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I. Introduction 
In 520 A.D., according to legend, the patron Saints of medicine and surgery, Cosmas 
and Damian, replaced the gangrenous white leg of an aged sacristan with the healthy 
dark leg of a recently deceased Ethiopian man (1 ,2). This celebrated operation, 
captured in the historic painting by Fernando del Rincon (on the cover of the handout) 
is the first description in the Western literature of an orthotopic allograft. 

In 1981, 14 centuries later, this ancient wish became a modern day reality when Black 
and colleagues at the University of California at Irvine successfully replaced the white 
leg of a Lewis rat with the dark leg of a hybrid brown Norway rat (3). 

Figure 2. From (3). 

The first operation was performed posthumously (Cosmas and Damian died in 287 
A.D.) and thus with divine intervention, the second with cyclosporine- induced 
immunosuppression. 

Cyclosporine A (abbreviated CsA) is the first immunosuppressive agent with relative 
T-cell specificity (4,5). In the past decade, CsA has greatly improved long-term survival 
after organ transplantation, leading to the exponential growth of organ transplant 
programs in the 1980's (6). 
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Figure 3. From (6). 

In addition, GsA is rapidly gaining acceptance as being remarkably efficacious for an 
increasing list of autoimmune diseases, including psoriasis and psoriatic arthritis, 
rheumatoid arthritis, and Grohn's Disease (7-9). 

Despite these beneficial effects, GsA causes considerable toxicity, most notably 
hypertension (1 0-17}, renal insufficiency (18}, and GNS toxicity (19- 23). 

Adverse Effects of CsA: 

Adverse Effect 
Hypertension 
Nephrotoxicity (serum Cr > 2.0) 
Tremor 
Paresthesia 
Seizures I Encephalopathy 
Hyperuricemia 
Hyperkalemia 
Hyperglycemia 
Hirsuitism 
Viral Infections 

Figure 4. 
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CsA has emerged as a major new cause of hypertension. Indeed, it now is one of the 
commonest causes of secondary hypertension. In heart transplant recipients, for 
example, the incidence of hypertension has increased from 20% in the pre-CsA era to 
currently 90% (4, 10, 16). 
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Figure 5. Adapted from (4,10,16). 

Two syndromes have been described: (1) Chronic hypertension, which is evident 
usually by 6 months after transplant, typically is moderate or severe, often requiring 
treatment with multiple antihypertensive medications. Hypertension after heart 
transplantation has been implicated as a risk factor for shortened allograft survival 
(24,25), left ventricular hypertrophy (26-28), and coronary allograft and peripheral 
vascular angiopathy (29-30). (2) Acute fulminant hypertension with seizures has been 
described with high dose intravenous CsA after bone marrow transplantation (31 ,32). 

Hypertension also is the main reason why internists have been hesitant to prescribe 
CsA for their patients with autoimmune diseases for which this drug is remarkably 
efficacious. 

Despite the clinical importance of GsA-induced hypertension, the underlying 
mechanisms have been an enigma. 

The aim of this Grand Rounds is to present a conceptual framework for understanding 
the pathophysiologic basis of GsA-induced hypertension. This is an excellent 
example of the syngery between basic research and clinical practice. CsA has not only 
proven to be a powerful immunosuppressant drug in patients but also to be a powerful 
new scientific probe to study cellular signal transduction (33), the process by which 
extracellular molecules alter intracellular function. 
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Cytoplasmic 
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Pathway 

Figure 6. From (33). 

The recent elucidation of novel GsA-sensitive cellular signaling pathways has lead to 
the search for the ideal immunosuppressant drug, which retains CsA's 
immunosuppressive efficacy without its toxicity, i.e., the "billion dollar molecule (34). " 

BILLION DOLLAR MOLECULE 

8 greater immunosuppressive potentcy than CsA 

8 no toxicity 

Figure 7. 

This burgeoning field of basic research also has exciting implications for the treatment 
of a variety of disease processes far beyond immunosuppressant drug toxicity. 

My review is not meant to be encyclopedic [the reader is referred to several recent 
reviews (35-40)], but rather to address the following question: 

QUESTION 

Does a common molecular mechanism mediate 

the immunosuppressant and the hypertensive 

effects of CsA ? 

Figure 8. 
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II. Mechanism of CsA-Induced 
Immunosuppression 

A. CsA, the first immunosuppressant drug with relative T cell specificity 

CsA was the first immunosuppressive agent with relative T cell specificity (4,5) This 
means that, in contrast to more the traditional agents prednisone and azathioprine, 
CsA causes much fewer opportunistic infections. 

CsA: T CELL SPECIFICITY 

8 greater effect on T than B cells 

8 inhibits T helper but not suppressor cells 

• minimal bone marrow suppression 

• minimal reduction in peripheral blood counts 

= fewer opportunistic infections 

Figure 9. 

CsA: 
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1992 

Figure 10. 

HISTORICAL DEVELOPMENTS 

CsA discovered from soil fungi 

immunosuppressant effect discovered by serendipity 

first clinical trials with CsA 

CsA synthezied de novo 

CsA registered by Sandoz 

molecular mechanism of immunosuprression 

The drug was used clinically for almost a decade before the molecular mechanism of 
action was elucidated. When I first reviewed this topic at Grand Rounds in 1989 (41), 
I concluded, "The detailed molecular mechanism of GsA's suppression of T 
lymphocytes is only beginning to be elucidated. " 

In the past 6 years, the scientific progress in this field has been remarkable (33, 42-44 
for excellent brief reviews). 
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Figure 11 From (33). 

These are 3 processes which are sensitive to CsA. In T cells it inhibits transcriptional 
activation of the interleukin 2 (IL-2) gene and this is thought to be the primary 
immunosuppressive action. The effect is not at the level of the T cell receptor but 
somewhere between the cytoplasm and nucleus. CsA also inhibits exocytotic release 
of histamine from mast cells and again the site of action is not the cell surface receptor 
but inside the cell. The yeast that produce CsA are resistant to its antifungal action 
against other species and this is accomplished again by interfering with proliferation , 
not at the cell surface but at the intracellular level. 

I want to emphasize that most drugs and hormones work by acting on cell surface 
receptors, a classic example being the interaction of epinephrine with the beta­
adrenergic receptor. In contrast, CsA does not work on cell surface receptors. It is so 
lipophilic that is readily passes through the cell membrane and interacts with a newly 
discovered family of intracellular receptors. 

B. Cyclophilin, the CsA receptor. 

The cytoplasmic receptor for CsA is a soluble protein termed cyclophilin. (42-47). 
Actually, there are a dozen or so cyclophilins. They are uniformly expressed in yeast, 
in human T cells and mast cells, and in all mammalian cells. Handschumacker et al. 
(45) found that the uptake and concentration of [3H] CsA in cultured cells occurs in the 
cytosol and not the cell membrane. They then purified the cytosolic receptor (15,000 
kD protein) by chromatography. They hypothesized that the immunosuppressive 
action of CsA is mediated in the cytosol by binding to cyclophilin, since they could 
rank order the binding of various natural and synthetic CsA analogues to cyclophilin 
with their immunosuppressive potency in cell culture. 
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Interestingly, in various strains of yeast, sensitivity to antifungal action of CsA 
correlates with cyclophilin binding. In GsA-resistant mutants, the cyclophilin protein is 
either lost or has lost its ability to bind CsA (48). 

Then it was discovered that the cyclophilins possess intrinsic enzymatic activity: they 
catalyze folding of proteins, a property termed cis-trans peptidyl-prolyl isomerase 
(46,47). This led to the .. Isomerase Model: .. CsA binding was postulated to result in a 
loss of function of cyclophilin (33). 

CsA 

RNHCO ~e 
o)....N 

0)-N 
Isomerase R ... .... 

R 
RNHCO / 

Figure 12. Adapted from (33). 

Thus, prevention of the folding (cis-trans isomeration of a prolyl bond) of some 
unknown target protein was assumed to be the GsA-sensitive step in T cell activation 

The simplicity of this model was so exciting that one of the senior scientists at Merck 
named Jeffrey Boger started his own drug company (Vertex) on the premise that one 
could design from basic principles a second generation GsA-like molecule which 
retained the key ingredient in immunosuppressive potency -- inhibition of the 
isomerase--but removed whatever portion of the molecule was responsible for causing 
drug toxicity, the mechanism of which remained to be determined. This story recently 
captured the interest of the lay press (34). 

T H E 
BILLION - DOLLAR 
MOLECULE 

ONE COMPANY'S QUEST 

FOR THE PERFECT DRUG 

BARRY WERTH 

SIMON & SCHUSTER 1994 
' 

Figure 13. Adapted from (34) 
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Unfortunately for Boger and his financial associates, the isomerase model was 
completely refuted soon after the discovery of FK506 and rapamycin, two more 
immunosuppressants with relative T cell specificity (42-44). 

Figure 14. 

Whereas CsA is a cyclic polypeptide, FK506 and its structural analogue rapamycin 
are macrolides. Like CsA, FK506 is another fungal product (this time discovered in 
Japan) and it has the identical action on T cells and mast cells. Furthermore, FK506 
binds to and inhibits the activity of another isomerase, termed FK binding protein 
(FKBP) (49,50). What is remarkable is that the two drugs ... and their receptors (termed 
immunophi/ins) ... have absolutely no structural features in common. 
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GsA binds cyclophilin whereas FK506 and rapamycin bind FKBP. However, there is 
no cross-reactivity: GsA does not bind to FKBP and FK506 and rapamycin do not bind 
to cyclophilin (42-44, 49,50). 

Antigen 

TCe/1 I 
Receptor Y 

r 

Figure 15. 

,, 
2+ 

Ca ... 

CsA FK506 

,, 
CsA FK506 

I I 
CyP FKBP 

e"'- /e 
2+ 

early Ca 

dependent step 

Inhibition of 

IL-2 Gene Transcription 

Rapamycin 

, 
Rapamycin 

I 
FKBP 

2+ 
late Ca 

independent step 

Inhibition of 

IL-2 Receptor 

Two observations dissociated T cell inhibition from isomerase inhibition. First, 
although FK506 and rapamycin are equally effective in inhibiting the isomerase 
activity of FKBP, the two drug /immunophilin complexes inhibit entirely different steps 
in T cell activation (42-44, 51). Second, Stuart Schreiber's laboratory synthesized de 
novo an unnatural immunophilin ligand termed 506 BD (FK506-Iike binding drug) 
which contains only the common structural elements of FK506 and rapamycin (52). 
The 506 BD binds FKBP with high affinity and inhibits its isomerase activity but has 
absolutely no effect on T cell activation in cell culture. 

That CsA and FK506 inhibit the identical Ga2+ dependent step in T cell activation 
suggested that they have a common molecular mechanism of action. 
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C. Calcineurin, the cellular target of the CsA I cylophilin complex. 

In 1991-92, the story broke that the common target of the two drugs (as their 
immunophilin complexes) is a Ca2+ binding protein termed calcineurin {53-58}. 

Antigen 

TCe/1 ' CsA FK506 Rapamycin 
Receptor 

CsA FK506 Rapamycin 

I I I 
CyP FKBP FKBP 

e\ /e 
2+ 

ca ..,. CALCINEURIN 

NF-AT--(E) 

nucleus 

Figure 16. 

NF-ATC + R 

NF-AT n .. 
IL-2 gene 

Transcription 
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This cartoon depicts the current thinking about the molecular mechanism of GsA's 
immunosuppressive action. This was elucidated by comparison of GsA's effects with 
those of two investigational immunosuppressant drugs, FK506 and rapamycin. 
Whereas GsA is a cyclic polypeptide, FK506 and rapamycin are macrolides. All three 
drugs are membrane permeant but they are biologically inert until they bind to their 
respective cytoplasmic receptors, termed immunophilins. Cyclophilin binds GsA while 
FK-binding protein (FKBP) binds either FK506 or rapamycin. The cellular target of 
both the GsA-cyclophilin and FK506-FKBP complexes is calcineurin, the 
Ga2+/calmodulin dependent phosphatase (53), which is inhibited by these 
immunophilin-ligand complexes (54-58). In the T cell, the relevant substrates for 
calcineurin are phosphorylated transcriptional factors on the interleukin-2 gene such 
as the nuclear factor of activated T cells (NF-AT). When dephosphorylated in the 
cytoplasm by calcineurin, a subunit of NF-AT enters the nucleus where it initiates 
transcriptional activation of the IL-2 gene. Inhibition of calcineurin plays a pivotal role 
in preventing T cell activation (i.e., graft rejection, automimmunity) by preventing 
dephosphorylation of NF-AT (33,43,54-58). 

Galcineurin also mediates effects of GsA and FK506 on post-transcriptional immune 
events including exocytotic release of histamine from mast cells and of cytokines from 
cytotoxic T cells (59-62). 

Recent evidence suggests that clinical doses of GsA lead to marked decreases 
calcineurin activity in circulating mononuclear cells in patients (63). 

Although rapamycin, a structural analogue of FK506, is a high affinity ligand for FKBP, 
this immunophilin complex has no effect on calcineurin but inhibits T cell activation by 
a completely different (Ga2+ independent) mechanism (51, 64). 

The evidence that calcineurin is the common cellular target for both CsA 
and FK506 is: 

1. Galcineurin's phosphata_se activity in vitro is inhibited by GsA-bound to 
cyclophilin or FK506 bound to FKBP, but not by rapamycin bound to FKBP (54,55). 

2. The Schreiber laboratory identified the immunophilin receptor binding site and 
the calcineurin binding site on the GsA and FK506 molecules. By making minor 
alterations in the calcineurin binding site, they created a series of structural analogues 
with progression reduction in their ability to bind to calcineurin. The ability of these 
analogues to inhibit calcineurin's phosphatase activity in vitro correlated well with 
their ability to inhibit NF-AT activity in cultured human T cells (56). 

3. Over-expression of calcineurin in T cells rendered their NF-AT activity less 
sensitive to inhibition by GsA or FK506 (57,58). 

This work led to the following new concepts: 
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CsA and FK506 are prodrugs. 

Figure 17. 

When they circulate in the bloodstream, GsA and FK506 are biologically inert until they 
enter the cell and bind to their respective immunophilin receptors. When unbound, 
neither GsA nor FK506 have any effect on calcineurin. 

CsA and FK506 are molecular match makers. 

Figure 18. · 

They bring together two molecules -- in this case, the immunophilins and calcineurin 
--which normally do not interact. 

GLOSSARY 

Chaperone 

Schatchen 
(Yiddish word for 
marriage broker) 

prevents undesirable associations 

promotes desirable associations 

Figure 19. Adapted from (65,66) 

GsA and FK506 act by forming a new molecular surface, composed of parts of the 
immunophilins and part of themselves. This new surface is selectively sticky for 
calcineurin. NMR studies show that when bound to cyclophilin GsA is literally turned 
inside out (66) . The hydrophobic side chains of the ring structure normally are tuned 
inward. When bound to cyclophilin some of these side chains are turned outward to 
interact with the immunophilin whereas others are directed away from the 
immunophilin receptor site to help form a calcineurin binding site. 

In summary, there is compelling evidence that calcineurin inhibition mediates GsA­
and FK506-induced immunosuppression at the cellular level. A calcineurin-knock out 
mouse has just been made (67), allowing investigators to determine soon whether 
these results can be extrapolated to the intact animal. 

Lets return to the question of whether the GsA-induced immunosuppression and 
toxicity share a common molecular mechanism. 
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Ill. Mechanisms of CsA-Induced Hypertension 

CsA FK506 Rapamycin 

Cell , , ,, 
Membrane CsA FK506 Rapamycin 

I I I 
CyP FKBP FKBP 

e\ /e 
Calcineurin 

I 
ca2+ -Calmodulin 

... ....Ill 

• ,. , r , 
T-Cells CNS Peripheral Kidney 

I I 
Vasculature 

Inhibition of IL-2 Sympathetic Vasoconstriction Na+, H20 
Gene Transcription Activation Retention 

~ 

Immunosuppression Hypertension 

Figure 20. From (35). 



Galcineurin and the immunophilins are even more plentiful in non-lymphoid tissues 
such as the nervous system (53, 68,69), vascular smooth muscle (70), and kidney (71 ). 
Because these are the main target sites for GsA-induced toxicity -- especially, 
hypertension -- a key question is whether inhibition of calcineurin in these different 
tissues mediates GsA-induced hypertension. If so, one would predict that in both the 
experimental and clinical settings GsA's toxicity profile would be duplicated by FK506 
but not by rapamycin. 

There is debate as to the relative contribution of various target tissues in the 
pathogenesis of GsA-induced hypertension. Renal (72-83), vascular (84-1 04}, and 
neural (1 05-112) mechanisms all have been implicated and are not mutually 
exclusive. For example, GsA-induced hypertension is a low renin I salt-sensitive form 
of hypertension, due to an expanded plasma volume. In addition, GsA appears to 
augment the vascular reactivity of blood vessels either by impairing vasodilator 
mechanisms (e.g., nitric oxide) or enhancing vasoconstrictor mechanisms (e.g., 
endothelin). This review will focus only on the neural mechanisms, which is an on­
going project in my laboratory. We have the opporutnity to take this project from the 
clinical setting to the experimental animal laboratory, to the cell and molecular level. 

As suggested by the name, calcineurin was first discovered in the brain where it 
accounts for > 1% of total protein (53). Despite this abundance, until very recently 
almost nothing was known about its neuronal function. In 1992, Solomon Snyder's 
laboratory at Johns Hopkins demonstrated the colocalization of calcineurin with 
extraordinarily high concentrations of immunophilins in rat brain and brainstem (69), 
which plays a key role in the sympathetic neural control of blood pressure. This led us 
to hypothesize that inhibition of calcineurin by GsA leads to an increase in the activity 
of sympathetic neurons which contributes to hypertension (111 ). This was a 
reasonable hypothesis, since GsA clearly crosses the blood brain barrier (19-23). 

A Clinical Investigation 

Using intraneural microelectrodes to record sympathetic nerve discharge targeted to 
the skeletal muscle circulation. Scherrer et al. (1 07) provided evidence of sympathetic 
overactivity in patients with GsA-induced hypertension. 

Figure 21. 

Arterial 
pressure 
300 

0 

IL_ 
I~ 
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We measured arterial pressure and sympathetic nerve activity in 5 heart transplant 
recipients treated with azathioprine and prednisone alone and in 16 heart transplant 
recipients treated with azathioprine and prednisone plus CsA. 

Heart-Transplant Recipient Taking Cyclosporine 

Heart-Transplant Recipient Not Taking Cyclosporine 

Patient with Essential Hypertension 

Normotensive Control 

Figure 22. (From 1 07). t--- 15 sec --i 

The higher blood pressures in the CsA group were accompanied by higher 
sympathetic nerve activity. 

Figure 23. Adapted from ( 1 07). 
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We ( 113) and others ( 114-116) have confirmed the finding of sympathetic overactivity 
in heart transplant recipients, although this has not been a universal finding (1 00, 116), 
and we have extended our findings to patients receiving GsA for autoimmune disease 
(1 07). 

Figure 24. Adapted from ( 1 07). 

In a double-blind randomized cross-over trial of GsA vs. placebo, we found that GsA­
treatment also was accompanied by sympathetic overactivity in patients with 
myasthenia gravis (1 07). 

It has been more difficult to establish sympathetic overactivity in GsA-treated patients 
using measurements of norepinephrine spillover, which are influenced not only by 
sympathetic nerve traffic but also by plasma clearance and presynaptic modulation. 
One study found increased norepinephrine spillover in CsA treated patients (117) 
whereas others have not (1 00, 1 04). 

Because of the difficulty in controlling a number of potentially confounding variables in 
clinical studies (e.g., antihypertensive medications, recent transplant surgery), we 
soon will begin to record sympathetic traffic during i.v. CsA (and eventually i.v. FK506 
and rapamycin) in normal human subjects. 

In the meantime, we have made those comparisons in rodent models. 
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B. Animallnvestigation 

Figure 25. 

In anesthetized rats, we recorded renal sympathetic nerve activity and arterial 
pressure during i.v. CsA, FK506, or rapamycin (35, 108,111, 112). 

Arterial 
Pressure 
(mmHg) 

150[ 

50 

Renal 

100
[ 

SNA 
(Hz) -._.....,.., .• 

0 

] 

~·~w· t,~.,,,llfll~+ ••~~t• lae 
After 300 ms 

1.....-----Rapamycin ----' 

Figure 26. Adapted from (35, 108,111 ). 

So, in rats, renal SNA and blood pressure are increased by FK506 as well as CsA but 
not by rapamycin, suggesting calcineurin mediation. The increase in blood pressure is 
sympathetically-mediated because it is eliminated by chemical or surgical 
sympathectomy 108,1 09). To further pursue the calcineurin hypothesis, we performed 
the following structure - function studies in collaboration with the Schreiber laboratory 
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The immunosuppressant drugs CsA and FK506 have an immunophilin receptor 
binding site and a distinctly different calcineurin binding site. By making minor 
structural alterations in only the calcineurin biding site, the Schreiber laboratory 
produced a series of drug analogues with progressive reductions in the ability of the 
parent molecules to bind to and inhibit calcineurin (56). 

When injected i.v. in our rats, these analogues produced attenuated increases in renal 
SNA and blood pressure in such a way that closely paralleled their attenuated ability 
to inhibit calcineurin-mediated signalling in isolated human T cells (111 ). 
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Figure28 From (111). 
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A similar correlation has been established between calcineurin inhibition and 
nephrotoxicity in rodent models (82,83). The strength of these correlation's in intact 
animals indicated that this project was ready for pursuit at the cell and molecular level. 
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C. Cellular and Molecular Investigation 

We recently have begun to use patch clamp techniques (118) (for which Neher and 
Sackmann won the Nobel Prize in 1990) to probe calcineurin's role in electrical 
signalling between neurons. 

Presynaptic 

Calcium 
channel 

2+ 
Ca 

Figure 29. 

NMDA 
receptor 

2+ ----""'""' 
Ca 

/ 
glutamate 

' 

Postsynaptic 
patch 
pipette 

calcineurin 

Glutamate is the primary excitatory neurotransmitter in the brain and it plays a major 
role in sympathetic neurotransmission at the level of the spinal cord, brainstem, and 
higher brain centers (119-124). When an action potential invades a presynaptic nerve 
terminal, neurosecretory vesicles containing glutamate are released into the synaptic 
cleft. Glutamate activates a postsynaptic receptor (termed NMDA because it also can 
be activated by a synthetic compound N-methyl-0-aspartate), an ion channel which 
controls the influx of Ca2+ into the postsynaptic neuron. The resultant ca2+ triggered 
intracellular action potential can be recorded with a patch pipette electrode. 

It has been hypothesized recently that calcineurin modulates this complex process of 
glutamatergic neurotransmission via both pre- and post-synaptic sites of action. 

For example, calcineurin has been shown to cause the dephosphorylation of 
postsynaptic glutamate receptors in excised membrane patches (125) and it has been 
shown to dephosphorylate certain presynaptic vesicle proteins in vitro (126, 127). 
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We tested these hypotheses using cultured rat cortical neurons, a reductionist model 
of glutamatergic neurotransmission. We recorded spontaneous glutamate-driven 
action potentials from the neurons and found that the action potential firing rate is 
increased by CsA or FK506 but not rapamycin, indicating calcineurin mediation (128). 

CsA 

~ JlJUJJL ... 
,. 

FK506 

0.111M 

Rapamycin 

Ql~Ul]JUQWJ·~-
20. 

Figure 30. From (128). 

We went on to show that in this cell culture model calcineurin modulates glutamatergic 
neurotransmission via a presynaptic site of action: it appears to increase the frequency 
of glutamate release from presynaptic nerve terminals. 
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Calcineurin could regulate any one of multiple steps involved in the release of 
glutamate beginning with entry of calcium into the presynaptic nerve terminal and 
ending with exocytotic release of neurosecretory vesicles. 
Our working hypothesis is that calcineurin is a key component of a negative feedback 
mechanism which prevents excessive release of neurotransmitter. 

Figure 31. 

We hypothesize that, during depolarization, entry of Ca2+ into the presynaptic neuron 
activates calcineurin which then dephosphorylates a family of vesicle-associated 
proteins termed synapsins, which are known calcineurin substrates in vitro. There is 
evidece to suggest that dephospho-synapsin exerts an inhibitory effect on vesicle 
release. We hypothesize that CsA and FK506 block this dephosphorylation, thereby 
removing an inhibitory influence on vesicle release (129). 

Dr. Thomas Rosahl in Dr. Tom Sudof 's laboratory here at UT Southwestern produced 
a knock-out mouse lacking the synapsin I gene (130). They also have produced knock 
out mice lacking synapsin II and double knock-out mice lacking both synapsin I and II 
(131 ). These transgenic mice provide a unique opportunity to test out hypothesis not 
only in cell culture but also in the intact organism. To accomplish the latter, we have 
miniaturized our techniques to record blood pressure and sympathetic nerve activity in 
mice weighing 30 grams. 
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Figure 32. (Actual size). 

In the wild -type mouse, i.v. CsA causes large increases in blood pressure, heart rate, 
and sympathetic nerve activity similar to those previously observed in rats. 

Figure 34. 
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60 
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A key unanswered question is whether the synapsin deficient genotype will produce a 
phenotype which is resistant to these effects of CsA. 

Another key question is whether these experimental studies suggest new approaches 
to the management of GsA-induced hypertension in patients. 

24 



IV. Management and Prevention of CsA-Induced 
Hypertension 

Calcium channel blockers seem to have become the initial drug of choice for the 
treatment of GsA-induced hypertension, despite a paucity of controlled studies 
(35, 132, 133). If indeed there is an important sympathetic neural component to GsA­
induced hypertension, sympatholytic agents would be a rationale choice but no firm 
recommendations can be made in the absence of large randomized trials. 

However, the ultimate goal is to eliminate GsA-induced hypertension by replacing GsA 
with a better agent with equal or greater immunosuppressive efficacy without the 
toxicity (34) . FK506, which was approved for clinical use in 1994, was touted at first as 
having greater immunosuppressive potency than GsA with much less toxicity (34, 134-
136). However, these initial studies were not randomized and involved rather small 
numbers of patients. In the past year, several studies including two large multicenter 
controlled randomized clinical trials (137, 138) have demonstrated convincingly that 
FK506 causes as much hypertension as does GsA and even more nephrotoxicity and 
central neural toxicity, at least in liver transplant recipients. 

In the U.S. Multicenter FK506 Liver Study Group (137) of 478 adult and 51 pediatric 
patients, the incidence of hypertension was 47% with FK506 vs. 56% with CsA. The 
main reasons for withdrawal from the latter study were nephrotoxicity and 
neurotoxicity, which were more frequent with FK506 than with GsA. 

Multicenter FK506 Liver Study Group : 
Reasons for Withdrawal from the Study 

Reason for Withdrawal 

Total withdrawn 

Adverse event 

Nephrotoxicity 
Neurotoxicity 

Lack of efficacy 

Figure 35. Adapted from ( 137). 

FK506 
(N = 263) 

83 

37 

14 
12 

6 

CsA 
(N =266) 

no. of patients 

102 

13 

5 
4 

32 
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Multicenter FK506 Liver Study Group : 
Incidence of Adverse Events 

FK506 CsA 
(N =263} (N =266) 

0/o of patients 

Adverse Event 

Hypertension 47 56 
Headache 64 60 
Tremor 56 46 
Paresthesia 40 30 
Hyperkalemia 45* 26 
Diarrhea 72* 47 

* P<0.05 vs. CsA. Figure 36. Adapted from (137). 

Similarly, in the European FK506 Multicenter Liver Study Group Trial (138) of 545 liver 
transplant recipients, the incidence of hypertension at one year was 35% with FK506 
vs. 42% with CsA. 

The toxicity of rapamycin is as yet unknown as Phase I and II clinical trials are just 
underway. If the calcineurin hypothesis is correct, rapamycin will not cause 
hypertension (or renal or neural toxicity) in patients. 

Furthermore, because rapamycin and CsA bind to different classes of immunophilins, 
one would predict immunosuppressive synergy. This would be very important, 
because it may be possible with combined CsA-rapamycin therapy to decrease the 
dose of both drugs to maintain immunosuppression while greatly decreasing toxicity, 
possibly even eliminating hypertension as a side-effect of clinical immunosuppressive 
therapy (139). In contrast, rapamycin cannot be combined with FK506, which would 
compete for the same immunophilin. 

Is rapamycin the 11 billion dollar molecule?~~ The cellular target of rapamycin (i.e., 
rapamycin's 11 Calcineurin 11

) recently has been identified. It is termed the FK.BP­
Rapamycin Associated Protein (FRAP) (64). FRAP is a member of a newly discovered 
family of kinases which transfer phosphate groups not to a protein but rather to 
phosphatidylinositol, which is a phospholipid. Members of this new class of 
phosphatases normally participate in the cell cycle and their dysfunction has been 
implicated (but as yet unproven) in leading to medical disorders ranging from 
Alzheimer's Disease to cancer (140). FRAP is most abundant in the testis, raising the 
possibility that rapamycin could be a male contraceptive. 

26 



FK- Rapamycin Binding Protein ( FRAP) 
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Figure 37. 

So, in the clinical setting the long-term toxicity of rapamycin, which works by inhibiting 
FRAP, needs to be determined. 

V. Novel Indications for lmmunophilin Ligands 

The elucidation of CsA and FK506 sensitive signalling pathways provides a 
conceptual framework for suggesting revolutionary approches to the treatment of 
important medical disorders other than immunosuppressive drug toxicity. 

A. FK506 as a Treatment for Parkinson•s Disease? 

One of the best natural substrates for calcineurin is a dopamine receptor related 
protein (termed DARPP) found in the substantia nigra (126). 

DA Receptor 
Protein 

Protein 

Kinase .. 
I I ... 

Calcineurin 

DA Receptor 

Protein + R 
Gain of function + 

FK506 

Loss of function 

Figure 38. 
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When phosphorylated, DARPP increases the sensitivity of postsynaptic dopamine 
receptors. When DARPP is dephosphorylated by calcineurin, dopamine receptor 
sensitivity decreases. Thus, inhibition of calcineurin by FK506 theoretically would shift 
this reaction in favor of the phosphorylated form, thereby increasing dopaminergic 
neurotransmission which is the desired therapeutic goal. Because the enzymatic 
efficiency of calcineurin is much greater in dephosphorylating DARPP than NF-AT and 
other substrates in T cells, it may be possible to enhance dopaminergic 
neurotransmission in patients using low doses of FK506 which do not cause immune 
suppression ( 141). This hypothesis should be tested, since the current treatments of 
Parkinson's Disease are far from ideal. 

B. Synthetic lmmunophilin Ligands As Gene Therapy Switches? 

Building on the concept of GsA and FK506 as molecular match makers, the Schreiber 
and Crabtree laboratories recently have embarked on a series of experiments 
demonstrating that they can exploit the "schatchen" function of FK506 to gain control of 
signal transduction (142, 143). The idea is that dimerization of certain intracellular 
molecules can result in a huge gain in their function. Specifically, they dimerized the 
FK506 molecule to create a two-headed "FK1012 " molecule. The dimerization (a) 
removes the calcineurin binding site so FK1 012 does not cause immune suppression 
and (b) exposes 2 FKBP binding sites, 1 on either side. 

Fusion 
FK1012 

:~ 
A marriage made in cells. The two-headed FK1 012 molecule brings two fu ­
sion proteins together by binding to their immunophilin domains. 

Figure 39. From (142). 

They then spliced DNA to made a "fusion protein", which is the essential part of the T 
cell receptor attached to FKBP. The 2-headed FK1012 molecule brings 2 fusion 
proteins together by binding their immunophilin domains. 
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Myristate 

Figure 40 From (143). 
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A myristal group was then hooked to the fusion protein so that, when T cells were 
transfected with it, the fusion protein would become anchored to the inner surface of 
the cell membrane. The transfection had absolutely no effect on cell function until the 
T cells were exposed to FK1 012, which crosses the cell membrane and dimerized the 
fusion proteins. Such dimerization mimicked the normal effect of antigen presentation: 
it induced IL-2 gene transcription. This dramatic effect was blocked by native FK506. 

This research may have profound implications for human gene therapy. It may be 
possible in the future for patients to turn on their body's synthesis of a needed protein 
simply by taking a pill. For example, rather than a Type I diabetic patient injecting 
insulin, it may be possible to turn on modified insulin genes by swallowing a drug such 
as FK1 012. In addition, this strategy may be useful in turning off undesirable genes, 
such as oncogenes and those leading to amyloidosis. 
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C. CsA as a Treatment for AIDS? 

Like the immunosuppressant drugs GsA, FK506, and rapamycin, human 
immunodeficiency virus (HIV) interferes with T cell activation. Could there be a 
common mechanism? 

HIV consists of a viral capsid which encompasses the RNA genome. Once inside the 
host cell, the capsid formation of the progeny viruses is initiated by the assembly of a 
protein termed Gag. (144). The precursor polypeptide, termed Pr55gag, is sufficient 
for the formation and release from host cells of virion particles (144). 

Pr55gag turns out to be a high affinity ligand for cyclophilin, which is highly expressed 
in HIV (144, 145). 

Gag ___..... 
polyprotein 

\ -
-

Cyclophilins -

Figure 41. From (144). 
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Indeed, Pr55gag is similar to CsA in its affinity to bind cyclophilin. Unlike the 
CsA I cylophilin complex, however, the Pr55gag I cyclophilin complex has no effect on 
calcineurin (142). In contrast, the isomerase activity of the cyclophilin unfolds the Gag 
protein, a key step in the assembly of infectious virions. This interaction between 
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cyclophilin and Gag is blocked by GsA or a non-immunosuppressive ligand, SDZ 
NIM811. In the GsA-treated virion, the encorporatation of cyclophilin (which normally is 
substantial) is blocked, rendering the virion much less infectious than normal. 

In addition to inhibiting HIV replication in vitro (146), GsA may even inhibit HIV 
replication in organ transplant recipients who are inadvertently infected with HIV at the 
time of transplantation ( 14 7) . 
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Figure 42. From (147). 

In a review of 53 such cases, the 5-year cumulative incidence of AIDS was 
significantly lower in 40 transplant recipients treated with azathioprine and prednisone 
plus GsA than 13 transplant recipients treated with azathioprine and prednisone but 
not CsA: 31 vs. 90% (P<0.001 ). The delayed onset of AIDS in the GsA-treated patients 
previously has been assumed to an indirect effect of GsA decreasing the reservoir of T 
cells that could possibly be infected. However, the new basic research raises the 
alternative possibility that GsA inhibits HIV replication directly. 

VI. Conclusions 

In closing, I have attempted to synthesize a large amount of data which leads to a new 
conceptual framework for understanding the pathophysiologic basis of GsA-induced 
hypertension. This research has raised more questions than it has answered and the 
search for the perfect immunosuppressant drug continues. However, the recent 
scientific progress in this field is an excellent example of how clinical observations can 
foster basic research and the power of basic research to impact medical practice. The 
elucidation of CsA-senstive signalling pathways holds exciting promise for improving 
the treatment of a variety of disease processes far beyond immunosuppressant drug 
toxicity. 
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