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Biological sequences, including DNA and protein sequences, are believed to encode 

sufficient information to determine the structure and function of biological molecules, which 

in turn decide the phenotypic traits of animals. Deciphering the biological sequences is an 

important and multiscale problem that connecting the information flow from genotypes to 

phenotypes. Current advances in next-generation sequence technology provided tons of 

sequencing data, demanding innovations in computational algorithm for better interpretation. 

I developed computational methodologies to understand the biological sequences in various 



 

levels. In the primary sequence level, I analyzed the evolutionary information encoded in 

protein families and predicted the function (and active sites) of the proteins. To aid my 

sequence analysis, I developed a set of computational methodologies and deployed them as 

public web-servers. In the protein structure level, I studied the plasticity of the 3D structures, 

as well as demonstrated its effect on the uncertainty of computational scoring algorithms. In 

the organism level, I innovated the computational methodology to assemble and analyze 

complete genomes of butterflies and discovered convergence evolution in butterfly wing 

patterns. In conclusion, I advanced the knowledge of biological sequences in multi-layers by 

computational approaches.  
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CHAPTER 1 

GENERAL INTRODUCTION 

 

Biological sequences, including DNA and protein sequences, are believed to 

encode all the information needed to determine the phenotype of an organism. 

Understanding what nature says in such biological words and how the words define the 

molecular function has drawn board attention in biological sciences. Recent advances in 

the next-generation sequencing technology generated avalanche of sequencing data and 

motivated biologists to use computational methods to decipher the sequence information. 

Achievements have been made in different levels, including predicting protein tertiary 

structures, predicting the functional site of a protein, and understanding the gene 

determinants for morphological traits, but yet far from satisfactory.  

 I decoded the information in the biological sequences, both protein and DNA, for 

structural and functional prediction using computational approaches. To better process 

the biological sequences, I innovated computational data mining methodologies, which 

were applied on protein sequences to bring medical insights from evolutionary 

perspectives. I also studied the conformation ambiguity in the protein structures and was 

invited to assess the performance of the 11st Critical Assessment of Structure Prediction 

experiment, the community-wide blind test to evaluate advances in structure prediction. 

Using the butterfly as the model system for evolution studies, I revolutionized the next-

generation sequencing analysis algorithms and discovered the butterfly wing pattern 

divergence. 



 

The size of the protein sequence database has been exponentially increasing due 

to advances in genome sequencing. However, experimentally characterized proteins only 

constitute a small portion of the database, such that the majority of sequences have been 

annotated by computational approaches. Current automatic annotation pipelines 

inevitably introduce errors, making the annotations unreliable. Instead of such error-

prone automatic annotations, functional interpretation should rely on annotations of 

‘reference proteins’ that have been experimentally characterized or manually curated. 

The Seq2Ref server uses BLAST to detect proteins homologous to a query sequence and 

identifies the reference proteins among them. Seq2Ref then reports publications with 

experimental characterizations of the identified reference proteins that might be relevant 

to the query. Furthermore, a plurality-based rating system is developed to evaluate the 

homologous relationships and rank the reference proteins by their relevance to the query. 

The reference proteins detected by our server will lend insight into proteins of unknown 

function and provide extensive information to develop in-depth understanding of 

uncharacterized proteins. Seq2Ref is available at: http://prodata.swmed.edu/seq2ref. 

One approach to infer functions of new proteins from their homologs utilizes 

visualization of an all-against-all pairwise similarity network (A2ApsN) that exploits the 

speed of BLAST and avoids the complexity of multiple sequence alignment. However, 

identifying functions of the protein clusters in A2ApsN is never trivial, due to a lack of 

linking characterized proteins to their relevant information in current software packages. 

Given the database errors introduced by automatic annotation transfer, functional 

deduction should be made from proteins with experimental studies, i.e. ‘reference 

http://prodata.swmed.edu/seq2ref


 

proteins’. Here, we present a web server, termed Pclust, which provides a user-friendly 

interface to visualize the A2ApsN, placing emphasis on such ‘reference proteins’ and 

providing access to their full information in source databases, e.g. articles in PubMed. 

The identification of ‘reference proteins’ and the ease of cross-database linkage will 

facilitate understanding the functions of protein clusters in the network, thus promoting 

interpretation of proteins of interest. 

Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a Gram‐negative bacterium 

and the pathogen of Citrus Greening disease (Huanglongbing, HLB). As a parasitic 

bacterium, Ca. L. asiaticus harbors ABC transporters that play important roles in 

exchanging chemical compounds between Ca. L. asiaticus and its host. Here, we 

analyzed all the ABC transporter‐related proteins in Ca. L. asiaticus. We identified 14 

ABC transporter systems and predicted their structures and substrate specificities. 

In‐depth sequence and structure analysis including multiple sequence alignment, 

phylogenetic tree reconstruction, and structure comparison further support their function 

predictions. Our study shows that this bacterium could use these ABC transporters to 

import metabolites (amino acids and phosphates) and enzyme cofactors (choline, 

thiamine, iron, manganese, and zinc), resist to organic solvent, heavy metal, and lipid‐like 

drugs, maintain the composition of the outer membrane (OM), and secrete virulence 

factors. Although the features of most ABC systems could be deduced from the abundant 

experimental data on their orthologs, we reported several novel observations within ABC 

system proteins. Moreover, we identified seven nontransport ABC systems that are likely 

involved in virulence gene expression regulation, transposon excision regulation, and 



 

DNA repair. Our analysis reveals several candidates for further studies to understand and 

control the disease, including the type I virulence factor secretion system and its substrate 

that are likely related to Ca. L. asiaticus pathogenicity and the ABC transporter systems 

responsible for bacterial OM biosynthesis that are good drug targets. 

The heme‐copper oxidase (HCO) superfamily includes HCOs in aerobic 

respiratory chains and nitric oxide reductases (NORs) in the denitrification pathway. The 

HCO/NOR catalytic subunit has a core structure consisting of 12 transmembrane helices 

(TMHs) arranged in three‐fold rotational pseudosymmetry, with six conserved histidines 

for heme and metal binding. Using sensitive sequence similarity searches, we detected a 

number of novel HCO/NOR homologs and named them HCO Homology (HCOH) 

proteins. Several HCOH families possess only four TMHs that exhibit the most 

pronounced similarity to the last four TMHs (TMHs 9–12) of HCOs/NORs. Encoded by 

independent genes, four‐TMH HCOH proteins represent a single evolutionary unit (EU) 

that relates to each of the three homologous EUs of HCOs/NORs comprising TMHs 1–4, 

TMHs 5–8, and TMHs 9–12. Single‐EU HCOH proteins could form homotrimers or 

heterotrimers to maintain the general structure and ligand‐binding sites defined by the 

HCO/NOR catalytic subunit fold. The remaining HCOH families, including NnrS, have 

12‐TMHs and three EUs. Most three‐EU HCOH proteins possess two conserved 

histidines and could bind a single heme. Limited experimental studies and genomic 

context analysis suggest that many HCOH proteins could function in the denitrification 

pathway and in detoxification of reactive molecules such as nitric oxide. HCO/NOR 

catalytic subunits exhibit remarkable structural similarity to the homotrimers of MAPEG 



 

(membrane‐associated proteins in eicosanoid and glutathione metabolism) proteins. Gene 

duplication, fusion, and fission likely play important roles in the evolution of 

HCOs/NORs and HCOH proteins. 

The Critical Assessment of techniques for protein Structure Prediction (or CASP) 

is a community-wide blind test experiment to reveal the best accomplishments of 

structure modeling. Assessors have been using the Global Distance Test (GDT_TS) 

measure to quantify prediction performance since CASP3 in 1998. However, identifying 

significant score differences between close models is difficult because of the lack of 

uncertainty estimations for this measure. Here, we utilized the atomic fluctuations caused 

by structure flexibility to estimate the uncertainty of GDT_TS scores. Structures 

determined by nuclear magnetic resonance are deposited as ensembles of alternative 

conformers that reflect the structural flexibility, whereas standard X-ray refinement 

produces the static structure averaged over time and space for the dynamic ensembles. To 

recapitulate the structural heterogeneous ensemble in the crystal lattice, we performed 

time-averaged refinement for X-ray datasets to generate structural ensembles for our 

GDT_TS uncertainty analysis. Using those generated ensembles, our study demonstrates 

that the time-averaged refinements produced structure ensembles with better agreement 

with the experimental datasets than the averaged X-ray structures with B-factors. The 

uncertainty of the GDT_TS scores, quantified by their standard deviations (SDs), 

increases for scores lower than 50 and 70, with maximum SDs of 0.3 and 1.23 for X-ray 

and NMR structures, respectively. We also applied our procedure to the high accuracy 

version of GDT-based score and produced similar results with slightly higher SDs. To 



 

facilitate score comparisons by the community, we developed a user-friendly web server 

that produces structure ensembles for NMR and X-ray structures and is accessible 

at http://prodata.swmed.edu/SEnCS. Our work helps to identify the significance of 

GDT_TS score differences, as well as to provide structure ensembles for estimating SDs 

of any scores. 

Chameleon sequences (ChSeqs) refer to sequence strings of identical amino acids 

that can adopt different conformations in protein structures. Researchers have detected 

and studied ChSeqs to understand the interplay between local and global interactions in 

protein structure formation. The different secondary structures adopted by one ChSeq 

challenge sequence‐based secondary structure predictors. With increasing numbers of 

available Protein Data Bank structures, we here identify a large set of ChSeqs ranging 

from 6 to 10 residues in length. The homologous ChSeqs discovered highlight the 

structural plasticity involved in biological function. When compared with previous 

studies, the set of unrelated ChSeqs found represents an about 20‐fold increase in the 

number of detected sequences, as well as an increase in the longest ChSeq length from 8 

to 10 residues. We applied secondary structure predictors on our ChSeqs and found that 

methods based on a sequence profile outperformed methods based on a single sequence. 

For the unrelated ChSeqs, the evolutionary information provided by the sequence profile 

typically allows successful prediction of the prevailing secondary structure adopted in 

each protein family. Our dataset will facilitate future studies of ChSeqs, as well as 

interpretations of the interplay between local and nonlocal interactions. A user‐friendly 

web interface for this ChSeq database is available at prodata.swmed.edu/chseq. 

http://prodata.swmed.edu/SEnCS
http://prodata.swmed.edu/chseq


 

As CASP11 assessors, we present an overview of contact‐assisted predictions in 

the eleventh round of critical assessment of protein structure prediction (CASP11), which 

included four categories: predicted contacts (Tp), correct contacts (Tc), simulated sparse 

NMR contacts (Ts), and cross‐linking contacts (Tx). Comparison of assisted to unassisted 

model quality highlighted a relatively poor overall performance in CASP11 using 

predicted Tp and crosslinked Tx contact information. However, average model quality 

significantly improved in the correct Tc and simulated NMR Ts categories for most 

targets, where maximum improvement of unassisted models reached an impressive 70 

GDT_TS. Comparison of the performance in the correct Tc category to CASP10 

suggested the improvement in CASP11 model quality originated from an increased 

number of provided contacts per target. Group rankings based on a combination of scores 

used in the CASP11 free modeling (FM) assessment for each category highlight four 

top‐performing groups, with three from the Lee lab and one from the Baker lab. We used 

the overall performance of these groups in each category to develop hypotheses for their 

relative outperformance in the correct Tc and simulated NMR Ts categories, which 

stemmed from the fraction of correct contacts provided (correct Tc category) and a 

reduced fraction of correct contacts offset by an increased coverage of the correct 

contacts (simulated NMR Ts category). 

For centuries, biologists relied on phenotypes to reason about evolution. For 

decades, a handful of gene markers gave us a glimpse at the genotype to add to 

phenotypic traits. Today, we can sequence entire genomes of hundreds of animals to gain 

the ultimate knowledge of their biology. Choosing a family of Skipper butterflies 



 

(Hesperiidae) as an example, we show the power of genomics to learn about their 

phylogeny and evolution. Genomes of 250 Hesperiidae species from all major 

phylogenetic lineages focusing on the subfamily Eudaminae reveal rampant 

inconsistencies between their current classification and genome-based phylogeny. We use 

timed genomic tree to define tribes (5 new) and subtribes (7 new), overhaul genera (9 

new) and subgenera (3 new), and study convergence in wing patterns that fooled 

researchers (and birds) for decades (or millennia). We find that many skippers with 

similar looks are distantly related and should belong to different genera. Conversely, we 

see that several skippers with distinct morphology are close relatives and should be 

grouped within one genus. These conclusions are strongly and invariably supported by 

different genomic regions, both nuclear and mitochondrial, coding genes and non-coding 

segments, and are consistent with some morphological traits. Similar to our study, 

genomic biology will soon revolutionize biodiversity research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 2 SEQ2REF: A WEB SERVER TO FACILITATE 

FUNCTIONAL INTERPRETATION1 

 

INTRODUCTION 

 

Due to the avalanche of protein sequences made available by high-throughput 

genome sequencing, complete manual annotation is unfeasible, leaving a large fraction of 

protein functions to be predicted by automatic functional annotation pipelines [1]. 

However, without experimental characterization, the quality of annotation is often 

questionable, owing to errors in automatic annotation transfer and lack of updates from 

new findings. In spite of recent advances in highly integrative functional prediction 

methods [2], a recent investigation [3] into the annotation quality of well-characterized 

enzyme families revealed that the average percentage of misannotation for the haloacid 

dehalogenase (HAD) superfamily in the three largest public databases, i.e. non-redundant 

(nr) [4], TrEMBL [5] and KEGG [6], is over 60%. The possible causes of such 

annotation errors include multi-domain problems [7], experimental data 

misinterpretations, threshold relativity problems, and paralog-ortholog misclassifications 

[8-12]. Moreover, the simplified descriptions recorded in protein sequence and protein 

family databases are usually inadequate for understanding the precise function of a 

protein [1].  

                                                 
1 This chapter was published as:  

Li W, Cong Q, Kinch LN, Grishin N V. Seq2Ref: a web server to facilitate functional interpretation. BMC 

Bioinformatics 2013;14(1):30. 

 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR2
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR3
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR5
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR7
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR8
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR12
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR1


 

Such errors and omissions make database annotations insufficient for complete 

functional interpretation of a protein. A more accurate source of annotations is the 

‘reference proteins’ closely related to the protein of interest. We define ‘reference, 

proteins’ as proteins that have been experimentally studied, manually curated, and 

reported in the literature. Information about reference proteins is essential for accurate 

functional interpretation and experimental design. The cross-links between proteins, 

genes, and associated literature available from National Center for Biotechnology 

Information (NCBI) provide a basis for reference protein identification. However, it is 

not trivial to identify a good set of reference proteins and supporting literature because 

such reference proteins constitute only a small portion of protein databases. Additionally, 

many proteins linked to large-scale studies (such as genome sequencing) do not provide 

sufficient functional information. 

We have developed a web server named Seq2Ref to assist the identification of 

applicable reference proteins. Seq2Ref employs BLAST [13] to perform homology 

searches and exploits crosslinks created by NCBI between proteins and literature to 

detect reference proteins. Homologs from the Protein Data Bank (PDB) [14] and Swiss-

Prot (SP) [15] databases are detected as well, as these databases contain experimental 

data on 3D protein structures and manually curated annotation on sequence records, 

respectively. Moreover, we developed a plurality-based rating system integrating 

reciprocal BLAST and Multiple Sequence Comparisons (MSC) to rank the reference 

proteins. By retrieving homologous reference proteins, Seq2Ref can contribute to 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR13
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR14
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR15


 

precisely inferring unknown protein function and developing detailed functional 

interpretation. 

 

RESULTS AND DISCUSSION 

 

Server interface 

 

The input and output interfaces are shown in Figure 1. An email address and the 

query protein are the minimal requirements to initiate a job. Options for BLAST search 

parameters and selection of server modes (fast/slow) are available in the PARAMETERS 

panel. We recommend manually selecting the organism of the input sequence for 

reciprocal BLAST if the input sequence is not in the nr database. The total run time is 

usually 5 to 15 min for fast mode and 1 hour or more for slow mode. When the job 

completes, an email notification will be sent to the address provided by the user. 

The results page (shown in Figure 1) lists the reference proteins and relevant 

information in a ranked order. Reference proteins from three sources are shown, 

respectively, as: (1) a summary table containing protein definition, rating score and 

BLAST statistics (expectation value, sequence identity and coverage); (2) and a detailed 

description panel with the rating records, BLAST statistics and scores, and relevant 

database information. Reference proteins are ranked first by the rating score and second 

by the expectation value; the publications associated with each protein are sorted by the 

publication date. As functional studies of remote homologs may not be applicable to the 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#Fig1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#Fig1


 

query protein, by default we do not display reference proteins with rating scores lower 

than 3 in the detailed description panel. 

 

Benchmark 

 

To assess the performance of the Seq2Ref server, especially the ability of our 

plurality-based rating system to sort out the most relevant references, we applied our 

algorithm to the enolase superfamily, which has been thoroughly characterized and 

recorded in the Structure-Function Linkage Database (SFLD) [16-18]. The enolase 

superfamily contains seven subgroups, which are further divided into 20 families. 

Proteins within one family share the same substrate specificity and can be considered 

orthologs; proteins within one subgroup share the same general base(s) in the active site 

and have the similar catalytic mechanism [19]. For each family, we selected one 

representative sequence, usually the one with an available 3D structure, as the input for 

benchmark. 

At each rating score cutoff, coverage and average accuracy were used as 

parameters to evaluate the performance of Seq2Ref (Table 1). The coverage is defined as 

the percentage of tested sequences that detect reference proteins above the score cutoff. 

The accuracy is defined as the average of the true positive rates among tested sequences 

above the score cutoff. Two criteria were used to define true positives: (1) in a stringent 

(family) context, a true positive hit must be from the same family as the query; and (2) in 

a broader (subgroup) context, hits from the same subgroup but from different families are 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR16
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR18
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR19
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#Tab1


 

also considered true. As shown in Table 1, the accuracy is always 100% with score 

cutoffs no less than 4; when the cutoff drops to 3, Seq2Ref reaches 100% coverage but 

starts to include those hits from the same subgroup but different families. Although the 

biased dataset from only one family might cause overfitting of the statistics, the 

benchmark suggests that accurate functional interpretation at family level should be 

achieved by utilizing the reference proteins with a score no less than 4. The information 

for marginal hits with scores between 3 and 4 is valuable to understand the broad 

function of the protein subgroup. However, one should not directly transfer the specific 

functions of marginal hits, such as substrate specificity, to the query. 

 

Case study and examples 

 

Due to its ability to retrieve reference proteins and their relevant information in a 

ranked order, the Seq2Ref server is useful for finding PubMed references relevant to 

proteins of unknown function, as well as obtaining a deeper understanding of proteins 

than that revealed by short annotations, as illustrated by the following examples. 

 

Organizing new information for proteins of unknown function 

Hypothetical proteins of unknown function constitute a remarkably large portion 

of the database [20]. Novel studies on uncharacterized proteins and their orthologs 

provide new insights about their functions, but sequence databases often do not 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#Tab1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR20


 

incorporate this information in a timely manner. By retrieving literature, Seq2Ref helps to 

obtain the most recent information about proteins. 

The Macaca mulatta protein, corresponding to gi|355567738, is annotated as a 

hypothetical protein EGK_07670 in the NCBI Protein database (Seq2Ref 

results: http://prodata.swmed.edu/wenlin/server/user_data/seq2ref/S2Rnv4cun/result.html

). This hypothetical protein contains three conserved domains of unknown function (two 

DUF3730 and one DUF3028). Our server detects one close homolog, a hypothetical 

protein (gi|23345097) in human, which has been experimentally studied. The highly 

confident statistics in BLAST (e-value around 0; 98% identity, 100% coverage) and 

similar protein domain composition support an orthologous relationship between these 

two proteins. The human protein was recently (in 2012) reported to be a tumor suppressor 

in gliomas. It was named ‘focadhesin’, due to its cellular localization at the focal 

adhesion of the cell membrane [21]. As a likely ortholog, the M. mulatta protein might 

also be a tumor suppressor and localized at the focal adhesion. Thus, by finding a 

homolog with the latest experimental publication not yet incorporated in sequence 

databases, Seq2Ref can serve as a basis for reliable functional prediction of unknown 

proteins. 

 

Providing detailed information about a protein’s function 

Although conserved domains in proteins usually suggest their functions, overly 

broad descriptions of domain functions are less informative than more specific 

http://prodata.swmed.edu/wenlin/server/user_data/seq2ref/S2Rnv4cun/result.html
http://prodata.swmed.edu/wenlin/server/user_data/seq2ref/S2Rnv4cun/result.html
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR21


 

descriptions. By presenting reference proteins and associated literature, Seq2Ref can 

offer more definitive and reliable information about protein functions. 

One example is the hlyA gene product in Cronobacter turicensis 

z3032 (gi|260595828, Seq2Ref 

results: http://prodata.swmed.edu/wenlin/server/user_data/seq2ref/S2RGsaCMG/result.ht

ml). A search of the Conserved Domain Database (CDD) merely suggests that this 

protein contains a ‘haemolytic domain’, with the most similar hit (lowest expectation 

value) annotated as a ‘hypothetical protein’ and one possible informative hit as 

‘conserved hypothetical protein YidD’. The ‘conserved hypothetical protein YidD’ 

domain (TIGR00278) shows neither functional studies nor a detailed functional 

description. The publication [22] associated with a Pfam domain record (pfam01809) in 

the CDD search result suggests that the name ‘haemolytic domain’ originated because 

one protein (ytjA from Bacillus subtilis) containing this domain can cause cells to lyse in 

culture. Unfortunately, this study failed to suggest a specific molecular function. Seq2Ref 

provided more information by detecting (e-value 8.0e-49; 90% identity; reciprocal best 

hit) the experimentally studied protein YidD from E. coli (gi|67476547), which is 

identical to the NCBI nr database representative protein (gi|16767126) from Salmonella 

enterica. This orthology is reinforced by the common conserved genomic context [23] 

and the CLANS [24] protein similarity network, in which E. coli YidD and C. 

turicensis hlyA cluster tightly together among their homologs. The reference [23] 

associated with E. coli YidD detected by our server suggests that YidD assists YidC, the 

protein insertase, in insertion of inner membrane proteins. As a confident ortholog of E. 

http://prodata.swmed.edu/wenlin/server/user_data/seq2ref/S2RGsaCMG/result.html
http://prodata.swmed.edu/wenlin/server/user_data/seq2ref/S2RGsaCMG/result.html
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR22
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR23
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR24
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR23


 

coli YidD, the hlyA gene from C. turicensis very likely shares the same function. Thus, 

the homologous reference protein, detected by Seq2Ref, contributes to understanding the 

protein function more specifically. 

 

Limitations 

 

As shown in the examples, the Seq2Ref server detects reference proteins, which 

can facilitate deeper understanding of the protein function. However, we should keep in 

mind the limitations. The main concern regards the quality of cross-links between the 

NCBI Protein and PubMed databases. Missing or wrong links defined by NCBI would 

result in the loss of or the inappropriate assignment of relevant literature. Another 

concern is that although the top ranked reference proteins are very likely functionally 

similar to the query proteins, one should still be careful in directly transferring the 

information from the hit to the query, as verification of orthology requires additional 

diligent analysis. To come to the best conclusions about a protein’s function, one should 

critically inspect the relevance of the publications and the homology of the reference 

proteins to the query. 

 

CONCLUSIONS 

 

Seq2Ref is a homology-based tool to identify reference proteins from PubMed, 

PDB and SP databases. We have developed a plurality-based rating system that evaluates 



 

homologous relationships to indicate the degree of confidence one should have in 

transferring annotations from a well-studied reference protein to a similar new protein. 

Thus, by retrieving both experimental studies and high-quality functional annotations of 

reference proteins, our server provides a solid basis for correct function interpretation of 

novel proteins. 

 

METHODS 

 

Detection of homologs and identification of reference proteins 

 

Seq2Ref performs the BLAST search against the NCBI nr database to detect 

homologs of the query protein. Based on BLAST search results, reference proteins are 

identified as: (1) the hits linked to PubMed literature by NCBI (those publications 

associated with more than 100 protein records are excluded); (2) the hits from PDB; (3) 

and the hits from SP. Reference proteins from PDB and SP databases are obtained by 

parsing the protein descriptions recorded in nr. Retrieval from PubMed requires fast but 

thorough searching of cross-links between NCBI databases. To implement this search, 

Seq2Ref has two modes: a “fast mode” based on searching a pre-processed local database 

(updated every 6 months) that consists of the reference proteins in nr, and a “slow mode” 

in which the most updated reference proteins are retrieved in real-time via NCBI Entrez 

[25]. 

 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR25


 

Analysis of homologous relationship 

 

We assign orthology firstly by the approximate method of reciprocal best hits 

[26]. In this method, it is necessary to know the the source-organism of the query protein. 

To automatically detect the species, Seq2Ref identifies the taxon of the first BLAST hit 

with at least 97% identity and 90% coverage. Alternatively, the user can manually 

specify the organism of the input sequence. To avoid possible false negatives caused by 

variants of the same gene in reciprocal BLAST, such as alleles containing a single 

nucleotide polymorphism, we pre-cluster the proteins from each genome using CD-HIT 

[27] (identity cutoff: 97%; coverage cutoff: 90%). 

Reference proteins are further analyzed by the method of multiple sequence 

comparison (MSC) shown in Figure 2. Specifically, we retrieve the sequences most 

closely related to the query, and then compare the reference proteins to those closely 

related sequences. Such multiple comparisons allow us to obtain more robust statistics in 

evaluating homology compared to simple pairwise comparison. 

 

Rank reference proteins by relevance to the query 

 

We developed a plurality-based rating system with scores ranging from 1 to 6, 

with 6 indicating the most relevant hits (shown as Table 2). To note, our rating system 

aims to provide intuitive indicators for the level of similarity, but not act as a statistical 

predictor of functionality. Four features are considered: reciprocal BLAST, MSC, 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR26
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#CR27
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#Fig2
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-30#Tab2


 

pairwise comparison between the query and the hit, and whether the hit protein is a 

“reference protein”, e.g. if there are PubMed citations linked to the protein in the current 

version of NCBI databases. The maximal rating score for each aspect is 2, 1.5, 1.5 and 1, 

respectively. A higher total rating score indicates the query protein is closer to the hit and 

is more likely to function similarly. Proteins with scores lower than 3 would be 

considered more distant homologs whose functions may have diverged, because they are 

neither reciprocal BLAST best hits nor with confident statistics in MSC and pairwise 

comparison. 
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CHAPTER 3 PCLUST: PROTEIN NETWORK VISUALIZATION 

HIGHLIGHTING EXPERIMENTAL DATA2 

 

INTRODUCTION 

 

A common practice to formulate hypotheses for a protein of unknown function 

includes searching for annotations among homologous proteins. Although sequence 

similarity does not necessarily correlate with functional similarity (Clark and Radivojac, 

2011), all-against-all pairwise similarity network (A2ApsN) works best to illustrate 

functional relationships among large numbers of proteins (Atkinson et al., 2009), and 

meanwhile avoids computational complexity and problems of aligning non-homologous 

sequences (Frickey and Lupas, 2004). Software packages, such as CLANS (Frickey and 

Lupas, 2004), Pythoscape (Barber and Babbitt, 2012) and Cytoscape (Shannon et al., 

2003), provide powerful repositories to manage the A2ApsN. However, they require 

either programming basics or expertise in program setups to generate the network. 

Numerous efforts aim to visualize the protein–protein interaction (PPI) network 

(Agapito et al., 2013). But these packages build the network by PPI data (not by sequence 

similarity) and assign functions by analysing the network structure, such as dissecting 

functional modules (Sharan et al., 2007). Given the high misannotation rate in current 

databases (Schnoes et al., 2009), the simple protein descriptions that current packages 

                                                 
2 This chapter was published as:  

Li W, Kinch LN, Grishin N V. Pclust: protein network visualization highlighting experimental data. 

Bioinformatics 2013;29(20):2647–2648. 



 

offer are somewhat suspect, which hinders the understanding of the protein clusters. 

Thus, to avoid working with a network of uncertainty, one has to tediously verify the 

functions of nodes in the network before getting into interesting biology. 

Here, we developed a web server named Pclust for visualization of the A2ApsN, 

which emphasizes those ‘reference proteins’ with experimental studies. Pclust works with 

the Seq2Ref server (Li et al., 2013) to identify the ‘reference proteins’ and highlight them 

in the network. The web interface bypasses the pain of software installation and the 

requirement of programming expertise. The highlighted ‘reference proteins’ and easy 

access to their functional studies simplify the process of relating functions to protein 

clusters, thus facilitating hypothesis driven research of proteins of interest. 

 

RESULTS 

 

Pclust has four modes; a user can specify the input as (i) a single sequence; (ii) 

multiple sequences; (iii) a Seq2Ref result link; and (iv) customized network data. The 

four above modes are designed to provide A2ApsNs (i) for any single sequence; (ii) with 

an advanced interface similar to CLANS; (iii) for previously generated Seq2Ref jobs; and 

(iv) with a customized input that grants users the flexibility to design. An email is 

required to keep track of the job submission. Once the network is ready, an email 

containing the result link will be sent to the provided address. 

Figure 1 (current E-value cutoff: 2e-38) shows the interface for an A2ApsN, as 

well as an example where the input protein (brown node), annotated as ‘mandelate 



 

racemase’ (gi|17987990), should be a ‘fuconate dehydratase’, as previously described 

(Schnoes et al., 2009). Merely reading the brief protein descriptions within the cluster, 

such as ‘RTS beta protein’, ‘mandelate racemase’ and ‘enolase superfamily member’ (as 

in the CLANS interface), results in confusion about the function of the cluster. Pclust 

alleviates this confusion by highlighting the reference proteins and referring to their 

annotation sources linked by our server. For example, the cluster circled in Figure 

1 containing the questionable ‘mandelate racemase’ (brown) includes two solved crystal 

structures of known fuconate dehydratases with provided links to their experimental data. 

Thus, with the convenience of locating reference proteins in A2ApsN and accessing their 

database links, more accurate hypotheses about the function of protein queries can be 

generated, potentiating biological discovery. 

 

METHODS AND IMPLEMENTATION 

 

Preparation of the protein network 

 

According to the type of user inputs, the protein sets shown in the A2ApsN are 

taken from (i) Seq2Ref BLAST results; (ii) user input sequences; or (iii) user customized 

data (e.g. http://prodata.swmed.edu/pclust/help/format.html#custom). If a single sequence 

is given, proteins will be taken from its BLAST result against NR. To speed up A2ApsN 

generation, CD-HIT (Fu et al., 2012) (optional, default identity cutoff: 95%) reduces the 

redundancy of the protein set that is used for all-against-all BLAST clustering. 

http://prodata.swmed.edu/pclust/help/format.html


 

 

Reference protein detection 

 

Proteins either detected by BLAST or input by the user are submitted to the 

Seq2Ref server to detect ‘reference proteins’. As the user input format is flexible, we 

submit protein sequences to the Protein Identifier Cross-Reference (PICR, Wein et al., 

2012) service to detect their IDs in PDB, Swiss-Prot and RefSeq databases. 

 

Protein network generation 

 

A2ApsN is calculated with force-directed graph drawing algorithms implemented 

by Vivagraph (https://github.com/anvaka/VivaGraphJS) and rendered using WebGL 

library (supported by most browsers). Reference proteins are colored according to the 

data sources. Keyword search of the annotations, adjustment for the link number and on-

the-fly reference panels describing functional studies are implemented by asynchronous 

request to our server through AJAX (Asynchronous JavaScript and XML). 

 

https://github.com/anvaka/VivaGraphJS


 

 

 
    Fig. 1. Snapshot of an A2ApsN from Pclust (web link: http://prodata.swmed.edu/wenlin/server/paper_data/pclust/fig1). Protein nodes are colored, hierarchically, brown 

(input by the user, if applicable), red (selected by mouse), purple (with PDB structures and their articles), green (with PubMed articles), yellow (with Swiss-Prot functional 

comments) and blue (with PDB structures of no article, such as those from structural genomics) and light blue (without any reference, smaller size). A “preview” panel and 

a “detailed Info” panel appear for the protein on which your mouse hovers and your mouse clicks, respectively. Batch selection of proteins is available by inputting the gi 

numbers (if applicable) separated by commas, and keyword search is available for annotations from the NCBI protein database. By default, Pclust will include the first 

quarter or 5000 (whichever is smaller) network links (ordered by E-value) and report the corresponding E-value cutoff; a panel to adjust network links by varying the E-

value cutoff or the link number is also available. To know more about the control panel, please refer to: http://youtu.be/XLkfEg2jGOc.  

 

 

 

 

 

http://youtu.be/XLkfEg2jGOc
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CHAPTER 4 THE ABC TRANSPORTERS IN CANDIDATUS 

LIBERIBACTER ASIATICUS3 

 

INTRODUCTION 

 

Citrus Greening, also known as Huanglongbing (HLB), is one of the most 

destructive diseases of citrus. It was first reported in the early 20th century1,2 and has 

developed into a major threat for the citrus industry in China, Brazil, and the Eastern 

United States.3,4 The symptoms of HLB mainly include yellow shoots, chlorosis leaves, 

premature defoliation, and aborted fruits, followed by the eventual death of the entire 

plant.5,6 The causal agents of HLB are believed to be three closely related bacteria in 

the Candidatus Liberibacter (Ca. L.) genus, that is, Ca. L. asiaticus, Ca. L. americanus, 

and Ca. L. africanus.5 Among them, Ca. L. asiaticus is the most widespread and thus 

attracts the most attention from researchers.7 

Ca. L. asiaticus is a Gram-negative alphaproteobacterium. Phylogenetic studies, 

using 16S rRNA and other genes,8,9 placed this bacterium in the family of Rhizobiaceae. 

The long branch of Ca. L. asiaticus in the phylogenetic tree reveals rapid evolution of this 

pathogen.8 The bacterium is transmitted among citrus plants by the piercing-sucking 

insects, citrus psyllids (Diaphorina citri Kuwayama and Trioza erytreae). In the 

plant, Ca. L. asiaticus resides mainly in the phloem tissue.5,6 Efforts have been made to 

                                                 
3 This chapter was published as:  

Li W, Cong Q, Pei J, Kinch LN, Grishin N V. The ABC transporters in Candidatus Liberibacter asiaticus. 
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understand the mechanism of the disease.10–12However, difficulty in maintaining the 

bacterium in culture makes it challenging to carry out any experiments directly on Ca. L. 

asiaticus. Recently, the complete genome sequence8 of the bacterium was obtained, 

which opened the possibility of getting insight into the pathogen and the disease by 

careful analysis of the genome with computational methods. 

Here, we focus on the ATP-binding cassette (ABC) systems of the bacterium. 

ABC systems function in several central cellular processes such as nutrient uptake, drug 

export, and gene regulation.13 Based on current phylogenetic analysis, the ABC systems 

can be divided into three classes: exporters, nontransporting ABC proteins, and a third 

class that is mostly composed of importers.14,15 The essential ABC system component is 

an ABC-type ATPase (also named ABC protein or Nucleotide Binding Domain, NBD). 

The ABC-type ATPase contains a series of highly conserved sequence motifs, including 

Walker A and Walker B, which are common for all P-loop NTPases,16 and Walker C, the 

signature of the ABC-type ATPase.17 Walker A and Walker B are crucial for binding and 

hydrolyzing ATP. As ABC-type ATPases mostly function as homodimers, Walker C is 

responsible for binding ATP on the side opposite to Walker A and Walker B and is 

essential for cross-talks between the two monomers. 

Most ABC systems include transmembrane proteins and function as transporters. 

One ABC transporter consists of at least four domains, that is, two transmembrane 

domains (TMDs) and two NBDs. Pseudo-centrosymmetric dimers formed by two 

homologous TMDs with similar structures are prevalent. The only known asymmetrically 

dimeric ABC transporters, the ECF transporters,18,19 have two possibly structurally 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688454/#b10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688454/#b12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688454/#b8
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different TMDs, a T-component TMD and an S-component TMD. The TMDs of most 

ABC-type transporters fall into four clans in the Protein families database (Pfam)20: 

“ABC transporter membrane domain” clan (CL0241), “ABC-2-transporter-like” clan 

(CL0181), “membrane and transport protein” clan (CL0142), and “BPD transporter like” 

clan (CL0404). Several known structures suggest that the TMD should dock into the 

NBD by a “coupling helix”,21 which coordinates a conformational change caused by 

ATP-hydrolysis. A number of ABC systems also include periplasmic components that are 

responsible for transporting the substrates across the periplasmic space. Periplasmic-

binding proteins (PBPs) are used by many importers to recognize substrates and initialize 

the transporting cycle by interacting with the TMD.22 Similarly, some exporters, 

especially those from Gram-negative bacteria, use a series of auxiliary proteins 

[periplasmic proteins and/or outer membrane (OM) proteins] to route the cargo across the 

periplasmic space. Here, we refer to the PBPs, auxiliary proteins, TMD-containing 

proteins, and NBD-containing proteins in the following text as “ABC system proteins.” 

In addition to primary active transport, ABC transporter activity is thought to be 

related to virulence in some Gram-negative bacteria.23–26 In plants infected by Ca.L. 

asiaticus, the ABC transporters may contribute to host metabolic imbalances and thus the 

Citrus Greening disease symptoms.8 Given the important roles of ABC transporters and 

their possible involvement in pathogenicity, analysis of these ABC transporters will help 

us to understand the metabolism of the bacterium and the mechanism of the disease. In 

this article, we report a detailed study of all ABC transporters in the Ca. L. asiaticus. We 

collected all potential ABC system proteins in the proteome and identified 14 ABC 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688454/#b20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688454/#b21
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transporter systems and 7 nontransporting ABC proteins. Combining different 

computational methods, we predicted the structure and substrate specificity of each ABC 

transporter. 

 

RESULTS AND DISCUSSION 

 

Detection and annotation of ABC-transporters in Ca. L. asiaticus 

 

A total of 55 ABC system proteins were detected in the whole genome. We 

identified 14 complete ABC transport systems consisting of 42 ABC-system proteins and 

7 ABC-type ATPases that are likely involved in cellular processes other than transport 

(Table I). The remaining six potential ABC transporter components do not have confident 

NBD partners in the proteome, and we thus name them “orphan” ABC components. 

 

Evidence for annotations 

 

To ensure functional annotations deduced by homologous proteins, we identified 

close homologs with experimentally verified function for each proposed ABC transporter 

NBD. Their close relationships are reinforced by reciprocal best hits detected by BLAST. 

Most NBDs of Ca. L. asiaticus share more than 40% sequence identity (shown in Table I) 

with their close homologs (proposed orthologs) with experimentally verified function, 

meeting the suggested threshold for precise function annotation transfer.48 Each Ca. L. 
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asiaticus NBD clustered into a group (e-value cutoff: 1e−40) with its proposed ortholog as 

revealed by clustering on the basis of all-to-all BLAST sequence comparison, with an 

exception of the type I secretion system (discussed below). Four NBDs, that is, 

CLIBASIA_02415 (Nrt/Ssu/Tau-like system NBD), CLIBASIA_0135 (type I secretion 

system NBD), CLIBASIA_05125 (Uup nontransport system), and CLIBASIA_05400 

(RecN nontransport system) are more variable and show marginal or low-sequence 

identity (<40%) to their proposed orthologs. We will discuss their predictions in the 

functional detail section. 

 

Novel predictions of ABC system proteins 

 

The original annotations of these ABC-system proteins from NCBI, SEED, COG, 

and KEGG were able to place them as ABC-transporter components. However, clear 

predictions on their substrate specificity and polarity of the transporters were absent in 

many cases. Although for 86% of all proteins, the most specific annotation carefully 

chosen from all these databases could successfully indicate the same substrate or function 

predictions as ours, our manual study provided or modified the annotation for seven ABC 

system proteins from four ABC systems including choline/acetylcholine importer (Cho 

system), possible oxoacid ion importer (Nrt/Ssu/Tau-like system), lipoprotein exporter 

(Lol system), and Uup nontransport ABC protein. The systems revised with new 

annotations are described later. 



 

The TMD of lipoprotein exporter (Lol system) was absent in current NCBI and 

KEGG databases, possibly due to the fact that this TMD consists of two open reading 

frames that were considered as pseudogenes by the NCBI gene prediction pipeline. The 

gene prediction pipeline of the SEED, in contrast, detected these two protein fragments 

but failed to predict the function of the second half. Because of the presence of the intact 

Lol system ATPase and other essential components in Ca. L. asiaticus, it is unlikely that 

the TMD of Lol system has lost its function. Instead, in the absence of any potential 

sequencing error, the two protein halves may interact with each other after translation, or 

some type of translational frame shift mechanism may allow the successful expression of 

the full protein. 

 

Sequence and structural analysis of the NBDs in Ca. L. asiaticus 

 

The NBDs are the most conserved domains among various ABC system proteins. 

The MSA [Fig 1(a)] of NBDs from Ca. L. asiaticus, including those from the 

nontransporting ABC proteins, reveals characteristic conservation patterns. To note, three 

ATPases, that is, MutS, RecF, and RecN, are not included in the MSA due to their 

diverse sequences. The conserved motifs match known motifs in ABC-type 

ATPases,17 including A-loop, Walker A, Q-loop, Walker C, Walker B, H-loop, and D-

loop from the N-terminus to C-terminus, suggesting that the NBDs in Ca. L. asiaticus are 

functional ABC-type ATPases. All these NBDs are evolutionarily related, and their 

predicted structures all belong to the same family (ABC transporter ATPase domain like) 
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in structural classification of proteins. ABC transporters function as dimers, as shown 

in Figure 1(b). In the structure, all the sequence motifs are clustered on the interface of 

the two NBDs [Fig 1(b)]. To bind one ATP molecule, motifs from both sides are 

involved [Fig 1(c)], allowing the co-ordinate movements of two NBDs upon the binding 

and hydrolyzing of ATP.49 Noticeably, the Walker C motif of PrtD is deteriorated. 

Whether the substitution disables the function or develops a new functional theme 

remains to be explored experimentally. 

To confirm the close relationships between the Ca. L. asiaticus NBDs and their 

experimentally studied orthologs, we constructed a phylogenetic tree of those NBDs, 

together with a set of previously analyzed NBDs in Ref.14 (Fig 2). Similar to the previous 

phylogenetic studies,13,14 the constructed tree topology revealed three major groups 

colored red, green, and blue, respectively. To note, some nontransport systems (i.e., MutS, 

RecF, and RecN) are not included due to their diverse sequences. The first major group 

(red) contains ABC-type exporters mainly for multiple drugs, lipids, peptides, and 

proteins and corresponds to class I ABC systems in the previous classification. The 

second major group (green) contains NBDs from both importers (majority) and exporters 

and corresponds to class III ABC systems in the previous classification. It is possible that 

these mixed exporters in the second group originated from ancient ABC-type importers 

and adopted the function of working in efflux systems later in evolution. The third major 

group (blue) contains mainly nontransport ABC proteins, corresponding to class II ABC 

systems in the previous classification. Three ATPases (Uniprot ID: CCMA_ECOLI, 

WHIT_DROME, PDR5_ECOLI) form a small clade (colored orange). The TMDs of the 
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three export systems happen to be in the same clan “ABC-2-transporter-like clan” 

(CL0181) in the Pfam database while the TMDs of the other exporters (red) are from the 

clan “ABC transporter membrane domain” (CL0241). 

The exhilarating message the phylogenetic tree conveys is that, except for PrtD, 

all other Ca. L. asiaticus proteins are placed closely to the proposed experimentally 

studied orthologs. Although marginal bootstrap values exist due to the diverse sequences 

between different ABC-type ATPase families, branches with confident bootstrap values 

suggest a positive correlation between similarity in substrate preference and similarity in 

sequence. Six groups with similar substrate preference formed individual clades with 

good bootstrap probabilities (as indicated by the black dots). However, a few transporters 

of similar substrates appear to be phylogenetically far from each other. These dispersed 

branches of similar functions may reveal a real complexity in functional divergence or 

merely be incorrect tree topology due to nonconfident statistics and insufficient data in 

the process of evolutionary tree reconstruction. Some sequences placed in long branches 

(purple frame in Fig 2) are more diverse among the other ATPases. They failed to group 

with other ATPases possibly due to the insufficient number of representative sequences 

and long branch attraction problems associated with tree construction. 

 

Classification of the ABC transporter TMDs in Ca. L. asiaticus 

 

In contrast to the conserved NBDs, the TMDs are more divergent in both 

sequence and structure. For 15 of the 19 TMDs, we were able to generate homology-

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688454/figure/fig02/


 

based structure models and classify them into three groups. Within each group, the TMDs 

adopt the same fold, and the representative structure templates for these three groups are 

shown in Figure 3(a). In a recent review, the authors classified solved TMD crystal 

structures into three different folds,49 that is, type I importer, type II importer, and 

exporter. Nevertheless, the newly established S-component structure of ECF 

transporter18,19 exhibited a new fold and thus extended the TMD classification. The three 

groups of TMDs in Ca. L. asiaticus are consistent with these three structure folds in the 

review49 and correspond to three nonhomologous Pfam families (Table I). For each group, 

the MSAs of the TMDs together with their representative homologs were generated. 

Although the sequences appear to be rather diverse, hydrophobic and hydrophilic patterns 

are preserved. Small residues mediating interhelix interactions and other characteristic 

residues, such as proline involved in helix kinks, are highly conserved as well. 

The coupling helices from different folds exhibit varied sequence features and 

structures, thus serving as the signature of each fold (Fig 3). TMDs in the first group are 

from the “binding-protein-dependent transport system inner membrane (IM) component” 

Pfam family (PF00528), and they adopt the type I importer fold. This group of TMDs 

possesses five core TMHs, and the essential coupling helix responsible for the interaction 

between the TMD and NBD is located between the third and fourth TMH [Fig 3(a), left 

panel]. The coupling helix of the type I importer adopts a semiperpendicular interaction 

with the following helix [Fig 3(b), left panel]. The short helical pair is connected to their 

connecting TMHs by kinks. All the TMD sequences in the second group belong to the 

“ABC 3 transport” family (PF00950) and assume the type II importer fold. 
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Representative type II structures include 10 TMHs [Fig 3(a), center panel]. The type II 

coupling helix differs from that found in the type I importer fold. It follows a short helix 

that extends from the sixth TMH by a kink and is connected to the seventh TMH by a 

short loop [Fig 3(b), center panel]. Compared to the representative structure template 

consisting of 10 TMHs, the Ca. L. asiaticus sequences lack one peripheral TMH at the 

very N-terminus [colored gray in Fig 3(a) center panel], suggested by HHsearch 

alignments. As this TMH does not participate in the structure core, its absence should not 

affect the general fold. All the TMDs in the third group are from “TMD of ABC 

transporters” family (PF00664) and adopt the exporter fold. They consist of six TMHs 

that extend into the cytoplasm [Fig 3(a), right panel]. These TMDs form swapped dimers 

by exchanging the fourth and fifth helices. Upon binding ATP, the TMDs switch from an 

inward-facing conformation to an outward-facing conformation and release the substrate 

to the periplasmic space.50 Unlike the importers, the exporter fold has two coupling 

helices [Fig 3(b), right panel]: one is located between the second and the third TMHs and 

interact with both NBDs in the closed conformation, while the other is located between 

the swapped fourth and fifth TMHs and inserted into the groove of the NBD on the 

opposite side.51 

The other four Ca. L. asiaticus TMDs fall into “Permease” (Permease, 

CLIBASIA_00085), “Predicted Permease YjgP/YjgQ family” (YjgP/Q, 

CLIBASIA_01390 and CLIBASIA_01395), and “FtsX-like Permease family” (FtsX, 

peg.788&peg.789) in Pfam. FtsX and YjgP/Q belong to the same Pfam clan “BPD 

transporter-like” (BPD-like). This suggested homologous relationship is further 
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supported by the pairwise HHsearch probability over 90%. Moreover, the third Pfam 

family, Permease, is likely related to FtsX and YjgP/Q families, as suggested by 

HHsearch (probability over 90%). The suggested sequence relationships are limited to the 

coupling helix and its surrounding TMHs. The HHsearch alignment between YjgP/Q and 

Permease extended to the N-terminal TMH (marked by a plus symbol in Fig 4), while the 

extension in the alignment between FtsX and Permease is one TMH at the C-terminus of 

surrounding TMHs (marked by asterisk in Fig 4). All three families include a similar 

predicted minimal transmembrane topology displayed in FtsX [Fig 4(c)]. The presumed 

core topology includes four helices, with the coupling helix located between the second 

and third TMH. With respect to this core FtsX TMH topology, YjgP/Q includes an 

inserted extracellular domain following the third TMH and two additional C-terminal 

TMHs, and Permease includes an N-terminal cytoplasmic domain and an additional C-

terminal TMH. Thus, the three families, FtsX, YjgP/Q, and Permease, share a similar 

core TMH topology in addition to the type I importer coupling helix motif, suggesting 

that they adopt similar structures. Intriguingly, the ABC systems consisting of these 

TMDs in Ca. L. asiaticus are all noncanonical transporters. They are involved in shuttling 

substrates between the IM and the OM, by either releasing (Lol and Lpt) or inserting (Lin) 

molecules that are lipids or with lipid moieties from/to the outer leaflet of the IM. Such 

unique and similar transported substrates may serve as evidence to reinforce their 

relationships. 

The Pfam-defined BPD-like clan includes solved structures within the family 

“Binding-protein-dependent transport system IM component” (PF00528, BPD_transp_1, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688454/figure/fig04/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688454/figure/fig04/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688454/figure/fig04/


 

abbreviated as BPD below). Because proteins in the same Pfam clan indicate that they are 

evolutionarily related, it raises the question whether the structures of the three families 

look similar to the known structure in BPD family. The predicted TMD topology of FtsX, 

YjgP/Q, and Permease differs from the BPD family structure topology (Fig 4). To 

maintain both the position of the coupling helix and a similar TMH topology, the N-

terminal TMH of BPD must be deleted. However, this N-terminal TMH plays an integral 

role in the BPD fold, maintaining interactions with all other TMHs and positioning the 

coupling helix (Fig 4). Given the central role of this TMH, its deletion would not likely 

be tolerated and relating BPD to FtsX would therefore require a less parsimonious 

pathway of losing the peripheral BPD C-terminal TMH (red), followed by a circular 

permutation to replace the N-terminal BPD TMH with the C-terminal helix of FtsX. 

Given this complex requirement for maintaining topology, we could not confidently infer 

the relationship between the BPD structure and FtsX, bringing into question the Pfam 

clan assignment. 

Another special common feature of the TMDs from Lpt, Lol, and Lin systems is 

the presence of fused soluble domains (Fig 4). The TMDs of the Lpt system and the Lol 

system in Ca. L. asiaticus are fused with periplasmic domains that likely participate in 

delivering substrates from the IM to the periplasmic space.52 The fused periplasmic 

domain in the IM proteins (CLIBASIA_01390, CLIBASIA_01395) of the Ca. L. 

asiaticus Lpt system is predicted by HHsearch to be structurally similar to other auxiliary 

proteins of the Ca. L. asiaticus Lpt system, including LptA (CLIBASIA_03160), LptC 

(CLIBASIA_03165), and one domain in the OM auxiliary protein LptD 
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(CLIBASIA_01400). It is likely that the Lpt system has evolved by duplications to allow 

efficient conveying of substrates.53 The TMD of the Lin system, on the contrary, is fused 

with a cytoplasmic “Anti-Sigma factor antagonist” (STAS) domain.54 In the SulP family 

transporters,55 STAS is suggested to sequester acyl-carrier protein, an essential protein 

for fatty acid biosynthesis, and thus links transport with fatty acid metabolism. Similarly, 

the STAS domain in the IM proteins might be able to recruit other proteins and contribute 

to the regulation of the Lin system or the cross-talks between transporting and other 

processes. 

 

Function details of the predicted ABC transporters in Ca. L. asiaticus 

ABC-type importers 

In the Ca. L. asiaticus proteome, we detected eight ABC-type importers that 

should be responsible for uptaking essential nutrients from the environment. The 

substrates of these ABC type importers include amino acids, B family vitamins, ions, and 

lipids (the first eight systems of Table I). Because it is suggested that Ca. L. asiaticus 

might deplete the host’s nutrient supply, which results in disease symptoms,8 these ABC-

type importers might help contribute to the death of the plant. 

 

Canonical importer systems 

The substrate specificities of six nutrient importers can be confidently inferred 

from their prominent sequence similarity to close homologs with experimentally verified 

functions. They are general L-amino acid transporter (Aap), phosphate transporter (Pst), 
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thiamine transporter (Thi), choline transporter (Cho), zinc transporter (Znu), and 

manganese and iron transporter (Sit). One NBD, one PBP, and one or two TMDs are 

present in each system. Among them, Cho and Znu contain one TMD that should act as a 

homodimer, and the other four systems contain two homologous TMDs (fused TMDs for 

Thi system and separated TMDs for others). Because the metabolic pathways for some 

amino acids are missing in Ca. L. asiaticus, the presence of an amino acid transporter 

(Aap) suggests that this bacterium requires external amino acid supply for its survival. 

However, we could not deduce the amino acid preference of this transporter, because the 

orthologous Aap system56 in Rhizobium leguminosarum is reported to have broad 

substrate specificity. Thus, understanding the substrate preference of the Aap system 

experimentally might illuminate the minimal amino acid requirement of Ca. L. asiaticus. 

Among the six importers, the system with revised annotations is the choline 

importer (Cho system), which was annotated as a glycine-betaine transporter in existing 

databases. Although choline and glycine-betaine are chemically similar compounds 

(glycine-betaine is the oxidized form of choline), the experiments on the orthologous 

system57 in a closely related bacterium Sinorhizobium melilotishowed a high specificity 

for choline, rather than the annotated glycine-betaine substrate. Given the close 

relationship of the Ca. L. asiaticus CLIBASIA_01125 (NBD) component to that in S. 

meliloti as well as the similar operon arrangement (ChoX-ChoW-ChoV), we annotate 

these components as a Cho system. The highly similar TMD (ChoW, identity: 62%, e-

value: 1e−96) and PBP (ChoX, identity: 49%, e-value: 5e−87) between Ca. L. asiaticus 

and S. meliloti further warrant our prediction. 
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A possible novel ABC system 

The seventh proposed Ca. L. asiaticus transporter (Nrt/Ssu/Tau-like system), 

consisting of one special ATPase containing a characteristic C-terminal domain and 

another protein containing two TMDs, cannot be classified in terms of a specific substrate. 

The NBD of the ATPase (CLIBASIA_02415) shows a close relationship to three 

experimentally studied oxoacid ion transporters, that is, Synechococcus elongatus nitrate 

transporter (Nrt),58–60Bacillus subtilis alkanesulfonate transporter 

(Ssu),61 and Escherichia coli taurine transporter (Tau).62 However, this Nrt/Ssu/Tau-like 

system in Ca. L. asiaticus shows significantly different component arrangements and 

protein domain contents from any of the three closely related systems (Fig 5). No PBP 

has been detected for this system in Ca. L. asiaticus, and the membrane component 

(CLIBASIA_02420) contains two tandem TMDs instead of one TMD in the other three 

systems. Moreover, the Ca. L. asiaticus NBD (CLIBASIA_02415) has a unique fused C-

terminal domain that is conserved among a small group of homologs. This additional 

domain differs from the ABC-type NBD and is classified as “ABC 

nitrate/sulfonate/bicarbonate family transporter, ATPase subunit” (PF09821), which is 

not a member of the P-loop NTPase clan (CL0023) in the Pfam database. HHsearch 

suggests that it adopts a “winged helix” DNA-binding fold with over 95% probability. On 

the basis of its relatively close relationship to Nrt, Ssu, and Tau, we annotated this system 

as Nrt/Ssu/Tau-like ABC transporter without a specific functional annotation. The 

phylogenetic positions of the NBDs (Fig 2) imply that the Nrt/Ssu/Tau-like system might 
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have diverged from the three systems at an early time point. Possibly, the ATPases with 

this characteristic C-terminal domain may be components of novel ABC transporters that 

have not been experimentally studied. Given the dramatic differences in its operon 

organization and the domain structures of the TMDs and the ATPase from the three 

related systems, whether the Nrt/Ssu/Tau-like system is still a transporter remains 

questionable and requires further experimental exploration. 

 

A noncanonical importer system possibly involved in lipid trafficking 

Another special ABC-type transporter in Ca. L. asiaticus is the Lin system 

composed of one NBD, one TMD, and two PBPs. Its closely related 

protein63 in Sphingobium japonicum is reported to be involved in the utilization of 

gamma-hexachlorocyclohexane, presumably by controlling membrane hydrophobicity. 

However, the detailed mechanism of the Lin transporter in S. japonicum remains unclear. 

Our phylogenetic analysis reveals that the Lin system is closely related to the MKL 

family of lipid importers.15 Experimentally studied systems in the MKL family include 

phospholipid importer (Mla)64 in Escherichia coli, cholesterol importer 

(Mce4)65,66 in Mycobacterium tuberculosis, lipid importer (TGD)67 in the chloroplasts 

of Arabidopsis, and a transporter involved in toluene tolerance (Ttg2)68in Pseudomonas 

putida. Unlike the other importers that transport substrates across the cell membrane, 

MKL family importers only insert their substrates, mostly lipid-like compounds, into the 

IM (Mla and TGD) or cell membrane (Mce4). Inferred from the relationship to MKL 

family members, the predicted Lin system in Ca. L. asiaticus is likely to insert certain 
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lipid components, possibly cargoed from OM like the Mla system, into the IM, thus 

contributing to the maintenance of membrane hydrophobicity and resistance to organic 

solvent. Because one canonical transporter should translocate the substrate across the cell 

membrane, we categorize it as a noncanonical importer. 

 

ABC-type exporters 

Six ABC-type exporters were detected in the Ca. L. asiaticus proteome. 

Compared to ABC-type importers, exporters generally have a wider spectrum for 

substrates. The six exporters in Ca. L. asiaticus are predicted to contribute mainly to the 

biogenesis of the OM, multiple drug resistance, and toxin protein secretion. 

 

Noncanonical exporters involved in OM biogenesis 

The outer membrane (OM) is an essential component of Gram-negative bacteria. 

To complete the biogenesis of the OM, two types of compounds, that is, 

lipopolysaccharide (LPS) and lipoprotein, have to get anchored in the OM. The 

transporting process of these two compounds has two similar steps: first, the precursors 

anchor into the outer leaflet of the IM and mature to be LPS or lipoprotein in the IM; 

second, the compounds detach from the outer leaflet of the IM and anchor to the inner 

leaflet of the OM. For LPS biogenesis, a third step is taken to flip the LPS from the inner 

leaflet of the OM to the outer leaflet of the OM. Several ABC-type transporters are 

involved in LPS and lipoprotein translocation.69 
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LPS biogenesis requires two ABC-type exporters, although more than two ABC-

type transporters are involved.69,70 For the first step, lipid A, one of the LPS precursors, is 

flipped by MsbA.70 In Ca. L. asiaticus, two copies of MsbA with fused TMD and NBD 

have been detected. One or both of them could be responsible for this step. The second 

step involves the Lpt system, consisting of an ABC-type transporter in the IM and a set of 

auxiliary proteins in the periplasmic space and the OM. The ABC transporter in the Ca. L. 

asiaticus Lpt system includes one NBD, two homologous TMDs, and all other necessary 

components. For lipoprotein biosynthesis, only one ABC-type transporter (LolD) is 

involved in the second step of shuttling the substrate between the membranes, while the 

first step is carried out by Sec translocase.69 Compared to the E. coli Lol system, 

the Ca. L. asiaticus Lol system, which harbors one NBD, one TMD, and one auxiliary 

protein, lacks the LolE (TMD) and LolB (auxiliary) genes. This difference is consistent 

with the previous observation that alphaproteobacteria generally lack LolB and only 

gammaproteobacteria harbor LolE.69 Because LolC (TMD) and LolA (auxiliary) are 

homologous to LolE and LolB, respectively, it is possible that LolC forms a homodimeric 

TMD instead of a heterodimer with LolE, and LolA could compensate for the function of 

LolB. 

Unlike other canonical ABC exporters in the proteome, Lpt and Lol systems help 

substrates to detach from the outer leaflet of the IM, rather than transporting the 

substrates directly from the cytoplasm to the periplasm.69 Thus, Nagao et al.71named 

these processes “projections” to distinguish those noncanonical exporters. It has been 

reported that three OM-biogenesis-related systems, namely, Lol, MsbA, and Lpt, are 
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required for the viability of E. coli.72–75 Thus, they could be promising drug targets for 

Citrus Greening disease treatment. 

 

Exporters related to drug resistance 

Three Ca. L. asiaticus ABC systems with fused NBD and TMD are suggested to 

be associated with drug resistance. Among them, the NBDs of MsbA1 

(CLIBASIA_04080) and MsbA2 (CLIBASIA_00390) show high pairwise identity (43%) 

to each other, and both show high identity to E. coli MsbA (Table I). Although their 

substrate preferences might differ, the experimental studies on this family of proteins do 

not provide enough information to distinguish their substrates. Knowing that the E. 

coli MsbA, the proposed ortholog for Ca. L. asiaticus MsbA1 and MsbA2, is capable of 

generating multidrug resistance,76 we proposed that those two copies of MsbA could also 

be involved in exporting multiple drugs. 

Another Ca. L. asiaticus system, whose NBD is fused with its TMD and shows 

45% identity to that of Ca. L. asiaticus MsbA1, is the AtmA exporter 

(CLIBASIA_02315). Its close homolog (AtmA)77 in Cupriavidus metalliduranfunctions 

as a transporter that is related to cobalt and nickel resistance. Therefore, it is likely that 

the Ca. L. asiaticus AtmA also functions in heavy metal resistance, possibly by exporting 

heavy metals. 

 

A type I secretion system in Ca. L. asiaticus 
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A special ABC-type exporter in Ca. L. asiaticus is the type I secretion system 

(PrtD). It is one of only two protein secretion systems (the other is the Sec protein 

secretion system) present in Ca. L. asiaticus.8 Type I secretion systems can export 

proteins of varied sizes and are responsible for secreting RTX (repeat in toxin) 

proteins.78,79 Although Ca. L. asiaticus PrtD (CLIBASIA_01350) has been annotated as a 

type I secretion system ATPase in the current database, its low-sequence identity to the 

experimentally studied ortholog (27%) and the substitution of Walker C motif (Fig 1) 

question its function. One explanation for the low similarity might be that the Ca. L. 

asiaticus PrtD NBD exhibits an elevated evolutionary rate compared to the other type I 

secretion systems, as suggested by the distant relationships to its homologous type I 

secretion systems in CLANS clusters. More importantly, the presence of a highly 

characteristic type I secretion system substrate, RTX protease 

serralysin79,80 (CLIBASIA_01345, NCBI gi: 254780384) next to the Ca. L. asiaticus PrtD 

NBD, suggests that this type I secretion system should be capable of exporting substrates, 

at least RTX proteases. Because the transporting cycle requires energy provided by ATP 

hydrolysis, the Walker C substitution of this possibly functional type I secretion system 

would be an intriguing issue to investigate in terms of the structure, function, and co-

operativity between two NBDs. In ABCG5-ABCG8 heterodimeric sterol transporter, an 

intact Walker A and Walker B from ABCG5 functions together with an intact Walker C 

from ABCG8 that is essential for transport activity. The second nucleotide-binding site is 

deteriorated, and substitution of Walker C in ABCG5 does not affect the sterol 

secretion.81 Thus, it is possible that the Ca. L. asiaticus PrtD with the deteriorated Walker 
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C developed a partnership with other NBDs and only contributes its Walker A and 

Walker B to form the ATP-binding site. 

 

Nontransport ABC proteins 

 

Seven nontransport ABC-type ATPases are detected in Ca. L. asiaticus. Although 

not involved in transporting, they are related to important cellular processes such as Fe-S 

assembly (SufC),82 virulence gene regulation (ChvD),83 transposon excision regulation 

(Uup), and DNA repair regulation (UvrA, MutS, RecF, and RecN).15 The four ATPases 

involved in DNA repair show diverse sequence features compared to the ABC-type 

ATPases. For three of them (UvrA, RecF, and RecN), a long insertion between the Q-

loop and Walker C motif makes it difficult to detect their relationships to ABC-type 

ATPases, while the Q-loop and Walker C motif are lacking in the MutS sequence. We 

also detected a short Ca. L. asiaticus protein (CLIBASIA_02635, 110 residues, not listed 

in Table I) similar to the N-terminal region of Rad50 (1312 residues in Saccharomyces 

cerevisiae), a structure maintenance of chromosome family protein. This protein may be 

a relic of evolution. 

The novel Ca. L. asiaticus nontransport ATPase is now annotated as Uup. The 

closest experimentally studied ortholog is the E. coli Uup (gi: 16128916), a soluble 

protein involved in transposon excision regulation.84–87 Although the overall identity 

of Ca. L. asiaticus Uup to E. coli Uup is marginal (35%), possibly due to the different 

insertion length between the Q-loop and Walker C motif in the first NBD, its homologous 
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relationship is supported by the high sequence similarity of the second NBD (about 49%). 

Another piece of evidence is a coiled-coil domain in the C-terminus of the Ca. L. 

asiaticus Uup predicted by COILS,88 which is consistent with the presence of a similar 

coiled-coil domain at the C-terminus of E. coli Uup. This coiled-coil domain in E. 

coli Uup is essential for overall structure stability and participates in binding 

DNA.89 Therefore, similar to E. coli Uup, the Ca. L. asiaticus Uup might also have the 

ability to regulate the DNA excision. A recent gene deletion study also proposes the Uup 

protein to be involved in bacterial quorum-sensing90 mediated by direct contact between 

the cells, which makes this predicted Uup an interesting target for experimental study as 

the quorum-sensing phenomenon is thought to play an important role in bacterial 

virulence.91 

 

Incomplete systems 

 

Five ABC-system proteins in Ca. L. asiaticus do not have confident NBD partners. 

Considering the small genome size of this bacterium, these proteins might be the 

evolutionary relics of genome reduction. Alternatively, these “orphan” ABC system 

proteins, either TMD or PBP, may be able to adopt functions other than ABC transport. A 

recent study92 in ArabidopsisABCG family transporters reported that ABCG11 could 

form a homodimer with itself or a heterodimer with ABCG12. Considering the 

promiscuous dimerization of ABC transporter in Arabidopsis, it is also possible that the 
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ATPases from complete systems could exhibit multiple functions and might be capable of 

forming a functional ABC-transporter with these “orphan” components. 

 

CONCLUSIONS 

 

Combining various computational methods, we identified a complete set of ABC 

transporters and several other nontransport ABC systems in the Ca. L. asiaticus proteome, 

confirmed annotations for most of the ABC system proteins, predicted the polarity and 

structure of each ABC transporter, and generated new annotations for seven proteins 

from four ABC systems. Although the features of most ABC systems could be deduced 

from the abundant experimental data on their orthologs, we reported several novel 

observations, including a Nrt/Ssu/Tau-like transporter that has never been studied, a 

deterioration of the Walker C motif in the type I secretion system, the duplication events 

in the periplasmic components of the Lpt system, and the remote homology relationships 

between the FtsX, YjgP/Q, and Permease Pfam families. In addition, our analysis reveals 

several proteins likely important for controlling the Citrus Greening disease, including 

the type I secretion system and its substrate, and the essential ABC transporter systems 

involved in bacterial OM biosynthesis. Further studies targeting these proteins might lead 

to better understanding and treatment of HLB. 

 

MATERIALS AND METHODS 

 



 

Identification of ABC system proteins 

 

Ca. L. asiaticus protein sequences were downloaded from the NCBI Genbank 

database 

(ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/Candidatus_Liberibacter_asiaticus_psy

62_uid29835), and additional proteins predicted by the 

SEED27(http://pseed.theseed.org/seedviewer.cgi), but missed by NCBI, were added. The 

relevant information and annotations of these proteins from NCBI 

(http://www.ncbi.nlm.nih.gov/nuccore/CP001677), Cluster of Orthologous Groups 

(COGs),28 and the SEED were taken as references. The protein annotations by NCBI, 

COG and the SEED were examined manually to obtain a primary list of ABC system 

proteins, followed by two additional approaches to ensure a complete list. First, starting 

from the proteins in the primary list and the sequence profiles of known ABC system 

protein families in Pfam, we used PSI-BLAST29,30 and HHsearch31 to identify 

homologous proteins from the Ca. L. asiaticus proteome. Second, assisted by our 

comprehensive database of the Ca. L. asiaticus proteome 

(http://prodata.swmed.edu/liberibacter_asiaticus/), we manually curated all the proteins to 

ensure that all ABC system proteins were included in our list. 

 

Substrate specificity and structure prediction of assembled ABC systems 
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For each predicted Ca. L. asiaticus ABC system protein, we applied PSI-BLAST, 

RPS-BLAST,32 and HHsearch to detect homologous proteins, protein families, and 

conserved domains,33 paying special attention to close homologs with experimentally 

verified functions. Sequence comparison between Ca. L. asiaticus and these homologs 

assisted by the sequence clustering tool CLANS34 served as the primary evidence for our 

function assignments. Based on these assignments, the genomic context of each protein 

retrieved from the SEED, and the functional association networks between proteins 

detected by STRING,35 we assembled these protein components into ABC transport 

complexes. The closest homologous proteins with 3D crystal structures judged by 

confidence, coverage, and match of conserved residues were manually selected as 

structure templates. MODELLER36 was then applied to these templates to obtain a 

structure model for each protein. For potential TMDs and PBPs, the transmembrane 

helices and signal peptides were detected by 

TMHMM,37 TOPPRED,38 HMMTOP,39 MEMSAT,40MEMSAT_SVM,41 Phobius,42 and 

SignalP43 to reveal their topologies and confirm their subcellular localization. 

 

Multiple sequence alignment and phylogenetic tree of NBDs in Ca. L. asiaticus 

 

We generated a multiple sequence alignment (MSA) for all the NBDs in the Ca. L. 

asiaticus proteome together with five representative protein structure templates by 

PROfile Multiple Alignment with predicted Local Structures and 3D constraints 

(PROMALS3D),44 followed by manual adjustments. The sequences of well-characterized 
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ABC-type ATPases from other organisms were then added to these predicted NBD 

sequences to generate a common MSA. For phylogenetic reconstruction, positions with 

gap fraction over 10% were discarded. Phylogenetic estimation using Maximum 

Likelihood (PhyML) program45 was used to build an evolutionary tree with LG 

model46 for the substitution model, four discrete rate categories for the rate heterogeneity 

among sites, Nearest Neighbor Interchange for the tree improvement, and SH-like 

approximate Likelihood-Ratio Test47 for estimating the branch support. 

 

Sequence and structure analysis of the TMDs 

 

We performed structure comparison on the TMDs to classify them manually on 

the basis of their topology and architecture. We further used PROMALS3D to construct a 

MSA of TMD sequences in each group, together with homologous structure templates 

and representative sequences that share more than 30% sequence identity with Ca. L. 

asiaticus proteins. The MSAs were then improved by manual adjustment considering 

both sequence patterns and structure features. 
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CHAPTER 5 CONSERVED EVOLUTIONARY UNITS IN THE 

HEME‐COPPER OXIDASE SUPERFAMILY REVEALED BY 

NOVEL HOMOLOGOUS PROTEIN FAMILIES4 

 

INTRODUCTION 

 

Aerobic respiration has evolved to use oxygen, which produces about 16 times 

more adenosine triphosphates (ATPs) than anaerobic respiration.1 This advantage likely 

facilitated some critical evolutionary steps, such as the origin of eukaryotes and the 

increase of body size.2, 3 Heme‐copper oxidases (HCOs) are membrane‐bound enzyme 

complexes functioning in the terminal step of aerobic respiratory chains.4-6 They 

catalyze the reduction of dioxygen to water using electrons transferred from cytochrome 

c or a quinol derivative. The released energy is coupled to the translocation of protons 

across the membrane to generate an electrochemical gradient that can be used for ATP 

synthesis. All HCOs possess a catalytic subunit, an integral membrane protein with 12 

core transmembrane helices (TMHs). Six conserved histidines in the TMHs of the 

catalytic subunit coordinate three co‐factors: a high‐spin heme and a copper ion in the 

binuclear catalytic site, and an additional low‐spin heme functioning in the electron 

transfer pathway.7, 8 Two of the six histidines function as axial ligands to coordinate the 

                                                 
4 This chapter was published as: 

Pei J*, Li W*, Kinch LN, Grishin N V. Conserved evolutionary units in the heme-copper oxidase 

superfamily revealed by novel homologous protein families. Protein Sci 2014;23(9):1220–1234. 
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low‐spin heme, while the rest participate in the catalytic site, with three histidines 

positioning the copper on one side of the high‐spin heme and one histidine serving as the 

axial ligand on the other side. The 12‐TMH core structure of the HCO catalytic subunit 

displays three‐fold rotational pseudosymmetry and distributes the two heme groups into 

two of the three proposed pseudosymmetric units,9, 10 each of which consists of four 

TMHs. 

HCOs from various organisms have been discovered. They differ in heme types, 

electron donors (such as cytochrome c and ubiquinol), proton transfer pathways, and 

subunit composition. Three major types of HCOs (A, B, and C) have been defined based 

on sequence and structural analyses.5, 11 A‐type HCOs include cytochrome c oxidases in 

mitochondria, and cytochrome c oxidases and quinol oxidases in many bacteria and some 

archaea.12 B‐type HCOs are mainly found in the archaeal phylum of Crenarchaeota and 

appear to use one proton pathway compared to two proton pathways in A‐type HCOs. A‐ 

and B‐type HCOs share a conserved tyrosine residue residing in the sixth TMH. This 

tyrosine is covalently linked to a copper‐binding histidine and was proposed to donate a 

fourth electron to the binuclear center in the catalytic process.13 C‐type HCOs, mainly 

from Proteobacteria, use a catalytic tyrosine residue located in a structurally different 

position (the seventh TMH) than that of A‐ and B‐type HCOs.14, 15 

Sequence and structural analyses revealed that the catalytic subunit of nitric oxide 

reductases (NORs) is homologous to that of the HCOs.6, 16 NOR catalytic subunit also 

has 12 core TMHs sharing the same topology of HCO catalytic subunit and binds two 

hemes and a non‐heme iron (instead of copper in HCOs) in a similar fashion by using six 
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conserved histidines. The HCO superfamily thus includes both HCOs and NORs. NORs 

catalyze the reduction of nitric oxide (NO) to nitrous oxide (N2O) with the help of the 

heme groups and the non‐heme iron in the denitrification pathway of the nitrogen 

cycle.6, 17, 18 As NO is a toxic reactive agent, NORs in some pathogenic bacteria also 

play important roles in detoxifying exogenous NO generated by hosts.19 Besides 

substrate preference, NORs differ from HCOs in that they do not translocate protons 

across the membrane and do not have a catalytic tyrosine due to fewer electrons required 

in one catalytic cycle. Two major subgroups of NORs have been described: the 

cytochrome c‐dependent cNOR and the quinol‐dependent qNOR.20 NORs appear to be 

more closely related to C‐type HCOs than A‐ and B‐type HCOs in terms of sequence 

similarity and subunit composition.21 

Although NORs and the three types of HCOs each form well‐separated clades in 

the phylogeny reconstructed for the HCO superfamily, the position of the root remains 

controversial. Different evolutionary scenarios have been proposed for the origin and 

evolutionary order of HCOs and NORs. Several studies18, 22-25 suggested that NORs 

may be more ancient than HCOs, consistent with the assumption that aerobic respiration 

evolved from denitrification after the emergence of atmospheric oxygen. Other 

researchers have proposed that the widely distributed A‐type HCOs were present before 

the split of bacteria and archaea and are ancestors to B‐ and C‐type HCOs and 

NORs.12 These hypotheses, still in debate, explain how the 12 core TMHs developed 

into various types of oxidases. However, the origin of this pseudosymmetric helical 

architecture, an ancient event, is rarely discussed. 
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In this study, we used sensitive sequence similarity search methods such as 

transitive PSI‐BLAST26 searches and HHpred27 to detect proteins homologous to the 

catalytic subunits of the HCO superfamily members. We called the newly found 

homologs HCO homology (HCOH) proteins. Interestingly, we discovered HCOH 

proteins with only four TMHs. These four‐TMH proteins exhibit the highest similarity to 

the last four TMHs of HCOs (TMHs 9–12). They are considered to correspond to one 

evolutionary unit (EU) and are called single‐EU HCOH proteins. Single‐EU HCOH 

proteins may form homotrimers or heterotrimers to maintain the general structure and the 

ligand‐binding sites defined by the fold of HCO/NOR catalytic subunits. HCO/NOR 

catalytic subunits are proposed to contain three homologous EUs made of TMHs 1–4, 

TMHs 5–8, and TMHs 9–12. We also discovered several groups of 12‐TMH HCOH 

proteins that, like HCOs/NORs, contain three EUs. The majority of these three‐EU 

HCOH proteins possess two conserved histidines that are predicted to bind a single heme. 

Most of the newly found remote homologs of HCOs/NORs are hypothetical proteins 

without experimental characterization. Only two of the seven major groups of HCOH 

proteins have been defined in current domain databases (DUF2871 and NnrS). Limited 

experimental studies and genomic context analysis suggest that they could function in the 

denitrification pathway and in the detoxification of reactive agents such as NO. 

Remarkably, the structural core of the three‐EU assembly of HCOs/NORs resembles that 

of a diverse family of trimeric membrane‐associated proteins in eicosanoid and 

glutathione metabolism (MAPEG).28, 29We propose the potential evolutionary scenarios 
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linking existing families, as well as the early evolutionary events of HCOs/NORs in 

aerobic respiration. 

RESULTS AND DISCUSSION 

 

Transitive PSI‐BLAST26 searches (see Materials and Methods) and 

HHpred27 were used to detect proteins homologous to the catalytic subunits of the HCO 

superfamily members. A number of remote homologs of HCOs/NORs with different 

patterns of conserved histidines were discovered. We called these newly found 

superfamily members HCOH proteins and divided them into groups based on the number 

of TMHs in the homologous regions, patterns of conserved histidines, and the 

CLANS30 sequence clustering results. 

 

Four‐TMH proteins homologous to HCOs/NORs help define EUs 

 

The catalytic subunits of HCOs/NORs exhibit an approximate three‐fold 

structural symmetry and are considered as a result of duplications of four‐TMH 

units.9, 10 In previous structure studies, three pseudosymmetric structural units (SUs) 

have been defined as TMHs 11/12/1/2, TMHs 3/4/5/6, and TMHs 7/8/9/10 [Fig. 1(A)] 

(TMHs 1–12 correspond to previously defined TMHs I–XII).9, 10 We detected a set of 

four‐TMH proteins homologous to the catalytic subunits of HCOs/NORs. Most of these 

four‐TMH proteins possess the HxH motif at the beginning of the second TMH. These 

proteins exhibit the highest sequence similarity to the last four TMHs of HCOs/NORs 
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(TMHs 9/10/11/12). The HxH motif of these four‐TMH proteins aligns to the HxH motif 

in the tenth TMH of the catalytic subunits of HCOs/NORs. We consider that these four 

TMHs correspond to an evolutionarily conserved unit and define them as one EU. Each 

of the four‐TMH HCOH proteins possesses one EU and is thus called a single‐EU HCOH 

protein. On the other hand, HCOs/NORs contain three EUs: TMHs 1/2/3/4 (EU1), TMHs 

5/6/7/8 (EU2), and TMHs 9/10/11/12 (EU3) [Fig. 1(B,C)].  

The second TMH in each of the three EUs in HCOs/NORs harbors conserved 

histidine(s) for heme or metal‐binding, with characteristic three‐residue motifs of Hxx, 

xxH, and HxH in EU1, EU2, and EU3, respectively (x: a variable residue) (Fig. 2). These 

motifs are homologous and occupy structurally equivalent positions in the superposition 

of EU1, EU2, and EU3. The third TMH of HCO/NOR EU2 additionally harbors a 

conserved HH motif (Fig. 2). The histidine in the Hxx motif of EU1 and the second 

histidine in the HxH motif of EU3 coordinate the low‐spin heme in the ligand‐binding 

pocket between EU1 and EU3 [Fig. 1(B,C)]. The histidines in the xxH motif and the HH 

motif of EU2 as well as the first histidine in the HxH motif of EU3 contribute to the 

binding of high‐spin heme and copper/non‐heme iron in the pocket between EU2 and 

EU3 [Fig. 1(B,C)]. 

 

Single‐EU proteins with four TMHs may form homotrimers or heterotrimers 
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The single‐EU proteins can be roughly divided into two major groups: HCOH‐s1 

(HCO homology proteins with a single EU, group 1) and HCOH‐s2, according to 

CLANS sequence clustering results (Fig. 3) and sequence conservation. 

HCOH‐s1 (Fig. 3, red up triangles) consists of a main cluster (marked by A in 

Fig. 3) and several nearby small clusters (marked by letters B, C, D, E, F, G, and H in 

Fig. 3). HCOH‐s1 proteins of the main cluster (cluster A) are mostly from Proteobacteria 

and Firmicutes. To maintain the structural compactness in the general fold of 

HCOs/NORs, these single‐domain proteins most likely assemble as trimers. They could 

form homotrimers, since genomes of the main cluster of HCOH‐s1 proteins contain only 

one single‐EU protein. As this cluster of HCOH‐s1 contains the HxH motif, three 

symmetric heme‐binding sites at the interfaces of EUs can be inferred for the 

homotrimers [Fig. 1(D)], similar to the fashion of coordination of the low‐spin heme by 

HCOs/NORs. 

The B cluster (Fig. 3) of HCOH‐s1 consists of closely related proteins encoded by 

gene pairs that are chromosomal neighbors [see three gene structure examples in 

Fig. 4(A–C)]. Interestingly, two proteins from the same species have the xxH and Hxx 

motifs, respectively (e.g., gi|183219809 and gi|183219810 in Fig. 2). These neighboring 

gene products could from heterotrimers, with the histidines contributing to the 

heme‐binding site similar to the way the low‐spin heme is coordinated in HCOs/NORs. 

Figure 1(E) depicts one possible way of forming a heterotrimer consisting of two proteins 

with the xxH motif and one protein with the Hxx motif. A single heme‐binding site can 

be inferred for such a heterotrimer. 
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The remaining six small clusters (C H) of the HCOH‐s1 each have limited 

species distribution. HCOH‐s1 proteins of clusters C and D contain the HxH motif and 

are from the Thermales order of the Deinococcus‐Thermus phylum. In several species of 

the Thermusgenus, a cluster C member and a cluster D member are products of genes not 

far away from each other, separated by gene clusters containing denitrification enzymes 

[see one example of Fig. 4(D)]. These proteins may form homotrimers or heterotrimers 

for genomes containing both C and D cluster members. On the other hand, two species 

(Meiothermus silvanus DSM 9946 and Oceanithermus profundus DSM 14977) have 

cluster C members and do not have cluster D members [see the example of Fig. 4(E)], 

suggesting that cluster C members can form homotrimers. HCOH‐s1 proteins of clusters 

E and F, mostly from the Thioalkalivibrio genus, are also largely encoded by neighboring 

gene pairs [one example shown in Fig. 4(F)]. Although cluster E proteins have the HxH 

motif, cluster F proteins are characterized by the xxH motif. Products of these 

neighboring gene pairs may form heterotrimers. HCOH‐s1 proteins of clusters G and H 

all possess the HxH motif and are encoded by pairs of genes in chromosomal vicinity 

[see two examples in Fig. 4(G,H)]. 

Members of the HCOH‐s1 group have not been classified in publicly available 

domain databases, while the HCOH‐s2 group corresponds to Pfam family DUF2871 and 

consists of proteins with unknown function. HCOH‐s2 members have the conserved HxH 

motif in their second TMH. They likely form homotrimers with three symmetric sites that 

can coordinate three hemes [Fig. 1(D)]. Compared to HCOH‐s1 proteins, HCOH‐s2 

proteins additionally possess a conserved “RE” motif at the end of the first TMH and a 
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conserved histidine in the fourth TMH (Fig. 2). HCOH‐s2 proteins are mostly from 

bacterial phyla Firmicutes and Actinobacteria. Interestingly, several single‐cell 

eukaryotes also possess HCOH‐s2 proteins, including some species in the order of 

Trypanosomatida such as those of the Leishmania genus, Angomonas deanei, 

and Strigomonas culicis. Manual inspection of weak PSI‐BLAST hits also revealed a 

divergent HCOH‐s2 protein from Naegleria gruberi (gi|290974763, Fig. 2), a free‐living 

single‐cell eukaryotic species of the Heterolobosea class. HCOH‐s2 may be present in the 

ancestor of eukaryotes, and its patchy phylogenetic distribution suggests that it may be 

lost independently in most eukaryotic lineages. Leishmania species are parasites for 

leishmaniasis, a disease that causes skin sores and visceral 

failure.31, 32 Leishmania species only include the last three enzymes in the heme 

biosynthetic pathway.33 Although Leishmania may be able to synthesize heme from 

heme precursors, it is thought to transport heme with an unknown mechanism34, 35 and 

is uniquely dependent on the acquisition of exogenous heme for 

survival.36, 37 Considering the membrane localization and potential heme‐binding 

capability of HCOH‐s2 proteins, Leishmania HCOH‐s2 proteins might be involved in the 

maintenance of heme homeostasis in these parasites. One hypothesis about their function 

is that Leishmania HCOH‐s2 proteins sequester hemes in the membrane to reduce heme 

toxicity38 to the cell and increase heme accessibility to other membrane proteins. 

The majority of HCOH‐s1 and HCOH‐s2 proteins consist of a single domain 

corresponding to one EU of four TMHs. As exceptions, one HCOH‐s1 protein has an 

N‐terminal divergent cupin_2 domain as suggested by HHpred (gi|91786010, Fig. 5), and 
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all F‐cluster HCOH‐s1 proteins contain an N‐terminal thioredoxin domain (e.g., 

gi|220936290, Fig. 5). A small number of HCOH‐s2 members have several additional 

TMHs (four or seven) (Fig. 5) in their N‐termini that do not show detectable sequence 

similarity to the EUs of HCOs/NORs and HCOH proteins (based on PSI‐BLAST and 

HHpred results). 

 

HCOH groups with three EUs 

 

We found a number of HCOH proteins with 12 TMHs (about 1500 proteins in the 

nre90 database). These HCOH proteins, like HCOs/NORs, consist of three EUs. 

However, they usually have fewer conserved histidines than HCOs/NORs. They form 

several clusters in the CLANS protein clustering diagram (Fig. 3). We divided them into 

seven groups: HCOH‐t1 (HCO homology proteins with three EUs, group 1), HCOH‐t2, 

HCOH‐t3, HCOH‐t4, HCOH‐t5, HCOH‐t6, and HCOH‐t7. 

HCOH‐t1, HCOH‐t2, and HCOH‐t3 proteins possess two conserved histidine 

residues in motifs Hxx of EU1 and xxH of EU3 and do not have conserved histidines in 

EU2 [Figs. 1(F) and 2]. These proteins also possess a conserved arginine in the third 

TMH of EU3 (Fig. 2). The two conserved histidines correspond to the two residues in 

HCOs/NORs that bind the low‐spin heme. HCOH‐t1 proteins, mainly from 

Proteobacteria, correspond to the previously classified NnrS family (PF05940) in the 

Pfam database. The nnrS gene was identified as the neighboring gene 

of nnrR in Rhodobacter sphaeroides 2.4.1 and R. sphaeroides 2.4.3.39 The nnrR gene 
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encodes a transcriptional regulator that responses to nitric oxide (NO) to activate the 

expression of the NOR gene norB. The expression of the nnrS gene is also dependent on 

the nnrR gene.39 The STRING functional association server40 suggests that 

the nnrR and nnrS genes co‐occur with the norB‐containing noroperon in various 

bacterial genomes, and they are often chromosomal neighbors, such as in the genome 

of R. sphaeroides 2.4.1 [Fig. 4(I)]. The purified NnrS protein appears to contain heme 

and copper.41 Disruption of the nnrS gene affected taxis towards nitrate and nitrite, 

suggesting a role of NnrS in the denitrification process.41 

Recent studies showed that NnrS contributes to NO resistance in the bacterial 

pathogenVibrio cholerae.42 NO is a host‐generated reactive nitrogen species toxic to 

many bacterial pathogens such as V. cholerae. The nnrS gene in V. cholerae is 

up‐regulated by the NorR transcriptional regulator in response to NO.42 NorR also 

activates the expression of the hmpA gene that encodes a protein with nitric oxide 

dioxygenase (NOD) activity that turns NO to less toxic nitrogen oxides.42 Gene 

disruption experiments suggest that nnrS and hmpAare important for V. 

cholerae colonization of intestines under the NO conditions, suggesting their roles in NO 

detoxification.42 Unlike HmpA, V. cholerae NnrS does not remove NO, but it may 

protect cellular iron pool from NO damage.43 The STRING server revealed that genes 

encoding NorR, HmpA, and NnrS are chromosomal neighbors in some bacteria, such as 

the opportunistic pathogen Pseudomonas aeruginosa [Fig. 4(J), fhpR and fhp encoding 

orthologous genes of norR and hmpA in V. cholerae, respectively), further supporting 

their functional association. The nnrS gene was also identified in a transposon 
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mutagenesis screen to be important in host colonization of Neisseria meningitidis, a 

bacterial pathogen that causes meningitis.44 

The majority of HCOH‐t2 proteins are from Actinobacteria and Proteobacteria. 

They also include some archaeal members mainly from the Crenarchaeota phylum. Most 

of the HCOH‐t2 proteins are annotated as hypothetical proteins. A few HCOH‐t2 proteins 

harbor additional domains. For example, the protein gi|408501395 has an additional 

TMH, a cupredoxin domain, and a copper‐containing nitrite reductase domain C‐terminal 

to the HCOH domain (Fig. 5). Such a domain composition suggests that HCOH‐t2 may 

function in the denitrification process. Another protein, gi|392374446, has a different 

oxidoreductase domain (VKOR, vitamin K epoxide reductase) located N‐terminally to 

the HCOH domain (Fig. 3). Genes encoding HCOH‐t2 proteins are frequently found as 

neighbors of reductases in the denitrification process. For example, the HCOH‐t2 gene is 

the neighbor to a NOR gene (norB) in Burkholderia pseudomallei K96243 [Fig. 4(K)] 

and to a copper‐containing nitrite reductase gene in Corynebacterium diphtheriae NCTC 

13129 [Fig. 4(N)]. In the hyperthermophilic crenarchaeon Pyrobaculum aerophilum str. 

IM2, the HCOH‐t2 gene (PAE3602) is adjacent to a NOR gene (norB) and a nitrite 

reductase subunit (cytochrome D1) [Fig. 4(L)]. These three genes were all up‐regulated 

after induction with nitrate.45 The association with these reductase genes also suggests 

that HCOH‐t2 may function in the denitrification process. 

The HCOH‐t3 group consists of 14 bacterial sequences and one archaeal sequence 

forming a loosely connected cluster in the CLANS diagram (Fig. 3). A few HCOH‐t3 

proteins also possess DUF1858 (Pfam: PF08984) and ScdA_N (Pfam: PF04405) domains 
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(Fig. 5). HHpred results suggest that DUF1858, a domain of unknown function, is 

distantly related to the ScdA_N domain. ScdA_N domain is named after the N‐terminal 

domain of Staphylococcus aureus protein ScdA, which also contains the hemerythrin 

domain (Pfam: PF01814) that binds non‐heme diirons.46 The bacterial hemerythrin 

domain‐containing RIC (repair of iron centers) family proteins, including ScdA from S. 

aureus, DnrN from Neisseria gonorrhoeae and YtfE from Escherichia coli, confer 

resistance to reactive nitrogen and oxygen molecules such as NO and H2O2 by repairing 

their damages to iron‐sulfur centers.47 The presence of the ScdA_N domain in many RIC 

proteins suggests that ScdA_N could aid in oxidative or nitrosative stress response. Such 

a domain in a few HCOH‐t3 proteins indicates that they may also be involved in 

resistance to reactive nitrogen molecules such as NO, like some HCOH‐t1 (NnrS) 

members. In Solibacter usitatus Ellin6076, the HCOH‐t3 gene (Acid_2923) is in the 

neighborhood of genes of the RIC family and genes containing ScdA_N and DUF1858 

domains [Fig. 4(M)], further supporting their functional associations. 

HCOH‐t4 proteins exhibit the histidine patterns of HxH, xxx, xxH in EU1, EU2, 

and EU3, respectively (Fig. 2). Similar to HCOH‐t1, HCOH‐t2, and HCOH‐t3, such a 

pattern allows coordination of a heme group at the interface of EU1 and EU3. HCOH‐t4 

proteins are mainly from the Bacteroidetes phylum. A few of them contain a cytochrome 

c domain at the C‐terminus (Fig. 5), suggesting that they may be involved in cytochrome 

c‐dependent electron transfer. The HCOH‐t4 gene is often located near the nosoperon 

[one example shown in Fig. 4(O)] that encodes nitrous oxide (N2O) reductase, which 

catalyzes the final step of the denitrification pathway: conversion of N2O to dinitrogen. A 
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gene encoding the RIC family protein ScdA is also frequently found to be close to the 

HCOH‐t4 gene [e.g., Fig. 4(O)], suggesting that HCOH‐t4 could be involved in 

denitrification and detoxification of reactive molecules. 

The majority of HCOH‐t5 and HCOH‐t6 proteins possess the xxH and Hxx motifs 

in the second TMH of EU1 and the second TMH of EU2, respectively, and lack 

conserved histidines in EU3 (Fig. 2). Such a pattern allows coordination of one heme 

group at the interface between EU1 and EU2 [Fig. 1(G)]. HCOH‐t5 members are present 

in both bacteria and archaea. The bacterial members of HCOH‐t5 are mainly from 

Proteobacteria and Firmicutes, while the archaeal members are all from the Halobacteria 

class of the Euryarchaeota phylum. The majority of HCOH‐t5 proteins are annotated as 

hypothetical proteins and do not contain additional domains. As exceptions, a few 

HCOH‐t5 proteins possess domains of unknown function such as DUF2249 (Pfam: 

PF10006) and DGC (Pfam: PF08859, a domain with four conserved cysteines that likely 

coordinate zinc). The STRING server revealed strong association of HCOH‐t5 proteins 

with proteins containing DUF2249 domain, proteins with DUF59 domain, and RIC 

proteins based on evidence of gene neighborhood, gene fusion (in the case of DUF2249 

domain), and gene co‐occurrence. For example, the HCOH‐t5 gene from Rhizobium 

etli CFN 42 (RHE_PF00521) is predicted to be functionally associated with two genes 

containing DUF2249 domains (RHE_PF00520 and RHE_PF00522) and a gene with 

DUF59 domain (RHE_PF00523) [Fig. 4(P)]. These genes are also neighbors to nnrS (a 

HCOH‐s1 gene), nnrR, and gene clusters encoding denitrification enzymes such as NOR 

and nitrite reductase [Fig. 4(O)]. 
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HCOH‐t6 proteins are mainly from Actinobacteria. Some HCOH‐t6 proteins are 

annotated as “multicopper oxidase” or “nitrite reductase,” as they also possess a 

cupredoxin domain and a copper‐containing nitrite reductase domain. Such a domain 

composition is similar to a few HCOH‐t2 proteins described above (Fig. 5). Interestingly, 

HCOH‐t6 and HCOH‐t2 genes are often chromosomal neighbors, such as DIP1877 (a 

HCOH‐t6 gene) and DIP1878 (a HCOH‐t2 gene) of Corynebacterium diphtheriaeNCTC 

13129 [Fig. 4(N)]. In one case, HCOH‐t2 and HCOH‐t6 are fused together in one open 

reading frame (gi|493596372 from Actinomyces urogenitalis, Fig. 5). These observations 

suggest that HCOH‐t2 and HCOH‐t6 may have related functions. 

HCOH‐t7 proteins exhibit yet another pattern of histidine motifs with xxH in EU2 

and Hxx in EU3, while lacking conserved histidines in EU1 (Fig. 2). Such a pattern 

would allow coordination of one heme group at the interface between EU2 and EU3 

[Fig. 1(H)]. HCOH‐t7 proteins form two small clusters in the CLANS diagram (Fig. 3). 

Each cluster has restricted phylogenetic distribution. They are from the bacterial phylum 

Aquificae and from the archaeal class Halobacteria of the Euryarchaeota phylum, 

respectively. These proteins are annotated as hypothetical proteins and do not have 

additional domains. 

In summary, three‐EU HCOH genes are often neighbors to genes involved in the 

denitrification process and/or detoxification of small reactive molecules such as NO 

(Fig. 4). Many of these neighboring genes encode various denitrification enzymes such as 

nitrate reductase, nitrite reductase, NOR, and nitrous oxide reductase (Fig. 4). The 

detoxification genes include those that encode NOD and the RIC family proteins with 
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hemerythrin domains. In addition, genes encoding a few domains of unknown functions, 

such as ScdA_N, DUF2249, DUF1858, and DUF59, are also frequently found in the 

neighborhood of three‐EU HCOH genes. Three‐EU HCOH proteins from different 

groups are sometimes gene neighbors (Fig. 4), suggesting that they are involved in the 

same biological process. The gene neighborhood associations are consistent with the 

domain contents of limited multi‐domain three‐EU HCOH proteins, as some of these 

proteins contain nitrite reductase domain, DUF2249 domain and DUF1858 domain 

(Fig. 5). 

For some single‐EU HCOH proteins such as HCOH‐s2 (DUF2871) proteins and 

cluster A HCOH‐s1 proteins, we did not find strong functional associations to 

denitrification/detoxification genes according to the results of the STRING server. On the 

other hand, genes encoding HCOH‐s1 proteins of clusters B, C, D, E, and F are 

frequently neighbors to denitrification genes and potential detoxification genes such as 

those with the hemerythrin domain and the globin domain48 (Fig. 4(A–F)]. Like many 

three‐EU HCOH genes, these single‐EU HCOH genes often have neighbors with 

domains of unknown function such as ScdA_N, DUF2249 and DUF59 [Fig. 4(A–F)]. 

Other genes frequently in the vicinity of HCOH‐s1 genes include those encoding proteins 

with cytochrome c domain (cyC), ferredoxin domain (fx), thioredoxin domain (Trx), and 

cupin_2 domain (cp2) [Fig. 4(A–F)]. Some three‐EU HCOH genes are also found to be 

neighbors of HCOH‐s1 genes [e.g., Fig. 4(B,C,E)]. 

Limited experimental studies on NnrS proteins, gene context analysis and domain 

content analysis indicate the involvement of many HCOH proteins in denitrification and 
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detoxification. The molecular mechanisms of their functions remain unknown and await 

further experimental investigations. As putative heme‐binding proteins, HCOH proteins 

could contribute to denitrification and detoxification in several ways, such as 

maintenance of cellular iron and heme homeostasis, being part of the electron transfer 

pathways in various denitrification enzymes, binding/sequestering/exporting reactive 

nitrogen species, and possessing enzymatic activities that convert reactive nitrogen 

species to less toxic molecules. 

Structure similarity between the catalytic subunits of HCOs/NORs and the MAPEG 

family proteins 

After establishing the EUs for the HCO superfamily, we sought to explore its 

relationship to known structures. We queried the structures of HCO/NOR EUs against the 

SCOP49 database using the HorA server,50 which not only reports structural similarity, 

but also evaluates if the similarity represents homology or analogy. HorA identified a 

MAPEG structure as the top hit following the structures from the HCO superfamily, with 

relatively good scores for both structure comparison (Dali Z‐score 7.6) and sequence 

comparison (HHpred probability 0.52), resulting in an overall score (5.042) that is 

consistent with scores derived for distant homologs.51 MAPEG proteins are a group of 

membrane‐bound enzymes with diverse functions, including glutathione transferase 

activity that provides protection from oxidative stress in the membrane.28 The MAPEG 

fold, consisting of four TMHs, forms a homotrimer that binds three substrates in a 

symmetric manner. The four TMHs of a MAPEG subunit adopt the same topology as the 

four TMHs in each EU of HCOs/NORs, showing right‐handed connections between them. 
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In addition, an unexpected structural similarity lies in the same arrangement of the three 

subunits of the MAPEG homotrimer compared to the three EUs in HCOs/NORs, as 

noticed before.29 A superposition of a trimeric MAPEG structure (pdb id: 4al0) onto an 

HCO structure (pdb id: 3mk7) (Fig. 6) reveals a striking similarity (Dali Z‐score: 20.6, 

RMSD: 3.3Å) covering all 12 TMHs. Each of the three EUs of HCO structure 

corresponds to one monomer of the MAPEG homotrimer (Fig. 6). Interestingly, the 

hemes from the HCO structure (red sticks, Fig. 6) overlap with the MAPEG substrate 

(glutathione, magenta sticks, Fig. 6), which is located at the interfaces of the monomers. 

Combined with the trimeric state required for MAPEG enzyme function,52, 53 the 

structural similarity and similar active site position suggest that MAPEG proteins and 

HCOs/NORs are evolutionarily related.29 

 

Evolutionary scenarios of HCOs/NORs and the HCOH proteins 

 

Gene duplication, divergence, fusion, and fission are the main driving forces in 

the evolution of proteins with novel functions.54-56 It is estimated that a large fraction of 

proteins form oligomers with functional importance.57 Evolution of oligomeric protein 

complexes has drawn interest in both theoretic and experimental studies.58, 59 Gene 

duplication is considered as the cause to generate heteromers (hetero‐oligomers) from 

homomers (homo‐oligomers), for example, in the evolution of proteasomes60 and 

chaperonins.61 Subunits in a heteromer have different sequences and structures that 

break the symmetry of homomers and allow more versatile functions.62 It is estimated 
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that a large fraction of membrane proteins form oligomers or are internally 

pseudosymmetric,63, 64 like the catalytic subunits of HCOs/NORs. 

The structural similarity between the catalytic subunits of HCOs/NORs and the 

MAPEG trimers suggests that HCOs/NORs could have evolved from a four‐TMH 

ancestral protein that forms MAPEG‐like homotrimers (Fig. 7). It is likely that a 

fortuitous sequence divergence event of this ancestor [Fig. 7(A)] gave rise to the HxH 

motif in the second TMH that enabled binding of heme groups. The discovery of 

single‐EU HCOH proteins with four TMHs and the HxH motif supports this hypothesis. 

The homotrimers of four‐TMH single‐EU proteins with the HxH motif would have three 

symmetric heme‐binding sites located at the interfaces of the monomers, similar to those 

of the MAPEG proteins. Single‐EU HCOH genes could have undergone gene 

duplications [Fig. 7(B)] followed by sequence divergence to generate multiple copies of 

single‐EU HCOH genes encoding proteins that form heterotrimers. If the HxH motif is 

kept in all duplicated genes, a heterotrimer with three heme‐binding sites could be formed. 

In case some histidines are mutated [Fig. 7(C)], like the HCOH‐s1 cluster B proteins, 

heterotrimers that bind less than three hemes could evolve. The fusion of three single‐EU 

genes would result in an open reading frame with three EUs [Fig. 7(D,F)]. Three‐EU 

proteins could bind three hemes with six histidines if the HxH motif is kept in all three 

EUs [Fig. 7(D)]. Interestingly, we identified one archaeal protein in the HCOH‐t5 group 

(gi|288930450 in Fig. 2, marked by a star in Fig. 3) that has three HxH motifs and could 

bind three hemes. Deterioration of some histidines, either in the stage of single‐EU 

ancestors [Fig. 7(C)] or three‐EU ancestors [Fig. 7(E)], could lead to three‐EU HCOH 
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proteins with fewer than six conserved histidines and thus less than three heme‐binding 

sites. 

Most of extant three‐EU HCOH proteins possess two conserved histidines and are 

inferred to bind a single heme. They mostly follow one of three histidine patterns: 

Hxx.xxx.xxH (HCOH‐t1, HCOH‐t2, HCOH‐t3, and HCOH‐t4), xxH.Hxx.xxx (HCOH‐t5 

and HCOH‐t6) and xxx.xxH.Hxx (HCOH‐t7) (Fig. 7). These three patterns can also be 

related by circular permutations of the three EUs [Fig. 7(G)]. We also identified a small 

number of archaeal HCOH‐t5 proteins (e.g., gi|389847617 in Fig. 2) that contain a 

combination of patterns of HCOH‐t1 and HCOH‐t5 and have four histidines in the motif 

pattern of HxH.Hxx.xxH (Fig. 7). These proteins could thus bind two hemes. 

HCOs/NORs follow the histidine pattern of Hxx.xxH.HH.HxH. The HH motif in 

the seventh TMH (the third TMH in EU2) is a unique feature of HCOs/NORs that is not 

present in HCOH proteins. Such an addition allows HCOs/NORs to coordinate a copper 

or non‐heme iron in addition to binding two hemes. We also identified several small 

groups of proteins closely related to HCOs/NORs that have some or all of the conserved 

histidines deteriorated. Two small groups (light blue dots in Fig. 3) have the HH motif 

deteriorated. Four small groups (yellow dots in Fig. 3) have all of the six histidines 

deteriorated. These groups could have evolved from the HCOs/NORs by sequence 

divergence [Fig. 7(H)]. 

Although it is likely that three‐EU HCOH proteins have evolved by gene 

duplication and fusion of single‐EU HCOH ancestors, the opposite evolutionary scenario, 

gene split (or fission) of three‐EU HCOH genes to generate single‐EU HCOH open 
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reading frames [Fig. 7(I)], is also plausible. For example, HCOH‐s1 proteins of clusters 

H and G, especially cluster H proteins, are close to the HCOs/NORs in the CLANS 

diagram (Fig. 3). Their top BLAST hits include C‐type HCOs. In the genome 

of Sideroxydans lithotrophicus ES‐1, one cluster G HCOH‐s1 gene and one cluster H 

HCOH‐s1 gene are close to each other and neighboring to a C‐type HCO (Fig. 4). It is 

likely that HCOH‐s1 proteins of clusters G and H are derived from C‐type HCO proteins 

by gene fission. 

 

CONCLUSIONS 

 

Comparative sequence‐structure analysis revealed novel homology between a 

number of HCOH proteins and the catalytic subunits of HCOs/NORs. HCOH proteins 

form groups of four‐TMH single‐EU proteins (HCOH‐s1 and HCOH‐s2) and groups of 

12‐TMH three‐EU proteins (HCOH‐t1, HCOH‐t2, HCOH‐t3, HCOH‐t4, HCOH‐t5, 

HCOH‐t6, and HCOH‐t7). Among these groups, only HCOH‐s2 and HCOH‐t1 

correspond to known domains (DUF2871 and NnrS, respectively), while the majority of 

other HCOH members are currently annotated as hypothetical proteins without known 

domains. Gene context and domain content analyses, coupled with limited experimental 

studies of NnrS, suggest that most HCOH proteins are involved in the denitrification 

process and/or detoxification of reactive small molecules. Based on the structures of 

HCOs/NORs, single‐EU HCOH proteins could form homotrimers or heterotrimers with 

active sites located at the interfaces between monomers. Conserved histidines in HCOH 
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proteins indicate that they can bind heme. Strong structural similarity was observed 

between the homotrimers of the MAPEG family membrane enzymes and the catalytic 

subunits of HCOs/NORs. Such a similarity, together with the discovery of single‐EU 

HCOH proteins, suggests that HCOs/NORs and three‐EU HCOH proteins could have 

evolved from four‐TMH ancestors that form homotrimers similar to MAPEG proteins. 

Gene duplication, sequence divergence, and gene fusion of ancestral single‐EU HCOH 

proteins could give rise to three‐EU HCOH proteins and HCOs/NORs. Conversely, gene 

fission of three‐EU HCOH proteins or HCOs/NORs may have produced some extant 

single‐EU HCOH proteins. 

 

MATERIALS AND METHODS 

 

Sequence similarity searches 

 

PSI‐BLAST26 iterations were conducted to search for homologs of the HCO 

superfamily proteins starting from one representative with known structure (protein 

databank (PDB65) id: 3o0r, chain B)16 against a database composed of NCBI 

non‐redundant proteins and environmental sequences with maximal 90% identity (nre90) 

protein database (e‐value inclusion cutoff: 1e‐4). To perform transitive searches, 

PSI‐BLAST hits were grouped by BLASTCLUST (with the score coverage threshold [−S, 

defined as the bit score divided by alignment length) set to 1, length coverage threshold 

(−L) set to 0.5, and no requirement of length coverage on both sequences (−b F)], and a 
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representative sequence from each group was used to initiate new PSI‐BLAST searches. 

Such an iterative procedure was repeated until convergence. HHpred27 was used for 

profile‐profile‐based similarity searches to identify distant homologous relationships for 

(1) HCOs/NORs (gi|315583520), (2) the HCOH‐s1 group (gi|499132825), (3) the 

HCOH‐s2 group (gi|316941303), (4) the HCOH‐t1 group (gi|110347088), (5) the 

HCOH‐t5 group (gi|292656262), and (6) the HCOH‐t6 group (gi|256378768) (profile 

databases used: Pfam,66 PDB,65 and CDD67). Detections of conserved domains are 

performed by the CDD server67 and the HMMER3 package.68 We also employed the 

HorA server50 to detect structural homologs for the pseudosymmetric units of HCO 

proteins, using the C terminus of a NOR structure (pdb: 3o0r, chain B, residue 302–458) 

as input. 

 

Sequence clustering and multiple sequence alignment 

 

Sequence clustering was performed and visualized by the CLANS 

program.30 Several cutoffs of P‐values were tried. The P‐value cutoff 1e‐10 was chosen 

since it gave the best separation between clusters according to manual inspections. We 

extracted the sequences in each manually defined group of CLANS results and performed 

multiple sequence alignments by PROMALS3D69 for each group. Representative 

sequences for HCOs/NORs and the newly defined HCOH groups were selected and split 

into individual EUs of four TMHs. A multiple sequence alignment was constructed for 

the EUs of these representatives by PROMALS3D. This alignment was manually 

https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2503#pro2503-bib-0027
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adjusted by taking into account sequence conservation, structural superposition of known 

structures of HCOs/NORs by DaliLite70 and MUSTANG,71 hydrophobicity and small 

residue patterns, and transmembrane regions predictions by Phobius72 and TMHMM.73 
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Figure 3. CLANS diagram of HCOs/NORs and HCOH proteins. Connections between 
proteins indicate BLAST Pvalues less than 1e-10. Single-EU HCOH proteins are shown as 
red up triangles (HCOH-s1) and pink low down triangles (HCOH-s2). Members of HCOH-t1, 
HCOH-t2, HCOH-t3, and HCOH-t4, the four groups with the Hxx.xxx.xxH motif pattern, are 
shown in green squares, green up triangles, green down triangles, and green diamonds, 
respectively. HCOH-t5 and HCOH-t6 members, both with the xxH.Hxx.xxx motif pattern, 
are shown in cyan square and cyan up triangles, respectively. The sequence in the HCOH-
t5 group with the HxH.HxH.HxH motif pattern is marked by an orange star. HCOH-t7 
members with the xxx.xxH.Hxx motif pattern are shown in magenta. Underlined group 
names are shown. For the HCOH-s1 group, the A to H clusters are marked in red letters. 
HCOs/NORs are shown as blue dots. Two small groups of proteins shown as light blue dots 
are closely related to HCOs/NORs. They do not contain the HH motif in the third helix of 
EU2, while maintaining all the other conserved histidines (Hxx, xxH, and HxH in EU1, EU2, 
and EU3, respectively). Some HCO-related sequences with all conserved histidines 
deteriorated are shown as yellow dots. 



 

 

 

 



  

 
Figure 5. Domain structure diagrams of selected HCO/NOR and HCOH proteins. NCBI 
gi number or pdb/chain id is shown for each protein. EUs are shown in white 
rectangular boxes with motifs (HxH, xxH, Hxx, xxx, and HH). For three-EU proteins, 
conserved histidines at the interface of EU1 and EU3 are shown in red letters, those at 
the interface of EU2 and EU3 are shown in orange letters, and those at the interface 
of EU1 and EU2 are shown in magenta letters. Domain or module name abbreviations 
are as follows: cupin_2, cupin2 domain; cyC, cytochrome c domain, Trx: thioredoxin 
domain; Cp, cupredoxin domain; 1858, DUF1858; 2249, DUF2249; TM, predicted 
transmembrane helix; and VKOR, vitamin K epoxide reductase domain. 
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CHAPTER 6 ESTIMATION OF UNCERTAINTIES IN THE 

GLOBAL DISTANCE TEST (GDT_TS) FOR CASP MODELS5 

 

INTRODUCTION 

 

The Critical Assessment of techniques for protein Structure Prediction (or CASP) 

is a community-wide experiment to establish the capabilities and limitations of structure 

prediction methods, as well as to determine the progress of modeling methodologies [1]. 

Since CASP3 in 1998, assessors have been using the Global Distance Test (GDT_TS) 

score [2,3] in model evaluation due to its tolerance for partial structure segments that 

could create a large root mean square deviation (RMSD). The GDT algorithm uses the 

residue correspondence between the model and the target structure to search for optimal 

superpositions under selected distance cutoffs. The GDT_TS score reports an average of 

the maximum number of residues that can be superimposed under four distance cutoffs 

1Å, 2Å, 4Å, and 8Å. Current GDT_TS comparisons produce a point estimate for 

structure similarity without confidence intervals. Although the statistical significance of 

differences in GDT_TS between group performances can be tested in CASP where 

participating groups submitted a number of predictions [4,5], identifying significant 

differences between individual models with close structural similarity would be 

                                                 
5 This chapter was published as: 

Li W, Schaeffer RD, Otwinowski Z, Grishin N V. Estimation of uncertainties in the global distance test 

(GDT_TS) for CASP Models. PLoS One 2016;11(5):e0154786. 
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challenging for GDT_TS point estimates due to the potential underlying structural 

flexibility of the modeled proteins. 

The flexibility of protein structures could add uncertainty to the atomic positions, 

which subsequently introduces uncertainty to structure comparison by GDT_TS measure. 

Currently, CASP models are submitted as sets of coordinates representing accurate atom 

positions. Although efforts to estimate the certainty of atom positions have been made, 

such estimations are only accurate for a few top performing models [6]. In addition, the 

estimated values vary dramatically in scale, which limits their utility in estimation of the 

uncertainty of atom positions. On the other hand, target structures are snapshots of 

flexible protein molecules that exist as ensembles of conformational states [7–9]; the 

atomic fluctuations caused by the dynamic properties of target proteins would contribute 

to the uncertainty of atom positions in their structures. In our study, we derived the 

GDT_TS uncertainty from simulated fluctuations of target structures. NMR spectroscopy 

can reveal the functional dynamics of proteins on a wide range of time scales and is used 

to generate a structure ensemble of (usually 20) conformations [10]. However, the 

standard X-ray refinement produces the static structure averaged over time and space for 

the dynamic ensembles contained in crystals [11]. Although B-factors are thought to 

reflect the conformational diversity of such ensembles [11], insufficient information 

about collective motions [12] make it intractable to translate the uncertainty of B-factors 

into that of GDT_TS scores. To re-capitulate the structural heterogeneous ensembles in 

the crystal lattices, we performed time-averaged refinement [13] for X-ray datasets to 

generate structural ensembles for our GDT_TS uncertainty analysis. 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref006
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref007
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http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref011
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref011
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref012
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Here, we utilize structure ensembles either from NMR deposits or generated by 

time-average refinements from X-ray structures to determine the uncertainty in GDT_TS 

scores for CASP models. Our results demonstrate that the time-averaged refinements 

produced structure ensembles in better agreement with the experimental datasets than the 

averaged X-ray structures, due to the ability to model anharmonic motions. As GDT_TS 

increases, its standard deviation (SD) also increases, reaching a maximum of 0.3 and 1.23 

for X-ray and NMR structures, respectively. To facilitate score comparisons by the 

community, we developed a user-friendly web server that produces structure ensembles 

for NMR and X-ray structures and is accessible at http://prodata.swmed.edu/SEnCS. Our 

work helps to identify the significance of GDT_TS score differences for structures with 

high similarity, as well as to provide structure ensembles for estimating SDs of any 

scores. 

 

RESULTS AND DISCUSSIONS 

 

Generation of Structural Ensembles 

 

CASP targets are primarily determined by X-ray crystallography and sometimes 

by NMR spectroscopy. NMR structures are deposited as ensembles of multiple 

conformations indicating the variation due to a combination of protein dynamics and 

uncertainty in NMR refinement. To generate ensembles indicative of the structural 

heterogeneity of X-ray structures, we performed time-averaged refinements [13] for 

http://prodata.swmed.edu/SEnCS
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref013


 

crystallographic datasets. Briefly, time-averaged refinement is performed using molecular 

dynamics simulations with time-averaged constraints on the X-ray dataset. Time-

averaged refinement can model anharmonic motions, unlike traditional averaged 

refinement using B-factors, generating structure ensembles more compatible with the 

crystallographic data. 

In our time-averaged refinement procedure, the global structure flexibility is 

approximated by the TLS (Translation/Libration/Screw) fitting procedure [16]. This TLS 

procedure requires a pTLS parameter, which defines the fraction of atoms used in the 

flexibility approximation and cannot be determined a priori. As the authors suggested, 

we performed simultaneous refinements with an array of pTLS values and observed that 

the pTLS value controls the amplitude of atomic fluctuations within the produced 

ensembles. Illustrated by the mean and SDs of selfGDT scores, i.e. the GDT_TS scores 

comparing models within one ensemble (details in methods), simulations with larger 

pTLS values produced ensembles of lower structure flexibility exhibiting lower SDs 

(cyan bars in Fig 1A). More importantly, the time-averaged refinements produced better 

R-free values only when a sufficient fraction of atoms is included in the flexibility 

approximation (Fig 1B, R value improvement as 0.01 for pTLS = 1); simulations with 

pTLS values no more than 0.6 produced worse R-free values (decreasing as much as 0.13) 

than those of averaged structures and might over-optimize the structure. 

As the choice of pTLS value affects the structure flexibility of the generated 

ensembles (Fig 1), we chose a pTLS value such that the simulated fluctuations were 

similar to the expected fluctuations in crystal structures of native proteins. In doing so, 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref016
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we suggest that the observed distribution of GDT_TS scores between members of our 

simulated ensembles is representative of the true dynamic ensemble of the target protein. 

To test whether our simulated ensemble was a reasonable model of structural fluctuations, 

we analyzed cases where the same protein was crystalized in different space groups. 

Those proteins were experimentally captured in distinct conformational states and were 

demonstrated to reveal functionally relevant dynamics [17]. A large portion (69%) of 

these proteins were determined in three distinct space groups (S1 Fig), inhibiting the 

statistical power of SDs to indicate the structure fluctuations. We used the minimal 

GDT_TS score (minGDTs) among all scores in an ensemble to indicate the minimal 

structural similarity of an ensemble. Higher minGDTs implies higher structural similarity 

and thus lower structure fluctuations. The minGDTs for all proteins lies above 95, with a 

majority of average minGDT values ranging from 98.9 to 99.5 (Fig 2A). Compared to the 

majority of such structures (Fig 2B, red dot), time-averaged ensembles exhibit higher 

fluctuations for all pTLS values (Fig 2B, cyan dots). Therefore, considering both the 

structure flexibility (indicated by minGDTs) and the compatibility with experimental data 

(indicated by R-free values), we used the largest possible pTLS value (pTLS = 1). 

NMR ensembles showed even higher structure flexibility than X-ray ensembles of 

pTLS = 1, even when we applied a 3.5Å threshold suggested by the CASP assessors to 

filter the highly flexible regions (purple bar in Fig 1A). Such differences in structure 

flexibility were attributed to the discrepancy in environmental influences (such as solvent 

properties) and experimental interpretation [18]. Most NMR structures are determined in 

water or organic solvents, whereas proteins in crystallography form a well-ordered crystal 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref017
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lattice with less solvent between protein molecules. When interpreting the experimental 

data, NMR spectroscopy determines structures with larger allowance for errors from data 

misinterpretation [19], compared to the high resolution X-ray structures we included 

(resolution ≤ 1.8Å). Conclusively, consistent with previous studies, our results suggested 

that NMR ensembles should be more flexible than X-ray ensembles of high resolutions. 

 

GDT_TS Scores Calculated Using the Ensembles 

 

In CASP evaluations, assessors employed statistical tests, e.g. bootstrapping and 

Student’s t-test, to identify the top-performing groups [4,5]. However, for comparison 

between individual models, the lack of uncertainty estimation makes it difficult to 

distinguish the subtle performance differences between models. Comparisons lacking 

statistical significance might lead to over-aggressive claims about performance 

improvement, as small gains could be claimed as performance improvement. To solve 

this problem, we aimed to estimate the uncertainty of GDT_TS scores from our simulated 

ensembles to provide confidence intervals for statistical significance. 

To quantify uncertainty, we computed the standard deviations (SD) of the 

GDT_TS scores, superimposing models against the generated target ensembles. The 

mean of such GDT_TS scores would infer the expected value in the canonical 

comparison between models and a single target structure, as the mean is the most likely 

value for such GDT_TS scores that follow a normal distribution (refer to S1 

File, S2 and S3 Figs for normality test). The SDs in the scatter plots (Fig 3A) exhibited 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref019
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differing scales for X-ray and NMR structures. For further analysis, we binned the SDs 

by 10 GDT_TS mean and averaged within each bin (Fig 3B and 3C, red bars). The 

averaged SDs increase with the GDT_TS means for models of low performances, 

reaching maximum values of 0.3 and 1.23 for X-ray and NMR structures, respectively. 

The averaged SDs of X-ray ensembles reach the maximum values in bins of smaller 

GDT_TS mean than NMR ensembles, likely due to the lower structure flexibility of X-

ray ensembles. Interestingly, although similar to the maximum values, the average SDs 

slightly decrease with the GDT_TS mean for high performance models. We also 

investigated the structure flexibility of ensembles over the bins and found that the models 

of high GDT_TS scores were predicting the targets of lower structure flexibility; the SDs 

of GDT_TS comparison within individual ensembles (selfGDT, Fig 3B and 3C inset red 

lines) decrease for all NMR ensembles and X-ray ensembles of GDT_TS larger than 60. 

We speculate that such a correlation between the predictability, approximated by the 

GDT_TS values, of a target and the stability of a protein fold, indicated by the SDs of 

GDT_TS scores, could be related to the abundance of structure templates. Presumably, 

lower structural flexibility would facilitate the determination of experimental structures, 

which could then serve as modeling templates to boost the performance of prediction 

methods. 

To reduce the bias in the distribution of ensemble flexibility over the bins, we 

further normalized the SDs by filtering a subset of ensembles of similar flexibility 

(see Methods). The normalized GDT_TS (Fig 3B and 3C green bars) display similar 

maximums to the raw data (before normalization) for X-ray ensembles, whereas NMR 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone-0154786-g003
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ensembles showed an increased SD as 1.49 due to the reduced sample sizes in high 

GDT_TS score bins. However, those bins that exhibit the maximum value shift to a 

higher value, likely due to the exclusion of highly flexible ensembles in lower GDT_TS 

mean bins. Interestingly, neither NMR nor X-ray ensembles show SDs similar to those of 

the GDT_TS comparison within individual ensembles (Fig 3B and 3Cinset green lines, 

1.38 and 1.94 for X-ray and NMR ensembles, respectively), possibly due to superposition 

optimization. Models of high performance/similarity would potentially superimpose to 

the conserved core regions of the target structure, leaving the highly flexible loops 

unaligned and thus reducing the fluctuation of aligned region. On the other hand, low 

quality models would be aligned over multiple differing regions to individual structures 

in an ensemble; as a result, the atomic fluctuations in the ensemble are averaged by the 

superposition optimization. 

 

Uncertainty of Other CASP Scores 

 

CASP targets are classified into two categories, Template-Based Modeling (TBM) 

and Free-Modeling (FM), based on the template availability and model performance 

[20,21]. GDT_TS scores are primarily employed in FM assessment, due to their 

increased capability to identify high performing models in the presence of short regions 

with large structural dissimilarities. In the TBM category, the high accuracy version of 

GDT-based scores, i.e. GDT_HA, was used to better recognize local differences between 

highly accurate models. Compared to the GDT_TS score, GDT_HA uses stricter distance 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone-0154786-g003
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thresholds for superposition optimization and thus is more sensitive in identifying small 

improvements in local segments [22]. During CASP11, assessors introduced the 

superposition-independent Local Distance Difference Test (lDDT) score [23], which is 

constantly used in Continuous Automated Model EvaluatiOn (CAEMO) [24], to evaluate 

the local distance difference between structures. In addition to GDT_TS scores, we also 

evaluated the uncertainty in structure comparison quantified by GDT_HA and lDDT 

metrics using our generated ensembles. 

Of the two GDT scores under consideration, GDT_HA is generally 10–20 less 

than the GDT_TS scores computed from the same models (Fig 4A and 4B), reflecting its 

higher stringency. The SDs of GDT_HA (shown in Fig 4C and 4D) are correlated with 

the SDs of GDT_TS scores, with R2 of 0.71 and 0.87 for X-ray and NMR ensembles, 

respectively. Due to increased sensitivity of GDT_HA, we expect that the SDs of 

GDT_HA would be slightly higher than those of GDT_TS scores; indeed, more than half 

of GDT_HA scores display higher SDs than those of GDT_TS scores (57.5% for X-ray 

ensemble and 56.5% for NMR ensembles). GDT_HA, after normalization for structure 

flexibility, exhibits distributions similar to those of GDT_TS scores (Fig 4E). The SDs of 

GDT_HA increase with the mean of the scores, reaching a maximum value of 0.45 and 

2.36 for X-ray and NMR structures, respectively. Our comparison demonstrates a similar 

uncertainty distribution for the high accuracy version of GDT-based scores. 

In contrast to the strong correlation between GDT_TS and GDT_HA scores 

(coefficient as 0.98 for both X-ray and NMR structures), lDDT has a weaker correlation 

to GDT_TS scores (Fig 5A and 5B, coefficient as 0.82 for X-ray and 0.89 for NMR 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref022
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structures, respectively), which potentially reflects the different evaluation emphasis 

wherein lDDT scores focus on the preservation of local contacts and GDT_TS highlights 

the global structure geometry. Consistent with the lower correlations between mean 

values, the SDs of lDDT and GDT_TS scores have lower R2 values of 0.54 and 0.72 for 

X-ray and NMR structures, respectively (Fig 5C and 5D). Notably, the slope of the linear 

fits for the SDs showed large deviations from the diagonal (lDDT = 0.01 GDT_TS, 1 

GDT_TS score is equivalent to 0.01 lDDT score), especially for NMR structures. Some 

errors from superposition, which are not included for lDDT scores, could potentially 

explain the larger SD for GDT_TS scores. The lDDT scores, after normalization for 

structure flexibility, show similar distributions to those of GDT_TS and GDT_HA scores 

(Fig 5E). The SDs of lDDT scores increase with the mean of the scores, reaching a 

maximum value of 0.0051 and 0.0131 for X-ray and NMR structures, respectively. 

However, due to the lack of high performing models (lDDT>0.8), the observed maximum 

SDs may not necessarily be the theoretical maximums for lDDT scores, as high 

performing models could continue the increasing trend for SDs. In conclusion, our study 

reveals the potential of our generated ensembles in evaluating the uncertainty of any 

structure similarity metrics. 

 

Application and Limitations of Estimated Uncertainty in Model Comparison 

 

In CASP assessments, the performance significance between groups is established 

by bootstrap and Student’s t-test [4,5] statistics. However, comparing individual models 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone-0154786-g005
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of close structural similarity can be difficult due to the lack of estimation for the score 

uncertainty induced by the structural flexibility. Here, we utilized the simulated structural 

flexibility of prediction targets to provide an estimate of uncertainty potentially 

underlying an individual point estimate score of a single model structure, which may 

prevent over-aggressive claims of improved performance. For example, two models from 

group TS410 and TS117 under target T0839 domain 1 have GDT_TS scores 58.20 and 

57.72, respectively. The structural comparison between the models (Fig 6) identified very 

high similarity between secondary structure elements; however, large structural 

deviations were observed in the flexible loops connecting those secondary elements. The 

looped regions from both structures show little structural similarity to the respective 

regions in the target structure; potentially, the model from TS410 received a higher 

GDT_TS score due to the incidental overlap of some residues in these loops. By using 

our estimated uncertainty, the difference between this pair of scores is statistically 

insignificance under the 95% confidence interval (which requires GDT_TS differs at 

least 0.6). Therefore, our uncertainty estimation can help identify those models that differ 

by the random fluctuations in the loop region. 

As the GDT_TS scores report the percentage of residues aligned under specified 

distance cutoff, the length of the structure plays a crucial role in the scale of its variations. 

For example, one misaligned residue in a protein of 50 residues would cause GDT_TS 

scores differ by 2, whereas one residue difference in a protein of 200 amino acids would 

contribute to 0.5 GDT_TS difference. We attempted to study the effect of length on the 

SDs of GDT_TS scores. Although we can see the tendency for shorter proteins to have 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone-0154786-g006


 

larger SDs (S4 Fig), insufficient target numbers for specific protein lengths (S1 Table) 

hinders the clarification of the quantitative relationship between length and GDT_TS 

uncertainty. As a single residue misalignment in the shorter protein could potentially 

create larger score fluctuation that deviates from the most likelihood SDs we concluded, 

we recommend generating the structure ensembles using our procedure and computing 

the SDs particularly for short proteins of interest. 

 

Public Availability of Structural Ensemble Generation 

 

To facilitate the SD calculation for any given structure, we implemented our 

method for generating structure ensembles as a user-friendly web server named SEnCS 

(Structure Ensemble of Conformational States, available 

at http://prodata.swmed.edu/wenlin/server/senCS/). The server takes a PDB ID as the 

input and computes the ensembles based on the type of structures. For NMR structures, it 

will fetch the ensemble from the PDB database [ref] and process the structure using a 

3.5Å threshold to remove highly flexible regions without sufficient NMR constraints. For 

X-ray structures, it will retrieve the structures and experimental data from the 

PDB_REDO database [14] and perform time-averaged refinements. By default (fast 

mode), the time-averaged refinement would use all atoms in flexibility estimation (pTLS 

= 1) to generate the most conservative ensembles. Alternatively, one can explore an array 

of atom fractions in flexibility estimation (pTLS value) and generate a series of 

ensembles (exhaustive mode). The result page (Fig 7) exhibits the structural view of the 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.s004
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ensemble in JSmol [25] and the residue-based fluctuation along the protein sequences. 

The options are available in the result page to vary the distance threshold for NMR 

ensembles or to compute X-ray ensembles for more user-specified pTLS values. Once the 

ensemble is generated, users can download them to perform structure comparisons for 

uncertainty estimation for their scores. 

 

CONCLUSIONS 

 

Our study utilized structural ensembles either from NMR deposits or generated by 

time-averaged refinement to estimate the uncertainty of GDT_TS scores for CASP 

models. We quantified the SDs of GDT_TS scores and found that the SDs increase for 

low GDT_TS models and decrease for high GDT_TS models in our dataset. The X-ray 

and NMR structures have a maximum SD of 0.3 and 1.23, respectively. Subsequent 

application of our method to the high accuracy version of GDT-based scores, i.e. 

GDT_HA, and superposition-independent lDDT scores demonstrates the potential of our 

procedure to estimate the uncertainty for any other scores. Particularly, GDT_HA 

produces slightly higher SDs due to the increased sensitivity of GDT_HA. The SDs from 

lDDT scores are less correlated with those of GDT_TS scores, possibly due to the 

different dependency of structure superposition. We have also developed a web server 

that generates structure ensembles for uncertainty estimations. Our work provided 

generic SDs for estimating confidence intervals of GDT_TS scores, as well as the web 

server that provides the structure ensembles for any given protein. 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref025


 

 

MATERIALS AND METHODS 

 

Proteins in Different Crystal Forms 

 

We downloaded the non-redundant pdbaa database 

from http://dunbrack.fccc.edu/Guoli/culledpdb/pdbaa.gz and identified 1706 protein 

sequences associated with more than 2 space groups from the pdbaa database. The 

structures with the highest resolution for each space group were selected as 

representatives for the GDT_TS calculation. Briefly, representative structures are 

superimposed by the sequence-independent LGA structural aligner to generate sequence 

alignments, which in turn were used to produce sequence-dependent GDT_TS scores. We 

note that protein segments undergoing dramatic conformational changes do not align in 

the LGA superposition and thus do not contribute to the GDT_TS score calculation. 

 

Time-Averaged Refinement for X-Ray Structures 

 

We filtered the publically available X-ray structures in CASP9, CASP10, and 

CASP11 with resolution less than 1.8 Å and obtained 59 high resolution structures. Those 

structures and their experimental datasets were downloaded from the pdb_redo database 

[14]. We used the phenix.ensemble_refinement module[13] in the phenix software suit 

(version 1.9) to perform time-averaged refinement. As the author suggested in the tutorial 

http://dunbrack.fccc.edu/Guoli/culledpdb/pdbaa.gz
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref014
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref013


 

(http://www.phenix-online.org/documentation/reference/ensemble_refinement.html), we 

performed simulations with an array of pTLS values: 0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0. 

We note that the program would automatically adjust the threshold to include at least 63 

non-solvent and non-hydrogen atoms; additionally, it would fail if insufficient atoms 

were included. 

 

NMR Structure Parsing 

 

33 NMR structures were extracted from CASP9, CASP10, and CASP11 targets 

and downloaded from the pdb database [15]. To filter flexible regions, we computed the 

maximum Cα distance deviations of each residue per ensemble. We applied a 3.5 Å 

maximum Cα threshold, which was used in CASP target processing, to filter flexible 

residues potentially caused by the insufficient experimental NMR constraints. 

 

Parameters for Ensembles 

 

We first determined the central model of an ensemble as the structure with the 

largest sum of pairwise GDT_TS scores to other models in the ensemble. Second, we 

define selfGDT as the sum of GDT_TS scores comparing the central model to other 

structures in the ensemble. Finally, we computed the means and standard deviations (SDs) 

of the selfGDT for all targets, and excluded outlier ensembles (3δ away from the average 

of the means and SDs). To compare proteins with structures of multiple space groups, we 

http://www.phenix-online.org/documentation/reference/ensemble_refinement.html
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154786#pone.0154786.ref015


 

computed the minimal value of all-against-all GDT_TS scores for all models in an 

ensemble (minGDT) to replace SD as an estimate of ensemble fluctuation. To reduce the 

sample size of the target ensembles to a number similar to the most prevailing number of 

crystal forms, we calculated the average minGDT from 1000 random samples of three 

models from the target ensemble. 

 

Comparison between Models and Target Structures 

 

Sequence-dependent GDT_TS scores were calculated between the models and the 

individual structures in an ensemble. GDT_TS mean and standard deviation (SD) were 

calculated from the population of computed GDT_TS scores for each ensemble. As 

CASP models include partial structures, we filtered models of NMR structures with less 

than half of the target sequence length and models of X-ray structures with 100 residues 

less than the target structures. We binned the SDs by their corresponding means and 

removed outliers (>3σ) in each bin. When normalizing SDs by the structure flexibility of 

ensembles, we removed the outlier ensembles using 0.5σ as cutoff for the mean and SDs 

of selfGDTs, and computed SDs of GDT_TS scores comparing the filtered ensembles 

against the corresponding models. 

 

Calculations for GDT_HA and lDDT Scores 

 



 

The high accuracy version of GDT-based score, i.e. GDT_HA, was computed 

using LGA, which calculates the percentages of correctly aligned residues under four 

distance cutoffs: 0.5Å, 1Å, 2Å, and 4Å. Calculating the GDT_HA scores by averaging 

the correct percentage under these cutoffs, we applied the same pipeline as for the 

GDT_TS scores to compute the SDs of GDT_HA. We performed linear regression 

(suppressing the intercept term) for the SDs of GDT_HA and GDT_TS. The R2 of the 

regression model was calculated using Microsoft Excel. Normalization of structure 

flexibility was performed using a similar procedure as for GDT_TS, substituting 1σ as 

cutoff for NMR ensembles (the original 0.5σ cutoff excluded all ensembles with 

GDT_HA greater than 20). The same procedure was also applied to lDDT score 

calculation, using 0.5σ as the normalization cutoff. 
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CHAPTER 7 CHSEQ: A DATABASE OF  

CHAMELEON SEQUENCES6 

 

INTRODUCTION 

 

Protein secondary structure elements have been viewed as the fundamental 

building blocks of protein tertiary structures.1-3 The formation of α‐helical and β‐strand 

elements is induced by the interplay between local amino acid propensities and global 

interactions.4-6 To investigate the influence of global interactions on the formation of 

secondary structures, researchers have discovered stretches of identical amino acid 

sequences that adopt distinct conformations, also called as chameleon sequences 

(ChSeqs).7 Further studies8 revealed the importance of such structural ambiguity in 

ChSeqs for a better understanding of amyloid diseases,9-11 where native proteins can 

refold into β‐strands to stabilize the pathogenic assemblies. Additionally, ChSeqs are 

reported to contribute to functional diversity described in alternatively spliced 

isoforms.12 

The first search for ChSeqs in proteins was carried out by Kabsch and 

Sander.13 They reported 25 chameleon pentapeptides from 62 protein structures. From 

then on, researchers have shown increased interest in the detection of ChSeqs.12, 14-

19 Besides analyzing the amino acid properties of ChSeqs, scientists have used ChSeqs to 

                                                 
6 This Chapter was published as: 

Li W, Kinch LN, Karplus PA, Grishin N V. ChSeq: a database of chameleon sequences. Protein Sci 

2015;24(7):1075–1086. 
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evaluate the performance of secondary structure predictors.12, 20, 21 Collectively, such 

evaluation studies showed that methods based on sequence profiles outperformed 

methods based on single sequences.22 Surprisingly, the evaluations of neural 

network‐based secondary structure predictors have shown that profile‐based methods 

predict ChSeqs with similar efficiency as on sequences where alternative conformations 

are never observed.21, 23 

To better understand the principles of protein structure changes, aided with 

increasing numbers of available Protein Data Bank (PDB)24 structures, we searched for 

ChSeqs and identified a large set ranging from 6 to 10 in residue length. ChSeqs found in 

homologous structures tend to reveal conformational changes involved in switching 

protein functional states. Alternatively, the different environments surrounding ChSeqs 

from unrelated structures tend to dictate their conformation. We found that the 

evolutionary information provided by the sequence profiles can successfully predict the 

secondary structure feature that prevails in a given protein family. We present our dataset 

in a user‐friendly web interface available at prodata.swmed.edu/chseq, as well as in csv 

format at http://prodata.swmed.edu/chseq/downloads/. 

 

RESULTS AND DISCUSSION 

 

Our comprehensive search for ChSeqs identified 19,603 (20 homologous and 

19,583 unrelated) ChSeqs of entirely helix‐to‐strand transitions (Fig. 1) in the current 

nonredundant PDB database. For a fair comparison with the latest study,18 which 
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detected ChSeqs with any secondary structure difference in the sequence strings, we also 

loosened our criteria and detected 128,703 ChSeqs in unrelated proteins with any 

helix‐to‐strand transition in the middle two residues of the sequence strings. 

 

ChSeqs in homologous structures highlight dramatic conformational changes 

 

We detected 20 ChSeqs that undergo complete helix‐to‐strand transitions in 

homologous structures. We found 12 of the 20 ChSeqs to be associated with biological 

functions (Table 1). Based on their experimental studies, the biological processes of the 

12 ChSeqs can be classified into four types. First, the conformational changes upon 

activation (6 ChSeqs); these include the fusion protein of respiratory syncytial virus (2 

ChSeqs),25-27 the fusion protein of paramyxovirus (2 ChSeqs),28, 29 the 50S ribosomal 

protein L24,30, 31 and a cysteine proteinase.32, 33 Second, the changes upon substrate 

binding (3 ChSeqs); these include the transcription factor Rfah (2 ChSeqs)34, 35 and the 

4Fe–4S cluster domain of human DNA primase.36, 37 Third, the changes resulting from 

cleavage or insertion of a peptide (2 ChSeqs); these include the serine protease inhibitor 

ovalbumin38, 39 and the cell surface adhesion molecule neurexin 1β.40, 41 Fourth, the 

changes upon oligomerization (1 ChSeq); this includes a tubulin acetyltransferase.42, 43 

The fusion protein in respiratory syncytial virus25-27 contains one of the longest 

ChSeqs (10 residues), as well as another ChSeq of six residues (Fig. 2). In the prefusion 

structure (pdb: 4jhw, Chain F), the two ChSeqs together form a β3176–181/β4185–194 hairpin 

that packs against the “fusion peptide.”27 In the profusion structure (pdb: 3rki, Chain A), 
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each of the ChSeq strands transforms into a helical conformation, extending the “fusion 

peptide” helix and packing with the C‐terminal helix to form a coiled coil stalk for 

membrane insertion.26 As illustrated in this example, the ChSeqs undergo dramatic 

conformational changes and participate in the transition between the protein's inactive 

and active states. 

The remaining eight ChSeq examples lack experimentally verified functions. Five 

of them come from structures of substantially different lengths (Table 1). The longer 

length structures form complete protein domains (determined by X‐ray crystallography), 

whereas the shorter length structures are limited to several secondary structure elements 

(solved by NMR). As exemplified by the DH domains of Dab2 (illustrated in 

Fig. 3),44, 45 we found that all the ChSeqs from truncated structures exhibit helical 

conformation. Alternately, the ChSeqs from the complete domains form β‐strands. For 

example, in the complete DH domain (Fig. 3, pdb: 1p3r), the ChSeq β‐strand (magenta) 

integrates into the center of an open β‐barrel, forming a hydrogen bonding network with 

two neighboring β‐strands (residues 92–97 and 145–151) that are missing in the truncated 

structure (Fig. 3, pdb: 2lsw). In the absence of the stabilizing hydrogen bonding network 

provided by the β‐barrel, the single β‐strand transforms into an α‐helix in the shorter 

length structures. All five ChSeqs from truncated domains exhibit similar conformational 

transitions, suggesting that the helical conformations resulting from truncations are 

nonphysiological and caused by the lack of sufficient hydrogen bonding networks. 
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Two of the remaining three ChSeq examples include unpublished structures. For 

one, an unpublished NMR structure (pdb: 2mdk) of a human major sperm protein (MSP) 

domain contains an α‐helix, whereas the crystal structure (pdb: 3ikk)46 contains a 

β‐strand. For the other, an unpublished crystal structure (pdb: 3lru) of a truncated human 

pre‐mRNA processing factor 8 (Prp8) RNase H‐like domain47 exhibits a β‐strand in a 

sheet formed by a swapped dimer, whereas a crystal structure of the complete domain 

(pdb: 4jke) has an α‐helix. The last homologous ChSeq (sequence: AKEEAIKE) is from 

two engineered proteins designed to explore the mutation pathways for a single mutation 

to switch from an IgG‐binding fold (α + β topology) into an albumin‐binding fold (all‐α 

topology).48, 49 

Previous searches for ChSeqs either did not distinguish homologies of the 

ChSeqs12, 16 or focused their searches on unrelated ChSeqs.13, 15-19 However, some 

studies have investigated conformational diversity and structural motions present in the 

structures.50-56We examined whether our ChSeqs are also present in these studies. 

Although these studies collected redundant chains of close homologs (and we removed 

redundancy), five of the homologous ChSeqs we identified have been recorded in the 

“dynamic domains” (DynDom) database.54 Recently, the database 

of conformational diversity in the native state of proteins (CoDNaS)56 characterized 

structures of 100% sequence identity. The database for protein structural change upon 

ligand binding (PSCDB)55 concentrated on the conformational changes on binding small 

molecules. As we used nonredundant structures and no conformational changes induced 

by binding small molecule were detected, none of our ChSeqs were reported in these two 
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most recent databases. We attempted to compare our ChSeqs with the database 

of protein conformational diversity (PCDB)50; however, the dataset seems to be no 

longer accessible through its website. 

 

ChSeqs in unrelated structures illustrate the interplay between local and nonlocal 

interactions 

 

We detected ChSeqs in unrelated structures using two different criteria. The more 

stringent search aims to detect entirely helix‐to‐strand transitions and detected 19,583 

ChSeqs. However, the results using this set of criteria are not suitable for direct 

comparison with previous works. Therefore, we also searched with a looser criteria that 

allows shorter secondary structural element transitions; the detected ChSeqs increased to 

128,703. When compared with previous studies (see Table 2), this search identified 

approximately 20‐fold more ChSeqs. This increase corresponds well with the 

approximately 20‐fold growth in the data size of nonredundant PDB structures (from 

3214 to 67,589). The large number of hexamers detected is more than double the 

pentamer count in the most recent study.18 We also increase the length of the longest 

ChSeqs identified from 8 to 10 (with four 10‐mers seen here).18 

ChSeqs that form different secondary structures in unrelated proteins were used to 

analyze the interplay between local and nonlocal interactions.16-18 Such interactions can 

be illustrated in one of the 10‐residue ChSeqs detected by loose criterion (Fig. 4). This 

ChSeq (sequence: QGTAVVVSAA) is found in an immunoglobulin fold (ECOD domain 

https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2689#pro2689-bib-0050
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ID: e4jb9H4) and a Rossmann fold (ECOD domain ID: e1vl6A1). In the immunoglobulin 

structure (pdb: 4jb9), the ChSeq forms a β‐strand (residues 105–114) embedded in a 

β‐sandwich; in the Rossmann‐fold structure (pdb: 1v16), it forms a helix (residues 157–

166). In this example, the ChSeq sequence includes a number of strong α‐helix formers 

(e.g., A) and strong β‐strand formers (e.g., V), as measured by Chou‐Fasman 

parameters.60 This mix of strong but ambiguous α‐helical and β‐strand propensities is 

similar to that observed in a previous study of helix‐to‐strand transitions.16 In the 

immunoglobulin structure, nearby β‐strands form a hydrogen‐bonding network with the 

ChSeq to stabilize the extended conformation; in the Rossmann fold, the lack of 

surrounding hydrogen bonding partners allows the ChSeq to form a helix induced by 

strong α‐helix propensity of its sequence [Fig. 4(b)]. Therefore, in this example, the 

global interactions impose constraints on the sequences of ambiguous secondary structure 

propensity, guiding local interactions to stabilize the respective secondary structures. 

In the above example (Fig. 4), the ChSeq has a mixture of amino acids with 

ambiguous secondary structure preferences. We compared the amino acid frequencies of 

all detected ChSeqs (under the stringent criterion) with the amino acid frequencies of 

proteins in the Swiss‐Prot database (Fig. 5). When compared with the frequencies in 

Swiss‐Prot (green line in Fig. 5), the residues Ile, Val, Ala, and Leu are overrepresented 

in ChSeqs. As pointed out in previous analyses,12, 16 these residues have strong 

propensities in forming either α‐helix (residues) or β‐strand (residues). Alternately, Pro is 

underrepresented in ChSeqs consistent with its tendency to be both a helix and a strand 

breaker. Other residues with low Chou‐Fasman60 helical or strand propensities, that is, 

http://www.rcsb.org/pdb/explore/explore.do?structureId=4jb9
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Gly, Ser, Asp, and Asn, also show low frequencies in ChSeqs. The low frequency of Cys 

can be explained by its potential to reduce structural flexibility through forming disulfide 

bonds.12, 16 The low frequencies of Trp, His, Met, and Gln were also observed 

previously.12, 16 

As has been noted15 and was seen in the examples in Figure 4, ChSeqs tend to be 

largely buried in the protein core, forming interactions with surrounding secondary 

structure elements. To study the solvent exposure of residues in ChSeqs, we calculated 

the relative solvent accessibility (RSA), which indicates the percentage of surface area 

exposed to the solvent for a residue (Fig. 6). In general, when compared with residues in 

proteins, the distribution of RSAs in ChSeqs shows more fully buried residues (<5% 

RSA) and many fewer highly exposed residues (>85% RSA). However, when compared 

with residues contained in β‐strands and α‐helices, the distribution of RSAs in ChSeqs is 

comparable (green), indicating that the RSA decrease may be simply a result of the 

constraints of being in secondary structures. 

 

Evaluation of secondary structure predictors on ChSeqs highlights the advantage of 

profile‐based predictors 

 

ChSeqs may be the most stringent test set for secondary structure 

predictors.20, 21Previous studies have applied profile‐based secondary structure 

prediction methods to unrelated ChSeqs and have shown their high accuracy in predicting 

ChSeq secondary structures.12, 21, 23 To study the influence of the evolutionary 
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information on the success of profile‐based predictors, we applied both a profile‐based 

predictor, here called psiP (for PSIPRED using sequence profile), and a single 

sequence‐based predictor, here called psiS (for PSIPRED using single sequence), to the 

set of 655 ChSeqs with more than six residues. Consistent with previous evaluations, for 

the overwhelming majority, 92% (605/655) of ChSeqs, the profile‐based psiP predicted 

correct secondary structures for both forms. Influenced by flanking residues, 

single‐sequence‐based psiS is in principle able to produce distinct predictions for 

sequences in a ChSeq pair; however, correct psiS secondary structure predictions for both 

forms are obtained for fewer than half, 42% (274/655), of the ChSeqs. Among the 58% 

ChSeqs that had incorrect predictions, for 96% (i.e., 56% of the 655 ChSeqs), the correct 

secondary structure is obtained for one of the families but not the other. 

As was seen for the example ChSeq shown in Figure 4, psiS produced mainly 

β‐strand predictions for both structures, whereas psiP could successfully distinguish the 

secondary structures from different protein structures. As shown in the secondary 

structure predictions for the ChSeq helix in the Rossmann fold [Fig. 4(c)], psiS predicts 

the “AVVV” stretch as a strand. However, the family profile includes alternate residues 

that allow psiP to correctly predict the AVVV as a helix. To quantify the prevalence of 

this type of alternate single‐sequence‐based prediction, we computed a prediction P‐value 

(PPV) to indicate the probability of observing a given psiS prediction based on the psiS 

predictions carried out for every sequence in a given protein family. A lower PPV means 

the single‐sequence prediction is more dissimilar to the prevailing psiS prediction among 

members of a protein family. The PPV distribution of incorrect psiS predictions for 

https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2689#pro2689-fig-0004
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ChSeqs is different from the distribution of psiS predictions for random sequences 

without observed helix‐to‐strand transitions (green line in Fig. 7). For incorrect psiS 

ChSeq predictions [blue bars in Fig. 7(a)], about one‐third of the PPVs are below 0.05, 

indicating that the predictions significantly deviate from the prevailing predictions of 

family members. On the other hand, the distribution of ChSeqs with correct psiS 

prediction closely approximates the random distribution except at PPVs < 0.15 [Fig. 7(b)]. 

To study the influence of secondary structure type on the PPV distributions, we 

separately analyzed the helix and strand conformations. The PPV distributions [Fig. 8(a)] 

show that ChSeqs adopting strands have significantly lower PPVs than ChSeqs adopting 

helices, with a two‐sided Kolmogorov–Smirnov (K‐S) test P‐value of 1.36 e − 06. This 

indicates that psiS predictions for β‐strands tend to deviate more from their prevailing 

family predictions than do the predictions for α‐helices. This explains a clear asymmetry 

in the predictability of helices and strands in that, among all the ChSeqs, 42% had both 

α‐helices and β‐strands predicted correctly, 40% had only the α‐helix predicted correctly, 

16% had only the β‐strand predicted correctly, and 2% had neither predicted correctly. 

Interestingly, if we further divide each conformation into those having correct versus 

incorrect psiS predictions, the PPV distributions are not distinguishable for either the 

correctly [Fig. 8(b)] or the incorrectly [Fig. 8(c)] predicted ChSeqs, with the K‐S 

test P‐values to be 0.21 and 0.39, respectively. Correctly predicted ChSeqs of both 

conformations tend to have higher PPVs [Fig. 8(b)], and incorrectly predicted ChSeqs of 

both conformations show a trend for lower PPVs [Fig. 8(c)]. Therefore, psiS predictions 
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https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2689#pro2689-fig-0007
https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2689#pro2689-fig-0007
https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2689#pro2689-fig-0008
https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2689#pro2689-fig-0008
https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2689#pro2689-fig-0008
https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2689#pro2689-fig-0008
https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2689#pro2689-fig-0008


 

from α‐helices tend to match the prevailing family prediction more than β‐strands, 

consistent with the higher fraction of correct predictions for α‐helices. 

 

Cross‐validation of homologies by ECOD identified ChSeqs in unrelated regions of 

homologous protein folds 

 

ECOD is an evolutionary classification of protein domains based on structural and 

sequence similarity, where structures within the same H‐group are considered 

homologs.59 As a cross‐check of our homology assignments, we applied the ECOD 

classification to our BLAST‐based ChSeq homologs. ECOD allowed us to correct 

classifications of three ChSeqs that are falsely found as homologs by BLAST due to 

multidomain problem.61 Additionally, ECOD helped us to filter 65 ChSeqs that were in 

homologous proteins but did not represent homologous parts of the proteins. For example, 

the ChSeq shown in Figure 9 (with sequence: AIVLSKY) is from two structures 

classified by ECOD as homologous Rossmann folds (pdb: 3id6 and 4lg1); however, the 

ChSeq is in the N‐terminal helix in one structure (4lg1) but in the C‐terminal strand in 

another structure (3id6). The pairwise alignment of these two structure sequences is only 

limited to the ChSeq region (E‐value 0.12), which is not sufficient to support their 

homology. Examples of unrelated ChSeqs in homologous folds are mainly concentrated 

in three large H‐groups: the Rossmann fold (20 ChSeqs), the TIM barrel (16 ChSeqs), 

and the P‐loop domain (8 ChSeqs). 
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We did not include 400 ChSeqs (1.8% of total ChSeqs) in our final dataset, as 

they could not be mapped to current ECOD domains. Those sequences include (i) 257 

ChSeqs mapped to ECOD as peptides, coiled coils, fragments, and artificial sequences, 

for which homology cannot be inferred with confidence; and (ii) 143 ChSeqs mapped to 

the protein regions not covered by ECOD domains due to ECOD domain parsing 

limitations. These 400 ChSeqs are available 

at http://prodata.swmed.edu/wenlin/pdb_survey2/index.cgi/artifacts/. 

 

A user‐friendly web interface to the ChSeq database integrates a wide range of 

relevant information 

 

For making this information accessible, we imported our dataset into a web 

interface (Fig. 10) that integrates structural and sequence information relevant for a 

ChSeq analysis. For efficiency, the default display includes only a single representative 

PDB entry for each form of a ChSeq, with a “show all PDB chains for this group” option 

to display all relevant PDB entries. Cross‐database information, including protein names 

from PDB24 and H‐groups from ECOD,59 is provided at the top of each panel. For more 

in‐depth study of the structures, one can load the structure in JSmol62 or download 

PyMol63 session files (having a white protein chain with magenta ChSeq). In addition, 

below each image, the secondary structure (from PDB and psiS and psiP predictions) and 

sequence information (including gap fraction) are given along with a 

weblogo64 visualization of the sequence profile of the ChSeq region. The full alignment 
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of the protein family is accessible via the link on the right of the weblogo image. This 

web interface to the ChSeq database is available through a portal 

at prodata.swmed.edu/chseq. 

 

CONCLUSIONS 

 

We have developed a rather comprehensive, updated dataset of ChSeqs. 

Interestingly, among the 20 examples of homologous ChSeqs that undergo 

helix‐to‐strand conformational changes, 12 were found to be involved in biological 

function. When compared with the most comprehensive previous study, we achieved a 

roughly 20‐fold increase in detected unrelated ChSeqs (similar to the growth of the 

nonredundant PDB database in the relevant timeframe) and increased the length of the 

longest ChSeq from 8 to 10 residues. We find that for the ∼56% of ChSeqs, for which a 

prediction based on single sequences is correct for only one of the families, there is a 

strong tendency for the sequence to be an “outlier” sequence for the other family. Its 

presence as a minority type of sequence in the family explains why it does not negatively 

impact the success of profile‐based secondary structure predictions, which effectively 

capture the information present in the prevailing sequence patterns present in the family. 

A user‐friendly web interface to the ChSeq database (available 

at prodata.swmed.edu/chseq) will facilitate future studies of ChSeqs and the gleaning of 

insights they can provide into the interplay between the influences of local and nonlocal 

interactions on protein structures. 

http://prodata.swmed.edu/chseq
http://prodata.swmed.edu/chseq


 

 

MATERIALS AND METHODS 

 

Detection of ChSeqs 

 

The nonredundant PDB database, which combines structures of an identical 

sequence into one record, was downloaded on February 14, 2014, 

from ftp://ftp.ncbi.nih.gov/blast/db/FASTA/pdbaa.gz. The structures with Cα‐atoms only 

were filtered. To select representative structures for each record, we prioritized crystal 

structures with the best resolution, followed by NMR structures, and then EM structures. 

We used a sliding window ranging from 6 to 40 to detect identical sequence strings. We 

further filtered out sequence strings contained in a longer sequence. The DSSP 

software65 was used to define ChSeq secondary structures from representative PDBs. We 

followed the DSSP nomenclature66 and reduced the eight DSSP secondary structure 

states into three: (1) “H,” “G,” and “I” as “H,” (2) “E” and “B” as “E,” and (3) others as 

“C.” As a stringent criterion, we define ChSeqs1 as sequence strings with transitions 

between α‐helices (H) and β‐strands (E) in every position. To make our statistics 

comparable with previous studies, we also applied a looser criterion to define ChSeqs2 as 

segments for which helix‐to‐strand transitions occurred for the middle two residues of 

identical segments from unrelated proteins (for how relatedness was defined, see the next 

section). 
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Classification of ChSeqs by protein homology 

 

We ran BLAST against the nonredundant PDB database to identify homologs for 

each structure. BLAST hits with an E‐value better than 1 e−5 were considered homologs. 

As a cross‐check, we also applied the ECOD59 classification to our dataset using 

H‐groups (similar to SCOP67 superfamily) to define homologs. We manually inspected 

all the homologous ChSeqs detected by BLAST and ECOD to make sure that (1) 

structures of a homologous ChSeq are from only one ECOD H‐group and that (2) 

homologous ChSeqs are aligned in the BLAST alignment with confident statistics. 

 

Evaluation of PSIPRED prediction on ChSeqs 

 

By default, the PSIPRED68 program runs PSIBLAST69 and uses the statistics 

from the sequence profile to perform prediction (denoted as psiP for “Profile”). To study 

the influence of the sequence profile, we tweaked PSIPRED to use the statistics from the 

input sequence alone without running PSIBLAST (denoted as psiS for “Single” 

sequence). To evaluate the performance of psiP and psiS, we compared the secondary 

structure prediction with that found in the representative structures. The DSSP program 

has relatively strict criteria in defining α‐helices and β‐strands. As “C” might contain 

atypical helices or strands, we allowed mismatches against Cs and only penalized 

incorrect predictions between Es and Hs. We also allowed errors in defining the 

secondary structure boundary and only penalized the E and H mismatches in the middle 

https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2689#pro2689-bib-0059
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four residues of a ChSeq. Therefore, a correct prediction is defined as a prediction with 

no H versus E mismatches in the middle four residues of a ChSeq. To quantify the 

magnitude of the difference between the psiS and psiP predictions for a given sequence, 

we extracted the multiple sequence alignments (MSAs) used in psiP and calculated the 

prediction distance (Dp) for each sequence in the MSA using the following equation: 

 

where n is the length of the ChSeq, || || is the operator to calculate a Euclidean 

distance, and  and  are the probability vectors of secondary structure predictions 

for position i from psiP and psiS, respectively. 

To indicate the extent to which the psiS of a sequence diverges from those that 

would be predicted by single sequences within its family, we estimated a PPV using the 

following equation: 

 

where Ntail is the number of Dps larger than the Dp of the sequence, and Nall is the 

number of proteins in the MSA. To ensure the statistical significance of the PPVs, we 

filtered out protein families with Nall < 150. 

 

Calculation of amino acid frequency and solvent accessibility 

 

For the sequences of unrelated ChSeqs1 (i.e., those stringently defined), we 

calculated the frequencies of the 20 amino acid types. A set of reference frequencies of 



 

amino acids was obtained by the amino acid frequencies of proteins in the 

Swiss‐Prot70 database available 

at http://web.expasy.org/protscale/pscale/A.A.Swiss‐Prot.html. RSA was calculated as 

dividing the solvent accessibility (in Å2) observed for each residue in a protein of interest 

(from DSSP) by the total surface area of the residue.71 To estimate the RSA distribution 

in proteins, we sampled 1000 proteins from ChSeq‐containing structures and calculated 

the RSA for every residue. To estimate the RSA distribution of α‐helices and β‐strands of 

length N (for comparison with ChSeqs of length N), we randomly selected a segment of 

N residues from the secondary structure elements (excluding coils) of ChSeq‐containing 

structures and calculated the RSA for every residue. 

 

Filtering ambiguous and non‐native sequences 

 

We used the PDBx/mmCIF file of each structure in the PDB database to convert 

modified residues to their original (parent) residues. After our conversion, sequences 

containing unknown residues remained (e.g., the unknown residues in Chain D of pdb: 

4hu6), which hindered our definition of identical sequence strings. Additionally, we 

detected protein expression tags near the termini by checking sequence conservation. 

Homologous sequences were retrieved by PSI‐BLAST with three iterations against the 

UniRef90 database. The results were filtered to include sequences with E‐value better 

than 0.001, identity larger than 30%, and gap positions smaller than 50% of the sequence 

length. The resulting positional gap fractions were calculated and rescaled to 0–9 (9 is 

https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2689#pro2689-bib-0070
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more gapped). If positions within 20 residues of either terminus had an average positional 

gap fraction larger than 6, we categorized the termini as protein expression tags. These 

ambiguous and non‐native sequences (8.5% of total ChSeqs) can be found 

at http://prodata.swmed.edu/wenlin/pdb_survey2/index.cgi/artifacts/. 

 

Preparation of the web interface 

 

To reduce redundancy for web visualization, we clustered the ChSeqs by their 

secondary structure elements such that each cluster contains ChSeqs of identical 

secondary structures. For unrelated ChSeqs, these clusters were further split according to 

ECOD H‐groups. By default, we show the most diverse representative pair on top. In the 

downloadable PyMol63sessions of the structures, we limit to unique chains containing 

ChSeqs to reduce the file size. The MSAs used in detecting protein expression tags are 

included in the web interface. 
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CHAPTER 8 ASSESSMENT OF CASP11 CONTACT‐ASSISTED 

PREDICTIONS7 

 

INTRODUCTION 

 

The CASP11 contact‐assisted structure modeling categories intend to learn how 

knowledge of long‐range contacts improved the quality of tertiary structure prediction 

models provided by so‐called hybrid prediction methods.1-3 For a selection of more 

challenging tertiary structure prediction targets (T0), contact‐assisted data were 

distributed to the CASP community subsequent to the release of the target structure and 

collection of the initial predictions, but prior to the public release of the experimental 

coordinates. Four types of contact‐assisted data (abbreviated T*) were provided: 

predicted three‐dimensional contacts gathered from the contact prediction category of 

CASP11 (Tp, subscript ‘p’ for predicted), selected subsets of correct contacts from the 

contact prediction category (Tc, ‘c’ for correct), simulated sparse NMR contacts (Ts, ‘s’ 

for simulated), and contacts obtained from cross‐linking mass spectroscopy studies (Tx, 

‘x’ for crosslinked). These categories expanded on the promising results observed in the 

CASP10 contact‐assisted assessment,3 which evaluated only correct contacts (Tc). 

                                                 
7 This Chapter was published as: 

Kinch LN*, Li W*, Monastyrskyy B, Kryshtafovych A, Grishin N V. Assessment of CASP11 Contact-

Assisted Predictions. Proteins 2016. 
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An overview of the experimental setup for the CASP 11 contact assisted 

categories is illustrated in Figure 1. The Prediction Center chose sets of pairwise contacts 

for the predicted Tp and correct Tc contact‐assisted categories from long‐range contacts 

collected in CASP's Residue‐Residue Contact Prediction (RR) category. The lists of 

submitted contacts in the RR category (both true and false positive) were filtered to retain 

only long‐range contacts (separation along the sequence >23 residues), sorted according 

to the submitted probability, and truncated to the first L/5 contacts if necessary (L‐ target 

length in residues). For each predicted Tp target, the processed lists were released for ten 

CASP11 RR groups that were among the best performers in the previous CASP.4 For the 

correct Tc category contacts, the lists of predicted contacts in the RR category were 

pre‐filtered for correctness by measuring the contact distances in the native structure. 

Correct contacts were defined as distance between Cβ from each residue of the given pair 

being <8 Å. The correct Tc pairs were then subjected to the procedure used in the 

predicted Tp category, usually limiting to L/5 contacts, with the number being sometimes 

smaller (if not enough long‐range contacts existed) or larger (to include all contacts with 

the same probability as that of the bottom, L/5‐th contact). 

The simulated NMR Ts and crosslinked Tx contact data were generated by the 

Montelione and Rappsilber labs, respectively. CASP organizers provided coordinates of 

crystal structures of the selected simulated NMR Ts targets to the Montelione group 

(Rutgers). These coordinates were used to mimic the data available in the initial stage of 

an NMR study. First, NOESY cross peaks were assigned to targets using a simulation 

procedure [G.Montelione, this issue], and then ambiguous distance restraints from these 
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peaks were generated using the Automated Structure Determination Platform 

ASDP.5 CASP organizers arranged for shipment of biological material from CASP target 

providers to the Rappsilber lab (Technical University of Berlin). The target proteins were 

cross‐linked and distance restraints were obtained using mass spectrometry [J.Rappsilber, 

this issue]. 

A total of 27 targets were selected by the Prediction Center for contact‐assisted 

predictions in CASP11 (Table 1). The targets were divided into the following categories: 

24 in the predicted Tp set, 19 in the simulated NMR Ts set, 24 in the correct Tc set, and 4 

in the crosslinked Tx set. The targets were designated according to the category 

abbreviation (Tp, Ts, Tc, or Tx) followed by the three‐digit T0 target number (that is, 761 

from T0761‐D0). One target (Tp826) was omitted from evaluation because the simulated 

NMR Ts contacts were released prior to the predicted Tp contacts. 

The CASP11 contact‐assisted targets included 17 that were evaluated in the 

tertiary structure prediction category as single domains, with 12 categorized as FM, two 

categorized as TBM, and three categorized as TBM‐Hard.6 The remaining ten targets are 

multidomain, with four exhibiting duplications of the same domain and one exhibiting a 

triplication. The multidomain targets were categorized as all TBM (1 target), all FM (3 

targets), a combination of TBM and FM (4 targets), and a combination of TBM‐Hard and 

FM (2 targets). 

A number of groups participated in the contact‐assisted categories in CASP11, 

including six servers and 23 human groups (Table 2). Only 10 groups contributed models 

for nearly all targets in all of the contact‐assisted categories. Five additional groups 

https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0005
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contributed models for nearly all targets in three of the four categories while one group 

contributed in two of the four categories. Three groups concentrated on the crosslinked 

Tx category with the smallest number of targets. 

 

RESULTS AND DISCUSSION 

 

Target‐based performance improvements 

 

We used performance improvement measures developed in the previous CASP 

evaluation3to assess the CASP community's ability to use contact information to improve 

tertiary structure predictions (T0). The first measure, individual performance 

improvement, represents the difference between the contact assisted (T*) scores and the 

score of the best unassisted T0 prediction from the same group. If the corresponding 

unassisted prediction T0 was missing, we used the average GDT_TS score from all 

unassisted predictions submitted on the target in place of the reference score. The second 

measure, absolute performance improvement, compares scores of assisted T* models and 

a gold standard unassisted T0 model (the best among all participating predictors in the 

specific contact‐assisted category). However, the absolute performance unrealistically 

assumes that each group started with the same best unassisted T0 model. Despite the 

drawbacks of these measures, the difference distributions for best GDT_TS models on 

each assisted target (Fig.2) provide insight into the performance improvements of the 

CASP community as a whole using various types of contact information. Predicted Tp 

https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0003
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and crosslinked Tx targets exhibited a relatively poor overall performance, with broadly 

negative absolute improvement values and relatively lower individual improvement 

values than those calculated for correct Tc and simulated NMR Ts targets, which tended 

to display positive improvements on most targets. 

For the predicted Tp and crosslinked Tx categories, the absolute performance is 

overwhelmingly negative (Fig. 2, most red bars in the left panel representing predicted 

Tp scores and lower part of the right panel representing crosslinked Tx scores are below 

0). The average absolute performance difference of best predicted Tp models over all 

targets was negative (−10.86 GDT_TS), with only 8% of the best models showing 

positive absolute performance improvement. The individual predicted Tp performance on 

average differed by −0.19 GDT_TS, and approximately half (51%) of the best predicted 

Tp models exhibited positive individual performance improvement (Fig. 2, blue bars 

above 0). Similarly, the best crosslinked Tx models had negative averages of −10. 2 

GDT_TS (absolute) and −1.9 GDT_TS (individual), beating their unassisted models in 

9% (absolute) and 36% (individual) of the cases. The discrepancy between some of the 

absolute and individual performance improvements suggested that positive individual 

performance scores might simply reflect poor initial models. Despite this potential caveat, 

community‐wide T‐tests as performed in the previous CASP contact‐assisted 

evaluation3 (Table 3) showed marginal, yet significant improvements for 4 of the 23 

predicted Tp targets: Tp767‐D0, Tp804‐D0, Tp806‐D1, and Tp834‐D0. At the same time, 

the predictions showed significant deteriorations with respect to their unassisted models 

on seven of the 23 predicted Tp targets. Only three predicted Tp targets (Tp763, Tp804 
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and Tp827) included promising absolute group performance (GDT_TS 

improvement > 10). Three of four crosslinked Tx targets showed average deterioration in 

model quality using assisted information, with one (Tx808‐D0) being significantly worse. 

In contrast to the poor performance on predicted Tp and crosslinked Tx targets, 

CASP11 predictors achieved good results modeling correct Tc and simulated NMR Ts 

targets (Fig. 2, center panel for correct Tc and upper left panel for Ts). The average 

GDT_TS improvement of the best correct Tc models was 12.1 GDT_TS for absolute 

performance, with the top score improvement approaching 69.2 GDT_TS for Tc763. For 

individual performance, the average of all best correct Tc models over all targets was 

22.9 GDT_TS, with the top score improvement approaching 72.1 GDT_TS for target 

Tc763. All but one correct Tc target showed significant improvements using 

community‐wide t‐tests (Table 3). Similarly, the average performance improvements for 

best simulated NMR Ts models were both positive (1.5 GDT_TS for absolute and 11.7 

for individual), with all but two of the targets (Ts794 and Ts835) showing significant 

improvements in average model quality by the community‐wide t‐tests (Table 3). 

The correct Tc and simulated NMR Ts score distributions highlight another 

drawback of comparing assisted scores to initial unassisted T0 scores. Several of the 

targets exhibited negative absolute performance differences, yet the individual 

performance differences were generally positive (i.e. Tc/Ts806, Tc/Ts824, and Tc/Ts827). 

These discrepancies suggested that the gold standard best unassisted T0 models used for 

calculating absolute performance had unusually high scores. Indeed, one of the manual 

groups participating in the contact‐assisted predictions (Baker, CASP group number 064 
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– see Table 2 for CASP11 group name‐number correspondence) provided outstanding 

“unassisted” T0 predictions for two of these targets (T0806, Fig. 4, and T0824). We 

learned that the Baker group had successfully incorporated co‐evolution based contact 

predictions into their T0 tertiary structure predictions.17 As such, the top T0 GDT_TS 

scores did not fairly reflect those of unassisted models, and this incorrect basis for 

comparison resulted in unusually low community‐wide absolute performance scores (and 

penalized the individual performance scores for group 64 on these two targets). 

 

Group‐based performance improvements 

 

We used the same absolute and individual performance improvement measures 

(with slight alterations) to understand how each group used contact information to 

improve unassisted T0 models. For the group‐based performance improvement 

evaluation (Fig. 3 and Table 4), we considered all assisted models in calculating averages 

so that the most information possible was included for statistical evaluation, and we 

compared these models to either the top group unassisted T0 (individual) or the gold 

standard unassisted T0 (absolute). Most of the groups' individual and absolute average 

performance differences were negative for predicted Tp (blue) and crosslinked Tx 

(orange) targets [Fig. 3(A)]. In contrast, the average individual performance differences 

for both correct Tc and simulated NMR Ts were above 30 GDT_TS for six of the 

participating groups (three groups from Jooyoung Lee's lab: Lee, LeeR and NNS server; 

the Baker group; the Wiskers group; and the Laufer group), with similar trends in the 
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absolute performance [Fig. 3(B)]. While the Wiskers group showed one of the most 

promising GDT_TS difference score trends, they contributed models for only 2 of the 24 

correct Tc targets and 2 of the 19 simulated NMR Ts targets (Table 4). In fact, six of the 

groups contributed models for <10 of the 70 total targets in all of the assisted categories 

(indicated by grey group labels in Fig. 3) and were ultimately excluded from rankings. 

According to pairwise Student's t‐tests evaluating the individual and absolute 

GDT_TS performance improvements for the groups participating in the CASP11 contact 

assisted categories, only three groups (NNS, Fusion, and Stap) showed significantly 

positive individual average performances on predicted Tp targets, whereas one additional 

group (Baker) showed a positive, but insignificant average performance (Table 4A). 

Fifteen of the twenty participating groups in the predicted Tp category significantly 

declined as measured by individual performance differences, and all were significantly 

worse using absolute performance differences. In the crosslinked Tx category, two 

groups (Meiler Lab and Stap) showed significant positive individual average performance, 

one group (Baker) showed positive, but insignificant performance, and the rest showed 

significantly negative individual average performance (Table 4D]). 

In the correct Tc and the simulated NMR Ts categories, individual and average 

performance measures showed significant (by Student's t‐test) improvement over initial 

models for five groups (Fig. 2: Lee, LeeR, NNS, Baker and Laufer). Four additional 

groups (Floudas, Anthropic Dreams, Multicom‐cluster, and Foldit) significantly 

improved in both individual and average measures for the correct Tc category, and one 

group (Floudas) showed significant improvements in both measures for the simulated 
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NMR Ts category (Table 4 B,C). The top five performing groups had higher scores on 

the correct Tc targets than both their individual unassisted T0 scores (average increase of 

43.0 GDT_TS) and the gold standard unassisted T0 scores (average increase of 35.4 

GDT_TS). They also showed similar average improvements in the simulated NMR Ts 

category (35.3 GDT_TS for individual and 28.5 GDT_TS for absolute). 

Two of the top‐performing groups in the contact‐assisted prediction (Baker and 

LeeR) also performed well in the FM tertiary structure prediction evaluation of unassisted 

T0 models.18Since most (21 out of 27) of the contact‐assisted targets belong at least in 

part to the FM category (Table 1), above the average GDT_TS scores of these two groups 

on unassisted T0 targets could introduce negative bias in difference scores. Thus in 

theory, evaluation of groups that outperform on T0 targets by their individual GDT_TS 

difference tests might be unfair. Indeed, the average best T0 GDT_TS score (29.5) on all 

contact assisted targets for the Baker and LeeR groups was significantly different than the 

average best T0 GDT_TS score for the remaining groups (22.5) using a two‐sample, 

one‐tailed t test. Given these drawbacks to the performance improvement scores, we 

chose to rank groups using alternate scores (see Performance evaluation section below). 

 

Examples of top assisted target predictions from top‐performing groups 

 

Target Tp806 exhibited the highest overall significant mean difference (4.3 

GDT_TS) reflecting performance improvement for the predicted Tp category (Table 3). 

The FM‐categorized T0806 target protein [Fig. 4(A)] adopts an α/β three‐layered 
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sandwich architecture in the Evolutionary Classification Of protein Domains (ECOD) 

database19 that is distantly related by structure (top LGA_S 25.0 to 2q07A) to folds in 

the X‐group “other Rossmann‐like structures with the crossover”. The Rossmann‐like 

domain in the target is interrupted by a unique 3‐helix insertion that is not present in any 

structurally related templates. The relatively high GDT_TS score of 60.7 for this target's 

top T0 model (64_1, by the Baker group) reflected a correct overall topology for the 

prediction [Fig. 4(B)] that was significantly closer to the target than the top templates. 

Despite this impressive top T0 prediction, the mean GDT_TS was much lower (16.56) 

for T0 models from groups participating in the contact‐assisted categories. The best 

model for this target in the predicted Tp category [also the Baker's group model 64_5, 

Fig. 4(C)] slightly improved the GDT_TS score (to 62.5). The next best group prediction 

[38_3 by the NNS server, Fig. 4(D)] retained the correct topology of the Rossmann fold, 

but incorrectly oriented the helical insertion with respect to the β‐sheet. 

Target Tc810‐D1 exhibited the highest overall significant mean difference (30.4 

GDT_TS) reflecting performance improvement for the correct Tc category, and 

Ts810‐D1 exhibited the third highest mean difference (22.3 GDT_TS) for the simulated 

NMR Ts category (Table 3). The ECOD database19 classifies the FM‐categorized target 

T0810‐D1 as an α‐superhelices architecture with a somewhat irregular ARM‐repeat fold 

[Fig. 4(E)]. This target domain is fused to a C‐terminal domain exhibiting an α/β‐barrel 

architecture fold that is homologous to a TIM barrel in ECOD. This C‐terminal domain 

was categorized as TBM and was excluded from the contact‐assisted predictions. The top 

unassisted prediction model among contact‐assisted predictors for this domain (TS162_3, 
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from McGuffin group) displayed a roughly similar topology (GDT_TS 40.5), except the 

N‐terminal helices did not pack against the subdomain formed by the C‐terminal helices 

[Fig. 4(F)]. The two top Tc prediction models (44_1 and 169_1 from J. Lee's lab) were 

identical and improved over the top T0 model by 45.8 GDT_TS [Fig. 4(G)], while the top 

simulated NMR Ts prediction model by another group [Laufer, 428_4, Fig. 4(H)] 

improved over the top T0 model by 38.7 GDT_TS. The top correct Tc and simulated 

NMR Ts prediction models for T0810‐D1 adopted the correct overall topology of the 

ARM‐repeat fold, with the main differences stemming from an extended C‐terminal 

linker sequence with no secondary structure. 

The single‐domain target T0812‐D1 [Fig. 4(I)] was categorized as TBM‐hard, and 

displayed a β‐sandwiches ECOD architecture that is homologous to Concanavalin A‐like 

folds. The top T0 prediction model [64_3 from the Baker group, Fig. 4(J)] retained the 

same overall fold as the target domain, except for the N‐terminal residues (5–56) 

corresponding to the first three β‐strands. The overall mean difference for the target 

T0812‐D1 was negative (−2.1 GDT_TS), yet the top performing crosslinked Tx model 

improved over the T0 model by 3.2 GDT_TS [64_3 from Baker, Fig. 4(K)]. The next 

best group prediction model [42_1 from the Tasser group, Fig. 4 (L)] decreased by 4 

GDT_TS, as compared to the T0 model. While the top performing crosslinked Tx model 

only improved by 3.2 GDT_TS, it correctly placed the three N‐terminal β‐strands and 

attained the entire fold topology. The next best group model also predicted the correct 

overall fold topology, but the model exhibited gaps and incorrectly structured β‐strands. 
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Performance evaluation without unassisted models: Combining scores for ranks 

 

Due to the potential biases of using unassisted models for the contact‐assisted 

evaluation, we chose to assess group performance using similar score combinations as 

were used in the FM (see Kinch, this issue) and TBM (see Roland, this issue) evaluations. 

We generated Z‐score sums and averages over all contact‐assisted (T*=Tp, Tc, Ts, or Tx) 

targets for the combined scores on each group's best or first submitted models. We 

evaluated all categories using the FM‐style combined scores (GDT_TS, ContS, QCS, 

TenS, lDDT, and MolProb). However, the relative high performance of groups in the 

correct Tc and simulated NMR Ts categories prompted additional evaluation using 

TBM‐style score combinations to better distinguish models that are closer to their targets 

(GDT_TS > 50). 

Group performance was ordered by best FM‐style Z‐score sum (Table 5, includes 

also FM‐style average, first models and win/loss counts). All groups that could not be 

distinguished from the top ranked group according to t test and bootstrap significance (for 

FM‐style Z‐score sum) are bolded. The top‐performing groups in the contact‐assisted 

categories according to the FM‐style and win/loss scoring schemes (Lee, LeeR, NNS, and 

Baker) were similar to those that outperformed in performance improvement scores 

(Fig. 3). As three of these groups correspond to a single CASP11 participant (Jooyoung 

Lee ‐ groups 38, 44, and 169), we investigated whether having multiple groups (i.e. 

submitting as multiple groups) tended to alter the Z‐score ranks or significance scores of 

the participant when compared to having a single group (i.e. submitting as a single group). 
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To check for this case, we omitted two of the three J. Lee's groups in turn, and 

recalculated all the relative scores for all the participating groups in these three scenarios. 

With the exception of the crosslinked Tx category, which had too few targets, the ranks 

and significance estimates of any single group from the same CASP11 participant did not 

change, although the absolute values of the Z‐scores did 

(See prodata.swmed.edu/casp11/contact for tables). 

When compared to group performance ranks determined by the GDT_TS Z‐score 

sums, the FM‐style Z‐score sums produced the same ranks for the four top‐performing 

groups in the predicted Tp category (Lee, NNS, McGuffin, and Fusion, in ranked order). 

However, tests of statistical significance in the predicted Tp category suggested that one 

of the groups (Baker) that predicted significantly fewer targets (10 out of 23) tied with 

the two top‐performing groups (Lee and NNS). In win/loss counts, the same four groups 

rank at the top, with the Baker group holding 3rd place. 

For the correct Tc category, all scoring methods (GDT_TS, FM‐style, and 

win/loss counts) rank groups LeeR and Lee as first and second, correspondingly. Because 

the top prediction models in this category were similar to the target (GDT_TS score >50), 

we also examined TBM‐style scoring and significance estimates that were designed to 

evaluate such similarities. TBM‐style scoring ranked the same two groups at the top. 

These two groups tied in many of the head‐to‐head trials (10 out of 24 targets), and the 

performance of the two groups could not be distinguished by significance estimates of 

TBM‐style scoring. The third‐place group (Baker) tied with the top‐performing group 
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according to significance of FM‐style scores, but not TBM‐style scores or GDT_TS only 

scores. 

For the simulated NMR Ts category, the same group (Baker) placed as first for all 

three Z‐score‐style scoring methods (GDT_TS, FM, and TBM). Two additional groups 

(LeeR and Lee) tied for top‐performance by all statistical measures. The fourth ranked 

group, NNS server (as well as the Laufer group that predicted less targets), tied with the 

top groups only using significance from T‐tests on TBM‐style scoring. Interestingly, 

win/loss counts with GDT_TS, FM‐style, and TBM‐style scoring placed the Lee and 

LeeR groups above the top‐ranked Baker group. The cause of this apparent discrepancy 

in rankings is discussed in the following section (Head‐to‐Head Comparisons). 

For the crosslinked Tx category, the top‐performing Baker group was ranked first 

by GDT_TS and FM‐style scoring methods, as well as in win/loss counts. The top group 

tied with Lee and NNS groups using t test significance estimates, while it significantly 

outperformed by FM‐style bootstraps. The differences in significance likely originated 

from the low number of targets in this category (4 targets). 

 

Head‐to‐head comparisons of top‐performing groups 

 

To help clarify the performance of the top ranked groups in each category that 

tied by any of the significance estimates, we plotted their head‐to‐head GDT_TS scores 

(Fig. 5). For these head‐to‐head comparisons, we chose the top performing Lee lab group 

(among Lee, LeeR and NNS) according to FM‐style Z‐score ranks for each assisted 
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category. For illustrative purposes, we combined the head‐to‐head results from the Baker 

and Lee groups for the predicted Tp and crosslinked Tx categories into a single graph 

[Fig. 5(A)]. The predicted Tp targets were limited to only 10 of the 23, since the Baker 

group did not predict the remaining targets. Most of the predicted Tp targets clustered 

near the identity line below 40 GDT_TS. However, the Baker group submitted three 

predicted Tp prediction models above GDT_TS 40 that outperformed (Tp806, Tp818, 

and Tp827), while the Lee group submitted one (Tp825) that outperformed. This relative 

outperformance of the Baker group on the reduced target subset likely explains their 

elevated performance according to significance estimates and their win/loss rank just 

under the top‐performing Lee and NNS server groups (Table 5). Similarly, three out of 

the four targets in the crosslinked Tx category clustered near the identity line below 25 

GDT_TS. The Baker group outperformed on a single crosslinked Tx target (Tx812), 

while the Lee group outperformed marginally on two of the crosslinked Tx targets. Thus, 

the outperformance of group Baker on a single target Tx812 established their position at 

the top of all ranking methods for the crosslinked Tx category (Table 5). 

The correct Tc category head‐to‐head plot highlights a cluster of 23 targets above 

48 GDT_TS, with the LeeR group outperforming on most (16 targets). The Baker group 

appeared to excel at the assisted prediction of target Tc812, while the LeeR group 

excelled at target Tc794, among a few others. This relative outperformance by the LeeR 

group on most of the targets resulted in their top ranking by all methods. Their top 

ranking was also justified by significance tests using the TBM‐style scoring scheme, 

which was chosen by the TBM assessor as distinguishing models that were generally 
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closer to the template (above 50 GDT_TS). The bootstrap and t test significance 

estimates using TBM‐style scoring suggested the performance of the LeeR group was not 

distinguishable from the alternate prediction group from the same participants (Lee), yet 

it was distinguishable from the Baker group (confidence level 0.916). 

The simulated NMR Ts category plot comparing LeeR with Baker highlights 

three outlier targets where Baker outperformed LeeR (Ts761, Ts777, and Ts827), and 

two targets (Ts794 and Ts826) where LeeR outperformed Baker. Performance scores on 

the remaining targets clustered closely to the equivalence line, with more favoring the 

LeeR group, which wins on 10 of 14 remaining targets. Comparison of the Baker group 

with the Lee group (ranked 2 by GDT_TS Z‐score sums) yielded similar results (not 

shown). Z‐score sums tended to emphasize the magnitude of improvements while 

win/loss counts evaluated the generalization of the methodology on various targets. 

Therefore, the apparent discrepancy in rankings by the two methods was caused by the 

Baker group providing more significantly better outlier targets (top Z‐score ranking), 

whereas the LeeR group provided more subtly better winning targets (12 out of 19 

targets). Statistical tests, including bootstrap and t test, suggested that the differences 

between these two groups were statistically insignificant. 

In our above analyses, we treated multidomain assisted targets as single 

evaluation units. Besides this treatment, we also calculated scores, rankings, and 

significance estimates for first model predictions and domain‐based predictions (i.e, 

predictions on multidomain targets were split and evaluated separately). Group 

performance using first models resembled that of best models with a few exceptions, 



 

including (1) LeeR significantly outperformed the other groups on correct Tc targets, and 

(2) nns tied with the top groups on simulated NMR Ts targets using FM‐style scores. The 

top performing groups performed similarly using best models on a per‐domain basis, with 

a few exceptions. The Baker group tied with the Lee and LeeR groups in the correct Tc 

category by all significance tests and the NNS server no longer tied with the top 

performing groups (Baker and Lee) in the simulated NMR Ts category using TBM‐style 

scoring. For first models, Baker TS064 tied with the LeeR group on correct Tc targets by 

TBM‐style scores and Laufer, who predicted less than half (11) targets, tied with the four 

top groups on simulated NMR Ts targets by TBM‐ and GDT_TS‐ style scores. All the 

evaluation tables are accessible via http://prodata.swmed.edu/casp11/contact. 

 

Performance comparisons to previous contact‐assisted predictions 

 

The contact‐assisted component of CASP11 included several new categories 

(predicted Tp, simulated NMR Ts, and crosslinked Tx) that had no basis for comparison 

to the previous assessment. The input data in the only comparable category (designated 

correct Tc in both CASP10 and CASP11) had some significant differences in both the 

number and type of provided contacts. The number of provided contacts for CASP10 

were restricted to roughly one tenth of the number of residues, and the contacts were only 

selected if they were present in <15% of the unassisted predictions in CASP10.3 In 

contrast, in CASP11 the Prediction Center provided a significantly larger number (∼10 
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fold) of correct Tc contacts that were selected among top contact predictors regardless of 

the contact coverage in the submitted 3D models. 

The previous CASP10 contact‐assisted correct Tc category showed significant 

improvements in mean correct Tc GDT_TS scores when compared to mean T0 scores for 

each target, with the best absolute improvement approaching 40 GDT_TS. The best 

absolute improvement for CASP11 correct Tc targets was even higher (70 GDT_TS). 

Even though it is hard to bring the different types of contacts in two different CASPs to 

the same frame of reference, the data allowed us to notice similar trends in both CASPs, 

namely improved average performance with increased number of contacts per residue. A 

scatter plot of CASP11 target‐based best absolute GDT_TS improvement against number 

of unique provided contacts per target residue (ranged from 0.432 to 1.11) highlighted an 

overall trend of improving performance with enriching contact information [Fig. 6(A)]. 

Although the data showed a relatively low goodness of fit (R2 = 0.09), extension of the 

linear fit line (Y = 28.20*X + 22.18) to the number of contacts released in CASP10 (25.6 

GDT_TS difference at 0.12 contacts per residue) suggests a similar trend in CASP10 and 

CASP11. This extrapolation implied that the apparent CASP11 performance 

“improvement” stemmed from an increase in the number of given contacts. 

Two of the correct Tc targets with high outlier T0 predictions (T0806 and T0824, 

discussed in Target‐based performance improvement section above) should have 

displayed lower than expected best absolute improvements, skewing the trends 

highlighted in Figure 6(A). Indeed, omitting these two targets from linear fit calculations 

slightly improved the goodness of fit (R2 = 0.11) and resulted in a somewhat larger slope 
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of the line: Y = 30.09*X + 22.31, which corresponds to a similar number extended to 

CASP10 levels (25.9 GDT_TS difference at 0.12 contacts per residue). 

Given the relatively high number of correct Tc targets, we examined the 

performance of predictions on different fold types. We considered the ECOD architecture 

for each correct Tc target, combining the target architectures into broad categories 

including α/β, α+β, all‐α, all‐β, and mixed resulting from the presence of multiple 

domains. We then plotted the best absolute performance of targets clustered into each 

category [Fig. 6(B)]. Because the targets displayed a trend in performance based on given 

contacts per residue, we normalized the best absolute performance by averaging it with 

an estimate of the best absolute performance (Y) based on the given contacts per residue 

(X) according to the Figure 6(A) linear fit formula. The results suggest that the provided 

contacts helped modestly for all‐α targets (average normalized performance improvement 

35.5 GDT_TS). Only a single target (T0806) populated the α/β category. This target 

represented an outlier and exhibited a lower than expected absolute difference (33.3 

GDT_TS) because of unusually high T0 model quality discussed previously. Indeed, 

when we used the next‐best group T0 target to calculate normalized best absolute 

performance on the singleton α/β target, the recalculated value (49.9 GDT_TS) exceeded 

the normalized average best absolute performance value [Fig. 6(B), dotted line, 43.3 

GDT_TS]. One possible explanation for the relative contact‐assisted outperformance on 

β‐strand‐containing targets might involve their more regular interaction in β‐sheets 

dictated by non‐local backbone hydrogen bonds. Thus, a single contact provides the 

correct register for the β‐strand with its neighboring β‐strands. Alternatively, interactions 
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between α‐helices can occur at different angles, requiring more than one contact pair to 

define their placement. 

 

CONCLUSIONS: PERFORMANCE INSIGHTS AND SUGGESTIONS 

 

Two research labs significantly outperformed the rest using all types of 

contact‐assisted information to enhance prediction model quality: the Lee lab represented 

by a server NNS, and two manual groups LeeR, and Lee; and the Baker lab with the 

same‐named prediction group. Using contact‐assisted information from two different 

categories, correct Tc and simulated NMR Ts, these top‐performing groups provided 

significantly improved structure predictions. On the other hand, information provided in 

the predicted Tp and crosslinked Tx categories yielded marginal improvements, despite 

the success of the Baker group in utilizing contact predictions to significantly improve 

structure models for several targets (i.e. T0806 and T0824) in the template free modeling 

category of CASP11 (Baker, personal communication). Unfortunately, the Baker group 

did not participate in the RR category, from which the assisted Tp category contact data 

was selected. Thus, the benefit of depth of alignment and improved co‐variation methods 

that led to Baker's success in residue‐residue contact and tertiary structure 

prediction17, 18 could not be evaluated for other groups participating in the predicted Tp 

category. Moreover, we could not clearly separate the contributions of provided contacts 

from those embedded in the Baker prediction methodology to their success in the 

contact‐assisted categories. The observation that the Baker group best contact‐assisted Tp 
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model (GDT_TS 62.50) was only marginally better than their best unassisted T0 model 

(GDT_TS 60.65) suggests that the contribution of predicted Tp data from other groups 

was limited. 

Perhaps the most encouraging prediction models came from the simulated NMR 

Ts category, which aimed to mimic contact information provided by experimental NMR 

data. The quality of models produced using this information, which albeit only represents 

a model of real NMR data, approached that of the artificial correct Tc category. 

Given the relative outperformance of the Baker and J. Lee's groups on the 

contact‐assisted categories, we decided to use their average GDT‐TS scores for all targets 

in a given category to represent top performance. We then examined why the predicted 

Tp and crosslinked Tx categories were much more difficult than the correct Tc and 

simulated NMR Ts categories [Fig. 7(A)]. First, we considered a term that evaluated the 

quality of provided contacts for each assisted category: the correct contact percentage 

(CCP). As expected, outperformance in the correct Tc category arose from the high 

percentage of correct contacts given (100% by definition), with the other three categories 

having <15% of the provided contacts being correct. Interestingly, the CCP average for 

the simulated NMR Ts category was almost the same as for the predicted Tp category, for 

which performance was significantly lower. Thus, CCP alone could not account for 

performance. The given simulated NMR Ts data included far more contacts than in any 

of the other categories (see paragraph below), so we also calculated the correct contact 

coverage (CCC) of the target to see if this property could compensate for a lack of correct 

provided contacts. Indeed, the simulated NMR Ts category displayed a higher CCC 
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average (2.5‐fold coverage) than the other three categories (Tp 0.19‐fold, Tc 0.7‐fold, and 

Tx 0.16‐fold coverage). Thus, the outperformance on the correct Tc targets stemmed 

from the high percentage of correct contacts, whereas the outperformance in the 

simulated NMR Ts category stemmed from a reduced percentage of correct contacts that 

was offset by a much higher coverage of correct contacts. A number of possible 

explanations for the relatively poor performance in the crosslinked Tx category exist. 

From our evaluation of contact quality [Fig. 7(A)], the contacts provided by the 

crosslinked Tx data were only 10.8% correct on average when defined by the 8 Å 

distance cutoff in the experimental structures. Such poorly defined contacts likely result 

from the cross‐linking agent being too long to represent interacting residues. Additionally, 

the nature of the crosslinking agents could result in an uneven distribution on the 

structures. This notion might lead to the relatively low average coverage of the correct 

contacts noted for the category (Fig. 7, crosslinked Tx CCC is 0.16). Thus, the 

crosslinked Tx category experiment provided a fundamentally different type of contact 

information, as residues must be accessible to the crosslinking reagent (i.e. relatively 

exposed) and might be more distant (> 8 Å) than the traditional concept of contacting 

residues. Perhaps including such restrictions in methodology for using crosslinked Tx 

contacts would improve the quality of structure models. 

To gain further insights into the quality of Ts predictions, we compared Ts models 

generated by predictors to ‘dummy models’ generated by us using standard NMR 

structure determination software. To generate dummy models, we used one of most cited 

NMR packages,16 the NMR routines in the Crystallography and NMR System (CNS). 
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The CNS package utilizes the distance restraints in simulated annealing protocol to 

produce a model most compatible with these restraints. The average number of contacts 

per target given to predictors in Ts category was 14724 hydrogen pairs, corresponding to 

9283 residue pairs [Fig. 7(B), dark and light cyan bars]. This number far exceeds that 

given in other contact‐assisted categories. For instance, the largest number of contacts per 

target from any of the other three categories is only 673 residue pairs (Tp814). However, 

the overwhelming majority (about 98.5%) of these contacts is “ambiguous”, and the 

NMP peak is usually assigned to multiple atom pairs. When all given Ts contacts 

(ambiguous and unambiguous) are used as input, CNS package generated dummy models 

with approximately random GDT_TS scores for each Ts target [average GDT_TS = 13.56, 

Fig. 7(C) cyan line], close to some of the worst predictions. Apparently, the ambiguity of 

the contacts hindered the reconstruction of the structures by CNS, and most predictors 

found a more clever way to deal with ambiguities. 

We next attempted to reduce the ambiguity provided to the CNS software. As the 

first step, we used only unambiguous contacts, that is, those for which distance constraint 

corresponded to a single given pair of atoms. While this method of contact selection does 

not require the knowledge of the target structure and could have been used by predictors, 

it comes at the cost of losing most of Ts contact information, because unambiguous 

assignments corresponded to an average of 1.2% (by atom)/1.7% (by residue) of the total 

Ts contacts [Fig. 7(B), dark and pale purple bars]. With unambiguous contacts being the 

only input, the CNS package generated dummy models with 29.3 GDT_TS score on 

average [Fig. 7(C), purple line]. Dummy models from five targets predicted the correct 
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fold and achieved GDT_TS above 40 (maximal GDT_TS = 53.8 for target Ts812). 

Therefore, although the number of unambiguous contacts was limited, those contacts 

were mostly correct (98.6% of unambiguous atom pairs are correct) and could be used to 

generate reasonable seed structures for further refinement. Interestingly, many of the 

CASP simulated NMR Ts predictions [Fig. 7(C), blue dots] had GDT_TS scores lower 

than the dummy structures generated from unambiguous contacts by CNS, suggesting 

that these groups could have benefitted from including standard NMR structure 

determination software in their methodologies. 

Because assessors are granted access to the target structures, we further attempted 

to disambiguate ambiguous contacts using the knowledge of the target structure. We 

selected all the correct constraints in the provided simulated NMR Ts contacts to evaluate 

the theoretical upper limit of the CNS performance. For the purpose of cross‐category 

comparison in previous section calculating CCP and CCC [Fig. 7(A)], the correct 

contacts were defined as those with Cβ distance no >8 Å. Here, we extracted the cutoff 

for the ‘Ts‐specific’ true contacts from the upper limit (UPL) of the atomic distance for 

individual atom pairs provided by the simulated NMR data, resulting in an average of 

1041 correct atom pairs in 625 correct residue pairs [Fig. 7(B), dark and pale green bars]. 

This definition was slightly higher than the number of correct contacts computed in the 

cross‐category comparison [586 residue pairs, Fig. 7(B), medium green bar]. The dummy 

models generated by CNS using those ‘Ts‐specific’ true contacts produce GDT_TS 

scores ranging from 43 to 75, with an overall average of 58 [Fig. 7(C), green line]. 

Impressively, many predictions achieved better performance than the structures built 
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from the true distance constraints selected with the knowledge of the target structure. The 

best predictions for every target outperform the dummy models obtained by CNS using 

true contacts. Although the lack of chemical shifts in Ts contacts provided to predictors 

limits the utilization of the NMR package to its full potential, the structure prediction 

methods seemed to utilize additional information to push the limit of the NMR methods 

based purely on the distance constraints. These best prediction methods should be useful 

for NMR researchers in protein structure determination and may have some advantages 

over the CNS package. 

CASP11 exhibited a number of significant differences in the implementation of 

the contact‐assisted category experiment when compared to the previous CASP10. These 

differences made evaluation of performance improvement difficult. Performance of the 

correct Tc categories from both CASPs was roughly dependent on the number contacts 

given per residue [Fig. 6(A)]. Given the artificial nature of the correct Tc category, 

perhaps future contact‐assisted experiments could explore the correlation between given 

contacts per residue and top structure prediction performance by incrementally providing 

sets of correct Tc contact pairs over time. At the very least, this category should include 

more consistently defined contact pairs between CASP experiments to allow methods 

performance comparisons over time. 

 

MATERIALS AND METHODS 

 

Improvements over unassisted T0 models 
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We evaluated the community‐wide improvement in performance quality by 

comparing the contact‐assisted models (all T*: Tp, Ts, Tc, and Tx) to the unassisted (T0) 

models, using the GDT_TS score7 that has been used in CASP assessments for over a 

decade.8-13 We considered the differences in both individual performance and absolute 

performance on a target‐wide basis similar to the evaluation of the CASP10 

contact‐assisted category.3 For comparing overall performance improvements on each of 

the assisted targets, the best unassisted T0 GDT_TS from the group (individual 

performance) or the best overall unassisted GDT_TS among all groups (absolute 

performance) was subtracted from the group's T*model GDT_TS. To include individual 

performance scores for those groups that did not provide T0 models, the average T0 

GDT_TS for all groups participating in the contact‐assisted category for that target 

substituted for the missing T0s. To be consistent with the previous CASP10 assisted 

evaluation, we estimated the significance of community‐wide performance improvement 

for each target using one‐tailed t‐tests that compared all assisted T* model GDT_TS 

scores to all T0 model GDT_TS scores (not only best T0's). We used one‐tailed 

paired t‐tests to evaluate the significance of each group's performance improvements 

(absolute and individual) over their unassisted T0 targets. The t‐tests compared all of the 

group's assisted T* model GDT_TS scores to either the group's best T0 model scores 

(substituting missing T0 scores with the average GDT_TS for the corresponding target) 

or the overall maximum T0 model GDT_TS scores among all participating groups, 

respectively. 

https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0007
https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0008
https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0013
https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0003


 

 

Group performance using combined scores, win/loss counting, and head‐to‐head 

trials 

 

We calculated Z‐score sums (and averages) over all the targets in each category 

for several different scores. Z‐scores were calculated as in previous CASPs10, 11 using 

first and best GDT_TS scores, as well as the combined score used to evaluate CASP 11 

tertiary structure predictions (Kinch et al,. Evaluation of CASP11 free modeling targets 

and CASP ROLL in this issue). Briefly, we calculated Z‐scores over each target for first 

and best GDT_TS, FM‐style combined score (GDT_TS, TenS, QCS, ContS, lDDT, and 

Molprb), and TBM‐style combined score (GDT_HA, GDC_ALL, lDDT, SG, and 0.2 x 

Molprb); and summed (or averaged) the Z‐scores for all targets in each contact‐assisted 

category. 

The statistical significance of whether each group's performance differed from 

that of the other groups was inferred from one‐tailed paired t‐tests and bootstrap 

tests10, 14, 15 on GDT_TS, FM‐style, and TBM‐style scoring schemes. We also carried 

out a pairwise comparison (head‐to‐head trials) of the group results, as well as the 

CASP10‐style overall win/loss counts for all‐against‐all pairwise comparisons.3 In 

head‐to‐head trails, for each pair of groups, we calculated the fraction of common 

targets/domains for which one group outperformed the other according to the selected 

score. In win/loss counts, we performed all‐against‐all pairwise prediction model 

comparisons on the selected scores for each target and summed the numbers of win/loss 

https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0010
https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0011
https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0010
https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0014
https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0015
https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0003


 

cases for each group. The groups were ranked primarily by the probability that a win/loss 

record was equal to or better than the observed record that could have been obtained by 

chance, and secondarily by the fraction of winning comparisons. In GDT_TS 

comparisons for both head‐to‐head trials and win/lose count, we extended our 

comparison to consider models within both 1 and 2 GDT_TS score units as ties to 

address models with insignificant differences. Due to the registration of multiple groups 

by a single participant, we studied whether registering multiple groups (as opposed to 

having a single group) would provide an advantage or disadvantage to the 

participant's Z‐score and ranking. To address this question, we compared 

original Z‐scores, t test probabilities, and ranks to those calculated using only one of the 

multiple groups from the same participant. 

 

Calculating correct contact percentage and correct contact coverage for contact 

assisted targets 

 

The correct Tc and predicted Tp categories included some duplicated residue 

pairs that stemmed from overlapping predicted contacts provided by multiple prediction 

groups. Simulated NMR Ts target contacts included hydrogen atom pairs (as opposed to 

residue pairs), with some having multiple peak assignments as well as multiple atom 

counts for some residue pairs. Additionally, contacts in the simulated NMR Ts category 

and for the cross‐linking target Tx781 included residue pairs limited to the same residue 

(noted as self‐contacts). We filtered out duplications and self‐contacts, using the numbers 



 

for unique and non‐self contact pairs. The correct contact percentage (CCP) was 

calculated as the number of correct residue pairs divided by the number of total residue 

pairs (times 100 to convert to percentage), with correct contact pairs defined as having 

Cβ atoms in the target structure no >8 Å apart. We also computed the correct contact 

coverage (CCC) as the correct residue pair count divided by the target length. 

 

Production of dummy structure models using simulated NMR Ts contact restraints 

 

The simulated NMR Ts contacts represent hydrogen pairs from simulated NMR 

peak assignments, with an indicated distance upper limit (UPL) and its corresponding 

peak. Due to the ambiguity of the NMR assignments, peaks could be assigned to multiple 

hydrogen pairs. We produced dummy structure models with the CNS package using 

different distance restraint sets from the simulated NMR Ts contacts: (1) all contacts, (2) 

unambiguous contacts, and (3) true contacts. Unambiguous contacts were generated by 

taking those peaks with only one contact pair. As the UPLs for hydrogen pairs vary, we 

defined ‘Ts‐specific’ contacts as those with distances lower than the corresponding UPLs. 

Note that the ‘Ts‐specific’ contact threshold differs from the contact threshold used in 

comparison across categories (Cβ atoms within 8 Å). 

The simulated annealing protocol of the CNS package16 was used to calculate 

structures based on provided distance restraints. As these restraints were limited to 

hydrogen atoms, we assigned the lower limit for distance constraints as 1.5 Å and the 

upper limit as the UPL given in the contact information. Simulations were performed 

https://onlinelibrary.wiley.com/doi/full/10.1002/prot.25020#prot25020-bib-0016


 

from both an extended chain (‘anneal.inp’ template option) and an embedded 

substructure starting model generated for HN, N, CO, Cα, Cβ, and Cγ atoms by distance 

geometry calculations based on the Nuclear Overhauser Effect (NOE) restraints 

(‘dg_sa.inp’ template option) and ‘sum’ mode for NOE averaging. Simulations were 

complete after generating 10 accepted structures or reaching a 48‐hour time limit. All 

simulations using unambiguous contacts, and 7 out of 19 simulations using correct 

contacts produced 10 accepted structures before reaching the time limit. The simulations 

generated from 634 to 10815 NMR structure solutions for each target, due to variations in 

protein length and provided contact numbers. We reported the best GDT_TS score 

among all the trial structures for each simulated NMR Ts target. 
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CHAPTER 9 GENOMES OF 250 SKIPPER BUTTERFLIES REVEAL 

RAMPANT CONVERGENCE IN WING PATTERNS8 

 

INTRODUCTION 

 

when an animal interacts with its environment, it is phenotype that matters. 

Phenotypic traits define the place of an organism within its ecosystem and within a 

human-made classification system as perceived by zoologists for two centuries. Due to 

evolutionary plasticity of phenotypes riddled by adaptive convergence, it is challenging 

to decipher phylogeny, and thus deduce phylogenetic classification from morphology. 

The phenotype is encoded by the genotype, which equally bears the footprint of 

evolution. DNA sequences are prime for evolutionary studies. Sanger-sequencing of 

select gene markers revolutionized phylogenetic research and refined morphology-based 

classification. However, frequent homoplasies and in-ability to perfectly model DNA 

sequence changes are serious obstacles to phylogeny reconstruction from thousands of 

base pairs. Complete genomes are composed of millions of base pairs. The knowledge of 

complete genotypes is expected to confidently resolve many outstanding questions. 

While large-scale genomic studies are still scarce and are mostly performed by hefty 

consortia, they are most enlightening [1]. 

                                                 
8 This Chapter was submitted as:  

Li W, Shen J, Cong Q, Zhang J, Grishin NV. Genomes of 250 skipper butterflies reveal rampant 

convergence in wing patterns  



 

To exemplify a large-scale genomics project possible within a single small lab, 

we have chosen Skipper butterflies (Hesperiidae). This family is very diverse in wing 

patterns and shapes and comprises about 4000 species worldwide, but has not received as 

much attention as other butterflies. Nevertheless, a number of recent studies focused on 

Skipper phylogeny from DNA sequences of several genes [2–5]. Pioneering work by 

Warren et al. [2, 3] revealed many surprising phylogenetic relationships among 

Hesperiidae compared to the last comprehensive morphological treatment [6–11]. 

However, many questions about Skipper phylogeny remain unanswered. In particular, the 

Eudaminae subfamily that includes most diverse, large and colorful Hesperiidae was not 

analyzed in detail. 

Here, we obtained and analyzed shotgun genomic reads of 250 species of 

Skippers, covering all genera in the Eudaminae subfamily. As a result, we constructed 

genome-level phylogeny of Hesperiidae and found that many Eudamine skippers have 

been attributed to evolutionary groups they do not belong. The convergence in wing 

patterns and shapes is rampant and is possibly mimetic. Interestingly, we also found a 

group of close relatives with disparate morphology. Furthermore, sequence data suggest 

possible genomic determinants of morphological traits and indicate that our approach is 

promising to revamp the way biodiversity research is carried out. 

 

RESULTS AND DISCUSSION 

 



 

To better understand evolution and biology of the family Hesperiidae with the 

emphasis on the poorly understood subfamily Eudaminae, we sequenced genomes from 

all its major phylogenetic lineages and all genera of Eudaminae were covered. 

 

Genomes of 250 skipper butterflies.  

 

We selected 250 species of Hesperiidae from all subfamilies and tribes, and 110 

were from the subfamily Eudaminae. Only 36 specimens were collected past 2012 and 

preserved in a DNA-friendly manner. Others were stored pinned in collections and some 

were collected over a century ago. The oldest was the holotype of Pseudodrephalys 

atinas collected prior to its description in 1888. Nevertheless, shotgun genomic reads 

targeting 10x coverage of the genome allowed us to assemble genomic regions with the 

emphasis on protein-coding genes. Out of nearly 12618 genes from the two reference 

genomes of Hesperiidae we obtained previously [12, 13], more than 75% were more than 

50% complete in 85 specimens. The total length of aligned regions in each specimen was 

8,100,834+/-2,387,641 positions. In addition to nuclear genomes, we assembled 

mitogenomes that covered 10,663+/-674 positions and were >90% complete in 232 

specimens. 

 

Timed genomic tree of skippers and subfamilies. 

 



 

We constructed genomic trees from concatenated alignments of coding regions 

(Fig. 1) and from introns, and both trees had identical topologies. Moreover, to probe 

problems with incomplete lineage sorting we constructed gene trees and combined them 

using ASTRAL [14]. Topology of this tree was also the same, giving confidence in the 

results. The tree from combined coding regions and introns was timed. The major 

phylogenetic groups in the timed tree constructed from the genomic data agree with the 

groundbreaking works by Warren et al. [2, 3] and follow-up publications that employed 

larger set of species and genes [4, 5]. Importantly, the Awls (Coeliadinae) is the 

subfamily that is sister to the rest of Hesperiidae (Fig. 1). Australian endemic Euschemon, 

as suggested by several studies [2, 3, 15], is unique and forms its own subfamily, sister to 

all other Hesperiidae with exclusion of Coeliadinae. The next split in the genomic tree is 

different from that proposed previously based on DNA studies, but in agreement with 

morphological view. The Spreadwing skippers (mostly dicot feeders) and Grass skippers 

(mostly monocot feeders) are sisters. Each of these groups were previously divided into 

several subfamilies. Genomic data very strongly support (bootstrap above 99%) 

monophyly of these subfamilies. The two latest diverging subfamilies (Hesperiinae and 

Trapezitinae) have split about 50Mya. Pyrginae, as defined by Warren et al. (2009) 

diversified from their common ancestor before that time (>55Mya). Moreover, while 

other subfamilies except Pyrginae (i.e., Eudaminae, Heteropterinae and Hesperiinae) are 

well-separated from each other, Pyrginae sensu Warren split within a short time into three 

compact groups, prior to divergence of Grass skippers into subfamilies. Thus these three 

groups within Pyrginae are more similar to other subfamilies in Hesperiidae and we treat 



 

them as such. Accordingly, the sister tribes of Warren [3] Tagiadini and Celaenorrhinini 

are unified in a subfamily Tagiadinae, and the subfamily Pyrrhopyginae is re-instated. 

The Firetips (Pyrrhopyginae) are strikingly distinct in appearance from other skippers, 

have been traditionally considered a subfamily and they diverged from their common 

ancestor with Pyrginae about 55Mya, prior to the divergence of Grass Skippers. Thus, 

genomic data suggest that the family Hesperiidae consists of 9 subfamilies (Fig. 1) and 

diversification into subfamilies occurred about 50Mya. 

 

Mitogenomes and COI barcodes.  

 

In addition to nuclear genome tree, we constructed a tree from mitogenomes. The 

resulting tree recapitulates major phylogenetic groupings of the nuclear genome tree, but 

with weaker support. All the subfamilies and tribes are composed of the same species in 

mitogenome or nuclear genome phylogenies. Next, using complete mitogenomes of 250 

specimens as a backbone, we increased taxonomic coverage of Eudaminae by adding 290 

specimens with COI barcodes only. These specimens confidently grouped with 

mitogenomes of their expected phylogenetic group. Most of these barcode-only 

specimens were placed consistently with their current classification with several notable 

exceptions. We used this mitogenome + barcode tree together with the nuclear genome 

tree (Fig. 1) as the basis for our proposed classification of Hesperiidae. Differences in 

barcodes suggested that a number of subspecies as defined by Evans (1952, 1953, 1955) 



 

are more likely to be species, and all such cases were analyzed in detail for wing pattern 

and genitalic differences. We concluded that 27 subspecies should be treated as species. 

 

Eudaminae tribes and subtribes.  

 

Previous studies refrained from defining tribes in Eudaminae subfamily due to 

small number of species used in the analysis based on a limited number of genes. 

Therefore, we focused on this subfamily and attempted to delineate the tribes consistently 

with their definition in Pyrginae (sensu stricto). The four tribes of Pyrginae 

(Carcharodini, Achlyodini, Erynnini and Pyrgini) outlined by Warren et al. [3] diverged 

around 42Mya. Genomic tree is consistent with the Warren et al. definitions with some 

exceptions: we transfer Grais, Tosta, Morvina, Myrinia, Xispia, Pseudodrephalys, 

Mimia, Eracon, and Spioniades to Achlyodini, Cornuphallus to Carcharodini, Clito to 

Erynnini, and Jera to Pyrrhopyginae. Moreover, Cabirus does not belong to Eudaminae 

(as also suggested by [4]), and we confidently place it in Achlyodini. On the other hand, 

Emmelus is transferred to Eudaminae. All Pyrginae tribes received 100% bootstrap 

support and indeed represent major groupings in the subfamily. Cutting through the 

genomic tree around the level of Pyrginae divergence into tribes results in 4 Eudaminae 

phylogenetic groups supported by 100% bootstrap that we define as tribes. Two of the 

tribes that form best-separated groups are described in Table 1 as Oileidini and Entheini. 

The two others are closely related sisters Eudamini and Phocidini that diverged about 

40Mya, and we give them a tribal rank due to their morphological distinction. 



 

The four Eudaminae tribes defined by genomic divergence correspond to groups 

with similar morphology [9, 10]. For instance, Entheini is basically "B. Augiades group" 

of Evans that he defined by the divergent 3rd segment of palpi that is set on the outer 

edge of the 2nd segment. Inconsistently, Evans included three genera with the central 3rd 

segment in this group: Phocides, Hypocryptothrix and Cabirus that do not belong to 

Entheini, and Cabirus does not even belong to Eudaminae (Fig. 1). Interestingly, Phareas 

that has divergent 3rd segment (and was included in Auguades group) does not belong to 

Entheini and males possess tufts of long hair-like scales in the groove along hindwing 

vein 1A+2A, not found in Entheini. We confidently place this uniquely patterned skipper 

in Phocidini, some of which have tufts of similar scales on wings. The structure of palpi 

in Phareas is likely convergent. 

In the genomic tree, Oileidini is sister to the rest of Eudaminae. Genera in this 

tribe were grouped together with some Pyrginae genera by Evans [10], suggesting that 

the tribe may be intermediate in morphology between Pyrginae and Eudaminae. This is 

the smallest tribe (6 genera) and is characterized by tufts of hair-like scales in the groove 

along hindwing vein 1A+2A in males, either below (Oileides) or above (the rest). Similar 

structures are present in Phareas from the Phocidini tribe, but on both sides of hindwing. 

The sisters Eudamini and Phocidini are separated from each other by a short 

branch and could be treated as one tribe. However, both are strongly monophyletic within 

(100% bootstrap), and Phocidini stand out morphologically and ecologically: forewing 

veins R4 and R5 are approximate at their origins, hindwing tornus usually produced (not 

lobed), and skippers hold wings spread flat in resting pose, are crepuscular and come to 



 

light, and many species have striking sexual dimorphism. Our Phocidini is the "D. 

Celaenorrhinus group" of Evans [9] after removal of the following genera: Cephise, 

which has strongly lobed or tailed hindwing tornus, Celaenorrhinus, which males have a 

tuft of long scales on hind tibiae fitting in a thoracic pouch, a feature not present in 

Eudaminae, and Lobocla, the only Old World Eudaminae. Genomic tree suggests that 

Oileides is polyphyletic, and only one species (together with Aurina) belongs to 

Phocidini. 

Eudamini is the largest and most diverse tribe that encompasses more than half of 

the subfamily. Genomic tree reveals meaningful groupings within the tribe that are 

described here as subtribes (Table 1). One of them, substribe Cephisina is monotypic 

including a single genus Cephise, which diverged from its sister tribe Telemiadina 

35Mya and is unique in its morphological features [16]. Telemiadina includes three gen-

era: Telemiades with its close sister Polygonus and Ectomis, in which we subsume genera 

Hypocryptothrix, Heronia, Polythrix, and Chrysoplectrum. Along with Lobocla, 

Loboclina unifies genera with the arcuate antennal club from "C. Urbanus group" of 

Evans plus Venada, Aguna and a new genus Zeutus. The rest belong to the "crown" 

group of Eudaminae and includes the most interesting array of skippers that have been 

largely misclassified previously due to rampant and possibly mimetic convergence in 

wing patterns as detailed below. 

 

Eudaminae genera and subgenera.  

 



 

While there is no accepted universal criteria for the definition of a genus, it has 

been proposed that major phylogenetic clusters of species with common ancestors 

existing within a certain time-frame could correspond to genera [17]. Looking for a 

consistent definition, we cut a timed phylogenetic tree at a time-point to maximize 

agreement with the current classification (i.e., most genera that are well-defined by 

morphological features are neither split not merged) and call genera the groups supported 

by the cut branches. 15Mya corresponds to such point, that on the one hand keeps well-

known genera Aguna, Udranomia and Urbanus proteus group unsplit and, on the other 

hand, separates traditional and morphologically distinct pairs of sister genera such as 

Epargyreus and Chioides. Moreover, we attempt to reduce the number of monotypic 

genera, unless the genus is truly distinct, because it seems more instructive to indicate 

relationships to other species by the generic name. As a result (Fig. 1), we outlined 50 

Eudaminae genera, 4 of which are described as new in Table 2. The number of 

monotypic genera decreased from 10 to 4: Pseudonascus, Nicephellus, Spathilepia and 

Zeutus g. nov. [18] (plus Emmelus transferred from Pyrginae), and these three diverged 

from their sister taxa at least 18Mya and are morphologically distinct. 

Within some genera, we see informative phylogenetic groups of species that are 

meaningful to define as subgenera, and 3 new subgenera are described (Table 2). Some 

of the subgenera, such as Thorybes have been used as genera for decades, but their 

genomic and morphological distinctness is insufficient compared to other genera. 

 

Rampant convergence in wing patterns and shapes. 



 

 

Arguably the most unexpected result of this study is the astounding number of 

misclassifications, when species were attributed to genera they do not belong to. The 

genera themselves proposed over the years of classic entomological studies mostly stood 

the test of genomic data: i.e., 55 genera were recognized prior to our work and we revise 

them to 50. We eliminated several monotypic genera for which visual morphological 

differences hindered close relationships with other species, and merged several 

phenotypically diverse but genotypically close genera. Apparently, morphological 

distinction between certain kinds of phenotypes (e.g. wing shape, such as tailed 

hindwing, or wing pattern, such as a pale stripe across forewing) may be indicative of 

genomic divergence and thus the time since the taxa split from their common ancestor. 

However, attribution of a species to a genus by its dominant to human eye phenotypic 

feature is more problematic. For instance, many tailed skippers have been placed in the 

genus Urbanus based on the tail. However, genomic data imply that half of them do not 

belong there and they were transferred to 3 other genera, one is newly proposed while 

others didn’t include tailed skippers. Moreover, we transferred some skippers with short 

tails and without tails to Urbanus from Astraptes. They were previously misclassified due 

to wing patterns consisting of shiny metallic-cyan wing bases and/or white forewing 

spots. 

We found this situation to be rampant across Eudaminae and attribute it to 

mimetic convergence. This convergence is not confined to one or two basic patterns to 

mimic an un-palatable model, but is significantly more diverse. In the most illustrious 



 

example (Fig. 2), we see five different phenotypes that parallel each other in two genera 

(Telegonus and Cecropterus) and outgroups (several genera): (1) greenish bases of 

wings, white stripe of spots on the forewing, hindwing with white tail and margins; (2) 

metallic-blue wing bases, forewing with a stripe of spots; (3) forewing with a yellow 

stripe across and apical white spots; (4) chocolate-brown wings, hindwing with yellow 

tornus; (5) cream-white, semitranslucent spots on the forewing arranged in a typical for 

Eudaminae pattern. 

At least 4 of these phenotypes are not ancestral and thus are convergent. DNA-

based phylogeny reveals monophyly of these two proposed genera (Fig. 1). Amazingly, 

every single species out of 10 shown here was previously misclassfied by visual 

appearance into a wrong genus (given after "not" by each specimen in Fig. 2). In 

retrospect, correct assignment to genus could have been achieved through careful 

inspection of male genitalia (Fig. 2). In Telegonus, dorsal side of valva is concave in the 

middle and forms a mouth-like (in profile) structure with two "kissing lips". In 

Cecropterus, valva is dorsally and terminally convex without a "kiss", but may have 

sharp "hooks" instead. These genitalic features agree with genomic phylogeny and 

reinforce our conclusions. Four genera were chosen to represent these phenotypes in the 

outgroups (Fig. 1). Since the outgroups are more divergent phylogenetically, their 

previous attribution to genera was mostly correct. 

 

Uncanny divergence within a genus 

 



 

Prior to our work, each of the three genera Ectomis, Hypocryptothrix and Heronia 

included but a single skipper species of unique appearance. Never before they were 

looked at together. To our surprise, all phylogenetic trees we obtained (even including 

COI barcodes only) revealed but a slight divergence among these three and two other 

genera, Polythrix and Chrysoplectrum, suggesting that it is best to place all these skippers 

in a single genus Ectomis. Moreover, their most divergent phylogenetic cluster was part 

of Polythrix, and is described here as a subgenus Asina subgen. n. (Table 2). COI 

Barcode divergence among the subgenus Ectomis is within 10% (e.g., 9.5% between 

Ectomis cythna and "Hypocryptothrix" teutas) and is less than within the genus of 

swallowtail butterflies Pterourus, which some researchers consider a subgenus of 

Papilio. 

Despite limited genetic divergence, the expanded Ectomis contains species of 

uncanny phenotypic divergence. All skippers in the former genus Polythrix (subsumed by 

Ectomis) are tailed. All the remaining congeners are not, but their hindwing is usually 

lobed at tornus. While most Ectomis are brown skippers with a pale forewing band 

frequently divided into spots, some vary from solid dark brown to dark metallic green 

with forewing central spot, or tawny with many white spots. Some are even part of the 

mimetic complex with brilliant-blue wing bases and body and white stripe across 

forewing. Males of some species possess tufts of hair-like scales on hindwing 

below, while others have a double row of yellow spines on hind tibiae. Male 

genitalia are as diverse as wing shapes and patterns, and the phylogenetic closeness is not 

apparent from genitalia. E.g., valva varies from simple curved plate without elaborations 



 

(in E. cythna) to amazingly complex with several processes (in "Heronia" labriaris). It 

would be worthwhile to investigate genetic mechanisms for such a rapid phenotypic 

divergence within Ectomis. 

 

DISCUSSION: A BROAD PICTURE.  

 

Today, arguably the most efficient and cost-effective way to gain rapid insights 

about biodiversity is to genome-sequence it. Comparative approach when a group of 

organisms, e.g., a family, is chosen and all its key representatives are sequences and 

analyzed, along with their morphology and ecology, is rich in discoveries. Even now such 

work can be done within a small lab and not a large genomic center. We illustrate how 

such project can be accomplished and results that can be expected from it, taking a 

butterfly family Hesperiidae as an example. Not only because this family is interesting in 

its own right, but rather to emphasize several general points. First, while several reference 

genomes require freshly collected specimens, the bulk of the project can be done using 

museum samples. Even specimens collected a century ago yield usable genomic data. 

Second, we provide the ultimate genome-based phylogeny of the group and reclassify it 

taxonomically. Unexpectedly, we find that many species were classified incorrectly, 

suggesting that many other families will not be an exception to this rule. Third, we find 

amazing examples of phenotypic convergence and divergence, and mine genomic data 

for the links between genotype and phenotype. With the ever-decreasing cost of 



 

sequencing, we expect that soon any phylogenetic project will start from sequencing and 

analysis of complete genomes. 

 

MATERIALS AND METHODS 

 

For freshly collected specimens, DNA was extracted from a piece of tissue of a 

specimen (minus wings and genitalia that were stored in an envelope) field-stored in a 

vial with RNAlater. For pinned and dry specimens from museum collections, DNA was 

extracted either from a whole abdomen prior to genitalia dissection or from a leg. Details 

of methods for DNA extraction, genomic library preparation, DNA barcoding, next-

generation sequencing and computational analysis of complete nuclear and mitochondrial 

genomes have been reported previously [12, 20]. Phylogenetic trees were constructed 

with RAxML and ASTRAL. 
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