
 

 

 

TARGETING TAXANE-PLATIN RESISTANT NON-SMALL CELL LUNG CANCERS 

WITH JUMONJI C HISTONE LYSINE DEMETHYLASE INHIBITORS 

 

 

 

 

APPROVED BY SUPERVISORY COMMITTEE 
 
 
 
 
 
 
 
 
 
 

  John D. Minna, M.D. (Mentor) 

  Elisabeth D. Martinez, Ph.D. (Mentor) 

  Ralf Kittler, Ph.D. (Chair) 

  Jerry W. Shay, Ph.D. 

  Michael Roth, Ph.D. 



 
 

 
 

 

 

Dedicated to 

My parents Manik and Prafulla Dalvi 
My sister Vaishnavi Dalvi 

And my husband Aditya Paranjape 
 

 

 

 

 

 

 

 

 

 

 

  



 
 

 

 

TARGETING TAXANE-PLATIN RESISTANT NON-SMALL CELL LUNG CANCERS 

WITH JUMONJI C HISTONE LYSINE DEMETHYLASE INHIBITORS 

 
 
 
 

by 
 
 
 

MAITHILI PRAFULLA DALVI 
 
 
 
 
 
 
 

DISSERTATION 
 

Presented to the Faculty of the Graduate School of Biomedical Sciences 

The University of Texas Southwestern Medical Center at Dallas 

In Partial Fulfillment of the Requirements 

For the Degree of 

 
 
 
 

DOCTOR OF PHILOSOPHY 
 
 

The University of Texas Southwestern Medical Center 

Dallas, Texas 

December, 2015 



 
 

 

 

 

 

 

 

 

Copyright 
 

by 
 

MAITHILI PRAFULLA DALVI, 2015 
 

All Rights Reserved 
 

 

 

 

 

 

 

 



 

v 
 
 

ACKNOWLEDGMENTS 

I would like to express my sincere and unconditional gratitude to the many people who 

have made my research training possible, including my mentors, colleagues, friends and family.  

First and foremost, I am deeply thankful to my mentors Dr. John D. Minna and Dr. 

Elisabeth D. Martinez. I value their advice and guidance, and feel greatly honored to have 

worked with them during this important phase of my research career. Dr. Minna has been my 

role model as an outstanding researcher, ever since I joined his lab five years ago. His expansive 

knowledge and continued eagerness to know more, amazes me and inspires me to do the same. I 

acknowledge the time and resources that he has invested in my training, while also exposing me 

to an esteemed network of research scientists and collaborators through conferences and 

institutional visits. I am grateful to Dr. Martinez for mentoring me during this last, crucial year of 

my Ph.D. training. I acknowledge her guidance in my dissertation work and especially, during 

manuscript submission. I also thank her for giving me the opportunity to hone my scientific 

writing skills while working on a review. 

Along with having great mentors, I had the privilege of having excellent thesis committee 

members who are well-renowned in their own specialized fields of research ─ Drs. Jerry Shay, 

Michael Roth and Ralf Kittler. Their varied research expertise and scientific opinions have added 

new flavors to my dissertation research and have played an important role in giving it a proper 

direction. I thank Dr. Shay for his constant inspiration and support. I am grateful to Dr. Roth for 

motivating me to set research goals and timelines, and for patiently reading the draft of my 

manuscript. I thank Dr. Kittler for his scientific advice and resources, while helping me to 

incorporate a new technique in my thesis research. 



 

vi 
 
 

In addition to having such role models to look up to, it is equally important to have peers 

who learn with you and share some of the same experiences that you do. For this reason and 

many more, I am thankful to my colleagues, including fellow graduate students in the lab - 

Suzie, Patrick, Ryan, Dhruba and Alex. I am thankful to Paul for his help in completing an 

important experiment in my project. I am also grateful to the various postdoctoral researchers 

and research scientists in both Minna and Martinez labs. Lei and Juan have both been very 

helpful while carrying out another key experiment in my research project. I am very grateful to 

Mike, Amit, Buddy, Boning and Luc, the senior members in our lab with varied expertise in 

different aspects of lung cancer research. I thank Dr. Michael Peyton for his excellent advice on 

various matters and for being kind enough to read my manuscript draft. Our lab manager, Dr. 

Brenda Timmons, has been really patient and generous with lab issues and otherwise. Hyunsil, 

Shanshan, Long Shan, Sam, Anh and Krista have all been a great company. I am also thankful to 

lab alumni - James, Jill, Misty, Chunli, Chris, Robin, Rachel, Rebecca and Subodh for their 

support. 

Outside of the Minna and Martinez labs, I am thankful to everyone in the Hamon Center 

and at UT Southwestern. I thank Dr. Gazdar for examining my histology slides. I thank Rahul 

Kollipara, Tae Hyun Hwang, Rui Zhong, Yunyun Zhou and Yang Xie for their help in 

biostatistics. I acknowledge the wisdom of the faculty members of Cancer Biology Program for 

their critical evaluations of my research. I feel honored to have been an HHMI Med-into-Grad 

Fellow as a part of the Mechanisms of Disease, MoD track. I am thankful to Dr. Helen Yin and 

to Drs. Robert Toto, Joan Schiller and David Gerber for allowing me to shadow them in their 

clinic. Such exposure has been valuable in shaping me to be a good translational researcher. 

Research collaborators at various institutions outside UT Southwestern have also been 



 

vii 
 
 

instrumental in advancing my thesis research. I am grateful to Drs. Ignacio Wistuba, Carmen 

Behrens, and the various surgeons and pathologists at MD Anderson Cancer Center, without 

whom we would not have had access to valuable patient datasets. 

During my past few years in the UT Southwestern Graduate School, the friends that I 

made have kept me smiling through the various ups and downs of student life. They have all 

been like a ‘new home’, when I moved here thousands of miles away from my family in India. 

Last but not the least, I express my heartfelt gratitude to my family for believing in me 

and my abilities. My parents, Drs. Prafulla and Manik Dalvi have been instrumental in my 

decision to be a scientist and in aiming for outstanding research. As doctors, they have been 

deeply concerned about their patients, and that has greatly influenced me in deciding to pursue 

cancer research. It is their zeal and passion in the medical profession that I sometimes see myself 

mirroring in my own work. I feel lucky to have such ambitious, inspirational, thoughtful and 

caring parents. My acknowledgements would be incomplete if I did not emphasize how great of 

a sister Vaishnavi has been to me. Growing up with a talented and committed sister like her has 

inspired me to reach beyond my limits and aim for the best. Finally, I am grateful for the recent 

new addition to my family, my husband Aditya. Aditya is a very talented person and brings with 

him so many great qualities that I wish to emulate in my own work. I am also thankful to have 

such wonderful parents-in-law, Geeta and Shreenivas Paranjape who support our endeavors. I 

feel lucky to have been blessed with a wonderful family, friends, colleagues and acquaintances 

that inspire me to be a better person every day, both personally and academically.  

  



 

viii 
 
 

 
 
 
 
 
 
 
 
 
 
 

TARGETING TAXANE-PLATIN RESISTANT NON-SMALL CELL LUNG CANCERS 

WITH JUMONJI C HISTONE LYSINE DEMETHYLASE INHIBITORS 

 
 
 
 
 
 

MAITHILI PRAFULLA DALVI, Ph.D. 

The University of Texas Southwestern Medical Center at Dallas, 2015 

 
 
 

Supervising Professors: John D. Minna, M.D. and Elisabeth D. Martinez, Ph.D. 
 
 
 

Taxane-platin doublet therapy provides benefit as front-line chemotherapy in advanced 

and localized non-small cell lung cancer (NSCLC); however the majority of patients relapse with 

drug resistant tumors. Novel therapies for targeting drug refractory NSCLC tumors are urgently 

needed. The goals of this dissertation project were to establish pre-clinical models of NSCLC 

resistance to standard chemotherapy, identify clinically relevant resistance mechanisms, and 

develop new rational pharmacologic approaches for overcoming taxane-platin drug resistance in 

lung cancer.  
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Pre-clinical resistance models were established by treating chemo-sensitive human 

NSCLC cell lines with increasing cycles of paclitaxel + carboplatin therapy, given in clinically 

relevant dose ratios. Progression of resistance was monitored by comparing drug response 

phenotypes, and by investigating genome-wide mRNA expression profiling. Xenografts of 

parental cells and resistant variants were developed to identify differential gene expression 

changes in vivo. Pre-clinical mRNA expression signature for taxane + platin resistance was 

developed and evaluated on a molecularly and clinically annotated dataset of 65 neoadjuvant 

treated NSCLC patient tumors, to identify therapeutic targets. 

NSCLC cell lines NCI-H1299 and NCI-H1355 treated for 16-18 cycles with paclitaxel + 

carboplatin showed progressive increases in drug resistance, eventually achieving >50 fold shift 

in IC50. Resistant tumors showed reduced response to taxane-platin chemotherapy in vivo. 

Resistant cell line variants expressed multi-drug resistance transporter and exhibited cross-

resistance to several chemotherapies. But, resistance was partially reversible upon drug-free 

culturing, suggesting transient mechanisms. To systematically identify gene expression changes 

associated with drug resistance, a linear regression model was fitted on microarray datasets of 

progressively resistant H1299 and H1355 variants. Overlap between cell line models and in vivo 

xenograft expression yielded a 35-gene resistance signature. This pre-clinical resistance 

signature clustered the cohort of 65 neoadjuvant treated NSCLC patients into two distinct groups 

that showed significant differences in cancer recurrence-free survival. Cox multivariate 

regression identified the JumonjiC histone lysine demethylase KDM3B as the most significant 

contributor to poor recurrence-free prognosis. Taxane-platin resistant cell line variants showed 

up-regulation of several JumonjiC histone lysine demethylases and exhibited globally reduced 

levels of histone H3K27 trimethylation. Resistant variants showed increased sensitivity to 
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JumonjiC demethylase inhibitors, JIB-04 and GSK-J4, in vitro and in vivo. JumonjiC inhibitors 

synergistically inhibited colony formation from paclitaxel + carboplatin resistant variants, and 

also prevented the emergence of drug-tolerant clones from chemo-sensitive, parental cell lines. 

In conclusion, these studies reveal up-regulation of JumonjiC lysine demethylases during the 

development of drug resistance and define JumonjiC demethylase inhibitors as a new therapeutic 

approach for overcoming taxane-platin drug resistance in NSCLCs. 
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CHAPTER ONE 
 

DRUG RESISTANCE IN LUNG CANCER 

 

1.1 Lung Cancer 

Lung cancer is the leading cause of cancer-related deaths in U.S.A. accounting for 27% 

of all cancer deaths (American Cancer Society 2015; Howlader N, 1975-2012). While the most 

common cancers are prostate cancer in men and breast cancer in women, lung cancer remains the 

second most common cancer, accounting for about 13% of all new cancer cases. The chance of a 

man developing lung cancer in his lifetime is 1 in 13 and for a woman, the risk is about 1 in 16. 

Though the risk is higher in smokers, the above ratios include both smokers and non-smokers. 

Lung cancer in non-smokers can be caused by occupational or environmental exposure to 

secondhand smoke, radon gas, air pollution, radiation, asbestos, diesel exhaust, metals and 

organic chemicals. Risk factors associated with genetic mutations also play a role. It is estimated 

that about 221,200 new cases of lung cancer will be diagnosed in 2015 in U.S.A. (American 

Cancer Society 2015). 

More than 50% of lung cancers are diagnosed at an advanced stage, due to lack of early 

signs or symptoms. The TNM (tumor size, nodes and metastasis) staging system accepted by the 

Union for International Cancer Control (UICC) and the American Joint Committee on Cancer 

(AJCC) is widely used for describing the size, extent and degree of cancer spread. Stages I, II, 

III, or IV are also designated, with stage I being early, and stage IV being the most advanced 
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disease. The five-year survival rate for advanced stage lung cancer is only 4% (American Cancer 

Society 2015). 

Lung cancer is classified into small cell lung cancer (SCLC) with 15% of the cases 

reporting this type whereas 85% of the diagnosed cases are non-small cell lung cancer (NSCLC). 

SCLC is primarily associated with smoking and is characterized by tumor cells that typically 

express neuroendocrine markers. NSCLC consists of three histologically distinct subtypes called 

as squamous cell carcinomas (SCC), adenocarcinomas (AC), and large cell carcinomas (LCC). 

Treatment options vary depending upon the type of lung cancer. 

 

1.2 Standard Chemotherapies 

Lung cancer therapy is determined based on cancer stage, type and molecular 

characteristics. Treatment options include surgery, radiation, chemotherapy or targeted therapies. 

Surgery is the treatment of choice for early stage or localized NSCLC. Chemotherapy is an 

important component of treatment for all stages of lung cancer, including patients with early 

stage resectable tumors as well those with metastatic, unresectable disease. For resectable 

tumors, neoadjuvant chemotherapy may be administered to shrink the tumor prior to surgery. 

After surgery, adjuvant chemotherapy and maintenance therapy may be given. For more 

advanced stage NSCLC, chemotherapy or radiation therapy is recommended. In cases where the 

genetic driver mutations are known, such as EGFR, targeted therapy is used. For all other lung 

cancers where molecular drivers are unknown, standard platin-based doublet chemotherapy is 

commonly administered.  
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Platin-based combination chemotherapy is the mainstay of lung cancer treatment. 

Platinum analogs (carboplatin, cisplatin) are commonly combined with anti-mitotic drugs such as 

taxanes (paclitaxel, docetaxel) or vinca alkaloids (vinorelbine). Anti-metabolites that affect cells 

in the S phase (gemcitabine, pemetrexed) or topoisomerase inhibitors that are G2 phase specific 

agents (topotecan, etoposide) may also be used. Anthracyclines (doxorubicin, daunorubicin) act 

independent of the cell cycle phase. Some of these commonly used chemotherapies have been 

reviewed further below.  

Platinum-based drugs are classified as ‘alkylating-like’ due to their ability to form DNA 

adducts. Cisplatin/ Cis-Diamminechloroplatinum (CDDP) compound consists of two labile 

chloro and two stable amine ligands in a cis configuration (Seve and Dumontet, 2005). 

Following administration, one of the chloride ligands is displaced by water molecule. This 

aquation process converts the neutral compound into a reactive form that allows the platinum 

atom to access the DNA bases more easily. Cross-linking of DNA by cisplatin then triggers 

cellular apoptotic pathways. Carboplatin has a more stable bidentate cyclobutanedicarboxylate 

ligand instead of the chloro ligands. This slows down the aquation reaction, thereby reducing 

drug potency but at the same time decreasing overall toxicity. The inclusion of platinum agents 

in chemotherapeutic regimens, ever since the 1980s, has greatly improved response rate and has 

been considered a significant milestone in progressing towards effective therapy for lung cancer. 

Taxanes and Vinca alkaloids are third generation cytotoxic agents that later became 

available in the 1990s and have been considered as another significant breakthrough in lung 

cancer therapy (Klastersky and Awada, 2012). Combination of these new agents with platin 

drugs has significantly improved overall patient survival. Taxanes are used as both neoadjuvant 
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and adjuvant chemotherapy for NSCLC. Paclitaxel, isolated from the bark of the Pacific yew, 

Taxus brevifolia, and docetaxel, a semi-synthetic analogue derived from the needles of the 

European yew tree, both show potent anti-tumor activity. Due to its higher potency than 

paclitaxel, docetaxel has also been approved as a second-line treatment for patients treated with 

prior paclitaxel-platin first-line chemotherapy (Rigas, 2004). Taxanes act as anti-tubulin agents 

by interfering with the functioning of the mitotic spindle, thereby blocking cells at the 

metaphase-anaphase junction of mitosis. Unlike vinca alkaloids (vinorelbine/ navelbine) which 

are microtubule-depolymerizing agents, taxanes enhance the polymerization of microtubules, 

resulting in microtubule stabilization. Electron crystal structure has revealed that paclitaxel binds 

to the β-subunit in the inner surface of microtubule. In addition, both vinca alkaloids and taxanes 

are known to affect spindle-microtubule dynamics by suppressing spindle treadmilling and 

dynamic instability (Jordan and Wilson, 2004; Seve and Dumontet, 2005). This mitotic block 

ultimately results in induction of apoptosis. 

Anthracyclines, on the other hand, act via DNA intercalation. Doxorubicin is an 

anthracycline antibiotic, closely related to the natural compound daunomycin, isolated from the 

fungus Steptococcus peucetius. It exerts its anti-tumor activity by inhibiting the progression of 

topoisomerase II, thereby causing DNA double-strand breaks. This triggers activation of DNA 

damage response (DDR) signaling, subsequently leading to apoptosis. In addition, anthracyclines 

have recently been shown to promote histone eviction from open chromatin that results in 

epigenetic changes, deregulation of the transcriptome and apoptosis (Pang et al., 2013). 

Other topoisomerase inhibitors such as etoposide also cause transient DNA double-strand 

break formation and stabilization of the topoisomerase II complex whereas irinotecan, a 
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semisynthetic analogue of camptothecin, is a topoisomerase I inhibitor. By interacting with the 

Topo I-DNA complexes, irinotecan causes an irreversible arrest of the replication fork, DNA 

damage signaling and apoptosis.  

Gemcitabine (2’, 2’-difluorodeoxycytidine, dFdC) is a deoxycytidine analogue in which 

the two hydrogens atoms in the 2’ position of the deoxyribose sugar are substituted with fluorine 

atoms. Upon entering the cell, dFdC is phosphorylated to dFd-CMP, dFd-CDP and finally dFd-

CTP, which gets incorporated into DNA during replication. After an additional natural 

nucleoside is added to the DNA chain, gemcitabine is masked and this prevents DNA repair. 

DNA polymerases are then unable to proceed and this ultimately results in masked DNA chain 

termination. Gemcitabine is also known to inhibit ribonucleotide reductase (RR) enzyme, 

thereby decreasing deoxyribonucleotide pools necessary for DNA synthesis (Mini et al., 2006). 

Pemetrexed is a new generation anti-folate antimetabolite. It is a structural analogue of 

folic acid and other antimetabolite compounds such as methotrexate. Unlike its precursor 

methotrexate which selectively targets a single enzyme, pemetrexed acts by disrupting many 

folate-dependent metabolic processes (Rollins and Lindley, 2005). Within the cells, pemetrexed 

is converted to a pentaglutamated form that increases its potency. Pemetrexed inhibits three 

different enzymes required for purine and pyrimidine synthesis—thymidylate synthase (TS), 

dihydrofolate reductase (DHFR), and glycinamide ribonucleotide formyltransferase (GARFT). 

Without the formation of precursor purine and pyrimidine nucleotides, DNA and RNA synthesis 

are affected, leading to apoptosis. 
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1.3 Clinical Drug Resistance and Cancer Relapse 

Despite significant advances in lung cancer chemotherapy, the overall five-year survival 

rate for non-small cell lung cancer (NSCLC) patients is only 21% (American Cancer Society 

2015). Response to chemotherapy is graded as complete response (complete disappearance of 

signs and symptoms for at least 1 month), partial response (>50% reduction in tumor mass and 

no new lesions), stable disease (no significant change in tumor size) and progressive disease 

(more than 25% increase in tumor mass). Even in cases where complete response is achieved 

after surgery and/or chemotherapy, a significant fraction of NSCLC patients develop cancer 

recurrence, amounting to anywhere between 30% to 75% of cases depending on the pathological 

stage of the tumors evaluated in multiple retrospective studies (Sugimura et al., 2007).  

Cancer relapse after chemotherapy poses a major obstacle for lung cancer treatment. 

Patients in which the disease was early stage and confined only to the chest have also shown 

recurrence following treatment. In a retrospective study that analyzed recurrence rates in NSCLC 

patients that had undergone complete resection (R0) following neoadjuvant chemotherapy, 

recurrence was reported in as high as 68% of these patients, with 19% of these exhibiting 

recurrence at both locoregional and distant sites (Martin et al., 2002).  

More often, recurrent tumors present as a drug resistant disease, refractory to further 

standard treatment. A retrospective study was conducted to evaluate recurrent, advanced-stage 

IIIB or IV NSCLC patients who had received third- or fourth-line chemotherapy after two prior 

platinum-taxane chemotherapy regimens (Massarelli et al., 2003). Prior regimens had failed 

because the disease had progressed within 90 days of chemotherapy or the patient had 

experienced unacceptable toxicity. Analysis revealed that the response rates decreased with each 
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line of treatment: first line, 20.9%; second line, 16.3%; third line, 2.3%; and fourth line, 0%. The 

overall disease control rate decreased significantly with each subsequent line of chemotherapy, 

suggesting development of drug resistance in these tumors.  

Chemotherapy resistance to standard doublets—carboplatin and paclitaxel, cisplatin and 

navelbine, cisplatin and docetaxel, and cisplatin and gemcitabine, was evaluated in 4571 fresh 

NSCLC tumor surgical biopsy specimens from 409 institutions, using in vitro tumor cultures in 

an extreme drug resistance assay (d'Amato et al., 2007). Response to chemotherapy was graded 

as extreme drug resistance (1 SD above the median chemotherapy resistance), intermediate drug 

resistance (between the median and extreme drug resistance) and low drug resistance (1 SD 

below the median). Extreme or intermediate drug resistance to at least one drug in the 

chemotherapy combination was seen in 74% of the cases to carboplatin-paclitaxel, in 68% to 

cisplatin-navelbline, in 88% to cisplatin-gemcitabine, and in 68% to cisplatin-docetaxel. Despite 

current advances in lung cancer treatment, there is still an unmet clinical need to identify 

effective therapies for such drug refractory tumors. 

 

1.4 Traditional Drug Resistance Mechanisms 

Lack of response to chemotherapy could be attributed to either patient-derived variables 

or cellular resistance mechanisms. Patient-derived factors include poor absorption or rapid 

excretion of the drug resulting in low serum levels, high drug-associated toxicity resulting in a 

need to reduce doses to a suboptimal level, poor drug delivery, or low tissue penetration as is the 

case with brain metastases that are protected by the blood-brain barrier (Gottesman, 2002). 
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Tumor cells may be intrinsically resistant to chemotherapy or may acquire genetic or epigenetic 

alterations contributing to drug resistance. Rare, resistant subpopulation of cells may pre-exist in 

the tumor population and survive by positive selection under drug pressure, or alternatively 

resistance might be established as a direct consequence of drug exposure through acquisition of 

new alterations. Finally, alterations in the tumor stroma or microenvironment may also affect 

response to chemotherapy. 

The field of chemo-resistance in not new and involves more than 50 years of extensive 

research. In as early as the 1960’s, R.W. Brockman (Brockman, 1963) in his book chapter 

mentioned that resistant cells differ from their sensitive counterparts at various levels – 

differences in enzyme dynamics, decreased cell permeability to drugs, molecular modifications, 

and altered drug metabolism. Many of these mechanisms were extensively studied by various 

researchers over the next few years. Mechanisms involving loss of a cell surface drug 

transporter, mutation of drug target, or drug-specific metabolism generally resulted in resistance 

to only the drug in question and its immediate analogs, as with resistance to antifolates 

(Gottesman, 2002). In such cases, use of combination therapy yielded improved responses. But 

more often than not, patient tumors not only showed increased resistance to the primary 

chemotherapy that they were exposed to but also exhibited cross-resistance to several other 

drugs. Cancer cells can show cross-resistance to drugs by either altering membrane lipids, 

reducing drug uptake, increasing drug efflux from the cells, activation of coordinately regulated 

detoxification systems or defective apoptotic pathways (Gottesman, 2002). Multi-drug resistance 

(MDR) and multi-factorial drug resistance caused due to tumor heterogeneity have been focus of 

extensive research. Research in the past decade has also shed light on the involvement of 
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epithelial-to-mesenchymal phenotypic switching, cancer stem cells and more recently, epigenetic 

alterations in drug resistance (discussed in subsequent sections). 

 

 

Figure 1.1 Cellular Drug Resistance Mechanisms 
Cancer cells can become resistant to chemotherapeutic drugs by several mechanisms ─ (a) 
increasing drug efflux through ATP-dependent transporters, (b) reducing drug influx, (c) 
activation of detoxifying pathways, (d) activation of DNA damage repair pathways, or (e) 
disruption of apoptotic pathways. 
Modified from Gottesman, Fojo and Bates, Nature Reviews 2002  
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1.4.1 Increased Drug Efflux 

Classical multi-drug resistance is mediated by the expression of one or more of the 

energy-dependent drug transporters that exhibit broad substrate specificity. One of the most 

commonly described drug efflux pumps ever since the 1980s (Kartner et al., 1983a; Kartner et 

al., 1983b), is known as P-glycoprotein (P-gp). This transporter is a product of the ABCB1 or 

MDR1 gene, which belongs to the family of 48 known ATP-binding cassette (ABC) transporters 

that share sequence and structural homology. ABC genes are divided into seven different sub-

families (ABCA-ABCG), based on their sequence homology and domain organization, with 

three widely known transporters belonging to the ABCB, ABCC and ABCG subfamilies. 

The most widely studied transporter, ABCB1/P-gp/MDR1, is a 170 kDa 

phosphoglycoprotein that consists of two ATP-binding cassettes and two transmembrane regions 

with six transmembrane domains each (Chen et al., 1986). Upon substrate binding, one of the 

ATP binding domains is activated, ATP is hydrolyzed and a conformational change occurs 

within the transporter that releases the substrate into extracellular space. Hydrolysis of a second 

molecule of ATP restores the transporter to its original state so that it can repeat its cycle of 

substrate binding and release (Sauna and Ambudkar, 2000). P-glycoprotein or MDR1 is normally 

located in the intestines, liver, kidney and blood-brain barrier, with neutral and cationic organic 

compounds as its substrates. It can also bind to chemotherapeutic drugs such as doxorubicin, 

daunorubicin, vinblastine, vincristine and taxol, as well as other pharmaceuticals including 

antiarrhythmics, antihistamines, cholesterol reducing statins and HIV protease inhibitors 

(Gottesman, 2002). P-gp is widely expressed in many human cancers, with high MDR1 RNA 

expression detected in colon, kidney, liver, pancreatic cancers and certain NSCLCs. 
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Additionally, cancers that had relapsed after therapy, such as breast cancer, neuroblastoma and 

non-Hodgkin’s lymphoma, also showed elevated MDR1 expression (Goldstein et al., 1989). 

Some studies have shown increased MDR1 mRNA expression in lung cancer patient samples 

(Young et al., 1999), whereas some others have also reported the absence of MDR1 expression 

(Lai et al., 1989; Oka et al., 1997). In case of acute myelogenous leukemia (AML), about one-

third of the patients at diagnosis and more than 50% of the patients at relapse showed MDR1 

expression (Gottesman et al., 2002). 

Apart from ABCB1 transporter, the ABCB family also comprises of ABCB11, also 

known as sister of P-gp/ SPGP (Childs et al., 1998) and ABCB4/ MDR3 (Smith et al., 2000), 

both of which have been implicated in cancer drug resistance, the former particularly to 

paclitaxel resistance and the latter to several others including digoxin and vinblastine. 

After the discovery of MDR1, researchers cloned another ABC transporter called MRP1 

(multidrug resistance associated protein 1; ABCC1), using a resistant lung cancer cell line (Cole 

et al., 1992). ABCC family members also have two transmembrane regions and two ATP-

binding domains that form the core transporter. However, unlike ABCB members, these 

transporters have an additional domain. ABCC1, ABCC2, ABCC3, ABCC6 and ABCC10 have 

an amino (N)-terminal membrane bound region connected to the core by a cytoplasmic linker. 

The other four members ABCC4, 5, 11 and 12 also have the linker region but without the (N)-

terminal region. ABCC1/ MRP1 transporter is widely expressed in many human tissues and 

cancers and transports organic anionic compounds, including drugs that have been modified by 

glutathione conjugation, glucosylation, sulfation and glucuronylation. MRP1 was found to be 

overexpressed in leukemia, esophageal carcinomas and non-small cell lung cancers (Gottesman 
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et al., 2002). Other than the more common ABCC1 (MRP1) transporter, ABCC2, 3, 6 and 10 

(MRP2, 3, 6, 7) have also been implicated in drug resistance. Cells selected in cisplatin, arsenic 

or N-nitro-camptothecin show increased ABCC2/ MRP2 expression (Annereau et al., 2004; 

Liedert et al., 2003; Liu et al., 2001). 

Another ABC transporter shown to efflux anticancer drugs is the ABCG2 transporter, 

also known as MXR/ BCRP/ ABC-P (Allikmets et al., 1998; Doyle et al., 1998). Unlike MDR1 

and MRP1, members of the ABCG subfamily have only one transmembrane region and one ATP 

binding cassette as the core, which dimerizes to generate the full transporter. Normally expressed 

in the placenta, liver, breast and intestine, MXR is also overexpressed in cancer cells selected for 

anthracycline and mitoxantrone resistance. Additionally, MXR transporter has been shown to be 

involved in efflux of methotrexate, 7-ethyl-10-hydroxycamptothecin (SN-38) and some tyrosine 

kinase inhibitors (Kawabata et al., 2001; Ozvegy-Laczka et al., 2005; Zhao and Goldman, 2003).  

Knowing the complexity of ABC transporter-mediated drug resistance, a research group 

performed drug screen on 60 diverse cancer cell lines from the NCI-60 panel, to correlate the 

drug response to 48 known ABC transporter genes and identify candidate substrates for these 

transporters. About 1400 candidate anti-cancer compounds were evaluated. Several of the 48 

ABC transporters were found to be associated with resistance against different candidate anti-

cancer drugs in the screen (Szakacs et al., 2004). Additionally, some compounds whose activity 

was potentiated by MDR1 expression were also discovered and could serve as potential lead 

compounds against drug resistant cancers. 

Apart from the ABC family members, other transporters such as the LRP (lung resistance 

protein) have also been implicated in drug resistance. LRP is a major vault protein found in the 
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cytoplasm and on nuclear membrane. It has been suggested that LRP might confer drug 

resistance by re-distributing drugs away from their intracellular targets. LRP has been found to 

be overexpressed in certain tumors (Gottesman et al., 2002). 

Additionally, in case of cisplatin resistance, it has been proposed that a glutathione-S-X 

(GS-X) pump actively effluxes the glutathione-S-platinum (GS-Pt) complex in an ATP-

dependent manner. This was inferred from the observed competitive inhibition of GS-X pump by 

GS-Pt complex and antagonist of leukotriene C4 which is a natural substrate of the pump (Seve 

and Dumontet, 2005). 

 

1.4.2 Decreased Drug Uptake 

Drugs can enter cells in various ways, the three major ones being diffusion across plasma 

membrane, piggy-backing on transporters and endocytosis (Gottesman et al., 2002). Alterations 

in these uptake mechanisms have been shown to cause resistance to chemotherapeutic agents.  

Anti-folate analogues such as methotrexate depend on folate transporters for their uptake, 

the major one being an 85 kDa membrane glycoprotein called the reduced folate carrier (RFC). 

Mutations that result in reduced expression of folate transporters decrease cellular uptake of 

methotrexate, thereby minimizing the toxicity on cells. Decreased RFC expression has been 

reported to cause methotrexate resistance in osteosarcoma and breast cancer cell lines, as well as 

poor chemotherapy response in osteosarcoma and leukemia patient tumors (Redmond et al., 

2008).  
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Anti-cancer agents such as immunotoxins are internalized by receptor mediated 

endocytosis. Mutations that cause defects in the cellular endocytotic machinery have been shown 

to result in reduced uptake of immunotoxins (Gottesman, 2002). 

The exact mechanism by which cisplatin is taken up by cells has not been established and 

is a subject of controversy. It was proposed that approximately one-half of cisplatin uptake takes 

place by passive diffusion and the other half occurs by facilitated diffusion through a pump 

(Gately and Howell, 1993). Another study indicated that cellular cisplatin accumulation is 

dependent on cell membrane potential, based on the observation that sodium-potassium ATPase 

inhibitor ouabain inhibited drug uptake. Researchers have demonstrated that cisplatin resistant 

cancer cells that showed reduced drug accumulation and cross-resistance to methotrexate, heavy 

metals and some nucleoside analogs, exhibited reduced plasma membrane receptors and 

transporters as well as reduced endocytosis (Shen et al., 1998).  

 

1.4.3 Drug Metabolism 

Chemotherapy resistance may also be mediated by drug metabolism via metallothioneins 

(MT) and glutathione metabolism-related enzymes. Metallothioneins are stress response proteins 

that help in the cellular detoxification of heavy metals. Clinical studies showed that tumors from 

patients who had received prior cisplatin chemotherapy showed significantly higher expression 

of MT than untreated patient tumors (Matsumoto et al., 1997). Increased MT expression was 

found in cisplatin resistant cancer cells in vitro and further, transfection studies revealed that MT 
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transfected cells were resistant to cisplatin, melphalan, chlorambucil and low levels of 

doxorubicin (Seve and Dumontet, 2005).  

Glutathione S-transferases (GST) play a critical role in drug detoxification and have also 

been implicated in cisplatin resistance. Cisplatin is known to be inactivated by conjugation with 

glutathione (GSH) via a reaction catalyzed by glutathione S-transferase. GST-π was reported as 

the predominant isoenzyme among the three classes of GST in NSCLC tumors, with 

significantly higher enzyme expression in tumors compared to normal lung tissues (Howie et al., 

1990). Studies have indicated that cellular GST-π levels in lung cancer cell lines predict response 

to cisplatin (Seve and Dumontet, 2005). Immunohistochemical examination of NSCLC patient 

tumors who had received cisplatin-based chemotherapy also revealed that GST-π expression 

significantly correlated with lower response rates (Bai et al., 1996). 

Gemcitabine has also been shown to be metabolized into an inactive form, thereby 

resulting in cellular drug resistance. Within the cells, gemcitabine can be converted into an 

inactive metabolite via deamination by cytidine deaminase (CDD) into 2’,2’- difluoro-2’-

deoxyuridine (dFd-U). Alternatively, dephosphorylation of dFd-CMP by 5‘nucleotidase (5’NT) 

can also result in inactivation (Seve and Dumontet, 2005). Thus, increased CDD or 5’-NT 

activities have been suggested to cause resistance to gemcitabine. 

5-fluorouracil (5-FU) is a fluoropyrimidine antimetabolite that can be inactivated by the 

pyrimidine catabolism enzyme dihydropyrimidine dehydrogenase (DPD), which is mainly 

expressed in the liver. However certain tumors may overexpress DPD, leading to 5-FU 

resistance. Increased expression of DPD has been reported in 5-FU resistant lung cancer cell 
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lines (Redmond et al., 2008). DPD expression was also shown to correlate with 5-FU response in 

colorectal cancer patients (Salonga et al., 2000). 

Irinotecan resistance also involves metabolism of the chemotherapeutic agent into an 

inactive form. Normally, inside the cells, irinotecan side-chain is cleaved enzymatically by 

carboxylesterase to 7-ethyl-10-hydroxycamptothecin (SN-38), which is the potent, active form of 

the drug. Decreased carboxylesterase enzyme expression can lower irinotecan drug activation 

and has been correlated with resistance in colorectal cancer and non-small cell lung cancers 

(Redmond et al., 2008). Alternatively, the active metabolite SN-38 may get deactivated via 

conjugation by the uridine diphosphate glucuronosyltransferase isoform 1A1 (UGT1A1). 

UGT1A1 genetic polymorphisms may thus also play a role in conferring irinotecan resistance 

(Seve and Dumontet, 2005). 

 

1.4.4 Enhanced DNA Damage Repair 

Chemotherapeutic agents such as platinum analogs and topoisomerase inhibitors act by 

damaging the DNA either directly or indirectly. Cisplatin acts by intercalating with DNA, 

leading to the formation of DNA adducts. One of the cisplatin resistance mechanisms, mediated 

by glutathione (GSH), involves prevention of formation of cisplatin-DNA adducts (Seve and 

Dumontet, 2005). Additionally, GSH is necessary for the synthesis of DNA precursors, 

deoxyribonucleotide triphosphates, and indirectly affects DNA repair. Under normal steady-state 

conditions, most GSH in the cells exists in the reduced form. Glutathione peroxidase (GPX) 

catalyzes the oxidation of reduced GSH and, in this process effectively scavenges the cytotoxic 
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oxygen radicals or lipid peroxides induced by chemotherapy, thereby preventing DNA damage. 

Immunohistochemical studies of GPX and glutathione reductase in previously untreated NSCLC 

have revealed an inverse relationship between enzyme expression and cisplatin sensitivity 

(Ogawa et al., 1993). 

Removal of adducts from genomic DNA is facilitated by a DNA repair pathway called 

nucleotide excision repair (NER). There are two types of NER: transcription-coupled repair 

(TCR) and global genomic repair (GGR) (Seve and Dumontet, 2005). TCR repairs lesions that 

block transcription, whereas GGR repairs the lesions in both transcribed and non-transcribed 

DNA strands. Two different sets of proteins are involved in recognition of DNA damage in TCR 

and GGR. In the TCR pathway, RNA polymerase II senses cisplatin induced DNA damage and 

two transcription-coupled repair-specific factors, CSA and CSB (Cockayne Syndrome A and B) 

activate the NER machinery. In case of GGR, DNA-damage binding (DDB) protein and XPC-

Rad23B complexes bind to the DNA lesion caused by chemotherapy. Both the pathways 

converge in terms of dual excision. The basal transcription factor (TFIIH) and XPG then lead to 

excision. The two helicases that comprise the TFIIH, called as XPB and XPD, open a 30 bp-long 

DNA segment around the lesion. XPG and XPF/excision repair cross complementing 1 (ERCC1) 

then excise the DNA strand containing the damaged bases. The damaged DNA strand 3’ from 

the lesion is cleaved by XPG, and XPF/ERCC1 cleaves the damaged strand 5’ from the lesion. 

The gap is filled in by DNA polymerases and ligases. Studies have shown that cisplatin resistant 

tumors have an intact NER system that repairs the DNA, when compared to the sensitive tumors 

with defective NER machinery. In cell line models, cisplatin-resistant ovarian cancer cells were 

found to overexpress several NER members including ERCC1, XPA, XPB, XPC and XPG 

(Redmond et al., 2008). In clinical studies, high ERCC1 levels correlated with poor response to 
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platinum based combination chemotherapy in gastric cancers (Redmond et al., 2008). In studies 

evaluating advanced NSCLCs treated with gemcitabine and cisplatin, low ERCC1 expression in 

tumors correlated with better median overall patient survival time (Lord et al., 2002). In 

docetaxel-cisplatin treated stage IV NSCLC patients that were examined for ERCC1 single 

nucleotide polymorphisms, patients homozygous for the ERCC1 118 C allele showed better 

overall survival (Isla et al., 2004). 

Other DNA repair pathways such as homologous recombination (HR) and non-

homologous end joining (NHEJ) are also involved in conferring resistance to chemotherapy. In 

HR, binding of proteins such as RAD51, RAD52, BRCA1, p53 and ATM at the site of DNA 

break initiates the synthesis of new DNA strands. Increased RAD51 expression and HR activity 

have been shown to result in resistance of small cell lung cancer (SCLC) cell lines to the 

topoisomerase II inhibitor etoposide (Hansen et al., 2003). NHEJ, on the other hand, depends on 

binding of the Ku70-Ku80 heterodimer at both ends of the DNA break, followed by the 

recruitment of DNA-PK, and joining of DNA ends by DNA ligase. Increased NHEJ activity has 

been reported in the resistance of human chronic lymphocytic leukemia (CLL) to chemotherapy 

(Deriano et al., 2005). 

Mismatch repair (MMR) may also be involved in cisplatin resistance. Cisplatin treated 

cell lines frequently acquire mismatch repair defects and exhibit mutations in the hMLH1 genes. 

MMR defects have also been reported in resistance to 6-thioguanine and 5-fluorouracil 

(Redmond et al., 2008). However, results from some clinical studies exploring associations 

between expression of mismatch repair genes and overall patient survival, have been conflicting. 
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1.4.5 Evasion of Cell Death 

Evasion of apoptosis has been linked to cellular resistance to several chemotherapeutic 

agents. Apoptosis can be induced either through the intrinsic mitochondrial pathway or the 

extrinsic death-receptor mediated pathway. The intrinsic pathway is mediated by the Bcl-2 

protein family which comprises of pro-apoptotic proteins such as Bax, Bak, Bad and Bid, as well 

as anti-apoptotic proteins such as Bcl-2 and Bcl-xL. The extrinsic pathway, on the other hand, 

involves the tumor necrosis factor (TNF) receptor superfamily. 

Paclitaxel has been shown to modulate expression of Bcl-xL as well as Bcl2 (Seve and 

Dumontet, 2005). Overexpression of Bcl2 has also been correlated with increased cisplatin 

resistance. Mutations resulting in loss of p53 function have been reported to cause increased Bcl-

xL levels and resistance to gemcitabine (Seve and Dumontet, 2005). Increased Bcl-xL protein in 

ovarian cancer cells was found to cause resistance to multiple chemotherapies such as cisplatin, 

paclitaxel, topotecan and gemcitabine (Williams et al., 2005). In clinical specimens, elevated 

Bcl-xL mRNA correlated with poor prognosis in NSCLC patients treated with chemotherapy 

(Karczmarek-Borowska et al., 2006). 

Alterations in the proteins comprising the extrinsic apoptotic pathway, such as decoy 

receptors and FADD (Fas associated death domain) can result in resistance to TRAIL (TNF 

related apoptosis-inducing ligand) as well as chemotherapy. Low FADD expression corresponds 

to chemoresistance and poor clinical outcome in acute myeloid leukemia (AML) patients 

(Tourneur et al., 2004). 
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Death-associated protein (DAP) kinase is a pro-apoptotic serine/threonine kinase that is 

involved in ligand-induced apoptosis as well as autophagy. Hypermethylation of the DAPK 

promoter results in aberrant gene silencing and negatively affects the apoptotic pathway. A 

clinical study reported DAPK hypermethylation in ~40% of resected stage I NSCLC patient 

tumors, and this was associated with poor five-year survival rate in these early-stage patients 

(Tang et al., 2000). 

Cancer cells can evade apoptosis via expression of the inhibitors of apoptosis (IAP) 

family of proteins. These proteins including the cIAP1, cIAP2, and X-chromosome–encoded IAP 

(XIAP), can bind to caspases-3, -7 and -9 and inhibit apoptosis. IAPs are normally inhibited by 

the second mitochondrial activator of caspases (SMAC). Increased cIAP2 and XIAP expression 

have been linked to pancreatic cancer cell resistance to 5-FU, cisplatin, doxorubicin and 

paclitaxel (Lopes et al., 2007). Studies in our laboratory have shown that inhibition of IAPs by a 

SMAC mimetic JP1201 resulted in sensitization of NSCLCs to doxorubicin, erlotinib, 

gemcitabine, paclitaxel, vinorelbine and paclitaxel/carboplatin combination chemotherapy (Greer 

et al., 2011). 

Pro-survival pathways such as EGFR signaling, PI3K/Akt signaling or NF-kB pathway 

may be activated by cancer cells in response to chemotherapeutic stress, thereby leading to drug 

resistance. HER2 (ErbB2) expression has been implicated in breast cancer resistance to platinum 

agents, paclitaxel and 5-FU (Redmond et al., 2008). Inhibition of pro-survival PI3K/Akt 

signaling improved the effectiveness of paclitaxel in ovarian, lung and esophageal cancer cells 

(Redmond et al., 2008). The transcription factor NF-kB has been shown to be involved in 
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suppression of the apoptotic cascade induced by tumor necrosis factor-alpha (TNF-a), oncogenic 

Ras, and chemotherapy agents, such as irinotecan (Seve and Dumontet, 2005). 

 

1.4.6 Mutation in Direct Drug Target 

Cancer cells continually evolve in response to stress and accumulate mutations that help 

them survive the drug-induced insults. Mutations in genes that code for the key protein that 

interacts with the chemotherapeutic agent, are more likely to result in resistance against that 

specific drug or family of drugs. Such genomic mutations have been shown to be involved in 

conferring resistance to both standard as well as targeted therapies. 

Since taxanes act by stabilizing microtubule polymerization, tubulin mutations that 

counteract this stabilizing effect, along with expression of endogenous microtubule-

depolymerizing factors, have been shown to promote the development of drug resistance (Jordan 

and Wilson, 2004). In a NSCLC cell line model, paclitaxel resistant A549 cells were found to 

overexpress the active form of the microtubule destabilizing protein stathmin and the inactive 

form of the putative microtubule-stabilizing protein MAP4. In addition, these cells 

overexpressed the βIII-tubulin isotype and had a heterozygous point mutation in α-tubulin, in the 

region that is important for interaction with MAP4 and stathmin (Martello et al., 2003). As a 

result, these resistant cells exhibited faster microtubule dynamics than sensitive cells. 

Examination of stage IIIB/ IV NSCLC patients has also revealed that those who had mutations in 

the β-tubulin gene responded poorly to paclitaxel treatment (Burkhart et al., 2001). 
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Activating somatic mutations in the epidermal growth factor receptor (EGFR) kinase 

gene are a unique feature of a sub-class of NSCLCs and have been exploited in designing EGFR 

targeted therapy. The most predominant EGFR mutations involve in-frame deletions around the 

conserved LREA motif of exon 19 (that translates to amino acid residues 747−750) and a point 

mutation (L858R) in exon 21 (Denis et al., 2015). EGFR-mutated cells are oncogene addicted 

and depend upon EGFR for their survival. EGFR tyrosine kinase inhibitors (TKI) such as 

erlotinib and gefitinib are thus commonly used for treatment of EFGR-mutated lung cancers. 

Though tumors initially respond well to these targeted agents, a significant fraction of them 

eventually acquire secondary mutations that confer resistance to these drugs. The secondary 

T790M mutation in exon 20 occurs in ~50% of EGFR-mutated patient tumors and is primarily 

responsible for EGFR TKI resistance (Denis et al., 2015). Threonine 790 is the gatekeeper 

residue in EGFR and an important determinant of inhibitor specificity. Substitution of this 

residue with a methionine causes steric interference that affects binding of TKIs (Denis et al., 

2015). A small fraction of patients may acquire D761Y, L747S or T854A EGFR mutations. 

Acquired amplification of MET has been identified in ~20% of erlotinib/ gefitinib resistant 

tumors (Nguyen et al., 2009). HER2 amplification, PIK3CA mutations or BRAF mutations have 

also been found in a minor subset of resistant tumors (Stewart et al., 2015). 
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1.4.7 Epithelial to Mesenchymal Transition 

Phenotypic switching of cancer cells between epithelial and mesenchymal states is 

responsible not only for conferring these cells with increased migration capacity and metastatic 

ability, but also resistance to certain chemotherapeutic agents. Cells may utilize their ability to 

undergo epithelial-to-mesenchymal transition (EMT) to escape getting killed by drugs that 

selectively target the epithelial state.  

EMT has been reported in the acquisition of resistance to standard chemotherapeutic 

agents such as paclitaxel and platinum agents. Paclitaxel resistant-epithelial ovarian carcinoma 

(EOC) cells displayed EMT-like phenotypic changes such as spindle-shaped morphology and 

enhanced pseudopodia formation (Kajiyama et al., 2007). Resistant cells showed decreased E-

cadherin expression, increased expression of mesenchymal markers like vimentin, fibronectin 

and smooth-muscle actin, elevated expression of EMT-regulatory factors such as Snail and 

Twist, and enhanced migratory potential. Such EMT-related morphological and molecular 

changes were also seen in colorectal cancer cells resistant to oxaliplatin (Yang et al., 2006). 

Epithelial ovarian cancer cells resistant to cisplatin and taxol were found to overexpress vimentin 

and N-cadherin, transcription factors Snail, Slug and Twist, as well as the endothelin-1 

/endothelin A receptor (ET-1/ET(A)R) axis which was shown to regulate this EMT phenotype 

and chemotherapy resistance (Rosano et al., 2011). 5-Fluorouracil resistant breast cancer and 

colorectal cancer cells also exhibited EMT-like changes (Kim et al., 2015; Zhang et al., 2012a). 

Gene signature representing EMT has been associated with resistance of NSCLC cell 

lines to the EGFR tyrosine kinase inhibitor erlotinib (Yauch et al., 2005). Specifically, NSCLCs 

with acquired erlotinib resistance overexpressed the mesenchymal marker, AXL (Zhang et al., 
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2012b). In a subsequent study, another 76-gene EMT signature predicted resistance to EGFR and 

PI3K/Akt inhibitors and identified AXL as a potential therapeutic target for overcoming EGFR 

inhibitor resistance (Byers et al., 2013). Further, a retrospective clinical study on stage IV or 

recurrent NSCLC patients that had received gefitinib or erlotinib targeted therapy, confirmed that 

epithelial phenotype was associated with a significantly higher response rate, as well as better 

progression-free and overall survival, compared to the patients whose tumors expressed EMT or 

mesenchymal markers (Ren et al., 2014).  

Similarly, EMT has also been linked to resistance to other targeted agents such as the 

HER2 inhibitor trastuzumab (Herceptin). SLUG/SNAIL2-positive basal/HER2+ cell lines were 

found to be intrinsically resistant to trastuzumab (Oliveras-Ferraros et al., 2012). Knockdown of 

SLUG/SNAIL2 induced mesenchymal-to-epithelial transition (MET) and restored drug 

sensitivity in these cells. Extending to other targeted therapies, MED12, a component of the 

transcriptional MEDIATOR complex that is mutated in cancers, was found to be a determinant 

of response to multiple drugs including the ALK, EGFR, MEK and BRAF inhibitors (Huang et 

al., 2012). MED12 loss-of-function mutations in cancer are responsible for activation of TGF-βR 

signaling that induces an EMT switch. The authors showed that inhibition of TGF-βR signaling 

restored chemotherapy sensitivity in drug resistant MED12 knockdown cells 
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1.4.8 Cancer Stem Cells in Drug Resistance 

In the past decade, several studies have proposed the existence of highly tumorigenic, 

cancer-initiating cells or cancer stem cells. Cancer stem cells (CSC) are defined as a rare 

subpopulation of cells that are capable of self-renewal as well as asymmetric division into non-

CSC progeny cells that constitute the bulk of the tumor. Similar to normal stem cells, CSCs 

exhibit increased expression of the ATP-binding cassette (ABC) family of transporters, 

particularly ABCG2/ BCRP1. These cells can thus be sorted from the rest of the tumor 

population on the basis of exclusion of Hoechst dye, giving them a peculiar ‘side population’ 

phenotype on the flow cytometry profile. Side population (SP) cells have been identified in 

neuroblastoma, breast cancer, lung cancer, and glioblastoma cell lines (Hirschmann-Jax et al., 

2004). Studies have revealed that SP cells have greater tumor-initiating capacity as well as 

increased potential for invasiveness. These cells also showed increased expression of human 

telomerase reverse transcriptase (hTERT), indicative of unlimited proliferative potential, and 

decreased expression of the DNA replication protein, minichromosome maintenance 7 (MCM7), 

suggesting that these cells existed in a G(0) quiescent state (Ho et al., 2007). Further, cancer stem 

cells have also been characterized by the expression of specific markers  such as CD133+ in 

brain, colorectal, pancreatic, hepatocellular, breast and lung cancers, EpCAM+ in pancreatic, 

colon and hepatocellular carcinomas, CD34+ in hematological cancers, CD44+/CD24- in breast 

cancers and ALDH activity in breast, colon, head and neck, liver, pancreatic cancers and non-

small cell lung cancers (Islam et al., 2015).  

Cancer stem cells have been shown to be intrinsically resistant to chemotherapy due to 

their ABC transporter expression, relative quiescence as well as enhanced DNA repair capacity. 
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Rare, tumor stem cells are said to survive chemotherapy treatments in patients and exist in a state 

of dormancy, sometimes for several years, until cancer relapse. Quiescent stem cells were shown 

to persist in chronic myelogenous leukemia (CML) cells following treatment with the BCR/ABL 

tyrosine kinase inhibitor imatinib (Bhatia et al., 2003). Even recurrent glioblastoma (GBM) 

tissues showed higher CD133 expression compared to primary tumors. Further, CD133+ cells 

from primary cultured cell lines established from GBM patients showed higher levels of 

ABCG2/ BCRP1, MGMT and several anti-apoptotic genes. Consequently, these cells were found 

to be resistant to chemotherapeutic agents such as temozolomide, carboplatin, paclitaxel and 

etoposide, compared to CD133- cells (Liu et al., 2006). Cisplatin treatment of lung cancer cells 

resulted in enrichment of CD133+ subpopulation of cells, both in A549 cell line and primary lung 

tumor xenografts (Bertolini et al., 2009). The same study reported that CD133+ NSCLC patients 

treated with platinum-containing regimens showed shorter progression-free survival time. 

NSCLC stem-like cells derived from tumor sphere forming assays also showed higher expression 

of CD133, CD44, SOX2 and OCT4 stem cell genes, and elevated expression of several drug 

resistance proteins such as lung resistance-related protein (LRP), glutathione-S-transferase-π 

(GST-π) and multidrug resistance protein-1 (MRP1) (Sun et al., 2015). Retrospective 

examination of previously untreated NSCLC patient tumors by immunohistochemistry found a 

significant association between CD133 expression and resistance-related proteins such as 

glutathione-S-transferase (GST), thymidylate synthase (TS), catalase, O6-methylguanine-DNA 

methyltransferase (MGMT) and p170 (P-glycoprotein/ MDR) (Salnikov et al., 2010).  

Key stem cell pathways such as the Notch, Wnt/β-catenin, TGF-β and Hedgehog 

signaling, have been reported to be determinants of chemoresistance in the cancer stem cell 

subpopulation. Thus, pharmacological intervention of these pathways has proven useful in 
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enhancing tumor response from standard chemotherapeutic drugs. CD133+ glioma cells showed 

upregulation of Notch and Sonic hedgehog (SHH) pathways upon exposure to temozolomide 

(TMZ) and pharmacological antagonism of these signaling pathways with GSI-1 and 

cyclopamine was able to enhance the therapeutic efficacy of TMZ (Ulasov et al., 2011). 

Treatment of lung cancer cells with cisplatin led to enrichment of CD133+ cells which were 

regulated by the Notch pathway. Pre-treatment of these cell lines with the gamma-secretase 

inhibitor, DAPT, significantly reduced the enrichment of CD133+ cells and increased the 

sensitivity to doxorubicin and paclitaxel (Liu et al., 2013). Genetic inactivation or 

pharmacological inhibition of β-catenin (Wnt pathway) abrogated CML stem cells and 

synergized with imatinib to delay disease recurrence (Heidel et al., 2012).  

Activation of pro-survival pathways such as the PI3K/Akt, JAK/STAT and several 

others, may also contribute to the selective survival of CSCs and the resulting chemotherapy 

resistance. SP cells from breast cancer cell line showed alterations in phosphatidylinositol 3-

kinase (PI3K)/mammalian target of rapamycin (mTOR), signal transduction and activator of 

transcription (STAT3), and phosphatase and tensin homolog (PTEN) pathways that were 

required for CSC maintenance (Zhou et al., 2007). In another study, CD44+/CD24−/CD45− 

CSCs from primary ERα-positive breast cancer showed activation of PI3K pathway (Hardt et al., 

2012). Studies in our laboratory have demonstrated that ALDH+ CSCs from non-small cell lung 

cancers showed STAT3 activation in ALDH1A3 expressing cells, and genetic or 

pharmacological inhibitor of STAT3 or its upstream regulator EZH2 diminished this ALDH+ 

subpopulation (Shao et al., 2014). ALDH+ chemoresistant cell subpopulation from malignant 

pleural mesothelioma (MPM) that survived pemetrexed + cisplatin treatment were also enriched 

for the ALDH1A3 isoform and survival of these cells was dependent on the STAT3-
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NFkB/DDIT3/CEBPβ axis (Canino et al., 2015). CD133+ hepatocellular carcinoma (HCC) cells 

exhibited increased resistance to doxorubicin and 5-fluorouracil, through activation of Akt/PKB 

and Bcl-2 cell survival pathways (Ma et al., 2008). Tumorigenic CD133+ colon cancer cells 

showed resistance to oxaliplatin and 5-fluorouracil via production of the pro-survival factor, 

interleukin-4 (IL-4) (Todaro et al., 2007).  
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Figure 1.2 Models for Tumor Drug Resistance 
(a) In the conventional model, rare tumor cells harboring pre-existing resistance-conferring 
alteration survive chemotherapy and give rise to a recurrent, drug refractory tumor; (b) Cancer 
stem cell model proposes the existence of drug resistant tumor-initiating cells that are able to 
repopulate the entire heterogeneous tumor post chemotherapy; (c) As per the acquired resistance 
model, new mutations in surviving tumor cells establish permanent resistance mechanisms; (d) 
Some tumors may be inherently resistant, resulting in a progressive disease even after therapy. 
Modified from Dean, Fojo and Bates, Nature Reviews 2005  
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1.4.9 Tumor Heterogeneity and Clonal Evolution 

Tumor heterogeneity is multifactorial and typically governed by genetic, epigenetic as 

well as environmental variations. Resistance to chemotherapy has been attributed to the 

existence of intra-tumor heterogeneity and the concept of Darwinian evolution that proposes the 

survival of biologically ‘fit’ cells in response to environmental selection pressure. By applying 

selective pressure, chemotherapy results in a transient reduction in tumor heterogeneity and 

creates an ‘evolutionary bottleneck’ with the survival of only drug resistant clones (Gerlinger 

and Swanton, 2010). These resistant clones gradually re-establish tumor heterogeneity with the 

acquisition of a new set of genetic alterations.  

Genomic instability which is a hallmark of cancer can explain the existence of different 

pre-existing mutations in cancer cells that are positively selected under drug stress. The BCR-

ABL mutations T315I and E255K that are responsible for imatinib resistance have been shown 

to pre-exist in rare subpopulations of chronic myelogenous leukemia cells from treatment naïve 

patients (Roche-Lestienne et al., 2002). Likewise, the EGFR T790M resistance mutation was 

also detected in a minor subpopulation of tumor cells from NSCLC patients prior to EGFR TKI 

treatment (Inukai et al., 2006). Presence of such rare, pre-existing tumor cells in a heterogeneous 

population can thus account for the observed resistance after chemotherapy. 

Clinical management of drug resistance arising from tumor heterogeneity could possibly 

be achieved by performing serial biopsies of tumors or by liquid biopsy of circulating tumor cells 

(CTCs) and circulating cell-free DNA in peripheral blood during the course of chemotherapy. 

This might aid in the detection of enriched resistant clones during therapy. In one such study, 

serial plasma sampling and exome sequencing was used to track the evolution of metastatic 



31 
 

 
 

patient tumors in response to chemotherapy (Murtaza et al., 2013). The authors found enrichment 

in frequency of certain mutant alleles with emerging therapy resistance. These included 

activating PIK3CA mutation following treatment with paclitaxel, a truncating mutation in RB1 

after cisplatin treatment, a truncating mutation in MED1 after tamoxifen, trastuzumab, and 

lapatinib treatment, and the resistance-conferring EGFR T790M mutation following gefitinib 

therapy. A clinical study called TRACERx [TRAcking non-small cell lung Cancer Evolution 

through therapy (Rx), NCT01888601] has been initiated for performing multi-regional and 

longitudinal tumor sampling to study tumor evolution from diagnosis to relapse and understand 

the impact of tumor clonal heterogeneity on therapeutic outcome (Jamal-Hanjani et al., 2014). In 

the near future, such studies provide hope for clinical detection of emerging drug resistance and 

consequently for guiding precision medicine based on the individual’s evolving tumor profile.  
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Figure 1.3 Tumor Heterogeneity and Evolution of Drug Resistance 
The process of tumor initiation and progression involves natural selection of cell clones with 
advantageous, heritable characteristics. This evolutionary adaption also plays a major role in 
guiding the development of drug resistance during chemotherapy. Drug treatment leads to the 
selective survival of drug tolerant tumor clones (shown in pink) and creates an ‘evolutionary 
bottleneck’ with transient reduction in tumor heterogeneity. Tumor heterogeneity is re-
established with the acquisition of new alterations by the daughter cells of surviving clones. 
Adapted from Gerlinger and Swanton, British Journal of Cancer 2010  
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1.4.10 Clinical Interventions to Overcome Resistance 

Majority of the efforts for overcoming drug resistance have involved inhibitors of drug 

efflux transporters. By inhibiting ABC transporters, these compounds can not only sensitize 

resistant cells but also target cancer stem cells or side population cells. Initially, first generation 

MDR inhibitors which were already in use for other indications, such as verapamil (Millward et 

al., 1993) and cyclosporine were tested in clinical trials, in combination with standard 

chemotherapy. Subsequent trials involved newer, more specific compounds such as PSC 833 

(valspodar), VX-710 (biricodar), XR9576 (tariquidar), and LY-335979 (zosuquidar) (Dean et al., 

2005). Failure of these clinical trials has been attributed to drug interactions with standard 

chemotherapies as well as contribution of multiple ABC transporters which were not all targeted 

by these new higher specificity inhibitors. 

Since most of the inhibitors tested in clinical trials involved ABCB1/MDR1/Pgp 

inhibitors, researchers have argued that therapeutic failure could be due to lack of ABCG2 

inhibition as this is the marker that more commonly defines side population cells or tumor stem 

cells (Dean, 2009). Fumitremorgin C (FTC) is a natural product that is an ABCG2-specific 

inhibitor. However, FTC was found to be generally toxic to cells and mice, and thus unsuitable 

for clinical studies. The synthetic derivative of FTC, called Kol43 has less toxicity related issues 

and studies in mice have shown its effectiveness in inhibiting ABCG2. Additionally, the 

compound GF120918 which is an ABCB1 inhibitor also has activity against ABCG2 and could 

prove more useful in inhibiting both these transporters at once. 

Pan-ABC inhibitors could be developed to target multiple transporters at once; however it 

is necessary to keep in consideration that ABC transporters are also expressed in normal tissues 
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such as the GI tract, liver, kidney, brain, ovary, testes and hematopoietic stem cells. Normal stem 

cells depend on the expression of drug transporters to survive chemotherapy and other toxic 

substances. So, ABC transporter inhibition will cause increased toxicity to normal stems cells 

and compromise normal tissue development and regeneration. 

Targeting the Notch, Hedgehog or Wnt pathways might be another way to eliminate 

cancer stem cells that could possibly escape killing by standard chemotherapy. While also 

expressed in normal stem cells, these pathways may be up-regulated in certain tumors. BMS-

906024, a gamma secretase inhibitor (GSI) with anti-notch activity is being evaluated for its 

safety and tolerability in a phase I clinical trial for advanced metastatic tumors including 

NSCLCs (NCT01653470, 2012). This drug is being tested in combination with paclitaxel, 5FU + 

irinotecan or carboplatin + paclitaxel. The anti-Frizzled monoclonal antibody vantictumab 

(OMP-18R5), that targets the Wnt pathway, is being evaluated for its safety in combination with 

docetaxel in patients with recurrent or advanced NSCLC (NCT01957007, 2013). 

Immunotherapy is also emerging as a new treatment option for advanced NSCLC patients 

who have failed prior chemotherapy. One of such phase I studies (NCT02298153, 2014) 

comprises of an anti-PD-L1 therapy called MPDL3280A, given in combination with 

INCB024360. MPDL3280A has been developed to improve the immune system’s ability to 

recognize and destroy cancer cells by blocking PD-L1, while INCB024360 is designed to 

promote an immune response against tumor cells, through its binding to an enzyme called IDO1. 

Another on-going clinical trial (NCT01454102, 2011) involves nivolumab (BMS-936558) that 

targets PD-1, and inactivates it, thereby enhancing the body’s immune response against cancer 

cells. This drug is being evaluated as monotherapy as well as in combination therapy with 
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gemcitabine + cisplatin, pemetrexed + cisplatin, paclitaxel + carboplatin, bevacizumab 

maintenance, erlotinib or ipilimumab. 

 

1.5 An Overview of Epigenetic Regulation of Transcription 

Epigenetic mechanisms allow for stable changes in gene expression patterns without 

intrinsic changes in the DNA sequence. The molecular determinants that constitute an epigenetic 

event are heritable through DNA replication, thereby maintaining a given ‘cell state’. The new 

cellular gene expression pattern can be preserved even if the original stimuli that were 

responsible for initiation of these cell states are no longer present (Easwaran et al., 2014). This 

thus adds another layer of complexity in terms of intratumoral epigenetic heterogeneity and 

differences in therapeutic response.  

Epigenetic control is mediated by a fine interplay between DNA methylation, histone 

modifications and nucleosome remodeling. DNA methylation involves covalent modification of 

DNA by a methyl group at the cytosine residues in CpG islands. CpG island methylation in gene 

promoters is primarily associated with transcriptional repression. Some studies have reported that 

CpG methylation in gene bodies has the opposite effect by enhancing gene transcription through 

increased transcriptional elongation or alternate promoter usage (Easwaran et al., 2014). The 

interaction between DNA and histone proteins is tightly regulated by histone modifications. 

These occur predominantly at the N-terminal tails that protrude from the nucleosome core. 

Histone post-translational marks can have either an activating or repressive effect depending on 

the type and location of modification. These modifications affect nucleosome spacing and 

higher-order chromatin structure, which in turn affects recruitment of other non-histone proteins. 
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Closely compacted nucleosomes where DNA is inaccessible for transcription are associated with 

silent heterochromatin while loosely packaged, “open” chromatin is typical of actively 

transcribed genes or euchromatin. Active transcriptional domains are separated from inactive 

domains by boundary elements or insulator proteins. Finally, histone-DNA contacts are altered 

by ATP-dependent nucleosome-remodeling complexes that can move nucleosomes to different 

translational positions (sliding), histone chaperones that alter histone dynamics (eviction and 

deposition) and their inter-woven interactions that affect DNA accessibility to transcription 

factors (Li et al., 2007). 
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Figure 1.4 Epigenetic Regulation of Gene Expression 
Gene expression is tightly regulated by interplay between DNA methylation, histone 
modifications and nucleosome remodeling. Silenced genes are characterized by closely 
compacted chromatin where DNA is inaccessible for transcription. Actively transcribed genes 
have an open chromatin owing to hypomethylated CpG islands, histone acetylation and 
activating histone methylation marks.  
Adapted from Azad N.  et al., Nat. Rev. Clin. Oncol. 2013  
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1.6 Enzymes involved in Epigenetic Regulation 

Epigenetic modification of DNA occurs primarily at the 5-position of cytosine residues 

(5mC) in CpG dinucleotides. Histones, on the other hand, can be post-translationally modified in 

a variety of ways ─ lysine acetylation, lysine and arginine methylation, arginine citrullination, 

lysine ubiquitination, lysine sumoylation, ADP-ribosylation, proline isomerization, and 

serine/threonine/tyrosine phosphorylation, among several others (Rothbart and Strahl, 2014).  

Enzymes that regulate DNA and histone modifications can be broadly categorized into 

“writers” (enzymes that establish the modifications), “erasers” (proteins that remove these 

marks), and “readers” (proteins that bind specific modifications and facilitate epigenetic effects). 

The writers encompass enzymes such as DNA methyltransferases, histone methyltransferases, 

histone acetyltransferases, kinases or ubiquitin ligases. The widely studied enzymes known to 

reverse these marks consist of the histone demethylases, histone deacetylases and phosphatases. 

Readers of the post-translational modifications include proteins consisting of specific domains, 

such as bromo-, chromo-, tudor-, MBT-, PWWP-, WD40- and PHD-domains, that bind to 

specific modifications (Helin and Dhanak, 2013). 

DNA methylation is catalyzed by a class of enzymes called DNA methyltransferases 

(DNMTs) that transfer a methyl group from S-adenosylmethionine (SAM) onto cytosine. These 

enzymes act either as de novo methyltransferases (DNMT3a and DNMT3b), establishing the 

initial pattern of methylation, or as maintenance methyltransferases (DNMT1), that copy the 

methylation to a new DNA strand during replication (Rothbart and Strahl, 2014). Demethylation 

of DNA is thought to be mediated by the ten-eleven translocation (TET) family of enzymes that 

catalyze iterative 5mC oxidation to 5-hmC, 5-formylcytosine (5fC) and 5-carboxylcytosine 
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(5caC). Proteins that “read” DNA methylation include the methyl-binding domain (MBD) 

proteins, a family of zinc finger-containing proteins (such as Kaiso) and SET and RING-

associated (SRA) domain-containing proteins (UHRF family). Interaction of the UHRF1 SRA 

domain with DNA is said to be required for DNMT1 chromatin targeting and subsequent 

maintenance of DNA methylation. On the contrary, UHRF2 has been shown to enhance 

oxidative demethylation by TET1. Further, it has been suggested that cysteine-rich zinc-finger 

CxxC-containing proteins act as readers of unmethylated CpG dinucleotides, and may serve as 

targeting mechanisms to direct further DNA demethylation (Rothbart and Strahl, 2014). 

Histone acetylation is regulated by the opposing activities of histone acetyl transferases 

(HATs) and histone deacetylases (HDACs). As writer enzymes, HATs transfer acetyl groups to 

lysine residues of histone tails, thereby activating gene transcription. These enzymes comprise 

the MOZ/YBF2/SAS2/TIP60 (MYST) family, the GCN5 N-acetyltransferase (GNAT) family, 

and the CBP/p300 family of proteins (Ellis et al., 2009). Lysine acetylation has been found to 

occur on H3 (K4, K9, K14, K18, K23, K27, K36 and K56), H4 (K5, K8, K12, K16, K20 and 

K91), H2A (K5 and K9) and H2B (K5, K12, K15, K16, K20 and K120). The HDACs cause 

transcriptional silencing by catalyzing the hydrolysis and deacetylation of N-acetyl lysine 

residues. HDACs can be categorized into four classes ─ class I consists of HDAC 1, 2, 3, and 8, 

(localized to the nucleus); class II consists of HDAC 4, 5, 6, 7, 9, and 10, (present in both 

nucleus and cytoplasm); class III consists of sirtuins (SIRT 1-7); and class IV consists of HDAC 

11. Class I, II and IV are zinc-dependent enzymes whereas the NAD+ dependent sirtuins do not 

rely on zinc (Ellis et al., 2009). The recognition of N-acetylation of lysine residues is primarily 

initiated by bromodomains that are small interaction modules found on a diverse set of proteins, 

including the BET family of proteins (example, BRD4), SWI/SNF-related matrix-associated 
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actin-dependent regulators of chromatin subfamily A (SMARCAs), ATP-dependent chromatin 

remodeling complexes such as BAZ1B, tripartite motif-containing proteins (TRIMs) and TBP-

associated factors (TAFs) (Filippakopoulos and Knapp, 2014). 

Histone methylation is catalyzed by the histone methyltransferase (HMT) family of 

enzymes that consist of protein arginine methyltransferases (PRMT) and lysine 

methyltransferases (KMTs). These enzymes sequentially transfer a methyl group from the 

cofactor S-adenosylmethionine (SAM) to the terminal amine of specific lysine or arginine 

residues. The omega nitrogen atoms of arginine can be monomethylated or dimethylated 

symmetrically (Rme2s) or asymmetrically (Rme2a). Lysine is methylated on its ε-amino group 

and can be mono-, di- or trimethylated. The catalytic domain of all KMTs (except DOT1L) 

consists of the SET (Su(var)3-9, Enhancer of Zeste, Trithorax) domain (McGrath and Trojer, 

2015). The most widely studied KMTs are G9a, EZH2, DOT1L, SMYD2 and the KMT2/MLL 

family. The enzymes that erase histone methylation marks are classified into the lysine-specific 

demethylase (LSD) family and the JmjC domain-containing lysine demethylase family (Helin 

and Dhanak, 2013). The LSD family consists of LSD1 (KDM1A/AOF2) and LSD2 

(KDM1B/AOF1), that act as flavin adenine dinucleotide (FAD)-dependent monooxidases and 

catalyze the demethylation of only mono- and di-methylated, but not tri-methylated lysines. The 

JmjC domain containing proteins form the largest family of histone demethylases with about 30 

known human proteins, 17 of which have defined enzyme activities (Helin and Dhanak, 2013). 

Unlike LSD enzymes, JmjC domain containing enzymes can demethylate tri-methylated lysine 

in addition to the di- and mono-methyl residues. Enzymatic reaction is dependent on α-

ketoglutarate (2OG) and iron, and involves an oxidative mechanism that occurs through direct 

hydroxylation and thus demethylation of the methyl lysine, releasing formaldehyde. Depending 
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on the specific residue modified, lysine methylation can be associated with either actively 

transcribed genes (H3K4, H3K36 or H3K79 methylation) or silenced heterochromatic genes 

(H3K9, H3K27 or H4K20 methylation). However, the consequence of these methylation marks 

is ultimately determined by effector or reader proteins. Readers of methyl lysine have been well-

studied and include ADD (ATRX-DNMT3-DNMT3L), ankyrin, bromo-adjacent homology 

(BAH), chromo-barrel, chromodomain, double chromodomain (DCD), MBT (malignant brain 

tumor), PHD (plant homeodomain), PWWP (Pro-Trp-Trp-Pro), tandem Tudor domain (TTD), 

Tudor, WD40 and the zinc finger CW (zf-CW) proteins (Musselman et al., 2012).  

Due to their vital regulatory function, many epigenetic enzymes have been found to act as 

important mediators in oncogenesis and were shown to be over-expressed, amplified, fused or 

mutated in cancers (Varier and Timmers, 2011; Wilting and Dannenberg, 2012). It should be 

noted that many of these epigenetic enzymes also affect non-histone proteins, further increasing 

the complexity of regulation and diversity of signaling pathways affected. Alterations in DNA or 

histone modifying enzymes, or nucleosome remodeling complexes have been reported in 

multiple malignancies, making them important targets for anti-tumor therapy. 
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Figure 1.5 Erasers, Writers and Readers of Epigenetic Modifications 
Epigenetic regulators can be broadly classified into: Erasers ─ enzymes that remove post-
translational modifications, Writers ─ enzymes that catalyze addition of modifications, and 
Readers ─ proteins with specific domains that bind to and recognize these modifications. 
Adapted from Helin and Dhanak, Nature 2013 
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1.7 Epigenetic Drugs in Clinical Trials 

Epigenetic alterations are reversible and thus present attractive targets for anti-cancer 

therapy. The most well-studied and clinically implemented anti-tumor epigenetic targets are 

enzymes that affect DNA methylation and histone acetylation. In cancer, promoter CpG islands 

can become hypermethylated, resulting in silencing of tumor suppressor genes. This promoter 

methylation can be diminished by the use of DNA methyltransferase (DNMT) inhibitors that 

form covalent adducts with the enzyme, leading to its sequestration and cellular depletion, 

consequently leading to re-expression of the silenced genes (Zeller and Brown, 2010). Similarly, 

histone deacetylases (HDACs) are overexpressed in many cancers and inhibiting these enzymes 

promotes accumulation of the acetylated form of histone proteins, resulting in re-activation of 

silenced tumor suppressor genes. 

DNA methyltransferase inhibitors (DNMTi) such as 5-azacytidine (Vidaza) and 

decitabine (5-aza-2′-deoxycytidine) were approved by the FDA in early 2000s and showed some 

therapeutic potential in hematological cancers (Azad et al., 2013). They have been subsequently 

tested in some solid tumors as well, including ovarian cancer and non-small cell lung cancer. 

First-generation histone deacetylase inhibitors (HDACi) like romidepsin (FK228) and vorinostat 

(SAHA) and subsequently newer, improved HDAC inhibitors such as panobinostat, CHR-3996, 

quisinostat, entinostat (MS-275) and mocetinostat (MGCD0103) have also been evaluated in the 

clinic either alone or in combination with other therapies (Simo-Riudalbas and Esteller, 2015). 

Vorinostat therapy led to significant improvement in response rates when combined with 

carboplatin and paclitaxel in previously untreated advanced-stage NSCLC patients (Ramalingam 

et al., 2010). A phase I/II trial of combined epigenetic therapy with azacytidine and entinostat in 
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patients with recurrent metastatic non-small cell lung cancer, reported demethylation of lung 

cancer-associated epigenetically silenced genes that correlated with improved progression-free 

and overall survival (Juergens et al., 2011). Recently, phase I/II clinical trials have been initiated 

for histone methyltransferase inhibitors such as EPZ-5676 (DOT1L inhibitor, Epizyme, 

NCT01684150) and EPZ-7438 (EZH2 inhibitor, Epizyme, NCT01897571), as well as the histone 

demethylase inhibitor, ORY-1001 (LSD1 inhibitor, Oryzon Genomics, EudraCT number 2013-

002447-29). BET bromodomain inhibitors such as OTX015 (Oncoethix, NCT01713582) and 

GSK525762 (GlaxoSmithKline, NCT01943851, NCT01587703) are also being clinically 

evaluated for certain malignancies (Mair et al., 2014). 

 

1.8 Role of Epigenetics in Drug Resistance 

Epigenetic alterations are getting increasing attention as new approaches for anti-cancer 

therapies and intriguingly, for their newly-defined role in drug resistance, the major hurdle in 

successful treatment of malignancies. Recent studies are beginning to recognize a critical role of 

epigenetics in not only driving early stages of tumorigenesis but also in establishing non-genetic 

heterogeneity observed in tumor cell populations, and in enabling acquisition of changes that 

would favor cell survival under drug stress. The potential of epigenetic therapies in preventing, 

delaying, or reversing drug resistance is an active subject of current research.  

The role of DNA hypermethylation in conferring drug resistance and cancer relapse has 

been extensively studied (Zeller and Brown, 2010). In platin-resistant ovarian cancer models, the 

DNA mismatch repair (MMR) gene MLH1 is known to be transcriptionally silenced by CpG 

island promoter methylation. Relapsed tumors from epithelial ovarian cancer patients after 



45 
 

 
 

carboplatin/taxol therapy showed increased MLH1 promoter methylation compared to matched 

pre-chemotherapy samples, and this was associated with poor patient survival (Gifford et al., 

2004). Genome-wide DNA methylation profiling of paired diagnosis/relapse samples from 

childhood B-lymphoblastic leukemia patients also revealed that the chemotherapy-resistant 

relapse samples were DNA hypermethylated compared with matched diagnosis samples (Hogan 

et al., 2011). 

Epigenetic inhibitors that are capable of affecting multiple downstream signaling 

pathways hold a potential for reversing these resistance-associated “cellular states”. In agreement 

with this, it was shown that the DNMT inhibitor decitabine and HDAC inhibitor vorinostat were 

able to reverse relapse-specific gene expression signature and restore chemo-sensitivity in 

childhood B-lymphoblastic leukemia primary patient samples and leukemia cell lines (Bhatla et 

al., 2012). Likewise, another study showed that colorectal cancer cell lines exposed to increasing 

5-fluorouracil concentrations developed resistance through downregulation of UMP-CMP 

kinase, and treatment of these cells with low dose decitabine increased UMP-CMP kinase levels 

and consequently reversed the resistance to 5-fluorouracil (Humeniuk et al., 2009). Previous 

studies have also shown that TRAIL-resistant lung cancer cell lines can be re-sensitized by 

DNMT inhibitors through promoter demethylation and re-expression of the pro-apoptotic 

calcium/calmodulin-regulated serine/threonine kinase DAPK (Tang et al., 2004). 

Interestingly, the ATP-binding cassette (ABC) transporters implicated in multi-drug 

resistance have also been shown to be epigenetically regulated (Wilting and Dannenberg, 2012). 

Studies have demonstrated that bladder cancer cells usually contain a hypermethylated 

MDR1/ABCB1 promoter which is converted into a hypomethylated state upon chemotherapy 
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treatment, resulting in gene overexpression (Wilting and Dannenberg, 2012). Similar epigenetic 

activation was also observed with the ABCG2/BCRP transporter. The exact mechanism by 

which ABCB1 promoter hypomethylation occurs is unknown. Reports suggest that the 

transcriptional repression is maintained by recruitment of MeCP2, a Methyl-CpG-binding 

protein (MBP) at the hypermethylated ABCB1 promoter which in turn provides a docking 

platform for nucleosome modifiers and remodelers, such as SWI/SNF, HDAC1, HDAC2 and 

mSIN3 (Wilting and Dannenberg, 2012). In agreement with this, HDAC inhibition or 

overexpression of the p300/CREB lysine acetyl transferase (KAT3B) has been shown to cause 

ABCB1 gene induction (Jin and Scotto, 1998). Chemotherapy or HDAC inhibitor treatment led 

to hyperacetylation of histone H3 and a delayed increase in H3K4 methylation at the ABCB1 

promoter (Baker et al., 2005). Another study showed that H3K4me3 at the ABCB1/MDR1 

promoter is dependent on the histone methyltransferase enzyme MLL1/KMT5A. Accordingly, 

KMT5A knockdown decreased MDR1 expression and sensitized cancer cells to chemotherapy 

(Huo et al., 2010). 

NSCLC cells that are intrinsically resistant to the topoisomerase II inhibitor etoposide 

(VP16) can benefit from HDACi therapy (Hajji et al., 2010). Treatment with HDAC inhibitors 

trichostatin A (TSA) or valproic acid (VPA) increased global H4K16 acetylation and sensitized 

cells to VP16-induced cell death. This was in fact attributed to inhibition of the class III 

HDAC/sirtuin called SIRT1, as TSA or VPA treatment led to a significant decrease in SIRT1 

protein levels and SIRT1 overexpression abolished the sensitizing effects of TSA. 

Drug-tolerant NSCLC cells that survive EGFR tyrosine kinase inhibitor (TKI) therapy 

can also be ablated by HDAC inhibitors (Sharma et al., 2010). Quiescent drug-tolerant persisters 
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(DTPs) and proliferating drug-tolerant expanded persisters (DTEPs) lacked the EGFR T790M 

genetic mutation or MET gene amplification, which are often associated with acquisition of 

EGFR TKI resistance in NSCLC patients. Instead, DTEPs regained EGFR TKI sensitivity upon 

prolonged drug-free passaging, indicating a reversible, epigenetic mechanism of drug resistance. 

The histone demethylase KMD5A (also known as JARID1A or RBP2) was found to be 

upregulated in both DTPs and DTEPs. These cells showed reduced H3K4me2/3 levels but also 

decreased H3K14 acetylation, presumably due to the association of KDM5A with HDACs. 

KDM5A genetic knockdown or pharmacological inhibition using HDAC inhibitors (TSA, 

SAHA, MS-275, and scriptaid) eliminated the emergence of DTEP clones from parental cells. 

Furthermore, IGF-1R signaling was also elevated in DTEPs and this was reported to be linked to 

KDM5A function as pharmacological inhibition of IGF-1R signaling reduced KDM5A 

expression, partially restored H3K4 methylation as well as prevented the emergence of DTEPs. 

Intriguingly, another study identified enrichment of KDM5B (JARID1B) expressing, 

slow cycling cells upon treatment of melanoma cells with cisplatin, bortezomib, temozolomide 

or BRAFV600E-targeted vemurafenib therapy (Roesch et al., 2013). Three out of four matched 

pairs of patient melanomas that had relapsed under vemurafenib treatment also showed increase 

in JARID1B expressing cells. Cisplatin induced enrichment of JARID1Bhigh cells was fully 

reversible upon drug withdrawal, suggesting dynamic phenotype switching. JARID1B genetic 

knockdown sensitized melanoma cells to chemotherapy as was evident by the additivity with 

bortezomib or vemurafenib in inhibiting melanoma xenografts. The HDAC inhibitor TSA that 

was effective in the Sharma et al. study, was however unable to diminish the JARID1Bhigh cell 

subpopulation in this study. Instead, pharmacological targeting of the mitochondrial respiratory 

chain (oxidative phosphorylation, OXPHOS) using ATP-synthase inhibitor oligomycin or 
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complex I inhibitors rotenone and phenformin inhibited the JARID1Bhigh slow-cycling 

subpopulation in soft agar assays and enhanced the therapeutic efficacy of vemurafenib in 

xenografts. 

In another recent study, chronic exposure of NOTCH1-dependent human T cell acute 

lymphoblastic leukemia (T-ALL) cells to a gamma-secretase inhibitor (GSI, compound E) led to 

the enrichment of a population of persister cells that tolerated 50-fold higher GSI concentrations 

compared to chemo-naïve cells (Knoechel et al., 2014). The drug-tolerant persister cells showed 

decreased expression of the active intracellular form of NOTCH1 (ICN1) and NOTCH1 target 

genes. This expression change was reversible as removal of GSI led to re-activation of NOTCH1 

signaling. Persister cells exhibited an altered chromatin state with higher global levels of 

repressive histone modifications and chromatin compaction. The authors did not observe 

upregulation of KDM5A expression or sensitivity to HDAC inhibitors. However, a lentiviral 

short hairpin RNA (shRNA) knockdown screen for ~350 chromatin regulators identified 

preferential dependence of persister cells on BRD4, a BET bromodomain protein. In agreement 

with this, persister cells exhibited ~5-fold enhanced sensitivity to the small molecule BET 

inhibitor JQ1, compared to chemo-naïve T-ALL cells. Further, pre-treatment of naïve T-ALL 

cells with JQ1 reduced the frequency of GSI-tolerant persister cells by 20-fold. JQ1 treatment 

decreased protein levels of BRD4 targets BCL2 and MYC, and this was related to the loss of cell 

viability as BCL2 or MYC overexpression partially rescued these cells from JQ1 treatment. 

Combination treatment with NOTCH inhibitor DBZ and BRD4 inhibitor JQ1 was able to 

prolong survival of mice engrafted with primary T-ALL cells.  
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Such studies suggest a promising outcome with combination therapies that incorporate 

epigenetic modulators. The design of treatment modalities that target the epigenetic features 

dominant under selection pressure would eliminate tumor cell’s primary defense mechanism for 

survival and possibly prevent the development of permanent drug resistance mechanisms. 

Epigenetic drugs could be used to reprogram drug-resistant cells into drug-sensitive cells by 

erasing their epigenetic memory responsible for drug tolerance or alternatively, in some contexts, 

by directly targeting the resistant cell’s “addiction” or primary dependence on these epigenetic 

enzymes for survival. The combination of standard chemotherapy or targeted drugs that debulk 

the majority of the tumor with epigenetic drugs such as DNMTi, HDACi, BETi or inhibitors of 

pathways affected by the drug-resistant epigenome (inhibitors of IGF-1R, OXPHOS) have the 

potential to reform future anticancer treatment regimens to prevent multi-drug resistance and 

tumor relapse. 
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Figure 1.6 Genetic and Epigenetic Mechanisms of Drug Resistance 
(A) Tumors may consist of different genetic subclones that carry the founder mutations or 
additional resistance-conferring mutations that enable cell survival during chemotherapy; (B) 
Drug resistance may be epigenetically driven, with the drug tolerant subclones either pre-existing 
in the tumor population or acquired as a consequence of drug treatment; (C) Entire tumor cell 
population may be epigenetically predisposed to be chemotherapy resistant and can be sensitized 
by epigenetic therapy. Adapted from Easwaran, Tsai and Baylin, Molecular Cell 2014 
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1.9 Hypothesis and Specific Aims 

Drug resistance poses a major barrier in treatment of non-small cell lung cancer patients. 

Despite intense research in the area of chemo-resistance, mechanisms underlying resistance to 

standard taxane-platin chemotherapy are still not fully understood.  

The goals of this work were to establish new preclinical models of resistance to taxane-

platin doublet chemotherapy for NSCLC, identify clinically relevant mechanisms of resistance, 

and develop new rational pharmacologic approaches to overcome this resistance. 

The hypothesis was that NSCLC cell lines selected for taxane-platin chemo-resistance by 

long-term drug treatment given in a clinically relevant dosing schedule would yield important 

insights into resistance-associated genes, and integration with gene expression changes detected 

in vivo in resistant xenografts and in neoadjuvant treated NSCLC patient tumors would help 

identify clinically relevant drug resistance biomarkers and targets for therapy. 

 

SPECIFIC AIM ONE 

To establish pre-clinical resistance models of NSCLC cell lines by long-term paclitaxel + 

carboplatin drug treatment, and characterize the phenotypic changes and expression profiles. 

A. Develop isogenic series of progressively resistant NSCLC cell line variants by treating 

parental, chemo-naïve cell lines with drug ON/drug OFF cycles of paclitaxel + 

carboplatin doublet treatment given in clinically relevant 2:3 dose ratio. 
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B. Characterize drug response using cell viability and liquid colony formation assays, and 

validate the response in xenografts by in vivo treatment of tumor-bearing mice. 

C. Identify any phenotypic changes such as changes in cell morphology or growth rate. 

D. Characterize molecular changes by genome-wide mRNA expression profiling of parental 

cell lines and resistant variants. 

 

SPECIFIC AIM TWO 

To identify clinically relevant biomarkers and targets for therapy by integrating gene expression 

changes obtained from chemo-resistant cell lines, xenografts and neoadjuvant treated NSCLC 

patient tumors. 

A. Identify gene expression changes that correlate with increasing resistance to paclitaxel + 

carboplatin therapy in isogenic resistant cell line series. 

B. Filter gene expression changes that are retained in vivo in resistant cell line xenografts. 

C. Evaluate this pre-clinical gene signature obtained from resistant cell lines and xenografts, 

in a clinically annotated dataset of neoadjuvant treated (mainly taxane + platin treated) 

NSCLC patient tumor specimens. 

D. Identify important targets based on associations of gene expression with poor cancer 

recurrence-free outcome in neoadjuvant treated patients. 
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SPECIFIC AIM THREE 

To identify and develop a novel pharmacologic approach for targeting taxane-platin drug 

resistant NSCLCs. 

A. Test pharmacological inhibitors of identified gene target for their ability to selectively kill 

taxane-platin resistant cells over parental, chemo-sensitive cells. 

B. Validate selectivity and enhanced drug sensitivity in taxane-platin resistant xenografts by 

in vivo treatment of tumor-bearing mice with these inhibitors. 

C. Investigate the benefit of combining these pharmacologic inhibitors with standard 

paclitaxel + carboplatin chemotherapy, for targeting chemo-resistant NSCLC cells and 

for possibly preventing the emergence of drug resistant clones from parental cell 

population. 
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CHAPTER TWO 
 

MATERIALS AND METHODS 

 

2.1 Materials 

 

2.1.1 Lung Cancer Cell Lines 

Non-Small Cell Lung Cancer (NSCLC) cell lines were obtained from the National 

Cancer Institute (NCI) or the UT Southwestern Hamon Cancer Center (HCC) collection 

established by the laboratories of Drs. John D. Minna and Adi F. Gazdar. Cells were 

cultured in RPMI-1640 media (Life Technologies, Inc.) supplemented with 5% Fetal Bovine 

Serum (FBS). Cells were grown in humidified incubators with 5% CO2 at 37°C. All cell 

lines were fingerprinted using a PowerPlex 1.2 kit (Promega, Madison, WI) to confirm the 

cell line identity. Cells were regularly tested for mycoplasma contamination using the e-

Myco kit (Boca Scientific). Clinical annotations and driver oncogenotypes of NSCLC cell 

lines used in this study are listed in Table 2.1 and Table 2.2, respectively. 
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Table 2.1 Clinical Annotations of NSCLC Cell Lines 

Cell Line NSCLC Subtype Stage Age Race Gender 
Smoking 

Pack Years 
(PY) 

NCI-H1299 Large Cell 
Carcinoma IIIA 43 Caucasian M 50 

NCI-H1355 Adenocarcinoma IV 53 Caucasian M 100 

NCI-H1693 a Adenocarcinoma IIIB 55 Caucasian F 80 

NCI-H1819 a Adenocarcinoma IIIB 55 Caucasian F 80 

HCC4017 Large Cell 
Carcinoma IA 62 Caucasian F Ex-smoker 

(76 PY) 

 

a Matched cell line pair derived from the same NSCLC patient before/after chemotherapy (after 

etoposide + cisplatin treatment) 

 

  



56 
 

 
 

Table 2.2 Driver Oncogenotypes of NSCLC Cell Lines 

Cell Line TP53 KRAS NRAS LKB1 EGFR 

NCI-H1299 Homozygous 
deletion WT Mutant WT WT 

NCI-H1355 Mutant Mutant WT Mutant WT 

NCI-H1693 Mutant WT WT WT WT 

NCI-H1819 Mutant WT WT WT WT 

HCC4017 Mutant Mutant WT WT WT 

 

WT, Wild-type  
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2.1.2 Chemotherapeutic Drugs 

Paclitaxel (Bedford Labs/Hikma Pharmaceuticals and also from Hospira, Lake Forest, 

IL), carboplatin (Sandoz Inc., Princeton, NJ and from Sagent Pharmaceuticals, Schaumburg, 

IL), cisplatin (APP Pharmaceuticals, Schaumburg, IL), doxorubicin (Teva Parenteral, Irvine, 

CA), vinorelbine (Pierre Fabre Company, Castres, France), gemcitabine (Eli Lilly and 

Company, Indianapolis, IN), pemetrexed (Eli Lilly and Company, Indianapolis, IN) and 

irinotecan hydrochloride (Sandoz Inc., Princeton, NJ) were purchased at the University of 

Texas Southwestern Medical Center Campus Pharmacy. Paclitaxel, carboplatin, cisplatin 

and irinotecan were stored as received at room temperature. Pemetrexed and gemcitabine 

were dissolved in 0.9% saline. Doxorubicin and vinorelbine were stored as received at 4°C. 

Verapamil (Sigma-Aldrich) was also stored at 4°C. Docetaxel (LC Laboratories, Woburn, 

MA), fludarabine (Selleck Chemicals, Houston, TX), PGP-4008 (Santa Cruz 

Biotechnology), depsipeptide/ romidepsin (ApexBio, Houston, TX), trichostatin A (Sigma-

Aldrich, St. Louis, MO), GSK126 (Xcess Biosciences, San Diego, CA) and JIB-04 

(Synthetic chemistry core at UT Southwestern) were stored at -20°C. PRT4165, tamoxifen 

citrate, NU9056, PFI3, SGC-CBP30, GSK-J5 and GSK-J4 were from Tocris Bioscience 

(Bristol, UK) and stored at -20°C. 
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2.1.3 Resected Patient Lung Tumor Samples 

NSCLC patient tumor dataset was obtained from the Lung Cancer Specialized 

Program of Research Excellence (SPORE) Tissue Bank at The University of Texas M. D. 

Anderson Cancer Center (MDACC, Houston, TX), which was approved by an institutional 

review board. This consisted of 275 lung tumors, 66 of which were treated with neoadjuvant 

chemotherapy prior to surgical resection while the other 209 tumors were chemo-naïve at 

the time of resection. The 66 neoadjuvant treated tumors were treated with platin-based 

doublet chemotherapy, primarily taxane + platin combination, such as paclitaxel + 

carboplatin or docetaxel + cisplatin. Tumor dataset had detailed histopathological and 

clinical annotation including patient demographics, smoking history, tumor pathology and 

stage, adjuvant chemotherapy, overall survival, tumor recurrence status and cancer-free 

survival time. Among the neoadjuvant treated patient tumors, cancer-free survival time was 

unavailable for 1 of the 66 tumors. Hence clustering and survival analyses were done on 65 

neoadjuvant tumors. Frozen tumor samples from the time of resection were used for 

Illumina gene expression profiling and formalin-fixed, paraffin-embedded tissues were used 

for tissue microarrays (TMA). Clinical annotations of NSCLC patient tumor dataset have 

been summarized in Table 2.3. 
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Table 2.3 Clinical Annotations for NSCLC Patient Tumor Dataset 

 Chemo-treated a 

(before surgical resection; 

neoadjuvant) 

Chemo-naïve 

(at the time of surgical 

resection) 

Total 66 209 

Platin + Taxane doublet b 56  

Other platin-based doublets c 10  

Diagnosis   

Adenocarcinoma 31 152 

Squamous cell carcinoma 23 57 

Other 12 0 

Gender   

Males 36 112 

Females 30 97 

Stage   

I 18 115 

II 15 35 

III 28 58 

IV 5 1 

Smoking history   

Yes 58 186 

No 8 20 

Unknown 0 3 

Race   

Caucasian 59 185 

African American/ Asian/  Hispanic 7 24 

a Cancer-free survival data was available for 65 out of 66 patients. 
b Carboplatin + Paclitaxel (N=25), Cisplatin + Docetaxel (N=24), Carboplatin + Docetaxel (N=7) 
c Carboplatin or Cisplatin with Etoposide/ Gemcitabine/ Pemetrexed/ Navelbine 
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2.1.4 NSCLC Tissue Microarray 

Formalin-fixed, paraffin-embedded (FFPE) tissues from surgically resected lung 

cancer specimens were used to construct NSCLC tissue microarray #3 (TMA3) for 

immunohistochemistry (IHC). TMAs were constructed using triplicate 1-mm diameter cores 

per tumor; each core included central, intermediate, and peripheral tumor tissue. TMA3 

consisted of 218 out of total 275 MDACC-SPORE tumor specimens, consisting of both 

neoadjuvant treated and chemo-naïve tumors. Cores were available from only 36 

neoadjuvant treated tumors, majority of which were treated with taxane-platin combination 

(N = 30). 
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2.2 Methods 

 

2.2.1 Long-term Drug Treatment  

Non-small cell lung cancer (NSCLC) cell lines that were previously determined to be 

sensitive to paclitaxel + carboplatin standard chemotherapy were selected for generation of 

resistant variants. NCI-H1299, NCI-H1355, HCC4017, NCI-H1693 and NCI-H1819 were 

among a group of NSCLC cell lines that were 100-500 fold more sensitive (had lower IC50 

values) in 5 day MTS assays, than the most resistant NSCLC lines, and were thus selected as 

“parental” cells to develop drug resistant variants. Cells were treated long-term for several 

months with paclitaxel + carboplatin combination given in a clinically relevant 2:3 ratio. 

Drug exposure was done in cycles with a drug ON/ drug OFF treatment scheme. At the start 

of treatment, cell lines were treated for 4-5 days (drug ON) with IC50 doses determined in 

MTS assays. Surviving cells were cultured drug-free (drug OFF) until they repopulated the 

plate before next treatment cycle. Drug dose was increased with each consecutive treatment 

cycle. Untreated parental cells were simultaneously maintained under similar culture 

conditions at all times for comparison with drug treated cells. Figure 2.1 describes the 

approach used for long-term drug treatment. Drug treated cells were characterized 

intermittently at different treatment cycles, with T[n] indicating cell line variant developed 

after ‘n’ cycles of doublet therapy. NCI-H1299 variant series consisted of Parental, T5, T10, 

T15 and T18, and NCI-H1355 isogenic cell line series comprised of Parental, T4, T8, T13 

and T16 resistant variants. A schematic describing the establishment of H1299 and H1355 

chemoresistant variants can be found in Figure 2.2.  Table 2.4 lists all the resistant NSCLC 

cell lines that I have developed so far. 
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Figure 2.1 Dosing Strategy for Development of Drug Resistant Cell Lines 
NSCLC cell lines that were pre-determined to be sensitive to paclitaxel + carboplatin standard 
doublet were selected for generation of resistant variants. Cells were treated long-term with 
cycles of doublet chemotherapy (drug on/drug off); such that drug treatment was given for 4 
days and then surviving cells were cultured drug-free to allow them to repopulate the plate. First 
treatment cycle was started with IC50 drug dose, and chemotherapy doses were gradually 
incremented with increasing treatment cycles. Cells were intermittently tested for their drug 
response and development of resistance. 
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Figure 2.2 Establishment of Taxane-Platin Resistant H1355 and H1299 Cell Line Series 
Taxane-platin sensitive NSCLC cell lines, NCI-H1355 and NCI-H1299, were treated long-term 
with increasing doses of paclitaxel + carboplatin doublet chemotherapy, given in clinically 
relevant 2: 3 ratio. Treatment was given in cycles (drug on/drug off). Isogenic series of cell lines 
were generated and resistant variants were designated with T[n] where n denotes number of 
treatment cycles. H1355 T16 and H1299 T18 were the most resistant time-points established. 
Intermediate time-points were also characterized for their drug response phenotypes.  
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Table 2.4 List of Taxane-platin Resistant Cell Line Variants Generated 

NSCLC Cell 

Lines 
Drugs 

Length of 

selection 
Fold Resistance 

NCI-H1355 Paclitaxel + Carboplatin (2 : 3) 16 cycles 67 

NCI-H1299 Paclitaxel + Carboplatin (2 : 3) 18 cycles 53 

HCC4017 Paclitaxel + Carboplatin (2 : 3) 5 cycles 7 

NCI-H1693 Paclitaxel + Carboplatin (2 : 3) 7 cycles 2 

NCI-H1819 Paclitaxel + Carboplatin (2 : 3) 5 cycles 3 

NCI-H1355 Docetaxel + Cisplatin (1 : 1) 3 cycles 8 

NCI-H1299 Docetaxel + Cisplatin (1 : 1) 5 cycles 9 

NCI-H1355 Pac + Carb (2 : 3) + Verapamil (5 µM) 6 cycles 178 

NCI-H1355 Pac + Carb (2 : 3) without Verapamil 6 cycles 43 

NCI-H1299 Pac + Carb (2 : 3) + Verapamil (5 µM) 7 cycles 12 

NCI-H1299 Pac + Carb (2 : 3) without Verapamil 8 cycles 10 
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2.2.2 Cell Viability Assays 

Cell viability was assessed by standard MTS assays using Promega’s CellTiter 

reagents. For generating dose response curves, 1000 to 2000 cells were plated per well of a 

96-well plate, depending on the cell line. Drugs were added the next day and cells were 

allowed to incubate for 4 days before measuring cell viability. 8 serial drug concentrations 

given as two- or four-fold dilutions were tested for each chemotherapeutic agent. Media-

only wells and cells-only wells (no drug) were used as controls. Each experiment contained 

8 replicates per concentration and the entire plate assay was repeated multiple times (n ≥ 3). 

Cell viability was determined with MTS reagent (Promega, Madison, WI, final 

concentration 333 μg/ml), incubating for 1 to 4 hours at 37°C, and absorbance was read at 

490 nm on a plate reader (Spectra Max 190, Molecular Devices, Downington, PA). 

 

2.2.3 Colony Formation Assays  

Cells were counted using a Beckman Coulter Z2 Particle Count and Size Analyzer, 

and plated at a density of 400 cells per well of a 6-well plate. Cells were treated the next day 

with serial dilutions of chemotherapeutic drug. Plates were kept in the cell culture incubator 

until termination of assay. After 2-3 weeks, colonies were stained with crystal violet staining 

solution (0.5% crystal violet, 3% formaldehyde solution), rinsed in water and imaged. 

Colonies were counted both manually and automatically using Quantity One image analysis 

software (Bio-Rad). For drug combination studies, “delta Bliss excess” was calculated as 

shown previously (Wilson et al., 2014). Bliss expectation was calculated as A + B – (A × 

B), where A and B denote fractional responses from drugs A and B given individually. The 
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difference between Bliss expectation and observed response from combination of drugs A 

and B at the same doses is the delta Bliss excess. 

For testing emergence of drug resistant clones, 10,000-20,000 cells were plated per 

well of a 6-well plate on day 0. Cells were allowed to attach and drug treatment was given 

the next day. Plates were incubated for 2-3 weeks, following which they were stained with 

crystal violet staining solution (0.5% crystal violet, 3% formaldehyde solution), rinsed in 

water and imaged. Serial dilutions of chemotherapeutic drugs were tested, with duplicate 

wells per drug dose. 

 

2.2.4 Cell Growth Assays 

Parental or resistant cells were counted and 100,000 cells were plated on day 0 in 60 

mm tissue culture treated plates. Cell counts were taken in duplicates on days 2, 3, 4 and 5. 

Assay was repeated to obtain biological replicates. 

 

2.2.5 Xenograft Studies and In Vivo Drug Response 

For tumor growth rate studies and docetaxel + cisplatin drug response comparisons, 6-

8 week old female NOD/SCID mice (UTSW breeding core) were used. For all subsequent in 

vivo drug response studies, 6 week old female athymic nude mice were used (Charles River 

Labs or Jackson Labs). Animals were housed under standard, sterile conditions at UTSW 

animal facility. All experiments were carried out under approved IACUC protocols and 

followed UTSW animal care procedures. Cell lines were trypsinized, washed and counted 
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using Beckman Coulter counter. Cell viability was assessed using trypan blue to ensure 

>95% viability prior to injections. For studies with NCI-H1299 cell line, injections were 

done with 1 million cells suspended in PBS or RPMI whereas for NCI-H1355 and HCC4017 

cell lines, 5 million cells were injected in PBS or matrigel. Injections were performed 

subcutaneously into the right flanks of mice. Tumor growth was monitored by caliper 

measurements and tumor volume was calculated using the equation shown below. 

V = (l * w2) * 0.5 

 Drug treatments were started when tumors reached ~150-200 mm3. Chemotherapy or 

vehicle injections were given to tumor volume-matched pairs. Docetaxel (3 mg/kg, 

dissolved in DMSO, ethanol mix and diluted in saline) and cisplatin (3 mg/kg in saline) 

were given i.p. once a week for 3 weeks. Control mice received the injections of the 

appropriate vehicle. For GSK-J4 studies, mice were given 100 mg/kg GSK-J4, every day, 

for 10 consecutive days or DMSO vehicle control, as per a previously published study 

(Hashizume et al., 2014). For JIB-04 studies, nude mice were randomized to receive either 

of 5, 20 or 50 mg/kg drug doses or vehicle, 3x per week for 2 weeks by gavage in 12.5% 

cremophor EL, 12.5% DMSO, aqueous suspension. At sacrifice, tumors were harvested, 

weighed and portions were snap-frozen in liquid nitrogen or fixed in formalin. A schematic 

describing the xenograft experiments can be found in Figure 2.3. 
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Figure 2.3 Schematic of Xenograft Experiments 
(A) Docetaxel + Cisplatin, (B) GSK-J4, and (C) JIB-04 in vivo treatment. See text for details. 
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2.2.6 Flow Cytometry  

Parental and resistant lung cancer cell line variants were analyzed for MDR1/Pgp and 

EpCAM expression by flow cytometry. MDR1 was detected using FITC mouse anti-human 

P-glycoprotein antibody (BD Biosciences, Catalog no. 557002). FITC Mouse IgG2b,κ 

(Catalog no. 556655) was used for isotype control. APC-conjugated antibody was used for 

EpCAM detection (Catalog No. 347200) along with a mouse IgG1-APC isotype control. 

Briefly, cells were detached and disaggregated using 0.05% Trypsin-EDTA (Gibco) 

and resuspended in HBSS+ (HBSS containing 2% FBS and 10 µM HEPES) at a 

concentration of 1 million cells per ml. Cells were incubated with antibody at 4°C for 30 

min in dark. Cells were then washed and resuspended in fresh HBSS+ and stained with 

Propidium Iodide (PI) to account for non-viable cells. Flow cytometry was performed on a 

FACScan (Becton-Dickinson) or FACSCalibur flow cytometer (BD Biosciences) and data 

was analyzed using FlowJo software (Treestar). 

For cell cycle analysis, cells were fixed in cold 70% EtOH, overnight at -20°C. Cells 

were then incubated at 37°C for 30 min in staining buffer (50 µg/ml Propidium Iodide, 50 

µg/ml RNAse A, 0.05% Triton X-100, PBS). Cell cycle profiling was performed on 

FACScan (Becton-Dickinson) and analyzed using manual gating as well as Dean-Jett-Fox 

algorithm provided by the FlowJo software. 
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2.2.7 Immunoblotting  

Cell lysates were made using RIPA lysis buffer supplemented with protease and 

phosphatase inhibitors. Protein content was quantified using the BioRad Protein Assay Dye 

Reagent Concentrate (BioRad, Hercules, CA). Lysates were diluted into loading buffer and 

samples were boiled for 5 minutes before loading onto a 10% Mini-PROTEAN® TGX™ 

precast gel (BioRad). Cellular proteins were separated by SDS-polyacrylamide gel 

electrophoresis and electrotransferred onto nitrocellulose membranes (Millipore, Billerica, 

MA). The membrane was blocked for 1 hour at room temperature (RT) in 5% milk in TBST 

solution, then incubated with a rabbit anti-MDR1 primary antibody overnight at 4°C, 

followed by incubation with a horseradish peroxidase-conjugated secondary antibody (Cell 

Signaling, Danvers, MA) for 1 hr at RT. HSP90 primary antibody (Santa Cruz sc-13119) 

was used for control. Proteins were detected by enhanced chemiluminescence (Thermo 

Scientific, Waltham, MA). 

 

2.2.8 Radioactive Drug Accumulation Assay  

50,000 cells were plated per well of a 12-well plate. Cells were exposed to [3H]-

docetaxel for different time-points (0, 4, 8 and 25 hours). Protein lysates were collected and 

quantified using BCA reagent. Samples were scintillated with EcolumeTM liquid 

scintillation cocktail. Three biological replicates were performed per cell line. Drug 

accumulation was calculated as CPM/ mg protein. Reagents were kindly provided by the 

DeBerardinis laboratory at UT Southwestern. 
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2.2.9 siRNA transfection 

ABCB1 knockdown was achieved using three individual ABCB1 siRNAs (Qiagen) 

and Lipofectamine RNAiMax (Invitrogen) using standard reverse transfection protocols. 

Scrambled siRNA (Dharmacon) and toxic PLK1 siRNA (Sigma) were used as controls. 

Lipid-only controls (no siRNA) were also used for all assays. Transfections for drug 

response assays were performed at 20 nM final siRNA concentration in 96-well plates. All 

siRNAs were diluted in serum-free RPMI so as to add 20 µl volumes to appropriate wells of 

96-well plates using a multi-channel pipette. RNAiMAX transfection reagent was diluted in 

serum-free RPMI and incubated at room temperature (RT) for 10 minutes to allow lipid 

complexes to form. 0.2 µl of transfection reagent in 15 µl media was used per well. Lipid 

and siRNA were allowed to incubate for 20 min at RT before adding cells. Cell suspension 

was prepared in RPMI + 10 % FBS (R10) to allow a final media constitution of RMPI + 5% 

FBS (R5) at the end of the assay. 2000 cells in 50 µl R10 were added per well of the 96-well 

plate. Final volume per well was brought up to 100 µl using RPMI. Drug treatments were 

performed the next day by adding 2X drug concentration in 100 µl R5 to bring the final 

volume to 200 µl. 8 serial drug concentrations given as four-fold dilutions were tested. 

Assays were terminated after 4 days of drug exposure and cell viability was determined 

using standard MTS reagents. 

For 6-well plate transfections, 9 µl of RNAiMAX was diluted in 150 µl Opti-MEM. 3 

µl of 10 µM stock siRNA was diluted in 150 µl Opti-MEM (30 pmol siRNA per well). 

Diluted siRNA was added to diluted RNAiMAX and incubated for 20 min. 1 x 106 cells 
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were added per well of the plate. Cells were incubated for 24 or 48 hours before harvesting. 

Silencing efficiency was detected using real-time PCR.  

 

2.2.10 Gene Expression Arrays 

Total RNA was extracted using QIAcube automated system and RNeasy Plus Mini kit 

(Qiagen, Valencia, CA). RNA quality was tested by automated electrophoresis on the 

Experion System (Bio-Rad). Total RNA was labeled, amplified and hybridized by the 

UTSW Simmons Comprehensive Cancer Center Genomics Core. Gene expression profiling 

was performed using Illumina HumanWG-6 V3 BeadArrays (for patient tumor samples) or 

Illumina HumanHT-12 V4 BeadArrays (for cell lines and xenografts). Cell line and 

xenograft microarrays included biological replicates (Cell lines: 5 for parental, 3 for most 

resistant variant, 2 for each intermediate resistance time-point; Xenografts: 3 tumors per 

group). Data were pre-processed using the R package mbcb for background correction (Ding 

et al., 2008), then log-transformed and quantile-normalized with the R package 

preprocessCore or using in-house MATRIX software (MicroArray TRansformation In 

eXcel) developed by Dr. Luc Girard in Minna lab. Genes with multiple probes were 

aggregated by mean. 

  

2.2.11 Microarray Data Analysis  

Log ratios, unpaired t-test p values and color-coded heat maps were obtained using in-

house MATRIX software. For analyses involving multiple time-points or resistant series, 

analyses were performed using R package as following: Linear Regression model was fitted 
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on gene expression data of progressively resistant cell line series using the log transformed 

IC50 values as measures of drug response. We fitted Beta-uniform mixture model to a set of 

p-values using the R package ClassComparison. Genes with p-values below the FDR cutoff 

of 0.1 were considered statistically significant. For xenograft microarray data, differential 

gene expression analysis was performed by student’s t-test.  

Gene lists obtained from cell lines and xenografts were compared to determine 

overlap. Significance of overlap was determined by hypergeometric test. Overlapping genes 

were then represented in a color-coded heat map using MATRIX. In cases where multiple 

probes mapped to the same gene, we represented the best probe with largest fold changes 

between the parental and most resistant cell line. Using overlapping gene set (35 genes), we 

performed unsupervised hierarchical clustering (Eisen et al., 1998) of MDACC patients who 

had received neoadjuvant chemotherapy (mainly platin + taxane). The clustering was based 

on Euclidean distance matrix and maximum linkage method. This separated the patients into 

two groups which were then tested for differences in recurrence-free prognosis using 

Kaplan-Meier survival analysis. KM curve and multivariate cox regression analysis were 

performed by R survival package. Further details are provided in the SWEAVE 

documentation provided in Appendix A. All other single gene based KM survival plots were 

generated using MATRIX. 
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2.2.12 Quantitative RT-PCR  

Total RNA was isolated using RNeasy Plus Mini kit (Qiagen, Valencia, CA) and 

cDNA was generated using iScript cDNA synthesis kit (BioRad, Hercules, CA). For 

epigenetic enzymes, transcripts were detected by SYBR Green chemistry in real time 

quantitative PCR assays using validated primers. TBP and GAPDH were used as 

endogenous controls. For H1299 T18, cyclophilin B was used since TBP and GAPDH 

showed DNA amplification and increased mRNA expression. For all other non-epigenetic 

transcripts, TaqMan probes (Life Technologies) were utilized in multiplex with GAPDH 

internal reference gene. Additionally, a reference sample containing pooled RNA from 

normal human and tumor tissues (Stratagene) was used. PCR reactions were run in 

triplicates using the ABI 7300 Real-time PCR System and analyzed with the included 

software (Applied Biosystems, Foster City, CA). The comparative CT method was used to 

compute relative mRNA expression. 
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Table 2.5 qRT-PCR Probes used in TaqMan Assays 

Gene Probe ID RefSeq # 

ABCB1 Hs00184500_m1 NM_000927.4 

ADAM22 Hs00244640_m1 NM_004194.3, NM_016351.4, 

NM_021721.3, NM_021722.4, NM_021723.3 

DTX3 Hs01595350_m1 NM_178502.2 

FUT4 Hs01106466_s1 NM_002033.3 

GALNT13 Hs00287613_m1 NM_052917.2 

HBE1 Hs00362216_m1 NM_005330.3 

HEY2 Hs00232622_m1 NM_012259.2 

JAG1 Hs00164982_m1 NM_000214.2 

JAG2 Hs00171432_m1 NM_002226 

KDM3B Hs00213240_m1 NM_016604.3 

MLL5 Hs01096121_m1 NM_018682.3, NM_182931.2 

NAP1L3 Hs02915131_s1 NM_004538.5 

NTN1 Hs00924151_m1 NM_004822.2 

NXF2/ NXF2B Hs00903817_mH NM_022053.3, NM_001099686.2 

PPARGC1B Hs00991677_m1 NM_001172698.1, NM_001172699.1, 

NM_133263.3 

PSMB9 Hs00160610_m1 NM_002800.4 

STX11 Hs01891623_s1 NM_003764.3 

TAP1 Hs00388675_m1 NM_000593.5 
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Table 2.6 qRT-PCR Primers used in SYBR Green Assays 

 Gene Forward (QF)/ 

Reverse (QR) 

Primers 

Sequence RefSeq # 

KDM1A hAOF2-QF1 CTAATGCCACACCTCTCTCAACTC NM_015013.2 

  hAOF2-QR1 CTAATGCCACACCTCTCTCAACTC NM_015013.2 

KDM2A hFBXL11-QF1 TCCACCGGCTGATAAACCA NM_012308.1 

  hFBXL11-QR1 AGCCGGAAGTCGGTCATGT NM_012308.1 

KDM2B hFBXL10-QF1 GCGCTCCCACCTCACTCA NM_001005366.1 

  hFBXL10-QR1 CCGAAGAGAAGCCGTCTATGC NM_001005366.1 

KDM3A hJMJD1A-QF1 GTGGTTTTCAGCAACCGTTATAAA NM_018433.4 

  hJMJD1A-QR1 CAGTGACGGATCAACAATTTTCA NM_018433.4 

KDM3B hJMJD1B-QF1 TGCCCTTGTATCAGTCGACAGA NM_016604.3 

  hJMJD1B-QR1 GCACTAGGGTTTATGCTAGGAAGCT NM_016604.3 

KDM3C hJMJD1C-QF1 TCTTCACCCGCACCATGAT NM_004241.2 

  hJMJD1C-QR1 AGACCTGCGTCGTGATGTAATG NM_004241.2 

KDM4A hJMJD2A-QF1 TGCAGATGTGAATGGTACCCTCTA NM_014663.2 

  hJMJD2A-QR1 CACCAAGTCCAGGATTGTTCTCA NM_014663.2 

KDM4B hJMJD2B-QF1 GGCCTCTTCACGCAGTACAATAT NM_015015.2 

  hJMJD2B-QR1 CCAGTATTTGCGTTCAAGGTCAT NM_015015.2 

KDM4C hJMDJ2C-QF1 GAATGCTGTCTCTGCAATTTGAGA NM_015061.2 

  hJMJD2C-QR1 CAACGGCGCACATGACAT NM_015061.2 
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KDM4D hJMJD2D-QF1 CTGGGTGTATCCTCTGCATATAGAAC NM_018039.2 

  hJMJD2D-QR1 GCAGAGAATGTCCTCAGTGTTTAGAA NM_018039.2 

KDM5A hJARID1A-QF1 TGTGTTGAGCCAGCGTATGG NM_005056.2 

  hJARID1A-QR1 CCACCCGGTTAAAAGCAGACT NM_005056.2 

KDM5B hJARID1B-QF1 TCCATCAGCTTGTGACCATCAT NM_006618.3 

  hJARID1B-QR1 GTGGTAGGCTCTTGGAAATGTAATC NM_006618.3 

KDM5C hKDM5C-QF2 GCCGGCAGTACCTGCG NM_004187.3 

  hKDM5C-QR2 GCAGCATGGCAGGAAGCT NM_004187.3 

  hKDM5C-QF3 GAGGAGGGCTCAGGTAAGAGAGA NM_004187.3 

  hKDM5C-QR3 TGGCAACAGCGAGGACAG NM_004187.3 

KDM5D hSMCY-QF1 CAACCATGCAACTTCGAAAGAA NM_001653.3 

  hSMCY-QR1 CCCCACGGGAGCATACTTG NM_001653.3 

KDM6A hUTX-QF1 CACAGTACCAGGCCTCCTCATT NM_021140.2 

  hUTX-QR1 TCACTATCTGAGTGGTCTTTATGATGACT NM_021140.2 

KDM6B hJMJD3-QF1 CGGAGACACGGGTGATGATT NM_001080424.1 

  hJMJD3-QR1 CAGTCCTTTCACAGCCAATTCC NM_001080424.1 

KDM7A hJHDM1D-QF1 GTCCATGGGAAGAGGACATCTT NM_030647.1 

  hJHDM1D-QR1 GATCATTATCTTTCGCTCTCCATTC NM_030647.1 

JARID2 hJARID2-QF1 TGTTCACAACGGGCATGTTT NM_004973.2 

 hJARID2-QR1 TTGTGTTTTTGAACAGGTTCCTTCT NM_004973.2 
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2.2.13 Gene Set Enrichment Analysis  

Ranked lists of differentially expressed genes from microarray analyses were assessed 

by GSEAPreranked tool through the GSEA desktop application 

(http://www.broadinstitute.org/gsea/downloads.jsp). All gene sets available from the 

Molecular Signatures Database v5.0/ MSigDB (Subramanian et al., 2005) were interrogated. 

After filtering out genes that were not in the expression dataset, gene sets smaller than 15 

genes or larger than 3000 genes were excluded from the analysis. GSEA was run using 1000 

gene set permutations to generate False Discovery Rate (FDR). Default settings were used 

for normalizing the enrichment scores (NES).  

 

2.2.14 Tissue Microarray and Immunohistochemistry  

Formalin-fixed, paraffin-embedded (FFPE) tissues from surgically resected lung 

cancer specimens in NSCLC tissue microarray #3 (TMA3) were evaluated for KDM3B 

staining by immunohistochemistry (IHC). IHC was kindly performed by Dr. Wistuba’s 

group at MD Anderson Cancer Center. Staining was done using a Leica Bond autostainer, 

with rabbit monoclonal antibody for KDM3B (Cell Signaling Technology, clone C6D12, cat 

#3100, dilution 1:80). A human colon adenocarcinoma specimen was used as positive 

control. Stained samples were assigned an expression score by the pathologist. Expression 

was quantified using a four-value intensity score (0, 1, 2, and 3) and the percent of IHC+ 

tumor cells (0-100%). Intensity scores were defined as follows: 0 = no appreciable staining; 

1 = barely detectable staining; 2 = readily appreciable staining; and 3 = dark brown staining. 
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An expression score was obtained by multiplying the intensity and reactivity extension 

values (range 0 – 300). 

 

2.2.15 Chromatin Immunoprecipitation and Sequencing (ChIP-Seq) 

H1299 Parental and T18 cells at 80% confluency (~1x107) were cross-linked with 1% 

formaldehyde for 10 minutes at 37°C, and quenched with 125 mM glycine at room 

temperature for 5 minutes. The fixed cells were washed twice with cold PBS, scraped, and 

transferred into 5 ml PBS containing Mini EDTA-free protease inhibitors (Roche). After 

centrifugation at 700 g for 4 minutes at 4°C, the cell pellets were resuspended in 1.5 ml 

ChIP lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl [pH 8.1] with protease 

inhibitors) and sonicated at 4°C with a Bioruptor (Diagenode) (30 seconds ON and 30 

seconds OFF at highest power for 2 x 15 minutes). The chromatin predominantly sheared to 

a fragment length of ~250 – 750 bp was centrifuged at 20,000 g for 15 minutes at 4°C. 100 

μl of the supernatant was used for ChIP, and DNA purified from 30 μl of sheared chromatin 

was used as input. A 1:10 dilution of the solubilized chromatin in ChIP dilution buffer 

(0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 167 mM NaCl 16.7 mM Tris-HCl [pH 

8.1]) was incubated at 4°C overnight with 10 μg of a mouse monoclonal anti-histone 

H3K27me3 antibody (Abcam, cat# ab6002) or a rabbit polyclonal anti-histone H3K4me3 

antibody (Millipore, cat# 07-473). Immunoprecipitation was carried out by incubating with 

40 μl pre-cleared Protein G Sepharose beads (Amersham Bioscience) for 1 hour at 4°C, 

followed by five washes for 10 minutes with 1ml of the following buffers: Buffer I: 0.1% 

SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.1], 150 mM NaCl, protease 
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inhibitors; Buffer II: 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.1], 

500 mM NaCl, protease inhibitors; Buffer III: 0.25 M LiCl, 1% NP-40, 1% deoxycholate, 1 

mM EDTA, 10 mM Tris-HCl [pH 8.1]; twice with TE buffer [pH 8.0]. Elution from the 

beads was performed twice with 100 μl ChIP elution buffer (1% SDS, 0.1 M NaHCO3) at 

room temperature (RT) for 15 minutes. Protein-DNA complexes were de-crosslinked by 

heating at 65°C in 192 mM NaCl for 16 hours. DNA fragments from immunoprecipitated 

chromatin and input were purified using QiaQuick PCR Purification kit (QIAGEN) and 

eluted into 30 μl H2O according to the manufacturer’s protocol after treatment with RNase 

A and Proteinase K. 

For ChIP-Seq, barcoded libraries of ChIP and input DNA were generated with the 

TruSeq® ChIP Sample Preparation Kit (Illumina), and 50-nt single-end reads were 

generated with the HiSeq2000 system (Illumina). Sequence reads were aligned to the human 

reference genome (hg19) using Bowtie2 (v.2.2.5) (Langmead et al., 2009). Uniquely 

mapped reads with ≤2 mismatches to the reference sequence were retained for further 

analysis; for H1299 parental H3K27me3 and H1299 T18 H3K27me3 we obtained 

26,100,406 and 29,586,658 reads, respectively and for H1299 parental input and H1299 T18 

input we obtained 26,995,155 and 25,187,823 reads, respectively. ChIP-Seq enrichment 

plots were generated using ngs.plot tool (Shen et al., 2014). Aligned bam files are provided 

as input to Ngs.plot to calculate read count per million mapped reads over all the 

ENSEMBL annotated gene body regions in the human genome. For each ChIP-Seq sample, 

the average signal in -2kb with respect to transcription start site (TSS), gene body and 2kb 

downstream of transcription end site (TES) regions were subtracted from respective input 

sample signal and visualized in the enrichment plot.   
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2.2.16 RNA Sequencing (RNA-Seq) 

H1299 Parental and T18 cells at 80% confluency were pelleted, snap-frozen and 

stored at -800C. Total RNA was extracted using RNeasy Plus Mini kit (Qiagen, Valencia, 

CA), with a gDNA eliminator step. RNA quality check was performed using the Agilent 

2100 Bioanalyzer to ensure that only high quality RNA was used (RIN Score 8 or higher). 

The Qubit fluorometer (Invitrogen) was used to determine RNA concentration prior to 

library preparation with the TruSeq Stranded Total RNA LT Sample Prep Kit (Illumina). 

Samples were run on the Illumina HiSeq 2500, at the McDermott Sequencing Core at UT 

Southwestern. For RNA-Seq analysis, TopHat was used for transcript assembly, and the 

Cufflinks suite was used for differential expression calling and calculation of Fragments Per 

Kilobase of transcript per Million mapped reads (FPKM). 

 

2.2.17 Statistical Methods  

All statistical tests such as two-way ANOVA with Sidak’s multiple comparisons test, 

one-way ANOVA with Dunnett’s multiple comparison test, post-test for linear trend and 

unpaired t-tests were performed using GraphPad Prism version 6.00 (GraphPad Software, La 

Jolla, California USA). P values are represented as * P < 0.05, ** P < 0.01, *** P < 0.001 

and **** P < 0.0001. For drug assays, dose response curves and IC50 values were calculated 

using GraphPad Prism as well as in-house DIVISA software (Database of In VItro 

Sensitivity Assays; Dr. Luc Girard, Minna lab). 
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CHAPTER THREE 
 

TAXANE-PLATIN CHEMORESISTANT PRE-CLINICAL NON-SMALL 

CELL LUNG CANCER MODELS 

 

3.1 Long-term paclitaxel + carboplatin treated NSCLC cell lines develop progressive 

increases in chemoresistance 

To establish in vitro models of lung cancer chemoresistance, NSCLC cell lines were 

treated with paclitaxel + carboplatin standard doublet chemotherapy given in a clinically relevant 

2:3 taxane to platin ratio. Over 100 NSCLC lines were previously screened in a 5 day MTS assay 

to identify in vitro drug response phenotypes to paclitaxel + carboplatin. NCI-H1299 and NCI-

H1355 were among a group of NSCLC cell lines that were 100-500 fold more sensitive (had 

lower IC50 values) than the most resistant cell lines, and were thus selected for this study. 

Clinical annotations and driver oncogenotypes for these cell lines were listed in Tables 2.1 and 

2.2. NCI-H1299 and NCI-H1355 cells were treated long-term for >6 months with increasing 

doses of paclitaxel + carboplatin doublet. Treatment was given in cycles of drug ON (4 days)/ 

drug OFF (1-2 weeks). Cells were characterized intermittently for their taxane-platin drug 

response phenotypes after different treatment cycles, with T[n] denoting cell line variant 

developed after ‘n’ cycles of doublet therapy. I thus developed H1299 variant series consisting of 

T5, T10, T15 and T18, and H1355 isogenic cell line series with T4, T8, T13 and T16 resistant 

variants. These long-term treated variants showed progressive increase in resistance to paclitaxel 
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+ carboplatin with increasing treatment cycles (Figure 3.1 A, C), reaching ~53-fold and ~79-fold 

increases in IC50 in H1299 T18 and H1355 T16, respectively (Figure 3.1 B, D). Drug resistance 

persisted in liquid colony formation assays involving continuous exposure over 2-3 weeks to 

paclitaxel + carboplatin combination treatment (Figure 3.1 E-H). 
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Figure 3.1 
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Figure 3.1 NSCLC cell line series develop progressively increasing resistance to paclitaxel + 
carboplatin standard chemotherapy. 
(A, C) Dose response curves for NSCLC cell lines NCI-H1299 and NCI-H1355 cells that were 
treated long-term with drug on/drug off cycles of paclitaxel + carboplatin chemotherapy. P: 
Parental cell line, T[n]: resistant variant treated with ‘n’ cycles of doublet chemotherapy. Drugs 
were given in clinically relevant 2:3 ratio of paclitaxel: carboplatin. Values in dose response 
plots indicate paclitaxel concentration in the drug combination. Each assay was performed with 8 
replicates per drug dose. Error bars represent mean + SD.  
(B, D) H1299 and H1355 treated cell lines showed a progressive increase in resistance to 
paclitaxel + carboplatin chemotherapy, reaching up to 53-fold and 79-fold increases in IC50 in 
H1299 T18 and H1355 T16 respectively. Each cell line variant had >4 assay replicates with 8 
individual replicates within each assay. Data represents mean + SD. P values are from post-test 
for linear trend following one-way ANOVA. 
(E, G) Resistance was validated by liquid colony formation. Serial 2-fold drug dilutions from 
400 nM were tested.  
(F, H) Dose response curves were generated from colony formation assays. For plotting dose 
response of parental cell lines, additional plates were treated with lower doses of paclitaxel + 
carboplatin (serial 2-fold dilutions from 40 nM). Error bars represent mean + SEM.  
In all figure panels, drug values indicate concentration of paclitaxel in the 2:3 paclitaxel + 
carboplatin doublet. 
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3.2 Resistant variant shows decreased response to taxane-platin chemotherapy in vivo 

To validate the taxane-platin resistance phenotype in vivo, I developed subcutaneous 

xenografts of H1299 Parental and H1299 T18 cells in NOD/SCID mice. Mice bearing 200 mm3 

tumors were treated with docetaxel (3 mg/kg) and cisplatin (3 mg/kg) in a 1:1 clinically relevant 

ratio. Doses were optimized based on previous toxicity studies and were determined to be 

maximum tolerated doses for the two drugs when used in combination. Treatment was 

administered by i.p. injections, given once a week for 3 weeks (i.e. 3 cycles of taxane + platin 

chemotherapy, denoted by C1, C2 and C3). While H1299 Parental xenografts treated with 

docetaxel + cisplatin therapy showed a dramatic reduction in tumor burden compared to the 

vehicle-treated group (two-way ANOVA, **P = 0.002), H1299 T18 tumors showed a non-

significant response, confirming resistance (Figure 3.2). 

  



87 
 

 
 

Figure 3.2 

  

 

 

 

Figure 3.2 Paclitaxel + carboplatin resistant cell line variant shows reduced response to 
taxane-platin doublet chemotherapy in vivo 
 (A, B) H1299 Parental and H1299 T18 tumor bearing mice were randomized to receive either 
docetaxel + cisplatin doublet chemotherapy or vehicle. N = 8 mice per treatment group per cell 
line. Treatment was given once a week, for 3 weeks i.e. 3 cycles. Tumor volumes were measured 
after each treatment cycle (C1, C2, C3). Error bars represent mean + SEM. Comparisons 
between vehicle and chemotherapy groups were done using two-way ANOVA followed by 
Sidak’s multiple comparison tests: H1299 Parental xenografts, two-way ANOVA, **P = 0.002 
and Sidak’s test at C3, ****P < 0.0001; whereas H1299 T18 xenografts, two-way ANOVA P 
value not significant (n.s.). 
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3.3 Resistant cells express ABCB1/MDR1 transporter and exhibit multi-drug resistance 

In vivo resistance studies confirmed my presumption that the H1299 T18 tumors were 

cross-resistant to docetaxel + cisplatin standard therapy (drugs that are functionally similar to 

paclitaxel + carboplatin). Consistent with previously published reports that suggested the 

involvement of MDR1 in taxane resistance (Lemontt et al., 1988; Roninson et al., 1986); I 

detected increased mRNA and protein expression of MDR1/Pgp/ABCB1 in both H1299 and 

H1355 resistant variants (Figure 3.3 A-D), and exome sequencing analysis (data not shown) 

revealed amplification of the MDR1 locus in H1299 T18 (but not H1355 T16). Hence, to 

characterize the multi-drug resistance phenotype, I tested several standard and targeted 

chemotherapeutic agents (Figures 3.4 and 3.5). H1299 and H1355 resistant variants were found 

to be cross-resistant to docetaxel, doxorubicin, vinorelbine and depsipeptide which are known 

MDR1 substrates (Figures 3.4 and 3.5). As expected, MDR1 expression in resistant variants 

corresponded with reduced intracellular docetaxel accumulation (Figure 3.6 A). However, 

MDR1/ABCB1 siRNA knockdown in H1299 T18 cells only partially reversed taxane-platin 

resistance (Figure 3.6 B). Also, pharmacological inhibition of MDR transporter using verapamil 

or PGP4008 showed incomplete reversal of drug resistance (Figure 3.6 C, D), suggesting 

collateral non-MDR1 mediated resistance mechanisms. Further, long-term paclitaxel + 

carboplatin treatment of H1299 and H1355 parental cell lines, in the continuous presence of 

MDR inhibitor verapamil, was not sufficient to prevent cells from developing resistance (Figure 

3.6 E, F). 

Apart from MDR1 substrates, H1299 T18 and H1355 T16 resistant cell lines were both 

also cross-resistant to fludarabine (Figures 3.4 C and 3.5 C). Fludarabine, an antimetabolite 
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chemotherapeutic, is not reported to be transported by MDR1 and in fact, has been previously 

shown to be equally effective in non-MDR and MDR-expressing leukemia cells (Michelutti et 

al., 1997). Likewise, H1299 T18 cells were also cross-resistant to the nicotinamide 

phosphoribosyltransferase (NAMPT) targeted drug, FK866 (Figure 3.4 C). Resistance was seen 

only in H1299 T18 and not in H1355 T16 (Figure 3.5 C), although both variants express high 

levels of MDR1 (as shown previously in Figure 3.3). This suggested to me that this was a cell 

line-specific, MDR1-independent resistance mechanism in H1299 T18. Indeed, microarray 

analysis revealed that only H1299 T18 (but not H1355 T16) had increased mRNA expression of 

NAMPT, the target of FK866 (Figure 3.5 D). 

Additionally, when I tested paclitaxel + carboplatin resistant variants of NCI-H1693 and 

HCC4017 cell lines, I found that both cell lines exhibited development of taxane-platin 

resistance (Figure 3.7 A-D), but HCC4017 T5 resistant variant did not show increased MDR1 

mRNA or protein expression (Figure 3.7 F-H).  

These findings led me to further investigate the non-MDR phenotypic and molecular 

changes in resistant variants. 
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Figure 3.3 

 

 

 

 
 
Figure 3.3 Chemoresistant cells express ABCB1/ MDR1 drug transporter 
(A, B) H1299 and H1355 resistant cell line series showed increase in ABCB1 mRNA transcripts 
with increasing treatment cycles. Data represents mean + SD. Statistical significance was tested 
by one-way ANOVA, followed by Dunnett’s multiple comparisons test of each resistant variant 
with the parental cell line (indicated by asterisks). P-values on graphs denote significance from 
post-test for linear trend. 
(C, D) H1299 T18 and H1355 T16 showed enrichment in % MDR+ cells (detected by flow 
cytometry). 
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Figure 3.4 

 

 

 
Figure 3.4 H1299 T18 cell line shows multi-drug resistance phenotype 
(A) H1299 T18 resistant cells showed multi-drug resistance phenotype. Red and green dotted 
lines indicate 10-fold cut-offs for resistance and sensitivity respectively.  
(B, C) Paclitaxel + carboplatin resistant cell line variant showed cross-resistance to substrates of 
MDR1 transporter (docetaxel, doxorubicin, vinorelbine, depsipeptide) as well as non-MDR1 
drugs (fludarabine and FK866). Error bars represent mean + SD. 
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Figure 3.5 
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Figure 3.5 H1355 T16 cell line shows multi-drug resistance phenotype. 
(A) H1355 Parental and isogenic H1355 T16 cells were screened for differential response to 
several standard and targeted therapies. Red and green dotted lines indicate 10-fold cut-offs for 
resistance and sensitivity respectively. 
(B) H1355 T16 was cross-resistant to docetaxel, doxorubicin, vinorelbine and depsipeptide, 
which are known substrates of MDR1 transporter. Error bars represent mean + SD. 
(C) H1355 T16 cells also showed resistance to fludarabine which is not a MDR1 substrate. These 
cells were however not resistant to FK866 (NAMPT inhibitor), suggesting that this was a cell 
line-specific response in H1299 T18 (Figure 3.4). This could be explained by differences in 
NAMPT expression detected by microarrays, as shown in panel (D). 
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Figure 3.6  
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Figure 3.6 Chemoresistant cells that express ABCB1/ MDR1 drug transporter do not show 
complete reversal of resistance upon MDR1 inhibition. 
(A) H1299 T18 and H1355 T16 resistant cell lines exhibited decreased intracellular 
accumulation of tritiated docetaxel compared to parental cells, confirming functional relevance 
of MDR1 expression. Data represent mean + SEM. Two-way ANOVA, P < 0.0001 
(B) siRNA knockdown of ABCB1 (3 individual siRNAs: s2, s4, s5) in H1299 T18 could only 
partially reverse resistance to paclitaxel + carboplatin. Data represents mean + SD. Knockdown 
was validated by decrease in ABCB1 mRNA (see qPCR data for s4 siRNA). 
(C, D) Drug response to paclitaxel + carboplatin was tested in the presence of non-specific MDR 
inhibitor verapamil (V, 5 µM) or MDR1/Pgp selective inhibitor PGP4008 (10 µM). There was 
partial shift in drug response curves. Data represents mean + SD. 
(E, F) Repeating long term treatment of H1299 and H1355 parental cells with cycles of 
paclitaxel + carboplatin in the continuous presence of verapamil was not sufficient to prevent 
cells from becoming drug resistant. H1299 T7-v and H1355 T6-v are cell lines treated with 7 and 
6 cycles respectively of paclitaxel + carboplatin, in the continuous presence of 5 µM verapamil. 
For comparison, H1299 T8 and H1355 T6 are cells treated simultaneously in the absence of 
verapamil. % Cell viability data represents mean + SD. 
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Figure 3.7 
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Figure 3.7 Chemoresistant NSCLC cell line variants were generated from H1693 and 
HCC4017 cell lines, one of which did not express MDR1 (HCC4017 T5) but was 
nevertheless drug resistant. 
(A, B) H1693 T8 and HCC4017 T5 cell line variants were established by long-term treatment of 
parental cell lines with 8 and 5 cycles respectively of paclitaxel + carboplatin (2:3) doublet. 
Development of resistance was tested by MTS assays. Values in dose response plots indicate 
paclitaxel concentration in the doublet. Each assay was performed with 8 replicates per drug 
dose. Data represents mean + SD. 
(C, D) Increase in drug resistance was validated by colony formation. Error bars indicate mean + 
SEM. Reported P values are from two-way ANOVA comparison.  
(E, F) H1693 T8 showed enrichment in % MDR+ cell subpopulation whereas HCC4017 T5 cells 
did not show any increase (tested by flow cytometry). 
(G, H) There was significant increase in ABCB1 mRNA expression in H1693 T8 compared to 
H1693 Parental, but minimal changes in ABCB1 transcripts in HCC4017 T5 resistant cells (qRT-
PCR and microarray). Error bars in qRT-PCR data represent mean + SD. Heat map denotes 
expression from two ABCB1 microarray probes and two replicates per cell line. 
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3.4 Taxane-platin resistant cells show slower growth in vitro and in vivo 

 Taxane-platin resistant variants were further characterized for their phenotypic 

differences from parental cell lines. Among these differences was the finding that in general, 

resistant variants proliferated much slower in culture. Both H1299 T18 and H1355 T16 drug 

resistant variants showed slower cell growth in vitro compared to corresponding parental cell 

lines (Figure 3.8 A, B). To test this difference in vivo, 1 million parental or resistant cells were 

injected subcutaneously in NOD/SCID mice and tumor volumes were monitored for 2 - 4 

months. While there was no difference in tumor take rate or histology of these xenografts, 

tumors from both H1299 and H1355 resistant variants grew significantly slower compared to 

parental tumors (Figure 3.8 C, D). Likewise, HCC4017 T5 resistant variant also showed 

significantly slower tumor growth in vivo (Figure 3.8 E), although I did not see substantial 

growth rate difference in vitro. Slow-cycling cells have been previously linked to evasion of 

response to multiple chemotherapies (Roesch et al., 2013; Stewart et al., 2007). 
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Figure 3.8 

 

 
 
Figure 3.8 Taxane-platin resistant NSCLC cells show slower growth in vitro and in vivo 
(A, B) H1299 and H1355 resistant variants showed slower cell growth rate in vitro. Error bars 
represent mean + SEM. Statistical significance was determined by two-way ANOVA. 
(C-E) Xenografts of resistant variants (H1299 T18, H1355 T16, and HCC4017 T5) showed 
slower tumor growth in vivo compared to corresponding parental xenografts. Data represents 
mean + SEM. Differences in tumor growth rate were tested by two-way ANOVA. 
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3.5 Resistant cell line variants show epithelial-to-mesenchymal transition  

Upon development of taxane-platin resistance, long-term treated H1355 T8 cells showed 

an epithelial-to-mesenchymal (EMT) shift in morphology (Figure 3.9 A). This was not evident in 

NCI-H1299, probably due to the pre-existing mesenchymal phenotype of this cell line. 

Regardless, I detected a significant decrease in the percentage of cells expressing the epithelial 

cell surface marker EpCAM, in both H1299 and H1355 resistant variants (Figure 3.9). Similarly, 

HCC4017 T5 resistant cells showed a dramatic reduction in %EpCAMHigh cells (Figure 3.9). 

EMT has been previously described in the context of resistance to EGFR TKIs (Rho et al., 2009; 

Thomson et al., 2005) as well as standard chemotherapies including gemcitabine, oxaliplatin and 

paclitaxel (Voulgari and Pintzas, 2009). More importantly, since EMT is a reversible process, 

these findings suggested the possibility of transient transcriptional re-wiring during development 

of drug resistance. 
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Figure 3.9 

 

 
 
Figure 3.9 Resistant cell line variants show epithelial-to-mesenchymal transition (EMT) 
(A) NCI-H1355 parental cell line (H1355 P) exhibited epithelial-to-mesenchymal shift in 
morphology upon development of taxane-platin resistance in H1355 T8. Scale bar, 20 µM. 
(B, C) H1355 T16 and H1299 T18 resistant cells showed dramatic decreases in % EpCAM+ 
cells. Appropriate isotype controls were used for gating cell populations. 
(D, E) HCC4017 T5 showed a substantial decrease in percentage of EpCAMHigh cell sub-
population from ~76% in Parental to ~17% in T5. Note the overall shift of scatter plot (D) and 
histogram (E) towards the left to decreased fluorescence intensity in HCC4017 T5. 
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3.6 Taxane-platin resistance is partially reversible upon drug-free culturing 

Upon drug-free culturing for >4 months, resistant variants showed a partial reversal in 

chemoresistance as indicated by decrease in drug response IC50 (Figure 3.10). This observation is 

in agreement with a previous study in EGFR-targeted therapy surviving “persister” cells that 

showed reversible drug tolerance (Sharma et al., 2010). In my established taxane-platin resistant 

NSCLC cell lines, highly resistant cells (H1299 T18, H1355 T16) as well as variants with 

intermediate resistance (H1299 T10, H1355 T8) showed partial (but not complete) reversibility 

in drug resistance. These observations suggested alterations in the epigenetic landscape of 

taxane-platin treated NSCLC cells, some of which could be lost in the absence of drug stress 

(reversed) whereas some others might be stably inherited to maintain the new altered cellular 

state of drug resistance. 
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Figure 3.10 

 

 

 

 
 
Figure 3.10 Taxane-platin resistance is partially reversible upon drug-free culturing 
(A, B) H1299 and H1355 cell line variants showed “partial” reversal in paclitaxel + carboplatin 
resistance upon drug-free culturing for >4 months. Suffix ‘S’ denotes partially re-sensitized cells. 
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CHAPTER FOUR 
 

PRECLINICAL RESISTANCE SIGNATURE PREDICTS RECURRENCE-

FREE SURVIVAL IN NEOADJUVANT TREATED NSCLC PATIENTS 

 

4.1 Gene expression profiles of pre-clinical cell line and xenograft models yield a 

resistance associated 35-gene signature 

To investigate the molecular changes accompanying development of NSCLC resistance 

to standard taxane-platin chemotherapy, progressively resistant isogenic cell lines were subjected 

to genome-wide mRNA expression profiling. Microarray data was obtained for H1299 and 

H1355 resistant series using Illumina HumanHT-12 V4 BeadArrays. In total, five biological 

replicates for parental cell line, three for most resistant variant (H1299 T18/ H1355 T16) and two 

replicates for each intermediate resistance time-point, were used for analysis. To systematically 

identify genes which showed a consistent increase or decrease in expression with increasing drug 

resistance, a linear regression model was fitted on the gene expression data using log 

transformed IC50 values of progressively resistant series. A beta-uniform mixture model was 

applied to the set of p-values using R (detailed description in SWEAVE documentation in 

Appendix A). Genes with p-values below the false discovery rate (FDR) cutoff of 0.1 were 

considered statistically significant. 3752 differentially expressed genes were identified in the 

H1299 resistant series and 595 genes in the H1355 resistant series at FDR 0.1 (Figure 4.1 A).  
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To obtain the most conservative identification of differentially expressed genes, I decided 

to focus on gene changes (in resistant compared to parental cells) which were common between 

the two cell line models (H1299 and H1355 series), and between in vitro and in vivo (H1299 T18 

vs. parental xenografts) grown tumor cells. 51 up-regulated and 59 down-regulated genes 

overlapped between H1299 and H1355 resistant cell line models (Figure 4.1 B), while 

intersection with xenograft tumor expression profiles (H1299 T18 versus H1299 parental 

xenografts, Figure 4.1 C) narrowed this list to 14 up-regulated and 21 down-regulated genes 

whose expression changes were sustained in vivo (Figure 4.1 D). These 35 genes (Figure 4.1 E) 

formed the pre-clinical resistance gene signature. 
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Figure 4.1 
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Figure 4.1 Genome-wide mRNA expression profiling of cell lines and xenografts yields a 
taxane-platin resistance-associated 35-gene signature 
(A) Linear regression model was fitted on microarray data of H1299 and H1355 cell line series 
using log transformed IC50 values to identify genes that were progressively up/ down-regulated 
with increasing drug resistance. Parental cell lines (P) and four resistant variants per cell line 
were analyzed. 1876 down- and 1876 up-regulated genes were identified in H1299 resistant 
series, while 290 down- and 305 up-regulated genes were identified in H1355 resistant series. 
These are represented in the volcano plots (red, up-regulated; green, down-regulated). FDR 0.1 
(B) Differentially expressed gene list from H1299 and H1355 resistant cell line series was 
compared to identify common up/down-regulated genes. P values are from hypergeometric tests. 
(C) Differential gene expression analysis was performed on xenograft microarray data (H1299 
T18 resistant versus H1299 Parental) using student’s t-test. FDR 0.1 
(D) Gene lists obtained from cell line and xenograft microarray analyses were overlapped to 
identify common genes (14 up-regulated, 21 down-regulated). P values are from hypergeometric 
tests. 
(E) Heat map representation of the expression pattern of 35 gene resistance signature in cell lines 
and xenografts. 
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4.2 Pre-clinical resistance signature predicts recurrence-free survival in NSCLC 

patients treated with platin-based doublet neoadjuvant chemotherapy 

In order to evaluate clinical relevance, the 35-gene resistance signature was tested on 

NSCLC patients who had received standard chemotherapy prior to resection of their tumors 

(annotated in Table 2.3). This neoadjuvant treated patient group had received platin-based 

chemotherapy, predominantly as taxane + platin doublets (paclitaxel + carboplatin, docetaxel + 

cisplatin, docetaxel + carboplatin). Cancer recurrence-free survival data was available for 65 out 

of 66 patients. Frozen resected tumor samples were expression profiled by Illumina HumanWG-

6 V3 BeadArrays.  

Using the 35-gene resistance signature, unsupervised hierarchical clustering (Euclidean 

distance matrix and maximum linkage method) of neoadjuvant treated NSCLC tumors was 

performed on the 65 neoadjuvant chemotherapy-treated patients, and found to separate them into 

two major groups (Figure 4.2 A). Kaplan-Meier survival analysis revealed that these groups 

showed significant differences in recurrence-free survival (Figure 4.2 B). Group 2 showed 

significantly worse cancer recurrence-free prognosis than Group 1 patients (P = 0.0012, Hazard 

ratio = 2.78). Analysis was tested and adjusted for clinical covariates (Table 4.1). 
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Figure 4.2 
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Figure 4.2 35-gene pre-clinical resistance signature predicts recurrence-free survival in 
neoadjuvant chemotherapy treated NSCLC patients 
(A) Using 35 genes, unsupervised hierarchical clustering of neoadjuvant treated NSCLC patients 
(N = 65, mainly taxane + platin treated) was performed and found to separate the patients into 
two major groups.  
(B) Kaplan-Meier survival analysis of the two groups of neoadjuvant treated NSCLC patients 
revealed significant differences in cancer recurrence-free survival (P = 0.0012, HR = 2.78, 95% 
CI, 1.46 – 5.29). Survival P-value was adjusted for clinical covariates (tested by Cox multivariate 
regression, Table 4.1). 
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Table 4.1 Cox multivariate analysis on recurrence-free survival to test for bias from clinical 
covariates 

 

a Clustering of patients into two major groups was the most significant contributor to the cancer 
recurrence-free survival difference (P = 0.0008). 

 

 

  

 coef exp(coef) se(coef) z P value 

Two Groups/ Clusters a 1.63 5.10 0.49 3.35 0.0008 

Histology (Squamous) -0.23 0.80 0.50 -0.46 0.64 

Histology (Non Squamous) 0.37 1.45 0.47 0.78 0.43 

Age 0.02 1.02 0.03 0.88 0.38 

Smoking history (Y) -0.93 0.40 0.67 -1.39 0.16 

Gender (M) -0.21 0.81 0.43 -0.49 0.62 

Race (Asian or Pacific Islander) -0.28 0.76 1.52 -0.18 0.85 

Race (Caucasian) -0.87 0.42 0.80 -1.09 0.28 

Race (Hispanic) -0.13 0.88 1.29 -0.10 0.92 

Adjuvant therapy (Y) -1.03 0.36 0.50 -2.07 0.04 

Neoadjuvant (Pac + Carb) 0.53 1.69 0.52 1.01 0.31 

Stage (II) -0.24 0.79 0.59 -0.40 0.69 

Stage (III) 1.00 2.73 0.50 2.02 0.04 

Stage (IV) 0.95 2.59 0.67 1.43 0.15 



112 
 

 
 

 

CHAPTER FIVE 
 

HISTONE LYSINE DEMETHYLASES CORRELATED WITH POOR 

RECURRENCE-FREE PATIENT SURVIVAL AND SHOWED 

INCREASED EXPRESSION IN TAXANE-PLATIN RESISTANT CELLS 

 

5.1 Multivariate analysis of 35-gene resistance signature identifies KDM3B as a 

significant contributor to poor recurrence-free survival in NSCLC patients 

The 35-gene resistance signature derived from preclinical taxane-platin resistant cell lines 

and xenografts was shown to be clinically relevant in predicting poor recurrence-free survival 

outcome in neoadjuvant treated NSCLC patients. To identify a significant gene candidate for 

potential therapeutic targeting of taxane-platin resistant, relapsing NSCLC tumors, Cox 

multivariate regression was performed to dissect the individual contribution of the 35 genes in 

the signature (Table 5.1). Among the 14 genes that were up-regulated in pre-clinical resistance 

models, the gene that showed the largest hazard risk for poor recurrence-free survival in 

chemotherapy treated NSCLC patients was the histone lysine demethylase, KDM3B (P value = 

0.025, hazard ratio = 10.28, Figure 5.1 A). 

To verify increased expression of KDM3B in Group 2 of neoadjuvant chemotherapy 

treated patients who showed poor recurrence-free outcome, immunohistochemistry (IHC) of 

formalin-fixed tumor samples was performed in a tissue microarray (TMA). Based on the extent 
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and intensity of KDM3B staining, tumor samples were assigned an expression score by a 

pathologist who was study-blind with respect to classification of tumors into the two clustering 

groups. Indeed, Group 2 patients were found to exhibit higher overall KDM3B IHC scores 

compared to Group 1 patients (Figure 5.1 B). Representative KDM3B IHC images and the 

corresponding tumor H&E images are shown in Figure 5.1 C. 
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Table 5.1 Multivariate analysis of 35-gene signature towards cancer recurrence-free 
survival of 65 neoadjuvant treated NSCLC patients 

 

  

Genes coef exp(coef) se(coef) z P value 

KDM3B a 2.33 10.28 1.04 2.24 0.025 
ADAM22 1.81 6.10 1.22 1.48 0.14 
IMMP2L 0.64 1.89 0.76 0.84 0.40 
NTN1 0.42 1.52 0.48 0.87 0.38 
FAM133A 0.19 1.20 0.24 0.76 0.44 
STX11 -0.06 0.94 0.41 -0.15 0.88 
HEY2 -0.11 0.89 0.23 -0.50 0.62 
HIGD2A -0.15 0.86 1.15 -0.13 0.89 
RUNDC3B -0.17 0.84 0.37 -0.47 0.64 
PPARGC1B -0.34 0.71 0.39 -0.86 0.39 
TTC1 -0.75 0.47 0.88 -0.85 0.40 
ZNF672 -1.72 0.18 1.03 -1.67 0.094 
STX8 -2.12 0.12 0.86 -2.47 0.014 
CLINT1 -2.99 0.05 1.37 -2.18 0.029 
NNT b 3.02 20.41 0.89 3.40 0.001 
NXF2B 2.71 14.96 1.65 1.64 0.10 
TRAF3IP2 1.36 3.89 0.90 1.52 0.13 
DTX3 0.88 2.41 0.32 2.73 0.006 
REXO2 0.82 2.28 1.08 0.76 0.44 
LBX2 0.69 2.00 0.35 2.00 0.046 
FUT4 0.70 2.00 0.85 0.82 0.41 
GALNT13 0.52 1.68 0.38 1.37 0.17 
CRIP1 0.48 1.62 0.41 1.18 0.24 
TNC 0.45 1.58 0.27 1.68 0.092 
MAGEA1 0.39 1.47 0.22 1.78 0.075 
ANGPT1 0.21 1.23 0.35 0.59 0.55 
RIN3 0.18 1.19 0.41 0.43 0.67 
GALC 0.10 1.11 0.65 0.16 0.88 
PLEK2 -0.09 0.92 0.27 -0.32 0.75 
ZMAT3 -0.24 0.78 0.89 -0.27 0.79 
LOC400027 -0.32 0.73 0.51 -0.62 0.54 
DYNC2H1 -0.72 0.48 0.45 -1.61 0.11 
ANP32B -0.80 0.45 0.76 -1.06 0.29 
FAM133B -1.68 0.19 1.32 -1.27 0.20 
NXF2 -1.96 0.14 1.31 -1.50 0.13 



115 
 

 
 

Table 5.1 
a KDM3B was up-regulated in resistant cell lines and xenografts, and showed the most 
significant, positive correlation with poor cancer recurrence-free survival (exp coeff/ Hazard 
ratio = 10.28, P value = 0.025) 
b Though NNT expression had a high positive correlation in this multivariate analysis, it was 
actually down-regulated in our pre-clinical resistant models and was hence not selected as a top 
priority for therapeutic targeting. 
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Figure 5.1 

 

 

 
Figure 5.1 KDM3B was identified as a significant contributor to poor recurrence-free 
survival and showed higher expression in Group 2 of neoadjuvant treated NSCLC patients  
(A) Cox multivariate regression hazard ratios i.e. exp (regression coefficient) and –log (P values) 
for the 14 up-regulated genes from 35-gene signature, showing KDM3B as a major contributor.  
(B) IHC-TMA verified that Group 2 of neoadjuvant treated patients (poor recurrence-free 
survival) showed higher KDM3B protein expression compared to Group 1 patients.  
(C) Representative images of KDM3B IHC and corresponding tumor H&E staining. 
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5.2 KDMs show higher expression in treated NSCLC patient tumors than chemo-naïve 

tumors, and high expression correlates with poor recurrence-free survival 

The epigenetic enzyme KDM3B (also known as JMJD1B) was identified through the 

clinical evaluation of 35-gene preclinical resistance signature. There are however ~20 known 

human proteins that function as histone lysine demethylases/ KDMs (Hojfeldt et al., 2013). So 

we further evaluated the expression of other members of the KDM family.  

Residual NSCLC patient tumor cells surviving standard platin-based neoadjuvant 

chemotherapy showed higher overall KDM3A, KDM4A and KDM6B mRNA expression 

compared to chemo-naïve patient tumors (Figure 5.2). To investigate whether increased 

expression of these family members correlated with cancer relapse, we compared the recurrence-

free survival of high and low expressers, segregated by median expression value. Indeed, high 

KDM3A, KDM4A or KDM6B mRNA expression correlated with significantly worse recurrence-

free prognosis (Figure 5.2) in the cohort of 275 NSCLC patients (neoadjuvant treated + chemo-

naïve, annotated in Table 2.3). 
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Figure 5.2 
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Figure 5.2 Neoadjuvant treated NSCLC patient tumors show higher KDM3A, KDM4A and 
KDM6B expression than chemo-naïve tumors, and high expression correlates with poor 
cancer recurrence-free survival 
(A-C) Within a cohort of 275 NSCLC patients, residual tumors from neoadjuvant chemotherapy-
treated patients (N = 66) showed higher KDM3A, KDM4A and KDM6B mRNA log expression 
compared to tumors that were chemo-naïve at the time of resection (N = 209). P values are from 
one-tailed unpaired t-test.  
(D-F) High KDM3A, KDM4A and KDM6B mRNA expression correlated with poor cancer-free 
survival in NSCLC patient tumor dataset (275 tumors). High/Low groups were separated by 
median log expression value. 
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5.3 Taxane-platin resistant cell line variants show increased expression of several 

histone lysine demethylases, compared to chemo-sensitive parental cell lines 

Expression of histone lysine demethylases in chemoresistant/parental cell line pairs was 

compared by quantitative real time-PCR. This mini-screen included LSD1 demethylase 

(KDM1A/ AOF2), JumonjiC (JmjC) domain-containing histone demethylases (KDMs 2-7) and 

some other JmjC family members (JARID2 and KDM8/ JMJD5) which do not have “defined” 

demethylase activity (Hojfeldt et al., 2013).  

H1299 T18 taxane-platin resistant cells showed increased expression of several JmjC 

histone lysine demethylases compared to H1299 parental cells (Figure 5.3 A). Other than 

KDM3B (JMJD1B) which is an H3K9me1/2 demethylase, chemoresistant cells also showed 

higher expression of KDM6A (UTX) and predominantly KDM6B (JMJD3), both of which are 

H3K27me2/3 demethylases. Taxane-platin resistant H1355 T16 variant developed from NCI-

H1355 cell line also showed increased expression of KDM6A and KDM6B, in addition to 

KDM3B (Figure 5.3 B).  

Additionally, H1299 T18 cells (but not H1355 T16) had elevated levels of JARID2, 

which has been suggested to indirectly regulate H2K27me3 modification via its interaction with 

the PRC2 complex (Peng et al., 2009; Sanulli et al., 2015; Shen et al., 2009). KDM7A 

(JHDM1D) which is an H3K9me1/2 and H3K27me1/2 demethylase was also overexpressed in 

H1299 T18 (Figure 5.3 A).  

Apart from histone demethylases that erase repressive K9 and K27 methylation marks, 

chemoresistant H1299 T18 showed modest up-regulation of KDM5A (JARID1A) and KDM5B 
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(JARID1B) which are both H3K4me2/3 demethylases. Interestingly, these two KDMs have been 

previously reported in drug-tolerant “persister” cells, with KDM5A overexpression in 

erlotinib/gefitinib-tolerant EGFR-mutant NSCLC cells (Sharma et al., 2010) and KDM5B in 

vemurafenib resistant BRAFV600E-mutated melanoma cells (Roesch et al., 2013). H1355 T16 

did not exhibit KDM5A/5B up-regulation (Figure 5.3 B).  
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Figure 5.3 

 

 
 
Figure 5.3 Taxane-platin resistant cell lines show up-regulation of several histone lysine 
demethylases, compared to chemo-sensitive parental cell lines 
H1299 T18 (A) and H1355 T16 (B) showed increased mRNA expression of several members of 
histone lysine demethylase (KDM) family, by qRT-PCR. Error bars represent mean + SEM. 
Significance was tested by two-way ANOVA. H1299 T18 vs. H1299 Parental, ****P = 0.0003 
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5.4 H1299 T18 chemoresistant cells exhibit overall global reduction of H3K27me3 

across the genome, and reciprocal H3K4me3/H3K27me3 marks on differentially 

expressed gene promoters 

Given the strong up-regulation of H3K27me3 demethylases (KDM6A/6B) in H1299 T18 

cells, I decided to investigate global changes in this histone methylation mark by chromatin 

immunoprecipitation followed by next-generation sequencing (ChIP-Seq). Concomitant with 

increased expression of H3K27me3 demethylases, H1299 T18 resistant cells showed globally 

reduced levels of H3K27 trimethylation across the genome (transcriptional start site/TSS, gene 

body, etc.), compared to H1299 parental cell line (Figure 5.4). 

This overall decrease in repressive H3K27me3 mark across the genomic regions persisted 

in the subset of genes that were significantly ‘up-regulated’ in H1299 T18 over H1299 parental 

cells (Figure 5.5 A), and as expected, there was an increase in histone H3K4me3 activating mark 

at the TSS of these genes (Figure 5.5 B). Genes that were significantly ‘down-regulated’ in 

H1299 T18 exhibited focal gain of H3K27me3 selectively at the TSS (Figure 5.5 C), and this 

was accompanied by reciprocal decrease in histone H3K4me3 activating mark at the TSS (Figure 

5.5 D). 
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Figure 5.4 

 

 

 

 

 

 

Figure 5.4 H3K27me3 enrichment plots for H1299 parental and T18 cells by ChIP-Seq 
showing overall global decrease in T18 
Average H3K27me3 ChIP read depth in the gene body regions and 2kb 5’ and 3’ to the gene 
body regions was subtracted from respective input read depth and plotted. The x axis represents 
the genomic regions for all human gene body regions from 5’ to 3’ and the y axis represents read 
depth. TSS, transcription start site; TES, transcription end site. 
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Figure 5.5 

 

 

 

 

Figure 5.5 H3K27me3 and H3K4me3 enrichment plots by ChIP-Seq for differentially 
expressed genes in H1299 T18 over H1299 Parental cells 
The x axis represents the genomic regions from 5’ to 3’ for genes that were significantly up-
regulated (panels A and B, 960 genes) or down-regulated (panels C and D, 1173 genes) in H1299 
T18 over H1299 Parental, as determined by RNA-Seq analysis at FDR 0.05 and FPKM cutoff of 
1 in parental or T18 cells. Average H3K27me3 and H3K4me3 ChIP read depth in the gene body 
regions and 2kb 5’ and 3’ to the gene body regions was subtracted from respective input read 
depth and plotted. The y axis represents ChIP read depth. TSS, transcription start site; TES, 
transcription end site. 
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5.5 Isogenic series of H1299 chemoresistant cells show progressive increase in histone 

lysine demethylase expression with increasing taxane-platin resistance 

Since H1299 resistant variants showed increasing resistance to paclitaxel + carboplatin 

doublet therapy with increasing treatment cycles, I next sought to investigate whether this 

progressive development of resistance correlated with consistent increase in expression of 

histone lysine demethylases. This was obvious for KDM3B as this gene was identified through 

linear regression of microarray data for H1299 and H1355 resistant series using log transformed 

IC50 values (Figure 4.1). This was verified in qRT-PCR data (Figure 5.6). In addition, KDM6A 

and KDM6B were also found to exhibit a significant linear trend for increased mRNA expression 

as cells progressed from H1299 Parental to H1299 T18 (Figure 5.6). These results suggested a 

clear association between KDM up-regulation and increasing taxane-platin resistance. 
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Figure 5.6 

 

 

 

 
Figure 5.6 Isogenic series of H1299 chemoresistant cells show progressive increase in 
histone lysine demethylase expression with increasing taxane-platin resistance 
H1299 isogenic resistant cells showed progressive increase in expression of several histone 
lysine demethylases with increasing drug resistance. P values are from one-way ANOVA post-
test for linear trend: KDM3B, **P = 0.009; KDM6A, *P = 0.016; KDM6B, P < 0.0001 
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CHAPTER SIX 
 

TAXANE-PLATIN RESISTANT NSCLC CELLS ARE HYPER-

SENSITIZED TO JMJC KDM INHIBITORS IN VITRO AND IN VIVO 

 

6.1 H1299 T18 taxane-platin resistant NSCLC cells are hyper-sensitized to JumonjiC 

lysine demethylase inhibitors compared to corresponding parental cell line 

Since taxane-platin resistant cells showed increased expression of several members of 

JumonjiC (JmjC) histone lysine demethylase family, I investigated their survival dependence on 

KDMs by employing a pan-JmjC histone lysine demethylase inhibitor, JIB-04 (Wang et al., 

2013). H1299 T18 chemo-resistant cell line was hyper-sensitized to JIB-04 compared to H1299 

parental cells (active E isomer in Figure 6.1 A). There was no viability loss in drug resistant or 

parental cells with the epigenetically inactive Z isomer of JIB-04.  

Since KDM6 subfamily was one of the most significantly altered in resistant cells (as 

shown in Figure 5.3), I also tested the KDM6A/KDM6B (UTX/JMJD3) inhibitor, GSK-J4 

(Kruidenier et al., 2012). Again, H1299 T18 showed higher sensitivity to GSK-J4 compared to 

H1299 parental cells and there was no effect on cell viability with the inactive GSK-J5 isomer 

(Figure 6.1 B). 
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Figure 6.1 

 

 

Figure 6.1 H1299 T18 taxane-platin resistant cells are hyper-sensitized to JIB-04 and GSK-
J4, compared to H1299 parental cell line  
H1299 T18 showed increased sensitivity to (A) JIB-04 as well as (B) GSK-J4, compared to 
H1299 parental cell line. There was no viability difference with the inactive isomers (JIB-04 Z 
isomer/ GSK-J5). Each assay was performed with 8 replicates per drug dose. Error bars indicate 
mean + SD. Average IC50 values from multiple assays/replicates are indicated in Figure 6.3 E. 
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6.2 Isogenic series of H1299 resistant cells show progressively increasing sensitization to 

JmjC lysine demethylase inhibitors with increasing taxane-platin resistance  

To investigate whether increased KDM expression and pharmacological sensitivity was 

directly correlated with increase in drug resistance, I queried the entire H1299 isogenic resistant 

series. H1299 resistant series that showed a progressive increase in KDM mRNA expression 

(shown previously in Figure 5.4), exhibited a consistent shift in JIB-04 dose response curves, 

illustrating increased sensitivity to JIB-04 with increasing taxane-platin drug resistance (Figure 

6.2 A). Cells showed progressive sensitization to both JmjC inhibitors (JIB-04 and GSK-J4), as 

shown by consistent decrease in IC50 values from H1299 Parental to H1299 T18 resistant variant 

(Figures 6.2 B and C). 
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Figure 6.2 
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Figure 6.2 Isogenic series of H1299 chemoresistant cells show progressively increasing 
sensitization to JIB-04 and GSK-J4 with increasing taxane-platin resistance 
(A) Dose response curves for H1299 chemoresistant series showing progressive JIB-04 
sensitization with increasing resistance to paclitaxel + carboplatin. 
(B, C) IC50 plots for H1299 resistant series showing increasing sensitivity to JIB-04 and GSK-J4 
with increasing resistance to standard chemotherapy. Data represents mean + SD. Statistical 
significance was tested by one-way ANOVA, followed by Dunnett’s multiple comparisons tests 
with H1299 Parental (H1299 P). P values on graphs denote significance from post-test for linear 
trend. 
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6.3 Taxane-platin resistant variants from other NSCLC cell lines (H1355, HCC4017 

and H1693) also show increased sensitivity to JIB-04 

To explore the universality of increased sensitivity of taxane + platin chemo-resistant 

NSCLC cells to JmjC KDM inhibitors, I tested other resistant cell line variants. H1355 T16 that 

had up-regulation of KDM genes (shown previously in Figure 5.3 B) showed higher sensitivity 

to GSK-J4 (Figure 6.3 A) and JIB-04 (Figure 6.3 B), compared to H1355 parental.  

HCC4017 T5 and H1693 T8 resistant variants that were ~2-7 fold more resistant to 

paclitaxel + carboplatin than corresponding parental cell lines (Table 2.4 and Figure 3.7), were 

now ~2-3 fold more sensitive to JIB-04 (Figures 6.3 C-E). Interestingly, H1819 “parental” cell 

line was found to be originally very sensitive to JIB-04 (IC50 ~1 nM). Of note, H1693/H1819 is a 

matched cell line pair (before/after chemotherapy) derived from the same NSCLC patient. 

H1819 obtained after etoposide + cisplatin chemotherapy was more sensitive to JIB-04 compared 

to H1693 (Figure 6.3 D). Additionally, a cell line (HCC4047) derived from a NSCLC patient 

who was treated with paclitaxel + carboplatin chemotherapy in the clinic was found to be 

resistant to this standard doublet but sensitive to JIB-04 (Figure 6.3 F). 
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Figure 6.3 
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Figure 6.3 All NSCLC taxane-platin resistant variants show increased sensitivity to JIB-04, 
compared to parental cells 
(A, B) H1355 T16 resistant variant was hyper-sensitized to GSK-J4 and JIB-04, compared to 
H1355 Parental cell line. Drug response was specific to the epigenetically active E or J4 isomers. 
No loss in cell viability was seen with the inactive Z or J5 controls. Error bars indicate mean + 
SD.  
(C) HCC5017 T5 resistant cell line was more sensitive to JIB-04, compared to HCC4017 
Parental cell line. Error bars indicate mean + SD. 
(D) H1693 T8 taxane-platin resistant variant that was generated in vitro showed increased 
sensitivity to JIB-04, compared to H1693 Parental cell line. Matched cell line derived from the 
same NSCLC patient after etoposide + cisplatin chemotherapy in the clinic (H1819 Parental) 
also showed increased response to JIB-04 than H1693 Parental. Error bars indicate mean + SD. 
(E) JIB-04 IC50 values for parental/resistant NSCLC cell line pairs established in vitro (H1299, 
H1355, HCC4017 and H1693). IC50 values are from multiple independent assays. Data 
represents mean + SEM. Two-way ANOVA, P value = 0.003 
(F) HCC4047, a stage IIIA lung adenocarcinoma cell line derived from a patient who had 
received paclitaxel + carboplatin chemotherapy in the clinic, was found to be extremely resistant 
to this drug doublet in in vitro MTS assays (IC50 > 1000 nM) but very sensitive to JIB-04 (IC50 = 
8.1 nM). 
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6.4 Hyper-sensitization of taxane-platin resistant cells is specific to JmjC KDM 

inhibitors over other classes of epigenetic drugs 

 In order to investigate whether the epigenetic vulnerability in taxane + platin chemo-

resistant cells was specific to JmjC histone demethylase inhibitors, I evaluated compounds that 

target histone methyltransferases (HMT), LSD1 demethylase, histone acetyltransferases (HAT), 

histone deacetylases (HDAC), DNA methyltransferases (DNMT) as well as bromodomain 

inhibitors. H1299 T18 resistant variant was not hyper-sensitized to any of these drugs over 

H1299 parental cell line (Figure 6.4). H1299 T18 showed modest (< 4-fold) sensitization to 

some drugs (Figure 6.5). Selectivity ratios indicating fold change in IC50 values for H1299 and 

H1355 parental/resistant cell line pairs for all tested drugs are listed in Table 6.1.  

My studies with JIB-04 and GSK-J4 have thus uncovered a specific, targetable epigenetic 

vulnerability that can be exploited therapeutically to treat NSCLCs that develop resistance to 

standard taxane + platin chemotherapy. 
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Figure 6.4 

 

 

 

 
 
Figure 6.4 Hyper-sensitization of H1299 T18 taxane-platin resistant cells is specific to JmjC 
KDM inhibitors over other classes of epigenetic drugs  
A comparison plot of IC50 values for standard, targeted and epigenetic drugs for H1299 T18 
chemoresistant versus H1299 parental cells. Blue circles represent epigenetic drugs. Red dotted 
line denotes the 10-fold cut-off for cross-resistance and green dotted line is the 10-fold cut-off 
for sensitization of taxane + platin resistant cells. Only JIB-04 and GSK-J4 fall below the 
sensitivity threshold, illustrating specificity of response.  
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Figure 6.5 

 

 

Figure 6.5 Dose response curves of H1299 Parental/ H1299 T18 pair to epigenetic inhibitors 
H1299 T18 cells did not show hyper-sensitization to other classes of epigenetic drugs: Inhibitors 
of HMTs (A─C), LSD1 (D), BRD (E-G), HATs (H) or HDACs (I─L). 
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Table 6.1 Selectivity Ratios of resistant cells to standard, targeted and epigenetic therapies  

 Drug Class Drugs H1299 T18  
SR 

H1355 T16  
SR 

M
D

R
1 

su
bs

tr
at

es
 Taxanes Paclitaxel+Carboplatin 0.02 0.01 

 Paclitaxel 0.03 0.02 
 Docetaxel 0.03 0.002 
Anthracycline Doxorubicin 0.04 0.25 
Vinca alkaloid Vinorelbine 0.03 0.002 
HDAC  Depsipeptide 0.05 0.03 

O
th

er
 st

an
da

rd
 a

nd
 

ta
rg

et
ed

 c
he

m
ot

he
ra

pi
es

 NAMPT  FK866  0.1 2.1 
Platinum drug Carboplatin 0.8 1.2 
Nucleoside metabolic 
+ platin  

Gemcitabine+Cisplatin 2.3 2.3 

Akt  MK-2206 0.7 1.8 
SMAC mimetic JP1201 1.0 2.0 
Estrogen receptor 
agonist/antagonist 

Tamoxifen 1.0 1.0 

Wnt  XAV939 2.7 1.0 
Topoisomerase  Irinotecan 1.1 2.7 
Bmi1/Ring1A PRT 4165 1.0 1.4 

E
pi

ge
ne

tic
 d

ru
gs

 

DNMT  5-azacytidine 0.2 2.6 
Bromodomain  SGC-CBP30 1.3 0.9 

JQ1 0.6 6.6 
PFI 3 1.1 2.5 

HAT  NU 9056 2.0 1.0 
HDAC  M 344 1.1 1.8 
 Valproic acid 1.4 1.3 
 Scriptaid 1.5 1.4 
 Trichostatin A 1.8 2.6 
HMT  BIX 01294 0.9 1.9 
 DZNep 0.5 1.7 
 GSK 126 1.0 0.8 
LSD1  2-PCPA 1.3 1.8 
JIB 04 Control Z isomer (Inactive) 1.1 1.0 
JmjC KDMs  JIB-04 (E; Active) 20.3 2.8 

GSK J4 22.3 10.4 
 
Selectivity Ratio ‘SR’ = [IC50 of Parental] / [IC50 of Resistant] 
SR < 1 implies that variant cell lines (H1299 T18 and H1355 T16) are cross-resistant to these 
drugs 
SR = 1 indicates no change in drug response between parental and variant cell lines 
SR > 1 implies sensitization of chemo-resistant variants to these drugs; values denote fold 
reduction in IC50 values 
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6.5 Chemoresistant tumors show increased response to GSK-J4 and JIB-04 in vivo 

To test the response of taxane-platin chemoresistant NSCLC cells to JIB-04 and GSK-J4 

in vivo, subcutaneous xenografts of H1299 Parental and H1299 T18 cell lines were established. 

JmjC inhibitor treatment was given to tumor volume matched pairs, and mice were administered 

either vehicle or drug treatment once tumors reached ~150-200 mm3.  

GSK-J4 was administered as a 100 mg/kg dose, by i.p. injections given every day for 10 

days. GSK-J4 treatment caused a significant reduction in tumor volumes selectively in H1299 

T18 xenografts (P < 0.0001) and not in H1299 parental tumors (Figure 6.6 A). Treated T18 

tumors also showed a significant decrease in final tumor weights (P = 0.007) whereas there was 

no decrease in H1299 parental tumors (Figure 6.6 B).  

For the JIB-04 study, tumor bearing mice were randomized to receive 5 mg/kg, 20 mg/kg 

or 50 mg/kg treatment or vehicle, given by gavage three times a week, for 2 weeks. At all tested 

doses, JIB-04 resulted in greater percent reduction in final tumor volumes of H1299 T18 

xenografts compared to H1299 Parental (Figure 6.7 A). JIB-04 treatment preferentially slowed 

T18 tumor growth and decreased tumor growth rate as seen by increased tumor doubling times 

(Figure 6.7 B). There was also a significant decrease in final tumor weights of 50 mg/kg JIB-04-

treated H1299 T18 xenografts (P = 0.045, Figure 6.7 C).  

These pre-clinical studies confirm the enhanced sensitivity of taxane + platin 

chemoresistant tumors to JIB-04 and GSK-J4 in vivo, and provide proof-of-principle for 

potential use of JmjC demethylase inhibitors for targeting drug resistant NSCLCs in the clinic. 
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Figure 6.6 

 

 

 

 
 
 
Figure 6.6 H1299 T18 taxane-platin resistant tumors show increased response to GSK-J4 
treatment in vivo, than the chemo-sensitive parental tumors 
(A) GSK-J4 treatment (100 mg/kg, every day, for 10 days) caused a significant decrease in final 
tumor volumes of H1299 T18 tumors and no response in H1299 parental tumors. Data represent 
mean + SEM. Two-way ANOVA P value for H1299 T18 treatment response, ****P < 0.0001  
(B) GSK-J4 treatment dramatically reduced final tumor weights in H1299 T18 xenografts (**P = 
0.007), without significantly affecting H1299 Parental tumors (P = 0.6). Tumor weights were 
compared using two-tailed unpaired t-test. 
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Figure 6.7 

 

 
 
Figure 6.7 H1299 T18 chemoresistant tumors show increased response to JIB-04 in vivo, 
compared to H1299 parental tumors 
(A) At all tested doses, JIB-04 significantly reduced tumor burden and caused a greater percent 
reduction in H1299 T18 tumor volumes when compared to H1299 Parental tumors. Data 
represent mean + SEM. Exponential growth curves were fitted using non-linear regression. Drug 
response was compared using two-way ANOVA (5 mg/kg vs. vehicle group: H1299 Parental, 
**P = 0.0013 and H1299 T18, ****P < 0.0001).  
(B) JIB-04 treatment slowed tumor growth and substantially increased doubling time of treated 
H1299 T18 tumors. Doubling time was derived from non-linear regression (exponential growth 
curves). 
(C) Mice bearing H1299 T18 tumors, upon treatment with 50 mg/kg JIB-04, showed a greater 
decrease in final tumor weights at sacrifice. Data represents matched vehicle and treated tumors 
that were harvested on the same day (14-17 days after start of treatment). One-tailed unpaired t-
test revealed a significant change in H1299 T18 treated tumors (*P = 0.045) compared to non-
significant response in H1299 Parental tumors (P = 0.2). 
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CHAPTER SEVEN 
 

JMJC KDM INHIBITORS CAUSE PARTIAL TRANSCRIPTIONAL 

REPROGRAMMING OF TAXANE-PLATIN RESISTANT CELLS  

 

7.1 JIB-04 or GSK-J4 treatment led to several gene expression changes, selectively in 

H1299 T18 over H1299 parental cells 

My findings show that taxane-platin resistant NSCLC cells are selectively sensitized to 

JmjC demethylase inhibitors over parental cells, both in vitro and in vivo. So, in order to explore 

the transcriptional changes induced by JIB-04 or GSK-J4 treatment in chemoresistant cells, drug 

treated H1299 T18 or H1299 parental cells were profiled by Illumina gene expression arrays. I 

determined mRNA expression changes that are caused by 24 h treatment with 0.2 µM JIB-04 or 

1 µM GSK-J4 over DMSO treated controls in H1299 Parental and T18 cell lines (≥ 2-fold 

change, P value ≤ 0.05). In agreement with the enhanced sensitivity of T18 cells to JmjC KDM 

inhibitors, I observed that JIB-04 and GSK-J4 led to several gene expression changes selectively 

in H1299 T18 resistant cells (Figure 7.1 A, C) and minimal transcriptomic changes in H1299 

parental cells (Figure 7.1 B, D). Roughly, about 5-6 times greater mRNA expression changes 

were detected in JIB-04 or GSK-J4 treated H1299 T18 cells compared to H1299 parental cells 

(corresponding to 523 versus 106 Illumina probes in JIB-04 treated, and 190 versus only 34 

probes in GSK-J4 treated T18 versus parental cells). 
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Figure 7.1 

 

 

 

 
 
Figure 7.1 JIB-04 or GSK-J4 treatment led to several transcriptional changes, selectively in 
H1299 T18 cells over H1299 parental cells 
(A, B) There were ~5-times more JIB-04 induced gene expression changes in H1299 T18, 
compared to treated H1299 Parental cells. Cells were treated for 24 h with 0.2 µM JIB-04. 
(C, D) H1299 T18 cells showed ~6-times more GSK-J4 induced gene expression changes than 
parental cells, after 24 h of 1 µM drug treatment. 
Analysis represents two biological replicates per treatment condition per cell line. Differentially 
expressed genes were filtered by ≥ 2-fold change and t-test P value ≤ 0.05 
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7.2 Transcriptional changes caused by JIB-04 and GSK-J4 in H1299 T18 cells show a 

significant overlap  

Since I was studying gene expression changes after only a short 24 h drug exposure, I 

decided to expand the list of differentially expressed genes using a more liberal 1.5 fold change 

cutoff. Upon JIB-04 treatment, 1189 annotated genes (total 1469 Illumina probes) were found to 

be significantly altered in H1299 T18 cells, at t-test P value ≤ 0.05. Similarly, 552 annotated 

genes (total 710 Illumina probes) were differentially expressed in GSK-J4 treated H1299 T18 

cells over DMSO controls, at P ≤ 0.05. About 33% of GSK-J4 altered genes (181 genes) 

overlapped with JIB-04 altered transcripts (Figure 7.2), suggesting convergence of mechanisms. 
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Figure 7.2 

 

 

 

 

 
 
Figure 7.2 Transcriptional changes caused by JIB-04 and GSK-J4 in H1299 T18 cells show 
a significant overlap  
Venn diagram illustrating extent of overlap between genes that were differentially expressed in 
H1299 T18 cells following 24 h of JIB-04 (0.2 µM) or GSK-J4 (1 µM) treatment. Plot represents 
differentially expressed genes that showed at least 1.5 fold changes and t-test P value ≤ 0.05. 
Significance of overlap was determined by hypergeometric test (P value = 1.1e-88). ~33% of 
GSK-J4 altered genes overlapped with JIB-04 altered gene set. 
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7.3 Expression changes seen in H1299 T18 after JIB-04 or GSK-J4 treatment represent 

‘partial reversal’ of mRNA changes acquired after development of taxane-platin 

resistance 

Since the targets of JIB-04 and GSK-J4 are epigenetic enzymes that have broad 

regulatory roles in activating/repressing gene transcription, it is likely that inhibition of these 

enzymes can alter expression of multiple genes, including those that are associated with response 

to drug stress or development of drug resistance. I asked whether such genes that were 

‘deregulated’ in chemoresistant cells, were now reversed back to ‘parental’, drug-sensitive 

cellular state. I compared transcriptional changes induced by JmjC inhibitor treatment in H1299 

T18 cells against gene expression changes in H1299 T18 over parental cell line. Indeed, after 

short 24 h exposure to 0.2 µM JIB-04 or 1 µM GSK-J4, I found a partial reversal of mRNA 

expression changes in H1299 T18 that had been acquired upon development of taxane-platin 

resistance (Figure 7.3 and Appendix B, C). ~200 genes were reversed after JIB-04 treatment and 

over 100 genes were reversed by GSK-J4. These epigenetic drugs were thus found to cause 

partial transcriptional reprogramming of chemoresistant cells. 
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Figure 7.3 
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Figure 7.3 Short-term JIB-04 or GSK-J4 treatment leads to partial reversal of gene 
expression changes acquired in H1299 T18 taxane-platin resistant cells 
H1299 T18 cells at low confluency (1 million cells in 15 cm dish) were treated with DMSO, JIB-
04 (0.2 µM) or GSK-J4 (1 µM) for 24 h. DMSO treated H1299 parental cells were used as 
control. Heat maps represent subset of genes that showed significant expression changes in 
H1299 T18 (DMSO) over H1299 Parental (DMSO), and were reversed after short-term (A) JIB-
04 or (B) GSK-J4 treatment. Data represents two biological replicates per sample. Differentially 
expressed genes showed at least 1.5 fold changes and t-test P value ≤ 0.05. 
(A) 187 genes (represented by 195 Illumina v4 probes) whose expression in H1299 T18 was 
reversed after short-term JIB-04 treatment. Genes are ordered by fold change in H1299 T18 JIB-
04 versus H1299 T18 DMSO. Gene at the top of the list showed 16-fold up-regulation, whereas 
the bottom-most gene was 5-fold down-regulated in JIB-04 treated H1299 T18 cells. 
(B) 108 differentially expressed genes (represented by 110 illumina v4 probes) in H1299 T18 
over parental cell line, which showed reversed expression after short-term GSK-J4 treatment. 
Genes are in descending order of fold change in H1299 T18 GSK-J4 versus H1299 T18 DMSO. 
Gene at the top of the list was 10-fold up-regulated, and the bottom-most gene was 3-fold down-
regulated after GSK-J4 treatment. 
List of genes can be found in Appendix B (for JIB-04) and Appendix C (for GSK-J4). 
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7.4 Gene set enrichment analysis reveals reversal of altered transcriptional programs in 

H1299 T18 cells after JIB-04 or GSK-J4 treatment 

As JIB-04 and GSK-J4 caused partial reversal of gene expression in H1299 T18, I 

interrogated whether this represented reversal of specific transcriptional programs. I performed 

gene set enrichment analysis (GSEA) on differentially expressed gene lists representing JIB-04 

and GSK-J4 induced mRNA changes in H1299 T18 cells (genes with at least 1.5 fold change, t-

test P value ≤ 0.05). These pre-ranked gene lists were queried against curated gene sets (C2) 

from the molecular signatures database (MSigDB), and significantly enriched gene sets (FDR ≤ 

0.25) between different datasets were further evaluated.  

Firstly, I found a significant overlap between JIB-04 and GSK-J4 altered gene sets (116 

common enrichments, Figure 7.4 A and Appendix D). Secondly, there was also a ‘reversal’ of 

certain transcriptional programs that were altered in taxane-platin resistant H1299 T18, 

compared to H1299 parental cells. Out of the 214 gene sets that were depleted in H1299 T18 

over parental cells, 43 and 73 gene sets, respectively, were enriched by short-term GSK-J4 and 

JIB-04 treatment. Further, many of these T18 reversed gene sets in fact overlapped between JIB-

04 and GSK-J4 drug treatments (38 common reversed, Figure 7.4 A and Appendix D). In 

agreement with my studies, this overlap included epigenetic gene sets representing genes with 

H3K4me3 and H3K27me3 marks (Meissner et al., 2008), as well as SUZ12 ChIP on chip targets 

(Ben-Porath et al., 2008), indicative of genes regulated by H3K27me3 (Figure 7.4 B). 
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Figure 7.4 
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Figure 7.4 Gene set enrichment analysis reveals reversal of certain transcriptional 
programs by JIB-04 or GSK-J4 treatment in H1299 T18 cells 
(A) GSEA against curated gene sets from MSigDB revealed that several of the transcriptional 
programs that were altered in H1299 T18 drug resistant cells (depleted gene sets) were 
reversed/enriched by short-term JIB-04 or GSK-J4 treatment. FDR for gene set significance ≤ 
0.25. P values for overlap are from hypergeometric tests. 
(B) Reversed gene sets representing genes with H3K4me3 and H3K27me3 marks in the brain 
(top panel, Meissner et al.) and SUZ12 targets (bottom panel, Ben-Porath et al.).  
NES, Normalized Enrichment Score. 
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CHAPTER EIGHT 
 

JMJC KDM INHIBITORS SYNERGIZE WITH TAXANE-PLATIN 

CHEMOTHERAPY IN ELIMINATING AND PREVENTING 

EMERGENCE OF DRUG RESISTANT NSCLC COLONIES 

 

8.1 JIB-04/GSK-J4 caused synergistic growth inhibition of chemoresistant colonies 

when combined with paclitaxel + carboplatin standard chemotherapy 

Given the hypersensitivity of chemoresistant cells to JmjC KDM inhibitors, and the 

transcriptional reprogramming caused by these epigenetic drugs in resistant cells, I next asked 

whether JIB-04 or GSK-J4 would synergize with standard taxane + platin chemotherapy in 

killing chemoresistant lung cancer cells. Using JIB-04 or GSK-J4 doses that were pre-

determined to not cause complete growth inhibition as single agents, I assessed the effect of 

combining these with paclitaxel + carboplatin doublet. Delta Bliss excess was calculated as the 

difference between expected and observed viability response from combination of these drugs 

(described in Methods section 2.2.3). I found that both JIB-04 and GSK-J4 caused synergistic 

growth inhibition of chemoresistant colonies from H1299 T18 treated with paclitaxel + 

carboplatin (synergy indicated by positive delta Bliss, Figure 8.1 A-B). 
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Figure 8.1 

 

 

 
Figure 8.1 JIB-04 and GSK-J4 showed synergy with paclitaxel + carboplatin standard 
chemotherapy in inhibiting chemoresistant colonies  
(A, B) Combination of JIB-04 (A) or GSK-J4 (B) with standard paclitaxel + carboplatin 
chemotherapy resulted in synergistic inhibition of colony formation of H1299 T18 
chemoresistant cells. Response was greater than additive (indicated by positive delta Bliss). Error 
bars represent mean + SD. P values are from unpaired t test (**P = 0.008 and *P = 0.05). 
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8.2 GSK-J4 prevented the emergence of taxane-platin drug-tolerant persister colonies 

from parental, chemo-sensitive NSCLC cell lines 

Since JmjC KDM inhibitors synergized with paclitaxel + carboplatin standard treatment 

in abrogating drug resistant cells, I next tested whether this could be employed in blocking the 

emergence of drug resistance in the first place. I investigated this possibility by designing an 

assay that mimicked emergence of drug tolerant, surviving clones from chemo-sensitive mass 

cell population seeded in high density (10,000 – 20,000 cells) and exposed to doublet 

chemotherapy over 3-5 weeks. Drug concentration for paclitaxel + carboplatin doublet treatment 

for each cell line was determined based on individual drug response curves from standard 5 day 

MTS assays. Chemo-sensitive parental cells were exposed to taxane-platin drug doses that 

allowed for a surviving subpopulation. I evaluated the effect of sub-lethal doses of GSK-J4 (1-2 

µM) in inhibiting survival and colony forming ability of these taxane-platin ‘persister’ cells. 

When used in combination, GSK-J4 prevented the emergence of paclitaxel + carboplatin drug-

tolerant persister colonies from taxane-platin sensitive NSCLC cell lines (Figure 8.2). 
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Figure 8.2 

 

 

 

 

Figure 8.2 GSK-J4 prevented the emergence of taxane-platin drug-tolerant persister 
colonies from parental, chemo-sensitive NSCLC cell lines  
Sub-lethal doses of GSK-J4 (1-2 µM) blocked the outgrowth of paclitaxel + carboplatin drug 
tolerant persister clones from parental NCI-H1299, HCC4017 and NCI-H1355 non-small cell 
lung cancer cell lines exposed to combination therapy over 3-5 weeks. 
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CHAPTER NINE 
 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

9.1 Main Findings 

My work using newly developed preclinical models of non-small cell lung cancer 

(NSCLC) resistance to standard taxane-platin doublet chemotherapy has identified upregulation 

of JumonjiC (JmjC) histone lysine demethylases (KDM) as an underlying epigenetic mechanism 

for drug resistance. Concomitant with increased KDM expression, taxane-platin resistant cells 

exhibited overall global reduction in H3K27me3 levels across the genome, compared to parental 

cell line. Chemoresistant NSCLC cell lines show increased sensitivity to JmjC KDM inhibitors, 

JIB-04 and GSK-J4, in vitro and in vivo. Using progressively resistant cell line series, my studies 

have established a connection between increased resistance to taxane-platin chemotherapy and 

progressive sensitization to JIB-04 and GSK-J4. JmjC KDM inhibitors synergistically inhibited 

taxane-platin resistant colonies from chemoresistant cell lines, and also blocked the outgrowth of 

drug-tolerant colonies from chemo-naïve, parental cell lines. My findings thus define JmjC 

KDMs as new therapeutic targets not only for the treatment of drug resistant NSCLCs, but also 

for preventing the emergence of taxane-platin drug-tolerant clones from chemo-sensitive tumors. 
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Figure 9.1 

 

 

 
 
 
 
 
Figure 9.1 Model for increasing epigenetic plasticity during the development of resistance 
to standard chemotherapy 
My studies reveal that upon treatment with standard paclitaxel + carboplatin chemotherapy, 
drug-surviving NSCLC parental cells accumulate increasing epigenetic alterations in the form of 
up-regulated JmjC histone lysine demethylases. This offers an opportunity for therapeutic 
targeting of resistant tumor cells with the pharmacological inhibitors, JIB-04 and GSK-J4. 
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Figure 9.2 

 

 

 

 

 
Figure 9.2 Graphical representation of increasing taxane-platin resistance in NSCLC and 
progressive sensitization to JmjC histone demethylase inhibitors 
Upon long-term treatment with cycles of paclitaxel + carboplatin therapy, chemo-sensitive 
NSCLC cell lines developed increasing resistance to this standard chemotherapy doublet. Drug 
resistance was partially reversible upon drug-free culturing, suggesting epigenetic mechanisms. 
Correspondingly, resistant cells were progressively sensitized to JmjC histone lysine 
demethylase inhibitors (JIB-04 and GSK-J4). 
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9.2 Discussion 

Previous studies have reported reversible, slow-cycling and dynamically evolving drug-

tolerant subpopulations in cancer cells exposed to targeted therapy, such as “persister” 

populations expressing KDM5A in EGFR TKI drug tolerance (Sharma et al., 2010) or KDM5B 

in BRAFV600E inhibitor-resistant melanoma cells (Roesch et al., 2013). My work suggests that 

cancer cells may dynamically express these KDMs not only to survive the first contact with 

chemotherapeutic drugs as has been previously demonstrated, but that these persisters continue 

to accumulate increasing levels of epigenetic alterations during the progression of drug 

resistance. Chemoresistant cells continue to depend on KDMs for survival and appear to be 

epigenetically “addicted”, even after resistance has partially locked in, after several cycles of 

chemotherapy treatment. In addition, I found concurrent alterations in several KDMs in NSCLC 

cells resistant to taxane-platin standard chemotherapy although H3K27me3 demethylases were 

the more strongly upregulated. It is possible that different tumors may up-regulate different 

subsets of histone lysine demethylases during the progression of drug resistance. Also within the 

same tumor, it is likely that there exist distinct drug-tolerant subpopulations overexpressing 

different KDMs, a possibility that needs to be further explored. But because many of these 

enzymes are known to have overlapping functions, I propose that a viable strategy would be 

simultaneous inhibition of several of these JmjC demethylases. Clearly, taxane-platin drug 

resistant tumors depend on these KDMs for survival, given their hyper-sensitivity to JIB-04 and 

GSK-J4. Since epigenetic mechanisms are tightly inter-linked, I also tested other classes of 

epigenetic drugs for their differential response towards chemoresistant cells. This led to the 

discovery that the hyper-sensitization of taxane-platin resistant cells is specific to JmjC KDM 

class of epigenetic inhibitors. 
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Due to their ability to regulate multiple transcriptional programs at once, epigenetic 

mechanisms might serve to restore the cellular signaling balance or homeostasis (Mair et al., 

2014) that is perturbed by chemotherapy stress and possibly “compensate” for gene expression 

changes induced by drug treatment. By doing so, these epigenetic modulators might act as a 

cellular defense mechanism to protect cells from further drug insults. My studies show that 

chemoresistant cells develop a dependence on histone lysine demethylases for their survival, and 

pharmacological KDM inhibition results in cell death in culture and in vivo. Furthermore, while 

utilizing this epigenetic “protective shield”, drug surviving cells may in turn switch on multiple 

other resistance mechanisms such as expression of MDR drug efflux transporters, slow-cycling 

phenotype and EMT, as was seen in the developed chemo-resistant cell lines. The JmjC KDM 

inhibitor GSK-J4 prevented the emergence of taxane-platin drug tolerant clones from chemo-

naive parental cell lines, thereby offering an epigenetic strategy for eliminating and preventing 

the outgrowth of drug-tolerant tumor subpopulations.  

The presence of MDR drug efflux phenotype in chemoresistant cell lines also raises the 

question of whether these cells exhibit any other molecular or phenotypical features of cancer 

stem cells, knowing that tumor-initiating side-population cells overexpress ABC transporters (Ho 

et al., 2007). Some past studies have demonstrated elevation of ALDH+ or CD133+ cell 

subpopulation in drug treated cancer cells (Bertolini et al., 2009; Liu et al., 2013; Shien et al., 

2013). While I did not see any enrichment in ALDH+ or CD133+ cell subpopulation in 

chemoresistant variants, microarray data revealed up-regulation of ALDH1A3 isoform in H1299 

T18 and gene expression changes in several members of Notch, Wnt and TGF-β pathways that 

have been widely implicated in stem-ness (Takebe et al., 2011). Moreover, the slow-cycling 

nature and EMT-like phenotypes of resistant cell lines also concur with some previous findings 
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on stem cell-like characteristics of drug resistant cells (Kemper et al., 2014; Roesch et al., 2010; 

Voulgari and Pintzas, 2009) and suggest phenotypic switching.    

Given the differential response of chemoresistant cells to JmjC KDM inhibitors, it was 

interesting to see that JIB-04 or GSK-J4 treatment induced several transcriptional changes 

selectively in the taxane-platin resistant variant, with minimal changes in parental cells. Further, 

these mRNA changes reflected partial reversal of the gene expression profile acquired upon 

development of taxane-platin resistance. These molecular insights into transcriptional 

reprogramming and the hyper-sensitization phenotype of chemoresistant cells to JIB-04 and 

GSK-J4 pave a rational way towards developing JmjC KDM inhibitor therapy to target taxane-

platin resistant lung cancers in the clinic. Also, since previous studies from our laboratory have 

shown that normal human bronchial epithelial cells are not sensitive to JIB-04 (Wang et al., 

2013), this offers a wide therapeutic window for cancer therapy and raises the possibility of 

extending the utility of JmjC histone lysine demethylase inhibitors in other drug resistant solid 

tumors. 

Finally, the 35-gene preclinical resistance signature and its ability to predict cancer 

recurrence in neoadjuvant chemotherapy treated NSCLC patients, presents a clear clinical 

translational path for biomarker development in future studies. Such biomarkers could 

potentially aid in identifying which patients are responding well to standard chemotherapy and 

which patient tumors would eventually develop recurrence. JmjC KDM targeting of the tumors 

that show signs of emerging drug-tolerant clones could help in preventing development of 

chemoresistance and cancer relapses. 
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9.3 Ongoing or Future Studies 

My studies thus far have uncovered increased expression of several members of JmjC 

histone lysine demethylase family in taxane-platin drug resistant NSCLCs. However, it remains 

unanswered whether drug-tolerant persister cells survive and outgrow due to simultaneous up-

regulation of multiple KDMs on a “single-cell level” or alternatively, distinct persister clones 

exist within the surviving population, each overexpressing a different KDM that confers that 

clone with the ability to survive under chemotherapy stress. This question could be potentially 

addressed in future studies by performing single cell quantitative PCR or single-cell RNA-Seq 

(Wu et al., 2014) on resistant cells to determine variation in KDM expression pattern between 

different cells within a resistant population. Further, single cell ChIP-Seq analyses (Rotem et al., 

2015) may reveal alterations in histone methylation in individual cells. Such studies on parental 

cells might also help in understanding whether there are pre-existing drug-tolerant or “resistance-

primed” cells in the parental tumor cell population that are likely to adapt more easily under drug 

stress. After uncovering the extent of involvement of different KDMs in causing drug resistance, 

a systematic genetic knockdown approach (using shRNAs or CRISPRs) could also be undertaken 

in different oncogenotypes of NSCLC cell lines to test if knocking down one or more of such 

KDMs at once can recapitulate the effect of pharmacological inhibition in targeting or preventing 

drug resistance. 

Availability of more standard chemotherapy-treated NSCLC patient tumor specimens 

would aid biomarker development in future studies. Analyses of such tumors by 

immunohistochemistry or customized quantitative PCR array for 35 genes in my resistance 

signature as well as KDM gene family will enable better understanding of the prognostic power 
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of these resistance markers. Further, if matched chemotherapy-responsive and recurrent tumors 

from the same patient are made available, this would greatly expedite such studies in establishing 

a direct correlation between biomarker expression post chemotherapy and development of drug 

resistance and tumor relapse. Predicting which patients are responding to chemotherapy and 

which are likely to develop resistant, recurrent tumors would help in informing therapeutic 

decisions in the future. 

Apart from taxane-platin doublet therapy, other standard chemotherapy agents that are 

administered to NSCLC patients include vinorelbine, gemcitabine and pemetrexed. Whether 

JmjC KDMs are also up-regulated in development of resistance to these agents remains 

undefined. It would be necessary to investigate whether combination treatment with JmjC KDM 

inhibitors can also prevent the outgrowth of persister clones that are tolerant to vinorelbine, 

gemcitabine or pemetrexed. Knowing the connection between KDM5A and resistance to EGFR 

targeted therapy (Sharma et al., 2010) and KDM5B in BRAFV600E targeted vemurafenib 

resistance (Roesch et al., 2013), it appears that histone demethylase driven drug tolerance might 

be more generalized and not restricted to any one chemotherapy. If this is proven to be the case, 

then special attention needs to be invested in developing new drugs to expand the small molecule 

repertoire of available JmjC KDM inhibitors. Such inhibitors could be incorporated into standard 

and targeted combination treatment regimens, to overcome drug resistance in the clinic. 

Finally, it would be important to study genetic mutations acquired upon development of 

taxane-platin drug resistance in my cell line models and uncover any link between such 

mutations and KDM up-regulation. Recent studies have revealed the existence of oncogenic 

K27M mutation of histone H3.3 (H3F3A gene) in pediatric brainstem gliomas that causes 
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reduction in H3K27 methylation and consequently, increases susceptibility to the H3K27 

demethylase inhibitor GSK-J4 (Hashizume et al., 2014). Whether taxane-platin resistant NSCLC 

cells develop any such mutations in histones or epigenetic enzymes remains undetermined. My 

taxane-platin resistant NSCLC cell lines (H1299 T18 and H1355 T16) were recently subjected to 

whole exome sequencing. Comparative analysis of exome-seq data with parental H1299 and 

H1355 cell lines is in progress and once available, should reveal interesting insights into the 

acquired mutations in resistant cell lines, and connection (if any) between genetic mutations and 

epigenetic mechanisms in NSCLC drug resistance. 
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APPENDICES 

APPENDIX A. SWEAVE DOCUMENTATION FOR MICROARRAY ANALYSES 

Introduction 

This section includes R documentation for microarray analysis in Chapter 4 and Chapter 

5, Section 5.1. Significantly altered genes were identified at a false discovery rate (FDR) of 0.1, 

from taxane-platin resistant cell line series (H1299 and H1355) by fitting linear regression model 

on gene expression data using log transformed IC50 values. For xenograft microarray data, 

student's t test was used for differential gene expression analysis at FDR of 0.1. After 

intersection of gene lists from cell lines and xenografts, 35 genes (14 up regulated and 21 down 

regulated) were obtained. The 35 gene pre-clinical signature was tested on 65 NSCLC patients 

who had received neoadjuvant chemotherapy. Unsupervised clustering using 35 genes separated 

the 65 patients into two groups. Kaplan-Meier (K-M) survival curve for recurrence-free survival 

analysis showed that group 2 has significantly worse prognosis. Multivariate Cox regression 

model for the 35 genes showed that the up-regulated gene KDM3B has the largest hazard ratio 

for poor cancer recurrence-free survival. 

Microarray data were pre-processed by R package mbcb for background correction, then 

log-transformed and quantile-normalized with the R package preprocessCore. The gene-level 

expression was obtained by averaging the normalized probes intensity value if multiple probes 

mapped to the same gene. 

Before running the code, put the data in the same folder with the code. 
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Statistics Analysis 
H1299 and H1355 linear regression model 

1. Set the working environment and call the library package 
setwd("~/Documents/YY_Project/Maithili/SWEAVE/") 
#library(preprocessCore) 
library(ClassComparison) 

## Loading required package: oompaBase 

library(survival) 
library(VennDiagram) 

## Loading required package: grid 

library(siggenes) 

## Loading required package: Biobase 
## Loading required package: BiocGenerics 
## Loading required package: parallel 
##  
## Attaching package: 'BiocGenerics' 
##  
## The following objects are masked from 'package:parallel': 
##  
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, 
##     clusterExport, clusterMap, parApply, parCapply, parLapply, 
##     parLapplyLB, parRapply, parSapply, parSapplyLB 
##  
## The following object is masked from 'package:ClassComparison': 
##  
##     as.data.frame 
##  
## The following object is masked from 'package:oompaBase': 
##  
##     as.data.frame 
##  
## The following object is masked from 'package:stats': 
##  
##     xtabs 
##  
## The following objects are masked from 'package:base': 
##  
##     anyDuplicated, append, as.data.frame, as.vector, cbind, 
##     colnames, duplicated, eval, evalq, Filter, Find, get, 
##     intersect, is.unsorted, lapply, Map, mapply, match, mget, 
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, 
##     rbind, Reduce, rep.int, rownames, sapply, setdiff, sort, 
##     table, tapply, union, unique, unlist 
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##  
## Welcome to Bioconductor 
##  
##     Vignettes contain introductory material; view with 
##     'browseVignettes()'. To cite Bioconductor, see 
##     'citation("Biobase")', and for packages 'citation("pkgname")'. 
##  
## Loading required package: multtest 
## Loading required package: splines 

library(gplots) 

##  
## Attaching package: 'gplots' 
##  
## The following object is masked from 'package:multtest': 
##  
##     wapply 
##  
## The following object is masked from 'package:oompaBase': 
##  
##     redgreen 
##  
## The following object is masked from 'package:stats': 
##  
##     lowess 

2. Load normalized gene level expression data (preprocess procedure described in the method) 
load("cell_line.RData") 

3. Run core function/analysis for H1299 Linear regression model for microarray at different 
time series with log transformed drug response IC50. 

# IC 50  
ic50=c(rep(9.2, 5), rep(53, 2), rep(190, 2), rep(490, 2), rep(943, 3)) 
ic50=log(ic50) # log transform, otherwise est is too big.  
 
# linear function 
lm.ic=function(x){ 
  x=as.numeric(x) 
  lm.x=lm(x~ic50) 
  lm.co=summary(lm.x)$coefficients 
  return(t(c(lm.co[2, 1], lm.co[2, 4]))) 
} 
 
dim(df.1299) 

## [1] 20549    19 

head(df.1299[,1:5]) 
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##   gene.id n gene.symbol H1299.Parental.1 H1299.Parental.2 
## 1       1 2        A1BG         3.538114         3.530899 
## 2       2 1         A2M         2.623364         3.244314 
## 3       9 3        NAT1         3.791201         3.896611 
## 4      10 1        NAT2         2.965261         3.086720 
## 5      12 1    SERPINA3         2.933633         3.332563 
## 6      13 1       AADAC         2.845070         3.086720 

colnames(df.1299) 

##  [1] "gene.id"          "n"                "gene.symbol"      
##  [4] "H1299.Parental.1" "H1299.Parental.2" "H1299.Parental.3" 
##  [7] "H1299.Untr.1"     "H1299.Untr.2"     "H1299.T5.1"       
## [10] "H1299.T5.2"       "H1299.T10.1"      "H1299.T10.2"      
## [13] "H1299.T15.1"      "H1299.T15.2"      "H1299.T18.1"      
## [16] "H1299.T18.2"      "H1299.T18.3"      "est"              
## [19] "p.value" 

apply(df.1299[1:5, cell.1299], 1, lm.ic) 

##                 1           2            3           4          5 
## [1,] -0.005878157 -0.04970737 -0.166829025 0.008405362 0.79070808 
## [2,]  0.884844954  0.20710959  0.003930657 0.826502466 0.00106438 

est=apply(df.1299[, cell.1299], 1, lm.ic) 
est=t(est) 
est=data.frame(est) 
head(est) 

##             X1          X2 
## 1 -0.005878157 0.884844954 
## 2 -0.049707375 0.207109593 
## 3 -0.166829025 0.003930657 
## 4  0.008405362 0.826502466 
## 5  0.790708076 0.001064380 
## 6  0.057528835 0.283359856 

names(est)=c("est", "p.value") 
head(est) 

##            est     p.value 
## 1 -0.005878157 0.884844954 
## 2 -0.049707375 0.207109593 
## 3 -0.166829025 0.003930657 
## 4  0.008405362 0.826502466 
## 5  0.790708076 0.001064380 
## 6  0.057528835 0.283359856 

df.1299=cbind(df.1299, est) 
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p.1299=cutoffSignificant(Bum(df.1299$p.value), fdr) 
p.1299 

## [1] 0.02927903 

table(df.1299$p.value < p.1299) 

##  
## FALSE  TRUE  
## 16797  3752 

table(df.1299$p.value < p.1299 & df.1299$est < 0) 

##  
## FALSE  TRUE  
## 18673  1876 

table(df.1299$p.value < p.1299 & df.1299$est > 0) 

##  
## FALSE  TRUE  
## 18673  1876 

id.up.1299=df.1299$gene.id[df.1299$p.value < p.1299 & df.1299$est > 0] 
id.down.1299=df.1299$gene.id[df.1299$p.value < p.1299 & df.1299$est < 0] 
 
 
# volcano plot: p valu only 
par(mar=c(5, 5, 2, 1)) 
plot(df.1299$est, -log10(df.1299$p.value), xlab="Est of coefficients", cex=0.
5, 
     ylab="P value (-log10)", cex.lab=2, cex.axis=1.5, bty="n", col="blue", p
ch=20,  
     yaxt="n") 
axis(2, at=c(0, 2, 4, 6, 8), labels=c(1, 0.01, 0.0001, 0.000001, 0.00000001), 
cex.axis=1.5) 
points(df.1299$est[df.1299$p.value < p.1299 & df.1299$est > 0],  
       -log10(df.1299$p.value[df.1299$p.value < p.1299 & df.1299$est > 0]), c
ol="red",  
       pch=20) 
points(df.1299$est[df.1299$p.value < p.1299 & df.1299$est < 0],  
       -log10(df.1299$p.value[df.1299$p.value < p.1299 & df.1299$est < 0]), c
ol="green",  
       pch=20) 
table(df.1299$p.value < p.1299 & df.1299$est > 0) 

##  
## FALSE  TRUE  
## 18673  1876 

table(df.1299$p.value < p.1299 & df.1299$est < 0) 
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##  
## FALSE  TRUE  
## 18673  1876 

legend("topleft", c("Upregulated:      1876", "Downregulated: 1876"),  
       col=c("red", "green"), pch=20, bty="n") 

  

4. Run core function/analysis for H1355 

# IC 50  
ic50=c(rep(2.2, 5), rep(15, 2), rep(25, 2), rep(245, 2), rep(315, 3)) 
ic50=log(ic50) # log transform, otherwise est is too big.  
# significant p values will enrich.  
ic50 

##  [1] 0.7884574 0.7884574 0.7884574 0.7884574 0.7884574 2.7080502 2.7080502 
##  [8] 3.2188758 3.2188758 5.5012582 5.5012582 5.7525726 5.7525726 5.7525726 

# linear function  
dim(df.1355) 

## [1] 20549    19 

head(df.1355[,1:5]) 

##   gene.id n gene.symbol H1355.Parental.1 H1355.Parental.2 
## 1       1 2        A1BG         3.980461         3.570940 
## 2       2 1         A2M         2.705274         2.888426 
## 3       9 3        NAT1         4.303963         3.966284 
## 4      10 1        NAT2         3.796795         3.593245 
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## 5      12 1    SERPINA3         3.229223         3.493975 
## 6      13 1       AADAC         4.967962         5.713092 

colnames(df.1355) 

##  [1] "gene.id"          "n"                "gene.symbol"      
##  [4] "H1355.Parental.1" "H1355.Parental.2" "H1355.Parental.3" 
##  [7] "H1355.Untr.1"     "H1355.Untr.2"     "H1355.T4.1"       
## [10] "H1355.T4.2"       "H1355.T8.1"       "H1355.T8.2"       
## [13] "H1355.T13.1"      "H1355.T13.2"      "H1355.T16.1"      
## [16] "H1355.T16.2"      "H1355.T16.3"      "est"              
## [19] "p.value" 

est=apply(df.1355[, cell.1355], 1, lm.ic) 
est=t(est) 
est=data.frame(est) 
head(est) 

##            X1           X2 
## 1  0.02633836 0.4573952245 
## 2 -0.03237285 0.1441376047 
## 3  0.28051951 0.0004062189 
## 4 -0.13380885 0.0753998578 
## 5 -0.05697809 0.2763634625 
## 6  0.14990967 0.2601679463 

names(est)=c("est", "p.value") 
head(est) 

##           est      p.value 
## 1  0.02633836 0.4573952245 
## 2 -0.03237285 0.1441376047 
## 3  0.28051951 0.0004062189 
## 4 -0.13380885 0.0753998578 
## 5 -0.05697809 0.2763634625 
## 6  0.14990967 0.2601679463 

df.1355=cbind(df.1355, est) 
 
 
p.1355=cutoffSignificant(Bum(df.1355$p.value), fdr) 
p.1355 

## [1] 0.003536239 

table(df.1355$p.value < p.1355) 

##  
## FALSE  TRUE  
## 19954   595 
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table(df.1355$p.value < p.1355 & df.1355$est <0) 

##  
## FALSE  TRUE  
## 20259   290 

table(df.1355$p.value < p.1355 & df.1355$est > 0) 

##  
## FALSE  TRUE  
## 20244   305 

id.up.1355=df.1355$gene.id[df.1355$p.value < p.1355 & df.1355$est > 0] 
id.down.1355=df.1355$gene.id[df.1355$p.value < p.1355 & df.1355$est < 0] 
sum(id.up.1355 %in% id.up.1299) 

## [1] 51 

sum(id.down.1355 %in% id.down.1299) 

## [1] 59 

# volcano plot:  
par(mar=c(5, 5, 2, 1)) 
plot(df.1355$est, -log10(df.1355$p.value), xlab="Est of coefficients", cex=0.
5, 
     ylab="P value (-log10)", cex.lab=2, cex.axis=1.5, bty="n", col="blue", p
ch=20,  
     yaxt="n") 
axis(2, at=c(0, 2, 4, 6, 8), labels=c(1, 0.01, 0.0001, 0.000001, 0.00000001), 
cex.axis=1.5) 
points(df.1355$est[df.1355$p.value < p.1355 & df.1355$est > 0],  
       -log10(df.1355$p.value[df.1355$p.value < p.1355 & df.1355$est > 0]), c
ol="red",  
       pch=20) 
points(df.1355$est[df.1355$p.value < p.1355 & df.1355$est < 0],  
       -log10(df.1355$p.value[df.1355$p.value < p.1355 & df.1355$est < 0]), c
ol="green",  
       pch=20) 
table(df.1355$p.value < p.1355 & df.1355$est > 0) 

##  
## FALSE  TRUE  
## 20244   305 

table(df.1355$p.value < p.1355 & df.1355$est < 0) 

##  
## FALSE  TRUE  
## 20259   290 
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legend("topleft", c("Upregulated:      305", "Downregulated: 290"),  
       col=c("red", "green"), pch=20, bty="n") 

 

5. Venn diagram for H1299 and H1355 intersected up and down regulated genes. 

# upregulated 
sum(df.1299$p.value < p.1299 & df.1299$est > 0) 

## [1] 1876 

sum(df.1355$p.value < p.1355 & df.1355$est > 0) 

## [1] 305 

sum((df.1299$p.value < p.1299 & df.1299$est > 0) &  
      (df.1355$p.value < p.1355 & df.1355$est > 0)) 

## [1] 51 

plot.new() 
draw.pairwise.venn(1876, 305, 51, cex=3, 
                   fill=c("purple", "blue"), lty="blank") 
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## (polygon[GRID.polygon.1], polygon[GRID.polygon.2], polygon[GRID.polygon.3]
, polygon[GRID.polygon.4], text[GRID.text.5], text[GRID.text.6], text[GRID.te
xt.7], lines[GRID.lines.8], text[GRID.text.9], text[GRID.text.10]) 

# down regulated 
sum(df.1299$p.value < p.1299 & df.1299$est < 0) 

## [1] 1876 

sum(df.1355$p.value < p.1355 & df.1355$est < 0) 

## [1] 290 

sum((df.1299$p.value < p.1299 & df.1299$est < 0) &  
      (df.1355$p.value < p.1355 & df.1355$est < 0))  

## [1] 59 

plot.new() 
draw.pairwise.venn(1876, 290, 59, cex=3, 
                   fill=c("purple", "blue"), lty="blank") 
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## (polygon[GRID.polygon.11], polygon[GRID.polygon.12], polygon[GRID.polygon.
13], polygon[GRID.polygon.14], text[GRID.text.15], text[GRID.text.16], text[G
RID.text.17], lines[GRID.lines.18], text[GRID.text.19], text[GRID.text.20]) 

 

Xenografts 

2. Load the xenograft data 
load("xeno.RData") 
head(df.xeno[,1:5]) 

##   gene.id n gene.symbol H1299.Parental.Cis+Doc.871 
## 1       1 2        A1BG                   3.633839 
## 2       2 1         A2M                   2.229475 
## 3       9 3        NAT1                   3.012080 
## 4      10 1        NAT2                   2.419627 
## 5      12 1    SERPINA3                   5.481228 
## 6      13 1       AADAC                   2.488485 
##   H1299.Parental.Cis+Doc.873 
## 1                   3.136163 
## 2                   1.674401 
## 3                   3.092054 
## 4                   2.585305 
## 5                   7.112472 
## 6                   2.548242 

dim(df.xeno) 

## [1] 20549    15 

colnames(df.xeno) 

##  [1] "gene.id"                    "n"                          
##  [3] "gene.symbol"                "H1299.Parental.Cis+Doc.871" 
##  [5] "H1299.Parental.Cis+Doc.873" "H1299.Parental.Cis+Doc.878" 
##  [7] "H1299.Parental.Saline.872"  "H1299.Parental.Saline.877"  
##  [9] "H1299.Parental.Saline.891"  "H1299.T18.Cis+Doc.868"      
## [11] "H1299.T18.Cis+Doc.882"      "H1299.T18.Cis+Doc.889"      
## [13] "H1299.T18.Saline.862"       "H1299.T18.Saline.870"       
## [15] "H1299.T18.Saline.886" 

xeno.line 

##  [1] "H1299.Parental.Cis+Doc.871" "H1299.Parental.Cis+Doc.873" 
##  [3] "H1299.Parental.Cis+Doc.878" "H1299.Parental.Saline.872"  
##  [5] "H1299.Parental.Saline.877"  "H1299.Parental.Saline.891"  
##  [7] "H1299.T18.Cis+Doc.868"      "H1299.T18.Cis+Doc.882"      
##  [9] "H1299.T18.Cis+Doc.889"      "H1299.T18.Saline.862"       
## [11] "H1299.T18.Saline.870"       "H1299.T18.Saline.886" 
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id.up=df.1299$gene.id[df.1299$p.value < p.1299 & df.1299$est > 0 & 
                         df.1355$p.value < p.1355 & df.1355$est > 0] 
id.down=df.1299$gene.id[df.1299$p.value < p.1299 & df.1299$est < 0 & 
                           df.1355$p.value < p.1355 & df.1355$est < 0] 

3. Significant differential expression gene analysis (FDR 0.1) 
xeno.untr=xeno.line[c(4:6, 10:12)] 
xeno.untr 

## [1] "H1299.Parental.Saline.872" "H1299.Parental.Saline.877" 
## [3] "H1299.Parental.Saline.891" "H1299.T18.Saline.862"      
## [5] "H1299.T18.Saline.870"      "H1299.T18.Saline.886" 

head(df.xeno) 

##   gene.id n gene.symbol H1299.Parental.Cis+Doc.871 
## 1       1 2        A1BG                   3.633839 
## 2       2 1         A2M                   2.229475 
## 3       9 3        NAT1                   3.012080 
## 4      10 1        NAT2                   2.419627 
## 5      12 1    SERPINA3                   5.481228 
## 6      13 1       AADAC                   2.488485 
##   H1299.Parental.Cis+Doc.873 H1299.Parental.Cis+Doc.878 
## 1                   3.136163                   2.745621 
## 2                   1.674401                   1.610231 
## 3                   3.092054                   2.863332 
## 4                   2.585305                   2.481384 
## 5                   7.112472                   5.059355 
## 6                   2.548242                   3.361560 
 
 

dat.validate=df.xeno[, c("gene.id", "n", "gene.symbol", xeno.untr)] 
head(dat.validate) 

##   gene.id n gene.symbol H1299.Parental.Saline.872 
## 1       1 2        A1BG                  3.536566 
## 2       2 1         A2M                  2.307369 
## 3       9 3        NAT1                  3.045042 
## 4      10 1        NAT2                  2.596068 
## 5      12 1    SERPINA3                  2.822787 
## 6      13 1       AADAC                  3.526960 
 

dat.validate$fold.change=apply(dat.validate[,7:9], 1, mean)-apply(dat.validat
e[, 4:6], 1, mean) 
 
xeno.p=function(x){ 
  x=as.numeric(x) 
  return(t.test(x[1:3], x[4:6], alternative="two.sided")$p.value) 
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} 
xeno.p(dat.validate[1, 4:9]) 

## [1] 0.2900682 

dat.validate$p.value=apply(dat.validate[, 4:9], 1, xeno.p) 

 

 

Gene signatures 

3. Venn diagram for up and down regulated genes for both cell lines and xenografts 
#venn diagram 
p.xeno=cutoffSignificant(Bum(dat.validate$p.value), 0.1) 
p.xeno 

## [1] 0.01136179 

table(dat.validate$p.value < p.xeno) 

##  
## FALSE  TRUE  
## 19178  1371 

id.up.xeno=dat.validate$gene.id[dat.validate$p.value < p.xeno & 
                                  dat.validate$fold.change > 0] 
length(id.up) 

## [1] 51 

length(id.up.xeno) 
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## [1] 646 

sum(id.up %in% id.up.xeno) 

## [1] 14 

plot.new() 
draw.pairwise.venn(646, 51, 14, cex=3,  
                   fill=c("light blue", "light green"), lty="blank") 

 

## (polygon[GRID.polygon.21], polygon[GRID.polygon.22], polygon[GRID.polygon.
23], polygon[GRID.polygon.24], text[GRID.text.25], text[GRID.text.26], text[G
RID.text.27], lines[GRID.lines.28], text[GRID.text.29], text[GRID.text.30]) 

id.down.xeno=dat.validate$gene.id[dat.validate$p.value < p.xeno & 
                                  dat.validate$fold.change < 0] 
length(id.down) 

## [1] 59 

length(id.down.xeno) 

## [1] 725 

sum(id.down %in% id.down.xeno) 

## [1] 21 

plot.new() 
draw.pairwise.venn(725, 59, 21, cex=3,  
                   fill=c("light blue", "light green"), lty="blank") 
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## (polygon[GRID.polygon.31], polygon[GRID.polygon.32], polygon[GRID.polygon.
33], polygon[GRID.polygon.34], text[GRID.text.35], text[GRID.text.36], text[G
RID.text.37], lines[GRID.lines.38], text[GRID.text.39], text[GRID.text.40]) 

id.up.regulate=id.up[id.up %in% id.up.xeno] 
id.down.regulate=id.down[id.down %in% id.down.xeno] 
sig.gene=dat.validate[dat.validate$gene.id %in% c(id.up.regulate,id.down.regu
late),c("gene.id", "gene.symbol")] 
gene35=as.character(sig.gene$gene.symbol) 

4. Xenografts volcano plot 

par(mar=c(5, 5, 2, 1)) 
plot(dat.validate$fold.change, -log10(dat.validate$p.value), xlab="Fold Chang
e", cex=0.5, 
     ylab="P value (-log10)", cex.lab=2, cex.axis=1.5, bty="n", col="blue", p
ch=20,  
     yaxt="n") 
axis(2, at=c(0, 2, 4, 6, 8), labels=c(1, 0.01, 0.0001, 0.000001, 0.00000001), 
cex.axis=1.5) 
points(dat.validate$fold.change[dat.validate$p.value < p.xeno & dat.validate$
fold.change > 0],  
       -log10(dat.validate$p.value[dat.validate$p.value < p.xeno & dat.valida
te$fold.change > 0]), col="red",  
       pch=20) 
points(dat.validate$fold.change[dat.validate$p.value < p.xeno & dat.validate$
fold.change < 0],  
       -log10(dat.validate$p.value[dat.validate$p.value < p.xeno & dat.valida
te$fold.change < 0]), col="green",  
       pch=20) 
table(dat.validate$p.value < p.xeno & dat.validate$fold.change > 0) 

##  
## FALSE  TRUE  
## 19903   646 
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table(dat.validate$p.value < p.xeno & dat.validate$fold.change < 0) 

##  
## FALSE  TRUE  
## 19824   725 

legend("bottomleft", c("Upregulated:      646", "Downregulated: 725"),  
       col=c("red", "green"), pch=20, bty="n") 

 

4. Heat maps for 35 gene signature in Cell lines H1355,H1299 and Xenografts 
# load 35 genes signature 
 
xeno <- read.table("xenografts.txt",sep="\t",head=TRUE) 
CL <- read.table("cellLines.txt",sep="\t",head=TRUE) 
 
 
# In xenografts, select probes with largest absolute Fold change to represent 
the genes expression 
xeno35 <- xeno[xeno$Symbol %in% gene35,] 
dat <- NULL 
 
for (id in unique(xeno35$Symbol)){ 
  tmp <- xeno35[xeno35$Symbol %in% id,] 
  if (nrow(tmp)>1){ 
 
    mm = tmp[tmp$H1299.T18.vs.H1299.P==max(abs(tmp$H1299.T18.vs.H1299.P))|tmp
$H1299.T18.vs.H1299.P==-max(abs(tmp$H1299.T18.vs.H1299.P)) ,] 
    dat <- rbind(dat,mm) 
 
  } else { 
    dat=rbind(dat,tmp) 
 
  } 
} 
xe <- dat[,10:21] 
rownames(xe) <- dat$Symbol 
xe=as.matrix(xe) 
xe=xe[,c(1,2,3,7,8,9)] 
 
 
############################################################ 
# In cell lines, select probes with largest absolute Fold change to represent 
the genes expression 
 
# cell lines 
CL35 <- CL[CL$Symbol %in% gene35,] 
CL35.H1355 <- data.frame(Symbol=CL35$Symbol,ProbeID=CL35$Probe.ID,CL35[,grep(
"H1355",colnames(CL35))]) 
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CL35.H1299 <- data.frame(Symbol=CL35$Symbol,ProbeID=CL35$Probe.ID,CL35[,grep(
"H1299",colnames(CL35))]) 
H1355.dat <- NULL 
 
for (id in unique(CL35.H1355$Symbol)){ 
  tmp <- CL35.H1355[CL35.H1355$Symbol %in% id,] 
  if (nrow(tmp)>1){ 
     
    mm = tmp[tmp$H1355.T16.vs.H1355.P==max(abs(tmp$H1355.T16.vs.H1355.P))|tmp
$H1355.T16.vs.H1355.P==-max(abs(tmp$H1355.T16.vs.H1355.P)) ,] 
    H1355.dat <- rbind(H1355.dat,mm) 
     
  } else { 
    H1355.dat=rbind(H1355.dat,tmp) 
     
  } 
} 
 
H1355.cb <- as.matrix(H1355.dat[,4:17]) 
rownames(H1355.cb) <- as.character(H1355.dat$Symbol) 
 
 
H1299.dat <- NULL 
 
for (id in unique(CL35.H1299$Symbol)){ 
  tmp <- CL35.H1299[CL35.H1299$Symbol %in% id,] 
  if (nrow(tmp)>1){ 
     
    mm = tmp[tmp$H1299.T18.vs.H1299.P==max(abs(tmp$H1299.T18.vs.H1299.P))|tmp
$H1299.T18.vs.H1299.P==-max(abs(tmp$H1299.T18.vs.H1299.P)) ,] 
    H1299.dat <- rbind(H1299.dat,mm) 
     
  } else { 
    H1299.dat=rbind(H1299.dat,tmp) 
     
  } 
} 
H1299.cb <- as.matrix(H1299.dat[,4:17]) 
rownames(H1299.cb) <- H1299.dat$Symbol 
 
 
# heatmaps 
 
mm=heatmap.2(xe, col=greenred, scale="row",distfun=function(x) {as.dist(1-cor
(t(x)))},tracecol=NULL,,Colv=FALSE,key=FALSE) 

## Warning in heatmap.2(xe, col = greenred, scale = "row", distfun = 
## function(x) {: Discrepancy: Colv is FALSE, while dendrogram is `row'. 
## Omitting column dendogram. 
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go=rownames(xe)[mm$rowInd] # keep the gene rows in the same order as xenograf
ts 
 
heatmap.2(H1355.cb[go,], col=greenred, margin=c(3,3),scale="row",Rowv=FALSE,C
olv=FALSE,tracecol=NULL,key=FALSE,labRow="") 

## Warning in heatmap.2(H1355.cb[go, ], col = greenred, margin = c(3, 3), 
## scale = "row", : Discrepancy: Rowv is FALSE, while dendrogram is `none'. 
## Omitting row dendogram. 

 

 

 

heatmap.2(H1299.cb[go,], col=greenred, margin=c(3,3),scale="row",Rowv=FALSE,C
olv=FALSE,tracecol=NULL,key=FALSE,labRow="") 
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## Warning in heatmap.2(H1299.cb[go, ], col = greenred, margin = c(3, 3), 
## scale = "row", : Discrepancy: Rowv is FALSE, while dendrogram is `none'. 
## Omitting row dendogram. 

 

 

 

heatmap.2(xe[go,], col=greenred, scale="row",distfun=function(x) {as.dist(1-c
or(t(x)))},tracecol=NULL,Colv=FALSE,Rowv=FALSE,key=FALSE) 

## Warning in heatmap.2(xe[go, ], col = greenred, scale = "row", distfun = 
## function(x) {: Discrepancy: Rowv is FALSE, while dendrogram is `none'. 
## Omitting row dendogram. 
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Evaluate gene signature in patient dataset 

Unsupervised learning for 35 gene signatures on 65 patients who got the neoadjuvant therapy. 

5. Load the data 
load("patient expr.RData") 
 
names(dat.pati)[4:278] <- sub("\\.", "-", names(dat.pati[4:278])) 
 

# load clinical data 
dat.clin <- read.csv("03-28-2014_Dalvi M_65 Neoadjuvant patients with UPDATED 
annotation.csv", as.is=T) 
dat.clin$id %in% names(dat.pati) 

##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
## [15] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
## [29] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
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## [43] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
## [57] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 

dat.neoa <- dat.pati[, c(names(dat.pati[1:3]), dat.clin$id)] 
id <- c(id.up.regulate, id.down.regulate) 
 
dat.neoa <- dat.neoa[dat.neoa$gene.id %in% id, ] 
row.names(dat.neoa) <- dat.neoa$gene.id 
row.names(dat.neoa) 

##  [1] "284"    "1396"   "2526"   "2581"   "3371"   "4100"   "7265"   
##  [8] "8676"   "9423"   "9482"   "9685"   "10541"  "10758"  "23493"  
## [15] "23530"  "25996"  "26499"  "51780"  "53616"  "56001"  "64393"  
## [22] "79659"  "79890"  "79894"  "83943"  "85474"  "114805" "133522" 
## [29] "154661" "192286" "196403" "257415" "286499" "400027" "728343" 

dat.neoa <- dat.neoa[, 4:68] 

4. Cluster plot and K-M curve recurrence free survival analysis 
# cluster plot 
hc.cell=hclust(dist(t(dat.neoa), method="maximum")) 
plot(hc.cell) 

 

hc.cell$order 

##  [1] 30 52 32  3 50 12 15 29 37 38 10 22  4 19  5  8 53 18 21  2 45  1  7 
## [24] 44 14 11 17 16 20 43 46 39 34 36  6  9 49 13 33 47 48 51 57 65 28 54 
## [47] 42 55 27 61 25 58 40 63 56 59 64 31 41 62 60 26 35 23 24 

dat.surv <- data.frame(id=hc.cell$labels[hc.cell$order], group=c(rep(1, 42), 
rep(2, 23)))  
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dat.surv <- merge(dat.surv, dat.clin, by="id") 
 
# K-M plot 
kmplot <- function(survival,groups, title.lab="",xlab="",ylab="", 
               survivallimit=c(60, 120), display=TRUE, cex.axis=1.5, cex.lab=
1.4, cex.main=1.5, 
               mar=c(5.1 , 5.3, 4.1, 1.1), sig=NULL, ...) 
{ 
  require(survival) 
  survival<-survival[!is.na(groups),] 
  groups<-groups[!is.na(groups)] 
  if(length(levels(factor(groups)))<2) 
  { cat("error in kmplot\n"); return() } 
  logrank<-survdiff(survival ~ groups,  ...) 
  pv <- pchisq(logrank$chisq,1, lower.tail=F) 
 
  summary_coxph <- summary(coxph(survival ~ groups, ...)) 
  ci <-summary_coxph$conf.int 
 
 
  col=c("black", "red") 
  if (display) { 
      sfit= survfit(survival ~ groups, ...) 
 
      plot(sfit, col=col, lty=1:2, main=title.lab, xlab=xlab,ylab=ylab, mark.
time=TRUE,mark=19, 
         cex.axis=cex.axis, cex.lab=cex.lab, cex.main=cex.main, mar=mar, ...) 
 
      ### add two vertical line represent 5 year and 10 year 
#      sapply(survivallimit, function(x) abline(v=x, col="grey")) 
 
       ### add results on plot 
      stat=paste("n = ",length(groups),", ",pv.expr(pv) , "\n HR=",format(ci[
1],digits=3), 
                 " (95%CI,",format(ci[3],digits=3),"-", 
                 format(ci[4],digits=3),")",sep="") 
      x=min(survival[,1])+0.5*(max(survival[,1])-min(survival[,1])) 
      text(x, 0.15 ,stat , cex=cex.lab) 
  } 
  return(list(group_table=table(groups),logrank.p=pv, 
              hr=ci[1],hr.5=ci[3],hr.95=ci[4], n=length(groups), 
              ebeta=summary_coxph$coef[1], z=summary_coxph$coef[4],pr.z=summa
ry_coxph$coef[5], 
              groups=groups)) 
} 
 
         ##Function to format pvalues in K-M plot 
pv.expr <- function(x, digits = 2) { 
    if (!x) return(0) 
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    exponent <- floor(log10(x)) 
    base <- round(x / 10^exponent, digits) 
    ifelse(x > 0.0001, 
        paste("p = ", base*(10^exponent), sep=""), 
        paste("p = ", base, "E", exponent, sep="")) 
} 
 
 
survival <- Surv(time=as.numeric(as.character(dat.surv$cancer.free.survival.m
onth)), 
              event=dat.surv$recurrence == 'Y') 
survdiff(survival ~ dat.surv$group) 

## Call: 
## survdiff(formula = survival ~ dat.surv$group) 
##  
##                   N Observed Expected (O-E)^2/E (O-E)^2/V 
## dat.surv$group=1 42       20    28.56      2.56      10.5 
## dat.surv$group=2 23       18     9.44      7.75      10.5 
##  
##  Chisq= 10.5  on 1 degrees of freedom, p= 0.0012 

kmplot(survival, dat.surv$group) 

 

## $group_table 
## groups 
##  1  2  
## 42 23  
##  
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## $logrank.p 
## [1] 0.001200184 
##  
## $hr 
## [1] 2.776687 
##  
## $hr.5 
## [1] 1.458712 
##  
## $hr.95 
## [1] 5.28548 
##  
## $n 
## [1] 65 
##  
## $ebeta 
## [1] 1.021258 
##  
## $z 
## [1] 3.109546 
##  
## $pr.z 
## [1] 0.001873753 
##  
## $groups 
##  [1] 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 1 2 2 1 1 1 1 1 1 2 2 1 
## [36] 1 2 2 1 2 2 1 1 1 1 2 1 1 1 2 1 2 2 1 2 2 1 1 1 1 1 2 1 2 2 

5. Multivariate Cox regression model 
# data for 65 neoajuvant patients 
load("dat65.RData") 
head(dat65[,1:5]) 

##   gene.id n gene.symbol    2302-T    1238-T 
## 1       1 2        A1BG  3.638638  2.605372 
## 2       2 1         A2M 10.282485 11.270556 
## 3       9 3        NAT1  3.201879  3.562783 
## 4      10 1        NAT2  2.183924  2.484070 
## 5      12 1    SERPINA3 10.435610  9.637462 
## 6      13 1       AADAC  8.201044  3.566616 

dim(dat65) 

## [1] 19579    68 

cli65=dat.clin 
sig.id <- c(id.up.regulate, id.down.regulate) 
sur65 <- dat65[dat65$gene.id %in% sig.id,] 
row.names(sur65) <- sur65$gene.symbol 
sur65 <- sur65[, -c(1:3)] 
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sur65 <- data.frame(t(sur65)) 
head(sur65) 

##          ANGPT1    CRIP1     FUT4     GALC      TNC   MAGEA1     TTC1 
## 2302-T 8.235965 10.73370 5.422461 7.486111 8.190325 2.634824 8.216957 
## 1238-T 7.010597 11.35512 5.125421 7.166048 8.693179 2.708898 7.949370 
## 2157-T 5.381803 10.67481 4.150018 6.272858 7.075845 2.896832 8.054993 
## 2045-T 7.963517 11.84460 4.616963 6.794380 7.304523 2.662581 7.866941 
## 2237-T 7.489364 12.19631 5.336181 7.265428 7.057829 2.768827 8.055649 
## 2259-T 6.587808 12.08331 4.885976 6.528196 8.851127 3.828562 8.342618 
##           STX11     NTN1     STX8   CLINT1   ANP32B TRAF3IP2     HEY2 
## 2302-T 8.806033 3.866315 7.807953 9.964402 11.97116 5.748529 4.538813 
## 1238-T 8.990390 3.934511 8.164496 9.348762 11.80851 5.224289 6.463278 
## 2157-T 7.266282 4.691052 7.932429 8.789924 12.60085 5.632375 4.672881 
## 2045-T 9.024002 3.782765 7.853039 9.588817 11.81897 4.804227 5.344224 
## 2237-T 8.642615 3.650787 7.420597 9.801010 11.90997 5.340369 6.014473 
## 2259-T 6.644821 3.998293 7.765663 9.865428 11.74342 5.591911 8.132118 
 

sur65$id <- row.names(sur65) 
sur65 <- merge(sur65, cli65, by="id") 
sur65$event <- ifelse(sur65$recurrence == "Y", 1, 0) 
paste(names(sur65)[2:36], collapse = " + ") 

## [1] "ANGPT1 + CRIP1 + FUT4 + GALC + TNC + MAGEA1 + TTC1 + STX11 + NTN1 + S
TX8 + CLINT1 + ANP32B + TRAF3IP2 + HEY2 + NNT + REXO2 + PLEK2 + KDM3B + ADAM2
2 + NXF2 + ZMAT3 + DYNC2H1 + RIN3 + ZNF672 + IMMP2L + LBX2 + GALNT13 + PPARGC
1B + RUNDC3B + HIGD2A + DTX3 + FAM133B + FAM133A + LOC400027 + NXF2B" 

# multivariate cox regression model 
fit65 <- coxph(Surv(cancer.free.survival.month, event)~ ANGPT1 + CRIP1 + FUT4 
+ GALC + TNC + MAGEA1 + TTC1 + STX11 + NTN1 + STX8 + CLINT1 + ANP32B + TRAF3I
P2 + HEY2 + NNT + REXO2 + PLEK2 + KDM3B + ADAM22 + NXF2 + ZMAT3 + DYNC2H1 + R
IN3 + ZNF672 + IMMP2L + LBX2 + GALNT13 + PPARGC1B + RUNDC3B + HIGD2A + DTX3 + 
FAM133B + FAM133A + LOC400027 + NXF2B, data=sur65) 
sum65 <- summary(fit65) 
coe65=sum65$coefficients 
coe65 

##                 coef   exp(coef)  se(coef)          z     Pr(>|z|) 
## ANGPT1     0.2091745  1.23266002 0.3522183  0.5938772 0.5525942229 
## CRIP1      0.4827728  1.62056161 0.4083533  1.1822427 0.2371093988 
## FUT4       0.6953699  2.00445029 0.8489477  0.8190962 0.4127315352 
## GALC       0.1018298  1.10719499 0.6486271  0.1569928 0.8752505211 
## TNC        0.4542830  1.57504372 0.2696067  1.6849841 0.0919916316 
## MAGEA1     0.3877544  1.47366785 0.2178626  1.7798117 0.0751067903 
## TTC1      -0.7462477  0.47414233 0.8774816 -0.8504426 0.3950790600 
## STX11     -0.0624412  0.93946831 0.4083143 -0.1529243 0.8784579357 
## NTN1       0.4174976  1.51815770 0.4800938  0.8696166 0.3845099402 
## STX8      -2.1243707  0.11950815 0.8603591 -2.4691674 0.0135427840 
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## CLINT1    -2.9858164  0.05049826 1.3702253 -2.1790697 0.0293264880 
## ANP32B    -0.8004983  0.44910512 0.7571715 -1.0572219 0.2904103310 
## TRAF3IP2   1.3593645  3.89371789 0.8955198  1.5179613 0.1290241587 
## HEY2      -0.1132994  0.89288327 0.2281820 -0.4965310 0.6195198115 
## NNT        3.0160368 20.41024063 0.8867630  3.4011757 0.0006709668 
## REXO2      0.8232530  2.27789773 1.0772530  0.7642150 0.4447391043 
## PLEK2     -0.0854132  0.91813283 0.2689104 -0.3176270 0.7507679273 
## KDM3B      2.3300661 10.27862073 1.0422492  2.2356132 0.0253771209 
## ADAM22     1.8088556  6.10345840 1.2200918  1.4825569 0.1381921728 
## NXF2      -1.9577895  0.14117013 1.3088808 -1.4957738 0.1347126236 
## ZMAT3     -0.2423971  0.78474446 0.8924421 -0.2716111 0.7859210966 
## DYNC2H1   -0.7245371  0.48454882 0.4513348 -1.6053205 0.1084232849 
## RIN3       0.1752646  1.19156148 0.4063743  0.4312886 0.6662585233 
## ZNF672    -1.7224168  0.17863391 1.0290374 -1.6738135 0.0941672569 
## IMMP2L     0.6351963  1.88739254 0.7552601  0.8410299 0.4003311966 
## LBX2       0.6945857  2.00287903 0.3475644  1.9984375 0.0456692455 
## GALNT13    0.5186821  1.67981236 0.3777974  1.3729106 0.1697801307 
## PPARGC1B  -0.3403402  0.71152822 0.3936462 -0.8645839 0.3872672093 
## RUNDC3B   -0.1737039  0.84054572 0.3701324 -0.4693021 0.6388537108 
## HIGD2A    -0.1515406  0.85938303 1.1451527 -0.1323322 0.8947215570 
## DTX3       0.8800273  2.41096560 0.3218440  2.7343286 0.0062507638 
## FAM133B   -1.6762593  0.18707245 1.3213149 -1.2686297 0.2045731611 
## FAM133A    0.1851519  1.20340119 0.2420717  0.7648639 0.4443526181 
## LOC400027 -0.3161092  0.72897986 0.5113653 -0.6181670 0.5364652793 
## NXF2B      2.7053611 14.95971778 1.6524065  1.6372249 0.1015834781 

dm=coe65[as.character(up$gene.symbol),] 
dim(dm) 

## [1] 14  5 

 

14 up regulated genes 
 

plot(dm[,2],-log(dm[,5]),type="p",pch=19,xlab="Hazard Ratio",ylab="-log(p.val
ue)") 
abline(h=1.25,v=0,lty=2) 
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dat.surv$neoadj <- ifelse(dat.surv$Neoadjuvant.Drugs %in% c("Cisplatin Doceta
xel", "Carboplatin Paclitaxel", "Carboplatin Docetaxel", "Cisplatin"), 1, 0) 

 
table(dat.surv$neoadj) 

##  
##  0  1  
## 10 55 

dat.surv$path[grep("IA", dat.surv$pathology)] <- "I" 
dat.surv$path[grep("IB", dat.surv$pathology)] <- "I" 
dat.surv$path[grep("IIA", dat.surv$pathology)] <- "II" 
dat.surv$path[grep("IIB", dat.surv$pathology)] <- "II" 
dat.surv$path[grep("IIIA", dat.surv$pathology)] <- "III" 
dat.surv$path[grep("IIIB", dat.surv$pathology)] <- "III" 
dat.surv$path[grep("IV", dat.surv$pathology)] <- "IV" 
 
coxph(Surv(cancer.free.survival.month, recurrence == 'Y') ~ group, data=dat.s
urv) 

## Call: 
## coxph(formula = Surv(cancer.free.survival.month, recurrence ==  
##     "Y") ~ group, data = dat.surv) 
##  
##  
##       coef exp(coef) se(coef)    z      p 
## group 1.02      2.78    0.328 3.11 0.0019 
##  
## Likelihood ratio test=9.15  on 1 df, p=0.00249  n= 65, number of events= 3
8 
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cox.fit <- coxph(Surv(cancer.free.survival.month, recurrence == 'Y') ~ group 
+ histology + age + smoke + Gender + Race + Adjuvant.Therapy + neoadj + path, 
data=dat.surv) 
 
cox.fit 

## Call: 
## coxph(formula = Surv(cancer.free.survival.month, recurrence ==  
##     "Y") ~ group + histology + age + smoke + Gender + Race +  
##     Adjuvant.Therapy + neoadj + path, data = dat.surv) 
##  
##  
##                                  coef exp(coef) se(coef)      z      p 
## group                          1.6292     5.100   0.4858  3.354 0.0008 
## histologyOther                 0.3710     1.449   0.4745  0.782 0.4300 
## histologySquamous             -0.2292     0.795   0.4969 -0.461 0.6400 
## age                            0.0222     1.022   0.0251  0.884 0.3800 
## smokeY                        -0.9275     0.396   0.6676 -1.389 0.1600 
## GenderM                       -0.2108     0.810   0.4312 -0.489 0.6200 
## RaceAsian or Pacific Islander -0.2788     0.757   1.5221 -0.183 0.8500 
## RaceCaucasian                 -0.8713     0.418   0.8005 -1.088 0.2800 
## RaceHispanic                  -0.1321     0.876   1.2877 -0.103 0.9200 
## Adjuvant.TherapyY             -1.0292     0.357   0.4962 -2.074 0.0380 
## neoadj                         0.5252     1.691   0.5182  1.014 0.3100 
## pathII                        -0.2370     0.789   0.5893 -0.402 0.6900 
## pathIII                        1.0031     2.727   0.4973  2.017 0.0440 
## pathIV                         0.9530     2.594   0.6674  1.428 0.1500 
##  
## Likelihood ratio test=23.2  on 14 df, p=0.0566  n= 65, number of events=38 
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APPENDIX B. GENES REVERSED IN H1299 T18 BY JIB-04 TREATMENT 

(Supplemental to Figure 7.3; D, Down-regulated and U, Up-regulated; Fold change ≥ 1.5) 

 

Gene 

H1299 T18 
DMSO vs 

H1299 
Parental 
DMSO 

Log2 [Fold 
Change] 

T-test P 
value 

H1299 T18 
JIB04 vs 

H1299 T18 
DMSO 

Log2 [Fold 
Change] 

T-test P 
value 

YPEL2 D -1.73 0.040 U 4.00 0.011 
C5orf41 D -1.73 0.003 U 3.30 0.027 
C5orf41 D -1.55 0.019 U 3.19 0.024 
FBXO32 D -1.37 0.046 U 2.51 0.026 
DDIT4 D -2.27 0.022 U 2.22 0.012 
PER2 D -1.82 0.001 U 2.19 0.005 
EGFR D -1.05 0.020 U 2.19 0.013 
NRP1 D -2.08 0.008 U 2.15 0.015 
BHLHE40 D -3.76 0.025 U 2.14 0.026 
DDIT3 D -0.95 0.035 U 2.13 0.013 
CTGF D -1.03 0.029 U 2.07 0.031 
EFNB2 D -1.14 0.035 U 2.04 0.004 
NFIL3 D -0.72 0.011 U 1.94 0.006 
CTGF D -0.89 0.018 U 1.88 0.001 
JUN D -1.46 0.034 U 1.88 0.008 
NRP1 D -2.27 0.029 U 1.82 0.048 
GRAMD1B D -2.01 0.014 U 1.65 0.000 
MT1G D -0.89 0.027 U 1.63 0.041 
LYPD1 D -2.28 0.032 U 1.58 0.007 
PPP1R15A D -1.37 0.032 U 1.57 0.033 
TMEM91 D -1.67 0.019 U 1.55 0.004 
BNC1 D -0.97 0.035 U 1.54 0.019 
TRIB3 D -1.04 0.004 U 1.50 0.008 
BMP2 D -0.92 0.031 U 1.48 0.017 
RBMS1 D -1.83 0.039 U 1.48 0.006 
ATF3 D -0.89 0.028 U 1.46 0.019 
RAB3IL1 D -1.37 0.025 U 1.45 0.015 
CCDC93 D -2.37 0.000 U 1.45 0.006 
KRT86 D -0.73 0.039 U 1.44 0.034 
WDR33 D -1.50 0.005 U 1.42 0.005 
ZNF442 D -0.93 0.048 U 1.41 0.034 
SNX30 D -0.97 0.007 U 1.26 0.005 
ASNS D -0.90 0.003 U 1.26 0.001 
RALGDS D -0.77 0.041 U 1.22 0.015 
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SPRN D -1.17 0.033 U 1.21 0.031 
RAB4B D -1.69 0.009 U 1.20 0.026 
SAT1 D -1.39 0.018 U 1.20 0.032 
DCBLD2 D -2.43 0.015 U 1.18 0.035 
CHIC2 D -1.15 0.015 U 1.17 0.015 
ZMYM5 D -0.84 0.028 U 1.15 0.031 
BEND7 D -1.15 0.045 U 1.13 0.006 
SH3GL2 D -2.72 0.038 U 1.13 0.012 
WDR33 D -1.36 0.016 U 1.08 0.004 
CCDC28A D -0.70 0.032 U 1.05 0.038 
PTP4A3 D -2.32 0.030 U 1.03 0.048 
TCP11L1 D -0.87 0.003 U 1.02 0.002 
PLAUR D -3.00 0.014 U 1.01 0.018 
PLAUR D -2.73 0.001 U 1.00 0.007 
PVRL2 D -3.20 0.004 U 1.00 0.007 
PLAU D -1.12 0.011 U 0.97 0.000 
WIPI1 D -0.80 0.045 U 0.97 0.006 
SH3BP1 D -1.83 0.009 U 0.96 0.047 
TCF24 D -1.61 0.013 U 0.96 0.023 
LOC730755 D -2.89 0.018 U 0.95 0.019 
TMEM114 D -1.75 0.048 U 0.93 0.045 
AMOTL2 D -0.85 0.033 U 0.89 0.038 
TRAF4 D -1.55 0.015 U 0.89 0.043 
YEATS2 D -0.84 0.023 U 0.88 0.018 
ATXN3 D -0.88 0.026 U 0.86 0.012 
C9orf21 D -0.65 0.010 U 0.86 0.003 
HINFP D -0.85 0.001 U 0.84 0.001 
UBXN7 D -1.40 0.008 U 0.84 0.031 
SCGB1A1 D -0.81 0.004 U 0.83 0.005 
RELB D -1.19 0.017 U 0.82 0.034 
RFTN1 D -1.35 0.014 U 0.81 0.003 
ANTXR1 D -1.06 0.026 U 0.81 0.040 
PTHLH D -1.13 0.008 U 0.80 0.019 
PLLP D -1.63 0.003 U 0.80 0.043 
ATPBD4 D -0.65 0.004 U 0.77 0.016 
CLCN6 D -1.83 0.001 U 0.77 0.020 
VLDLR D -1.00 0.022 U 0.76 0.009 
CHEK2 D -0.96 0.006 U 0.75 0.040 
ZNF567 D -1.20 0.029 U 0.74 0.044 
NUDT14 D -1.11 0.008 U 0.74 0.001 
BAMBI D -3.02 0.024 U 0.74 0.012 
ZNF529 D -1.30 0.022 U 0.74 0.039 
MED30 D -0.99 0.040 U 0.73 0.023 
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JDP2 D -2.00 0.002 U 0.73 0.014 
ZNF259 D -0.80 0.037 U 0.72 0.017 
BOD1 D -0.76 0.003 U 0.71 0.025 
FGGY D -0.82 0.021 U 0.68 0.011 
CNOT4 D -0.61 0.047 U 0.66 0.025 
MAGED2 D -1.96 0.011 U 0.65 0.026 
NXN D -1.49 0.034 U 0.64 0.015 
ZNF197 D -0.83 0.027 U 0.62 0.020 
AKR1A1 D -0.69 0.031 U 0.62 0.033 
SLAIN1 D -1.30 0.038 U 0.61 0.017 
HPS1 D -0.86 0.002 U 0.61 0.004 
GPM6B D -2.33 0.002 U 0.61 0.012 
DENND1A D -1.46 0.008 U 0.60 0.041 
KLK13 D -0.78 0.050 U 0.60 0.040 
PSPC1 D -1.36 0.018 U 0.60 0.036 
L3MBTL1 U 1.71 0.046 D -0.61 0.040 
TMEM67 U 1.17 0.034 D -0.61 0.007 
LACTB U 0.85 0.023 D -0.61 0.028 
ZC4H2 U 1.31 0.000 D -0.62 0.047 
RNF114 U 0.71 0.008 D -0.63 0.004 
VPS45 U 0.80 0.007 D -0.63 0.016 
GK U 0.97 0.029 D -0.64 0.046 
D2HGDH U 0.69 0.020 D -0.64 0.040 
ARHGAP11A U 0.67 0.017 D -0.64 0.041 
L3MBTL2 U 0.80 0.024 D -0.65 0.014 
PHTF1 U 1.07 0.004 D -0.65 0.022 
AURKA U 0.82 0.036 D -0.65 0.011 
TSPAN12 U 3.41 0.015 D -0.66 0.011 
CXXC4 U 0.78 0.035 D -0.66 0.040 
GNA15 U 1.10 0.011 D -0.67 0.007 
ABCD3 U 0.81 0.027 D -0.67 0.015 
ATG2A U 0.80 0.010 D -0.67 0.013 
MARCKSL1 U 0.70 0.005 D -0.67 0.007 
FAM36A U 0.68 0.023 D -0.67 0.015 
PCYOX1 U 0.71 0.010 D -0.67 0.011 
HOXA10 U 3.43 0.010 D -0.69 0.036 
PARD6G U 3.44 0.002 D -0.69 0.021 
FAN1 U 1.14 0.035 D -0.70 0.041 
REEP5 U 1.25 0.004 D -0.71 0.003 
SOCS4 U 1.30 0.035 D -0.71 0.039 
NEFH U 1.16 0.035 D -0.72 0.017 
SUPT16H U 0.60 0.022 D -0.72 0.029 
ABCB6 U 1.68 0.018 D -0.73 0.022 
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PHF10 U 1.36 0.014 D -0.73 0.041 
FARSB U 1.05 0.040 D -0.73 0.033 
C18orf55 U 1.38 0.015 D -0.75 0.032 
TXLNG U 0.88 0.050 D -0.77 0.049 
TRAK2 U 1.42 0.030 D -0.77 0.024 
TBX18 U 2.23 0.011 D -0.78 0.043 
TOMM40L U 1.34 0.001 D -0.78 0.019 
RAD17 U 0.77 0.018 D -0.78 0.024 
C1orf61 U 3.73 0.004 D -0.78 0.039 
ZNF618 U 1.98 0.004 D -0.79 0.027 
AP1G1 U 0.97 0.013 D -0.79 0.029 
RPL23AP82 U 0.81 0.049 D -0.79 0.048 
HAS3 U 2.01 0.011 D -0.80 0.020 
SLC10A7 U 1.57 0.001 D -0.80 0.007 
BACH2 U 0.94 0.009 D -0.81 0.014 
ATP8B2 U 0.93 0.042 D -0.82 0.013 
MLKL U 1.44 0.027 D -0.82 0.029 
SLC25A44 U 0.70 0.027 D -0.82 0.020 
FLJ39061 U 0.88 0.001 D -0.83 0.004 
RNFT2 U 1.41 0.049 D -0.86 0.048 
SATB2 U 0.83 0.013 D -0.87 0.044 
GK U 0.93 0.039 D -0.87 0.015 
GAS8 U 1.01 0.033 D -0.88 0.028 
PRKX U 1.42 0.017 D -0.88 0.034 
LOC100127910 U 1.08 0.043 D -0.90 0.049 
ZNF839 U 0.73 0.044 D -0.91 0.004 
C20orf117 U 0.92 0.032 D -0.91 0.011 
FNTB U 1.01 0.005 D -0.93 0.026 
ATP2A2 U 0.74 0.005 D -0.93 0.049 
C1R U 0.60 0.044 D -0.94 0.037 
LRRC8B U 0.91 0.027 D -0.94 0.006 
STRADB U 0.86 0.024 D -0.96 0.023 
BRI3BP U 1.02 0.008 D -0.97 0.040 
NFATC2IP U 0.60 0.021 D -0.97 0.008 
RRM2 U 0.90 0.037 D -0.98 0.016 
LYRM7 U 1.31 0.027 D -0.98 0.044 
C15orf52 U 0.94 0.042 D -0.99 0.010 
C1RL U 2.47 0.002 D -1.00 0.011 
C6orf168 U 0.80 0.036 D -1.00 0.029 
WDR36 U 0.69 0.029 D -1.00 0.004 
KIF20A U 0.94 0.016 D -1.00 0.015 
PSRC1 U 0.87 0.016 D -1.00 0.045 
FBXL5 U 1.32 0.014 D -1.05 0.038 
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DDX46 U 0.82 0.017 D -1.05 0.008 
SERTAD4 U 0.88 0.010 D -1.06 0.002 
LOC283683 U 1.35 0.033 D -1.08 0.024 
LOC100132707 U 0.81 0.030 D -1.10 0.014 
GSTM4 U 1.84 0.033 D -1.13 0.038 
STEAP2 U 3.37 0.046 D -1.19 0.031 
FAM83D U 0.66 0.023 D -1.19 0.007 
SKP2 U 0.62 0.021 D -1.21 0.004 
NCRNA00085 U 0.72 0.011 D -1.21 0.042 
MUDENG U 1.18 0.024 D -1.22 0.002 
HOXB5 U 1.18 0.002 D -1.26 0.007 
ISL1 U 2.30 0.009 D -1.27 0.026 
ZKSCAN5 U 0.81 0.019 D -1.28 0.036 
NLRP11 U 1.14 0.029 D -1.32 0.017 
RIMKLA U 1.76 0.027 D -1.33 0.047 
D2HGDH U 1.47 0.017 D -1.33 0.026 
JAKMIP2 U 1.33 0.040 D -1.35 0.024 
C10orf140 U 1.92 0.005 D -1.37 0.011 
FGF16 U 1.56 0.020 D -1.38 0.024 
CROT U 1.77 0.027 D -1.40 0.020 
KIAA0895 U 1.57 0.009 D -1.46 0.010 
ERI2 U 1.47 0.049 D -1.46 0.019 
SFXN5 U 1.89 0.026 D -1.66 0.032 
FAM127C U 0.69 0.010 D -1.71 0.005 
GPER U 0.71 0.025 D -1.78 0.005 
VASH2 U 2.01 0.016 D -1.80 0.017 
PCDHB5 U 3.01 0.010 D -1.83 0.023 
RAB36 U 2.85 0.007 D -1.88 0.017 
TRIM55 U 3.06 0.011 D -1.90 0.029 
LOC100128191 U 1.49 0.022 D -1.99 0.035 
SKP2 U 0.96 0.017 D -2.08 0.002 
LEAP2 U 1.84 0.026 D -2.21 0.047 
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APPENDIX C. GENES REVERSED IN H1299 T18 BY GSK-J4 TREATMENT 

(Supplemental to Figure 7.3; D, Down-regulated and U, Up-regulated; Fold change ≥ 1.5) 

 

Gene 

H1299 T18 
DMSO vs 

H1299 
Parental 
DMSO 

Log2 [Fold 
Change] 

T-test P 
value 

H1299 T18 
GSKJ4 vs 
H1299 T18 

DMSO 

Log2 [Fold 
Change] 

T-test P 
value 

BNIP3 D -0.86 0.002 U 3.27 0.000 
DPYSL4 D -2.03 0.046 U 2.74 0.048 
DDIT4 D -2.27 0.022 U 2.64 0.013 
MFAP5 D -2.63 0.000 U 2.05 0.032 
NRP1 D -2.27 0.029 U 1.95 0.015 
FOSB D -1.06 0.041 U 1.85 0.006 
PLOD2 D -0.86 0.021 U 1.85 0.031 
EFNB2 D -1.14 0.035 U 1.77 0.017 
YPEL2 D -1.73 0.040 U 1.77 0.039 
ARHGDIB D -7.55 0.007 U 1.58 0.027 
TSC22D1 D -3.70 0.020 U 1.57 0.021 
SLC2A1 D -1.43 0.026 U 1.52 0.046 
BHLHE40 D -3.76 0.025 U 1.49 0.021 
SLC16A3 D -2.37 0.004 U 1.46 0.027 
PDGFA D -1.31 0.035 U 1.44 0.036 
FAM43A D -2.06 0.024 U 1.43 0.015 
FXYD5 D -2.28 0.008 U 1.42 0.016 
ASNS D -0.90 0.003 U 1.31 0.003 
SESN2 D -1.48 0.011 U 1.31 0.034 
VLDLR D -1.00 0.022 U 1.24 0.006 
NEK6 D -1.77 0.007 U 1.20 0.006 
FYN D -1.35 0.018 U 1.20 0.022 
PER2 D -1.82 0.001 U 1.18 0.048 
HOXD11 D -2.67 0.008 U 1.16 0.027 
KATNAL1 D -0.88 0.003 U 1.10 0.020 
SPRN D -1.17 0.033 U 1.07 0.040 
JDP2 D -2.00 0.002 U 1.05 0.036 
NFIL3 D -0.72 0.011 U 1.04 0.023 
MGLL D -5.61 0.012 U 1.02 0.001 
C5orf41 D -1.55 0.019 U 1.02 0.039 
CASKIN2 D -0.89 0.029 U 1.01 0.007 
MT1G D -0.89 0.027 U 1.01 0.023 
RALGDS D -0.77 0.041 U 0.97 0.022 
TCF24 D -1.61 0.013 U 0.96 0.020 
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NUDT14 D -1.11 0.008 U 0.95 0.001 
CHIC2 D -1.15 0.015 U 0.94 0.039 
NRP1 D -2.08 0.008 U 0.94 0.011 
PPP1R1B D -0.72 0.006 U 0.92 0.018 
C4BPB D -0.82 0.017 U 0.91 0.004 
CXCR4 D -3.85 0.003 U 0.89 0.034 
YEATS2 D -0.84 0.023 U 0.88 0.027 
LTF D -0.77 0.024 U 0.88 0.012 
TRIB3 D -1.04 0.004 U 0.87 0.004 
ATF3 D -0.89 0.028 U 0.87 0.020 
SNX30 D -0.97 0.007 U 0.80 0.010 
GTF2I D -1.33 0.014 U 0.78 0.029 
LOC730755 D -2.89 0.018 U 0.77 0.005 
PLEKHA9 D -0.77 0.004 U 0.76 0.007 
GLIPR2 D -1.76 0.009 U 0.76 0.019 
GPI D -1.05 0.035 U 0.76 0.039 
SOX8 D -1.24 0.014 U 0.74 0.034 
SH3GL2 D -2.72 0.038 U 0.73 0.050 
MME D -1.02 0.018 U 0.73 0.015 
CORO2A D -3.45 0.005 U 0.71 0.027 
PNMA2 D -1.16 0.008 U 0.71 0.020 
GPM6B D -2.33 0.002 U 0.70 0.038 
RIOK3 D -1.28 0.005 U 0.69 0.008 
SH3D20 D -1.98 0.015 U 0.69 0.028 
SLC4A7 D -0.99 0.008 U 0.68 0.032 
RFTN1 D -1.35 0.014 U 0.68 0.040 
RBMS1 D -1.83 0.039 U 0.67 0.010 
KIAA1539 D -0.61 0.032 U 0.67 0.032 
PSPC1 D -1.36 0.018 U 0.66 0.048 
CASP9 D -1.40 0.027 U 0.65 0.043 
ANTXR1 D -1.32 0.006 U 0.65 0.029 
PLLP D -1.63 0.003 U 0.63 0.024 
FXYD5 D -1.33 0.011 U 0.61 0.022 
LOC221710 D -0.79 0.021 U 0.61 0.009 
SC4MOL D -1.29 0.014 U 0.61 0.043 
OGFRL1 D -1.03 0.036 U 0.61 0.032 
ZNF260 D -1.58 0.008 U 0.60 0.017 
MAMSTR U 2.43 0.026 D -0.61 0.003 
AMDHD1 U 2.35 0.014 D -0.61 0.006 
MUDENG U 1.18 0.024 D -0.61 0.027 
MSH5 U 0.61 0.031 D -0.62 0.024 
AURKA U 0.82 0.036 D -0.63 0.017 
DCAF4L1 U 0.60 0.009 D -0.63 0.036 
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VPS45 U 0.80 0.007 D -0.63 0.019 
PPP4R4 U 1.69 0.007 D -0.64 0.022 
C20orf117 U 0.92 0.032 D -0.64 0.046 
STEAP2 U 3.34 0.027 D -0.65 0.039 
MAVS U 1.13 0.020 D -0.66 0.014 
PLCB4 U 0.97 0.027 D -0.66 0.038 
LMX1B U 0.71 0.044 D -0.67 0.044 
CTU2 U 0.70 0.026 D -0.68 0.007 
NCRNA00085 U 0.72 0.011 D -0.69 0.015 
SOCS2 U 1.22 0.016 D -0.70 0.026 
DIP2A U 0.64 0.033 D -0.72 0.036 
MKKS U 1.17 0.008 D -0.73 0.026 
GOSR1 U 0.62 0.014 D -0.76 0.006 
KIF20A U 0.94 0.016 D -0.78 0.007 
FCRL3 U 0.96 0.015 D -0.80 0.004 
FAM83D U 0.66 0.023 D -0.80 0.036 
FGF16 U 1.56 0.020 D -0.81 0.045 
JAKMIP2 U 1.33 0.040 D -0.83 0.048 
RNU6ATAC U 0.75 0.048 D -0.88 0.028 
RAD51L1 U 1.12 0.018 D -0.88 0.028 
PGP U 0.84 0.012 D -0.90 0.012 
SKP2 U 0.96 0.017 D -0.90 0.032 
GPER U 0.71 0.025 D -0.97 0.007 
AGTR1 U 0.73 0.033 D -0.97 0.011 
FBXO22 U 0.62 0.015 D -0.98 0.005 
CCL2 U 3.70 0.020 D -1.04 0.003 
PSRC1 U 0.87 0.016 D -1.05 0.011 
GOLPH3L U 1.97 0.028 D -1.07 0.037 
C1orf61 U 3.73 0.004 D -1.10 0.013 
RNFT2 U 1.41 0.049 D -1.21 0.009 
PCDHB5 U 3.01 0.010 D -1.50 0.033 
LEAP2 U 1.84 0.026 D -1.53 0.039 
TAF9B U 0.60 0.041 D -1.60 0.017 
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APPENDIX D. GENE SET OVERLAP BETWEEN JIB-04/GSK-J4 TREATED T18 

(Supplemental to Figure 7.4 A; GSEA; 38+78 overlapping curated gene sets; 1000 permutations; 
FDR ≤ 0.25) 

 

38 gene sets depleted in H1299 T18 and enriched (reversed) by both JIB-04 and GSK-J4: 

Elvidge_Hypoxia_Up 
Elvidge_Hypoxia_By_DMOG_Up 
Martoriati_MDM4_Targets_Fetal_Liver_Up 
Jiang_Hypoxia_Normal 
Manalo_Hypoxia_Up 
Martoriati_MDM4_Targets_Neuroepithelium_Up 
Boquest_Stem_Cell_Cultured_Vs_Fresh_Up 
Monnier_Postradiation_Tumor_Escape_Dn 
Sweet_Lung_Cancer_KRAS_Dn 
Rozanov_MMP14_Targets_Up 
Dazard_Response_To_UV_NHEK_Up 
Acevedo_Liver_Cancer_Dn 
Gozgit_ESR1_Targets_Dn 
Acevedo_Liver_Tumor_Vs_Normal_Adjacent_Tissue_Dn 
Pedersen_Metastasis_By_ERBB2_Isoform_7 
Martens_Bound_By_PML_RARA_Fusion 
Schaeffer_Prostate_Development_48hr_Dn 
Wong_Adult_Tissue_Stem_Module 
Koyama_SEMA3B_Targets_Up 
Lim_Mammary_Stem_Cell_Up 
Sweet_Lung_Cancer_KRAS_Up 
Onder_CDH1_Targets_2_Dn 
Fulcher_Inflammatory_Response_Lectin_Vs_Lps_Up 
Plasari_TGFB1_Targets_10hr_Up 
Perez_TP63_Targets 
Bruins_UVC_Response_Via_TP53_Group_B 
Enk_UV_Response_Keratinocyte_Up 
Schuetz_Breast_Cancer_Ductal_Invasive_Up 
West_Adrenocortical_Tumor_Dn 
Delys_Thyroid_Cancer_Up 
Martens_Tretinoin_Response_Up 
Chicas_RB1_Targets_Senescent 
Lei_MYB_Targets 
Meissner_Brain_HCP_With_H3K4me3_And_H3K27me3 
Naba_Matrisome 
Benporath_SUZ12_Targets 
Lindgren_Bladder_Cancer_Cluster_2b 
Pasini_SUZ12_Targets_Dn 



203 
 

 
 

78 other common gene sets enriched by both JIB-04 and GSK-J4: 

Mense_Hypoxia_Up 
Krieg_Hypoxia_Not_Via_KDM3A 
Winter_Hypoxia_Metagene 
Gross_Hypoxia_Via_ELK3_And_HIF1A_Up 
Qi_Hypoxia 
Graessmann_Apoptosis_By_Serum_Deprivation_Dn 
Wierenga_STAT5A_Targets_Up 
Nuytten_EZH2_Targets_Up 
Basaki_YBX1_Targets_Dn 
Smirnov_Response_To_IR_6hr_Dn 
Gary_CD5_Targets_Up 
Gross_Hypoxia_Via_HIF1A_Dn 
Gross_Hypoxia_Via_ELK3_Dn 
Odonnell_TFRC_Targets_Up 
Enk_UV_Response_Keratinocyte_Dn 
Krige_Response_To_Tosedostat_24hr_Up 
Krige_Response_To_Tosedostat_6hr_Up 
Rutella_Response_To_HGF_Dn 
Oswald_Hematopoietic_Stem_Cell_In_Collagen_Gel_Dn 
Creighton_Endocrine_Therapy_Resistance_3 
Bild_HRAS_Oncogenic_Signature 
Dutertre_Estradiol_Response_24hr_Dn 
Wierenga_STAT5A_Targets_Group1 
Nagashima_NRG1_Signaling_Up 
Rutella_Response_To_CSF2RB_And_IL4_Dn 
Johnstone_PARVB_Targets_3_Up 
Kan_Response_To_Arsenic_Trioxide 
Gobert_Oligodendrocyte_Differentiation_Dn 
Dodd_Nasopharyngeal_Carcinoma_Up 
Martinez_RB1_And_TP53_Targets_Up 
Zwang_Class_3_Transiently_Induced_By_EGF 
Zwang_Class_1_Transiently_Induced_By_EGF 
Rutella_Response_To_HGF_Vs_CSF2RB_And_IL4_Up 
Hirsch_Cellular_Transformation_Signature_Up 
Zhang_TLX_Targets_60hr_Up 
Smid_Breast_Cancer_Basal_Up 
Buytaert_Photodynamic_Therapy_Stress_Up 
Blum_Response_To_Salirasib_Up 
Smid_Breast_Cancer_Luminal_B_Dn 
Han_SATB1_Targets_Up 
Cui_TCF21_Targets_2_Dn 
Chen_HOXA5_Targets_9hr_Up 
Fulcher_Inflammatory_Response_Lectin_Vs_Lps_Dn 
Nuytten_NIPP1_Targets_Up 
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Mitsiades_Response_To_Aplidin_Up 
Gruetzmann_Pancreatic_Cancer_Up 
Debiasi_Apoptosis_By_Reovirus_Infection_Up 
Fevr_CTNNB1_Targets_Up 
Heller_Hdac_Targets_Silenced_By_Methylation_Up 
Fortschegger_PHF8_Targets_Up 
Charafe_Breast_Cancer_Luminal_Vs_Mesenchymal_Dn 
Charafe_Breast_Cancer_Luminal_Vs_Basal_Dn 
Smid_Breast_Cancer_Relapse_In_Bone_Dn 
Rutella_Response_To_CSF2RB_And_IL4_Up 
Senese_HDAC3_Targets_Up 
Creighton_Endocrine_Therapy_Resistance_5 
Koinuma_Targets_Of_SMAD2_Or_SMAD3 
Zhang_TLX_Targets_36hr_Up 
Johnstone_PARVB_Targets_2_Dn 
Bystrykh_Hematopoiesis_Stem_Cell_Qtl_Trans 
Winzen_Degraded_Via_KHSRP 
Miyagawa_Targets_Of_EWSR1_ETS_Fusions_Dn 
Martinez_RB1_Targets_Up 
Phong_TNF_Response_Via_P38_Partial 
Foster_Tolerant_Macrophage_Dn 
Berenjeno_Transformed_By_RHOA_Up 
Riggi_Ewing_Sarcoma_Progenitor_Dn 
Udayakumar_MED1_Targets_Dn 
Lopez_MBD_Targets 
Zheng_Bound_By_FOXP3 
Mcbryan_Pubertal_TGFB1_Targets_Up 
Enk_UV_Response_Epidermis_Dn 
Graessmann_Apoptosis_By_Serum_Deprivation_Up 
Rutella_Response_To_HGF_Up 
Delys_Thyroid_Cancer_Dn 
Zwang_Transiently_Up_By_1st_EGF_Pulse_Only 
Goldrath_Antigen_Response 
Haddad_B_Lymphocyte_Progenitor 
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