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A general problem in science today is how to understand complex systems. An 

emerging and promising approach makes the bold assumption that complex systems 

adhere to particular design principles. The power of this is that design principles by 

definition impose an intuitive nature on a system by presupposing purpose. Existing 

studies have fruitfully shown the application of engineering principles in biology, but 

biological systems have many distinct features, particularly due to evolution. In this 

work, I used Drosophila phototransduction, a well-studied sensory system renowned for 

its high performance, to search for evolutionary design principles. I focused on three 
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levels of structure in the system: compartmentalization of molecules into microvilli, 

modularity of dynamic scaffolding by InaD, and functional integration within a single 

domain of InaD. Using rigorous quantitative measurement and theory with an 

evolutionary mindset, I uncovered intuitive, simplifying design principles at each level: 

Microvilli are used to build fast, homogeneous signaling compartments whose 

dimensions are constrained by these requirements. Dynamic scaffolding is a modular 

feature of InaD PDZs 4-5 which have been co-inherited in many scaffolds. Within PDZ5, 

ligand binding and oxidation of the domain are linked through pairwise coupling with a 

conformational equilibrium—a generic property found in all proteins—and not each 

other. These results show that this approach can be successful in revealing novel design 

principles in complex evolved systems.
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CHAPTER ONE 

Evolutionary Design Principles of Signaling 

The world is full of systems which appear complex. Complexity can be 

seen in both human-built systems, such as airplanes, as well as in natural systems, 

like the protein interaction network of a cell. Furthermore, complex systems occur 

on many spatial and temporal scales, ranging from atoms to galaxies, picoseconds 

to billions of years. 

Although people frequently refer to systems as complex, the meaning of 

this term is often more intuitive than rigorous. Complex systems like the 

examples described above have multiple parts, but not all multi-part systems are 

thought to be complex. For example, a crystalline solid is composed of many 

copies of the same molecule, but it is not complex. In contrast, the power grid, 

composed of many interconnected power stations, is thought to be complex. A 

possible distinction is that understanding a crystal does not require much more 

than understanding a single molecule, while the power grid’s diverse and variable 

strength connectivity makes knowledge of the network as important as 

understanding a single power station. In general, a useful definition is that 

complex systems are multi-part systems in which knowledge of the components 

alone is insufficient to understand the behavior of the system because the 

interactions between them are non-uniform or not easily predictable. 
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How then can we understand complex systems? Two philosophies prevail. 

In the first, the interactions between the many parts of a complex system are 

determined through a brute-force approach of experimentation and the behavior 

analyzed by simulation. In the second, simpler, more tractable model systems are 

carefully studied to identify underlying principles which are extrapolated to larger 

systems. While both approaches have their place and can be complementary (Dear 

2006), the extrapolation of principles from model systems has particular 

advantages which will be discussed in detail here. 

The Beauty of Design Principles 
The rationale behind studying model systems is that in some sense they 

embody the same principles underlying larger, more complicated systems but are 

experimentally and theoretically more tractable. One particular area of insight 

which can be derived from model systems is design principles. These are 

principles which correlate the properties of the components of a network or their 

connections with the function or performance characteristics of the system (Uri 

Alon 2007a). 

It is not clear that design principles should exist. After all, each complex 

system may function in a unique manner. Furthermore, in natural systems there is 

no intelligent designer, further questioning the idea that there should be 

underlying principles behind their design. Yet, as described below, there are 

common themes in the design of diverse systems, both human-built and natural. 
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Fundamentally, the belief that there should be universal principles for complex 

systems is a deep philosophical assumption that the world is intelligible and 

rational (Dear 2006). 

Complexity as a Symptom of a Lack of Understanding 
In some sense, complexity is a symptom of a lack of understanding the 

underlying design principles of a system. As an example, consider an engineered 

system, the cruise control system in a car. We know that an engineer built this 

according to a particular design logic, but to non-specialists this system may seem 

complex because they are unaware of the purpose behind the design of the 

system. The lesson here is that rather than be enamored or scared of complexity, 

we must seek to understand the principles underlying the system in order to make 

sense of it (Uri Alon 2007a). 

Design Principles as a Mechanism for Making Sense of 
Complexity 

Design principles, once recognized, provide a preliminary way of 

understanding complex systems without intense experimentation or detailed 

simulation. Many complex systems are composed of simpler parts which are 

combined to perform some function. Understanding the principles with which the 

system was designed can transform the apparent complexity by annotating 

systems with purpose (Uri Alon 2007a). 
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It is important to note here that complex systems have a special property, 

emergence, which refers to the capacity of these systems to exhibit behaviors that 

are not predictable from the properties of their individual components. Design 

principles can explain some of the intended emergent properties of a system, but 

experimentation and simulation are required to fully understand all the emergent 

properties of a system. The brute force philosophy of dissecting systems can help 

here. 

Analogous Design Principles from Engineering 
We know that human-built systems are created by engineers who use well-

established engineering principles in their design. What are the design principles 

behind biological systems? It is tempting to assume they are the same, but this 

may not be the case. In biological systems, the “engineer” is evolution, which 

knows nothing of undergraduate engineering and is not able to plan ahead in its 

design (Sorger 2005). Despite this, much success has been found in trying to 

understand biological systems through the lens of traditional engineering (Uri 

Alon 2003). 

Information Flow through Network Topologies 
Within a network, subsets of nodes can be thought of as having a 

particular topology based on identifying patterns in how the nodes are connected 

(R Milo et al. 2002; S. S. Shen-Orr et al. 2002). This turns out to be a useful 
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approach because particular network topologies, known as network motifs, have 

characteristic behaviors in dynamic systems (S. S. Shen-Orr et al. 2002; S 

Mangan et al. 2003; Brandman et al. 2005; W. Ma et al. 2006; Uri Alon 2007b; T. 

Y.-C. Tsai et al. 2008; Goentoro et al. 2009; W. Ma et al. 2009; Bleris et al. 2011; 

N. a Shah et al. 2011). In addition, complicated networks can often be reduced to 

a simpler subset of nodes which are indirectly connected (W. Ma et al. 2006). 

This then allows one to predict how a complicated network will behave based on 

analogy with a simpler model topology. The behavior of two and three node 

networks can be exhaustively studied computationally, resulting in a rich set of 

model behaviors from which to draw (W. Ma et al. 2006; N. a Shah et al. 2011; 

W. Ma et al. 2009). The two major groups of network topologies are feedback and 

feed-forward loops (Figure 1). 

 

Figure 1: Network Topology 

The two main classes of network topologies, feedback and feedforward, are shown. The circles 
represent nodes in a network and the arrows represent information flow. 
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Feedback 

Feedback topologies are classified based on a signal activating (positive) 

or inactivating (negative) itself either directly or indirectly. 

Negative	
  Feedback	
  

Negative feedback provides a stabilizing force in a system (Brandman et 

al. 2008). On its own, it is typically used for homeostasis, maintaining a system at 

a fixed state (Brandman et al. 2008). Typical examples from engineering include 

cruise-control and thermostats. In biology, negative feedback loops are frequently 

found in metabolic networks and signaling pathways. As with human-built 

systems, these loops have been shown to be important in homeostasis when used 

on their own, acting as a high-pass filter which reduces noise (Austin et al. 2006; 

Dublanche et al. 2006). In addition to noise suppression, negative feedback can be 

used to linearize responses, promoting information transfer (R. C. Yu et al. 2008; 

Nevozhay et al. 2009). When the negative feedback loop is very slow, oscillations 

can occur (Novák et al. 2008). 

Positive	
  Feedback	
  

Positive feedback, in contrast, increases the speed and can destabilize 

systems (Brandman et al. 2008). As a result, it is important for increasing 

sensitivity (Hornung et al. 2008) and generating switch-like behavior (Xiong et al. 
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2003; Angeli et al. 2004; Ferrell 2008; D.-E. Chang et al. 2010; Palani et al. 

2011). An example of a system using positive feedback is an amplifier. In 

biology, many signaling systems which require sensitive detection of inputs use 

positive feedback. In addition, positive feedback is used to make bistable switches 

which remain in one state after triggering, such as the commitment of Xenopus 

oocytes to mature following progesterone exposure (Xiong et al. 2003). 

Feed-Forward 

Feed-forward occurs when a signal is propagated to an output node along 

both a short and long path (R Milo et al. 2002; S. S. Shen-Orr et al. 2002). Feed-

forward loops are then classified by whether the short and long paths stimulate or 

inhibit the output node and how the output node integrates the two paths (S 

Mangan et al. 2003). Depending on the details of the connections, feed-forward 

can filter transient signals, accelerate responses, or generate pulses (S Mangan et 

al. 2003).  

Functional Systems from Dynamical Behaviors 
Functional systems often do more than simply linearly relay a signal to an 

output. The signal can be non-linearly amplified, converted into an all-or-nothing 

stable switch, or generate oscillations or patterns. While non-linear behaviors are 

more difficult to predict a priori, dynamical systems theory provides a 

comprehensive approach to understanding these behaviors. 
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The dynamic behavior of a system can be predicted by expressing the 

time-dependence of the parts in the form of differential equations. These 

equations describe the future state of the system given the initial conditions. In 

general, this can be expressed as !𝐗 !
!"

= 𝑓(𝐗(𝑡), 𝑡), where f (X(t),t) is a vector 

function describing how the system will change as a function of the state vector 

X(t). 

The goal of dynamical systems theory is then to use this framework to 

determine the states in which the system remains indefinitely, known as fixed 

points or steady-states, or a periodic sequence of states the system follows 

(Strogatz 1994). These fixed points can be identified by solving !𝐗 !
!"

= 0 for 

𝐗(𝑡) = 𝐗∗. The sign of the !𝐗 !
!"

 around X* determines the stability: If the sign of 

the derivative is such that the system returns to X* following small perturbations, 

the system is stable (Strogatz 1994). 

The power of this approach comes in the realization that dynamic 

behaviors such as bistability and oscillations each have a common origin in their 

characteristic dynamical structure (Strogatz 1994) despite occurring in diverse 

systems. The challenge then is to understand how the topology and parameters of 

a system produce the dynamical structure. This then allows one to rationally 

perturb the function and to understand how mutations or regulation alter the 

behavior of a system. 
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Reuse of Modular Parts 
One of the major advances in modern engineering is the use of modular 

parts. Instead of designing each system from scratch, engineers can build complex 

systems by combining pre-existing components with the desired properties. The 

underlying principle is that modular components should behave in a well-defined 

manner, independent of the rest of a system, under reasonable conditions 

(Hartwell et al. 1999; Günter P Wagner et al. 2007). 

Nature also uses modular designs (Figure 2). At the organismal level, 

quantitative traits exhibit heterogeneous covariance, allowing some sets of traits 

to be independently varied while coupling the variation within phenotypic 

modules (Cheverud et al. 2004; Günter P Wagner et al. 2007). This phenotypic 

modularity is molecularly implemented in the functional modularity of the 

molecular interaction network of the cell (Roguev et al. 2008; Costanzo et al. 

2010; Green et al. 2011), which is scale-free with certain nodes acting as hubs 

either connecting the components of a functional module or mediating the 

interaction between modules (Barabasi et al. 1999; Han et al. 2004; Maciag et al. 

2006; Krogan et al. 2006). These modules represent core processes of the cells as 

well as the recurring signal transduction machinery (tyrosine kinase signaling, G 

protein signaling, etc.) which connects diverse receptors and outputs. Modularity 

is seen even at the level of single proteins, which can contain modular domains 

which provide common functions such as binding, catalysis, or regulation 
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(Bhattacharyya et al. 2006), or multiple sectors which allow evolution to 

independently tune distinct features of the protein (Halabi et al. 2009). 

While it is clearly a useful property, the finding of modularity in nature is 

surprising because evolution might not be expected to build modular systems: 

Because evolution does not plan ahead, the usefulness of reusing modular parts is 

unlikely to be directly selected (Günter P Wagner et al. 2007). Several possible 

explanations for the existence of modularity have been proposed. Under certain 

conditions, gene duplication and divergence (Sole et al. 2003) or neutral genetic 

drift (Force et al. 2005) can produce modular networks without invoking any 

selective advantage. However, theoretical studies have shown that modular 

designs have a selective advantage in environments which fluctuate since they can 

more rapidly be used to adapt to a new function (Lipson et al. 2002; Nadav 

Kashtan et al. 2005). 



11 

 

 

Figure 2: Modularity at Multiple Scales 

Modularity is seen at multiple scales in organisms. (a) Correlation between sizes of bones (MC, 
metacarpal; MT, metatarsal; R, radius; T, tibia; H, humerus; F, femur) in the forelimb (left edge) 
and hindlimb (right edge) of the macaque, indicating that the correlations break down into 
modules corresponding to limbs and homologous bones. Reproduced with permission from Figure 
8 of (Young et al. 2005). (b) Genetic interaction network of yeast with functional modules labeled 
in different colors. Reproduced with permission from Figure 1 of (Costanzo et al. 2010). (c) 
Illustration of the modularity of multi-domain proteins. Reproduced with permission from Figure 
1 of (Bhattacharyya et al. 2006). (d) Modularity within a single protein (rat trypsin shown) 
indicated by the presence of multiple coevolving sectors (specificity in green, catalytic activity in 
red, fold stability in blue). Reproduced with permission from Figure 4 of (Halabi et al. 2009). 

Optimization of Signaling Performance 
An obvious goal of human-engineered systems is performance; we want 

systems to be as good as they can be given a set of constraints. Evolution is no 

different. By the process of natural selection, any system with improved 
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performance will be selected if it improves reproductive fitness. The end result is 

that if a system’s performance is under selection for long enough, the system will 

perform optimally. 

However, there are many cases in which one can imagine this limit will 

not be reached. A system may not need to be very good to maximally improve the 

reproductive fitness of an organism. Alternatively, it may take infinitely long to 

tweak a system for optimum performance, a symptom of high dimensionality or 

simply being very far from the optimum. Finally, if there are many local optima 

for a system, natural selection may only reach one of these local optima rather 

than the global optimum. 

It is surprising then that there are many cases in which it can be shown 

that evolution has found the optimal design. For example, kinases in bacteria 

(Skerker et al. 2005) and binding domains in yeast (Zarrinpar et al. 2003) and 

mice (Stiffler et al. 2007) appear to have been optimized to minimize cross-talk in 

their native environment. Laboratory evolution can also find the optimal protein 

expression (Dekel et al. 2005) or regulatory logic (Poelwijk et al. 2011) given a 

set of constraints. An unpublished study by Uri Alon’s group (conference talk, Q-

Bio 2011) suggests that evolution frequently finds the optimal solution given 

multiple constraints: Many morphological and molecular phenotypes can be 

shown to be linear combinations of various optimal “specialist” phenotypes. 

Many biological systems also adapt to their environmental conditions by 
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optimizing their capacity for information transfer. Furthermore, the information 

processing strategies used in nature have been shown in several cases to be 

optimal (T. M. Yi et al. 2000; Kollmann et al. 2005; Andrews et al. 2006, 2007; 

Kalisky et al. 2007; Tkacik et al. 2009). These examples hint at a surprising 

simplicity in the evolution of biological systems. 

Distinct Properties of Biological Systems 
Despite the success of the approach of understanding biological systems 

through the lens of engineering, biological systems have distinct properties which 

are not found or typically avoided in traditional engineering (Sorger 2005). 

Biological components behave nonlinearly, have off-target effects, self-organize, 

are noisy, and have to withstand mutation while maintaining the ability to adapt. 

We have a lot to learn about engineering in this sense from nature. 

The Inherent Nonlinearity and Functional Diversity of Biological 
Components 

When engineers build complex systems, they often rely on the powerful 

theory of linear time invariant systems (Nise 2000). This theory allows the output 

of a system to be predicted from the response of each part to an instantaneous 

signal. The crux is that each part must respond linearly to the input signal and the 

response must be independent of the timing of the input. If this is the case, then 

the part can be used in a complex system and its effect easily predicted. 
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Of course, the physical laws which govern the function of parts are not 

always linear or time-invariant. This can be dealt with by designing systems to 

operate only within the linear range of a component. Nature does not seem to 

generally take advantage of linear time-invariance, however. Part of this is 

certainly the inherent non-linearity of the function and regulation of biological 

molecules, as described here. Another factor may be the evolutionary process of 

building a system. Regardless, natural systems can teach us much about the 

design of non-linear systems. 

A second problem is the functional diversity of biological molecules. 

Unlike the components we use in building systems, biological molecules often do 

not behave only as intended. Proteins have multiple binding partners, enzymes 

perform side-reactions, and proteins exist in alternative states. Despite this, 

biological systems function remarkably well. 

The fundamental properties of biomolecules—folding, binding, catalysis, 

and regulation—can be explained in terms of free energy differences. Practically 

speaking, free energy determines the probability of a protein existing in a 

particular state or a reaction occurring. This probability is determined from the 

Boltzmann distribution, which states that the fraction of particles in state i with 

energy Ei is 
!! !"# ! !!

!!!

! !
, where gi is the number of states with that energy level, kB 

is the Boltzmann constant, T is the temperature, and Z(T) is the partition function 
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describing the total ensemble of states. For two states with a free energy 

difference ∆G, the relative probability of the two states—the familiar equilibrium 

constant, K—can be calculated by taking the ratio of the Boltmann probability for 

each state with 𝐸! = 𝐸! + Δ𝐺. This givesK = exp − !"
!"

, a fundamental 

nonlinear equation governing the function of biological molecules. The 

consequences of this are described below. 

Folding 

Proteins are classically thought to exist in a two-state equilibrium between 

a folded and unfolded state (Dill et al. 1997), where the folded state is typically 

the state that is biochemically active. The free energy difference between the two 

states is known as the stability of the protein, ∆Gfold. Post-translational 

modifications of a protein or mutations can perturb this equilibrium by altering 

the free energy of folding by ∆∆G. The relative probability of being in the folded 

state, Kfold, is exp − !!!"#$!!!"
!"

, showing that modifications exponentially 

perturb the folded population. 

Conformational	
  Ensemble	
  

The powerful techniques available in modern biophysics have allowed the 

detection of multiple conformational states in proteins (Baldwin et al. 2009). This 

can be understood by viewing the conformation of a protein as a large space with 
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a free energy for each conformational state (Onuchic et al. 1997). The classical 

view is a limiting case where one conformational state is far more stable than any 

other (Dill et al. 1997). Classical two-state allosteric conformational transitions, 

described below, are another limiting case where the landscape has only a few 

states which are much more stable than the rest. 

Protein folding landscapes are often thought of as funnels, with the 

conformational diversity progressively decreasing as the stability of the fold 

increases (Onuchic et al. 1997). Experimental studies have revealed that these 

conformationally diverse high energy states are accessible for many proteins 

under physiological conditions (Baldwin et al. 2009) and are relevant to processes 

such as enzymatic catalysis (Buyong Ma et al. 2010) and binding (Boehr et al. 

2009). In addition, these high energy states are thought to be important for the 

promiscuous activity of proteins (Khersonsky et al. 2010). 

Binding 

A fundamental mechanism by which biomolecules transfer information is 

by physical interaction, known as binding of a ligand by a receptor (Creighton 

1993). This interaction between the receptor (R) and ligand (L) has a free energy 

of binding, ∆Gbind. The relative probability of the bound versus unbound state 

(KA, or KD
-1) is again derived from the Boltzmann distribution, resulting in 

𝐾! =
!
!!
= !"

! !
= exp − !!!"#$

!"
. Rearranging, we can see that the fraction of 
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the total that is bound, !"
! ! !"

, is !
! !!!

, the familiar Michaelis-Menten binding 

equation. As a result, binding is fundamentally a hyperbolic function of ligand. 

While it is possible for systems to operate under approximately linear conditions 

by fine-tuning the KD to match the expected ligand concentration (C. L. Jackson et 

al. 1990), cells often use elaborate adaptation mechanisms to adjust the signaling 

dose-response curve to maximize the ability to sense a signal (T. M. Yi et al. 

2000; R. C. Yu et al. 2008). 

Specificity	
  

Molecules in the cell face the demanding task of interacting with specific 

partners (often just one) in the context of a crowded environment containing 

thousands of other types of molecules (Zimmerman 1993). The relative specificity 

of an interaction is the ratio of the dissociation constants (KD) for the desired and 

alternative interaction, 

!!
!!,!"!#$%&'('&

= exp !!!"#$
!!!"#$,!"!#$%&'('&

= !"
!!!"!#$%&'('&

!!"!#$%&'('&
!

  . Therefore, the 

specificity of an interaction, defined by the ratio of the formation of the specific 

([RL]) to nonspecific ([RLnonspecific]) complex under equal concentration of 

ligands, increases exponentially with the ratio of the binding free energies. 

Experimental studies suggest that evolution builds proteins with just enough 

specificity for their native environment—introduction of novel proteins 
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(conference talk by Michael Laub, Q-Bio 2011) or transplantation into a new 

species results in cross-talk (Zarrinpar et al. 2003). 

Catalysis 

According to transition state theory, the rate of a reaction is limited by the 

energy barrier associated with the transition state of the reaction (Creighton 

1993). The effect of this was initially elucidated in an empirical manner by van’t 

Hoff and Arrhenius and later explicitly tied to the idea of a transition state. This 

formulation, the Eyring–Polanyi equation, states that the rate of a reaction is 

𝑘 = !!!
!
exp − !!!

!"
, where ∆GT is the transition state energy, h is Planck’s 

constant, kB is Boltzmann’s constant, R is the ideal gas constant, and T is the 

temperature. Catalysts speed reactions by lowering the transition state energy. 

Enzymes function as catalysts by binding to the transition state of a 

reaction (Creighton 1993). The classic model of this process is the Michaelis-

Menten reaction scheme: 𝐸 + 𝑆
𝑘!
↔
𝑘!
𝐸𝑆

!!"# 𝐸 + 𝑃, where E is the enzyme, S is the 

substrate, and P is the product. The initial rate of the S à P reaction with enzyme 

concentrations far less than the substrate concentration is 𝑘!"# 𝐸 !
!

!!! !
, where 

𝐾! = !!!!!"#
!!

. Thus, the enzymatic rate increases hyperbolically with substrate 

concentration. 
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Promiscuous	
  Enzymes	
  

As in the case of binding interactions, enzymes often have many 

substrates—not all of which are obviously productive to the cell. More 

intriguingly, many enzymes have been shown to be promiscuous, meaning that 

they perform alternative reaction chemistries (Khersonsky et al. 2010). This 

promiscuity is thought to result from minor conformations of the enzyme present 

in the cell (Meier et al. 2007; Nobuhiko Tokuriki et al. 2009). As in the case of 

binding interactions, evolution appears to only have engineered just enough 

specificity for the native conditions (Khersonsky et al. 2010)—enzymes often do 

not discriminate against unnatural ligands (Villiers et al. 2009). High specificity 

may also limit the performance of the enzyme (Fersht 1999); instead, nature often 

builds regulatory and proofreading mechanisms (Hopfield 1974; Ninio 1975) to 

ensure the specificity of enzymatic reactions. These side reactions have an 

important benefit, however: They provide biological systems with a backup 

system (Khersonsky et al. 2010) and flexibility in evolving new pathways (Jensen 

1976; Jacob 1977; Kurakin 2007), as described in detail later. 

Allosteric Regulation 

As discussed earlier, proteins can exist in multiple conformational states. 

These states can differ in their functional activity, such as binding affinity or 

catalytic rate. The regulation of which state a protein exists in is called allostery. 
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This regulation can occur through binding of another molecule or modification of 

the protein. In either case, the preferred state of the protein is perturbed through 

modulation of the folding free energy landscape of the protein. While this is most 

often thought of as triggering a change in shape of the protein, the configurational 

entropy (“dynamics”) of the protein can in principle be the sole change in the 

protein (A. Cooper et al. 1984), as experimentally observed recently (Popovych et 

al. 2006). The biophysical mechanisms connecting distant sites on a protein are 

not yet understood, but they can sometimes be predicted by studying co-

evolutionary patterns in protein families (Süel et al. 2003; Shulman et al. 2004; 

Dima et al. 2006; Smock et al. 2010).  

Classical	
  Models	
  

The classical models of allostery (Monod et al. 1965; Koshland et al. 

1966) were developed as an attempt to explain the observation of cooperative 

binding in hemoglobin (Bohr et al. 1904). Both models propose that protein 

subunits exist in either a tense or relaxed state, where the relaxed state has an 

increased affinity for the ligand. Ligand binding biases a subunit towards the 

tighter-binding relaxed state, and the conformation of the subunits is coupled. As 

a result, the apparent binding affinity of the protein oligomer increases as ligand 

binds, producing a cooperative binding curve which can be fit by the Hill 

equation: 𝑓!"#$% =
! !

! !!!!
! (Hill 1910). 
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Sequential	
  Koshland-­‐Nemethy-­‐Filmer	
  Induced	
  Fit	
  Model	
  

The Koshland-Nemethy-Filmer (KNF) induced fit model proposes that 

ligand binding induces the relaxed conformation in a subunit (Koshland et al. 

1966). The conformational change in the subunit then induces the neighboring 

subunits to switch to the relaxed conformation. As a result, a protein oligomer 

sequentially switches from being fully in the tense-conformation through a series 

of increasingly relaxed-conformation states to a final fully relaxed-conformation 

state. 

Concerted	
  Monod-­‐Wyman-­‐Changeaux	
  Model	
  

In contrast, the Monod-Wyman-Changeaux (MWC) model proposes that 

the protein oligomer is in a dynamic equilibrium between an all-tense and all-

relaxed state (Monod et al. 1965). Ligand binding selects for the initially minor 

all-relaxed state, resulting in an increasing proportion of the protein existing in the 

tight-binding all-relaxed state. 

Extension	
  to	
  Protein	
  Ensembles	
  

While the classical models were initially focused on two-state protein 

oligomers, the same principles apply to monomeric proteins and multi-state 

ensembles. The key idea is that the allosteric regulator must alter the free energy 

difference between some of the conformations, leading to a shift in which 
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conformations are populated (Kumar et al. 2000). Any functional change is 

mediated by change in the average activity of the ensemble. This is in principle 

the same as the classical MWC model (Cui et al. 2008). In fact, both classical 

models can be seen as special cases of a continuum of possible mechanisms 

coupling changes in conformation with a perturbation (Hammes et al. 2009). 

Because conformational ensembles are now recognized to be widely important in 

proteins, it has been proposed that all proteins have the capacity for allosteric 

regulation (Gunasekaran et al. 2004). 

The Role of Organization in Signaling 
In contrast with electrical circuits in which similar components can be 

specifically connected by electrical wiring, the fundamental components 

underlying biochemical systems—molecules—move and interact by diffusion, a 

random process. Yet, evolution is also faced with this challenge of creating 

distinct signaling pathways from the same type of molecules. This creates unique 

constraints in the design of biological networks. 

Limitations of Unorganized Intracellular Signaling 

A naïve view of the cell is that it is a bag of freely diffusing molecules, 

similar to the conditions used in biochemical experiments in test tubes but simply 

with many additional types of molecules present. Many reactions involve the 

interaction of two molecules; as a result, the rates of these reactions are limited by 
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the random diffusional encounter of the molecules. This turns out to be a major 

limitation for signal processing in cells. 

The dimensions of eukaryotic cells range from 10-100 µm, with 

considerable variation in morphology. The timescale for spatial equilibration of 

particles diffusing by Brownian motion scales as !
!

!!
 along the radius (r) of a 

sphere (Berg 1993), where D is the diffusion coefficient. Proteins and small 

molecules have diffusion coefficients on the order of 101 and 102 µm2/s, 

respectively. As a result, equilibration across a spherical cell with a radius of 5-50 

µm would take 0.4-40 s and 0.04-4 s for proteins and small molecules, 

respectively. Diffusion thus sets a lower bound on the timescale on which cells 

can process signals in the absence of organization. 

Diffusion also limits the processing capacity of a cell, since the number of 

independent signals that can be processed by the same molecular components is 

limited by their diffusional isolation. For a given timescale, the average radius 

which a signal diffuses in two dimensions is 4𝐷𝑡 (Berg 1993). We can then 

approximate the maximum number of diffusion-isolated spots on the cell 

membrane by dividing the surface area by the diffusion area: !!!!

! !!"
!, which 

simplifies to !
!

!"
. Using the same diffusion coefficients and range of cell sizes as 

before, the number of distinct second-timescale signals is 2.5-250 and 1-25 for 

proteins and small molecules, respectively. Thus, cells have a strong pressure to 
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develop mechanisms to control the diffusion of signals to improve their signal 

processing capabilities. 

Physical Compartmentalization 

One mechanism to overcome the limitations imposed by the diffusion of 

signals is to restrict signals to specific compartments. This can be accomplished 

physically by enclosing regions of the cell within membranes, as in the case of 

cellular organelles (Alberts et al. 2002) or cytoskeletal ‘fencing’ of molecules in 

the membrane (Sheetz et al. 1980; Sako et al. 1998). The end result of each 

approach is that the volume accessible to a signal by diffusion is significantly 

reduced. By placing signals in distinct compartments, cross-talk between 

pathways can be reduced, improving signaling fidelity. For example, dendritic 

spines (Shepherd 1996; R Yuste et al. 2000; Murakoshi et al. 2011; Rafael Yuste 

2011) and rhabdomeric microvilli (Howard et al. 1987; Hochstrate et al. 1990; S. 

R. Henderson et al. 2000) implement this strategy to act as independent 

computational units. Another example is the endocytic compartmentalization of 

Toll-like receptors, which is thought to limit recognition of self-nucleic acid and 

generate distinct signaling complexes (Barton et al. 2009). 

In addition to improving the specificity of a signal, compartmentalization 

should also affect signaling dynamics by concentrating molecules into a smaller 

volume. For first- and second-order reactions, the rate is proportional to the 
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concentration of the two species; compartmentalization thus increases the rate of 

reaction by the magnitude of the concentration increase. For zero-order reactions, 

a constant amount of product is generated independent of the concentration of 

reactant. In this case, compartmentalization serves to amplify the product 

concentration, since the volume of the space in which the product is created 

decreases. This is used to dramatic effect in muscle tissue, where rapid, high 

amplitude calcium signaling is achieved by restricting signaling to couplons, 

small regions of the cell where plasma-membrane bound ryanodine receptor 

clusters are separated from calcium channels on the smooth endoplasmic 

reticulum by just 12 nm (Cheng et al. 2008). Thus, compartmentalization can 

dramatically affect the amplitude and kinetics of signaling. 

Scaffolding 

An alternative to physical compartmentalization by membranes or 

diffusion barriers is to physically tether signaling molecules together on a 

scaffolding protein. This mode of organization has been recognized as a 

fundamental component of physiological signaling pathways for more than two 

decades (Good et al. 2011). The first scaffolding proteins identified included the 

non-enzymatic bacterial chemotaxis protein CheW (J. D. Liu et al. 1989) as well 

as receptor tyrosine kinase adaptor proteins (X. J. Sun et al. 1991), which couple 

diverse receptors with a shared intracellular downstream pathway. Scaffolds for 
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MAP kinase pathways were subsequently identified, revealing a role for 

scaffolding proteins in preventing cross-talk between related pathways (Kranz et 

al. 1994; K. Y. Choi et al. 1994; Marcus et al. 1994; Printen et al. 1994). The idea 

of scaffolding proteins as physiologically required connectors of upstream and 

downstream signaling components has been validated in many additional 

pathways. 

While scaffolding is conceptually similar to physical 

compartmentalization, it has distinct consequences for signaling. In analogy to the 

concentration increase by compartmentalization, scaffolding of two molecules 

reduces rotational entropy and increases their ‘local’ concentration (Page et al. 

1971) to the volume swept by the radius of gyration allowed by the scaffolding 

protein. This effect can be large: Protein-protein interactions occur on the 10 nm 

scale; a single molecule restricted to a sphere with a radius of 10 nm would have a 

concentration of 400 µM. Since most proteins are present in the 0.05-50 µM 

range in the cell, this results in a large increase in concentration and thus reaction 

speed. 

An important additional consequence is that individual scaffolding 

molecules and their bound proteins can often be thought of as functionally 

independent. In many cases, scaffolded molecules only interact with molecules on 

the same scaffold, as seen by biphasic concentration dependence of signaling 

output on scaffolding protein concentration (Dickens 1997; Levchenko et al. 
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2000; Chapman et al. 2009). This can dramatically alter the behavior of 

biochemical networks (Locasale et al. 2007) as the reactions gain a digital-like 

nature: scaffolds exist in a discrete set of states, with reactions within them 

probabilistically occurring as a function of the state of the scaffolding complex 

and environment. This is in stark contrast with the classical view of enzymatic 

signaling, in which enzymatic activity increases in an analog manner with 

increasing enzyme and substrate concentration and proceeds linearly with time. 

Scaffolding proteins are composed of modular protein interaction 

domains, suggesting that the evolutionary wiring of new signaling pathways may 

simply require the fusion of generic domains which interact with the desired 

proteins rather than the re-engineering of protein activities or interfaces 

(Bhattacharyya et al. 2006). Indeed, this modularity of signaling has been 

successfully employed in the design of synthetic signaling pathways; for example, 

the yeast growth factor scaffolding protein Ste5 can be functionally replaced in 

vivo with a scaffold composed of alternative protein interaction domains capable 

of effectively interacting with the appropriate partners (S.-H. Park et al. 2003). 

Spatially Inhomogeneous Signaling 

Alternatively, it is possible to dynamically compartmentalize signals by 

specifically localizing either the production or breakdown of a signal while 

keeping the opposing reaction randomly localized. This results in an 
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inhomogeneous distribution of the signaling molecule in the cell. There are many 

examples of the use of this in nature, particularly involving small molecule 

signals. 

The best studied example is Ca++ signaling. The concentration of Ca++ is 

~1.5 mM in the extracellular environment but only 50 nM inside the cell. As a 

result, when Ca++ channels open, there is a large, nearly diffusion-limited influx 

of Ca++ into a highly localized region of the cell. As the Ca++ ions diffuse away 

from the source, the concentration becomes progressively lower, resulting in a 

substantial signaling gradient ranging from ~100 µM near the channel where it is 

not in equilibrium with cytosolic buffers to the 50 nM resting state of the cell 

(Erwin Neher 1998). This provides an opportunity for ensuring specificity by 

placing molecules, such as calmodulin (Tadross et al. 2008), which only respond 

to higher Ca++ concentrations in the “nanodomain” near the channel, as 

exemplified by the regulation of K+ channels (Berkefeld et al. 2006) and synaptic 

vesicle release (Heidelberger et al. 1994; Schneggenburger et al. 2000; Beutner et 

al. 2001; Bollmann et al. 2005). 

Another well-studied example involves a family of scaffolding proteins 

known as A-kinase anchoring proteins (AKAPs), which co-scaffold protein kinase 

A (PKA) with regulatory molecules in particular locations within the cell (W. 

Wong et al. 2004). The enzyme adenylyl cyclase produces the diffusible small 

molecule cyclic adenosine monophosphate (cAMP) which activates PKA. As in 
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the case of local Ca++ signals, this results in a gradient of cAMP originating from 

the enzyme (Zaccolo et al. 2002), which in some cases is part of the AKAP 

complex (Dessauer 2009). By anchoring PKA to the zone of high cAMP, AKAPs 

can restrict PKA phosphorylation to local targets (Carnegie et al. 2003). The best 

studied example of this is the restriction of PKA activity in muscle cells to the 

local region of β-adrenergic stimulation (Zaccolo et al. 2002). 

All these signaling gradients share a common dynamical origin. These 

diffusible signals can be modeled by the partial differential equation !" !,!
!"

=

𝑟! 𝑥 − 𝑟!(𝑥)+ 𝐷∇!𝑆(𝑡, 𝑥), where S(t,x) is the diffusible signal as a function of 

time (t) and location (x), r+(x) and r-(x) are the influx and efflux rates which may 

be restricted to particular locations, and D is the diffusion coefficient for the 

signaling molecule. The shape of the steady-state signaling gradient is a function 

of the diffusion coefficient and the location of the influx sources and efflux 

“sinks” (Berg 1993). 

Noise 
While human-built systems must deal with noise, biological systems are 

particularly influenced by stochastic fluctuations (Eldar et al. 2010; Balázsi et al. 

2011). Noise in biological systems comes from many sources, including gene 

expression, translational bursts, binomial errors in sorting molecules during cell 

division, and biochemical reactions involving small numbers of molecules 
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(McAdams et al. 1999). This noise can be divided into two components: 

‘intrinsic’ noise which corresponds to the fundamental noisiness of the process 

and ‘extrinsic’ noise which is a result of cell to cell differences (Elowitz et al. 

2002). Elowitz et al. beautifully showed that in bacterial gene expression extrinsic 

noise dominates (Elowitz et al. 2002). As mentioned earlier, specific network 

topologies can suppress low or high frequency noise (S Mangan et al. 2003; 

Austin et al. 2006; Dublanche et al. 2006). Noise suppression is costly, 

however—the decrease in noise scales with the quartic root of the number of 

regulator molecules in the optimal case (Lestas et al. 2010). 

More interestingly, evolution often uses the noise in these systems to 

generate phenotypic diversity (Balázsi et al. 2011). For example, E. coli randomly 

switches between antibiotic sensitive and resistant phenotypes (Balaban et al. 

2004), B. subtilis uses noise to trigger a small fraction of cells to become 

transiently competent (Süel et al. 2006), and cancer cell subpopulations arise from 

stochastic cell fate decisions (Gupta et al. 2011). Phenotypic switching is thought 

to be an important strategy in a fluctuating environment in which the statistics of 

the environment change slowly (Kussell et al. 2005). 

The Robustness-Adaptability Paradox 
The final major unique feature of natural systems is that they arise from an 

evolutionary process (Jacob 1977): they are subject to random mutation and 

fluctuating selection pressures. This imposes two important design criteria on 
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biological systems. First, they must be robust to mutation, not easily breaking. 

Secondly, they must be able to readily adapt to new functional constraints. This 

creates an apparent paradox in building a system which is robust to most 

perturbations while at the same time retaining the ability to readily adapt to new 

requirements. 

Robustness of Biological Systems 

During each round of DNA synthesis, mutations accumulate at a 

frequency that varies among organisms but typically ranges from 10-10 to 10-7 

mistakes per nucleotide per generation (Kunkel et al. 2000). One could imagine 

many designs would not be able to tolerate even a single change; these are non-

robust designs. For example, randomly cutting wires inside a television is likely to 

break the device. In contrast, it is possible to design robust systems such that 

many random changes have little or no effect. 

Mutational	
  Tolerance	
  in	
  Proteins	
  

A naïve reaction to a typical protein structure, with its tightly packed 

interactions between amino acids with different chemical properties, would be to 

assume that most mutations would be likely to have a large effect. Surprisingly, 

this is not the case. A classic series of studies on the interaction of the human 

growth hormone receptor with growth hormone showed that only a small, non-
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obvious fraction of the residues at the interface contributed to binding (B. C. 

Cunningham et al. 1993; Clackson et al. 1995). These findings have been 

replicated in many other systems, leading to the view that most mutations in 

proteins have only a small energetic effect which can be tolerated as long as the 

overall protein stability is above a threshold (DePristo et al. 2005; Bershtein et al. 

2006). Two unpublished studies within the Ranganathan lab have 

comprehensively investigated the functional and fitness consequences of mutation 

of every residue of two proteins, finding that indeed, very few positions have a 

significant effect under conditions of weak to moderate selection (McLaughlin et 

al.; Stiffler and Ranganathan). 

Robustness	
  to	
  Parameter	
  Perturbations	
  in	
  Dynamical	
  Systems	
  

Robustness is also seen at the level of biochemical networks. It has long 

been recognized that most wild-type alleles are haplosufficient, indicating that 

reducing gene expression by half has no functional consequence. Using a clever 

genetic tool, Moriya et al. were able to show that most genes involved in the yeast 

cell cycle could tolerate a more than 25-fold increase in copy number (Moriya et 

al. 2006). This robustness to gene dosage can arise from mathematical properties 

of the reaction network (Shinar et al. 2010) or the use of particular network 

topologies (Acar et al. 2010; Bleris et al. 2011). 
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The more general case of parameter robustness is a common feature of 

models of biological systems (Gutenkunst et al. 2007), first shown theoretically 

(N Barkai et al. 1997) and experimentally (U Alon et al. 1999) in the bacterial 

chemotaxis system. Typically, the interesting properties of signaling systems 

(stable steady-state, bistability, oscillations) are directly related to their dynamical 

properties. In many systems which have been studied, the dynamical behavior is 

only sensitive to a small number of ‘control’ parameters which can trigger 

bifurcations in the dynamics; robustness can be quantified by the range of 

parameters that do not perturb the dynamics (L. Ma et al. 2002; Morohashi et al. 

2002). An extreme example of robustness is the temperature compensation 

observed in metabolism (Bullock 1955), circadian clocks (Hogenesch et al. 2011), 

and bacterial chemotaxis (Oleksiuk et al. 2011). Temperature globally alters 

reaction rates, and thus the reaction network must be carefully balanced to ensure 

robustness (Hastings et al. 1957). These findings suggest that robustness is a 

fundamental design principle of natural biochemical networks. In fact, robustness 

has been used as an argument for the validity of biological models (Morohashi et 

al. 2002). 

Phenotypic	
  Canalization	
  

Finally, the seemingly complex development of multicellular organisms is 

surprisingly robust to perturbation. While disruption of individual steps may have 
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particular consequences, the overall final structure of an organism is often 

maintained and remarkably reproducible (A. D. Lander 2011). In 1942, 

Waddington coined the term “canalization” to describe this effect by which a 

system is seemingly channeled into a particular phenotype despite genetic 

variation (Waddington 1942). More recent studies have shown that this robustness 

is in part due to the use of the particular network topologies (Eldar et al. 2002; 

Melen et al. 2005; W. Ma et al. 2006; Sprinzak et al. 2011), strategies such as 

spatial filtering (Houchmandzadeh et al. 2002), and the same feedback control 

mechanisms found in intracellular signaling pathways (A. D. Lander et al. 2009; 

Lo et al. 2009; Ben-Zvi et al. 2010). 

Adaptability 

The flip side to robustness is adaptability, the ability of systems to adapt to 

new functional constraints. Not all systems are adaptable—as explained in the 

previous section, it is possible to design systems to be highly robust so that 

perturbations have little functional effect. In many ways, a highly non-robust 

system can be considered as adaptable, since perturbations to them do lead to 

large functional effects. The trick is to design systems to be rapidly adaptable 

while remaining robust to most perturbations. Kirschner and Gerhart have argued 

that this is accomplished by highly constraining certain core functions while only 
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weakly constraining regulatory features (M. Kirschner et al. 1998; Gerhart et al. 

2007). 

Functional	
  Diversity	
  in	
  Proteins	
  

As explained earlier, individual proteins often are functionally diverse, 

binding alternative targets with a low probability or slowly catalyzing alternative 

reactions (Khersonsky et al. 2010). These promiscuous reactions have long been 

recognized as providing a way of rapidly selecting for novel functions (Jensen 

1976), but now the molecular mechanisms behind them are becoming clear 

(Khersonsky et al. 2010). Promiscuity can occur as a result of binding of ligands 

or substrates to alternative conformations of a protein (L. C. James et al. 2003; C. 

J. Jackson et al. 2009), or in principle due to altered regulation since some 

enzymes do not discriminate very well between related substrates (Zhou 

Songyang et al. 1995; Tremblay et al. 2006). They often do not interfere with the 

primary function of a protein, so they are not removed by natural selection 

although neutral drift can alter the spectrum of promiscuous activities (Bloom et 

al. 2007). However, when a new function is needed, a promiscuous activity of a 

protein may become useful. While the formerly promiscuous reaction is likely 

very inefficient, multiple studies have shown that proteins can rapidly adapt to the 

new constraints through improvement of the reaction by stepwise mutation 
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(Weinreich et al. 2006; Bloom et al. 2009) as long as the protein is sufficiently 

stable (DePristo et al. 2005). 

Genetic	
  Variation	
  in	
  Populations	
  

Natural selection acts on pre-existing genetic variation. Therefore, when a 

system adapts to new constraints, the rate of evolution is in part limited by the 

existence of genetic variation capable of producing the desired phenotype. 

Extensive studies on traits from multiple organisms governing life history, 

behavior, physiology, and morphology that quantitatively vary in populations 

have found that nearly all of them have significant heritability (Figure 3a) 

(Mousseau et al. 1987; Roff et al. 1987). This indicates that natural populations 

have significant genetic variability that is also selectable. These quantitative traits 

are influenced by many loci with small effect sizes that are exponentially 

distributed (Figure 3b) (Flint et al. 2009). This extensive genetic diversity is not 

surprising if most mutations are nearly neutral (Kimura 1991), as expected given 

the general robustness of biological systems. 
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Figure 3: Genetic Variation in Natural Populations 

(a) The cumulative probability distribution of the heritability of 1120 quantitative traits from 
multiple organisms, classified as life history (L), behavior (B), physiology (P), or morphology 
(M). Adapted from Figure 3 of (Mousseau et al. 1987) with permission. (b) The effect size, 
measured as allelic odds ratio, of alleles identified in genome-wide association studies in humans. 
Note that these studies are unlikely to detect alleles with very small effect sizes. Adapted from 
Figure 1 of (Flint et al. 2009) with permission. 

The	
  Role	
  of	
  Epistasis	
  in	
  Shaping	
  Genetic	
  Variation	
  

Because most aspects of an organism are under strong constraints, pre-

existing genetic variation often is limited to small phenotypic changes (Kimura 

1991; Flint et al. 2009). However, much more phenotypic diversity is seen when 

genetic variation is combined. For example, mutant alleles in mice frequently 

have very different phenotypes in different inbred strains (Threadgill et al. 1995). 

This type of genetic interaction is known as epistasis, which was quantitatively 

defined by Fisher as a non-additive statistical interaction between two quantitative 

trait alleles (Fisher 1918). Epistasis can arise from several mechanisms, including 
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genetic redundancy, mutual participation in a common pathway, and genetic 

buffering (Lehner 2011). 

The intriguing finding is that nature actively uses epistasis to modify 

phenotypic diversity. A particularly well-studied example is the chaperone protein 

Hsp90. Under normal conditions, Hsp90 suppresses the effect of mutations in 

many proteins involved in signaling pathways (Neckers 2007). When an organism 

encounters stressful conditions, however, Hsp90 no longer buffers the effects of 

these mutations (Jarosz, Taipale, et al. 2010), revealing the phenotypic diversity 

that was previous suppressed (Jarosz and Lindquist 2010). If these novel 

phenotypes are beneficial in the stressful environment, they can now be rapidly 

selected (Jarosz, Taipale, et al. 2010). 

Another fascinating example is the idea of morphological integration. 

Ideally, the phenotypes of an evolving system should be decomposable into 

modules which co-vary according to the selection pressures of the environment 

(G.P. Wagner et al. 1996). Epistasis allows this by coupling the effect of changes 

at different loci (G.P. Wagner et al. 1996). A mouse study used quantitative trait 

mapping to look for loci which modify the relationship between morphological 

characteristics (Cheverud et al. 2004). They found numerous genes which altered 

the coupling between phenotypes, suggesting that evolution can indeed select for 

systems with phenotypes which can be varied modularly (Cheverud et al. 2004). 
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Epistatic interactions have also been shown to be important during laboratory 

evolution of bacterial populations (H.-H. Chou et al. 2011; Woods et al. 2011). 

Conclusions 
The pursuit of evolutionary design principles in biological systems has 

been very fruitful. Like human-built systems, natural systems are characterized by 

the use of structured networks to achieve particular dynamical behaviors. 

Furthermore, these systems exhibit features of modular design and optimization. 

However, biological systems also have unique properties, and the evolutionary 

process imposes particular constraints in the design of systems. As Dobzhansky 

stated, “nothing makes sense in biology except in the light of evolution.” 

(Dobzhansky 1964) 

It is clear from the current state of research that the function of particular 

systems can be well understood within the current theoretical framework given 

sufficient experimentation and analysis. The danger is that as researchers begin to 

tackle larger, more complicated systems the clarity of the design principles is lost. 

The greatest challenge now is to move from applying engineering principles to the 

function of particular natural systems and instead search for novel design 

principles unique to biology. 
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CHAPTER TWO 

The Drosophila Photoreceptor Cell as a Model 

of High-Performance Signaling 

Drosophila phototransduction is an excellent system for investigating the 

design principles of signaling. Due to their critical role in organismal fitness, 

sensory signaling systems such as phototransduction often exemplify the most 

advanced aspects of signaling, using multiple layers of regulation and performing 

sophisticated signal processing tasks. For example, Drosophila phototransduction 

is thought to be the fastest G protein signaling system, and it offers single photon 

sensitivity while retaining the capability to adapt to bright daylight conditions 

(Roger C. Hardie and P. Raghu 2001). In addition, both the morphology (Land et 

al. 1992) and physiology (Gonzalez-Bellido et al. 2011) of fly eyes are highly 

adapted to the ecological niche of the organism. Even within the fly eye, the 

physiology of photoreceptor cells vary, with cells in the front of the eye 

responding faster and with better signal to noise (Burton et al. 2011). 

From a practical perspective, the Drosophila photoreceptor cell offers 

unparalleled experimental power: Drosophila allows for the use of powerful 

genetic approaches which enable the identification of the genes underlying a 

process and the precise control and manipulation of the genetic background. It is 
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also possible to do biochemical experiments either directly from tissue 

homogenates or using recombinant proteins, as the genome is sequenced. Finally, 

multiple techniques exist for studying the cellular physiology and behavior of the 

organism. In this chapter, I will outline some of the details of this powerful 

system and the principles which enable its high performance. 

Invertebrate Vision 

Features of the Eye 
Each Drosophila compound eye (Figure 4) contains 800 ommatidia, the 

bundles of photoreceptor cells which are the “unit” eyes (D F Ready et al. 1976). 

In Drosophila, each ommatidium contains 8 photoreceptor cells with 6 (R1-R6) 

arranged radially around two central cells (R7-R8) stacked on top of each other  

(D F Ready et al. 1976). Each cell sees a different angle of incoming light which 

varies depending on the relative location in the eye (Borst 2009). Cells which see 

the same incoming angle of light then connect to the same postsynaptic target in 

the neural lamina below the retina, an approach known as neural superposition (K 

Kirschfeld 1967). The end result is that each eye can see 180 degrees with 4.6 

degree resolution represented as a 26 x 26 pixel image (Borst 2009). In contrast, 

human eyes have 60,000 cones, providing 0.01 degree spatial resolution (Borst 

2009). 
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Figure 4: Overview of the Drosophila Eye 

(a) An scanning electron microscope image of a Drosophila eye. (b) A cross section through the 
eye, revealing ommatidia with prominent rhabdomeres (dark circles). (c) Each ommatidium 
contains 8 photoreceptor cells, a schematic of which is shown. The rhabdomere contains 30,000 
microvilli running down the length of the cell. Panels (a) and (b) reproduced from (D F Ready et 
al. 1976) with permission. 

Microvillar Photoreceptor Cells 
During metazoan evolution, two types of photoreceptor cells arose: 

microvillar and ciliary photoreceptor cells (Fain et al. 2010). Microvillar 

photoreceptors, which are used in Drosophila, contain a specialized light-sensing 

organelle known as the rhabdomere (Figure 4). Rhabdomeres contain tightly 

packed microvilli 50-60 nm in diameter and 0.5-2 µm in length (Fain et al. 2010). 

Drosophila rhabdomeres specifically contain 30,000 microvilli which range from 

1-1.5 µm in length (Roger C. Hardie 1985). Each microvillus contains the core 

components of the visual machinery (Roger C. Hardie and P. Raghu 2001) and 

thus is thought to act as a semi-autonomous light detector (Hochstrate et al. 1990). 

Microvillar photoreceptor cells are capable of producing large, rapid 

responses to single photons while maintaining low noise in the dark. They also 
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function under bright conditions, with the maximum range determined by the 

number of transduction units (microvilli, at least in the case of Drosophila) and 

the speed of the response (Fain et al. 2010). Drosophila can maximally produce 

~4 x 105 responses/s (C. F. Wu et al. 1978). This high performance comes at a 

considerable metabolic cost (Simon B Laughlin et al. 1998). 

In contrast, ciliary photoreceptors such as vertebrate cone cells are not 

capable of detecting single photons and have a far more limited dynamic range 

(Fain et al. 2010). Rod cells provide single photon sensitivity and low variability, 

but their responses are an order of magnitude slower and smaller than microvillar 

photoreceptors and saturate under low light conditions (Fain et al. 2010). 

However, the dual strategy of using high-sensitivity rods and low-sensitivity 

cones greatly reduces the metabolic cost in comparison with single purpose 

microvillar photoreceptor cells (Fain et al. 2010). 

Electrophysiological Response to Light 
In response to light, Drosophila photoreceptor cells produce an inward 

current (Figure 5) carried primarily by Na+ and Ca++ ions (Rama Ranganathan et 

al. 1991). There are several experimental paradigms that have been used to study 

this light-induced current: Electroretinograms (ERGs), which measure the total 

voltage response of eye to light, are easy to perform and useful for screening flies 

for visual defects but are difficult to interpret. Intracellular recordings provide 

single-cell electrical resolution but do not allow the electrical state of the cell or 
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external environment to be controlled and are difficult to do on small flies. 

Whole-cell patch-clamped electrophysiological recording from single ommatidia 

is a very sensitive technique which provides single-cell resolution and the ability 

to control the chemical composition of both the inside and outside of the cell. It is 

this technique which has provided the most useful information about the 

properties of the light response. 

Impulse Response 

An advantage of studying the visual system is that light is a convenient 

stimulus. Using a nanosecond-long laser pulse, it is possible to provide an 

effective delta stimulus to the photoreceptor cells and watch the impulse response 

(Figure 5a-b). Furthermore, it is possible to detect single-photon responses, 

known as quantum bumps (C. F. Wu et al. 1975), by recording under low-noise 

conditions with the light source sufficiently dim to produce responses with 

Poisson statistics (Figure 5a). 

This approach revealed that the quantum bump is characterized by a 

stochastic latency of ~50 ms followed by a transient current of ~10 pA amplitude 

and ~20 ms duration (S. R. Henderson et al. 2000). Quantum bumps sum linearly 

up to at least 1000 effective photons, producing the macroscopic response whose 

dynamics can be predicted by convolving the quantum bump latency and shape 
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(S. R. Henderson et al. 2000). Each quantum bump is thought to correspond to 

activation of a single microvillus (Hochstrate et al. 1990). 

Steady-State Response 

During prolonged illumination, the light response dramatically adapts, 

reducing the steady-state current (C. F. Wu et al. 1978) (Figure 5c). As with the 

macroscopic response, the steady-state current represents the sum of many 

unsynchronized quantum bumps (Dodge et al. 1968; C. F. Wu et al. 1978). The 

statistics of the underlying quantum bumps can be estimated using an approach 

known as fluctuation or ‘noise’ analysis. 

Noise analysis is based on Campbell’s theorem, which applied to the light 

response (Dodge et al. 1968; C. F. Wu et al. 1978) proposes that the observed 

steady-state current, I(t), is composed of N quantum bumps described by the time-

dependent function IQB(t) happening at times tk: 𝐼 𝑡 = 𝐼!" 𝑡 − 𝑡!!
!!! . The 

mean of this process is 𝜇 = 𝐼(𝑡) = 𝜆 𝐼!" 𝑡 𝑑𝑡!
!! , where λ is the frequency of 

events, and the variance is 𝜎! = 𝜆 𝐼!"! 𝑡 𝑑𝑡!
!! . Note that the mean can be 

thought of as the product of the effective amplitude (a) and duration (T) in the 

case of a rectangular pulse. The effective amplitude of the underlying responses 

can be estimated by the ratio of the variance to the mean, !
!

!
=

!!"
! ! !"!

!!
!!" ! !"!

!!
= 𝑎, 

which is independent of the frequency of events. The duration of the quantum 
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bump can be estimated by fitting the power spectrum of the steady-state response 

to the Fourier transform of an analytical function that fits the quantum bump 

shape, 𝐼!"(𝑓)
! = Γ 𝑓;𝑛, 𝜏 ! = !

!! !!"# ! !!! where the effective duration is 

𝑇 = !! !!!!!!

!! !
𝜏. 

This analysis revealed that the rate of quantum bumps increases linearly 

with light intensity until saturating at ~4 x 105 bumps/s (C. F. Wu et al. 1978) 

(Figure 5d). Since there are ~30,000 microvilli per photoreceptor (Roger C. 

Hardie 1985), this represents a minimal turnover time of ~150 ms. The large 

discrepancy between this rate limit and the duration of the quantum bump is due 

to the refractory period which follows each quantum bump (Hochstrate et al. 

1990). The refractory period can be directly observed in arr23 flies, in which 

single photon absorption leads to prolonged activation of the light response and a 

train of quantum bumps (K. Scott et al. 1997) separated by a highly stochastic 

~175 ms delay (C.-H. Liu et al. 2008). 

Adaptation 

The light response adapts on both fast and slow timescales. Within 

seconds of constant light exposure, the light response amplitude greatly decreases 

(Figure 5c). Noise analysis revealed that both the quantum bump amplitude and 

duration decrease from 9 to ~0.1 pA and 30 ms to 5 ms, respectively, with 

increasing light intensity during this short period (C. F. Wu et al. 1978; M. 
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Juusola et al. 2001). After tens of minutes of light exposure, the sensitivity of the 

cell to light decreases due to a reduced efficiency of generating quantum bumps 

(Frechter et al. 2007). 
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Figure 5: The Response to Light 

(a) The stochastic response to single photons, known as quantum bumps. The light stimulus is 
applied at the dashed line. The latency is highlighted in green and refractory period in red. (b) The 
macroscopic response to bright stimuli represents the sum of many quantum bumps. The light 
stimulus is applied at the dashed line. (c) The response to sustained light stimuli with the indicated 
relative logarithmic light intensity shows ringing and adaptation. (d) The steady-state under 
constant light stimuli represents the sum of many unsynchronized quantum bumps. The rate of 
quantum bump generation as a function of light stimulus is shown. Panels (c) and (d) are taken 
from (C. F. Wu et al. 1978) with permission. 
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The Drosophila Phototransduction Signaling 
Network 

Overview 
The biochemical pathway underlying the response to light was primarily 

worked out in the 1980s and 1990s using the powerful genetic tools available in 

Drosophila. An overview of the pathway is shown in Figure 6. Light is detected 

by a G-protein coupled receptor, rhodopsin (NinaE), which signals through the 

GQ class of heterotrimeric G proteins to activate phospholipase C (PLC, NorpA). 

Phospholipase C hydrolyzes PIP2 in the membrane, releasing IP3, diacylglycerol 

(DAG), and protons. This causes Trp and Trpl channels to open due to loss of 

inhibition by PIP2 and activation by protons. Ca++ influx through the Trp channels 

mediates several feedback pathways: It increases the activation of Trp channels 

through an unknown mechanism. In conjunction with DAG, Ca++ activates 

protein kinase C (InaC), which inhibits the Trp channels and is required for 

generating the refractory period. Finally, Ca++ activates calmodulin (CaM), which 

inactivates the channels and activates the myosin NinaC which accelerates the 

inactivation of rhodopsin by Arr2. 
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Figure 6: Overview of the Phototransduction Pathway 

Arrows indicate the flow of information. Normal arrowheads indicate stimulation; flat arrowheads 
indicate inhibition. Positive and negative feedback are indicated in green and red (dashed), 
respectively. 

Detection of Light 

Rhodopsins	
  

Light is detected by rhodopsin, which in insects converts to a red-shifted 

active species known as metarhodopsin upon absorption of a photon (William L 

Pak et al. 1974; Ostroy et al. 1974). There are four rhodopsins in Drosophila: The 

R1-R6 photoreceptors express the blue-light sensitive Rh1 (ninaE) which 

converts between a 480 and 580 nm absorbing species (Ostroy et al. 1974; 

William L Pak et al. 1974; W. a Harris et al. 1976; Zuker et al. 1985). The R7 
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photoreceptors express one of two ultraviolet-sensitive rhodopsins, Rh3 and Rh4, 

which convert from a 370 to 470 nm absorbing species (W. a Harris et al. 1976; 

Montell et al. 1987; Zuker et al. 1987). Finally, the R8 cells express the blue-light 

sensitive Rh2 rhodopsin (W. a Harris et al. 1976; A. F. Cowman et al. 1986). 

Metarhodopsin promotes GTP exchange in a GQ heterotrimeric G protein (dgq) in 

the photoreceptor cell (Devary et al. 1987; Y. J. Lee et al. 1994). 

Inactivation	
  of	
  Metarhodopsin	
  

Metarhodopsin is inactivated by the binding of Arr2, which prevents 

activation of dGq (Byk et al. 1993) and is the rate-limiting step in termination of 

signaling (PJ J. Dolph et al. 1993; R Ranganathan et al. 1995). Arr2 is initially 

localized to the endoplasmic reticulum in the cell body and translocates to the 

rhabdomere (Kiselev et al. 2000) on a ~90 s timescale, which speeds up by ~10-

fold in the presence of Ca++ (Satoh et al. 2010). Ca++/calmodulin also provides 

rapid feedback inhibition on metarhodopsin by regulating the availability of Arr2 

through a mechanism which potentially involves NinaC (C.-H. Liu et al. 2008). 

Metarhodopsin is phosphorylated on its C-terminus by an unidentified rhodopsin 

kinase (Y N Doza et al. 1992). This phosphorylation is required for internalization 

of metarhodopsin by Arr1 (Satoh et al. 2005). Camk2 phosphorylates both Arr1 

and Arr2 (Hiroyuki Matsumoto et al. 1982, 1984; Yamada et al. 1990; H. 

Matsumoto et al. 1994), releasing them from rhodopsin (Alloway et al. 1999). 
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Finally, Ca++/calmodulin stimulates dephosphorylation of rhodopsin by RdgC 

(Byk et al. 1993; Vinós et al. 1997). Feedback by Ca++ plays an important role in 

controlling the lifetime of metarhodopsin: The presence of Ca++ decreases its 

lifetime from >900 ms to <50 ms (C.-H. Liu et al. 2008). 

 

Figure 7: Rhodopsin Cycle 

The reactions controlling the activation and inactivation of rhodopsin are shown. Red arrows 
indicate negative feedback. R: Rhodopsin, M: Metarhodopsin, hv: photon, superscript *: active 
species, subscript P: phosphorylation, LIC: light-induced current, rhab: rhabdomere. 
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Transduction and Amplification 

Activation	
  and	
  Positive	
  Feedback	
  

Each metarhodopsin activates a few GQα subunits (Devary et al. 1987; Y J 

Lee et al. 1990; Y. J. Lee et al. 1994; K. Scott et al. 1995; Roger C. Hardie et al. 

2002), the major source of amplification in the pathway (Roger C. Hardie et al. 

2002). The active GQα-GTP subunits then activate approximately five NorpA 

proteins by physical association (Devary et al. 1987; Mitchell et al. 1995; 

Running Deer et al. 1995; M Bähner et al. 2000; Roger C. Hardie et al. 2002). 

Active NorpA rapidly hydrolyzes PIP2 in the rhabdomere (Yoshioka et al. 1983, 

1985; Devary et al. 1987; Inoue et al. 1988; Toyoshima et al. 1990; Running Deer 

et al. 1995; Roger C. Hardie et al. 2004), leading to activation of Trp and Trpl 

channels (Alwai et al. 1972; Paj et al. 1976; J. Huang et al. 2010). Channel 

activation appears to involve a threshold level of NorpA activity (Pumir et al. 

2008), as defects in GQα or NorpA activity can be rescued by modulating 

phosphoinositide metabolism through genetic or biochemical mechanisms (Roger 

C. Hardie et al. 2002). These steps represent the latency phase of the quantum 

bump as modulation of them strongly affects the latency distribution. NorpA may 

also be a target of feedback by Ca++, as it has a bell-shaped dependence on Ca++
 in 

vitro with peak activity around ~1 µM (Inoue et al. 1988; Toyoshima et al. 1990; 

Running Deer et al. 1995; Mitchell et al. 1995). 
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Inactivation	
  and	
  Negative	
  Feedback	
  

The inactivation of these molecules is tightly controlled. In addition to its 

phospholipase activity, NorpA acts as a GTPase-accelerating protein (GAP) for 

GQα (Chidiac et al. 1999; Cook et al. 2000), an activity which is required for 

efficient termination of the light response (T. Wang et al. 2008; Waldo et al. 

2010). In addition, Gβe exists in a two-fold excess over GQα (Elia et al. 2005), 

allowing it to suppress dark noise due to spontaneous GQα activation and ensure 

efficient termination of signaling (P. J. Dolph et al. 1994; Elia et al. 2005). 

Finally, a study which manipulated Ca++ levels via the Na+/Ca++ exchanger in vivo 

found that NorpA phospholipase activity was suppressed with an IC50 of 76 µM in 

a partly InaC-dependent manner, suggesting that NorpA is a target of negative 

feedback (Gu et al. 2005). This is important for ensuring that PIP2 is not depleted 

(Roger C. Hardie, P. Raghu, et al. 2001), as it is a limiting factor for the quantum 

bump amplitude (L. Wu et al. 1995) and is resynthesized on a minute timescale 

(Roger C. Hardie et al. 2004). 

Adaptation	
  

In response to prolonged visual signaling from metarhodopsin (Kosloff et 

al. 2003; Cronin et al. 2004), a fraction of GQα proportional to the light stimulus 

(Cronin et al. 2004) is translocated to the cell body within approximately 5 

minutes (Kosloff et al. 2003; Cronin et al. 2004). It returns to the rhabdomere 
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within 1 hour (Cronin et al. 2004) through a mechanism which requires Gβe 

(Frechter et al. 2007) and is sped up by the motor protein NinaC (Cronin et al. 

2004; Frechter et al. 2007). This represents a form of adaptation as it decreases 

the sensitivity of the photoreceptor cells to light (Frechter et al. 2007). 

 

Figure 8: Transduction and Amplification 

The reactions which transduce and amplify the signal from metarhodopsin (M*) to the light-
induced current (LIC) are shown. Normal arrowheads indicate activation or stimulation, flat 
arrowheads indicate inhibition. Positive feedback is shown in green, negative feedback in dashed 
red. Asterisks indicate active species. 

Output 

Light-­‐Induced	
  Channels	
  

Visual signaling leads to the opening of cation channels (Rama 

Ranganathan et al. 1991) formed from the Trp and Trpl proteins (Roger C. Hardie 
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et al. 1992; A. M. Phillips et al. 1992; B. A. Niemeyer et al. 1996). These 

channels are thought to be composed of non-rectifying Trp homomultimers which 

are highly permeable to Ca++ (Roger C. Hardie et al. 1992), outwardly-rectifying 

Trp/Trpl heteromultimers which are also highly permeable to Ca++ (X. Z. Xu et al. 

1997), and outwardly-rectifying Trpl/Trpγ heteromultimers which are not very 

selective for Ca++ (Roger C. Hardie et al. 1992; X. Z. Xu et al. 2000). 

Activation	
  of	
  the	
  Trp	
  Channels	
  

Initially the channels were thought to be controlled by a Ca++ store-

operated mechanism, as is typical for phosphoinositol signaling (Roger C. Hardie 

1996a). However, much if not all of the light-induced Ca++ increase is carried by 

extracellular Ca++ (Asher Peretz, Sandler, et al. 1994; A Peretz, Suss-Toby, et al. 

1994; Rama Ranganathan et al. 1994; Roger C. Hardie 1996b) and deletion of the 

IP3 receptor which is required for the canonical store-operated mechanism has no 

effect on signaling (P. Raghu, N. J. Colley, et al. 2000). Genetic studies indicate 

the activator of the channel is generated downstream of the phospholipase NorpA 

(Paj et al. 1976) and upstream of the DAG lipase RdgA (P. Raghu, Usher, et al. 

2000; Roger C. Hardie et al. 2003). The current model is that the channels are 

activated by NorpA-mediated depletion of inhibitory PIP2 and release of protons 

(J. Huang et al. 2010). 
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Light-­‐Induced	
  Ca++	
  Influx	
  

In addition to providing the electrical output of the pathway, channel 

opening results in a large increase in cytosolic Ca++. The concentration of Ca++ 

rises from hundreds of nanomolar (Roger C. Hardie 1996b) to approximately 600 

µM under dark-adapted conditions and 50 µM under light-adapted conditions in 

the rhabdomere (J. Oberwinkler and Stavenga 2000) and spreads into the cell 

body (Rama Ranganathan et al. 1994). This large Ca++ influx is removed by the 

Na+/Ca++ exchanger CalX (B Minke et al. 1984; Schwarz et al. 1997; T. Wang et 

al. 2005) which is also in the rhabdomere (Johannes Oberwinkler and Stavenga 

2000; T. Wang et al. 2005). 

Feedback	
  by	
  Ca++	
  

This influx of Ca++ is critical for the rapid kinetics of the response to light 

as it controls both positive and negative feedback of the macroscopic response 

(Rama Ranganathan et al. 1991) and quantum bump (S. R. Henderson et al. 

2000). Ca++ can act directly, as is likely the case for positive feedback on NorpA 

(Inoue et al. 1988; Toyoshima et al. 1990; Running Deer et al. 1995; Mitchell et 

al. 1995). There are also two major negative feedback pathways activated by 

Ca++: the protein kinase C InaC (Rama Ranganathan et al. 1991; Smith et al. 

1991) and calmodulin (CaM) (K. Scott et al. 1997). In addition to the feedback 

targets described earlier, the channels themselves are direct targets of positive and 
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negative feedback (R C Hardie et al. 1994; Roger C. Hardie 1995) through an 

InaC-independent mechanism (Gu et al. 2005). At least in the case of Trpl, CaM 

is responsible for the negative feedback (K. Scott et al. 1997). 

Ca++-­‐Mediated	
  Adaptation	
  

Ca++ increases in the cell body nearly linearly with the rate of quantum 

bump generation up to at least 20 µM (Johannes Oberwinkler et al. 1998). This 

pool of Ca++ changes with second-timescale dynamics (Rama Ranganathan et al. 

1994), providing a mechanism for integrating signaling activity over long 

timescales. Adaptation is associated with decreased quantum bump amplitude (C. 

F. Wu et al. 1978; Johnson et al. 1986), which is likely caused largely by Ca++-

mediated decreased channel conductance (Gu et al. 2005). Ca++ also mediates 

light adaptation by triggering the translocation of Trpl out of the rhabdomere on a 

second timescale (Monika Bähner et al. 2002; Richter et al. 2011). 
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Figure 9: Activation and Regulation of Trp Channels 

The reactions which activate and regulate the Trp channels are shown. Normal arrowheads 
indicate activation or stimulation, flat arrowheads indicate inhibition. Positive feedback is shown 
in green, negative feedback in dashed red. Asterisks indicate active species. 

Dynamical Behavior 
Pumir et al. analyzed the quantum bump using an ordinary differential 

equation model (Pumir et al. 2008). The model included activation of G proteins 

by rhodopsin, activation of NorpA by G proteins, generation of an unspecified 

activator molecule by NorpA which cooperatively activates the channels, influx 

of Ca++ ions which cooperatively increases the activation of the channels and is 

integrated by Ca++ buffers which cooperatively increase the inactivation of 

metarhodopsin, NorpA, the activator molecules, and the channels. The model was 

simulated using the Gillespie algorithm (Gillespie 1976) to account for the 

observed stochastic features of the system. 
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The 18 model parameters were estimated by fitting the statistical 

properties of simulated quantum bumps to experimentally-determined properties 

of wild-type quantum bumps. Specifically, the ratio of the half-width of the 

quantum bump to the time to peak, the average quantum bump shape, coefficient 

of variation of the amplitude, the number of NorpA molecules activated, and the 

smaller amplitude in the absence of Ca++ feedback were constrained. The model 

was then tested for the ability to explain the quantum bump properties of arr23 

and dgq1 flies. 

The model revealed that the phototransduction system acts as a relaxation 

oscillator which under normal conditions inactivates itself after one oscillation. 

The refractory period is a result of the slowly-decaying negative feedback by the 

Ca++ buffers whose molecular identity was not specified in the model. The model 

also explained that quantum bumps are suppressed in the absence of 

metarhodopsin because there is a dynamic threshold of NorpA activity required to 

generate quantum bumps. These insights still need to be experimentally tested. 

While the use of generic terms to describe the activator of the channels, 

the channels, and the negative feedback mediators simplified the equations 

underlying the model, it also means that these parts of the model may not be 

accurate and do not provide as much insight. For example, the model proposes 

that Ca++ is integrated by a buffer, but this is probably only a good description of 

negative feedback by calmodulin which exists in high concentrations in the 
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rhabdomere. InaC, in contrast, is part of the InaD scaffold and thus is probably 

better thought of as being discretely on or off on each scaffold. Furthermore, 

several of the feedback reactions, such as the negative feedback on the activator 

molecules and metarhodopsin, were included in the model out of necessity rather 

than prior knowledge. This provides useful predictions which can be 

experimentally tested, but again may represent areas in which the model is 

incorrect. Subsequent to the publication of this model, however, Roger Hardie’s 

group showed that there is negative feedback on metarhodopsin through 

calmodulin-mediated release of Arr2 from NinaC (C.-H. Liu et al. 2008). 

Scaffolding by InaD 
Within the rhabdomere, the scaffolding protein InaD organizes several 

components of the visual signaling pathway (Figure 6) and plays an important 

role in facilitating and regulating signaling. Flies lacking InaD display defects in 

all aspects of visual signaling: latency, activation, inactivation, and deactivation 

(Susan Tsunoda et al. 1997; Kristin Scott et al. 1998). 

Composition 
InaD is composed of five PDZ domains in Drosophila melanogaster 

(Susan Tsunoda et al. 1997), although this varies considerably throughout the 

protein family (Figure 10). For example, PDZ1 is missing in many species, 

including D. virilis and A. aegypti (a mosquito). InaD is phosphorylated in vivo 
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(Hiroyuki Matsumoto et al. 1984) and in vitro by InaC (Armin Huber, Philipp 

Sander, and Reinhard Paulsen 1996; A. Huber et al. 1998; Mingya Liu et al. 

2000), but no specific functional sites have been identified. 

 

Figure 10: InaD Gene Family 

The InaD gene family is shown. For each gene, the presence (black box) or absence (white box) of 
a cysteine at 606 and 645 is shown (gray box, the domain is unusual and there is a cysteine 
nearby). On the right, the domain structure of the gene is indicated with boxes representing PDZ 
domains. The PDZ4 and PDZ5 homologs are colored blue and green, respectively. 

PDZ Domains 
PDZ domains are small protein-protein interaction domains found in many 

scaffolding proteins (Nourry et al. 2003), including the Post-Synaptic Density, 

Discs-Large, and Zona-Occludens proteins for which the domain is named 

(Kennedy 1995). They occur in bacteria, yeast, plants, and metazoans (Ponting 

1997). The domains are 80-90 amino acids in length and contain 5-6 β-strands 

and two α-helices (Morais Cabral et al. 1996) (Figure 11). They typically bind the 
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C-termini of proteins (H.-J. Lee and J. J. Zheng 2010), although there are some 

reports of non-C-terminal “internal” ligands (Hillier et al. 1999; H.-C. Wong et al. 

2003; Penkert et al. 2004). In addition, some PDZ domains interact with 

phosphoinositides (Zimmermann et al. 2002; H. Wu et al. 2007). 

Interaction with Ligands 

C-terminal ligands bind in a β-strand conformation between the α2-helix 

and β2-strand with the carboxylate of the ligand coordinated by a loop at the N-

terminus of the β2-strand (D. A. Doyle et al. 1996) (Figure 11). In general, the C-

terminal ligand position (p0) interacts with β2-1, α2-8, and α2-5 (H.-J. Lee and J. 

J. Zheng 2010). The second to last position (p-1) was initially thought to not be 

important as it is often solvent exposed, but in some cases there are preferred 

residues and the position interacts with β2-2 and β3-5 or the β3-α1 loop (H.-J. Lee 

and J. J. Zheng 2010). The third to last position (p-2) contributes the most to the 

binding energy and plays an important role in determining specificity (D. A. 

Doyle et al. 1996; Z. Songyang et al. 1997; Tonikian et al. 2008). It interacts with 

α2-1 and α2-5 (H.-J. Lee and J. J. Zheng 2010). 
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Figure 11: Structural Overview of the PDZ Domain 

The third PDZ domain of PSD-95 (blue) bound to ligand (yellow) (PDB 1BE9) is shown. The 
secondary structural elements are labeled (black) along with the peptide positions (orange). 

Domain Classification 

PDZ domains were initially classified into three general classes based on 

their specificity for the C-terminal three residues of target proteins: Class I, S/T-

X-ϕ; Class II, ϕ-X-ϕ; and Class III, D/E-X-ϕ , where ϕ  is a hydrophobic residue 

and X is any residue (Z. Songyang et al. 1997). More recently, it has been shown 

that there are many possible classes (Tonikian et al. 2008) which are evenly 

distributed in sequence space (Stiffler et al. 2007). These studies have also 

revealed that specificity often involves more than just the last three residues 

(Stiffler et al. 2007; Tonikian et al. 2008). 
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Regulation of PDZ Domains 

The interaction of PDZ domains with their ligands has been shown to be 

regulated in many cases (H.-J. Lee and J. J. Zheng 2010). Sometimes a serine or 

threonine in the C-terminal motif is phosphorylated, usually disrupting (Matsuda 

et al. 1999; H J Chung et al. 2000; J. Choi et al. 2002; Hee Jung Chung et al. 

2004; Tian et al. 2006; Lin et al. 2007; von Nandelstadh et al. 2009) but 

sometimes promoting (Adey et al. 2000) binding. Alternatively, the binding 

pocket of the PDZ domain can be directly phosphorylated, disrupting binding 

(Raghuram et al. 2003; Mauceri et al. 2007; Voltz et al. 2007; Weinman et al. 

2007). More interestingly, PDZ domains can be allosterically regulated. Multiple 

studies have shown that ligand binding results in propagated changes in protein 

dynamics out to two distal surfaces (Fuentes et al. 2004; Gianni et al. 2006; Niu et 

al. 2007; van den Berk, Landi, Walma, Vuister, Dente, and Hendriks 2007a; Petit 

et al. 2009). In addition, in the Par6 PDZ domain, binding of Cdc42 to the αA 

helix greatly increases its binding affinity (Garrard et al. 2003; Peterson et al. 

2004). 

Altered Properties of Tandem and Extended PDZ Domains 

Another important aspect of PDZ domains is that they are often found in 

many copies in proteins. The domains are usually studied in isolation, but in 

several cases pairs of domains which occur close in primary sequence (“tandem 
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domains”) have been examined. These tandem domains have been shown to have 

altered binding and folding properties (Grootjans et al. 2000; Q. Zhang et al. 

2001; Feng et al. 2003; van den Berk, Landi, Walma, Vuister, Dente, and 

Hendriks 2007a; Long et al. 2008; W. Wang et al. 2009). In addition, several PDZ 

domains contain structural extensions on their N- and C-termini (C. K. Wang et 

al. 2010), which have been shown to alter the binding and folding of the domain 

(Petit et al. 2009; Bhattacharya et al. 2010). 

Binding Partners 
It is clear that InaD interacts with many core members of the visual 

signaling pathway; however, the true physiological binding partners have been 

difficult to identify due to the lack of quantitative measurements and in vivo 

experiments. The best supported ligands are NorpA, Trp, InaC, and NinaC. The 

evidence for these interactions is summarized in Table 1. The strongest claims can 

be made in cases in which the two proteins interact in vitro, co-immunoprecipitate 

in vivo, and the interaction can be disrupted by specific mutations in the two 

proteins, particularly in the C-terminus of the ligand where PDZ domains 

typically bind. In addition, it appears that localization to the rhabdomere requires 

InaD in many cases (Susan Tsunoda et al. 1997; H. S. Li et al. 2000; S Tsunoda et 

al. 2001), so loss of localization and age-dependent degradation in InaD mutants 

provide supporting evidence for an interaction. Finally, a signaling defect that 
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occurs due to loss of InaD binding based on additional evidence shows that the 

interaction with InaD is important. 

Table 1: InaD Binding Partners 

Protein Co-IP 
with InaD 

Mislocalization 
and/or 
Degradation 

Signaling 
Defect 

In Vitro 
Binding 

References 

NorpA Yes, 
disrupted 
by inaD2 

(PDZ5 
mutant) 

Both in inaD1, 
inaD2 (PDZ5 
mutant), and 
norpAY1094S 

Activation 
and 
deactivation 
in 
norpAY1094S 
and inaD2 
(PDZ5 
mutant) 

GST-
PDZ5 pull 
down, 
PDZ5 
binding to 
NorpA C-
terminal 
domain 
(no C-
terminus) 
by ELISA 
binding 

(B.-H. H. 
Shieh et al. 
1997; 
Susan 
Tsunoda et 
al. 1997; 
van Huizen 
et al. 1998; 
Kristin 
Scott et al. 
1998) 

Trp Yes, less 
with 
inaD215 

(PDZ3 
mutant) 

Both in inaD1, 
inaD215 (PDZ3 
mutant), and 
trp∆1272 

Inactivation 
in inaD215 

GST-
PDZ3 
pull-down, 
interacts 
with 
PDZ3 via 
its last 12 
amino 
acids by 
overlay 
assay 

(B. H. 
Shieh et al. 
1996; 
Susan 
Tsunoda et 
al. 1997; H. 
S. Li et al. 
2000) 

InaC Yes Degradation in 
inaD1 

Deactivation 
in inaCI700D 

GST-
PDZ4 pull 
down, 
interaction 
with 
PDZ2 via 
InaC C-
terminus 
by Y2H 

(Susan 
Tsunoda et 
al. 1997; 
Adamski et 
al. 1998) 
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Protein Co-IP 
with InaD 

Mislocalization 
and/or 
Degradation 

Signaling 
Defect 

In Vitro 
Binding 

References 

NinaC Yes, 
disrupted 
by 
ninaCI1501E 

Neither, but its 
C-terminus is 
sufficient for 
rhabdomeric 
localization 

Deactivation 
in 
ninaCI1501E 

GST-InaD 
pull down, 
interaction 
with 
PDZ1 via 
C-
terminus 
by Y2H 

(Wes et al. 
1999) 

CaM n/d n/d n/d Ca++-
dependent 
pull down 
by CaM 

(Chevesich 
et al. 1997) 

Functional Consequences of InaD Localization 
As can be seen in Table 1, scaffolding of each protein by InaD has 

important but distinct functional consequences for signaling—and often these 

consequences are as severe as complete loss of the protein (Adamski et al. 1998; 

Wes et al. 1999). For example, NorpA must be associated with InaD in order to 

have rapid activation and deactivation of the light response (B.-H. H. Shieh et al. 

1997; Susan Tsunoda et al. 1997; Kristin Scott et al. 1998). Trp, in contrast, must 

be associated with InaD in order to have rapid inactivation of the light response 

(B. H. Shieh et al. 1996; Susan Tsunoda et al. 1997; S. R. Henderson et al. 2000; 

H. S. Li et al. 2000). This may be due to a requirement of InaD for 

phosphorylation of Trp on S982 by InaC (Popescu et al. 2006). In addition, 

disruption of the binding of InaC to InaD has a similar phenotype as disrupting 
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the InaD-Trp interaction (Adamski et al. 1998). The InaD-NinaC interaction 

appears to be important in deactivation (Wes et al. 1999). 

Dynamic Scaffolding 
Mishra et al. recently showed that InaD PDZ5 reversibly oxidizes in 

response to visual signaling (Mishra et al. 2007) (Figure 12). This results in a 

distorted binding pocket, suggesting that the oxidation should be coupled to 

unbinding of PDZ5’s ligand. The formation of the oxidized state requires InaC, 

which mediates negative feedback (Rama Ranganathan et al. 1991) and is known 

to phosphorylate InaD (Armin Huber, Philipp Sander, and Reinhard Paulsen 

1996; Hiroyuki Matsumoto et al. 1984; Mingya Liu et al. 2000). Flies in which 

PDZ5 cannot oxidize lack a refractory period, hyperadapt, and are unable to 

perceive short periods of darkness. 
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Figure 12: Dynamic Scaffolding by InaD 

(a) Cysteines 606 and 645 of InaD PDZ5 reversibly oxidize in response to visual signaling, 
distorting the binding pocket of the domain. (b) The reduced state is expected to bind its ligand 
(NorpA), producing the signaling pathway as shown in Figure 6. (c) The oxidized state, in 
contrast, triggers a refractory period during which signaling is suppressed. This is likely due to 
loss of scaffolding of NorpA. 

Motivations for this Dissertation 
I believe the most interesting aspect of biology is its capacity to teach us 

new design principles that are distinct from engineering. Drosophila 

phototransduction is potentially a rich source of this information, given its clear 

evolutionary pressure for high performance and exemplification of all the 

interesting elements of signaling systems: information processing through a relay 

of multiple proteins and small molecules; a network of highly non-linear 

interactions with multiple feedback loops; organization by both 

compartmentalization and a modular scaffold; a clear role for noise as a 
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fundamental feature and limitation; and evidence of extensive adaptation on 

organismal and evolutionary timescales. 

In my work, I focused on three levels of structure in the Drosophila 

photoreceptor cell: the microvilli which comprise the rhabdomere, the InaD 

scaffolding protein, and the functional architecture inside a domain of InaD. At 

each level, I sought to use quantitative approaches with an evolutionary mindset. 

My hope was that this approach would facilitate the discovery of fundamental 

design principles of this system. 
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CHAPTER THREE 

The Role of Compartmentalization by 

Microvilli 

Introduction 
Intracellular signaling is organized on two spatial scales. On the scale of 

microns signaling is compartmentalized into organelles or distinct regions of the 

cell. Interactions with scaffolding proteins or other molecules locally organize 

signaling on the scale of nanometers. Extensive studies on the role of nanometer-

scale signaling organization have revealed its importance in promoting the speed, 

selectivity, and efficiency of signaling. The role of micron-scale organization is 

less well studied but is primarily thought to provide specificity by spatially 

segregating signals. 

Phototransduction in the Drosophila photoreceptor cell is a classic model 

of high-performance signaling which exemplifies these two types of organization 

(Roger C. Hardie and P. Raghu 2001). On the micron scale, Ca++, the central 

regulator in the pathway, is present both within the cell body as well as the 

specialized organelle known as the rhabdomere which is composed of 30,000 

microvilli (Rama Ranganathan et al. 1994). These microvilli play an important 

role in facilitating light absorption by increasing the available surface area for 
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rhodopsin molecules four-fold (Roger C. Hardie et al. 1993). However, microvilli 

also are the fundamental transduction unit in this system, as the maximal rate of 

quantum bump generation is approximately equal to the maximum turnover rate 

of all the microvilli (Hochstrate et al. 1990) and each microvillus contains the 

same number of channels that are activated during a quantum bump (Roger C. 

Hardie and P. Raghu 2001). 

Many intracellular signals have been shown to be spatially heterogeneous, 

with high concentrations near the source that dissipate over hundreds of 

nanometers. These signaling “nanodomains” are thought to provide specificity by 

restricting the signal response to the region immediately surrounding the source. 

Within each microvillus of the rhabdomere, there are approximately 60 InaD 

complexes which co-scaffold the Trp channels with the Ca++-sensitive upstream 

activator NorpA, the Ca++-dependent negative feedback mediator InaC, and the 

calmodulin-regulated motor protein NinaC (Rama Ranganathan et al. 1991; Smith 

et al. 1991; A. Huber, P. Sander, et al. 1996; B. H. Shieh et al. 1996; Chevesich et 

al. 1997; Susan Tsunoda et al. 1997; Adamski et al. 1998; Wes et al. 1999). While 

this organization by InaD is similar to that seen in other systems which utilize 

nanodomains, the small size of a microvillus makes it unclear whether distinct 

nanodomains could exist within the rhabdomere. Furthermore, heterogeneous 

signaling within the rhabdomere would seem to conflict with the role of microvilli 

in concertedly producing quantum bumps. 
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How does each of these levels of organization contribute to the amazing 

speed and efficiency of signaling in the photoreceptor cell? A problem in 

addressing this is the lack of intuitive understanding of the properties of signals in 

microvilli. In the first part of this chapter, I use theoretical modeling and 

simulations to gain a quantitative and intuitive understanding of microvillar 

signaling. In the second part, these predictions are tested experimentally using 

quantitative measurements of localized Ca++ dynamics in vivo. 

I find that Ca++ signaling in the rhabdomere is homogeneously distributed 

with digital-like fast, high-amplitude dynamics, a characteristic that can be 

explained by the unique physical properties of microvilli. While organization by 

InaD is critical for the visual response, Ca++ dynamics are no different at InaD 

than at other locations in the rhabdomere. These findings demonstrate the central 

importance of micron-scale organization on signaling dynamics. 

Modeling of Ca++ Spatiotemporal Dynamics 

Construction of a Partial Differential Equation Model 
To better understand how the unique geometry of microvilli would affect 

the spatiotemporal dynamics of Ca++ signaling, my collaborator Boris Shraiman 

and I constructed a partial differential equation model inspired by work by 

(Postma et al. 1999). Our model accounted for localized influx through 15 (nTrp,T) 

randomly-distributed Trp channels (nTrp(x)), homogeneous efflux (Johannes 
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Oberwinkler and Stavenga 2000) (kefflux), and diffusion (DCa) along the length of a 

microvillus and into the cell body (Figure 13): 

 

Figure 13: Spatiotemporal Model of Ca++ in the Rhabdomere 

The model accounts for (1) localized influx through 15 Trp channels, (2) homogeneous efflux by 
the Na+/Ca++ exchanger CalX, and (3) diffusion within and (3*) out of the microvillus. 

Equation 1: Partial Differential Equation Model for Rhabdomeric Ca++ 

∂ Ca!! (𝑡, 𝑥)
∂𝑡 = 𝑎

𝑛!"#(𝑥)
𝑛!"#,!

σ!"
𝑉!

𝐼!",!"#$ 𝑡 − 𝑘!""#$% Ca!! 𝑡, 𝑥

+ 𝐷!"∇! Ca!! (𝑡, 𝑥)  

𝐷!"
∂
∂x Ca!! (𝑡, 𝑥) !!!! = 0  

Ca!! (𝑡, 𝑥) !!! = [Ca!!]!"##  

The channel mole influx (σCa) was modeled using the Goldman-Hodgkin-

Katz current equation (Hille 2001), which states that the flux (ϕ, in A/cm2) 

through a membrane is: 

Equation 2: Goldman-Hodgkin-Katz Current Equation 

𝜙! = 𝑃𝑝!𝑧!!
𝐸𝐹!

𝑅𝑇
S − S !"# exp − 𝑧!𝐹𝐸𝑅𝑇
1− exp − 𝑧!𝐹𝐸𝑅𝑇
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This model primarily contains physical constants, such as the charge on 

the ion (zs); E, the membrane potential; F, Faraday’s constant; R, the ideal gas 

constant; T, the temperature; and [S] and [S]ext, the concentrations of the ion on 

the inside and outside of the membrane (in mM), respectively. The two 

parameters are P, the total permeability of the membrane, and ps, the relative 

permeability of the ion s. Since the extracellular concentration of each ion is much 

greater than the intracellular concentration and the membrane potential is highly 

negative, we can simplify this equation by removing the contribution of the 

outward flux through the channels. To calculate the current, I multiply ϕs by the 

surface area. The surface area (cm2) and the permeability (m/s) can be combined 

into one unknown parameter, κ (with units of dL/s). That produces this simplified 

equation: 

Equation 3: Simplified Goldman-Hodgkin-Katz Current Equation 

𝜎! = 𝜅𝛼𝛽! 

𝛼 =
𝐸𝐹
𝑅𝑇 

𝛽! =
𝑧!𝑝!e!!!!

1− e!!!! 𝑋!"# 

In the simulations, a discrete number (nTrp,T) of channels are randomly 

placed (nTrp(x)) along the length of a microvillus. The mole flux through the 

channels is divided by the local volume (Vx) to obtain the flux in terms of 

concentration. 
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Rather than explicitly model the signaling reactions, I scaled the total 

channel mole influx (σCa) by the time-dependent amplitude of a normalized dark-

adapted or light-adapted quantum bump (IQB,norm). Under light-adapted conditions, 

the channel influx was linearly decreased (a) to match the observed decrease in 

quantum bump peak current. 

The remaining two terms account for Ca++ efflux and diffusion. Efflux by 

the sodium-calcium exchanger CalX was modeled as a first-order homogeneous 

process since it is unknown how many exchangers are present in each microvillus. 

Diffusion was modeled using the standard approach, Fick’s law (Berg 1993). 

The two boundary conditions indicate that there is no flux at the tip of a 

microvillus (lm) and that the concentration of Ca++ in the cell body is constant 

([Ca++]cell). These are good assumptions, as the first corresponds with a physical 

boundary and the second is known to change on a much slower timescale than the 

quantum bump. 

Estimation of Parameters 
The two unknown parameters describing the channel influx and the efflux 

rate were estimated from (1) the peak amplitude of a quantum bump and (2) the 

peak Ca++ concentration of a dark-adapted photoreceptor cell. These two 

constraints can be written as: 
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Equation 4: Constraints for Estimating the Model Parameters 

𝐼!"
𝐹 ≅ 𝑎 𝑧!"𝜎!" + 𝑧!"𝜎!" +

𝑉!
𝑛!":!"#$

𝑘!""#$%Ca!"#$ 

Ca!"#$ =

𝑎𝜎!"
𝑉!

𝑘!""#$% +
𝐷
𝑙!!

 

where IQB is the peak amplitude of the quantum bump, Vm is the volume of the 

microvillus, and nCa:CalX is the number of Na+ ions per Ca++ ions transported by 

CalX. 

The first equation states that the ion flux at the peak of the quantum bump, 

in terms of moles, is equal to the Ca++ and Na+ fluxes through the Trp channels 

plus the net flux through the Na+/Ca++ exchanger. The second equation is the 

spatially-averaged steady-state solution of the model. Simultaneously solving 

these two equations for κ, the channel flux parameter, and kefflux, the efflux rate, 

we get: 

Equation 5: Equations Determining the Estimated Model Parameters 

𝜅 =

𝐼!"
𝐹 +

𝑉!Ca!"#$𝐷
𝑛!":!"#$𝑙!!

𝛼 𝑧!"𝛽!" + 𝑧!"𝛽!" 1+ 𝛽!"
𝑛!":!"#$ 𝑧!"𝛽!" + 𝑧!"𝛽!"

  

𝑘!""#$% =
𝜅𝛼𝛽!"
𝑉!Ca!"#$

−
𝐷
𝑙!!

 

For a 9 pA quantum bump with a peak Ca++ concentration of 700 µM, κ is 

5.4 x 10-12 dL/s and kefflux is 104 s-1. This permeability results in the Trp channels 
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passing 2.2 x 10-17 moles of Ca++ per second, or approximately 8 mM/ms given 

the volume of a microvillus, when open. The calculated efflux rate is several 

orders faster than the previous estimate of 1.2 s-1 which was probably limited by 

diffusion from the cell body to the rhabdomere (T. Wang et al. 2005) (𝑙 = !!"
!
=

13.8  µμm assuming a diffusion-limited step). 

Table 2: Parameters of Ca++ Model 

Parameter Value 
[Ca++]ext 1.5 mM (Hofstee et al. 1996) 
[Na+]ext 120 mM (Hofstee et al. 1996) 
DCa 220 µm2/s (Allbritton et al. 1992) 
E -60 mV 
kefflux 1.07E4 s-1 
lm 1 µm (Roger C. Hardie 1985) 
lneck 0.06 µm (E Suzuki et al. 1993) 
nTrp 15 (Roger C. Hardie and P. Raghu 2001) 
pCa 0.85 (H. Reuss et al. 1997) 
pNa 0.02 (H. Reuss et al. 1997) 
rCa:CalX 3 (Gu et al. 2005) 
rm 0.03 µm (Roger C. Hardie 1985) 
rneck 0.0175 µm (Boschek 1971) 
Vm 2.8E-18 L 
zCa 2 
zNa 1 
κ 5.4E-12 dL/s 

Somatic Ca++ Dynamics 
This model can also be used to understand the behavior of the cell soma. 

For this purpose, it is useful to rewrite the model in terms of the light-induced 

current. To do this, we must first determine the ratio of the current which is 

carried by Ca++. This can be found by calculating the fraction of the current 
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carried by each ion from the Goldman-Hodgkin-Katz equation (Equation 1) and 

the efflux through the Na+/Ca++ exchanger: 

Equation 6: Ratio of the Light-Induced Current Carried by Ca++ 

𝑟!" =
𝑧!"𝜎!"

𝜎!" 𝑧!" +
𝑘!""#$%

𝑛!":!"#$ 𝑘!""#$% +
𝐷
𝑙!!

+ 𝑧!"𝜎!"

 

The fraction of rhabdomeric Ca++ that diffuses into the cell body can be 

determined by realizing Ca++ leaves either via efflux (kefflux) or diffusion to the 

cell body ( !
!!!

): 

Equation 7: Fraction of Ca++ that Diffuses into the Soma 

𝑓!"#$ =

𝐷
𝑙!!

𝑘!""#$% +
𝐷
𝑙!!

 

The dynamics of somatic Ca++ can then be written as: 

Equation 8: Somatic Ca++ Dynamics 

Ca!"#$ =
𝑓!"#$𝑟!"
𝑧𝐹𝑉!

𝐼 −
𝐷
𝑙!!
Ca!"#$ 

where I is the light-induced current, lc is the average length of the cell body to the 

rhabdomere, and Vc is the volume of the cell. The dynamics of the cell body are 

dominated by diffusion from the cell body to the rhabdomere (!
!!!

), which occurs 

on a timescale of seconds. The steady-state solution for the soma is: 
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Equation 9: Steady-State Solution for Somatic Ca++ 

Ca!"#! =
𝑓!"#$𝑟!"

𝑧𝐹𝑉!
𝐷
𝑙!!

I 

This shows that somatic Ca++ increases linearly with the light-induced current in 

the absence of buffering, as observed experimentally (Johannes Oberwinkler et al. 

1998). 

Simulations 
I simulated the model using the finite difference method, which converts a 

partial differential equation into a series of ordinary differential equations in 

which the spatial locations have become state variables (Fall et al. 2002). Similar 

to the approach used by Postma et al (Postma et al. 1999), I only considered 

dynamics along the length of the microvillus as diffusion in that dimension occurs 

much slower. For the simulations, I used an evenly spaced grid with 50 locations 

along the length of the microvillus. 

The simulations revealed two intriguing features. First, the dynamics were 

surprisingly fast. As a result, Ca++ rapidly equilibrates following single channel 

opening, reaching a stable distribution in under a millisecond (Figure 14). Ca++ 

dynamics are also not limiting during dark-adapted (Figure 15a) or light-adapted 

(Figure 15c) responses. Secondly, we do see substantial gradients (~50%) 

depending on the relative location of the channels despite the small size of a 

microvillus. If the localization is random, however, then on average there is only a 
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steep gradient near the base of a microvillus where it contacts the cell body 

(Figure 15b,d). Thus, the modeling predicts that Ca++ should have fast dynamics 

with high amplitude and a homogeneous distribution on average. 

 

Figure 14: Predicted Spatiotemporal Dynamics of Ca++ Following Opening of 
a Single Channel 

The spatiotemporal dynamics of Ca++ following opening of a single channel are shown. The 
distance axis indicates the distance from the pore. The dashed black line indicates the predicted 
average inter-channel distance in the rhabdomere. Note that a steady-state distribution is reached 
within 1 ms and that there is a substantial steady-state gradient, consistent with the literature on 
Ca++ nanodomains.  
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Figure 15: Predicted Spatiotemporal Dynamics of Ca++ During a Quantum 
Bump 

The spatiotemporal dynamics of Ca++ during a quantum bump are shown for (a-b) dark-adapted 
and (c-d) light-adapted conditions. (a,c) The spatially-averaged concentration of Ca++ (red) is 
shown as a function of time and is overlaid with the channel dynamics (black). (b,d) The spatial 
profile at the peak of the quantum bump is shown for individual runs (gray lines) and the average 
of many runs (black line). 

Measurement of Localized Ca++ Dynamics 

Camgaroo-Based Sensors of Localized Ca++ 
To test these predictions of homogeneously-distributed, rapid Ca++ 

signaling in the rhabdomere, Adrienne Hahn developed reagents to measure Ca++ 

at specific sites within the photoreceptor cell (Hahn 2004) using the genetically-

encodable yellow-fluorescent-protein-based Ca++ sensor Camgaroo (Baird et al. 

1999). She expressed free Camgaroo (Cyto-Camga) as a sensor for the cell body, 
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and fused Camgaroo to Arrestin-2 (Camga-Arr2) and InaD (Camga-InaD and 

InaD-Camga) for sensors of the rhabdomere (Kiselev et al. 2000) and InaD 

complex, respectively (Figure 16). 

 

Figure 16: Illustration of the Strategy for Measuring Localized Ca++ 
Responses 

The three sensors were designed to measure Ca++ in the cell body (CC, Cyto-Camga), rhabdomere 
(CA, Camga-Arr2), and InaD complex (CI, Camga-InaD/InaD-Camga). 

With the help of W. Ryan Williamson, I confirmed the localization of the 

sensors by immunofluorescence (Figure 17a). In contrast with Cyto-Camga, both 

Camga-Arr2 and Camga-InaD are detected primarily in the rhabdomere. This can 

also be seen in images of the fly pseudopupil, which is an image formed from ~20 

ommatidia (Franceschini et al. 1971).  Both Camga-Arr2 and Camga-InaD have 

fluorescent pseudopupils, while Cyto-Camga has a fluorescent eye but dark 

pseudopupil (Figure 17b). 
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Figure 17: Localization of Camgaroo Sensors 

The intracellular localization of the Camgaroo sensors was determined by (a) immunofluorescence 
using rhodamine-labeled phalloidin to detect actin filaments in the rhabdomere and anti-YFP to 
detect Camgaroo, and (b) pseudopupil imaging showing YFP fluorescence. 

To test whether the sensors perturbed the light response, I measured the 

statistics of quantum bumps from each and compared them with wild-type flies. I 

found that they did not disrupt the activation or inactivation of the visual response 

(Figure 18), suggesting that there is no significant change in the behavior of the 

tagged proteins. 
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Figure 18: Average Quantum Bump Shape of Camgaroo Flies 

Quantum bumps were measured in yw (wild-type, black), Cyto-Camga (green), Camga-Arr2 
(blue), and Camga-InaD (red) flies. The average normalized quantum bump shape for each is 
shown. 

Consequences of Uncorrelated Quantum Bumps at Steady-
State 

An additional experimental challenge to studying Ca++ dynamics in the 

rhabdomere is that the quantum bumps that occur at steady-state are not correlated 

(Dodge et al. 1968; C. F. Wu et al. 1978) due to the random nature of the 

refractory period (C.-H. Liu et al. 2008). Because I observe an average over many 

microvilli at steady-state, direct information about the dynamics of Ca++ at steady-

state is lost. However, the dynamics of Ca++ affect the statistics of the noise, 

suggesting it may be possible to recover this information (Figure 19). 
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Figure 19: Effect of Uncorrelated Quantum Bumps on the Ca++ 
Measurement 

Simulated Ca++ responses separated by refractory periods of random length are shown for several 
independent microvilli with (black) the predicted wild-type properties or (red) slower dynamics. 
Summing 1000 of these responses leads to a flat response with noise which is related to the 
quantum bump dynamics. 

We can think about the steady-state measurement analytically to 

understand how the dynamics of Ca++ are encoded in the steady-state 

measurement. In the simplest case in which Ca++ switches digitally between two 

levels, the steady-state observation is the average of these two states, weighted by 

the time spent in each state. More generally, this can be thought of as the time 

average of the Ca++ response during a typical quantum bump: 
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Equation 10: Analytical Form of the Ca++ Steady-State Distribution 

𝐂𝐚𝐬𝐬 =
1
𝝉𝐫𝐞𝐟

Ca 𝑡 𝑑𝑡
𝝉𝐫𝐞𝐟

!
 

where τref is the refractory period length, which on average is much longer than 

the duration of an adapted quantum bump (C. F. Wu et al. 1978; M. Juusola et al. 

2001). 

However, the refractory period is highly stochastic, ranging from 50-1000 

ms (C.-H. Liu et al. 2008). As a result, the steady-state Ca++ measurements come 

from a random distribution (Figure 20). When the refractory period is much 

longer than the quantum bump—which is what occurs on average—the steady-

state Ca++ concentration is approximately just the basal concentration. However, 

when the refractory period is short, the average Ca++ concentration increases 

dramatically. Because the refractory period is only rarely short, this introduces a 

positive skew to the predicted Ca++ measurement distribution. 

By systematically varying the amplitude, kinetics, and basal level of the 

quantum bump Ca++ response, it is possible to determine how each of these 

properties affects the measurement distribution (Figure 20). I found that each had 

a distinct effect: The basal concentration shifts the mean of the distribution, while 

the peak concentration nearly uniformly changes the variance. The most dramatic 

effect is seen with decreasing the efflux rate kinetics, which greatly increases the 

variance and introduces a large positive skew. Because each of these parameters 



89 

 

produces distinct phenotypes, it should be possible to estimate them from real 

measurements. 

 

Figure 20: Dependency of the Ca++ Measurement Distribution on Ca++ 
Response Parameters 

(a) Ca++ responses during a simulated quantum bump are shown with the (black) predicted 
parameters or (red) perturbations to the basal or peak concentration and the efflux rate. (b) The 
average Ca++ concentration over the Ca++ responses from (a) is calculated by integrating from 0 to 
the indicated time. (c) A subset of the refractory period distribution, indicating how it relates to the 
dynamics of the quantum bump. (d) Using the refractory period distribution from (c) and the 
average Ca++ curve from (b), it is possible to predict a measurement distribution. Note that the rare 
observation of much higher average Ca++ concentrations introduces positive skew. 
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Steady-State Ca++ Measurements 
Next, I measured the localized steady-state calcium concentration by 

illuminating patch-clamped, dissected photoreceptor cells with blue light. This 

simultaneously excites Camgaroo and activates rhodopsin, allowing me to 

monitor each sensor during visual signaling. The fluorescence of all three sensors 

quickly rose and relaxed to a steady-state under constant blue light (Figure 21). 

To show that the fluorescence changes were related to Ca++ signaling, Adrienne 

Hahn recorded from blind norpAP41 flies and wild-type flies in the absence of 

extracellular Ca++—neither showed any change in fluorescence (Hahn 2004). 

Normalization of the Ca++ Response 

To normalize the fluorescence, I measured the initial fluorescence, which 

was similar to the fluorescence after treatment with the Ca++-chelator EGTA, and 

the fluorescence following treatment with the Ca++ ionophore ionomycin. The 

normalized fluorescence was then converted to a concentration using the 

Camgaroo binding curve (KD = 7 µM, n = 1.3) measured by Adrienne Hahn 

(Hahn 2004) (Figure 21). 
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Figure 21: Normalization of the Ca++ Response 

(a) The raw fluorescence response of an InaD-Camga fly is shown following the initial exposure 
to blue light, treatment with 10 µM ionomycin to increase intracellular Ca++, and lastly treatment 
with 20 mM EGTA to decrease Ca++. (b) The fluorescence response was normalized and then 
converted to Ca++ concentration using the dose response curve of Camgaroo. 

Comparison of Steady-State Responses under Physiological Ca++ 

Conditions 

Under physiological extracellular Ca++ conditions, the average 

intracellular Ca++ concentration detected by each of the sensors rose over a few 

hundred milliseconds to ~8 µM and then decreased over several seconds to a 

steady-state concentration of ~4 µM (Figure 22). The responses of the three 

sensors were indistinguishable, which is not surprising since the theory predicted 

that average of the Ca++ measurement distribution is approximately just the basal 

Ca++ concentration which is likely similar to the cytoplasmic concentration. 
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Figure 22: Ca++ Responses with Physiological Extracellular Ca++ 

The Ca++ response of Cyto-Camga (black), Camga-Arr2 (blue), and Camga-InaD (red) is shown 
under physiological extracellular Ca++ conditions (1.5 mM). The shaded areas indicate the 
standard error of the mean. 

Effect of Extracellular Ca++ on the Steady-State Ca++ Response in 

the Rhabdomere 

The properties of the quantum bump are known to be strongly dependent 

on the extracellular Ca++ concentration (S. R. Henderson et al. 2000) due to its 

role in feedback (Rama Ranganathan et al. 1991). As the extracellular Ca++ 

concentration is decreased, there is a strong transition at 100 µM where the 

latency peaks, amplitude decreases, and duration increases (S. R. Henderson et al. 

2000). If the response of the rhabdomeric sensors matches Cyto-Camga because 

the quantum bump is much faster than the refractory period, then changing the 

extracellular Ca++ concentration may reveal this effect. 
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Using another InaD sensor, InaD-Camga, developed by Adrienne Hahn 

which was shown by her to be properly localized (Hahn 2004), I tested the steady-

state response under various extracellular Ca++ conditions (Figure 23). I found 

that the steady-state Ca++ concentration when there was greater than ~200 µM 

extracellular Ca++ matched the results measured with the three sensors described 

in the previous section. However, at 100 µM there was a large and highly cell-to-

cell variable increase in the steady-state Ca++ concentration. Below 90 µM, there 

was very little increase in Ca++ upon illumination. This suggests that the 

rhabdomeric response does indeed strongly relate to quantum bump dynamics. 
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Figure 23: Dependency of Steady-State Ca++ on Extracellular Ca++ 

The initial (black) and steady-state (blue) Ca++ measured by InaD-Camga is plotted as a function 
of extracellular Ca++. 
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Comparison of Steady-State Responses under Low Ca++ Conditions 

Given the strong extracellular Ca++ dependency, I repeated the steady-state 

measurements at 100 µM extracellular Ca++ under patch-clamped conditions with 

the Cyto-Camga and Camga-InaD sensors (Figure 24). Cyto-Camga detected an 

increase of ~2 µM Ca++ that lacked the initial peak observed previously and there 

was less noise at steady-state. Camga-InaD, in contrast, varied highly between 

cells, ranging from a small increase with low noise as observed in Cyto-Camga to 

a large, continuously increasing Ca++ response with high noise. This indicated that 

the rhabdomeric sensors are indeed detecting something distinct from Cyto-

Camga and pointed to the measurement noise as the primary location of this 

information. 

 

Figure 24: Ca++ Responses with 100 µM Extracellular Ca++ 

The average Ca++ response of Cyto-Camga (gray) and Camga-InaD (red) with 100 µM 
extracellular Ca++ is shown. The shaded area indicates the standard error of the mean. 
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Estimation of Ca++ Signaling Properties from Measurement 
Fluctuations 

If Ca++ is indeed spiking much faster than the quantum bump at steady-

state, then it should be possible to see this in the shape of the measurement 

distribution, as I predicted. A convenient way to compare the shapes of 

distributions is to plot the distributions in what is known as a QQ plot (Wilk et al. 

1968). In this plot, the percentiles of each distribution are plotted against each 

other. The power of this is that linearly related distributions fall on a straight line. 

Deviations from a linear relationship indicate differences in the shape of the 

distribution, such as the positive skew we expect the rhabdomeric sensors to have. 

Comparing the normalized distributions of the measurements (Figure 25a), I 

found that both Camga-Arr2 and Camga-InaD on average have more positive 

skew than is observed in Cyto-Camga, as predicted (two-way ANOVA comparing 

the deviations to a random model, P=1.5e-10 and 1.7e-23, respectively). In 

addition, Camga-Arr2 and Camga-InaD approximately come from linearly related 

distributions (two-way ANOVA comparing the deviations to a random model, 

P=0.04, deviations are smaller in magnitude), suggesting that they sense the same 

Ca++ fluctuations at steady-state. 

Next, I used simulated annealing to estimate the properties of the Ca++ 

dynamics from the single-cell measurement distributions of Camga-Arr2 and 

Camga-InaD (Figure 25b-e). The estimates were strikingly similar between the 
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two sensors, indicating that the basal Ca++ concentration is similar to that found in 

the cell body and that Ca++ spikes to tens of micromolar, decaying with rapid 

kinetics.  The estimated efflux rate is similar to the value I calculated for the 

model, and the basal and peak Ca++ concentrations are similar to previous 

estimates for the adapted response (J. Oberwinkler and Stavenga 2000). 
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Figure 25: Analysis of the Ca++ Measurement Distributions 

(a) The steady-state Ca++ measurement distributions were normalized and compared to each other 
using a quantile-quantile (QQ) deviation plot. A linear relationship in the quantiles indicates that 
the distributions have the same shape. For each pair of distributions, the quantile of one 
distribution is plotted against the difference in the quantiles of the two distributions in order to 
emphasize the difference in distribution shape. The average of these comparisons is shown for (y 
vs x) (blue) Camga-Arr2 vs Cyto-Camga, (red) Camga-InaD vs Cyto-Camga, and (black) Camga-
InaD vs Camga-Arr2. The solid black line is a random model comparing normalized finite 
sampled normal distributions. The deviations from the line in the y axis for the two comparisons 
with Cyto-Camga indicate that the rhabdomeric sensors experience slightly more positive skew 
than Cyto-Camga. (b) A QQ deviation plot comparing the measurement distributions for Camga-
Arr2 (blue) and Camga-InaD (red) vs. the model fit. The solid black line is the same random 
model from (a). The deviations are not significant (two-way ANOVA between the deviations and 
a random model). (c-e) The individual cell measurement distributions were fit by simulated 
annealing to the theoretical distribution model. The resulting estimates for (c) basal Ca++, (d) peak 
Ca++, and (e) efflux rate are shown. The error bars indicate the standard error of the mean. 

Consequences for Signaling 
These results show that compartmentalization enables Ca++ signaling to 

happen on two timescales. Somatic Ca++ integrates the average rate of signaling 

on the timescale of seconds (Figure 26a). It also influences the basal Ca++ 
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concentration in the rhabdomere (Figure 26b) and thus may slowly titrate 

feedback processes (Gu et al. 2005). In contrast, rhabdomeric Ca++ dynamically 

changes on the millisecond timescale (Figure 26b). These millisecond changes in 

Ca++ occur uniformly across the compartment and reach much higher 

concentrations than observed in typical nano- or microdomains. As a result, Ca++-

dependent positive and negative feedback should be kinetically limited during the 

quantum bump (Figure 26c), activating nearly instantaneously across a 

microvillus as Ca++ binds following the opening of the first channel. After the 

channels close, the feedback should inactivate nearly at the rate of unbinding of 

Ca++, as this is slower or on the same timescale (~102-104 s-1) as efflux for a low 

micromolar affinity diffusion-limited binder. In addition, the peak Ca++ 

concentration is sufficiently high to activate most of the Ca++ feedback processes 

(Gu et al. 2005), even under light-adapted conditions. Thus, proteins mediating 

Ca++-feedback likely signal in a digital manner during the quantum bump, rapidly 

switching on and off as fast as they can bind and unbind Ca++. 
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Figure 26: Distinct Signaling Modes in the Cell Body and Rhabdomere 

(a) In the soma, Ca++ changes with second-timescale dynamics proportionally with the signaling 
rate. (b) Rhabdomeric Ca++, in contrast, changes with millisecond timescale dynamics. (c) Ca++ is 
sufficiently high amplitude and rapid in the rhabdomere that it may act digitally. (1) The initial 
peak may activate Ca++ feedback in a kinetically-limited manner, followed by (2) kinetically-
limited unbinding. (3) During the refractory period, the basal concentration is coupled to the cell 
soma, providing a mechanism to slowly titrate feedback processes. 

Physical Analysis of Properties of Signaling 
Compartments 

Microvilli are uniquely suited to achieve these properties. The 

equilibration timescale of a compartment is !
!!"

, where l is the length, D is the 

diffusion coefficient, and n is the number of dimensions. Since the equilibration 

timescale of a compartment increases with the length of its longest axis, a larger 

compartment would result in a slower equilibration time (Figure 27a). Similarly, 
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the peak amplitude (Cpeak) of a compartmentalized signal at steady-state 

originating from a source of rate rinflux with surface density ρ is a function of the 

surface area (A) to volume (V) ratio: 0 = !!"#$%&!"
!

− 𝑘!""#$%𝐶!"#$, which simplifies 

to 𝐶!"#$ =
!!"#$%&
!!""#$%

𝜌 !
!
  . Since the surface area to volume ratio is always a function 

of !
!
, the relative density of channels or the activity level of each channel must 

increase linearly with the radius of a spherical or cylindrical compartment to 

achieve the same peak Ca++ concentration (Figure 27b). This may be physically 

impossible as the rhabdomeric membrane is already thought to be exceptionally 

densely packed. 
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Figure 27: Physical Constraints on Compartments 

Various physical compartments found in cells are shown with their typical dimensions plotted 
against the (a) equilibration time of the compartment along the length or radius and (b) the relative 
density or activity of the signal source that is needed to maintain the same peak amplitude. 

Conclusions 
In closing, these results indicate a role for micron-scale organization in 

shaping the dynamics of signaling. Drosophila phototransduction is widely 

renowned for its exceptional speed and sensitivity. These results show that these 

features can partially be explained as the physical consequence of signaling in 

microvilli independently of the role of the scaffolding protein InaD or 
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specializations of visual proteins. Microvilli on their own impart rapid 

equilibration and high amplitude to diffusible signals due to their short length and 

small volume. This allows them to act as digital compartments, rapidly switching 

between low and high signaling states. Micron-scale organization of signaling 

proteins may be an important influence on the dynamics of many other 

physiological systems. 

Methods 

Calcium Simulations 
The Ca++ PDE model was discretized onto a one-dimensional equally-

spaced 50 point grid spanning 1 µm in length corresponding to a cylinder with a 

30 nm radius. The flux term between the microvillus and the cell body was 

adjusted to account for the narrow neck (cylinder of 60 nm length and 17.5 nm 

radius). Calcium simulations of the set of ODEs were then performed in 

MATLAB (MathWorks) by the ode15s stiff multistep solver which uses the 

numerical differentiation formulas algorithm. The full MATLAB script can be 

seen in Appendix B. 

Flies 
y w (yellow-bodied, white-eyed) flies were used as the “wild-type” strain. 

Flies expressing the Camgaroo fusions under the Rh1 promoter were generated by 

P-element transformation by Adrienne Hahn (Hahn 2004). The lines used here are 
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y w;;P[y+, Cyto-Camga]#15 (“Cyto-Camga”), y w P[y+,Camga-Arr2]#38 

(“Camga-Arr2”), y w;P[y+,Camga-InaD]#25 (“Camga-InaD”), and y 

w;;P[y+,InaD-Camga]#6 (“InaD-Camga”). 

Immunofluorescence 
Retinal tissue from virgin flies was prepared with assistance from W. 

Ryan Williamson (Robin Heisinger lab) according to the method described in 

(Williamson et al. 2010). Following fixation, the samples were incubated 

overnight in PBS + 0.3% Triton-X 100 with 1:200 monoclonal anti-GFP (MMS-

118P from Covance) to detect Camgaroo and 1:1000 rhodamine-labeled 

phalloidin (Invitrogen) to detect actin. The samples were washed two times with 

PBS + 0.3% Triton-X 100 and then incubated for 2 hours with PBS + 0.3% 

Triton-X 100 with 1:1000 Alexa488-conjugated goat anti-mouse secondary 

antibody (Invitrogen, kindly provided by Steven Altschuler and Lani Wu). 

Finally, the samples were washed 4X for 10 minutes with PBS + 0.3% Triton-X 

100 and mounted by gluing the retinas on a Sylgard-coated slide in VectaShield 

mouting media (Vector Labs). The samples were imaged on a Zeiss confocal 

microscope in the lab of Robin Heisinger. 

Fluorescent Pseudopupil Imaging 
Fluorescent pseudopupil imaging was performed on a Zeiss fluorescence 

stereomicroscope. Flies were immobilized by inserting them head-first into a 
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snipped 10 µL pipette tip, allowing just the eyes to pass through. Yellow 

fluorescence imaging (Zeiss filter set 46, excitation filter: 500 ± 25 nm bandpass, 

emission filter: 535 ± 30 nm) was then performed with mercury lamp 

illumination. The microscope was focused slightly below the surface of the eye in 

order to visualize the pseudopupil. 

Quantum Bump Measurements 
Ommatidia were prepared according to the method described in (Rama 

Ranganathan et al. 1991) by dissecting the retina in Ringer’s solution (125 mM 

CsCl2, 10 mM HEPES, 30 mM sucrose pH 7.1) under dim red light, tearing the 

retina several times, and then triturating ~5X through a 10 µL pipette tip. The 

cells were added to bath solution (120 mM NaCl, 5 mM KCl, 10 mM HEPES, 4 

mM MgCl2, 24 mM proline, 5 mM alanine, 1.5 mM CaCl2 pH 7.1 or as otherwise 

indicated). Ommatidia were then subjected to whole cell patch clamp using series 

resistance compensation. The patch pipette contained 95 mM K-gluconate, 40 

mM KCl, 10 mM HEPES, 2 mM MgCl2, 4 mM Mg-ATP, 0.5 mM Na-GTP, 1 

mM NAD+, adjusted to pH 7.15 with KOH. Cells with reversal potentials between 

-40 and -70 mV were used. The signal was amplified through an Axopatch 200B 

(Axon Instruments), filtered at 200 Hz (LPF-8, Warner Instrument), and digitized 

at 10 kHz (PCI-6052E DAQ Board, National Instruments). Quantum bumps were 

measured by dim laser flashes which successfully produced responses less than 

50% of the time. Quantum bumps were detected and fit in MATLAB 
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(MathWorks) by processing with a 25 ms moving average filter and detecting 

deviations of more than 2 standard deviation with amplitude greater than 3 pA, 

duration greater than 9 ms, peak time greater than 6 nm, half-rise time of less than 

50 ms, and total duration less than 150 ms. The average shape was calculated by 

normalizing by the amplitude and aligning the midpoint between the half-rise and 

half-inactivation times. The MATLAB analysis scripts are in Appendix B. 

Camgaroo Fluorescence Measurement 
Camgaroo fluorescence was measured using a photodiode in patch-

clamped cells (except for the InaD-Camga data in Figure 23) by illuminating with 

30 Hz pulsed 488 nm light from a dye laser that was filtered through a blue-violet 

narrow neutral band filter (NBV, Olympus). Following measurement of the light 

response, the cells were treated with 10 µM ionomycin (+ 10 mM Ca++ if the bath 

solution had less than 1 mM) for a few minutes to measure the fluorescence under 

high Ca++, and then 20 mM EGTA to confirm the low Ca++ state. Because EGTA 

treatment distorted the cell morphology, the initial fluorescence measurement was 

typically used for the low Ca++ state. A small amount of photobleaching was 

detected in the ionomycin fluorescence recordings; this was fit in each cell by a 

biexponential curve and used to correct for photobleaching in all recordings. The 

normalized fluorescence measurements were converted to Ca++ concentrations 

using the Camgaroo Ca++ binding curve, as described in the text. The full 

MATLAB analysis script is in Appendix B. 
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Analysis of Ca++ Measurements 
The Ca++ measurements were analyzed in MATLAB (MathWorks). The 

Ca++ response curves were processed with a 20-point (600 ms) moving average 

filter to remove slow components. The noise characteristics of the processed 

response became stable after approximately 5 s; this was considered steady-state. 

The steady-state measurement samples were fit by simulated annealing to 

Equation 10. The Ca++ response used was an analytical fit of the light-adapted 

quantum bump ( !

! ! ! !
!

!
!"# !!!

, τ = 0.0054, n = 0.2834), convolved with a single 

exponential decay of rate kefflux, scaled by [Ca++]peak and shifted by [Ca++]basal. The 

refractory period times measured in (C.-H. Liu et al. 2008) were fit to a general 

generalized extreme value distribution (µ = 175 ms, σ = 82 ms, k = 0.24) and used 

to sample Equation 10. The quality of the fit was scored by measuring the 

deviation of the measured and experimental distributions from a unity relationship 

on a QQ plot, as in Figure 25, which involves calculating the summed squared 

error in the difference of the percentiles of the two distributions. The full 

MATLAB analysis script is in Appendix B. 
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CHAPTER FOUR 

Modularity of Dynamic Scaffolding by InaD 

Introduction 
Scaffolding proteins are thought to promote the evolvability of signaling 

pathways by decomposing the regulatory and catalytic activities of proteins into 

modular elements which can then be easily replaced (Bhattacharyya et al. 2006). 

These modular elements are generally thought to be individual protein domains, 

structural units which have homologs in many proteins (Creighton 1993). 

Consistent with this view, the yeast mating scaffold Ste5 is unaffected when its 

protein interaction domains are replaced with other domains which are capable of 

recruiting the same binding partners (S.-H. Park et al. 2003). In addition, 

recruitment of novel interaction partners to the scaffold changes the signaling 

dynamics (Bashor et al. 2008). However, recent work has shown that many 

structural domains are not independent (C. K. Wang et al. 2010), provoking the 

question of whether this view may be too simplistic. 

Intriguingly, the InaD scaffold shows signs of phenotypic modularity. 

InaD promotes the sensitivity, activation, and inactivation of the light response by 

coordinating many of the core reactions of the signaling pathway (see chapter 2). 

In addition to a null allele, two InaD mutants occurring in the PDZ3 and PDZ5 

domains were previously identified in genetic screens (B. H. Shieh et al. 1996; 
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Susan Tsunoda et al. 1997). These mutations specifically disrupt inactivation and 

activation, respectively, suggesting that the effects of InaD on vision can be 

modularly decomposed. 

The potentially modular role for InaD PDZ5 is particularly interesting as 

the Ranganathan lab recently found it is dynamically regulated during the visual 

signaling cycle (Mishra et al. 2007). In response to visual signaling, cysteines 606 

and 645 of PDZ5 oxidize, distorting the binding pocket of the domain (Figure 12). 

The oxidized state is required for generation of a refractory period following 

channel opening. Intriguingly, the two cysteines are a recent evolutionary 

innovation found only in fast-flying flies (Figure 10), suggesting that this dynamic 

scaffolding system was easy to engineer into PDZ5. 

Isolated from the rest of InaD, however, PDZ5 does not recapitulate the 

behavior seen in vivo. PDZ5 in vitro does not bind its physiological partner 

NorpA and has a disulfide bond that is too strong to be reduced under 

physiological conditions (Mishra et al. 2007). While this may be due to 

unidentified regulatory factors, it is also possible that PDZ5 is not independent 

from the rest of InaD. 

In this chapter, I identify PDZ4 as a necessary component for the binding 

of PDZ5 to its physiological ligand, NorpA. In addition, PDZ4 acts as an 

allosteric inhibitor of disulfide bond formation in PDZ5. While PDZ5 is therefore 

not an independent module, bioinformatic techniques suggest that PDZs 4-5 have 
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coevolved together in many proteins independently from the rest of InaD and 

likely represent a true module. 

Identification of NorpA as the Physiological Binding 
Partner of PDZs 4-5 

InaD PDZ5 is thought to bind to NorpA, a phospholipase C β involved in 

activation of the visual response (Alwai et al. 1972; Paj et al. 1976; J. Huang et al. 

2010). The best evidence for this comes from studies on two mutants in flies. The 

first, inaD2 (G605E), is a mutation in PDZ5 which causes mislocalization of 

NorpA in vivo, reduced sensitivity, a long, highly stochastic latency, and slow 

activation and inactivation of the visual response (Susan Tsunoda et al. 1997). 

Later it was shown that a C-terminal mutation in NorpA, Y1094S, also disrupted 

NorpA localization and resulted in similar effects on the visual response (B.-H. H. 

Shieh et al. 1997). While reports of qualitative pull-down binding assays and 

other experiments have supported the claim that NorpA binds to PDZ5 (B.-H. H. 

Shieh et al. 1997; Susan Tsunoda et al. 1997; van Huizen et al. 1998), these 

studies did not use highly purified proteins and I and other members of the 

Ranganathan lab have not been able to reproduce these findings (Figure 28, 

Figure 29). 
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Figure 28: Fluorescence Polarization Measurement of Binding of PDZ5 
C645S to NorpA C-terminal Peptide 

The binding of PDZ5 C645S to a rhodamine-labeled C-terminal peptide of NorpA was measured 
by fluorescence polarization. There was no significant titration up to 100 µM as indicated by the 
lack of a significant change in polarization. 

Several recent reports have indicated that the folding and binding 

properties of some PDZ domains are sensitive to N- and C-terminal extensions, 

which are often other PDZ domains (C. K. Wang et al. 2010). InaD PDZ4 is 

separated from PDZ5 by a short linker (six amino acids in Drosophila 

melanogaster) throughout the InaD gene family (Figure 10, Appendix A). Thus, 

we hypothesized that PDZ4 may alter the properties of PDZ5. 

Pull-Down Binding Assay 
I first screened the binding properties of PDZ5 and PDZs 4-5 (PDZ45) 

with the C-terminal domain (CTD) of NorpA (869-1095) using a pull-down assay 
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(Figure 29). The CTD is a coiled-coil structural domain of phospholipase C β 

proteins which also contains the C-terminus of the protein (Singer et al. 2002), the 

putative ligand for PDZ5. I incubated purified PDZ5 and PDZ45 under reducing 

conditions with the His-tagged NorpA CTD at micromolar concentrations, 

washed to remove unbound protein, and then eluted the bound protein. I found 

that PDZ45 but not PDZ5 interacted with the NorpA C-terminal domain (CTD).  

 

Figure 29: Measurement of NorpA Binding by Pull Down Assay 

The binding of PDZ45 and PDZ5 to His-NorpA CTD was tested by pull down assay under 
reducing conditions. Bovine serum albumin (BSA) was added to the elution buffer as a loading 
control. 

Gel Filtration of a PDZs 4-5 / NorpA Complex 
Mike Socolich tested whether it was possible to purify a PDZ45/NorpA 

CTD complex. He co-expressed NorpA with His-tagged PDZ45 and then co-

purified the proteins by Ni-affinity purification (Figure 30a) followed by size-

exclusion chromatography ((Figure 30b-c). The co-purification of the two 

proteins to near homogeneity indicates that the two proteins directly interact and 

form a stable complex. 
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Figure 30: Co-Purification of NorpA CTD with PDZ45 

(a) NorpA CTD was co-expressed with His-tagged PDZ45. The soluble protein (supernatant) was 
bound to Ni-NTA, unbound proteins were removed (flowthrough), and the bound complex was 
eluted (eluate). The His tag was removed by proteolysis with PreScission Protease (proteolyzed) 
followed by rebinding to Ni-NTA (post-rebind). (b) The complex (black) was then subjected to 
size-exclusion chromatography. For comparison, the elution profiles of NorpA (red) and PDZ45 
(blue) alone are also shown. (c) Fractions (black triangles) from the peak containing the PDZ45-
NorpA complex are shown. 

Development of a Quantitative Binding Assay 
Based on these results, Rama Ranganathan, Mike Socolich, and I then 

designed a quantitative Förster Resonance Energy Transfer (FRET) binding assay 

using Cerulean-tagged (Rizzo et al. 2004) PDZ45 and Venus-tagged (Nagai et al. 

2002) NorpA CTD (Figure 31a). Mike Socolich designed and cloned the 

constructs and I developed the assay. I found that Cerulean-PDZ45 fluorescence 

was quenched with the addition of nanomolar concentrations of Venus-NorpA 

CTD in a dose-dependent manner with a maximal decrease of ~10%  (Figure 
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31b). Both the quenching of Cerulean and increased fluorescence by Venus were 

reversed by the addition of untagged PDZ45 (Figure 31c), indicating that the 

effect was indeed due to FRET. 

 

Figure 31: FRET Experiment for Quantitatively Studying PDZ45-NorpA 
Interaction 

(a) PDZ45 and NorpA were fused to Cerulean and Venus, respectively, to generate proteins which 
would undergo FRET upon binding. (b) As Venus-NorpA was titrated up to 1 µM against a fixed 
concentration of Cerulean-PDZ45, the fluorescence from Cerulean (475 nm) decreased. (c) 
Addition of low micromolar concentrations of PDZ45 restored the Cerulean-PDZ45 and decreased 
the Venus-NorpA fluorescence, indicating the presence of FRET. 

Quantitative Binding Measurements 
I quantitatively measured binding by monitoring FRET inhibition while 

competing the wild-type interaction with unlabeled proteins. There were two 

questions to address: How much does PDZ4 influence binding, and secondly, 

what is the binding mode between PDZ45 and NorpA? 
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Effect of PDZ4 on Binding 

I confirmed the qualitative pull-down results, finding that PDZ45 

interacted tightly with a KD of 0.6 ± 0.1 µM while PDZ5 C645S did not inhibit 

FRET even at 100 µM (Figure 32). This loss of binding in PDZ5 is not due to 

oxidation or the C645S mutation—this mutant is locked in the reduced state, has a 

typical conformation in the binding pocket, functions normally in vivo under 

conditions in which the refractory period is unimportant (Mishra et al. 2007), and 

has little effect on binding in PDZ45. 
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Figure 32: Effect of PDZ4 on Binding 

The competition binding curves of PDZ45 (black) and PDZ5 C645S (red) are shown. 
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NorpA, not Trp, is the Ligand 

I expected PDZ5 to bind to the C-terminus of NorpA, as this is the typical 

mode of binding in PDZ domains (Hung et al. 2002) and as already mentioned, a 

C-terminal mutation in NorpA, Y1094S, is known to be important (B.-H. H. 

Shieh et al. 1997). However, a recent study argued that PDZ5 binds to Trp based 

on similarity of PDZ5’s preferred ligand residues with the Trp C-terminus (W. 

Liu et al. 2011). This contradicts the genetic evidence, and the authors were only 

able to observe tight binding in the presence of PDZ3, which genetic and 

biochemical evidence indicates binds Trp (B. H. Shieh et al. 1996; Susan Tsunoda 

et al. 1997). I found that the Trp peptide used by Liu et al. was unable to compete 

with the PDZ45-NorpA interaction even at 1 mM. In contrast, full length wild-

type NorpA CTD bound tightly with a KD of 0.8 ± 0.1 µM (Figure 33). 
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Figure 33: NorpA and Trp Binding 

The competition binding curves for NorpA CTD (black) and Trp C-terminal peptide (white) are 
shown. 

Binding Mode between PDZ45 and NorpA 

Individual	
  Contribution	
  of	
  PDZ4	
  and	
  PDZ5	
  

To test whether PDZ5 was responsible for binding in PDZ45, I made 

mutations in the α2-1 position of each domain (PDZ4: T553A, PDZ5: F642A), a 

site known to contribute most to the binding energy in other PDZ domains 

(Tonikian et al. 2008; Z. Songyang et al. 1997) . I found that PDZ45 T553A had a 

small effect on binding (1.6 ± 0.2 µM), while F642A strongly reduced the KD to 

50 ± 10 µM (Figure 34). This suggests that PDZ5 is primarily responsible for 

binding in PDZ45. 
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Figure 34: Contribution of PDZ4 and PDZ5 to Binding 

The competition binding curves for PDZ45 T553A (black, PDZ4 binding site mutant) and F642A 
(white, PDZ5 binding site mutant) are shown. The dashed line is the PDZ45 WT binding curve fit. 

Contribution	
  of	
  the	
  NorpA	
  C-­‐terminus	
  

PDZ domains typically interact primarily with the last three amino acids 

of a protein with limited additional interaction sites (D. A. Doyle et al. 1996; H. 

H. Lee, Molla, et al. 2010). Therefore, it was surprising to find that a peptide 

containing the last seven amino acids of NorpA bound very weakly with a KD of 

260 ± 50 µM. The Y1094S mutation, however, decreased binding of the CTD 15-

fold to 12 ± 2 µM, indicating that the C-terminus of NorpA is important for 

binding (Figure 35). 
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A	
  Potential	
  Internal	
  Binding	
  Site	
  on	
  NorpA	
  

While these results indicate that PDZ45 does indeed bind the C-terminus 

of NorpA, the inability of the C-terminal peptide to bind as tightly as the full 

domain suggests there are additional binding determinants beyond the -7 position. 

In agreement with this, Liu et al. found that a C-terminal peptide from NorpA 

with three additional residues bound considerably better than the peptide I used, 

but still failed to bind with low micromolar affinity (W. Liu et al. 2011). 

In an attempt to generate a better construct of NorpA for crystallization, 

Mike Socolich tried removing a hypervariable loop (NorpA 924-928) that was 

removed from the homologous turkey phospholipase C β when it was crystallized 

(Singer et al. 2002). He found that this construct (NorpA CTD ∆5) no longer co-

purified with PDZ45, so I tested its binding quantitatively. I found that this 

construct bound much more weakly with a KD of 56 ± 4 µM (Figure 35). The 

protein migrated as a dimer like the wild-type construct and showed no signs of 

aggregation, suggesting this deletion did not structurally compromise the protein. 

Intriguingly, this loop is coupled to G protein binding in the turkey protein 

(Singer et al. 2002). 
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Figure 35: Contribution of the NorpA C-terminus and Internal Loop to 
Binding 

The competition binding curves for the NorpA C-terminal peptide (black), NorpA CTD Y1094S 
(red), and NorpA CTD ∆5 (blue) are shown. The dashed curve is the NorpA CTD (WT) fit. 

Double Mutant Cycles 

In order to determine whether PDZ5 interacted with the C-terminus, I re-

assayed NorpA Y1094S using Cerulean-PDZ45 T553A or F642A instead of WT 

(Figure 36a). Both mutations had less severe effects in combination with the 

NorpA C-terminal mutation, indicating that both sites are energetically coupled 

with the NorpA C-terminus. The magnitude of the coupling was much stronger 

with PDZ5 (3.4 ± 0.4 kT) (Figure 36c) than PDZ4 (1.5 ± 0.4 kT) (Figure 36b). 
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Figure 36: Double Mutant Cycle Analysis of PDZ45 Binding Site Mutants 
and NorpA C-terminal Mutant 

(a) The competition binding curves for NorpA CTD Y1094S in the background of Cerulean-
PDZ45 T553A (PDZ4 binding site, blue) or F642A (PDZ5 binding site, green) are shown. The 
black dashed and dotted curves are the titration fits for PDZ45 WT and NorpA CTD WT, 
respectively. The red dashed curve is the titration fit for NorpA CTD Y1094S, and the titration fits 
for PDZ45 T553A and F642A are shown in blue and green dashed lines, respectively. (b-c) 
Thermodynamic double mutant cycles are shown for the interaction of NorpA Y1094S and (b) 
PDZ45 T553A and (c) F642A. 

Similarly, I tested the interaction of PDZ4 and PDZ5 with the deletion of 

the hypervariable loop of NorpA (Figure 37a). Again, both mutations had less 

severe effects in combination with the NorpA C-terminal mutation, indicating that 
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both sites are energetically coupled with the hypervariable loop in NorpA. Like 

the C-terminus, the magnitude of the coupling was much stronger with PDZ5 (4.7 

± 0.4 kT) (Figure 37c) than PDZ4 (1.6 ± 0.5 kT) (Figure 37b). 
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Figure 37: Double Mutant Cycle Analysis of PDZ45 Binding Site Mutants 
and NorpA Hypervariable Loop 

(a) The competition binding curves for NorpA CTD ∆5 in the background of Cerulean-PDZ45 
T553A (PDZ4 binding site, blue) or F642A (PDZ5 binding site, green) are shown. The black 
dashed and dotted curves are the titration fits for PDZ45 WT and NorpA CTD WT, respectively. 
The red dashed curve is the titration fit for NorpA CTD ∆5, and the titration fits for PDZ45 T553A 
and F642A are shown in blue and green dashed lines, respectively. (b-c) Thermodynamic double 
mutant cycles are shown for the interaction of NorpA ∆5 and (b) PDZ45 T553A and (c) F642A. 

  



123 

 

Table 3: Summary of Binding Results 

Competitor (Double Mutant) Binding Affinity (µM) 
PDZ45 WT           0.6 ±   0.1 
PDZ45 C645S           3.3 ±   0.5 
PDZ45 Δ3C           1.5 ±   0.2 
PDZ45 T553A           1.6 ±   0.2 
PDZ45 F642A         50    ± 10 
PDZ5 C645S   >1000 
NorpA CTD           0.8 ±   0.1 
NorpA C-terminal peptide       260    ± 50 
NorpA CTD Y1094S         12    ±   2  
NorpA CTD Y1094S (PDZ45 T553A)           9.1 ±   0.7 
NorpA CTD Y1094S (PDZ45 F642A)         38    ±   6 
NorpA CTD ∆5         56    ±   4 
NorpA CTD ∆5 (PDZ45 T553A)         37    ±   7 
NorpA CTD ∆5 (PDZ45 F642A)         53    ±   4 
Trp C-terminal peptide >10000 

Effect of PDZ4 on the Redox Properties of PDZ5 
In addition to its inability to bind NorpA, free PDZ5 readily oxidizes 

under physiological conditions in vitro (Mishra et al. 2007). Oxidation results in a 

conformational change which distorts the α2 helix of the binding pocket (Mishra 

et al. 2007). Although the C645S mutation prevents oxidation, it is possible that 

this conformational change occurs in the absence of the disulfide bond. I 

hypothesized that the large effect of PDZ4 on the binding affinity of PDZ5 may 

be a result of a shift in this conformational equilibrium and would thus also alter 

the redox properties of PDZ5. 
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Development of a Quantitative, Precise Redox Assay 

Redox Titration Theory 

In a redox titration, an oxidizable protein is mixed with a reducing and/or 

oxidizing agent (the redox buffer, usually DTT or glutathione). The redox 

reaction of each component is characterized by its standard redox potential (E0) 

and the Nernst equation: 

Equation 11: Nernst Equation 

𝐸 = 𝐸! −
𝑅𝑇
𝑛𝐹 ln

Reduced !!

Oxidized !!
  

where R is the ideal gas constant, T is the temperature, n is the number of 

electrons transferred (2 for disulfide exchange reactions), F is Faraday’s constant 

(96,485.3365 C/mol), and x is the stoichiometry of reduced (r) and oxidized (o) 

species in the reaction (usually 1, but the oxidation of glutathione forms a dimer 

and so it has xr = 2). 

At equilibrium, the redox potential of each reaction (E) is the same: 

Equation 12: General Redox Equilibrium Equation 

𝐸! = 𝐸! = 𝐸!! −
𝑅𝑇
𝑛𝐹 ln

B! !!   
B! !!

= 𝐸!! −
𝑅𝑇
𝑛𝐹 ln

P!
P!

 

where B is the redox buffer, and P is the protein. In general, we can see by 

rearranging that: 
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𝐸!! = 𝐸!! +
𝑅𝑇
𝑛𝐹 ln

P! B! !!

P! B! !!
 

Issues with the Previous Redox Titration Method 

The Ranganathan lab’s previous study (Mishra et al. 2007) and Liu et al. 

2011 performed unbuffered redox titrations by adding in what was assumed to be  

fully reduced DTT or oxidized glutathione to fully oxidized PDZ5 or reduced 

PDZ45. The fraction of the protein that was reduced (%red) was then measured. 

Since the initial concentrations (indicated with a 0 subscript) and total protein 

([P]tot) were assumed to be known, the equilibrium concentrations are the 

following: 

Δ P! = %!"# −%!"#,! P !"!  

B! = B! ! − Δ P!   

B! = B! ! + Δ P!  

Subtituting these expressions into the general equation for the standard 

redox potential of the protein and rewriting the ratio of reduced to oxidized 

protein in terms of %red, we get: 

Equation 13: Unbuffered Redox Titration Fitting Equation 

𝐸!! = 𝐸!! +
𝑅𝑇
𝑛𝐹 ln

%!"#

1−%!"#

B! ! + %!"# −%!"#,! P !"!

B! ! − %!"# −%!!",! P !"!
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The problem with this approach is that it is susceptible to many errors due 

to the numerous variables in the fit and the typical assumption that the initial 

materials are purely in one state. One can see the magnitude of these errors (ε) by 

taking the difference in the equation above for the case of reducing a protein with 

(%red,0=0, [Bo]0=0) and without the assumption of fully oxidized protein and 

reduced buffer: 

𝜖 =
𝑅𝑇
𝑛𝐹 ln

%!"# B! ! + P !"! %!"# −%!"!,!

B! ! − P !"! %!"# −%!"#,! 1−%!"#

− ln
%!"#
! P !"!

B! ! −%!"# P !"! 1−%!"#
  

Note that !"
!"

 is ~13 mV. The individual errors from the assumptions of starting 

with completely oxidized protein and completely reduced buffer can be estimated 

by calculating the second-order Taylor series expansion of ε around (%red,0=0, 

[Bo]0=0):  

𝜖 %!"#,! = −
𝑅𝑇
𝑛𝐹 ln %!"# − ln B! ! +%!"# P !"! + ln P !"!

−
𝑅𝑇
𝑛𝐹

%!"#,! P !"! B! ! + B! !

B! ! +%!"# P !"! B! ! −%!"# P !"!
+ 𝑂 %!"#,!

!   

𝜖 B! ! =
𝑅𝑇
𝑛𝐹 ln

%!"# −%!"#,!

B! ! − P !"! %!"# −%!"#,!
− ln

%!"#

B! ! −%!"# P !"!

+
B! !

P !"! %!"# −%!"#,!
+ 𝑂 B! !

!  
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By inspection, we can see that the effect of unaccounted partially reduced 

protein at most contributes an error of approximately − !!
!"

! !! !
! !! !! ! !"!

%!"#,! at 

the midpoint of the titration when the buffer is initially all reduced. For buffer 

concentrations of ~10X the protein concentration or more and with at most 10% 

initial reduction of the protein, this error is on the order of a few millivolts. 

The effect of unaccounted oxidation of the reduced buffer is 

!"
!"

!! !
! !"! %!"#!%!"#,!

. Unless the protein concentration is much greater than the 

oxidized buffer concentration, this effect is large, approximately 26 mV times the 

ratio of oxidized buffer and protein concentrations. Given that the experiments are 

typically done with protein concentrations more than an order of magnitude less 

than the buffer concentration, this effect can be significant even with only 1-10% 

oxidation of the buffer. In addition, commercially available reducing agents are 

only guaranteed to <0.1-1% oxidation and improper storage can further increase 

this fraction. 

The converse experiment of oxidizing a protein suffers from the same 

errors. The effect of partial oxidation is even smaller than the effect of partial 

reduction, occuring only in higher order terms of the Taylor series. The error due 

to partial reduction of the buffer is equivalent to the error in reducing a protein: 
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!! !
! !"! %!"#!%!"#,!

. With glutathione as the oxidant, the error increases two fold 

due to the square dependence on the concentration of reduced glutathione. 

Redox Buffering Theory 

An alternative approach used in this study is to buffer the redox condition 

by keeping the concentration of oxidized and reduced buffer much greater than 

the concentration of protein that reacts at equilibrium. Under these conditions, the 

concentrations of reduced and oxidized buffer do not change significantly at 

equilibrium, and thus the redox potential is fixed to the initial redox potential of 

the buffer. With this simplification, the redox potential of the protein can be 

calculated as: 

Equation 14: Buffered Redox Titration Fitting Equation 

𝐸!! = 𝐸! +
𝑅𝑇
𝑛𝐹 ln

%!"#

1−%!"#
 

This has several advantages. Since a large, known amount of both reduced 

and oxidized buffer are added, impurities in the chemicals are less important as 

long as the concentrations are not vastly different. In addition, the initial state of 

the protein is no longer important, removing another source of error. Finally, 

because the exact same buffer conditions can be used to both oxidize and reduce 

proteins, the errors become systematic rather than idiosyncratic and thus 

comparisons become much less error prone. 
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Fitting	
  of	
  Buffered	
  Redox	
  Titrations	
  

As described in the previous section, the equilibrium condition for a 

buffered redox titration is solely dependent on the redox potential of the buffer 

(EB) and the fraction of the protein that is reduced (%red) along with a set of 

physical constants (R, T, n, F). The titrations are plotted as %red vs. EB, and thus 

we can rewrite the titration equation in this form for fitting: 

Equation 15: Buffered Redox Titration Curve Fitting 

%!"# = 𝑎
exp 𝑛𝐹

𝑅𝑇 𝐸!! − 𝐸!

1+ exp 𝑛𝐹
𝑅𝑇 𝐸!! − 𝐸!

 

Because of the limitations of identifying the distinct reduced and oxidized bands 

by densitometry, the real titrations do not always saturate at 100% reduced. As a 

result, I scaled the titration by a, the maximum fraction reduced. In some other 

cases, the protein did not completely oxidized and a term was added to adjust the 

baseline. 

Redox	
  Buffer	
  Conditions	
  

Redox buffers were prepared with 25 mM DTTox and two-fold dilutions of 

DTTred. The redox potential is calculated from the Nernst equation (Equation 11) 

with a standard redox potential of -323 mV for DTT (Szajewski et al. 1980). The 
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redox potential of a titration sample will be approximately equal to the redox 

potential of the DTT solution if the concentration of the protein that reacts with 

the buffer does not significantly change the ratio of DTTred to DTTox. 

Table 4: Redox Buffer Conditions 

E (V) DTTred (mM) DTTox (mM) DTTred/DTTox 
-0.335 6.3E+01 25 2.5E+00 
-0.326 3.1E+01 25 1.3E+00 
-0.317 1.6E+01 25 6.3E-01 
-0.308 7.8E+00 25 3.1E-01 
-0.299 3.9E+00 25 1.6E-01 
-0.290 2.0E+00 25 7.8E-02 
-0.280 9.8E-01 25 3.9E-02 
-0.271 4.9E-01 25 2.0E-02 
-0.262 2.4E-01 25 9.8E-03 
-0.253 1.2E-01 25 4.9E-03 
-0.244 6.1E-02 25 2.4E-03 
-0.235 3.1E-02 25 1.2E-03 
-0.226 1.5E-02 25 6.1E-04 
-0.217 7.6E-03 25 3.1E-04 
-0.208 3.8E-03 25 1.5E-04 
-0.199 1.9E-03 25 7.6E-05 
-0.190 9.5E-04 25 3.8E-05 
-0.180 4.8E-04 25 1.9E-05 
-0.171 2.4E-04 25 9.5E-06 

Redox Titration of PDZ5 

I performed redox titrations by equilibrating each protein under a 

particular redox potential using the dithiothreitol redox buffer listed in Table 4 

and then assayed the oxidation state of the two cysteines. Oxidation was 

monitored by labeling free thiols with a ~500 Da maleimide, producing a 1 kD 
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shift on a SDS-PAGE gel (Figure 40a). In this assay, free PDZ5 titrates with a 

standard redox potential (E0) of -284.6 ± 0.8 mV (Figure 40b-c). The cytoplasmic 

redox conditions in the Drosophila photoreceptor cell are unknown, but 

measurements of the glutathione redox state in other cell types range from -200 to 

-260 mV (Kemp et al. 2008), and I observed non-physiological oxidation of 

cysteines above -220 mV (Figure 38). This suggests that free PDZ5 would indeed 

be oxidized in vivo. 

Redox Titration of PDZ45 

PDZ4 contains three cysteines, two of which are located on the surface. 

Initially I tried measuring the redox potential of WT PDZ45 (Figure 38a), but 

under very oxidizing conditions the additional cysteines oxidize even in PDZ45 

C645S (Figure 38b). This makes it difficult to specifically follow the oxidation of 

the PDZ5 cysteines. However, it was clear that the titration occurred in the -220 to 

-240 mV region. Shan Mishra previously showed that the C645S mutation 

eliminates all oxidized InaD species in vivo (Mishra et al. 2007), indicating that 

species which titrate like PDZ45 C645S will not be oxidized in vivo. 
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Figure 38: Redox Titration of PDZ45 WT and C645S 

Redox titrations of (a) PDZ45 WT and (b) C645S were performed using a 1-2 hour equilibration. 
In both cases, multiple oxidized species are present, preventing a focused analysis on the C606-
C645 disulfide. We previously demonstrated that the C645S mutation eliminates all physiological 
disulfide bond formation in InaD, indicating that the oxidized species we observe below -226 mV 
are not relevant in vivo. 

Mutation of the PDZ4 Cysteines to make PDZ45 ∆3C 

To specifically follow oxidation of PDZ5, I mutated the three cysteines in 

PDZ4 to alternative amino acids found in the InaD gene family 

(C504T/C515A/C539T) (Appendix A). This construct, PDZ45 Δ3C, binds to the 

NorpA CTD with a similar affinity as WT PDZ45 (Figure 39), indicating that the 

mutations are at least not severe enough to disrupt NorpA binding. 
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Figure 39: Binding of PDZ45 ∆3C to NorpA 

The competition binding curve of PDZ45 ∆3C is shown. For comparison, the titration fits for 
PDZ45 WT (black dashed line) and F642A (red dashed line, PDZ5 binding site mutant) are 
shown. 

Redox Titration of PDZ45 ∆3C 

I then measured the redox potential of PDZ45 ∆3C. PDZ45 ∆3C titrated 

with an E0 of -242 ± 2 mV (Figure 40), a 42 mV (3.3 ± 0.2 kT) destabilization of 

the disulfide bond by PDZ4 relative to free PDZ5. Liu et al. independently 

observed inhibition of oxidation of PDZ5 by PDZ4 (W. Liu et al. 2011), but their 

results are quantitatively different than mine. This is probably due to their use of 

unbuffered redox titrations with different redox reagents for PDZ45 and PDZ5, 

which can produce substantial errors. It may also be due to differences in the 

construct used, as the exact N- and C-termini of the PDZ domains seems to 
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influence their function (C. K. Wang et al. 2010), an effect we have also observed 

with the redox properties of PDZ5 (data not shown). 

 

Figure 40: Redox Titration of PDZ5 and PDZ45 ∆3C 

(a) Proteins were equilibrated in a DTT-based redox buffer, precipitated, denatured, and then free 
thiols were labeled with AMS, a ~500 Da maleimide. (b) Gels of the redox titration of PDZ5 and 
PDZ45 ∆3C are shown with the titration plotted below. 

Detection of an Oxidative Dimer in PDZ45 
Near the midpoint of the titration, a singly-oxidized species was observed 

in PDZ45 but never in PDZ5 (Figure 40b). One explanation for this could be that 

the protein forms an oxidative dimer. To test this, I prepared samples of PDZ45 

∆3C by equilibrating for 26 hours at -244 mV or in 10 mM TCEP (reducing 
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conditions), precipitated, washed, and resuspended in detergent-free denaturing 

buffer (80 mM HEPES pH 7, 6.7M urea, 6.7M guanidine HCl) containing 50 mM 

iodoacetamide and incubated for 30 minutes at room temperature to block free 

cysteines. The samples were then desalted and submitted to the UT Southwestern 

Protein Technology core facility for electrospray mass spectrometry analysis. The 

identified masses are listed in Table 5 along with the expected masses for the 

assigned species. 

Table 5: Mass Spectrometry of Redox Equilibrated PDZ45 

Observed 
Mass (Da) 

Assignment Expected 
Mass (Da) 

Present Under… 
Reducing 

Conditions 
-240 mV Conditions 

22421 ± 3 Oxidized (-2H) 22420 - Y 
22537 ± 3 +2 Cam 22536 Y Y 
22594 ± 3 +3 Cam 22593 Y Y 
22651 ± 3 +4 Cam 22650 Y Y 
44843 ± 5 Oxidative Dimer (-2H) 44842 - Y 
44958 ± 5 Oxidative Dimer (-1H) 

+1 Cam 
44957 - Y 

45015 ± 5 Oxidative Dimer (-1H) 
+2 Cam 

45014 - Y 

45073 ± 5 Oxidative Dimer (-1H) 
+3 Cam 

45071 - Y 

Cam: Carboxamidomethyl (+57 Da), from reaction with iodoacetamide 

Disulfide exchange reactions occur via two steps. In the case of oxidizing 

PDZ45, a thiolate anion from PDZ45 performs a nucleophilic attack of oxidized 

DTT, the donor disulfide, forming a PDZ45-DTT mixed disulfide. Then, a second 

thiolate anion from PDZ45 performs a nucleophilic attack of the mixed disulfide, 

resulting in disulfide bond formation in PDZ45 and release of reduced DTT. 

Normally, intramolecular disulfide bonds are strongly preferred 
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thermodynamically due to entropy and kinetically due to the proximity of the 

second attacking intramolecular thiolate anion. The observation that there is a 

significant increase in intermolecular disulfide bond formation in PDZ45 suggests 

that one of the cysteines in PDZ45 but not PDZ5 is particularly unreactive at pH 

7, which is consistent with the significant increase in the redox potential. 

Effect of PDZ4 on the Conformation of PDZ5 

Crystal Structure of PDZ45 
The previous study indicated that PDZ5 switched from an open to closed 

conformation in the binding pocket upon oxidation (Mishra et al. 2007). The 

finding that PDZ4 promotes binding of NorpA and inhibits disulfide bond 

formation suggested that PDZ5 is in the open conformation in PDZ45. Shan 

Mishra therefore crystallized PDZ45 and solved the structure to 2.4Å. Despite 

being crystallized under non-reducing conditions in which free PDZ5 is 

completely oxidized (Mishra et al. 2007), the protein was observed in the reduced 

form (Figure 41a). The asymmetric unit contained four PDZ45 molecules with 

very similar conformation to each other and reduced free PDZ5 (Figure 41b). This 

conformation is typical of PDZ domains apart from the α1 helix and thus would be 

expected to bind ligand. 

Given its inability to bind NorpA, it is likely that the open state is not the 

major conformation of reduced free PDZ5 in solution. In agreement with this, the 

interaction with PDZ4 substantially alters the chemical environment of much of 
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PDZ5 beyond the immediate interface, including the binding pocket (W. Liu et al. 

2011). The interface with PDZ4 buries 2683Å2 (21% of the total surface) and 

contains many polar contacts, including one between H510 of PDZ4 and S621 of 

PDZ5 on the α1 helix, a known allosteric region in PDZ domains (Garrard et al. 

2003). In addition, the C-terminal tail forms interactions with both the 

interdomain linker as well as PDZ4. The lack of direct contact between PDZ4 and 

either cysteine of PDZ5 indicates that the observed functional effects must be 

transmitted through some allosteric pathway, although the details of this pathway 

are not obvious from either the structure or the biochemical experiments 

presented here. 
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Figure 41: Structural Analysis of PDZ45 

(a) The asymmetric unit of the crystal structure is shown with different hues for each molecule. 
PDZ5 is shown in a darker shade with C606 and C645 in black sticks. (b) The structure of one of 
the PDZ45 molecules in the asymmetric unit is shown with various structural elements 
highlighted. The inset shows the electron density around the PDZ5 cysteines, demonstrating that 
they are reduced. (c) The average RMSD deviation of the various PDZ5 structures is shown in 
comparison with a large number of reference domains. The average RMSD between the reference 
domains is shown in the gray bars. 
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Table 6: PDZ45 Crystal Structure Details 

Data Collection and Phasing  
Space Group P212121 
Cell Dimensions a=88.34 Å, b=106.38 Å, c=108.64 Å, α=β=γ=90° 
Source APS 19-BM 
Wavelength (Å) 0.97945 (peak) 
Resolution Range (Å) 20-2.4 
Reflections 38201 
Completeness  

All/Outer Shell 99.0/97.8 
I/σ  

All/Outer Shell 15.5/2.7 
 
Refinement 

 

Resolution Limit (Å) 2.4 
Reflections  

Working/Test 38201/2019 
R (Rfree) 0.23 (0.29) 
No. of atoms  

Protein 6103 
Water 298 

Mean B factor (Å2) 20.9 
RMSD Bond Length (Å) 0.021 
RMSD Bond Angle 2.1 

Evolutionary History of PDZ45 
The data presented so far show that the function of PDZ5 is intimately 

influenced by the presence of PDZ4, discrediting the view of PDZ5 as an 

independent module. The PDZ45 tandem, however, seems to recapitulate the 

physiological properties of PDZ5 and therefore may qualify as a module. In the 

traditional view of modularity in scaffolding proteins, modules are swapped out 

over evolutionary time to introduce new functionality to the scaffold 
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(Bhattacharyya et al. 2006). Is there evidence of this type of modularity in the 

evolutionary record of PDZ45? 

Identification of Homologous InaD Fragments 
To test this, I searched for homologs of PDZ45 outside of the InaD gene 

family using PSI-BLAST (Altschul et al. 1997). To prevent the selection of 

generic PDZ domain matches, I performed only three rounds of PSI-BLAST and 

chose cutoff values that typically resulted in a single hit per gene. I identified 140 

tandem hits found in searches of PDZ4, PDZ5, and PDZ45 with stringent cutoffs 

as the list of homologous tandem PDZ domains (Figure 42). This approach is 

relatively conservative as it only includes approximately 30% of the PDZ45 hits; 

in addition, many of the subthreshold hits are also tandem domains found in all 

three searches and may represent additional homologs. 

 

Figure 42: Identification of Homologs of the PDZ45 Tandem 

Venn diagram showing the overlap in hits from three rounds of conservative PSI-BLAST searches 
using InaD PDZ4, PDZ5, or PDZs 4-5 against the NCBI non-redundant database. The expectation 
value cutoffs were heuristically chosen to exclude generic PDZ domain matches. 

This result for PDZ45 is unique within InaD. I performed a similar 

analysis for other sets of PDZ domains from InaD. The results are shown below in 
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Table 7. The off-diagonal numbers indicate the number of unique NCBI gene 

identifier numbers shared between each group. Note that in Figure 42, PDZ45 was 

subjected to a stricter comparison in which only overlapping hits between PDZ4, 

PDZ5, and PDZ45 were counted as homologs. As shown in Table 8, only the 

PDZ45 tandem has homologs outside of the strict InaD gene family. 

Table 7: Identification of Homologs of InaD PDZ Domains 

Dataset PDZ2 PDZ3 PDZ4 PDZ5 PDZ23 PDZ34 PDZ45 PDZ345 
PDZ2 149               
PDZ3 24 961             
PDZ4 138 61 575           
PDZ5 130 171 188 618         
PDZ23 76 23 75 72 76       
PDZ34 61 65 63 60 61  106     
PDZ45 106 206 174 262 73 61 377   
PDZ345 65 22 67 67 61 61 68  68 

 

Table 8: Comparison of InaD Multi-PDZ Domain Homologs 

Datasets # of 
Homologs 

Included Gene Families 

PDZ2 & PDZ3 & PDZ23 23 InaD (fly, mosquito, bee, beetle, ant, 
louse) 

PDZ3 & PDZ4 & PDZ34 24 InaD (fly, mosquito, bee, beetle, ant) 
PDZ4 & PDZ5 & PDZ45 142 See Figure 43a 
PDZ3 & PDZ4 & PDZ5 & PDZ345 21 InaD (fly, mosquito, beetle) 

Phylogenetic Analysis of PDZ45 Homologs 
Next, I examined the evolutionary history of PDZ45 by constructing a 

neighbor-joining phylogenetic tree from an alignment of these tandem domains 

(Figure 43a-b). The sequences were relatively equally spaced on the tree, 

indicating that no one sequence was highly dissimilar from the rest. In addition to 

InaD and isolated multi-PDZ domains scaffolds from distant organisms, I found 
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four other major clusters on the tree corresponding with PDZs 1-2 of the Lnx E3 

ubiquitin ligase family, PDZs 7-8 of the nematode Mpz-1 family, PDZs 8-9 of 

InaD-like, and PDZs 10-11 of MPDZ. The sequences within each gene family 

clustered in a similar manner as the species tree, suggesting the alignment quality 

was sufficiently good to estimate the phylogeny of the genes. These proteins are 

found in diverse taxa spanning the metazoan lineage (Figure 43c). This suggests 

that PDZs 4-5 have indeed been coevolving for a long time and that the 

interdomain coupling we observe in InaD may be present in the other gene 

families as well. 
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Figure 43: Phylogenetic Analysis of PDZ45 Homologs 

(a) The neighbor-joining distance tree is shown for the 140 tandem domain homologs of PDZ45 
aligned using Promals3D. The scale bar indicates the number of substitutions/site. Bracketed 
numbers indicate the number of genes within that clade. (b) Domain structures of representative 
family members from the tree. PDZ4 homologs are shown in blue, PDZ5 in green. (c) NCBI 
taxonomy tree of the species included in the 140 tandem domain homologs. Bracketed numbers 
indicate the number of species contained in the indicated lineage. 

Conclusions 
The results presented here demonstrate that PDZ5 is not a module. On its 

own, PDZ5 fails to bind NorpA and oxidizes under physiological conditions. 

Instead, PDZ4 and PDZ5 form an intimate structural module which binds NorpA 
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and is reduced under physiological conditions. Additionally, the evidence 

presented here suggests that the binding mode with NorpA involves both domains 

and an internal site in NorpA, an unusual phenomenon in PDZ domains. 

Furthermore, the domains appear to have co-evolved in many distinct scaffolding 

protein families apart from the rest of InaD, indicating true modularity. While this 

challenges the common assumption that single protein domains are the 

evolutionary unit of scaffolding proteins, the long coevolution of the two domains 

provides time for them to become coupled. This may explain how complex 

regulatory features such as dynamic scaffolding can rapidly arise in evolution. 

Methods 

Constructs 
InaD PDZ5 (residues 580-674) was cloned into pRSETB His-GFP using 

SphI and XhoI with a thrombin site between GFP and PDZ5 using standard 

methods. The PDZ5 C645S construct was described previously (Mishra et al. 

2007). InaD PDZs 4-5 (residues 474-674) was cloned into pET28a+ with an N-

terminal His-tag followed by a PreScission Protease site. NorpA CTD (residues 

869-1095) was cloned into pET28a+ using NdeI/NotI with an N-terminal His-tag 

followed by a thrombin site. Cerulean and Venus constructs were made by first 

cloning the fluorescent proteins followed by a GGSGG linker into pET28b(+) 

using NheI/SacI or NheI/BamHI, respectively. InaD PDZ45 (residues 474-674) 

and the NorpA CTD (residues 869-1095) were then inserted at SacI/XhoI or 
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BamHI/XhoI, respectively. All point mutations were introduced by either 

QuikChange site-directed mutagenesis (Stratagene) or overlap extension PCR. 

The NorpA C-terminal peptide (acetyl-NH-GKTEFYA-COOH, MW 856.9 Da) 

and Trp C-terminal peptide (acetyl-G-RGKSTVTGRMISGWL-COOH, MW 

1706.02 Da) were synthesized by the UT Southwestern Protein Technology core 

facility. 

Fluorescence Polarization Binding Assay 
A titration of PDZ5 C645S was made by setting up 50 µL 1.5X serial 

dilutions of 75 µM protein in 50 mM Tris pH 8, 100 mM NaCl, 10% glycerol, 

0.02% bovine serum albumin, 1 mM DTT, with 20 nM tetramethylrhodamine 

(TMR)-conjugated NorpA C-terminal peptide (TMR-GKTEFYA-COOH) in a 

384-well plate. The samples were centrifuged to pellet dust and aggregated 

materials, incubated for 45 minutes, and then the fluorescence was measured in a 

Victor fluorescence plate reader using rhodamine filters (Perkin Elmer). 

Protein Expression 
Proteins were expressed in BL21-DE3 cells (Stratagene) at 18°C overnight 

following IPTG induction and then purified by either nickel or glutathione affinity 

chromatography. The purification tag was proteolyzed overnight by the addition 

of 1:50 w/w thrombin (NorpA constructs, PDZ5), 1:50 w/w Factor Xa (PDZ5 

C645S), or 10 units/mg PreScission Protease (GE; PDZ45 constructs) and then 
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removed by re-binding to affinity resin. The proteins were then further purified by 

size exclusion chromatography on either a Superdex 75 or Superdex 200 column 

in 50 mM HEPES pH 7, 100 mM NaCl, 10% glycerol, and 1 mM DTT or 50 mM 

Tris pH 7.5, 100 mM NaCl (PDZ5 C645S). 

Pull-Down Binding Assay 
His-NorpA CTD was pre-incubated for 1 hour with Ni-NTA (Qiagen) in 

binding buffer (50 mM Tris pH 8, 100 mM NaCl, 50 mM imidazole) at 4°C. 

During this time, 50 µL of 10 µM InaD PDZ45 WT, T553A, F642A, and PDZ5 

were also pre-incubated under reducing conditions (1 mM TCEP) in the binding 

buffer for 30 minutes on ice. The beads with or without pre-incubated NorpA 

were washed 1X and then resuspended with the 10 µM InaD solutions. The 

NorpA CTD concentration was also 10 µM after resuspension. The samples were 

equilibrated for 30 minutes at room temperature with mixing and then washed 2X. 

Finally, the bound sample was eluted with binding buffer containing 250 mM 

imidazole + 1 mg/ml BSA as a loading control and run on an SDS-PAGE gel. 

FRET Binding Assay 
Competitor proteins were co-incubated with 50 nM Cerulean-PDZ45 and 

300 nM Venus-NorpA in 50 mM HEPES pH 7, 100 mM NaCl, 10% glycerol, 5% 

bovine serum albumin, 1 mM TCEP. For the NorpA CTD ∆5 and PDZ45 F642A 

double mutant experiments, 100 nM Cerulean-PDZ45 F642A and 1 µM Venus-
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NorpA was used to increase the amount of FRET. The fluorescence emission 

spectra from 450 to 600 nm were measured in a Photon Technology International 

fluorimeter using 433 nm illumination. FRET inhibition was measured as the 

change in the FRET ratio (528 nm/475 nm), normalized in each experiment to a 

Michaelis-Menten fit. For PDZ5 C645S and Trp C-terminal peptide, the 

amplitude was normalized to the average maximal FRET ratio change of all the 

PDZ45 constructs. Curve fitting was performed in MATLAB (Mathworks). 

Redox Titration Assay 
Proteins (400 µL of 0.4 µM, 40 µL of 4 µM was used when NorpA was 

co-incubated) were incubated at 30°C in a dithiothreitol (DTT, E0 = -323 mV 

(Szajewski et al. 1980) ) redox buffer containing 10 mM HEPES pH 7, 50 mM 

NaCl, 1% glycerol, 25 mM oxidized DTT (Sigma), and the necessary amount of 

reduced DTT (Sigma) calculated using the Nernst equation (see Supplemental 

Info for details). Equimolar or 10 mM HEPES pH 7.0 was added to the reduced 

DTT to ensure the solution was exactly at pH 7.0. After 26 hours (unless 

otherwise indicated), 0.1% sodium deoxycholate and 30% trichloroacetic acid 

were added. The proteins were precipitated on ice for at least 30 minutes and 

centrifuged at 15,000 x g for 15 minutes to pellet. The pellet was rinsed three 

times with cold acetone and then air dried for 5 min. The pellets were 

resuspended in 200 mM Na2HPO4 pH 7.0, 1% (w/v) SDS with 10 mM 4-

acetamido-4’-maleimidystilbene-2,2’-disulfonic acid (AMS; MW, 536.44 Da; 
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Molecular Probes). After approximately 1 min at room temperature, labeling was 

quenched by adding 10 mM reduced DTT. 10 mM tris(2-carboxyethyl)phosphine 

(TCEP) pH 7.0 was then added and the solution was incubated for 10 min to 

reduce any oxidized cysteines. The remaining reduced cysteines were then 

blocked by incubation with 50 mM iodoacetamide for 30 min. Finally, non-

reducing Laemmli buffer was added and the samples were run on either Bio-rad 

16.5% Tris-Tricine Criterion precast gels (PDZ5) or hand-poured large-format 

12% Tris-Glycine gels for a GE SE600 gel apparatus. 

Crystallization and Structure Determination 
Selenomethionyl protein was produced by Shan Mishra by growing cells 

in M9 minimal media at 37°C to OD600 of 1.0, then incubating with amino acids 

(lysine, phenylalanine, threonine at 100mg/L; isoleucine, leucine, valine at 

50mg/L, Se-methionine at 60mg/L) for 15 minutes, and finally inducing with 

1mM IPTG overnight at 16°C.  Protein purification was carried out as above. 

Mass spectrometry analysis of the purified selenomethionyl protein indicated 

complete (100%) incorporation of Se-Met at all 4 methionine sites. 

Crystal trials were conducted by Shan Mishra at 4°C using the hanging 

drop vapor diffusion method at 0.4mM protein concentration.  Small crystals 

grew spontaneously within 1 day with well solution containing 26-30% PEG 

8000, 0.1-0.6M NaCacodylate, pH 5.4-6.0.  Larger crystals were obtained by 

microseeding into equilibrated drops at lower protein concentration (0.1-0.2 mM).  
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Single crystals were cryoprotected by serial equilibration into well solutions 

containing increasing amounts of glycerol (up to 15%) and flash frozen in liquid 

nitrogen. 

Data were collected at 100K at beamline 19-BM at the Advanced Photon 

Source, Argonne National Laboratory.  Indexing, scaling and phasing were 

carried out by Shan Mishra with the HKL-3000 package and model refinement 

was carried out with the CCP4 suite.  The statistics are summarized in Table 6. 

The structure was solved using SAD methods and a single dataset collected at the 

peak of the selenium excitation scan. Automated Patterson search methods using 

ShelX (in HKL-3000) identified all 16 selenium sites.  After solvent flattening 

and phase extension to 2.4Å, the experimental electron density map was easily 

traceable.  A randomly selected set of reflections (5%) was flagged for cross-

validation.  Manual model building was performed in Coot, and computational 

refinement was performed in CCP4 utilizing the program Refmac5. No non-

crystallographic symmetry restraints were used during phasing or refinement. 

Bioinformatic Analysis 
Homologs of PDZ45 were identified using three rounds of PSI-BLAST 

searches for PDZ4, PDZ5, or PDZ45 against the NCBI non-redundant database. 

For PDZ4 and PDZ5, the PSI-BLAST inclusion cutoff was E<5E-14. This was 

chosen based on the distribution of E values observed for domains from single 

multi-PDZ domain proteins. For PDZ45, the cutoff was 5E-20. During the first 
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round subthreshold sequences corresponding to MPDZ and InaDL isoforms were 

included. High scoring hits where the sequence length was <70% were excluded 

to eliminate hits where only one domain of PDZ45 would match. The hitlists were 

then refiltered in MATLAB (Mathworks) using the indicated cutoff values and 

PDZ45 hits which overlapped with both a PDZ4 and PDZ5 hit were chosen as 

tandem homologs.
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CHAPTER FIVE 

Functional Integration within InaD PDZ5 

Introduction 
A fundamental problem in signaling is how proteins integrate and process 

information. Proteins often respond to multiple regulatory inputs by adjusting 

their catalytic or binding properties (Creighton 1993; Alberts et al. 2002). This 

allows evolution to build sophisticated information processing circuits using 

features such as feedback regulation, as discussed in chapter 1. The seemingly 

complex atomic structure of proteins, however, makes it difficult to intuitively 

understand how this required functional integration is achieved. 

A major breakthrough in the understanding of protein regulation came 

from Monod, Wyman, and Changeaux (Monod et al. 1965) and Koshland, 

Nemethy, and Filmer (Koshland et al. 1966) who developed two competing 

theoretical models for a phenomenon known as allostery. The central idea of each 

was that proteins exist in multiple conformational states with distinct activities 

and this conformational equilibrium is influenced by the binding of allosteric 

regulatory factors. Proteins are now known to generally feature long-range 

energetic coupling (Gunasekaran et al. 2004) which allows perturbations at the 

surface, such as binding or modification, to trigger changes at distant sites. The 
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physical mechanisms underlying this connectivity are not yet generally 

understood. 

InaD PDZ5 provides a powerful model system for investigating how 

proteins integrate multiple functions. As discussed in the previous chapter, PDZ5 

oxidizes in response to visual signaling, altering the conformation of its binding 

pocket and suppressing further signaling, probably through unbinding of its 

ligand, NorpA (Mishra et al. 2007) (Figure 12). This indicates that PDZ5 is 

characterized by at least three equilibria: oxidation, binding, and conformation 

(Figure 44). 

An important question in understanding both the biology of PDZ5 and the 

general problem of functional integration is to identify how these equilibria are 

coupled. In this chapter, I demonstrate that PDZ5 has a pairwise energetic 

architecture in which oxidation and binding are each strongly coupled to the 

conformational equilibrium but not to each other. As a result, oxidation triggers 

unbinding of NorpA, which can explain many of the features of the refractory 

state. The input mechanism triggering oxidation is still unclear but is likely to 

work by perturbing the conformational equilibrium. 
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Figure 44: Three Equilibria Underlying Redox Switching by InaD PDZ5 

InaD PDZ5 in vivo switches between an active state in which it is bound to NorpA, reduced, and 
in an open conformation to a refractory state in which it is likely unbound from NorpA, oxidized, 
and in a closed conformation. Three equilibria underlie this switching process: oxidation, 
conformation, and binding. 

Thermodynamic Model of the PDZ5 Redox Switch 

Coupling and Thermodynamic Boxes 
Coupling fundamentally means that equilibria have different magnitudes 

in different backgrounds. As a concrete example, consider the potential coupling 

between binding and conformation in PDZ5. We can draw a “thermodynamic 

box” with one of these equilibria on each axis and the remaining corner the 

combination of the two states (Figure 45). Following the typical terminology, I’ll 

refer to the conformation which binds better as the “open” conformation and the 

other as the “closed” conformation. If the closed conformation binds worse than 

the open conformation by a factor β, then the conformational equilibria must also 

change by a factor β in the bound state due to conservation of energy. The factor β 
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is known as the allosteric coupling constant, and the free energy of coupling is 

ΔΔG = RTln β . 

 

Figure 45: Sample Thermodynamic Box for Binding and Conformation 

The thermodynamic box for conformation and binding is shown. Note that the equilibria on each 
side of the box are related by the same factor β. 

Distinction between Macroscopic and Intrinsic Properties 

It is important to note that the macroscopic properties of coupled 

thermodynamic systems are typically not the same as the intrinsic properties of 

the molecule but instead represent an average of the intrinsic properties of each 

state biased by the equilibrium constant. For example, in this particular case, the 

ratio of the apparent binding affinity to the intrinsic binding affinity of the open 

conformation is !!!""
!!

= !!!!"#$
!
!!!!"#$

. In the limit of large coupling, this simplifies to 

1+ !
!!"#$

. Therefore, it is important to either isolate the distinct states of coupled 
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systems or take into account the effect of the equilibrium constant on the property 

that is measured. 

Extension to Three Equilibria 
In analogy to the thermodynamic box, PDZ5 can be formally thought of as 

a thermodynamic cube with allosteric coupling constants between oxidation and 

conformation (α), binding and conformation (β), and oxidation and binding (γ) 

(Figure 46). To understand the energetic structure of this system, it is necessary to 

measure these three coupling constants. 

 

Figure 46: Thermodynamic Cube Model of PDZ5 

Since the redox switching of PDZ5 involves three equilibria, it is formally a thermodynamic cube 
with the three axes being binding, conformation, and oxidation. 

Thermodynamic Relationship between PDZ5 States 

The fundamental equilibrium equations defining the cube in Figure 46 are 
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Equation 16: Thermodynamic Definition of the Three Equilibria in PDZ5 

𝐾!"#$ =
𝑂
𝐶   

𝐾! =
𝑂 ∗ 𝐿
𝑂𝐿   

𝐾!"#$% = exp −
𝑛𝐹
𝑅𝑇 𝐸!! − 𝐸!"# =

𝐶!"
𝐶   

where O is the “open” state which binds NorpA and C is the “closed” state which 

does not bind. Kconf, KD, and Kredox are the conformational, dissociation, and redox 

equilibrium constants at a particular environmental redox potential (Eenv), 

respectively. L is the concentration of free ligand and OL is the concentration of 

the ligand-bound “open” state. Cox designates the oxidized “closed” state. The 

other constants are: n, the number of electrons involved in the redox reaction (2); 

F, Faraday’s constant; R, the ideal gas constant; T, the temperature; 𝐸!!, the 

standard redox potential of the “closed” state. 

These three processes all potentially interact, giving rise to a series of 

cooperativities (α, β, γ) in the coupled reactions: 

Equation 17: Thermodynamic Definition of the Coupled Equilibria in PDZ5 

𝑂!" = 𝛼𝐾!"#$%𝑂 

𝐸!! = 𝐸!! −
𝑅𝑇
𝑛𝐹 ln 𝛼   

𝐶𝐿 =
𝐶 ∗ 𝐿
𝛽𝐾!
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𝑂!"𝐿 =
𝑂!" ∗ 𝐿
𝛾𝐾!

  

𝐶!"𝐿 =
𝐶!" ∗ 𝐿
𝛽𝛾𝐾!

 

There is an additional possible third-order cooperativity corresponding to the 

reactions leading to the ligand-bound, oxidized, closed state, but this state is very 

weakly populated under my experimental conditions and I do not have data to 

constrain it. I assume it is non-cooperative here. 

To analyze the model, I need to express all the species in terms of the open 

state, O, using the thermodynamic relationships listed above. I then solve for the 

concentration of the open state by substituting the equilibrium equations into the 

conservation of mass equation: 

𝑂 = 𝑃! − 𝐶 − 𝑂𝐿 − 𝐶𝐿 − 𝑂!" − 𝐶!" − 𝑂!"𝐿 − 𝐶!"𝐿 

where PT is the total protein concentration. 

Dissection of the Coupling between Binding, 
Oxidation, and Conformation 

To measure these coupling constants, we must analyze each pair of 

equilibria in isolation and be able to identify each state. There are obvious ways to 

study the bound and oxidized states—the protein can be saturated with ligand or 

placed under very oxidizing conditions. Distinguishing the two conformations is 

tougher, however. Traditionally spectroscopic methods such as nuclear magnetic 
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resonance (NMR) spectroscopy are used to quantitatively study the 

conformational state of proteins. NMR is a powerful approach, but it is very 

sensitive to any perturbation in the electromagnetic field around an atom 

(Cavanaugh et al. 2007). This can make it difficult to distinguish distinct effects 

within a protein, such as the formation of the disulfide bond and a more global 

conformational change in the protein, in the absence of additional experiments. 

An alternative approach, successfully applied here, is to kinetically isolate the 

conformational change from the binding and oxidation reactions, eliminating the 

allosteric averaging in macroscopic experiments. 

Detection of Two Redox Conformations in PDZ45 

Redox Equilibration Kinetics 

While measuring the oxidation kinetics of PDZ45 (Figure 47), I 

fortuitously discovered that the conformational equilibrium was kinetically 

isolated from oxidation. Under very oxidizing conditions (12.5-25 mM oxidized 

DTT, no reduced DTT added, redox potential greater than -190 mV), PDZ45 

completely oxidized at a rate proportional to the oxidized DTT concentration with 

single-exponential kinetics, as expected for a second-order reaction. Under less 

oxidizing conditions which were still sufficient to completely oxidize the protein 

at equilibrium (25 mM oxidized DTT, reduced DTT added to set the redox 

potential to -208 mV), the oxidation followed biexponential kinetics. The fast rate 
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matched the rate of oxidation under very oxidizing conditions, while the slow rate 

was ~4X slower. 

 

Figure 47: Oxidation Kinetics of PDZ45 

(a) Gels showing the oxidation kinetics of PDZ45 ∆3C under very oxidizing (>-190 mV) or mildly 
oxidizing (-208 mV) conditions with the indicated amount of oxidized DTT measured by AMS 
labeling. (b) Plots of the oxidation kinetics along with single (red, orange) or double (black solid 
line) exponential fits. The fitted rates are listed in the inset table. Note that at -208 mV the 
oxidation followed biexponential kinetics. The slow rate is shown on the plot as the dashed black 
line. 

The apparent redox potential of the oxidation-conformation coupled 

system is an average between the redox potentials of the open and closed 

conformations, biased by the conformational equilibrium. As a result, it is 

possible that the open and closed conformations differentially oxidize under 



160 

 

milder oxidizing conditions which are still sufficient to completely oxidize 

PDZ45 at equilibrium. If the conformational change was slow, this would result in 

the emergence of a second kinetic process, rate-limited by the conformational 

dynamics, as oxidized species interconverted conformation. The observation of 

this phenomenon suggests that the conformational change is indeed rate-limiting.  

A fortunate consequence of the kinetic separation of timescales is the 

possibility of observing the intrinsic equilibrium constant of each state instead of 

the allosteric average: If we measure the redox properties after a couple of hours 

of equilibration, the system will be at a quasi-equilibrium in which the redox state 

of each conformation in isolation has reached equilibrium while the 

conformational change has not occurred. This should result in the appearance of 

two distinct titrations for each conformation. 

Quasi-Equilibrated Redox Titration 

I performed redox titrations of PDZ45 Δ3C, measuring the redox state 

after 2 h while the protein was at quasi-equilibrium (Figure 48). The protein 

titrated in a biphasic manner with inflections at -212 ± 6 mV (open conformation) 

and -293 ± 7 mV (closed conformation) with the -212 mV population more 

prevalent. As shown in Figure 40, the two populations are fully equilibrated after 

26 hours, and the titration has only a single apparent inflection point with an E0 of 

-242 mV. This confirms that there are two distinct conformations in PDZ45 which 
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slowly interconvert under the experimental conditions. Given the similarity of the 

redox potentials, it also suggests that free PDZ5 can be used as a proxy for the 

closed conformation. 

 

Figure 48: Quasi-Equilibrated Redox Titration of PDZ45 ∆3C 

Redox titrations of PDZ5 and PDZ45 ∆3C (26h equilibration) repeated from Figure 40 are shown 
with a quasi-equilibrated (2h equilibration) titration of PDZ45 ∆3C. The plot shows the quasi-
equilibrated titration (gray circles) along with the fits of the PDZ5 (red line) and PDZ45 ∆3C 
(black line) fully equilibrated titrations. The quasi-equilibrated titration has two inflections, one 
very similar to PDZ5 and the other occurring under very oxidizing conditions (open state, green 
dashed line). A kinetic simulation of the titration using the parameters from Figure 49 and Figure 
47 is also shown (dashed gray line). 

Redox-Conformation Coupling 
The observation of the two distinct redox states in PDZ45 allowed me to 

directly measure the coupling between redox and conformation and also estimate 

the magnitude of the conformational equilibrium (Figure 49). From the difference 
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in the redox potentials of the two states, I calculate that α is 1/270 (-5.6 ± 0.2 kT). 

The conformational equilibrium constant (Kconf) can be calculated using α and the 

equilibrium redox potential using the allosteric model (Equation 16 and Equation 

17). 

In the experiment there is no ligand so I can simplify the equation for the 

open state concentration by substituting L = 0: 

𝑂 𝐿 = 0 =
𝐾!"#$𝐾!"#$%𝑃!

1+ 𝛼𝐾!"#$ + 𝐾!"#!" + 𝐾!"#$𝐾!"#$%
  

I can now solve for the fraction of the total protein that is reduced:  

𝑓!"# =
𝑂 + 𝐶
𝑃!

  

𝑓!"# 𝐿 = 0 = 1−
1+ 𝛼𝐾!"#$

1+ 𝐾!"#$% + 𝛼𝐾!"#$ + 𝐾!"#$𝐾!"#$%
  

The conformational equilibrium constant that gives 50% reduction at Eenv,50% can 

be found by solving for Kconf when fred = 0.5 (note that Kredox is a function of Eenv): 

𝐸!"#,!"% = 𝐸!! −
𝑅𝑇
𝑛𝐹 ln

1+ 𝛼𝐾!"#$
1+ 𝐾!"#$

 

Equation 18: Estimation of the Conformational Equilibrium Constant from 
Redox Data 

𝐾!"#$(𝐸!"# = 𝐸!"#,!"%) =
1− 𝐾!"#$%!!

𝐾!"#$%!! − 𝛼
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For the observed values of Eenv,50% = -242 ± 2 mV, 𝐸!! = -212 ± 6 mV, α = -5.6 ± 

0.5 kT, Kconf is estimated to be 29 ± 2. The conformational equilibrium constant 

for the oxidized form would then be 0.11 ± 0.07. 

 

Figure 49: Thermodynamic Box for Oxidation and Conformation 

The thermodynamic box for the oxidation and conformational equilibria is shown with the 
estimated parameters. 𝜖 = !"

!"
. 

Using these equilibrium constants and the measured kinetics, I simulated 

the redox titration at 2h and found that these values recapitulated the observed 

titration curve (Figure 48). The slight deviation under more reducing conditions is 

probably due to using the PDZ5 redox potential rather than the observed closed 

state redox potential. 

Because of the large coupling between oxidation and conformation and the 

small magnitude of Kconf, the conformational equilibrium switches from favoring 

the open to the closed conformation upon oxidation (Figure 49). This is consistent 

with the structural difference between the oxidized and reduced states. Note that 
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while the redox data reveals the presence of a non-negligible fraction of the 

closed conformation in reduced PDZ45, the equilibrium is sufficiently far to the 

right to not produce a detectable mixture by traditional NMR methods, as 97% of 

the protein should be in the open state. 

Binding-Conformation Coupling 
Since free PDZ5 strongly prefers the closed conformation (I estimate 

Kconf,PDZ5 < 1/10 from the redox and binding data), I can now interpret the earlier 

binding experiment in the context of the thermodynamic model. Since Kconf,PDZ45 

is greater than 10, the binding affinity of PDZ45 is a good estimate of the KD of 

the open conformation. Therefore I can directly estimate β from the difference in 

the KD of PDZ5 and PDZ45 to be greater than 1700 (>7.4 kT). This results in 

binding strongly biasing the conformational equilibrium towards the open 

conformation (Figure 50). 
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Figure 50: Thermodynamic Box for Binding and Conformation 

The thermodynamic box for the binding and conformational equilibria is shown with the estimated 
parameters. 

Redox-Binding Coupling 
The serial coupling of oxidation to binding through the conformational 

equilibrium is on its own enough to result in unbinding of NorpA upon oxidation. 

In order to determine whether there was any direct coupling between oxidation 

and binding, I measured the effect of NorpA on the redox potential (Figure 51). I 

tested this by equilibrating PDZ5 and PDZ45 Δ3C with increasing concentrations 

of NorpA CTD under conditions in which they are 20–40% reduced in the 

absence of ligand (-280 and -235 mV, respectively). I found that binding of 

NorpA shifted the population of PDZ45 Δ3C from 16 ± 4% to 75 ± 5% reduced. 

The change in redox state occurred with a binding affinity of 0.9 ± 0.4 µM, in 

agreement with the earlier binding experiments (Figure 33). The redox state of 
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isolated PDZ5 was unaffected as expected given its weak KD for the NorpA CTD. 

This confirms that oxidation of PDZ5 is coupled to unbinding of NorpA. 

 

Figure 51: Effect of NorpA Titration on the Redox State 

(a) The redox states of PDZ5 and PDZ45 Δ3C were assayed under conditions which partially 
reduce the protein and then various amounts of NorpA CTD were added. (b) Quantification of the 
redox state as a function of the concentration of NorpA. PDZ45 is shown in black, PDZ5 in red. 
On the right, the percent reduced expected for various shifts in the apparent redox potential versus 
the environment are indicated in 5 mV intervals. 

To determine whether this coupling arose from the serial coupling through 

the conformational equilibrium or instead required additional direct coupling, I 

returned to the thermodynamic model. In the case of infinite coupling, it is clear 

that oxidation and binding would be exclusive, resulting in saturating binding 
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completely reducing the protein. As I repeatedly observed significant oxidation 

with saturating ligand at -235 mV, this is clearly wrong. 

In the non-cooperative case, ligand binding shifts the apparent redox 

potential towards the open conformation’s due to the perturbation of the 

conformational equilibrium. Using the thermodynamic model, I can model the 

conditions used in the experiment by calculating the fraction reduced, fred, under 

conditions of saturating ligand (note that Kredox is a function of Eenv): 

𝑓!"#,!→! = lim
!→!

𝑓!"# =
𝛾𝐾!"#$% 1+ 𝛽𝐾!"#$

1+ 𝛾𝐾!"#$% + 𝛼𝛽𝐾!"#$ + 𝛽𝛾𝐾!"#$𝐾!"#$%
  

To reduce the uncertainty, I can estimate the effective redox potential (Eenv,eff) 

from the fraction reduced in the absence of ligand. This turns out to be -220 ± 10 

mV, slightly more oxidizing than the intended -235 mV. I can then estimate γ 

from the saturating ligand measurement by solving fred,L->∞ for γ at Eenv,eff (note 

that Kredox is a function of Eenv): 

Equation 19: Estimation of the Oxidation-Binding Coupling from Ligand 
Saturation Experiments 

𝛾 𝐸!"# = 𝐸!"#,!"" =
𝑓!"#,!→! 1+ 𝛼𝛽𝐾!"#$ 𝐾!"#$%

1− 𝑓!"#,!→! + 𝛽𝐾!"#$ − 𝛽𝐾!"#$𝑓!"#,!→!
  

For Eenv,eff = -220 ± 10 mV and fred,L->∞ = 0.75 ± 0.04, γ ~ 1 (∆∆G = 0.5 ± 0.9 kT). 

Therefore, there is no significant cooperativity between oxidation and binding 

(Figure 52). This makes sense, as both cysteines are in the core of the protein and 

are unlikely to directly influence binding. 
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Figure 52: Thermodynamic Box for Redox and Conformation in the 
Presence of Ligand 

The thermodynamic box for the oxidation and conformational equilibria is shown in the ligand-
bound state with the estimated parameters. Note that ligand binding shifts the apparent redox 
potential due to its effect on the conformational equilibrium. If there were additional coupling, the 
intrinsic redox potentials would also be perturbed. 𝜖 = !"

!"
. 

Energetic Architecture of Redox Switching in PDZ5 
These results demonstrate that oxidation of PDZ5 triggers unbinding of 

NorpA through mutual coupling with the conformational equilibrium in PDZ5 

and not directly. As a result, what was initially a thermodynamic cube (Figure 46) 

can instead be viewed as a series of thermodynamic boxes linked by the 

conformational equilibrium (Figure 53). Changes in the binding of NorpA and 

redox potential can be interpreted from the change in the conformational 

equilibrium. 
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Figure 53: Energetic Architecture of Redox Switching in PDZ5 

(a) The energetic architecture of redox switching in PDZ5 can be drawn as a series of linked 
thermodynamic boxes since there is no energetic coupling between redox and binding. All the 
effects are mediated through changes in the conformational equilibrium (illustrated by changes in 
the size of the arrows). (b) The system can also be thought of as a network in which each of the 
components is connected to the conformational equilibrium. 

Comparison with Statistical Correlations in the PDZ Domain 
Family 

The observation that the disulfide bond in PDZ5 is a recent evolutionary 

innovation (Figure 10) suggests that this regulation was somehow easy to 

engineer into the protein. A plausible hypothesis for this is that the coupling 

between the residues mediating disulfide bond formation, the conformational 

equilibrium, and the binding pocket is an ancient feature of the PDZ domain. The 
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Ranganathan lab has developed a statistical approach to detect coupling by 

examining the coevolutionary pattern of residues in protein families. In brief, the 

conservation-weighted covariation is calculated for residue pairs in a large 

multiple sequence alignment. For a detailed explanation, see (S. W. Lockless et 

al. 1999; Halabi et al. 2009). 

The PDZ domain, like all the proteins examined so far, features a sparse 

coupling pattern with 10-20% of the protein highly coevolving and the rest 

evolving nearly independently (Figure 54a). Using spectral analysis, the 

independent sets of residues mediating the coupling pattern, known as sectors, can 

be identified (Halabi et al. 2009). In the case of the PDZ domain, there is one 

sector which connects the binding pocket with two distal surfaces (Figure 54c). 

Intriguingly, this sector contains the two residues responsible for disulfide bond 

formation in PDZ5. 

How does the experimental coupling pattern I measure in PDZ5 compare 

with this analysis? Looking at the matrix of coupling values between residue 

pairs, there is strong coupling between C606 and C645S but only weak coupling 

between the binding pocket residue F642 and either cysteine (Figure 54b). Not 

surprisingly given their co-occurrence in the sector, there are a set of strongly 

coupled residues in the β2-β3 loop connecting the cysteines to the binding pocket. 

While this warrants additional investigation, this is a tantalizing suggestion that 
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the regulatory features of PDZ5 indeed represent a more ancient shared property 

of PDZ domains. 

 

Figure 54: Statistical Coupling between Residues Mediating Binding and 
Oxidation in the PDZ Domain Family 

(a) Matrix of statistical coupling values between pairs of residues in the PDZ domain family. The 
binding site (F642) and cysteines (C606, C645) are indicated. (b) Matrix showing the coupling 
between the binding site and cysteines with sector residues. Note that while the cysteines are 
strongly coupled, the binding site is only weakly coupled to each of them. P601 and N602 mediate 
coupling between the two sites. (c) Structure of PDZ45 shown with PDZ4 in space filling and the 
PDZ sector overlaid on PDZ5 as a transparent surface. Note that the sector connects the binding 
site (light blue) and cysteines (orange) out to the interface. Sector residues mediating high 
coupling between the two sites are shown in yellow. 
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Physiological Consequences of Dynamic NorpA 
Localization 

Analysis of Existing Mutant Fly Phenotypes 
To effectively generate a refractory period, oxidation of PDZ5 must 

reduce the probability of successfully responding to light. NorpA is known to be 

critical for this—mutant flies in which NorpA is less active or mislocalized, 

including the PDZ5 mutant inaD2, are less sensitive to light, have a long, highly 

stochastic latency, smaller amplitude, and slower response kinetics (Susan 

Tsunoda et al. 1999) (Figure 55). In contrast, loss of scaffolding of Trp due to the 

inaD215 mutation affects inactivation instead of activation (B. H. Shieh et al. 1996; 

S. R. Henderson et al. 2000). 

 

Figure 55: Phenotypes of InaD Mutants 

The phenotypes of InaD mutants are shown. inaD215 and inaD2 are mutations in PDZ3 and PDZ5, 
respectively. Filled-in boxes represent defects in the listed property. 

Simulation of the Effect of NorpA on the Refractory Period 
The Ranganathan lab recently reported a quantitative model of the 

quantum bump which was able to recapitulate several known phenotypes of 
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phototransduction mutants (Pumir et al. 2008). NorpA is modeled as performing 

two activities: indirect activation of the Trp channels through its phospholipase 

activity (kA) and inactivation of the G protein through its GTPase-activating 

function (γPLC) (Figure 56a). 

I tested whether modulation of these properties could mimic a refractory 

period by analyzing many simulated quantum bump trials with the perturbed 

parameters. I found that the efficiency (the probability of successfully opening the 

channels), latency, and amplitude were all strongly dependent on both activities of 

NorpA (Figure 56b-d). A 10-fold change in either activity would be sufficient to 

recapitulate the known phenotypes of NorpA mislocalization, suggesting that 

scaffolding by InaD increases the phospholipase or decreases the GTPase-

activating activity of NorpA by at least this amount. 
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Figure 56: Sensitivity of Quantum Bump Properties to NorpA Parameters 

(a) Subset of the phototransduction pathway focusing on the reactions performed by NorpA. I 
simulated the effects of modulating the GTPase-activating (γPLC, red) and phospholipase (kA, blue) 
activities in the Ranganathan lab’s previously published quantitative model of the single photon 
response. The effects on the (b) efficiency, (c) latency, and (d) amplitude indicate that these 
parameters have large effects on vision. 

Potential Mechanisms for Triggering Oxidation 

Conformational Control 
The data presented here suggest that the mechanism which triggers 

oxidation in vivo likely acts by perturbing the conformational equilibrium, 

potentially by disrupting the interaction between PDZ4 and PDZ5. Because the 

conformational equilibrium is coupled to binding, oxidation, and the interaction 

with PDZ4, all of these things would be simultaneously affected (Figure 57). 
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Figure 57: Dependence of Binding and Redox on the Conformational 
Equilibrium 

The effect of the conformational equilibrium on the relative (a) binding affinity and (b) the redox 
potential is shown. In the case of the binding affinity, oxidation perturbs the conformational 
equilibrium, further decreasing binding as indicated. 𝜖 = !"

!"
. 

What might perturb the conformational equilibrium? Many factors can 

influence the conformation of proteins—binding, modifications such as 

phosphorylation, changes in ionic composition of the solvent just to name a few. 

Indeed, Shan Mishra previously showed that oxidation required the presence of 

InaC (Mishra et al. 2007), which is known to multiply phosphorylate InaD 

(Hiroyuki Matsumoto et al. 1984; A. Huber et al. 1996; Mingya Liu et al. 2000). 

Another potential mechanism came from a paper which emerged during the 

course of this work: Liu et al. proposed that acidification uncouples PDZ4 from 

PDZ5 based on interpretation of hydrogen bonding with histidines in a peptide-

bound structure of PDZ45 they solved (W. Liu et al. 2011). Some preliminary 

work investigating these two potential input mechanisms is described here. 



176 

 

Effect of Acidification on PDZ45 
Liu et al. proposed that acidic conditions uncoupled PDZs 4-5, triggering 
oxidation and unbinding (W. Liu et al. 2011). However, it is unclear from 
data whether this actually occurs as the effects they observed could be kinetic 
nature. I repeated the redox and binding measurements at pH 5.8 ( 

Figure 58). At equilibrium, acidic conditions actually bias PDZ45 even 

more towards the open conformation. Furthermore, the structure of PDZ45 

presented here was crystallized under acidic conditions while the one reported in 

Liu et al. was crystallized under neutral conditions (W. Liu et al. 2011). Despite 

this, the structures are nearly identical with some minor side chain rearrangements 

near the PDZ4 binding pocket (Figure 59). However, I did observe subtle changes 

in the oxidation kinetics (data not shown), suggesting acidic conditions may lower 

the energy barrier to conformational switching. 
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Figure 58: Effect of Acidification on Binding and Oxidation 

(a) Gels showing redox titrations of PDZ5 and PDZ45 ∆3C at pH 7 (from Figure 40) with PDZ45 
∆3C at pH 5.8. (b) Plot of the redox titration of PDZ45 ∆3C at pH 5.8 (red circles) along with fits 
to PDZ45 ∆3C at pH 5.8 (red line) and pH 7 (gray line) and the open (black dashed line) and 
closed (black solid line) conformations. (c) Competition binding curve for PDZ45 at pH 5.8 (red 
circles) using the FRET binding assay. The binding curve at pH 7 is also shown (black line). (d-e) 
Interpretation of the redox and binding data in terms of thermodynamic boxes for (d) redox and (e) 
binding with conformation. 

 

Figure 59: Structural Consequences of Acidification 

(a) Comparison of the structure of PDZ45 under neutral conditions with peptide bound 
(PDB:3R0H) versus the unliganded state under acidic conditions. (b-e) Close-up view of the 
regions surrounding each of the histidines in PDZ4. (c) Note that T669 and H547 are unchanged. 
(d) Note that R625 and H561 are perturbed. 
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Effect of Phosphorylation on PDZ45 
Shan Mishra demonstrated that oxidation of PDZ5 does not occur in vivo 

when the protein kinase C (PKC) InaC is knocked out (Mishra et al. 2007). InaC 

is known to multiply phosphorylate InaD, although functional sites have not yet 

been identified. I investigated whether PDZ45 was a substrate for PKC in vitro 

and in vivo and whether any phosphorylation sites identified affected the binding 

or redox properties. 
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Biochemical Characterization of Potential Phosphorylation Sites 

Development	
  of	
  a	
  Phosphorylation	
  Assay	
  

I was given Sf9 cells expressing His-tagged human PKCα, a homolog of InaC, 
by Paul Sternweis and major basic protein (MBP), a nonspecific kinase 
substrate, by Melanie Cobb. Following the phosphorylation conditions 
published in (Sando et al. 2003), I tested phosphorylation using MBP, PDZ5, 
and PDZ45 under reducing conditions ( 

Figure 60). In agreement with preliminary work done by Shan Mishra, I 
found that PDZ5 was phosphorylated very slowly with a low molar ratio of 
phosphate incorporation. In contrast, PDZ45 was a much better substrate, 
yielding detectable levels of phosphorylated protein although still much 
lower than MBP. These initial results had very little PKC-specific 
phosphorylation, so I optimized the conditions, determining the KM by 
measuring the phosphorylation rate as a function of substrate concentration ( 

Figure 60b-c) and the phosphorylation kinetics ( 

Figure 60d-e). After these optimizations, I was able to get a substantial 

amount of PKC-dependent phosphorylation of PDZ45. 
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Figure 60: Characterization of Phosphorylation of PDZ45 by PKC in vitro 

(a) Treatment of MBP, PDZ5, and PDZ45 with human PKCα under non-activating or activating 
conditions. Only weak PKC-dependent activity was detected in these initial experiments. (b-c) 
Determination of the KM of PKC for PDZ45. (b) Gel showing the phosphorylation level of 
different concentrations of PDZ45 and (c) plot of the relative phosphorylation level along with a 
sigmoidal fit to determine the KM. (d-e) (d) Gel and (e) plot showing phosphorylation kinetics of 
PDZ45 under activating (solid line) and non-activating (dashed line) conditions. 

Identification	
  of	
  Phosphorylation	
  Sites	
  

Mass	
  Spectrometric	
  Analysis	
  

I submitted in vitro phosphorylated protein to the Protein Chemistry core 

facility at UT Southwestern for identification of the phosphorylation sites by 

tandem mass spectrometry. They detected singly and doubly phosphorylated 

species (Table 9) corresponding to phospho-T661 and phospho-T661/T666 in 

PDZ45 (Table 10) based on 72% coverage of PDZ45 (Figure 61). 

Table 9: ESI-MS of PKC-treated PDZ45 

Sample Masses Detected 
Non-PKC-Treated 22459 
PKC-Treated 22459, 22539 (+1 PO4), 22619 (+2PO4) 
 
  1 GPLGSPEFTA EIKPNKKILI ELKVEKKPMG VIVCGGKNNH VTTGCVITHV  
 51 YPEGQVAADK RLKIFDHICD INGTPIHVGS MTTLKVHQLF HTTYEKAVTL  
101 TVFRADPPEL EKFNVDLMKK AGKELGLSLS PNEIGCTIAD LIQGQYPEID  
151 SKLQRGDIIT KFNGDALEGL PFQVCYALFK GANGKVSMEV TRPKPTLRTE  
201 APKA 
Figure 61: LC/MS Coverage of PDZ45 Tryptic Fragments 

The sequence of recombinant PDZ45 is shown. The tryptic fragments detected by ESI-MS 
following liquid chromatography are shown in bold red text. This represents 72% coverage of the 
protein. 
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Table 10: Modified Peptides Detected by LC/MS/MS for PKC-Treated 
PDZ45 

Tryptic Fragment Mass MS/MS Assignment 
1512.8 (m/z 505.3) VSMEVTRPKPTLR (WT) 
1592.8 (m/z 531.9) VSMEVTRPKPTLR (phospho-T661), 

could not rule out possible 
VSMEVTRPKPTLR (phospho-T666) 
too 

1672.8 (m/z 558.6) VSMEVTRPKPTLR (phospho-
T661/T666) 

Mutational	
  Analysis	
  

I mutated T661 and T666 alone and in combination and tested their 

phosphorylation by PKC (Figure 62). T661A substantially reduced the phosphate 

incorporation while T666A had little to no effect, indicating that T661 is indeed 

being phosphorylated in vitro. Mutating both sites did not completely eliminate 

the phosphate incorporation, however. Much of the remaining phosphorylation 

occurs under non-activating conditions as well, suggesting that this 

phosphorylation is not likely to be relevant. 
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Figure 62: Characterization of Potential Phosphorylation Sites 

(a) Gels showing phosphorylation of PDZ45 phosphomutants by PKC under non-activating or 
activating conditions. For each mutant, the top gel is the Coomassie stained gel and the bottom is 
32P detected by a phosphorimager. (b) Quantification of the level of phosphorylation after 30 
minutes under non-activating (black) or activating (white) conditions for the mutants. 

Analysis of Phosphorylation in vivo 

Development	
  and	
  Characterization	
  of	
  Phospho-­‐Specific	
  Antibodies	
  

for	
  PDZ45	
  

Shan Mishra had already developed a phospho-T666 antibody based on 

his results with PDZ5, although he had not determined the optimal conditions for 

using the antibody. Since I detected T661 as the primary site in PDZ45, I had 

Covance develop a phospho-T661 antibody using a phospho-peptide followed by 

positive and negative selection for recognition of the phospho- and non-phospho 
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peptides, respectively. I then determined the optimal concentrations for both 

antibodies and their relative specificity for the phosphorylated form (Figure 63 

and Figure 64). The T661 and T666 phosphoantibodies had optimal 

discrimination of phosphopeptide or wild-type flies treated with PKC activators 

versus InaC-null flies at antibody dilutions between 1:500 and 1:1000. The T666 

antibody was ~1000-fold selective for the phosphorylated form of the antigen 

(Figure 64). 

 

Figure 63: Characterization of Anti-Phospho-T661 

Two dot blots processed using 1:500 or 1:1000 anti-phospho-T661 antibody are shown. The 
primary antibody was spotted as a positive control. In addition, phospho-T661 peptide and 
unphosphorylated PDZ45 were spotted as positive and negative controls, respectively, at 10, 1, 
and 0.1 fmol (none were detected). The bottom set of four spots are fly head extracts from wild-
type (yw), PKC-null (w;inaC209), or inaD-null (yw;cn inaD1 bw) flies. Wild-type flies were also 
tested in the presence of PKC activators (+ PKC activ.). 
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Figure 64: Characterization of Anti-Phospho-T666 

A dot blot processed using anti-phospho-T666 antibody is shown. Serial dilutions of an InaD 
peptide containing phosphorylated or non-phosphorylated T666 are spotted. 

Detection	
  of	
  Phosphorylation	
  in	
  vivo	
  

I then tested whether these antibodies could detect phosphorylation at 

these sites in vivo. Both antibodies recognized some antigen in wild-type flies 

which could be increased by activation of PKC and was in both cases greatly 

reduced in InaC-null flies (Figure 63 and Figure 65). In the case of T666, I tested 

dark and light conditions but was unable to reproducibly detect a difference. 

Interestingly, dgq flies, which have 100-fold less G protein, reproducibly had 

much higher phospho-T666 antigen (Figure 65). Similar levels could be obtained 

from wild-type flies following treatment with PKC activators (Figure 65). These 

results suggest that T661 and T666 are phosphorylated in vivo, although the 

conditions under which they are preferentially phosphorylated and their functional 

role, if any, are far from clear. 
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Figure 65: Detection of Phosphorylated T666 in vivo 

Western blots of G protein hypomorphic (dgq), wild-type (yw), and PKC-null (w;inaC209) fly head 
extracts incubated in PBS either alone, with protein phosphatase 2A inhibitor okadaic acid (+OA), 
or okadaic acid with PKC activators (PBS+PKC) are shown. 

Functional	
  Characterization	
  of	
  Phosphomimic	
  Mutations	
  in	
  PDZ45	
  

As a preliminary investigation into the functional consequences of 

phosphorylation, I tested the effect of glutamate phosphomimic mutations at T661 

and T666 in PDZ45 on binding of NorpA using the pull-down assay (Figure 66). I 

found that T661E reduced binding, although less severely than the binding site 

mutant F642A, while T666E had no effect on binding. Mutation of both sites had 

no additional effect. 
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Figure 66: Binding of PDZ45 Phosphomimic Mutants to NorpA 

(a) Gels showing PDZ45 protein pulled down in a Ni-NTA binding assay with or without His-
NorpA CTD at low micromolar concentrations. (b) Quantification of the binding results with non-
specific binding (lane with no His-NorpA CTD) subtracted. Significance vs wild-type: **, P<0.01 
(ANOVA), ***, P<0.001 (ANOVA). 

Conclusions 
In summary, I have now shown that oxidation of PDZ5 triggers unbinding 

of NorpA indirectly through coupling of each process to a conformational 

equilibrium.  This provides a mechanism by which oxidation of PDZ5 can cause a 

refractory state. The Drosophila phototransduction pathway is highly stochastic 

with the initial steps each involving only a few molecules. As a result, the 

probability of successfully responding to receptor activation, known as the visual 

efficiency, is steeply dependent on the activity of each of the steps upstream of 

channel opening. NorpA is particularly important as it mediates the first step of 
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vision at which there is significant amplification. Not surprisingly, mutations in 

which NorpA is not localized to InaD or in which the activity or expression is 

decreased have severe effects on the efficiency, latency, activation, and 

inactivation of the visual response. 

It remains to be seen how the redox switch in PDZ5 is activated by visual 

signaling, but the thermodynamic model provided here provides a hypothesis as to 

how this may occur. I found that oxidation is coupled to NorpA binding through 

the conformational equilibrium in PDZ5. In addition, I showed in the previous 

chapter that PDZ4 structurally interacts with PDZ5 and strongly biases the 

conformational equilibria towards the open state. The redox environment in the 

photoreceptor cell is not known to fluctuate with signaling, which suggests that 

oxidation of PDZ5 likely happens instead by a change in the redox potential of 

PDZ45. This could be triggered by either perturbing the intrinsic redox potential 

of the open or closed state or the conformational equilibrium via the interaction 

between PDZs 4 and 5. 

Many mechanisms could be employed to perturb PDZ45. Liu et al. 

recently proposed that NorpA-mediated acidification would uncouple PDZs 4-5 

(W. Liu et al. 2011), but I now show that acidic conditions actually stabilize the 

open conformation. Alternatively, the Ranganathan lab previously showed that a 

loss of function mutant in InaC, the Drosophila eye PKC, prevents formation of 

the disulfide bond in vivo (Mishra et al. 2007). InaC is known to multiply 
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phosphorylate InaD (Matsumoto et al. 1984; Huber, P. Sander, and Paulsen 1996; 

Mingya Liu et al. 2000) but no functional sites have been identified. 

I showed here that PDZ45 is a substrate of PKC both in vitro and in vivo. 

While the KM of PKC for PDZ45 is reasonable, the maximal phosphate 

incorporation is quite low. This may be due to the slow conformational change I 

observed in PDZ45. Liu et al. reported that mutation of T669, which forms a salt 

bridge with a histidine in PDZ4, dramatically increased phosphorylation. It may 

be possible that phosphorylation is only efficient under acidic conditions, either 

due to conformational differences or a lower energy barrier for conformational 

switching. Phosphorylation of T661 may be relevant, as the T661E mutation 

appears to disrupt binding. There is much work left to fully determine the 

functional role and relevance of these sites. 

It has been proposed that proteins may generally display long-range 

energetic couplings which represent sites at which allosteric regulation may 

emerge (Gunasekaran et al. 2004). In agreement with this, at least some PDZ 

domains display propagated changes in protein dynamics upon ligand binding 

(Gianni et al. 2006; Niu et al. 2007; Jun Zhang et al. 2010; Fuentes et al. 2004; 

Petit et al. 2009), and the Ranganathan lab has identified a set of coevolving 

residues in the PDZ domain family which connect the ligand binding pocket with 

two distant surface sites (S. W. Lockless et al. 1999). Intriguingly, one of these 

surface sites, the α1 helix, is involved in allosteric activation of the Par6 PDZ 
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domain by Cdc42 (Garrard et al. 2003). In PDZ45, C606 and C645 are part of this 

coevolving network and there is a contact between the α1 helix of PDZ5 and a 

histidine of PDZ4. In addition, tandem PDZ domains are a common feature of 

scaffolding proteins, and there are a few studies which report structural coupling 

between tandem domains without a clear physiological role (W. Wang et al. 2009; 

van den Berk, Landi, Walma, Vuister, Dente, and Hendriks 2007b; Long et al. 

2008; Feng et al. 2003; Q. Zhang et al. 2001; Grootjans et al. 2000) . These results 

suggest that many PDZ domains may have the latent capacity for the emergence 

of allosteric behavior. 

More generally, the design principles underlying the stepwise evolution of 

regulatory networks in nature are not well understood. Since the oxidation of 

PDZ5 arose recently in fast-flying flies (Figure 10), the mechanisms presented 

here provide insight into this problem. We find that the oxidation of PDZ5 is 

“wired” in a modular fashion, affecting binding of NorpA indirectly through the 

conformational equilibrium. One can imagine a potential two-step evolutionary 

path: First, the unidentified activation mechanism was coupled to the 

conformational equilibrium, resulting in some regulatory control over NorpA. 

Subsequently, the coupling between the disulfide bond and the conformation 

evolved, providing a larger magnitude effect on NorpA and a way of locking the 

protein into the closed conformation for a longer period of time, creating a 
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refractory period. An important question to address now is how each of these 

processes is physically connected to the conformational equilibrium. 

In addition, the finding that the target of dynamic scaffolding is NorpA, a 

point of the signaling network which is not robust to perturbation, is intriguing. 

The general robustness of evolved signaling networks is thought to be a design 

principle by which nature deals with mutation. A trade-off of making a network 

generally robust is that some parts become more sensitive to perturbation. This 

work suggests that rather than a negative byproduct of robust design, these 

sensitive nodes may represent natural targets of the regulatory innovation that is 

required to build sophisticated systems. 

Methods 

Quantum Bump Simulations 
Quantum bump stochastic simulations of the Pumir model (Pumir et al. 

2008) were performed in MATLAB (MathWorks) using the Gillespie algorithm 

(Gillespie 1976). The sensitivity analysis was performed at 40 parameter values 

spaced logarithmically from 2 log orders below to 2 log orders above the 

published value. At each condition, 500 quantum bump simulations were 

executed and the results were fit to determine the distribution of quantum bump 

properties. The two parameters which were varied were kA (the phospholipase 

activity) and γPLC (the GTPase activity). 
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Phosphorylation Experiments 
One liter of Sf9 cells expressing His-tagged human PKCα (provided by 

Paul Sternweis) were pelleted, and resuspended in 20 mM HEPES pH 7.5, 150 

mM NaCl, 20 mM imidazole, 2.5 mM EGTA, 2.5 mM betamercaptoethanol with 

PMSF, pepstatin, and leupeptin. The cells were freeze thawed, sonicated briefly, 

and then centrifuged at high speed to pellet cellular debris and insoluble protein. 

The supernatant was bound to 1 mL of Ni-NTA (Qiagen) and then batch washed 

with buffer containing 20 mM imidazole. Finally, >95% pure protein was eluted 

with 100 mM imidazole-containing buffer. 

Phosphorylation was carried out in 20 mM MOPS pH 7.4, 5 mM MgCl2, 

40 µM ATP (spiked with γ-32P-ATP to a final specific activity of 0.3-3 Ci/mmol), 

1% glycerol, 1 mM TCEP, 1 µM okadaic acid. For activating conditions, 100 µM 

CaCl2, 140 µM brain phosphatidylserine (Avanti Polar Lipids), and 3.8 µM 18:1 

dioleoylglycerol pyrophosphate (diacylglycerol, Avanti Polar Lipids) were added. 

For non-activating conditions, 0.5 mM EGTA was added. The enzyme 

concentration was typically 10 µM. Reactions were carried out at 30°C, and gels 

were imaged on a STORM phosphorimager (GE). 

Generation of Phosphoantibodies 
Phospho-T666 antibody was previously produced by Shan Mishra by 

immunizing rabbits against a peptide containing phospho-T666 and then purifying 

antibodies recognizing the phosphopeptide. A phosphospecific antibody to T661 
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was generated by Covance by immunizing two rabbits with 500 µg NH2-

NGKVSMEV-pT-RPKPTLRTEAPKAC-COOH, conjugated with KLH, four 

times over two months. The blood from the rabbits was combined and antibodies 

were purified for recognition of phosphopeptide and lack of recognition of non-

phosphorylated peptide. 

Detection of Phosphorylated InaD in vivo 
Samples for Western blotting with the phosphoantibodies were prepared 

by sonicating 5 fly heads in 50 µL of fly head buffer (30 mM Tris pH 6.8, 10% 

SDS, 0.02% bromophenol blue, 10% glycerol, and 5% betamercaptoethanol). For 

Figure 65, flies were homogenized into PBS alone or with either 1 nM okadaic 

acid to inhibit the PP2A phosphatase or 1 mM MgATP, 1 µM phorbol myristic 

acid (PMA), and 1 mM CaCl2 to activate endogenous InaC. Fly head buffer was 

then added prior to SDS-PAGE. 

Western blotting was performed by directly spotting antigen or 

transferring antigen from a SDS-PAGE gel to PVDF membrane. The blot was 

then blocked with PBS or Tris-buffered saline (TBS) with 0.02% Tween-20 

containing 5% milk for 1 hour at room temperature and then incubated with a 

small volume of buffer containing 5% milk and primary antibody overnight. The 

blot was then washed 2X with buffer containing 0.02% Tween-20, incubated with 

a small volume of buffer containing 5% milk and horseradish peroxidase-

conjugated secondary antibody for 1 hour at room temperature. The blot was then 
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washed vigorously at least 4X with buffer containing 0.02% Tween-20, and 

finally, the blot was developed with ECL or ECL Plus (GE). 
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CHAPTER SIX 

Conclusions and Recommendations 

The Search for Design Principles in Biology 
A central problem in science today is how to understand complex systems. 

At the beginning of this dissertation, I described the strategy of assuming the 

existence of design principles—characteristics of a system which can predict and 

explain its function. Existing work has successfully focused on finding analogous 

design principles from engineering. However, biological systems have many 

distinct features, in particular their creation by evolution, which may utilize novel 

design principles which have not yet been identified. I sought to identify design 

principles at three structural levels in the Drosophila photoreceptor cell, a well-

studied model which is renowned for its signaling performance. To facilitate this 

search, I devised an approach of quantitative experimentation and theoretical 

investigation from an evolutionary perspective. 

Micron Scale: The Role of Compartmentalization by 
Microvilli 

The first level of structure I investigated was the dramatic 

compartmentalization of signaling by microvilli in the photoreceptor cell. 

Previous studies had suggested a role for this structure in promoting light 

absorption or potentially creating high-amplitude signals. I used theoretical 
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modeling and quantitative measurements of localized Ca++ signaling to investigate 

how this organization alters spatiotemporal signaling dynamics. I found that 

microvilli enable fast, high amplitude, homogeneous Ca++ signaling due to their 

unique physical properties. This enables cells to build semi-autonomous signaling 

units which signal in a digital manner. It also eliminates the need to invoke 

specialized signaling proteins or spatial signaling gradients to explain the 

remarkable signaling dynamics of this system. 

Compartmentalization is a common feature of signaling systems. This 

work suggests that specialized dynamical features can be created by placing 

molecules in compartments with particular physical constraints. I think it is 

important to examine the dynamical properties of other compartments, such as 

dendrites and cilia, to see how their physical properties relate to their functional 

constraints. The end goal should be a general theory for signaling compartments 

explaining how constraints on functional properties of systems relate to the 

dynamic and physical properties of compartments. 

Nanometer Scale: Modularity of Dynamic 
Scaffolding by InaD 

Next, I focused on the other prominent form of organization in this 

system: the scaffolding protein InaD which coordinates many of the core 

reactions mediating vision. Scaffolding proteins are thought to facilitate evolution 

by decomposing signaling regulation into protein domain modules which can be 
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swapped out over evolutionary time scales. I investigated whether a novel feature 

the Ranganathan lab recently discovered, dynamic regulation of vision by InaD 

PDZ5, could be explained by the features of PDZ5 alone. I found that PDZ5 was 

unable to recapitulate the physiological features of dynamic scaffolding by InaD. 

Instead, the inclusion of PDZ4, which is close to PDZ5 in primary structure 

throughout the gene family, was required to explain the physiological features. 

InaD PDZs 4-5 have tandem homologs in many other multi-PDZ scaffolds, 

suggesting that they have indeed evolved as a modular unit. This confirms that 

modularity does exist within InaD, but the modules are not always single protein 

domains as is commonly thought. Instead, more complex modules can be built 

over long periods of co-evolution. 

This issue of defining modules is an important question both for the 

practical investigation of biological systems as well as a complete understanding 

of their design. I think two major problems need to be addressed. First, is there a 

way to reliably predict modules given the evolutionary history of proteins? 

Second, are there general features of or constraints on the way evolution builds 

coupled modules from initially independent components? Answering these 

questions demands a large-scale investigation into coupling in systems and their 

evolutionary history. 
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Angstrom Scale: Functional Integration within InaD 
PDZ5 

Finally, I examined functional integration within InaD PDZ5, which 

regulates signaling dynamics during vision by undergoing a conformational 

change due to oxidation. I measured the allosteric coupling between the oxidation, 

conformational change, and binding reactions performed by PDZ5. I found that 

binding and oxidation were linked through pairwise coupling with the 

conformational change, not directly to each other. 

This is a nice design from an evolutionary perspective, as proteins are 

generally thought to have some capacity for conformational change and it is easier 

to imagine a stepwise path to building a system this way. However, this is an 

anecdotal story. Additional work needs to be done in other multi-functional 

proteins to see if this design is general. Another aspect that remains to be 

understood is the mechanism by which these properties become coupled to the 

conformational equilibrium. 

Future Directions 
There is much left to learn about evolutionary design principles. In this 

study, I focused on three structural levels of the Drosophila photoreceptor cell. 

While each level is quite different in appearance, similar features and problems 

arose at each level. In all three levels, much of the design related to achieving 

particular patterns of coupling and independence—coupling the activity of 
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molecules in one microvilli while keeping them independent from others, 

coupling some domains of a protein while making others independent, and 

coupling independent functions of a protein domain through a conformational 

equilibrium. While this hints at a general design strategy, each case was an 

anecdotal story. In the future, I think it will be important to develop experimental 

approaches and theoretical tools capable of analyzing coupling in many systems. 

In addition, the ties to evolution in this work came purely from inductive 

reasoning rather than experimental observations. Therefore, future studies should 

explicitly study either the natural variation evolution acts on or compare 

evolutionarily related instances of a system. 

 



 

201 

APPENDIX A 
Protein Sequences 

Constructs 
Underlined sequence is non-native and mutations are shown in bold. 

“PDZ5” from pRSET His-GFP-PDZ5: 

GSPEGLEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKLQRGDI
ITKFNGDALEGLPFQVCYALFKGANGKVSMEVTRPKPTLRTEAPKA 
 
“PDZ5-AAAS” (used in Figure 29) from pGEX-3X PDZ5 

GIPRNSLEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKL 
QRGDIITKFNGDALEGLPFQVCYALFKGANGKVSMEVTRPKPAAAS 
 
“PDZ5 C645S” from pGEX-3X PDZ5 C645S 

GIPRNSLEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKL 
QRGDIITKFNGDALEGLPFQVSYALFKGANGKVSMEVTRPKPAAAS 
 
“PDZ45” from pET28a PDZ45 

GPLGSPQEPATAEIKPNKKILIELKVEKKPMGVIVCGGKNNHVTTGCVITHVYP
EGQVAADKRLKIFDHICDINGTPIHVGSMTTLKVHQLFHTTYEKAVTLTVFRAD
PPELEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKLQRGDIIT
KFNGDALEGLPFQVCYALFKGANGKVSMEVTRPKPTLRTEAPKA 
 
“PDZ45 ∆3C” from pET28a PDZ45 ∆3C 

GPLGSPQEPATAEIKPNKKILIELKVEKKPMGVIVTGGKNNHVTTGAVITHVYP
EGQVAADKRLKIFDHITDINGTPIHVGSMTTLKVHQLFHTTYEKAVTLTVFRAD
PPELEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKLQRGDIIT
KFNGDALEGLPFQVCYALFKGANGKVSMEVTRPKPTLRTEAPKA 
 
“PDZ45 T553A” from pET28a PDZ45 T553A 

GPLGSPQEPATAEIKPNKKILIELKVEKKPMGVIVCGGKNNHVTTGCVITHVYP
EGQVAADKRLKIFDHICDINGTPIHVGSMTALKVHQLFHTTYEKAVTLTVFRAD
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PPELEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKLQRGDIIT
KFNGDALEGLPFQVCYALFKGANGKVSMEVTRPKPTLRTEAPKA 
 
“PDZ45 F642A” from pET28a PDZ45 F642A 

GPLGSPQEPATAEIKPNKKILIELKVEKKPMGVIVCGGKNNHVTTGCVITHVYP
EGQVAADKRLKIFDHICDINGTPIHVGSMTTLKVHQLFHTTYEKAVTLTVFRAD
PPELEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKLQRGDIIT
KFNGDALEGLPAQVCYALFKGANGKVSMEVTRPKPTLRTEAPKA 
 
“PDZ45 T661A” from pET28a PDZ45 T661A 

GPLGSPQEPATAEIKPNKKILIELKVEKKPMGVIVCGGKNNHVTTGCVITHVYP
EGQVAADKRLKIFDHICDINGTPIHVGSMTTLKVHQLFHTTYEKAVTLTVFRAD
PPELEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKLQRGDIIT
KFNGDALEGLPFQVCYALFKGANGKVSMEVARPKPTLRTEAPKA 
 
“PDZ45 T661E” from pET28a PDZ45 T661E 

GPLGSPQEPATAEIKPNKKILIELKVEKKPMGVIVCGGKNNHVTTGCVITHVYP
EGQVAADKRLKIFDHICDINGTPIHVGSMTTLKVHQLFHTTYEKAVTLTVFRAD
PPELEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKLQRGDIIT
KFNGDALEGLPFQVCYALFKGANGKVSMEVERPKPTLRTEAPKA 
 
“PDZ45 T666A” from pET28a PDZ45 T666A 

GPLGSPQEPATAEIKPNKKILIELKVEKKPMGVIVCGGKNNHVTTGCVITHVYP
EGQVAADKRLKIFDHICDINGTPIHVGSMTTLKVHQLFHTTYEKAVTLTVFRAD
PPELEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKLQRGDIIT
KFNGDALEGLPFQVCYALFKGANGKVSMEVTRPKPALRTEAPKA 
 
“PDZ45 T666E” from pET28a PDZ45 T666E 

GPLGSPQEPATAEIKPNKKILIELKVEKKPMGVIVCGGKNNHVTTGCVITHVYP
EGQVAADKRLKIFDHICDINGTPIHVGSMTTLKVHQLFHTTYEKAVTLTVFRAD
PPELEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKLQRGDIIT
KFNGDALEGLPFQVCYALFKGANGKVSMEVTRPKPELRTEAPKA 
 
“PDZ45 T661A/T666A” from pET28a PDZ45 T661A/T666A 

GPLGSPQEPATAEIKPNKKILIELKVEKKPMGVIVCGGKNNHVTTGCVITHVYP
EGQVAADKRLKIFDHICDINGTPIHVGSMTTLKVHQLFHTTYEKAVTLTVFRAD
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PPELEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKLQRGDIIT
KFNGDALEGLPFQVCYALFKGANGKVSMEVARPKPALRTEAPKA 
 
“PDZ45 T661E/T666E” from pET28a PDZ45 T661E/T666E 

GPLGSPQEPATAEIKPNKKILIELKVEKKPMGVIVCGGKNNHVTTGCVITHVYP
EGQVAADKRLKIFDHICDINGTPIHVGSMTTLKVHQLFHTTYEKAVTLTVFRAD
PPELEKFNVDLMKKAGKELGLSLSPNEIGCTIADLIQGQYPEIDSKLQRGDIIT
KFNGDALEGLPFQVCYALFKGANGKVSMEVERPKPELRTEAPKA 
 
“NorpA CTD” from pET28a NorpA 869-* 

GSHMEPVTLESLRQEKGFQKVGKKQIKELDTLRKKHAKERTSVQKTQNAAIDKL
IKGKSKDDIRNDANIKNSINDQTKQWTDMIARHRKEEWDMLRQHVQDSQDAMKA
LMLTVQAAQIKQLEDRHARDIKDLNAKQAKMSADTAKEVQNDKTLKTKNEKDRR
LREKRQNNVKRFMEEKKQIGVKQGRAMEKLKLAHSKQIEEFSTDVQKLMDMYKI
EEEAYKTQGKTEFYA 
 
“NorpA CTD ∆5” from pET28a NorpA 869-* ∆5 

GSHMEPVTLESLRQEKGFQKVGKKQIKELDTLRKKHAKERTSVQKTQNAAIDKL
IKGKS-----
NDANIKNSINDQTKQWTDMIARHRKEEWDMLRQHAQDSQDAMKALMLTVQAAQI
KQLEDRHARDIKDLNAKQAKMSADTAKEVQNDKTLKTKNEKDRRLREKRQNNVK
RFMEEKKQIGVKQGRAMEKLKLAHSKQIEEFSTDVQKLMDMYKIEEEAYKTQGK
TEFYA 
 
“NorpA CTD Y1094S” from pET28a NorpA 869-* Y1094S 

GSHMEPVTLESLRQEKGFQKVGKKQIKELDTLRKKHAKERTSVQKTQNAAIDKL
IKGKSKDDIRNDANIKNSINDQTKQWTDMIARHRKEEWDMLRQHVQDSQDAMKA
LMLTVQAAQIKQLEDRHARDIKDLNAKQAKMSADTAKEVQNDKTLKTKNEKDRR
LREKRQNNVKRFMEEKKQIGVKQGRAMEKLKLAHSKQIEEFSTDVQKLMDMYKI
EEEAYKTQGKTEFSA 
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InaD Gene Family - PDZs 4-5 
Species listed: Ixodes scapularis (Isca), Pediculus humanus (Phum), Apis 

mellifera (Amel), Tribolium castaneum (Tcas), Aedes aegypti (Aaeg), Anopheles 

gambiae (Agam), Calliphora vicina (Cvic), Drosophila grimshawi (Dgri), 

Drosophila mojavensis (Dmoj), Drosophila virilis (Dvir), Drosophila willistoni 

(Dwil), Drosophila persimilis (Dper), Drosophila pseudoobscura (Dpse), 

Drosophila ananassae (Dana), Drosophila erecta (Dere), Drosophila yakuba 

(Dyak), Drosophila melanogaster (Dmel), Drosophila sechellia (Dsec), 

Drosophila simulans (Dsim). The sequences were aligned using PROMALS3D. 

Dmel  PQEPATAEIKPNKKILIELKVE-KKPMGVIVCGGKNNHVTTGCVITHVYPEGQVAADKRLKIFDHICDIN  
Dmoj  PQEPATAEIKPNKKILIEVKVE-KKPLGVIVTGGKNNFVKTGCVITHIYPEGAIAADNRLKIFDHICDVN  
Dsec  PQEPATAEIKPNKKILIELKVE-KKPMGVIVCGGKNNHVTTGCVITHVYPEGQVAADKRLKIFDHICDIN  
Dsim  PQEPATAEIKPNKKILIELKVE-KKPMGVIVCGGKNNHVTTGCVITHVYPEGQVAADKRLKIFDHICDIN  
Dere  PQEPATAEIKPNKKILIELKVE-KKPMGVIVCGGKNNHVTTGCVITHVYPEGQVAADKRLKIFDHICDIN  
Dyak  PQEPATAEIKPNKKILIELKVE-KKPLGVIVCGGKNNHVTTGCVITHVYPEGQVAADKRLKIFDHICDIN  
Dana  PQEPATAEIKPNKKILIEMKVE-KKPLGVIVCGGKNNHVKTGCVITHIYPEGAVAADNRLKIYDHICDVN  
Dvir  PQEPSIAEIKPNKKILIEVKVE-KKPLGVIVTGGKNNNVKTGCVITHIYPEGALAADNRLKIFDHICDIN  
Dwil  PQEPATAEIKPNKKILIEVKVE-KKPLGVIVTGGKNNYVKTGCVITHIYPEGALAADKRLQIFDHICEVN  
Dper  PQEPATAEIKPNKKILIEVKVE-KKPLGVIVAGGKNNHVKTGCVITHIYPEGALAADNRLKIFDHITDVN  
Dgri  PQDPSVAEIKPNKKIIIEVKVE-KKPLGVIVCGGKNNHVTTGCVITHIYPEGVFATDNRLKIFDHICDIN  
Cvic  PVDPSIIEVVPGRKIVIEVKTD-KKPLGVIVVGGKNNYVKTGCIITHIYPEGVIAEDKRLKIFDHIIQVN  
Aaeg  IIDPSKAEVISNENSTIEIVTD-KSPLGISVVGGSDSRIN-GAIIIDILPNSIADKDKRLRVFDQILEIN  
Agam  VIDPLKAPINDNDFTVIDIPTE-GKPLGIIVAGGCDSLVKSGAAVMDILPQSVVEKDNRLQIFDQIVEIN  
Tcas  AVDLTTCPITPGKDVAIEIPTD-NKGLGVFFVGGKDTAMPNGIVIVEVYPGGAADRDSRLQAGDQILEVN  
Amel  PQDPKDCKIASGRDTTIEFQKDKDKGIGFIIAGGSDTPLK-GVFIVEVFPDGAAHKDGRLQAGDQILEIC  
Phum  LPDPATCPIIPGKEILIEINKD-KLGLGLSIIGGCDTLLG-AVIVHEIYPESAAEKDGRLEPGDQILEVN  
Isca  TSSPASDVIRPGRETAIEIAKE-KLGLGLSIVGGSDTPLG-AVIIHEVYPDGAAALDGRLRPGDQILEVN  
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Dmel  GTPIHVGSMTTLKVHQLFHTTYEKAVTLTVFRADPPELEK----FNVDLMKKAGKELGLSLSPNE--IGC  
Dmoj  GNQVHCESMTTLKVHQLFHMPYEKNITFTVYRADPPELEK----FNVEFMKKSGKELGLSLAPNE--RGC  
Dsec  GTPIHVGSMTTLKVHQLFHTTYEKAVTLTVFRADPPELEK----FNVDLMKKAGKELGLSLSPNE--IGC  
Dsim  GTPIHVGSMTTLKVHQLFHTTYEKAVTLTVFRADPPELEK----FNVDLMKKAGKELGLSLSPNE--IGC  
Dere  GTAIHVGSMTTLKVHQLFHTTYERTVNLTVFRADPPELEK----FNVDLMKKAGKELGLSLSPNE--IGC  
Dyak  GAAIHVGSMTTLKVHQLFHTTYEKTVNLTVFRADPPELEK----FNVDLMKKAGKELGLSLSPNE--IGC  
Dana  GAALHVDGMTTLKVHQFFHATYEKTVNFSVYRADPPELEK----FNVDFMKKSGKELGLSLSPNE--KGC  
Dvir  GRAVHCESMTTLKVHQLFHMTYEKNVNFTVFRADPPELEK----FTVEFMKKSGKELGLSLVPNE--RGC  
Dwil  GVPIHCESLTTLKVHQLFHVTYEKTVNFTVYRADPPEMEK----FNVDFMKKSGKELGLSLSPNE--KGC  
Dper  GKPVHVANMTTLKVHQLFHVTYERTVNFTVFRADPPELDK--------FNDMSG----------------  
Dgri  GRPVHCESLTTLKVHQLFHSTYDKNVNFTVYRADPPELEK----INVDFMKKSGKELGLSLSPNE--RGC  
Cvic  GKEVQCEAMTTLKVHQLFYTLYEKIVTIQVYRADPPEVET----FKVEFAKKAGKDLGLSLAPNE--KGC  
Aaeg  GSKVIP-DLSENQVQKAVKQLQAR-VRLVVFRPNSAETET----IEVELFKKPGKLLGVGFRANHP-HGI  
Agam  GFKVNN-TCTSEAIKRAVKQLHPK-VRLIVYRANPPTTET----VEVDLMKKPGKNLGLTFRAGNP-KGI  
Tcas  GT--QLKDVTHTTAAQALRQTLPK-MKLVVYRPE--RVDF--TKLDVELTKKPGKGMGLSVIARKSGKGV  
Amel  SQ--SFKEIEHDEAHAAVMKVSGT-ITMVVHRQE--KGE---EEIEVELQKKSGKGAGLCLTGYKSGKGA  
Phum  SE--DVTKMPHSKVLTVMRQTQAK-VKLLVYRDENITKENLLQTIDVDLIKKPGKGLGLSVAAKKEGKQV  
Isca  GE--DLREASHEAAIGALRQTSSV-VRMLVFREEEPQQD----VLTVELHKKAGRGLGLSIVGRRNAPGV  
 
Dmel  TIADLIQG------------------------------------------QYPEIDSKLQRGDIITKFNG  
Dmoj  TISEMIQG------------------------------------------QYPEIDNKLQRGDIITKFNG  
Dsec  TIADLIQG------------------------------------------QYPEIDSKLQRGDIITKFNG  
Dsim  TIADLIQG------------------------------------------QYPEIDSKLQRGDIITKFNG  
Dere  TIADLIQG------------------------------------------QYPEIDSKLQRGDIITKFNG  
Dyak  TIADLIQG------------------------------------------QYPEIDSKLQRGDIITKFNG  
Dana  TIADVIQG------------------------------------------QYPEIDNKLQRGDVITKFNG  
Dvir  TISEILQG------------------------------------------QYPEIDGKLQRGDIITKLNG  
Dwil  TISDVVSG------------------------------------------QYPEIDHKLQRGDIITKFNG  
Dper  TIRDIVQG------------------------------------------QCPEIDSKLQRGDIITKFNG  
Dgri  TISDIIQG------------------------------------------QYPEIDSRLQRGDIITKLNG  
Cvic  TISEITSA------------------------------------------GYADIDNKLQRGDIITKFNG  
Aaeg  IVTDMLPG------------------------------------------GLAESDGRIQKGDIITNFNT  
Agam  VITSLVPG------------------------------------------GSAEFDGRIQLGDIVSHING  
Tcas  YIGDIING------------------------------------------GTADVDGRIMKGDLLVSVNG  
Amel  YVSDLLPG------------------------------------------GSALESGKICKGDRVVAVGG  
Phum  FISEIVHN------------------------------------------GIAELDGRLMKGDYILEVNG  
Isca  FISEASRNTANGTTLVSLERGSEGLGFSIVGGAGSQHGDLPIYVKTVFESGAAARDGRLRRGHAILSVNG  
 
Dmel  DALEGLPFQVCYALFKGANGKVSMEVTRPKPTLRTEAPKA-----------------------  
Dmoj  DALEGLPFQVCYALFKGANGKISMEVTRPKPTLRTEAPK------------------------  
Dsec  DALEGLPFQVCYALFKGANGKVSMEVTRPKPTLRTEAPKA-----------------------  
Dsim  DALEGLPFQVCYALFKGANGKVSMEVTRPKPTLRTEAPKA-----------------------  
Dere  DSLEGLPFQVCYALFKGANGKVSMEVTRPKPTLRTEAPKA-----------------------  
Dyak  DSLEGLPFQVCYALFKGANGKVSMEVTRPKPTLRTEAPKA-----------------------  
Dana  DALEGLTFQVCYALFKGANGKISMEVTRPKPTLRTEAPKA-----------------------  
Dvir  DALEGLTFEVCYALFKGANGKISMEVTRPKPTLRTEAPKA-----------------------  
Dwil  DSLEGLTFPVCYALFKGANGKISMEVTRPKPTLRTEAPKP-----------------------  
Dper  DALEGLTFQVCYALFKGANGKISMEVTRPKPTLRTEAPK------------------------  
Dgri  DALEGLTFQVCYALFKGATGKISMEVTRPKPTLRTEAPK------------------------  
Cvic  DSLEGLTFEVCYALFKGATGKISLEITRPKPTTRTEPPK------------------------  
Aaeg  EKISNMSYDDCSLLFKTAQGKITLSIVRPKPNKRLL---------------------------  
Agam  DSLESGGIEQCASLLKTAQGKVGLRILRPKLKERSV---------------------------  
Tcas  QSVENSSRDEAGAILKTVTGRVSLKLHRYKPVAR-----------------------------  
Amel  QDVREAPVEDIAVHVK-VSNPVQLKLARFKSAKK-----------------------------  
Phum  ISLKESNQEIAAAVLKSCTGKVAIKVGRITCKKHVNNINGR----------------------  
Isca  RSLQGLTHQEAVELLRDARGTVTLEVLDTSVASEATTPSASPTQSPTPAAPSDLFSGATEDTS  

 



 

206 

APPENDIX B 
Matlab Scripts 

Calcium Analysis Scripts 

Calcium Simulations 

Spatial Simulation Script – RunCalciumSpatialSims.m 

function output = RunCalciumSpatialSims() 
 
%% General stuff 
t_int = linspace(0,0.1,200)/1000; 
  
%% QB Waverforms 
%Lorenzian functions 
lorenzian = @(tau,n,t) 1./(gamma(n)*tau).*(t/tau).^n.*exp(-
t./tau); 
tau_dark = 0.0096; n_dark = 0.5953; dark = 
lorenzian(tau_dark,n_dark,t_int); dark = dark ./ max(dark); 
tau_light = 0.0054; n_light = 0.2834; light = 
lorenzian(tau_light,n_light,t_int); light = light ./ max(light); 
  
%% Dark Adapted Average Waveform 
nruns = 200; 
ca_avg_dark = zeros(length(t_int),50); 
parfor i=1:nruns 
    [t,ca_free] = ca_spatial_sim6(t_int,dark,1.5e-3,1e-6,-60e-
3,1,15,1e-6); 
    if i <= 10 % Keep the first ten 
        dark_adapted_runs(i).t = t; 
        dark_adapted_runs(i).ca_free = ca_free; 
    end 
    ca_avg_dark = ca_avg_dark + interp1(t,ca_free,t_int)./nruns; 
end 
output.dark.sims = dark_adapted_runs; 
output.dark.t = t_int; 
output.dark.ca_avg = ca_avg_dark; 
save('dark adapted calcium sim 
result.mat','t_int','ca_avg_dark','dark_adapted_runs'); 
  
%% Light Adapted Average Waveform 
nruns = 200; 
ca_avg_adapted = zeros(length(t_int),50); 
parfor i=1:200 
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    [t,ca_free] = ca_spatial_sim6(t_int,light,1.5e-3,1e-6,-60e-
3,0.05,15,1e-6); 
    if i < 11 
        light_adapted_runs(i).t = t; 
        light_adapted_runs(i).ca_free = ca_free; 
    end 
    ca_avg_adapted = ca_avg_adapted + 
interp1(t,ca_free,t_int)./nruns; 
end 
output.light.sims = light_adapted_runs; 
output.light.t = t_int; 
output.light.ca_avg = ca_avg_adapted; 
save('light adapted calcium sim 
result.mat','t_int','ca_avg_adapted','light_adapted_runs'); 
save('calcium spatial sims.mat','output'); 
  
%% Plot results 
figure;hold on; 
h = axes; 
for i=1:10 
    i_peak = 
find(mean(light_adapted_runs(i).ca_free,2)==max(mean(light_adapte
d_runs(i).ca_free,2)),1); 
    plot([1:50]*1000/50,light_adapted_runs(i).ca_free(i_peak,:)); 
end 
set(h,'FontSize',15); 
xlabel('Position (nm)','FontSize',18); 
ylabel('[Ca^+^+] (\muM)','FontSize',18); 
plot([1:50]*1000/50,ca_avg_adapted(find(mean(ca_avg_adapted,2)==m
ax(mean(ca_avg_adapted,2)),1),:),'k','LineWidth',2); 
print -depsc -tiff -r300 dark_adapted_sim_figure 
  
figure;hold on; 
h = axes; 
for i=1:10 
    i_peak = 
find(mean(dark_adapted_runs(i).ca_free,2)==max(mean(dark_adapted_
runs(i).ca_free,2)),1); 
    plot([1:50]*1000/50,dark_adapted_runs(i).ca_free(i_peak,:)); 
end 
set(h,'FontSize',15); 
plot([1:50]*1000/50,ca_avg(find(mean(ca_avg,2)==max(mean(ca_avg,2
)),1),:),'k','LineWidth',2) 
xlabel('Position (nm)','FontSize',18); 
ylabel('[Ca^+^+] (\muM)','FontSize',18); 
print -depsc -tiff -r300 light_adapted_sim_figure 
  
end 
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Spatial Simulation Algorithm - ca_spatial_sim6.m 

function [t,ca_free,trp] = 
ca_spatial_sim6(t_P_open_input,P_open_input,ca_ext,ca_cell,V_memb
rane,a,colocalized) 
% Simulation parameters 
NA = 6.02E23; 
R = 8.314; 
T = 298; 
F = 9.65E4; 
z_ca = 2; 
n_trp = 15; 
n_calx = 15; 
P = 3.7e-15; 
  
% Spatial parameters 
D_ca = 220; 
k = 50; 
l_microvilli = 1.5; 
r_microvilli = 0.06/2; 
V_micro = pi*r_microvilli^2*l_microvilli*10^-15; 
V_segment = l_microvilli/(k-1)*pi*r_microvilli^2; % um^3 
V_segment_L = V_segment*10^-15; % L = 1000 mL = 1000*cm^3 = 1000 
* x um^3 * (cm/um)^3 
l_neck = 0.06; 
r_neck = 0.035/2; 
V_neck = pi*(r_neck)^2*(l_neck); 
V_neck_L = V_neck*(10^-4)^3/1000; 
  
alpha = V_membrane*F/(R*T); 
p_ca = 0.85; 
z_ca = 2; 
b_ca = z_ca*p_ca*exp(-z_ca*alpha)/(1-exp(-z_ca*alpha))*ca_ext; 
  
% Rate constants 
sigma = a*P*alpha*b_ca/n_trp;  
gamma = 7.4e3;  
  
% Other parameters 
r_calx = 3; 
  
% Place TRP and CalX 
trp = zeros(1,k); 
calx = zeros(1,k); 
for i=1:n_trp 
   pos = 1+round(rand*(k-2)); 
   trp(pos) = trp(pos) + 1; 
end 
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% Initial conditions 
y0 = [ca_cell*ones(1,k)]; 
  
% Run simulation 
[t,yy] = ode15s(@odefun,[t_P_open_input(1) 
t_P_open_input(end)],y0); 
  
% Generate output 
ca_free = yy(1:end,1:k)*10^6; % Return uM 
  
    function dy_dt = odefun(t,y) 
        % Extract states 
        ca=y(1:k); 
         
        trp_on = P_open_input(find(t_P_open_input >= t, 1)); 
         
        dy_dt_ca = trp_on*trp'*sigma/V_segment_L - gamma.*ca; 
         
        % Calculate spatial equations 
        % Ca 
        dy_dt_ca(1) = dy_dt_ca(1) + 2*D_ca/(l_microvilli/(k-
1))^2*(ca(2)-ca(1)); 
        for z=2:(k-2) 
            dy_dt_ca(z) = dy_dt_ca(z) + D_ca/(l_microvilli/(k-
1))^2*(ca(z-1)-2*ca(z)+ca(z+1)); 
        end 
        dy_dt_ca(k-1) = dy_dt_ca(k-1) + D_ca/(l_microvilli/(k-
1))^2*(ca(k-2)-ca(k-1)) + 
(V_neck/V_segment)*D_ca/l_neck^2*(ca(k)-ca(k-1)); 
        dy_dt_ca(k) = dy_dt_ca(k) + 
(V_segment/V_neck)*D_ca/l_neck^2*(ca(k-1)-ca(k)) + 
D_ca/l_neck^2*(ca_cell-ca(k)); 
         
        % Assemble Matlab ODE vector 
        % Format: 
        dy_dt = [dy_dt_ca];%;dy_dt_buff]; 
    end 
end 

Quantum Bump Analysis 

Quantum Bump Analysis – AnalyzeQBs.m 

function output = AnalyzeQBs( input ) 
  
output = input; 



210 

 

for i=1:length(input) 
    time = input(i).Current.t; 
    values = input(i).Current.values; 
    values_detrended = FilterQB(time,values,150); 
    output(i).CurrentDetrended.t = time; 
    output(i).CurrentDetrended.values = values_detrended; 
    output(i).CurrentBaseline = 
GetBaseline(time,values_detrended); 
    output(i).CurrentNoise = GetNoise(time,values_detrended); 
    if std(values_detrended) < 1.5 % Don't analyze really noisy 
data 
        possible_qbs = 
FindPossibleQBs(time,values_detrended,output(i).CurrentBaseline,o
utput(i).CurrentNoise); 
        output(i).IsAnalyzed = 1; 
    else 
        output(i).IsAnalyzed = 0; 
        possible_qbs = []; 
    end 
    output(i).AreSuccessfulQBs = []; 
    for j=1:length(possible_qbs) 
        if possible_qbs(j).t(end) - possible_qbs(j).t(1) < 9 
            continue; 
        end 
        [t_peak,J_peak,t_hr,t_hi] = 
FindPeak(possible_qbs(j).t,possible_qbs(j).current,output(i).Curr
entBaseline); 
        output(i).PeakTimes(j) = t_peak; 
        output(i).PeakAmplitudes(j) = J_peak; 
        output(i).HalfRiseTimes(j) = t_hr; 
        if isempty(t_hi) 
            output(i).HalfInactivationTimes(j) = NaN; 
        else 
            output(i).HalfInactivationTimes(j) = t_hi; 
        end 
        output(i).Latencies(j) = possible_qbs(j).t(1); 
        output(i).TotalDurations(j) = possible_qbs(j).t(end) - 
possible_qbs(j).t(1); 
        valid_qb = 
ValidateQB(possible_qbs(j).t,possible_qbs(j).current,output(i).La
tencies(j),output(i).PeakTimes(j),output(i).PeakAmplitudes(j),out
put(i).HalfRiseTimes(j),output(i).HalfInactivationTimes(j),output
(i).TotalDurations(j)); 
        if valid_qb 
            output(i).ChargeIntegrals(j) = 
GetCurrentIntegral(possible_qbs(j).t,possible_qbs(j).current,outp
ut(i).CurrentBaseline); 
        else 
            output(i).ChargeIntegrals(j) = 0; 
        end 
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        output(i).AreSuccessfulQBs(j) = valid_qb & 
output(i).ChargeIntegrals(j) > 20; 
        output(i).IsAnalyzed = 1; 
    end 
    first_success = find(output(i).AreSuccessfulQBs,1); 
    if ~isempty(first_success) 
        output(i).PeakTime = output(i).PeakTimes(first_success); 
        output(i).PeakAmplitude = 
output(i).PeakAmplitudes(first_success); 
        output(i).HalfRiseTime = 
output(i).HalfRiseTimes(first_success); 
        output(i).HalfInactivationTime = 
output(i).HalfInactivationTimes(first_success); 
        output(i).HalfWidth = output(i).HalfRiseTime + 
output(i).HalfInactivationTime; 
        output(i).Latency = output(i).Latencies(first_success); 
        output(i).TotalDuration = 
output(i).TotalDurations(first_success); 
        output(i).ChargeIntegral = 
output(i).ChargeIntegrals(first_success); 
        output(i).IsSuccessfulQuantumBump = 1; 
        output(i).NumberOfQBs = 
length(find(output(i).AreSuccessfulQBs)); 
        output(i).MidpointPeakTime = ((output(i).Latency + 
output(i).HalfRiseTime) + (output(i).Latency + output(i).PeakTime 
+ output(i).HalfInactivationTime))/2; 
    else 
        output(i).NumberOfQBs = 0; 
        output(i).IsSuccessfulQuantumBump = 0; 
    end 
end 
    function current_fixed = RemoveTrend(t,current) 
       mask = t<0|t>900; % Only fit beginning and end 
       p = polyfit(t(mask),current(mask),1); 
       current_fixed = current - polyval(p,t) + 
GetBaseline(t,current); 
    end 
    function baseline = GetBaseline(t,current) 
        baseline = mean(current(t<0)); 
    end 
    function noise = GetNoise(t,current) 
       noise = std(current(t<0));  
    end 
    function possible_qbs = 
FindPossibleQBs(t,current,baseline,noise) 
       noise_threshold = 2; 
       threshold_crossings =  find(diff((baseline - 
current)>noise_threshold*noise)~=0); 
       k = 1; 
       possible_qbs = []; 



212 

 

       while k<length(threshold_crossings) 
           possible_qbs((k+1)/2).t = 
t(threshold_crossings(k):threshold_crossings(k+1)); 
           possible_qbs((k+1)/2).current = 
current(threshold_crossings(k):threshold_crossings(k+1)); 
           k = k+2; 
       end 
    end 
    function [t_peak,J_peak,t_hr,t_hi] = 
FindPeak(t,current,baseline) 
       i_peak = find(current==min(current),1); 
       t_peak = t(i_peak) - t(1); 
       if (i_peak ~= 1 & i_peak ~= length(t)) 
        J_peak = -(mean(current(i_peak - 1: i_peak + 1)) - 
baseline); 
        t_hr = t(find(current-baseline<=-J_peak/2,1)) - t(1); 
        t_hi = t(find(current-baseline>=-J_peak/2 & (t > t_peak + 
t(1)),1)) - t_peak - t(1); 
       else 
           J_peak = 0; 
           t_hr = 0; 
           t_hi = 0; 
       end 
    end 
    function J_int = GetCurrentIntegral(t,current,baseline) 
       qb = @(ti) interp1(t,-(current - baseline),ti); 
       J_int = quad(qb, t(1), t(end)); 
    end 
    function valid = 
ValidateQB(t,current,t_lat,t_peak,J_peak,t_hr,t_hi,t_dur) 
       valid = J_peak>3 & t_dur>9 & t_peak>6 & t_hr < 50 & t_dur 
< 150 & ~isnan(t_hi) & ~isnan(t_hr); 
    end 
  
end 

Quantum Bump Filtering – FilterQB.m 

function signal_filtered = FilterQB(t,signal,window) 
%% FilterQB 
% Filters QB traces by removing slow drift with a moving average 
% filter. 25ms works well for wild-type-like QBs. 
  
%% Determine Sampling Rate and Samples to Use for Filter 
Fs = 1/mean(t(2:end)-t(1:length(t)-1)); 
n = Fs*window; 
  
%% Determine baseline and final value 
baseline = mean(signal(t<0)); 
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final = mean(signal(t>t(end)*0.9)); % Use last 10% of the trace 
  
%% Pad signal 
padded = [baseline*ones(n,1);signal;final*ones(n,1)]; 
filtered = filter(1/n*ones(1,n),1,padded); 
  
%% Return filtered signal 
signal_filtered = signal - 
filtered(round(1.5*n)+1:length(signal)+round(1.5*n)); 
  
end 

Calculate Average Quantum Bump – GetAverageQB.m 

function [t,average] = GetAverageQB(qbs) 
  
%% Identify QBs to analyze 
successes = [qbs.IsSuccessfulQuantumBump] & [qbs.IsAnalyzed]; 
alignment_point = [qbs.MidpointPeakTime]; 
  
%% Exclude QBs that occur too close to end of recording 
min_final_time = 60; 
for i=1:length(qbs) 
    if successes(i) 
        if qbs(i).Latency + min_final_time > 
qbs(i).CurrentDetrended.t(end) 
            successes(i) = 0; 
        end 
    end 
end 
  
%% Determine sample rate of each QB 
for i=1:length(qbs) 
    if successes(i) 
        samplerate(i) = 
1000/mean(qbs(i).CurrentDetrended.t(2:end) - 
qbs(i).CurrentDetrended.t(1:length(qbs(i).CurrentDetrended.t)-
1)); 
    end 
end 
min_samplerate = min(samplerate(successes)); 
  
%% Adjust sample rate of QBs to minimum sampling rate 
for i=1:length(qbs) 
    if successes(i) & (samplerate(i) ~= min_samplerate) 
        qbs(i).CurrentDetrended.values = 
resample(qbs(i).CurrentDetrended.values,min_samplerate,samplerate
(i)); 
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        qbs(i).CurrentDetrended.t = 
[qbs(i).CurrentDetrended.t(1):1000/min_samplerate:qbs(i).CurrentD
etrended.t(end)]; 
    end 
end 
  
%% Get Minimum Overlapping Timeframe 
t0 = -qbs(1).CurrentDetrended.t(end); 
tf = qbs(1).CurrentDetrended.t(end); 
  
nb = 1000000000; 
na = 1000000000; 
na_i = na; 
for i=1:length(qbs) 
    if successes(i) 
        t_shifted = qbs(i).CurrentDetrended.t - 
alignment_point(i); 
        if t_shifted(1) > t0 
            t0 = qbs(i).CurrentDetrended.t(1) - 
alignment_point(i); 
        end 
        nb_i = length(t_shifted(t_shifted > t0 & t_shifted < 0)); 
        if (nb_i < nb) 
            nb = nb_i; 
        end 
        if t_shifted(end) < tf 
            tf = qbs(i).CurrentDetrended.t(end) - 
alignment_point(i); 
            na_i = length(t_shifted(t_shifted >= 0 & t_shifted < 
tf)); 
        end 
        if (na_i < na) 
            na = na_i; 
        end 
    end 
end 
  
%% Calculate Average 
i_first_success = find(successes==1,1); 
t_shifted = qbs(i_first_success).CurrentDetrended.t - 
alignment_point(i_first_success); 
i_0 = find(t_shifted >= 0,1); 
t = t_shifted((i_0 - nb):(i_0 + na - 1)); 
average = zeros(1,nb + na); 
for i=1:length(qbs) 
    if successes(i) 
        t_shifted = qbs(i).CurrentDetrended.t - 
alignment_point(i); 
        i_0 = find(t_shifted >= 0,1); 
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        average = average + qbs(i).CurrentDetrended.values((i_0 - 
nb):(i_0 + na - 1))'/qbs(i).PeakAmplitude; 
    end 
end 
average = average ./ length(find(successes == 1)); 
end 

Camgaroo Fluorescence Processing 

Data Structure 

The Camgaroo recordings were handled in MATLAB as a cell array with each 

row a different photoreceptor cell and the columns the following: (1) database 

identifier for the cell, (2) structure containing all the recordings for that cell, (3) 

the recording number corresponding to the dark control, (4) the light response, (5) 

ionomycin treatment, (6) EGTA treatment, (7) the processed Ca++ results. 

Correcting for Photobleaching – 

ProcessCalciumData_Photobleaching.m 

function [cellstruct, pb_results] = 
ProcessCalciumData_Photobleaching( cellstruct, rows ) 
 
for i=1:length(rows) 
    fit_result = 
FitPhotobleaching(cellstruct{rows(i),2}(cellstruct{rows(i),5}).Fl
uorescencePeaks); 
    pb_results{rows(i)} = fit_result; 
    for j=1:length(cellstruct{rows(i),2}) 
        [t,v] = 
CorrectPhotobleaching(cellstruct{rows(i),2}(j).FluorescencePeaks,
fit_result); 
        cellstruct{rows(i),2}(j).FluorescencePeaksCorrected.t = 
t; 
        
cellstruct{rows(i),2}(j).FluorescencePeaksCorrected.values = v;  
    end 
end 
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end 

Normalize and Calculate Ca++ Concentrations – 

ProcessCalciumData_Calcium.m 

function [ cellstruct ] = ProcessCalciumData_Calcium( cellstruct, 
t_ss ) 
 
dataToProcess = logical(zeros(1,length([cellstruct{:,1}]))); 
for i=1:length(dataToProcess) 
    dataToProcess(i) = ~isempty(cellstruct{i,4}) & 
~isempty(cellstruct{i,5}); 
end 
  
for i=1:length(dataToProcess) 
    if ~dataToProcess(i) 
        continue; 
    end 
    data = 
cellstruct{i,2}(cellstruct{i,4}).FluorescencePeaksCorrected; 
    data_t = data.t; 
    data = data.values; 
    maxdata = 
cellstruct{i,2}(cellstruct{i,5}).FluorescencePeaksCorrected; 
    maxdata_t = maxdata.t; 
    maxdata = maxdata.values; 
     
    data_std = std(data(data_t > t_ss)); 
    Fmax = mean(maxdata(maxdata_t > t_ss)); 
    Fmax_std = std(maxdata(maxdata_t > t_ss)); 
    Fmin = data(1); 
    Fmin_std = data_std; 
    [ca,ca_low,ca_high] = GetCaConcentrations(data, [Fmin Fmax], 
7, 1.3, data_std, Fmax_std, Fmin_std); 
    ca_results.t = data_t; 
    ca_results.ca = ca; 
    ca_results.ca_low = ca_low; 
    ca_results.ca_high = ca_high; 
    ca_results.data_std = data_std; 
    ca_results.fnorm = (data - Fmin)./(Fmax - Fmin); 
    ca_results.Fmax = Fmax; 
    ca_results.Fmax_std = Fmax_std; 
    ca_results.Fmin = Fmin; 
    ca_results.Fmin_std = Fmin_std; 
    ca_results.t_ss = t_ss; 
    ca_results.ca_ss = mean(ca(data_t>t_ss)); 
    ca_results.ca_ss_std = std(ca(data_t>t_ss)); 
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    cellstruct{i,7} = ca_results; 
end 
  
end 

Convert Fluorescence to Ca++ Concentrations – 

GetCaConcentrations.m 

function [y,low,high] = GetCaConcentrations(data, calibration, 
Kd, Hill, std_F, std_Fmax, std_Fmin) 
  
Fmin = calibration(1); 
Fmax = calibration(2)-calibration(1); 
  
F = (data - Fmin)./Fmax; 
y = Kd*(-F./(F-1)).^(1/Hill); 
  
for i = 1 : length(data) 
    err(i) = f_Ca_err(data(i)); 
end 
  
err = err'; 
  
low = y - err; 
high = y + err; 
  
    function conc = f_Ca(V) 
        conc = Kd*(-((V-Fmin)/(Fmax-Fmin))/((V-Fmin)/(Fmax-Fmin)-
1))^(1/Hill); 
    end 
    function dconc = df_Ca_dF(V) 
        dconc = -Kd*(-(V-Fmin)/(V-Fmax))^(1/Hill)*(-
Fmax+Fmin)/Hill/(V-Fmax)/(V-Fmin); 
    end 
    function dconc = df_Ca_dFmax(V) 
        dconc = -(-(V-Fmin)/(V-Fmax))^(1/Hill)*Kd/(V-Fmax)/Hill; 
    end 
    function dconc = df_Ca_dFmin(V) 
        dconc = (-(V-Fmin)/(V-Fmax))^(1/Hill)*Kd/(V-Fmin)/Hill; 
    end 
    function dconc = f_Ca_err(V) 
        dconc = 
((df_Ca_dF(V)*std_F)^2+(df_Ca_dFmax(V)*std_Fmax)^2+(df_Ca_dFmin(V
)*std_Fmin)^2)^(1/2); 
    end 
end 
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Camgaroo Measurement Analysis 

QQ Plot Analysis Script 

%% Do QQ comparison 
output.compare_cc_ci = compareqq(output.CC_1500,output.CI_1500); 
output.compare_cc_ca = compareqq(output.CC_1500,output.CA_1500); 
output.compare_ci_ca = compareqq(output.CI_1500,output.CA_1500); 
  
%% Calculate random model 
plotpoints = 0:0.025:1; 
nsamples = 657; 
% The # of comparisons is #cells1*#cells2. There are slightly 
different 
% numbers of cells for each genotype, so the # of comparisons 
isn't exactly 
% the same. It's large enough though to not be a major source of 
error. 
%ntrials = 
max([size(output.compare_cc_ca,1),size(output.compare_cc_ci,1),si
ze(output.compare_ci_ca,1)]); 
%ntrials_mean = 
mean([size(output.compare_cc_ca,1),size(output.compare_cc_ci,1),s
ize(output.compare_ci_ca,1)]); 
ntrials = 500; 
ntrials_mean = 500; 
  
frescale = @(x,scale) (x - scale(1))./(scale(2) - scale(1)); 
  
% Calculate the random expectation for comparing two normal 
distributions 
% of equal mean and variance, sampling nsamples each time. 
rndmodel_norm = zeros(ntrials,length(plotpoints)); 
for i=1:ntrials 
    rndmodel_samples = normrnd(0,1,nsamples,2); % The two random 
distributions 
    % To see the effect of normalization on finite sampled 
distributions, 
    % plot the histogram of the two distributions normalized by 
min and 
    % max. It's not a perfect Gaussian due to the different 
extreme values 
    % sampled. 
     
    % QQ comparison 
    data1 = sort(rndmodel_samples(:,1)); 
    pvec = 100*((1:nsamples) - 0.5) ./ nsamples; 
    data2_matched = prctile(rndmodel_samples(:,2),pvec)'; 



219 

 

    data1_range = [min(data1),max(data1)]; 
    data2_range = 
[min(rndmodel_samples(:,2)),max(rndmodel_samples(:,2))]; 
    data_dx = prctile(data1,75) - prctile(data1,25); % This is 
what MATLAB says is a robust estimate of the variance 
    data_dy = prctile(rndmodel_samples(:,2),75) - 
prctile(rndmodel_samples(:,2),25); 
    % In this case the next step is not actually necessary, but 
for the 
    % actual data I had to rescale distributions of different 
mean and 
    % variance, so I normalize by the linear fit of the second 
distribution 
    % (if you run matlab's normplot command you'll get a feel of 
what I am 
    % attempting here) 
    m = data_dy / data_dx; 
    b = prctile(rndmodel_samples(:,2),75) - 
m*prctile(rndmodel_samples(:,1),75); 
    % Interpolate the normalized data at plotpoints, this is 
necessary to 
    % be able to average over multiple comparisons -- the values 
    % represented by the percentiles are different for each 
dataset 
    rndmodel_norm(i,:) = interp1(frescale(data1,data1_range), ... 
        frescale(data2_matched,m*data1_range+b), plotpoints); 
end 
  
rndmodel_avg = mean(rndmodel_norm(1:ntrials_mean,:),1)-
plotpoints; 
  
%% Plot results 
figure('Position',[50 50 400 200]); 
errorbar(plotpoints,mean(output.compare_cc_ci,1) - 
plotpoints,std(output.compare_cc_ci,0,1)/sqrt(size(output.compare
_cc_ci,1)),'ro'); hold on; 
errorbar(plotpoints,mean(output.compare_cc_ca,1) - 
plotpoints,std(output.compare_cc_ca,0,1)/sqrt(size(output.compare
_cc_ca,1)),'bo'); hold on; 
errorbar(plotpoints,mean(output.compare_ci_ca,1) - 
plotpoints,std(output.compare_ci_ca,0,1)/sqrt(size(output.compare
_ci_ca,1)),'ko'); 
plot(plotpoints,rndmodel_avg,'k-','LineWidth',2); 
xlabel('Normalized Data'); 
ylabel('Normalized Deviation'); 
box off 
grid on 
xlim([0 1]); 
ylim([-0.1 0.1]); 
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%% Determine significance by 2-way ANOVA between measurements and 
random model 
temp = [output.compare_ci_ca-
ones(size(output.compare_ci_ca,1),1)*plotpoints;rndmodel_norm(1:s
ize(output.compare_ci_ca,1),:)-
ones(size(output.compare_ci_ca,1),1)*plotpoints]; 
[p_ci_ca,~,stats_ci_ca] = 
anova2(temp,size(output.compare_ci_ca,1)); 
temp = [output.compare_cc_ca-
ones(size(output.compare_cc_ca,1),1)*plotpoints;rndmodel_norm(1:s
ize(output.compare_cc_ca,1),:)-
ones(size(output.compare_cc_ca,1),1)*plotpoints]; 
[p_cc_ca,~,stats_cc_ca] = 
anova2(temp,size(output.compare_cc_ca,1)); 
temp = [output.compare_cc_ci-
ones(size(output.compare_cc_ci,1),1)*plotpoints;rndmodel_norm(1:s
ize(output.compare_cc_ci,1),:)-
ones(size(output.compare_cc_ci,1),1)*plotpoints]; 
[p_cc_ci,~,stats_cc_ci] = 
anova2(temp,size(output.compare_cc_ci,1)); 
% couldn't figure out how to get multiple comparisons to work 
correctly 
  
%% Plot fitted distribution comparisons 
ci_fits_compare = compareqq_fit(output.CI_1500); 
ca_fits_compare = compareqq_fit(output.CA_1500); 
figure('Position',[50 50 400 200]); 
errorbar(plotpoints,mean(ci_fits_compare,1)-
plotpoints,std(ci_fits_compare,0,1)/sqrt(size(ci_fits_compare,1))
,'ro'); hold on; 
errorbar(plotpoints,mean(ca_fits_compare,1)-
plotpoints,std(ca_fits_compare,0,1)/sqrt(size(ca_fits_compare,1))
,'bo'); hold on; 
plot(plotpoints,rndmodel_avg,'k-','LineWidth',2); 
xlabel('Normalized Data'); 
ylabel('Normalized Deviation in Fit'); 
box off 
grid on 
xlim([0 1]); 
ylim([-0.1 0.1]); 
  
%% Determine significance by 2-way ANOVA between fits and random 
model 
temp = [ci_fits_compare-
ones(size(ci_fits_compare,1),1)*plotpoints;rndmodel_norm(1:size(c
i_fits_compare,1),:)-ones(size(ci_fits_compare,1),1)*plotpoints]; 
[p_ci_fits,~,stats_ci_fits] = 
anova2(temp,size(ci_fits_compare,1)); 
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temp = [ca_fits_compare-
ones(size(ca_fits_compare,1),1)*plotpoints;rndmodel_norm(1:size(c
a_fits_compare,1),:)-ones(size(ca_fits_compare,1),1)*plotpoints]; 
[p_ca_fits,~,stats_ca_fits] = 
anova2(temp,size(ca_fits_compare,1)); 
% couldn't figure out how to get multiple comparisons to work 
correctly 

QQ Plot for Two Distributions – compareqq.m 

function qqcomparison = compareqq(dataset1,dataset2) 
  
frescale = @(x,scale) (x - scale(1))./(scale(2) - scale(1)); 
plotpoints = 0:0.025:1; 
  
ii = 1; 
for i=1:length(dataset1.delta_smoothed) 
    data1 = sort(dataset1.delta_smoothed{i}(dataset1.ss_sel{i})); 
    data_dx = prctile(data1,75) - prctile(data1,25); 
    pvec = 100*((1:length(data1)) - 0.5) ./ length(data1); 
    data1_range = [min(data1),max(data1)]; 
    for j=1:length(dataset2.delta_smoothed) 
        data2 = dataset2.delta_smoothed{j}(dataset2.ss_sel{j}); 
        data2_matched = prctile(data2,pvec)'; 
        data2_range = [min(data2),max(data2)]; 
        data_dy = prctile(data2,75) - prctile(data2,25); 
        m = data_dy / data_dx; 
        b = prctile(data2,75) - m*prctile(data1,75); 
        qqcomparison(ii,:) = interp1(frescale(data1,data1_range), 
... 
            frescale(data2_matched,m*data1_range+b), plotpoints); 
        ii = ii + 1; 
    end 
end 
  
end 

QQ Plot for Data and Fit – compareqq_fit.m 

function qqcomparison = compareqq_fit(dataset) 
  
frescale = @(x,scale) (x - scale(1))./(scale(2) - scale(1)); 
plotpoints = 0:0.025:1; 
  
ii = 1; 
for i=1:length(dataset.fit_output) 
    data1 = sort(dataset.fit_output{i}.qqplot.data); 
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    data2 = dataset.fit_output{i}.qqplot.fit; 
    data_dx = prctile(data1,75) - prctile(data1,25); 
    pvec = 100*((1:length(data1)) - 0.5) ./ length(data1); 
    data1_range = [min(data1),max(data1)]; 
    data2_matched = prctile(data2,pvec)'; 
    data2_range = [min(data2),max(data2)]; 
    data_dy = prctile(data2,75) - prctile(data2,25); 
    m = data_dy / data_dx; 
    b = prctile(data2,75) - m*prctile(data1,75); 
    qqcomparison(i,:) = interp1(frescale(data1,data1_range), ... 
        frescale(data2_matched,m*data1_range+b), plotpoints); 
end 
  
end 

Fit Ca++ Measurement Distribution – 

fit_ca_measurement_distribution_simple3.m 

function [output] = 
fit_ca_measurement_distribution_simple3(data,plot_results) 
  
data = real(data); 
data_mean = mean(data); 
data_std = std(data); 
debug = 0; 
if debug 
    hf = figure; 
end 
  
%% Initial Parameters 
ca_basal_i = 2; 
ca_peak_i = 30; 
gamma_i = 7400; 
sigma_i = 0.4611; 
ref_lengths = GetRandomRefractoryPeriodValues(5000); 
  
%% Waveform 
t = (0:1:1.2*max(ref_lengths)); 
lorenzian = @(tau,n,t) 1./(gamma(n)*tau).*(t/tau).^n.*exp(-
t./tau); 
tau_light = 0.0054; 
n_light = 0.2834; 
w = lorenzian(tau_light,n_light,t/1000); 
w = w ./ max(w); 
  
%% Data CDF and weights 
[pEmp,xi] = ecdf(real(data)); 
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sorted_data = sort(data); 
data_dx = prctile(sorted_data,75) - prctile(sorted_data,25); 
normal_dy = norminv(0.75,data_mean,data_std) - 
norminv(0.25,data_mean,data_std); 
mn = normal_dy / data_dx; 
bn = norminv(0.72,data_mean,data_std) - 
mn*prctile(sorted_data,75); 
wgt = 1 ./ sqrt(pEmp.*(1-pEmp)); 
%wgt = ones(length(pEmp),1); 
wgt_good = ~isnan(wgt) & ~isinf(wgt); 
pvec = 100*((1:length(data)) - 0.5) ./ length(data); 
wgts = sqrt(pvec/100.*(1-pvec/100)); 
  
%% Improve initial guess 
% Adjust guess based on data 
  
% Fit each parameter 
options = optimset('TolX',1e-1); 
ca_basal_i = 
fminbnd(@(ca_basal_i)calculate_cdf_params_score(normparams([ca_ba
sal_i,ca_peak_i,gamma_i,sigma_i])),0.5,20,options); 
  
options = optimset('TolX',1e-1); 
ca_peak_i = 
fminbnd(@(ca_peak_i)calculate_cdf_params_score(normparams([ca_bas
al_i,ca_peak_i,gamma_i,sigma_i])),5,1000,options); 
  
options = optimset('TolX',10); 
gamma_i = 
fminbnd(@(gamma_i)calculate_cdf_params_score(normparams([ca_basal
_i,ca_peak_i,gamma_i,sigma_i])),100,10000,options); 
  
% Refit ca_basal and ca_peak since gamma changes the shape of the 
curve a lot 
options = optimset('TolX',1e-1); 
ca_basal_i = 
fminbnd(@(ca_basal_i)calculate_cdf_params_score(normparams([ca_ba
sal_i,ca_peak_i,gamma_i,sigma_i])),0.5,20,options); 
  
options = optimset('TolX',1e-1); 
ca_peak_i = 
fminbnd(@(ca_peak_i)calculate_cdf_params_score(normparams([ca_bas
al_i,ca_peak_i,gamma_i,sigma_i])),5,1000,options); 
  
%options = optimset('TolX',1e-2); 
% Don't save the optimum sigma as the new scaling factor because 
you can 
% account for a lot of the signaling-increased variance with a 
normal 
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% distribution -- want to make it more likely to decrease this 
parameter 
%sigma_i2 = 
fminbnd(@(sigma)calculate_cdf_params_score(normparams([ca_basal_i
,ca_peak_i,gamma_i,sigma_i])),0.05,0.7,options); 
  
%options = optimset('PlotFcns',@optimplotfval,'TolFun',0.1); 
%[output,fval] = fminsearch(@(in) 
calculate_cdf_params_score(normparams([gamma_i2,in(1),sigma_i2,in
(2)])), [a_i,ca_cell_i],options); 
  
% %% Least-Squares Curve Fitting to Empirical CDF 
% [pEmp,xi] = ecdf(data); 
% options = optimset('PlotFcns',@optimplotx); 
% [fit_output,resnorm,residual] = 
lsqcurvefit(@calculate_cdf_params,normparams(gamma_i,a_i,sigma_i)
,xi,pEmp,[-Inf -Inf -Inf],[Inf Inf Inf],options); 
% fit_output = undo_normparams(fit_output); 
  
%% Probability-weigthed sum of squares fit to find start point 
(copied from 
%% MATLAB help 
  
options = anneal(); 
options.Verbosity = 2; 
options.Generator = @generator; 
options.StopVal = 0.01; 
bounds = [normparams([0.5,ca_basal_i, 500, 0.05]); ... 
          normparams([20,1000, 10000, 0.7])]; 
[fit_output,output.fval] = anneal(@calculate_cdf_params_score, 
normparams([ca_basal_i,ca_peak_i,gamma_i,sigma_i]),options); 
fit_output = undo_normparams(fit_output); 
disp(['Final fit value: ', num2str(output.fval)]); 
disp(['ca_basal ',num2str(fit_output(1))]); 
disp(['ca_peak ',num2str(fit_output(2))]); 
disp(['gamma ',num2str(fit_output(3))]); 
disp(['sigma ',num2str(fit_output(4))]); 
  
output.ca_basal = fit_output(1); 
output.ca_peak = fit_output(2); 
output.log_ca_peak = log10(fit_output(2)); 
output.k_efflux = fit_output(3); 
output.log_k_efflux = log10(fit_output(3)); 
output.sigma = fit_output(4); 
  
% Store qq plot data 
[~,fitted_samples] = 
SimulateCalciumMeasurementDistributionSimpleLorenzian(t,w,ref_len
gths, ... 
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        fit_output(1), fit_output(2), fit_output(3), 
fit_output(4)); 
data_dy = prctile(fitted_samples,75) - 
prctile(fitted_samples,25); 
m = data_dy / data_dx; 
b = prctile(fitted_samples,75) - m*prctile(sorted_data,75); 
  
output.qqplot.pvec = pvec; 
output.qqplot.data = sorted_data; 
output.qqplot.normal = norminv(pvec/100,data_mean,data_std); 
output.qqplot.fit = prctile(fitted_samples,pvec)'; 
output.qqplot.line_x = [min(sorted_data),max(sorted_data)]; 
output.qqplot.line_normal = mn*output.qqplot.line_x + bn; 
output.qqplot.line_fit = m*output.qqplot.line_x + b; 
  
% Store CDF data and hypothesis test results 
output.fit_samples = fitted_samples; 
[output.cdf.f_fit,output.cdf.x] = ecdf(fitted_samples); 
[output.h_fit,output.p_fit] = kstest(data,[-100, 0; 
output.cdf.x(2:end), output.cdf.f_fit(2:end); 100 1]); 
[output.h_normal,output.p_normal] = jbtest(data); 
output.cdf.f_normal = 
normcdf(output.cdf.x(2:end),data_mean,data_std); 
  
%% Plot final fit 
if plot_results 
    figure; 
    scatter(sorted_data,output.qqplot.normal,'r.'); hold on; 
    scatter(sorted_data,output.qqplot.fit,'bo'); 
    plot([min(sorted_data),max(sorted_data)], 
output.qqplot.line_normal,'r-'); 
    
plot([min(sorted_data),max(sorted_data)],[min(sorted_data),max(so
rted_data)],'k-'); 
    plot([min(sorted_data),max(sorted_data)], 
output.qqplot.line_fit,'b-'); 
    axis equal; 
    xlabel('Data'); 
    ylabel('Model'); 
    legend('QB','Normal','Location','SouthEast'); 
end 
     
%% Norm Params 
    function norm = normparams(params) 
        ca_basal = params(1); 
        ca_peak = params(2); 
        gamma = params(3); 
        sigma = params(4); 
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        norm = ([ca_basal,log10(ca_peak),log10(gamma),sigma] - 
[ca_basal_i,log10(ca_peak_i),log10(gamma_i),sigma_i])./abs([ca_ba
sal_i,log10(ca_peak_i),log10(gamma_i),sigma_i]); 
    end 
    function regular = undo_normparams(norm) 
        ca_basal = norm(1)*abs(ca_basal_i)+ca_basal_i; 
        ca_peak = 
10^(norm(2)*abs(log10(ca_peak_i))+log10(ca_peak_i)); 
        gamma = 10^(norm(3)*abs(log10(gamma_i))+log10(gamma_i)); 
        sigma = norm(4)*abs(sigma_i)+sigma_i; 
        regular = [ca_basal,ca_peak,gamma,sigma]; 
    end 
  
function params = generator(params) 
        anneal_default = @(x) 
(x+(randperm(length(x))==length(x))*randn/100); 
        params_new = anneal_default(params); 
        if ~isempty(find(params_new < bounds(1,:) | params_new > 
bounds(2,:))) 
            % Try reflecting 
            params_new = params + (params - params_new); 
        end 
        while ~isempty(find(params_new < bounds(1,:) | params_new 
> bounds(2,:))) 
            params_new = anneal_default(params); 
        end 
        params = params_new; 
    end 
  
%% CDF Function 
    function score = calculate_cdf_params_score(params) 
       regular = undo_normparams(params);  
       [~, ca_noisy] = 
SimulateCalciumMeasurementDistributionSimpleLorenzian(t, w, 
ref_lengths, regular(1),regular(2),regular(3),regular(4)); 
       resid = (sorted_data - prctile(ca_noisy,pvec)'); 
       score = 500/length(sorted_data)*sum(resid.^2); %wgts'.* 
       if debug 
           figure(hf); 
           clf; 
           
scatter(sorted_data,norminv(pvec/100,data_mean,data_std),'r.'); 
hold on; 
           scatter(sorted_data,prctile(ca_noisy,pvec)','bo'); 
           data_dy = prctile(ca_noisy,75) - prctile(ca_noisy,25); 
           m = data_dy / data_dx; 
           b = prctile(ca_noisy,75) - m*prctile(sorted_data,75); 
           plot([min(sorted_data),max(sorted_data)], 
mn*[min(sorted_data),max(sorted_data)] + bn,'r-'); 
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plot([min(sorted_data),max(sorted_data)],[min(sorted_data),max(so
rted_data)],'k-'); 
           plot([min(sorted_data),max(sorted_data)], 
m*[min(sorted_data),max(sorted_data)] + b,'b-'); 
           axis equal; 
       end 
       %score = sum(wgt(wgt_good).*(q_data(wgt_good) - 
calculate_q(xi(wgt_good),regular(1),regular(2),regular(3),regular
(4))).^2); 
    end 
    function ps = calculate_cdf(xi,ca_basal,ca_peak,gamma,sigma) 
        [~, ca_noisy] = 
SimulateCalciumMeasurementDistributionSimpleLorenzian(t, w, 
ref_lengths, ca_basal, ca_peak, gamma, sigma); 
        [f,x] = ecdf(ca_noisy); 
        ps = interp1([0 x(2:end)' 100],[0 f(2:end)' 1],xi); 
    end 
    function q = calculate_q(xi,ca_basal,ca_peak,gamma,sigma) 
        [~, ca_noisy] = 
SimulateCalciumMeasurementDistributionSimpleLorenzian(t, w, 
ref_lengths, ca_basal, ca_peak, gamma, sigma); 
        [f,x] = ecdf(ca_noisy); 
        q = interp1([0 f(2:length(x)-1)' 1],[0 x(2:length(x)-1)' 
100],xi); 
    end 
  
end 

Simulate Ca++ Measurement Distribution – 

SimulateCalciumMeasurementDistributionSimpleLorenzian.m 

function [ ca, ca_noisy, t_c, w_conv, w_calcium ] = 
SimulateCalciumMeasurementDistributionSimpleLorenzian(t, w, 
ref_lengths, ca_basal, ca_peak, k_eff, sigma) 
%% SimulateCalciumMeasurementDistributionSimpleLorenzian 
calculates a 
%% distribution of apparent average calcium values given an input 
of 
%% random refractory lengths by convolving a waveform of channel 
activity 
%% (t,w) with an exponential decay (rate = -k_eff) shifted by 
ca_basal and 
%% scaled by ca_peak. 
  
%% Parameters 
Kd = 7; 
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n = 1.3; 
measurement_noise = sigma; 
bump_length = 10e-3; 
  
%% Check that t is evenly spaced at 1 ms increments 
if find(diff(t) ~= 1) 
    % Resample to 1 ms increments 
    t_rs = 0:max(ref_lengths)*1.2; 
    w_rs = interp1(t,w,t_rs); 
    t = t_rs; 
    w = w_rs; 
end 
  
%% Convolve the waveform with an exponential efflux process 
w_eff = exp(-k_eff*t/1000); 
w_conv = conv(w,w_eff); 
  
%% Normalize by max 
w_conv = w_conv/max(w_conv); 
t_c = (0:length(w_conv)-1)/1000; 
  
%% Calculate modeled calcium dynamics 
w_calcium = ca_basal + ca_peak*w_conv; 
  
%% Convert to fluorescence curve from Camgaroo binding data 
w_fl = w_calcium.^n./(w_calcium.^n + Kd.^n); 
  
%% Calculate distribution by averaging over times selected from 
ref_lengths 
ca_app = @(f) Kd*(f./(1-f)).^(1/n); 
gauss = @(n)normrnd(0,measurement_noise,1,n); 
  
% For performance reasons, create a log-spaced standard curve 
(log b/c we 
% are dealing with exp) 
ref_lengths_eval = 
logspace(log10(min(ref_lengths)*0.9),log10(max(ref_lengths)*1.05)
,10)/1000; 
fl_integrated(1) = quad(@(ti) 
interp1(t_c,w_fl,ti),0,ref_lengths_eval(1)+bump_length); 
parfor i=2:length(ref_lengths_eval) 
        fl_integrated(i) = quad(@(ti) 
interp1(t_c,w_fl,ti),ref_lengths_eval(i-
1)+bump_length,ref_lengths_eval(i)+bump_length); 
end 
fl_integrated_sum = cumsum(fl_integrated); 
ca_measurements_eval = ca_app(fl_integrated_sum ./ 
(ref_lengths_eval+bump_length)); % This is now a curve of avg ca 
vs. ref length 
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% Calculate the distribution from the input ref times 
ca = 
interp1(ref_lengths_eval,ca_measurements_eval,ref_lengths/1000); 
ca_noisy = ca + gauss(length(ca)); 
     
end 

InaD Biochemistry Analysis Scripts 

FRET Binding Analysis – 
process_fret_competition_data_nc_jp.m 
function [f_processed, f_conc, r, rn, fitobj, gof] = 
process_fret_competition_data_nc_jp(w,c,unit,f_raw,f_blank,name) 
  
%% Process spectra 
f_processed = f_raw - f_blank*ones(1,numel(c)); 
f_conc = f_processed([find(w > 475, 1),find(w > 528, 1)],:); 
  
%% Plot fitted spectra 
figure('Name',[name, ' Spectra']); 
map = jet; 
for i=1:numel(c) 
    i_map = round(i/numel(c)*length(map)); 
    
plot(w,f_processed(:,i),'o','Color',map(i_map,:),'MarkerFaceColor
',map(i_map,:),'MarkerEdgeColor','none','MarkerSize',3); hold on; 
end 
xlabel('Wavelength (nm)','FontSize',15); 
ylabel('Fluorescence (counts/s)','FontSize',15); 
set(gca,'FontSize',12); 
for i=1:numel(c) 
    c_label{i} = [num2str(c(i)), ' ', unit]; 
end 
legend(c_label,'Location','EastOutside'); 
xlim([450 600]); 
  
%% Fit data 
r = (f_conc(1,:)./f_conc(2,:))'; 
fitfn = fittype('(a)*x/(Kd+x)+b','Independent','x'); 
options = 
fitoptions('Method','NonlinearLeastSquares','Robust','Bisquare','
StartPoint',[100,0.3,r(2)],'Upper',[Inf,0.4,2],'Lower',[0.5,0.05,
0.5]); 
[fitobj,gof] = fit(c(2:end)',r(2:end),fitfn,options); 
rn = (r - fitobj.b)./(fitobj.a); 
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%% Plot ratio vs concentration 
figure('Name', [name, ' Titration']); 
semilogx(c,r,'ko'); hold on; 
plot(c,feval(fitobj,c),'k-','LineWidth',2); 
legend('Data',['Fit: Kd = ', 
num2str(fitobj.Kd)],'Location','SouthOutside'); 
xlabel(['Concentration ', unit],'FontSize',15); 
ylabel('Ratio of Cerulean to Venus Fluorescence','FontSize',15); 
  
end 

Quasi-Equilibrated Redox Titration Simulation 

Titration Script – simulate_titration.m 

function fr = 
simulate_titration(hfig,E,ref,end_time,a,K_conf,alpha_R,k_ox,k_co
nf,show_plot) 
  
fr = zeros(numel(E),1); 
for i=1:numel(E) 
    [~,~,~,fr(i)] = 
simulate_redox_equilibria_model_full_kinetic3(E(i),end_time,K_con
f,alpha_R,k_ox,k_conf,0); 
end 
  
if show_plot 
    figure(hfig); 
    clf; 
    plot(E*1000,ref*100,'.'); hold on; 
    plot(E*1000,a*fr*100,'o'); 
    xlabel('E (mV)'); 
    ylabel('% Reduced'); 
    ylim([0 100]); 
end 
  
end 

Simulate Equilibration – 

simulate_redox_equilibria_model_full_kinetic3.m 

function [t,y,fr,fr_final] = 
simulate_redox_equilibria_model_full_kinetic(Ev,end_time,K_conf,a
lpha_R,k_ox,k_conf,show_plot) 
%% Constants 
R = 8.314; % J/mol/K 
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T = 303; % K 
F = 96485; % C/mol 
n = 2; 
  
%% Parameters 
k_ox_O = k_ox; 
kr_conf_ox = k_conf;  
E0_pdz5 = -0.2846; 
E0_C = E0_pdz5-R*T/(n*F)*log(alpha_R); 
  
%% Calculate remaining kinetic constants 
% Conformational dynamics: 
% K_conf = C/O = k_conf/kr_conf, 0 = k_conf*O - 
% kr_conf*C 
kr_conf = k_conf/K_conf; 
% alpha_R*K_conf = C_ox/O_ox = k_conf_ox/kr_conf_ox, 0 = 
k_conf_ox*O - 
% kr_conf_ox*C_ox 
K_conf_ox = alpha_R*K_conf; 
k_conf_ox = K_conf_ox*kr_conf_ox; 
  
% Redox dynamics: 
K_redox = exp(n*F/(R*T)*(E0_C - Ev)); 
K_redox_O = alpha_R*K_redox; 
% K_redox = k_red/k_ox, 0 = k_ox*C - k_red*C_ox 
k_red = K_redox*k_ox; 
k_red_O = alpha_R*K_redox*k_ox_O; 
  
%% Solve ODE 
% K_conf = C/O, K_conf*O + O = 1, 1/(1+K_conf) = O 
ic_O = 1/(1+K_conf); 
ic = [0.8 0 0 0.2]; 
options = odeset('AbsTol',1e-8); 
[t,y] = ode15s(@calculate_diffeq,[0 end_time*60*60], ic,options); 
fr = y(:,1)+y(:,2); 
fr_final = fr(end); 
  
%% Output 
if show_plot 
    figure; 
    subplot(1,2,1); 
    loglog(t/60/60,y); 
    legend('C','O','Cox','Oox','Location','SouthEast'); 
    xlabel('Time (h)'); 
    ylabel('Fraction of Total Protein'); 
    subplot(1,2,2); 
    plot(t/60/60,fr); 
    xlabel('Time (h)'); 
    ylabel('Fraction Reduced'); 
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    ylim([0 1]); 
end 
  
%% The differential equations 
    function dy = calculate_diffeq(t,y) 
        dy = zeros(4,1); 
        % y1: C 
        dy(1) = k_conf*y(2) - kr_conf*y(1) + k_red*y(3) - 
k_ox*y(1); 
        % y2: O 
        dy(2) = kr_conf*y(1) - k_conf*y(2) + k_red_O*y(4) - 
k_ox_O*y(2); 
        % y3: C_ox 
        dy(3) = k_conf_ox*y(4) - kr_conf_ox*y(3) + k_ox*y(1) - 
k_red*y(3); 
        % y4: O_ox 
        dy(4) = kr_conf_ox*y(3) - k_conf_ox*y(4) + k_ox_O*y(2) - 
k_red_O*y(4); 
    end 
end 

InaD Sequence Analysis 
%% Import BLAST results 
clear all; 
pdz4_hits = importdata('2011-03-01_pdz4_psi3_nr.csv'); 
pdz5_hits = importdata('2011-03-01_pdz5_psi3_nr.csv'); 
pdz45_hits = importdata('2011-03-01_pdz45_psi3_nr.csv'); 
  
%% Process BLAST results 
clear hits 
for i=1:size(pdz4_hits.data,1) 
    hits.pdz4(i).expect = pdz4_hits.data(i,10); 
    hits.pdz4(i).range = [pdz4_hits.data(i,8), 
pdz4_hits.data(i,9)]; 
    hits.pdz4(i).length = hits.pdz4(i).range(2) - 
hits.pdz4(i).range(1); 
    name_bytypes = regexp(pdz4_hits.textdata{i,2},'\;','split'); 
    for j=1:numel(name_bytypes) 
        name_parts = regexp(name_bytypes{j},'\|','split'); 
        for k=1:floor(numel(name_parts)/2) 
            hits.pdz4(i).names(j).database{k} = name_parts{(k-
1)*2+1}; 
            hits.pdz4(i).names(j).name{k} = name_parts{(k-
1)*2+2}; 
            if j == 1 
                hits.pdz4(i).ginum = 
str2double(hits.pdz4(i).names(j).name{1}); 
            end 
        end 
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    end 
end 
for i=1:size(pdz5_hits.data,1) 
    hits.pdz5(i).expect = pdz5_hits.data(i,10); 
    hits.pdz5(i).range = [pdz5_hits.data(i,8), 
pdz5_hits.data(i,9)]; 
    hits.pdz5(i).length = hits.pdz5(i).range(2) - 
hits.pdz5(i).range(1); 
    name_bytypes = regexp(pdz5_hits.textdata{i,2},'\;','split'); 
    for j=1:numel(name_bytypes) 
        name_parts = regexp(name_bytypes{j},'\|','split'); 
        for k=1:floor(numel(name_parts)/2) 
            hits.pdz5(i).names(j).database{k} = name_parts{(k-
1)*2+1}; 
            hits.pdz5(i).names(j).name{k} = name_parts{(k-
1)*2+2}; 
            if j == 1 
                hits.pdz5(i).ginum = 
str2double(hits.pdz5(i).names(j).name{1}); 
            end 
        end 
    end 
end 
for i=1:size(pdz45_hits.data,1) 
    hits.pdz45(i).expect = pdz45_hits.data(i,10); 
    hits.pdz45(i).range = [pdz45_hits.data(i,8), 
pdz45_hits.data(i,9)]; 
    hits.pdz45(i).length = hits.pdz45(i).range(2) - 
hits.pdz45(i).range(1); 
    name_bytypes = regexp(pdz45_hits.textdata{i,2},'\;','split'); 
    for j=1:numel(name_bytypes) 
        name_parts = regexp(name_bytypes{j},'\|','split'); 
        for k=1:floor(numel(name_parts)/2) 
            hits.pdz45(i).names(j).database{k} = name_parts{(k-
1)*2+1}; 
            hits.pdz45(i).names(j).name{k} = name_parts{(k-
1)*2+2}; 
            if j == 1 
                hits.pdz45(i).ginum = 
str2double(hits.pdz45(i).names(j).name{1}); 
            end 
        end 
    end 
end 
  
%% Filter hits 
clear remove hits_fil 
% First, by expect value 
% For PDZ4 and PDZ5, remove hits with E>5e-10 
cutoff_single = 5e-10; 
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remove.pdz4 = [hits.pdz4.expect] > cutoff_single; 
remove.pdz5 = [hits.pdz5.expect] > cutoff_single; 
% For PDZ45, remove hits with E>5e-30 
cutoff_double = 5e-40; 
remove.pdz45 = [hits.pdz45.expect] > cutoff_double; 
% Second, by length 
% For PDZ4 and PDZ5, length > 70 
cutoff_l_single = 70; 
remove.pdz4 = remove.pdz4 | [hits.pdz4.length] < cutoff_l_single; 
remove.pdz5 = remove.pdz5 | [hits.pdz5.length] < cutoff_l_single; 
% For PDZ45, length > 160 
cutoff_l_double = 160; 
remove.pdz45 = remove.pdz45 | [hits.pdz45.length] < 
cutoff_l_double; 
% Filter 
hits_fil.pdz4 = hits.pdz4(~remove.pdz4); 
hits_fil.pdz5 = hits.pdz5(~remove.pdz5); 
hits_fil.pdz45 = hits.pdz45(~remove.pdz45); 
disp(['Removed ', num2str(sum(remove.pdz4)), ' hits from PDZ4, 
leaving ', num2str(sum(~remove.pdz4)), ' hits.']); 
disp(['Removed ', num2str(sum(remove.pdz5)), ' hits from PDZ5, 
leaving ', num2str(sum(~remove.pdz5)), ' hits.']); 
disp(['Removed ', num2str(sum(remove.pdz45)), ' hits from PDZ45, 
leaving ', num2str(sum(~remove.pdz45)), ' hits.']); 
  
%% Find genes that appear in both hit lists 
hits_fil.pdz4_pdz5_common = 
intersect([hits_fil.pdz4.ginum],[hits_fil.pdz5.ginum]); 
hits_fil.pdz4_pdz45_common = 
intersect([hits_fil.pdz4.ginum],[hits_fil.pdz45.ginum]); 
hits_fil.pdz5_pdz45_common = 
intersect([hits_fil.pdz5.ginum],[hits_fil.pdz45.ginum]); 
hits_fil.common = 
intersect(hits_fil.pdz4_pdz5_common,[hits_fil.pdz45.ginum]); % 
This only tests for common genes, not hits 
  
%% Find tandem hits 
ii = 1; 
N_distance = 50; 
hits_fil.tandem_hits = []; 
for i=1:numel(hits_fil.pdz4) 
    for j=1:numel(hits_fil.pdz5) 
       if hits_fil.pdz4(i).ginum == hits_fil.pdz5(j).ginum 
           if (hits_fil.pdz4(i).range(2) + N_distance) >= 
hits_fil.pdz5(j).range(1) && (hits_fil.pdz4(i).range(1) < 
hits_fil.pdz5(j).range(1)) 
               hits_fil.tandem_hits(ii,1:2) = [i,j]; 
               ii = ii + 1; 
           end 
       end 
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    end 
end 
hits_fil.tandem_common_genes_pdz4_pdz5 = 
unique([hits_fil.pdz4(hits_fil.tandem_hits(:,1)).ginum]); 
% Find the common hits 
ii = 1; 
for i=1:size(hits_fil.tandem_hits,1) 
    match = find([hits_fil.pdz45.ginum] == 
hits_fil.pdz4(hits_fil.tandem_hits(i,1)).ginum); 
    for j=1:numel(match) 
       range_domains = 
[hits_fil.pdz4(hits_fil.tandem_hits(i,1)).range(1), 
hits_fil.pdz5(hits_fil.tandem_hits(i,2)).range(2)]; 
       range_45 = hits_fil.pdz45(match(j)).range; 
       % Check if the ranges overlap 
       if range_domains(1) >= range_45(1) && range_domains(1) <= 
range_45(2) ... % Start of range_domains contained within 45 
           || range_domains(2) >= range_45(1) && range_domains(2) 
<= range_45(2) ... % or End of range_domains contained within 45 
           || range_domains(1) <= range_45(1) && range_domains(2) 
>= range_45(2) % or 45 completely contained within range_domains 
          hits_fil.tandem_common_strict(ii) = 
hits_fil.pdz45(match(j)).ginum; 
          hits_fil.tandem_common_strict_index(ii) = match(j); 
          ii = ii + 1; 
       end 
    end 
end 
hits_fil.tandem_common_strict_index = 
unique(hits_fil.tandem_common_strict_index); 
hits_fil.tandem_common_strict = 
unique(hits_fil.tandem_common_strict); 
hits_fil.tandem_common = 
unique(intersect(hits_fil.tandem_common_genes_pdz4_pdz5,[hits_fil
.pdz45.ginum])); 
  
disp(['Found ', 
num2str(length(hits_fil.tandem_common_strict_index)), ' tandem 
hits in common.']); 
  
%% Make Venn diagram of filtering 
totals = 
[numel(hits_fil.pdz4),numel(hits_fil.pdz5),numel(hits_fil.pdz45)]
; 
overlap = 
[numel(hits_fil.pdz4_pdz5_common),numel(hits_fil.pdz4_pdz45_commo
n),numel(hits_fil.pdz5_pdz45_common),numel(hits_fil.tandem_common
_strict_index)]; 
figure; 
[h,s] = venn(totals,overlap); 
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%% Write gi numbers of tandem common strict hits to file for 
sequence download 
f = fopen('ginums.txt','w'); 
for i=1:numel(hits_fil.tandem_common_strict) 
    fprintf(f,'%s\n',num2str(hits_fil.tandem_common_strict(i))); 
end 
fclose(f); 
% Then use Batch Entrez to download sequences 
  
%% Import tandem PDZ containing sequences 
genes = fastaread('tandem_common_strict.fasta'); 
  
%% Process sequences 
ii = 1; 
clear tandem_domains 
N_extend = 10; 
for i=1:numel(genes) % Iterate through sequences 
    header_parts = regexp(genes(i).Header,'\|','split'); 
    ginum = str2num(header_parts{2}); %#ok<ST2NM> 
    name_parts = regexp(header_parts{end},'\[','split'); 
    name = strtrim(name_parts{1}); 
    species = ''; 
    if numel(name_parts) > 1 
        species_parts = regexp(name_parts{2},'\]','split'); 
        species = strtrim(species_parts{1}); 
    end 
    sequence = genes(i).Sequence; 
    sequence_len = length(sequence); 
    pdz45matches = find(ginum == [hits_fil.pdz45.ginum]); 
    for j=1:numel(pdz45matches) 
        if ~any(hits_fil.tandem_common_strict_index == 
pdz45matches(j)) 
            continue; 
        end 
        tandem_domains(ii).ginum = ginum; 
        tandem_domains(ii).name = name; 
        tandem_domains(ii).species = species; 
        tandem_domains(ii).expect = 
hits_fil.pdz45(pdz45matches(j)).expect; 
        tandem_domains(ii).range = 
hits_fil.pdz45(pdz45matches(j)).range; 
        if tandem_domains(ii).range(1) > N_extend 
            tandem_domains(ii).range(1) = 
tandem_domains(ii).range(1) - N_extend; 
        else 
            tandem_domains(ii).range(1) = 1; 
        end 
        if tandem_domains(ii).range(2) < sequence_len - N_extend 
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            tandem_domains(ii).range(2) = 
tandem_domains(ii).range(2) + N_extend; 
        else 
            tandem_domains(ii).range(2) = sequence_len; 
        end 
        tandem_domains(ii).Header = 
[num2str(ginum),'/',num2str(tandem_domains(ii).range(1)),'-
',num2str(tandem_domains(ii).range(2))]; 
        tandem_domains(ii).Sequence = 
sequence(tandem_domains(ii).range(1):tandem_domains(ii).range(2))
; 
        ii = ii + 1; 
    end 
end 
  
%% Write tandem domains to FASTA file 
fastawrite('tandem_domains.fasta',tandem_domains); 
% Then do promals3d alignment 
  
%% Read PROMALS alignment 
tandem_domains_aligned = 
fastaread('tandem_domains_strict_aln.fasta'); 
  
%% Write species list to file 
f = fopen('species.txt','w'); 
species = unique({tandem_domains.species}); 
for i=1:numel(species) 
    if ~isempty(species{i}) 
        fprintf(f,'%s\n',species{i}); 
    end 
end 
fclose(f); 
  
%% Filter gappy columns 
gap_cutoff = 0.2; 
seqs = char({tandem_domains_aligned.Sequence}); 
fraq_gaps=sum(isletter(seqs)==0)/numel(tandem_domains_aligned); 
seqs_trunc=seqs(:,fraq_gaps<gap_cutoff); 
  
%% Make tree 
D = seqpdist(seqs_trunc,'UseParallel',true); 
tree = seqneighjoin(D,'equivar',{tandem_domains.Header}); 
view(tree); 
phytreewrite('tree.tre',tree); 
  
%% Generate Archaeopteryx mapping table to label nodes correctly 
out = []; 
!del forester_mapping.txt 
f = fopen('forester_mapping.txt','w'); 
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for i=1:numel(tandem_domains) 
    
fprintf(f,'%s\t%s\t%s\t%s\n',tandem_domains(i).Header,['SEQ_NAME:
',tandem_domains(i).name],['TAXONOMY_SN:',tandem_domains(i).speci
es],['SEQ_ACCESSION:',num2str(tandem_domains(i).ginum)]); 
end 
fclose(f); 
  
%% Run decorator on tree 
!del tree.xml 
!del tree_decorated.xml 
!java -cp forester.jar 
org.forester.application.phyloxml_converter -f=nn tree.tre 
tree.xml 
!java -cp forester.jar org.forester.application.decorator -table 
tree.xml forester_mapping.txt tree_decorated.xml 
  
%% Define domain structure 
representatives = { 'Lnx2 (Mus musculus)', 687, 
[232,314;338,421;465,551;597,685], [51,89;207,210], 1,2; ... 
    'MPDZ Homolog (Strongylocentrotus purpuratus)', 999, 
[253,331;428,500;576,657;669,744;779,850;923,999], [], 4,5; ... 
    'MPDZ Homolog (Trichoplax adhaerans)', 1926, 
[129,207;267,339;376,447;550,626;708,786;869,945;1018,1100;1200,1
275;1339,1416;1498,1573;1597,1670;1725,1802;1851,1926],[],10,11; 
... 
    'MPDZ Homolog (Ixodes scapularis)',877, 
[43,111;359,435;447,531;637,712;767,844],[],4,5; ... 
    'MPDZ Homolog (Oikopleura dioica)',1781, 
[18,96;137,209;233,315;401,476;546,625;797,852;853,929;991,1072;1
184,1257;1301,1373;1405,1480;1497,1568;1596,1671;1706,1780],[],11
,12; ... 
    'InaD (Drosophila melanogaster)',674, 
[17,106;249,332;364,448;489,577;584,664],[],4,5; ... 
    'Mpz-1 (Caenorhabditis elegans)', 2166, 
[20,92;290,367;426,509;593,672;800,878;1225,1312;1578,1652;1739,1
814;1840,1913;2094,2161],[],8,9; ... 
    'MPDZ Homolog (Ciona intestinalis)', 2043, 
[126,204;254,327;387,468;533,609;739,818;1083,1157;1234,1323;1365
,1441;1502,1573;1628,1703;1730,1803;1849,1924;1966,2043],[],10,11
; ... 
    'InaDL (Homo sapiens)', 1801, 
[134,221;248,328;365,453;553,639;686,772;1068,1160;1239,1322;1437
,1520;1533,1615;1676,1762],[1,65],8,9; ... 
    'MPDZ (Homo sapiens)', 2070, 
[137,224;257,337;377,463;553,634;700,786;1008,1089;1151,1243;1350
,1433;1483,1564;1629,1712;1725,1807;1862,1948;1987,2070], [1,63], 
10, 11}; 
  
%% Plot domains 
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figure; 
dy = 0.25; 
for i=1:size(representatives,1) 
    plot([1,representatives{i,2}],i*[1 1],'k'); hold on; 
    for j=1:size(representatives{i,4},1) 
        color = [0.5 0.5 0.5]; 
        
fill([representatives{i,4}(j,:),representatives{i,4}(j,[2,1])],i*
[1 1 1 1] + [-dy,-dy,+dy,+dy],color); 
    end 
    for j=1:size(representatives{i,3},1) 
        color = [1 1 1]; 
        if j == representatives{i,5} 
            color = [0 0 1]; 
        elseif j == representatives{i,6} 
            color = [0 1 0]; 
        end 
        
fill([representatives{i,3}(j,:),representatives{i,3}(j,[2,1])],i*
[1 1 1 1] + [-dy,-dy,+dy,+dy],color); 
    end 
end 
set(gca,'YTick',1:size(representatives,1)); 
set(gca,'YTickLabel',representatives(:,1)); 
set(gca,'YDir','rev','Box','off'); 
ylim([0 size(representatives,1)+1]); 
xlabel('Position'); 

NorpA Sensitivity Analysis Scripts 

Sensitivity Analysis Script 
%% Parameters 
[param,ic] = GetPumirModelParamPublished(); 
mods = logspace(-2,2,40); 
nrepeats = 400; 
%% 
wt = GenerateFittedBumps(-1, ic, param, 500); 
%% PLC Phospholipase Activity 
param2 = param; 
for i=1:length(mods) 
    param2.k_A = param.k_A*mods(i); 
    output = GenerateFittedBumps(-1, ic, param2, nrepeats); 
    plcpa.eff(i) = output.eff; 
    plcpa.t_lat(i) = output.t_lat; 
    plcpa.J(i) = output.J; 
    plcpa.t_act(i) = output.t_act; 
    plcpa.t_inact(i) = output.t_inact; 
    plcpa.t_inact2(i) = output.t_inact2; 
    plcpa.t_lat_std(i) = output.t_lat_std; 
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    plcpa.J_std(i) = output.J_std; 
    plcpa.t_act_std(i) = output.t_act_std; 
    plcpa.t_inact_std(i) = output.t_inact_std; 
    plcpa.t_inact2_std(i) = output.t_inact2_std; 
end 
save('matlab_temp.mat'); 
  
%% PLC GAP Activity 
param2 = param; 
for i=1:length(mods) 
    param2.gamma_P = param.gamma_P*mods(i); 
    output = GenerateFittedBumps(-1, ic, param2, nrepeats); 
    plcga.eff(i) = output.eff; 
    plcga.t_lat(i) = output.t_lat; 
    plcga.J(i) = output.J; 
    plcga.t_act(i) = output.t_act; 
    plcga.t_inact(i) = output.t_inact; 
    plcga.t_inact2(i) = output.t_inact2; 
    plcga.t_lat_std(i) = output.t_lat_std; 
    plcga.J_std(i) = output.J_std; 
    plcga.t_act_std(i) = output.t_act_std; 
    plcga.t_inact_std(i) = output.t_inact_std; 
    plcga.t_inact2_std(i) = output.t_inact2_std; 
end 
save('matlab_temp.mat'); 

Quantum Bump Model 

Parameters – GetPumirModelParamPublished.m 

function [param,ic] = GetPumirModelParamPublished() 
  
ic = [0   1   0   1   0   0   0   50 0 0]; 
  
param.Ca_ext = 5000; 
param.Kdn = 19.5; 
param.Kdp = 6.2; 
param.mp = 2; 
param.mn = 3; 
param.k_Bapp = 1.3E-6; 
param.nd=3; 
param.gamma_B= 6E-2; 
param.g_Bp= 41.5; 
param.g_Bn = 5.4; 
param.B_t=30; 
param.gamma_R= 3.7E-3; 
param.g_M= 8E3; 
param.k_G = 4.7E-3; 
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param.gamma_G = 3.5E-2; 
param.G_t=50; 
param.k_P = 3.9E-3; 
param.gamma_P = 4.8E-2; 
param.g_Pn = 11.1; 
param.P_t=100; 
param.gamma_A = 2.1E-2; 
param.g_An = 37.8; 
param.k_A = 7.4E-2; 
param.k_C = 1E-2; 
param.gamma_C = 5.5E-3; 
param.sigma = 0.17; 
param.gamma_Ca= 33; 
param.Ca_0 = 0.5; 
  
end 

Quantum Bump Model Simulation – PumirModelPublished.m 

function [t,yy]=PumirModelPublished(t_total,y,param) 
% Adapted from code by Alain Pumir and Boris Shraiman 
% Initial conditions for wt : 
% 0  1  0  1  0  0  50 
  
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%DYNAMICAL VARIABLES 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% y(1)  -- TRp* 
  
% y(2)  --- Ca 
  
% y(3) -- G* 
  
% y(4) -- Rh* 
  
% y(5) ---  PLC* 
  
% y(6) ---  DAG 
  
% y(7)= --- B* 
  
% y(8) --- G 
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% y(9)=fbn; 
  
% y(10)=fbp 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
tt=0; 
  
ii=1; 
  
yy(ii,:)=y; 
t_rh_stop = 500; 
% Run until 500 ms after rhodopsin turns off if t_total = -1 
while (t_total > 0 && tt<t_total) || (t_total == -1 && tt < 
t_rh_stop);  
    if y(4) == 0 && t_rh_stop == 500 
        t_rh_stop = tt + 500; 
    end 
 ii=ii+1; 
  
%% Feedback functions 
fbp=(y(2)/param.Kdp)^param.mp/(1+(y(2)/param.Kdp)^param.mp); 
fbn=(y(7)/param.Kdn)^param.mn/(1+(y(7)/param.Kdn)^param.mn); 
  
%% trp 
% k_Bapp is k_B/k_A^nd 
z(1,1)=param.k_Bapp*((y(6))^param.nd)*(1+param.g_Bp*fbp)*(param.B
_t-y(1)); 
z(1,2)=y(1)*param.gamma_B*(1+param.g_Bn*fbn); 
  
z(2,2)=0; 
z(2,1)=0; 
  
%% G-protein 
z(3,1)=param.k_G*y(8)*y(4); 
z(3,2)=0; 
z(8,2)=0; 
z(8,1)=param.gamma_G*(param.G_t-y(5)-y(3)-y(8)); 
  
%% Rh* inactivation 
z(4,1)=0; 
z(4,2)=y(4)*(param.g_M*fbn+param.gamma_R); 
  
%% PLC 
z(5,1)=param.k_P*(param.P_t-y(5))*y(3); 
z(5,2)=param.gamma_P*y(5)*(1+param.g_Pn*fbn); 
  



243 

 

%% DAG 
z(6,1)=param.k_A*y(5); 
z(6,2)=param.gamma_A*y(6)*(1+param.g_An*fbn); 
  
%%  Ca buffer which drives negative feedback 
z(7,1)=param.k_C*y(2); 
z(7,2)=param.gamma_C*y(7); 
  
%% Ca 
y(2)=(param.sigma*param.Ca_ext*y(1)+param.Ca_0*param.gamma_Ca+par
am.gamma_C*y(7))/(param.sigma*y(1)+param.gamma_Ca+param.k_C); 
  
y(9)=fbn; 
y(10)=fbp; 
  
%% stochastic update 
up=z(:,1); 
norm_1=sum(up); 
if norm_1>0 
    zup=cumsum(up)/norm_1; 
end 
down=z(:,2); 
norm_2=sum(down); 
if norm_2>0 
    zdown=cumsum(down)/norm_2; 
end 
r=rand; 
if norm_1+norm_2==0 
    ii=nstep+1; 
else 
    q=norm_1/(norm_1+norm_2); 
    if r<q 
        r=r/q; 
        tst=find(zup>r);nn=tst(1); 
        y(nn)=y(nn)+1; 
        if nn==5 
            y(3)=y(3)-1; 
        end 
        if nn==3 
            y(8)=y(8)-1; 
        end 
    else 
        r=(r-q)/(1-q); 
        tst=find(zdown>r);nn=tst(1); 
        y(nn)=y(nn)-1; 
    end 
    r2=rand; 
    tt=tt+log(1/r2)/(norm_1+norm_2); 
    t(ii)=tt; 
    yy(ii,:)=y; 
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end 
  
end 
  
  
  
end 

Fitting Quantum Bumps – GenerateFittedBumps.m 

function output = GenerateFittedBumps(simtime, ic, param, 
ntrials) 
  
   parfor j=1:ntrials 
       [t,yy] = PumirModelPublished(simtime,ic,param); 
       trial(j).t = t; 
       trial(j).yy = yy; 
        
       ibumps = yy(:,1)>=2; 
       channel_openings = diff(ibumps); 
       nBumps = floor(sum(abs(channel_openings))/2); 
       if nBumps == 0 
           t_lat = 0; 
           t_act = 0; 
           J = 0; 
           t_inact = 0; 
           t_peak = 0; 
           t_inact2 = 0; 
       else 
           bump_start = find(channel_openings==1,1); 
           bump_end = find(channel_openings==-1,1); 
           t_lat = t(bump_start); 
           J = max(yy(bump_start:bump_end,1)); 
           i_act = find(yy(:,1)>J/2,1); 
           t_act = t(i_act) - t_lat; 
           i_peak = find(yy(:,1)==J,1); 
           t_peak = t(i_peak); 
            
           i_inact = find(yy(i_peak:end,1)<J/2,1); 
           if isempty(i_inact) 
               t_inact = NaN; 
           elseif (i_inact + i_peak)>length(t) 
               t_inact = Inf; 
           else 
               t_inact = t(i_inact + i_peak) - t_peak; 
           end 
  
           i_inact2 = find(yy((i_inact + i_peak):end,1)==0,1); 
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           if t_inact==NaN 
               t_inact2 = NaN; 
           elseif isempty(i_inact2) 
               t_inact2 = NaN; 
           elseif (i_inact + i_peak + i_inact2)>length(t) 
               t_inact2 = Inf; 
           else 
               t_inact2 = t(i_inact + i_peak + i_inact2) - 
(t_peak + t_inact); 
           end 
       end 
       trial(j).t_lat = t_lat; 
       trial(j).t_act = t_act; 
       trial(j).t_peak = t_peak; 
       trial(j).J = J; 
       trial(j).t_inact = t_inact; 
       trial(j).t_inact2 = t_inact2; 
   end 
   output.trial = trial; 
   success = [output.trial.J] > 0; 
   output.eff = length(find(success))/ntrials; 
   output.t_lat = mean([output.trial(success).t_lat]); 
   output.t_lat_std = std([output.trial(success).t_lat]); 
   output.t_act = mean([output.trial(success).t_act]); 
   output.t_act_std = std([output.trial(success).t_act]); 
   output.J = mean([output.trial(success).J]); 
   output.J_std = std([output.trial(success).J]); 
   output.t_inact = mean([output.trial(success).t_inact]); 
   output.t_inact_std = std([output.trial(success).t_inact]); 
   output.t_inact2 = mean([output.trial(success).t_inact2]); 
   output.t_inact2_std = std([output.trial(success).t_inact2]); 
    
end 
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