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Case presentation- ischemic renal failure in the transplanted kidney. 

Introduction 

Ischemic acute renal failure (ARF) is important in two clinical settings. 

First, ARF in the native kidney is a common condition of hospitalized patients, including 
patients in intensive care units. It is a serious disorder and has a mortality rate of approximately 
30% in the non-ICU patient and 70% in ICU patients. Renal ischemia from hypotension, often 
in the setting of sepsis, is a frequent cause. This clinical entity was the subject of an excellent 
UTSWMC Medical Grand rounds by Dr. Robbie Star (1). 

Second, all transplanted kidneys suffer ischemic injury during the transplant process. Cadaveric 
kidneys suffer injury during hypotension associated with the trauma that caused brain death, 
detrimental effects of brain death on the kidney, and the cold storage required for shipping the 
kidney to the best HLA match and allowing preparation of the recipient Both cadaveric and 
living donor kidneys are injured during the warm ischemia during the time required for creation 
of vascular anastomosis between the transplant and the recipient Excessive ischemic ARF 
during transplantation results in decreased allograft survival, and also to increased allograft 
rejection 

The increased rejection seen in transplanted kidneys with excessive ischemic ARF was initially 
surprising. However, an abundance of data now indicates that ischemic ARF recruits an 
inflammatory response; the recruitment of host leukocytes into the allograft should exacerbate 
any rejection. We will discuss this idea in greater detail later in this lecture. 

Despite the dire prognosis of ARF in the native kidney, and the detrimental effect of ARF in the 
renal allograft, there is no therapy of established acute renal failure except supportive care and 
dialysis. Furthermore, although optimizing hemodynamic state of the kidney may prevent or 
ameliorate injury, there is currently no other therapy of impending ARF in the native kidney; 
mannitol given immediately after completion of the vascular anastomoses and perioperative 
calcium channel blocker are beneficial in the ARF of renal transplantation but not ARF in native 
kidneys (2). Possibly the difference between native ARF and transplant ARF reflects therapy at 
the time of injury in the latter. 

Many previous specific therapies, such as IGF-1 (3), developed in rodents to treat ARF have not 
been successful in human native kidney ARF. This may reflect differences in the physiology of 
the rodent versus human kidneys ( 4), or may reflect the "single" hit nature of the experimental 
models, while human native kidney ARF is complex and invo lves multiple simultaneous disease 
processes, for example ischemia, sepsis, and nephrotoxic antibiotics (2) and (5-7). Another 
possibility, one that this author favors, is that we simply do not yet understand the mechanisms 
of isch~emic renal injury with sufficient sophistication. 
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The goal of this lecture is to examine our current understanding of the mechanisms of renal 
injury after ischemia with a particular emphasis on the inflammatory response elicited by such 
injury. This is not a how-to-treat acute renal failure lecture. That is being discussed by Dr. Toto 
in the summer lecture series for the House Staff, and is covered in an excellent review by Schrier 
(2). This lecture is focused on inflammation and the reader is referred to several recent reviews 
that cover other aspects of the pathophysiology of ischemic ARF (2;5-8). 
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transplant and acute renal failure : Ischemic injury -> inflammation ("innate immune response") 
-> transplant rejection ("adaptive immune response"): 

All renal allografts suffer unavoidable injury from the transplant process: during surgery to 
remove the kidney from the donor, when the kidney is transported ex vivo to the recipient, and 
during the creation of vascular anastomoses between the allograft and recipient. Cadaveric 
allografts are allografts are fufther injured by cold storage while in transit from the d0nor to the 
recipient and by the hemodynamic instability associated with the trauma or acute illness, which 
caused bran death of the donor. 

As discussed later in this lecture, there is an inflammatory response to this injury. After 
transplantation, that inflammatory response consists of host leukocytes, including dendritic cells, 
neutrophils, and lymphocytes, and initiates the process of rejection (9-11 ). The idea is that the 
non-specific "innate" inflammatory response to injury recruits the allo-antigen-specific 
lymphocytes to the transplant. 

The importance of this innate inflammatory response is illustrated by experiments where 
preventing the antigen-nonspecific neutrophilic response to ischemic injury ameliorates the 
subsequent allo-antigen-specific rejection (for example (12)). 

A similar inflammatory response to injury occurs in human transplanted kidneys (13 ; 14). If the 
inflammatory response to injury recruits an allo-antigen specific T and B cell response to the 
transplant, then we predict that the greater the ischemic injury, the greater the rejection. That 
prediction is supported by most of the literature (9; 15; 16). 
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Evidence that renal ischemia elicits renal inflammation, and that this inflammation exacerbates 
renal injury: 

Ischemic acute renal failure elicits an mild interstitial inflammatory infiltrate of lymphocyes, 
macrophages, and neutrophils. The inflammation is clustered around necrotic and ruptured 
segments of tubules ( 17). This inflammat01y infiltrate exacerbates injury ( 18). 

A number of experimental thenfpies prevent the infiltrate and thus ameliorates renal injury after 
ischemia . To understand how these work, we must review the five major steps that occur during 
the translocation of leukocytes from the blood, across the endothelium, and into the interstitium. 

First, injured renal tubule cells release inflammatory molecules such as TNF alpha 
(19;20) and eicosanoids. 

Second, in response to these mediators, endothelial cells express adhesion molecules. 

Third, leukocytes in the blood adhere by weak, reversible interactions to P and E 
selectins, vascular cell adhesion molecule-! (VCAM-1 ), and hyaluronate on the activated 
endothelium. 

Ischemia 
reperfusion 

Injury Inflammation 
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Fourth, during this weak adherence, the leukocytes receive activation signals, including 
chemokines such as interleukin 8 and MCP-1 produced by injured renal tubules (21 ), which 
change the conformation of their cell-surface beta 2 integrins so that these bind their 
counterligands on the endothelium. The beta 2 integrins on leukocyte cell surfaces are LF A -I , 
mac- I, and -VLA 4, which bind to counterligands on the endothelium; these include ICAM I and 
2, and VCAM l. 

Fifth, the leukocyte moves across the endothelium (diapedesis), and migrate to the si tes 
of injury in response to chemotactic molecules. These include chemokines (discussed below), 
midkine (22), complement, and leukotrienes (23). 

Sixth, the leukocytes are activated by their interactions with inflammatory molecules 
embedded in the extracellular matrix, molecules on the cell surfaces of the renal tubule cells, and 
cytokines . 
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Seventh, the activated leukocytes produce molecules such as reactive oxygen species 
(ROS) auf! nitric oxide that damage renal cells. See reviews (24-27). 

Inhibition of adhesion molecules. 

One critical early step in inflammation is binding of leukocytes to selectins on the surfaces of 
activated endothelial cells. In rodent models, administration of low molecular sugar molecules 
prevents leukocyte-endothelial interactions via selectins. This prevents diapedesis and thus 
ameliorates ischemic renal injury (28-31). Monoclonal antibodies against the selectins have a 
similar inhibitory effect (32). 

In response to ischemic renal injury, peri tubular epithelium express !CAM-! , the counterligand 
for LFA 1 on leukocytes (33). Inhibition ofiCAM-1 by transgenic mutagenesis (34), 
monoclonal antibodies (32;35), or administration of antisense oligonucleotides (36;37) all 
prevent inflammation and ameliorate ischemic acute renal failure . 

Inhibition of chemokines, cytokines, and other pro inflammatory molecules. 

Macrophages are a component of the inflammatory response to renal ischemia (38). Inhibition 
of chemotactic molecules, MCP l and osteopontin, released by renal tubule cells prevents 
macrophage inflammation of ischemic kidneys (39-41). 

Neutrophils are also present in ischemic kidneys. Inhibition of chemokines that specifically 
attract neutrophils (KC and MIP 2 [the murine analogue of human interluekin 8]) ameliorates 
ischemic renal injury (42). 

T lymphocytes may also contribute to ischemic renal injury. Monoclonal antibodies against 
CD4 T cells inhibit ischemic injury, as does genetic manipulations that prevent development of 
these T cells. See review (43). However, the "rag" mouse that has noT cells has the same 
injury as the wildtype mouse (44;45). 

TNFa is one molecule that contributes to ischemic injury. TNFa is produced after renal 
ischemia (3 1 ;34;46-50). Its role in pathogenesis is suggested by data showing that injury is 
ameliorated by TNFa receptor antagonists (51) or anti-TNFa monoclonal antibodies (52). 

Interleukin I beta may contribute to late phases of ischemic renal injury (53). Interleukin 18, 
which shares many activities with interleukin I beta, does participate in ischemic renal injury 
(54;55). 

Expression of 87 on endothelium activates lymphocyes and macrophages via the CD28 
molecule on their cell surfaces. Inl1ibiting this molecule ameliorates ischemic acute renal failure 
(38;56;57) (58-60). 
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Complement. 

A number·of experiments indicate that complement activation exacerbates ischemic renal injury. 
Inhibition of CS ameliorates ischemic arf ( 61-63). 

How ischemic injury activates complement is not well understood. One possibility is that 
ischemic injury activates the alternative pathway of complement. This is best described after 
myocardial ischemia. Ordinarily, therejs slow activation of the alternative pathway via "C3 
tickover" that is inhibited by complement inhibitory proteins DAF (CD 55) and protectin (CD59) 
which are thought to be present on all cell surfaces (64). Reperfusion injury increases 
intracellular calcium which activates a phosphosphatidylinositol-specific phosphlipase C. This 
enzyme cleaves the cell-surface complement inhibitory proteins; as a result the uninhibited 
alternative pathway produces C3a, and CSa that activates endothelia and recruit an inflammatory 
infiltrate. The CS-9 membrane attack complex is also produced, and this stimulates other cells to 
release interleukin 8 and platelet activating factor (P AF) which are chemotactic and activate 
endothelia (65). The importance of complement in injury after myocardial ischemia is illustrated 
by the ability of complement inhibitor sCR I to ameliorate inflammation and also infarct size 
(66). An alternative possibility is that "natural antibodies" recognize injured tissues and activate 
complement (67). 

The detrimental effect of complement activation on ischemic renal failure may have important 
implications for dialysis . In rodent models, contact of blood with non-biocompatible membranes 
results in complement activation and exacerbates acute renal failure (68). The use of 
biocompatibile hemodialysis membranes may be appropriate in the clinical treatment of acute 
renal failure (69;70). 
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Natural inhibitors of renal inflammation after renal injury. 

A number of molecules are produced by the kidney that inhibit inflammation and thus ameliorate 
injury. These include BMP-1 (osteogenic protein 1) (71-74). (75), interleukin 10 (76), alpha 
MSH (77), lipoxin A (78), and heme oxygenase 1 (79-81). 

Apoptosis and inflammation - how a cell dies makes a difference. 

Both necrosis and apoptosis occur in the ischemic kidney (82). Severely injured cells may die a 
necrotic death; less severely injured cells may have time to active the genetically programmed 
events that ultimately result in apoptosis (83). 

How cells die has major 
implications for the 
inflammatory response to 
ischemia. Apoptosis inhibits 
inflammation. Necrosis results 
in the release of intracellular 
proteins into the extracellular 
space. Some of these proteins, 
for example, interleukin 1 
alpha, HMGBl, and heat 
shock proteins increases 
inflammation (84-87) . On the 
otherhand, apoptosis is cell 
death where there is no release 
of pro inflammatory 
intracellular proteins into the 
extracellular space. lnstead 
the cells are phagocytosed by 
macrophages and dendritic 
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cells. Such phagocytosis inhibits the production ofproinflammatory cytokines and facilitates 
tolerance induction (84;85;88;89). 

After ischemic injury apoptosis may be triggered in renal tubule cells by a number of signals. 
These include growth factor depravation, loss of cell-cell or cell-matrix adhesion, hypoxia, 
oxidant stress that occurs during the reperfusion phase of ischemic renal failure, and stimulation 
of cell surface receptors fas, TNFRl, and/or angiotensin R2 (90). Apoptosis may also remodel 
excessive tubular proliferation during the repair phase of acute renal failure (91 ;92). 

The above signals trigger the activation of caspases that in turn trigger apoptosis. In addition to 
apoJltosis, some of these proteases, caspases 1 ,4, and 5, are proinflammatory (90). Appropriately 
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stimulated cells form a protein complex called an inflammasome that activates these caspases 
(93). The caspases in tum cleave pro-interleukin I and pro-interleukin 18 into their active 
products.·· These then recruit inflammatory cells into the ischemic kidney. 

The importance of caspases in renal ischemia is supported by rodent experiments where 
inhibitors of caspases ameliorate injury (94;95). Whether these act by directly inhibiting 
apoptosis or inflammation remains to be determined (96). 

Reactive oxygen and renal injury. 

At the high concentrations found after ischemia/ reperfusion, free radicals - nitric oxide, 
superoxide anions, and related reactive oxygen species- damage the kidney (15;97;98). 

Mechanisms of redox homeostasis. 
Balance between ROS production and various types of 
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However, at moderate concentrations, these molecules also are regulatory mediators in signaling 
processes that regulate vascular tone, the control of ventilation, erythropoietin production, and 
transmission of information from membrane receptors such as the interleukin I receptor or the 
insulin receptor to the nucleus . Indeed, cells may normally change their internal redox potential 
to regulate gene activation. See reviews (99; 100) and recent Medical Grand Rounds by J. 
Garcia. Thus, in addition to direct toxic effects, these free radicals may also cause the activation 
of proinflammatmy genes and genes that regulate apoptosis. 

Free radicals may be generated during ischemic ARF by the inefficient utilization of oxygen by 
mitochondria injured by ischemia (I 00) or by inflammatory cells entering the injured tissues. 
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Furthermore, ischemia may deplete intracellular reducing molecules and thus make the cell more 
vulnerable to oxidative injury during the reperfusion of injured tissues. 

Changes in the redox potential induced by ischemia! reperfusion induce the expression of 
transcription factors such as NF kappa 8 and AP-1 (101), HIF !alpha (102-104), p38 (19), and 
egr 1 (105 ;106). These transcription factors then activate genes for pro-inflammatory cytokines 
and molecules. Inhibition of these transcription factors, for example p38, may ameliorate injury 
due to ischemia reperfusion in vitro (I 07). 

Whatever the effect of reactive species - toxic versus signaling - antioxidants have reversed 
ischemic injury in rodent models and have had limited success in very special types of ARF. 
One is contrast nephropathy (I 08). The other is the administration of recombinant superoxide 
dismutase to renal allograft recipients ( 15) . The effectiveness of the latter is controversial 
because it has not worked in all trials (109), and thus has not been widely adopted by the 
transplant community. 

Nitric oxide- "NOS vs NOS" CliO). 

The effects of nitric oxide on ischemic acute renal failure are complex. The low concentrations 
of nitric oxide produced by endothelial nitric oxide synthase (eNOS) ameliorate acute renal 
failure by dilating blood vessels and enhancing renal perfusion. The high concentrations of 
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nitric oxide produced by inducible nitric oxide (iNOS) are converted by ROS (see above) into 
peroxynitrite. This is a toxic compound that exacerbates ischemic injury in most studies (see 
review ( 1'1 0)) . 

In line with the above fonnulation, inhibition of eNOS exacerbates ischemic arf (Ill) . On the 
otherhand, inhibition of iN OS by mycophenolate decreases NO and acute renal failure in mice 
(112). Antisense iNOS also ameliorates ischemic acut(! renal failure (113). 

Ischemic acute renal failure as a systemic disease. 

Ischemic acute renal failure involves extrarenal organs (see review (114)). 

The renal inflammatory response to injury is regulated by extrarenal organs. Renal injury is 
ameliorated by HGF produced by the lung (115), and by acute phase proteins produced by the 
liver (116). Renal injury is exacerbated by brain death (117-119). 

Extrarenal organs are affected by ischemic acute renal failure. There is increased inflammation 
in the heart (120) and multiple other organs (121). 

Sepsis and acute renal failure. 

Acute renal failure is a common complication of sepsis. One possibility is that sepsis results in 
hypotension and hypoperfusion of the kidney; in other words, acute renal failure associated with 
sepsis is a form of ischemic acute renal failure. However, recent data suggests that endotoxin 
produced during sepsis has direct effects on the kidney (122). Endotoxin may inhibit renal 
vasodilatory nitric oxide production (123), increase inflammation in the glomerulus by 
increasing production of the chemokine MCP I (123), and other direct effects on the kidney 
(124). 

Conclusion. 

The goal of this lecture has been to examine recent insights into the inflammatory response to 
ischemic renal injury. Unfortunately, none of the therapies r have discussed is yet ready for 
clinical use. Therefore, I would like to close with summary slide from Schrier's recent review 
(2). It is good advice for the treatment of patients with acute renal failure before the nephrologist 
is consulted. See next page. 
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