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Steven J. Altschuler, Ph.D.

How cells integrate external cues in order to make behavioral decisions is a central

problem of cell biology. In development and in tissue-homeostasis, cell-fate decisions

are made by the integration of multiple morphogenic signals, but how cells convert such

combinations of signals into distinct behaviors is not well understood. A major compli-

cation is our incomplete knowledge of which signal properties encode the information

that cells use for decision-making. A further complication is that the static networks

we use to describe cellular signaling pathways are likely to be overly-complex; the true

signaling network, in a given cellular context and at a particular point in time, may

be much simpler. Using a rigorous and quantitative single-cell imaging approach, I �nd

that such simplicity is present in the integration between Wnt and Transforming Growth

Factor Beta (TGFB), which are key developmental pathways. Surprisingly, this insu-

lation extends to the integration of signals within the TGFB superfamily, which are

expected to compete for shared components and so interfere with one another during

signal transduction. My results thus add clarity to and simplify our understanding of

how cells integrate information from the Wnt and TGFB pathways, and further sug-

gest that insulation of signal transduction may be a common feature of morphogenic

pathways.
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Chapter 1

On cellular signaling

1.1 Introduction

Both in the context of multi-cellular and single-celled organisms, cells are constantly challenged to

stay alive and perform tasks in the face of unpredictable environmental changes. For single-cell

organisms these changes can be particularly dramatic, as the external temperature, osmolarity,

and other properties are outside of cellular control [1, 2]. For cells within multi-cellular organisms,

microenvironmental changes �uctuate much less due to controlled modi�cation of the environment

by neighboring cells. However, in order to exert control over the environment, cells must constantly

communicate with one another. The messages sent from cell to cell are themselves a form of

unpredictable environmental change that cells must deal with. Here, I focus on this latter problem.

That is, how do cells within multi-cellular organisms accurately interpret messages sent from their

neighbors?

The potential variety of cellular signals that cells face is explosively large [3], and yet cells must

somehow be able to tell these signals apart. Mammalian cells must generally be able to respond

to changes within a highly complex biochemical milieu that contains proteins, small molecules, and

ions. Adult stem cells must be able to reliably divide and make di�erentiation decisions so as to

recreate functional units of organs. Embryonic stem cells must be able to generate entire organisms,

going from a single cell to billions that each have di�erent functional and morphological properties.

And those embryonic stem cells must perform this task with extreme accuracy, since even a small

error at the early stages would be compounded through the developmental process [4].

It is amazing that cells can respond to such an unpredictable, complex, and ever-changing

environment. Even more amazing is that they do so using the interactions between �nite numbers

of molecules, both in quantity and type, to perform computational tasks. In order for cells to be

so responsive, they must �rst be able to recognize that the environment has changed: they must

have sensors. In order for a cell to �understand� what has happened, it must convert the in�ux of

sensory information into an internal model of its environment. Finally, cells must map that model

onto a decision regarding what action to take in response. I refer to the �rst part of this process,

the conversion of external information into an internal model, as �signal transduction� or, in short,

1



CHAPTER 1. ON CELLULAR SIGNALING 2

�signaling.� The second part, the conversion of the internal model into a behavior, I refer to as

�cellular decision-making.�

Understanding how cells make decisions, as a consequence of environmental or pathological

perturbation, is at the core of cell biology. In experimental cell biology, we purposely break the

ability of a cell to accurately process information, or its ability to make a correct decision after

processing that information, in order to understand the decision-making process. A cell, on the

other hand, may �unintentionally� break those same processes, thus resulting in pathology. If we

can understand the basis of cellular signaling and decision-making, then we can intervene to correct

such pathologies. In this way, we hope that discoveries made in basic biology will eventually show

utility in the clinical treatment of human patients.

Cellular signaling is di�cult to study, and so the degree of uncertainty in even the best-studied

systems is astonishing (as exempli�ed in Chapter 2). In this chapter, I outline an abstraction of

the problem of cellular signaling to give some perspective on why it is so di�cult to understand.

This same abstract framework can be used to rigorously de�ne cell biological problems, and thus

serves as a tool for designing meaningful experiments. By approaching the problem of cellular

signal processing in this way, we become more able to directly answer the most basic questions in

cell biology: what signals do cells �listen to,� how do they model these signals internally, and how

do they use those models to make decisions?

1.2 Canon and crosstalk

In cell biology, the big questions that we are interested in are generally imprecise. For example,

we may want to know: �How does a stem cell decide its fate?� We cannot answer such questions

directly, as they are made up of an unknown number of sub-questions. Such sub-questions that

must �rst be addressed include: What is a stem cell? What is a fate? And what does it mean for

a cell to �decide�?

Canon

In practice, therefore, we typically begin with simpler and more concrete questions, such as �What

factors in�uence cellular response R?� where R may be some property such as cell cycle arrest. We

can then screen for mutations, growth factors, or small molecules that a�ect R, as measured using

a convenient technology. Here we are already limited in the experimental design by the variety of

the factors we have access to for testing against R. Further, and perhaps more importantly, we are

limited by what aspects of R our technology can measure, and by not knowing whether we should

even be looking at R at all. But we must start somewhere, and so we begin to collect relationships

between experimental perturbations and measurements of R for the biological system we care about.

Over time, and across many laboratories, we amass a library of knowledge consisting of these

experimental relationships. The meaning of each relationship alone, especially at the beginning

of the process, is fuzzy. In combination, however, we hope that we can begin to build a model
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Figure 1.1: Apparent signaling complexity increases over time. a, Components of signaling pathways are
typically discovered by genetic means or by treating cells with unknown, puri�ed factors and observing the
resulting phenotypes. b, These components are then organized into canonical signaling pathways based on
epistasis experiments. c, Finally, canonical pathways are interconnected by new experiments whose results
do not �t into the canonical framework. The network edges, as drawn here, may each have a di�erent
meaning and may be speci�c in time or to certain experimental contexts.

of how the biological system works. Unfortunately, we do not know which of the perturbation-

measurement relationships are the most important, which are outright false, nor which are only

true under a particular set of experimental or biological circumstances. We work these disparate

pieces of data into a general model anyway, and allow that model to evolve along with our library

of knowledge, and take note of exceptions to the rules of the model. If enough exceptions build up

over time, models will sometimes emerge that can better explain more of the data.

In the context of cellular signaling, this gradual process typically leads to the development of

so-called �canonical� signaling networks. These networks are often constructed through the use of

genetic experiments and epistasis analysis, and then built upon by biochemical and other means.

Resulting canonical networks are typically depicted as protein nodes connected by edges that carry

some functional meaning, where that meaning might be anything from the generic �up-regulates�

to something more speci�c, for example an edge may mean �phosphorylates residue Y , leading to

ubiquitination and subsequent degradation.�

Historical happenstance and available methodologies therefore play a large role in how we de�ne

canonical pathways. In cell and molecular biology education, we are often taught cellular signaling

through these canonical pathways via the key experiments that laid their foundations. We are

therefore trained from the beginning to see the pathways as non-overlapping, distinct channels of

information within cells that each carry out prototypical functions.

Crosstalk

However, once a canonical framework is in place, and is generally accepted throughout the �eld,

new �ndings must still be attached to that framework. In this way, canonical networks tend to con-

tinuously expand, eventually encroaching onto territory that once belonged to some other canonical

pathway (see Fig. 1.1) [5].
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Figure 1.2: Static networks may not represent true network behaviors. a, Networks collected from multiple
experimental conditions may show a variety of topologies. b, The static network diagrams that we typically
draw are maximum projects or averages across the various experimentally observed topologies.

As canonical pathways send more and more tendrils into the global network, we end up with

models of cellular signaling wherein any perturbation to the system ends up reverberating through-

out the entire web: everything is connected to everything. I refer to this phenomenon generally as

�crosstalk.� While one may wonder how we can begin to address such complexity, it is possible that

the situation is less complex than we think.

An important aspect of these networks that is all too frequently ignored is time. The models

that are sketched out in any good review are static approximations of the true signaling network.

In e�ect, these static networks are the maximum projections of a set of networks that exist across

time and across di�erent experimental conditions. The actual network, evolving dynamically within

a cell as it processes information, might not ever look like the static map (Fig. 1.2).

It is a rare experiment indeed that measures all of the network edges simultaneously, as the goal

of most experiments is to �esh out a single edge or node. Therefore we do not generally know if

a given edge or node exists at all times, in all systems, or if it is instead an ephemeral thing that

comes and goes as needed. Indeed, experimental evidence has demonstrated that the topologies of

signaling networks may not be constant, and that they may be relatively simple at any instance in

time [6, 7].

Aside from the missing temporal aspect in our static canonical networks and inter-networks,

there is another important and oft-ignored aspect. That is, an edge is only useful for signaling if

it somehow transfers information. The purpose of a biochemical signaling pathway is to carry

information from one node to another. The fact that two nodes are connected by a link, one that

perhaps indicates binding or phosphorylation, does not imply that information has been transferred.

Some edges between nodes may be tangential to the signaling process being studied, or may be

sending information into parallel signaling channels. This information content problem should

become clear later in this chapter and in the particular case of signaling crosstalk reviewed in

Chapter 2 and studied in Chapter 3.

Instead of continually adding inter-network edges, perhaps then we should carefully evaluate the

edges that already exist. By testing those edges across systems, at di�erent times, and explicitly

verifying that they carry information, we may �nd that some of these edges carry little weight and

that therefore our currently-complex view of signaling must be both simpli�ed and made dynamic

in order to re�ect reality.
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1.3 Cells as functions

Abstracting cell biological systems into mathematical or computational models can be a powerful

way to learn about those systems, though the value of any given model can vary tremendously. If

a model is as complicated as the system it represents, we have learned nothing; if the model is too

simple, we have not captured the biology we are trying to understand. In any case, the process

of modeling itself brings a rigor to and an awareness of the studied system that might not have

otherwise been possible [8�10].

This section is primarily intended for classically trained biologists, like myself, who are not often

exposed to this way of thinking. Those in �elds that are historically more modeling-oriented, such

as computer science and systems biology, will likely �nd the following to be familiar.

Setting up an abstraction

A useful abstraction when developing models of cell signaling is to think of cells as functions f

that convert sensory inputs S into behavioral responses R, such that f(S) = R. For example, S

may be the concentration of an extracellular ligand, while R may be the nuclear concentration of a

downstream transcription factor, so that f(S) models the behavior of a receptor that converts one

to the other. The function, then, is typically the biological process that we wish to understand.

I borrow the term �encoding� from computer science to refer to this relationship, because it

carries with it the idea that it is information that is being converted from one form to another.

Using this language, f encodes S into R. Take human speech as an example. In speech our

brains generate words that are encoded into complex temporal patterns of vocal chord tension,

lung contraction, tongue movement, and so on. Those patterns in turn encode temporal changes

in air pressure that propagate away from the speaker. Cells in the ear of the listener encode those

pressure changes into mechanical movements, which then encode those movements into neuronal

activity that the listener �nally decodes into the original spoken words.

For experiments in this framework, S is whatever experimental perturbation is being applied,

R is the experimental readout, and f is the biological encoding process that we are trying to

understand. The assumption in our experiments, then, is that knowledge of S and R are su�cient

to infer f . When we �rst dive into the complete unknowns of a phenomenon, a precise inference is

essentially impossible. As a consequence, we �nd ourselves using vague words to describe f , such

as �recruits,� �activates,� or �mediates�; the function remains a mystery.

For values of S and R that are closely connected by some process, experiments allow us to

associate more precise mechanisms with f , so that we can describe the function with words like

�binds� or �phosphorylates.� However, for values of S and R that are distantly connected, perhaps

through other nodes such as in the case of speech described above, clear de�nitions of f become

more di�cult. This is a constant struggle in the study of developmental signaling pathways, as

studied in this dissertation, because many of their interesting biological e�ects are far removed in

time from the signaling event. Activation of these pathways may therefore induce many complex
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Figure 1.3: Cells can be abstracted as functions that take sensory inputs S and yield output responses R.
However, interpretation of this abstraction su�ers from unknowns between the initial input S and the �nal
output of interest R (a). By adding more (b) and more (c) components the model becomes complex but
each link gains functional insight.

layers of signal processing before �nally a�ecting R (Fig. 1.3): the function is a composition of

functions.

To precisely model mechanism in such cases, collapsing the relationship between S and R into

an understandable function is impossible. Instead we would need to break the original function into

many, where the output of each function becomes the input for the next (Fig. 1.3), and study them

individually. By breaking up a general, indirect model (e.g. �Wnt blocks stem cell di�erentiation�)

into a set of more speci�c models with direct relationships (e.g. �Wnt binds Frizzled, resulting in

increased β-catenin, which in turn binds to the Myc promoter and increases its expression�), we

obtain insight about mechanistic details at the cost of simplicity.

As an additional point, for a given biological function f there can be multiple inputs and outputs,

many (or most) of which are unknown. And so the inputs and outputs are better thought of as lists

or vectors, as in equations 1.1-1.3 (bold face, non-italics indicate a vector). In this model, the true

values of S are the known and experimental parameters as well as any unmeasured parameters (e.g.

S1 to S3 may represent treatment duration, treatment concentration, and ambient temperature).

The values of R are the measured responses as well as any unmeasured cellular parameters that

change in response to S. To complicate matters, each parameter may have completely di�erent

units (e.g. concentration versus temperature). We must inevitably approximate the true biological

parameter vectors S and R by choosing a small known subset of their values, and thus can only

ever obtain estimates of the true function f .

S = [S1 · · ·Sn] (1.1)

R = [R1 · · ·Rm] (1.2)

f(S) = R (1.3)

Aside from the obvious issue that our approximate models can only include things that we know
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about, cellular functions are often highly non-linear. That is, it need not be true that f(S1a +

S1b) = f(S1a) + f(S1b), where S1a and S1b are di�erent values for the same parameter, nor that

f(aS) = af(S), where a is a constant. A typical dose-response curve makes a good example, since

doubling the dose (by setting a = 2) does not necessarily double the output (i.e. f(2S) 6= 2f(S)).

Temporal feedback makes the models even more complex, since this allows a function to eventually

modify its own input.

Making use of the abstraction

To summarize, we can think of cells as hierarchies of functions, where the true signals S and responses

R make up the nodes of a signaling network, and the functions are the mechanistic activities that

connect them in time. The functions we study may take into account many parameters of which we

are completely unaware, and so we only obtain estimates of f . Our goal in studying cell signaling

is to estimate f as accurately as possible, so that f(S) ≈ f(S). Finally, to be able to assign a clear

functional meaning to a particular f(S) = R relationship, S and R must be closely connected.

A common approach to modeling signaling pathways, that allows for both non-linearity and

temporal feedback, is to assemble systems of ordinary di�erential equations for every known node

and edge in the network and to explore the behavior of the system computationally. Even a small

non-linear network can generate a wide variety of outcomes given di�erent parameters or small

changes in topology [5, 11�13]. Therefore, we can test the completeness of our understanding of a

signaling pathway by, for example, testing the robustness of the model's output against a wide array

of biologically reasonable parameters (analogous to experimental perturbations). Such approaches

can uncover de�ciencies in our knowledge, as the fragility or failures of the model may indicate a

missing function or node. Unfortunately, it is not true that successful recapitulation of a biological

behavior by a mathematical or computational model implies that we have captured the true biology

with that model.

Given the potential complexity of biological signaling models, and the high likelihood that any

given model is incomplete or �at-out wrong, what is the value in developing models at all? I

have already noted that models give us the potential to identify de�ciencies in our knowledge, and

that building models forces us to rigorously de�ne the questions we seek to address. There is an

additional important bene�t, which is that models may allow us to uncover underlying simplicity.

If a model is built that recapitulates a biological phenomenon, then parts of the model can

be removed in order to determine the minimal set of components that could create the observed

biological behaviors. Having identi�ed these nodes one can convert a complex mechanistic model into

a simple conceptual one [7,14]. Additionally, if a behavior can be represented by a highly simpli�ed

version of the functions that cause it, we can begin to ask why the system is more complicated than

it needs to be. We must be careful with such �why� questions, since biological functions are created

via a random evolutionary process. However, such questions can lead to biological insights about

bene�ts to regulation or signal processing of the more complex observed signaling network.
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1.4 The information encoding problem

An analogous problem to the one we face when trying to understand cell signaling is the following.

Going back to the example of human speech, how would alien scientists with no concept of sound

think that we communicate? Perhaps they would observe us over long periods of time, and eventually

correlate certain patterns of mouth movements by one human to some behavioral task performed

by another. These aliens might quite reasonably infer that we encode communicated messages into

mouth movements that are then decoded visually by the recipient.

Indeed, that putative encoding is a reasonable approximation of the true encoding, largely

because mouth movements are part of the encoding process that is used by the full sound-based

encoding. This is, of course, why humans can learn to accurately �read lips.� Some of these alien

scientists would eventually notice that we can still communicate in the dark, and claim that this

discovery shows that the original encoding model was incorrect. Importantly, breakdown of the

model in this context did not mean that it was incorrect, it simply meant that some part of the

message was being carried through an additional, unobserved channel (sound).

We face the same issue when trying to identify S and R for studying cell signaling. Communi-

cation via molecules is so outside of our experience that we have no choice but to make educated

guesses as to how it might work in each context. There are many approaches for converting bio-

logical data into models, but how do we know what the relevant data are? In the broad sense, the

relevant data are whatever the cell �cares about.� Unfortunately we neither know what signals a

cell is listening to, nor into what form it encodes this information. If we don't know S, and we don't

know R, how can we possibly determine f? I refer to this generally as the �encoding problem.�

1.4.1 Identifying inputs and outputs

The �rst di�culty we face is the determination of S. We frequently assume that the property of

signal that the cell cares about is its concentration (as for a ligand or drug) [15, 16]. From a bio-

chemical perspective this is a sensible guess for what is being encoded, since we understand biology

as a collection of intermolecular interactions that have binding constants, may show cooperativity,

and that have behaviors that �t onto Hill curves. This leads to the further expectation that the

input concentration is saturable, following some form of a sigmoid curve. The assumption that

cells sense absolute concentrations need not necessarily hold true, however, as various pathways can

instead show fold-change detection [13, 17, 18]. Further, responses need not follow typical sigmoid

curves, as they can sometimes show linear responses over a large range of concentrations [15].

For R, we often make a similar assumption that cells encode the received signal into intracellular

concentrations of some factor. Indeed, this concentration-based encoding de�nes morphogenic sig-

naling, which is typically thought to convert external ligand concentrations into active transcription

factor concentrations. But again the concentration property need not be the value of R that encodes

the sensory input.

For example, the Tumor Necrosis Factor/Nuclear Factor kappa B (TNF/NF-κB) pathway does
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show ligand concentration-dependent increases in its nuclear transcription factor accumulation, but

in such a noisy way that single cells may not be able to accurately sense the absolute ligand concen-

tration [16]. This implies either that single cells are poor signal processors or that, alternatively, the

absolute ligand concentration only partially encodes the information that the cells are using. The

latter may be the case, as recent work indicates that the information content of TNF concentrations

is more accurately encoded into the fold-change of transcription factor activity [18].

Another alternative to encoding to or from molecule concentration is the use of temporal in-

formation, such as integration over time or oscillatory behavior [19, 20]. Therefore, care should be

taken with the assumption that absolute concentration is of utmost informational value to the cell.

This assumption is di�cult to test, however, as there may be a concentration dependence even if

this is not the primary encoding that the cell uses, as is the case for TNF/NF-κB signaling and for

the analogy of mouth movements in human speech.

1.4.2 Cellular variability

For a given approximation of S and R, is it fair to assume that this approximation is equally

meaningful for all cells in the population? Most of our knowledge of signaling stems from population-

based measurements of cellular responses, for example from Western blots, microarrays, and other

common cellular lysate-based methods. Such methods yield averaged cellular behaviors, therefore

making the implicit assumption that this average re�ects individual cell behavior [21�23]. If this

assumption is incorrect, such that our measured values of R do not re�ect any real cellular behaviors,

then the properties of f that we infer will be incorrect.

Indeed, many studies have shown that this assumption of cellular homogeneity is unjusti�ed.

Dramatic examples include the classic demonstration that single Xenopus laevis embryos have

switch-like instead of graded behavior [24], the �nding that various factors thought to be correlated

during adipocyte di�erentiation were only correlated in a small subset of cells while being anti-

correlated in others [25], and the discovery that population-averaged measurements were hiding the

ultra-sensitivity of temporally asynchronous bacterial motors [26].

How can single cells display behaviors di�erent from the population average? Take the trivial

case: a tissue sample may include many di�erent cell types that have quite di�erent properties.

For example, the intestinal epithelium contains highly-secretory goblet cells and highly-absorptive

enterocytes, but the average behavior of these cells might be neither secretory nor absorptive.

In a less trivial case, single cells within an apparently homogeneous cultured cell line can also

exhibit cell-to-cell di�erences, even if they are derived from the same clone [27]. Such within-cell

type di�erences could be due to asynchrony in cell cycle position [28] or to asynchrony of other

phenotypic states [19,25,29,30].

Cultured �homogeneous� populations can thus show single-cell variation due to an asynchrony

in temporal movement between stable phenotypic types, but they can also vary more stochastically.

Randomness in cellular phenotypes might stem from asymmetry in inherited properties after stem

cell division, for example [30�33]. Additionally, because genes are typically present in only two
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copies, and a �nite number of molecules mediate the process of transcription, it is necessarily a

noisy process [34�36] that can also generate cellular variability. Note that, without careful temporal

studies, variation due to asynchrony in stable states cannot be easily di�erentiated from that due

to rapid movement between unstable states.

Outside of fully distinct cell types, why do cells display such variability? There is no clear answer

to this question, though there are many potential explanations. Perhaps the use of molecules to

process information is simply so inaccurate that it must generate extensive noise. Maybe cells can

work around the noise we that see, so that their behaviors are more precise than they appear.

Or perhaps cells have adapted to deal with such noise by either suppressing or making use of it.

Indeed, in some cases variability can be useful to the population [37], as single cells may generate

subpopulations with useful functions. An example is cellular di�erentiation in mammals, where

stem cells need to choose whether to di�erentiate, and to which fate [30, 32, 33]. In other cases

subpopulations may have resistance to toxic environmental stresses [27, 38, 39], though we should

be cautious with just-so explanations for these kinds of links.

1.4.3 Context-dependency

Transcriptional networks and chromatin state are highly cell type- and environment-dependent. As

a consequence, properties that are essential to signaling may vary between experimental systems.

Examples include concentrations of cellular receptors, pathway modulators, and e�ectors. Such

di�erences in cellular properties and in the microenvironments in which cells live are often collapsed

into the term �cellular context.�

Cellular context also includes properties of other signaling pathways, which is important because

canonical pathways may be not be isolated information channels. Thus, knowing the likely extent

of crosstalk is important, though general pathway interconnectedness is di�cult to measure. Some

types of signaling are particularly interconnected, such as for the growth factors that modulate

downstream kinase cascades due to the use of higly overlapping downstream components [40]. On

the other hand, other pathways may be much less interconnected, as I show in this dissertation for

several key morphogenic signals (Chapter 3).

Attempts to quantify pathway interconnectedness are few and are necessarily limited by what can

be practically measured, along with the issues I have already noted in this section. Computational

work seems to show that signaling through one pathway can be broadly modulated by properties

of the entire cell signaling network [41], while experimental work shows that non-additive inter-

pathway crosstalk is a sparse phenomenon even for high-order combinations of up to �ve signaling

pathways [3, 42].

1.5 Solving the encoding problem

I have painted an admittedly bleak picture of the di�culties in studying cell signaling. It should

be clear from this discussion that experimental design in cell signaling is quite di�cult, and inter-
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pretation of experiments must be done with extreme care. But can we remove, or at least reduce,

some of the di�culties discussed above?

Obtaining meaningful S and R

Perhaps the most problematic of the issues discussed is that of not knowing which signals S a cell

is interested in nor which responses R encode those signals. One can begin to address this by

considering di�erent variations of the inputs (e.g. changing concentrations or treatment durations)

and outputs (e.g. phosphorylation states, live-cell measurements of the same cell over time, fold-

change in concentration, total change in concentration). Further discussion of di�erent output

measurements, in the particular context of single-cell �uorescence microscopy, can be found in

Chapter 4.

Assuming that one could identify a series of potential input signals and response metrics, it is

not obvious how to go about identifying which are the more accurate estimates of S and R. An

interesting approach would be to perform measurements of information content between putative

combinations of S and R, for example using the mutual information metric [16]. Under the assump-

tion that the cell is encoding signals in the most informative way possible, the R and S choices that

maximizes mutual information can then be considered to be the best approximation of the encoding

that the cell uses. This would require either high accuracy in measurement or precise knowledge

of measurement error. In Chapter 3 I test multiple reagents and readouts to ensure that they have

similar information content, and I discuss this approach in more detail in Chapter 4.

In an example of this approach, research groups measured the information content of transcrip-

tion factor gradients across Drosophila embryos, with the question of whether enough information

was present to specify the location of all nuclei along the embryo. While each transcription fac-

tor had low positional information content when taken alone, in combination the factors did have

enough information to specify each nucleus position with high accuracy [43�45].

As with the example of human speech above, it is important to remember that low information

content of a single S does not necessarily mean that it is an incorrect encoding. It may alternatively

signify an incomplete encoding, and that that other unmeasured signal properties need to also be

considered. Importantly, incomplete encodings can be good enough for many experimental biology

questions.

Compensating for cellular variability

To address issues stemming from cellular variability, the straightforward solution is to directly

measure its e�ects on the experimental relationship between the chosen S and R. Measurements of

R can be performed on a single-cell basis, for example by microscopy (as in this dissertation) or by

�ow sorting. The distributions of single-cell values can then be checked for properties, such as multi-

modality, that would suggest the presence of multiple cellular states. (In my work (Chapter 3), I

veri�ed that each measurement generated unimodal single-cell distributions.)
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Figure 1.4: The presence of subpopulations in one measurement dimension does not imply subpopulations
in another dimension; subpopulations are a phenotype-dependent property. (a) Cells show bi-modality
in their total DNA content (as measured by total Hoechst �uorescence), but (b) not in the coe�cient of
variation in DNA content. These measurements are addressed fully in Chapter 4.

In the case that di�erent cellular states do exists, each cell can be grouped into statistically

distinct subpopulations by measured phenotype [27, 46]. Each subpopulation can then be tested

separately to see if each has the same f(S) = R relationship. For example, in Chapter 3 I test how

cell cycle phase a�ects measurements of inter-pathway crosstalk. Further, if live-cell markers are able

di�erentiate subpopulations, then cells can be physically sorted and experimented on separately.

Importantly, the absence of subpopulations along the dimension of the measured response R

does not imply that all cells are the same. Rather, it implies that we cannot claim that they are

di�erent. Conversely, the presence of subpopulations in one dimension does not imply existence

of the same subpopulations with respect to other dimensions (see Fig. 1.4). In other words, the

presence or absence of cellular subpopulations as measured by one readout is insu�cient evidence

to make a claim about whether R is being distorted by the presence of subpopulations. Such a

connection must be explicitly tested.

Determining context-dependency

Finally, how can we deal with the issue of context-dependency? First, it is important to verify

that the context-dependency truly exists. As I discuss in Chapter 2 and implied in this chapter,

context-dependency of biological phenomena is often inferred by the fact that di�erent labs produce

di�erent results when asking the same questions. However, interpretation of cell signaling results

are incredibly complicated, which may simply mean that the labs were not, in fact, asking the same

questions. Because cells may be encoding information di�erently than we expect, we should take

care when comparing interpretations of results obtained by di�erent experimental methods, as each

method will approximate S and R di�erently.

However, some (perhaps much) of context-dependency is undoubtedly real, and can be absorbed

into the simple model of cells as functions. While we could allow the function to vary from context

to context, it is more useful to say that f does not change but that subsets of the inputs S and

outputs R can vary.

To get around this parameter variation, we can �rst make sure that all controllable conditions

are kept the same and that all measurements are the same from experiment to experiment. Thus,

the experimentally-de�ned subset of values in S and R do not change. Experiments can then be

repeated identically across multiple cell types, so that the only varying parameters are those inherent
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to cell type di�erences. Any consistent aspects of the relationship between experimental S and R

across diverse cell types can then be used to infer the general properties of f . Indeed, this approach

is common in cell biology, as it is widely believed that any given cell line may have a myriad of

idiosyncratic properties.

When using such a multiple cell-type approach, one may �nd a case where context-dependency

is so dramatic that no general properties of f can be uncovered. The �rst aspect of this problem to

tackle would be to carefully ask if the cell types are truly being treated �identically.� As suggested

above, experiments typically use an absolute set of conditions across cell types (e.g. identical ligand

or drug concentrations). But it may be the case that two cell types simply vary in sensitivity to

the conditions, such that one type is e�ectively receiving a half-maximal dose while the other is

saturated. Because we do not know which property R encodes the treatment condition, it is also

di�cult to know if we are measuring an �identical� readout. Perhaps some of the apparent context-

dependency of signaling is due to incorrectly interpreting what it means to treat di�erent cell types

identically.

Instead of relying on constant treatment concentrations derived from the literature and applying

such conditions generally across experiments, another approach would be to measure dose-response

and time-response curves for all cell types that are under experimentation. Conditions could then

be calibrated on a cell type-speci�c basis so that, for example, all cell lines receive a half-maximal

input concentration.

The encoding problem is unsolved

Part of the intention of this chapter was to make it clear that cellular signaling is an incredibly

di�cult phenomenon to understand, and that experimental designs are making many assumptions

that are either going unnoticed or are not being made explicit. Some of these assumptions, if made

explicit, might dramatically a�ect how we interpret our experimental results.

There is no general solution to the encoding problem but, as I have outlined here, steps can be

taken to minimize its e�ects. Perhaps more importantly, an awareness of the assumptions allows

for them to be tested in some cases or, at minimum, allows for results to be interpreted cautiously

in the light of those assumptions.

1.6 Dissertation aims

This chapter provided an abstract foundation on the problems faced in the study of cellular sig-

naling. In particular, I focused on our lack of clear knowledge about how cells encode signals into

intracellular models, and how this lack of clarity may be leading us to unnecessarily complex signal-

ing pathways. In this dissertation I present a case study of one such apparently-complex signaling

phenomenon, that of cross-pathway integration between Wnt and Transforming Growth Factor Beta

signaling, wherein I demonstrate that the interactions are simpler than is currently believed.

In Chapter 2 I review the literature on the classic developmental signaling pathways that are the
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focus of my case study, and the claimed mechanisms o� crosstalk between them. These are the Wnt

and Transforming Growth Factor Beta pathways. I chose these signaling networks because they are

highly studied, and so have well-established approximations of what cells care about both for inputs

S and outputs R. Further, both Wnt and TGFB have relatively clean canonical forms that do not

share any core components, and yet there is a large body of work that ties these pathways together.

In Chapter 4 I establish rigorous, quantitative methods for �uorescence microscopy image anal-

ysis that I use to study crosstalk between the Wnt and TGFB pathways. The study of crosstalk

requires a large number of experimental conditions, and the literature on crosstalk generally lacks

single-cell resolution. I therefore chose high-throughput immuno�uorescence microscopy as my pri-

mary experimental method. Precise single-cell measurements are essential to quantifying single-cell

phenotypes, and so I focus on the discussion on how experimental error can be removed or measured.

In Chapter 3 I make use of the conceptual approach to cellular signaling described in Chapter 1,

the body of literature about the Wnt and TGFB signaling pathways reviewed in Chapter 2, and

the quantitative methodologies established in Chapter 4, to experimentally determine the degree

of Wnt/TGFB crosstalk during signal transduction. There, I demonstrate the �nding that these

pathways are in fact insulated from one another, thus making a case for simplicity in morphogenic

signal integration.

Reading this dissertation

Each chapter is relatively independent, though the reader may �nd some points confusing without

reading earlier chapters. Chapter 4, on quantitative single-cell imaging, in particular can stand

alone and so I have placed it near the end so as to not disrupt the �ow of the biological content of

Chapters 2 and 3. The imaging chapter should be a useful guide to any biologist or analyst in need of

a conceptual and practical reference for rigorous image analysis. Those readers primarily interested

in the biology of Wnt and TGFB signaling crosstalk can skip Chapter 4 without signi�cant loss of

coherence.



Chapter 2

On Wnt and the Transforming Growth

Factor Beta superfamily

2.1 Introduction

The signaling components of the Transforming Growth Factor Beta superfamily (TGFBsf) and

Wnt pathways are deeply conserved across metazoa. Further, they are often active in the same

tissue compartments at the same time, yielding ample opportunity for these pathways to interact.

Indeed, stem cells in many systems integrate signals from these two major pathways to make fate

decisions. In the language of Chapter 1, cells must encode some properties of the external Wnt

and TGFBsf ligands into internal models that can be subsequently mapped onto a cellular decision

(such as di�erentiation). For the Wnt and TGFBsf pathways the encoded property is thought to

be concentration. In other words, it is the ligand concentration that carries information; it is this

aspect of the signal that the cells eventually convert into a decision. This dose-dependent encoding

mechanism is what classi�es the TGFBsf and Wnt ligands as classical �morphogens.�

Wnt and TGFBsf have been extensively studied for decades, yet many uncertainties remain

[47�49]. The uncertainties stem in part from the extensive redundancy found in these pathways:

each signaling component is represented by anywhere from one to over twenty distinct gene prod-

ucts. This redundancy makes classical analysis by genetic ablation di�cult, as many genes would

have to be ablated simultaneously. Additionally, these pathways are central to mammalian devel-

opment, and so to study them in the adult requires inducible genetic constructs. Further, each

pathway shows extensive context-dependency in its behavioral output, so that �nding general sig-

naling principles has been no trivial task. Finally, many of the most-studied output behaviors are

temporally far removed from the initial signaling events. As discussed in Chapter 1, such distant

temporal connections between network nodes makes the assignment of meaningful cellular functions

quite di�cult.

Even less understood is how cells combine information from the Wnt and TGFBsf pathways

to make fate decisions. While a body of literature exists on this topic, no context-independent

15
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mechanisms of pathway integration have been uncovered. Is it true then that �the context, more

than the proteins . . . is what shapes the response [49]�? Or, as I suggested in Chapter 1, are

there simpler principles of crosstalk that are being hidden by overly-complex models of signaling

crosstalk?

Before answering that question in Chapter 3, in this chapter I review the TGFBsf (Section 2.2)

and Wnt pathways (Section 2.3). This review should provide the background necessary to under-

stand how signals and responses are thought to be encoded by these pathways. I also discuss the

putative mechanisms of cross-pathway signal integration so far discovered in the �eld (Section 2.5),

and how to make sense of those results in the conceptual context of Chapter 1.

As a reminder, I narrowly de�ne �signaling� as the process of converting an extracellular signal

into an internal model of that signal, and I de�ne �cellular decision-making� as the use of that

internal model to a�ect a behavioral change. Bear in mind that this distinction is not used in the

majority of the literature, and so much of the work presented here con�ates these two processes.

This is important, since I believe that this con�ation has led to inaccurate inferences regarding the

integration of signaling events. All together, this chapter paves the way for the primary claim of

this dissertation, that the Wnt and TGFBsf pathways are insulated from one another during signal

transduction.

Nomenclature

I refer to genes from multiple organisms throughout this chapter. There are di�erences in standard-

ized writing conventions for gene and protein names between organisms, so to minimize confusion

I adopt one convention for all species. I refer to the protein products of genes using all-uppercase

for symbols or initial capitals for full protein names. To refer to a protein family, I drop the al-

phanumeric identi�er associated with individual members. For example, the Frizzled (FZD) protein

family contains the member Frizzled-1 (FZD1). Finally, note that the TGFB superfamily shares

its name with one of the families contained within it, the prototypical TGFβ family (as discussed

below). For clarity, I add a subscript and use the Latin `B' when referring to the TGFB superfamily

(TGFBsf); I drop the subscript and use the Greek `β' when referring speci�cally to the TGFβ family.

2.2 TGFB superfamily signaling

2.2.1 Brief overview of the TGFBsf signaling network

TGFBsf represents a broad array of morphogenic signals [50] that are deeply conserved across the

metazoa. Orthologs of each pathway component are found in nematodes, �ies, mammals, and even

the basal metazoan Trichoplax adhaerens [51�53]. These pathways are functionally essential to

organismal development and adult tissue homeostasis, and are therefore frequently mis-regulated in

cancer and other pathologies. Despite their general importance, activity of these pathways yields

broad context-dependency in phenotypic outcomes [49�51,54�57].
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Figure 2.1: Structure of the TGFBsf signaling pathway. ∼30 homodimer ligands (circles) are classi�ed
into ∼20 BMPs (green), 3 TGFβs (blue), and others (outlines). BMP2/4 and TGFβ1-3 have distinct sets of
receptors. Upon ligand binding, Type II receptors activate Type I receptors. In turn, active Type I receptors
phosphorylate downstream Smads, speci�cally the TGFβ-rSmads (tSmads) or the BMP-rSmads (bSmads)
(see Section 2.2.4). Upon phosphorylation the rSmads associate with Smad4, translocate to the nucleus, and
bind promoters to a�ect transcription.

The network structure of the canonical TGFBsf pathway is simple enough to prompt the state-

ment that it has been �solved, to a �rst approximation [49].� It includes only three primary nodes:

homodimeric ligands (Section 2.2.2) that bind to heterodimeric receptors (Section 2.2.3) which, in

turn, activate the downstream Smad family of transcription factors (Section 2.2.4). Figure 2.1 shows

the structure of the TGFBsf pathway and the diversity of its components as discussed below.

Throughout this section, it is important to be aware that the degree of functional overlap between

the various TGFB superfamily members is poorly established. Most studies of these pathways

include only one or a few families at a time and, likely due to historical reasons, each family has

been primarily studied in the context of a handful of tissues or diseases. Therefore, having a function

ascribed to one TGFBsf member does not at all imply that other members do not have that function.

For this reason I often refer to the superfamily in general even for functions that are known only to

a subset of its members.

2.2.2 The TGFBsf ligands

The more than thirty diverse ligands of the TGFB superfamily are spread across several families,

each having a di�erent degree of homology within their ranks [58�60]. The families include three

prototypical TGFβs and over twenty Bone Morphogenic Proteins (BMPs), as well as various Ac-

tivins, Inhibins, Growth/di�erentiation Factors (GDFs) and others [50,54,61] (see the phylogenetic
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tree in Fig. 2.2). In this review I focus on the TGFβs and BMPs. These two families are well-studied

in the context of mammalian development and disease and, as I describe below, they are selective

for distinct receptors as well as downstream transcription factors.

TGFBsf ligands are initially made as large precursor proteins. These precursors are cleaved

intracellularly, allowing the non-ligand portion of the precursor, the so-called �Latency-associated

peptide (LAP),� to remain non-covalently associated [62]. This interaction is inhibitory and so

the resulting inactive complex is secreted into the extracellular space. Within this non-signaling

complex resides the mature homodimeric TGFBsf ligand.

Within the mature ligand dimer, each monomer forms a �cysteine knot� composed of internal

di-sul�de bridges between three cysteine-cysteine pairs. The two monomers are covalently linked

by an additional intramolecular cysteine-cysteine bridge [50,63]. The active homodimer is revealed,

and then able to bind to its receptors, by separation from the inhibitory complex. Experimentally,

this separation can be induced by various conditions (e.g. low pH or the addition of chaotropic

salts or certain proteases). In cells, the evidence suggests that separation is a mechanical process

performed by integrins [54, 62,64].

The three prototypical TGFβs are highly homologous, though they have small di�erences in

their tertiary structures that allow for some divergence in a�nities for binding partners. [65]. For

example, TGFβ2 requires a co-receptor for binding to its cognate receptors, while TGFβ1/3 do

not. Despite these di�erences, the functions of the three TGFβs are thought to be essentially the

same. Therefore, their e�ects in cells are expected to be a property of where and when a member

is expressed, not which is expressed [66]. In my own experiments, I �nd that TGFβ1 and TGFβ3

do indeed produce the same phenotypic e�ects, though I observe ∼10-fold di�erences in potency

between these two ligands (data not shown).

The BMPs show a much larger degree of evolutionary diversity than do the TGFβs, and can

be broken into several subfamilies by both homology and function (see Fig. 2.2). The BMPs have

di�erential speci�city to several receptors, and have relatively low receptor a�nity in comparison to

the TGFβs (nanomolar versus picomolar [59]). Along with tissue-speci�c expression patterns, this

di�erential a�nity may account for the putative functional speci�cities attributed to each BMP.

Further, there are a large number of extracellular secreted proteins that can di�erentially antagonize

BMP signaling (e.g. Noggin, Chordin, Gremlin, and Cerberus).

The di�erential receptor- and antagonist-binding a�nities of the BMPs are frequently cited as

responsible for the idiosyncratic signaling outcomes across this ligand family [51, 67]. Importantly,

this is suggestive that each of these ligands may then carry the same information. The context-

dependency may then simply stem from di�erences in the e�ective concentrations of the ligands.

There is evidence for this, since there is broad functional redundancy across the entire BMP fam-

ily. For example, knockout experiments in mice show that ablation of individual BMPs yields

developmental defects but only rarely lethality (BMP2/4 being the notable exceptions) [68, 69].

For simplicity, in the rest of this dissertation I focus on only one of the BMP subfamilies. This

family is composed of BMP2 and BMP4, orthologs of Drosophila Decapentaplegic (DPP) [61].
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Figure 2.2: Phylogeny of the TGFβ and BMP pathway ligands (a, Section 2.2.2), receptors (b, Sec-
tion 2.2.3), and transcription factors (c, Section 2.2.4). The T.a. pre�x indicates putative Trichoplax
adhaerens proteins (gray). DPP and MAD are Drosophila orthologs of BMP2/4 and Smad1/5/8. TGFβ-
speci�c nodes (blue) and BMP2/4-speci�c nodes (green) are highlighted. See [53] for a deeper discussion of
the phylogeny of receptors and Smads in bilateria. Distances are approximate, and each tree has a di�erent
scale (see Methods).

This family is highly studied in the context of mammalian stem cell di�erentiation and reperesents

a distinct information channel from the TGFβ family also studied in this dissertation (i.e. the

receptors and downstream e�ectors are mostly non-overlapping) .

2.2.3 The TGFBsf receptors

Receptors of morphogenic ligands must encode extracellular ligand concentrations into some in-

tracellular property. The TGFBsf receptors do this by converting ligand concentration into intra-

cellular kinase activity. Speci�cally, these single-pass receptors are heterodimeric serine/threonine

kinases [58]. The heterodimers consist of a Type I and a Type II receptor that initially have no

association with one another. The two receptor types are brought together by ligand binding, which

causes a large conformational change of the receptors [70]. This conformational change is needed

to bring the receptor kinase domains together, though even after binding the receptor-receptor

interactions are minimal [71] implying a high dependence on the ligand for receptor activity.

Once brought together, the Type II receptor activates the Type I receptor by phosphorylation.

The activated Type I receptor can then, in turn, phosphorylate the Smad transcription factors

(see the pathway structure in Fig. 2.1). Receptor activity is likely modulated, to some degree, by

endocytosis via clathrin-coated pits, though the functional consequences of this to signaling are not
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Table 2.1: Sequence sources for the TGFBsf ligand alignments in Fig. 2.2. Note that only the TGFβ and
BMP families are represented.

Symbol Species NCBI GI Accession

TGFβ1 Homo sapiens 63025222 NP_000651.3
TGFβ2 Homo sapiens 208022653 NP_001129071.1
TGFβ3 Homo sapiens 4507465 NP_003230.1
BMP1 Homo sapiens 4502421 NP_001190.1
BMP2 Homo sapiens 4557369 NP_001191.1
BMP3 Homo sapiens 126507087 NP_001192.2
BMP3B Homo sapiens 4826740 NP_004953.1
BMP4 Homo sapiens 157276593 NP_001193.2
BMP5 Homo sapiens 10835091 NP_066551.1
BMP6 Homo sapiens 4502425 NP_001709.1
BMP7 Homo sapiens 4502427 NP_001710.1
BMP8A Homo sapiens 145611428 NP_861525.2
BMP8B Homo sapiens 29571106 NP_001711.2
BMP10 Homo sapiens 7656928 NP_055297.1
BMP15 Homo sapiens 257743454 NP_005439.2
GDF11 Homo sapiens 5031613 NP_005802.1
GDF2 Homo sapiens 7705308 NP_057288.1
GDF5 Homo sapiens 611435007 NP_000548.2
GDF6 Homo sapiens 48475062 NP_001001557.1
GDF15 Homo sapiens 153792495 NP_004855.2
DPP Drosophila melanogaster 17137468 NP_477311.1
T.a.57057 Trichoplax adhaerens 196006614 XP_002113173.1
T.a.58663 Trichoplax adhaerens 196009532 XP_002114631.1
T.a.57877 Trichoplax adhaerens 196008151 XP_002113941.1

Table 2.2: Sequence sources for the TGFBsf receptor alignments in Fig. 2.2.

Symbol Type NCBI GI Accession

TGFBR2 II 67782326 NP_001020018.1
BMPR2 II 15451916 NP_001195.2
ACVR2A II 518828583 NP_001265508.1
ACVR2B II 116734708 NP_001097.2
AMHR2 II 257743467 NP_001158162.1
ACVRL1 (ALK1) I 116734712 NP_000011.2
ACVR1 (ALK2) I 4501895 NP_001096.1
BMPR1A (ALK3) I 41349437 NP_004320.2
ACVR1B (ALK4) I 4757720 NP_004293.1
TGFBR1 (ALK5) I 195963412 NP_001124388.1
BMPR1B (ALK6) I 4502431 NP_001194.1
ACVR1C (ALK7) I 161333835 NP_001104501.1

well established [50,58,68,72].

There are fewer TGFBsf receptor types than there are distinct ligands, implying that there

must be a large degree of promiscuity in receptor-ligand binding speci�city. On the other hand,

the heterodimeric nature of these receptors could in principle generate as many distinct signaling

complexes as there are distinct TGFBsf ligands, though it is unlikely that all combinations are used

in signaling. Indeed, both receptor types do show some degree of speci�city in ligand binding [72,73].

The �ve Type II receptors and the seven type I receptors are named after their prototypical ligands,

though the Type I receptors are commonly referred to as Activin receptor-Like Kinases (ALKs) 1-7

(see Table 2.2).

Receptor-ligand speci�city is particularly sharp between the TGFβ and BMP2/4 subfamilies that
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are the focus of this dissertation: TGFβ1-3 preferentially bind to TGFBR1 (TGFβ receptor, type 1)

and the Type II receptor TGFBR2 [74], while BMP2/4 preferentially bind to BMPR1A/B (BMP

receptor, type 1 A/B) and the Type II receptors BMPR2 and ACVR2A/B (Activin A receptor,

type 2 A/B). [61]. This speci�city has an important consequence, that BMP2/4 and TGFβ1-3

signaling can be considered separate information channels at the level of receptor activation. I note

however, that this separation is not complete: cross-pathway activation has been reported in the

literature [75�78] and I observe it myself (Section 3.3).

The channel speci�city allows for the blocking of one pathway or the other using receptor-speci�c

inhibitors. Several small-molecule Type I receptor inhibitors have been discovered [79, 80], though

the molecule SB431542 [74] is probably the most widely used. SB431542 speci�cally inhibits the

Activin- and TGFB-speci�c Type I receptors, and can thus be used to block TGFB signaling while

leaving BMP signaling intact. The source of speci�city of this binding was demonstrated by the

structure of the TGFBR1 intracellular domain bound to SB431542. A single amino acid di�erence

was predicted and then experimentally shown to be able to generate a functional but SB431542-

sensitive BMPR1, or to generate a SB431542-insensitive TGFBR1 [81].

In addition to di�erences in receptor-ligand a�nities, further receptor-ligand speci�city is gained

through interactions with co-receptors. A particularly important co-receptor, betaglycan (also called

TGFBR3), increases binding of TGFβ1/3, is required for TGFβ2 binding [72,73], and also generally

increases BMP signaling [82]. At the same time, it seems to inhibit Activin signaling [83]. Betaglycan

is a large protein with ∼800 extracellular amino acids collectively containing two known TGFB

binding sites [84, 85]. It has no known intracellular signaling mechanism [83], and so the primary

known role of betaglycan is to increase TGFBsf ligand-receptor binding a�nity. Endoglin, a distinct

co-receptor that is related to betaglycan, appears to have the opposite role: it binds to TGFβ1/3

(not TGFβ2) and acts negatively on TGFB signaling [86�88], though its e�ects on other TGFBsf

members are less studied.

2.2.4 The Smad transcription factors

The information from ligand concentrations in morphogenic pathways must be encoded by the recep-

tors into some property of intracellular e�ectors. In the case of TGFBsf signaling, these e�ectors are

the Smad transcription factors, named after the orthologous Drosphila MAD protein (standing for

Mothers Against DPP, DPP being the Drosophila BMP2/4 ortholog mentioned previously). Ligand

concentrations are believed to be encoded into Smad nuclear concentrations and phosphorylation

states.

Smads have two functional domains, the N-terminal MH1 (MAD homology 1) and the C-terminal

MH2. The MH2 domain is considerably more conserved across the Smads. The conservation of MH2

is likely due to its functional importance in mediating most protein-protein interactions, though

both domains have been found to interact with various transcription factors. In particular, the

C-terminus of the MH2 domain is phosphorylated by TGFBsf receptors, which creates a binding

site for Smad-Smad interactions. The MH1 domain, on the other hand, binds DNA [50, 58, 72].
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Table 2.3: Sequence sources for the Smad alignments in Fig. 2.2. Abbreviations: rSmad = receptor-Smad,
iSmad = inhibitory Smad, bSmad = BMP-speci�c rSmad, tSmad = TGFβ-speci�c rSmad.

Symbol Function Species NCBI GI Accession

SMAD1 rSmad (bSmad) H. sapiens 51173727 NP_001003688.1
SMAD2 rSmad (tSmad) H. sapiens 51173730 NP_001003652.1
SMAD3 rSmad (tSmad) H. sapiens 223029440 NP_001138574.1
SMAD4 co-Smad H. sapiens 4885457 NP_005350.1
SMAD5 rSmad (bSmad) H. sapiens 47778929 NP_001001419.1
SMAD6 iSmad H. sapiens 218749837 NP_001136333.1
SMAD7 iSmad H. sapiens 299890805 NP_001177750.1
SMAD8 rSmad (bSmad) H. sapiens 187828357 NP_001120689.1
MAD rSmad D. melanogaster 442625684 NP_001259992.1
T.a.50301 unknown T. adhaerens 196005967 XP_002112850.1
T.a.49742 unknown T. adhaerens 195998077 XP_002108907.1
T.a.30731 unknown T. adhaerens 196012704 XP_002116214.1

The MH1/2 domains are connected by a linker that can be phosphorylated by several regulatory

proteins including GSK3β (this enzyme is central to Wnt signaling, as discussed in Section 2.3.5)

and Mitogen-activated protein kinases, which typically results in Smad degradation [89,90].

There are eight mammalian Smads, Smad1-8. (The o�cial name of Smad8 is, unfortunately,

Smad9. I use the more common and common-sense designation Smad8 in this dissertation.) This

transcription factor family is deeply conserved and consists of several subfamilies (see Fig. 2.2), each

subfamily having distinct functions described below. In particular, Smad2/3 are nearly identical

(though Smad2 lacks a DNA binding domain), Smad1/5/8 are quite similar to one another, and the

other Smads are considerably more diverse. Additionally, Smad4 and Smad1/5/8 have remarkably

homologous orthologs in the basal metazoan Trichoplax adhaerens.

Functionally, the eight Smads fall into distinct groups (see the summary Table 2.3): the receptor-

Smads (rSmads), the inhibitory-Smads (iSmads), and the only co-Smad, Smad4. In brief, the

functions are as follows. The rSmads are phosphorylated by the TGFBsf receptors, which creates a

new binding surface for interaction with the co-Smad. It is then the rSmads, in conjunction with

Smad4, that mediate the downstream transcriptional functions of TGFBsf signaling. The iSmads,

on the other hand, contain MH2 domains and are similar in length to rSmads but lack the MH1

domain. This di�erence is consistent with the primary function of the iSmads, which is to compete

for interactions with receptors, the rSmads, Smad4, and other factors. The iSmads thus behave like

dominant-negative rSmads [72].

Mechanisms of Smad activity

Active Smads are thought to exist as heterotrimers of two rSmads and Smad4, though the evidence

for this is indirect except in rare cases [91]. While the simple signaling model typically presented in

the literature describes cytosolic heterotrimerization of Smad4 and phosphorylated rSmads, followed

by transport into the nucleus, several aspects of this model either lack explicit support or are likely

incorrect.

First, it is unclear whether these heteromeric complexes are created in the cytosol or in the

nucleus, as nuclear import of rSmads does not require the presence of Smad4 in some cases [72].
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Further, the rSmads and Smad4 constantly shuttle between the nucleus and cytosol even in the

absence of active signaling [92], implying that neither phosphorylation nor trimerization are pre-

requisites to nuclear localization. Alternatively, if trimerization is required then it must be able

to occur in the absence of active signaling. In that case it would be possible that this shuttling is

allowed by transient trimerization of inactive Smads. To my knowledge this idea has not been tested,

though an interpretation of my own results is suggestive that this may be the case (Section 3.3).

Nuclear-cytosolic Smad shuttling was �rst inferred from localization studies, from the discovery

of nuclear export signals in Smad4 [93, 94], and from interactions with nuclear pore proteins [95].

Shuttling was �rst shown directly by the use of live-cell experiments with exogenously-expressed

�uorescent Smads [92]. In those experiments, photobleaching of either the nucleus or the cytosol

depleted �uorescence in both compartments over short time scales (tens of minutes), implying that

the labeled Smads were constantly shuttling between compartments. Further, both the co-Smad

and the rSmad had signi�cant decreases in mobility after phosphorylation. A better model of Smad

activity, then, is that activation by the TGFBsf receptors stabilizes the nuclear fraction after import,

though the mechanism of stabilization (e.g. anchoring to nuclear proteins or reduced export rate)

is still under debate.

The dynamics of TGFBsf signaling in cells have not been intensively explored [96], therefore

it is not known how these dynamics vary across cell types, signaling subfamilies, or experimental

conditions. Nor is it established what the parameters are that de�ne the kinetics (though there

have been e�orts to mathematically model these pathways [57, 97]). There is broad consensus on

the qualitative behavior of these pathways, however. In response to a TGFBsf ligand, the dimerized

receptors begin phosphorylating the rSmads. Phospho-rSmads and Smad4 then accumulate in the

nucleus, reaching saturation on the order of 40-60 minutes. Importantly, it is widely believed that

it is the phosphorylated forms of the rSmads that are responsible for downstream transcription,

and yet there is little direct evidence of this. The rate of decay of nuclear localization after the

peak response seems to be highly context-dependent, and is likely regulated in large part by still-

mysterious nuclear phosphatases that leave total protein levels intact in the short-term (hours) [49].

Constitutive de-phosphorylation of nuclear Smads is argued to allow for continuous re-sampling

of receptor activity. In combination with endocytosis of active receptors, this constant re-sampling

may explain the apparent temporal �memory� of TGFBsf signaling. For example, washout of the

ligand shortly after treatment results in a slow decay of the Smad response while direct receptor

inhbition by small molecules results in rapid decay of the Smad signal [98]. However, this model is

somewhat inaccurate since extracellular antagonists (such as Noggin) can more rapidly switch o�

signaling than can simple removal of ligands from the media [50].

TGFBsf responses are also heavily regulated in the long term (hours and days) by a number of

processes that change total levels of Smads, regulatory proteins, and other pathway components [99].

Importantly, the TGFβ and BMP pathways commonly upregulate their own antagonists, the iSmads,

in essentially all cell lines tested, so that these iSmads can be considered conserved targets of TGFBsf

across all or most mammalian cell types [49,72]. (I use expression of one of the iSmads, Smad7, to
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con�rm TGFBsf pathway activity in Section 3.1.)

Speci�city of Smad activity

TGFBsf signaling through the many ligands and receptors is eventually funneled through the �ve

rSmads described above, representing a dramatic collapse in the amount of potential information

carried by the large diversity of upstream components. In fact, the reduction of information con-

tent is even more dramatic, as the rSmads are further grouped into only two distinct information

channels. I refer to these as the bSmads (BMP-responsive rSmads) and tSmads (TGFβ-responsive

rSmads) as shown in Table 2.3. As a consequence of sending all ligand stimulation through these

two pathways, the cell is e�ectively ignorant about which of many speci�c ligands has triggered an

intracellular response.

The Type I TGFBsf receptors that phosphorylate the rSmads have high speci�city for either the

bSmads or tSmads. In combinatation with the receptor-ligand speci�city discussed above, all ligands

eventually signal through either the tSmads or the bSmads (though the separation is not perfect,

as I observe in Section 3.3). For example, the TGFβ and Activin Type I receptors TGFBR1 and

ACVR1B/C speci�cally phosphorylate Smad2/3 [73], while the BMP Type I receptors BMPR1A/B

speci�cally phosphorylate Smad1/5/8. This dramatic reduction of extracellular information into

only two channels is still a point of confusion in the literature, as this idea stands opposed to broad

di�erences in observed consequences of TGFBsf signaling, especially with respect to e�ects on the

transcriptional network.

As discussed in Chapter 1, long temporal distances between pathway stimulation and observation

of phenotypic responses make it di�cult to assign clear functional relationships between these events.

This is a problem for studies of TGFBsf function, since its most highly studied outcomes are slow

processes like epithelial-to-mesenchymal transition and cellular growth arrest and di�erentiation.

Adding to the complication, each rSmad has a di�erent target DNA sequence, and binding

a�nity to DNA is low for all Smads. The rSmads then have di�erent, but overlapping, sets of

transcriptional targets that are dramatically a�ected by which co-factors are present in the nucleus.

For transduced signals that carry the same information content, then, the nucleus may use these

co-factors to decide on a completely di�erent set of outputs [55]. There are therefore only a small

number of conserved transcriptional targets for these pathways, with iSmads being perhaps the only

targets present across nearly all experimental observations [49,61].

2.2.5 Signaling crosstalk within the TGFB superfamily

As the preceding sections show, there is a tremendous diversity of TGFBsf components used through-

out mammalian signaling. Importantly, it is likely that for a given cell type, in a given microen-

vironment, there are multiple members of each component acting at once. How cells integrate

simultaneous TGFBsf signals has not been extensively studied, though the consensus opinion seems

to be that signaling crosstalk between these pathways is mostly a product of competition for signal-

ing components. Given that a cell can only tell the di�erence between two primary arms of TGFBsf
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signaling, it is worth asking what information content can exist in the combination of input signals.

Research on the problem of intra-TGFBsf signaling crosstalk has been primarily performed

in developmental biology systems, especially in Xenopus laevis. In this system distinct TGFBsf

ligands set up partially overlapping gradients in portions of the developing embryo. Experimental

manipulation of these �morphogenetic �elds� causes TGFBsf type-speci�c defects. For example,

Activin and BMPs have opposing roles in overlapping portions of the embryos, so that an an

arti�cial abundance of signaling through one pathway ablates signaling through the other [100].

The ablation occurred even when extracellular aspects of signaling interaction were removed by

expression of constitutive receptors. It was proposed then, without explicit evidence, that the

Activin/BMP cross- inhibition could be due to competition for the co-Smad, Smad4. This claim is

frequently cited in the TGFBsf literature, though to my knowledge it has not been directly tested.

In fact, my own results in Section 3.3 suggest that the bSmads and tSmads do not compete for the

co-Smad.

Similarly, competition for receptors, co-receptors (e.g. betaglycan [83] and endoglin), extra-

cellular antagonists, and downstream transcriptional co-factors are all cited as sources of potential

crosstalk between the TGFBsf members. Such competition could be modi�ed by di�erential binding

a�nities of receptors to each ligand [59,71], and thus be further ampli�ed by di�erential expression

of those same receptors. There are no well-accepted models of intra-TGFBsf signaling crosstalk

besides the competition-based mechanisms above, and explicit evidence that these mechanisms are

in use by cells is currently lacking.

Finally, these pathways are also expected to cross-talk at the level of transcription, and could

do so by regulating many cellular components. Because of the high context-dependency of target

gene experession, the most obvious method of inter-TGFBsf transcriptional crosstalk is through the

canonical expression of the iSmads. While expression of these proteins will clearly inhibit TGFBsf

signaling, it is not at all obvious that such a mechanism could discriminate between TGFBsf family

members.

2.3 Review of Wnt signaling

2.3.1 Brief overview of the Wnt signaling network

Just as with TGFBsf, Wnt signaling is morphogenic and is deeply conserved, having orthologs in

the basal metazoan Trichoplax adhaerens [52]. Also like TGFBsf, the Wnt pathway is essential to

development, results in highly context-dependent phenotypic outcomes, and is often disregulated

in disease. In most other respects, however, these two signaling pathways are quite di�erent. Wnt

shares no core components with the TGFBsf pathway, has many more components overall (and is

thus more complex), and has di�erent kinetics. Finally, the mechanisms of Wnt signal transduction

are less understood and more contentious than are the mechanisms of TGFBsf signaling.

The �canonical� Wnt signaling pathway is shown schematically in Fig. 2.3. This pathway consists

of diverse extracellular Wnt ligands (Section 2.3.2) that bind to FZD receptors (Section 2.3.3) and
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Figure 2.3: A simpli�ed structure of the canonical Wnt signaling pathway. Of 19 ligands (circles), Wnt3A
is the prototypical canonical ligand (�lled red circle). Wnts binds to a subset of 10 FZDs, with a generally
unknown degree of speci�city. In the absence of Wnt (inset gray box), β-catenin is proteosomally degraded
after phosphorylation and ubiquitination by the destruction complex. This complex includes the kinase
GSK3β, the E3 ubiquitin ligase βTrCP, and the sca�old Axin. In response to ligand, the destruction complex
is disrupted in a Dishevelled (DVL)-dependent manner, allowing β-catenin levels to accumulate. Nuclear
β-catenin binds to the co-factor TCF/Lef and together these factors modulate the transcriptional network
of the cell.

subsequently cause stabilization of the transcription factor β-catenin (Section 2.3.4). As a result,

concentrations of nuclear β-catenin increase and this protein can then take part in highly context-

dependent changes to the cellular transcriptional program. In addition to this canonical signaling

pathway, there are many �non-canonical� Wnt pathways (as many as ten! [101]) that are poorly

understood. My focus in this dissertation is on canonical Wnt signaling, though I brie�y review

non-canonical Wnt signaling below (Section 2.3.6).

I note that the term �canonical� is falling out of favor in the Wnt �eld, so that �canonical Wnt

pathway� is being replaced by �Wnt/β-catenin pathway.� I de�ned the term �canonical� somewhat

di�erently in Chapter 1 to refer to a signaling network that is relatively distinct from other networks.

Indeed, such signaling insulation is one of the aspects of Wnt/β-catenin signaling that has made

it easier to study than other Wnt pathways. I therefore maintain the use of �canonical� to refer

to the Wnt/β-catenin pathway in this dissertation, as it carries with it the important connotation

of independence. For simplicity, by the shorthand �Wnt signaling� I always refer to the canonical

variant unless otherwise speci�ed.
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Figure 2.4: Phylogeny of the Wnt ligands (a, Section 2.3.2), receptors (b, Section 2.3.3), and transcription
factors (c, Section 2.3.4). The T.a. pre�x indicates putative Trichoplax adhaerens proteins (gray). WG
(Wingless), FZ (Frizzled), and ARM (Armadillo) are Drosophila orthologs of mammalian Wnt1, FZDs, and
β-catenin. JUP, Junctional Plakoglobin (also known as γ-catenin) is a paralog of β-catenin. CTNNB1, gene
symbol for β-catenin. 4F0A.B/A, identi�ers for crystal structures of Xenopus laevis Wnt8A and FZD8 used
in the alignments. Wnt3A and Wnt5A (reds) are the prototypical canonical and non-canonical Wnt ligands,
respectively. As with the TGFBsf pathway, note the high degree of diversity for each node when considering
the basal T. adhaerens proteins, and that the Wnts and FZDs each fall into multiple distinct subfamilies.
Distances are approximate, in arbitrary length units (see Methods).

2.3.2 The Wnt ligands

The mammalian Wnt ligands were initially identi�ed with the discovery of mouse Int-1, which was

later found to be homologous to the Drosophila protein Wingless (WG). Mice are, of course, wingless

by default, and so in mammals these two gene names were concatenated into the meaningless �Wnt1.�

All other Wnt ligands are named similarly [102]. In mammals, there are a total of 19 Wnts that fall

into multiple subfamilies by sequence homology (Fig. 2.4) [101,103].

These small ligands (∼350 amino acids) are highly cysteine-rich, with 22 cysteine residues that

have conserved spacing across all Wnts. The evolutionary maintenance of these cysteines was

taken to imply the formation of intramolecular cysteine bridges, which suggested that Wnt ligands

should be stable proteins [104]. Further, aspects of the primary sequence, including many charged

residues, were suggestive of a protein that should be highly soluble. Despite the expected stability

and solubility of the Wnt ligands, they proved to be quite problematic to work with [105].

In overexpression systems, intracellular Wnts were found to have many glycosylated forms and

tended to associate with chaperones, implying some di�culty in properly folding these proteins.

Extracellular Wnts, in contrast, were found to have fewer glycosylated forms. Further, the bulk of

overexpressed Wnt products tended to remain in the cell [102], and the Wnt proteins that left the

cell tended to stay associated with membranes or with the extracellular matrix [106]. All of this

data suggested that the Wnt ligands were in fact neither stable nor soluble, explaining in part the
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Table 2.4: Sequence sources for the Wnt alignments in Fig. 2.4.

Symbol Species NCBI GI Accession

Wnt1 H. sapiens 4885655 NP_005421.1
Wnt2 H. sapiens 4507927 NP_003382.1
Wnt2B H. sapiens 630044901 NP_001278809.1
Wnt3 H. sapiens 13540477 NP_110380.1
Wnt3A H. sapiens 14916475 NP_149122.1
Wnt4 H. sapiens 17402922 NP_110388.2
Wnt5A H. sapiens 371502087 NP_001243034.1
Wnt5B H. sapiens 17402919 NP_110402.2
Wnt6 H. sapiens 16507239 NP_006513.1
Wnt7A H. sapiens 17505191 NP_004616.2
Wnt7B H. sapiens 17505193 NP_478679.1
Wnt8A H. sapiens 17505195 NP_490645.1
Wnt8B H. sapiens 110735437 NP_003384.2
Wnt9A H. sapiens 15082261 NP_003386.1
Wnt9B H. sapiens 17017976 NP_003387.1
Wnt10A H. sapiens 16936520 NP_079492.2
Wnt10B H. sapiens 16936522 NP_003385.2
Wnt11 H. sapiens 17017974 NP_004617.2
Wnt16 H. sapiens 17402914 NP_057171.2
WG D. melanogaster 17648113 NP_523502.1
T.a.30370 T. adhaerens 196012489 XP_002116107.1
T.a.52489 T. adhaerens 195996709 XP_002108223.1

di�culty in purifying these proteins.

With the �rst successful puri�cation of a functional Wnt in 2003, the explanation for the lack

of solubility became clear: Wnts have an absolutely conserved palmitoylated cysteine at the N-

terminus. This lipidation is essential, as mutant proteins lacking the lipidated cysteine are inca-

pable of signaling [107]. The relative insolubility of Wnt ligands have made them quite di�cult to

purify. Indeed, puri�ed Wnts are commercially available primarily through a single vendor (R&D

Biosystems), and at relatively low purity. As I show later in Section 3.1 (Fig. 3.6), this low purity

of the common reagent has important consequences to interpretation of some experimental results.

To reduce experimental costs, studies therefore frequently use Wnt-conditioned media instead of

puri�ed Wnts. This approach su�ers in that conditioned media contains a large amount of unknown

secreted cellular products. Cell lines that lack the Wnt overexpression are often used as negative

controls. However, given the degree of transcriptional remodeling that the Wnt pathway can cause,

there are likely many unknown di�erences between Wnt-conditioned and control-conditioned media.

The solubility problem for the Wnt ligands led to an additional di�culty, that of determination

of the tertiary structure of these proteins. Indeed, the �rst crystal structure of a Wnt was obtained

only recently [108]. The primary sequence of Wnts are not related to any known protein fold, so

prior to the crystal structure there were many unknowns regarding how Wnts bind to their various

receptors and co-receptors. I touch on this more below.

2.3.3 The Frizzled receptors

There are 10 human Wnt receptors, the Frizzleds (FZDs). These are a diverse group of seven-pass

G-coupled protein receptors (GPCRs), though canonical signaling is mediated primarily by non-
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G-protein mechanisms [109]. Upon binding to Wnt and various cofactors the Wnt/FZD complex

is likely endocytosed and sequestered into multivesicular bodies within the cell. This receptor

internalization is essential to proper signaling [110, 111]. As a consequence of Wnt binding to the

Frizzled receptors, the transcription factor β-catenin is stabilized. However, to date there are many

competing models and no clear front-runner for how FZD causes this outcome (see Section 2.3.4).

Essential for Wnt signaling through FZDs are the single-pass transmembrane co-receptors, LRP5

and LRP6 (tongue-twistingly expanding to �Low-density lipoprotein receptor-related protein� 5 and

6) [103]. The ectodomain structure of LRP6 was recently solved, revealing four tandem beta-

propellar-EGF-like domains that provide a large interface for interacting proteins. Prior mutational

studies of these domains showed that they are essential for Wnt binding. Further, Dickkopf-1

(DKK1), a classical extracellular Wnt antagonist, was shown to bind to these same domains, which

would likely occlude the Wnt binding interface [112�114]. (I use puri�ed DKK1 in Section 3.1 to

demonstrate speci�city of Wnt responses.)

Additional co-factors that are not essential but that dramatically amplify Wnt signaling are the

soluble protein R-spondin 1 (RSPO1) [115] and another subfamily of GPCRs, LGR4 and LGR5

(short for �Leucine-rich repeat-containing G-protein coupled receptor 4 and 5�). It was recently

discovered that these two co-factors are themselves likely a ligand-receptor pair [115�117], though

the mechanism by which these co-factors enhance Wnt signaling is still a mystery.

With ten receptors and multiple co-factors, we are left with the issue of signaling speci�city.

Wnts appear to have high promiscuity for the Frizzleds, with little certainty in the �eld regarding

which, if any, receptor-ligand pairings are excluded. It is still unknown which Wnts bind to which

Frizzleds, or if Frizzleds can generally signal in both canonical and non-canonical ways [109, 118].

Unfortunately, while Wnt3A and Wnt5A are generally considered to be the prototypical ligands

for canonical and non-canonical Wnt signaling, respectively [119], there is evidence that each can

transduce signals through a non-prototypical pathway under certain conditions [118]. The recent

crystal structure of Xenopus laevis Wnt8 with FZD8 did little to enhance our understanding of

the origins of receptor-ligand speci�city, as the intra-protein contacts occurred primarily at highly

conserved Wnt residues [108]. This is suggestive that there is either little speci�city between ligands

and receptors, or that speci�city is a more complicated outcome of interactions with other factors.

2.3.4 β-catenin, the canonical Wnt e�ector

β-catenin is the main e�ector of canonical Wnt signaling. This large protein is one of several catenins

that are used in cellular adhesion. β-catenin itself has a large membrane-associated pool dedicated

to this task [120], while only a �vanishingly small� baseline cytosolic component is found in Wnt

un-stimulated cells [47].

In the classic model of Wnt signaling, basal β-catenin is constitutively transcribed and translated,

but then degraded just as quickly in the absence of Wnt. Wnt stimulation stabilizes β-catenin, thus

allowing cytosolic levels to build. In some systems, cytosolic β-catenin accumulation is measureable

in as little as 15 minutes, and reaches a stable peak response by 2 hours that can last longer than
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Table 2.5: Sequence sources for the Frizzled (FZD) alignments in Fig. 2.4.

Symbol Species NCBI GI Accession

FZD1 H. sapiens 4503825 NP_003496.1
FZD2 H. sapiens 4503827 NP_001457.1
FZD3 H. sapiens 8393378 NP_059108.1
FZD4 H. sapiens 22547161 NP_036325.2
FZD5 H. sapiens 27894385 NP_003459.2
FZD6 H. sapiens 257470999 NP_001158087.1
FZD7 H. sapiens 4503833 NP_003498.1
FZD8 H. sapiens 13994190 NP_114072.1
FZD9 H. sapiens 4503835 NP_003499.1
FZD10 H. sapiens 6005762 NP_009128.1
FZ D. melanogaster 17864440 NP_524812.1
T.a.12196 T. adhaerens 196002269 XP_002111002.1
T.a.31674 T. adhaerens 196014261 XP_002116990.1

24 hours [47, 48]. The nuclear import/export rates for β-catenin are una�ected by signaling, and

so it appears that nuclear accumulation resulting from Wnt signaling is due to an overall change in

protein abundance throughout the entire cell [103,110].

Importantly, β-catenin appears to encode information about extracellular Wnt concentrations

primarily in its nuclear concentration, as opposed to the concentration of particular phosphorylation

states. While various β-catenin phospho-states have been discovered and claimed to be required for

the transcriptional activity of this protein, careful quanti�cation of post-signaling protein levels

revealed that the vast majority of β-catenin is not phosphorylated in the presence of Wnt. Instead,

the phospho-state ends up at similar concentrations to the basal state [48], implying that phospho-

β-catenin does not encode Wnt ligand concentrations.

It is interesting to note that, like with the TGFBsf pathways, the large number of ligands and

receptors end up bottlenecking to a small number of e�ectors. This bottlenecking is more dramatic

in the case of Wnt, as there is only one β-catenin gene to which all canonical Wnt signaling leads.

There is a highly homologous paralog, γ-catenin (also called Junctional Plakoglobin, JUP), that

di�ers from β-catenin to a similar degree as does the functionally identical Drosophila ortholog,

Armadillo (see Fig. 2.4). γ-catenin appears to have some functional redundancy to β-catenin, and

even after deletion of both catenins some Wnt signaling has still been shown [101]. However, it

appears that β-catenin is the primary mediator of canonical Wnt signaling. Interestingly, similarly

to the TGFBsf pathways described earlier, this severe bottleneck implies that cells cannot know

which Wnt or Frizzled activated the pathway, unless an additional channel of signaling carries this

information.

To enact its transcriptional functions, accumulated nuclear β-catenin partners with one of a set

of transcription factors in the TCF/Lef family (standing for T-Cell Factor/Lymphoid enhancer-

binding factor). There are four such proteins in mammals that appear to be functionally redundant

but do have di�erent expression patterns [103]. These are TCF7, TCF7L1, TCF7L2, and LEF1.

TCF1 was �rst discovered as a factor involved with T-cell di�erentiation (hence the name) [121],

and later connected to Wnt signaling after �nding that a Xenopus laevis ortholog, Xtcf-3, could

cause β-catenin nuclear translocation [122]. TCF/Lef is normally bound to the protein Groucho,
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which prevents association of TCF/Lef with β-catenin. This block is lifted in response to Wnt

signaling after ubiquitination of Groucho by XIAP (X-linked inhibitor of apoptosis) [123]. It has

been proposed that TCF/Lef binding to β-catenin is stable enough to e�ectively sequester it in the

nucleus and so allow for long-term Wnt signaling [120], though to my knowledge this has not been

explicitly tested.

In complex with TCF/Lef, nuclear β-catenin is able to bind to a diverse set of promoters and

modulate transcription. These targets are highly context-dependent, though the negative auto-

regulator Axin2 is considered to be a conserved target of β-catenin [103, 124]. All canonical Wnt

signals are encoded into nuclear β-catenin concentrations, therefore ligand- and receptor-speci�c

information must be lost during signal transduction. This implies that the context-dependency

of Wnt signaling responses should be the result of transcriptional idiosyncrasies or of additional

information channels (e.g. non-canonical Wnt pathways).

2.3.5 The destruction complex

The functional e�ect of FZD, after binding Wnt, is to relieve the otherwise constitutive degradation

of β-catenin. The set of proteins that are involved with β-catenin degradation is referred to, omi-

nously, as the �destruction complex.� The mechanisms by which this complex degrades β-catenin

are fairly well understood, but how active FZD causes an end to the destruction is still highly con-

tentious [47,48]. Here, I discuss the components of this complex that are best understood, and that

will become important later in the discussion on crosstalk between Wnt and TGFBsf (Section 2.5).

GSK3β

The protein Glycogen synthase kinase 3 beta (GSK3β) maintains a central role in the destruction

complex. In fact, GSK3β is a signaling hub for many pathways, making it a prime node for signal in-

tegration. GSK3β is inhibited by Insulin and growth factor signaling, which lead to phosphorylation

of its N-terminal tail. The phosphorylated tail becomes a �pseudo-substrate� that competes with

the actual substrates of GSK3β. However, while this mechanism of inhibition is well established, it

is not clear if it is used by the Wnt pathway. Nor is it clear whether the Wnt pathway maintains

a distinct pool of GSK3β from growth factor pathways that can act as an insulated information

channel. If not, then modulation of a common pool of GSK3β by Wnt or other pathways would

necessarily create inter-pathway crosstalk.

What is clear is that this kinase requires �priming� phosphorylation by another member of the

β-catenin destruction complex, Casein Kinase 1 alpha (CK1α). This priming stems from phospho-

rylation of β-catenin by CK1α, which produces a recognition site for subsequent phosphorylation

of β-catenin by GSK3β. Phosphorylation by GSK3β in turn creates a recognition site for the the

ubiquitin E3 ligase BTRC (beta-transducin repeat-containing protein, also known as βTrCP), which

subsequently ubiquitinates β-catenin and sends it o� to the grinding mill of the proteosome [48,125].

The widely described model of Wnt signaling has this GSK3β-mediated phosphorylation being some-

how prevented in the presence of Wnt, though exactly how is a major subject of debate. In any
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case, pharmacological inhibition of GSK3β by LiCl [126, 127] or the ATP analog BIO [128] is su�-

cient to induce large increases in β-catenin levels. Inhibition of GSK3β is therefore commonly used

to experimentally simulate Wnt treatment, as it gets around the earlier-mentioned di�culties of

working with puri�ed Wnt ligands. Care should be taken when interpreting results of these experi-

ments, as disentangling GSK3β/β-catenin e�ects from the myriad of other GSK3β-mediated e�ects

is non-trivial.

Axin and APC

There are two large proteins that act as sca�olds on which the drama of β-catenin destruction

unfolds. These are Adenomatous Polyposis Coli (APC) and Axin. Despite general agreement that

APC is involved in this process, its e�ects are often incongruous between experiments and systems,

and so there is a lack of consensus for what APC actually does in the complex [47]. The roles of

Axin are better understood, and it is generally believed that this protein forms the primary sca�old

of the β-catenin degradation complex [129].

Until recently, a prevailing model was that APC, which is known to be a mobile protein, would

drag the destruction complex to an unknown subcellular compartment in order for β-catenin degra-

dation to occur. However, a careful study found that APC could e�ectively block Wnt signaling

no matter its localization. This was done by expressing APC constructs, modi�ed with various

localization signals to speci�c compartments, in the background of APC-null cell types [129]. All

variants allowed continued β-catenin destruction, which convincingly disproves the APC localization

model.

There exists some structural work showing the binding of APC and Axin to one another. Intrigu-

ingly, these studies reveal that Axin binds using a region with homology to Regulator of G-Protein

Signaling (RGS) sequences [130]. Because FZDs are GPCRs (and GPCRs activate G-proteins), it

is intriguing that Axin has an RGS domain, though to my knowledge no functional link has been

demonstrated. More important is the fact that Axin and APC appear to bind to the same inter-

face of β-catenin [110], implying that they should compete for β-catenin binding. This is especially

important because Axin levels are widely-cited to be extremely low in cells [131], such that even a

small change in its concentration (e.g. via overexpression) would then a�ect the balance of APC

versus Axin binding to β-catenin.

Dishevelled

Immediately downstream of FZD, before the destruction complex, is the protein Dishevelled (DVL),

named for the phenotype of the Drosophila ortholog. This component is absolutely required for

Wnt signaling in general, including non-canonical, though its precise role is something of a mystery

[109, 132]. There are three paralogs in mammals, though they have a high degree of functional

redundancy and so likely di�er primarily in expression pattern (DVL1 or DVL2-null mice are viable,

though DVL3-null mice die of developmental heart defects [132]).
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Mechanisms of destruction

Having completed a brief tour of the destruction complex components, I turn to the mechanisms

by which Wnt signaling modulates activity of the complex. The favored models of Wnt-induced

β-catenin stabilization involve disabling the destruction complex so that β-catenin phosphorylation,

and subsequent degradation, is reduced. How it does so is still contentious; I review a few competing

models below.

DVL has a structural PDZ domain that binds to Frizzled, and DVL and Axin both contain DIX

domains. The homologous DIX domains of these two proteins have been proposed to allow them to

polymerize, yielding a model wherein FZD activation pulls Axin to the membrane, through a DVL

bridge, thus disrupting the destruction complex [110,132]. No de�nitive evidence for this model has

been established, though the components can be found together in internalized endosomes during

Wnt signaling events. This suggests sequestration as a possible mechanism for DVL-mediated

Wnt signaling [109]. LRP6, a Wnt co-receptor, has been similarly proposed to pull Axin to the

membrane. This is consistent with overexpression of either DVL or an LRP6 endodomain fragment

being su�cient to induce increased β-catenin levels [110, 111]. This is the model that I show in

Fig. 2.3.

Sequestration of the Wnt signaling complex into internal compartments, causing isolation from

interactions with cytosolic proteins like β-catenin, is a mechanism with strong support [111]. How-

ever, there are some inconsistencies with this model. The primary mediators of the destruction

complex, Axin and GSK3β, are constitutively expressed, such that they would have to be continu-

ously sequestered to prevent new protein products from slowly causing a decay in β-catenin. Axin

is eventually destabilized by Wnt signaling, which gets around this caveat, but while this occurs

Axin2 levels are increased to compensate. Therefore the long-term maintenance of Wnt activity

becomes hard to explain [48].

Further, the key study showing this receptor-Axin complex sequestration also found that global

protein levels increased in cells after Wnt treatment, which they interpreted to be due to removal of

a signi�cant enough fraction of GSK3β to also decrease its suppression of non-Wnt proteins [111].

Given the extremely low quantities of Axin in cells [131], and the fact that its interaction with the

much more abundant GSK3β is stoichiometric, it not clear how a Wnt signal could so signi�cantly

impact global GSK3β signaling by sequestration of the destruction complex-associated pool. Recent

work is suggestive that the global increase in protein levels after after a Wnt response is instead due

to a cell-cycle dependent form of non-canonical signaling [133].

In addition to the sequestration model, active FZD complexes could negatively a�ect GSK3β,

Axin, the priming kinase CK1α, or some combination of these. All models have support, though

the experimental bases for these models nearly universally depend on overexpression or knockdown

of pathway components [47, 48]. While use of such dramatic pathway modulation does not negate

the results, it does complicate the interpretation of those results. Recent work has begun to make

use of endogenous protein levels, which has led to two strong but incompatible models.

In the �rst model, the authors take an Axin-centric focus, making the assumption that all Wnt-
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Table 2.6: Sequence sources for the Wnt-related catenin alignments in Fig. 2.4.

Symbol Name Species NCBI GI Accession

CTNNB1 β-catenin H. sapiens 148233338 NP_001091679.1
JUP γ-catenin H. sapiens 4504811 NP_002221.1
ARM Armadillo D. melanogaster 24639204 NP_476665.2
T.a.22780 T. adhaerens 196000871 XP_002110303.1

relevant β-catenin destruction is mediated by Axin [47]. They therefore rely on co-immunoprecip-

itation (co-IP) of endogenous Axin for all experiments. Using this approach, they show that endoge-

nous Axin levels remain mostly unchanged during the early Wnt response, implying that modulation

of Axin levels is not the primary mechanism of β-catenin stabilization (though this does not rule out

non-degradative forms of modulation). Instead, the authors were surprised to �nd that Axin pulled

down minimal β-catenin in the absence of Wnt, and that Wnt signaling caused more β-catenin to

associate with Axin. They interpreted this to mean that interactions on this sca�old are normally

transient, but that Wnt signaling blocks some step and so renders the destruction complex inert by

saturating it with non-transient β-catenin binding. With the additional �nding that Axin-bound

βTrCP dropped rapidly after Wnt treatment, the authors concluded that Wnt activity somehow

blocks ubiquitination of β-catenin instead of phosphorylation.

In opposition to the saturation model, another careful study used kinetic arguments and careful

measurements of protein quantities to show that it is indeed the phosphorylation steps that control

the Wnt response [48]. The authors start from the position that the current models, including

the saturation model, are insu�cient to explain the kinetics of the β-catenin response to Wnt. In

particular, the models fail to explain the maintained high level of β-catenin after ∼2 hours. They

show experimentally that the destruction complex is functional whether or not Wnt is present,

which directly argues against the saturation model. Further, the authors show mathematically

that a saturation-based mechanism would have a limited range for regulation. Finally, their kinetic

models demonstrated that all observed dynamics of the pathway response could be explained by

the degree of phosphorylation at two sites within β-catenin. As I note in Section 1.3, however,

agreement with an abstract model does not imply that the model is correct.

What can we make of this general confusion in the �eld for how Wnt causes an increase in its

e�ector, β-catenin? First, recent studies that focus on endogeous protein levels are clearly moving

in the right direction, and I think that the contradictions between the current best studies will

begin to be resolved by future use of similarly clean, endogenous approaches. For my own work, I

decided that it was best to avoid favoring one model over another, since de�ning experiments with

respect to such tenuous models would make the future of their interpretation uncertain. For this

reason, I take a simple, mechanism-independent approach to Wnt signaling that only requires that

extracellular Wnt concentrations are encoded as intracellular β-catenin concentrations (Chapter 3).

2.3.6 Non-canonical Wnt signaling

Our understanding of the best-understood Wnt signaling pathway, the canonical pathway, is still

incomplete. The various non-canonical Wnt signaling pathways are even less understood. This in
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large part because the readouts of these pathways are either hard to measure or are a�ected by

other factors whose contributions are di�cult to disentangle [109, 118]. Though the focus of this

dissertation is on canonical signaling, here I brie�y review the non-canonical pathways to provide

background for an instance of inter-pathway crossalk between TGFBsf and non-canonical Wnt5A

signaling.

There are many di�erent non-canonical pathways, with some authors counting up to ten [101],

though the true number is certainly unknown. Perhaps the best-studied non-canonical pathways

are those of Planar Cell Polarity (PCP) and Convergent Extension (CE) in Drosophila. However, it

is important to note that these pathways are studied in di�erent systems (the wing and developing

embryos, respectively) and share core components, so it is unclear how distinct these pathways

truly are [118]. This ambiguity is common among the non-canonical pathways. An additional non-

canonical pathway studied in mammalian systems activates Ca2+ signaling, though the consequences

of such signaling are mostly unknown [134].

While the mechanisms, readouts, and functional consequences of non-canonical signaling are

poorly understood, there are several key components that are well-established. At the level of

receptors, ROR2 (expanding to �Receptor tyrosine kinase-like orphan receptor�) has an extracellular

Wnt-binding domain homologous to that of FZD. This receptor activates Ca2+ signaling in response

to Wnt5A. The ROR2 homolog ROR1 also has this domain, but may be a pseudo-kinase [118].

Importantly, Wnt5A signaling through ROR2 is well established to inhibit long-term canonical

Wnt/β-catenin signaling, though how it does so is still unknown [101,109,118,119].

Downstream of the receptors, DVL is frequently (but not always) required for non-canonical

signaling. Interestingly, DVL seems to use di�erent protein domains for canonical and non-canonical

signaling, so that mutation of one domain can preferentially block one type of signaling [118,132].

Finally, there is no good reason to believe that canonical and non-canonical signaling must

occur in isolation. Because of the promiscuity of Wnt-FZD binding and the unknown contribution

of each FZD to the various Wnt signaling pathways, it is reasonable to expect that a Wnt signal may

trigger multiple simultaneous downstream pathways. Perhaps this is a mechanism by which the cell

obtains more information about the original signal, since β-catenin concentrations alone can only

encode information about the overall extent of canonical Wnt activity, not which Wnts triggered

that activity.

2.4 Functional importance of TGFBsf and Wnt signal integration

Having covered the canonical TGFBsf and Wnt signaling pathways, we can now move forward to the

topic of this dissertation: inter-pathway crosstalk. The goal of this section is to both motivate the

study of Wnt/TGFBsf crosstalk and to review the work that has been done in this �eld. There are

many systems in which both of these pathways are intensively studied (indeed entire textbooks have

been written on these pathways). However, most of this work studies each pathway indepenently;

there exists a much smaller body of work on Wnt/TGFBsf inter-pathway crosstalk. One of the more
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experimentally-tractable of such systems is the adult mammalian gut, and so I focus my review on

this system.

The study of adult stem cells has advanced rapidly in recent years, especially with the identi�-

cation of resident stem cells for several tissues [135] and with the discovery that di�erentiated cells

can be turned pluripotent by expression of a handful of transcription factors [136]. However, there

is still much that we do not understand about stem cell biology in general, especially because in

vitro studies are di�cult to map back to in vivo phenomena, and because each stem cell system has

proven to have its own quirks including di�erential use the same genetic pathways.

In particular, work in this �eld has pointed toward TGFBsf signaling being a major factor in

stem cell di�erentiation, while canonical Wnt signaling seems to control stem cell maintenance.

There are cases where this oppositional role assignment does not occur [51,101,137�142], though it

is fairly common across stem cell systems [105, 143�147]. These roles are particularly well-studied

in the context of the mammalian intestine.

Our understanding of the intestinal stem cell system has increased signi�cantly in recent years,

due in no small part to the work of Hans Clevers and colleagues. Clevers' group has dissected the

function of many genes involved with intestinal stem cell development (with a focus on canonical

Wnt), has unambiguously identi�ed the stem-cell population [148], and has developed an in vitro

system for culturing intestinal stem cells in such a way that they behave like homoestatic in vivo

crypts [149, 150]. This work has even led to successful engraftment of intestinal stem cells isolated

from one mouse into the damaged intestine of another [151]. Given the potential value to stem cell

therapy, and the connection of stem cells with colon cancer [152, 153], a deeper understanding of

intestinal stem cells is highly sought after in hopes of obtaining new therapeutic strategies for many

bowel diseases.

While the gut stem cell system is highly studied, it is poorly understood how intestinal stem

cells integrate distinct signals from their environment, such as Wnt and TGFBsf, and thus choose

one of several di�erentiated outcomes. Given the oppositional roles of TGFBsf and Wnt in the

gut, and their various functional interactions in other systems [139,140,154�162], it is important to

understand generally how cells integrate these two signals.

2.4.1 TGFBsf and Wnt in the intestinal crypt

Crypts are the functional unit of intestinal epithelium

The small and large intestine both contain similar stem cell systems. Between these two organs,

morphological di�erences in stem cell systems are revealing in terms of the distinct organ functions.

The small intestine contains a high fraction of absorptive cells (enterocytes) and an increased ep-

ithelial surface area due to relatively large lumenal projections termed villi, consistent with its role

in digestion and absorption of food. The colon is predominantly made up of mucus-secreting gob-

let cells and completely lacks villi, consistent with its need to carry potentially abrasive and toxic

waste [163]. The protective role of goblet cells is highlighted by the connection between goblet cell

loss and rapid tumor formation in mice [164]. The colon is of particular clinical interest due to the
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high rates of cancer and in�ammatory diseases of this organ [165]. Despite macroscopic di�erences

in morphology, many aspects of of the stem cell biology seem to be similar in the small and large

intestine.

A cross-section of the intestine would reveal a hollow tube whose wall consists of several tissue

layers. The most-lumenal layer consists of the mucosa, a single sheet of epithelium over stromal

tissue (�broblasts, collagen, blood/lymphatic vessels, etc.), together forming crypts and their sup-

port structures. The epithelium sits atop a basement membrane [166] which in turn is immediately

adjacent to myo�broblasts such that each crypt is essentially sheathed in these cells. Though it

is likely that important signaling takes place between the epithelium and stroma [166�168], these

signals are di�cult to study and their importance is unclear given the fact that ex vivo isolated

crypts maintain a di�erentiating, homeostatic structure even in the absence of a macroscopically

polarized stroma [149,169].

The crypts are the functional unit of the intestine. The single epithelial layer of each crypt

contains only ∼10 stem cells at the base that divide on average once per day, generating a conveyor

belt of rapidly dividing and di�erentiating cells [170] (Fig. 2.5). These �transit amplifying� cells

stop dividing after full di�erentiation and are eventually lost to the lumen of the gut [171]. This

process is fast, such that the entire non-stem cell population of a crypt is turned over every 3-5

days [172].

In the small intestine, the top of the crypt (which is the base of the villus) is roughly the

point at which cells are completely di�erentiated. Note that this generally accepted model of crypt

turnover is based on studies of the small intestine and is thought to be similar in the colon, though

there are important di�erences between the organs that should be considered. For example, the

large intestine completely lacks the paneth cells that have recently been reported to be required

for stem cell maintenance in the small bowel. However, colonic crypts do contain cells expressing

similar surface proteins [150]. Additionally, the entirety of the colonic crypt contains apparently-

di�erentiated cells, suggesting that the transit amplifying population is much smaller than in the

small bowel. On the other hand, the literature generally supports that the population dynamics and

signaling factors are similar between the small and large intestine, and between mouse and human.

Opposing gradients of TGFBsf and Wnt in crypts

Within the crypt epithelium, there are distinct patterns of expression for the Wnts and the TGFBsf

ligands that together seem to control cell fate in a crypt-axis positional manner. Using �uorescence

in situ hybridization (FISH), Clevers' group showed that canonical Wnts and various FZDs were

preferentially expressed in the crypt base, while non-canonical Wnts were expressed throughout the

crypt or only at the top [144]. The same group later found that LGR5, a Wnt co-receptor, is a highly

speci�c marker for intestinal stem cells [148]. This discovery allowed for labeling and puri�cation of

this cellular population, and the demonstration that this cell type alone could re-create crypt-like

structure in vitro.

There is evidence that the paneth cell population is the source of canonical Wnt3A in the crypt
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Figure 2.5: Overview of TGFBsf and Wnt signaling patterns in the colonic crypt. a, Immunostained
crypts from a CPC;APC mouse [173] showing two opposing sides pinched together, with the dark lumen
in between. Blue, DNA; green, β-catenin, red, E-cadherin. The bottom set of crypts are tumorous; note
the global increase in β-catenin. Image curtesy Michael Ramirez and Curtis Thorne (Altschuler & Wu lab,
Univeristy of Texas Southwestern). b, Cartoon of colonic crypt structure, showing key cell types. c, Cartoon
of signaling gradients in the crypt, showing high Wnt at the crypt base and high TGFBsf at the crypt tops.

base [150], though this is confounded by a study showing that this cell type can be ablated in

vivo without loss of stem cell maintentance [174]. In contrast to canonical Wnt, but similarly to

non-canonical Wnt, TGFBsf ligands and receptors are expressed exclusively in the the di�erentiated

epithelium at the tops of the crypts [54,175] and villi [176]. Smad activity is restricted to the same

parts of the crypt [143,177].

How the gradients are established and maintained, especially in the face of a constanty turning

over cell population, is not well understood. The relatively long lifespans of the paneth cell popula-

tion [178] hint that this cell type may serve as a sort of anchor for these gradients. Another potential

source of gradient maintenance are the transmembrane ephrin receptors and their ligands, which

seem to be required for proper cell sorting: their loss results in disorganized cellular positions within

colonic crypts. Intriguingly, these ephrins and receptors are regulated by canonical Wnt signaling,

though how these two phenomena interact is unclear [179].

Importantly, it is unclear whether these gradients actually function as such. While the gradients

could be formed by secreted molecules di�using over multiple cell lengths, the relative insolubility of

Wnts argues against this. Indeed, in the developing �y wing and in the vertebrate notochord, there

is recent evidence that di�usion of Wnt is not the mechanism by which it creates gradients [180,181].

Additionally, because Wnt and TGFBsf have so many extracellular antagonists, the presence of a

ligand gradient is neither required nor su�cient to have a functional gradient [60].

2.4.2 Wnt drives stem cell maintenance; TGFBsf drives di�erentiation

While the opposing gradients of these two pathways hint at opposing functional roles, they do not

imply it. The gradients could be a macroscopic consequence of cell sorting. Or, the gradients

could be a marker of crypt position without exerting any concentration-dependent in�uence. The

biological argument that most favors truly oppositional roles is that modulation of one pathway,
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experimentally or in the context of disease, is generally paired with opposite deviations of the other

pathway. I reviews examples of this below.

Increased Wnt signaling is a driver of colon cancer

It is well established, and has been for some time, that over-activation of canonical Wnt is a primary

force in colon cancer. Multiple components of the pathway have been implicated in this disease,

though clearly some of the signaling nodes are easier to hijack than others. One could imagine

upregulation of Wnts, receptors, or β-catenin as possible mechanisms. However, the pathway has

negative feedback, via β-catenin-mediated expression of Axin2, and so constitutive upstream activity

would be insu�cient for maintenance of high β-catenin. Therefore constitutively high β-catenin

activation is more easily obtained by blocking the function of the destruction complex. Perhaps for

this reason, the most commonly modulated signaling nodes are components of the complex itself.

There is at least one example of receptor-level modulation, however, which is that RSPO1 (the

soluble Wnt co-factor) is frequently upregulated in colon cancer due to genomic translocation [182].

Whether this upregulation is functionally important to cancer, however, is still speculative.

By far, the most common Wnt pathway modi�cation in colon cancer is mutation of APC, the

destruction complex component with perhaps the most mysterious functional role. In fact, APC

is nearly always mutated in this type of cancer (>80% of cases) [103, 129, 183]. Interestingly, APC

is rarely completely lost, instead being frequently truncated to its N-terminal half. The reason for

this truncation preference is unclear and has been the cause of much speculation [110]. However, it

is worth noting that there need not be a reason. Perhaps there are more ways to mutate APC such

that it is truncated instead of ablated, in which case truncation would simply be the more likely

evolutionary step. However, there is some cell culture evidence that APC-truncated and APC-null

cells have di�erent phenotypes, especially with respect to cell adhesion and migration [184].

While it is not clear what exactly APC is doing in the destruction complex, the e�ects of APC

loss on Wnt signaling are well-established. APC knockdown results in rapid nuclear accumulation

of β-catenin, followed by increasingly dense cell packing due to overgrowth and then, eventually,

a less-di�erentiated cellular phenotype [185]. Remarkably, stem cell-speci�c deletion of APC leads

to adenoma formation in mere days and results in macroscopic tumor development in only 3-5

weeks [153]. Importantly, this e�ect requires β-catenin-dependent expression of Myc [183], a classic

oncogene, as ablation of Myc can rescue the APC mutant phenotype [186].

Decreased TGFBsf is a driver of crypt dysplasia

Given my earlier description of the TGFBsf pathways as inducers of di�erentiation, it is perhaps

no surprise that these pathways tend to be lost in colon cancer and in other dysplastic diseases.

As with the Wnt pathway, certain components of the TGFBsf pathways are more prone to being

hijacked by disease than others. Loss of any particular TGFBsf ligand would likely be insu�cient

to ablate pathway activity, as would loss of several of the receptors, given the redundancy at this
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level of signal transduction. The obvious targets then are the Smads, which are indeed mutated or

lost in the context of several dysplasias.

Of the Smads, the most e�cient target of ablation in disease would be Smad4, since it is the

bottleneck for all upstream TGFBsf pathways. Indeed, Smad4 is commonly mutated in colon cancer

(>15% of cases) and in pancreatic cancer (>50% of cases) [182,187]. Additionally, next-generation

sequencing of >70 human colon tumors revealed a high prevalence of Smad2 (one of the TGFβ-

speci�c rSmads) mutations [182], allowing speculation on the importance of TGFβ signaling in colon

cancer. In another dysplastic disease, Juvenile Polyposis, BMP signaling loss is found in >50% of

cases [61, 177, 188]. Though it is unknown if the BMP loss in these cases was su�cient to cause

the human phenotype, overexpression of the BMP-inhibitor Noggin is su�cient to generate ectopic

crypts within the villi of mouse models [188].

The above data suggest that gain of Wnt signaling has a more potent e�ect than does loss of

TGFBsf signaling, at least in the context of colon cancer. However, changes to one of these pathways

is always accompanied by changes in the other. For example, BMP signaling has been found to be

reduced in >70% of colon cancers [177], though only ∼15% of cases have mutations in the pathway.

Further, in a study of microarrays from 250 colorectal tumor samples it was found that Smad4

and β-catenin levels were generally anti-correlated [189]. Taken together, these correlative results

are suggestive that these two pathways are in some way regulating one another, and that for Wnt

signaling to become tumorigenic it has to suppress the TGFBsf-mediated drive towards cellular

di�erentiation.

2.5 Nodes of crosstalk between TGFBsf and Wnt

In this dissertation I am interested in understanding the inter-pathway crosstalk between TGFBsf

and Wnt. As discussed in Section 1.4, one of the most problematic aspects of studying cell signaling

is the determination of which input signals a cell cares about and into what intracellular property

that information is encoded. As this chapter has so far detailed, the �eld consensus for both TGFBsf

and Wnt is that it is the concentration of the ligands that carries the information that cells care

about (these are morphogenic signals) and this information is encoded into nuclear concentrations

of canonical transcription factors.

Further, the literature reviewed in the previous section strongly suggest that the TGFBsf and

Wnt pathways have many opportunities for crosstalk, especially in the mammalian gut. With

established input/output relationships in hand, and reason to suspect that the pathways in question

modulate one another, we can begin to ask how these pathways integrate information. This section

provides a review of the signaling nodes at which inter-pathway crosstalk is thought to occur (see

the graphical summary in Fig. 2.6).
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Figure 2.6: Overview of Wnt and TGFBsf pathway crosstalk. This dissertation focuses on canonical Wnt,
BMP, and TGFβ as mediated by Wnt3A, BMP4, and TGFβ1/3. Dashed lines indicate literature-established
links between pathways. References: a [190�192]; b [193]; c [89, 90]; d [90, 194,195]; e [100]; f [196].

2.5.1 Smad and DVL

The DVL proteins, being key post-receptor mediators of both canonical and non-canonical signaling,

occupy an important position for potential crosstalk with the TGFBsf pathway. Interactions of

DVL with the MH2 domain of Smads were �rst identi�ed in a yeast two-hybrid screen [190]. The

same group and others con�rmed the possibility of such interactions in mammalian cells using co-

immunoprecipitation (co-IP) after overexpression of Smads, with the conclusion that all three DVLs

could bind to most of the Smads (Fig. 2.6a) [190�192]. The Smad-DVL interaction was also shown

for non-canonical Wnt signaling, with a downstream mediator of Wnt5A, PAR1B, precipitating with

both Smad and DVL (Fig. 2.6b) [193].

While co-IP of overexpressed proteins shows the possibility of interaction, they neither guarantee

that it occurs under normal conditions nor imply that the interaction has a functional outcome.

In some of the studies cited above, attempts were made to demonstrate functional consequences of

Smad-DVL interaction. This was done by treating cells with ligands for one or both pathways after

ablation or overexpression of other signaling components. Using this approach, it was found that

BMP2 treatment could increase complexed DVL1/Smad1, while Wnt3A-conditioned media had

the opposite e�ect [192], suggesting that pathway interactions are sensitive to signaling activity.

Additionally, RNAi of all three DVLs, PAR1B, or ROR2 can attenuate TGFB signaling, while

overexpression of DVL3 or FZD2 can enhance it [193,197]. The authors of these studies interpreted

the data to mean that the TGFBsf pathway is directly modulated by the Wnt pathways during
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signal transduction, though the mechanisms are unclear and seemingly complex. Importantly, the

observed cross-pathway modulation seemed to be mediated by interactions between DVL and Smad.

A functional consequence of TGFB and non-canonical Wnt5A integration was recently reported

in the context of wounded colonic epithelium [197]. In that study, the authors found that mice

lacking Wnt5A were less able to repair colonic epithelial lesions, seemingly due to an inability of

progenitor cells to di�erentiate in the wound. Given the use of TGFBsf pathways in gut stem cell

di�erentiation, it is perhaps unsurprising that the authors could link a TGFβ signaling de�ciency to

this Wnt5A phenotype. Speci�cally, they found that treatment of ex vivo colonic crypts with high

concentrations of Wnt5A yielded downstream TGFβ responses. The mechanisms for this were not

clear, except for a dependence on the TGFBR2 and ROR2 receptors, but are consistent with DVL-

mediated interactions. Importantly, my own work is suggestive that this Wnt5A/TGFβ connection

is due to an artifact (Section 3.1).

2.5.2 Smad and Axin

Axin, being a large protein that is central to canonical Wnt signaling, is another good candidate for

interactions with TGFBsf components (Fig. 2.6d). Indeed, in a co-overexpression assay of Axin and

Smad3, the two proteins were found to co-IP. This interaction was dependent upon a region of Axin

between the β-catenin and DVL binding domains, though how binding to this site might a�ect Wnt

signaling is unclear. Further, TGFβ responsiveness was increased when Axin was overexpressed

[194]. This was interpreted to mean that Axin can stabilize Smad activity, either by preventing

Smad degradation or by blocking some other form of Smad interference.

Two additional studies looked into the consequences of Smad-Axin interactions, but with con-

tradictory results. In one case, Axin was found to bind to an iSmad (Smad7) and to mediate

degradation of that Smad by Arkadia, an E3 ubiquitin ligase. As a consequence, overexpression

of both Axin and Arkadia led to enhanced TGFB signaling [195]. While the outcome is the same

as that described above, the mechanism is essentially the opposite. In a di�erent study, Axin was

again found to destabilize a Smad, but this time an rSmad via GSK3β instead of an iSmad via

ubiquitination. As a result, TGFB signaling was instead attenuated by increased Axin, and Axin

depletion by RNAi ampli�ed TGFB signaling [90].

How can we make sense of the studies of Axin-Smad interaction, that are all mutually incompat-

ible? It is important here to recall that basal Axin levels in cells are extremely low [131]. Because

this protein acts as a sca�old, its overexpression can have a few obvious non-physiological e�ects.

The �rst is that Axin is a big protein, with many binding surfaces, and so the observed Smad-Axin

interactions may be due to what would normally be extremely rare binding events. The other is

that while Smad and Axin may interact, overexpression of the sca�old causes interactions between

Smad and other Axin-bound proteins to become at �rst enhanced and then diluted as the amount of

Axin increases. All of the cited studies use Axin overexpression, and so the apparent contradictions

between them may be due to either of these phenomena.
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Smad and GSK3β

GSK3β, which primes β-catenin for ubiquitination, is able to phosphorylate a large fraction of the

proteome. Recently, this was found include the bSmads (experimentally) and the tSmads (based on

computational prediction). The Smads have a canonical GSK3β recognition sequence in the linker

region between the functional MH1 and MH2 domains. Phosphorylation of these sites in bSmads

was found to be GSK3β-dependent and could be down-regulated by Wnt3A treatment (Fig. 2.6c).

Importantly, the study found that total Smad levels were not a�ected by Wnt treatment, but that

the active phospho-state did show measurable decreases [89]. This data was therefore interpreted

to mean that GSK3β could modulate the long-term duration of Smad activity.

Smad and β-catenin

Finally, we turn to interactions with the �nal e�ector of the Wnt pathway, β-catenin (Fig. 2.6f). Like

Axin, the large size of β-catenin provides many potential binding interfaces. Additionally, its role as

the bottleneck of all canonical Wnt signaling makes it a good candidate for cross-pathway interaction.

Even so, evidence for interactions between Smad and β-catenin are quite limited. There is some

evidence that Drosophila MAD and Armadillo (Smad and β-catenin orthologs) compete with one

another for binding to TCF, such that DPP (the BMP2/4 ortholog) can cause a downstream block

of β-catenin transcriptional output [196]. Similarly, though with di�erent functional consequences,

in mammals an iSmad (Smad7) can co-IP with β-catenin and overexpressed TCF/Lef [198]. It is

therefore unclear whether a Smad/β-catenin interaction is important to signaling through either

pathway.

Transcriptional crosstalk

The nodes of putative crosstalk described above occur prior to transcription factor entry into the

nucleus. I therefore classify these as nodes of �signaling crosstalk.� What about at the level of tran-

scription, after the nucleus has received the transcription factor output of each signaling pathway?

Our knowledge of TGFBsf/Wnt crosstalk is almost entirely due to studies at this level of interac-

tion, however studies that look at both pathways simultaneously are rare. Instead, transcriptional

crosstalk is often inferred by studies �nding that activity of one pathway modulates transcriptional

output commonly associated with the other.

A few direct crosstalk studies have been performed, though their results are not easily compa-

rable. In the case of TGFB and Wnt, activation of both pathways was found to increase output

of a Wnt transcriptional reporter. The lack of Smad-response elements in this promoter suggested

that the co-activation was due to an interaction occurring prior to promoter binding [199, 200].

Microarrays from similar co-treatment experiments showed that a set of genes were regulated di�er-

ently in the context of both inputs than with either input alone, though no obvious patterns were

found (e.g. genes that were increased by Wnt or TGFB were not necessarily further increased by

both) [155,201].
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Transcriptional crosstalk is most frequently inferred by the presence of consensus binding motifs

for β-catenin/TCF and the Smads within the same target gene promoter. In this way, instances of

direct transcriptional co-regulation by TGFB/Wnt have been found in several systems [159,202�204].

For the focal case of the gut in this section, the co-regulation of the Myc promoter by these two

sets of transcription factors is of obvious relevance [205] .

2.6 Discussion

The preceding chapter provided a glimpse of the complexity and uncertainty in the properties of

Wnt and TGFBsf signaling and inter-pathway crosstalk. Here, I summarize the salient points that

lead to the approaches and hypotheses of my experimental work in Chapter 3.

2.6.1 Wnt and TGFBsf use morphogenic encoding systems

The consensus in the literature is that Wnt and TGFBsf signaling are morphogenic, meaning that

they encode information about ligand concentrations. As I have noted throughout this text, the

fact that these pathways yield concentration-dependent e�ects does not imply that this is the only

information about the signals that cells are using.

In Section 4.4.4 I discuss how the information content of biological outputs can be quanti�ed

using the mutual information metric. Published reports indicate that the information content of

many biological input/output relationships, when measured by imaging, is quite low [16]. My own

measurements, using the careful image correction discussed in Chapter 4, yield only slightly higher

information content. This low mutual information between ligand concentrations and the outputs

of signaling imply that cells can only e�ectively determine whether a signal is present or not; they

cannot determine a precise absolute concentration. In e�ect, these morphogens are not morphogenic

at the single-cell level! This limited information content of the concentration-based encoding system

is especially interesting in light of the dramatic network bottlenecking of both pathways. Together,

the implication is that cells can neither determine which of many di�erent ligands is present in the

environment nor the precise concentrations of those ligands. How much information about these

pathways, then, do single cells have access to?

On the other hand, we may be neglecting additional information channels that cells use to encode

more accurate models of their extracellular environments. �Non-canonical� information channels

may provide just such content. Or, just like the �y embryo syncytium that makes use of multiple

noisy transcription factor gradients to obtain accurate positional information (see Section 1.4) [43,

44], cellularized systems such as the intestinal crypt may integrate Wnt and TGFBsf concentrations

in order to more accurately de�ne fates or positions along the crypt axis.

2.6.2 Signaling crosstalk reduces information content

In the preceding sections and in my primary experimental work in Chapter 3, I take care to classify

pathway crosstalk into distinct types: pre-nuclear signaling crosstalk versus nuclear crosstalk at
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the level of transcription. This is for an important reason, which is that integrating pathways at

the level of signal transduction causes a loss of information content available to the nucleus. In

other words, the nucleus loses knowledge about the environment when pathways intersect during

signaling.

As an example, the cell makes an internal model of environmental TGFBsf using concentrations

of active Smad. If TGFBsf were the only thing that could activate Smad, then the cell would �know�

that TGFBsf was present in the environment any time that active Smad levels increased. But what

if Wnt could also modulate Smad? In this case, when the nucleus sees changes to active Smad levels,

it cannot know whether TGFBsf, Wnt, or some combination of the two ligands are present in the

environment. This contrasts to the case where TGFBsf ligands only modulate Smad, and Wnt only

modulates β-catenin, so that the internal model within the cell models the more complex reality of

the external environment.

2.6.3 Informational asymmetry between the cell and its environment

Perhaps cells only need limited information about their environments, such that the reduction

of information caused by complex inter-pathway processing during signal transduction is of no

consequence. This would be surprising, however, as these very same cells are what create the

information-rich extracellular milieu in the �rst place (e.g. by secreting signals and otherwise

modifying the environments of their neighbors). How could information-poor intracellular networks

create information-rich extracellular environments?

One possibility is that each cell type present in a complex environment does indeed have limited

information about that environment. It could then be the case that the environmental complexity is

simply due to the combination of low-information outputs from many distinct cell types. In e�ect,

individual cell types would be insulated from the complexity of their environments, and would only

have to worry about processing the few signals that they are capable of �understanding.�

2.6.4 Uncertainty in the nodes of TGFBsf/Wnt signaling crosstalk

Crosstalk at the level of signaling reduces what a cell can know about its environment. It is therefore

important to determine whether such crosstalk truly exists before speculating on why a cell would

need so little environmental information, as I so prematurely began to do above.

Cellular signaling is extremely di�cult to study, for the reasons outlined in Chapter 1, and

the studies cited in the current chapter are illustrative of this fact. While it is possible that the

results of all of the cited studies are accurate, they must be interpreted with care. In particular,

all of the cited studies that identi�ed nodes of TGFBsf/Wnt crosstalk relied on some combination

of overexpression, RNAi knockdown, or pharmacological inhibition of pathway components. All of

these methods can push the global cellular signaling network into states that normal cells cannot

inhabit. This is especially true for studies involving β-catenin and Axin, as these proteins are

sca�olds that are normally present at extremely low concentrations.
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Table 2.7: Sources of structures used in alignments for Fig. 2.2 and Fig. 2.4.

Symbol Species PBD ID Source

TGFB1 Homo sapiens 3KFD.A [66]
TGFB2 Homo sapiens 2TGI.A [206]
TGFB3 Homo sapiens 2PJY.A [71]
BMP2 Homo sapiens 1REW.A [207]
SMAD3 Homo sapiens 1U7F.A [208]
SMAD4 Homo sapiens 1U7F.B [208]
SMAD7 Homo sapiens 3KMP.A [209]
Wnt8 Xenopus laevis 4F0A.B [108]
Fz8 Xenopus laevis 4F0A.A [108]

Also, the further apart experimental inputs and outputs are in time, the less accurate our

inferences can be about the mechanisms connecting them. The cited studies rely heavily on co-

immunoprecipitation of overexpressed pathway components to demonstrate the possibility of in-

teractions. They then use transcriptional reporters and other long-term readouts to measure the

consequences of these interactions. However, a relationship between physical interactions and down-

stream consequences can only be demonstrated by speci�cally blocking that interaction. This has

not been done for any node of putative TGFBsf/Wnt signaling crosstalk, and for good reason: such

an experiment is exceedingly di�cult to design.

In short, current studies on TGFBsf/Wnt signaling crosstalk do not show either that such

crosstalk de�nitively exists, nor that the crosstalk has functional consequences if it does exist.

Indeed, in Chapter 3 I show strong evidence under endogenous signaling conditions that these

pathways are insulated from one another during signaling. This implies that nuclei maintain more

accurate models of their environments by integrating TGFBsf and Wnt primarily at the level of

transcription.

It will be important for future studies to accurately determine the information content of the

TGFBsf and Wnt signaling pathways, and how that information is encoded by the cell. Such studies

may reveal that cells encode more about the signal than just its concentration. In combination with

the results of Chapter 3, that the integration of these pathways gives cells more information, we

may �nd that cells create more accurate internal models of their extracellular environments than is

currently believed.

2.7 Methods

Sequence alignments. I obtained sequence data from the National Center for Bioinformatics

(NCBI) servers, choosing each time the top listed isoform from the Genes database Protein structures

are from the Research Collaboratory for Structural Bioinformatics (RCSB) protein database (PDB)

(Table 2.7). I used subsets of these sequences and structures for alignment in Promals3D [210] to

obtain phylogenetic trees. This multi-sequence alignment algorithm takes advantage of structural

information for improved alignments, however the distances in the phylogenies should be considered

approximate since the method for calculating genetic distance is more naive than the alignment

method. The crystal structures were included in the Wnt and Frizzled trees because of species
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di�erences from the primary sequence data. Structures for the TGFBsf and Smad trees were dropped

because their sequences identically match a subset of the primary sequences. The trees were drawn

with the R package `ape' [211].

For predicting Trichoplax adhaerens orthologs of genes, I used PSI-BLAST [212] with some

combination of human and Drosophila melanogaster reference proteins. I ran one or more iterations

of the algorithm on the seed sequences, and then chose the few top hits that were dramatically better

matches by both query coverage and identity. Each putative Trichoplax adhaerens ortholog is listed

in the appropriate table in this chapter. These orthologs are in agreement with the literature [52].

Speci�cally, to identify TGFβ/BMP orthologs I used the TGFβ1-3, BMP2/4, and DPP sequences

as seeds, resulting in 3 putative orthologs (>50% coverage). For the TGFB receptors, I used the

Type I and Type II receptors separately, but each yielded a large number (>200) of putative

matches that had reasonable identity (>30%) but low coverage (<50%) or vice versa. I therefore

did not include these in the phylogenetic tree. For the Smads, I used the eight human genes and

the Drosophila MAD as seeds, yielding three good hits (>90% coverage, >30% identity). For the

Wnts, I used all 19 human genes and �y WG, yielding 2 hits (≥68% coverage, >30% identity).

For the Frizzleds, I used all 10 human genes and �y FZ, yielding 2 hits (>50% coverage, ≥30%
identity). For β-catenin I used human CTNNB1 with Junctional Plakoglobin (JUP, also known as

gamma-catenin) and �y arm, yielding 1 hit (>70% coverage, >70% identity).



Chapter 3

On the insulation of morphogenic

signaling

Morphogenic signals are frequently found in apparent gradients within developmental systems and

stem cell niches, and the set of concentrations of these morphogens at a given point in space and

time is thought to provide the information needed for cell fate speci�cation (see Section 2.4.1). How

cells integrate the concentrations of distinct morphogenic signals is an unsolved problem. Cells could

integrate this information during the process of signal transduction to the nucleus (e.g. by direct

protein-protein interactions between pathways), after the transduced signals reach the nucleus (e.g.

by co-regulation of transcription targets), or at both of these levels.

Importantly, as discussed in Section 2.6, integration at the level of signal transduction (hereafter

�signaling�) may lead to a decrease in nuclear �knowledge� of the original signals. Integration at

the level of transcription, however, can allow cells to maintain a more accurate internal model of

the extracellular environment. Therefore, in order to understand how cells make decisions in the

context of multiple extracellular information sources it is important to identify the points at which

pathway integration occurs.

The Wnt and TGFBsf pathways provide highly-studied systems for understanding how cells

integrate morphogenic signals. As discussed in Chapter 2, the Transforming Growth Factor Beta

superfamily (TGFBsf) and Wnt/β-catenin (hereafter simply �Wnt�) signaling pathways are deeply

conserved across metazoans, are essential to development, and are disrupted in many pathologies.

These pathways are tightly intertwined, frequently being used within the same tissue compartments

to coordinate cell fate decisions. This coordination occurs despite an absence of shared core pathway

components, which suggests that it is primarily mediated by long-term transcriptional interactions.

However, a number of studies have also identi�ed putative nodes of short-term signaling interaction

(see Section 2.5 and Fig. 2.6), though the generality and importance of these interactions remain

unclear.

Wnt and TGFB are morphogenic: their extracellular ligands lead to concentration-dependent

increases in downstream transcription factor activity. Outside of this general similarity, the mech-

48
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Figure 3.1: Two signaling pathways (S1 and S2) can crosstalk in multiple ways with respect to a a response
R. a-b, In the absence of signaling from one or both pathways there can be no crosstalk. c, The signals can
both a�ect R in an additive manner, so that the signaling outcomes are independent. Such a case would
occur for pathways that use distinct �pools� of the same component. d, If both pathways a�ect the same
pool of R, or a�ect one another, then they will show non-additive, interdependent behaviors. This can arise
through several distinct topologies that are di�cult to distinguish experimentally.

anisms by which these pathways transduce their respective signals are quite distinct. As reviewed

in Section 2.2, TGFβ and the related Bone Morphogenic Protein (BMP) ligands cause their ser-

ine/threonine kinase receptors to directly phosphorylate the target Smad transcription factors, which

subsequently increase in nuclear abundance. Activation of the Wnt pathway, on the other hand,

blocks the otherwise constitutive degradation of cytosolic β-catenin, thus leading to a whole-cell

increase in the quantity of this transcription factor (reviewed in Section 2.3). The transduction

of a Wnt signal requires many protein components, most of which have been implicated in direct

interactions with Smad proteins (Section 2.5). Unfortunately, identi�cation of interactions between

these pathways has so far led to contradictory and context-dependent outcomes, suggesting that

there is not a general mechanism of TGFBsf and Wnt signal integration.

However, as I explain in Section 2.6, it is possible that the methods used to study integration of

these pathways are simply incapable of identifying general mechanisms of crosstalk. The majority

of the crosstalk studies (and even the studies of each pathway in isolation) rely on overexpression

or ablation of pathway components, which may push cells into abnormal states and thus confound

interpretation of experimental results. In this chapter, then, I take an endogenous and mechanism-

independent approach to directly test the extent of signaling crosstalk between these pathways.

Signaling pathways can interact in multiple ways during transduction. Without any crosstalk,

activation of one pathway will by de�nition have no e�ect on the canonical output of another

pathway (Fig. 3.1b). With non-additive crosstalk, two pathways may a�ect the same response

but do so in an additive manner (Fig. 3.1c). This would be the case, for example, with pathways

that use di�erent pools of the same component. Finally, pathways can interact in more complex,

non-additive ways in which the response cannot be predicted by knowledge of one pathway alone

(Fig. 3.1d). Which of these crosstalk categories Wnt and TGFBsf fall into during signal transduction
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has not yet been uncovered.

I therefore designed an experimental approach that allows me to distinguish between the three

general classes of interaction described above. By measuring the direct output of signaling for each

pathway (i.e. transcription factor nuclear concentration) as a consequence of combinatorial TGFBsf

and Wnt ligand inputs, I can infer both the class of crosstalk that the interactions fall into and

the quantitative extent of that crosstalk. Using this approach, I show in Section 3.2 that Wnt and

TGFBsf, in opposition to reports in the literature, do not crosstalk at all during signal transduction.

Further, in Section 3.3 I show that TGFβ is insulated from BMP signaling despite sharing

the core component Smad4. Intra-TGFBsf inhibition is widely thought to exist and to be due to

competition for limiting Smad4 (see Section 2.2.5). I �nd instead that neither of these claims are

correct: BMP4 and TGFβ3 do not inhibit one another even when Smad4 is brought down to limiting

levels.

Taken together, my results suggest then that cellular decision-making with respect to TGFB and

Wnt occurs primarily at the level of transcription and not at the level of signaling, thus allowing the

cell to create a more accurate nuclear model of the complex extracellular microenvironment than

would otherwise be possible.

3.1 An endogenous system for studying TGFBsf/Wnt crosstalk

I reasoned that, because transcription factor activity is the direct endpoint of signal transduction,

I can infer the degree of meaningful TGFBsf and Wnt signaling interaction by measuring how

stimulation of one pathway a�ects the immediate transcription factor response of the other pathway

(Fig. 3.2). Current studies typically rely on transcriptional readouts to infer such interactions,

but these inferences may be confounded by transcriptional feedback (which I consider to be the

result of nuclear decision-making, not signal transduction). Therefore, to accurately interpret cross-

pathway e�ects with respect to signaling, I use experimental timepoints that are as close to the

initial signaling event as possible. Additionally, it is widely believed that both Wnt and TGFBsf

signaling can be highly context-dependent. I therefore repeat the experiments in this chapter using

multiple cell types, chosen to represent divergent cellular contexts. By doing so, the hope is that

any resulting shared properties of signal integration can be more con�dently extrapolated to other

cellular systems.

In order to rigorously quantify single-cell responses to the many experimental conditions required

for this study, and to make use of the expertise within the Altschuler & Wu lab, I use high-

throughput immuno�uorescence imaging as my primary experimental platform. Unless otherwise

indicated, the presented measurements in this chapter originate from the total-intensity feature

values of individual nuclei. I typically report the population-medians of these single-cell values,

from replicate experimental setups (as shown schematically in Fig. 3.3; see Chapter 4 for more

detail on my approach to image analysis).
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Figure 3.2: Schematic of the experimental system for TGFBsf/Wnt crosstalk. To measure inter-pathway
signaling crosstalk, ligands can be applied combinatorially, followed by measurement of nuclear transcription
factor levels. As shown, Wnt3A increases global quantities of β-catenin, TGFβ3 causes translocation of
bulk Smad2/3 to the nucleus, and levels of nuclear phospho-Smad1/5/8 increase upon BMP4 treatment.
HCECs, with (�High�) or without (�Low�) 2hr treatment by Wnt3A (240ng/mL), TGFβ3 (4ng/mL), or
BMP4 (73ng/mL). Outlines are of nuclei, segmented from the Hoechst channel (channel not shown) using
the same threshold-segmentation method as in all imaging studies in this chapter. Fields are chosen to
demonstrate visually obvious outcomes of signaling, though the diversity of responses is quite high for all
pathways (see Figs. 3.5 & 3.7).

Figure 3.3: The �uorescence intensities reported in this chapter are population-level, based on single-nuclei
measurements. As shown schematically here, cells are treated in 96- or 384-well plates (left) and then �xed,
immunostained, and imaged (middle, top). Nuclei are then identi�ed computationally (see Section 4.4) so
that the distributions of single-nuclei total �uorescence are obtained (middle, bottom). The medians of
these distributions are then calculated for each replicate well. The reported values in this chapter are the
means and standard deviations of these median values, nearly always from n=3 replicates. P-values are then
calculated using an unpaired, two-tailed Student's t-test, and signi�cant di�erences (p<0.05) are indicated
with an asterisk. Figure legends indicate which samples are being compared for statistical signi�cance.
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Figure 3.4: A screen for Wnt3A (a) and TGFβ1-responsiveness (partial-replicate screens b and c) across
∼20 cell lines revealed consistent responses by human colonic epithelial cells (HCECs) and two melanoma
lines (SKMEL2 and MALME3M), highlighted with bright red text. The measured single-cell feature is the
nuclear mean of �uorescence intensity by imaging (arbitrary units). Plots show the median of these single-cell
values across all cells in a treated well (as in Fig. 3.3). The control means are subtracted from all values, per
cell line, to show absolute changes in nuclear intensity. Concentrations: 1ng/mL TGFβ1, 200ng/mL Wnt3A.
Timepoints: 1.25hrs (Wnt3A), 1hr (TGFβ1).

3.1.1 Choosing cell types

In order to choose useful cell lines, ligands, and readouts for the study of Wnt and TGFBsf signaling,

I was confronted with something of a chicken-or-the-egg problem. However, ongoing work within

the Altschuler & Wu lab had made use of puri�ed recombinant TGFβ1 for stimulating the TGFβ

pathway and a total-Smad2/3 antibody for measuring the response. Additional work had shown

the e�cacy of a β-catenin antibody for measuring cellular responses to puri�ed Wnt3A. I therefore

�rst made use of these reagents, using literature-supported concentrations, to identify cell lines that

show responsiveness to these pathways.

I �rst selected an immortalized (via telomerase and CDK4 expression) but non-transformed

human colonic epthelial cell (HCEC) line. This cell line has stable ploidy and properties consistent

with it being a pseudo-di�erentiated cell type [213]. Given the importance of Wnt and TGFBsf

signaling in the gut (Section 2.4.1), this cell line makes for a reasonable model system for studying

crosstalk between these pathways. As a control, I also chose the rat small intestine epithelial line

(IEC6) [214], reasoning that it should display similar properties to HCECs. I found that both of

these cell types respond strongly (in a statistical sense) to TGFB ligands, moderately to BMP4,
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and weakly (but measurably) to Wnt3A.

As discussed in Section 1.4.3, signaling pathways generally show context-dependency, especially

with respect to di�erences in cell type. This non-generality is especially true of the TGFBsf and

Wnt pathways (Chapter 2). Therefore, in order to discover general properties (if indeed they exist)

we need to look for commonalities across cell types; the two intestinal cell lines chosen may not be

su�cient to infer generality. One approach to increase generality would be to exhaustively test a

large number of cell types, so that with each successive cell type we gain con�dence in the generality

of a biological phenomenon. Unfortunately, this approach is costly and di�cult, and still does not

lead to certainty in the generality of a discovered phenomenon. I opted then for a simpler approach,

which is to test a small number of divergent cell types. In this way, any behaviors consistent across

cell types can still be extrapolated as �general� behaviors, though the resulting con�dence in such

a generalization may be somewhat lower.

To identify additional cell types for studying TGFBsf and Wnt crosstalk, I screened a panel of

cancer cell lines for responsiveness to TGFβ1 and Wnt3A. Additional selection criteria included cell

morphology and growth patterns that would allow for accurate image segmentation (see Section 4.4),

as well as cellular growth rates and adherence properties that would allow for the throughput needed

for the many experimental conditions required in my studies. Two melanoma cell lines, SKMEL2

and MALME3M, satis�ed these criteria and were consistently ranked among the most responsive

to both TGFβ1 and Wnt3A (Fig. 3.4). Both of these cell lines can form malignant melanomas

in nude mice, and have abnormal ploidy [215]. In particular, I found that SKMEL2 cells always

form tri-modal cell cycle distributions, implying the presence of diploid, tetraploid, and octoploid

cells within an asynchronous cycling population. To my knowledge, there are no Wnt or TGFBsf

pathway mutations in SKMEL2 or MALME3M cells.

These cell lines should not be used to make inferences with respect to di�erences between

�normal� and cancer cells, as these cell lines di�er also in tissue of origin. Instead, they should be

thought of simply as divergent pairs of cell types that provide consistent �contexts� (e.g. within the

two intestinal lines or within the two melanoma lines ) as well as divergent contexts (e.g. between

the intestinal and melanoma lines). For all analyses in this chapter, I use only those cells within

the �rst peak of the imaging-based cell cycle distributions (see Section 4.5.1). I veri�ed for each

individual pathway that the position of a cell within the cell cycle distribution was not predictive of

pathway behavior (data not shown) and restriction to the G1/0 cell cycle phase otherwise reduces

both experimental noise and unimportant biological variation.

3.1.2 Choosing signaling inputs and outputs

Having chosen the cellular contexts in which to measure the signaling crosstalk between TGFBsf and

Wnt, I then needed to choose inputs and outputs that could be believably interpreted to represent

these pathways. As discussed in Section 1.4, as a rule it is not known what aspects of a signal or

a readout are the most relevant carriers of information for a cell. It is generally believed, however,

that for morphogenic pathways it is the extracellular concentration of a ligand and the nuclear
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Figure 3.5: Saturating ligand concentrations of TGFβ1/3 (12ng/mL), Wnt3A (730ng/mL), and BMP4
(8ng/mL) are informative with respect to their canonical transcription factors. MI, mutual information
between the ligand and readout (in bits, maximum MI is 1, see Section 4.4.4). Histograms, distributions
of single-cell total nuclear intensities for the immunostained transcription factors. n, number of cells per
histogram, pooled from 3 replicate wells (color-coded). Gray, untreated. SKMEL2 cells, 1hr treatment.
Arbitrary �uorescence units, frequencies scaled to have the same maximum value for display purposes.

concentration of a corresponding transcription factor that are the relevant parameters. I therefore

tested several ligands and readouts in order to identify experimental inputs and outputs that are

both meaningful and practical.

Choosing prototypical ligands

I �rst assayed several pathway inputs for information content and signaling speci�city. For the

BMP2/4 pathway, I found that all cell lines were non-responsive to puri�ed BMP2 (data not shown)

but responsive to puri�ed BMP4. These two ligands are highly homologous and are thought to

act through the same receptors (Section 2.2.2) therefore this absence of e�ective BMP2 signaling

does not have a clear interpretation (perhaps a faulty reagent). In any event, the BMP4 signal is

informative (using the mutual information metric, as described in Section 4.4.4); the distribution

of single-cell responses to saturating BMP4 is wide but signi�cantly di�erent from the control

distribution (Fig. 3.5).

For the TGFβ pathway I compared TGFβ1 and TGFβ3, as these ligands are considered to be

essentially interchangeable (Section 2.2.2). Indeed, within a single experiment these two ligands gen-

erated similarly broad and separated Smad2/3 responses with similar mutual information (Fig. 3.5).

Dose-response curves for the two ligands have the same maxima and similar hill coe�cients, though

TGFβ3 is ∼10 time more e�cacious than TGFβ1 (data not shown). TGFβ3 generally yielded more

reliable responses, and so I use this ligand for the remaining experiments in this chapter.

Finally, I chose to use puri�ed Wnt3A to stimulate the canonical Wnt pathway. Wnt3A is

considered the prototypical ligand for this pathway (Section 2.3.2), and its commercially-available

puri�ed form has been widely used throughout the literature. Importantly, I discovered that what

is likely the most commonly-used form, a low-purity (∼75%) version from R&D Biosystems, is

su�cient to send Smad2/3 to the nucleus with the same kinetics and dose-response Hill coe�cicent

as seen with TGFβ treatment (Fig. 3.6a). I was unable to measure contaminating TGFβ ligands by

Western (Fig. 3.6b), though this could be due to low concentrations of a high-e�cacy TGFβ variant.
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Figure 3.6: The commonly-used low-purity (75%) Wnt3A andWnt5a ligands have trace amounts of contam-
inating TGFβ. a, Dose-response curves for Wnt3A and Wnt5A against Smad2/3 yield EC50 concentrations
for the Wnts that are comparable to those used in the literature to stimulate Wnt responses (>100ng/mL
is common). Duplicate experiments. Median of the mean nuclear intensity is plotted for each well (as in
Fig. 3.3). b, Western blot of the puri�ed Wnt3A ligands using a pan-TGFβ antibody. HP/CF is the high-
purity/carrier-free ligand used throughout this chapter, +BSA is the low-purity Wnt3A. BSA is shown as a
reference. The low-purity Wnt3A lane should contain ∼25µg of BSA in this blot, which is enough protein to
soak up signi�cant TGFβ antibody. TGFβ1 is ∼12 kiloDaltons. c, The apparent Wnt→Smad2/3 response is
completely blocked by co-treatment with a pan-TGFB antibody that does not block the ability of Wnt3A to
stimulate a β-catenin response. Low-purity Wnt5A also stimulates Smad2/3, but a carrier-free (CF) version
does not. The high-purity (>90%) carrier-free (HP/CF) Wnt3A shows a minimal Smad2/3 response that is
reproducible in other experiments, though not signi�cant in this one. Concentrations: Wnt3A (200ng/mL),
Wnt5A (100ng/mL), αTGFB (5µg/mL). Y-axes and p-values as in Fig. 3.8. a,c, HCECs, 1hr treatment.

In any event, this pathway crosstalk is likely a consequence of trace amounts of contaminating TGFβ

in the puri�ed Wnt, as a pan TGFβ-blocking antibody is su�cient to block this response. Further,

high-purity and carrier-free variants of the product do not activate Smad2/3 (Fig. 3.6c).

This artifactual crosstalk also occurs with the prototypical non-canonical Wnt5A (Fig. 3.6a,c),

which casts uncertainty onto recently-published work linking Wnt5A and TGFβ signaling (reviewed

in Section 2.5.1) [197]. The presence of such contamination may complicate the interpretation

of many other published studies, as it suggests that treatment with puri�ed Wnt3A or Wnt5A

may generally include treatment with TGFβ, such that some resulting phenotypes could be due to

stimulation by Wnt, TGFβ, or both.

I therefore use high-purity/carrier-free Wnt3A for all experiments in this chapter. I note, how-

ever, that even this ligand often causes a small increase in Smad2/3 and so crosstalk experiments

must be interpreted with this fact in mind.
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Figure 3.7: Nuclear phospho-Smads (pSmads) contain more information about ligand concentrations than
do nuclear total-Smads, though the sum and mean of intensity features are comparable. The untreated
(gray) and treated (colored) distributions of single-nuclei measurements show more overlap of total-Smad
readouts, resulting in relatively less mutual information (MI, in bits, maximum of 1, see Section 4.4.4). The
median (top row) and sum (bottom row) of nuclear intensities for a single readout have nearly identical
information content. n, number of cells per histogram (color-coded). Ligand concentrations: saturating
10ng/mL TGFβ3 (blue) or 50ng/mL BMP4 (green). SKMEL2 cells, 1.5hr treatment. Arbitrary �uorescence
units, frequncies normalized to have same maximum value.

Choosing prototypical readouts

Having identi�ed robust pathway inputs, I then needed to validate antibody-based pathway outputs

for immuno�uorescence imaging. For the TGFβ pathway, which speci�cally activates Smad2/3, and

the BMP4 pathway, which speci�cally activates Smad1/5/8 (see Section 2.2.4), I �nd that the

nuclear fractions of both active phospho-protein and total-protein levels can respond robustly to

pathway activation. However, it is unclear from the literature whether it is the total concentration

or the phospho-state concentration that encodes extracellular ligand levels.

I therefore measured the mutual information between these readouts and their ligands, which

revealed that the phospho-state is indeed more informative (Fig. 3.7). Care should be taken when

interpreting this data, however, as the di�erence in information content may also be due to antibody

speci�cities, along with a myriad of other causes. I note that I have never observed maximum

mutual information values of more than ∼1.2 bits for any type of input/output relationship from

imaging data, consistent with published reports [16]. The most fair statement, then, is that these

particular approximations of the phospho-state are more informative than these approximations of

total protein levels.

The total-Smad2/3 antibody yielded more-consistent results across experiments than did the
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Figure 3.8: The measured canonical transcription factor responses are a speci�c consequence of ligand
treatment. Left, A pan-TGFB antibody (αTGFB) blocks 2hr TGFβ3-induced nuclear Smad2/3 accumu-
lation in HCECs. Middle, Dikkopf, a soluble antagonist (Section 2.3.3), blocks β-catenin accumulation
due to 2hr Wnt3A in SKMEL2s. Right, Noggin, a soluble antagonist (Section 2.2.2), blocks 1.5hr BMP4-
induced phospho-Smad1/5/8 in SKMEL2s. Y-axes, median across single-cell nuclear intensities (the total
feature) within a well. As in Fig. 3.2, points are the mean and standard deviation of n = 3 replicate wells
and `*' indicates one-sided p-value <0.05 (Student's t-test) compared to control. Intensities normalized by
Ri,norm = Ri−mean(Rctrl)

Rligand−mean(Rctrl)
. Concentrations: TGFβ3 (10ng/mL), αTGFB (5µg/mL), Wnt3A (200ng/mL),

Dikkopf (1µg/mL), BMP4 (50ng/mL), Noggin (100ng/mL).

phospho-Smad2/3 antibody, however, and has similarly-high information content. I therefore use the

total-Smad2/3 and the phospho-Smad1/5/8 (pSmad1/5/8) antibodies for the crosstalk experiments.

For canonical Wnt signaling there is strong evidence that it is the total-protein level of β-catenin, not

the phospho-state, that encodes ligand concentration (Section 2.3.4). I therefore use a total-protein

β-catenin antibody to measure canonical Wnt responses.

Validating input/output relationships

Aside from measuring the mutual information between each input and output it is essential to

ensure that the input/output relationships are not artifactual. To do so, I veri�ed that each output

could be blocked by a highly speci�c antagonist (Fig. 3.8). Additionally, while I am primarily

interested in the signal transduction process, it is important to ensure that a transduced signal

leads to a nuclear decision. In the case of TGFBsf and Wnt signaling, this decision is a change to

the transcriptional network. The conserved target for Wnt3A is Axin2, a negative auto-regulator

(Section 2.3.4). For TGFBsf, the conserved targets are the inhibitory-Smads (iSmads), Smad6/7

(Section 2.2.4). I therefore measured mRNA levels of these transcriptional targets, �nding that

stimulation does indeed yield transcription in all cases (Fig. 3.9).

3.1.3 Interpretation of single-cell immuno�uorescence measurements

As for any method of measurement, it is important to take a step back and think carefully about

the biological interpretation of the resulting data. For the image-based single-cell data obtained

in my work, cellular nuclei are identi�ed using Hoechst-staining and threshold segmentation, and I

only analyze those nuclei that likely belong to the G1 cell cycle phase (see Section 4.4.1). Within

these nuclei I tally up all pixel values to obtain the total intensity feature, which I use as a proxy

for the quantity of the immuno-labeled target protein within the nucleus. This feature and the

mean intensity feature, which is a proxy for concentration, are similarly informative in my assays

(Fig. 3.7), and so I use the total-intensity feature for the practical reasons described in Section 4.4.3.
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Figure 3.9: The TGFβ3, Wnt3A, and BMP4 ligands cause expression of canonical target genes in the cell
lines used in this dissertation. Fold-change is relative to the control condition. 2hr treatment. Concentra-
tions: 10ng/mL TGFβ3, 25ng/mL BMP4, 200ng/mL Wnt3A. Mean and standard deviation of 3 replicates,
`*' indicates two-sided p-value <0.05 (Student's t-test). mRNA levels measured by TaqMan qPCR (see
Methods for experimental details).

How do we interpret changes in this feature? Fold-change over a reference (e.g. the untreated

state) is a commonly used metric, but the interpretation of fold-change is unclear in cases where

either the basal state is near zero (as any fold-change value will move towards in�nity) or is non-

zero because of �background� signal (which pushes all fold-change values towards 1). Using the

�uorescence image model that I present in Section 4.2, we can model the total intensity feature T

for any given nucleus n by Equation 3.1. In this model the intensity of each pixel p is the sum of

multiple �uorescence sources, such as non-speci�c �uorescence (Fnonspeci�c,p, e.g. due to o�-target

antibody binding), non-signaling �uorescence (Fnonsignaling,p, e.g. due to a pool of the target protein

that is not involved in the studied signaling process), and the actual signaling �uorescence Fsignaling,p.

Tn =
∑
p

(Fnonspeci�c,p + Fnonsignaling,p + Fsignaling,p) (3.1)

Take the case of β-catenin as an example. Basal β-catenin levels within Wnt3A-unstimulated

cells are thought to be essentially zero (Section 2.3.4), and yet the measured basal levels are quite

high. This is due in large part to the presence of a membrane-associated β-catenin pool that does

not participate in Wnt signaling. It is impossible to know how the total nuclear intensity breaks

down into the various components of Equation 3.1, and therefore a metric like fold-change is unin-

terpretable in terms of the extent of change for β-catenin, though it can be used as a normalization

method to allow for measurements of relative change.

An alternative metric is to simply subtract a reference intensity measurement from the exper-
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Figure 3.10: The cell lines tested in this dissertation have similar but non-identical timelines (a) and dose-
response curves (b). Shown are SKMEL2 (solid lines) and HCEC (dashed lines) cell lines. Cell lines show
measurable responses between 60-120 minutes and are saturated by 10ng/mL TGFβ3, 1000ng/mL Wnt3A,
or 100ng BMP4. Dose-responses are at 1hr. Y-axes as in Fig. 3.8, normalized so that the minimum and
maximum responses are 0 and 1. Concentrations used in a: TGFB3 (4ng/mL), Wnt3A (240ng/mL), BMP4
(70ng/mL).

imental intensity, as the only term remaining will be Fsignaling,experiment − Fsignaling,ctrl. While this

metric has a simple interpretation (absolute change in signaling-associated �uorescence intensity),

unfortunately it cannot be used to infer the absolute magnitude of response since �uorescence units

are arbitrary. Neither division nore subtraction can be used at the single-cell level for �xed-cell

assays, as the relative contribution of each �uorescent component may vary from cell to cell. Both

metrics can be used at the population level, however.

In summary, it is impossible to infer the absolute magnitude of change for a signaling molecule

using image-based immuno�uorescence without making assumptions that would be indefensible for

the immuno�uoresce studies in this chapter. External means of validation are then required to

show that the observed change is large enough to have a meaningful e�ect (as in Fig. 3.9, where

I show that the same experimental treatments yield sizeable changes to target gene expression).

Relative comparisons between experimental perturbations are possible in any case, and are easy to

understand, and so for convenience I use units normalized to a 0/1 scale throughout this chapter.

3.1.4 Timepoints and concentrations

Many studies of morphogenic signaling pathways con�ate the signal transduction and the transcrip-

tional decision-making processes due to use of long-term transcriptional readouts. This con�ation

may be acceptable for some experimental questions, but here my aim is to study integration specif-

ically at the level of signal transduction.

To do so, it is then necessary to minimize the e�ects of transcriptional feedback on the stimulated
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pathways. I therefore performed time-course experiments for each cell line and pathway in order to

identify the earliest timepoints that could still yield robust pathway responses (shown for HCEC

and SKMEL2 in Fig. 3.10a). For all cell lines and pathways the responses were measurable by 1hr

and maximal by 2hrs, and so my crosstalk experiments take place within this temporal window.

As I discuss in Section 1.5, it is not necessarily true that the use of a constant ligand concen-

tration across multiple cell lines is the appropriate way to ensure that the treatment is the �same.�

Fortunately, the dose-response curves for each cell line and pathway are not wildly di�erent (shown

for HCEC and SKMEL2 in Fig. 3.10b) and so I was able to determine concentrations that would

yield approximately half-maximal responses (EC50) or maximal responses across all cell types.

The reader may notice the use of di�ering ligand concentrations between the experiments in

this chapter. For initial experiments, I did not yet know how responsive the cell types were to each

ligand, and so concentrations were based on prior work in the lab or on literature-obtained values.

For later experiments, doses were �rst chosen according to whether a half-maximal or maximal

response was experimentally required, and these doses were then kept high over time to maintain

saturating levels in the face of slowly-degrading reagents and idiosyncratic sensitivities of cell lines.

Importantly, saturating concentrations minimize the consequences of pipetting error, since larger

error can be tolerated before a measurable di�erence in cellular responses will appear.

3.2 Signaling integration between Wnt and TGFBsf

Up to this point, the content of this dissertation has all been designed to set up the question: To

what extent do Wnt and TGFBsf interact during signal transduction, prior to nuclear entry? As

discussed throughout Chapter 2, these pathways have extensive opportunity for interaction and

are widely believed to integrate information at the level of transcription. Further, despite a lack

of shared core components, these signaling pathways have been tied together by numerous studies

showing cross-pathway protein-protein interactions (Section 2.5). What is still unclear, however,

is whether these interactions take place and have functional consequences to signal transduction

under endogenous levels of pathway components.

3.2.1 Wnt3A and TGFβ3 show complete signaling insulation

To measure the signaling crosstalk between TGFβ and canonical Wnt, I made use of the experimental

strategy described in the previous section by treating cells with combinations of each ligand. If

these pathways were to interact in a manner that a�ects signaling (i.e. in a manner that transfers

information) then the direct outcome of signaling (that is, nuclear canonical transcription factor

levels) would be a�ected.

To test this, I treated all four cell types with combinatorial inputs of TGFβ3 and Wnt3A, and

then measured nuclear accumulation of the transcription factors Smad2/3 and β-catenin by single-

cell image analysis. Data for all four cell lines are shown for 1, 2, and 18hr timepoints in (Fig. 3.11).

This is a lot of data, and so for simplicity I refer the reader to Fig. 3.12, which shows only the



CHAPTER 3. ON THE INSULATION OF MORPHOGENIC SIGNALING 61

Figure 3.11: Wnt and TGFβ are insulated during signal transduction. a, Wnt3A causes little or no
modulation of Smad2/3 responses at both short (1-2hr) and long (18hr) timepoints for all cell lines tested.
b, TGFβ3 causes little or no modulation of β-catenin responses, except in the case of long-term treatment
in HCECs (note the 18hr TGFβ3 and TGFβ3+Wnt3A responses). Y-axes and p-values as in Fig. 3.8, with
normalization per timepoint to set the control to 0 and the canonical-input-only condition to 1. These values
�xed by normalization are in gray. n = 3 replicates per point. p-values indicate whether each condition di�ers
from control (6=ctrl) or from the canonical-input-only condition (either 6=TGFβ3 or 6=Wnt3A). Concentrations
(1 and 2hr): 0.2ng/mL TGFβ3, 100ng/mL Wnt3A. Concentrations (18hr): 10ng/mL TGFβ3, 200ng/mL
Wnt3A.

essential data for HCECs and SKMEL2s.

I performed the initial experiment at 1 and 2hr timepoints, using ligand concentrations that

ranged from EC50 to saturating across the cell lines. In all cases, Wnt3A had small or statistically

insigni�cant e�ects on Smad2/3 levels, even when co-treated with TGFβ3 (Fig. 3.11a, 1 and 2hr

timepoints; Fig. 3.12a, top). The small Wnt3A-induced Smad2/3 increases may be real, but are

likely due to the trace contamination discussed earlier (see Fig. 3.6). The same absence of signaling

integration occurs in the other direction, from TGFβ3 to β-catenin (Fig. 3.11b, 1 and 2hr timepoints;

Fig. 3.12a, middle). In this case, the presence of TGFβ3 had no signi�cant e�ects on β-catenin levels

in any context. Therefore, Wnt3A and TGFβ3 are completely insulated during signal transduction

(Fig. 3.12a, bottom).

Because the literature is full of examples of these two pathways interacting over longer timescales,

I decided to repeat the experiment with a more distant timepoint. To ensure that the absence of

crosstalk was not due to low activity of the pathways. To my surprise, even at 18 hours there was

almost no measurable modulation of the transcription factor activity of one pathway by the other

(Fig. 3.11, 18hrs). There was one exception, however: HCECs show TGFβ3→β-catenin interaction
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Figure 3.12: Summary �gure for insulation between Wnt3A and TGFβ3, limited to SKMEL2s and HCECs
at 2 and 18hrs. a, At 2hrs, there is complete signaling insulation between Wnt3A and TGFβ3. b, However,
context-dependent transcriptional integration already occurs at the same timepoint: HCECs show inhibition
of Axin2 mRNA expression by TGFβ3 treatment, while SKMEL2s show complete transcriptional insulation.
c, This context-dependent e�ect shows up at the level of signaling hours later, in HCECs. The increase
in β-catenin due to TGFβ3 signaling likely stems from the inhibition of Axin2 mRNA (since Axin2 is a
negative auto-regulator of Wnt3A). Thus, signaling insulation (a) combined with transcriptional integration
(b) leads to a new, biased signaling state over time (c). Daggers indicate signi�cant departure from pathway
insulation. Data for a and c from Fig. 3.11. Data for b from Fig. 3.13.

(Fig. 3.12c, middle). Indeed, TGFβ3 treatment alone was su�cient to activate β-catenin, and

co-treatment with Wnt3A yielded an approximately additive e�ect.

The complete absence of cross-pathway transcription factor modulation at early timepoints

strongly suggests that the Wnt3A and TGFβ3 signaling cascades are completely insulated from one

another, displaying no signaling crosstalk whatsoever (Fig. 3.12a, bottom). Further, the frequent

absence of cross-pathway modulation even given signi�cant time for transcriptional feedback shows

that pathway insulation can be maintained even after the transcriptional network has been remod-

eled by morphogenic signals. Finally, the fact that HCECs lose this insulation at later timepoints

demonstrates a case of context-dependency (i.e. dependency on cell type) in cellular decision-making

despite context-independent insulation of signal transduction (Fig. 3.12c, bottom).
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Figure 3.13: Wnt and TGFB show context-dependent transcriptional crosstalk. a, In the melanoma
cell lines, TGFβ3/BMP4 have no e�ect on Axin2 expression, while Wnt3A treatment has no e�ect on
Smad7 expression. 2hr treatment. b, In HCECs, TGFβ3 reduces baseline and blocks Wnt3A-induced Axin2
expression. This e�ect is already apparent at 2hrs and is maintained at 6hrs. Wnt3A does not a�ect Smad7
expression in any context. Bold `+' indicates doubled TGFβ3 concentration, demonstrating transcriptional
saturation of this pathway. Fold-change is relative to the control condition. Mean and standard deviation
of 3 replicates, `*' indicates two-tailed p-value <0.05 (Student's t-test). Concentrations: 10ng/mL TGFβ3,
25ng/mL BMP4, 200ng/mL Wnt3A. See Methods for qPCR details.

3.2.2 Wnt and TGFBsf show context-dependent transcriptional integration

Due to the surprising result that the direct outcomes of signaling (transcription factor levels) are

completely insulated between Wnt3A and TGFβ3, I decided to test for insulation at the level

of transcription. By measuring mRNA expression 2hrs after treatment, I reasoned that I could

identify whether insulation at the level of signaling (as already demonstrated) necessarily implies

insulation at the level of transcription. Because Axin2 and Smad6/7 are the only prototypical

transcription targets of the TGFBsf and Wnt pathways, I measured mRNA levels of these genes

following combinatorial ligand treatment (Fig. 3.13; simpli�ed in Fig. 3.12b).

By qPCR, neither of the melanoma cell lines show transcriptional crosstalk between the canonical

TGFBsf and Wnt3A outputs Smad7 and Axin2 (Fig. 3.13a), implying that these pathways are

insulated both in terms of the quantity of the transcription factors sent to the nucleus (as shown

in Fig. 3.11) and in the general activity of those transcription factors. (This is not to say that

these transcription factors do not a�ect one another for any transcriptional targets.) However, as

before, HCECs display a di�erent behavior. By 2 hours HCECs show strong modulation of Axin2

expression by TGFβ3 treatment(Fig. 3.12b), and this e�ect increases over time (Fig. 3.13b).

The modulation of Axin2 by TGFβ3 in HCECs is intriguing for several reasons. First, it provides

a simple explanation for the 18hr transcription factor modulation result observed in (Fig. 3.12c),
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Figure 3.14: The TGFβ and BMP signaling pathways are additive, and do not compete for Smad4. a,
BMP4 causes no modulation of Smad2/3 responses at both short (1-2hr) and long (18hr) timepoints across
all cell lines tested. b, TGFβ3 additively modulates pSmad1/5/8 responses to BMP4. c, Measurement of
TGFβ3/BMP4 crosstalk by Western is consistent with the imaging data. SKMEL2, 2hr treatment. a,b,
Y-axes, normalization, and p-values as in Fig. 3.11. Concentrations (1 and 2hr): 0.2ng/mL TGFβ3, 5ng/mL
BMP4. Concentrations (18hr): 10ng/mL TGFβ3, 25ng/mL BMP4. Western courtesy Curtis A. Thorne
(Altschuler & Wu lab, UT Southwestern).

since repression of Axin2, a negative autoregulator of β-catenin, could block the negative feedback

otherwise present after Wnt3A stimulation. Second, it clearly shows that HCECs can simultaneously

display signaling insulation and transcriptional crosstalk, demonstrating that these two processes can

be completely independent. Finally, the general lack of crosstalk across all cell lines, coupled with the

single instance of transcriptional crosstalk in HCECs, is suggestive that the oft-cited idiosyncratic

outcomes of Wnt/TGFBsf crosstalk are predominantly due to context-dependent transcriptional

crosstalk.

3.3 Signaling insulation between BMP and TGFβ

The above result is perhaps not so surprising, that two pathways (Wnt3A and TGFβ3) lacking

any shared core components do not modulate one another during signal transduction. Under this

rationale the BMP2/4 and TGFβ1/3 pathways might then be expected to interact, given their



CHAPTER 3. ON THE INSULATION OF MORPHOGENIC SIGNALING 65

Figure 3.15: Summary �gure showing the lack of Smad4 competition between BMP4 and TGFβ3, limited
to SKMEL2s and HCECs at 2hrs. a, There is additive signaling crosstalk from TGFβ3 to pSmad1/5/8, but
not from BMP4 to Smad2/3. b, At the same time, the transcriptional output from the combined pathways
also appears to be additive. c, Smad4 RNAi reduces protein levels of Smad4 in HCECs. Histone H3B
serves as a loading control. d, Smad4 RNAi in HCECs reduces overall TGFβ3 responsiveness (top) but
not pSmad1/5/8 responsiveness (middle), while the signaling crosstalk between TGFβ3 and BMP4 remains
approximately additive. Thus, competition for Smad4 does not cause cross-pathway signaling inhibition
between TGFβ3 and BMP4. Normalization for d uses the control and single-ligand responses from the
scramble siRNA treatment to de�ne 0 and 1. Y-axes, normalization, and p-values as in Fig. 3.11. Daggers
indicate signi�cant departure from pathway insulation. Data for a from Fig. 3.14. Data for b from Fig. 3.13.
Western courtesy Curtis A. Thorne (Altschuler & Wu lab, UT Southwestern).

shared requirement for Smad4. Indeed, the claim of intra-TGFBsf crosstalk via Smad4 competition

has been cited in many reviews and papers, but to my knowledge has not been directly tested

(Section 2.2.5). I therefore decided to use the same experimental setup as above to measure the

extent of crosstalk between BMP4 and TGFβ3 (Fig. 3.14). The essential data is again summarized

in a simpler �gure (Fig. 3.15). If these pathways do compete for Smad4, then co-treatment with

saturating concentrations of both ligands (to maximize sequestration of Smad4) should cause one

or both pathways to be attenuated.

BMP4 treatment had absolutely no e�ect on Smad2/3 in any cell line (Fig. 3.14a; Fig. 3.15a,top).

There is crosstalk in the other direction: treatment by TGFβ3 is su�cient to activate pSmad1/5/8,

and the presence of both ligands yields an additive behavior (Fig. 3.14b). Importantly, these two

pathways also have an approximately-additive e�ect on transcription of their shared downstream

target, Smad7 (Fig. 3.13; Fig. 3.15b,top). As noted in Section 2.2.4, while the BMP2/4 and TGFβ
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pathways are generally considered to be distinct, they have been shown to cross-activate one another

in various settings. Western blotting was not quantitative enough to con�rm the activation of

pSmad1/5/8 by TGFβ3, but is consistent with an absence of negative cross-regulation (Fig. 3.14c).

In any case, both the insulation of Smad2/3 from BMP4 and the additive crosstalk between TGFβ3

and pSmad1/5/8 directly argue against competitive inhibition between these pathways during signal

transduction.

I then wondered if the absence of inhibitory crosstalk between BMP4 and TGFβ3 was a context-

dependent phenomenon. For example, the additive behavior is consistent with the quantity of Smad4

being so high as to be non-limiting, in which case both pathways would e�ectively have distinct

pools of Smad4 (as in Fig. 3.1c). I therefore used siRNA to knock down Smad4 in order to make

Smad4 a limiting factor in an e�ort to modulate the form of crosstalk (e.g. to a non-additive form

as in Fig. 3.1d).

As a consequence of Smad4 depletion (Fig. 3.15c), TGFβ3 signaling was strongly reduced overall

but was still not inhibited by co-treatment with BMP4 (Fig. 3.15d, top). Levels of pSmad1/5/8,

on the other hand, were not a�ected overall by Smad4 knockdown (Fig. 3.1d, top) and the e�ect of

co-treatment remained roughly additive. Therefore, in contrast to expectations, BMP4 and TGFβ3

do not negatively regulate one another at all at the level of signal transduction, and do not compete

for Smad4.

3.4 Discussion

In this chapter I measured the extent of crosstalk between key morphogenic pathways, using a

mechanism-independent and endogenous approach that kept signaling crosstalk separable from tran-

scriptional crosstalk. By doing so, I discovered that canonical Wnt and TGFβ do not crosstalk at all

during signal transduction, and that TGFβ and BMP do not compete for Smad4 during signaling.

Both of these results yield important simpli�cations to the ever-increasing apparent complexity of

signal transduction that stems from discoveries of putative nodes of crosstalk. Below, I discuss

speci�c implications in more detail.

3.4.1 Morphogenic signaling is insulated

As I explain in Section 2.6, crosstalk during signal transduction is likely to decrease the accuracy

of the intra-nuclear model of the extracellular environment. In such a case, the information that

eventually passes to the nucleus for transcriptional processing represents a simpli�ed view of the

cellular microenvironment, such that the nucleus then has to make a decision with more uncertainty

about the state of the outside world. By instead allowing information to pass relatively un�ltered

from the extracellular milieu to the nucleus (e.g. by insulating information channels from one

another) the nucleus has access to a more accurate model of the microenvironment and, presumably,

can then make more useful decisions.

The results presented in this chapter suggest that the morphogenic Wnt and TGFBsf pathways
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are indeed isolated from one another, such that they can each pass information to the nucleus

without cross-pathway interference. As each pathway is only capable of sending a small amount

of information regarding ligand concentration (not shown, but one can infer this from the broad

distributions in Figs. 3.7 & 3.5), maintaining this information from distinct pathways may be the

only way that a cell can obtain an accurate internal model of its environment. Therefore, I propose

that signaling insulation may be a general property of morphogenic pathways whose key outputs

are changes to the transcriptional network.

Signaling insulation allows for the internalization of a somewhat un�ltered view of the cellular

microenvironment (Fig. 3.12a, cartoon). Context-dependent transcriptional feedback (Fig. 3.12b,

cartoon) can then modulate the signaling pathways over time (either by auto-regulation or cross-

pathway regulation) (Fig. 3.12c, cartoon). The result of this nuclear decision-making would be to

essentially bias the cell's view of what could even be an unchanging environment. Thus, by mixing

insulated signaling with long-term feedback, cells can maintain a relatively complete internal model

of the environment but interpret that environment in a temporally biased manner.

An obvious argument against general morphogenic insulation in my own data is that TGFβ3

appears to activate the BMP-speci�c Smads (Smad1/5/8). I note that I was unable to verify that

this crosstalk is speci�c (i.e. not due to a contaminant) as addition of an anti-TGFβ antibody along

with TGFβ3 treatment did not signi�cantly block the interaction (data not shown). For this reason,

I only interpret the BMP/TGFβ crosstalk data to say that one does not inhibit the other.

An additional counter-argument is that these pathways may in fact interact, but I have measured

the wrong thing to be able to identify the interactions. This would be a useful discovery, as what

my work shows is that the generally-accepted method of encoding used by these pathways shows

complete insulation. It seems to me quite possible that there exists some information channel, at

the level of signaling, that does indeed integrate information from both Wnt and TGFβ signals.

3.4.2 BMP and TGFβ do not compete for Smad4

While it is widely believed that co-activation of the BMP and TGFβ pathways should result in some

sort of cross-pathway inhibition via Smad4 competition, I �nd no evidence of this phenomenon.

Indeed, I am unaware of any studies that explicitly show this form of crosstalk, and some studies

have shown that Smad4 is highly abundant [92,97].

Interestingly, my data show that even when Smad4 is brought down to limiting levels, there is

still no cross-pathway inhibition. Smad4 is seen as the factor that allows receptor-Smad (rSmad)

access to the nucleus, and it is generally believed that this interaction is stoichiometric and non-

transient [96]. If this were the case, how could limitation of Smad4 selectively ablate one arm of

Smad responses but not the other?

One possibility is that my observed di�erence between an ablated Smad2/3 and maintained

pSmad1/5/8 responses (Fig. 3.14e) is due to some di�erence between the behavior of the bulk

protein on one hand versus the phosphorylated form on the other. However, such an e�ect would

be di�cult to reconcile with the standard model that the phospho-state allows Smads to stay in the
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nucleus (i.e. the nuclear phospho- and total-protein levels should vary together).

What is, to me, a more likely explanation is that one of the consequences of ablating Smad4

signaling, wich requires 48 hours of transfection, is a change to the transcriptional network with

respect to TGFBsf pathway components. For example, loss of Smad4 may have resulted in a decrease

in the quantity of TGFβ receptors, co-receptors, or even an increase in secreted antagonists. I did

not test this, and therefore cannot make a conclusion with respect to the di�erential e�ect of Smad4

RNAi on Smad2/3 and pSmad1/5/8. Therefore, the most reasonable takeaway from this data is

simply that reduction in Smad4 does not force pathway crosstalk.

The lack of competition for even low levels of Smad4 leads to a potential modi�cation of the

current model of Smad nucleo-cytoplasmic shuttling (see Section 2.2.4). It may be that interactions

of the rSmads with Smad4 are more transient than is currently believed, and that association with

Smad4 is not required for nuclear receptor-Smad activity and maintained localization. In such a

case, Smad4 could behave more like an enzyme than a stoichiometric sca�old, in that single Smad4

molecules could mediate the nuclear translocation of numerous rSmads. If this process were fast

enough, then the two classes of rSmads would e�ectively have access to di�erent pools of Smad4;

activity of one pathway would not �soak up� the co-Smad even at pathway saturation.

3.4.3 Future directions

While this work has demonstrated that morphogenic pathway integration may not be as complicated

as we think, there are many unanswered questions. Perhaps the most straightforward questions to

address are on the generality of morphogenic insulation. Does insulation extend to other classic

morphogenic pathways (such as Hedgehog and Notch)? Does it extend to yet more diverse cell lines

than those tested here? I suspect that signal transduction insulation is a general principle, and

future work using the approaches in this chapter could provide the answers to these questions.

It would also be informative to study the kinetics of crosstalk. For example, in the case of

HCECs, which show cross-pathway modulation of transcription factors after 18 hours (Fig. 3.11),

one could measure how much time is required after the signal this crosstalk becomes apparent. Such

data could be used to determine how long it takes for a cell to build a new, biased model of its

environment, and how stable that biased model is in the presence of either a constant or changing

signal.

Throughout this dissertation I have been harping on this concept of information transfer, as we

must always make assumptions regarding which cellular and protein properties are carrying signaling

information. My data for Wnt and TGFBsf suggest that these pathways carry relatively little

information about absolute extracellular ligand concentrations. This lack of information implies

either that cells are terrible concentration detectors or that we are not looking at the right encoding

relationship between these ligands and the internal cellular model of those ligands. A comprehensive

study designed to sort out the sources of information, and the precise intracellular properties into

which that information is encoded, will be essential to our understanding of how cells make decisions

as a result of TGFBsf and Wnt signals.
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Table 3.1: Recombinant proteins used in this chapter. Vendors: CST, Cell Signaling Technology Inc
(Danvers, MA); Life, Life Technologies (Grand Island, NY); R&D, R&D Biosystems (Minneapolis, MN).

Protein Vendor Catalog # Lot #

BMP4 CST 4697
DKK1 R&D 5439-DK SMR2713041
Noggin R&D 6057-NG
TGFβ1 Life PHG9204
TGFβ3 CST 8425
Wnt3A-LP R&D 5036-WN RSK31
Wnt3A-HP/CF R&D 5036-WNP/CF SVH0813081
Wnt5A-LP R&D 645-WN
Wnt5A-LP/CF R&D 645-WN/CF MCR4513111

3.5 Methods

The rationale and general methodology for image correction and analysis are provided in Chapter 4.

Speci�c experimental details are provided in the image captions; this section provides information

that is broadly applicable or more detailed than is appropriate for a �gure legend.

Cell culture. I maintained all cells in RPMI1640 (Cellgro #10-040) with 5% FBS (Gemini Bio-

Products #100-106) with antibiotics/antimycotics under standard tissue culture conditions (37◦C,

5% CO2). In preparation for imaging, I plate ∼ 104 cells per well of a 96-well plastic plate (Corning

#353219) and a �fth of that for 384-well glass plates (Nunc #164586). I use DMEM (Gibco

#11965-126) at the time of seeding when starvation conditions are needed. In either case, cells are

left to adhere overnight before being treated the following day. For treatments, I dilute recombinant

protein into the same media that the cells are grown in. The proteins used for treatment are listed in

Table 3.1. Most of the plates used in this chapter are 384-well glass plates. Human colonic epithelial

cells were a kind gift from Dr. Jerry Shay (University of Texas Southwestern, Dallas TX) [213].

The other cell lines were obtained from American Type Culture Collection (Manassas, VA).

Gene expression. I plated cells in 96-well plastic plates as above and left them to adhere

overnight before treatment the following day. Each treatment was performed in triplicate wells. I

used an Ambion Cells-to-CT kit (Life Technologies) to extract mRNA according to manufacturer

instructions, and passed these samples on to the UT Southwestern Medical Center Microarray core

facility for cDNA library preparation and TaqMan qPCR. The samples were given obfuscating iden-

ti�ers and within-plate positions so as to blind the core facility to the treatments and replicates. Taq-

Man probes (Applied Biosystems) comprised Smad7 (Hs00998193_m1), Axin2 (Hs00610344_m1),

and 18S rRNA (Hs99999901_s1). The core facility returned the raw threshold cycle (Ct) values

for each probe/sample combination, which I �rst internally normalized by 18S rRNA levels to yield

Ct(probe,norm) = Ct(probe) − Ct(18S) and then converted these values to fold-change over control.

RNA interference. I used a Dharmacon Smad4 siGENOME SMARTpool (GE Life Sciences,

#M-003902-01) to ablate Smad4 in HCEC cells. For transfection I used Lipofectamine RNAiMax

(Life Technologies) according to manufacturer instructions. The transfection media was left on

cells for 48hrs, after which I replaced the media with fresh media for >2hrs prior to experimental

treatment.

Western blots. SDS-PAGE and western blotting were performed using standard techniques.
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Table 3.2: Antibodies used in this dissertation. Vendors: CST, Cell Signaling Technology Inc (Danvers,
MA); BD, BD Biosciences (San Jose, CA); Abcam (Cambridge, MA); Life, Life Technologies (Grand Island,
NY); R&D, R&D Biosystems (Minneapolis, MN). The indicated dilutions are for immuno�uorescence unless
appended with a `w' for Westerns. The appendix `b' indicates use as a blocking antibody.

Target Dilution Source Vendor Catalog # Lot #

Smad2/3 1/1000 Rabbit CST 8685 3
pSmad1/5/8 1/100 Rabbit CST 9511 8
β-catenin 1/100 Mouse BD 624084
Smad4 1/100 Rabbit CST 9515 4
Smad4 1/100 Mouse Abcam 3219 GR94411-1
Smad1 1/100 Rabbit CST 6944 2
Smad2 1/100 Rabbit CST 5339 4
pSmad2/3 1/100 Rabbit CST 8828
H3B 1/1000w Rabbit CST 9715
TGFβ1-3 1/1000bw Mouse R&D MAB1835 CCI1512031
AlexaFluor 546 Anti-Mouse IgG (H+L) 1/1000 Goat Life A11003 1256168
AlexaFluor 488 Anti-Rabbit IgG (H+L) 1/1000 Goat Life A11008 1470706

I plated cells in 6-well dishes and treated them the following day. After treatment, I washed the

wells with ice-cold PBS and then lysed with RIPA bu�er (50 mM Tris (pH 8.0), 150 mM NaCl,

1% NP40, 0.5% deoxycholic acid, 0.1% SDS, 0.5 mM EDTA) containing protease and phosphatase

inhibitors (Sigma Aldrich). Antibodies used are shown in Table 3.2, generally with 1:1000 dilutions

(the CST rabbit Smad4 antibody was used for blotting).

Immunostaining. All solutions are made in PBS (Gibco #70013). All wash steps are repeated

3 times with 0.1% Tween20 (Fisher #BP337). Antibodies are diluted into 2.5% BSA (Fisher

#NC9871802). Cells are �xed in 4% paraformaldehyde (Electron Microscopy Sciences #15710) for

10min, permeabilized with 0.2% Triton X-100 (Sigma #93443) for 10min, then washed. I then

incubate the samples overnight at 4◦C with appropriate primary antibodies (Table 3.2). After

washing, I secondary-stain for 2hrs at room temperature with added 2.5µg/mL Hoechst. Finally, I

wash the samples once more before storing them in PBST for imaging. For all experiments, I prepare

6-18 uniformly-�uorescing wells for measuring image shading, using the same dissolved secondary

antibodies and Hoechst.

Imaging. I imaged all stained plates on a Nikon Eclipse Ti-E2000 microscopes controlled by NIS

Elements version 4, with an Andor Zyla sCMOS 11-bit camera. I wrote custom image coordinate-

generating software in Python for increased stage precision. To obtain the signal from the camera

alone, I take detector images at low exposure times with no light source.

Image Correction. The background and shading correction followed the pipeline described in

Section 4.3.3 using custom Matlab software.

Segmentation and quality control. For all analyses, I wrote a custom Matlab threshold

segmentation algorithm to automate detection of nuclei using the Hoechst �uorescence channel. I

manually set �lters for size and shape, by cell type, to remove objects that are likely to be artifacts.

For each nucleus, I then extract its area (in pixels) and the total of all pixel intensities for all imaged

channels. Finally, I follow the DNA-based quality control and single-cell regression-based correction

described in Section 4.5 using custom R software. The resulting high-quality G1-phase cells are

used for analysis.
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Mutual information measurement. I implemented the unbiased mutual information algo-

rithm as described in [16] and discussed in Section 4.4.4, using a custom Matlab script.



Chapter 4

On quantitative imaging of single cells

4.1 Introduction

Fluorescence microscopy is a powerful tool for measuring single-cell properties, especially when

sub-cellular spatial resolution is required. With modern computing power and robotics, we can

now use this technology to amass large quantities of image data and so study cell biology with

increasing breadth and depth. Accurate high-throughput imaging and image analysis of single-

cell data across large numbers of conditions is becoming routine in some labs and will continue to

become even more commonplace as the technology simultaneously improves and becomes cheaper.

The availability of the technology has led, in recent years, to a boom in large-scale microscopy

studies of single-cell phenotypes [27, 216�221]. However, our ability to generate microscopy data is

outpacing our collective ability to analyze and interpret it.

Fluorescence microscopy has been an experimental staple of biology for many years, though it

is still infrequently used for rigorous quantitative analysis. More often, researchers use �uorescence

imaging to demonstrate a particular phenotype (as I do in Fig. 3.2), or to manually count the

instances of a visually obvious phenotype. Our own visual perception is notoriously prone to error,

however, as our brains can choose to perceive patterns that do not exist, thus allowing for latent

biases to a�ect how we manually tally the data. As biologists we are often painfully aware of this

problem, and so there seems to be a general unease when it comes to evaluating imaging data. We

all know the joke that, in published �gures, �representative image� is a euphemism for �the best

image I could �nd.�

The distrust is understandable, as proper evaluation of imaging data is a non-trivial task, and

researchers rarely publish enough details to even allow for thorough evaluation in the �rst place.

This problem is made worse by a lack of imaging and analysis standards, and by the di�culty

inherent to making large image-datasets publicly available.

Biological image quanti�cation is a di�cult and generally unsolved problem [222], and its various

approximate solutions tend to require a level of expertise in mathematics and computer program-

ming, and at least a cursory understanding of microscopy optics. Importantly, it also requires

expertise in the experimental biology under study. Few, if any, biology training programs prepare

72
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students for such broad practical knowledge.

Cell biologists, like myself, are rarely trained in quantitative �elds and so we tend to rely on our

colleagues in analytical �elds to do the quantitative work for us. Those analysts, in turn, typically

lean back on the biologists for understanding the �what� and �why� of the analysis. Unfortunately,

the large knowledge and language asymmetry between biologists and analysts creates steep commu-

nication barriers that are hard to break down. Therefore, the full bene�ts to cell biology of careful

quantitative microscopy may be going untapped.

My own work relies almost entirely on imaging (Chapter 3) and, having spent so much time

thiking about and performing image analysis, I have come to prefer imaging over other methods

not only for its e�ciency in measuring single-cell properties across large numbers of conditions, but

also because it provides a literal view into the mysterious and beautiful world of the cell. I therefore

hope that careful single-cell image analysis will someday become as commonplace as Western blots.

My overarching goal in writing this chapter is to provide an image analysis resource that is both

accessible to classically trained biologists and useful for analysts from non-biological �elds that may

be preparing to move into the �eld. In general, I aim to provide careful biological and analytical

reasoning for a subset of the many choices that must be made with respect to �uorescence imaging

experiments. In speci�c, I focus on dealing with experimental and imaging artifacts and noise, and

how to choose biologically meaningful single-cell measurements. The methods and rationale in this

chapter are used extensively in Chapter 3.

4.2 Images as layers of �uorescence

The goal of quantitative biological imaging, in overly general terms, is to perform a set of meaningful

mathematical operations on �uorescent images. We therefore require a mathematical model of

�uorescence images to use as a reference when discussing image correction and analysis. Note that

the model I construct below is designed to be intuitive with respect to cell culture microscopy, and

so it di�ers slightly from the more general models that it is founded upon [223�226].

A �uorescence microscopy image I can be thought of as a series of �uorescing layers, each with

its own distinct properties, that add together to create the �nal image (Fig. 4.1). In this simple

model, a �uorescence image is composed of multiple foreground and background layers that

come from distinct components of the sample. (As described below, I use speci�c de�nitions of

these terms �foreground� and �background� that may di�er from one's intuition.) It is important

to note that additivity is a special property of �uorescence microscopy, as bright-�eld and other

non-�uorescence signals do not necessarily behave in this way [225]. Further, there are cases where

the layers of �uorescence will become non-additive, as the �uorophores and the camera will display

non-linear behaviors in certain ranges [227]. The model I describe here, and all analysis in this

chapter, assumes that all contributing components are behaving within their linear ranges.



CHAPTER 4. ON QUANTITATIVE IMAGING OF SINGLE CELLS 74

Figure 4.1: A �uorescence image I of a cell is the sum of distinct �uorescence layers. Here, F1 is the
foreground signal of interest, F2 is non-speci�c staining within the cell, and B is background �uorescence
from the imaging surface.

Experimental image layers F and B

In this dissertation, foreground (F ) refers to any image layer that emits �uorescence in a spatially

non-uniform manner within an image; the layer is not ��at.� The most useful foreground layer is

due to the speci�c binding of a �uorescent probe to its target, as this layer is likely the one that is

under study. Where my de�nition of �foreground� may diverge from others is that I include spatially

non-uniform �uorescence artifacts as foreground layers. Such artifacts might include non-speci�c

cellular staining, cellular auto�uorescence (as for layer F2 in Fig. 4.1), and staining artifacts such

as halos, bubbles, or bright puncta. Many biologists refer to these artifacts as �background�, but I

have a speci�c de�nition for this term as well.

Also speci�c to this dissertation, �background� (B) refers to any image layer that emits �uores-

cence in a spatially uniform manner within an image (e.g. layer B in Fig. 4.1). In other words, the

layer is ��at,� aside from variation between pixels due to measurement error. Background layers

may include re�ections from the imaging surface, auto�uorescence from unbound �uorophore in the

solvent, or �uorophore that has adhered to the imaging surface.

Finally, all �uorescent image layers scale linearly with excitation light intensity and exposure

time (again, so long as we are in the linear range for all image components). For convenience we

can fold excitation intensity and exposure time into a single term t, which I refer to simply as

�exposure.� Taken together we get the (yet-incomplete) image model in Equation 4.1 that contains

n foreground and m background layers.

I = t

 n∑
i=1

Fi +

m∑
j=1

Bj

 (4.1)

Image modi�cation by the microsope

The model in Equation 4.1 describes the �uorescing layers of an image, but there are also non-

�uorescent properties of images. In digital �uorescence microscopy, the camera typically has some

non-zero baseline value that I refer to as the �detector value� D. This value is a constant and does

not change with exposure [228].
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Figure 4.2: A �uorescence image can be modeled by I = D + S(F +B), where D is the baseline detector
value, S is shading, F is the foreground, and B is the background. Here, synthetic images of two foreground
objects demonstrate each of these components. Plots indicate pixel values along the white line drawn across
the image as i a. a, Two foreground objects that vary 2-fold in intensity are shown. b, Addition of background
reduces the apparent fold-di�erence between the two foreground objects, as does addition of the detector
(c). d Shading distorts the foreground and background, but leaves the detector contribution unchanged.

Uneven illumination of the image by the light source, which I refer to as �shading� (S), is

an optical problem inherent to microscopy [227, 229�231]. Shading is a consequence of how light

moves through lenses and so it is not just a property of wide-�eld microscopy, though this is a

common misconception: shading is also present in confocal and total internal �uorescence (TIRF)

microscopy [231,232].

Shading can be interpreted as variation in relative exposure as a function of position within the

image. In other words, S modi�es t in a pixel-coordinate dependent manner. Because �uorescence

units are typically arbitrary, in that their absolute values carry no meaning, I simplify the model

further by setting t = 1 and dropping it from the equation (note that analyses making use of

varied exposure times could also collapse S and t into a single term). By including the S and

D components, and a noise term ε to absorb experimental error, we get the complete model in

Equation 4.2.

I simplify the model further by collapsing all foreground and background layers into single

terms. The resulting image model in Equation 4.3 is used throughout this text. This simpli�cation

is useful because the basic image correction and analysis methods presented in this chapter do

not distinguish between foreground layers or between background layers. It is useful to keep the

multi-layer model in mind, however, as it will help when trying to untangle the overall �uorescence

behavior of experimental images. See Fig. 4.2 for a visual demonstration of the simple model.

I = D + S

 n∑
i=1

Fi +

m∑
j=1

Bj

 ε (4.2)

I = D + S(F +B)ε (4.3)
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Figure 4.3: An image Ir,c is a matrix of intensity values, with pixel coordinates given by row r and column
c. Analyses can be performed on single pixels, the entire image, image neighborhoods, or image stacks as
shown. In the case of an image stack, z refers to the image position within the stack. Note that z need
not refer to a height, as in the common z-stacks of confocal microscopy, but can also indicate di�erent color
channels or even entirely unrelated images. In e�ect, z is a �height� within the image stack that may not
correspond to the physical height of an imaged within a sample.

4.2.1 Properties of the image components

With a model in place, it is useful to obtain some intuition for how to think about images in

this framework. First, note that the image itself, and each layer that makes it up, is a matrix of

intensity values (Fig. 4.3). Many analytical operations can be performed per pixel coordinate, in

e�ect ignoring the presence of neighboring pixels. Other operations take into account those neighbors

(this is especially true of segmentation, discussed later). Finally, we can think of a �stack� of images,

in the same way one would stack a deck of cards. We can perform operations �down the stack� at

particular pixel coordinate. Such operations include �per-pixel� means and medians.

Each component of the image model in Equation 4.3 is a matrix of the same dimensions, and

each has distinct properties. The foreground components of F have completely idiosyncratic values,

both within and between images, as these values depend on where cells are, what is being stained,

and what kinds of randomly-positioned artifacts are present. Indeed, the unknown behaviors of the

foreground layers are what we typically aim to understand via image analysis.

The background layers of B are de�ned to be more predictable, in that they are unchanging

by position within an image. The background should be constant between images as well, when

identical experimental conditions are used to obtain those images. However, the total background

may change as a consequence of some experimental perturbation. For example, some small molecules

used as drugs may �uoresce and so add an additional background layer. Finally, note that due to

shading these ��at� background layers will appear distorted in uncorrected images. To clarify, then,

I de�ne background layers as those that are constant across an image in the absence of shading.

The detector layer D has the simplest behavior, as it can be considered constant regardless of

the imaging and experimental conditions. �Constant� in this case means that the value at any given

pixel position Dr,c does not change over time or between images. The values within an image, on

the other hand, may vary (see Fig. 4.4a).

The shading value S is problematic for analysis in that it distorts the B and F layers in non-
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Figure 4.4: Example within-image variation of the detector D and shading S image components. a, Per-
pixel averages of 10 detector images from two cameras are shown. Camera 1, Andor Zyla sCMOS 11-bit.
Camera 2, Roper Scienti�c CoolSnap HQ2 CCD 14-bit. Intensities and images are scaled independently.
b, Shading patterns from two optical channels. Uniformly-�uorescent background images were made with
dissolved Hoechst or wheat germ agglutinin (WGA)-TRITC in the DAPI and TRITC optical channels. Note
that each channel has a dramatically di�erent shading pattern and overall degree of shading. Histograms
show the all-pixel distributions of shading values, which are de�ned to have a median of one (a robust variant
of E[S] ≡ 1, de�ned in Section 4.3).

trivial ways. Like D, this layer also shows variation within an image. The shading pattern caused

by the objective lens tends to show brighter �uorescence at image centers and weaker �uorescence at

the edges. However, the presence of other components in the light path, such as �lters, can modify

this shading pattern (Fig. 4.4b) [233]. Unlike D, the shading pattern can vary between images

as well, though in Section 4.3 I show that this variation can be both predictable and correctable.

S distorts the F and B layers multiplicatively, and can cause as large as 1.5- to 2-fold intensity

di�erences across an image [234].

Finally, we are left with the noise term ε. I use this term speci�cally to capture measurement

noise, not true biological variability. The largest source of measurement noise for modern �uores-

cence imaging is probably due to the combination of two factors: the error in converting photon

counts to electrons, and the error introduced during transmission of those electrons from the cam-

era. Combined, this measurement error introduces an intensity-dependent uncertainty in the total

measured intensity of the pixel Ir,c. In general, the relative error decreases as a function of the

square root of intensity [228].
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4.3 On image correction

Fluorescence microscopy images contain non-biological data, distortions, and artifacts that may

confound analytical results if not addressed. In the terms of the image model from the previous

section (4.3), the subject of study in �uorescence imaging is contained within a subset of the

foreground layers. All non-foreground components should thus be removed in order to obtain

meaningful quantitative results. Ideally, the foreground layers that are not of interest (especially

artifacts) should also be removed, though this is a much more di�cult problem that I do not address

in this dissertation. In essence, from the original image I = D + S(F + B)ε, we need to obtain F :

obtaining F is the goal of image correction.

It is important to be aware that image correction is not a solved problem. There are many ways in

which it can be done, several of which I review in Section 4.3.2, but the most commonly-used methods

produce incomplete correction and/or are prone to generating artifacts. Further, methods sections

of papers that rely on imaging often do not explain their correction methodology at all, making it

di�cult to evaluate some published results. I therefore make the importance of image correction

a focus of this chapter, and describe an image correction approach that I developed for accurate

determination of F in the di�cult context of high-throughput microscopy Section 4.3.3 [235].

Before going into the details of image correction, I should �rst address whether this step is even

necessary. After all, any processing step could introduce artifacts and thus potentially do more

harm than good. Normal cell-to-cell variability is already relatively high, with standard deviations

of ∼15-30% for protein concentrations [28]. One might then wonder whether error introduced by

non-foreground image components would make much of a di�erence. Here I show that it can indeed

make a di�erence. Unsurprisingly, the size of the di�erence (and thus the importance) is highly

dependent on the properties of each particular image dataset, the measurement methods used, and

the experimental goals.

4.3.1 Non-foreground components distort single-cell phenotypes

A particular cellular phenotype can be represented as a set of measurements. For example, a

cell phenotype might be composed of its measured size, shape, texture, and average �uorescence

intensities in multiple color channels. Each measurement is generally referred to as a �feature.� The

diversity of features that can be measured for a single cell is only limited by the imagination of

the investigator. It would therefore be impossible to develop a single comprehensive argument for

the importance of image correction that covers all possible ways of measuring cellular phenotypes.

Instead, I make a case study of several commonly-used and biologically-interpretable single-cell

features: the average, total, and ratios of �uorescence intensity.

How to quantify the e�ects of image correction on data is not obvious, since that data can be

used in many ways depending on experimental goals. There are, however, aspects of single-cell

distributions that are meaningful across a broad array of experiments, and so I use these as metrics

when measuring the consequences of image correction. These are the mean (µ), standard deviation
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Table 4.1: Symbols used in the mathematical derivations of the consequences of S and B on single-cell
feature distributions.

Symbol Meaning

E[X] Expected value (i.e. the mean) of the random variable X
Fc Average foreground intensity within cell c
Sc Average shading value within cell c
B Background intensity per pixel, a constant
αc Area of cell c
A Average intensity feature
T Total intensity feature
R Ratio of intensities feature
Zc The value of feature Z for a single cell, c.
σZ The standard deviation of feature Z across all cells.
µZ The mean of feature Z across all cells.
cvZ The coe�cient of variation of feature Z across all cells (σZ/µZ).

(σ), and coe�cient of variation (cv = σ/µ) of a feature across a population of cells.

The standard deviation and cv are measures of distribution widths, which are used to determine

the statistical separability of distributions. Inaccurate measurements of the true variability may

consequently reduce statistical power. The mean of a feature distribution, on the other hand, is

typically used to determine how large of an e�ect an experimental perturbation has had. Inaccurate

measurements of the true mean may cause strong results to appear weak, or vice versa, leading to

false negatives or false positives. These distribution metrics are therefore useful as readouts for the

utility of image correction.

The mathematics in the following discussion were worked out in conjunction with my co-authors

on the relevant publication [235]: Satwik Rajaram, Chonlarat Wichaidit, Steven Altschuler, and

Lani Wu. The text and �gures draw heavily from the same publication. Those readers who do not

need convincing that image correction is important may skip to page 85 without a loss in coherence

of this chapter.

Mathematical de�nitions of commonly used single-cell features

Commonly used single-cell measurements include pixel intensity averages, totals, and ratios within

some cellular compartment c (such as the nucleus, cytosol, or whole cell). By de�ning these features

mathematically we can determine their general behaviors as a consequence of the presence of image

background or shading. Refer to Table 4.1 for the list of mathematical symbols, to Table 4.2 for a

summary of the statistical properties used in the mathematical derivations, and Fig. 4.5 for a case

study of these behaviors.

For each cellular object, I de�ne Fc and Bc as the average foreground and background intensities

within c, while Sc is the average shading. Bc is a constant for all cells, as the background is assumed

to be the same for all pixels in the absence of noise, and so I drop the subscript from this term. I

refer to the area of each cell, measured in pixels, as αc. Finally, for the derivations I assume that

the detector value has been subtracted from all pixels and that the image contains no measurement
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Figure 4.5: Image background and shading cause feature-dependent changes in estimates of phenotypic
variability. Human colonic epithelial cells (n > 3700), stained for DNA (using Hoechst) and Smad (using a
Smad2/3 antibody), imaged at 10X. The distributions of nuclear feature values were then compared before
(black histograms) and after (dotted blue histograms) arti�cial background (top row, with background ∼16%
of Hoechst or ∼50% of Smad foreground) or shading (bottom row, linear gradient with maximum 1.5 fold
intensity di�erence) were added to each image. µ, mean; σ, standard deviation; cv = σ/µ. Inset, top left,
relative size of change to the shown distributions. Inset, top right, arrows indicate the direction of change
in the general case (question marks indicate uncertainty due to dependency on other variables). x-axes in
arbitrary �uorescence units. A version of this �gure is published as Fig. 1a in [235].

noise (D = 0 and ε = 1).

For each cell I can then de�ne the three simple intensity features: total intensity T , average

intensity A, and the ratio of intensities R between two independent foreground signals Fc1 and

Fc2 (e.g. the ratio of nuclear Hoechst and Smad intensities, as in Fig. 4.5). Because the ratio

takes two signals into account, each may come from a distinct �uorophore and optical setup and so

have distinct shading and background values. Additionally, those features could be de�ned within

distinct cellular compartments, such that the compartment sizes may also di�er. The three features

are thus de�ned for single cells by Equations 4.4-4.6.

Ac = Sc(Fc +B) (4.4)

Tc = αcAc = αcSc(Fc +B) (4.5)

Rc =
αc1Sc1(Fc1 +B1)

αc2Sc2(Fc2 +B2)
(4.6)

For simplicity of the following analysis, I take the special case where Fc, Sc, αc, and B are

all statistically independent (i.e. cells do not spatially arrange themselves within an image by

phenotype, and foreground intensity is independent of cell size). Further, I assume that cells are

small relative to the spatial rate of change of S across an image. These assumptions allow me to

use the properties in Table 4.2. Note that these assumptions will be valid for some experimental
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Table 4.2: Statistical properties used in the derivations of the e�ects of shading S and background on the
distributions of single-cell average A, total T , and ratio R intensity features. X and Y are independent
random variables, and k is a constant.

Index Property

1 E[Sc] ≡ 1
2 µX+k ≡ E[X + k] = E[X] + k
3 µXY = E[X]E[Y ]
4 σ2X ≡ Var[X] = E[X2]− E[X]2 =⇒ E[X2] ≥ E[X]2

5 σ2[X+k] = σ2X
6 σ2XY = E[X2]E[Y 2]− E[X]2E[Y ]2

cases, but certainly not all. For the case study shown in Fig. 4.5 they are appropriate: I veri�ed

that nuclear size and staining intensity were uncorrelated with each other and with position, and

that the two foreground signals (Hoechst and Smad2/3) are independent (data not shown).

Finally, I noted earlier that units of �uorescence are typically arbitrary and that S causes a

multiplicative change in relative intensity across an image. This means that we are free to choose

how to de�ne the expected value of S: a value other than 1 would cause a scaling of the foreground

and background values, but this scaling would retain the relative relationship between all measured

intensities and so would be of no consequence. For convenience, then, I de�ne shading so that

its expectation value across all images and pixels is E[S] = 1 so that, for a large number of cells,

E[Sc] ≈ 1. This de�nition simpli�es the mathematical derivations below, as the E[Sc] term can be

dropped from several formulae.

E�ects of background B on the average intensity feature A

For this case, we ignore the e�ects of S and focus on B. We therefore set B > 0 and Sc = 1, so that

the average feature from Equation 4.4 simpli�es to Ac = Fc + B. This results in the distribution

properties for this feature in Equations 4.7-4.9.

µA ≡ E[Ac] = E[Fc +B] = E[Fc] +B (4.7)

σA ≡
√
Var[Ac] =

√
σ2Fc+B = σFc (4.8)

cvA ≡
σA
µA

=
σFC

E[Fc] +B
(4.9)

It is clear that B will always cause an increase in the mean of average intensities, µA (Equa-

tion 4.7). The standard deviation, σA, is una�ected by background (Equation 4.7, using Property 5

from Table 4.2). As a consequence of the constant σA and increased µA, the coe�cient of variation

will decrease with increasing background. In summary, background will cause an overestimation of

µA, an underestimation of cvA, and will not a�ect σA (ee the case study in Fig. 4.5, top left panel).
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E�ects of background B on the total intensity feature T

The situation is the same as the previous case, except with the inclusion of cell size. The total

intensity feature Equation 4.5 therefore simpli�es to Tc = αc(Fc +B), resulting in the distribution

properties shown in Equations 4.10-4.12.

µT ≡ E[Tc] = E[αc(Fc +B)] = E[αc](E[Fc] +B) = E[αc]E[Fc] + E[αc]B (4.10)

σT ≡
√

Var[Tc] =
√
σ2αc(Fc+B) =

√
σ2αcFc + 2σ2αcE[Fc]B + σ2αcB

2 (4.11)

cvT ≡
σT
µT

=

√
σ2αcFc + 2σ2E[Fc]B + σ2αcB

2

E[αc]E[Fc] + E[αc]B
(4.12)

Though somewhat less obvious than for the average feature, it should be clear that increasing

B will cause an increase in the mean of total intensities, µT (Equation 4.10, using Property 3 from

Table 4.2). Importantly, each cell will be a�ected di�erently by background, depending on its size.

Unlike the average feature, the standard deviation σT increases with background (Equation 4.11,

using Properties 3 & 6 from Table 4.2).

Because both σT and increased µT increase with increasing B, it is not immediately obvious

what the e�ect should be on the coe�cient of variation, cvT (as the numerator and denominator in

Equation 4.12 both are proportional to B). However, if we take the derivative of the cv with respect

to a changing background, we get Equation 4.13. Because this derivative is always ≤ 0, the cvT

will decrease with increasing background. In summary, background will cause cell size-dependent

overestimation of µT and σT , and underestimation of cvT (see the case study in Fig. 4.5, top middle

panel).

d

dB
(cv2T ) = −2

σ2FcE[α
2
c ]

E[αc]2(E[Fc] +B)3
≤ 0 (4.13)

E�ects of shading S on the average intensity feature A

We now move on to the e�ects of shading on the average and total features, and therefore set B = 0.

Note that increasing the magnitude of E[Sc] will have no e�ect on any of these features, as it is

the same as a change in units. Because shading is a variation in intensity across an image, we can

therefore modulate its strength by changing the variance of this image component. The larger the

variance, the more shading. For this case, then, we set Var[Sc] > 0. The average intensity feature

from Equation 4.4 therefore simpli�es to Ac = ScFc. This results in the distribution properties

shown in Equations 4.14-4.16.

µA ≡ E[Ac] = E[ScFc] = E[Sc]E[Fc] = E[Fc] (4.14)

σA =
√
σ2ScFc =

√
E[S2

c ]E[F
2
c ]− E[Sc]2E[Fc]2 =

√
E[S2

c ]E[F
2
c ]− E[Fc]2 (4.15)

cvA ≡
σA
µA

=

√
E[S2

c ]E[F
2
c ]− E[Fc]2

E[Fc]
(4.16)
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From Equation 4.14 it is obvious that S has no e�ect on the mean of average intensities, µA, as it

falls out of the formula entirely (using Properties 1 & 3 from Table 4.2). The standard deviation, σA,

however will increase with background (Equation 4.15, using Properties 1, 4, & 6 from Table 4.2).

As a consequence of the increasing σA and constant µA, the coe�cient of variation increases with

increasing background. In summary, shading will cause overestimation of variation for A (see the

case study in Fig. 4.5, bottom left panel). Shading does not a�ect µA, but this is not surprising

since I de�ned shading to have a mean of 1 speci�cally so that it would not a�ect the mean.

E�ects of shading S on the total intensity feature T

The situation is the same as the previous case, except with the inclusion of cell size. The total

intensity feature Equation 4.5 therefore simpli�es to Tc = αcScFc. This results in the total intensity

distribution properties shown in Equations 4.17-4.19.

µT ≡ E[Tc] = E[αcScFc] = E[Sc]E[αcFc] = E[αc]E[Fc] (4.17)

σT =
√
σ2ScFc =

√
E[S2

c ]E[α
2
cF

2
c ]− E[Sc]2E[αcFc]2 =

√
E[S2

c ]E[α
2
cF

2
c ]− E[αcFc]2 (4.18)

cvT ≡
σA
µA

=

√
E[S2

c ]E[α
2
cF

2
c ]− E[αcFc]2

E[αcFc]
(4.19)

The derivation is nearly the same as that for the previous case for the average feature. As before,

from Equation 4.17 we see that S has no e�ect on the mean of total intensities, µT . Also as before,

the standard deviation, σT , will increase with shading, as will cvT (see the case study in Fig. 4.5,

bottom middle panel). Thus, increasing the shading always arti�cially increases the variation of the

average and total intensity features.

E�ects of B and S on R

I now turn to the ratiometric feature (Equation 4.6), which turns out to be the least generalizable

even within the narrow constraints de�ned at the start of this section. And so to simplify, I further

constrain the discussion to the ratio of average intensities. This allows us to set α = 1 for both

signals (note that these terms also cancel when taking the ratio within a single compartment). Thus,

we have Equation 4.20.

Rc =
Sc1(Fc1 +B1)

Sc2(Fc2 +B2)
(4.20)

There are a few distinct cases we can examine to get an idea of how this ratio behaves. In

the �rst case, we can have the signals originating from the same channel (for example, the ratio of

nuclear to cytosolic Smad2/3). Here, B1 = B2 and, under my earlier assumption that cells are small

relative to the rate of change of S, Sc1 = Sc2. The ratio thus becomes Rc =
Fc1+B
Fc2+B

and is una�ected

by shading. The e�ects of B are less obvious because it is in both the numerator and denominator.

In the limiting case, however, limB→∞Rc = 1. Since all values are forced to 1 with large B, the

variation across the population will be forced to 0. In less extreme cases, however, background can
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Figure 4.6: Ratiometric features are idiosyncratically a�ected by background. The same initial data as
in the right panels of Fig. 4.5, but where each single-nucleus ratio after addition of background is plotted
against its true value (1000/3700 cells shown). To each average was added 0 (black), 1000 (red), or 1010

(blue) background units before taking the ratio. The �rst two arti�cial cases are the same as those in
Fig. 4.5. The impact on the apparent ratio is dependent on the relative sizes of the foregrounds and the
background, such that the data becomes scrambled in the red curve. Note that the distribution shape is
also a�ected, such that adding background decreased the skewness. F1, average single-nuclear Hoechst; F2,
average nuclear Smad2/3.

either cause an increase or decrease in the apparent variation, depending on its size relative to both

foreground terms. Because of this, the error in the measured ratio can vary from cell to cell within

the same population. For example, if two cells have the same ratio but di�erent absolute foreground

values, B will cause their ratios to diverge (e.g. 1+B
2+B 6=

10+B
20+B ). This e�ect causes the scrambling

seen in Fig. 4.6.

In the second case, we could allow Fc1 and Fc2 to come from distinct channels, which would

also allow them to have di�erent shading and background. As a consequence, the e�ects on the

distribution properties are extremely di�cult to predict due to the presence of many independent

variables (as indicated in the case study in Fig. 4.5, right panels). I therefore leave the discussion

here, with the conclusion that the mean and variation of the ratio feature can both increase or de-

crease with di�erent ranges of component values. This unpredictability has important rami�cations

for applications such as �uorescence resonance energy transfer (FRET) where interpretation relies

on accurate cross-channel ratios [236].

On the importance of image correction

Unfortunately, the mathematical discourse above leaves us with the dissatisfying result that the

importance of image correction is highly dataset dependent. In Fig. 4.5 I show the size of the dis-

tortion for an example dataset with experimentally-reasonable amounts of background and shading,



CHAPTER 4. ON QUANTITATIVE IMAGING OF SINGLE CELLS 85

which shows e�ects that are measurable and sometimes relatively large. However, di�erent ana-

lytical requirements can tolerate quite di�erent amounts of feature distribution distortion before

data interpretation is a�ected. The best I can do then, besides the easy blanket statement �always

correct your images!� is to provide a few rules of thumb for deciding on the importance of image

correction.

First, I completely ignored the detector contribution (D) in the above discussion because the

matrix D is unchanging and is therefore trivial to subtract from images. Removal of D should be

a part of all image analysis pipelines. This step is rarely explicitly performed in the literature but

can have a large impact on measurements of weakly-�uorescent samples. In particular, shading will

be underestimated without subtraction of the detector �uorescence contribution.

Second, shading tends to increase feature distribution widths and so should be corrected when-

ever measurement of true biological variability is important. Additionally, if the foreground to

background ratio is low, then shading may cause foreground values in one part of an image to fall

below background values in another part. This can have important consequences to image seg-

mentation (Section 4.4.1) [232]. However, in the case that biological variability is high relative to

the variation in shading it would not be necessary to correct for S. This is because the observed

average and total distributions are the convolution of the shading and foreground distributions. If

two normal distributions with variances σ21 and σ
2
2 are convolved, they yield a new distribution with

σ23 = σ21 +σ
2
2. Because shading is a relative term, we have to scale it to the size of Fc to make use of

this property: σ2observed = (FcσSc)
2 + σ2Fc . Thus, if Fcσ

2
Sc
<< σ2Fc the observed distribution will be

close to the true distribution. While this is a useful rule of thumb, I note that I have never observed

normally-distributed shading values (see examples in Fig. 4.4b).

Third, background can dramatically shift feature distribution means. Background should there-

fore be corrected either when accurate means or accurate ratios between two means are needed.

When background is low compared to even the lowest foreground values, however, it will have little

impact on the feature distributions discussed above.

Finally, when using cross-channel ratios extra care should be taken to ensure that both back-

ground and shading are corrected. These ratios should always be interpreted with an eye towards

the possible e�ects of imaging artifacts, as artifacts can distort rations in unpredictable ways.

4.3.2 Review of image correction methods

Now that I have given some motivation for the importance of image correction, I turn to the available

methods for this process. Here, I brie�y review the correction methods that are commonly employed

in the literature. In general, when deciding on a method the investigator should test its theoretical

performance given the image model described in this chapter, I = D + S(F + B). By taking this

approach, de�ciencies or important assumptions of the methods should become clear.

There are many published methods for �uorescence image correction, perhaps as many methods

as there are labs, due to the idiosyncrasies of imaging data and the lack of standardized approaches.

I group the most common methods into two broad, non-exhaustive categories, which I refer to as
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�reference-image� and �per-image� correction. Reference-image methods obtain correction parame-

ters from one image and then use those parameters to correct another image. Per-image methods

�nd such parameters in the very image that is to be corrected.

Reference-image methods are straightforward and so are commonly used and recommended

throughout the literature [226,233,237�239]. These methods make a key assumption: that the ref-

erence image has approximately the same shading and background as do the images to be corrected.

A good example of this approach uses two reference images to �atten shading, subtract background,

and normalize the �uorescence intensity to a standard [226]. One reference image, Iuniform contains

a dissolved �uorophore; because this image would be �at without shading, it can be used to deter-

mine how much shading is present in the real images. The other reference, Ibackground is the same

as the sample images but contains no sample. This image can thus be used to estimate background.

Equations 4.21-4.24 demonstrate this method.

Isample = D + S(Fsample +B) (4.21)

Ibackground = D + SB (4.22)

Iuniform = D + S(Buniform +B) (4.23)

Icorrected =
Isample − Ibackground
Iuniform − Ibackground

=
[D + S(Fsample +B)]− [D + SB]

[D + S(Buniform +B)]− [D + SB]
=

Fsample

Buniform
(4.24)

While reference-image methods are straightforward and often easy to perform, some of those

recommended in the literature are only partially corrective. This is especially true with respect to

the detector value D, which I have not seen explicitly accounted for in these methods. To �nd out

if a given method performed complete correction, investigators can plug the image model into the

method and check that, algebraically, the output is either F or some normalized form of it (as in

Equation 4.24). However, note that partial correction may be su�cient in some cases, particularly

when background intensity is low compared to foreground intensity and when within-image shading

variation is low compared to foreground variation.

Per-image methods, on the other hand, have the challenging task of measuring all image compo-

nents (D, S, F , and B) within the image that is to be corrected. These methods typically work by

trying to �t a model to the combination of non-foreground layers, D + SB. Therefore the primary

di�culty is that images typically contain varying fractions of foreground pixels (e.g. due to variation

in cell density), so that determination of which pixels consist of background is non-trivial. Further,

even if identi�cation of background pixels is straightforward within an image, the size of the back-

ground signal �underneath� a foreground object is necessarily unknown and must be predicted. The

method for this prediction is what separates the di�erent per-image correction algorithms.

Some per-image methods �t a polynomial [225] or spline surface [240�242] to predicted non-

foreground pixels, therefore assuming a particular structure to the shading patterns. These methods

may also assume properties of the foreground objects (e.g. �uorescing cells), such as a maximum

size in the case of the rolling ball algorithm employed by ImageJ [243] and Fiji [244], and may
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perform non-linear transformations of the underlying images. Additionally, the accuracy of these

approaches necessarily decreases with increasing cell density as there are fewer background pixels

from which to estimate Ibackground. High con�uency or cell clumping can thus cause per-image

methods to introduce artifacts.

When they work properly, per-image based methods generate Ibackground (Equation 4.22) from

each sample image, Isample (Equation 4.21). From this point, then, the reference-based and per-

image based correction methods are the same; the only di�erence is in how Ibackground is obtained.

The question that then remains in both cases is which mathematical operation to perform in order

to correct the sample images. In the literature, subtraction (Isample− Ibackground) is frequently used.
However, subtraction does not remove shading, as the algebraic result is SF instead of F . The

standard rolling ball algorithm employed by ImageJ and FIJI uses this subtractive approach.

The better approach is to use division to remove shading. This can be done in combination

with subtraction to remove both background and shading, as in the example above (Equation 4.24).

However, many studies use simple division (Isample/Ibackground), which results in D+S(B+F )
D+SB = 1 +

SF
D+SB . This result is a background-normalized foreground with incompletely-corrected shading. The

correction can be completed by prior subtraction of D from both images, followed by subtraction

of 1, which would yield the normalized image F/B.

I use a di�erent approach from those listed above, which is to independently estimate all non-

foreground parameters so that I can perform the image algebra that expicitly returns F . I discuss

this method next.

4.3.3 An improved correction method for high-throughput imaging

Having determined the importance of image correction, and observed the diversity and frequent

inaccuracy of the available correction methods, I sought to develop a simple and robust method for

my own imaging applications. All of the work in this dissertation took advantage of the throughput

of microtiter plates (e.g. 96- and 384-well plates), and so in particular I needed to be able to

accurately correct large numbers of images with minimal computational overhead. Further, I needed

the correction to be robust to cell density, so that I could correctly measure single-cell biological

variability under a wide variety of experimental conditions.

The approach that I developed (published in [235]), is a reference-based method that relies on

a key observation: shading patterns are highly predictable in microtiter plates. This allows for a

correction method that forgoes the need to estimate parameters for every image, yet is more accurate

than using only a single set of correction parameters. Below I show the evidence that shading is

indeed predictable, and then outline a correction method for taking advantage of this fact.

The shading pattern is a function of within-well position

I was initially surprised at the high variability in shading patterns that I observed within imaging

datasets from microtiter plates. In the literature there appears to be an implicit assumption that

such variability is common and unpredictable, as the most common correction methods used in big
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Figure 4.7: For a within-well position, shading patterns are consistent throughout the entirety of a mi-
crotiter plate. I imaged 3x3 grids within every well of a 384-well plate containing dissolved �uorescein.
Optical setup: black plastic 384-well plate (Corning #3712), FITC �lter, 20X objective, Andor sCMOS
camera. I cropped all images identically to remove pixels that contained well edges. Within-well images
were montaged into a single image, and then normalized to the median pixel value of that montaged image
(e.g. in a, top). This converts the images to an estimate of shading as de�ned in this chapter. Reference 3x3
image montages were made by taking the per-pixel average across all 3x3 montages (from all wells). This
was done either with all 9 images in the 3x3 grid (Position-dependent correction) or with only the central
image from the grid repeated 9 times (Position-independent correction). Finally, the resulting grids were
montaged to show the image properties across the entire 384-well plate (b). Panel a shows larger thumbnails
of the 3x3 image grids in well A1 before and after position-dependent correction. The histograms in b shows
the distributions of all relative pixel intensities in the montaged images. Tighter distributions indicate more
accurate correction. White objects in the montaged images are auto-�uorescing debris; small black corners
in remaining in corrected images are due to inclusion of a small portion of the black well edge.

datasets are per-image. However, shading is an artifact that is generated by the light path, which

is a static aspect of the microscope optical setup, and so I would have expected it to be unchanging

within a dataset. Indeed, images taken at di�erent positions along a glass slide seem to show an

unchanging shading pattern. I therefore reasoned that it was the microtiter plates themselves that

modi�ed the shading pattern. Further, since microtiter plates are essentially arrays of identical

wells, I predicted that the shading modi�cation must be a function of the image location within

a single well (as opposed to the position within the plate). The source of the within-well shading

modulation could be due to re�ections from well edges, local distortions of the imaging surface, or

lensing by the solvent meniscus.

This prediction of within-well positional dependence of shading patterns bore out, as can be

seen in Fig. 4.7. Further, this turned out to be consistent for both 384- and 96-well plates from

various manufacturers and with di�erent physical speci�cations and materials. In 96-well plates

this positional e�ect is less dramatic, which is consistent with shading patterns being modi�ed by
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Figure 4.8: Shading (S) can be estimated using sample-containing images. Media-only wells are controls
(0% con�uency). The spatially uniform �uorescence in these control wells was used to estimate the �reference�
shading by per-pixel averaging across 42 media-only control wells. I de�ne �con�uency� as the fraction of
pixels in an image with intensities >3σ above background. I used A549 cells expressing two di�erently-colored
�uorescent proteins (left, nuclear CFP; right, cytosolic mCherry) at three di�erent seeding densities (each
seeding density had 84 replicates), e�ectively yielding six di�erent con�uency levels. I additionally created
mixed-con�uency image sets by randomly selecting across all con�uency levels within each color channel.
For each �xed number of images, n, selected from the same within-well position, I computed the �estimated
shading� as the per-pixel median of n randomly selected images. The error in the shading estimates are
computed as the cv of the per-pixel ratio of (estimated shading)/(reference shading). For each con�uency
level, the inaccuracy of the sample-based shading estimate generally decrease with increasing numbers of
images.

well edges (as these edges are much further apart than are those in 384-well plates). I also note

that a position-independent correction method (that uses a single reference image instead of one per

within-well position, Fig. 4.7, blue) dramatically improves the images as well. Therefore this even

simpler method may be suitable for some datasets (though the resulting multi-modality in Fig. 4.7

could, in principle, generate arti�cial cellular subpopulations (Section 1.4.2)).

Pipeline for within-well position-based image correction

The within-well positional shading constancy allowed me to implement a simple and robust image

correction pipeline for images from microtiter plates. This pipeline is based on the existing reference-

based approaches discussed above and in other sources [234,245].

1. Calibrate the microscope stage for the microtiter plate. Ideally, images should be

acquired near well centers, and relative within-well image positions should have minimal drift

between wells (e.g. images in well A1 should not be closer to the left well edge than those in

H12). It is important to be aware that this method will become inaccurate with increasing

positional drift. Also note that microscope stage-driving software can vary in its accuracy,

and so custom solutions might be required for plates with small wells.

2. Measure the dark current component, D. The simplest approach is to capture images
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without a light source, or with the light path diverted from the camera, and per-pixel average

the images. In practice, a small number of images is su�cient (n=6-20 in my analyses).

3. Subtract dark current, D, from all images in the dataset. The resulting images (I−D)
are then modeled by S(B + F ). This important step should be performed regardless of the

correction method subsequently used, for the reasons explained above. Without subtracting

D, the estimated shading patterns can become increasingly inaccurate with large foreground

values or small background values.

4. Estimate shading S for each distinct within-well position. This step is the most

complicated in the pipeline and should be performed with care. The goal is to obtain a

reference shading pattern for each within-well position. For example, if an investigator has

9 images/well she will need to estimate 9 shading patterns. There are at least two possible

approaches to this estimate.

� Uniform reference images. This approach is the most robust, but is only possible if

there are extra wells that can be reserved solely for acquiring reference images. In these

extra wells, add dissolved �uorophore at the appropriate concentration for the intended

exposure time. These wells should then be imaged along with the other sample wells.

In practice, I have found that a small number (e.g. 6) of such uniform images is often

su�cient so long as the wells are free from �uorescing debris. Across all wells w, for a

given within-well position p, the images Iw,p should be per-pixel averaged to obtain a

reference image Rp = meanw(Iw,p−D). Note that the per-pixel median or other quantile

may be more robust.

� Sample-based reference images. In high-throughput studies extra wells may be un-

available for acquiring reference images. In this case, the investigator can take advantage

of the large number of available sample images and otherwise use the same method as for

uniform reference images. Because these sample images contain foreground, many more

values per coordinate are needed to get an accurate estimate of shading. In Fig. 4.8 I show

how accuracy is dramatically a�ected by the number of images used. The same �gure

suggests that 20-40 cell-containing images may often be su�cient, but this is dependent

on the cellular con�uency of those images.

The results of this step will be one reference image per within-well position. As de�ned earlier,

the shading values should be centered on 1 to maintain the original intensity range. Therefore

once all reference images are collected each image Rp should be divided by the median or mean

of all reference image pixel values (with coordinates (r, c). The resulting shading patterns are

described by Sp =
Rp

meanr,c,pRr,c,p

5. Correct for the shading S at each within-well position. To correct for shading, every

image Ip should be per-pixel divided by the corresponding shading pattern Sp obtained in the

previous step:
Ip
Sp
. The resulting images then contain only B + F .
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6. Subtract the background from each image. There are multiple approaches to this task.

The proper choice depends on the particulars of the dataset, and so I illustrate two cases

here. In both cases, after subtracting background we end up with the approximate foreground

signal, F .

� Global background subtraction. In some datasets, the background may vary little

between images. In this case, a global background value can be estimated by averaging

background pixels from a representative image. Subtract this value from all pixels in all

images.

� Per-image background subtraction. In other datasets, there may be signi�cant

variability in background from well to well. This could be due to errors in staining

or variation in exposure time. Background values can be estimated per image by e.g.

Otsu thresholding to automatically identify background pixels [246]. Alternatively, a low

quantile pixel value can be taken as background (the quantile choice is dependent on cell

density). Then, for each image, subtract its estimated background value.

I note that, in the case of background di�erences being due to something that would

imply foreground di�erences, such as due to exposure time or staining variation, these

per-image background estimates can be used to normalize intensities between images. For

example, to normalize all images to some reference Bref , determine the normalization

factor by taking its ratio with the per-image background Bref/Bsample. The image can

then be multiplied by this factor at every pixel, bringing it to the same intensity level

as the reference image. Care should be taken with this approach, however, as it is not

generally obvious when background variation is predictive of foreground variation.

Note that this pipeline is only meant to remove shading S, background B, and detector D from

images. What is left will be all foreground layers, which may include various artifacts. Further,

the foreground values may vary for reasons independent from imaging. For example, it is well

established that assays in microtiter plates can show batch, edge, row, and column e�ects. These

e�ects may non-biologically change the true values of F and should thus be normalized after image

correction [247�251].

4.3.4 Image correction quality control

As with any data manipulation, the image correction method outlined above should be checked to

ensure that no errors are introduced. An obvious approach is to simply visually inspect a subset of

images, as in Fig. 4.9a, though automated approaches are also feasible.

For background correction, images should be checked to ensure that only the background has

been subtracted. This can be done by examining background pixels. Since a perfect subtraction will

have set the centroid of the background pixel distribution to zero, roughly half of all post-correction

background pixels should be zero while the other background pixels take on small values. Unfor-

tunately, this task can be di�cult to automate for the same reason that errors may be introduced:
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Figure 4.9: Images can be over- or under-corrected, and therefore require quality control. a, Visual
inspection should reveal a �at background and a foreground that does not vary in a spatially predictable
manner after correction. Histone H2B-Cyan Fluorescent Protein labeled A549 cells. Image courtesy Jungseog
Kang (Altschuler & Wu lab, UT Southwestern). b, After segmentation and feature-extraction, single-cell
features can be tested for within-image spatial dependence. Top left, a sample image of Smad2/3-stained
human colonic epithelial cells, showing the radial metric of �distance from image center.� Plots show nuclear
area and total nuclear Smad2/3 or Hoechst as a function of within-image radial position (n=1000/∼20000
randomly-chosen cells). Intensities were median-normalized by well to prevent true experimental variation
from a�ecting this test of positional phenotype dependence. Inset numeric value is the Pearson correlation
coe�cient for the two variables plotted.

cell density may vary dramatically within a dataset, complicating the automated identi�cation of

background pixels.

For shading correction, the likely artifacts will be spatial. In other words, if there is over-

correction or under-correction, this will cause certain regions of every image (and the cells within

those regions) to have systematically higher or lower intensities than the global mean. This can

be checked in an automated way after cell segmentation by testing for dependence of single-cell

features on within-image position (see an example of this approach in Fig. 4.9b).

4.4 On segmentation and single-cell features

Once a dataset has been collected, and corrected as in the previous section, the analysis begins.

In general, we want to obtain interesting properties of the foreground layers in our images. In

speci�c, it is nearly always the foreground properties within individual cells that we care about.

�Segmentation� is the process of identifying those cells (or intracellular objects) and extracting them

from the rest of the image. Once cells have been segmented, properties of their pixel values and

spatial arrangement can be measured and stored as sets of features.

Cellular segmentation is still an unsolved computer vision problem [222], in large part because



CHAPTER 4. ON QUANTITATIVE IMAGING OF SINGLE CELLS 93

experimental needs are too speci�c to allow for a good general solution. There is, however, an array

of partial solutions available. These range from simple to highly complex, and vary tremendously

in their accuracy and utility. In this section I brie�y discuss segmentation algorithms and how one

can go about choosing single-cell features that are biologically meaningful. My goal in part is to

provide the rationale for my own choices for the experimental work in Chapter 3.

4.4.1 Segmentation approaches

There are many approaches to cellular segmentation. Software solutions such as CellPro�ler [252]

implement many of the most-used segmentation algorithms so that the user can choose one appro-

priate to the experiment. Unfortunately, which algorithm should be chosen is not a trivial matter.

Many of these algorithms are complex and therefore di�cult to understand and use. Further, the

simpler algorithms may fail to provide su�ciently accurate segmentation for some image properties.

As a consequence the path of least resistance is often manual segmentation using tools such as Im-

ageJ [243], but this labor-intensive approach limits the resulting sample size and may yield biased

investigator-speci�c outcomes.

The value of automated segmentation approaches should be obvious: they allow for the rapid

and reproducible identi�cation of huge numbers of cells. Automated approaches are also biased,

due to the choice of parameters for the algorithm, but the bias is systematic and does not change

between images. There are plenty of di�culties with automation, however. With huge datasets

comes the inability to perform thorough quality control. Additonally, there may be no single set

of segmentation parameters, or even a single algorithm, that will successfully segment all cellular

phenotypes in a diverse experimental setup (e.g. a drug screen). Automation thus requires extensive

testing and a wary mindset.

As a consequence of these issues, I strongly advocate for use of the simplest segmentation method

that is capable of answer a given experimental question. Because so many aspects of images can

be measured, it is easy to get carried away with trying to obtain every single piece of data that

the images contain. As already noted, however, the number of potential measurements is large;

obtaining all data from images is not only impossible, it probably is not wise since each extracted

feature should be understood at a biological level before it is used (and, as I discuss below, biological

interpretation of features is not a trivial task). The use of simpler methods makes the resulting

segmentation more understandable, and so conditions that will cause the algorithm to produce

garbage are more predictable and intuitive. A few of the more straight-forward and commonly-used

methods are threshold, watershed, and voronoi segmentation, discussed next (these are depicted

graphically in Fig. 4.10).

Threshold segmentation (the approach that I use in this dissertation) is probably the simplest

method after manual segmentation. It works by assuming that the pixel intensities within cells are

generally higher then those in the image background Fig. 4.10a. Therefore a threshold can be chosen

either manually or via some mathematical or algorithmic approach (e.g. Otsu thresholding [246])

that best separates background and foreground pixels. Neighboring pixels classi�ed as foreground
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Figure 4.10: Cartoons of three basic segmentation methods. a, Threshold segmentation separates back-
ground B from foreground F by �uorescence intensity. Neighboring pixels are then considered part of the
same object. The histogram represents the distribution of all pixel intensities within an image. b, Watershed
starts with a known intracellular point (e.g. the nucleus, blue) and moves outwards (gray, arrows) until it
reaches cell boundaries. c Voronoi segmentation assigns to a set of already-known objects all of the space
closer to that object than any other. Red lines, boundaries of the Voronoi cells, using nuclei centroids as the
known points. Gray area, segmented region for the middle cell.

can be grouped into objects, such as nuclei. This method tends to fail for whole-cell segmentation

when cellular density is high, as neighboring cells can be segmented as single objects. Additionally,

it is not necessarily true that the nuclear or cytosolic compartments contain higher pixel intensities

than do the background. This is dependent on the probes used, and is of particular di�culty

for live-cell imaging (see Appendix A for an experimental solution). Cellular nuclei are frequently

segmented using this method, as they tend to be spatially distinct even with high cell density,

and DNA stains such as Hoechst and DAPI create bright foreground signals. Threshold-segmented

nuclei often form the basis for more complex algorithms.

There are many speci�c algorithms for watershed segmentation [46, 253, 254] but the general

approach is roughly the same. The algorithm starts with a �seed,� which is a pixel coordinate in the

image. This seed can be randomly generated or chosen from centroids of threshold-segmented nuclei.

The algorithm then searches away from that seed point, following paths of increasing intensity

(Fig. 4.10b). Sharp decreases in intensity, as frequently occurs between cells or between a cell

edge and the background, will cause the outward movement to stop. These algorithms are thus

useful for segmenting irregularly-shaped and slightly crowded cytosolic regions. However, they may

require many parameters, and can yield over-segmentation (the breaking up of single cells into many

objects).

The �nal method that I want to make note of is Voronoi segmentation. I have not frequently

seen this method used in the context of segmenting cells in tissue culture, but it can be useful in the

case that cells are at an extremely high density (so that there is no background) and when those

cells are similar in size and relatively round or cuboidal. With this approach, a set of seeds are again

needed. These will typically be the centroids of threshold-segmented nuclei. For each centroid, then,

the algorithm assigns to it all space closer to that centroid than to any other (Fig. 4.10c). This is

a simple and e�cient method for roughly segmenting cellular cytosolic compartments.

With this brief overview of few segmentation methods, a few points should be clear. First,
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many segmentation approaches are �uorescence-based (though some use bright�eld) and so require

staining of the cellular compartments to be segmented (see Appendix A for a live-cell solution to

this). Second, nuclei are much simpler to segment than cytosolic regions, because nuclei typically

have narrower ranges of size, shape, and staining intensity. Therefore threshold segmentation of

nuclei is generally considered to be accurate, and is a frequent �rst-step for more complicated

segmentation pipelines. Third, di�erent foreground objects may require di�erent algorithms for

accurate segmentation. Taken together, the above points help to explain why cellular segmentation

does not have a general solution.

4.4.2 Understanding and choosing single-cell features

Given the nearly unlimited set of features to choose from it can be di�cult to determine the subset

that is most appropriate to the study at hand. There are a few broad approaches to this problem.

The obvious, but non-trivial, approach is to �rst choose the biological property of interest and

then identify or create features that approximate that property. A less obvious approach is to

obtain a large number of features and use computational methods to choose those that are the most

informative [27]. In the latter case, the features need not be biologically interpretable at all. For

this discussion I focus on the �rst case.

Biologically-motivated features are necessarily approximations of the underlying property of in-

terest. It is therefore important to be aware of how the features are de�ned so that the data can

be interpreted properly. As an example, a project in the Altschuler & Wu lab required measure-

ment of neutrophil polarity, but needed that measurement to be performed on �uorescently-labeled

cytoskeletal components. There is no obvious mathematical feature of �uorescently-labeled actin

or microtubules that would indicate the degree of polarization of a neutrophil. An approximate

solution was therefore developed, which measures how close together in space are the brightest

pixels [7, 255].

This polarity feature will decrease in value with, for example, increased collection of actin to

one side of the cell. In the case that the actin intensity is di�use throughout the cell, the brightest

pixels will also be di�use and so the feature value increases. This feature therefore serves as a useful

proxy for polarity. However, the feature is sensitive to bright punctate artifacts that are common to

immunostained images and is distorted by di�erences in cell size. By being aware of these pitfalls

they can be addressed. In this case, visual quality control was performed on every cell to ensure

the absence of artifacts, and the feature calculation was modi�ed to compensate for distortions due

to cell size [7, 255].

Investigators will more frequently use combinations of simpler features, such as those describing

aspects of cell size and shape (�morphological features�) and of �uorescence intensity (�intensity

features�). It is important to be aware that these two classes are not completely independennt.

Intensity features in particular can be highly dependent on morphological features.

As a simple example, the average intensity is dependent on the area. It is therefore important

to interpret changes to the average with care, as the change could result from a change in cell size,
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a change in concentration of the labeled protein, or a combination of the two. The ratio of nuclear

to cytosolic average intensities additionally su�ers from this potential confusion. It has an added

di�culty, however, in that a change in the ratio can be due to movement of the labeled protein from

one compartment to the other, or to independent changes in one or both compartments.

Ideally, then, a feature should be carefully chosen to have an unambiguous biological interpre-

tation and be independent of other features whose changes are not important to the study. I argue

that interpretability is more important than having a feature that more closely approximates the

biological property of interest. For example, in my own work (Chapter 3) I am interested in the

concentrations of nuclear transcription factors. Concentration is intuitively approximated by the

average intensity feature, yet I instead chose the total intensity feature for all of my analysis. I did

so because certain properties of the total intensity feature, discussed next, allow for less ambiguity

in how to interpret changes in its values.

4.4.3 Bene�ts of the total nuclear intensity feature

The total intensity feature is a proxy for the absolute count of a �uorescently-labeled target molecule.

This feature has the advantage of being independent of cell size, such that changes in cell morphology

may change the average but not total intensity. Unfortunately, intensity from wide�eld microscopy

images does not just come from the focal plane, but also from the space both above and below that

plane. As a consequence, in image represents a messy volumetric cross section through the z-axis.

This fact adds some complication to the interpretation of the total intensity feature: is it measuring

the total number of molecules in the entire cell volume, from a thin cross-section, or something in

between?

Fortunately, my focus on transcription factors in Chapter 3 allows me to mitigate this concern

by measuring only the nuclear intensities. The nucleus tends to maintain a taller stature in the

z-axis than does the rest of the cell (resulting in the famous �fried egg� appearance of cells in tissue

culture). Also, nuclei tend to be of more similar size and shape than do cytosolic compartments.

For these reasons, I can reasonably assume that whatever the thickness of the imaged section, I will

be imaging a similar thickness for all nuclei.

Finally, and perhaps most importantly, the nucleus has a built-in �ground truth� for this feature

that allows for both quality control and removal of measurement error (Section 4.5). This ground

truth comes from the DNA content of cells, as each cell within e.g. the G1 phase of the cell cycle

in reality has a near-identical total DNA content. The total intensity feature is a proxy for this

content. Importantly, total nuclear intensity is the only feature with such a �ground truth� reference.

The small-molecule stain Hoechst provides a robust and DNA-speci�c signal that I use throughout

this dissertation to measure total DNA content. I therefore use the term �DNA� interchangeably to

refer to the actual molecule and as a short-hand for �Hoechst-stained DNA.�
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Figure 4.11: The mutual information metric can be interpreted as yielding log2 of the number of distinct
signal-response relationships. a, A toy cases with only two signals, S1 and S2, and two responses, R1 and R2,
with uniform joint probabilities. Darkened boxes show occurring signal-response relationships and their joint
probabilities. Left, two completely distinct signal-response pairs yield log2(2) = 1 bit of mutual information.
Middle, both signals cause response R1, meaning that observation of R1 provides insu�cient information to
know which signal caused that response. The mutual information thus decreases to log2(81/16) ≈ 0.78 bits
(using Equation 4.25). Right, with both signals causing both responses with equal probability, there is no
mutual information (log2(1) = 0 bits). b, Mutual information measurements of TGFB1-Smad2/3 responses.
Distributions show the wide variability of nuclear Smad2/3 accumulation even in response to saturating
(10ng/mL) ligand concentrations. Observe that the control and saturating doses yield distributions that are
nearly non-overlapping, and as a consequence yield ∼1 bit of mutual information (as there are 2 distinct
signal-response relatinships). It should be clear that the mutual information between all concentrations and
outputs can be calculated at once, but there is signi�cant overlap between all but the outermost distributions.
Thus, addition of each subsequent intervening signal will in this case yield diminishing improvements to the
mutual information between TGFB1 and nuclear Smad2/3. n>3000 human colonic epithelial cells per
condition. I used an implementation of the mutual information algorithm as described in [16].

4.4.4 Measuring information content of a feature

One of the major hurdles in experimental cell biology is our lack of initial knowledge about which

environmental signals (S) and cellular responses (R) cells care about (discussed in Chapter 1).

As a consequence, it is generally unclear how much information about the environment a cell can

accurately process and store, though estimates suggest that the features we believe cells care about

contain somewhat unimpressive information content [16].

Measuring the information content of a feature with respect to the signal under study can

therefore be useful when trying to choose between a set of potential (S,R) combinations. This

can be done using the �mutual information� metric between the signal and response, M(S;R) [16].

Mutual information has advantages over other statistical metrics, such as Z-scores and the like, in

that it is completely non-parametric (i.e. does not assume a distribution shape) and uses units

that can be directly interpreted as �information content,� measured in bits. I use this metric in

Chapter 3 to compare the information content of ligand concentrations for TGFBsf and Wnt, and

so here I dig into mutual information a bit deeper1 with the goal of providing an intuition to the

reader regarding its interpretation.

The mutual information between a set of signals S (e.g. ligand concentrations) and responses

R (e.g. nuclear transcription factor concentrations) is de�ned by Equation 4.25. In the formula,

P (R,S) is the joint probability of each signal-response pair and P (R) and P (S) are the marginal

1Did you catch the joke?
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probabilities. The mutual information value returned by this formula is in units of �bits,� and can

be interpreted as the log2 of the number of distinct signal-response relationships (see Fig. 4.11a for

a toy example). In essence the quantity describes how accurately we would be able to guess the

signal if we were told the response (and vice versa). The goal of the mutual information metric

then is to measure the degree of overlap between signal-response distributions, it is not to measure

how far apart those distributions are. For example, two completely separated response distributions

will always have 1 bit of mutual information even if they are in�nitely far apart. Therefore the

maximum possible information content is log2 of the number of distinct signals (Fig. 4.11a, left).

The minimum mutual information is zero, which occurs when the distributions completely overlap

(Fig. 4.11a, right).

M(R;S) =
∑
S

∑
R

P (R,S) log2

(
P (R,S)

P (R)P (S)

)
(4.25)

Importantly, single-cell variability in nuclear transcription factor concentrations is high, such

that even the untreated and saturating ligand doses yield a small overlap in cellular responses

(Fig. 4.11b) [16]. In other words, if we were given a randomly drawn cellular Smad2/3 response

from a dose-response curve for TGFB1 treatment, we would have high uncertainty as to the precise

TGFB1 concentration that caused the drawn response.

In summary, mutual information is a metric that measures the overlap of distributions, and so

can be interpreted to indicate the number of distinct signal-response pairs for a given feature. This

metric can thus be used to directly measure the relative information content of di�erent features R

or signals S (as I do in Section 3.1).

4.5 Dealing with variation

Experimental error is always present in our measurements. Additionally, any given feature may

show extensive biological variability even within apparently homogeneous populations. The bio-

logical variation can be informative, as it gives us insight into the limits to accuracy of cellular

processing and can reveal phenotypically distinct subpopulations (see Chapter 3). However, if ex-

perimental error is mis-interpreted as biological variability, we lose statistical resolution or may

assign unwarranted meaning to non-biological variation. It is then important to be able to separate

experimental from biological variation.

Experimental variation in �uorescence imaging comes from many sources. The imaging plane

itself may cause variation by intersecting cells at di�erent relative heights. This focal plane e�ect

can cause cell-to-cell di�erences in the degree of focus and in how much o�-plane �uorescence is

captured. As discussed in Section 4.3.1, image shading and background can also contribute to

arti�cial variation due to microscopy.

Aside from microscopy artifacts, the process of preparing cells for imaging may also generate

distortions of true biological variability. For example, variation in cellular surface area or volume

may lead to di�erences in how well an antibody or non-permeable dye can access an intracellular
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Figure 4.12: An asynchronous cell population can be �t to a simple model of the cell cycle with reasonable
accuracy. Left, the theoretical asynchronous cell-cycle distribution consists of delta functions for G1 and G2
cells (i.e. all cells in these populations have identical DNA content) and a uniform distribution for S-phase
cells that are moving from the G1 to G2 states at a constant rate. Middle, the total DNA feature of G1 and
G2 nuclei shows log-normal variation that can thus be �t to normal distributions after log-transformation.
Right, the cell subpopulation models add up to a reasonably accurate estimate of the cell cycle distribution.
Gray, �lled histograms are of log2(total DNA), with DNA in arbitrary units, of ∼ 2 × 104 Hoechst-stained
human colonic epithelial cells. Dashed lines are the actual �ts to this data using the method described in
the text.

target. Such di�erences in cell morphology may be enhanced or dampened by �xatives, which can

cause cells to shrink in the z-axis [256].

Finally, non-biological variation can be introduced during segmentation. This can be due to

outright errors (e.g. a cell being split into two objects) or to the more subtle fact that the accuracy

of a set of segmentation parameters will vary from cell to cell. For example, a chosen threshold that

perfectly separates background from foreground for one cell may end up discarding the outer edges

of a dimmer cell.

4.5.1 Using DNA features for quality control

Due to the error sources discussed above (among others) there may be many outlier cells to discard.

Manual or pseudo-manual approaches are often used for this task. Visual inspection of a random

subset of segmented cells is a common approach, though automated solutions are needed for large

datasets. An example is the identi�cation of out-of-focus images using image-level features from

tools like PhenoRipper [257]. I use an automated statistical approach that takes advantage of

�ground truth� aspects of total DNA content in cells. This approach uses population-level statistics

of DNA features to determine which cells are likely to be properly segmented and in focus. In

e�ect, I make the assumption that cells with biologically-unlikely DNA feature values will have

non-biological values in other features as well.

The �rst step in my quality control pipeline is to identify cell cycle subpopulations by �tting a

cell cycle model to the total DNA histograms. This allows for later isolation of these subpopulations

and removal of outliers. Note that in tissue culture microscopy mitotic (M-phase) cells are often

lost during sample washes and so are already excluded from analysis.

An asynchronous cell population can be accurately �t to a simple model of the cell cycle. The

theoretical, variation-free model of this cell cycle consists of of delta functions for the G1 and G2
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Figure 4.13: DNA features can be used for single-cell quality control. Bottom left, the Total DNA feature
is �t to a cell cycle plot (�t not shown) and the G1 population is gated as all cells within µG1± 2σG1 (blue).
The population is also statistically gated using the nuclear area (bottom, middle) and the intra-nuclear
intensity cv (bottom, right). The gating is ±3 × MAD from the median of each feature, where MAD is
the median absolute deviation (median(|X −median(X)|). (3×MAD ≈ 2σ for normal distributions.) The
gated points are considered to be in-focus G1 cells that are likely segmented properly. In the top plot,
these quality-controlled cells are found as red points within the blue box. Data from >4000 Hoechst-stained
human colonic epithelial cells.

peaks with a uniform S-phase distribution in between (Fig. 4.12, left). In other words, all cells

within G1 or G2 have the exact same DNA content, and cells moving through S-phase increase

their DNA content at a constant rate. In reality, the cell cycle distribution arising from measured

total DNA consists of log-normally distributed G1 and G2 peaks, with a variable-shaped S-phase

distribution in between. I note that, on a log-scale, the G1 and G2 distributions have near-identical

standard deviations (σG1 ≈ σG2).

I implemented a simple variant of the Dean-Jett-Fox cell cycle model [258,259] that is su�cient

to accurately identify G1 and G2 cells from microscopy data. The formulae that comprise this

model are in Equations 4.26-4.28, where: Tc is the log2-transformed total DNA of a single cell; µG1

is the average of this value across all G1-phase cells; σ is the standard deviation of the G1 and G2

distributions; v is the height of the S-phase uniform distribution, f(Tc) is the fraction of cells with

the same Tc DNA content (in practice, it is the fraction of cells falling into the same histogram bin),
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and w values are weights. Fig. 4.12 shows this model graphically, �t to experimental data.

fG1(Tc) =
w1

σ
√
2π
e−

(Tc−µG1)
2

2σ2 (4.26)

fS(Tc) =

{
0 : Tc /∈ [µG1, µG2]

v : Tc ∈ [µG1, µG2]
(4.27)

fG2(Tc) =
w2

σ
√
2π
e−

(Tc−µG2)
2

2σ2 (4.28)

While �tting to a cell cycle distribution model may be su�cient to identify biological outlier

cells, I use two additional DNA features to further exclude low-quality images of nuclei. These

features are the nuclear area and the coe�cient of variation (cv) of intra-nuclear DNA intensity.

The cv is a rough proxy for the DNA texture, and so can be used to identify out-of-focus cells (lower

cv) or those with chromatin condensation or punctate artifacts (higher cv). I therefore statistically

gate the population by rejecting those cells that are too far from the median of either of these

features (see Fig. 4.13).

Finally, I restrict my analyses to cells in the G1 phase (Fig. 4.13). The rationale for this is that I

do not expect G1 and G2 cells to have di�erent qualitative behaviors for the signaling pathways that

I study in Chapter 3, though I do expect them to have somewhat di�erent quantitative behaviors.

The e�ect of combining these subpopulations would then be a meaningless increase in apparent

signaling variability. I therefore chose the G1 population as it is typically more populated and is

less prone to double-segmentation errors.

4.5.2 Using DNA features to correct measurement error

By using DNA features for quality control, we can thus collect all cells within the G1 and/or G2

populations that are high-quality (from an imaging standpoint) and accurately segmented. The

quality control described above may be a su�cient level of data clean-up for some experimental

goals, but it does not deal with the problem identi�ed at the top of this section: that is, the

separation of true biological variation from measurement error. In other words, quality control only

discards cells that are too far from the �typical� cell, it does nothing to determine or correct the

measurement error in those cells that are kept.

To identify biological variability, then, I again take advantage of the cell cycle �ground truth.�

As shown in Fig. 4.12, the theoretical cell cycle distribution has no variation in the G1 or G2

populations, as all cells have exactly the same diploid or tetraploid DNA content. The observed

variation around the theoretical values then do not carry any biological meaning. (Note that this

approximation becomes less accurate with chromosomally-unstable cell populations.)
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Figure 4.14: The variation in total DNA content (within a single cell cycle peak) is non-biological and
therefore should not be predictive of intensity values for other probes. a, Total Smad as a function of total
DNA. The raw data show a low Pearson correlation coe�cient (inset r value) and linear regression slope
(black line), which is over-corrected by multiplicative normalization (middle) and corrected by regression-
based normalization (right). b, Comparison of single-cell values before (x-axis) and after (y-axis) regresson-
based correction. This dataset has low correlation to total DNA, and so the change is small. n = 689 human
colonic epithelial cells (G1 only, quality-controlled) immunostained with anti-Smad2/3 (Smad) and Hoechst
(DNA). All y-axes on the same scale.

Single-cell measurement error correction

If the variation in total DNA carries no biological information, then it should not be predictive

of of other feature values: any feature dependence on the DNA content must then be due to a

global source of error. In principle, then, we can then reduce this error by removing the meaningless

correlations of other features to total DNA content.

I take two single-cell level approaches to correcting total intensity feature errors (Fig. 4.14). The

intuitive method is to estimate a normalization factor for e.g. all G1 cells using total DNA (TDNA,c),

and then use this factor to normalize the total intensity of other �uorescent probes (Tprobe,c) in

those same cells (Equation 4.29). Indeed, I have seen this approach used in the literature even

without �rst restricting analysis to one cell cycle subpopulation. This method assumes a simple

multiplicative relationship between the DNA and other channels such that, for example, a 10%

increase in total DNA content would predict a 10% increase in di�erent total probe intensity. Note

that this assumption may not hold true, such that this method can cause over- or under-correction

(as in 4.14a, middle).

fnorm(Tprobe,c) =
medianc(TDNA,c)

TDNA,c
Tprobe,c (4.29)

My preferred method is regression-based, as it guarantees removal of correlation between total

Hoechst and the total intensity of another probe (Fig. 4.14a, right). For this method, linear regres-

sion is performed to get the function in Equation 4.30 with slope m and intercept b. This results in

a residual value (rprobe,c) for every cell. The value of each Tprobe,c can then be corrected by setting

it equal to the median across all values plus the residual value for the same cell (Equation 4.31).

Tprobe,c = fregression(TDNA,c) = mTDNA,c + rprobe,c + b (4.30)

fnorm(Tprobe,c) = medianc(Tprobe,c) + rprobe,c (4.31)
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Figure 4.15: An observed total intensity distribution fobserved is the result of convolution of the true
distribution ftrue and the measurement error ferror. The error function for total nuclear intensity features
can be estimated as having σerror ≈ σDNA. Cartoon, using distributions from Fig. 4.12.

For the sample data in Fig. 4.14 it is clear that there is low basal correlation between total DNA

and total Smad, though I have observed much higher correlations in some datasets. I further note

that this same rationale could be extended to non-DNA references and other features for cases in

which cross-probe correlations are expected to be meaningless. For all datasets in this dissertation

I apply the total DNA regression-based correction when accurate single-cell values are needed (such

as for the calculation of mutual information between single-cell distributions).

Population-level error correction

While the single-cell correction above can be used to remove those measurement errors that are

directly shared by each probe, it is reasonable to expect that much of measurement error is more

random and so a�ects probes independently. Though it is not possible to correct single-cell values

for such unpredictable error, we can apply correction at the population level.

An observed feature distribution can be modeled as the convolution of a true biological distri-

bution with a measurement error distribution centered on zero, ftrue ∗ferror. In the case of log-total

DNA in G1 cells, ftrue is a delta distribution, δtrue, positioned at µG1. I can then take advantage

of the property that δtrue ∗ ferror = ferror + µG1. In other words, the G1 and G2 distributions are

themselves estimates of the measurement error distribution, if their means are set to 0 (Fig. 4.15).

For distributions that are log-normal, as are the total intensity features for all probes used in

this dissertation, I can also use the property that two convolved normal distributions yield a third

normal distribution with mean µ3 = µ1 + µ2 and variance σ23 = σ21 + σ22. Thus, I can estimate

the �true� cell-to-cell total nuclear intensity variation for any probe by Equation 4.32. There of

course may be other sources of error not compensated for in this way, and such an approach is only

defensible for the total intensity feature.

σprobe,true =
√
σ2probe,observed − σ2DNA,error (4.32)

What utility does this deconvolution have? Published measurements of cell-to-cell variability

range from 15-30% [28], and my own raw data show values within this same range. However, these

values include measurement error that is not being compensated for. Thus, cell-to-cell variability,

as measured by microscopy, is necessarily overestimated. The above reasoning shows that this
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overestimation is simple to measure, as all that is needed are the log-scale standard deviations of

the G1/2 total DNA distributions and the standard deviations of the total-probe values in question.

I have not performed a comprehensive study of the size of this e�ect, though I have measured it

in several independent datasets for various markers. I �nd that deconvolved total intensity distri-

butions yield ∼ 10% lower standard deviations and ∼ 10% higher information content (measured

by mutual information [16]). These inaccuracies are small enough that I feel comfortable stating

that measurement errors in high-quality microscopy datasets are much smaller than true biological

variation.

It is important to note that this DNA-based deconvolution makes the assumption that the

sources of error are the same between Hoechst and other probes. It is possible that nuclear antibody-

based stains have a partially non-overlapping set of error sources with small molecules like Hoechst.

One possibility to address this, then, would be to use a non-speci�c secondary antibody in a free

channel. That non-speci�c antibody should not be correlated with the speci�c antibody staining

in other channels, and so any measured correlations could be removed using the same rationale as

for DNA content-based correction. Unfortunately, I have had limited success with this approach,

though non-speci�c secondary antibodies do indeed show high single-cell correlation. The problem

has been that they also show unexpected properties, like di�erences in intracellular localization, for

which adequate controls are not clear.

4.6 Discussion

Unlike other quantitative single-cell methods, such as �ow cytometry, the subcellular resolution of

image data allows for a stupefyingly large number of feature measurements, and there are no stan-

dardized practices for choosing or implementing these features. Further, identi�cation of individual

cells takes place at the level of software, not hardware. Quantitative imaging is thus an exceedingly

di�cult task outside of the labs that specialize in it, and no two of these labs are likely to converge

on the exact same solutions.

With imaging we can directly see the beauty of the biology we are studying, and the high

information content of images makes this type of data boundless in its potential utility. We are

currently not meeting this potential, however, and I �rmly believe that this is due to an absence of

established standards and approaches that would make quantitative imaging more broadly accessible

and interpretable. To that end, I hope that this chapter provides some intuition to those scientists

who have not had the opportunity to work and think extensively about image data. Further, I

hope that my approach to single-cell image analysis, described in this chapter and demonstrated in

Chapter 3 for a speci�c biological study, provide useful demonstrations of the utility of quantitative

single-cell analysis.



CHAPTER 4. ON QUANTITATIVE IMAGING OF SINGLE CELLS 105

4.7 Methods

This chapter provides the imaging and image analysis details also used for the experiments in

Chapter 3. The methods for cell culture, immunostaining, and imaging are left to that chapter (see

Section 3.5). Speci�c methodological details for the �gures in this chapter are primarily provided

within the �gure legends; this section provides the remaining information.

Cell culture. I followed the methods in Section 3.5, with the following additions. For Fig. 4.8,

I used a �uorescently-labeled clone of the cell line A549 (ATCC #CCL-185). This clone contains a

pSeg vector that co-expresses Cyan Fluorescent Protein fused to Drosophila Histone H2B to label

nuclei and the Red Fluorescent Protein variant mCherry to label the whole cell (see Appendix A).

The clone was generated by Jungseog Kang and Qi Wu (Altschuler & Wu lab, UT Southwestern).

Imaging. Plates were imaged on one of two Nikon Eclipse Ti-E2000 microscopes controlled by

NIS Elements version 4, using several optical setups. Image coordinates were generated using NIS

Elements or custom software for higher precision. The cameras used were either a Roper Scienti�c

CoolSnap HQ2 CCD 14-bit Fig. 4.5 or an Andor Zyla sCMOS 11-bit.



Chapter 5

Conclusion

The study of cellular signaling is a di�cult one, in large part because we know so little, a priori,

about what aspects of a signal a cell cares about and into what intracellular properties it encodes

those signals. It may be, however, that the complexity of our understanding of signaling is hiding

a reality of underlying simplicity (Chapter 1). In particular, the static network models that we

rely on include links derived from di�erent timescales (such that activity along one link should be

considered constant relative to activity along another) as well as links that may only be present in

a subset of true signaling network instances (e.g. in certain cell types or experimental conditions).

Wnt/β-catenin and TGFBsf together provide a case study for this problem of signaling complex-

ity (Chapter 2). For each pathway alone there is a lack of clarity due to idiosyncratic outcomes

between labs and experiments. There is even less clarity when considering how the two pathways are

integrated by cells in order for them to make decisions. Much of the confusion regarding crosstalk

between these pathways may stem from the reliance of published work on overexpression assays,

which can push cells into abnormal states. Further, the same studies rely on transcription-based

readouts that are measured long after initial pathway activation, allowing for transcriptional feed-

back to confound the results (Section 2.6).

Therefore, I tested Wnt/β-catenin and TGFBsf for crosstalk using an assay that relies on en-

dogenous levels of proteins (to prevent the signaling networks from being pushed into abnormal

states), short timecourses (to prevent transcriptional feedback from confounding interpretation),

and direct readouts of signal transduction (Chapter 3). This study design allowed me to directly

test the a�ect of signaling through one pathway on signaling through the other. In this way, I dis-

covered that Wnt/β-catenin and TGFBsf are in fact completely insulated from one another during

signal transduction. Further, I found no evidence for the expected intra-TGFBsf inhibition nor the

competition for the shared component, Smad4, thought to cause it.

Though I observed that signaling insulation is a general phenomenon, I did uncover an instance

of context-dependent transcriptional crosstalk. Importantly, the resulting transcriptional feedback

led to biasing of signaling activity over longer timecourses. In e�ect, this is a direct example of

the fact that some network links may exist only under certain conditions, and that experimental

separation of signaling and transcription is essential to understanding the nature of morphogenic
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pathway integration. From these results, I conclude that there exists a surprising simplicity of

interactions between morphogenic pathways: there is a high degree of insulation between Wnt/β-

catenin and TGFBsf, allowing nuclei to make transcriptional decisions based on more-complete

models of their environments (Section 3.4).

For the experimental approach that led to my discoveries, I relied heavily on quantitative,

single-cell �uorescence microscopy (Chapter 4). Single-cell imaging is an increasingly available

and invaluable approach to studying cell biology (and cell signaling in particular). Unfortunately,

single-cell image analysis is a di�cult and unsolved problem. An oft-neglected issue is that of image

correction, prior to analysis. Indeed, the most commonly-used methods throughout the literature

tend to provide incomplete or error-prone image correction. I discovered a solution to this problem,

in the particular case of high-throughput microscopy, which takes advantage of predictable optical

properties within microtiter plates (Section 4.3).

On negative results

When I �rst found that Wnt3A and TGFβ3 are insulated from one another during signaling, I was

hugely disappointed. This disappointment came, in large part, from having spent a year under

the impression that there actually was crosstalk. I had performed many experiments and narrowed

down the point of inter-pathway crosstalk to the receptor or ligand level, before I �nally discovered

contamination of the puri�ed recombinant Wnt3A ligand (Fig. 3.6).

The artifactual result itself was not the most disappointing part; it was instead the feeling that I

now had a �negative result� and would therefore have to drop the project completely and start over.

This attitude had been ingrained within me throughout my science education: I was taught that

scienti�c discovery is about �nding new and exciting things. Or, in any event, that my discoveries

would need to be new and exciting in order to get published and move my career forward.

While scrambling to make the best out of the situation, I slowly realized that there was not

truly a problem. The fact that the crosstalk I observed was an artifact was a real result: numerous

studies show signaling interactions between these pathways, and the contaminated reagent is among

the most commonly used for studying Wnt/β-catenin signaling. As long as I could unambiguously

demonstrate the absence of crosstalk, then my result was not a negative one at all and could

potentially reduce some confusion in the �eld. One person's negative result is another person's

positive result, as it were.

In any case, there is value to negative results. In recent years there has been increasing hubbub in

the news and in opinion pieces regarding the state of biomedical research. Of particular concern has

been the irreproducibility of published results and the toxic e�ects of using �impact� as the primary

metric for determining the merit of both scienti�c discoveries and of the scientists who make those

discoveries [260,261]. Why does the emphasis on impact lead to irreproducibility? A needed statistic

when evaluating a claim is the a priori likelihood of that claim being true; when the literature is

biased towards exciting (i.e. unlikely) results because scientists do not publish �negative� results,

we cannot accurately estimate the likelihood of truth for new claims. This problem is (in)famously
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addressed in a paper by John Ioannidis that should be required reading for all biologists [262].

Parting thoughts

The overarching �eld of cellular signaling is an exciting one; understanding how cells communi-

cate and process information is absolutely fundamental to our understanding of all of cell biology.

Importantly, a deep understanding of this topic will allow us to more ably manipulate biological

systems, both in medicine and in bioengineering. To develop that deep understanding, however,

it is essential that we revisit the complex static maps of established cellular signaling pathways,

and then pay careful attention to how time and context reshape these networks. By identifying

underlying simplicity in cell signaling, we will be better equipped to both understand and control

cellular information processing and decision-making.



Appendix A

pSeg: plasmids for live-cell segmentation

This dissertation uses only �xed-cell microscopy assays, but future studies would ideally include live-

cell studies of TGFBsf and Wnt signaling. Live-imaging and �xed-cell imaging can use the same

general analytical methods, including the use of nuclear and cytosolic �uorescence to identify these

two cellular compartments. However, �nding appropriate labels for live-cell assays is much more

di�cult, as the cells are not permeabilized and toxic stains must be avoided. In order to e�ectively

deploy segmentation algorithms, the nucleus and cytosol should ideally be labeled brightly and

homogeneously.

YFP
H2B-CFP

RFP
H2B-CFP

Figure A.1: The pSeg plasmids generally consist of two di�erentially-localized �uorophores. Left, sample
images from two human colonic epithelial cell (HCEC) pSeg clones. The top image is from the LYiHnCL
pSeg construct shown at right, and the bottom image is from an LRiHnCL construct. See Table A.1 for
symbols. Right, structure of pSeg construct. The 5' and 3' Murine Leukemia Virus LTRs (long terminal
repeats) �ank the construct, which also has loxP sites oriented in the same direction so that the construct
can be excised by Cre recombinase, thus reverting a clone to a �parental� phenotype. AmpR, ampicillin
resistance gene. psi+, viral packaging sequences. Puro, puromycin. IRES, internal ribosome entry site.
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Table A.1: List symbols for the pSeg library in Table A.2.

Symbol Abbreviation Full

C CFP mCerulean
G GFP enhanced Green Fluorescent Protein
H H2B Histone H2B (Drosophila)
i IRES Internal ribosome entry site (encephalomyocarditis virus)
L loxP loxP site
n NLS Nuclear Localization Signal (SV40)
m membrane- localized Gap43 N-terminus (Danio rerio)
R RFP mCherry
Y YFP enhanced Yellow Fluorescent Protein

One approach to address this problem is via �central dogma� (CD) tagging, in which a �uorescent-

protein-encoding gene surrounded by splice acceptor/donor sites is randomly integrated into the

genome. Any integration that lands within an intron of a gene has a chance to become an exon for

that same gene. Thus,the genetic protein product will then contain a �uorescent protein as one of

its domains, allowing the localization and dynamics of that protein to be visualized [263,264].

High-throughput studies have used this technique to obtain nucleus- or cytosol-localized labels

for the purpose of segmentation, with the purported bene�t that it requires no exogenous expression

system and thus minimizes perturbations to the cell [28, 265�267]. Unfortunately, the CD-tagging

process is slow, since exon-generating integration events are rare and must be subsequently screened

to identify the rarer-still events that yield the desired localization patterns. Additionally, the tagging

of a protein is itself a perturbation that may disrupt localization or function. Chosen CD-tagged

clones must then be carefully studied to ensure that the cells (and the tagged proteins) behave

properly.

A much faster alternative is to express �uorescent proteins from exogenous promoters, though

there is always the concern that the presence of an exogenous promoter may a�ect the cell in some

unpredictable way. To me, this is just as problematic as the concern that CD-tagging will disrupt

some unknown function of the tagged protein. I therefore prefer the e�ciency of the exogenous

approach. To take advantage of this e�ciency for future live-cell projects, I created a library of

viral constructs, each generating distinct localization patterns of red, yellow, and cyan �uorescent

protein expression in mammalian cells. I refer to these as �segmentation plasmids� (pSegs).

pSeg structure

Each pSeg plasmid has three variable components: a �uorescent protein (FP) with a whole-cell

expression pattern, a �uorescent protein with a nuclear expression pattern, and a selection cassette.

I chose the mCherry, eYFP, and Cerulean �uorescent proteins because they have wide spectral

separation and so can all be used simultaneously in single cells. The general structure of the insert

is shown in Fig. A.1. Whole-cell expression patterns are generated by either free FP or a FP fused

to the Gap43 membrane localization signal [268]. This signal results in faint whole-cell and strong

membrane �uorescence. Nuclear expression is mediated by addition of either a nuclear localization

sequence (NLS) or fusion to Drosophila histone H2B. The H2B-fused FP is useful because it can be

used to monitor chromatin condensation [269] and seems to be benign even when generally expressed
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Table A.2: Full list of plasmids in the pSeg library. See Table A.1 for symbol meanings. �Floxed� refers to
�anking by loxP. PuroR and NeoR refer to puromycin or neomycin resistance cassettes.

�oxed & PuroR �oxed & NeoR NeoR

LmYiHnCL LYiHnCL YiHnC
LmCiHnCL LGiHnCL YiHnY
LmRiHnCL LRiHnCL CiHnC
LmYiCnnCL LYiCnnCL CiHnY
LmCiCnnCL LGiCnnCL YiCnnC
LmRiCnnCL LRiCnnCL YiYnnY
LYiHnCL CiCnnC
LGiHnCL
LRiHnCL
LYiCnnCL
LGiCnnCL
LRiCnnCL

in mice [270].

Each construct is expressed as a single mRNA, using the retroviral promoter and an internal

ribosome entry site (IRES) for di�erential translation of the the protein products. Finally, the

constructs are also �anked by loxP sites and so can be removed after genomic integration, thus

generating unlabeled �parental� cell lines. The pSeg library consists of 25 color/localization/selection

combinations in Puromycin or Neomycin-resistant backgrounds, with or without �anking loxP sites.

Table A.2 shows all of these constructs (refer to Table A.1 for symbol de�nitions).

I built the library into the pMYs retroviral backbone, which contains a modi�ed version of the

Murine Leukemia Virus promoter that improves integration e�ciency in some stem cell systems

[271]. The pMYs backbone contains the viral long terminal repeats (LTRs) and a viral packaging

signal (Table A.1), allowing for the creation of virus using MLV packaging cell lines.

Generating cellular pSeg clones

Integration of the pSeg constructs into target cells requires the generation of and infection by live

virus (see Methods). A few days after infection, I FACS (Flow-assisted cell sorting)-sort single

cells into each well of 384-well plates. I �nd that survival rates for singly sorted cells are quite low

(∼20-30%), though I could double these rates by pre-seeding the wells with un-labeled cells. The

feeder cells can be selected against later according to the chosen pSeg cassette. With this appraoch,

a clone from the A549 cell line was created in the Altschuler & Wu lab by Jungseog Kang and Qi

Wu, which forms the foundation of a CD-tagged library (unpublished).

The slowest part of the process is the establishment of clonal cell lines from single cells, which can

take 6 weeks. However, this step is essential. Cell-to-cell variability can be high, even within a clonal

population [27]. Further, I found that all pSegs yield populations with diverse localization patterns.

For example, the LRiHnCL construct should express mCherry and Cerulean in the nucleus, and yet

all possible patterns are observed (Fig. A.2). The reason for this is not clear, though retroviruses

(such as MLV) have diploid genomes within viral particles and are known to have recombination

events [272]. The high degree of repetition within these constructs (the di�erent �uorescent proteins

have high homology) may then lead to truncations or expansions of the integrated sequence, such
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Figure A.2: A population of cells infected with the pSeg.puro-LRiHnCL construct show all possible nuclear
localization patterns. Percents show the relative population size for each group. The bottom-left (black) cells
are unlabeled, the top-right (dark blue) cells are correctly labeled with both �uorescent proteins, and the
other two populations express only one of the two proteins. n=1770 human colonic epithelial cells, stained
with Hoechst for segmentation. Arbitrary total �uorescence units.

that it re-arranges the localization signals on the �uorescent proteins.

Finally, I warn that the Murine Leukemia Virus has a strong preference for integration into the

5' end of highly-expressed genes [273�275]. Despite this preference, the virus does seem to avoid

house-keeping genes, though I note that this may simply be due to the death of cells that do have

integrations at such sites. As a consequence of integration, then, functionally important genes may

be disrupted. A simple test for this is to select multiple labeled clones and compete each against

the unlabeled parental population. The clones with the most similar-to-parental growth rates can

then be kept for further experiments.

Methods

Molecular cloning. I constructed the pSeg library using a combination of standard moleculuar

cloning techniques and Gibson assembly (New England Biolabs #E5510) [276]. I veri�ed each

construct by Sanger sequencing, and con�rmed each phenotype by checking the localization patterns

in transiently-transfected HEK293T cells.

Tissue culture. The tissue culture methods and imaging followed those in Section 3.5 with the

exception of viral production and infection. I used the Platinum-A HEK293T packaging cell line

(Cell Biolabs #RV-102) and closely followed the protocol used by Uri Alon's group for CD-tagging

[266]. In brief, virus is generated by transfecting packaging cells and collecting the supernatant 2-3

days later. This supernatant is then applied to the target cells, which are left for 48-72 hours to

allow for genomic integration. The multi-day timeline is essential, as MLV can only integrate into

immediately-post-mitotic genomes [277].

Analysis. For the analysis in Fig. A.2 I used the ImageJ implementation of the rolling ball

algorithm for correction and a custom Matlab nuclear threshold segmentation algorithm. I used
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the Hoechst channel to manually gate the G1 population and to subsequently correct the mCherry

and Cerulean channels using the regression method described in Section 4.5.2. I used the k-means

algorithm implemented in R to automatically identify each of the subpopulations shown in the

�gure.



Glossary

canonical pathway A well-established series of bio-

chemical signaling steps, which e�ectively pass

information from one molecule to another. Of-

ten de�ned by genetic means with epistasis

mapping. Also used to refer to pathways that

are more easily studied than alternatives (e.g.

compare canonical and non-canonical Wnt sig-

naling).

canonical Wnt signaling The branch of Wnt signaling

that results in increased intracellular β-catenin

levels (therefore also called Wnt/β-catenin sig-

naling. This form of Wnt signaling is much eas-

ier to study than the others, because β-catenin

is easy to measure and is relatively insulated

from other signaling pathways.

channel In the imaging sense, used to refer to a �uo-

rescence color channel (e.g. Hoechst and �uo-

rescein �uoresce in di�erent channels). In the

information-carrying sense, a channel is a dis-

tinct path of information �ow.

crosstalk A transfer of information between signaling

components of canonically distinct pathways.

decision-making The mapping of an internal model of a

signaling event to some response. An example

internal model might be the nuclear concentra-

tion of a transcription factor, while the decision

is then how much of some transcriptional target

to produce.

detector The camera used to acquire �uorescence im-

ages. It will typically have a constant baseline

value added to images that must be subtracted

during image correction.

DNA Deoxyribonucleic acid (only a massochist would

use this acronym for something else). Used also

when referring to the total �uorescent Hoechst

signal from stained cells, as this molecule inter-

calates into the DNA backbone and thus serves

as a proxy for DNA content.

Drosophila melanogaster The classic fruit �y model

system. If you are a biologist, you cannot be

forgiven for having to look up this term.

edge A link between nodes (borrowed from graph the-

ory). For a signaling network, indicates some

interaction (e.g. phosphorylation) or transfer

of information between nodes.

encoding The manner in which information is converted

from one type to another. For example a piece

of text can be encoded into a binary format, or

the extracellular concentration of a ligand can

be encoded into the nuclear concentration of a

transcription factor.

endogenous Usually used to refer to the normal cellu-

lar concentrations of some factor (contrast to

overexpression and exogenous).

exogenous Usually used to refer to an addition to the

normal concentrations of some factor (contrast

to endogenous). For example, an added puri-

�ed ligand is an exogenous source of that lig-

and, and an overexpressed protein creates an

exogenous pool in addition to the endogenous

pool.

feature A single type of measurement in image analysis.

Example features include nuclear area or total

cytosolic intensity.

Homo sapiens If you are reading this, you are probably

one of these.

homology Having a shared evolutionary ancestor. Thus

genes with high homology have similar se-

quences and recent ancestry (or high selective

pressure). It is important to note that sequence

similarity does not necessarily imply homology

(i.e. �homologous� does not mean �similar�).
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The noun form of this term is �homolog,� which

is a more general term than are paralog and

ortholog.

image correction The removal of detector, background,

and shading components from an image.

immunostain The use of an antibody to attach a �uo-

rophore, or other measurable item, to a target

molecule.

knockout The removal of a gene from the genome. Typ-

ically used to refer to the removal of both alle-

les in a diploid organism, though the term �ho-

mozygous knockout� means this more speci�-

cally. Thus a �Wnt5A knockout mouse� likely

lacks both endogenous alleles of Wnt5A.

LiCl Lithium Chloride. Can be used to inhibit GSK3β.

ligand A protein or other molecule that is recognized by a

cellular receptor, thus leading to some internal

representation of properties that molecule.

microenvironment A term that is thrown around in the

literature extensively but frequently (and per-

haps purposely) left unde�ned. Here, it is used

to refer to the collection of environmental pa-

rameters that a single cell is exposed to. A sub-

set of such parameters include juxtacrine and

paracrine signals from neighboring cells, as well

as any more global properties (e.g. tempera-

ture). In the context of an experiment, this also

includes any perturbations that a cell should be

able to sense.

node A conceptual unit that may interact with another

unit (borrowed from graph theory). For a sig-

naling network, may indicate a protein or pro-

tein state.

non-canonical Wnt signaling The branches of Wnt sig-

naling that do not result in increased intracel-

lular β-catenin levels (in the longer-term, these

pathways may inhibit canonical Wnt signaling).

This form of Wnt signaling has been di�cult to

study, because its readouts (including transient

Ca2+ signaling) are hard to measure and are

integrated with many other signaling pathways.

For these reasons, it is not clear how many non-

canonical pathways there are, how distinct one

is from another, and what the impacts of this

form of signaling are on canonical signaling (be-

sides general long-term inhibition).

ortholog Homologous sequences, in two di�erent organ-

isms, that resulted from a speciation event (i.e.

they are the �same� sequence).

overexpression The exogenous expression of some

protein, for example by transient expression

from a plasmid, constitutive expression by a

genomically-integrated viral construct, or con-

trollable expression from an inducible promoter.

Generally implies that there is more than a nor-

mal quantity of the expressed protein.

paneth cell A long-lived cell type living in the base of

crypts. It is thought to provide the stem cell

niche in the small intestine.

paralog Homologous sequences, within the same genome,

that resulted from a gene duplication event.

probe Short for ��uorescent probe,� used to refer to a �u-

orescent small molecule or antibody that binds

to a speci�c molecular target.

proteosome A large protein complex that degrades pro-

teins in a highly regulated manner, typically af-

ter those proteins have been modi�ed by the

covalent addition of ubiquitin.

RNA Ribonucleic acid. Used with various pre�xes to in-

dicate the speci�c type of this molecule. Types

include messenger RNA, small interfering RNA,

and ribosomal RNA.

signaling Also referred to throughout the text as �cellu-

lar signaling� and �signal transduction.� I use

this term speci�cally to refer to the process by

which an external stimulus is encoded into an

internal representation of that stimulus.

transcription factor A molecule (typically a pro-

tein) that directly binds to DNA, or to other

molecules that bind DNA, and thus can cause

a change in the transcription rate of a gene.

Trichoplax adhaerens The most basal known meta-

zoan, with a simple multicellular structure.

Xenopus laevis A frog used as a model organism. Wnt

and BMP have been heavily studied in this or-

ganism, particularly with respect to develop-

ment.
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