardium. Under normal circumstances, the
endocardial blood flow is larger than epicardial blood flow resulting in a
endocardial to epicardial blood flow ratio significantly greater than 1.0.
Bache et al. (1981) compared the endocardial to epicardial flow gradients in
normal dogs, and those with hypertrophy, and found the following: At rest in
normal dogs, subendocardial flow significantly exceeded subepicardial flow,
the (endo:epi blood flow ratio was 1.25:0.07) while in hypertrophied hearts,
this ratio was 1.1£0.08, so that endocardial flow was not significantly
different from epicardial. With exercise, flow increased linearly with
increasing workload in all groups, with a relative redistribution of blood
flow away from the subendocardium in all groups; however, the endo- to epi-
blood flow ratios significantly decreased in hypertrophied versus normal
hearts (endo:epi ratio 0.94:0.03 in LVH vs 1.10£0.08 in normal hearts,
p<0.05).
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Using a similar model, Vrobel et al. (1980) showed that incremental
pacing of normal and hypertrophied hearts resulted in no change in the
regional distribution of blood flow in the normal animals, but a significant
redistribution of blood away from the subendocardium at maximal heart rates of
250 beats/minute (endo:epi flow ratio 1.03:0.08 at 100/min versus 0.83+0.06 at
250/min, p<0.05, in hypertrophied hearts, endo:epi flow ratio 1.08:0.03 at
100/min versus 1.02+0.05 at 250/min, p=NS, in normal dogs). Because the
subendocardial region is the area of greatest wall tension and as well as
highest metabolic activity, redistribution of blood flow with stress in
hypertrophied hearts is clearly disadvantageous.

An important property of the coronary circulation is autoregulation of
flow - the ability to maintain constant flow under widely variable coronary
perfusion pressures (Hoffman, 1987). If maximal coronary vasodilation is
accomplished then autoregulation is lost and coronary flow varies Tlinearly
with pressure. The difference between autoregulated flow and flow during
maximal vasodilatation at any given perfusion pressure is the coronary flow
reserve.

Figure 29.
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Figure 29. Diagram of basic coronary flow reserve. D = pressure flow
relation during maximal vasodilatation; A1, A2 = two levels of
autoregulated coronary flow: Ry = flow reserve from Aj; Rz = flow reserve
from Az. Panel A, Total flow per ventricle (ml/min); B, flow per unit
mass (ml/min/g). Left ventricular weignt, 100 g. (Hoffman, 1987).

Numerous authors (Hoffman, 1987; Murray and Vatner, 1981; Marcus et al.,
1982; Marcus et al., 1987) have shown that the coronary flow reserve is
decreased in hypertrophied myocardium. This is very nicely shown in this data
from Hoffman.
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Figure 30.
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Figure 30. Diagram of coronary flow reserve with hypertrophy. Pressure-
flow relationships for normal left ventricle (100g) and hypertrophied left
ventricie (200 g). A= autoregulated flows; [ = pressure flow line during
maximal vasodilatation; R = flow reserve. Normal: A1.D1.R1, and solid
lines; hypertrophied: A2.02,R2,R3, and dashed lines. 01 and D2 are
superimposed. Reserve for hypertrophied ventricles s shown at normal
(R2) and elevated (R3) perfusing pressure. A, Total flow per ventricle;
B, flow per unit mass. (Hoffmam, 1987).

Coronary reserve is diminished because the flow per gram of tissue
during maximal vasodilation tissue is decreased.

Figure 31.
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Figure 31. Standard measurements used to analyze reactive hyperemic

responses. (Marcus, 1983b).
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Another way to assess flow reserve is to occlude a coronary ar@ery for
10-20 seconds then measure the hyperemic response (transient increase in blood
flow following release of coronary occlusion which is metabolically
determined) (Murray and Vatner, 1981).

Calculation of the ratio of the area under the hyperemic flow curve
(repayment area) to the area under the occlusion period (debt_area) generates
a ratio of debt to occlusion area which quantifies the hyperemic response. In
normal, nonhypertrophied dogs this ratio is about 4:1. In the presence of
hypertrophy this response is significantly attenuated (Murray and Vatner,

1981).

Coronary flow reserve assessed by the magnitude _of the .react1ve
hyperemic response has been quantified in patients with aortic stenosis at the
time of surgery, and found to be significantly attenuated when compared to
nonhypertrophied subjects (Marcus, 1982). The repayment area to debt area
ratio in nonhypertrophied subjects was approximately 3.6:1 compared to a ratio
of 1:1 for hypertrophied subjects.

Figure 32.
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Ficure 32. Coronary Reactive Hyperemia Responses in a Patient with Aortic
Stenosis and in a Control. Recordings of mean coronary velocity are shown
in the top panels, and recordings of arterial pressure in the bottom
panels. A 20-second occlusion of the coronary arteries had no significant
effect on aortic pressure, heart rate, or cardiac rhythm. In the control
patient (right panel) release of a 20-second occlusion of the left anterior
descending (LAD) coronary artery was followed by a marked increase in the
velocity of coronary blood flow. The ratio of peak to resting velocity in
this example was about 4; the ratio of repayment to debt area was about 3.
In the patient with aortic stenosis {left panel) the coronary reactive
hyperemia response that followed a 20-second occlusion of the LAD was
markedly attenuated. The ratio of peak to resting velocity was about 1,
and the ratic of repayment to debt arez was much less than i. In contrast,
the same patient had an essentially normal response in a right ventricular
branch of the right coronary artery (RVS-RCA) (center panel). Thus, in
patients with severe left ventricular hypertrophy secondary to valvuilar
aortic stenosis, coronary reserve - assessed by measuring the guantitative

characteristics of coronary reactive hyperemia - 1s markedly decreased in
the coronary vessels that supply the hypertrophied ventricie. (Marcus et
al., 1982).
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The ratios of. peak to baseline blood flow. velocity was 4.6:1 in normals
compared to 1.9:1 for hypertrophied subjects.

Figure 33.
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Figure 33. Ratios of peak to resting velocity and of repayment to debt
area 1in the coronary reactive hyperemia responses (after a 20-second
occlusion of the left anterior descending corcnary artery) in control
patients (NL) and in patients with aortic stenosis (AS). The horizontal
bars adjacent to the circles represent the mean values for each group. The
mean ratios of peak to resting velocity were 4.6£0.4 and 1.9+0.2 in the
control patients and the patients with aortic stenosis, respectively
(P<0.01). The ratios of repayment to debt was 3.05:0.4 and 1.120.3 in the
two groups. Thus, the ratios of peak to resting velocity and of repayment
to debt were markedly decreased in patients with severe left ventricular
hypertrophy secondary to aortic stenosis. Only 13 dots are shown in the AS
group (repayment to debt area) because twe points were identical and are
thus superimposed. (Marcus et al., 1982).

In summary, ventricular hypertrophy in response to pressure overload
results in increased muscle mass, normalization of wall stress and
preservation of cardiac output. The biologic consequences of_ma1ntenance of
normal contractile function, include diminished diasto11q compliance, e]ectrq-
physiologic changes which may potentiate arrhythmpgene§1s and alterations in
the coronary circulation favoring subendocardial ischemia as well as
diminished coronary reserve.
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